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Preface

This volume contains the proceedings of the 16th Asian Symposium on Programming
Languages and Systems (APLAS 2018), held in Wellington, New Zealand during
December 2–6, 2018. APLAS aims to stimulate programming language research by
providing a forum for the presentation of the latest results and the exchange of ideas in
programming languages and systems. APLAS is based in Asia but is an international
forum that serves the worldwide programming languages community.

APLAS 2018 solicited submissions in two categories: regular research papers and
system and tool demonstrations. The conference solicits contributions in, but is not
limited to, the following topics: semantics, logics, and foundational theory; design of
languages, type systems, and foundational calculi; domain-specific languages; com-
pilers, interpreters, and abstract machines; program derivation, synthesis, and trans-
formation; program analysis, verification, and model-checking; logic, constraint,
probabilistic, and quantum programming; software security; concurrency and paral-
lelism; and tools and environments for programming and implementation.

APLAS 2018 employed a lightweight double-blind reviewing process with an
author-response period. Within the review period, APLAS 2018 used an internal
two-round review process where each submission received three first-round reviews on
average to drive the possible selection of additional expert reviews as needed before the
author response. The author-response period was followed by a two-week Program
Committee discussion period to finalize the selection of papers.

This year APLAS reviewed 51 submissions. After thoroughly evaluating the rele-
vance and quality of each paper, the Program Committee decided to accept 22 con-
tributions including four tool papers. We were also honored to include three invited
talks by distinguished researchers:

– Amal Ahmed (Northeastern University, USA) on “Compositional Compiler Veri-
fication for a Multi-Language World”

– Azalea Raad (MPI-SWS, Germany) on “Correctness in a Weakly Consistent
Setting”

– Bernhard Scholz (University of Sydney, Australia) on “Soufflé: A Datalog Engine
for Static Analysis”

This program would not have been possible without the substantial efforts of many
people, whom I sincerely thank. The Program Committee, sub-reviewers, and external
expert reviewers worked hard in selecting strong papers while providing constructive
and supportive comments in their reviews. Alex Potanin (Victoria University of
Wellington, New Zealand) serving as the general chair of APLAS 2018 checked every
detail of the conference well in advance. David Pearce (Victoria University of
Wellington, New Zealand) serving as the Web and venues chair and Jens Dietrich
(Massey University, Palmerston North, New Zealand) serving as the sponsorship and
accessibility chair were always responsive. I also greatly appreciate the APLAS



Steering Committee for their leadership, as well as APLAS 2017 PC chair Bor-Yuh
Evan Chang (University of Colorado Boulder, USA) for his advice.

Lastly, I would like to acknowledge the organizers of the associated events that
make APLAS a successful event: the Poster Session and Student Research Competition
(David Pearce, Victoria University of Wellington, New Zealand) and the APLAS
Workshop on New Ideas and Emerging Results (Wei-Ngan Chin, National University
of Singapore and Atsushi Igarashi, Kyoto University, Japan).

September 2018 Sukyoung Ryu
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Non-linear Pattern Matching with
Backtracking for Non-free Data Types

Satoshi Egi1(B) and Yuichi Nishiwaki2

1 Rakuten Institute of Technology, Tokyo, Japan
satoshi.egi@rakuten.com

2 University of Tokyo, Tokyo, Japan
nyuichi@is.s.u-tokyo.ac.jp

Abstract. Non-free data types are data types whose data have no
canonical forms. For example, multisets are non-free data types because
the multiset {a, b, b} has two other equivalent but literally different forms
{b, a, b} and {b, b, a}. Pattern matching is known to provide a handy tool
set to treat such data types. Although many studies on pattern match-
ing and implementations for practical programming languages have been
proposed so far, we observe that none of these studies satisfy all the cri-
teria of practical pattern matching, which are as follows: (i) efficiency of
the backtracking algorithm for non-linear patterns, (ii) extensibility of
matching process, and (iii) polymorphism in patterns.

This paper aims to design a new pattern-matching-oriented program-
ming language that satisfies all the above three criteria. The proposed
language features clean Scheme-like syntax and efficient and extensible
pattern matching semantics. This programming language is especially
useful for the processing of complex non-free data types that not only
include multisets and sets but also graphs and symbolic mathematical
expressions. We discuss the importance of our criteria of practical pattern
matching and how our language design naturally arises from the criteria.
The proposed language has been already implemented and open-sourced
as the Egison programming language.

1 Introduction

Pattern matching is an important feature of programming languages featur-
ing data abstraction mechanisms. Data abstraction serves users with a simple
method for handling data structures that contain plenty of complex informa-
tion. Using pattern matching, programs using data abstraction become concise,
human-readable, and maintainable. Most of the recent practical programming
languages allow users to extend data abstraction e.g. by defining new types or
classes, or by introducing new abstract interfaces. Therefore, a good program-
ming language with pattern matching should allow users to extend its pattern-
matching facility akin to the extensibility of data abstraction.

Earlier, pattern-matching systems used to assume one-to-one correspondence
between patterns and data constructors. However, this assumption became prob-
lematic when one handles data types whose data have multiple representations.
c© Springer Nature Switzerland AG 2018
S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 3–23, 2018.
https://doi.org/10.1007/978-3-030-02768-1_1
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4 S. Egi and Y. Nishiwaki

To overcome this problem, Wadler proposed the pattern-matching system
views [28] that broke the symmetry between patterns and data constructors.
Views enabled users to pattern-match against data represented in many ways.
For example, a complex number may be represented either in polar or Cartesian
form, and they are convertible to each other. Using views, one can pattern-match
a complex number internally represented in polar form with a pattern written in
Cartesian form, and vice versa, provided that mutual transformation functions
are properly defined. Similarly, one can use the Cons pattern to perform pattern
matching on lists with joins, where a list [1,2] can be either (Cons 1 (Cons 2
Nil)) or (Join (Cons 1 Nil) (Cons 2 Nil)), if one defines a normalization
function of lists with join into a sequence of Cons.

However, views require data types to have a distinguished canonical form
among many possible forms. In the case of lists with join, one can pattern-
match with Cons because any list with join is canonically reducible to a list with
join with the Cons constructor at the head. On the other hand, for any list with
join, there is no such canonical form that has Join at the head. For example,
the list [1,2] may be decomposed with Join into three pairs: [] and [1,2],
[1] and [2], and [1,2] and []. For that reason, views do not support pattern
matching of lists with join using the Join pattern.

Generally, data types without canonical forms are called non-free data types.
Mathematically speaking, a non-free data type can be regarded as a quotient
on a free data type over an equivalence. An example of non-free data types
is, of course, list with join: it may be viewed as a non-free data type com-
posed of a (free) binary tree equipped with an equivalence between trees with
the same leaf nodes enumerated from left to right, such as (Join Nil (Cons 1
(Cons 2 Nil))) = (Join (Cons 1 Nil) (Cons 2 Nil)). Other typical exam-
ples include sets and multisets, as they are (free) lists with obvious identifi-
cations. Generally, as shown for lists with join, pattern matching on non-free
data types yields multiple results.1 For example, multiset {1,2,3} has three
decompositions by the insert pattern: insert(1,{2,3}), insert(2,{1,3}),
and insert(3,{1,2}). Therefore, how to handle multiple pattern-matching
results is an extremely important issue when we design a programming language
that supports pattern matching for non-free data types.

On the other hand, pattern guard is a commonly used technique for filter-
ing such multiple results from pattern matching. Basically, pattern guards are
applied after enumerating all pattern-matching results. Therefore, substantial
unnecessary enumerations often occur before the application of pattern guards.
One simple solution is to break a large pattern into nested patterns to apply pat-
tern guards as early as possible. However, this solution complicates the program
and makes it hard to maintain. It is also possible to statically transform the pro-
gram in the similar manner at the compile time. However, it makes the compiler
implementation very complex. Non-linear pattern is an alternative method for

1 In fact, this phenomenon that “pattern matching against a single value yields mul-
tiple results” does not occur for free data types. This is the unique characteristic of
non-free data types.
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pattern guard. Non-linear patterns are patterns that allow multiple occurrences
of same variables in a pattern. Compared to pattern guards, they are not only
syntactically beautiful but also compiler-friendly. Non-linear patterns are eas-
ier to analyze and hence can be implemented efficiently (Sects. 3.1 and 4.2).
However, it is not obvious how to extend a non-linear pattern-matching sys-
tem to allow users to define an algorithm to decompose non-free data types.
In this paper, we introduce extensible pattern matching to remedy this issue
(Sects. 3.2, 4.4, and 6). Extensibility of pattern matching also enables us to define
predicate patterns, which are typically implemented as a built-in feature (e.g. pat-
tern guards) in most pattern-matching systems. Additionally, we improve the
usability of pattern matching for non-free data types by introducing a syntactic
generalization for the match expression, called polymorphic patterns (Sects. 3.3
and 4.3). We also present a non-linear pattern-matching algorithm specialized
for backtracking on infinite search trees and supports pattern matching with
infinitely many results in addition to keeping efficiency (Sect. 5).

This paper aims to design a programming language that is oriented toward
pattern matching for non-free data types. We summarize the above argument
in the form of three criteria that must be fulfilled by a language in order to be
used in practice:

1. Efficiency of the backtracking algorithm for non-linear patterns,
2. Extensibility of pattern matching, and
3. Polymorphism in patterns.

We believe that the above requirements, called together criteria of practical pat-
tern matching, are fundamental for languages with pattern matching. However,
none of the existing languages and studies [5,10,15,26] fulfill all of them. In the
rest of the paper, we present a language which satisfies the criteria, together
with comparisons with other languages, several working examples, and formal
semantics. We emphasize that our proposal has been already implemented in
Haskell as the Egison programming language, and is open-sourced [6]. Since we
set our focus in this paper on the design of the programming language, detailed
discussion on the implementation of Egison is left for future work.

2 Related Work

In this section, we compare our study with the prior work.
First, we review previous studies on pattern matching in functional program-

ming languages. Our proposal can be considered as an extension of these studies.
The first non-linear pattern-matching system was the symbol manipulation

system proposed by MacBride [21]. This system was developed for Lisp. Their
paper demonstrates some examples that process symbolic mathematical expres-
sions to show the expressive power of non-linear patterns. However, this approach
does not support pattern matching with multiple results, and only supports pat-
tern matching against a list as a collection.

Miranda laws [24,25,27] and Wadler’s views [22,28] are seminal work. These
proposals provide methods to decompose data with multiple representations by
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explicitly declaring transformations between each representation. These are the
earliest studies that allow users to customize the execution process of pattern
matching. However, the pattern-matching systems in these proposals treat nei-
ther multiple pattern matching results nor non-linear patterns. Also, these stud-
ies demand a canonical form for each representation.

Active patterns [15,23] provides a method to decompose non-free data. In
active patterns, users define a match function for each pattern to specify how
to decompose non-free data. For example, insert for multisets is defined as a
match function in [15]. An example of pattern matching against graphs using
matching function is also shown in [16]. One limitation of active patterns is that
it does not support backtracking in the pattern matching process. In active pat-
terns, the values bound to pattern variables are fixed in order from the left to
right of a pattern. Therefore, we cannot write non-linear patterns that require
backtracking such as a pattern that matches with collections (like sets or mul-
tisets) that contain two identical elements. (The pattern matching fails if we
unfortunately pick an element that appears more than twice at the first choice.)

First-class patterns [26] is a sophisticated system that treats patterns as first-
class objects. The essence of this study is a pattern function that defines how to
decompose data with each data constructor. First-class patterns can deal with
pattern matching that generates multiple results. To generate multiple results,
a pattern function returns a list. A critical limitation of this proposal is that
first-class patterns do not support non-linear pattern matching.

Next, we explain the relation with logic programming.
We have mentioned that non-linear patterns and backtracking are impor-

tant features to extend the efficiency and expressive power of pattern matching
especially on non-free data types. Unification of logic programming has both
features. However, how to integrate non-determinism of logic programming and
pattern matching is not obvious [18]. For example, the pattern-matching facility
of Prolog is specialized only for algebraic data types.

Functional logic programming [10] is an approach towards this integration.
It allows both of non-linear patterns and multiple pattern-matching results. The
key difference between the functional logic programming and our approach is in
the method for defining pattern-matching algorithms. In functional logic pro-
gramming, we describe the pattern-matching algorithm for each pattern in the
logic-programming style. A function that describes such an algorithm is called a
pattern constructor. A pattern constructor takes decomposed values as its argu-
ments and returns the target data. On the other hand, in our proposal, pattern
constructors are defined in the functional-programming style: pattern construc-
tors take a target datum as an argument and returns the decomposed values.
This enables direct description of algorithms.

3 Motivation

In this section, we discuss the requirements for programming languages to estab-
lish practical pattern matching for non-free data types.



Non-linear Pattern Matching with Backtracking for Non-free Data Types 7

3.1 Pattern Guards vs. Non-linear Patterns

Compared to pattern guards, non-linear patterns are a compiler-friendly method
for filtering multiple matching results efficiently. However, non-linear pattern
matching is typically implemented by converting them to pattern guards. For
example, some implementations of functional logic programming languages con-
vert non-linear patterns to pattern guards [8,9,18]. This method is inefficient
because it leads to enumerating unnecessary candidates. In the following pro-
gram in Curry, seqN returns "Matched" if the argument list has a sequential
N-tuple. Otherwise it returns "Not matched". insert is used as a pattern con-
structor for decomposing data into an element and the rest ignoring the order
of elements.

insert x [] = [x]

insert x (y:ys) = x:y:ys ? y:(insert x ys)

seq2 (insert x (insert (x+1) _)) = "Matched"

seq2 _ = "Not matched"

seq3 (insert x (insert (x+1) (insert (x+2) _))) = "Matched"

seq3 _ = "Not matched"

seq4 (insert x (insert (x+1) (insert (x+2) (insert (x+3) _)))) = "Matched"

seq4 _ = "Not matched"

seq2 (take 10 (repeat 0)) -- returns "Not matched" in O(n^2) time

seq3 (take 10 (repeat 0)) -- returns "Not matched" in O(n^3) time

seq4 (take 10 (repeat 0)) -- returns "Not matched" in O(n^4) time

When we use a Curry compiler such as PAKCS [4] and KiCS2 [11], we see that
“seq4 (take n (repeat 0))” takes more time than “seq3 (take n (repeat
0))” because seq3 is compiled to seq3’ as follows. Therefore, seq4 enumerates(
n
4

)
candidates, whereas seq3 enumerates

(
n
3

)
candidates before filtering the

results. If the program uses non-linear patterns as in seq3, we easily find that
we can check no sequential triples or quadruples exist simply by checking

(
n
2

)

pairs. However, such information is discarded during the program transformation
into pattern guards.

seq3’ (insert x (insert y (insert z _))) | y == x+1 && z == x+2 = "Matched"

seq3’ _ = "Not matched"

One way to make this program efficient in Curry is to stop using non-linear
patterns and instead use a predicate explicitly in pattern guards. The following
illustrates such a program.

isSeq2 (x:y:rs) = y == x+1

isSeq3 (x:rs) = isSeq2 (x:rs) && isSeq2 rs

perm [] = []

perm (x:xs) = insert x (perm xs)
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seq3 xs | isSeq3 ys = "Matched" where ys = perm xs

seq3 _ = "Not matched"

seq3 (take 10 (repeat 0)) -- returns "Not matched" in O(n^2) time

In the program, because of the laziness, only the head part of the list is eval-
uated. In addition, because of sharing [17], the common head part of the list is
pattern-matched only once. Using this call-by-need-like strategy enables efficient
pattern matching on sequential n-tuples. However, this strategy sacrifices read-
ability of programs and makes the program obviously redundant. In this paper,
instead, we base our work on non-linear patterns and attempt to improve its
usability keeping it compiler-friendly and syntactically clean.

3.2 Extensible Pattern Matching

As a program gets more complicated, data structures involved in the program
get complicated as well. A pattern-matching facility for such data structures (e.g.
graphs and mathematical expressions) should be extensible and customizable by
users because it is impractical to provide the data structures for these data types
as built-in data types in general-purpose languages.

In the studies of computer algebra systems, efficient non-linear pattern-
matching algorithms for mathematical expressions that avoid such unnecessary
search have already been proposed [2,20]. Generally, users of such computer alge-
bra systems control the pattern-matching method for mathematical expressions
by specifying attributes for each operator. For example, the Orderless attribute
of the Wolfram language indicates that the order of the arguments of the oper-
ator is ignored [3]. However, the set of attributes available is fixed and cannot
be changed [1]. This means that the pattern-matching algorithms in such com-
puter algebra systems are specialized only for some specific data types such as
multisets. However, there are a number of data types we want to pattern-match
other than mathematical expressions, like unordered pairs, trees, and graphs.

Thus, extensible pattern matching for non-free data types is necessary for
handling complicated data types such as mathematical expressions. This paper
designs a language that allows users to implement efficient backtracking algo-
rithms for general non-free data types by themselves. It provides users with the
equivalent power to adding new attributes freely by themselves. We discuss this
topic again in Sect. 4.4.

3.3 Monomorphic Patterns vs. Polymorphic Patterns

Polymorphism of patterns is useful for reducing the number of names used as
pattern constructors. If patterns are monomorphic, we need to use different
names for pattern constructors with similar meanings. As such, monomorphic
patterns are error-prone.

For example, the pattern constructor that decomposes a collection into an
element and the rest ignoring the order of the elements is bound to the name
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insert in the sample code of Curry [8] as in Sect. 3.1. The same pattern con-
structor’s name is Add’ in the sample program of Active Patterns [15]. However,
these can be considered as a generalized cons pattern constructor for lists to
multisets, because they are same at the point that both of them are a pattern
constructor that decomposes a collection into an element and the rest.

Polymorphism is important, especially for value patterns. A value pattern is
a pattern that matches when the value in the pattern is equal to the target. It
is an important pattern construct for expressing non-linear patterns. If patterns
are monomorphic, we need to prepare different notations for value patterns of
different data types. For example, we need to have different notations for value
patterns for lists and multisets. This is because equivalence of objects as lists
and multisets are not equal although both lists and multisets are represented as
a list.

pairsAsLists (insert x (insert x _)) = "Matched"

pairsAsLists _ = "Not matched"

pairsAsMultisets (insert x (insert y _)) | (multisetEq x y) = "Matched"

pairsAsMultisets _ = "Not matched"

pairsAsLists [[1,2],[2,1]] -- returns "Not matched"

pairsAsMultisets [[1,2],[2,1]] -- returns "Matched"

4 Proposal

In this section, we introduce our pattern-matching system, which satisfies all
requirements shown in Sect. 3. Our language has Scheme-like syntax. It is dynam-
ically typed, and as well as Curry, based on lazy evaluation.

4.1 The match-all and match expressions

We explain the match-all expression. It is a primitive syntax of our language.
It supports pattern matching with multiple results.

We show a sample program using match-all in the following. In this paper,
we show the evaluation result of a program in the comment that follows the
program. “;” is the inline comment delimiter of the proposed language.

(match-all {1 2 3} (list integer) [<join $xs $ys> [xs ys]])

; {[{} {1 2 3}] [{1} {2 3}] [{1 2} {3}] [{1 2 3} {}]}

Our language uses three kinds of parenthesis in addition to “(” and “)”,
which denote function applications. “<” and “>” are used to apply pattern and
data constructors. In our language, the name of a data constructor starts with
uppercase, whereas the name of a pattern constructor starts with lowercase. “[”
and “]” are used to build a tuple. “{” and “}” are used to denote a collection.

In our implementation, the collection type is a built-in data type implemented
as a lazy 2–3 finger tree [19]. This reason is that we thought data structures that
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support a wider range of operations for decomposition are more suitable for our
pattern-matching system. (2–3 finger trees support efficient extraction of the last
element.)

match-all is composed of an expression called target, matcher, and match
clause, which consists of a pattern and body expression. The match-all expres-
sion evaluates the body of the match clause for each pattern-matching result and
returns a (lazy) collection that contains all results. In the above code, we pattern-
match the target {1 2 3} as a list of integers using the pattern <join $xs $ys>.
(list integer) is a matcher to pattern-match the pattern and target as a list
of integer. The pattern is constructed using the join pattern constructor. $xs
and $ys are called pattern variables. We can use the result of pattern matching
referring to them. A match-all expression first consults the matcher on how
to pattern-match the given target and the given pattern. Matchers know how
to decompose the target following the given pattern and enumerate the results,
and match-all then collects the results returned by the matcher. In the sample
program, given a join pattern, (list integer) tries to divide a collection into
two collections. The collection {1 2 3} is thus divided into two collections by
four ways.

match-all can handle pattern matching that may yield infinitely many
results. For example, the following program extracts all twin primes from the
infinite list of prime numbers2. We will discuss this mechanism in Sect. 5.2.

(define $twin-primes

(match-all primes (list integer)

[<join _ <cons $p <cons ,(+ p 2) _>>> [p (+ p 2)]]))

(take 6 twin-primes) ; {[3 5] [5 7] [11 13] [17 19] [29 31] [41 43]}

There is another primitive syntax called match expression. While match-all
returns a collection of all matched results, match short-circuits the pattern
matching process and immediately returns if any result is found. Another differ-
ence from match-all is that it can take multiple match clauses. It tries pattern
matching starting from the head of the match clauses, and tries the next clause
if it fails. Therefore, match is useful when we write conditional branching.

However, match is inessential for our language. It is implementable in terms
of the match-all expression and macros. The reason is because the match-all
expression is evaluated lazily, and, therefore, we can extract the first pattern-
matching result from match-all without calculating other pattern-matching
results simply by using car. We can implement match by combining the
match-all and if expressions using macros. Furthermore, if is also imple-
mentable in terms of the match-all and matcher expression as follows. We will
explain the matcher expression in Sect. 6. For that reason, we only discuss the
match-all expression in the rest of the paper.

2 We will explain the meaning of the value pattern ,(+ p 2) and the cons pattern
constructor in Sects. 4.2 and 4.3, respectively.



Non-linear Pattern Matching with Backtracking for Non-free Data Types 11

(define $if

(macro [$b $e1 $e2]

(car (match-all b (matcher {[$ something {[<True> {e1}] [<False> {e2}]}]})

[$x x]))))

4.2 Efficient Non-linear Pattern Matching with Backtracking

Our language can handle non-linear patterns efficiently. For example, the calcu-
lation time of the following code does not depend on the pattern length. Both
of the following examples take O(n2) time to return the result.

(match-all (take n (repeat 0)) (multiset integer)

[<insert $x <insert ,(+ x 1) _>> x])

; returns {} in O(n^2) time

(match-all (take n (repeat 0)) (multiset integer)

[<insert $x <insert ,(+ x 1) <insert ,(+ x 2) _>>> x])

; returns {} in O(n^2) time

In our proposal, a pattern is examined from left to right in order, and the
binding to a pattern variable can be referred to in its right side of the pattern.
In the above examples, the pattern variable $x is bound to any element of the
collection since the pattern constructor is insert. After that, the patterns “,(+
x 1)” and “,(+ x 2)” are examined. A pattern that begins with “,” is called a
value pattern. The expression following “,” can be any kind of expressions. The
value patterns match with the target data if the target is equal to the content
of the pattern. Therefore, after successful pattern matching, $x is bound to an
element that appears multiple times.

We can more elaborately discuss the difference of efficiency of non-linear
patterns and pattern guards in general cases. The time complexity involved in
pattern guards is O(np+v) when the pattern matching fails, whereas the time
complexity involved in non-linear patterns is O(np+min(1,v)), where n is the
size of the target object3, p is the number of pattern variables, and v is the
number of value patterns. The difference between v and min(1, v) comes from the
mechanism of non-linear pattern matching that backtracks at the first mismatch
of the value pattern.

Table 1 shows micro benchmark results of non-linear pattern matching for
Curry and Egison. The table shows execution times of the Curry program pre-
sented in Sect. 3.1 and the corresponding Egison program as shown above. The
environment we used was Ubuntu on VirtualBox with 2 processors and 8 GB
memory hosted on MacBook Pro (2017) with 2.3 GHz Intel Core i5 processor.
We can see that the execution times in two implementations follow the the-
oretical computational complexities discussed above. We emphasize that this
benchmark results do not mean Curry is slower than Egison. We can write the
3 Here, we suppose that the number of decompositions by each pattern constructor

can be approximated by the size of the target object.
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Table 1. Benchmarks of Curry (PAKCS version 2.0.1 and Curry2Prolog(swi 7.6) com-
piler environment) and Egison (version 3.7.12)

Curry n=15 n=25 n=30 n=50 n=100

seq2 1.18s 1.20s 1.29s 1.53s 2.54s
seq3 1.42s 2.10s 2.54s 7.40s 50.66s
seq4 3.37s 16.42s 34.19s 229.51s 3667.49s

Egison n=15 n=25 n=30 n=50 n=100

seq2 0.26s 0.34s 0.43s 0.84s 2.72s
seq3 0.25s 0.34s 0.46s 0.82s 2.66s
seq4 0.25s 0.34s 0.42s 0.78s 2.47s

efficient programs for the same purpose in Curry if we do not persist in using
non-linear patterns. Let us also note that the current implementation of Egi-
son is not tuned up and comparing constant times in two implementations is
nonsense.

Value patterns are not only efficient but also easy to read once we are used
to them because it enables us to read patterns in the same order the execution
process of pattern matching goes. It also reduces the number of new variables
introduced in a pattern. We explain the mechanism how the proposed system
executes the above pattern matching efficiently in Sect. 5.

4.3 Polymorphic Patterns

The characteristic of the proposed pattern-matching expression is that they take
a matcher. This ingredient allows us to use the same pattern constructors for
different data types.

For example, one may want to pattern-match a collection {1 2 3} sometimes
as a list and other times as a multiset or a set. For these three types, we can
naturally define similar pattern-matching operations. One example is the cons
pattern, which is also called insert in Sects. 3.1 and 4.2. Given a collection,
pattern <cons $x $rs> divides it into the “head” element and the rest. When
we use the cons pattern for lists, it either yields the result which is uniquely
determined by the constructor, or just fails when the list is empty. On the other
hand, for multisets, it non-deterministically chooses an element from the given
collection and yields many results. By explicitly specifying which matcher is used
in match expressions, we can uniformly write such programs in our language:

(match-all {1 2 3} (list integer) [<cons $x $rs> [x rs]])

; {[1 {2 3}]}

(match-all {1 2 3} (multiset integer) [<cons $x $rs> [x rs]])

; {[1 {2 3}] [2 {1 3}] [3 {1 2}]}

(match-all {1 2 3} (set integer) [<cons $x $rs> [x rs]])

; {[1 {1 2 3}] [2 {1 2 3}] [3 {1 2 3}]}

In the case of lists, the head element $x is simply bound to the first element
of the collection. On the other hand, in the case of multisets or sets, the head
element can be any element of the collection because we ignore the order of
elements. In the case of lists or multisets, the rest elements $rs are the collec-
tion that is made by removing the “head” element from the original collection.
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However, in the case of sets, the rest elements are the same as the original col-
lection because we ignore the redundant elements. If we interpret a set as a
collection that contains infinitely many copies of an each element, this specifi-
cation of cons for sets is natural. This specification is useful, for example, when
we pattern-match a graph as a set of edges and enumerate all paths with some
fixed length including cycles without redundancy.

Polymorphic patterns are useful especially when we use value patterns. As
well as other patterns, the behavior of value patterns is dependent on matchers.
For example, an equality {1 2 3} = {2 1 3} between collections is false if we
regard them as mere lists but true if we regard them as multisets. Still, thanks
to polymorphism of patterns, we can use the same syntax for both of them. This
greatly improves the readability of the program and makes programming with
non-free data types easy.

(match-all {1 2 3} (list integer) [,{2 1 3} "Matched"]) ; {}

(match-all {1 2 3} (multiset integer) [,{2 1 3} "Matched"]) ; {"Matched"}

We can pass matchers to a function because matchers are first-class objects.
It enables us to utilize polymorphic patterns for defining function. The following
is an example utilizing polymorphism of value patterns.

(define $member?/m

(lambda [$m $x $xs]

(match xs (list m) {[<join _ <cons ,x _>> #t] [_ #f]})))

4.4 Extensible Pattern Matching

In the proposed language, users can describe methods for interpreting patterns
in the definition of matchers. Matchers appeared up to here are defined in our
language. We show an example of a matcher definition. We will explain the
details of this definition in Sect. 6.1.

(define $unordered-pair

(lambda [$a]

(matcher {[<pair $ $> [a a] {[<Pair $x $y> {[x y] [y x]}]}]

[$ [something] {[$tgt {tgt}]}]})))

An unordered pair is a pair ignoring the order of the elements. For exam-
ple, <Pair 2 5> is equivalent to <Pair 5 2>, if we regard them as unordered
pairs. Therefore, datum <Pair 2 5> is successfully pattern-matched with pat-
tern <pair ,5 $x>.

(match-all <Pair 2 5> (unordered-pair integer) [<pair ,5 $x> x]) ; {2}

We can define matchers for more complicated data types. For example, Egi
constructed a matcher for mathematical expressions for building a computer
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algebra system on our language [7,13,14]. His computer algebra system is imple-
mented as an application of the proposed pattern-matching system. The matcher
for mathematical expressions is used for implementing simplification algorithms
of mathematical expressions. A program that converts a mathematical expres-
sion object n cos2(θ) + n sin2(θ) to n can be implemented as follows. (Here, we
introduced the math-expr matcher and some syntactic sugar for patterns.)

(define $rewrite-rule-for-cos-and-sin-poly

(lambda [$poly]

(match poly math-expr

{[<+ <* $n <,cos $x>^,2 $y> <* ,n <,sin ,x>^,2 ,y> $r>

(rewrite-rule-for-cos-and-sin-poly <+’ r <*’ n y>>)]

[_ poly]})))

1 MState {[<cons $m <cons ,m _>> (multiset integer) {2 8 2}]} env {}

2
MState {[$m integer 2] [<cons ,m _> (multiset integer) {8 2}]} env {}

MState {[$m integer 8] [<cons ,m _> (multiset integer) {2 2}]} env {}

MState {[$m integer 2] [<cons ,m _> (multiset integer) {2 8}]} env {}

3 MState {[$m something 2] [<cons ,m _> (multiset integer) {8 2}]} env {}

4 MState {[<cons ,m _> (multiset integer) {8 2}]} env {[m 2]}

5
MState {[,m integer 8] [_ (multiset integer) {2}]} env {[m 2]}

MState {[,m integer 2] [_ (multiset integer) {8}]} env {[m 2]}

6 MState {[_ (multiset integer) {8}]} env {[m 2]}

7 MState {[_ something {8}]} env {[m 2]}

8 MState {} env {[m 2]}

Fig. 1. Reduction path of matching states

5 Algorithm

This section explains the pattern-matching algorithm of the proposed system.
The formal definition of the algorithm is given in Sect. 7. The method for defining
matchers explained in Sect. 6 is deeply related to the algorithm.

5.1 Execution Process of Non-linear Pattern Matching

Let us show what happens when the system evaluates the following pattern-
matching expression.

(match-all {2 8 2} (multiset integer) [<cons $m <cons ,m _>> m]) ; {2 2}

Figure 1 shows one of the execution paths that reaches a matching result.
First, the initial matching state is generated (step 1). A matching state is a datum
that represents an intermediate state of pattern matching. A matching state is
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a compound type consisting of a stack of matching atoms, an environment, and
intermediate results of the pattern matching. A matching atom is a tuple of a
pattern, a matcher, and an expression called target. MState denotes the data
constructor for matching states. env is the environment when the evaluation
enters the match-all expression. A stack of matching atoms contains a single
matching atom whose pattern, target and matcher are the arguments of the
match-all expression.

In our proposal, pattern matching is implemented as reductions of matching
states. In a reduction step, the top matching atom in the stack of matching
atoms is popped out. This matching atom is passed to the procedure called
matching function. The matching function is a function that takes a matching
atom and returns a list of lists of matching atoms. The behavior of the matching
function is controlled by the matcher of the argument matching atom. We can
control the behavior of the matching function by defining matchers properly. For
example, we obtain the following results by passing the matching atom of the
initial matching state to the matching function.

matchFunction [<cons $m <cons ,m _>> (multiset integer) {2 8 2}] =

{ {[$m integer 2] [<cons ,m _> (multiset integer) {8 2}]}

{[$m integer 8] [<cons ,m _> (multiset integer) {2 2}]}

{[$m integer 2] [<cons ,m _> (multiset integer) {2 8}]} }

Each list of matching atoms is prepended to the stack of the matching atoms.
As a result, the number of matching states increases to three (step 2). Our
pattern-matching system repeats this step until all the matching states vanish.

For simplicity, in the following, we only examine the reduction of the first
matching state in step 2. This matching state is reduced to the matching state
shown in step 3. The matcher in the top matching atom in the stack is changed to
something from integer, by definition of integer matcher. something is the
only built-in matcher of our pattern-matching system. something can handle
only wildcards or pattern variables, and is used to bind a value to a pattern
variable. This matching state is then reduced to the matching state shown in
step 4. The top matching atom in the stack is popped out, and a new binding
[m 2] is added to the collection of intermediate results. Only something can
append a new binding to the result of pattern matching.

Similarly to the preceding steps, the matching state is then reduced as shown
in step 5, and the number of matching states increases to 2. “,m” is pattern-
matched with 8 and 2 by integer matcher in the next step. When we pattern-
match with a value pattern, the intermediate results of the pattern matching
is used as an environment to evaluate it. In this way, “m” is evaluated to 2.
Therefore, the first matching state fails to pattern-match and vanishes. The sec-
ond matching state succeeds in pattern matching and is reduced to the matching
state shown in step 6. In step 7, the matcher is simply converted from (multiset
integer) to something, by definition of (multiset integer). Finally, the
matching state is reduced to the empty collection (step 8). No new binding
is added because the pattern is a wildcard. When the stack of matching atoms
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is empty, reduction finishes and the matching patching succeeds for this reduc-
tion path. The matching result {[m 2]} is added to the entire result of pattern
matching.

We can check the pattern matching for sequential triples and quadruples are
also efficiently executed in this algorithm.

5.2 Pattern Matching with Infinitely Many Results

The proposed pattern-matching system can eventually enumerate all successful
matching results when matching results are infinitely many. It is performed by
reducing the matching states in a proper order. Suppose the following program:

(take 8 (match-all nats (set integer) [<cons $m <cons $n _>> [m n]]))

; {[1 1] [1 2] [2 1] [1 3] [2 2] [3 1] [1 4] [2 3]}

Figure 2 shows the search tree of matching states when the system executes
the above pattern matching expression. Rectangles represent matching states,
and circles represent final matching states of successful pattern matching. The
rectangle at the upper left is the initial matching state. The rectangles in the
second row are the matching states generated from the initial matching state
one step. Circles o8, r9, and s9 correspond to pattern-matching results {[m 1]
[n 1]}, {[m 1] [n 2]}, and {[m 2] [n 1]}, respectively.

One issue on naively searching this search tree is that we cannot enumerate
all matching states either in depth-first or breadth-first manners. The reason is
that widths and depths of the search tree can be infinite. Widths can be infinite
because a matching state may generate infinitely many matching states (e.g., the
width of the second row is infinite), and depths can be infinite when we extend
the language with a notion such as recursively defined patterns [12].

To resolve this issue, we reshape the search tree into a reduction tree as
presented in Fig. 3. A node of a reduction tree is a list of matching states, and a
node has at most two child nodes, left of which is the matching states generated
from the head matching state of the parent, and right of which is a copy of the
tail part of the parent matching states. At each reduction step, the system has
a list of nodes. Each row in Fig. 3 denotes such a list. One reduction step in our
system proceeds in the following two steps. First, for each node, it generates a
node from the head matching state. Then, it constructs the nodes for the next
step by collecting the generated nodes and the copies of the tail parts of the
nodes. The index of each node denotes the depth in the tree the node is checked
at. Since widths of the tree are at most 2n for some n at any depth, all nodes can
be assigned some finite number, which means all nodes in the tree are eventually
checked after a finite number of reduction steps.

We adopt breadth-first search strategy as the default traverse method
because there are cases that breadth-first traverse can successfully enumerate
all pattern-matching results while depth-first traverse fails to do so when we
handle pattern matching with infinitely many results. However, of course, when
the size of the reduction tree is finite, the space complexity for depth-first tra-
verse is less expensive. Furthermore, there are cases that the time complexity
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Fig. 2. Search tree Fig. 3. Binary reduction tree

for depth-first traverse is also less expensive when we extract only the first sev-
eral successful matches. Therefore, to extend the range of algorithms we can
express concisely with pattern matching keeping efficiency, providing users with
a method for switching search strategy of reduction trees is important. We leave
further investigation of this direction as interesting future work.

6 User Defined Matchers

This section explains how to define matchers.

6.1 Matcher for Unordered Pairs

We explain how the unordered-pair matcher shown in Sect. 4.4 works.
unordered-pair is defined as a function that takes and returns a matcher to
specify how to pattern-match against the elements of a pair. matcher takes
matcher clauses. A matcher clause is a triple of a primitive-pattern pattern,
next-matcher expressions, and primitive-data-match clauses. The formal syntax
of the matcher expression is found in Fig. 4 in Sect. 7.

unordered-pair has two matcher clauses. The primitive-pattern pattern of
the first matcher clause is <pair $ $>. This matcher clause defines the inter-
pretation of pair pattern. pair takes two pattern holes $. It means that it
interprets the first and second arguments of pair pattern by the matchers spec-
ified by the next-matcher expression. In this example, since the next-matcher
expression is [a a], both of the arguments of pair are pattern-matched using
the matcher given by a. The primitive-data-match clause of the first matcher
clause is {[<Pair $x $y> {[x y] [y x]}]}. <Pair $x $y> is pattern-matched
with the target datum such as <Pair 2 5>, and $x and $y is matched with 2
and 5, respectively. The primitive-data-match clause returns {[2 5] [5 2]}. A
primitive-data-match clause returns a collection of next-targets. This means the
patterns “,5” and $x are matched with the targets 2 and 5, or 5 and 2 using the
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integer matcher in the next step, respectively. Pattern matching of primitive-
data-patterns is similar to pattern matching against algebraic data types in
ordinary functional programming languages. As a result, the first matcher clause
works in the matching function as follows.

matchFunction [<pair $x $y> (unordered-pair integer) <Pair 2 5>] =

{ {[$x integer 2] [$y integer 5]} {[$x integer 5] [$y integer 2]} }

The second matcher clause is rather simple; this matcher clause simply con-
verts the matcher of the matching atom to the something matcher.

6.2 Case Study: Matcher for Multisets

As an example of how we can implement matchers for user-defined non-free data
types, we show the definition of multiset matcher. We can define it simply by
using the list matcher. multiset is defined as a function that takes and returns
a matcher.

(define $multiset

(lambda [$a]

(matcher

{[<nil> [] {[{} {[]}] [_ {}]}]

[<cons $ $> [a (multiset a)]

{[$tgt (match-all tgt (list a)

[<join $hs <cons $x $ts>>

[x (append hs ts)]])]}]

[,$val []

{[$tgt (match [val tgt] [(list a) (multiset a)]

{[[<nil> <nil>] {[]}]

[[<cons $x $xs> <cons ,x ,xs>] {[]}]

[[_ _] {}]})]}]

[$ [something] {[$tgt {tgt}]}]})))

The multiset matcher has four matcher clauses. The first matcher clause
handles the nil pattern, and it checks if the target is an empty collection. The
second matcher clause handles the cons pattern. The match-all expression
is effectively used to destruct a collection in the primitive-data-match clause.
Because the join pattern in the list matcher enumerates all possible splitting
pairs of the given list, match-all lists up all possible consing pairs of the tar-
get expression. The third matcher clause handles value patterns. “,$val” is a
value-pattern pattern that matches with a value pattern. This matcher clause
checks if the content of a value pattern (bound to val) is equal to the target
(bound to tgt) as multisets. Note that the definition involves recursions on the
multiset matcher itself. The fourth matcher clause is completely identical to
unordered-pair and integer.
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6.3 Value-Pattern Patterns and Predicate Patterns

We explain the generality of our extensible pattern-matching framework taking
examples from the integer matcher. How to implement value patterns and
predicate patterns in our language is shown.

(define $integer

(matcher {[,$n [] {[$tgt (if (eq? tgt n) {[]} {})]}]

[<lt ,$n> [] {[$tgt (if (lt? tgt n) {[]} {})]}]

[$ [something] {[$tgt {tgt}]}]}))

Value patterns are patterns that successfully match if the target expression is
equal to some fixed value. For example, ,5 only matches with 5 if we use integer
matcher. The first matcher clause in the above definition exists to implement
this. The primitive-pattern pattern of this clause is ,$n, which is a value-pattern
pattern that matches with value patterns. The next-matcher expression is an
empty tuple because no pattern hole $ is contained. If the target expression
tgt and the content of the value pattern n are equal, the primitive-data-match
clause returns a collection consisting of an empty tuple, which denotes success.
Otherwise, it returns an empty collection, which denotes failure.

Predicate patterns are patterns that succeed if the target expression satisfies
some fixed predicate. Predicate patterns are usually implemented as a built-in
feature, such as pattern guards, in ordinary programming languages. Interest-
ingly, we can implement this on top of our pattern-matching framework. The
second matcher clause defines a predicate pattern which succeeds if the target
integer is less than the content of the value pattern n. A technique similar to the
first clause is used.

M ::= x | c | (lambda [$x · · · ] M) | (M M · · · )
| [M · · · ] | {M · · · } | <C M · · · >
| (match-all M M [p M])

| (match M M {[p M] · · · })
something (matcher φ )

p ::= | $x | ,M | <C p · · · >
φ ::= [pp M {[dp M] · · · }]

pp ::= $ | ,$x | <C pp · · · >
dp ::= $x | <C dp · · · >

Fig. 4. Syntax of our language

7 Formal Semantics

In this section, we present the syntax and big-step semantics of our language
(Fig. 4 and 5). We use metavariables x, y, z, . . ., M,N,L, . . ., v, . . ., and p, . . .
for variables, expressions, values, and patterns respectively. In Fig. 4, c denotes
a constant expression and C denotes a data constructor name. X · · · in Fig. 4
means a finite list of X. The syntax of our language is similar to that of the Lisp
language. As explained in Sect. 4.1, [M · · · ], {M · · · }, and <C M · · · > denote
tuples, collections, and data constructions. All formal arguments are decorated
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Fig. 5. Formal semantics of our language

with the dollar mark. φ, pp and dp are called matcher clauses, primitive-pattern
patterns and primitive-data patterns respectively.

In Fig. 5, the following notations are used. We write [ai]i to mean a list
[a1, a2, . . .]. Similarly, [[aij ]j ]i denotes [[a11, a12, . . .], [a21, a22, . . .], . . .], but each
list in the list may have different length. List of tuples [(a1, b1), (a2, b2), . . .] may
be often written as [ai, bi]i instead of [(ai, bi)]i for short. Concatenation of lists
l1, l2 are denoted by l1+l2, and a : l denotes [a]+l (adding at the front). ε denotes
the empty list. In general, �x for some metavariable x is a metavariable denoting
a list of what x denotes. However, we do not mean by �xi the i-th element of �x; if
we write [�xi]i, we mean a list of a list of x. Γ,Δ, . . . denote variable assignments,
i.e., partial functions from variables to values.
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Our language has some special primitive types: matching atoms a, . . ., match-
ing states s, . . ., primitive-data-match clauses σ, . . ., and matchers m, . . .. A
matching atom consists of a pattern p, a matcher m, and a value v, and written
as p ∼m v. A matching state is a tuple of a list of matching atoms and two vari-
able assignments. A primitive-data-match clause is a tuple of a primitive-data
pattern and an expression, and a matcher clause is a tuple of a primitive-pattern
pattern, an expression, and a list of data-pattern clauses. A matcher is a pair con-
taining a list of matcher clauses and a variable assignment. Note that matchers,
matching states, etc. are all values.

Evaluation results of expressions are specified by the judgment Γ, e ⇓ �v,
which denotes given a variable assignment Γ and an expression e one gets a list
of values �v. In the figure, we only show the definition of evaluation of matcher
and match-all expressions (other cases are inductively defined as usual). The
definition of match-all relies on another type of judgment ��s � �Γ , which defines

how the search space is examined. � is inductively defined using ��s ⇒ �Γ ,
��s′,

which is again defined using �s → optΓ, opt �s′, opt �s′′. In their definitions, we
introduced notations for (meta-level) option types. none and somex are the
constructors of the option type, and optx is a metavariable for an optional
value (possibly) containing what the metavariable x denotes.

∑
i(optxi) creates

a list by collecting all the valid (non-none) xi preserving the order.
p∼Γ

mv ⇓ ��a,Δ is a 6-ary relation. One reads it “performing pattern matching
on v against p using the matcher m under the variable assignment Γ yields the
result Δ and continuation ��a.” The result is a variable assignment because it is a
result of unifications. ��a being empty means the pattern matching failed. If [ε] is
returned as ��a, it means the pattern matching succeeded and no further search is
necessary. As explained in Sect. 6, one needs to pattern-match patterns and data
to define user-defined matchers. Their formal definitions are given by judgments
pp ≈Γ p ⇓ �p′,Δ and dp ≈ v ⇓ Γ .

8 Conclusion

We designed a user-customizable efficient non-linear pattern-matching system
by regarding pattern matching as reduction of matching states that have a stack
of matching atoms and intermediate results of pattern matching. This system
enables us to concisely describe a wide range of programs, especially when non-
free data types are involved. For example, our pattern matching architecture is
useful to implement a computer algebra system because it enables us to directly
pattern-match mathematical expressions and rewrite them.

The major significance of our pattern matching system is that it greatly
improves the expressivity of the programming language by allowing programmers
to freely extend the process of pattern matching by themselves. Furthermore,
in the general cases, use of the match expression will be as readable as that in
other general-purpose programming languages. Although we consider that the
current syntax of matcher definition is already clean enough, we leave further
refinement of the syntax of our surface language as future work.
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We believe the direct and concise representation of algorithms enables us
to implement really new things that go beyond what was considered practical
before. We hope our work will lead to breakthroughs in various fields.
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Abstract. In typical non-idempotent intersection type systems, proof
normalization is not confluent. In this paper we introduce a conflu-
ent non-idempotent intersection type system for the λ-calculus. Typing
derivations are presented using proof term syntax. The system enjoys
good properties: subject reduction, strong normalization, and a very reg-
ular theory of residuals. A correspondence with the λ-calculus is estab-
lished by simulation theorems. The machinery of non-idempotent inter-
section types allows us to track the usage of resources required to obtain
an answer. In particular, it induces a notion of garbage: a computation
is garbage if it does not contribute to obtaining an answer. Using these
notions, we show that the derivation space of a λ-term may be factor-
ized using a variant of the Grothendieck construction for semilattices.
This means, in particular, that any derivation in the λ-calculus can be
uniquely written as a garbage-free prefix followed by garbage.

Keywords: Lambda calculus · Intersection types · Derivation space

1 Introduction

Our goal in this paper is attempting to understand the spaces of computations
of programs. Consider a hypothetical functional programming language with
arithmetic expressions and tuples. All the possible computations starting from
the tuple (1+1, 2∗3+1) can be arranged to form its “space of computations”:

(1 + 1, 2 ∗ 3 + 1)

��

�� (1 + 1, 6 + 1)

��

�� (1 + 1, 7)

��
(2, 2 ∗ 3 + 1) �� (2, 6 + 1) �� (2, 7)

In this case, the space of computations is quite easy to understand, because the
subexpressions (1+1) and (2∗3+1) cannot interact with each other. Indeed, the
space of computations of a tuple (A,B) can always be understood as the product
of the spaces of A and B. In the general case, however, the space of computations
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of a program may have a much more complex structure. For example, it is not
easy to characterize the space of computations of a function application f(A).
The difficulty is that f may use the value of A zero, one, or possibly many times.

The quintessential functional programming language is the pure λ-calculus.
Computations in the λ-calculus have been thoroughly studied since its concep-
tion in the 1930s. The well-known theorem by Church and Rosser [10] states
that β-reduction in the λ-calculus is confluent, which means, in particular, that
terminating programs have unique normal forms. Another result by Curry and
Feys [13] states that computations in the λ-calculus may be standardized, mean-
ing that they may be converted into a computation in canonical form. A refine-
ment of this theorem by Lévy [26] asserts that the canonical computation thus
obtained is equivalent to the original one in a strong sense, namely that they are
permutation equivalent. In a series of papers [30–32], Melliès generalized many
of these results to the abstract setting of axiomatic rewrite systems.

Let us discuss “spaces of computations” more precisely. The derivation space
of an object x in some rewriting system is the set of all derivations, i.e. sequences
of rewrite steps, starting from x. In this paper, we will be interested in the pure
λ-calculus, and we will study finite derivations only. In the λ-calculus, a transi-
tive relation between derivations may be defined, the prefix order. A derivation
ρ is a prefix of a derivation σ, written ρ � σ, whenever ρ performs less computa-
tional work than σ. Formally, ρ � σ is defined to hold whenever the projection
ρ/σ is empty1. For example, if K = λx.λy.x, the derivation space of the term
(λx.xx)(Kz) can be depicted with the reduction graph below. Derivations are
directed paths in the reduction graph, and ρ is a prefix of σ if there is a directed
path from the target of ρ to the target of σ. For instance, SR2 is a prefix of
RS′T ′:

(λx.xx)(Kz) R ��

S

��

(λx.xx)(λy.z) S′

��
(Kz)(λy.z)

R′
2 �� (λy.z)(λy.z) T ′

��
(Kz)(Kz)

R1 ��

R2 �� (λy.z)(Kz)
R′

1
��

T �� z

Remark that � is reflexive and transitive but not antisymmetric, i.e. it is a quasi-
order but not an order. For example RS′ � SR1R

′
2 � RS′ but RS′ �= SR1R

′
2.

Antisymmetry may be recovered as usual when in presence of a quasi-order,
by working modulo permutation equivalence: two derivations ρ and σ are said
to be permutation equivalent, written ρ ≡ σ, if ρ � σ and σ � ρ. Working
modulo permutation equivalence is reasonable because Lévy’s formulation of
the standardization theorem ensures that permutation equivalence is decidable.

Derivation spaces are known to exhibit various regularities [2,25–27,29,35]. In
his PhD thesis, Lévy [26] showed that the derivation space of a term is an upper
semilattice: any two derivations ρ, σ from a term t have a least upper bound
ρ � σ, defined as ρ(σ/ρ), unique up to permutation equivalence. On the other
1 The notion of projection defined by means of residuals is the standard one, see e.g.

[4, Chap. 12] or [33, Sect. 8.7].
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hand, the derivation space of a term t is not an easy structure to understand in
general2. For example, relating the derivation space of an application ts with the
derivation spaces of t and s appears to be a hard problem. Lévy also noted that
the greatest lower bound of two derivations does not necessarily exist, meaning
that the derivation space of a term does not form a lattice in general. Even when
it forms a lattice, it may not necessarily be a distributive lattice, as observed
for example by Laneve [25]. In [30], Melliès showed that derivation spaces in any
rewriting system satisfying certain axioms may be factorized using two spaces,
one of external and one of internal derivations.

The difficulty to understand derivation spaces is due to three pervasive phe-
nomena of interaction between computations. The first phenomenon is duplica-
tion: in the reduction graph of above, the step S duplicates the step R, resulting
in two copies of R: the steps R1 and R2. In such situation, one says that R1 and
R2 are residuals of R, and, conversely, R is an ancestor of R1 and R2. The second
phenomenon is erasure: in the diagram above, the step T erases the step R′

1,
resulting in no copies of R′

1. The third phenomenon is creation: in the diagram
above, the step R2 creates the step T , meaning that T is not a residual of a step
that existed prior to executing R2; that is, T has no ancestor.

These three interaction phenomena, especially duplication and erasure, are
intimately related with the management of resources. In this work, we aim to
explore the hypothesis that having an explicit representation of resource
management may provide insight on the structure of derivation spaces.

There are many existing λ-calculi that deal with resource management explic-
itly [6,16,21,22], most of which draw inspiration from Girard’s Linear Logic [19].
Recently, calculi endowed with non-idempotent intersection type systems, have
received some attention [5,7,8,15,20,23,34]. These type systems are able to stat-
ically capture non-trivial dynamic properties of terms, particularly normaliza-
tion, while at the same time being amenable to elementary proof techniques by
induction. Intersection types were originally proposed by Coppo and Dezani-
Ciancaglini [12] to study termination in the λ-calculus. They are characterized
by the presence of an intersection type constructor A∩B. Non-idempotent inter-
section type systems are distinguished from their usual idempotent counterparts
by the fact that intersection is not declared to be idempotent, i.e. A and A ∩ A
are not equivalent types. Rather, intersection behaves like a multiplicative con-
nective in linear logic. Arguments to functions are typed many times, typically
once per each time that the argument will be used. Non-idempotent intersection
types were originally formulated by Gardner [18], and later reintroduced by de
Carvalho [9].

In this paper, we will use a non-idempotent intersection type system based
on system W of [8] (called system H in [7]). Let us recall its definition. Terms
are as usual in the λ-calculus (t ::= x | λx.t | t t). Types A,B, C, . . . are defined
by the grammar:

A ::= α | M → A M ::= [Ai]ni=1 with n ≥ 0
2 Problem 2 in the RTA List of Open Problems [14] poses the open-ended question of

investigating the properties of “spectra”, i.e. derivation spaces.
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where α ranges over one of denumerably many base types, and M represents a
multiset of types. Here [Ai]ni=1 denotes the multiset A1, . . . ,An with their respec-
tive multiplicities. A multiset [Ai]ni=1 intuitively stands for the (non-idempotent)
intersection A1 ∩ . . .∩An. The sum of multisets M+N is defined as their union
(adding multiplicities). A typing context Γ is a partial function mapping vari-
ables to multisets of types. The domain of Γ is the set of variables x such that
Γ (x) is defined. We assume that typing contexts always have finite domain and
hence they may be written as x1 : M1, . . . , xn : Mn. The sum of contexts Γ +Δ
is their pointwise sum, i.e. (Γ + Δ)(x) := Γ (x) + Δ(x) if Γ (x) and Δ(x) are
both defined, (Γ + Δ)(x) := Γ (x) if Δ(x) is undefined, and (Γ + Δ)(x) := Δ(x)
if Γ (x) is undefined. We write Γ +n

i=1 Δi to abbreviate Γ + Δ1 + . . . + Δn. The
disjoint sum of contexts Γ ⊕ Δ stands for Γ + Δ, provided that the domains of
Γ and Δ are disjoint. A typing judgment is a triple Γ � t : A, representing the
knowledge that the term t has type A in the context Γ . Type assignment rules
for system W are as follows.

Definition 1.1 (System W)

var
x : [A] � A

Γ ⊕ (x : M) � t : A
lam

Γ � λx.t : M → A

Γ � t : [Bi]
n
i=1 → A (Δi � s : Bi)

n
i=1

app
Γ +n

i=1 Δi � t s : A

Observe that the app rule has n + 1 premises, where n ≥ 0. System W enjoys
various properties, nicely summarized in [8].

There are two obstacles to adopting system W for studying derivation spaces.
The first obstacle is mostly a matter of presentation—typing derivations use a
tree-like notation, which is cumbersome. One would like to have an alternative
notation based on proof terms. For example, one may define proof terms for the
typing rules above using the syntax π ::= xA | λx.π | π[π, . . . , π], in such a way
that xA encodes an application of the var axiom, λx.π encodes an application of
the lam rule to the typing derivation encoded by π, and π1[π2, . . . , πn] encodes an
application of the app rule to the typing derivations encoded by π1, π2, . . . , πn.
For example, using this notation λx.x[α,α]→β [xα, xα] would represent the follow-
ing typing derivation:

var
x : [α, α] → β � x : [α, α] → β

var
x : [α] � x : α

var
x : [α] � x : α

app
x : [[α, α] → β, α, α] � xx : β

lam
� λx.xx : [[α, α] → β, α, α] → β

The second obstacle is a major one for our purposes: proof normalization in this
system is not confluent. The reason is that applications take multiple arguments,
and a β-reduction step must choose a way to distribute these arguments among
the occurrences of the formal parameters. For instance, the following critical pair
cannot be closed:
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(λx.y[α]→[α]→β [xα][xα])[z[γ]→α[zγ ], z[]→α[]]

		������
���



�����
����

y[α]→[α]→β [z[γ]→α[zγ ]][z[]→α[]] y[α]→[α]→β [z[]→α[]][z[γ]→α[zγ ]]

The remainder of this paper is organized as follows:

– In Sect. 2, we review some standard notions of order and rewriting theory.
– In Sect. 3, we introduce a confluent calculus λ# based on system W. The

desirable properties of system W of [8] still hold in λ#. Moreover, λ# is con-
fluent. We impose confluence forcibly, by decorating subtrees with distinct
labels, so that a β-reduction step may distribute the arguments in a unique
way. Derivation spaces in λ# have very regular structure, namely they are
distributive lattices.

– In Sect. 4, we establish a correspondence between derivation spaces in the
λ-calculus and the λ#-calculus via simulation theorems, which defines a mor-
phism of upper semilattices.

– In Sect. 5, we introduce the notion of a garbage derivation. Roughly, a deriva-
tion in the λ-calculus is garbage if it maps to an empty derivation in the
λ#-calculus. This gives rise to an orthogonal notion of garbage-free deriva-
tion. The notion of garbage-free derivation is closely related with the notions
of needed step [33, Sect. 8.6], typed occurrence of a redex [8], and external
derivation [30]. Using this notion of garbage we prove a factorization theorem
reminiscent of Melliès’ [30]. The upper semilattice of derivations of a term in
the λ-calculus is factorized using a variant of the Grothendieck construction.
Every derivation is uniquely decomposed as a garbage-free prefix followed by
a garbage suffix.

– In Sect. 6, we conclude.

Note. Detailed proofs have been omitted from this paper due to lack of space.
Refer to the second author’s master’s thesis [11] for the full details.

2 Preliminaries

We recall some standard definitions. An upper semilattice is a poset (A,≤) with
a least element or bottom ⊥ ∈ A, and such that for every two elements a, b ∈ A
there is a least upper bound or join (a∨ b) ∈ A. A lattice is an upper semilattice
with a greatest element or top � ∈ A, and such that for every two elements a, b ∈
A there is a greatest lower bound or meet (a ∧ b) ∈ A. A lattice is distributive if
∧ distributes over ∨ and vice versa. A morphism of upper semilattices is given
by a monotonic function f : A → B, i.e. a ≤ b implies f(a) ≤ f(b), preserving



Factoring Derivation Spaces via Intersection Types 29

the bottom element, i.e. f(⊥) = ⊥, and joins, i.e. f(a ∨ b) = f(a) ∨ f(b) for all
a, b ∈ A. Similarly for morphisms of lattices. Any poset (A,≤) forms a category
whose objects are the elements of A and morphisms are of the form a ↪→ b for
all a ≤ b. The category of posets with monotonic functions is denoted by Poset.
In fact, we regard it as a 2-category: given morphisms f, g : A → B of posets,
we have that f ≤ g whenever f(a) ≤ g(a) for all a ∈ A.

An axiomatic rewrite system (cf. [29, Definition 2.1]) is given by a set of
objects Obj, a set of steps Stp, two functions src, tgt : Stp → Obj indicating the
source and target of each step, and a residual function (/) such that given any
two steps R,S ∈ Stp with the same source, yields a set of steps R/S such that
src(R′) = tgt(S) for all R′ ∈ R/S. Steps are ranged over by R,S, T, . . .. A step
R′ ∈ R/S is called a residual of R after S, and R is called an ancestor of R′.
Steps are coinitial (resp. cofinal) if they have the same source (resp. target). A
derivation is a possibly empty sequence of composable steps R1 . . . Rn. Deriva-
tions are ranged over by ρ, σ, τ, . . .. The functions src and tgt are extended to
derivations. Composition of derivations is defined when tgt(ρ) = src(σ) and writ-
ten ρ σ. Residuals after a derivation can be defined by Rn ∈ R0/S1 . . . Sn if and
only if there exist R1, . . . , Rn−1 such that Ri+1 ∈ Ri/Si+1 for all 0 ≤ i ≤ n − 1.
Let M be a set of coinitial steps. A development of M is a (possibly infinite)
derivation R1 . . . Rn . . . such that for every index i there exists a step S ∈ M
such that Ri ∈ S/R1 . . . Ri−1. A development is complete if it is maximal.

An orthogonal axiomatic rewrite system (cf. [29, Sect. 2.3]) has four addi-
tional axioms3:

1. Autoerasure. R/R = ∅ for all R ∈ Stp.
2. Finite Residuals. The set R/S is finite for all coinitial R,S ∈ Stp.
3. Finite Developments. If M is a set of coinitial steps, all developments of M

are finite.
4. Semantic Orthogonality. Let R,S ∈ Stp be coinitial steps. Then there exist a

complete development ρ of R/S and a complete development σ of S/R such
that ρ and σ are cofinal. Moreover, for every step T ∈ Stp such that T is
coinitial to R, the following equality between sets holds: T/(Rσ) = T/(Sρ).

In [29], Melliès develops the theory of orthogonal axiomatic rewrite systems. A
notion of projection ρ/σ may be defined between coinitial derivations, essentially
by setting ε/σ

def= ε and Rρ′/σ
def= (R/σ)(ρ′/(σ/R)) where, by abuse of notation,

R/σ stands for a (canonical) complete development of the set R/σ. Using this
notion, one may define a transitive relation of prefix (ρ � σ), a permutation
equivalence relation (ρ ≡ σ), and the join of derivations (ρ � σ). Some of their
properties are summed up in the figure below:

3 In [29], Autoerasure is called Axiom A, Finite Residuals is called Axiom B, and
Semantic Orthogonality is called PERM. We follow the nomenclature of [1].
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Summary of properties of orthogonal axiomatic rewrite systems

ε ρ = ρ
ρ ε = ρ

ε/ρ = ε
ρ/ε = ρ

ρ/στ = (ρ/σ)/τ
ρσ/τ = (ρ/τ)(σ/(τ/ρ))
ρ/ρ = ε

ρ � σ
def⇐⇒ ρ/σ = ε

ρ ≡ σ
def⇐⇒ ρ � σ ∧ σ � ρ

ρ � σ
def
= ρ(σ/ρ)

ρ ≡ σ =⇒ τ/ρ = τ/σ
ρ � σ ⇐⇒ ∃τ. ρτ ≡ σ
ρ � σ ⇐⇒ ρ � σ ≡ σ

ρ � σ =⇒ ρ/τ � σ/τ
ρ � σ ⇐⇒ τρ � τσ
ρ � σ ≡ σ � ρ

(ρ � σ) � τ = ρ � (σ � τ)
ρ � ρ � σ

(ρ � σ)/τ = (ρ/τ) � (σ/τ)

Let [ρ] = {σ | ρ ≡ σ} denote the permutation equivalence class of ρ. In an
orthogonal axiomatic rewrite system, the set D(x) = {[ρ] | src(ρ) = x} forms
an upper semilattice [29, Theorems 2.2 and 2.3]. The order [ρ] � [σ] is declared
to hold if ρ � σ, the join is [ρ] � [σ] = [ρ � σ], and the bottom is ⊥ = [ε].
The λ-calculus is an example of an orthogonal axiomatic rewrite system. Our
structures of interest are the semilattices of derivations of the λ-calculus, written
D

λ(t) for any given λ-term t. As usual, β-reduction in the λ-calculus is written
t →β s and defined by the contextual closure of the axiom (λx.t)s →β t{x := s}.

3 The Distributive λ-Calculus

In this section we introduce the distributive λ-calculus (λ#), and we prove some
basic results. Terms of the λ#-calculus are typing derivations of a non-idempotent
intersection type system, written using proof term syntax. The underlying type
system is a variant of system W of [7,8], the main difference being that λ# uses
labels and a suitable invariant on terms, to ensure that the formal parameters
of all functions are in 1–1 correspondence with the actual arguments that they
receive.

Definition 3.1 (Syntax of the λ#-calculus). Let L = {, ′, ′′, . . .} be a
denumerable set of labels. The set of types is ranged over by A,B, C, . . ., and
defined inductively as follows:

A ::= α� | M �→ A M ::= [Ai]ni=1 with n ≥ 0

where α ranges over one of denumerably many base types, and M represents

a multiset of types. In a type like α� and M �→ A, the label  is called the
external label. The typing contexts are defined as in Sect. 1 for system W.
We write dom Γ for the domain of Γ . A type A is said to occur inside another
type B, written A � B, if A is a subformula of B. This is extended to say that
a type A occurs in a multiset [B1, . . . ,Bn], declaring that A � [B1, . . . ,Bn] if
A � Bi for some i = 1..n, and that a type A occurs in a typing context Γ ,
declaring that A � Γ if A � Γ (x) for some x ∈ dom Γ .

The set of terms, ranged over by t, s, u, . . ., is given by the grammar t ::=
xA | λ�x.t | t t̄, where t̄ represents a (possibly empty) finite list of terms. The
notations [xi]ni=1, [x1, . . . , xn], and x̄ all stand simultaneously for multisets and
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for lists of elements. Note that there is no confusion since we only work with
multisets of types, and with lists of terms. The concatenation of the lists
x̄, ȳ is denoted by x̄ + ȳ. A sequence of n lists (x̄1, . . . , x̄n) is a partition of x̄
if x̄1 + . . . + x̄n is a permutation of x̄. The set of free variables of a term t
is written fv(t) and defined as expected. We also write fv([ti]ni=1) for ∪n

i=1fv(ti).
A context is a term C with an occurrence of a distinguished hole �. We write
C〈t〉 for the capturing substitution of � by t. Typing judgments are triples
Γ � t : A representing the knowledge that the term t has type A in the context
Γ . Type assignment rules are:

var
x : [A] � xA : A

Γ ⊕ (x : M) � t : B
lam

Γ � λ�x.t : M �→ B

Γ � t : [B1, . . . ,Bn] �→ A (Δi � si : Bi)
n
i=1

app
Γ +n

i=1 Δi � t[s1, . . . , sn] : A

For example � λ1x.x[α2,α3]
4→β5

[xα3
, xα2

] : [[α2, α3] 4→ β5, α2, α3] 1→ β5 is a deriv-
able judgment (using integer labels).

Remark 3.2 (Unique typing). Let Γ � t : A and Δ � t : B be derivable judg-
ments. Then Γ = Δ and A = B. Moreover, the derivation trees coincide.

This can be checked by induction on t. It means that λ# is an à la Church type
system, that is, types are an intrinsic property of the syntax of terms, as opposed
to an à la Curry type system like W, in which types are extrinsic properties that
a given term might or might not have.

To define a confluent rewriting rule, we impose a further constraint on the
syntax of terms, called correctness. The λ#-calculus will be defined over the set
of correct terms.

Definition 3.3 (Correct terms). A multiset of types [A1, . . . ,An] is sequen-
tial if the external labels of Ai and Aj are different for all i �= j. A typing context
Γ is sequential if Γ (x) is sequential for every x ∈ dom Γ . A term t is correct if
it is typable and it verifies the following three conditions:

1. Uniquely labeled lambdas. If λ�x.s and λ�′
y.u are subterms of t at differ-

ent positions, then  and ′ must be different labels.
2. Sequential contexts. If s is a subterm of t and Γ � s : A is derivable, then

Γ must be sequential.
3. Sequential types. If s is a subterm of t, the judgment Γ � s : A is derivable,

and there exists a type such that (M �→ B � Γ ) ∨ (M �→ B � A), then M
must be sequential.

The set of correct terms is denoted by T #.
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For example, x[α1]
2→β3

[xα1
] is a correct term, λ1x.λ1y.yα2

is not a correct term

since labels for lambdas are not unique, and λ1x.xα2 3→[β4,β4]
5→γ6

is not a correct
term since [β4, β4] is not sequential.

Substitution is defined explicitly below. If t is typable, Tx(t) stands for
the multiset of types of the free occurrences of x in t. If t1, . . . , tn are
typable, T([t1, . . . , tn]) stands for the multiset of types of t1, . . . , tn. For example,

Tx(x[α1]
2→β3

[xα1
]) = T([yα1

, z[α
1]

2→β3
]) = [[α1] 2→ β3, α1]. To perform a substitu-

tion t{x := [s1, . . . , sn]} we will require that Tx(t) = T([s1, . . . , sn]).

Definition 3.4 (Substitution). Let t and s1, . . . , sn be correct terms such
that Tx(t) = T([s1, . . . , sn]). The capture-avoiding substitution of x in t by s̄ =
[s1, . . . , sn] is denoted by t{x := s̄} and defined as follows:

xA{x := [s]} def= s

yA{x := []} def= yA if x �= y

(λ�y.u){x := s̄} def= λ�y.u{x := s̄} if x �= y and y �∈ fv(s̄)
u0[uj ]mj=1{x := s̄} def= u0{x := s̄0}[uj{x := s̄j}]mj=1

In the last case, (s̄0, . . . , s̄m) is a partition of s̄ such that Tx(uj) = T(s̄j) for all
j = 0..m.

Remark 3.5. Substitution is type-directed: the arguments [s1, . . . , sn] are prop-
agated throughout the term so that si reaches the free occurrence of x that
has the same type as si. Note that the definition of substitution requires that
Tx(t) = T([s1, . . . , sn]), which means that the types of the terms s1, . . . , sn are in
1–1 correspondence with the types of the free occurrences of x. Moreover, since
t is a correct term, the multiset Tx(t) is sequential, which implies in particular
that each free occurrence of x has a different type. Hence there is a unique cor-
respondence matching the free occurrences of x with the arguments s1, . . . , sn

that respects their types. As a consequence, in the definition of substitution for
an application u0[uj ]mj=1{x := s̄} there is essentially a unique way to split s̄ into
n + 1 lists (s̄0, s̄1, . . . , s̄n) in such a way that Tx(ui) = T(s̄i). More precisely, if
(s̄0, s̄1, . . . , s̄n) and (ū0, ū1, . . . , ūn) are two partitions of s̄ with the stated prop-
erty, then s̄i is a permutation of ūi for all i = 0..n. Using this argument, it is easy
to check by induction on t that the value of t{x := s̄} is uniquely determined
and does not depend on this choice.

For example, (x[α1]
2→β3

[xα1
]){x := [y[α1]

2→β3
, zα1

]} = y[α1]
2→β3

zα1
while, on

the other hand, (x[α1]
2→β3

[xα1
]){x := [yα1

, z[α
1]

2→β3
]} = z[α

1]
2→β3

yα1
.

The operation of substitution preserves term correctness and typability:

Lemma 3.6 (Subject Reduction). If C〈(λ�x.t)s̄〉 is a correct term such that
the judgment Γ � C〈(λ�x.t)s̄〉 : A is derivable, then C〈t{x := s̄}〉 is correct and
Γ � C〈t{x := s̄}〉 : A is derivable.
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Proof. By induction on C.

Definition 3.7 (The λ#-calculus). The λ#-calculus is the rewriting system
whose objects are the set of correct terms T #. The rewrite relation →# is the
closure under arbitrary contexts of the rule (λ�x.t)s̄ →# t{x := s̄}. Lemma 3.6
justifies that →# is well-defined, i.e. that the right-hand side is a correct term.
The label of a step is the label  decorating the contracted lambda. We write

t
�−→# s whenever t →# s and the label of the step is .

Example 3.8. Let I3
def= λ3x.xα2

and I4
def= λ4x.xα2

. The reduction graph of the
term (λ1x.x[α2]

3→α2
[xα2

])[I3, I4[zα2
]] is:

(λ1x.x[α2]
3→α2

[xα2
])[I3, I4[zα2

]]
1

S
��

4 R��

I3[I4[zα2
]]

3

T
��

4 R′
��

I4[zα2
]

4 R′′
��

(λ1x.x[α2]
3→α2

[xα2
])[I3, zα2

]
1

S′
�� I3[zα2

]
3

T ′
�� zα2

Note that numbers over arrows are the labels of the steps, while R,R′, S, ... are
metalanguage names to refer to the steps. Next, we state and prove some basic
properties of λ#.

Proposition 3.9 (Strong Normalization). There is no infinite reduction
t0 →# t1 →# . . ..

Proof. Observe that a reduction step C〈(λ�x.t)s̄〉 →# C〈t{x := s̄}〉 decreases the
number of lambdas in a term by exactly 1, because substitution is linear, i.e. the
term t{x := [s1, . . . , sn]} uses si exactly once for all i = 1..n. Note: this is an
adaptation of [8, Theorem 4.1].

The substitution operator may be extended to work on lists, by defining
[ti]ni=1{x := s̄} def= [ti{x := s̄i}]ni=1 where (s̄1, . . . , s̄n) is a partition of s̄ such that
Tx(ti) = T(s̄i) for all i = 1..n.

Lemma 3.10 (Substitution Lemma). Let x �= y and x �∈ fv(ū). If (ū1, ū2)
is a partition of ū then t{x := s̄}{y := ū} = t{y := ū1}{x := s̄{y := ū2}},
provided that both sides of the equation are defined. Note: there exists a list ū
that makes the left-hand side defined if and only if there exist lists ū1, ū2 that
make the right-hand side defined.

Proof. By induction on t.

Proposition 3.11 (Permutation). If t0
�1−→# t1 and t0

�2−→# t2 are different

steps, then there exists a term t3 ∈ T # such that t1
�2−→# t3 and t2

�1−→# t3.

Proof. By exhaustive case analysis of permutation diagrams. Two rep-
resentative cases are depicted below. The proof uses the Substitution
Lemma (Lemma 3.10).



34 P. Barenbaum and G. Ciruelos

(λ�x.(λ�′
y.u)r̄)s̄

�′
��

� �� ((λ�′
y.u)r̄){x := s̄}

�′
��

(λ�x.u{y := r̄})s̄ � �� u{y := r̄}{x := s̄}

(λ�x.t)[s̄1, (λ�′
y.u)r̄, s̄2]

�′
��

� �� t{x := [s̄1, (λ�′
y.u)r̄, s̄2]}

�′
��

(λ�x.t)[s̄1, u{y := r̄}, s̄2]
� �� t{x := [s̄1, u{y := r̄}, s̄2]}

As a consequence of Proposition 3.11, reduction is subcommutative, i.e. (←#

◦ →#) ⊆ (→#
= ◦ ←#

=) where ←# denotes (→#)−1 and R= denotes the reflexive
closure of R. Moreover, it is well-known that subcommutativity implies conflu-
ence, i.e. (←#

∗ ◦ →#
∗) ⊆ (→#

∗ ◦ ←#
∗); see [33, Proposition 1.1.10] for a proof

of this fact.

Proposition 3.12 (Orthogonality). λ# is an orthogonal axiomatic rewrite
system.

Proof. Let R : t →# s and S : t →# u. Define the set of residuals R/S as the set
of steps starting on u that have the same label as R. Note that R/S is empty if
R = S, and it is a singleton if R �= S, since terms are correct so their lambdas
are uniquely labeled. Then it is immediate to observe that axioms Autoerasure
and Finite Residuals hold. The Finite Developments axiom is a consequence of
Strong Normalization (Proposition 3.9). The Semantic Orthogonality axiom
is a consequence of Permutation (Proposition 3.11).

For instance, in the reduction graph of Example 3.8, ST/RS′ = T ′, S � R =
SR′, and SR′T ′ ≡ RS′T ′. Observe that in Example 3.8 there is no duplication or
erasure of steps. This is a general phenomenon. Indeed, Permutation (Propo-
sition 3.11) ensures that all non-trivial permutation diagrams are closed with
exactly one step on each side.

Let us write D
#(t) for the set of derivations of t in the λ#-calculus, modulo

permutation equivalence. As a consequence of Orthogonality (Proposition 3.12)
and axiomatic results [29], the set D

#(t) is an upper semilattice. Actually, we
show that moreover the space D

#(t) is a distributive lattice. To prove this, let us
start by mentioning the property that we call Full Stability. This is a strong
version of stability in the sense of Lévy [27]. It means that steps are created in an
essentially unique way. In what follows, we write lab(R) for the label of a step,
and labs(R1 . . . Rn) = {lab(Ri) | 1 ≤ i ≤ n} for the set of labels of a derivation.

Lemma 3.13 (Full Stability). Let ρ, σ be coinitial derivations with dis-
joint labels, i.e. labs(ρ) ∩ labs(σ) = ∅. Let T1, T2, T3 be steps such that
T3 = T1/(σ/ρ) = T2/(ρ/σ). Then there is a step T0 such that T1 = T0/ρ and
T2 = T0/σ.
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Proof The proof is easily reduced to a Basic Stability result: a particular case
of Full Stability when ρ and σ consist of single steps. Basic Stability is proved
by exhaustive case analysis.

Proposition 3.14. D
#(t) is a lattice.

Proof. The missing components are the top and the meet. The top element is
given by � := [ρ] where ρ : t →#

∗ s is a derivation to normal form, which
exists by Strong Normalization (Proposition 3.9). The meet of {[ρ], [σ]} is
constructed using Full Stability (Lemma 3.13). If labs(ρ) ∩ labs(σ) = ∅, define
(ρ�σ) := ε. Otherwise, the stability result ensures that there is a step R coinitial
to ρ and σ such that lab(R) ∈ labs(ρ) ∩ labs(σ). Let R be one such step, and,
recursively, define (ρ�σ) := R((ρ/R)� (σ/R)). It can be checked that recursion
terminates, because labs(ρ/R) ⊂ labs(ρ) is a strict inclusion. Moreover, ρ � σ is
the greatest lower bound of {ρ, σ}, up to permutation equivalence.

For instance, in Example 3.8 we have that ST � R = ε, ST � RS′ = S, and
ST � RS′T ′ = ST .

Proposition 3.15. There is a monomorphism of lattices D
#(t) → P(X) for

some set X. The lattice (P(X),⊆, ∅,∪,X,∩) consists of the subsets of X,
ordered by inclusion.

Proof. The morphism is the function labs, mapping each derivation to its set of
labels.

This means that a derivation in λ# is characterized, up to permutation equiv-
alence, by the set of labels of its steps. Since P(X) is a distributive lattice, in
particular we have:

Corollary 3.16. D
#(t) is a distributive lattice.

4 Simulation of the λ-Calculus in the λ#-Calculus

In this section we establish a precise relationship between derivations in the
λ-calculus and derivations in λ#. To begin, we need a way to relate λ-terms and
correct terms (T #):

Definition 4.1 (Refinement). A correct term t′ ∈ T # refines a λ-term t,
written t′ � t, according to the following inductive definition:

r-var
xA

� x

t′ � t
r-lam

λ�x.t′ � λx.t

t′ � t s′
i � s for all i = 1..n

r-app
t′[s′

i]
n
i=1 � ts

A λ-term may have many refinements. For example, the following terms refine
(λx.xx)y:

(λ1x.x[ ]
2→α3

[ ])[y[ ]
2→α3

] (λ1x.x[α2]
3→β4

[xα2
])[y[α2]

3→β4
, yα2

]
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(λ1x.x[α2,β3]
4→γ5

[xα2
, xβ3

])[y[α2,β3]
4→γ5

, yα2
, yβ3

]

The refinement relation establishes a relation of simulation between the
λ-calculus and λ#.

Proposition 4.2 (Simulation). Let t′ � t. Then:

1. If t →β s, there exists s′ such that t′ →#
∗ s′ and s′

� s.
2. If t′ →# s′, there exist s and s′′ such that t →β s, s′ →#

∗ s′′, and s′′
� s.

Proof. By case analysis. The proof is constructive. Moreover, in item @newin-
linkPar76reversespssimulationspsitemspsfwd1, the derivation t′ →#

∗ s′ is shown
to be a multistep, i.e. the complete development of a set {R1, . . . , Rn}.

The following example illustrates that a β-step in the λ-calculus may be simu-
lated by zero, one, or possibly many steps in λ#, depending on the refinement
chosen.

Example 4.3. The following are simulations of the step x ((λx.x)y) →β x y using
→#-steps:

x ((λx.x)y)
β ��

�

x y

�

x[]
1→α2

[] x[]
1→α2

[]

x ((λx.x)y)
β ��

�

x y

�

x[α1]
2→β3

[(λ4x.xα1
)[yα1

]]
# �� x[α1]

2→β3
[yα1

]

x ((λx.x)y)
β ��

�

x y

�

x[α1,β2]
3→γ4

[(λ5x.xα1
)[yα1

], (λ6x.xβ2
)[yβ2

]]
# �� �� x[α1,β2]

3→γ4
[yα1

, yβ2
]

The next result relates typability and normalization. This is an adaptation of
existing results from non-idempotent intersection types, e.g. [8, Lemma 5.1].
Recall that a head normal form is a term of the form λx1. . . . λxn.y t1 . . . tm.

Proposition 4.4 (Typability characterizes head normalization). The
following are equivalent:

1. There exists t′ ∈ T # such that t′ � t.
2. There exists a head normal form s such that t →β

∗ s.

Proof. The implication (1 =⇒ 2) relies on Simulation (Proposition 4.2). The
implication (2 =⇒ 1) relies on the fact that head normal forms are typable,
plus an auxiliary result of Subject Expansion.

The first item of Simulation (Proposition 4.2) ensures that every step t →β s
can be simulated in λ# starting from a term t′ � t. Actually, a finer relationship
can be established between the derivation spaces D

λ(t) and D
#(t′). For this, we

introduce the notion of simulation residual.
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Definition 4.5 (Simulation residuals). Let t′ � t and let R : t →β s be
a step. The constructive proof of Simulation (Proposition 4.2) associates the
→β-step R to a possibly empty set of →#-steps {R1, . . . , Rn} all of which start

from t′. We write R/t′ def= {R1, . . . , Rn}, and we call R1, . . . , Rn the simulation
residuals of R after t′. All the complete developments of R/t′ have a common
target, which we denote by t′/R, called the simulation residual of t′ after R.

Recall that, by abuse of notation, R/t′ stands for some complete development
of the set R/t′. By Simulation (Proposition 4.2), the following diagram always
holds given t′ � t →β s:

t
β

R
��

�

s

�

t′ #

R/t′
�� �� t′/R

Example 4.6 (Simulation residuals). Let R : x ((λx.x)y) →β x y and consider
the terms:

t′0 = (x[α1,β2]
3→γ4

[(λ5x.xα1
)[yα1

], (λ6x.xβ2
)[yβ2

]])

t′1 = x[α1,β2]
3→γ4

[yα1
, (λ6x.xβ2

)[yβ2
]

t′2 = x[α1,β2]
3→γ4

[(λ5x.xα1
)[yα1

], yβ2
]

t′3 = x[α1,β2]
3→γ4

[yα1
, yβ2

]

Then t′0/R = t′3 and R/t′0 = {R1, R2}, where R1 : t′0 →# t′1 and R2 : t′0 →# t′2.

The notion of simulation residual can be extended for many-step derivations.

Definition 4.7 (Simulation residuals of/after derivations). If t′ � t and
ρ : t →β

∗ s is a derivation, then ρ/t′ and t′/ρ are defined as follows by induction
on ρ:

ε/t′ def= ε Rσ/t′ def= (R/t′)(σ/(t′/R)) t′/ε
def= t′ t′/Rσ

def= (t′/R)/σ

It is then easy to check that ρ/t′ : t′ →#
∗ t′/ρ and t′/ρ � s, by induction on ρ.

Moreover, simulation residuals are well-defined modulo permutation equivalence:

Proposition 4.8 (Compatibility). If ρ ≡ σ and t � src(ρ) then ρ/t ≡ σ/t
and t/ρ = t/σ.

Proof. By case analysis, studying how permutation diagrams in the λ-calculus
are transported to permutation diagrams in λ# via simulation.

The following result resembles the usual Cube Lemma [4, Lemma 12.2.6]:

Lemma 4.9 (Cube). If t � src(ρ) = src(σ), then (ρ/σ)/(t/σ) ≡ (ρ/t)/(σ/t).
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Proof. By induction on ρ and σ, relying on an auxiliary result, the Basic Cube
Lemma, when ρ and σ are single steps, proved by exhaustive case analysis.

As a result, (ρ � σ)/t = ρ(σ/ρ)/t = (ρ/t)((σ/ρ)/(t/ρ)) ≡ (ρ/t)((σ/t)/(σ/ρ)) =
(ρ/t) � (σ/t). Moreover, if ρ � σ then ρτ ≡ σ for some τ . So we have that
ρ/t � (ρ/t)(τ/(t/ρ)) = ρτ/t ≡ σ/t by Compatibility (Proposition 4.8). Hence
we may formulate a stronger simulation result:

Corollary 4.10 (Algebraic Simulation). Let t′ � t. Then the mapping
D

λ(t) → D
#(t′) given by [ρ] �→ [ρ/t′] is a morphism of upper semilattices.

Example 4.11. Let I = λx.x and Δ = (λ5x.xα2
)[zα2

] and let ŷ = y[α2]
3→[ ]

4→β5
.

The refinement t′ := (λ1x.ŷ[xα2
][ ])[Δ] � (λx.yxx)(Iz) induces a morphism

between the upper semilattices represented by the following reduction graphs:

(λx.yxx)(Iz)R1

��
S

��
y(Iz)(Iz)

S11 ��

S21 �� y(Iz)z
S12��

(λx.yxx)z

R2
yz(Iz)

S22

�� yzz

(λ1x.ŷ[xα2
][ ])[Δ]

R′
1

��
S′

��
ŷ[Δ][ ]

S′
1

��

(λ1x.ŷ[xα2
][ ])[zα2

]

R′
2

��ŷ[zα2
][ ]

For example (R1 �S)/t′ = (R1S11S22)/t′ = R′
1S

′
1 = R′

1 �S′ = R1/t′ �S/t′. Note
that the step S22 is erased by the simulation: S22/(ŷ[zα2

][ ]) = ∅. Intuitively,
S22 is “garbage” with respect to the refinement ŷ[zα2

][ ], because it lies inside
an untyped argument.

5 Factoring Derivation Spaces

In this section we prove that the upper semilattice D
λ(t) may be factorized using

a variant of the Grothendieck construction. We start by formally defining the
notion of garbage.

Definition 5.1 (Garbage). Let t′ � t. A derivation ρ : t →β
∗ s is t′-garbage

if ρ/t′ = ε.

The informal idea is that each refinement t′ � t specifies that some subterms of t
are “useless”. A subterm u is useless if it lies inside the argument of an application
s(...u...) in such a way that the argument is not typed, i.e. the refinement is of the
form s′[ ] � s(...u...). A single step R is t′-garbage if the pattern of the contracted
redex lies inside a useless subterm. A sequence of steps R1R2 . . . Rn is t′-garbage
if R1 is t′-garbage, R2 is (t′/R1)-garbage, . . ., Ri is (t′/R1 . . . Ri−1)-garbage, . . .,
and so on.

Usually we say that ρ is just garbage, when t′ is clear from the context. For
instance, in Example 4.11, S21 is garbage, since S21/(ŷ[Δ][ ]) = ε. Similarly, S22

is garbage, since S22/(ŷ[zα2
][ ]) = ε. On the other hand, R1S21 is not garbage,

since R1S21/((λ1x.ŷ[xα2
][ ])[Δ]) = R′

1 �= ε. For each t′ � t, the set of t′-garbage
derivations forms an ideal of the upper semilattice D

λ(t). More precisely:
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Proposition 5.2 (Properties of garbage). Let t′ � t. Then:

1. If ρ is t′-garbage and σ � ρ, then σ is t′-garbage.
2. The composition ρσ is t′-garbage if and only if ρ is t′-garbage and σ is (t′/ρ)-

garbage.
3. If ρ is t′-garbage then ρ/σ is (t′/σ)-garbage.
4. The join ρ � σ is t′-garbage if and only if ρ and σ are t′-garbage.

Proof. The proof is easy using Proposition 4.8 and Lemma 4.9.

Our aim is to show that given ρ : t →β
∗ s and t′ � t, there is a unique way of

decomposing ρ as στ , where τ is t′-garbage and σ “has no t′-garbage”. Garbage
is well-defined modulo permutation equivalence, i.e. given ρ ≡ σ, we have that ρ
is garbage if and only if σ is garbage. In contrast, it is not immediate to give a
well-defined notion of “having no garbage”. For example, in Example 4.11, SR2

has no garbage steps, so it appears to have no garbage; however, it is permutation
equivalent to R1S11S22, which does contain a garbage step (S22). The following
definition seems to capture the right notion of having no garbage:

Definition 5.3 (Garbage-free derivation). Let t′ � t. A derivation ρ :
t →β

∗ s is t′-garbage-free if for any derivation σ such that σ � ρ and ρ/σ is
(t′/σ)-garbage, then ρ/σ = ε.

Again, we omit the t′ if clear from the context. Going back to Example 4.11, the
derivation SR2 is not garbage-free, because R1S11 � SR2 and SR2/R1S11 = S22

is garbage but non-empty. Note that Definition 5.3 is defined in terms of the
prefix order (�), so:

Remark 5.4. If ρ ≡ σ, then ρ is t′-garbage-free if and only if σ is t′-garbage-free.

Next, we define an effective procedure (sieving) to erase all the garbage from
a derivation. The idea is that if ρ : t →β

� s is a derivation in the λ-calculus and
t′ � t is any refinement, we may constructively build a t′-garbage-free derivation
(ρ ⇓ t′) : t →β

� u by erasing all the t′-garbage from ρ. Our goal will then be to
show that ρ ≡ (ρ ⇓ t′)σ where σ is garbage.

Definition 5.5 (Sieving). Let t′ � t and ρ : t →β
� s. A step R is coarse for

(ρ, t′) if R � ρ and R/t′ �= ∅. The sieve of ρ with respect to t′, written ρ ⇓ t′,
is defined as follows.

– If there are no coarse steps for (ρ, t′), then (ρ ⇓ t′) def= ε.

– If there is a coarse step for (ρ, t′), then (ρ ⇓ t′) def= R0((ρ/R0) ⇓ (t′/R0))
where R0 is the leftmost such step.

Lemma 5.6. The sieving operation ρ ⇓ t′ is well-defined.

Proof. To see that recursion terminates, consider the measure M given by
M(ρ, t′) := #labs(ρ/t′), and note that M(ρ, t′) > M(ρ/R0, t

′/R0).

For example, in Example 4.11, we have that S ⇓ t′ = S and SR2 ⇓ t′ = R1S11.
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Proposition 5.7 (Properties of sieving). Let t′ � t and ρ : t →β
∗ s. Then:

1. ρ ⇓ t′ is t′-garbage-free and ρ ⇓ t′ � ρ.
2. ρ/(ρ ⇓ t′) is (t′/(ρ ⇓ t′))-garbage.
3. ρ is t′-garbage if and only if ρ ⇓ t′ = ε.
4. ρ is t′-garbage-free if and only if ρ ⇓ t′ ≡ ρ.

Proof. By induction on the length of ρ ⇓ t′, using various technical lemmas.

As a consequence of the definition of the sieving construction and its prop-
erties, given any derivation ρ : t →β

∗ s and any refinement t′ � t, we can always
write ρ, modulo permutation equivalence, as of the form ρ ≡ στ in such a way
that σ is garbage-free and τ is garbage. To prove this take σ := ρ ⇓ t′ and
τ := ρ/(ρ ⇓ t′), and note that σ is garbage-free by item 1. of Proposition 5.7, τ
is garbage by item 2. of Proposition 5.7, and ρ ≡ σ(ρ/σ) = στ because σ � ρ by
item 1. of Proposition 5.7.

In the following we give a stronger version of this result. The Factoriza-
tion theorem below (Theorem 5.10) states that this decomposition is actually
an isomorphism of upper semilattices. This means, on one hand, that given any
derivation ρ : t →β

∗ s and any refinement t′ � t there is a unique way to factor
ρ as of the form ρ ≡ στ where σ is garbage-free and τ is garbage. On the other
hand, it means that the decomposition ρ �→ (ρ ⇓ t′, ρ/(ρ ⇓ t′)) mapping each
derivation to a of a garbage-free plus a garbage derivation is functorial. This
means, essentially, that the set of pairs (σ, τ) such that σ is garbage-free and τ
is garbage can be given the structure of an upper semilattice in such a way that:

– If ρ �→ (σ, τ) and ρ′ �→ (σ′, τ ′) then ρ � ρ′ ⇐⇒ (σ, τ) ≤ (σ′, τ ′).
– If ρ �→ (σ, τ) and ρ′ �→ (σ′, τ ′) then (ρ � ρ′) �→ (σ, τ) ∨ (σ′, τ ′).

The upper semilattice structure of the set of pairs (σ, τ) is given using a variant
of the Grothendieck construction:

Definition 5.8 (Grothendieck construction for partially ordered sets).
Let A be a poset, and let B : A → Poset be a mapping associating each object
a ∈ A to a poset B(a). Suppose moreover that B is a lax 2-functor. More
precisely, for each a ≤ b in A, the function B(a ↪→ b) : B(a) → B(b) is monotonic
and such that:

1. B(a ↪→ a) = idB(a) for all a ∈ A,
2. B((b ↪→ c) ◦ (a ↪→ b)) ≤ B(b ↪→ c) ◦ B(a ↪→ b) for all a ≤ b ≤ c in A.

The Grothendieck construction
∫

A
B is defined as the poset given by the set

of objects {(a, b) | a ∈ A, b ∈ B(a)} and such that (a, b) ≤ (a′, b′) is declared to
hold if and only if A ≤ a′ and B(a ↪→ a′)(b) ≤ b′.

The following proposition states that garbage-free derivations form a finite
lattice, while garbage derivations form an upper semilattice.

Proposition 5.9 (Garbage-free and garbage semilattices). Let t′ � t.
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1. The set F = {[ρ] | src(ρ) = t and ρ is t′-garbage-free} of t′-garbage-free
derivations forms a finite lattice F(t′, t) = (F,�,⊥,�,�,�), with:

– Partial order: [ρ] � [σ] def⇐⇒ ρ/σ is (t′/σ)-garbage.
– Bottom: ⊥ := [ε].
– Join: [ρ]�[σ] def= [(ρ � σ) ⇓ t′].
– Top: �, defined as the join of all the [τ ] such that τ is t′-garbage-free.
– Meet: [ρ] � [σ], defined as the join of all the [τ ] such that [τ ] � [ρ] and

[τ ] � [σ].
2. The set G = {[ρ] | src(ρ) = t and ρ is t′-garbage} of t′-garbage derivations

forms an upper semilattice G(t′, t) = (G,�,⊥,�), with the structure inherited
from D

λ(t).

Proof. The proof relies on the properties of garbage and sieving (Propositions 5.2
and 5.7).

Suppose that t′ � t, and let F def= F(t′, t) denote the lattice of t′-garbage-free
derivations. Let G : F → Poset be the lax 2-functor G([ρ]) def= G(t′/ρ, tgt(ρ))
with the following action on morphisms:

G([ρ] ↪→ [σ]) : G([ρ]) → G([σ])
[α] �→ [ρα/σ]

Using the previous proposition (Proposition 5.9) it can be checked that G is
indeed a lax 2-functor, and that the Grothendieck construction

∫
F G forms an

upper semilattice. The join is given by (a, b)∨ (a′, b′) = (a�a′,G(a ↪→ a�a′)(b)�
G(a′ ↪→ a�a′)(b′)). Finally we can state the main theorem:

Theorem 5.10 (Factorization). The following maps form an isomorphism of
upper semilattices:

D
λ(t) →

∫
F G

[ρ] �→ ([ρ ⇓ t′], [ρ/(ρ ⇓ t′)]

∫
F G → D

λ(t)
([ρ], [σ]) �→ [ρσ]

Proof. The proof consists in checking that both maps are morphisms of upper
semilattices and that they are mutual inverses, resorting to Propositions 5.2
and 5.7.

Example 5.11. Let t = (λx.yxx)(Iz) and t′ be as in Example 4.11. The upper
semilattice D

λ(t) can be factorized as
∫

F G as follows. Here posets are represented
by their Hasse diagrams:

[ε]
�� ��

[R1]
��

�� [R1S21]
��

[S]

��
[R1S11] �� [R1 � S]

�

([ε], [ε])
�� ��

([R1], [ε])
��

�� ([R1], [S21])
��

([S], [ε])

��
([R1S11], [ε]) �� ([R1S11], [S22])

For example ([S], [ε]) ≤ ([R1S11], [S22]) because [S]�[R1S11], that is, S/R1S11 =
S22 is garbage, and G([S] ↪→ [R1S11])([ε]) = [S/R1S11] = [S22] � [S22].
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6 Conclusions

We have defined a calculus (λ#) based on non-idempotent intersection types.
Its syntax and semantics are complex due to the presence of an admittedly ad
hoc correctness invariant for terms, enforced so that reduction is confluent. In
contrast, derivation spaces in this calculus turn out to be very simple structures:
they are representable as rings of sets (Proposition 3.15) and as a consequence
they are distributive lattices (Corollary 3.16). Derivation spaces in the λ-calculus
can be mapped to these much simpler spaces using a strong notion of simula-
tion (Corollary 4.10) inspired by residual theory. Building on this, we showed
how the derivation space of any typable λ-term may be factorized as a “twisted
product” of garbage-free and garbage derivations (Theorem5.10).

We believe that this validates the (soft) hypothesis that explicitly repre-
senting resource management can provide insight on the structure of derivation
spaces.

Related Work. The Factorization theorem (Theorem 5.10) is reminiscent
of Melliès’ abstract factorization result [30]. Given an axiomatic rewriting sys-
tem fulfilling a number of axioms, Melliès proves that every derivation can be
uniquely factorized as an external prefix followed by an internal suffix. We con-
jecture that each refinement t′ � t should provide an instantiation of Melliès’
axioms, in such a way that our t′-garbage-free/t′-garbage factorization coincides
with his external/internal factorization. Melliès notes that any evaluation strat-
egy that always selects external steps is hypernormalizing. A similar result should
hold for evaluation strategies that always select non-garbage steps.

The notion of garbage-free derivation is closely related with the notion of
X-neededness [3]. A step R is X-needed if every reduction to a term t ∈ X
contracts a residual of R. Recently, Kesner et al. [23] have related typability in
a non-idempotent intersection type system V and weak-head neededness. Using
similar techniques, it should be possible to prove that t′-garbage-free steps are
X-needed, where X = {s | s′

� s} and s′ is the →#-normal form of t′.
There are several resource calculi in the literature which perhaps could

play a similar role as λ# to recover factorization results akin to Theorem 5.10.
Kfoury [24] embeds the λ-calculus in a linear λ-calculus that has no duplication
nor erasure. Ehrard and Regnier prove that the Taylor expansion of λ-terms [17]
commutes with normalization, similarly as in Algebraic Simulation (Corol-
lary 4.10). Mazza et al. [28] study a general framework for polyadic approxima-
tions, corresponding roughly to the notion of refinement in this paper.

Acknowledgements. To Eduardo Bonelli and Delia Kesner for introducing the first
author to these topics. To Luis Scoccola and the anonymous reviewers for helpful
suggestions.
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Ecole Doctorale Physique et Sciences de la Matière (Marseille) (2007)

10. Church, A., Rosser, J.B.: Some properties of conversion. Trans. Am. Math. Soc.
39(3), 472–482 (1936)
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thesis, Université Paris 7, December 2017

35. Zilli, M.V.: Reduction graphs in the lambda calculus. Theor. Comput. Sci. 29,
251–275 (1984). https://doi.org/10.1016/0304-3975(84)90002-1

https://doi.org/10.1007/978-3-662-49630-5_25
https://doi.org/10.1007/978-3-642-03816-7_40
https://doi.org/10.1007/978-3-319-89366-2_13
https://doi.org/10.1007/BFb0026981
https://doi.org/10.1007/3-540-45610-4_4
https://doi.org/10.1007/11601548_23
https://doi.org/10.1016/0304-3975(84)90002-1


Types of Fireballs

Beniamino Accattoli1 and Giulio Guerrieri2(B)
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Abstract. The good properties of Plotkin’s call-by-value lambda-
calculus crucially rely on the restriction to weak evaluation and closed
terms. Open call-by-value is the more general setting where evaluation
is weak but terms may be open. Such an extension is delicate and the
literature contains a number of proposals. Recently, we provided opera-
tional and implementative studies of these proposals, showing that they
are equivalent with respect to termination, and also at the level of time
cost models.

This paper explores the denotational semantics of open call-by-value,
adapting de Carvalho’s analysis of call-by-name via multi types (aka
non-idempotent intersection types). Our type system characterises nor-
malisation and thus provides an adequate relational semantics. Moreover,
type derivations carry quantitative information about the cost of evalua-
tion: their size bounds the number of evaluation steps and the size of the
normal form, and we also characterise derivations giving exact bounds.

The study crucially relies on a new, refined presentation of the fireball
calculus, the simplest proposal for open call-by-value, that is more apt
to denotational investigations.

1 Introduction

The core of functional programming languages and proof assistants is usually
modelled as a variation over the λ-calculus. Even when one forgets about type
systems, there are in fact many λ-calculi rather than a single λ-calculus, depend-
ing on whether evaluation is weak or strong (that is, only outside or also inside
abstractions), call-by-name (CbN for short), call-by-value (CbV),1 or call-by-
need, whether terms are closed or may be open, not to speak of extensions with
continuations, pattern matching, fix-points, linearity constraints, and so on.

Benchmark for λ-calculi. A natural question is what is a good λ-calculus? It is
of course impossible to give an absolute answer, because different settings value
different properties. It is nonetheless possible to collect requirements that seem

1 In CbV, function’s arguments are evaluated before being passed to the function, so
β-redexes can fire only when their arguments are values, i.e. abstractions or variables.
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desirable in order to have an abstract framework that is also useful in practice.
We can isolate at least six principles to be satisfied by a good λ-calculus:

1. Rewriting : there should be a small-step operational semantics having nice
rewriting properties. Typically, the calculus should be non-deterministic but
confluent, and a deterministic evaluation strategy should emerge naturally
from some good rewriting property (factorisation/standardisation theorem,
or the diamond property). The strategy emerging from the calculus principle
guarantees that the chosen evaluation is not ad-hoc.

2. Logic: typed versions of the calculus should be in Curry-Howard correspon-
dences with some proof systems, providing logical intuitions and guiding prin-
ciples for the features of the calculus and the study of its properties.

3. Implementation: there should be a good understanding of how to decompose
evaluation in micro-steps, that is, at the level of abstract machines, in order
to guide the design of languages or proof assistants based on the calculus.

4. Cost model : the number of steps of the deterministic evaluation strategy
should be a reasonable time cost model,2 so that cost analyses of λ-terms
are possible, and independent of implementative choices.

5. Denotations: there should be denotational semantics, that is, syntax-free
mathematical interpretations of the calculus that are invariant by evaluation
and that reflect some of its properties. Well-behaved denotations guarantee
that the calculus is somewhat independent from its own syntax, which is a
further guarantee that it is not ad-hoc.

6. Equality : contextual equivalence can be characterised by some form of bisimi-
larity, showing that there is a robust notion of program equivalence. Program
equivalence is indeed essential for studying program transformations and opti-
misations at work in compilers.

Finally, there is a sort of meta-principle: the more principles are connected,
the better. For instance, it is desirable that evaluation in the calculus corresponds
to cut-elimination in some logical interpretation of the calculus. Denotations
are usually at least required to be adequate with respect to the rewriting: the
denotation of a term is non-degenerated if and only if its evaluation terminates.
Additionally, denotations are fully abstract if they reflect contextual equivalence.
And implementations have to work within an overhead that respects the intended
cost semantics. Ideally, all principles are satisfied and perfectly interconnected.

Of course, some specific cases may drop some requirements—for instance, a
probabilistic λ-calculus would not be confluent—some properties may also be
strengthened—for instance, equality may be characterised via a separation theo-
rem akin to Bohm’s—and other principles may be added—categorical semantics,
graphical representations, etc.

What is usually considered the λ-calculus, is, in our terminology, the strong
CbN λ-calculus with (possibly) open terms, and all points of the benchmark
have been studied for it. Plotkin’s original formulation of CbV [45], conceived
2 Here reasonable is a technical word meaning that the cost model is polynomially

equivalent to the one of Turing machines.
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for weak evaluation and closed terms and here referred to as Closed CbV, also
boldly passes the benchmark. Unfortunately Plotkin’s setting fails the bench-
mark as soon as it is extended to open terms, which is required when using
CbV for implementing proof assistants, see Grégoire and Leroy’s [29]. Typically,
denotations are no longer adequate, as first noticed by Paolini and Ronchi Della
Rocca [48], and there is a mismatch between evaluation in the calculus and
cut-elimination in its linear logic interpretation, as shown by Accattoli [1]. The
failure can be observed also at other levels not covered by our benchmark, e.g.
the incompleteness of CPS translations, already noticed by Plotkin himself [45].

Benchmarking Open Call-by-Value. The problematic interaction of CbV and
open terms is well known, and the fault is usually given to the rewriting—the
operational semantics has to be changed somehow. The literature contains a
number of proposals for extensions of CbV out of the closed world, some of
which were introduced to solve the incompleteness of CPS translations. In [3],
we provided a comparative study of four extensions of Closed CbV (with weak
evaluation on possibly open terms), showing that they have equivalent rewriting
theories (namely, they are equivalent from the point of view of termination), they
are all adequate with respect to denotations, and they share the same time cost
models—these proposals have then to be considered as different incarnations
of a more abstract framework, which we call open call-by-value (Open CbV).
Together with Sacerdoti Coen, we provided also a theory of implementations
respecting the cost semantics [4,7], and a precise linear logic interpretation [1].
Thus, Open CbV passes the first five points of the benchmark.

This paper deepens the analysis of the fifth point, by refining the denotational
understanding of Open CbV with a quantitative relationship with the rewriting
and the cost model. We connect the size of type derivations for a term with its
evaluation via rewriting, and the size of elements in its denotation with the size
of its normal form, in a model coming from the linear logic interpretation of CbV
and presented as a type system: Ehrhard’s relational semantics for CbV [23].

The last point of the benchmark—contextual equivalence for Open CbV—
was shown by Lassen to be a difficult question [39], and it is left to future work.

Multi Types. Intersection types are one of the standard tools to study λ-
calculi, mainly used to characterise termination properties—classical references
are Coppo and Dezani [19,20], Pottinger [46], and Krivine [38]. In contrast to
other type systems, they do not provide a logical interpretation, at least not
as smoothly as for simple or polymorphic types—see Ronchi Della Rocca and
Roversi’s [49] or Bono, Venneri, and Bettini’s [9] for details. They are better
understood, in fact, as syntactic presentations of denotational semantics: they
are invariant under evaluation and type all and only the terminating terms, thus
naturally providing an adequate denotational model.

Intersection types are a flexible tool that can be formulated in various ways. A
flavour that emerged in the last 10 years is that of non-idempotent intersection
types, where the intersection A ∩ A is not equivalent to A. They were first
considered by Gardner [26], and then Kfoury [37], Neergaard and Mairson [41],
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and de Carvalho [14,16] provided a first wave of works abut them—a survey can
be found in Bucciarelli, Kesner, and Ventura’s [12]. Non-idempotent intersections
can be seen as multisets, which is why, to ease the language, we prefer to call
them multi types rather than non-idempotent intersection types.

Multi types retain the denotational character of intersection types, and they
actually refine it along two correlated lines. First, taking types with multiplicities
gives rise to a quantitative approach, that reflects resource consumption in the
evaluation of terms. Second, such a quantitative feature turns out to coincide
exactly with the one at work in linear logic. Some care is needed here: multi
types do not correspond to linear logic formulas, rather to the relational denota-
tional semantics of linear logic (two seminal references for such a semantic are
Girard’s [28] and Bucciarelli and Ehrhard’s [10]; see also [15,34])—similarly to
intersection types, they provide a denotational rather than a logical interpreta-
tion.

An insightful use of multi types is de Carvalho’s connection between the size
of types and the size of normal forms, and between the size of type derivations
and evaluation lengths for the CbN λ-calculus [16].

Types of Fireballs. This paper develops a denotational analysis of Open CbV
akin to de Carvalho’s. There are two main translations of the λ-calculus into
linear logic, due to Girard [27], the CbN one, that underlies de Carvalho’s study
[14,16], and the CbV one, that is explored here. The literature contains deno-
tational semantics of CbV and also studies of multi types for CbV. The dis-
tinguishing feature of our study is the use of multi types to provide bounds
on the number of evaluation steps and on the size of normal forms, which has
never been done before for CbV, and moreover we do it for the open case—the
result for the closed case, refining Ehrhard’s study [23], follows as a special case.
Besides, we provide a characterisation of types and type derivations that provide
exact bounds, similarly to de Carvalho [14,16], Bernadet and Lengrand [8], and
de Carvalho, Pagani, and Tortora de Falco [17], and along the lines of a very
recent work by Accattoli, Graham-Lengrand, and Kesner [2], but using a slightly
different approach.

Extracting exact bounds from the multi types system is however only half of
the story. The other, subtler half is about tuning up the presentation of Open
CbV as to accommodate as many points of the benchmark as possible. Our quan-
titative denotational inquire via multi types requires the following properties:

0. Compositionality : if two terms have the same type assignments, then the
terms obtained by plugging them in the same context do so.

1. Invariance under evaluation: type assignments have to be stable by evalua-
tion.

2. Adequacy : a term is typable if and only if it terminates.
3. Elegant normal forms: normal forms have a simple structure, so that the

technical development is simple and intuitive.
4. Number of steps: type derivations have to provide the number of steps to

evaluate to normal forms, and this number must be a reasonable cost model.
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5. Matching of sizes: the size of normal forms has to be bounded by the size of
their types.

While property 0 is not problematic (type systems/denotational models are
conceived to satisfy it), it turns out that none of the incarnations of Open CbV
we studied in [3] (namely, Paolini and Ronchi Della Rocca’s fireball calculus
λfire [7,29,44,48], Accattoli and Paolini’s value substitution calculus λvsub [1,6],
and Carraro and Guerrieri’s shuffling calculus λsh [13,30–33])3 satisfies all the
properties 1–5 at the same time: λfire lacks property 1 (as shown here in Sect. 2);
λvsub lacks property 3 (the inelegant characterisation of normal forms is in [6]);
and λsh, which in [13] is shown to satisfy 1, 2, and partially 3, lacks properties 4
(the number of steps does not seem to be a reasonable cost model, see [3]) and
5 (see the end of Sect. 6 in this paper).

We then introduce the split fireball calculus, that is a minor variant of the
fireball calculus λfire, isomorphic to it but integrating some features of the value
substitution calculus λvsub, and satisfying all the requirements for our study.
Thus, the denotational study follows smooth and natural, fully validating the
design and the benchmark.

To sum up, our study adds new ingredients to the understanding of Open
CbV, by providing a simple and quantitative denotational analysis via an adap-
tation of de Carvalho’s approach [14,16].

The main features of our study are:

1. Split fireball calculus: a new incarnation of Open CbV more apt to denota-
tional studies, and conservative with respect to the other properties of the
setting.

2. Quantitative characterisation of termination: proofs that typable terms are
exactly the normalising ones, and that types and type derivations provide
bounds on the size of normal forms and on evaluation lengths.

3. Tight derivations and exact bounds : a class of type derivations that provide
the exact length of evaluations, and such that the types in the final judgements
provide the exact size of normal forms.

Related Work. Classical studies of the denotational semantics of Closed CbV are
due to Sieber [50], Fiore and Plotkin [25], Honda and Yoshida [35], and Pravato,
Ronchi Della Rocca and Roversi [47]. A number of works rely on multi types
or relational semantics to study property of programs and proofs. Among them,
Ehrhard’s [23], Diaz-Caro, Manzonetto, and Pagani’s [22], Carraro and Guerri-
eri’s [13], Ehrhard and Guerrieri’s [24], and Guerrieri’s [31] deal with CbV, while
de Carvalho’s [14,16], Bernadet and Lengrand’s [8], de Carvalho, Pagani, and
Tortora de Falco’s [17], Accattoli, Graham-Lengrand, and Kesner’s [2] provide
exact bounds. Further related work about multi types is by Bucciarelli, Ehrhard,
and Manzonetto [11], de Carvalho and Tortora de Falco [18], Kesner and Vial
[36], and Mazza, Pellissier, and Vial [40]—this list is not exhaustive.
3 In [3] a fourth incarnation, the value sequent calculus (a fragment of Curien and Her-

belin’s λ̄μ̃ [21]), is proved isomorphic to a fragment of λvsub, which then subsumes it.
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(No) Proofs. All proofs are in the Appendix of [5], the long version of this paper.

Terms t, u, s, r ::= x | λx.t | tu
Values v, v′, v′′ ::= x | λx.t

Fireballs f, f ′, f ′′ ::= v | i
Inert terms i, i′, i′′ ::= xf1 . . . fn n > 0

Right evaluation contexts C ::= 〈·〉 | tC | Cf

Rule at top level Contextual closure
(λx.t)v �→βv t{x v} C〈t〉 →βv C〈u〉 if t �→βv u
(λx.t)i �→βi t{x i} C〈t〉 →βi C〈u〉 if t �→βi u

Reduction βf := βv βi

Fig. 1. The fireball calculus λfire.

2 The Rise of Fireballs

In this section we recall the fireball calculus λfire, the simplest presentation of
Open CbV. For the issues of Plotkin’s setting with respect to open terms and
for alternative presentations of Open CbV, we refer the reader to our work [3].

The fireball calculus was introduced without a name and studied first by
Paolini and Ronchi Della Rocca in [44,48]. It has then been rediscovered by
Grégoire and Leroy in [29] to improve the implementation of Coq, and later
by Accattoli and Sacerdoti Coen in [7] to study cost models, where it was also
named. We present it following [7], changing only inessential, cosmetic details.

The Fireball Calculus. The fireball calculus λfire is defined in Fig. 1. The idea is
that the values of the CbV λ-calculus—i.e. abstractions and variables—are gen-
eralised to fireballs, by extending variables to more general inert terms. Actu-
ally fireballs (noted f, f ′, . . . ) and inert terms (noted i, i′, . . . ) are defined by
mutual induction (in Fig. 1). For instance, x and λx.y are fireballs as values,
while y(λx.x), xy, and (z(λx.x))(zz)(λy.(zy)) are fireballs as inert terms.

The main feature of inert terms is that they are open, normal, and that when
plugged in a context they cannot create a redex, hence the name. Essentially,
they are the neutral terms of Open CbV. In Grégoire and Leroy’s presentation
[29], inert terms are called accumulators and fireballs are simply called values.

Terms are always identified up to α-equivalence and the set of free variables
of a term t is denoted by fv(t). We use t{x�u} for the term obtained by the
capture-avoiding substitution of u for each free occurrence of x in t.

Variables are, morally, both values and inert terms. In [7] they were consid-
ered as inert terms, while here, for minor technical reasons we prefer to consider
them as values and not as inert terms—the change is inessential.
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Evaluation Rules. Evaluation is given by call-by-fireball β-reduction →βf : the
β-rule can fire, lighting the argument, only if the argument is a fireball (fireball
is a catchier version of fire-able term). We actually distinguish two sub-rules: one
that lights values, noted →βv

, and one that lights inert terms, noted →βi
(see

Fig. 1). Note that evaluation is weak : it does not reduce under abstractions.
We endow the calculus with the (deterministic) right-to-left evaluation strat-

egy, defined via right evaluation contexts C—note the production Cf , forcing
the right-to-left order. A more general calculus is defined in [3], for which the
right-to-left strategy is shown to be complete. The left-to-right strategy, often
adopted in the literature on Closed CbV, is also complete, but in the open
case the right-to-left one has stronger invariants that lead to simpler abstract
machines (see [4]), which is why we adopt it here. We omit details about the
rewriting theory of the fireball calculus because our focus here is on denotational
semantics.

Properties. A famous key property of Closed CbV (whose evaluation is exactly
→βv

) is harmony : given a closed term t, either it diverges or it evaluates to an
abstraction, i.e. t is βv-normal if and only if t is an abstraction. The fireball
calculus λfire satisfies an analogous property in the (more general) open setting
by replacing abstractions with fireballs (Proposition 1.1). Moreover, the fireball
calculus is a conservative extension of Closed CbV: on closed terms it collapses
on Closed CbV (Proposition 1.2). No other presentation of Open CbV has these
good properties.

Proposition 1 (Distinctive properties of λfire). Let t be a term.

1. Open harmony: t is βf -normal if and only if t is a fireball.
2. Conservative open extension: t →βf u if and only if t →βv

u, when t is closed.

Example 2. Let t := (λz.z(yz))λx.x. Then, t →βf (λx.x)(y λx.x) →βf y λx.x,
where the final term y λx.x is a fireball (and βf -normal).

The key property of inert terms is summarised by the following proposition:
substitution of inert terms does not create or erase βf -redexes, and hence can
always be avoided. It plays a role in Sect. 4.

Proposition 3 (Inert substitutions and evaluation commute). Let t, u
be terms, i be an inert term. Then, t →βf u if and only if t{x�i} →βf u{x�i}.

With general terms (or even fireballs) instead of inert ones, evaluation and
substitution do not commute, in the sense that both directions of Proposition 3
do not hold. Direction ⇐ is false because substitution can create βf -redexes, as
in (xy){x�λz.z} = (λz.z)y; direction ⇒ is false because substitution can erase
βf -redexes, as in ((λx.z)(xx)){x�δ} = (λx.z)(δδ) where δ := λy.yy.4

4 As well-known, Proposition 3 with ordinary (i.e. CbN) β-reduction →β instead of
→βf and general terms instead of inert ones holds only in direction ⇒.
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3 The Fall of Fireballs

Here we introduce Ehrhard’s multi type system for CbV [23] and show that—
with respect to it—the fireball calculus λfire fails the denotational test of the
benchmark sketched in Sect. 1. This is an issue of λfire: to our knowledge, all
denotational models that are adequate for (some variant of) CbV are not invari-
ant under the evaluation rules of λfire, because of the rule →βi

substituting inert
terms5.

In the next sections we shall use this type system, while the failure is not
required for the main results of the paper, and may be skipped on a first reading.

Relational Semantics. We analyse the failure considering a concrete and well-
known denotational model for CbV: relational semantics. For Plotkin’s original
CbV λ-calculus, it has been introduced by Ehrhard [23]. More generally, rela-
tional semantics provides a sort of canonical model of linear logic [10,15,27,34],
and Ehrhard’s model is the one obtained by representing the CbV λ-calculus into
linear logic, and then interpreting it according to the relational semantics. It is
also strongly related to other denotational models for CbV based on linear logic
such as Scott domains and coherent semantics [23,47], and it has a well-studied
CbN counterpart [2,11,14,16,40,42,43].

Relational semantics for CbV admits a nice syntactic presentation as a multi
type system (aka non-idempotent intersection types), introduced right next. This
type system, first studied by Ehrhard in [23], is nothing but the CbV version of
de Carvalho’s System R for CbN λ-calculus [14,16].

Multi Types. Multi types and linear types are defined by mutual induction:

Linear types L,L′ ::= M � N
Multi types M,N ::= [L1, . . . , Ln] (with n ∈ N)

where [L1, . . . , Ln] is our notation for multisets. Note the absence of base types:
their role is played by the empty multiset [ ] (obtained for n = 0), that we rather
note 0 and refer to as the empty (multi) type. A multi type [L1, . . . , Ln] has
to be intended as a conjunction L1 ∧ · · · ∧ Ln of linear types L1, . . . , Ln, for a
commutative and associative conjunction connective ∧ that is not idempotent
(morally a tensor ⊗) and whose neutral element is 0.

The intuition is that a linear type corresponds to a single use of a term t,
and that t is typed with a multiset M of n linear types if it is going to be used
(at most) n times. The meaning of using a term is not easy to define precisely.
Roughly, it means that if t is part of a larger term u, then (at most) n copies of

5 Clearly, any denotational model for the CbN λ-calculus is invariant under βf -
reduction (since →βf ⊆ →β), but there is no hope that it could be adequate for the
fireball calculus. Indeed, such a model would identify the interpretations of (λx.y)Ω
(where Ω is a diverging term and x �= y) and y, but in a CbV setting these two
terms have a completely different behaviour: y is normal, whereas (λx.y)Ω cannot
normalise.
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t shall end up in evaluation position during the evaluation of u. More precisely,
the n copies shall end up in evaluation positions where they are applied to some
terms.

The derivation rules for the multi types system are in Fig. 2—they are exactly
the same as in [23]. In this system, judgements have the shape Γ 	 t :M where t
is a term, M is a multi type and Γ is a type context, that is, a total function from
variables to multi types such that the set dom(Γ ) := {x | Γ (x) 
= 0} is finite.
Note that terms are always assigned a multi type, and never a linear type—this
is dual to what happens in de Carvalho’s System R for CbN [14,16].

The application rule has a multiplicative formulation (in linear logic terminol-
ogy), as it collects the type contexts of the two premises. The involved operation
is the sum of type contexts Γ � Δ, that is defined as (Γ � Δ)(x) := Γ (x) � Δ(x),
where the � in the RHS stands for the multiset sum. A type context Γ such that
dom(Γ ) ⊆ {x1, . . . , xn} with xi 
= xj and Γ (xi) = Mi for all 1 ≤ i 
= j ≤ n is
often written as Γ = x1 : M1, . . . , xn : Mn. Note that the sum of type contexts
� is commutative and associative, and its neutral element is the type context Γ
such that dom(Γ ) = ∅, which is called the empty type context (all types in Γ are
0). The notation π � Γ 	 t :M means that π is a type derivation π (i.e. a tree
constructed using the rules in Fig. 2) with conclusion the judgement Γ 	 t :M .

ax
x :M � x :M

Γ � t : [M � N ] Δ � u :M
@

Γ � Δ � tu :N

Γ1, x :M1 � t :N1
n∈. . . Γn, x :Mn � t :Nn

λ
Γ1 Γn λx.t : [M1 � N1, . . . , Mn � Nn]

Fig. 2. Multi types system for Plotkin’s CbV λ-calculus [23].

Intuitions: the empty type 0. Before digging into technical details let us provide
some intuitions. A key type specific to the CbV setting is the empty multiset 0,
also known as the empty (multi) type. The idea is that 0 is the type of terms
that can be erased. To understand its role in CbV, we first recall its role in CbN.

In the CbN multi type system [2,14,16] every term, even a diverging one, is
typable with 0. On the one hand, this is correct, because in CbN every term
can be erased, and erased terms can also be divergent, because they are never
evaluated. On the other hand, adequacy is formulated with respect to non-empty
types: a term terminates if and only if it is typable with a non-empty type.

In CbV, instead, terms have to be evaluated before being erased. And, of
course, their evaluation has to terminate. Therefore, terminating terms and
erasable terms coincide. Since the multi type system is meant to characterise
terminating terms, in CbV a term is typable if and only if it is typable with 0,
as we shall prove in Sect. 8. Then the empty type is not a degenerate type, as in
CbN, it rather is the type, characterising (adequate) typability altogether.

Note that, in particular, in a typing judgement Γ 	 e : M the type context
Γ may give the empty type to a variable x occurring in e, as for instance in the
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axiom x : 0 	 x : 0—this may seem very strange to people familiar with CbN
multi types. We hope that instead, according to the provided intuition that 0 is
the type of termination, it would rather seem natural.

The Model. The idea to build the denotational model from the type system is
that the interpretation (or semantics) of a term is simply the set of its type
assignments, i.e. the set of its derivable types together with their type contexts.
More precisely, let t be a term and x1, . . . , xn (with n ≥ 0) be pairwise distinct
variables. If fv(t) ⊆ {x1, . . . , xn}, we say that the list 	x = (x1, . . . , xn) is suitable
for t. If 	x = (x1, . . . , xn) is suitable for t, the (relational) semantics of t for 	x is

�t��x := {((M1, . . . ,Mn), N) | ∃π � x1 : M1, . . . , xn : Mn 	 t :N}.

Ehrhard proved that this is a denotational model for Plotkin’s CbV λ-calculus
[23, p. 267], in the sense that the semantics of a term is invariant under βv

-reduction.

Theorem 4 (Invariance for →βv
, [23]). Let t and u be two terms and 	x =

(x1, . . . , xn) be a suitable list of variables for t and u. If t →βv
u then �t��x = �u��x.

Note that terms are not assumed to be closed. Unfortunately, relational
semantics is not a denotational model of the fireball calculus λfire: Theorem 4
does not hold if we replace →βv

with →βi
(and hence with →βf ), as we show in

the following example—the reader can skip it on a first reading.

Example 5 (On a second reading: non-invariance of multi types in the fireball
calculus). Consider the fireball step (λz.y)(xx) →βf y, where the inert sub-term
xx is erased. Let us construct the interpretations of the terms (λz.y)(xx) and y.
All type derivations for xx are as follows (M and N are arbitrary multi types):

πM,N =
ax

x : [M � N ] 	 x : [M � N ]
ax

x :M 	 x :M
@

x : [M � N ] � M 	 xx :N

Hence, all type derivations for (λz.y)(xx) and y have the following forms:

ax
y :N 	 y :N

λ
y :N 	 λz.y : [0 � N ]

... πM,0

x : [M � 0] � M 	 xx :0
@

x : [M � 0] � M,y :N 	 (λz.y)(xx) :N

ax
x :0, y :N 	 y :N

Therefore,

�(λz.y)(xx)�x,y = {(([M � 0] � M,N), N) | M,N multi types}
�y�x,y = {((0, N), N) | N multi type}

To sum up, in the fireball calculus (λz.y)(xx) →βf y, but �(λz.y)(xx)�x,y 
⊆
�y�x,y as (([0 � 0],0),0) ∈ �(λz.y)(xx)�x,y��y�x,y, and �y�x,y 
⊆ �(λz.y)(xx)�x,y

because ((0,0),0) ∈ �y�x,y � �(λz.y)(xx)�x,y.
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Terms,Values,Fireballs,
as for the fireball calculus λfireInert terms, Right ev. contexts

Environments E ::= ε | [x i] :E
Programs p ::= (t, E)

Rules
(C〈(λx.t) v〉, E) →βv (C〈t{x v}〉, E)
(C〈(λx.t) i〉, E) →βi (C〈t)〉, [x i] :E)

Reduction βf := βv βi

Fig. 3. The split fireball calculus Splitλfire.

An analogous problem affects the reduction step (λz.zz)(xx) →βf (xx)(xx),
where the inert term xx is instead duplicated. In general, all counterexamples
to the invariance of the relational semantics under βf -reduction are due to βi-
reduction, when the argument of the fired βf -redex is an inert term that is erased
or duplicated. Intuitively, to fix this issue, we should modify the syntax and
operational semantics of λfire in such a way that the βi-step destroys the β-redex
without erasing nor duplicating its inert argument: Proposition 3 guarantees that
this modification is harmless. This new presentation of λfire is in the next section.

Remark 6 (On a second reading: additional remarks about relational semantics).

1. Relational semantics is invariant for Plotkin’s CbV even in presence of open
terms, but it no longer is an adequate model : the term (λy.δ)(xx)δ (where
δ := λz.zz) has an empty semantics (i.e. is not typable in the multi type
system of Fig. 2) but it is βv-normal. Note that, instead, it diverges in λfire

because a βi-step “unblocks” it: (λy.δ)(xx)δ →βi
δδ →βv

δδ →βv
. . .

2. Even though it is not a denotational model for the fireball calculus, relational
semantics is adequate for it, in the sense that a term is typable in the multi
types system of Fig. 2 if and only if it βf -normalises. This follows from two
results involving the shuffling calculus, an extension of Plotkin’s CbV that is
another presentation of Open CbV:

– the adequacy of the relational semantics for the shuffling calculus [13,31];
– the equivalence of the fireball calculus λfire and shuffling calculus λsh from

the termination point of view, i.e. a term normalises in one calculus if
and only if it normalises in the other one [3].

Unfortunately, the shuffling calculus λsh has issues with respect to the quan-
titative aspects of the semantics (it is unknown whether its number of steps is
a reasonable cost model [3]; the size of λsh-normal forms is not bounded by the
size of their types, as we show in Example 16), which instead better fit the fire-
ball calculus λfire. This is why in the next section we slightly modify λfire, rather
than switching to λsh.
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4 Fireballs Reloaded: The Split Fireball Calculus Splitλfire

This section presents the split fireball calculus Splitλfire, that is the refinement
of the fireball calculus λfire correcting the issue explained in the previous section
(Example 5), namely the non-invariance of type assignments by evaluation.

The calculus Splitλfire is defined in Fig. 3. The underlying idea is simple: the
problem with the fireball calculus is the substitution of inert terms, as discussed
in Example 5; but some form of βi-step is needed to get the adequacy of rela-
tional semantics in presence of open terms, as shown in Remark 6. Inspired by
Proposition 3, the solution is to keep trace of the inert terms involved in βi-
steps in an auxiliary environment, without substituting them in the body of the
abstraction. Therefore, we introduce the syntactic category of programs p, that
are terms with an environment E, which in turn is a list of explicit (i.e. delayed)
substitutions paring variables and inert terms. We use expressions e, e′, . . . to
refer to the union of terms and programs. Note the new form of the rewriting
rule →βi

, that does not substitute the inert term and rather adds an entry to the
environment. Apart from storing inert terms, the environment does not play any
active role in βf -reduction for Splitλfire. Even though →βf is a binary relation on
programs, we use ‘normal expression’ to refer to either a normal (with respect
to →βf ) program or a term t such that the program (t, E) is normal (for any
environment E).

The good properties of the fireball calculus are retained. Harmony in Splitλfire

takes the following form (for arbitrary fireball f and environment E):

Proposition 7 (Harmony). A program p is normal if and only if p = (f,E).

So, an expression is normal iff it is a fireball f or a program of the form (f,E).
Conservativity with respect to the closed case is also immediate, because in

the closed case the rule →βi
never fires and so the environment is always empty.

On a Second Reading: No Open Size Explosion. Let us mention that avoiding
the substitution of inert terms is also natural at the implementation/cost model
level, as substituting them causes open size explosion, an issue studied at length
in previous work on the fireball calculus [4,7]. Avoiding the substitution of inert
terms altogether is in fact what is done by the other incarnations of Open CbV,
as well as by abstract machines. The split fireball calculus Splitλfire can in fact be
seen as adding the environment of abstract machines but without having to deal
with the intricacies of decomposed evaluation rules. It can also be seen as the
(open fragment of) Accattoli and Paolini’s value substitution calculus [6], where
indeed inert terms are never substituted. In particular, it is possible to prove
that the normal forms of the split fireball calculus are isomorphic to those of the
value substitution up to its structural equivalence (see [3] for the definitions).

On a Second Reading: Relationship with the Fireball Calculus. The split and the
(plain) fireball calculus are isomorphic at the rewriting level. To state the relation-
ship we need the concept of program unfolding (t, E)

→

, that is, the term obtained
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ax
x :M � x :M

Γ � t : [M � N ] Δ � u :M
@

Γ � Δ � tu :N

Γ1, x :M1 � t :N1
n∈. . . Γn, x :Mn � t :Nn

λ
Γ1 � · · · � Γn � λx.t : [M1 � N1, . . . , Mn � Nn]

Γ � t :M esε
Γ (t, ε) :M

Γ, x :M � (t, E) :N Δ � i :M
es@

Γ Δ (t, E@[x i]) :N

Fig. 4. Multi types system for the split fireball calculus.

by substituting the inert terms in the environment E into the main term t:

(t, ε)

→

:= t (t, [y�i] :E)

→

:= (t{x�i}, E)

→

From the commutation of evaluation and substitution of inert terms in the
fireball calculus (Proposition 3), it follows that normal programs (in Splitλfire)
unfold to normal terms (in λfire), that is, fireballs. Conversely, every fireball can
be seen as a normal program with respect to the empty environment.

For evaluation, the same commutation property easily gives the following
strong bisimulation between the split Splitλfire and the plain λfire fireball calculi.

Proposition 8 (Strong bisimulation). Let p be a program (in Splitλfire).

1. Split to plain: if p →βf q then p

→ →βf q

→

.
2. Plain to split: if p

→ →βf u then there exists q such that p →βf q and q

→

= u.

It is then immediate that termination in the two calculi coincide, as well as
the number of steps to reach a normal form. Said differently, the split fireball
calculus can be seen as an isomorphic refinement of the fireball calculus.

5 Multi Types for Splitλfire

The multi type system for the split fireball calculus Splitλfire is the natural exten-
sion to terms with environments of the multi type system for Plotkin’s CbV
λ-calculus seen in Sect. 2. Multi and linear types are the same. The only novelty
is that now judgements type expressions, not only terms, hence we add two new
rules for the two cases of environment, esε and es@, see Fig. 4. Rule esε is trivial,
it is simply the coercion of a term to a program with an empty environment.
Rule es@ uses the append operation E@[x�i] that appends an entry [x�i] to the
end of an environment E, formally defined as follows:

ε@[x�i] := [x�i] ([y�i′] :E)@[x�i] := [y�i′] : (E@[x�i])

We keep all the notations already used for multi types in Sect. 3.
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Sizes, and Basic Properties of Typing. For our quantitative analyses, we need
the notions of size for terms, programs and type derivations.

The size |t| of a term t is the number of its applications not under the scope
of an abstraction. The size |(t, E)| of a program (t, E) is the size of t plus the
size of the (inert) terms in the environment E. Formally, they are defined as
follows:

|v| := 0 |tu| := |t| + |u| + 1 |(t, ε)| := |t| |(t, E@[x�i])| := |(t, E)| + |i|

The size |π| of a type derivation π is the number of its @ rules.
The proofs of the next basic properties of type derivations are straightfor-

ward.

Lemma 9 (Free variables in typing). If π � Γ 	 e :M then dom(Γ ) ⊆ fv(e).

The next lemma collects some basic properties of type derivations for values.

Lemma 10 (Typing of values). Let π � Γ 	 v :M be a type derivation for
a value v. Then,

1. Empty multiset implies null size: if M = 0 then dom(Γ ) = ∅ and |π| = 0 =
|v|.

2. Multiset splitting: if M = N � O, then there are two type contexts Δ and
Π and two type derivations σ � Δ 	 v : N and ρ � Π 	 v : O such that
Γ = Δ � Π and |π| = |σ| + |ρ|.

3. Empty judgement: there is a type derivation σ � 	 v :0.
4. Multiset merging: for any two type derivations π � Γ 	 v :M and σ � Δ 	 v :

N there is a type derivation ρ � Γ � Δ 	 v :M � N such that |ρ| = |π| + |σ|.
The next two sections prove that the multi type system is correct (Sect. 6)

and complete (Sect. 7) for termination in the split fireball calculus Splitλfire, also
providing bounds for the length |d| of a normalising evaluation d and for the size
of normal forms. At the end of Sect. 7 we discuss the adequacy of the relational
model induced by this multi type system, with respect to Splitλfire. Section 8
characterises types and type derivations that provide exact bounds.

6 Correctness

Here we prove correctness (Theorem 14) of multi types for Splitλfire, refined with
quantitative information: if a term is typable then it terminates, and the type
derivation provides bounds for both the number of steps to normal form and the
size of the normal form. After the correctness theorem we show that even types
by themselves—without the derivation—bound the size of normal forms.
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Correctness. The proof technique is standard. Correctness is obtained from sub-
ject reduction (Proposition 13) plus a property of typings of normal forms (Propo-
sition 11).

Proposition 11 (Type derivations bound the size of normal forms).
Let π � Γ 	 e :M be a type derivation for a normal expression e. Then |e| ≤ |π|.

As it is standard in the study of type systems, subject reduction requires a
substitution lemma for typed terms, here refined with quantitative information.

Lemma 12 (Substitution). Let π � Γ, x :N 	 t :M and σ � Δ 	 v :N (where
v is a value). Then there exists ρ � Γ �Δ 	 t{x�v} :M such that |ρ| = |π|+ |σ|.

The key point of the next quantitative subject reduction property is the fact
that the size of the derivation decreases by exactly 1 at each evaluation step.

Proposition 13 (Quantitative subject reduction). Let p and p′ be pro-
grams and π � Γ 	 p :M be a type derivation for p. If p →βf p′ then |π| > 0 and
there exists a type derivation π′ � Γ 	 p′ :M such that |π′| = |π| − 1.

Correctness now follows as an easy induction on the size of the type derivation,
which bounds both the length |d| of the—normalising—evaluation d (i.e. the
number of βf -steps in d) by Proposition 13, and the size of the normal form by
Proposition 11.

Theorem 14 (Correctness). Let π � Γ 	 p : M be a type derivation. Then
there exist a normal program q and an evaluation d : p →∗

βf
q with |d|+ |q| ≤ |π|.

Types Bound the Size of Normal Forms. In our multi type system, not only type
derivations but also multi types provide quantitative information, in this case
on the size of normal forms.

First, we need to define the size for multi types and type contexts, which is
simply given by the number of occurrences of �. Formally, the size of linear and
multi types are defined by mutual induction by |M � N | := 1 + |M | + |N | and
|[L1, . . . , Ln]| :=

∑n
i=1|Li|. Clearly, |M | ≥ 0 and |M | = 0 if and only if M = 0.

Given a type context Γ = x1 : M1, . . . , xn : Mn we often consider the list of
its types, noted Γ := (M1, . . . ,Mn). Since any list of multi types (M1, . . . ,Mn)
can be seen as extracted from a type context Γ , we use the notation Γ for lists
of multi types. The size of a list of multi types is given by |(M1, . . . ,Mn)| :=∑n

i=1|Mi|. Clearly, dom(Γ ) = ∅ if and only if |Γ | = 0.
The quantitative information is that the size of types bounds the size of

normal forms. In the case of inert terms a stronger bound actually holds.

Proposition 15 (Types bound the size of normal forms). Let e be a
normal expression. For any type derivation π � Γ 	 e :M , one has |e| ≤ |(Γ ,M)|.
If moreover e is an inert term, then |e| + |M | ≤ |Γ |.
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Example 16 (On a second reading: types, normal forms, and λsh). The fact that
multi types bound the size of normal forms is a quite delicate result that holds
in the split fireball calculus Splitλfire but does not hold in other presentations
of Open CbV, like the shuffling calculus λsh [13,31], as we now show—this is
one of the reasons motivating the introduction of Splitλfire. Without going into
the details of λsh, consider t := (λz.z)(xx): it is normal for λsh but it—or, more
precisely, the program p := (t, ε)—is not normal for Splitλfire, indeed p →∗

βf

(z, [y�xx]) =: q and q is normal in Splitλfire. Concerning sizes, |t| = |p| = 2 and
|q| = 1. Consider the following type derivation for t (the type derivation π0,0 is
defined in Example 5):

ax
z :0 � z :0

λ� λz.z : [0 � 0]

... π0,0

x : [0 � 0] � xx :0
@

x : [0 � 0] � (λz.z)(xx) :0

So, |t| = 2 > 1 = |([0 � 0],0)|, which gives a counterexample to Proposition 15
in λsh.

7 Completeness

Here we prove completeness (Theorem 20) of multi types for Splitλfire, refined
with quantitative information: if a term terminates then it is typable, and the
quantitative information is the same as in the correctness theorem (Theorem 14
above). After that, we discuss the adequacy of the relational semantics induced
by the multi type system, with respect to termination in Splitλfire.

Completeness. The proof technique, again, is standard. Completeness is obtained
by a subject expansion property plus the fact that all normal forms are typable.

Proposition 17 (Normal forms are typable)

1. Normal expression: for any normal expression e, there exists a type derivation
π � Γ 	 e :M for some type context Γ and some multi type M .

2. Inert term: for any multi type N and any inert term i, there exists a type
derivation σ � Δ 	 i :N for some type context Δ.

In the proof of Proposition 17, the stronger statement for inert terms is
required, to type a normal expression that is a program with non-empty envi-
ronment.

For quantitative subject expansion (Proposition 19), which is dual to subject
reduction (Proposition 13 above), we need an anti-substitution lemma that is
the dual of the substitution one (Lemma12 above).

Lemma 18 (Anti-substitution). Let t be a term, v be a value, and π �
Γ 	 t{x�v} : M be a type derivation. Then there exist two type derivations
σ � Δ,x :N 	 t :M and ρ � Π 	 v :N such that Γ = Δ � Π and |π| = |σ| + |ρ|.
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Subject expansion follows. Dually to subject reduction, the size of the type
derivation grows by exactly 1 along every expansion (i.e. along every anti-βf -
step).

Proposition 19 (Quantitative subject expansion). Let p and p′ be pro-
grams and π′ � Γ 	 p′ : M be a type derivation for p′. If p →βf p′ then there
exists a type derivation π � Γ 	 p :M for p such that |π′| = |π| − 1.

Theorem 20 (Completeness). Let d : p →∗
βf

q be a normalising evaluation.
Then there is a type derivation π � Γ 	 p :M , and it satisfies |d| + |q| ≤ |π|.

Relational Semantics. Subject reduction (Proposition 13) and expansion (Propo-
sition 19) imply that the set of typing judgements of a term is invariant by eval-
uation, and so they provide a denotational model of the split fireball calculus
(Corollary 21 below).

The definitions seen in Sect. 2 of the interpretation �t��x of a term with respect
to a list 	x of suitable variables for t extends to the split fireball calculus by simply
replacing terms with programs, with no surprises.

Corollary 21 (Invariance). Let p and q be two programs and 	x = (x1, . . . , xn)
be a suitable list of variables for p and q. If p →βf q then �p��x = �q��x.

From correctness (Theorem 14) and completeness (Theorem 20) it follows
that the relational semantics is adequate for the split fireball calculus Splitλfire.

Corollary 22 (Adequacy). Let p be a program and 	x = (x1, . . . , xn) be a
suitable list of variables for p. The following are equivalent:

1. Termination: the evaluation of p terminates;
2. Typability: there is a type derivation π � Γ 	 p :M for some Γ and M ;
3. Non-empty denotation: �p��x 
= ∅.

Careful about the third point: it requires the interpretation to be non-empty—
a program typable with the empty multiset 0 has a non-empty interpretation.
Actually, a term is typable if and only if it is typable with 0, as we show next.

Remark 23. By Propositions 1.2 and 8, (weak) evaluations in Plotkin’s original
CbV λ-calculus λv, in the fireball calculus λfire and in its split variant Splitλfire

coincide on closed terms. So, Corollary 22 says that relational semantics is ade-
quate also for λv restricted to closed terms (but adequacy for λv fails on open
terms, see Remark 6).

8 Tight Type Derivations and Exact Bounds

In this section we study a class of minimal type derivations, called tight, providing
exact bounds for evaluation lengths and sizes of normal forms.
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Typing Values and Inert Terms. Values can always be typed with 0 in an empty
type context (Lemma 10.3), by means of an axiom for variables or of a λ-rule with
zero premises for abstractions. We are going to show that inert terms can also
always be typed with 0. There are differences, however. First, the type context in
general is not empty. Second, the derivations typing with 0 have a more complex
structure, having sub-derivations for inert terms whose right-hand type might
not be 0. It is then necessary, for inert terms, to consider a more general class
of type derivations, that, as a special case, include derivations typing with 0.

First of all, we define two class of types:

Inert linear types Li ::= 0 � N i

Inert multi types M i, N i ::= [Li
1, . . . , L

i
n] (with n ∈ N).

A type context Γ is inert if it assigns only inert multi types to variables.
In particular, the empty multi type 0 is inert (take n = 0), and hence the

empty type context is inert. Note that inert multi types and inert multi contexts
are closed under summation �.

We also introduce two notions of type derivations, inert and tight. The tight
ones are those we are actually interested in, but, as explained, for inert terms we
need to consider a more general class of type derivations, the inert ones. Formally,
given an expression e, a type derivation π � Γ 	 e :M is

– inert if Γ is a inert type context and M is a inert multi type;
– tight if π is inert and M = 0;
– nonempty (resp. empty) if Γ is a non-empty (resp. empty) type context.

Note that tightness and inertness of type derivations depend only on the
judgement in their conclusions. The general property is that inert terms admit
a inert type derivation for every inert multi type M i.

Lemma 24 (Inert typing of inert terms). Let i be a inert term. For any
inert multi type M i there exists a nonempty inert type derivation π � Γ 	 i :M i.

Lemma 24 holds with respect to all inert multi types, in particular 0, so inert
terms can be always typed with a nonempty tight derivation. Since values can
be always typed with an empty tight derivation (Lemma10.3), we can conclude:

Corollary 25 (Fireballs are tightly typable). For any fireball f there exists
a tight type derivation π � Γ 	 f : 0. Moreover, if f is a inert term then π is
nonempty, otherwise f is a value and π is empty.

By harmony (Proposition 7), it follows that any normal expression is tightly
typable (Proposition 26 below). Terminology : a coerced value is a program of the
form (v, ε).

Proposition 26 (Normal expressions are tightly typable). Let e be a nor-
mal expression. Then there exists a tight derivation π � Γ 	 e :0. Moreover, e
is a value or a coerced value if and only if π is empty.
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Tight Derivations and Exact Bounds. The next step is to show that tight deriva-
tions are minimal and provide exact bounds. Again, we have to detour through
inert derivations for inert terms. And we need a further property of inert terms:
if the type context is inert then the right-hand type is also inert.

Lemma 27 (Inert spreading on inert terms). Let π � Γ 	 i :M be a type
derivation for a inert term i. If Γ is a inert type context then M and π are inert.

Next, we prove that inert derivations provide exact bounds for inert terms.

Lemma 28 (Inert derivations are minimal and provide the exact size
of inert terms). Let π � Γ 	 i :M i be a inert type derivation for a inert term
i. Then |i| = |π| and |π| is minimal among the type derivations of i.

We can now extend the characterisation of sizes to all normal expressions,
via tight derivations, refining Proposition 11.

Lemma 29 (Tight derivations are minimal and provide the exact size
of normal forms). Let π � Γ 	 e :0 be a tight derivation and e be a normal
expression. Then |e| = |π| and |π| is minimal among the type derivations of e.

The bound on the size of normal forms using types rather than type deriva-
tions (Proposition 15) can also be refined: tight derivations end with judgements
whose (inert) type contexts provide the exact size of normal forms.

Proposition 30 (Inert types and the exact size of normal forms). Let
e be a normal expression and π � Γ 	 e :0 be a tight derivation. Then |e| = |Γ |.

Tightness and General Programs. Via subject reduction and expansion, exact
bounds can be extended to all normalisable programs. Tight derivations indeed
induce refined correctness and completeness theorems replacing inequalities with
equalities (see Theorems 31 and 32 below and compare them with Theorems 14
and 20 above, respectively): an exact quantitative information relates the length
|d| of evaluations, the size of normal forms and the size of tight type derivations.

Theorem 31 (Tight correctness). Let π � Γ 	 p :0 be a tight type deriva-
tion. Then there is a normalising evaluation d : p →∗

βf
q with |π| = |d| + |q| =

|d| + |Γ |. In particular, if dom(Γ ) = ∅, then |π| = |d| and q is a coerced value.

Theorem 32 (Tight completeness). Let d : p →∗
βf

q be a normalising eval-
uation. Then there is a tight type derivation π � Γ 	 p :0 with |π| = |d| + |q| =
|d| + |Γ |. In particular, if q is a coerced value, then |π| = |d| and dom(Γ ) = ∅.

Both theorems are proved analogously to their corresponding non-tight ver-
sion (Theorems 14 and 20), the only difference is in the base case: here Lemma 29
provides an equality on sizes for normal forms, instead of the inequality given by
Proposition 11 and used in the non-tight versions. The proof of tight complete-
ness (Theorem 32) uses also that normal programs are tightly typable (Proposi-
tion 26).
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9 Conclusions

This paper studies multi types for CbV weak evaluation. It recasts in CbV de Car-
valho’s work for CbN [14,16], building on a type system introduced by Ehrhard
[23] for Plotkin’s original CbV λ-calculus λv [45]. Multi types provide a deno-
tational model that we show to be adequate for λv, but only when evaluating
closed terms; and for Open CbV [3], an extension of λv where weak evaluation
is on possibly open terms. More precisely, our main contributions are:

1. The formalism itself: we point out the issues with respect to subject reduction
and expansion of the simplest presentation of Open CbV, the fireball calculus
λfire, and introduce a refined calculus (isomorphic to λfire) that satisfies them.

2. The characterisation of termination both in a qualitative and quantitative way.
Qualitatively, typable terms and normalisable terms coincide. Quantitatively,
types provide bounds on the size of normal forms, and type derivations bound
the number of evaluation steps to normal form.

3. The identification of a class of type derivations that provide exact bounds on
evaluation lengths.
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1 Introduction

Static analysis is a popular technique to detect bugs and vulnerabilities early
in the life cycle of a program when it is still relatively inexpensive to fix those
issues. It is based on the idea to extract a model from the program without
executing it, and then to reason about this model in order to detect flaws in
the program. Superficially, this approach should be sound in the sense that all
possible program behaviour can be modelled as the entire program is available for
analysis [13]. This is fundamentally different from dynamic analysis techniques
that are inherently unsound as they depend on drivers to execute the program
under analysis, and for real-world programs, these drivers will not cover all
possible execution paths. Unfortunately, it turns out that most static analyses
are not sound either, caused by the use of dynamic language features that are
available in all mainstream modern programming languages, and prevalent in
programs. Those features are notoriously difficult to model.

For many years, research in static analysis has focused on precision [31] - the
avoidance of false positives caused by the over-abstraction of the analysis model,
and scalability. Only more recently has soundness attracted more attention, in
particular, the publication of the soundiness manifesto has brought this issue to
the fore [26].

While it remains a major research objective to make static analysis sound
(or, to use a quantitative term, to increase its recall), there is value in capturing
the state of the art in order to explore and catalogue where existing analysers fall
short. This is the aim of this paper. Our contributions are: (1) a micro-benchmark
consisting of Java programs using dynamic language features along with a call
graph oracle representing possible invocation chains, and (2) an evaluation of
the call graphs constructed with soot, wala and doop using the benchmark.

2 Background

2.1 Soundness, Precision and Recall

We follow the soundness manifesto and define the soundness of a static anal-
ysis with respect to possible program executions: “analyses are often expected
to be sound in that their result models all possible executions of the program
under analysis” [26]. Similarly, precision can be defined with respect to possible
executions as well – a precise analysis models only possible executions.

Possible program executions are the ground truth against which both sound-
ness and precision are defined. This can also be phrased as the absence of false
negatives (FNs) and false positives (FPs), respectively, adapting concepts widely
used in machine learning. In this setting, soundness corresponds to recall. Recall
has a slightly different meaning as it is measurable, whereas soundness is a qual-
ity that a system either does or does not possess.
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2.2 Call Graphs

In our study, we focus on a particular type of program behaviour: method invo-
cations, modelled by (static) call graphs [18,32]. The aspect of possible execu-
tions to be modelled here are method invocations, i.e. that the invocation of one
source method triggers the invocation of another target method. Another way
to phrase this in terms of the Java stack is that the target method is above the
source method on the stack at some stage during program execution. We use the
phrases trigger and above to indicate that there may or may not be intermedi-
ate methods between the source and the target method. For instance, in a JVM
implemented in Java, the stack may contain intermediate methods between the
source and the target method to facilitate dispatch.

Static call graph construction has been used for many years and is widely
used to detect bugs and vulnerabilities [32,38,40]. In statically constructed call
graphs (from here on, called call graphs for short), methods are represented by
vertices, and invocations are represented by edges. Sometimes vertices and edges
have additional labels, for instance to indicate the invocation instructions being
used. This is not relevant for the work presented here and therefore omitted.
A source method invoking a target method is represented by an edge from the
(vertex representing the) source method to the (vertex representing the) target
method. We are again allowing indirect invocations via intermediate methods,
this can be easily achieved by computing the transitive closure of the call graph.

2.3 Java Programs

The scope of this study is Java, but it is not necessarily obvious what this means.
One question is which version we study. This study uses Java 8, the version widely
used at the time of writing this. Due to Java’s long history of ensuring backward
compatibility, we are confident that this benchmark will remain useful for future
versions of Java.

Another question is whether by Java we mean programs written in the Java
language, or compiled into JVM byte code. We use the later, for two reasons: (1)
most static analysis tools for Java use byte code as input (2) by using byte code,
we automatically widen the scope of our study by allowing programs written in
other languages that can be compiled into Java byte code.

By explicitly allowing byte code generated by a compiler other than the
(standard) Java compiler, we have to deal with byte code the standard compiler
cannot produce. We include some programs in the benchmark that explicitly
take advantage of this. We note that even if we restricted our study to byte code
that can be produced by the Java compiler we would still have a similar problem,
as byte code manipulation frameworks are now widely used and techniques like
Aspect-Oriented Programming [21] are considered to be an integral part of the
Java technology stack.
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2.4 Possible Program Executions

The notion of possible program execution is used as ground truth to assess the
soundness and the precision of call graph construction tools. This also requires
a clarification. Firstly, we do not consider execution paths that are triggered by
JVM or system (platform) errors. Secondly, none of the benchmark programs use
random inputs, all programs are deterministic. Their behaviour should therefore
be completely defined by their byte code.

It turns out that there are scenarios where the resolution of a reflective
method call is not completely specified by the specification1, and possible pro-
gram executions depend on the actual JVM. This will be discussed in more detail
in Sect. 5.1.

2.5 Dynamic Language Features

Our aim is to construct a benchmark for dynamic language features for Java. This
term is widely used informally, but some discussion is required what this actually
means, in order to define the scope of this study. In general, we are interested
in all features that allow the user to customise some aspects of the execution
semantics of a program, in particular (1) class and object life cycle (2) field access
and (3) method dispatch. There are two categories of features we consider: (1)
features built into the language itself, and exposed by official APIs. In a wider
sense, those are reflective features, given the ability of a system “to reason about
itself” [36]. Java reflection, class loading, dynamic proxies and invokedynamic fit
into this category. We also consider (2) certain features where programmers can
access extra-linguistic mechanisms. The use of native methods,sun.misc.Unsafe
and serialisation are in this category. Java is not the only language with such
features, for instance, Smalltalk also has a reflection API, the ability to customise
dispatch with doesNotUnderstand, binary object serialisation using the Binary
Object Streaming Service (BOSS), and the (unsafe-like) become method [14].

This definition also excludes certain features, in particular the study of excep-
tions and static initializers (<clinit>).

3 Related Work

3.1 Benchmarks and Corpora for Empirical Studies

Several benchmarks and datasets have been designed to assist empirical studies
in programming languages and software engineering research. One of the most
widely used benchmarks is DaCapo [6] - a set of open source, real-world Java
programs with non-trivial memory loads. DaCapo is executable as it provides
a customizable harness to execute the respective programs. The key purpose of
this benchmark is to be used to compare results of empirical studies, e.g. to
compare the performance of different JVMs. The Qualitas Corpus [39] provides

1 Meaning here a combination of the JVM Specification [2] and the documentation of
the classes of the standard library.
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a larger set of curated Java programs intended to be used for empirical studies on
code artefacts. XCorpus [10] extends the Qualitas Corpus by adding a (partially
synthetic) driver with a high coverage.

SPECjvm2008 [3] is a multi-threaded Java benchmark focusing on core Java
functionality, mainly the performance of the JRE. It contains several executable
synthetic data sets as well as real-world programs.

Very recently, Reif et al. [30] have published a Java test suite designed to test
static analysers for their support for dynamic language features, and evaluated
wala and soot against it. While this is very similar to the approach presented
here, there are some significant differences: (1) the authors of [30] assume that
the tests (benchmark programs) “provide the ground truth”. In this study, we
question this assumption, and propose an alternative notion that also take char-
acteristics of the JVM and platform used to execute the tests into account. (2)
The study presented here also investigates doop, which we consider important as
it offers several features for advanced reflection handling. (3) While the construc-
tion of both test suites/benchmarks was motivated by the same intention, they
are different. Merging and consolidating them is an interesting area for future
research.

3.2 Approaches to Handle Dynamic Language Features in Pure
Static Analysis

Reflection: reflection [14,36] is widely used in real-world Java programs, but is
challenging for static analysis to handle [22,24]. Livshits et al. [27] introduced the
first static reflection analysis for Java, which uses points-to analysis to approxi-
mate the targets of reflective call sites as part of call graph construction. Land-
man et al. [22] investigated in detail the challenges faced by static analysers to
model reflection in Java, and reported 24 different techniques that have been
cited in the literature and existing tool. Li et al. [24] proposed elf, a static reflec-
tion analysis with the aim to improve the effectiveness of Java pointer analysis
tools. This analysis uses a self-inferencing mechanism for reflection resolution.
Elf was evaluated against doop, and as a result it was found that elf was able
to resolve more reflective call targets than doop. Smaragdakis et al. [35] further
refined the approach from [27] and [24] in terms of both recall and performance.
Wala [12] has some built-in support for reflective features like Class.forName,
Class.newInstance, and Method.invoke.

invokedynamic: Several authors have proposed support for invokedynamic. For
example, Bodden [7] provided a soot extension that supports reading, represent-
ing and writing invokedynamic byte codes. The opal static analyser also pro-
vides support for invokedynamic through replacing invokedynamic instructions
using Java LambdaMetaFactory with a standard invokestatic instruction [1].
Wala provides support for invokedynamic generated for Java 8 lambdas2.

2 https://goo.gl/1LxbSd and https://goo.gl/qYeVTd, both accessed 10 June 2018.

https://goo.gl/1LxbSd
https://goo.gl/qYeVTd
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Dynamic Proxies: only recently, at the time of writing this, Fourtounis et al. [15]
have proposed support for dynamic proxies in doop. This analysis shows that
there is a need for the mutually recursive handling of dynamic proxies and other
object flows via regular operations (heap loads and stores) and reflective actions.
Also, in order to be effective, static modelling of proxies needs full treatment of
other program semantics such as flow of string constants.

3.3 Hybrid Analysis

Several studies have focused on improving the recall of static analysis by adding
information obtained from a dynamic (pre-)analysis. Bodden et al. proposed
tamiflex [8]. Tamiflex runs a dynamic analyses by on instrumented code. The
tool logs all reflective calls and feeds this information into a static analysis, such
as soot. Grech et al. [17] proposed heapdl, a tool similar to tamiflex that also
uses heap snapshots to further improve recall (compared to tamiflex ). Mirror by
Liu et al. [25] is a hybrid analysis specifically developed to resolve reflective call
sites while minimising false positives.

Andreasen et al. [4] used a hybrid approach that combines soundness testing,
blended analysis, and delta debugging for systematically guiding improvements
of soundness and precision of TAJS - a static analyser for JavaScript. Soundness
testing is the process of comparing the analysis results obtained from a pure
static analysis with the concrete states that are observed by a dynamic analysis,
in order to observe unsoundness.

Sui et al. [37] extracted reflective call graph edges from stack traces obtained
from GitHub issue trackers and Stack Overflow Q&A forums to supplement
statically built call graphs. Using this method, they found several edges doop
(with reflection analysis enabled) was not able to compute. Dietrich et al. [11]
generalised this idea and discuss how to generate soundness oracles that can be
used to examine the unsoundness of a static analysis.

3.4 Call Graph Construction

Many algorithms have been proposed to statically compute call graphs. A com-
parative study of some of those algorithms was presented by Tip and Palsberg
[40]. Class Hierarchy Analysis (CHA) [18] is a classic call graph algorithm that
takes class hierarchy information into account. It assumes that the type of a
receiver object (at run time) is possibly any subtype of the declared type of the
receiver object at the call site. CHA is imprecise, but fast. Rapid Type Analysis
(RTA) extends CHA by taking class instantiation information into considera-
tion, by restricting the possible runtime types to classes that are instantiated
in the reachable part of the program [5]. Variable Type Analysis (VTA) mod-
els the assignments between different variables by generating subset constraints,
and then propagates points-to sets of the specific runtime types of each variable
along these constraints [38]. k-CFA analyses [34] add various levels of call site
sensitivity to the analysis.
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Murphy et al. [29] presented one of the earlier empirical studies in this space,
which focused on comparing the results of applying 9 static analysis tools (includ-
ing tools like GNU cflow) for extracting call graphs from 3 C sample programs.
As a results, the extracted call graphs were found to vary in size, which makes
them potentially unreliable for developers to use. While this was found for C
call graph extractors, it is still likely that the same problem will apply to extrac-
tors in other languages. Lhoták [23] proposed tooling and an interchange format
to represent and compare call graphs produced by different tools. We use the
respective format in our work.

4 The Benchmark

4.1 Benchmark Structure

The benchmark is organised as a Maven3 project using the standard project
layout. The actual programs are organised in name spaces (packages) reflecting
their category. Programs are minimalistic, and their behaviour is in most cases
easy to understand for an experienced programmer by “just looking at the pro-
gram”. All programs have a source() method and one or more other methods,
usually named target(..).

Each program has an integrated oracle of expected program behaviour,
encoded using standard Java annotations. Methods annotated with @Source
are call graph sources: we consider the program behaviour triggered by the
execution of those methods from an outside client. Methods annotated with
@Target are methods that may or may not be invoked directly or indirectly
from a call site in the method annotated with @Source. The expectation whether
a target method is to be invoked or not is encoded in the @Target annota-
tion’s expectation attribute that can be one of three values: Expected.YES
– the method is expected to be invoked , Expected.NO – the method is not
expected to be invoked, or Expected.MAYBE – exactly one of the methods with
this annotation is expected to be invoked, but which one may depend on the
JVM to be used. For each program, either exactly one method is annotated
with @Target(expectation=Expected.YES), or some methods are annotated
with @Target(expectation=Expected.MAYBE.

The benchmark contains a Vanilla program that defines the base case: a
single source method that has a call site where the target method is invoked
using a plain invokevirtual instruction. The annotated example is shown in
Listing 1.1, this also illustrates the use of the oracle annotations.

3 https://maven.apache.org/, accessed 30 August 2018.

https://maven.apache.org/
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1 public class Van i l l a {
2 public boolean TARGET = fa l se ;
3 public boolean TARGET2 = fa l se ;
4 @Source public void source ( ) {
5 t a r g e t ( ) ;
6 }
7 @Target ( expec ta t i on = YES) public void t a r g e t ( ) {
8 this .TARGET = true ;
9 }

10 @Target ( expec ta t i on = NO) public void t a r g e t ( int o ) {
11 this .TARGET2 = true ;
12 }
13 }

Listing 1.1. Vanilla program source code (simplified)

The main purpose of the annotations is to facilitate the set up of experiments
with static analysers. Since the annotations have a retention policy that makes
them visible at runtime, the oracle to test static analysers can be easily inferred
from the benchmark program. In particular, the annotations can be used to test
for both FNs (soundness issues) and FPs (precision issues).

In Listing 1.1, the target method changes the state of the object by setting the
TARGET flag. The purpose of this feature is to make invocations easily observable,
and to confirm actual program behaviour by means of executing the respective
programs by running a simple client implemented as a junit test. Listing 1.2
shows the respective test for Vanilla – we expect that after an invocation of
source() by the test driver, target() will have been called after source() has
returned , and we check this with an assertion check on the TARGET field. We
also tests for methods that should not be called, by checking that the value of
the respective field remains false.

1 public class Vani l l aTes t {
2 private Van i l l a v a n i l l a ;
3 @Before public void setUp ( ) throws Exception {
4 v an i l l a = new Van i l l a ( ) ;
5 v an i l l a . source ( ) ;
6 }
7 @Test public void testTargetMethodBeenCalled ( ) {
8 Assert . a s se r tTrue ( v a n i l l a .TARGET) ;
9 }

10 @Test public void testTarget2MethodHasNotBeenCalled ( ) {
11 Assert . a s s e r tFa l s e ( v a n i l l a .TARGET2) ;
12 }
13 }

Listing 1.2. Vanilla test case (simplified)
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4.2 Dynamic Language Features and Vulnerabilities

One objective for benchmark construction was to select features that are of inter-
est to static program analysis, as there are known vulnerabilities that exploit
those features. Since the discussed features allow bypassing Java’s security
model, which relies on information-hiding, memory and type safety, Java secu-
rity vulnerabilities involving their use have been reported that have implications
ranging from attacks on confidentiality, integrity and the availability of appli-
cations. Categorised under the Common Weakness Enumeration (CWE) clas-
sification, untrusted deserialisation, unsafe reflection, type confusion, untrusted
pointer dereferences and buffer overflow vulnerabilities are the most notable.

CVE-2015-7450 is a well-known serialisation vulnerability in the Apache
Commons Collections library. It lets an attacker execute arbitrary commands
on a system that uses unsafe Java deserialisation. Use of reflection is common in
vulnerabilities as discussed by Holzinger et al. [19] where the authors discover
that 28 out of 87 exploits studied utilised reflection vulnerabilities. An exam-
ple is CVE-2013-0431, affecting the Java JMX API, which allows loading of
arbitrary classes and invoking their methods. CVE-2009-3869, CVE-2010-3552,
CVE-2013-08091 are buffer overflow vulnerabilities involving the use of native
methods. As for vulnerabilities that use the Unsafe API, CVE-2012-0507 is a vul-
nerability in AtomicReferenceArray which uses Unsafe to store a reference in
an array directly that can violate type safety and permit escaping the sandbox.
CVE-2016-4000 and CVE-2015-3253 reported for Jython and Groovy are due
to serialisable invocation handlers for proxy instances. While we are not aware
of vulnerabilities that exploit invokedynamic directly, there are several CVEs
that exploit the method handle API used in the invokedynamic bootstrapping
process, including CVE-2012-5088, CVE-2013-2436 and CVE-2013-0422.

The following subsections contain a high-level discussion of the various cat-
egories of programs in the benchmark. A detailed discussion of each program
is not possible within the page limit, the reader is referred to the benchmark
repository for more details.

4.3 Reflection

Java’s reflection protocol is widely used and it is the foundation for many frame-
works. With reflection, classes can be dynamically instantiated, fields can be
accessed and manipulated, and methods can be invoked. How easily reflection
can be modelled by a static analysis highly depends on the usage context. In
particular, a reflective call site for Method.invoke can be easily handled if the
parameter at the method access site (i.e., the call site of Class.getMethod or
related methods) are known, for instance, if method name and parameter types
can be inferred. Existing static analysis support is based on this wider idea.

However, this is not always possible. The data needed to accurately identify
an invoked method might be supplied by other methods (therefore, the static
analysis must be inter-procedural to capture this), only partially available (e.g.,
if only the method name can safely be inferred, a static analysis may decide to



78 L. Sui et al.

over-approximate the call graph and create edges for all possible methods with
this name), provided through external resources (a popular pattern in enterprise
frameworks like spring, service loaders, or JEE web applications), or some cus-
tom procedural code. All of those usage patterns do occur in practice [22,24],
and while exotic uses of reflection might be rare, they are also the most inter-
esting ones as they might be used in the kind of vulnerabilities static analysis is
interested to find.

The benchmark examples reflect this range of usage patterns from trivial to
sophisticated. Many programs overload the target method, this is used to test
whether a static analysis tool achieves sound reflection handling at the price of
precision.

4.4 Reflection with Ambiguous Resolution

As discussed in Sect. 2, we also consider scenarios where a program is (at least
partially) not generated by javac. Since at byte code level methods are iden-
tified by a combination of name and descriptor, the JVM supports return type
overloading, and the compiler uses this, for instance, in order to support co-
variant return types [16, Sect. 8.4.5] by generating bridge methods. This raises
the question how the methods in java.lang.Class used to locate methods
resolve ambiguity as they use only name and parameter types, but not the
return type, as parameters. According to the respective class documentation,
“If more than one method with the same parameter types is declared in a class,
and one of these methods has a return type that is more specific than any of the
others, that method is returned; otherwise one of the methods is chosen arbitrar-
ily”4. In case of return type overloading used in bridge methods, this rule still
yields an unambiguous result, but one can easily engineer byte code where the
arbitrary choice clause applies. The benchmark contains a respective example,
dpbbench.ambiguous.ReturnTypeOverloading. There are two target methods,
one returning java.util.Set and one returning java.util.List. Since neither
return type is a subtype of the other type, the JVM is free to choose either. In
this case we use the @Target (expectation=MAYBE) annotation to define the
oracle. We acknowledge that the practical relevance of this might be low at the
moment, but we included this scenario as it highlights that the concept of pos-
sible program behaviour used as ground truth to assess the soundness of static
analysis is not as clear as it is widely believed. Here, possible program executions
can be defined either with respect to all or some JVMs.

It turns out that Oracle JRE 1.8.0 144/OpenJDK JRE 1.8.0 40 on the
one hand and IBM JRE 1.8.0 171 on the other hand actually do select dif-
ferent methods here. We have also observed that IBM JRE 1.8.0 171 chooses
the incorrect method in the related dpbbench.reflection.invocation.
ReturnTypeOverloading scenario (note the different package name). In this
scenario, the overloaded target methods return java.util.Collection and
java.util.List, respectively, and the IBM JVM dispatches to the method

4 https://goo.gl/JG9qD2, accessed 24 May 2018.

https://goo.gl/JG9qD2
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returning java.util.Collection in violation of the rule stipulated in the API
specification. We reported this as a bug, and it was accepted and fixed report5.

A similar situation occurs when the selection of the target method
depends on the order of annotations returned via the reflective API.
This scenario does occur in practice, for instance, the use of this pat-
tern in the popular log4j library is discussed in [37]. The reflection API
does not impose constraints on the order of annotations returned by
java.lang.reflect.Method.getDeclaredAnnotations(), therefore, programs
have different possible executions for different JVMs.

1 public c lass Invocat ion {
2 public boolean TARGET = fa l se ;

3 public boolean TARGET2 = fa l se ;

4 @Retention (RUNTIME) @Target (METHOD) @inte r f a ce Method{}
5 @Source public void source ( ) throws Exception {
6 for (Method method : Invocat ion . class . getDeclaredMethods ( ) ){
7 i f (method . i sAnnotat ionPresent (Method . class ) ){
8 method . invoke ( this , null ) ;

9 return ;

10 } } } }
11 @Method @Target ( expec ta t i on=MAYBE) public void t a r g e t ( ) {
12 this .TARGET =true ;

13 }
14 @Method @Target ( expec ta t i on=MAYBE) public void t a rge t2 ( ) {
15 this .TARGET2 =true ;

16 }
17 }
Listing 1.3. Example where the selection of the target method depends on the JVM
being used (simplified)

When executing those two examples and recording the actual call graphs, we
observe that the call graphs differ depending on the JVM being used. For
instance, in the program in Listing 1.3, the target method selected at the call
site in source() is target() for both Oracle JRE 1.8.0 144 and OpenJDK JRE
1.8.0 40 , and target2() for IBM JRE 1.8.0 171.

4.5 Dynamic Classloading

Java distinguishes between classes and class loaders. This can be used to dynam-
ically load, or even generate classes at runtime. This is widely used in practice,
in particular for frameworks that compile embedded scripting or domain-specific
languages “on the fly”, such as Xalan6.

There is a single example in the benchmark that uses a custom classloader
to load and instantiate a class. The constructors of the respective class are the
expected target methods.

5 https://github.com/eclipse/openj9/pull/2240, accessed 16 August 2018.
6 https://xalan.apache.org, accessed 4 June 2018.

https://github.com/eclipse/openj9/pull/2240
https://xalan.apache.org
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4.6 Dynamic Proxies

Dynamic proxies were introduced in Java 1.3, they are similar to protocols like
Smalltalk’s doesNotUnderstand, they capture calls to unimplemented meth-
ods via an invocation handler. A major application is to facilitate distributed
object frameworks like CORBA and RMI, but dynamic proxies are also used
in mock testing frameworks. For example, in the XCorpus dataset of 75 real-
world programs, 13 use dynamic proxies [10] (implement InvocationHandler
and have call sites for Proxy.newProxyInstance). Landman et al. observed that
“all [state-of-the-art static analysis] tools assume .. absence of Proxy classes” [22].

The benchmark contains a single program in the dynamicProxy category. In
this program, the source method invokes an interface method foo() through an
invocation handler. In the invocation handler, target(String) is invoked. The
target method is overloaded in order to test the precision of the analysis.

4.7 Invokedynamic

The invokedynamic instruction was introduced in Java 7. It gives the user more
control over the method dispatch process by using a user-defined bootstrap
method that computes the call target. While the original motivation behind
invokedynamic was to provide support for dynamic languages like Ruby, its
main (and in the OpenJDK 8, only) application is to provide support for lamb-
das. In OpenJDK 9, invokedynamic is also used for string concatenation [33].

For known usage contexts, support for invokedynamic is possible. If
invokedynamic is used with the LambdaMetafactory, then a tool can rewrite
this byte code, for instance, by using an alternative byte code sequence that com-
piles lambdas using anonymous inner classes. The Opal byte code rectifier [1]
is based on this wider idea, and can be used as a standalone pre-processor for
static analysis. The rewritten byte code can then be analysed “as usual”.

The benchmark contains three examples defined by Java sources with dif-
ferent uses of lambdas. The fourth examples is engineered from byte code
and is an adapted version of the dynamo compiler example from [20]. Here,
invokedynamic is used for a special compilation of component boundary meth-
ods in order to improve binary compatibility. The intention of including this
example is to distinguish between invokedynamic for particular usage patterns,
and general support for invokedynamic.

4.8 Serialisation

Java serialisation is a feature that is used in order to export object graphs to
streams, and vice versa. This is a highly controversial feature, in particular after
a large number of serialisation-related vulnerabilities were reported in recent
years [9,19].

The benchmark contains a single program in this category that relates to
the fact that (de-)serialisation offers an extra-linguistic mechanism to construct
objects, avoiding constructors. The scenario constructs an object from a stream,



On the Soundness of Call Graph Construction 81

and then invokes a method on this object. The client class is not aware of the
actual type of the receiver object, as the code contains no allocation site.

4.9 JNI

The Java Native Interface (JNI) is a framework that enables Java to call and be
called by native applications. There are two programs using JNI in the bench-
mark. The first scenario uses a custom Runnable to be started by Thread.start.
In the Java 8 (OpenJDK 8), Runnable.run is invoked by Thread.start via an
intermediate native method Thread.start0(). This is another scenario that can
be handled by static analysis tools that can deal with common usage patterns,
rather than with the general feature. The second program is a custom example
that uses a grafted method implemented in C.

4.10 sun.misc.Unsafe

The class sun.misc.Unsafe (unsafe for short) offers several low level APIs that
can bypass constraints built into standard APIs. Originally intended to facil-
itate the implementation of platform APIs, and to provide an alternative for
JNI, this feature is now widely used outside the Java platform libraries [28]. The
benchmark contains four programs in this category, (1) using unsafe to load a
class (defineClass), (2) to throw an exception (throwException), (3) to allo-
cate an instance (allocateInstance) and (4) to swap references (putObject,
objectFieldOffset). leads to an error that was r

5 Experiments

5.1 Methodology

We conducted an array of experiments with the benchmark. In particular, we
were interested to see whether the benchmark examples were suitable to differ-
entiate the capabilities of mainstream static analysis frameworks. We selected
three frameworks based on (1) their wide use in the community, evidenced by
citation counts of core papers, indicating that the respective frameworks are
widely used, and therefore issues in those frameworks will have a wider impact
on the research community, (2) the respective frameworks claim to have some
support for dynamic language features, in particular reflection, (3) the respec-
tive projects are active, indicating that the features of those frameworks will
continue to have an impact.

Based on those criteria, we evaluated soot-3.1.0, doop7 and wala-1.4.3. For
each tool, we considered a basic configuration, and an advanced configuration to
switch on support for advanced language features. All three tools have options

7 As doop does not release versions, we used a version built from commit
4a94ae3bab4edcdba068b35a6c0b8774192e59eb.
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to switch those features on. This reflects the fact that advanced analysis is not
free, but usually comes at the price of precision and scalability.

Using these analysers, we built call graphs using a mid-precision, context-
insensitive variable type analysis. Given the simplicity of our examples, where
each method has at most one call site, we did not expect that context sensitivity
would have made a difference. To the contrary, a context-sensitive analysis com-
putes a smaller call graph, and would therefore have reduced the recall of the
tool further. On the other hand, a less precise method like CHA could have led
to a misleading higher recall caused by the accidental coverage of target methods
as FPs.

For wala, we used the 0-CFA call graph builder. By default, we
set com.ibm.wala.ipa.callgraph.AnalysisOptions.ReflectionOptions to
NONE, in the advanced configuration used, it was set to FULL.

For soot, we used spark ("cg.spark=enabled,cg.spark=vta"). For
the advanced configuration, we also used the "safe-forname" and the
"safe-newinstance" options. There is another option to support the resolu-
tion of reflective call sites, types-for-invoke. Enabling this option leads to an
error that was reported, but at the time of writing this issue has not yet been
resolved8.

For doop, we used the following options: context-insensitive, ignore-
mainmethod, only-application-classes-fact-gen. For the advanced config-
uration, we also enabled reflection reflection-classic reflection-high-
soundness-mode reflection-substring-analysis reflection-invent-
unknownobjects reflection-refined-objects and reflection-specula
tive-use-based-analysis.

We did not consider any hybrid pre-analysis, such as tamiflex [8], this was
outside the scope of this study. This will be discussed in more detail in Sect. 5.3.

The experiments were set up as follows: for each benchmark program, we used
a lightweight byte code analysis to extract the oracle from the @Target annota-
tions. Then we computed the call graph with the respective static analyser using
the method annotated as @Source as entry point, and stored the result in probe
format [23]. Finally, using the call graph, we computed the FPs and FNs of the
static call graph with respect to the oracle, using the annotations as the ground
truth. For each combination of benchmark program and static analyser, we com-
puted a result state depending on the annotations found in the methods reachable
from the @Source-annotated method in the computed call graph as defined in
Table 1. For instance, the state ACC (for accurate) means that in the computed
call graph, all methods annotated with @Target(expectation=YES) and none
of the methods annotated with @Target(expectation=NO) are reachable from
the method annotated with @Source. The FP and FN indicate the presence of
false positive (imprecision) and false negatives (unsoundness), respectively, the
FN+FP state indicates that the results of the static analysis are both unsound
and imprecise. Reachable means that there is a path. This is slightly more gen-

8 https://groups.google.com/forum/m/#!topic/soot-list/xQwsU7DlmqM, accessed 5
June 2018.

https://groups.google.com/forum/m/#!topic/soot-list/xQwsU7DlmqM
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eral than looking for an edge and takes the fact into account that a particular
JVM might use intermediate methods to implement a certain dynamic invoca-
tion pattern.

Table 1. Result state definitions for programs with consistent behaviour across differ-
ent JVMs

Result Methods reachable from source by annotation

State @Target(expectation=YES) @Target(expectation=NO)

ACC All None

FP All Some

FN None None

FN+FP None Some

Figure 1(a) illustrates this classification. As discussed in Sect. 4.4, there are
programs that use the @Target(expectation=MAYBE) annotation, indicating
that actual program behaviour is not defined by the specification, and depends
on the JVM being used. This is illustrated in Fig. 1(b).

For the programs that use the @Target(expectation=MAYBE) annotation, we
had to modify this definition according to the semantics of the annotation: during
execution, exactly one of these methods will be invoked, but it is up to the partic-
ular JVM to decide which one. We define result states as shown in Table 2. Note
that the @Target(expectation=YES) and the @Target(expectation=MAYBE)
annotations are never used for the same program, and there is at most one
method annotated with @Target(expectation=YES) in a program.

Fig. 1. Observed vs computed call graph
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This definition is very lenient - we assess the results of a static analyser
as sound (ACC or FP) if it does compute a path that links the source with
any possible target. This means that soundness is defined with respect to the
behaviour observed with only some, but not all, JVMs.

Table 2. Result state definition for programs with behaviour that depends on the JVM

Result Methods reachable from source by annotation

State @Target(expectation=MAYBE) @Target(expectation=NO)

ACC Some None

FP Some Some

FN None None

FN+FP None Some

5.2 Reproducing Results

The benchmark and the scripts used to obtain the results can be found in the
following public repository: https://bitbucket.org/Li Sui/benchmark/. Further
instructions can be found in the repository README.md file.

5.3 Results and Discussion

Results are summarised in Table 3. As expected, none of the static analysers
tested handled all features soundly. For wala and doop, there are significant dif-
ferences between the plain and the advanced modes. In the advanced mode, both
handle simple usage patterns of reflection well, but in some cases have to resort
to over-approximation to do so. Wala also has support for certain usage pat-
terns of other features: it models invokedynamic instructions generated by the
compiler for lambdas correctly, and also models the intermediate native call in
Thread.start. This may be a reflection of the maturity and stronger industrial
focus of the tool. Wala also models the dynamic proxy when in advanced mode.
We note however that we did not test doop with the new proxy-handling features
that were just added very recently [15].

While soot does not score well, even when using the advanced mode, we note
that soot has better integration with tamiflex and therefore uses a fundamentally
different approach to soundly model dynamic language features. We did not
include this in this study. How well a dynamic (pre-) analysis works depends
a lot on the quality (coverage) of the driver, and for the micro-benchmark we
have used we can construct a perfect driver. Using soot with tamiflex with such
a driver would have yielded excellent results in terms of accuracy, but those
results would not have been very meaningful.

None of the frameworks handles any of the Unsafe scenarios well. There is
one particular program where all analysers compute the wrong call graph edge:

https://bitbucket.org/Li_Sui/benchmark/
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the target method is called on a field that is initialised as new Target(), but
between the allocation and the invocation of target() the field value is swapped
for an instance of another type using Unsafe.putObject. While this scenario
appears far-fetched, we note that Unsafe is widely used in libraries [28], and has
been exploited (see Sect. 4.2).

Table 3. Static call graph construction evaluation results, reporting the number of
programs with the respective result state, format: (number obtained with basic config-
uration)/(number obtained with advanced configuration)

Category Analyser ACC FN FP FN+FP

Vanilla soot 1/1 0/0 0/0 0/0

wala 1/1 0/0 0/0 0/0

doop 1/1 0/0 0/0 0/0

Reflection soot 0/1 12/11 0/0 0/0

wala 0/4 12/3 0/5 0/0

doop 0/0 12/8 0/4 0/0

Dynamic class loading soot 0/0 1/1 0/0 0/0

wala 0/0 1/1 0/0 0/0

doop 0/0 1/1 0/0 0/0

Dynamic proxy soot 0/0 1/1 0/0 0/0

wala 0/1 1/0 0/0 0/0

doop 0/0 1/1 0/0 0/0

Invokedynamic soot 0/0 4/4 0/0 0/0

wala 3/3 1/1 0/0 0/0

doop 0/0 4/4 0/0 0/0

JNI soot 1/1 1/1 0/0 0/0

wala 1/1 1/1 0/0 0/0

doop 0/0 2/2 0/0 0/0

Serialisation soot 1/1 0/0 0/0 0/0

wala 1/1 0/0 0/0 0/0

doop 0/0 1/1 0/0 0/0

Unsafe soot 0/0 2/2 1/1 1/1

wala 0/0 2/2 1/1 1/1

doop 0/0 2/2 1/1 1/1

Reflection-ambiguous soot 0/0 2/2 0/0 0/0

wala 0/0 2/0 0/2 0/0

doop 0/0 2/1 0/1 0/0
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6 Conclusion

In this paper, we have presented a micro-benchmark that describes the usage
of dynamic language features in Java, and an experiment to assess how popular
static analysis tools support those features. It is not surprising that in many
cases the constructed call graphs miss edges, or only achieve soundness by com-
promising on precision.

The results indicate that it is important to distinguish between the actual
features, and a usage context for those features. For instance, there is a sig-
nificant difference between supporting invokedynamic as a general feature, and
invokedynamic as it is used by the Java 8 compiler for lambdas. The benchmark
design and the results of the experiments highlights this difference.

We do not expect that static analysis tools will support all of those features
and provide a sound and precise call graph in the near future. Instead, many
tools will continue to focus on particular usage patterns such as “support for
reflection used in the Spring framework”, which have the biggest impact on
actual programs, and therefore should be prioritised. However, as discussed using
examples throughout the paper, more exotic usage patterns do occur, and can
be exploited, so they should not be ignored. The benchmark can provide some
guidance for tool builders here.

An interesting insight coming out of this study is that notions like actual
programs behaviour and possible program executions are not as clearly defined
as widely thought. This is particularly surprising in the context of Java (even in
programs that do not use randomness, concurrency or native methods), given
the strong focus of the Java platform on writing code once, and run it anywhere
with consistent program behaviour. This has implications for the very definitions
of soundness and precision. We have suggested a pragmatic solution, but we feel
that a wider discussion of these issues is needed.

Acknowledgement. We thank Paddy Krishnan, Francois Gauthier and Michael
Eichberg for their comments.
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Abstract. The tree share structure proposed by Dockins et al. is an
elegant model for tracking disjoint ownership in concurrent separation
logic, but decision procedures for tree shares are hard to implement due
to a lack of a systematic theoretical study. We show that the first-order
theory of the full Boolean algebra of tree shares (that is, with all tree-
share constants) is decidable and has the same complexity as of the first-
order theory of Countable Atomless Boolean Algebras. We prove that
combining this additive structure with a constant-restricted unary mul-
tiplicative “relativization” operator has a non-elementary lower bound.
We examine the consequences of this lower bound and prove that it comes
from the combination of both theories by proving an upper bound on a
generalization of the restricted multiplicative theory in isolation.

1 Introduction

One general challenge in concurrent program verification is how to specify the
ownership of shared resources among threads. A common solution is to tag shared
resources with fractional shares that track “how much” of a resource is owned
by an actor. A policy maps ownership quanta with permitted behaviour. For
example, a memory cell can be “fully owned” by a thread, permitting both
reading and writing; “partially owned”, permitting only reading; or “unowned”,
permitting nothing; the initial model of fractional shares [8] was rationals in [0, 1].
Since their introduction, many program logics have used a variety of flavors of
fractional permissions to verify programs [2,3,7,8,14,15,18,24,26,33,37,38].

Rationals do not mix cleanly with concurrent separation logic [31] because
they do not preserve the “disjointness” property of separation logic [32]. Dockins
et al. [13] proposed a “tree share” model that do preserve this property, and so
a number of program logics have incorporated them [2,18,19,26,37].

In addition to their good metatheoretic properties, tree shares have desir-
able computational properties, which has enabled several highly-automated ver-
ification tools to incorporate them [20,37] via heuristics and decision proce-
dures [25,28]. As we shall explain in Sect. 2.2, tree shares have both “addi-
tive” and “multiplicative” substructures. All of the verification tools used only
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S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 89–108, 2018.
https://doi.org/10.1007/978-3-030-02768-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02768-1_5&domain=pdf


90 X.-B. Le et al.

a restricted fragment of the additive substructure (in particular, with only one
quantifier alternation) because the general theory’s computational structure was
not well-understood. These structures are worthy of further study both because
even short programs can require hundreds of tree share entailment queries in
the permitted formalism [16, Chap. 4: Sects. 2, 6.4, 6.6], and because recent pro-
gram logics have shown how the multiplicative structures aid program verifica-
tion [2,26].

Recently, Le et al. did a more systematic analysis of the computational com-
plexity of certain classes of tree share formulae [27]; briefly:

– the additive structure forms a Countable Atomless Boolean Algebra, giving
a well-understood complexity for all first-order formulae so long as they only
use the distinguished constants “empty” 0 and“full” 1;

– the multiplicative structure has a decidable existential theory but an unde-
cidable first-order theory; and

– the additive theory in conjunction with a weakened version of the multiplica-
tive theory—in particular, only permitting multiplication by constants on the
right-hand side—regained first-order decidability.

Contributions. We address significant gaps in our theoretical understanding of
tree shares that deter their use in automated tools for more sophisticated tasks.

Section 3. Moving from a restricted fragment of a first-order additive the-
ory to the more general setting of unrestricted first-order formulae over
Boolean operations is intuitively appealing due to the increased expressibil-
ity of the logic. This expressibility even has computational consequences,
as we demonstrate by using it to remove a common source of quantifier
alternations. However, verifications in practice often require formulae that
incorporate more general constants than 0 and 1, limiting the applica-
tion of the analysis from [27] in practice. This is unsurprising since it is
true in other settings: many Presburger formulae that arise in engineering
contexts, for example, are littered with application-specific constants, e.g.,
∀x.(∃y.x + y = 7) ⇒ (x + 13 < 21). A recent benchmark using tree shares for
program verification [28] supports this intuition: it made 16k calls in the
supported first-order additive fragment, and 21.1% (71k/335k) of the con-
stants used in practice were neither 0 nor 1. Our main contribution on the
additive side is to give a polynomial-time algorithm that reduces first-order
additive formulae with arbitrary tree-share constants to first-order formu-
lae using only 0 and 1, demonstrating that the additive structure’s exact
complexity is STA(∗, 2nO(1)

, n)-complete and closing the theory/practice gap
between [27,28].

Section 4. We examine the combined additive/restricted multiplicative theory
proved decidable in [27]. We prove a nonelementary lower bound for this
theory, via a reduction from the combined theory into the string structure
with suffix successors and a prefix relation, closing the complexity gap in the
theory.



Complexity Analysis of Tree Share Structure 91

Section 5. We investigate the reasons for, and mitigants to, the above nonelemen-
tary lower bound. First, we show that the first-order restricted-multiplicative
theory on its own (i.e., without the Boolean operators) has elementary com-
plexity via an efficient isomorphism with strings equipped with prefix and
suffix successors. Thus, the nonelementary behavior comes precisely from the
combination of both theories. Lastly, we examine the kinds of formulae that
we expect in practice—for example, those coming from biabduction problems
discussed in [26]—and notice that they have elementary complexity.

The other sections of our paper support our contributions by (Sect. 2)
overviewing tree shares, related work, and several basic complexity results; and
by (Sect. 6) discussing directions for future work and concluding.

2 Preliminaries

Here we document the preliminaries for our result. Some are standard (Sect. 2.1)
while others are specific to the domain of tree shares (Sects. 2.2, 2.3 and 2.4).

2.1 Complexity Preliminaries

We assume that the readers are familiar with basic concepts in computational
complexity such as Turing machine, many-one reduction, space and time com-
plexity classes such as NP and PSPACE. A problem is nonelementary if it can-
not be solved by any deterministic Turing machine that can be time-bounded
by one of the exponent functions exp(1) = 2n, exp(n + 1) = 2exp(n). Let A, R be
complexity classes, a problem P is ≤R-complete for A iff P is in A and every
problem in A is many-one reduced into P via Turing machines in R. In addition,
we use ≤R-lin to assert linear reduction that belongs to R and only uses linear
space with respect to the problem’s size. In particular, ≤log-lin is linear log-space
reduction. Furthermore, we denote STA(p(n), t(n), a(n)) the class of alternating
Turing machine [9] that uses at most p(n) space, t(n) time and a(n) alternations
between universal states and existential states or vice versa for input of length
n. If any of the three bounds is not specified, we replace it with the symbol
∗, e.g. STA(∗, 2nO(1)

, n) is the class of alternating Turing machines that have
exponential time complexity and use at most n alternations.

2.2 Overview of Tree Share Structure

A tree share is a binary tree with Boolean leaves ◦ (white leaf) and • (black
leaf). Full ownership is represented by • and no ownership by ◦. For fractional
ownership, one can use, e.g. • ◦, to represent the left half-owned resource. Impor-
tantly and usefully, ◦ • is a distinct tree share representing the other right half.
We require tree shares are in canonical form, that is, any subtree τ τ where
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τ ∈ {•, ◦} needs to be rewritten into τ . For example, both • ◦ and • • ◦ ◦ ◦
rep-

resent the same tree share but only the former tree is canonical and thus valid.
As a result, the set of tree shares T is a strict subset of the set of all Boolean
binary trees. Tree shares are equipped with Boolean operators 	 (union), 

(intersection) and ·̄ (complement). When applied to tree shares of height zero,
i.e. {•, ◦}, these operators give the same results as in the case of binary BA.
Otherwise, our tree shares need to be unfolded and folded accordingly before
and after applying the operators leaf-wise, e.g.

• ◦ = ◦ • • ◦ • 	 ◦ ◦ • ∼= • ◦ • • 	 ◦ ◦ ◦ • = • ◦ • • ∼= • ◦ • .

The additive operator ⊕ can be defined using 	 and 
, i.e. disjoint union:

a ⊕ b = c
def= a 	 b = c ∧ a 
 b = ◦.

Tree shares also have a multiplicative operator �� called “bowtie”, where τ1 �� τ2
is defined by replacing each black leaf • of τ1 with an instance of τ2, e.g.

• ◦ ◦ • �� ◦ • =
◦ • ◦ ◦ ◦ •

.

While the ⊕ operator has standard additive properties such as commutativ-
ity, associativity and cancellativity, the �� operator enjoys the unit •, is asso-
ciative, injective over non-◦ arguments, and distributes over {	,
,⊕} on the
left [13]. However, �� is not commutative, e.g.:

• ◦ �� ◦ • = ◦ • ◦ �= ◦ • ◦ = ◦ • �� • ◦

The formalism of these binary operators can all be found in [13].

2.3 Tree Shares in Program Verification

Fractional permissions in general, or tree shares in particular, are integrated
into separation logic to reason about ownership. In detail, the mapsto predicate
x �→ v is enhanced with the permission π, denoted as x

π�−→ v, to assert that π is
assigned to the address x associated with the value v. This notation of fractional
mapsto predicate allows us to split and combine permissions conveniently using
the additive operator ⊕ and disjoint conjunction �:

x
π1⊕π2�−−−−→ v �� x

π1�−→ v � x
π2�−→ v. (1)

The key difference between tree share model 〈T,⊕〉 and rational model 〈Q,+〉
is that the latter fails to preserve the disjointness property of separation logic.
For instance, while the predicate x �→ 1 � x �→ 1 is unsatisfiable, its rational
version x

0.5�−−→ 1 � x
0.5�−−→ 1, which is equivalent to x

1�−→ 1 by (1), is satisfiable.
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On the other hand, the tree share version x
• ◦�−−→ �x

• ◦�−−→ remains unsatisfiable
as the sum • ◦ ⊕ • ◦ is undefined. Such defect of the rational model gives rise
to the deformation of recursive structures or elevates the difficulties of modular
reasoning, as first pointed out by [32].

Recently, Le and Hobor [26] proposed a proof system for disjoint permissions
using the structure 〈T,⊕, ��〉. Their system introduces the notion of predicate
multiplication where π · P asserts that the permission π is associated with the
predicate P . To split the permission, one can apply the following bi-entailment:

π · P �� (π �� • ◦) · P � (π �� ◦ •) · P.

which requires the following property of tree shares to hold:

∀π. π = (π �� • ◦) ⊕ (π �� ◦ •). (2)

Note that the above property demands a combined reasoning of both ⊕
and ��. While such property can be manually proved in theorem provers such
as Coq [12] using inductive argument, it cannot be handled automatically by
known tree share solvers [25,28] due to the shortness of theoretical insights.

2.4 Previous Results on the Computational Behavior of Tree Shares

The first sophisticated analysis of the computational properties of tree shares
were done by Le et al. [27]. They showed that the structure 〈T,	,
, ·̄〉 is
a Countable Atomless BA and thus is complete for the Berman complexity
class STA(∗, 2nO(1)

, n)—problems solved by alternating exponential-time Turing
machines with unrestricted space and n alternations—i.e. the same complexity
as the first-order theory over the reals 〈R,+, 0, 1〉 with addition but no multipli-
cation [4]. However, this result is restrictive in the sense that the formula class
only contains {•, ◦} as constants, whereas in practice it is desirable to permit
arbitrary tree constants, e.g. ∃a∃b. a 	 b = • ◦.

When the multiplication operator �� is incorporated, the computational
nature of the language becomes harder. The structure 〈T, ��〉—without the
Boolean operators—is isomorphic to word equations [27]. Accordingly, its first-
order theory is undecidable while its existential theory is decidable with contin-
uously improved complexity bounds currently at PSPACE and NP-hard (starting
from Makanin’s argument [29] in 1977 and continuing with e.g. [22]).

Inspired by the notion of “semiautomatic structures” [21], Le et al. [27]
restricted �� to take only constants on the right-hand side, i.e. to a family of
unary operators indexed by constants ��τ (x) def= x �� τ . Le et al. then exam-
ined C def= 〈T,	,
, ·̄, ��τ 〉. Note that the verification-sourced sentence (2) from
Sect. 2.3 fits perfectly into C: ∀π. π = ��• ◦ (π) ⊕ ��◦ • (π). Le et al. encoded

C into tree-automatic structures [6], i.e., logical structures whose constants can
be encoded as trees, and domains and predicates finitely represented by tree
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automata. As a result, its first-order theory—with arbitrary tree constants—is
decidable [5,6,36], but until our results in Sect. 4 the true complexity of C was
unknown.

3 Complexity of Boolean Structure A def
= 〈T, �, �, ·̄〉

Existing tree share solvers [25,28] only utilize the additive operator ⊕ in cer-
tain restrictive first-order segments. Given the fact that ⊕ is defined from the
Boolean structure A = 〈T,	,
, ·̄〉, it is compelling to establish the decidability
and complexity results over the general structure A. More importantly, operators
in A can help reduce the complexity of a given formula. For example, consider
the following separation logic entailment:

a
τ�−→ 1 � a

• • ◦�−−−−→ � a
• ◦�−−→ 1 � �.

To check the above assertion, entailment solvers have to extract and verify
the following corresponding tree share formula by grouping shares from same
heap addresses using ⊕ and then applying equality checks:

∀τ∀τ ′.τ ⊕ • • ◦ = τ ′ → ∃τ ′′.τ ′′ ⊕ • ◦ = τ ′.

By using Boolean operators, the above ∀∃ formula can be simplified into a ∀
formula by specifying that either the share in the antecedent is not possible, or
the share in the consequent is a ‘sub-share’ of the share in the antecedent:

∀τ. ¬(τ 
 • • ◦ = ◦) ∨ (• ◦ � τ ⊕ • • ◦).

where the ‘sub-share’ relation � is defined using Boolean union:

a � b
def= a 	 b = b.

In this section, we will prove the following precise complexity of A:

Theorem 1. The first-order theory of A is ≤log-complete for STA(∗, 2nO(1)
, n),

even if we allow arbitrary tree constants in the formulae.

One important implication of the above result is that the same complexity
result still holds even if the additive operator ⊕ is included into the structure:

Corollary 1. The Boolean tree share structure with addition A⊕ =
〈T,⊕,	,
, ·̄〉 is ≤log-complete for STA(∗, 2nO(1)

, n), even with arbitrary tree con-
stants in the formulae.

Proof. Recall that ⊕ can be defined in term of 	 and 
 without additional
quantifier variable:

a ⊕ b = c
def= a 	 b = c ∧ a 
 b = ◦.

As a result, one can transform, in linear time, any additive constraint into
Boolean constraint using the above definition. Hence the result follows. 
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Theorem 1 is stronger than the result in [27] which proved the same com-
plexity but for restricted tree share constants in the formulae:

Proposition 1 ([27]). The first-order theory of A, where tree share constants
are {•, ◦}, is ≤log-complete for STA(∗, 2nO(1)

, n).

The hardness proof for lower bound of Theorem1 is obtained directly from
Proposition 1. To show that the same complexity holds for upper bound, we
construct an O(n2) algorithm flatten (Algorithm 1) that transforms arbitrary
tree share formula into an equivalent tree share formula whose constants are
{•, ◦}:

Lemma 1. Suppose flatten(Φ) = Φ′. Then:

1. Φ′ only contains {•, ◦} as constants.
2. Φ and Φ′ have the same number of quantifier alternations.
3. Φ and Φ′ are equivalent with respect to A.
4. flatten is O(n2). In particular, if the size of Φ is n then Φ′ has size O(n2).

Proof of Theorem 1. The lower bound follows from Proposition 1. By
Lemma 1, we can use flatten in Algorithm 1 to transform a tree formula Φ into
an equivalent formula Φ′ of size O(n2) that only contains {•, ◦} as constants and
has the same number of quantifier alternations as in Φ. By Proposition 1, Φ′ can
be solved in STA(∗, 2nO(1)

, n). This proves the upper bound and thus the result
follows. 
	

It remains to prove the correctness of Lemma 1. But first, we will provide a
descriptive explanation for the control flow of flatten in Algorithm 1. On line 2,
it checks whether the height of Φ, which is defined to be the height of the highest
tree constant in Φ, is zero. If it is the case then no further computation is needed
as Φ only contains {•, ◦} as constants. Otherwise, the shape s (Definition 1) is
computed on line 4 to guide the subsequent decompositions. On lines 5–9, each
atomic sub-formula Ψ is decomposed into sub-components according to the shape
s by the function split described on lines 18–26. Intuitively, split decomposes
a tree τ into subtrees (line 21–22) or a variables v into new variables with
appropriate binary subscripts (line 23). On line 8, the formula Ψ is replaced with
the conjunction of its sub-components

∧n
i=1 Ψi. Next, each quantifier variable Qv

in Φ is also replaced with a sequence of quantifier variables Qv1 . . . Qvn (lines
10–13). Finally, the modified formula Φ is returned as the result on line 14. The
following example demonstrates the algorithm in action:

Example 1. Let Φ : ∀a∃b. a	 b = • ◦ ◦∨¬(ā = ◦ • ◦). Then height(Φ) = 2 > 0

and its shape s is ∗ ∗ ∗ ∗. Also, Φ contains the following atomic sub-formulae:

Ψ : a 	 b = • ◦ ◦ and Ψ ′ : ā = ◦ • ◦ .

After applying the split function to Ψ and Ψ ′ with shape s, we acquire the
following components:
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Algorithm 1. Flattening a Boolean tree share formula
1: function flatten(Φ)
Require: Φ is a Boolean tree sentence
Ensure: Return an equivalent formula of height zero
2: if height(Φ) = 0 then return Φ
3: else
4: let s be the shape of Φ
5: for each atomic formula Ψ in Φ: t1 = t2 or t1 op t2 = t3, op ∈ {�, �} do
6: [ti1, . . . t

i
n] ← split(ti, s) for i = 1 . . . n � n is the number of leaves in s

7: Ψi ← ti1 = ti2 or ti1 op ti2 = ti3 for i = 1 . . . n
8: Φ ← replace Ψ with

∧n
i=1 Ψi

9: end for
10: for each quantifier Qv in Φ do
11: [v1, . . . , vn] ← split(v, s)
12: Φ ← replace Qv with Qv1 . . . Qvn

13: end for
14: return Φ
15: end if
16: end function
17:
18: function split(t, s)
Require: t is either a variable or a constant, s is a shape
Ensure: Return a list of decomposing components of t according to shape s
19: if s = ∗ then return [t]
20: else let s = s0 s1 in

21: if t is • or ◦ then return concat(split(t, s0), split(t, s1))
22: else if let t = t1 t2 in then return concat(split(t0, s0), split(t1, s1))

23: elset is a variable return concat(split(t0, s0), split(t1, s1))
24: end if
25: end if
26: end function

1. Ψ1 : a00 	 b00 = •, Ψ2 : a01 	 b01 = ◦, Ψ3 : a10 	 b10 = ◦, Ψ4 : a11 	 b11 = ◦.
2. Ψ ′

1 : a00 = ◦, Ψ ′
2 : a01 = ◦, Ψ ′

3 : a10 = •, Ψ ′
4 : a11 = ◦.

The following result formula is obtained by replacing Ψ with
∧4

i=1 Ψi, Ψ ′ with
∧4

i=1 Ψ ′
i , ∀a with ∀a00∀a01∀a10∀a11, and ∃b with ∃b00∃b01∃b10∃b11:

∀a00∀a01∀a10∀a11∃b00∃b01∃b10∃b11.

4∧

i=1

Ψi ∨ ¬(
4∧

i=1

Ψ ′
i).

Definition 1 (Tree shape). A shape of a tree τ , denoted by 〈τ〉, is obtained
by replacing its leaves with ∗, e.g. 〈• • ◦〉 = ∗ ∗ ∗. The combined shape s1 	 s2

is defined by overlapping s1 and s2, e.g. ∗ ∗ ∗ 	 ∗ ∗ ∗ = ∗ ∗ ∗ ∗. The shape of a

formula Φ, denoted by 〈Φ〉, is the combined shape of its tree constants and ∗.
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Note that tree shapes are not canonical, otherwise all shapes are collapsed
into a single shape ∗. We are now ready to prove the first three claims of Lemma 1:

Proof of Lemma 1.1, 1.2 and 1.3. Observe that the shape of each atomic
sub-formula Ψ is ‘smaller’ than the shape of Φ, i.e. 〈Ψ〉 	 〈Φ〉 = 〈Φ〉. As a result,
each formula in the decomposition of split(Ψ, 〈Φ〉) always has height zero, i.e.
its only constants are {•, ◦}. This proves claim 1.

Next, recall that the number of quantifier alternations is the number of times
where quantifiers are switched from ∀ to ∃ or vice versa. The only place that
flatten modifies quantifiers is on line 12 in which the invariant for quantifier
alternations is preserved. As a result, claim 2 is also justified.

We are left with the claim that flatten is O(n2) where n is the size of the
input formula Φ. By a simple analysis of flatten, it is essentially equivalent
to show that the result formula has size O(n2). First, observe that the formula
shape 〈Φ〉 has size O(n) and thus we need O(n) decompositions for each atomic
sub-formula Ψ and each quantifier variable Qv of Φ. Also, each component in
the decomposition of Ψ (or Qv) has size at most the size of Ψ (or Qv). As a
result, the size of the formula Φ′ only increases by a factor of O(n) compared to
the size of Φ. Hence Φ′ has size O(n2). 
	

To prove claim 4, we first establish the following result about the split
function. Intuitively, this lemma asserts that one can use split together with
some tree shape s to construct an isomorphic Boolean structure whose elements
are lists of tree shares:

Lemma 2. Let splits
def= λτ. split(τ, s), e.g. split∗ ∗ ∗

(• ◦ •) = [• ◦, •, •].

Then splits is an isomorphism from A to A′ = 〈Tn,	′,
′, ·̄′〉 where n is the
number of leaves in s and each operator in M′ is defined component-wise from
the corresponding operator in A, e.g. [a1, a2] 	′ [b1, b2] = [a1 	 a2, b1 	 b2].

Proof. W.l.o.g. we will only prove the case s = ∗ ∗ as similar argument can be
obtained for the general case. By inductive arguments, we can prove that splits

is a bijection from T to T × T. Furthermore:

1. splits(a) � splits(b) = splits(c) iff a � b = c for � ∈ {	,
}.
2. splits(τ̄) = splits(τ).

Hence splits is an isomorphism from A to A′ = 〈T × T,	′,
′, ·̄′〉. 
	

Proof of Lemma 1.4. By Lemma 2, the function splits allows us to trans-
form formulae in A into equivalent formulaes over tree share lists in A′ =
〈Tn,	′,
′, ·̄′〉. On the other hand, observe that formulae in A′ can be rewritten
into equivalent formulae in A using conjunctions and extra quantifier variables,
e.g. ∃a∀b. a	′b = [◦ •, •] is equivalent to ∃a1∃a2∀b1∀b2. a1	b1 = ◦ •∧a2	b2 = •.
Hence the result follows. 
	

The correctness of Lemma 1 is now fully justified. We end this section by
pointing out a refined complexity result for the existential theory of A, which
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corresponds to the satisfiability problem of quantifier-free formulae. Note that
the number of quantifier alternations for this fragment is zero, and thus Theo-
rem 1 only gives us an upper bound STA(∗, 2nO(1)

, 0), which is exponential time
complexity. Instead, we can use Lemma 1 to acquire the precise complexity:

Corollary 2. The existential theory of A, with arbitrary tree share constants,
is NP-complete.

Proof. Recall a classic result that existential theory of Countably Atomless BAs
is NP-complete [30]. As A belongs to this class, the lower bound is justified.
To see why the upper bound holds, we use the function flatten to transform
the input formula into standard BA formula and thus the result follows from
Lemma 1. 
	

4 Complexity of Combined Structure C def
= 〈T, �, �, ·̄, ��τ 〉

In addition to the Boolean operators in Sect. 3, recall from Sect. 2.2 that tree
shares also possess a multiplicative operator �� that resembles the multiplication
of rational permissions. As mentioned in Sect. 2.4, [27] showed that �� is isomor-
phic to string concatenation, implying that the first-order theory of 〈T, ��〉 is
undecidable, and so of course the first-order theory of 〈T,	,
, ·̄, ��〉 is likewise
undecidable.

By restricting multiplication to have only constants on the right-hand side,
however, i.e. to the family of unary operators ��τ (x) def= x �� τ , Le et al.
showed that decidability of the first-order theory was restored for the combined
structure C def= 〈T,	,
, ·̄, ��τ 〉. However, Le et al. were not able to specify any
particular complexity class. In this section, we fill in this blank by proving that
the first-order theory of C is nonelementary, i.e. that it cannot be solved by any
resource-bound (space or time) algorithm:

Theorem 2. The first-order theory of C is non-elementary.

To prove Theorem 2, we reduce the binary string structure with prefix rela-
tion [11], which is known to be nonelementary, into C. Here we recall the defini-
tion and complexity result of binary strings structure:

Proposition 2 ([11,35]). Let K = 〈{0, 1}∗, S0, S1,�〉 be the binary string struc-
ture in which {0, 1}∗ is the set of binary strings, Si is the successor function s.t.
Si(s) = s · i, and � is the binary prefix relation s.t. x � y iff there exists z
satisfies x · z = y. Then the first-order theory of K is non-elementary.

Before going into the technical detail, we briefly explain the many-one reduc-
tion from K into C. The key idea is that the set of binary strings {0, 1}∗ can be
bijectively mapped into the set of unary trees U(T), trees that have exactly one
black leaf, e.g. {•, • ◦, ◦ •, ◦ • ◦, · · · }. For convenience, we use the symbol L to

represent the left tree • ◦ and R for the right tree ◦ •. Then:



Complexity Analysis of Tree Share Structure 99

Lemma 3. Let g map 〈{0, 1}∗, S0, S1,�〉 into 〈T,	,
, ·̄, ��τ 〉 such that:

1. g(ε) = •, g(0) = L, g(1) = R.
2. g(b1 . . . bn) = g(b1) �� . . . �� g(bn), bi ∈ {0, 1}.
3. g(S0) = λs. ��L (g(s)), g(S1) = λs. ��R (g(s)).
4. g(x � y) = g(y) � g(x) where τ1 � τ2

def= τ1 	 τ2 = τ2.

Then g is a bijection from {0, 1}∗ to U(T), and x � y iff g(y) � g(x).

Proof. The routine proof that g is bijective is done by induction on the string
length. Intuitively, the binary string s corresponds to the path from the tree root
in g(s) to its single black leaf, where 0 means ‘go left’ and 1 means ‘go right’. For
example, the tree g(110) = R �� R �� L = ◦ • �� ◦ • �� • ◦ = ◦ ◦ • ◦ corresponds

to the path right→right→left.
Now observe that if τ1, τ2 are unary trees then τ1 � τ2 (i.e. the black-leaf

path in τ2 is a sub-path of the black-leaf path in τ1) iff there exists a unary tree
τ3 such that τ2 �� τ3 = τ1 (intuitively, τ3 represents the difference path between
τ2 and τ1). Thus x � y iff there exists z such that xz = y, iff g(x) �� g(z) = g(y),
which is equivalent to g(y) � g(x) by the above observation. 
	

In order for the reduction to work, we need to express the type of unary
trees using operators from C. The below lemma shows that the type of U(T) is
expressible via a universal formula in C:

Lemma 4. A tree τ is unary iff it satisfies the following ∀-formula:

τ �= ◦ ∧ (∀τ ′. τ ′ �� L � τ ↔ τ ′ �� R � τ
)
.

where τ1 � τ2
def= τ1 	 τ2 = τ2 ∧ τ1 �= τ2.

Proof. The ⇒ direction is proved by induction on the height of τ . The key
observation is that if τ1 �� τ2 � τ3 and τ2, τ3 are unary then τ1 is also unary,
τ1 � τ3 and thus τ1 �� τ2 � τ3. Note that both L,R are unary and L = R, hence
the result follows.

For ⇐, assume τ is not unary. As τ �= ◦, it follows that τ contains at least two
black leaves in its representation. Let τ1 be the tree that represents the path to
one of the black leaves in τ , we have τ1 � τ and for any unary tree τ2, if τ1 � τ2
then τ2 �� τ . As τ1 is unary, we can rewrite τ1 as either τ ′

1 �� L or τ ′
1 �� R for some

unary tree τ ′
1. The latter disjunction together with the equivalence in the premise

give us both τ ′
1 �� L � τ and τ ′

1 �� R � τ . Also, we have τ1 � τ ′
1 and thus τ ′

1 �� τ
by the aforementioned observation. Hence τ ′

1 = τ1 �� • = τ ′
1 �� (L 	 R) � τ

which is a contradiction. 
	
Proof of Theorem 2. We employ the reduction technique in [17] where for-
mulae in K are interpreted using the operators from C. The interpretation of
constants and operators is previously mentioned and justified in Lemma3. We
then replace each sub-formula ∃x. Φ with ∃x. x ∈ U(T) ∧ Φ and ∀x. Φ with
∀x. x ∈ U(T) → Φ using the formula in Lemma4. It follows that the first-order
complexity of C is bounded below by the first-order complexity of K. Hence by
Proposition 2, the first-order complexity of C is nonelementary. 
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5 Causes of, and Mitigants to, the Nonelementary Bound

Having proven the nonelementary lower bound for the combined theory in Sect. 4,
we discuss causes and mitigants. In Sect. 5.1 we show that the nonelementary
behavior of C comes from the combination of both the additive and multiplica-
tive theories by proving an elementary upper bound on a generalization of the
multiplicative theory, and in Sect. 5.2 we discuss why we believe that verification
tools in practice will avoid the nonelementary lower bound.

5.1 Complexity of Multiplicative Structure B def= 〈T,τ ��, ��τ 〉
Since the first-order theory over 〈T, ��〉 is undecidable, it may seem plausible that
the nonelementary behaviour of C comes from the ��τ subtheory rather than the
“simpler” Boolean subtheory A, even though the specific proof of the lower
bound given in Sect. 4 used both the additive and multiplicative theories (e.g.
in Lemma 4). This intuition, however, is mistaken. In fact, even if we generalize
the theory to allow multiplication by constants on either side—i.e., by adding

τ��(x) def= τ �� x to the language—the restricted multiplicative theory B def=
〈T,τ��, ��τ 〉 is elementary. Specifically, we will prove that the first-order theory
of B is STA(∗, 2O(n), n)-complete and thus elementarily decidable:

Theorem 3. The first-order theory of B is ≤log-lin-complete for
STA(∗, 2O(n), n).

Therefore, the nonelementary behavior of C arises precisely because of the com-
bination of both the additive and multiplicative subtheories.

We prove Theorem 3 by solving a similar problem in which two tree shares
{•, ◦} are excluded from the tree domain T. That is, let T

+ = T\{•, ◦} and
B+ = 〈T+,τ��, ��τ 〉, we want:

Lemma 5. The complexity of Th(B+) is ≤log-lin-complete for STA(∗, 2O(n), n).

By using Lemma 5, the proof for the main theorem is straightforward:

Proof of Theorem 3. The hardness proof is direct from the fact that mem-
bership constraint in B+ can be expressed using membership constraint in B:

τ ∈ B+ iff τ ∈ B ∧ τ �= ◦ ∧ τ �= •.

As a result, any sentence from B+ can be transformed into equivalent sentence
in B by rewriting each ∀v.Φ with ∀v.(v �= ◦ ∧ v �= •) → Φ and each ∃v.Φ with
∃v.v �= ◦ ∧ v �= • ∧ Φ.

To prove the upper bound, we use the guessing technique as in [27]. In detail,
we partition the domain T into three disjoint sets:

S1 = {◦} S2 = {•} S3 = T
+.
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Suppose the input formula contains n variables, we then use a ternary vector
of length n to guess the partition domain of these variables, e.g., if a variable
v is guessed with the value i ∈ {1, 2, 3} then v is assigned to the domain Si. In
particular, if v is assigned to S1 or S2, we substitute v for ◦ or • respectively.
Next, each bowtie term ��τ (a) or τ��(a) that contains tree share constants • or
◦ is simplified using the following identities:

τ �� • = • �� τ = τ τ �� ◦ = ◦ �� τ = ◦ .

After this step, all the atomic sub-formulae that contain ◦ or • are reduced
into either variable equalities v1 = v2, v = τ or trivial constant equalities such
as • = •, • ◦ = ◦ that can be replaced by either � or ⊥. As a result, the
new equivalent formula is free of tree share constants {•, ◦} whilst all variables
are quantified over the domain T

+. Such formula can be solved using the Turing
machine that decides Th(B+). The whole guessing process can be integrated into
the alternating Turing machine without increasing the formula size or number
of quantifiers (i.e. the alternating Turing machine only needs to make two extra
guesses • and ◦ for each variable and the simplification only takes linear time).
Hence this justifies the upper bound. 
	

The rest of this section is dedicated to the proof of Lemma 5. To prove the
complexity Th(B+), we construct an efficient isomorphism from B+ to the struc-
ture of ternary strings in {0, 1, 2}∗ with prefix and suffix successors. The exis-
tence of such isomorphism will ensure the complexity matching between the tree
structure and the string structure. Here we recall a result from [34] about the
first-order complexity of the string structure with successors:

Proposition 3 ([34]). Let S = 〈{0, 1}∗, P0, P1, S0, S1〉 be the structure of binary
strings with prefix successors P0, P1 and suffix successors S0, S1 such that:

P0(s) = 0 · s P1(s) = 1 · s S0(s) = s · 0 S1(s) = s · 1.

Then the first-order theory of S is ≤log-lin-complete for STA(∗, 2O(n), n).

The above result cannot be used immediately to prove our main theorem.
Instead, we use it to infer a more general result where successors are not only
restricted to 0 and 1, but also allowed to be any string s in a finite alphabet:

Lemma 6. Let Σ be a finite alphabet of size k ≥ 2 and S ′ = 〈Σ∗, Ps, Ss〉 the
structure of k-ary strings with infinitely many prefix successors Ps and suffix
successors Ss where s ∈ Σ∗ such that:

Ps(s′) = s · s′ Ss(s′) = s′ · s.

Then the first-order theory of S ′ is ≤log-lin-complete for STA(∗, 2O(n), n).

Proof. Although the proof in [34] only considers binary alphabet, the same result
still holds even for finite alphabet Σ of size k ≥ 2 with k prefix and suffix
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successors. Let s = a1 . . . an where ai ∈ Σ, the successors Ps and Ss can be
defined in linear size from successors in S as follows:

Ps
def= λs′. Pa1(. . . Pan

(s′)) Ss
def= λs′. San

(. . . Sa1(s
′)).

These definitions are quantifier-free and thus the result follows. 
	
Next, we recall some key results from [27] that establishes the fundamental

connection between trees and strings in word equation:

Proposition 4 ([27]). We call a tree τ in T
+ prime if τ = τ1 �� τ2 implies

either τ1 = • or τ2 = •. Then for each tree τ in T
+, there exists a unique

sequence of prime trees {τi}n
i=1 such that τ = τ1 �� · · · �� τn. As a result, each

tree in T
+ can be treated as a string in a word equation in which the alphabet is

P, the countably infinite set of prime trees, and �� is the string concatenation.

For example, the factorization of
◦ • ◦ ◦ ◦ • ◦

is • ◦ • �� • ◦ �� ◦ •, which

is unique. Proposition 4 asserts that by factorizing tree shares into prime trees,
we can effectively transform multiplicative tree share constraints into equivalent
word equations. Ideally, if we can represent each prime tree as a unique letter in
the alphabet then Lemma 5 would follow from Lemma 6. Unfortunately, the set
of prime trees P are infinite [27] while Lemma 6 requires a finite alphabet. As a
result, our tree encoding needs to be more sophisticated than the näıve way. The
key observation here is that, as P is countably infinite, there must be a bijective
encoding function I : P �→ {0, 1}∗ that encodes each prime tree into binary
string, including the empty string ε. We need not to know the construction of I
in advance, but it is important to keep in mind that I exists and the delay of
its construction is intentional. We then extend I into Î that maps tree shares in
T
+ into ternary string in {0, 1, 2}∗ where the letter 2 purposely represents the

delimiter between two consecutive prime trees:

Lemma 7. Let Î : T+ �→ {0, 1, 2}∗ be the mapping from tree shares into ternary
strings such that for prime trees τi ∈ P where i ∈ {1, . . . , n}, we have:

Î(τ1 �� . . . �� τn) = I(τ1) · 2 . . . 2 · I(τn).

By Proposition 4, Î is bijective. Furthermore, let τ1, τ2 ∈ T
+ then:

Î(τ1 �� τ2) = Î(τ1) · 2 · Î(τ2).

Having the core encoding function Î defined, it is now routine to establish
the isomorphism from the tree structure B+ to the string structure S ′:

Lemma 8. Let f be a function that maps the tree structure 〈T+,τ ��, ��τ 〉 into
the string structure 〈{0, 1, 2}, Ps2, S2s〉 such that:

1. For each tree τ ∈ T
+, we let f(τ) def= Î(τ).
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2. For each function τ��, we let f(τ��) def= PÎ(τ)2.

3. For each function ��τ , we let f(��τ ) def= S2Î(τ).

Then f is an isomorphism from B+ to S ′.

Proof of Lemma 5. For the upper bound, observe that the function f in
Lemma 8 can be used to transform tree share formulae in B+ to string formulae
in S ′. It remains to ensure that the size of the string formula is not exponentially
exploded. In particular, it suffices to construct Î such that if a tree τ ∈ T

+

has size n, its corresponding string Î(τ) has linear size O(n). Recall that Î is
extended from I which can be constructed in many different ways. Thus to
avoid the size explosion, we choose to specify the encoding function I on the
fly after observing the input tree share formula. To be precise, given a formula
Φ in B, we first factorize all its tree constants into prime trees, which can be
done in log-space [27]. Suppose the formula has n prime trees {τi}n

i=1 sorted in
the ascending order of their sizes, we choose the most efficient binary encoding
by letting I(τi) = si where si is the ith string in length-lexicographic (shortlex)
order of {0, 1}∗, i.e. {ε, 0, 1, 00, 01, . . .}. This encoding ensures that the size of τi

and the length of si only differ by a constant factor. Given the fact that a tree
share in its factorized form τ1 �� . . . �� τn only requires O(

∑n
i=1 Î(τi)) bits to

represent, we infer that its size and the length of its string counterpart Î(τ) also
differ by a constant factor. Hence, the upper bound complexity is justified.

To prove the lower bound, we need to construct the inverse function f−1

that maps the string structure S ′ into the tree share structure B. Although the
existence of f−1 is guaranteed since f is isomorphism, we also need to take care
of the size explosion problem. It boils down to construct an efficient mapping
I−1 from binary strings to prime trees by observing the input string formula Φ.
For each string constant s12 . . . 2sn in Φ where si ∈ {0, 1}∗, we extract all of
the binary strings si. We then maps each distinct binary string si to a unique
prime tree τi as follows. Let k(0) = • ◦, k(1) = ◦ • and assume si = a0 . . . am for
ai ∈ {0, 1}, we compute τ = k(a0) �� . . . �� k(am). Then the mapped tree share
for the string si is constructed as τi = • τ (if si = ε then τi = • ◦). It follows
that τi is prime and this skewed tree has size O(n) where n is the length of si.
Thus the result follows. 
	
Example 2. Consider the tree formula ∀a∃b∃c. a = b �� ◦ • ◦ ∧ b = ◦ • ◦ �� c.

This formula contains two constants whose factorizations are below:

c1 = ◦ • ◦ = • ◦ �� ◦ • c2 = ◦ • ◦ = ◦ • �� • ◦ .

We choose I such that I(• ◦) = ε and I(◦ •) = 0. Our encoding gives s1 = 20
and s2 = 02. This results in the string formula ∀a∃b∃c. a = S220(b)∧ b = P022(c)
whose explicit form is ∀a∃b∃c. a = b220 ∧ b = 022c.

Now suppose that we want to transform the above string formula into equiv-
alent tree formula. Following the proof of Lemma5, we extract from the formula
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two binary strings s1 = ε and s2 = 0 which are mapped to the prime trees
τ1 = • ◦ and τ2 = • • ◦ respectively. Hence the equivalent tree share formula

is ∀a∃b∃c.a =��τ1��τ2 (b) ∧ b =τ2��τ1�� (c). It is worth noticing the difference
between this tree formula and the original tree formula, which suggests the fact
that the representation of the alphabet (i.e. prime trees) is not important.

5.2 Combined C Formulae in Practice

The source of the nonelementary behavior comes from two factors. First, as
proven just above, it comes from the combination of both the additive and
multiplicative operations of tree shares. Second, it comes from the number of
quantifier alternations in the formula being analyzed, due to the encoding of C
in tree automata [27] and the resulting upper bound (the transformed automata
of first-order formulae of tree automatic structures have sizes bounded by a tower
of exponentials whose height is the number of quantifier alternations [5,6]).

Happily, in typical verifications, especially in highly-automated verifications
such as those done by tools like HIP/SLEEK [28], the number of quantifier
alternations in formulae is small, even when carrying out complex verifica-
tions or inference. For example, consider the following biabduction problem
(a separation-logic-based inference procedure) handled by the ShareInfer tool
from [26]:

a
π�→ (b, c, d) � • ◦ · π · tree(c) � ◦ • · π · tree(d) � [??] � • ◦ · π · tree(a) � [??]

ShareInfer will calculate • ◦ · π · tree(d) for the antiframe and a
π �� ◦ •�−−−−−→

(b, c, d) � ◦ • · π · tree(d) for the inference frame. Although these guesses are a bit
sophisticated, verifing them depends on [16] the following quantifier-alternation-
free C sentence: ∀π, π′. π = π′ ⇒ ��• ◦ (π)⊕ ��• ◦ (π) = π′. Even with

complex loop invariants, more than one alternation would be surprising because
e.g. verification tools tend to maintain formulae in well-chosen canonical forms.

Moreover, because tree automata are closely connected to other well-studied
domains, we can take advantage of existing tools such as MONA [23]. As an
experiment we have hand-translated C formulae into WS2S, the language of
MONA, using the techniques of [10]. The technical details of the translation are
provided in AppendixA. For the above formula, MONA reported 205 DAG hits
and 145 nodes, with essentially a 0ms running time.

Lastly, heuristics are well-justified both because of the restricted problem
formats we expect in practice as well as because of the nonelementary worst-
case lower bound we proved in Sect. 4, opening the door to newer techniques like
antichain/simulation [1].

6 Future Work and Conclusion

We have developed a tighter understanding of the complexity of the tree
share model. As Boolean Algebras, their first-order theory is STA(∗, 2nO(1)

, n)-
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complete, even with arbitrary tree constants in the formulas. Although the first-
order theory over tree multiplication is undecidable [27], we have found that by
restricting multiplication to be by a constant (on both the left τ�� and right ��τ

sides) we obtain a substructure B whose first-order theory is STA(∗, 2O(n), n)-
complete. Accordingly, we have two structures whose first-order theory has ele-
mentary complexity. Interestingly, their combined theory is still decidable but
nonelementary, even if we only allow multiplication by a constant on the right
��τ .

We have several directions for future work. It is natural to investigate the
precise complexity of the existential theory with the Boolean operators and right-
sided multiplication ��τ (structure C). The encoding into tree-automatic struc-
tures from [27] provides only an exponential-time upper bound (because of the
result for the corresponding fragment in tree-automatic structures, e.g., see [36]),
and there is the obvious NP lower bound that comes from propositional logic
satisfiability. We do not know if the Boolean operators (	,
, ·̄) in combination
with the left-sided multiplication τ�� is decidable (existential or first order, with
or without the right-sided multiplication ��τ ). Determining if the existential the-
ory with the Boolean operators and unrestricted multiplication �� is decidable
also seems challenging. We would also like to know if the monadic second-order
theory over these structures is decidable.
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tive reviews. Le and Lin are partially supported by the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme
(grant agreement no 759969). Le and Hobor are partially supported under Yale-NUS
College grant R-607-265-322-121.

A Appendix

Figure 1 contains the MONA WS2S encoding of the following tree share formula

∀π, π′. π = π′ ⇒ (π �� ◦ •) ⊕ (π �� • ◦) = π′.

where lower case letters are for variables of binary strings and upper case let-
ters are for second-order monadic predicates. The last three lines in the code
are the formulas with a number of macros defined in the previous lines. Essen-
tially, each tree share is represented by a second-order variable whose elements
are antichains that describes a single path to one of its black leaves. Roughly
speaking, the eqt predicate checks whether two tree shares are equal, leftMul
and rightMul correspond to the multiplicative predicates ��• ◦ and ��◦ • respec-

tively, and uniont computes the additive operator ⊕. Other additional predi-
cates are necessary for the consistent representation of the tree shares. In detail,
singleton(X) means that X has exactly one element, ant makes sure any two
antichains in the same tree are neither prefix of the other, maxt(X,Y) enforces
that X is the maximal antichain of Y, roott(x,X) asserts x is the root of X,
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subt is a subset-like relation betweens two trees, while mint specifies the canon-
ical form. Lastly, we have sub0 and sub1 as the intermediate predicates for the
multiplicative predicates.

ws2s;

pred ant(var2 Y) =

all1 x,y: (x~=y & x in Y & y in Y) => (~(x<=y) & ~(y<=x));

pred maxt(var2 X,var2 Y) =

X sub Y & ex1 r:all1 x: x in X =>

(r <= x & all1 z: r <= z => ex1 x’: x’ in X & (z <= x’ | x’ <= z));

pred roott(var1 x,var2 X) =

all1 y: y in X & x <= y & all1 z:all1 y’:y’ in X & z <= y’ => x <= z;

pred subt(var2 X, var2 Y) =

all1 x1:all2 X’:(maxt(X’,X) & roott(x1,X’)) =>

(ex2 Y’:maxt(Y’,Y) => roott(x1,Y’));

pred eqt(var2 X, var2 Y) =

subt(X,Y) & subt(Y,X);

pred singleton(var2 X) =

ex1 x: x in X & (all1 y: y in X => x = y);

pred uniont(var2 X,var2 Y,var2 Z) =

Z = X union Y & empty(X inter Y);

pred mint(var2 X) =

all2 Y: maxt(Y,X) => singleton(Y);

pred sub0(var2 X, var2 X0) =

all1 x:x in X <=> x.0 in X0;

pred sub1(var2 X, var2 X0) =

all1 x:x in X <=> x.1 in X0;

pred leftMul(var2 X,var2 X’) =

all2 Y:(eqt(X,Y) & mint(Y)) => sub0(Y,X’);

pred rightMul(var2 X,var2 X’) =

all2 Y:(eqt(X,Y) & mint(Y)) => sub1(Y,X’);

all2 X,X’,XL,XR,XU:

(ant(X) & ant(X’) & ant(XL) & ant(XR) & ant(XU) & eqt(X,X’) &

leftMul(X,XL) & rightMul(X,XR) & uniont(XL,XR,XU)) => (eqt(XU,X’));

Fig. 1. The transformation of tree share formula in Sect. 5.2 into equivalent WS2S
formula.
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10. Colcombet, T., Löding, C.: Transforming structures by set interpretations. Log.
Methods Comput. Sci. 3(2) (2007)

11. Compton, K.J., Henson, C.W.: A uniform method for proving lower bounds on the
computational complexity of logical theories. In: APAL (1990)

12. The Coq Development Team: The Coq proof assistant reference manual. LogiCal
Project, version 8.0 (2004)

13. Dockins, R., Hobor, A., Appel, A.W.: A fresh look at separation algebras and share
accounting. In: Hu, Z. (ed.) APLAS 2009. LNCS, vol. 5904, pp. 161–177. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10672-9 13

14. Dohrau, J., Summers, A.J., Urban, C., Münger, S., Müller, P.: Permission inference
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Abstract. We address the verification problem of numeric properties
in many-threaded concurrent programs under weakly consistent mem-
ory models, especially TSO. We build on previous work that proposed
an abstract interpretation method to analyse these programs with rela-
tional domains. This method was not sufficient to analyse more than
two threads in a decent time. Our contribution here is to rely on a rely-
guarantee framework with automatic inference of thread interferences
to design an analysis with a thread-modular approach and describe rela-
tional abstractions of both thread states and interferences. We show how
to adapt the usual computing procedure of interferences to the additional
issues raised by weakly consistent memories. We demonstrate the preci-
sion and the performance of our method on a few examples, operating
a prototype analyser that verifies safety properties like mutual exclu-
sion. We discuss how weak memory models affect the scalability results
compared to a sequentially consistent environment.

1 Introduction

Multicore programming is both a timely and challenging task. Parallel architec-
tures are ubiquitous and have significant advantages related to cost effectiveness
and performance, yet they exhibit a programming paradigm that makes rea-
soning about the correctness of the code harder than within sequential systems.
Weakly consistent memory models, used to describe the behaviour of distributed
systems and multicore CPUs, amplify this fact: by allowing more optimisations,
they enable programs to run even faster; however this comes at the cost of
counter-intuitive semantic traits that further complicate the understanding of
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Fig. 1. A simple program with counter-intuitive possible results on x86.

these programs, let alone their proof of correctness. These difficulties coupled
with the use of such architectures in critical domains call for automatic reason-
ing methods to ensure correctness properties on concurrent executions.

In a previous work [20], we proposed an abstract interpretation method to
verify such programs. However, this method worked by building a global control
graph representing all possible interleavings of the threads of the target pro-
gram. The size of this graph grows exponentially with the number of threads,
which makes this method unable to scale. This paper describes a thread-modular
analysis that circumvents this problem by analysing each thread independently,
propagating through these thread analyses their effect on the execution of other
threads. We target in particular the Total Store Ordering (TSO) and Partial
Store Ordering (PSO) memory models.

1.1 Weak Memory Models

A widespread paradigm of concurrent programming is that of shared memory. In
this paradigm, the intuitive semantics conforms to sequential consistency (SC)
[12]. In SC, the allowed executions of a concurrent program are the interleavings
of the instructions of its threads. However, modern multicore architectures and
concurrent programming languages do not respect this property: rather, for opti-
misation reasons, they specify a weakly consistent memory model that relaxes
sequential consistency and allows some additional behaviors.

We mainly target the TSO (Total Store Ordering) memory model, which
is amongst others known for being the base model of x86 CPUs [19]. In this
model, a thread cannot immediatly read a store from another thread: they
write through a totally ordered store buffer. Each thread has its own buffer.
Non-deterministically, the oldest entry of a store buffer can be flushed into the
memory, writing the store value to the corresponding shared variable. When
attempting to read the value of some variable, a thread begins by looking at the
most recent entry for this variable in its store buffer. If there is none, it reads
from the shared memory.

The program of Fig. 1 exhibits a non-intuitive behaviour. In SC, after its
execution from a zeroed memory, either r1 or r2 must be equal to 1. However,
when executed on x86, one can observe r1 = 0 && r2 = 0 at the end. This happens
when Thread 1 (respectively Thread 2) reads the value of x (respectively y)
whereas Thread 2 (respectively Thread 1) has not flushed its store from its
buffer yet.
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Another related model, PSO (Partial Store Ordering), is strictly more relaxed
than TSO, in that its buffers are only partially ordered: stores to a same variable
keep their order, but stores to different variables can be flushed in any order into
the memory. Another way of expressing it consists in having a totally ordered
buffer for each thread and each variable, with no order between different buffers.
Both models define a mfence instruction that flushes the buffer(s) of the thread
that executes it. A systematic insertion of mfence allows to get back to sequen-
tial consistency, but has a performance cost, thus one should avoid using this
instruction when it is not needed for correctness.

As we stated earlier, our main target is TSO, as most previous abstract
interpretation works. It acts as a not too complex but real-life model, and fills
a sweet spot where relaxed behaviours actually happen but do not always need
to be forbidden for programs to be correct. However, to design a computable
analysis that stays sound, we were forced to drop completeness by losing some
(controlled) precision: this is the foundation of abstract interpretation [5]. Our
abstraction ignores the write order between two different variables, to only
remember sequences of values written into each variable independently. This
design choice makes our analysis sound not only under TSO, but also inciden-
tally under PSO. Therefore we will present it as a PSO analysis since it will
simplify the presentation, although the reader should have in mind that it stays
sound w.r.t. TSO. The loss of precision, in practice, incurred by a PSO analysis
on a TSO program will be discussed in Sect. 4.

We believe our analysis can be extended to more relaxed models such as
POWER/ARM by adding “read buffers”. This extension could pave the way for
the C and Java models, which share some concepts, but we did not have the
time to properly study them yet. However we rely on a very operational model:
more complex ones are axiomatically defined, so one will need to provide a sound
operational overapproximation before doing abstraction.

1.2 Abstraction of Relaxed Memory

To analyse concurrent programs running under PSO, we focus on abstract inter-
pretation [5]. The additional difficulty to design abstractions when considering
store-buffer-based memory models lies in buffers: they are unbounded and their
size changes dynamically and non-deterministically. This work builds on our pre-
vious work [20] that proposed an efficient abstraction for representing buffers.

Our implementation (cf. Sect. 4) targets small algorithms implementable in
assembly. Hence the core language of the programs we aim to analyse is a minimal
imperative language, whose syntax is defined in Fig. 3, Sect. 2. The program is
divided in a fixed number of threads, and they all run simultaneously. Individual
instructions run atomically (one can always decompose a non-atomic instruction
into atomic ones). We believe that additional features of a realistic programming
language, such as data structures and dynamic allocation, are orthogonal to this
work on weakly consistent memory: we focus on numerical programs, yet one
can combine our abstractions with domains targetting these features to build a
more complete analysis.
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Fig. 2. Round-robin: a concurrent program example.

The domain proposed in our previous paper [20] relies on a summari-
sation technique initially proposed by Gopan et al. [6] to abstract arrays,
which they adapt to abstract unbounded FIFO queues. Summarisation con-
sists in grouping together several variables x1, . . . , xn in a numerical domain
into a single summarised variable xsum, which retains each possible value of
every xi. For instance, let us consider two possible states over three variables:
(x, y, z) ∈ {(1, 2, 3); (4, 5, 6)}. If we regroup x and y into a summarised variable
vxy, the possible resulting states are (vxy, z) ∈ {(1, 3); (2, 3); (4, 6); (5, 6)}. Note
that, due to summarisation, these concrete states of (x, y, z) are also described
by that abstract element: (1, 1, 3), (2, 2, 3), (2, 1, 3), (4, 4, 6), (5, 5, 6), (5, 4, 6).

We use this technique to summarise the content of each buffer, excluding
the most recent entry that plays a special role when reading from the memory.
Once summarisation is done, we obtain states with bounded dimensions that
can be abstracted with classic numerical domains. This abstraction is described
at length in our previous paper [20].

1.3 Interferences: Thread-Modular Abstract Interpretation

The immediate way of performing abstract interpretation over a concurrent pro-
gram is to build the global control graph, product of the control graph of each
thread, that represents each possible interleaving. This graph has a size which
is exponential in the number of threads and linear in each thread size: it does
not scale up. Thread-modular analyses have been designed to alleviate this com-
binatorial explosion [8,10,15–17]. Amongst them, we use the formal system of
interferences, that has been proposed by Miné [15] to analyse each thread in
isolation, generating the effects it can have on the execution of other threads,
and taking into account the effects generated by these other threads. Thread-
modular analysis scales up better because the analysis is linear in the sum of
thread sizes (instead of their product), times the number of iterations needed to
stabilise the interferences (which is low in practice, and can always be accelerated
by widening [15]).

The effects generated by this analysis are named interferences. Consider the
program in Fig. 2, running in sequential consistency from a zeroed memory. This
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program is a standard round-robin algorithm, whose purpose is to alternate the
presence of its threads in the critical section. To analyse it, we first consider
Thread 0 and analyse it separately as if it were a sequential program. It cannot
enter the critical section since x is initially equal to 0, so the analysis ends
here. Then we analyse Thread 1, that immediately exits its inner loop and then
enters the critical section, after which it sets x to 1. We then generate the simple
interference T1 : x �→ 1, that means that Thread 1 can put 1 in x. Every read
from x by a thread can now return 1 instead of the value this thread stored last,
in a flow insensitive way. Afterwards, Thread 1 analysis ends: it cannot enter
back its critical section, since x is still equal to 1 when it tries again. We go
back to Thread 0. The new analysis will take into account the interference from
Thread 1 to know that x can now be equal to 1, and thus that Thread 0 can enter
its critical section. It will generate the interference T0 : x �→ 0, and notice that
the critical section can be entered several times when applying the interference
from Thread 1. Then the second analysis of Thread 1 will also determine that
Thread 1 can enter its critical section more than once. No more interference is
generated, and the global analysis has ended. It is thread-modular in the sense
that it analyses each thread code in isolation from other thread code.

This simple interference analysis is provably sound: in particular, it has man-
aged to compute that both threads can indeed enter their critical section. How-
ever, it did not succeed in proving the program correct. In general, simple inter-
ferences associate to each variable (an abstraction of) the set of its values at
each program point. They are non-relational (in particular, there is no relation
between the old value of a variable and its new value in an interference) and
flow insensitive. To alleviate this problem, previous works [15,16] introduced
relational interferences, that model sets of possible state transitions caused by
thread instructions between pairs of program points, i.e., they model the effect
of the thread in a fully relational and flow-sensitive way, which is more precise
and more costly, while still being amenable to classic abstraction techniques. For
instance, in the program of Fig. 2, one such interference would be “When x is
equal to 1, and Thread 1 is not in its critical section, Thread 0 can write 0 in
x; and by doing so it will go from label l1 to label l2”. The relational inter-
ference framework is complete for reachability properties thus not computable,
but Monat and Miné [16] developed precise abstractions of interferences in SC
that allow proving this kind of programs in a decidable way.

In this paper, we will combine such abstractions with the domains for weakly
consistent memory to get a computable, precise and thread-modular abstract
interpretation based analysis under TSO. We implemented this analysis and
provided some results on a few examples. We mostly aim to prove relational
numerical properties on small albeit complex low-level programs. These pro-
grams are regarded as difficult to check—for instance, because they implement
a synchronisation model and are thus dependent on some precise thread inter-
action scenario. We show that our analysis can retain the precision needed to
verify their correctness, while taking advantage of the performances of a modu-
lar analysis to be able to efficiently analyse programs with more than 2 threads,
which is out of reach of most non-modular techniques.
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Fig. 3. Program syntax

Section 2 describes the monolithic and modular concrete semantics of con-
current programs running under the chosen memory model. Section 3 defines a
computable modular abstraction for these programs. Section 4 presents experi-
mental results on a few programs using a test implementation of our abstract
domains and discusses scaling when considering weakly consistent memories. We
present a comparison with related works in Sect. 5. Section 6 concludes.

The monolithic semantics of Sect. 2 has been dealt with in our previous work
[20]. Our contribution is composed of the modular semantics of Sects. 2, 3 and 4.

2 Concrete Semantics

2.1 Interleaving Concrete Semantics

Figure 3 defines the syntax of our programs. We specify in Fig. 4 the domain
used in the concrete semantics. We consider our program to run under the PSO
memory model. Although TSO is our main target, PSO is strictly more relaxed,
therefore our PSO semantics stays sound w.r.t. TSO.

Notations. Shared is the set of shared variable symbols, Local is the set of
thread-local variables (or registers). Unless specified, we use the letters x, y, z
for Shared and r for Local. V is the value space of variables, for instance Z or
Q. e is an arithmetic expression over elements of V and Local (we decompose
expressions involving Shared variables into reads of these variables into Local
variables and actually evaluating the expression over these locals). ◦ is function
composition. L is a set of program points or control labels.

Remark 1. D is isomorphic to a usual vector space. As such, it supports usual
operations such as variable assignment (x := e) or condition and expression
evaluation. We will also use the add and drop operations, which respectively add
an unconstrained variable to the domain, and delete a variable and then project
on the remaining dimensions.

As the variables in Shared live both in the buffers and the memory, we will
use the explicit notation xmem for the bindings of Mem. We represent a buffer of
length N of the thread T for the variable x by N variables xT

1 , ..., xT
N containing

the buffer entries in order, xT
1 being the most recent one and xT

N the oldest one.
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Fig. 4. A concrete domain for PSO programs.

This concrete domain has been used by in our previous work [20] to define
the concrete non-modular semantics of the programs. For each statement corre-
sponding to a control graph edge stmt and for each thread T , they define the
operator �stmt�T : D → D that computes the set of states reachable when T
executes stmt from any state in an input set. �x := e�T adds the value of e into
the buffer of T for the variable x, shifting the already present xT

i . �r := x� reads
xT
1 , or, if not defined (the buffer is empty), xmem. �flush x�T removes the oldest

entry of x and writes its value in xmem. �mfence�T ensures that all buffers of
T are empty before executing subsequent operations. The formal semantics is
recalled in Fig. 5. For convenience reasons, we define �.� on state singletons {S}
and then lift it pointwise to any state set.

The standard way of using this semantics consists in constructing the product
control graph modeling all interleavings of thread executions of a program from
the control graph of each thread it is composed of. The semantics of the program
is then computed as the least fixpoint of the equation system described by this
graph, whose vertices are control states (elements of C as defined in Fig. 4) and
edges are labelled by operators of Fig. 5. The non-determinism of flushes can be
encoded by a self-loop edge of label �flush x�T for each x ∈ Shared, T ∈ Thread
on each vertex in the graph. However, we will now state a lemma that will
provide us a new and more efficient computation method.

Lemma 1 (Flush commutation). Let x ∈ Shared and �op
�x
� be an operator

that neither writes to nor reads from x, that is either �y := expr�, �r := y�,
�r := expr� or �condition�, with ∀y ∈ Shared, y �= x ⇒ y /∈ condition. Then:

∀S ∈ S ,∀T ∈ Thread, �flush x�T ◦ �op
�x
�S = �op

�x
� ◦ �flush x�T S

Proof. We consider S as a numerical point, each variable being a dimension in
the state space. We distinguish two cases:

Case 1: LT
S (x) = 0. �flush x�T S = ∅, thus �op

�x
�(�flush x�T S) = ∅. �op

�x
� does

not add any entry to the buffer of x and T , since �x := e� is the only operator
that does it. Therefore LT

S (�op
�x
�S) = 0, which implies �flush x�T (�op

�x
�S) = ∅.
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Fig. 5. Concrete interleaving semantics in PSO.

Case 2: LT
S (x) > 0. �op

�x
� does not modify the value of xT

LT
S (x)

, and does not use

the value of the dimension xmem. Therefore �xmem := xT
LT

S (x)
� commutes with

�op
�x
�. �op

�x
� does not use the value of xT

LT
S (x)

either, therefore �op
�x
� also com-

mutes with �drop xT
LT

S (x)
�. Chaining both commutations makes �op

�x
� commute

with �flush x�T . 
�
This flush commutation allows us to avoid computing the flush of each vari-

able from each thread at each control state, and to compute only the flush of the
variables that have been affected by the statements leading to this control state.
Specifically, when computing the result of an edge labelled with �opx�T (where
�opx� denotes an operator that reads from or writes to the Shared variable x)
from a concrete element X, we do not only compute �opx�T X, but:

�flush x�∗ ◦ �opx�T X

where :

�flush x�∗X � lfp(λY.X ∪
⋃

T∈Thread

�flush x�T Y )

That is, we compute the result of a closure by flush after applying the opera-
tor. Note that flushes are computed from all threads, not only the one performing
�opx�. The lemma states that no other flush is needed. The result R : C → D
of the analysis can be stated as a fixpoint on the product control graph:

�̃op�T : D → D � λX.

{
�flush x�∗ ◦ �op�T X if �op� acts on x ∈ Shared
�op�T X otherwise

R0 : C → D = λc. if c is initial then  else ⊥

R = lfp λR.R0 ∪

⎛

⎜⎝λc.
⋃

c′ op−→T c edges

�̃op�T R(c′)

⎞

⎟⎠
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This property will prove itself even more useful when going into modular
analysis.

Remark 2. As long as we stay in the concrete domain, this computation method
has no effect on precision. However, this is no longer necessarily true when going
into the abstract, and we found this method to be actually more precise on some
examples: the flush abstract operator may induce information loss, and the new
method performs less flush operations, thus retaining more precision.

2.2 Modular Concrete Semantics

We rely on Miné’s interference system [15] to elaborate a thread-modular seman-
tics from the monolithic previous one, as well as a computation method.

Transition Systems. The interference-based semantics can be expressed in the
most general way when resorting to labelled transition systems rather than to
equation systems (that are described by the control graph based analysis). We
follow Cousot and Cousot [5] and express the transition system associated to
our concurrent programs as a set Σ = C × S of global states, a set I ⊆ Σ of
initial states, and a transition relation τ ⊆ Σ × Thread × Σ. We write σ

T−→τ σ′

for (σ, T, σ′) ∈ τ , which denotes that executing a step from thread T updates
the current global state σ into the state σ′. We refer to Cousot [5] and Miné [15]
for the formal definition of such a system, which is quite standard.

The semantics of this transition system specifies that a global state σ is
reachable if and only if there exists a finite sequence of states σ1, ..., σn and
some (not necessarily different) threads Tα, Tβ , ..., Tψ, Tω ∈ Thread such that

I
Tα−−→τ σ1

Tβ−−→τ ...
Tψ−−→τ σn

Tω−−→τ σ.

Local States. The monolithic transition system uses as global states a pair
of a global control information in C and a memory state in S . The modular
transition system defines the local states of a thread T by reducing the control
part to that of T only. By doing so, one retrieves a semantics that has the same
structure as when performing a sequential analysis of the thread. However, the
control information of the other threads is not lost, but kept in auxiliary variables
pcT ′ for each T ′ ∈ Thread, T ′ �= T . This is needed for staying complete in the
concrete, and useful to remain precise in the abstract world. We denote by ST

the states in S augmented with these pcT ′ variables. Local states of T ∈ Thread
thus live in ΣT = L × ST . We define the domain DT � P(ST ).

Interferences. Interferences model interaction and communication between
threads. The interferences set IT caused by a thread T are transitions produced
by T : IT �

{
σ

T−→τ σ′ ∈ τ |σ is a state reachable from I
}

.

Computation Method. The method for computing an interference modular
semantics works with two least fixpoint iterations:

– The inner fixpoint iteration computes, for a given interference set, the local
states result of a thread. It also produces the interferences set generated by
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this thread executions. It will ultimately compute the program state reacha-
bility, one thread at a time.

– The outer fixpoint iteration computes fully the inner fixpoint, using the gen-
erated interferences from one inner analysis as an input of the next one. It
goes on, computing the inner fixpoint for each thread at each iteration, until
the interferences set is stabilised with increasing sets of interferences starting
from an empty set.

The outer least fixpoint computation is a standard run-until-stabilisation
procedure. The inner fixpoint is alike sequential program fixpoint computation,
with the specificity of interference that we will describe. We refer to Miné [15]
for the complete development on general transition systems, while we focus here
on the specific case of the language of Sect. 2.1 under weak memory models.

This analysis method is thread modular in the sense that it analyses each
thread in isolation from other thread code. It must still take into account the
interferences from other threads to remain sound. Furthermore, this is a con-
structive method: we infer the interference set from scratch rather than relying
on the user to provide it. This is why we need to iterate the outer fixpoint com-
putation as opposed to analysing each thread separately only once. Practically,
we observe that the number of outer iterations until stabilisation is very small
(less than 5) on typical programs.

Let us consider the graph representation of the inner fixpoint computation.
As already stated, it takes an interference set as an input and works like a
sequential program analysis, except when computing the result of an edge trans-
fer operation, the analyser also uses the origin and the resulting local states
to build an interference corresponding to the transition associated to the edge.
As ST holds the control information about other threads, as long as we stay
in the concrete domain, all the information needed to build this interference is
available. The analyser also needs to take into account the transition from other
threads: this is done through an interference application phase that can be per-
formed just after computing the local state attached to a vertex. Amongst all
interferences, the analyser picks the ones whose origin global state is compatible
with the current local state (which means they model transitions that can hap-
pen from this local state); then it updates the local state, adding the destination
global states of these interferences as possible elements.

On a thread analysis with a SC model, these two phases are well separated:
first, a generation phase computes a destination state as well as generated inter-
ferences. Then the analyser joins the destination states from all incoming vertices
to get the resulting current state at the current label. After this, the application
phase applies candidate interferences, and the fixpoint engine can move to the
next vertex to be computed. However, it works differently in a relaxed memory
setting, due to flush self-loop edges: one wants to avoid useless recomputations of
incoming edges by computing a flushing fixpoint before applying interferences.
These flushes generate interferences themselves, that must be taken into account.

Yet we showed earlier, for the monolithic analysis, that it was equivalent to
compute flushes only when needed (which is more efficient), that is after oper-
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ations on the same variable, with which they do not commute. This works the
same way in modular analyses: when applying interferences from other threads,
one can in particular apply interferences that interact with a variable in the
shared memory. These applications do not commute with flushes of this vari-
able: therefore, one must close by flush with respect to a variable after applying
interferences that interact with this variable.

3 Abstract Semantics

3.1 Abstracting Local States

We abstract the local state of a thread T in a similar way to our previous
work [20]. We first forget the variables that represent the buffer entries from
other threads than T (but we keep their local variables). We define in Fig. 6 this
abstraction. The intuition behind this projection is that these entries are not
observable by the current thread, yet it will still be aware of them once they
are flushed, because they will be found in the accessible shared memory. As a
consequence, forgetting them is an abstraction that can lose precision in the long
run, but it is necessary for scalability.

We then partition the states with respect to a partial information, for each
variable, on the length of the corresponding buffer: either it is empty (we note this
information 0), or it contains exactly one entry (we note this 1), or it contains
more than one (we note this 1+). The partitioning function, δT , is given in
Fig. 7a. We use the notation LT

S (x) as the length of the buffer of the variable x
for the thread T in the state S.

We use a state partitioning abstraction [5] with respect to this criterion, the
resulting domain being defined in Fig. 7b. We recall that the partitioning itself
does not lose any information: −−−→−→←←−−−−

αp

γp

is a Galois isomorphism.
The intuition behind this particular partitioning is twofold: first, since

our operations behave differently depending on the buffer lengths, we
regroup together the states with the same abstract lengths in order to get uni-
form operations on each partition; second, each state in every partition defines
the same variables (including buffer variables, as explained in Remark 2), thus
the numerical abstraction presented later will benefit from this partitioning: we
can use a single numeric abstract element to represent a set of environments over
the same variable and buffer variable set.

The next step uses the summarisation technique described by Gopan et al.
[6] In each partition, we separate the variables xT

2 ...xT
N (up to the size N of the

buffer for x in T ) from xT
1 and regroup the former into a single summarised

variable xT
bot. The summarisation abstraction is then lifted partition-wise to the

partitioned states domain to get a final summarised and partitioned abstract
domain. This domain is used through a Galois connection D�

T −−−−→←−−−−
αS

γS

DSum
T , as

defined by Gopan et al. [6]

Abstracting the Control. We also need to develop a new abstraction for the
control part of the local states. This control part was not present in the states of
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Fig. 6. Forgetting other threads buffers as a first abstraction.

Fig. 7. State-partitioning w.r.t. an abstraction of buffer lengths

the original monolithic semantics [20], which iterated its fixpoint over an explicit
product control state. The superiority of the thread-modular analysis lies in the
possibility of choosing the control abstraction to be as precise or fast as one
wants. In particular, one can emulate the interleaving analysis (the concrete
modular semantics being complete).

Several control representations have been proposed by previous authors [14,
16]. Our domain is parametric in the sense that we can choose any control
abstraction and plug it into the analysis. However, we tried a few ones and will
discuss how they performed as well as our default choice.

No abstraction. The first option is to actually not abstract the control. This
emulates the interleaving analysis.

Flow-insensitive abstraction. This abstraction [14] simply forgets the con-
trol information about the other threads. The intra-thread analysis remains
flow-sensitive regarding the thread itself. Albeit very fast, this is usually too
imprecise and does not allow verifying a wide variety of programs.
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Control-partitioning abstraction. This technique was explored in sequential
consistency by Monat and Miné [16] and consists in selecting a few abstract
labels that represent sets of labels, and only distinguishing between different
abstract labels and not between two labels mapped to the same abstract
label. This is a flexible choice since one can modulate the precision of the
analysis by refining at will the abstraction. In particular, one can retrieve
the flow-insensitive abstraction by choosing a single abstract label, and the
precise representation by mapping each concrete label to itself.

We settled on the general control-partitioning abstraction and manually set
our locations program by program. Additional work is needed to propose an auto-
matic method that is both precise enough and does not add too many abstract
labels that slow down the analyses.

Formally, we define for each thread T a partition L�
T of the control points

in L of T . Consider the program of Fig. 2. The partition that splits after the
critical section end is L�

T = {[1 .. l1] ; [l2 .. end]}. Note that this partition does
not formally need to be composed of intervals. Once this partition is defined,
we denote as α̇LT

: L → L�
T the mapping from a concrete control label to the

partition block to which it belongs: for instance, with the previous example,
α̇LT

(lcrit start) = [1 .. l1]. With no abstraction, L�
T = L and α̇LT

= λl.l, and with
a flow-insensitive abstraction, L�

T = {} and α̇LT
= λl..

Numerical Abstraction. We eventually regroup the original thread state and
the control parts of the local state in a numerical abstraction. Since control
information can be represented as an integer, this does not change much from
the non-modular abstraction. The partitioning has been chosen so that every
summarised state in the same partition defines the same variables (in particular,
the buffer ones xT

1 and xT
bot). Thus a well-chosen numerical abstraction can be

applied directly to each partition. This abstraction will be denoted as the domain
DN , and defined by a concretisation γN (since some common numerical domains,
such as polyhedras, do not possess an abstraction αN that can be used to define
a Galois connection).

Our analysis is parametric w.r.t. the chosen numerical abstraction: one can
modulate this choice to match some precision or performance goal. In our imple-
mentation, we chose numerical domains that allowed us to keep the control
information intact after partitioning, since it was usually required to prove our
target programs. Namely, we used the Bddapron [9] library, which provides
logico-numerical domains implemented as numerical domains (such as octagons
or polyhedras) on the leaves of decision diagrams (which can encode bounded
integers, therefore control points, with an exact precision). As control informa-
tion is a finite space, this does not affect the calculability of the semantics.

The resulting global composed domain is recapped in Fig. 8. For convenience,
we consider the γ̇LT

concretisation of abstract domains to be integrated to the
γN definition of the numerical final abstraction, since both are strongly linked.
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Fig. 8. Final local states abstraction

3.2 Abstracting Interferences

We recall that interferences in the transition system live in Σ×Thread×Σ. They
are composed of an origin global state, the thread that generates them, and the
destination global state. We group interference sets by thread: one group will
thus be an abstraction of P(Σ × Σ). We represent the control part of Σ as a
label variable pcT for each T ∈ Thread.

To represent pairs in Σ × Σ, we group together the origin and the destination
global states in a single numerical environment. We use the standard variable
names for the origin state, and use a primed version v′ of each variable v for
the destination domain. This is a common pattern for representing input-output
relations over variables, such as function application.

We then apply the same kind of abstractions as in local states: we forget
every buffer variable of every thread (including the thread indexing each inter-
ference set), and we abstract the control variables of each thread, using the same
abstraction as in local states, which is label partitioning.

We partition the interferences with respect to the shared variable they inter-
act with (which can be None for interferences only acting on local variables).
This allows us to close-by-flush after interference application considering only
the shared variables affected, as we discussed in Sect. 2.2.

After doing that, we use a numerical abstraction for each partition. Although
one could theoretically use different numerical domains for local states and inter-
ferences, we found that using the same one was more convenient: since interfer-
ence application and generation use operations that manipulate both local states
and interferences (for instance, interferences are generated from local states, then
joined to already existing interferences), it is easier to use operations such as
join that are natively defined rather than determining similar operators on two
abstract elements of different types.

3.3 Abstract Operations

Operators for computing local states and generating interferences can be derived
from our abstraction in the usual way: we obtain the corresponding formulas by
reducing the equation f � = α◦f ◦γ. The local state ones are practically identical
to the monolithic ones [20], we will not restate them here.

We express in Fig. 9 the resulting interference generation operators for flush
and shared memory writing. The local state transfer operators are almost the
same as in non-modular abstract interpretation, and the other interference gen-
erators follow the same general pattern as these two, so we did not write them
for space reasons. D�

T is the abstract domain of local states, and I � are abstract
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interferences. � denotes function application (x � f � g is g(f(x))). We write
l1�stmt��l2

T for the application of the abstract operator �stmt��
T between control

labels l1 and l2. Note that l1 and l2 are concrete labels (linked to the location of
the statement stmt in the source program, and the corresponding control graph
vertices).

We draw the attention of the reader on the �x := r�T interference generator:
it does only update the control labels of T . Indeed, the performed write only
goes into T ’s buffer, which is not present in the interferences. The actual write
to the memory will be visible by other threads though the flush interference,
that will be generated later (during the flush closure).

We refer to Monat and Miné [16] for the interference application operator,
that does not change from sequential consistency (the difference being that after
using apply, one will close by flush).

Soundness. The soundness proof of this analysis builds upon two results: the
soundness of the monolithic analysis [20], and the soundness of the concrete
interference analysis [15]. Our pen-and-paper proof is cumbersome, hence we
will simply explain its ideas: first, we already gave a formal soundness proof
for the monolithic abstract operators [20]. Our local operators being almost the
same, their soundness proof is similar. Miné [15] also shows that the interference
concrete analysis is both sound and complete. We show that our interference

Fig. 9. Abstract operators for interference generation.
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operators soundly compute both the control and the memory part of the concrete
transitions: the control part only maps a label to its abstract counterpart, and
the memory part also stems from the monolithic analysis.

4 Experimentations

We implemented our method and tested it against a few examples. Our proto-
type was programmed with the OCaml language, using the BDDApron logico-
numerical domain library and contributing a fixpoint engine to ocamlgraph. Our
experiments run on a Intel(R) Xeon(R) CPU E3-1505M v5 @ 2.80 GHz computer
with 8 GB RAM. We compare against our previous work [20].

Improvements on Scaling. To test the scaling, we used the N-threads version
of the program of Fig. 2, and timed both monolithic and modular analyses when
N increases. Results are shown in Fig. 10. They show that the modular analysis
does indeed scale better than the monolithic one: the performance ratio between
both methods is exponential. However, the modular analysis still has an expo-
nential curve, and is slower than in sequential consistency where it was able to
analyse hundreds of threads of the same program in a couple of hours [16].

We believe this difference is mainly due to the fact that, in SC, adding a
thread only adds so much code for the analyser to go through. This is not the
case in relaxed models, where adding a thread also increases the size of program
states, due to its buffers. Therefore the 8 threads version of the program has not
only 4 times as much code to analyse than the 2 threads version, but this code
also deals with a 4 times bigger global state: the analysis difficulty increase is
twofold, leading to a greater analysis time augmentation.

Testing the Precision. Modular analysis, after abstraction, provides a more
scalable method than a monolithic one. This comes at a cost: the additional
abstraction (for instance on control) may lead to precision loss. To assess this
precision, we compare with our previous results [20] in Fig. 11.

The analysis of these programs aims to check safety properties expressed as
logico-numerical invariants. These properties mostly are mutual exclusions: at
some program points (the combinations of at least two thread critical section
control points), the abstraction should be ⊥ (or the property false should hold).

The modular analysis was able retain the needed precision to prove the cor-
rectness of most of these programs, despite the additional abstraction. However,
it does fail on two tests, kessel and bakery. We believe that it could also pass
these ones with a better control partitioning, but our heuristics (see the next
paragraph) were not able to determine it.

Note that bakery is significantly bigger than the other examples. Although
our analysis could not verify it, it did finish (in a few minutes with the most
aggressive abstractions), whereas the non-modular one was terminated after run-
ning for more than a day. This is not a proper scaling improvement result due
to the failure, but it is worth noticing.

All the programs certified correct by our analysis are assumed to run under
the PSO model. Yet some programs may be correct under the stronger TSO
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Fig. 10. Scaling results.

Fig. 11. Precision results on small programs.

model but not under PSO: for instance, one can sometimes remove some fences
(between two writes into different locations) of a PSO valid program and get
a TSO (but no longer PSO) valid program. Our prototype will not be able to
check these TSO programs, since it is sound w.r.t. PSO.

Our main target being TSO, this can be a precision issue, which one can
solve by adding additional fences. However, we observed that all those tests,
except peterson, were validated using the minimal set of fences for the program
to be actually correct under TSO; this validates our abstraction choice even
with TSO as a target. We already proposed a method to handle TSO better by
retrieving some precision [20]: this technique could also be implemented within
our modular framework if needed.

Leveraging Our Method in Production. For realistic production-ready
analyses, one should likely couple this analysis with a less precise, more scal-
able one, such as a non-relational or flow-insensitive one [11,14]. The precise one
should be used on the small difficult parts of the programs, typically when syn-
chronisation happens and precision is needed to model the interaction between
threads. Then the scaling method can be used on the other parts, for instance
when threads do large computations without interacting much. As, to be scal-
able, a concurrent program analysis must be thread-modular anyway, we also
believe this analysis lays a better ground for this kind of integration than a
monolithic one.

We also recall that our method requires the user to manually select the
control abstraction. The control partition is specified by adding a label notation
at chosen separation points. Most of the time, partitioning at loop heads is
sufficient. We believe this could be fully automated but are not able to do it
yet. Practically, we found that few trials were needed to find reasonably good
abstractions: putting label separations on loops heads and at the control point
where the properties must be check was often more than enough. An automatic
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discovery of a proper control partitioning is left to future work and would be an
important feature of a production-ready analyser.

Finally, real-life complex programs feature some additional traits that are
not part of our current semantics. Some, such as pointer and heap abstraction
or shape analysis, are orthogonal to our work: dedicated domains can be merged
with ours to modelise it. Others are linked to the concurrency model, such as
atomic operations like compare-and-swap and lock instructions. The former
could be quickly added to our analyser: one needs to evaluate the condition, con-
ditionally perform the affectation, and flush the memory (like mfence would);
all this without generating or applying interferences inbetween. The latter could
also be added with a little more work: the idea would be to generate interfer-
ences abstracting a whole lock/unlock block transition instead of individual
interferences for each statement in the block.

5 Related Work

Thread-modular and weak memory analyses has been investigated by several
authors [1,2,4,7,8,10,13,15–17], yet few works combine both. Nonetheless, it
was shown [3,14] that non-relational analyses that are sound under sequential
consistency remain sound under relaxed models. Thus some of these works can
also be used in a weakly consistent memory environment, if one accepts the
imprecision that comes with non-relational domains. In particular, Miné [14] pro-
poses a sound yet imprecise (flow-insensitive, non-relational) analysis for relaxed
memory.

Ridge [18] has formalised a rely-guarantee logics for x86-TSO. However, his
work focuses on a proof system for this model rather than static analysis. There-
fore he proposes an expressive approach to express invariants, which is an asset
for strong proofs but is less practical for a static analyser which abstracts away
this kind of details to build a tractable analysis.

Kusano et al. [11] propose a thread-modular analysis for relaxed memory
models, including TSO and PSO. They rely on quickly generating imprecise
interference sets and leverage a Datalog solver to remove interferences combi-
nations that can be proved impossible. However, unlike ours, their interferences
are not strongly relational in the sense that they do not hold control information
and do not link the modification of a variable to its old value. Thus this method
will suffer from the same kind of limitations as Miné’s flow insensitive one [14].

6 Conclusion

We designed an abstract interpretation based analysis for concurrent programs
under relaxed memory models such as TSO that is precise and thread-modular.
The specificity of our approach is a relational interference abstract domain that
is weak-memory-aware, abstracting away the thread-specific part of the global
state to gain performance while retaining enough precision through partitioning
to keep the non-deterministic flush computation precise. We implemented this
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approach, and our experimental results show that this method does scale bet-
ter than non-modular analysis with no precision loss. We discussed remaining
scalability issues and proposed ways to solve them in a production analyser.

Future work should focus on more relaxed memory models such as POWER
and C11. We believe that interference-based analysis lays a solid ground to
abstract some of these model features that are presented as communication
actions between threads. However, besides being more relaxed, these models
are also significantly more complex and some additional work needs to be done
to propose abstractions that reduce this complexity to get precise yet efficient
analyses.
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Abstract. This paper presents the Scallina prototype: a new tool which
allows the translation of verified Coq programs to Scala. A typical work-
flow features a user implementing a functional program in Gallina, the
core language of Coq, proving this program’s correctness with regards to
its specification and making use of Scallina to synthesize readable Scala
components.

This synthesis of readable, debuggable and traceable Scala compo-
nents facilitates their integration into larger Scala or Java applications;
opening the door for a wider community of programmers to benefit from
the Coq proof assistant. Furthermore, the current implementation of the
Scallina translator, along with its underlying formalization of the Scall-
ina grammar and corresponding translation strategy, paves the way for
an optimal support of the Scala programming language in Coq’s native
extraction mechanism.

Keywords: Formal methods · Functional programming · Compiler
Coq · Scala

1 Introduction

In our modern world, software bugs are becoming increasingly detrimental to
the engineering industry. As a result, we have recently witnessed interesting
initiatives that use formal methods, potentially as a complement to software
testing, with the goal of proving a program’s correctness with regards to its
specification. A remarkable example of such an initiative is a U.S. National
Science Foundation (NSF) expedition in computing project called “the Science
of Deep Specification (DeepSpec)” [17].

Since the manual checking of realistic program proofs is impractical or, to
say the least, time-consuming; several proof assistants have been developed to
provide machine-checked proofs. Coq [12] and Isabelle/HOL [14] are currently
two of the world’s leading proof assistants; they enable users to implement a
program, prove its correctness with regards to its specification and extract a
proven-correct implementation expressed in a given functional programming lan-
guage. Coq has been successfully used to implement CompCert, the world’s first
formally verified C compiler [8]; whereas Isabelle/HOL has been successfully
c© Springer Nature Switzerland AG 2018
S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 131–145, 2018.
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used to implement seL4, the world’s first formally verified general-purpose oper-
ating system kernel [7]. The languages that are currently supported by Coq’s
extraction mechanism are OCaml, Haskell and Scheme [11], while the ones that
are currently supported by Isabelle/HOL’s extraction mechanism are OCaml,
Haskell, SML and Scala [4].

The Scala programming language [15] is considerably adopted in the indus-
try. It is the implementation language of many important frameworks, including
Apache Spark, Kafka, and Akka. It also provides the core infrastructure for
sites such as Twitter, Coursera and Tumblr. A distinguishing feature of this lan-
guage is its practical fusion of the functional and object-oriented programming
paradigms. Its type system is, in fact, formalized by the calculus of Dependent
Object Types (DOT) which is largely based on path-dependent types [1]; a lim-
ited form of dependent types where types can depend on variables, but not on
general terms.

The Coq proof assistant, on the other hand, is based on the calculus of induc-
tive constructions; a Pure Type System (PTS) which provides fully dependent
types, i.e. types depending on general terms [3]. This means that Gallina, the core
language of Coq, allows the implementation of programs that are not typable in
conventional programming languages. A notable difference with these languages
is that Gallina does not exhibit any syntactic distinction between terms and
types [12].1

To cope with the challenge of extracting programs written in Gallina to
languages based on the Hindley-Milner [5,13] type system such as OCaml and
Haskell, Coq’s native extraction mechanism implements a theoretical function
that identifies and collapses Gallina’s logical parts and types; producing untyped
λ-terms with inductive constructions that are then translated to the designated
target ML-like language, i.e. OCaml or Haskell. During this process, unsafe type
casts are inserted where ML type errors are identified [10]. For example, these
unsafe type casts are currently inserted when extracting Gallina records with
path-dependent types. However, as mentioned in Sect. 3.2 of [11], this specific
case can be improved by exploring advanced typing aspects of the target lan-
guages. Indeed, if Scala were a target language for Coq’s extraction mechanism,
a type-safe extraction of such examples could be done by an appropriate use of
Scala’s path-dependent types.

It is precisely this Scala code extraction feature for Coq that constitutes the
primary aim of the Scallina project. Given the advances in both the Scala pro-
gramming language and the Coq proof assistant, such a feature would prove both
interesting and beneficial for both communities. The purpose of this tool demon-
stration paper is to present the Scallina prototype: a new tool which allows the
translation of verified Coq programs to Scala. A typical workflow features a user
implementing a functional program in Coq, proving this program’s correctness
with regards to its specification and making use of Scallina to synthesize read-
able Scala components which can then be integrated into larger Scala or Java
applications. In fact, since Scala is also interoperable with Java, such a feature

1 Except that types cannot start by an abstraction or a constructor.



The Scallina Translator 133

would open the door for a significantly larger community of programmers to
benefit from the Coq proof assistant.

Section 2 of this paper exposes the overall functionality of the tool while
Sect. 3 portrays its strengths and weaknesses and Sect. 4 concludes. The source
code of Scallina’s implementation is available online2 along with a command line
interface, its corresponding documentation and several usage examples.

2 Integrating Verified Components into Larger
Applications

Coq’s native extraction mechanism tries to produce readable code; keeping in
mind that confidence in programs also comes via the readability of their sources,
as demonstrated by the Open Source community. Therefore, Coq’s extraction
sticks, as much as possible, to a straightforward translation and emphasizes the
production of readable interfaces with the goal of facilitating the integration
of the extracted code into larger developments [9]. This objective of seamless
integration into larger applications is also shared by Scallina. In fact, the main
goal of Scallina is to extract, from Coq, Scala components that can easily be
integrated into existing Scala or Java applications.

Although these Scala components are synthesized from verified Coq code,
they can evidently not guarantee the correctness of the larger Scala or Java appli-
cation. Nevertheless, the appropriate integration of such verified components sig-
nificantly increases the quality-level of the whole application with regards to its
correctness; while, at the same time, reducing the need for heavy testing.

Indeed, even if a purely functional Scala component is verified with regards
to its specification, errors caused by the rest of the application can still mani-
fest themselves in the code of this proven-correct component. This is especially
true when it comes to the implementation of verified APIs that expose pub-
lic higher-order functions. Take the case of Listing 1 which portrays a Gallina
implementation of a higher-order map function on a binary tree Algebraic Data
Type (ADT). A lemma which was verified on this function is given in Listing 2;
whereas the corresponding Scala code, synthesized by Scallina, is exhibited in
Listing 3.

Listing 1. A Gallina higher-order map function on a binary tree ADT

Inductive Tree A : = Leaf | Node (v: A) (l r: Tree A).
Arguments Leaf {A}.
Arguments Node {A} _ _ _.
Fixpoint map {A B} (t: Tree A) (f: A → B) : Tree B : =
match t with

Leaf => Leaf

| Node v l r => Node (f v) (map l f) (map r f)
end.

2 https://github.com/JBakouny/Scallina/tree/v0.5.0.

https://github.com/JBakouny/Scallina/tree/v0.5.0
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Listing 2. A verified lemma on the higher-order map function

Definition compose {A B C} (g : B → C) (f : A → B) := fun x : A => g (f x).

Lemma commute : ∀ {A B C} (t: Tree A) (f: A → B) (g: B → C),

map t (compose g f) = map (map t f) g.

Listing 3. The synthesized Scala higher-order map function with the binary tree ADT

sealed abstract class Tree[+A]

case object Leaf extends Tree[Nothing]

case class Node[A](v: A, l: Tree[A], r: Tree[A]) extends Tree[A]

object Node {

def apply[A] =

(v: A) => (l: Tree[A]) => (r: Tree[A]) => new Node(v, l, r)

}

def map[A, B](t: Tree[A])(f: A => B): Tree[B] =

t match {

case Leaf => Leaf

case Node(v, l, r) => Node(f(v))(map(l)(f))(map(r)(f))

}

Unlike Gallina, the Scala programming language supports imperative con-
structs. So, for example, if a user of the map function mistakenly passes a buggy
imperative function f as second argument, the overall application would poten-
tially fail. In such a case, the failure or exception would appear to be emitted by
the verified component, even though the bug was caused by the function f that
is passed as second argument, not by the verified component.

To fix such failures, most industrial programmers would first resort to debug-
ging; searching for and understanding the root cause of the failure. Hence, the
generation of Scala components that are both readable and debuggable would
pave the way for a smoother integration of such formal methods in industry. The
synthesized Scala code should also be traceable back to the source Gallina code
representing its formal specification in order to clarify and facilitate potential
adaptations of this specification to the needs of the overall application.

Therefore, in congruence with Coq’s native extraction mechanism, the Scall-
ina translator adopts a relatively straightforward translation. It aims to generate,
as much as possible, idiomatic Scala code that is readable, debuggable and trace-
able; facilitating its integration into larger Scala and Java applications. We hope
that this would open the door for Scala and Java programmers to benefit from
the Coq proof assistant.

3 Translating a Subset of Gallina to Readable Scala Code

As mentioned in Sect. 1, Gallina is based on the calculus of inductive con-
structions and, therefore, allows the implementation of programs that are not
typable in conventional programming languages. Coq’s native extraction mech-
anism tackles this challenge by implementing a theoretical function that identi-
fies and collapses Gallina’s logical parts and types; producing untyped λ-terms
with inductive constructions that are then translated to the designated target
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ML-like language; namely OCaml or Haskell. During this translation process,
a type-checking phase approximates Coq types into ML ones, inserting unsafe
type casts where ML type errors are identified [11]. However, Scala’s type system,
which is based on DOT, significantly differs from that of OCaml and Haskell. For
instance, Scala sacrifices Hindley-Milner type inference for a richer type system
with remarkable support for subtyping and path-dependent types [1]. So, on the
one hand, Scala’s type system requires the generation of significantly more type
information but, on the other hand, can type-check some constructs that are not
typable in OCaml and Haskell.

As previously mentioned, the objective of the Scallina project is not to repeat
the extraction process for Scala but to extend the current Coq native extraction
mechanism with readable Scala code generation. For this purpose, it defines the
Scallina grammar which delimits the subset of Gallina that is translatable to
readable and traceable Scala code. This subset is based on an ML-like fragment
that includes both inductive types and a polymorphism similar to the one found
in Hindley-Milner type systems. This fragment was then augmented by intro-
ducing the support of Gallina records, which correspond to first-class modules.
In this extended fragment, the support of Gallina dependent types is limited to
path-dependent types; which is sufficient to encode system F [1].

The Scallina prototype then implements, for Gallina programs conforming
to this grammar, an optimized translation strategy aiming to produce idiomatic
Scala code similar to what a Scala programmer would usually write. For exam-
ple, as exhibited by Listings 1 and 3, ADTs are emulated by Scala case classes.
This conforms with Scala best practices [16] and is already adopted by both
Isabelle/HOL and Leon [6]. However, note that Scallina optimizes the transla-
tion of ADTs by generating a case object instead of a case class where appro-
priate; as demonstrated by Leaf. Note also that this optimization makes good
use of Scala’s variance annotations and Nothing bottom type. This use of an
object instead of a parameterless class improves both the readability and the
performance of the output Scala code. Indeed, the use of Scala singleton object
definitions removes the performance overhead of instantiating the same parame-
terless class multiple times. Furthermore, when compared to the use of a param-
eterless case class, the use of a case object increases the readability of the code
by avoiding the unnecessary insertions of empty parenthesis. This optimization,
embodied by our translation strategy, is a best practice implemented by Scala
standard library data structures such as List[+A] and Option[+A].

Since the identification and removal of logical parts and fully dependent types
are already treated by Coq’s theoretical extraction function, the Scallina proto-
type avoids a re-implementation of this algorithm but focuses on the optimized
translation of the specified Gallina subset to Scala. This supposes that a prior
removal of logical parts and fully dependent types was already done by Coq’s
theoretical extraction function and subsequent type-checking phase; catering for
a future integration of the Scallina translation strategy into Coq’s native extrac-
tion mechanism. In this context, Scallina proposes some modifications to the
latter with regards to the typing of records with path-dependent types. These



136 Y. E. Bakouny and D. Mezher

modifications were explicitly formulated as possible future works through the
aMonoid example in [11]. Listing 4 shows a slight modification of the aMonoid

example which essentially removes its logical parts. While, as explained in [11],
the current extraction of this example produces unsafe type casts in both OCaml
and Haskell; Scallina manages to translate this example to the well-typed Scala
code shown in Listing 5.

Listing 4. The aMonoid Gallina record with its logical parts removed

Record aMonoid : Type : = newMonoid {
dom : Type;
zero : dom;
op : dom → dom → dom

}.
Definition natMonoid : = newMonoid nat 0 (fun (a: nat) (b: nat) => a + b).

Listing 5. The Scala translation of the aMonoid Gallina record

trait aMonoid {

type dom

def zero: dom

def op: dom => dom => dom

}

def newMonoid[dom](zero: dom)(op: dom => dom => dom): aMonoid = {

type aMonoid_dom = dom

def aMonoid_zero = zero

def aMonoid_op = op

new aMonoid {

type dom = aMonoid_dom

def zero: dom = aMonoid_zero

def op: dom => dom => dom = aMonoid_op

}

}

def natMonoid = newMonoid[Nat](0)((a: Nat) => (b: Nat) => a + b)

Indeed, Scallina translates Gallina records to Scala functional object-oriented
code which supports path-dependent types. In accordance with their Scala repre-
sentation given in [1], record definitions are translated to Scala traits and record
instances are translated to Scala objects. When a Gallina record definition explic-
itly specifies a constructor name, Scallina generates the equivalent Scala object
constructor that can be used to create instances of this record, as shown in List-
ing 5; otherwise, the generation of the Scala record constructor is intentionally
omitted. In both cases, Gallina record instances can be created using the named
fields syntax {| ... |} , whose translation to Scala produces conventional object
definitions or, where necessary, anonymous class instantiations. A complete and
well-commented example of a significant Gallina record translation to conven-
tional Scala object definitions is available online3. This example also contains a

3 https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/
list-queue.

https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/list-queue
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/list-queue
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proof showing the equivalent behavior, with regards to a given program, of two
Scala objects implementing the same trait.

A wide variety of usage examples, available online4, illustrate the range of
Gallina programs that are translatable by Scallina. These examples are part
of more than 325 test cases conducted on the current Scallina prototype and
persisted by more than 7300 lines of test code complementing 2350 lines of
program source code. A significant portion of the aforementioned Scallina usage
examples were taken from Andrew W. Appel’s Verified Functional Algorithms
(VFA) e-book [2] and then adapted according to Scallina’s coding conventions.

4 Conclusion and Perspectives

In conclusion, the Scallina project enables the translation of a significant subset
of Gallina to readable, debuggable and traceable Scala code. The Scallina gram-
mar, which formalizes this subset, facilitates the reasoning about the fragment
of Gallina that is translatable to conventional programming languages such as
Scala. The project then defines an optimized Scala translation strategy for pro-
grams conforming to the aforementioned grammar. The main contribution of
this translation strategy is its mapping of Gallina records to Scala; leveraging
the path-dependent types of this new target output language. Furthermore, it
also leverages Scala’s variance annotations and Nothing bottom type to optimize
the translation of ADTs. The Scallina prototype shows how these contributions
can be successfully transferred into a working tool. It also allows the practi-
cal Coq-based synthesis of Scala components that can be integrated into larger
applications; opening the door for Scala and Java programmers to benefit from
the Coq proof assistant.

Future versions of Scallina are expected to be integrated into Coq’s extrac-
tion mechanism by re-using the expertise acquired through the development of
the current Scallina prototype. In this context, an experimental patch for the
Coq extraction mechanism5 was implemented in 2012 but has since become
incompatible with the latest version of Coq’s source code. The implementation
of Scallina’s translation strategy into Coq’s extraction mechanism could poten-
tially benefit from this existing patch; updating it with regards to the current
state of the source code. During this process, the external implementation of
the Scallina prototype, which relies on Gallina’s stable syntax independently
from Coq’s source code, could be used to guide the aforementioned integration;
providing samples of generated Scala code as needed.

Acknowledgements. The authors would like to thank the National Council for Sci-
entific Research in Lebanon (CNRS-L) (http://www.cnrs.edu.lb/) for their funding, as
well as Murex S.A.S (https://www.murex.com/) for providing financial support.

4 https://github.com/JBakouny/Scallina/tree/v0.5.0/src/test/resources in addition
to https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/.

5 http://proofcafe.org/wiki/en/Coq2Scala.

http://www.cnrs.edu.lb/
https://www.murex.com/
https://github.com/JBakouny/Scallina/tree/v0.5.0/src/test/resources
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/
http://proofcafe.org/wiki/en/Coq2Scala
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A Appendix: Demonstration of the Scallina Translator

Scallina’s functionalities will be demonstrated through the extraction of Scala
programs from source Gallina programs. The fully executable version of the code
listings exhibited in this demo are available online6. This includes, for both of the
exhibited examples: the source Gallina code, the lemmas verifying its correctness
and the synthesized Scala code.

A.1 Selection Sort

The selection sort example in Listing 6 is taken from the VFA e-book. It essen-
tially portrays the translation of a verified program that combines Fixpoint,
Definition, let in definitions, if expressions, pattern matches and tuples.

The source code of the initial program has been modified in accordance
with Scallina’s coding conventions. The exact changes operated on the code
are detailed in its online version7 under the Selection.v file.

Listing 6. The VFA selection sort example

Require Import Coq. Arith. Arith.
Require Import Coq. Lists. List.
Fixpoint select (x: nat) (l: list nat) : nat ∗ (list nat) : =
match l with

| nil => (x, nil)
| h:: t => if x <=? h

then let (j, l1) : = select x t in (j, h:: l1)
else let (j, l1) : = select h t in (j, x:: l1)

end.
Fixpoint selsort (l : list nat) (n : nat) {struct n} : list nat : =
match l, n with

| x:: r, S n1 => let (y, r1) : = select x r

in y :: selsort r1 n1

| nil, _ => nil

| _:: _, 0 => nil

end.
Definition selection_sort (l : list nat) : list nat : = selsort l (length l).

Listing 7 portrays the theorems developed in the VFA e-book which verify
that this is a sorting algorithm. These theorems along with their proofs still hold
on the example depicted in Listing 6.

6 https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0.
7 https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/
selection-sort.

https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/selection-sort
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/selection-sort
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Listing 7. The theorems verifying that selection sort is a sorting algorithm

(** Specification of correctness of a sorting algorithm:

it rearranges the elements into a list that is totally ordered. *)

Inductive sorted: list nat → Prop :=
| sorted_nil: sorted nil

| sorted_1: ∀ i, sorted (i:: nil)
| sorted_cons: ∀ i j l, i <= j → sorted (j::l) → sorted (i::j:: l).

Definition is_a_sorting_algorithm (f: list nat → list nat) :=
∀ al, Permutation al (f al) ∧ sorted (f al).

Definition selection_sort_correct : Prop : =
is_a_sorting_algorithm selection_sort.

Theorem selection_sort_perm:
∀ l, Permutation l (selection_sort l).

Theorem select_smallest:
∀ x al y bl, select x al = (y, bl) →

Forall (fun z => y <= z) bl.
Theorem selection_sort_sorted: ∀ al, sorted (selection_sort al).
Theorem selection_sort_is_correct: selection_sort_correct.

The verified Gallina code in Listing 6 was translated to Scala using Scallina.
The resulting Scala code is exhibited in Listing 8.

Listing 8. The synthesized Scala selection sort algorithm

import scala.of.coq.lang._

import Nat._

import Pairs._

import MoreLists._

object Selection {

def select(x: Nat)(l: List[Nat]): (Nat, List[Nat]) =

l match {

case Nil => (x, Nil)

case h :: t => if (x <= h) {

val (j, l1) = select(x)(t)

(j, h :: l1)

}

else {

val (j, l1) = select(h)(t)

(j, x :: l1)

}

}

def selsort(l: List[Nat])(n: Nat): List[Nat] =

(l, n) match {

case (x :: r, S(n1)) => {

val (y, r1) = select(x)(r)

y :: selsort(r1)(n1)

}

case (Nil, _) => Nil

case (_ :: _, Zero) => Nil

}

def selection_sort(l: List[Nat]): List[Nat] = selsort(l)(length(l))

}
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A.2 List Queue Parametricity

The list queue example in Listing 9 is taken from the test suite of Coq’s Para-
metricity Plugin8. It essentially portrays the translation of Gallina record defini-
tions and instantiations to object-oriented Scala code. It also illustrates the use
of Coq’s Parametricity plugin to prove the equivalence between the behavior of
several instantiations of the same record definition; these are then translated to
object implementations of the same Scala trait.

The source code of the initial program has been modified in accordance
with Scallina’s coding conventions. The exact changes operated on the code
are detailed in its online version9 under the ListQueueParam.v file.

Listing 9. The parametricity plugin ListQueue example

Require Import List.
Record Queue : = {

t : Type;
empty : t;
push : nat → t → t;
pop : t → option (nat ∗ t)

}.
Definition ListQueue : Queue : = {|

t : = list nat;
empty : = nil;
push : = fun x l => x :: l;
pop : = fun l =>

match rev l with

| nil => None

| hd :: tl => Some (hd, rev tl) end

|}.
Definition DListQueue : Queue : = {|

t : = (list nat) ∗ (list nat);
empty : = (nil, nil);
push : = fun x l =>

let (back, front) : = l in

(x :: back, front);
pop : = fun l =>

let (back, front) : = l in

match front with

| nil =>

match rev back with

| nil => None

| hd :: tl => Some (hd, (nil, tl))
end

| hd :: tl => Some (hd, (back, tl))
end

|}.
8 https://github.com/parametricity-coq/paramcoq.
9 https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/
list-queue.

https://github.com/parametricity-coq/paramcoq
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/list-queue
https://github.com/JBakouny/Scallina/tree/v0.5.0/packaged-examples/v0.5.0/list-queue
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(* A non-dependently typed version of nat_rect. *)

Fixpoint loop {P : Type}
(op : nat → P → P) (n : nat) (x : P) : P : =
match n with

| 0 => x

| S n0 => op n0 (loop op n0 x)
end.

(*

This method pops two elements from the queue q and

then pushes their sum back into the queue.

*)

Definition sumElems(Q : Queue)( q: option Q.( t)) : option Q.( t) : =
match q with

| Some q1 =>

match (Q.( pop) q1) with

| Some (x, q2) =>

match (Q.( pop) q2) with

| Some (y, q3) => Some (Q.( push) (x + y) q3)
| None => None

end

| None => None

end

| None => None

end.
(*

This programs creates a queue of n+1 consecutive numbers (from 0 to n)

and then returns the sum of all the elements of this queue.

*)

Definition program (Q : Queue) (n : nat) : option nat : =
(* q := 0::1::2::...::n *)

let q : =
loop Q.( push) (S n) Q.( empty)

in

let q0 : =
loop

(fun _ (q0: option Q.( t)) => sumElems Q q0)
n

(Some q)
in

match q0 with

| Some q1 =>

match (Q.( pop) q1) with

| Some (x, q2) => Some x

| None => None

end

| None => None

end.

Listing 10 portrays the lemmas verifying the equivalence between the behav-
ior of either ListQueue or DListQueue when used with the given program. The
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proofs of these lemmas, which were implemented using Coq’s Parametricity plu-
gin, still hold on the example depicted in Listing 9. Instructions on how to install
the Parametricity plugin to run these machine-checkable proofs are provided
online.

Listing 10. The lemmas verifying the ListQueue parametricity example

Lemma nat_R_equal : ∀ x y, nat_R x y → x = y.
Lemma equal_nat_R : ∀ x y, x = y → nat_R x y.
Lemma option_nat_R_equal : ∀ x y, option_R nat nat nat_R x y → x = y.
Lemma equal_option_nat_R : ∀ x y, x = y → option_R nat nat nat_R x y.
Notation Bisimilar : = Queue_R.
Definition R (l1 : list nat) (l2 : list nat ∗ list nat) : =
let (back, front) : = l2 in

l1 = app back (rev front).
Lemma rev_app : ∀ A (l1 l2 : list A),

rev (app l1 l2) = app (rev l2) (rev l1).
Lemma rev_list_rect A : ∀ P: list A→ Type,

P nil →
(∀ (a: A) (l: list A), P (rev l) → P (rev (a :: l))) →
∀ l: list A, P (rev l).

Theorem rev_rect A : ∀ P: list A → Type,
P nil →
(∀ (x: A) (l: list A), P l → P (app l (x :: nil))) →

∀ l: list A, P l.
Lemma bisim_list_dlist : Bisimilar ListQueue DListQueue.
Lemma program_independent : ∀ n,

program ListQueue n = program DListQueue n.

The verified Gallina code in Listing 9 was translated to Scala using Scallina.
The resulting Scala code is exhibited in Listing 11.

Listing 11. The generated Scala ListQueue program

import scala.of.coq.lang._

import Nat._

import Pairs._

import MoreLists._

object ListQueueParam {

trait Queue {

type t

def empty: t

def push: Nat => t => t

def pop: t => Option[(Nat, t)]

}

object ListQueue extends Queue {

type t = List[Nat]

def empty: t = Nil

def push: Nat => t => t = x => l => x :: l

def pop: t => Option[(Nat, t)] = l => rev(l) match {

case Nil => None

case hd :: tl => Some((hd, rev(tl)))
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}

}

object DListQueue extends Queue {

type t = (List[Nat], List[Nat])

def empty: t = (Nil, Nil)

def push: Nat => t => t = x => { l =>

val (back, front) = l

(x :: back, front)

}

def pop: t => Option[(Nat, t)] = { l =>

val (back, front) = l

front match {

case Nil => rev(back) match {

case Nil => None

case hd :: tl => Some((hd, (Nil, tl)))

}

case hd :: tl => Some((hd, (back, tl)))

}

}

}

def loop[P](op: Nat => P => P)(n: Nat)(x: P): P =

n match {

case Zero => x

case S(n0) => op(n0)(loop(op)(n0)(x))

}

def sumElems(Q: Queue)(q: Option[Q.t]): Option[Q.t] =

q match {

case Some(q1) => Q.pop(q1) match {

case Some((x, q2)) => Q.pop(q2) match {

case Some((y, q3)) => Some(Q.push(x + y)(q3))

case None => None

}

case None => None

}

case None => None

}

def program(Q: Queue)(n: Nat): Option[Nat] = {

val q = loop(Q.push)(S(n))(Q.empty)

val q0 = loop(_ => (q0: Option[Q.t]) => sumElems(Q)(q0))(n)(Some(q))

q0 match {

case Some(q1) => Q.pop(q1) match {

case Some((x, q2)) => Some(x)

case None => None

}

case None => None

}

}

}
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Abstract. The ICE framework is a machine-learning-based technique
originally introduced for inductive invariant inference over transition sys-
tems, and building on the supervised learning paradigm. Recently, we
adapted the approach to non-linear Horn clause solving in the context of
higher-order program verification. We showed that we could solve more
of our benchmarks (extracted from higher-order program verification
problems) than other state-of-the-art Horn clause solvers. This paper
discusses some of the many improvements we recently implemented in
HoIce, our implementation of this generalized ICE framework.

1 Introduction

Constrained Horn clauses is a popular formalism for encoding program veri-
fication problems [4–6], and efficient Horn clause solvers have been developed
over the last decade [3,9,10]. Recently, we adapted the Ice framework [7,8] to
non-linear Horn clause solving [6]. Our experimental evaluation on benchmarks
encoding the verification of higher-order functional programs as (non-linear)
Horn clauses showed that our generalized Ice framework outperformed existing
solvers in terms of precision. This paper discusses HoIce1, a Horn clause solver
written in Rust [1] implementing the generalized Ice framework from [6]. Let us
briefly introduce Horn clause solving before presenting HoIce in more details.

Given a set of unknown predicates Π, a (constrained) Horn clause is a con-
straint of the form

∀v0, . . . , vn | Φ ∧
∧

i∈I

{πi(�ai)} |= H

where Φ is a formula and each πi(�ai) is an application of πi ∈ Π to some argu-
ments �ai. The head of the clause H is either the formula false (written ⊥) or a
predicate application π(�a). Last, v0, . . . , vn are the free variables appearing in Φ,
the predicate applications and H. We follow tradition and omit the quantifica-
tion over v0, . . . , vn in the rest of the paper. To save space, we will occasionally
write 〈Φ, {πi(�ai)}i∈I , H〉 for the clause above.

1 Available at https://github.com/hopv/hoice.
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A set of Horn clauses is satisfiable if there exist definitions for the predicates
in Π that verify all the Horn clauses. Otherwise, it is unsatisfiable. A Horn clause
solver implements a decision procedure for Horn clauses satisfiability. A solver
is also usually expected to be able to yield some definitions of the predicates,
when the Horn clauses are satisfiable.

Example 1. Let Π = {π} and consider the following Horn clauses:

n > 100 |= π(n, n − 10) (1)
¬(n > 100) ∧ π(n + 11, tmp) ∧ π(tmp, res) |= π(n, res) (2)

m ≤ 101 ∧ ¬(res = 91) ∧ π(m, res) |= ⊥ (3)

These Horn clauses are satisfiable, for instance with

π(n, res) ≡ (res = 91) ∨ (n > 101 ∧ res = n − 10).

Section 2 describes a use-case for Horn clause solving and briefly discusses
HoIce’s interface. Section 3 provides a succinct description of the generalized Ice
framework HoIce relies on. In Sect. 4 we discuss the most important improve-
ments we implemented in HoIce since v1.0.0 [6] for the v1.5.0 release. Next,
Sect. 5 evaluates HoIce on our set of benchmarks stemming from higher-order
program verification problems, as well as all the benchmarks submitted to the
first CHC-COMP Horn clause competition2 in the linear integer or linear real
arithmetic fragments. Finally, Sect. 6 discusses future work.

2 Applications and Interface

As mentioned above, Horn clauses is a popular and well-established formalism
to encode program verification, especially imperative program verification [4–6].
HoIce however is developed with (higher-order) functional program verification
in mind, in particular through refinement/intersection type inference. We thus
give an example of using Horn clauses for refinement type inference.

Example 2. Consider the program using McCarthy’s 91 function below (bor-
rowed from [6]). We are interested in proving the assertion in main can never
fail.

let rec mc_91 n = if n > 100 then n - 10

else let tmp = mc_91 (n + 11) in mc_91 tmp

let main m = let res = mc_91 m in if m ≤ 101 then assert (res = 91)

To prove this program is safe, it is enough to find a predicate π such that mc 91
has (refinement) type {n : int | true} → {res : int | π(n, res)} and π satisfies
∀m, res | m ≤ 101 ∧ ¬(res = 91) ∧ π(n, res) |= ⊥.

The latter is already a Horn clause, and is actually (3) from Example 1.
Regarding the constraints for (refinement) typing mc 91, we have to consider
2 https://chc-comp.github.io/.

https://github.com/hopv/hoice/releases/tag/1.0
https://github.com/hopv/hoice/releases
https://chc-comp.github.io/
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the two branches of the conditional statement in its definition. The first branch
yields clause (1). The second one yields clause (2), where res corresponds to the
result of mc 91 tmp.

Horn clause solvers are typically used by program verification tools. Such
tools handle the high-level task of encoding the safety of a given program as Horn
clauses. The clauses are passed to the solver and the result is communicated
back through library calls, process input/output interaction, or files. This is
the case, for instance, of r type [6], which encodes refinement type inference as
illustrated in Example 2. It then passes the clauses to HoIce, and rewrites the
Horn-clause-level result in terms of the original program. Communication with
HoIce is (for now) strictly text-based: either interactively by printing (reading)
on its standard input (output), or by passing a file. We give a full example of
the SMT-LIB-based [2] input language of HoIce in AppendixA, and refer the
reader to AppendixB for a partial description of HoIce’s arguments.

3 Generalized ICE

This section provides a quick overview of the generalized Ice framework HoIce
is based on. We introduce only the notions we need to discuss, in Sect. 4 the
improvements we have recently implemented. Ice, both the original and gener-
alized versions, are supervised learning frameworks, meaning that they consist
of a teacher and a learner. The latter is responsible for producing candidate def-
initions for the predicates to infer, based on ever-growing learning data (defined
below) provided by the teacher. The teacher, given some candidates from the
learner, checks whether they respect the Horn clauses, typically using an SMT
solver3. If they do not, the teacher asks for a new candidate after generating
more learning data. We are in particular interested in the generation of learning
data, discussed below after we introduce Horn clause traits of interest.

A Horn clause 〈Φ, {πi(�ai)}i∈I , H〉 is positive if I = ∅ and H = ⊥, negative
if I = ∅ and H = ⊥, and is called an implication clause otherwise. A negative
clause is strict if |I| = 1, and non-strict otherwise. For all π ∈ Π, let C(π)
be the candidate provided by the learner. A counterexample for a Horn clause
〈Φ, {πi(�ai)}i∈I , H〉 is a model for

¬( Φ ∧
∧

i∈I

C(πi)(�ai) ⇒ C(H)),

where C(H) is C(π)(�a) if H is π(�a) and ⊥ otherwise.
A sample for π ∈ Π is a tuple of concrete values �v for its arguments, written

π(�v). Samples are generated from Horn clause counterexamples, by retrieving
the value of the arguments of the clause’s predicate applications. The general-
ized Ice framework maintains learning data made of (collections of) samples
extracted from Horn clause counterexamples. There are three kinds of learning
data depending on the shape of the falsifiable clause.
3 HoIce uses the Z3 [12] SMT solver.
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From a counterexample for a positive clause, the teacher extracts a posi-
tive sample: a single sample π(�v), encoding that π must evaluate to true on �v.
A counterexample for a negative clause yields a negative constraint : a set of
samples {πi(�vi)}i∈I encoding that there must be at least one i ∈ I such that
πi evaluates to false on �vi. We say a negative constraint is a negative sample if
it is a singleton set. An implication constraint is a pair {πi(�vi)}i∈I , π(�v)) and
comes from a counterexample to an implication clause. Its semantics is that if
all πi(�vi) evaluate to true, π(�v) must evaluate to true.

Example 3. Say the current candidate is π(v0, v1) ≡ ⊥, then (1) is falsifiable
and yields, for instance, the positive sample π(101, 91). Say now the candidate
is π(v0, v1) ≡ v0 = 101. Then (3) is falsifiable and it might yield the negative
sample π(101, 0). Last, (2) is also falsifiable and can generate the constraint
({π(101, 101), π(101, 0)}, π(101, 0)).

We do not discuss in details how the learner generates candidates here and
instead highlight its most important features. First, when given some learning
data, the learner generates candidates that respect the semantics of all positive
samples and implication/negative constraints. Second, the learner has some free-
dom in how it respect the constraints. Positive/negative samples are classified
samples in the sense that they force some predicate to be true/false for some
inputs. Constraints on the other hand contain unclassified samples, meaning
that the learner can, to some extent, decide whether the candidates it generates
evaluate to true or false on these samples.

4 Improvements

We invested a lot of efforts to improve HoIce since v1.0.0. Besides bug fixes and
all-around improvements, HoIce now supports the theories of reals and arrays,
as opposed to integers and booleans only previously. The rest of this section
presents the improvements which, according to our experiments, are the most
beneficial in terms of speed and precision. The first technique extends the notion
of sample to capture more than one samples at the same time, while Sect. 4.2
aims at producing more positive/negative samples to better guide the choices in
the learning process.

4.1 Partial Samples

Most modern SMT-solvers are able to provide extremely valuable information in
the form of partial models. By omitting some of the variables when asked for a
model, they communicate the fact that the values of these variables are irrelevant
(given the values of the other variables). In our context, this information is
extremely valuable.

Whenever the teacher retrieves a counterexample for a clause where some
variables are omitted, it can generate partial learning data composed of sam-
ples where values can be omitted. Each partial sample thus covers many com-
plete samples, infinitely many if the variable’s domain is infinite. This of course

https://github.com/hopv/hoice/releases/tag/1.0


150 A. Champion et al.

assumes that the learner is able to handle such partial samples, but in the case
of the decision-tree-based approach introduced in [8] and generalized in [6], sup-
porting partial samples is straightforward. Typically, one discards all the qual-
ifiers that mention at least one of the unspecified variables, and proceeds with
the remaining ones following the original qualifier selection approach.

4.2 Constraint Breaking

This section deals with the generation of learning data in the teacher part of the
ICE framework. Given some candidates, our goal is to generate data (i) refuting
the current candidate, and (ii) the learner will have few (classification) choices
to make about.

In the rest of this section, assume that the teacher is working on clause
〈Φ, {πi(�ai)}i∈I , H〉, which is falsifiable w.r.t. the current candidate C. Assume
also that this clause is either an implication clause or a non-strict negative clause.
This means that the teacher will generate either an implication constraint or a
non-strict negative one, meaning that the learner will have to classify the samples
appearing in these constraints. We are interested in breaking these constraints
to obtain positive or strict negative samples at best, and smaller constraints at
worst. If we can do so, the learner will have fewer choices to make to produce a
new candidate. Let us illustrate this idea on an example.

Example 4. Assume that our generalized Ice framework is working on the
clauses from Example 1. Assume also that the learning data only consists
of positive sample π(101, 91), and the current candidate is π(v, v′) ≡
v ≥ 101 ∧ v′ = v − 10. Implication clause (2) 〈¬(n > 100), {π(n +
11, tmp), π(tmp, res)}, π(n, res)〉 is falsifiable. Can we force one of the predi-
cate applications in the set to be our positive sample? It turns out π(tmp, res)
can, yielding constraint ( {π(111, 101), π(101, 91)}, π(100, 91)), which is really
( {π(111, 101)}, π(100, 91)) since we know π(101, 91) must be true.

We could simplify this constraint further if we had π(111, 101) as a positive
sample. It is indeed safe to add it as a positive sample because it can be obtained
from clause (1) by checking whether n > 100 ∧ n = 111 ∧ (n − 10) = 101
is satisfiable, which it is. So, instead of generating an implication constraint
mentioning three samples the learner would have to make choices on, we ended
up generating two new positive samples π(111, 101) and π(100, 91). (The second
sample is the one rejecting the current candidate.)

The rest of this section presents two techniques we implemented to accom-
plish this goal. The first one takes place during counterexample extraction, while
the second one acts right after the extraction. In the following, for all π ∈ Π, let
P(π) (resp. N(π)) be the positive (resp. negative) samples for π. C(π) refers to
the current candidate for π, and by extension C(H) for the head H of a clause
is C(π)(�a) if H is π(�a) and ⊥ otherwise.
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Improved Counterexample Extraction. This first approach consists in forc-
ing some arguments for a predicate application of π to be in P(π) or N(π). This
means that we are interested in models of the following satisfiable formula:

Φ ∧
∧

i∈I

{C(πi)(�ai)} ∧ ¬C(H)(�a). (4)

Positive Reduction. Assume that H is π(�a). Let I+ ⊆ I be the indexes of
the predicate applications that can individually be forced to a known posi-
tive sample; more formally, i ∈ I+ if and only if the conjunction of (4) and
Pi ≡ ∨

�v∈P(πi)
(�ai = �v) is satisfiable. Then, if I+ = ∅ and the conjunction of (4)

and
∧

i∈I+
Pi is satisfiable, a model for this conjunction refutes the current can-

didate and yields a smaller constraint than a model for (4) alone would. (This
technique was used in the first simplification of Example 4.)

Negative Reduction. Let N be
∨

�v∈N(π)(�a = �v) if H is π(�a), and true if H is ⊥.
Assuming I+ = ∅, we distinguish two cases. If I+ = I, then for all j ∈ I+, if (4)
and N and

∧
i∈I+, i �=j Pi is satisfiable, a model for this conjunction yields a strict

negative sample for πj . Otherwise, if (4) and N and
∧

i∈I+
Pi is satisfiable, a

model for this conjunction yields a negative sample mentioning the predicates
in I \ I+.

Post-Extraction Simplification. This second technique applies to implica-
tion and non-strict negative constraints right after they are generated from the
counterexamples for a candidate. Let us define the predicate isPos(π,�v) for all
π ∈ Π, where �v are concrete input values for π. This predicate is true if and only
if there is a positive clause 〈Φ, ∅, π(�a)〉 such that Φ ∧ (�a = �v) is satisfiable.
Likewise, let isNeg(π,�v) be true if and only if there is a strict negative clause
〈Φ, {π(�a)}, ⊥〉 such that Φ ∧ (�a = �v) is satisfiable.

Now we can go through the samples appearing in the constraints and check
whether we can infer that they should be positive or negative using isPos and
isNeg. This allows to both discover positive/negative samples, and simplify con-
straints so that the learner has fewer choices to make. (This technique was used in
the second simplification step in Example 4.) Notice in particular that discover-
ing a negative (positive) sample in non-strict negative data or in the antecedents
of implication data (consequent of implication data) breaks it completely.

5 Evaluation

We now evaluate the improvements discussed in Sect. 4. The benchmarks we
used consist of all 3586 benchmarks submitted to the CHC-COMP 2018 (see
footnote 2) that use only booleans and linear integer or real arithmetic. We did
not consider benchmarks using arrays as their treatment in the learner part of
HoIce is currently quite näıve.
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Fig. 1. Cumulative plot over the CHC-COMP 2018 linear arithmetic benchmarks.

Figure 1 compares HoIce 1.0 with different variations of HoIce 1.5 where the
techniques from Sect. 4 are activated on top of one another. That is, “hoice
inactive” has none of them active, “hoice partial” activates partial samples
(Sect. 4.1), and “hoice breaking” activates partial samples and constraint break-
ing (Sect. 4.2). We discuss the exact options used in AppendixB.

We first note that even without the improvements discussed in Sect. 4, HoIce
1.5 is significantly better than HoIce 1.0 thanks to the many optimizations,
tweaks and new minor features implemented since then. Next, the huge gain
in precision and speed thanks to partial samples cannot be overstated: partial
samples allow the framework to represent an infinity of samples with a single one
by leveraging information that comes for free from the SMT-solver. Constraint
breaking on the other hand does not yield nearly as big an improvement. It
was implemented relatively recently and a deeper analysis on how it affects the
generalized Ice framework is required to draw further conclusions.

Next, let us evaluate HoIce 1.5 against the state of the art Horn clause solver
Spacer [11] built inside Z3 [12]. We used Z3 4.7.1, the latest version at the time
of writing. Figure 2a shows a comparison on our benchmarks4 stemming from
higher-order functional programs. The timeout is 30 s, and the solvers are asked
to produce definitions which are then verified. The rational behind checking
the definitions is that in the context of refinement/intersection type inference,
the challenge is to produce types for the function that ensure the program is
correct. The definitions are thus important for us, since the program verification
tool using HoIce in this context will ask for them.

Spacer clearly outperforms HoIce on the benchmarks it can solve, but fails
on 26 of them. While 17 are actual timeouts, Spacer produces definitions that
do not verify the clauses on the remaining 9 benchmarks. The problem has

4 Available at https://github.com/hopv/benchmarks/tree/master/clauses.

https://github.com/Z3Prover/z3/releases/tag/z3-4.7.1
https://github.com/hopv/benchmarks/tree/master/clauses
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been reported but is not resolved at the time of writing. Regardless of spurious
definitions, HoIce still proves more (all) of our benchmarks.

Last, Fig. 2b compares HoIce and Spacer on the CHC-COMP benchmarks
mentioned above. A lot of them are large enough that checking the definitions
of the predicates is a difficult problem in itself: we thus did not check the def-
initions for these benchmarks for practical reasons. There are 632 satisfiable
(438 unsatisfiable) benchmarks that Spacer can solve on which HoIce reaches
the timeout, and 49 satisfiable (4 unsatisfiable) that HoIce can solve but Spacer
times out on. Spacer is in general much faster and solves a number of bench-
marks much higher than HoIce. We see several reasons for this. First, some of
the benchmarks are very large and trigger bottlenecks in HoIce, which is a very
young tool compared to Z3/Spacer. These are problems of the implementation
(not of the approach) that we are currently addressing. Second, HoIce is opti-
mized for solving clauses stemming from functional program verification. The
vast majority of the CHC-COMP benchmarks come from imperative program
verification, putting HoIce out of its comfort zone. Last, a lot of these bench-
marks are unsatisfiable, which the Ice framework in general is not very good
at. HoIce was developed completely for satisfiable Horn clauses, as we believe
proving unsatisfiability (proving programs unsafe) would be better done by a
separate engine. Typically a bounded model-checking tool.
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Fig. 2. Comparison between HoIce and Z3 Spacer.

6 Conclusion

In this paper we discussed the main improvements implemented in HoIce since
version 1.0. We showed that the current version outperforms Spacer on our
benchmarks stemming from higher-order program verification.

Besides the never-ending work on optimizations and bug fixes, our next goal
is to support the theory of Algebraic Data Types (ADT). In our context of
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higher-order functional program verification, it is difficult to find interesting,
realistic use-cases that do not use ADTs.

Acknowledgments. We thank the anonymous referees for useful comments. This
work was supported by JSPS KAKENHI Grant Number JP15H05706.

Fig. 3. A legal input script corresponding to Example 1.

A Input/Output Format Example

This section illustrates HoIce’s input/output format. For a complete discussion
on the format, please refer to the HoIce wiki https://github.com/hopv/hoice/
wiki. HoIce takes special SMT-LIB [2] scripts as inputs such as the one on
Fig. 3. A script starts with an optional set-logic HORN command, followed by
some predicate declarations using the declare-fun command. Only predicate
declaration are allowed: all declarations must have codomain Bool.

The actual clauses are given as assertions which generally start with some
universally quantified variables, wrapping the implication between the body and
the head of the clause. Negated existential quantification is also supported, for
instance the third assertion on Fig. 3 can be written as
(assert

(not
(exist ( (m Int) (res Int) )

(and (<= m 101) (mc_91 m res) (not (= res 91)))
) ) )

The check-sat command asks whether the Horn clauses are satisfiable,
which they are, and HoIce answers sat. Otherwise, it would have answered
unsat. Since the clauses are satisifiable, it is legal to ask for a model using the
get-model command. HoIce provides one in the standard SMT-LIB fashion:

https://github.com/hopv/hoice/wiki
https://github.com/hopv/hoice/wiki
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(model
(define-fun mc_91

( (v_0 Int) (v_1 Int) ) Bool
(or

(and (= (+ v_0 (- 10) (* (- 1) v_1)) 0) (or (= (+ v_1 (- 91)) 0) (>= v_0 102)))
(and (>= (* (- 1) v_0) (- 100)) (or (= (+ v_1 (- 91)) 0) (>= v_0 102))

(not (= (+ v_0 (- 10) (* (- 1) v_1)) 0))
) ) ) )

Note that hoice can read scripts from files, but also on its standard input in
an interactive manner.

B Arguments

HoIce has no mandatory arguments. Besides options and flags, users can provide
a file path argument in which case HoIce reads the file as an SMT-LIB script
encoding a Horn clause problem (see AppendixA). When called with no file path
argument, HoIce reads the script from its standard input. In both cases, HoIce
outputs the result on its standard output.

Running HoIce with -h or --help will display the (visible) options. We do not
discuss them here. Instead, let us clarify which options we used for the results
presented in Sect. 5. The relevant option for partial samples from Sect. 4.1 is
--partial, while --bias cexs and --assistant activate constraint breaking as
discussed in Sect. 4.2. More precisely, --bias cexs activates constraint breaking
during counterexample extraction, while --assistant triggers post-extraction
simplification. The commands ran for the variants of Fig. 1 are thus

hoice 1.5 inactive hoice --partial off --bias cexs off --assistant off

hoice 1.5 partial hoice --partial on --bias cexs off --assistant off

hoice 1.5 breaking hoice --partial on --bias cexs on --assistant on

As far as the experiments are concerned, we ran Z3 4.7.1 with only one option,
the one activating Spacer: fixedpoint.engine=spacer.
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Abstract. Traf is a graphical proof tree viewer that cooperates with
the Coq proof assistant and is controlled through Proof General. Among
other proof tree viewers and tools for browsing proof scripts, Traf is
well suited for daily proving of Coq problems as it is easy to use, non-
disturbing, and helpful. Proof trees dynamically updated by Traf during
interactive sessions with Proof General are informative and as readable
as Gentzen-style natural deduction proofs. Traf facilitates browsing and
investigating tactic-based proof scripts, which are often burdensome to
read. Traf can also be used for typesetting proof trees with LaTEX. The
current version of Traf was developed as an extension to the Prooftree
proof tree viewer and makes use of many of its facilities. Traf provides
functionalities that are useful to both novice Coq users and experienced
Proof General users.

Keywords: Proof tree viewer · Interactive theorem prover · Coq
Proof General · Readability of proof scripts

1 Introduction

Proof assistants are widely used for proving mathematical theorems [14,15] and
properties of software [1,4] and for developing dependable software [22]. The
power of mechanized verification by using proof assistants has been accepted, and
such verification is now thought to be indispensable. Therefore, the readability
and maintainability of proof scripts have become major concerns [10].

Among the many proof assistants [26], there are two major styles for writing
proof scripts; the tactic-based style and the declarative style [17,25]. Although
the former is preferable for writing concise proofs interactively by making use
of the theorem prover’s automation facilities, it is burdensome to read the proof
scripts. Conversely, although proof scripts written in the latter style are informa-
tive and readable without tools, writing intermediate formulae could be labori-
ous. To alleviate this situation, several tactic-based systems have been extended
to accept declarative proofs [8,13,25], and several systems offer a facility for
rendering tactic-based proof scripts in a pseudo-natural language [5,9,12].
c© Springer Nature Switzerland AG 2018
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Since a proof is not usually in a single-threaded structure, visualizing proofs
in graphical representations could be an effective complementary approach for
improving the readability of proof scripts. There have been many studies on
graphical representations of proofs; IDV [24] can graphically render derivations
at various levels of granularity. ProofWeb [18] uses the Coq proof assistant with
specialized tactics to help the user learn Gentzen-style natural deduction proofs.
ProofTool [11] offers a generic framework for visualizing proofs and is equipped
with a method for visualizing large-scale proofs as Sunburst Trees [19]. ViPrS
is an interactive visualization tool for large natural deduction proof trees [7].
Mikiβ [20] offers a set of APIs for constructing one’s own proof checker with
facilities for building proof trees by using a GUI. Pcoq [3] had a GUI for proving
lemmas by using a mouse, but it is no longer available. The Prooftree proof tree
viewer [23] dynamically draws a proof tree while the user interacts with Coq
through Proof General, although the shape of the tree is rather abstract.

In this paper, we present a graphical tool called Traf that constructs proof
trees automatically while the user is interacting with Coq through Proof Gen-
eral. Traf is different from ordinary proof viewers and proof translators in that
it is designed to guide interactive theorem proving by using a full-fledged proof
assistant through a standard tactic-based interface. In other words, Traf is a
helper tool for enhancing both the writability and readability of proofs. The
proof tree shown in Traf’s window looks like a readable Gentzen-style natural
deduction proof. The user does not have to worry about operating Traf since
the tree dynamically grows as the proving process proceeds. Traf reorganizes
the layout of the tree adaptively in accordance with changes in the proof struc-
ture caused by modifications to the proof script. It can automatically shrink
unfocused branches, enabling the user to concentrate on information related to
the current subgoal of a potentially large proof tree. Traf’s window serves as an
informative monitor that displays details of the steps in the proof.

Traf can also be used as a proof script viewer. Arbitrary subtrees can be
shrunk so as to enable the entire structure of the proof to be grasped. Detailed
information such as the assumptions and the subgoal at each proof step can be
examined later. Since no information for the corresponding proof script is lost,
the constructed proof tree can be directly used as proof documentation. With
Traf the user can obtain a LaTEX description of the tree for documentation.

The rest of the paper is organized as follows. In Sect. 2, we describe the
structure of a tree constructed by Traf. We discuss the usages and effectiveness
of Traf in Sects. 3 and 4. In Sect. 5, we summarize the strengths and weaknesses
of Traf. We conclude in Sect. 6 with a brief summary and mention of future work.

The current version of Traf was constructed based on Prooftree [23] and is
available at https://github.com/hide-kawabata/traf.

2 Visualization of a Proof Script as a Proof Tree

Figure 1 shows a proof script for Coq and the corresponding proof tree con-
structed by Traf. As shown in Fig. 1(b), a proof tree constructed by Traf looks

https://github.com/hide-kawabata/traf


Traf: A Graphical Proof Tree Viewer 159

Theorem pq_qp: forall P Q: Prop,
P \/ Q -> Q \/ P.

Proof.
intros P Q.
intros H.
destruct H as [HP | HQ].
right. assumption.
left. assumption.

Qed.
(a) Proof script for Coq (b) Proof tree constructed by Traf

Fig. 1. Proof script for Coq and corresponding proof tree constructed by Traf.

A
(∨-intro 1)

A ∨ B

B
(∨-intro 2)

A ∨ B

A[y/x]
(∀-intro)∀x.A

A ∨ B

[A]
|
C

[B]
|
C

(∨-elim)
C

[A]
|
B

(→-intro)
A → B

Fig. 2. Natural deduction inference rules.

like an ordinary proof tree for Gentzen-style natural deduction: it is apparent
that the natural deduction inference rules shown in Fig. 2 are combined for con-
structing the tree shown in Fig. 1(b). However, the details are different. A proof
tree used in proof theory is a tree in which each node is a statement (or sub-
goal), and each line with a label indicates the application of the inference rule or
axiom identified by the label. In the case of a proof tree constructed by Traf, the
label attached to a line is not the name of an inference rule but rather is a proof
command given to Coq at the proof step. Nodes written over a line are subgoals
generated by the application of the proof command to the subgoal written under
the line. When a complicated proof command combined by tacticals or a tactic
that invokes an automated procedure is applied to a subgoal, the effect might
not be as readily understandable as a Gentzen-style proof. However, a proof
tree constructed by Traf is much more informative than the corresponding proof
script.

Since some commands change only assumptions (and not subgoals), all the
subgoals that appear in the course of a proof and all the proof commands used
in the proof together and using them to construct a proof tree is not enough to
enable the user to mentally reconstruct the proof session by simply looking at
the proof tree. For example, the user will not recognize the application of the
command “apply H.” unless the meaning of H is apparent. Traf makes a proof
tree as readable as possible by

1. showing the assumptions used explicitly as branches of the proven subgoals
over the line when a command refers to assumptions and
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2. indicating the steps that do not change subgoals, i.e., the steps that modify
only assumptions, by using a line in a specific style, such as bold ones.

The first measure results in proof trees that resemble Gentzen-style natural
deduction proofs where the discharged assumptions are explicitly indicated.
Although the second measure might not be the best way of illustrating proof
scripts, it does ensure that each proof step actually taken is clearly recognizable.

(a) Verbose proof script makes proof tree complicated

(b) Use of tacticals and automation could simplify proof tree

Fig. 3. Two proof trees constructed by Traf corresponding to two versions of proof for
same lemma.

Figure 3 shows two proof trees constructed by Traf corresponding to two
versions of proof for the same lemma. In Fig. 3(a), some nodes are shrunk. The
proof corresponding to the tree in Fig. 3(b) is essentially the same as that in
Fig. 3(a), but the latter tree is smaller due to the use of tacticals. The shape of a
proof tree constructed by Traf corresponds exactly to the structure of the proof
script.1 Unlike tools such as Matita [5], which generates descriptions of proofs
by analyzing proof terms, Traf simply reflects the structure of a proof script in
the proof tree.

The example tree in Fig. 3(b) includes a proof step at which the subgoal does
not change. The use of tactics such as assert for controlling the flow of a proof
can be treated naturally, as shown in Fig. 3.

Figure 4 shows the proof tree for a proof script using SSReflect [16] tactics.
As shown in Figs. 1(b), 3, and 4, the major tactics of Coq and SSReflect are
recognized by Traf.2 At each proof step, Traf extracts the identifiers used in
1 Although non-logical tactics such as cycle and swap can be used in proof scripts,

the resulting proof trees are not affected by their use.
2 The use of goal selectors is currently not supported.
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Fig. 4. Use of SSReflect [16] tactics.

each proof command, checks whether they exist in the set of local assumptions
available at that step, and explicitly displays the assumptions used. Externally
defined identifiers are ignored.

3 Traf as a Proving Situation Monitor

Once Traf is enabled, a proof tree is constructed in an external window as shown
in Fig. 5. The tree’s shape changes as the proving process proceeds. The user
does not have to interact with Traf’s window while proving a theorem since Traf
automatically updates the proof tree by communicating with Proof General.

(a) Proof General
(b) Traf’s window for “Current Goal” mode

Fig. 5. Screenshots illustrating scene in proving process using Coq through Proof Gen-
eral accompanied by Traf. While user interacts with Coq through Proof General, as
shown in (a), Traf automatically updates the corresponding proof tree, as shown in
(b). (Color figure online)

The Traf window shows a summary of the situation facing the user during
the process of proving a theorem. It has two panes, as shown in Fig. 5(b). The
lower pane shows the proof tree as currently constructed. Finished subgoals are
shown in green, and the path from the root to the current subgoal is shown in
blue. Other subgoals to be proved, if any, are shown in black.3

3 Colors can be specified by the user.
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The upper pane of the window shows the assumptions and the subgoal at
the current state. When the user selects a subgoal on the tree by clicking the
mouse, Traf marks the subgoal on the tree as selected and shows the assumptions
at the state facing the subgoal in the upper pane. When the user selects a
proof command, Traf shows in the upper pane the corresponding raw text string
without abbreviation that was entered by the user.4

When a proof command is entered, Traf draws a horizontal line segment over
the ex-current subgoal and places the input proof command at the right end of
the line. Subgoals generated by applying the command are placed over the line.
When the user retracts proof steps, the tree’s shape is also restored. A proof tree
constructed by Traf can be seen as a record of proof step progress.

When an entered command finishes a subgoal, Traf changes the subtree’s
color to indicate that the branch is finished and switches its focus to one of
the remaining subgoals in the proof tree window. At every moment, the current
subgoal as well as every node on the path from the root to the subgoal is shown
in blue in order to distinguish the current branch from other proven/unproven
branches. We call the path from the root to the current subgoal the current
path. Traf offers “Current Goal” display mode in which nodes that are not on
the current path are automatically shrunk, as shown in Fig. 5(b).

Finishing a proof, i.e., entering the “Qed.” or “Defined.” command to Coq
via Proof General, terminates communication between Traf and Proof General.
Traf then freezes the proof tree in the window. The window remains on the
screen, and the user can interact with it: clicking on a proof command node
or a subgoal node invokes a function to display the detailed information at the
corresponding proof step.

4 Traf as a Proof Script Browser

Traf can also be used as a tool for browsing existing proof scripts by transforming
them into proof trees by using Proof General and Coq. In addition to checking
each step by looking at explicitly displayed proof commands, assumptions, and
subgoals, the user can consult Traf for all assumptions that were valid at any
step in the course of the proof.

If the proof tree becomes very large, the complete tree cannot be seen in
Traf’s window. Traf thus offers, in addition to scrollbars, a facility for shrinking
an arbitrary node, which is helpful for setting off specific portions of the tree.
Any subtree can be shrunk/expanded by selecting its root node and pressing a
button at the bottom of the window.

Traf can generate LaTEX descriptions of the displayed tree for typesetting by
using prftree package.5 The variation of the details of the tree, i.e., the existence
of shrunk branches and/or unproven branches, is reflected in the rendered tree.

4 Command texts that are longer than the predefined length are placed on the tree in
an abbreviated form. The threshold length is an adjustable parameter.

5 https://ctan.org/pkg/prftree.

https://ctan.org/pkg/prftree
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5 Discussion: Strengths and Weaknesses of Traf

Many tools have been proposed for facilitating proof comprehension. Many
of them visualizes proofs graphically [7,11,19,24], and some offer facilities for
explaining proofs [6,12,21]. Some have graphical interfaces for interactive the-
orem proving [3,18,20]. Compared with these systems, Traf’s strength is its
usefulness as a graphical and informative monitor of the proof states while prov-
ing lemmas by using a tactic-based language through a standard interface. In
addition, Traf is easy to use and requires no cost for Proof General users. It can
be used with the Emacs editor by adding the settings for Traf to the Emacs
configuration file.

As a viewer for proof scripts, Traf’s approach resembles that of the Coqatoo
tool [6] in the sense that both systems enhance the readability of tactic-based
proof scripts by presenting the scripts with appropriate information. However,
unlike Coqatoo, Traf can be used while proving theorems interactively.

ProofWeb [18] has functionality similar to that of Traf. Although its web
interface is promising for educational use, its tree drawing facility is a bit restric-
tive and not very quick. It therefore would not be a replacement for the combi-
nation of Proof General and Traf.

One weakness of Traf mainly stems from its style, i.e., the use of trees for
representing proof scripts. Complicated proofs might be better expressed in text
format, and other approaches, such as those of Coqatoo [6] and Matita [5], might
be more suitable. For browsing extremely large proofs, a method for visualizing
large-scale proofs as Sunburst Trees [19] would be preferable. Nevertheless, Traf
is appropriate for use as a proving situation monitor.

Another weakness is the environment required. Since the current version
of Traf depends on the LablGtk2 GUI library [2], the techniques usable for
the graphical representation are restricted. In addition, Traf’s implementation
depends on that of Proof General.

The current version of Traf is based on Prooftree [23], which was developed
by Hendrik Tews. The facilities for communicating with Proof General, many of
its basic data structures, and the framework for drawing trees were not changed
much. Some of Traf’s functionalities, such as those described in Sects. 3 and 4,
are based on those in Prooftree. While Traf owes much to Prooftree, it offers
added value due to the functionalities introduced for guiding interactive proving
sessions by displaying informative proof trees.

6 Conclusion and Future Work

The Traf graphical proof tree viewer cooperates with Coq through Proof General.
A user who proves theorems by using Coq through Proof General can thus take
advantage of Traf’s additional functionalities at no cost.

Future work includes enhancing Traf to enable it to manipulate multiple
proofs, to refer to external lemmas and axioms, and to better handle lengthy
proof commands.
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Abstract. Function composition is a very natural operation, but most
language paradigms provide poor support for it. Without linguistic sup-
port programmers must work around or manually implement what would
be simple compositions. The Kihi language uses only composition, makes
all state visible, and reduces to just six core operations. Kihi programs
are easily stepped by textual reduction but provide a foundation for
compositional design and analysis.

Keywords: Function composition · Concatenative programming

1 Introduction

Programming languages exist in many paradigms split along many different axes.
For example, there are imperative languages where each element of the code
changes the system state somehow before the next step (C, Java); there are
declarative languages where each element of the code asserts something about
the result (Prolog, HTML); there are functional languages where each element
of the code specifies a transformation from an input to an output (Haskell, ML,
Forth). Functional languages can be further divided: there are pure functional
languages (Haskell), and those supporting side effects (ML). There are languages
based on applying functions (Haskell) and on composing them (Forth).

It is composition that we are interested in here. Forth is a language where
the output or outputs of one function are automatically the inputs of the next,
so a program is a series of function calls. This family is also known as the
concatenative languages, because the concatenation of two programs gives the
composition of the two: if xyz is a program that maps input A to output B,
and pqr is a program that maps B to C, then xyzpqr is a program that maps
A to C. Alternatively, they can be analysed as languages where juxtaposition
of terms indicates function composition, in contrast with applicative functional
languages like Haskell where it indicates function application.

Many concatenative languages, like Forth, are stack-based: operations push
data onto the stack, or pull one or more items from it and push results back on.

c© Springer Nature Switzerland AG 2018
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This is sometimes regarded as an imperative mutation of the stack, but functions
in these languages can also be regarded as unary transformations from a stack to
another stack. Stack-based languages include Forth, PostScript, RPL, and Joy,
and other stack-based systems such as Java bytecode can be (partially) analysed
in the same light as well. Most often these languages use a postfix syntax where
function calls follow the operations putting their operands on the stack.

Concatenative, compositional languages need not be stack-based. A language
can be built around function composition, and allow programs to be concate-
nated to do so, without any stack either implicit or explicit. One such language
is Om [2], which uses a prefix term-rewriting model; we present another here.

In this paper we present Kihi, a compositional prefix concatenative func-
tional language with only six core operations representing the minimal subset
to support all computation in this model, and a static type system validating
programs in this core. We also present implementations of the core, and of a
more user-friendly extension that translates to the core representation at heart.

A Kihi program consists of a sequence of terms. A term is either a (possibly
empty) parenthesised sequence of terms (an abstraction, the only kind of value),
or one of the five core operators:

– apply, also written ·: remove the parentheses around the subsequent abstrac-
tion, in effect splicing its body in its place.

– right, or �: given two subsequent values, insert the rightmost one at the end
of the body of the left. In effect, partial application of the left abstraction.

– left, or �: given two subsequent values, insert the rightmost one at the start
of the body of the left. A “partial return” from the first abstraction.

– copy, or ×: copy the subsequent value so that it appears twice in succession.
– drop, or �: delete the subsequent value so that it no longer appears in the

program.

These operations form three dual pairs: abstraction and apply; right and left;
copy and drop. We consider abstraction an operation in line with these pairings.

At each step of execution, an operator whose arguments are all abstractions
will be replaced, along with its arguments, with its output. If no such operator
exists, execution is stuck. After a successful replacement, execution continues
with a new sequence. If more than one operator is available to be reduced, the
order is irrelevant, as Kihi satisfies Church-Rosser (though not the normalisation
property), but choosing the leftmost available reduction is convenient.

This minimal core calculus is sufficient to be Turing-complete. We will next
present some extensions providing more convenient programmer facilities.

2 Computation

Combined with application, the left and right operators are useful for shuffling
data in and out of applications. The left operator in particular is useful for
reordering inputs, since each subsequent use of � moves a value to the left of the
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value that it used to be to the right of. The swap operation, which consumes two
values and returns those values in the opposite order, can be defined from the
core operators as · � � (). For instance, executing swap x y reduces through
the following steps: · � � () x y −→ · � (x) y −→ · (y x) −→ y x.

The under operation · � executes an abstraction “below” another, preserv-
ing its second argument for later use and executing the first with the remaining
program as its arguments. The flexibility of under demonstrates the benefit of a
compositional style over an applicative one. We do not need to reason about the
number of inputs required by the abstraction, nor the number of return values:
it is free to consume an arbitrary number of values in the sequence of terms, and
to produce many values into that sequence as the result of its execution.

As Kihi is a compositional language, composing two operations together
is as simple as writing them adjacently. Defining a composition operator that
consumes two abstractions as inputs and returns the abstraction representing
their composition is more involved, since the resulting abstraction needs to be
constructed by consuming the abstractions into the output and then manually
applying them. The compose operation is defined as � � (· under (·)). This
operation brings two abstractions into the abstraction defined in the operation,
which will apply the rightmost first and then the left. The leftmost abstraction
can consume outputs from the rightmost, but the right cannot see the left at all.

2.1 Data Structures

Abstractions are the only kind of value in Kihi, but we can build data structures
using standard Church-encodings. In the Church-encoding of booleans, true
and false both consume two values, with true returning the first and false
the second. In Kihi, false is equivalent to (�): since the drop operation removes
the immediately following value, the value that appears after that (in effect, the
second argument) is now at the head of the evaluated section of the sequence.
The definition of true is the same, but with a swapped input: (� swap).

The definition of standard boolean combinators like and and or each involve
building a new abstraction and moving the boolean inputs into the abstraction
so that, when applied, the resulting abstraction behaves appropriately as either a
true or false value. For instance, or can be defined as � � (· · swap true).
The result of executing · or x y is · · x true y: if x is true, then the result is
an application of true, otherwise the result is an application of y.

In the Church-encoding of the natural numbers, a number n is an abstrac-
tion that accepts a function and an initial value, and produces the result of
applying that function to its own output n times. In this encoding, zero is
equivalent to false, since the function is ignored and the initial value is imme-
diately returned. In Kihi, the Church-encoding of the successor constructor suc
is � (· under (·) swap under (×)). For an existing number n and a func-
tion f, executing · suc n f produces the sequence · f · n f: apply n to f, then
apply f once more to the resulting value. Once again, the function can be flexible
in the number of inputs and outputs that it requires and provides: so long as
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it provides as many as it requires, it will perform a reduction with a constant
number of inputs. For an unequal number of inputs to outputs, the function will
dynamically consume or generate a number of values proportional to the natural
number that is applied.

2.2 Recursion

To be Turing-complete, the language must also support recursion. The recursion
operation Y is defined in Kihi as � × � (· under (� � (·) ×)). For any input f,
executing Y f first produces the abstraction (· under (� � (·) ×) f), and then
copies it and partially applies the copy to the original, producing the abstrac-
tion (· under (� � (·) ×) f (· under (� � (·) ×) f)). Applying this
abstraction ultimately produces an application of f to the original abstraction:
· f (· under (� � (·) ×) f (· under (� � (·) ×) f)). Once again, f is
free to consume as many other inputs after its recursive reference as it desires,
and can also ignore the recursive abstraction as well.

2.3 Output

Operators cannot access values to their left, so a value preceded by no operators
can never be modified or affected later in execution. As a result, any term that
moves to the left of all remaining operators is an output of the program. Similarly,
any program can be supplied inputs on the right. A stream processor is then an
infinite loop, consuming each argument provided on its right, transforming the
input, and producing outputs on its left: a traditional transformational pipeline
is simply a concatenation of such programs with a data source on the end.

A program (or subprogram) can produce any number of outputs and consume
any number of inputs, and these match in an arity-neutral fashion: that is,
the composition does not require a fixed correspondence between producer and
consumer. It is not the case that all outputs of one function must be consumed by
the same outer function, as is usually the case when construction a compositional
pipeline in imperative or applicative languages.

3 Name Binding

The core calculus of Kihi does not include variables, but the language supports
name binding by translation to the core. The bind form takes as its first argu-
ment syntax that defines the name to bind.

bind (x) (t ...) value

The name x is bound to the value value inside the term (t ...), which is then
applied. For the translation to make sense as a compile-time transformation, the
name and body must be present in their parenthesised form in the syntax, but
the value does not need to be present; a bind may appear inside an abstraction
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Fig. 1. Redex language definition Fig. 2. Redex binding extension

Fig. 3. Redex reduction relation

with no input as in (bind (x) (t ...)), in which case the bound value will be
the first input of the abstraction.

The transformation brings the bound value leftwards, jumping over irrelevant
terms, and leaving a copy behind wherever the bound name occurs. To translate
a bind form to the core, for each term t inside (t ...):

1. If t is the name x to be bound, replace it with ×, to leave one copy of the
value behind in its place and another to continue moving left.

2. If t is an abstraction v, replace it with swap � (bind (x) v) × and then
expand the resulting bind form, to bind a copy of the value in v and swap
the original value to the other side of the abstraction.

3. Otherwise replace t with · � (t), to ‘jump’ the value leftwards over the
operator.

Finally, prepend � to delete the final copy of the value, and remove the paren-
theses. Translate nested binds innermost-outwards to resolve shadowing.

4 Implementations

Kihi has been implemented as mechanisation of the semantics, a practical Racket
language, and a web-based tool that visualises executions.

4.1 Redex

An implementation of Kihi’s core calculus in the Redex [3] semantics language
is presented in Fig. 1. The syntax corresponds to the syntax we have already
presented. The reduction rules for this language are shown in Fig. 3. The seman-
tics presented here proceeds right-to-left: this can easily be made unordered by
matching on t instead of v on the right side of each rule. When the semantics are
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unordered, the Redex procedure traces shows every possible choice of reduction
at each step, ultimately reducing to the same value (or diverging).

The binding language extension is also encoded into Redex, with syntax
defined in Fig. 2. The expand translation from this language to the original cal-
culus is defined in Fig. 4. A malformed bind will produce a term that is not a
valid program in the original calculus.

Fig. 4. Redex binding expansion

Figure 5 presents an extension to the core calculus adding a simple type
system. A type � S T describes the change in shape from the given inputs to
the resulting outputs of executing a term. A shape is a sequence of types, and
describes the type of every value that will be available to the right of a term on
execution.

Fig. 5. Redex type extension

A Kihi program is typed by the shape judgement, defined in Fig. 6. The empty
program does not change shape, and a non-empty program composes the changes
in shape applied by their terms. Kihi terms are typed by the type judgement,
defined in Fig. 7. For instance, the type of × begins with a shape (A B . . .) and
produces a shape (A A B . . .), representing the duplication of a value of type A.



172 T. Jones and M. Homer

The type system does not include a mechanism for polymorphism, and there
is no way to abstract over stacks. As a result, every type must include the type of
every value to its right, even if it is not relevant to that operation’s semantics, so
it is difficult to write a type that describes a broad range of possible programs.

The complete Redex implementation is available from https://github.com/
zmthy/kihi-redex.

4.2 Racket

Kihi has also been implemented as a practical language in Racket. This version
provides access to existing Racket libraries and supports some higher-level con-
structs directly for efficiency, but otherwise is modelled by the Redex. The Racket
implementation is available from https://github.com/zmthy/kihi and operates
as a standard Racket language with #lang kihi. The distribution includes some
example programs, documentation, and a number of predefined utility functions.

4.3 Web

For ease of demonstration, a web-based deriving evaluator is available. This tool
accepts a program as input and highlights each reduction step in its evaluation.
At each step, the operation and operands next to be executed are marked in blue,
the output of the previous reduction is underlined, and the rule that has been
applied is noted. The program can be evaluated using both left- and right-biased
choice of term to illustrate the different reduction paths, and Church numerals
and booleans can be sugared or not. It supports many predefined named terms
which alias longer subprograms for convenience.

The web evaluator can be accessed at http://ecs.vuw.ac.nz/∼mwh/kihi-eval/
from any web browser. It includes several sample programs illustrating the tool
and language, with stepping back and forth, replay, and reduction highlighting.

As a debugging aid, the evaluator includes two special kinds of term as exten-
sions: for any letter X, ^X is an irreducible labelled marker value, while `X reduces
to nothing and has a side effect. These can be used to observe the propagation
of values through the program and the order terms are evaluated.

The web evaluator also allows expanding a Kihi program to core terms (that
is, using only the six operations of abstraction, application, left, right, copy, and
drop). This expansion performs the full reduction of the bind syntax to core,

Fig. 6. Redex shape system

https://github.com/zmthy/kihi-redex
https://github.com/zmthy/kihi-redex
https://github.com/zmthy/kihi
http://ecs.vuw.ac.nz/~mwh/kihi-eval/
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and desugars all predefined named terms. In the other direction, a program
can be reduced to the minimal equivalent program (including shrinking unap-
plied abstractions). Embedded is a command-line JavaScript implementation for
node.js that also supports these features.

Fig. 7. Redex type system

5 Related Work

Kihi bears comparison to Krivine machines [9], Post tag system languages [11],
and other term-rewriting models. We focus on the compositional nature of exe-
cution in Kihi rather than the perspective of these systems and will not address
them further in this space.

As a simple Turing-complete language without variables, Kihi also has sim-
ilar goals to the SK calculus [1]. The core calculus of Kihi has five operators,
compared to SK’s two, but functions in Kihi are afforded more flexibility in
their input and output arities. The K combinator can be implemented in Kihi
as � swap, and the S combinator as · under (under (·) swap under (×)).
While the reverse is possible, it requires implementing a stack in SK so we do
not attempt it here.

Forth [10] is likely the most widely-known concatenative language. Forth pro-
grams receive arguments on an implicit stack and push their results to the same
stack, following a postfix approach where calls follow their arguments. While gen-
erally described in this imperative fashion, a Forth program is also (impurely)
functional and compositional when examined from the right perspective: each
function takes a single argument (the entire stack to date) and produces a single
output (a new stack to be used by the next function); from this point of view
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functions are composed from left to right, with the inner functions preceding the
outer. The library design and nomenclature of the language favour the impera-
tive view, however. The implicit nature of the stack requires the programmer to
keep a mental picture of its state after each function mutates it in order to know
which arguments will be available to the next, while Kihi’s approach allows the
stepped semantics of our tools while retaining a valid program at each stage.

The Joy language [12] is similar to Forth and brought the “concatenative”
terminology to the fore. Joy incorporates an extensive set of combinators [4]
emphasising the more functional elements of the paradigm, but is still funda-
mentally presented as manipulating the invisible data stack.

5.1 Om

The Om language [2] is closest to Kihi in approach. Described as “prefix concate-
native”, in an Om program the operator precedes its arguments and the operator
plus its arguments are replaced in the program by the result, as in Kihi. The lan-
guage and implementation focus on embedability and Unicode support and are
presented in terms of rewriting and partial programs, rather than composition.
Despite some superficial similarity, Om and Kihi do not have similar execution
or data models and operate very differently.

Om’s brace-enclosed “operand” programs parallel Kihi’s abstractions when
used in certain ways. In particular, they can be dequoted to splice their bodies
into the program, as in Kihi’s apply, and Om’s quote function would be Kihi
� (). They can also have the contents of other operands inserted at the start or
end of them: to behave similarly to Kihi’s � and � operators requires double-
quoting, because one layer of the operand quoting is always removed, so that
->[expression] {X} {{Y}} is analogous to � (X) (Y); to get the unwrapping
effect of ->[expression] in Kihi would be � � (·). Om has a family of “arrow
functions” ->[...], <-[...], [...]->, and [...]<- for manipulating programs
interpreted in various ways, but in general these do not relate to Kihi’s arrow
operators. An operand “program” can be interpreted as a Unicode string, list,
dictionary, or function, and Om has distinguished functions for treating the
program as each of these interpretations and moving elements in and out, or
deconstructing elements (for example, turning {ABC} into {A}{BC}), contrasting
with the uniform lower-level treatment in Kihi.

Single-step abstract execution of an Om program results in another Om pro-
gram with the same result up to side effects. The Om implementation does not
provide single-stepping as an option, but a program lacking necessary arguments
pauses to wait for them to be supplied after evaluating as far as possible.

6 Future Work

The separation of the six operations in Kihi allows exploration of the subset of
programs that omit one or more of the operations. Copy-free programs parallel
linear logic, while drop-free programs have similarities with the λI calculus and
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SCBI calculus, and left-free programs do not reorder terms. These subsets and
their equivalences or limitations are worth further investigation.

While Kihi core is Turing-complete, it is impractical for large programs.
Building on the core to create a more usable compositional language, building out
a useful set of default functions, and extending Kihi with more convenient data
structures, is ongoing work. We are currently extending our past work on module
systems and code reuse [6–8] to this end, and also on visual programming [5] for
novices or end-users. We are interested in exploring domains and tasks where
this computational style is beneficial, and integrating it into other systems.

Efficient implementation and representation of Kihi is another live issue.
Construction of a suitable virtual machine or compiler for Kihi raises questions
of executing the computational model and encoding the operations.

7 Conclusion

Kihi is a compositional functional language with practical higher-level func-
tionality but only six core operations with simple semantics. A key aspect of
Kihi’s flexibility is the arity-neutral fashion in which functions can compose.
We have presented Kihi and the tools we have built to execute and explore the
language and the compositional model. These tools are capable of interacting
with a broader ecosystem as well as illustrating execution paths and allowing a
programmer to explore different facets of computation than most conventional
languages and tools provide.

Screenshots and Outline

This appendix provides tool screenshots, identifies various features, and notes
points of behaviour that are incorporated in the demonstration.

Overall View of Web Evaluator
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The top row includes, from left to right:

1. A text box for entering a Kihi program to evaluate;
2. A button that executes the program;
3. A button that translates the given program into core operations, expanding

binds and named terms;
4. A button that shrinks excess terms inside abstractions.

The second row provides buttons for the operator symbols. The third is the
output area, showing the final result value of the program and any values emitted
by the evaluation.

The check boxes, from left to right:

1. Select the leftmost available reduction (checked) or the rightmost available
reduction (unchecked);

2. Enable evaluation of the program without clicking “Run”;
3. Remove values reaching the left-hand edge and move them to the output area;
4. Render operators as names (e.g. right) instead of symbols (�);
5. Sugar outputted Church numerals into textual numbers;
6. Render operators using substitute ASCII symbols (e.g. :) instead of mathe-

matical symbols (×). This mode suits some limited browsers and systems.

The step limit determines the maximum number of reduction steps the eval-
uator will take before stopping. It also stops if a program becomes too long.
These stopping points are to preserve browser resources. In particular, programs
with nested binds (as in the provided factorial example program) can expand to
many thousands of terms of core Kihi, and creating the list of steps performs
very poorly. This is a limitation of the web evaluator.

The fourth row allows manual stepping through the evaluation: jumping to
a specific numbered step (left), dragging the slider through steps (middle), or
automatically replaying and pausing evaluation (right).

The black box shows the current program being evaluated at this step,
depicted and described in more detail in the next section.

The “Steps” heading shows the total number of steps, and acts to hide or
restore the complete list of reduction steps below. The filter text box permits
showing only a subset of steps: for example, entering “left” will make only “left”
reduction steps appear.

The list of steps shows the program as it is at each step, underlining any
new terms introduced at that step and marking the rule used to obtain them.
Hovering the mouse over the rule will show a detailed display of the specific
reduction. The terms to be reduced next are highlighted in blue; it is possible
for portions of the program to be both new (underlined) and to-be-reduced (blue)
at once. Clicking on a step jumps the display above to that step of the program.

A labelled list of sample programs is below, any of which can be loaded and
evaluated by clicking the title.



The Practice of a Compositional Functional Programming Language 177

Single-Step Display of Web Evaluator

The complete program at this step is displayed at the top, with the rule that
produced it displayed below. The underlined text in the program is that on the
right-hand side of the rule display, and blue text is the next to be expanded as
before. The rule display highlights different elements of the rule (for example,
arguments) and matches corresponding elements on each side with the same
highlighting.
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Abstract. We study the almost-sure termination problem for prob-
abilistic programs. First, we show that supermartingales with lower
bounds on conditional absolute difference provide a sound approach
for the almost-sure termination problem. Moreover, using this approach
we can obtain explicit optimal bounds on tail probabilities of non-
termination within a given number of steps. Second, we present a new
approach based on Central Limit Theorem for the almost-sure termi-
nation problem, and show that this approach can establish almost-sure
termination of programs which none of the existing approaches can han-
dle. Finally, we discuss algorithmic approaches for the two above methods
that lead to automated analysis techniques for almost-sure termination
of probabilistic programs.

1 Introduction

Probabilistic Programs. Probabilistic programs are classical imperative programs
extended with random value generators that produce random values according
to some desired probability distribution [16,27]. They provide the appropriate
model for a wider variety of applications, such as analysis of stochastic network
protocols [2,22], robot planning [17], etc. General probabilistic programs induce
infinite-state Markov processes with complex behaviours, so that the formal anal-
ysis is needed in critical situations. The formal analysis of probabilistic programs
is an active research topic across different disciplines, such as probability theory
and statistics [21,30,32], formal methods [2,22], artificial intelligence [18], and
programming languages [6,9,12,13,33].

Termination Problems. In this paper, we focus on proving termination proper-
ties of probabilistic programs. Termination is the most basic and fundamental
notion of liveness for programs. For non-probabilistic programs, the proof of ter-
mination coincides with the construction of ranking functions [14], and many

A full version is available in http://arxiv.org/abs/1806.06683.
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different approaches exist for such construction [4,11,31,34]. For probabilistic
programs the most natural and basic extensions of the termination problem are
almost-sure termination and finite termination. First, the almost-sure termina-
tion problem asks whether the program terminates with probability 1. Second,
the finite termination problem asks whether the expected termination time is
finite. Finite termination implies almost-sure termination, while the converse is
not true in general. Here we focus on the almost-sure termination problem.

Previous Results. Below we describe the most relevant previous results on ter-
mination of probabilistic programs.

– finite probabilistic choices. First, quantitative invariants were used in [23,24]
to establish termination for probabilistic programs with non-determinism, but
restricted only to finite probabilistic choices.

– infinite probabilistic choices without non-determinism. The approach in [23,
24] was extended in [6] to ranking supermartingales to obtain a sound (but
not complete) approach for almost-sure termination over infinite-state prob-
abilistic programs with infinite-domain random variables, but without non-
determinism. For countable state space probabilistic programs without non-
determinism, the Lyapunov ranking functions provide a sound and complete
method to prove finite termination [3,15].

– infinite probabilistic choices with non-determinism. In the presence of
non-determinism, the Lyapunov-ranking-function method as well as the
ranking-supermartingale method are sound but not complete [13]. Different
approaches based on martingales and proof rules have been studied for finite
termination [13,20]. The synthesis of linear and polynomial ranking super-
martingales have been established [8,9]. Approaches for high-probability ter-
mination and non-termination has also been considered [10]. Recently, super-
martingales and lexicographic ranking supermartingales have been considered
for proving almost-sure termination of probabilistic programs [1,26].

Note that the problem of deciding termination of probabilistic programs is unde-
cidable [19], and its precise undecidability characterization has been investigated.
Finite termination of recursive probabilistic programs has also been studied
through proof rules [29].

Our Contributions. Now we formally describe our contributions. We consider
probabilistic programs where all program variables are integer-valued. Our main
contributions are three folds.

– Almost-Sure Termination: Supermartingale-Based Approach. We show new
results that supermartingales (i.e., not necessarily ranking supermartingales)
with lower bounds on conditional absolute difference present a sound app-
roach for proving almost-sure termination of probabilistic programs. More-
over, no previous supermartingale based approaches present explicit (opti-
mal) bounds on tail probabilities of non-termination within a given number
of steps.
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– Almost-Sure Termination: CLT-Based Approach. We present a new approach
based on Central Limit Theorem (CLT) that is sound to establish almost-
sure termination. The extra power of CLT allows one to prove probabilistic
programs where no global lower bound exists for values of program variables,
while previous approaches based on (ranking) supermartingales [1,8,9,13,26].
For example, when we consider the program while n ≥ 1 do n := n + r od
and take the sampling variable r to observe the probability distribution P

such that P(r = k) = 1
2|k|+1 for all integers k �= 0, then the value of n could

not be bounded from below during program execution; previous approaches
fail on this example, while our CLT-based approach succeeds.

– Algorithmic Methods. We discuss algorithmic methods for the two approaches
we present, showing that we not only present general approaches for almost-
sure termination, but possible automated analysis techniques as well.

Recent Related Work. In the recent work [26], supermartingales are also consid-
ered for proving almost-sure termination. Our results are however different from
and independent of the results in [26]. A more elaborate comparison is put in
Sect. 7.

Due to lack of space, detailed proofs can be found in the full version at http://
arxiv.org/abs/1806.06683.

2 Preliminaries

Below we first introduce some basic notations and concepts in probability theory
(see e.g. the standard textbook [35] for details), then present the syntax and
semantics of our probabilistic programs.

2.1 Basic Notations and Concepts

In the whole paper, we use N, N0, Z, and R to denote the sets of all positive
integers, non-negative integers, integers, and real numbers, respectively.

Probability Space. A probability space is a triple (Ω,F ,P), where Ω is a non-
empty set (so-called sample space), F is a σ-algebra over Ω (i.e., a collection of
subsets of Ω that contains the empty set ∅ and is closed under complementation
and countable union) and P is a probability measure on F , i.e., a function P : F →
[0, 1] such that (i) P(Ω) = 1 and (ii) for all set-sequences A1, A2, · · · ∈ F that are
pairwise-disjoint (i.e., Ai ∩ Aj = ∅ whenever i �= j) it holds that

∑∞
i=1 P(Ai) =

P (
⋃∞

i=1 Ai). Elements of F are usually called events. We say an event A ∈ F
holds almost-surely (a.s.) if P(A) = 1.

Random Variables. [35, Chap. 1] A random variable X from a probability
space (Ω,F ,P) is an F-measurable function X : Ω → R ∪ {−∞,+∞}, i.e., a
function satisfying the condition that for all d ∈ R ∪ {−∞,+∞}, the set {ω ∈
Ω | X(ω) < d} belongs to F ; X is bounded if there exists a real number M > 0

http://arxiv.org/abs/1806.06683
http://arxiv.org/abs/1806.06683
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such that for all ω ∈ Ω, we have X(ω) ∈ R and |X(ω)| ≤ M . By convention, we
abbreviate +∞ as ∞.

Expectation. The expected value of a random variable X from a probability
space (Ω,F ,P), denoted by E(X), is defined as the Lebesgue integral of X w.r.t
P, i.e., E(X) :=

∫
X dP ; the precise definition of Lebesgue integral is somewhat

technical and is omitted here (cf. [35, Chap. 5] for a formal definition). In the
case that the range of X ran X = {d0, d1, . . . , dk, . . . } is countable with distinct
dk’s, we have E(X) =

∑∞
k=0 dk · P(X = dk).

Characteristic Random Variables. Given random variables X0, . . . , Xn from
a probability space (Ω,F ,P) and a predicate Φ over R ∪ {−∞,+∞}, we
denote by 1φ(X0,...,Xn) the random variable such that 1φ(X0,...,Xn)(ω) = 1 if
φ (X0(ω), . . . , Xn(ω)) holds, and 1φ(X0,...,Xn)(ω) = 0 otherwise.

By definition, E
(
1φ(X0,...,Xn)

)
= P (φ(X0, . . . , Xn)). Note that if φ does not

involve any random variable, then 1φ can be deemed as a constant whose value
depends only on whether φ holds or not.

Filtrations and Stopping Times. A filtration of a probability space (Ω,F ,P)
is an infinite sequence {Fn}n∈N0 of σ-algebras over Ω such that Fn ⊆ Fn+1 ⊆ F
for all n ∈ N0. A stopping time (from (Ω,F ,P)) w.r.t {Fn}n∈N0 is a random
variable R : Ω → N0 ∪{∞} such that for every n ∈ N0, the event R ≤ n belongs
to Fn.

Conditional Expectation. Let X be any random variable from a probability
space (Ω,F ,P) such that E(|X|) < ∞. Then given any σ-algebra G ⊆ F , there
exists a random variable (from (Ω,F ,P)), conventionally denoted by E(X|G),
such that

(E1) E(X|G) is G-measurable, and
(E2) E (|E(X|G)|) < ∞, and
(E3) for all A ∈ G, we have

∫
A
E(X|G) dP =

∫
A

X dP.

The random variable E(X|G) is called the conditional expectation of X given
G. The random variable E(X|G) is a.s. unique in the sense that if Y is another
random variable satisfying (E1)–(E3), then P(Y = E(X|G)) = 1.

Discrete-Time Stochastic Processes. A discrete-time stochastic process is
a sequence Γ = {Xn}n∈N0 of random variables where Xn’s are all from some
probability space (say, (Ω,F ,P)); and Γ is adapted to a filtration {Fn}n∈N0 of
sub-σ-algebras of F if for all n ∈ N0, Xn is Fn-measurable.

Difference-Boundedness. A discrete-time stochastic process Γ = {Xn}n∈N0 is
difference-bounded if there is c ∈ (0,∞) such that for all n ∈ N0, |Xn+1−Xn| ≤ c
a.s..

Stopping Time ZΓ . Given a discrete-time stochastic process Γ = {Xn}n∈N0

adapted to a filtration {Fn}n∈N0 , we define the random variable ZΓ by ZΓ (ω) :=
min{n | Xn(ω) ≤ 0} where min ∅ := ∞. By definition, ZΓ is a stopping time
w.r.t {Fn}n∈N0 .
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Martingales. A discrete-time stochastic process Γ = {Xn}n∈N0 adapted to a
filtration {Fn}n∈N0 is a martingale (resp. supermartingale) if for every n ∈ N0,
E(|Xn|) < ∞ and it holds a.s. that E(Xn+1|Fn) = Xn (resp. E(Xn+1|Fn) ≤
Xn). We refer to [35, Chap. 10] for more details.

Discrete Probability Distributions over Countable Support. A discrete
probability distribution over a countable set U is a function q : U → [0, 1] such that∑

z∈U q(z) = 1. The support of q, is defined as supp(q) := {z ∈ U | q(z) > 0}.

2.2 The Syntax and Semantics for Probabilistic Programs

In the sequel, we fix two countable sets, the set of program variables and the set
of sampling variables. W.l.o.g, these two sets are disjoint. Informally, program
variables are the variables that are directly related to the control-flow and the
data-flow of a program, while sampling variables reflect randomized inputs to
programs. In this paper, we consider integer-valued variables, i.e., every program
variable holds an integer upon instantiation, while every sampling variable is
bound to a discrete probability distribution over integers. Possible extensions to
real-valued variables are discussed in Sect. 5.

The Syntax. The syntax of probabilistic programs is illustrated by the grammar
in Fig. 1. Below we explain the grammar.

– Variables. Expressions 〈pvar〉 (resp. 〈rvar〉) range over program (resp. sam-
pling) variables.

– Arithmetic Expressions. Expressions 〈expr〉 (resp. 〈pexpr〉) range over arith-
metic expressions over both program and sampling variables (resp. program
variables), respectively. As a theoretical paper, we do not fix the detailed
syntax for 〈expr〉 and 〈pexpr〉.

– Boolean Expressions. Expressions 〈bexpr〉 range over propositional arithmetic
predicates over program variables.

– Programs. A program from 〈prog〉 could be either an assignment statement
indicated by ‘:=’, or ‘skip’ which is the statement that does nothing, or a
conditional branch indicated by the keyword ‘if ’, or a while-loop indicated
by the keyword ‘while’, or a sequential composition of statements connected
by semicolon.

Fig. 1. The syntax of probabilistic programs
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Remark 1. The syntax of our programming language is quite general and covers
major features of probabilistic programming. For example, compared with a pop-
ular probabilistic-programming language from [16], the only difference between
our syntax and theirs is that they have extra observe statements. �

Single (Probabilistic) While Loops. In order to develop approaches for
proving almost-sure termination of probabilistic programs, we first analyze the
almost-sure termination of programs with a single while loop. Then, we demon-
strate that the almost-sure termination of general probabilistic programs without
nested loops can be obtained by the almost-sure termination of all components
which are single while loops and loop-free statements (see Sect. 5). Formally, a
single while loop is a program of the following form:

while φ do Q od (1)

where φ is the loop guard from 〈bexpr〉 and Q is a loop-free program with
possibly assignment statements, conditional branches, sequential composition
but without while loops. Given a single while loop, we assign the program counter
in to the entry point of the while loop and the program counter out to the
terminating point of the loop. Below we give an example of a single while loop.

Example 1. Consider the following single while loop:

in : while x ≥ 1 do
x := x + r

od
out :

where x is a program variable and r is a sampling variable that observes certain
fixed distributions (e.g., a two-point distribution such that P(r = −1) = P(r =
1) = 1

2 ). Informally, the program performs a random increment/decrement on x
until its value is no greater than zero. �

The Semantics. Since our approaches for proving almost-sure termination work
basically for single while loops (in Sect. 5 we extend to probabilistic programs
without nested loops), we present the simplified semantics for single while loops.

We first introduce the notion of valuations which specify current values for
program and sampling variables. Below we fix a single while loop P in the form
(1) and let X (resp. R) be the set of program (resp. sampling) variables appearing
in P . The size of X,R is denoted by |X|, |R|, respectively. We impose arbitrary
linear orders on both of X,R so that X = {x1, . . . , x|X|} and R = {r1, . . . , r|R|}.
We also require that for each sampling variable ri ∈ R, a discrete probability
distribution is given. Intuitively, at each loop iteration of P , the value of ri is
independently sampled w.r.t the distribution.

Valuations. A program valuation is a (column) vector v ∈ Z
|X|. Intuitively,

a valuation v specifies that for each xi ∈ X, the value assigned is the i-th
coordinate v[i] of v. Likewise, a sampling valuation is a (column) vector u ∈ Z

|R|.
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A sampling function Υ is a function assigning to every sampling variable r ∈ R
a discrete probability distribution over Z. The discrete probability distribution
Ῡ over Z

|R| is defined by: Ῡ (u) :=
∏|R|

i=1 Υ (ri)(u[i]).
For each program valuation v, we say that v satisfies the loop guard φ,

denoted by v |= φ, if the formula φ holds when every appearance of a program
variable is replaced by its corresponding value in v. Moreover, the loop body Q
in P encodes a function F : Z|X| × Z

|R| → Z
|X| which transforms the program

valuation v before the execution of Q and the independently-sampled values in
u into the program valuation F (v,u) after the execution of Q.

Semantics of Single While Loops. Now we present the semantics of single while
loops. Informally, the semantics is defined by a Markov chain M = (S,P), where
the state space S := {in, out} × Z

|X| is a set of pairs of location and sampled
values and the probability transition function P : S × S → [0, 1] will be clarified
later. We call states in S configurations. A path under the Markov chain is
an infinite sequence {(	n,vn)}n≥0 of configurations. The intuition is that in a
path, each vn (resp. 	n) is the current program valuation (the current program
counter to be executed) right before the n-th execution step of P . Then given
an initial configuration (in,v0), the probability space for P is constructed as
the standard one for its Markov chain over paths (for details see [2, Chap. 10]).
We shall denote by P the probability measure (over the σ-algebra of subsets of
paths) in the probability space for P (from some fixed initial program valuation
v0).

Consider any initial program valuation v. The execution of the single while
loop P from v results in a path {(	n,vn)}n∈N0 as follows. Initially, v0 = v and
	0 = in. Then at each step n, the following two operations are performed. First,
a sampling valuation un is obtained through samplings for all sampling vari-
ables, where the value for each sampling variable observes a predefined discrete
probability distribution for the variable. Second, we clarify three cases below:

– if 	n = in and vn |= φ, then the program enters the loop and we have
	n+1 := in, vn+1 := F (vn,un), and thus we simplify the executions of Q as
a single computation step;

– if 	n = in and vn �|= φ, then the program enters the terminating program
counter out and we have 	n+1 := out, vn+1 := vn;

– if 	n = out then the program stays at the program counter out and we have
	n+1 := out, vn+1 := vn.

Based on the informal description, we now formally define the probability
transition function P:

– P((in,v), (in,v′)) =
∑

u∈{u|v′=F (v,u)} Ῡ (u), for any v,v′ such that v |= φ;
– P((in,v), (out,v)) = 1 for any v such that v �|= φ;
– P((out,v), (out,v)) = 1 for any v;
– P((	,v), (	′,v′)) = 0 for all other cases.
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We note that the semantics for general probabilistic programs can be defined in
the same principle as for single while loops with the help of transition structures
or control-flow graphs (see [8,9]).

Almost-Sure Termination. In the following, we define the notion of almost-
sure termination over single while loops. Consider a single while loop P .
The termination-time random variable T is defined such that for any path
{(	n,vn)}n∈N0 , the value of T at the path is min{n | 	n = out}, where
min ∅ := ∞. Then P is said to be almost-surely terminating (from some pre-
scribed initial program valuation v0) if P(T < ∞) = 1. Besides, we also con-
sider bounds on tail probabilities P(T ≥ k) of non-termination within k loop-
iterations. Tail bounds are important quantitative aspects that characterizes how
fast the program terminates.

3 Supermartingale Based Approach

In this section, we present our supermartingale-based approach for proving
almost-sure termination of single while loops. We first establish new mathe-
matical results on supermartingales, then we show how to apply these results to
obtain a sound approach for proving almost-sure termination.

The following proposition is our first new mathematical result.

Proposition 1 (Difference-bounded Supermartingales). Consider any
difference-bounded supermartingale Γ = {Xn}n∈N0 adapted to a filtration
{Fn}n∈N0 satisfying the following conditions:

1. X0 is a constant random variable;
2. for all n ∈ N0, it holds for all ω that (i) Xn(ω) ≥ 0 and (ii) Xn(ω) = 0

implies Xn+1(ω) = 0;
3. Lower Bound on Conditional Absolute Difference (LBCAD). there exists

δ ∈ (0,∞) such that for all n ∈ N0, it holds a.s. that Xn > 0 implies
E(|Xn+1 − Xn||Fn) ≥ δ.

Then P(ZΓ < ∞) = 1 and the function k �→ P (ZΓ ≥ k) ∈ O
(

1√
k

)
.

Informally, the LBCAD condition requires that the stochastic process should
have a minimal amount of vibrations at each step. The amount δ is the least
amount that the stochastic process should change on its value in the next step
(e.g., Xn+1 = Xn is not allowed). Then it is intuitively true that if the stochastic
process does not increase in expectation (i.e., a supermartingale) and satisfies
the LBCAD condition, then we have at some point the stochastic processes will
drop below zero. The formal proof ideas are as follows.

Key Proof Ideas. The main idea is a thorough analysis of the martingale

Yn :=
e−t·Xn

∏n−1
j=0 E

(
e−t·(Xj+1−Xj)|Fj

) (n ∈ N0)
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for some sufficiently small t > 0 and its limit through Optional Stopping
Theorem. We first prove that {Yn} is indeed a martingale. The difference-
boundedness ensures that the martingale Yn is well-defined. Then by letting
Y∞ := lim

n→∞ Ymin{n,ZΓ }, we prove that E (Y∞) = E (Y0) = e−t·E(X0) through
Optional Stopping Theorem and the LBCAD condition. Third, we prove from
basic definitions and the LBCAD condition that

E (Y∞) = e−t·E(X0) ≤ 1 −
(

1 −
(

1 +
δ2

4
· t2

)−k
)

· P (ZΓ ≥ k) .

By setting t := 1√
k

for sufficiently large k, one has that

P (ZΓ ≥ k) ≤ 1 − e
− E(X0)√

k

1 − (
1 + δ2

4 · 1
k

)−k
.

It follows that k �→ P (ZΓ ≥ k) ∈ O
(

1√
k

)
. ��

Optimality of Proposition 2. We now present two examples to illustrate two
aspects of optimality of Proposition 1. First, in Example 2 we show an appli-
cation on the classical symmetric random walk that the tail bound O( 1√

k
) of

Proposition 1 is optimal. Then in Example 3 we establish that the always non-
negativity condition required in the second item of Proposition 1 is critical (i.e.,
the result does not hold without the condition).

Example 2. Consider the family {Yn}n∈N0 of independent random variables
defined as follows: Y0 := 1 and each Yn (n ≥ 1) satisfies that P (Yn = 1) = 1

2
and P (Yn = −1) = 1

2 . Let the stochastic process Γ = {Xn}n∈N0 be inductively
defined by: X0 := Y0. Xn is difference bounded since Yn is bounded. For all
n ∈ N0 we have Xn+1 := 1Xn>0 · (Xn + Yn+1). Choose the filtration {Fn}n∈N0

such that every Fn is the smallest σ-algebra that makes Y0, . . . , Yn measur-
able. Then Γ models the classical symmetric random walk and Xn > 0 implies
E(|Xn+1 − Xn||Fn) = 1 a.s. Thus, Γ ensures the LBCAD condition. From
Proposition 1, we obtain that P(ZΓ < ∞) = 1 and k �→ P (ZΓ ≥ k) ∈ O

(
1√
k

)
.

It follows from [5, Theorem 4.1] that k �→ P (ZΓ ≥ k) ∈ Ω
(

1√
k

)
. Hence, the tail

bound O
(

1√
k

)
in Proposition 1 is optimal. �

Example 3. In Proposition 1, the condition that Xn ≥ 0 is necessary; in other
words, it is necessary to have XZΓ

= 0 rather than XZΓ
≤ 0 when ZΓ < ∞.

This can be observed as follows. Consider the discrete-time stochastic processes
{Xn}n∈N0 and Γ = {Yn}n∈N0 given as follows:

– the random variables X0, . . . , Xn, . . . are independent, X0 is the random vari-
able with constant value 1

2 and each Xn (n ≥ 1) satisfies that P (Xn = 1) =
e− 1

n2 and P
(
Xn = −4 · n2

)
= 1 − e− 1

n2 ;
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– Yn :=
∑n

j=0 Xj for n ≥ 0.

Let Fn be the filtration which is the smallest σ-algebra that makes X0, . . . , Xn

measurable for every n. Then one can show that Γ (adapted to {Fn}n∈N0) satisfies
integrability and the LBCAD condition, but P (ZΓ = ∞) = e− π2

6 > 0. �

In the following, we illustrate how one can apply Proposition 1 to prove
almost-sure termination of single while loops. Below we fix a single while loop P
in the form (1). We first introduce the notion of supermartingale maps which are
a special class of functions over configurations that subjects to supermartingale-
like constraints.

Definition 1 (Supermartingale Maps). A (difference-bounded) super-
martingale map (for P ) is a function h : {in, out} × Z

|X| → R satisfying that
there exist real numbers δ, ζ > 0 such that for all configurations (	,v), the fol-
lowing conditions hold:

(D1) if 	 = out then h(	,v) = 0;
(D2) if 	 = in and v |= φ, then (i) h(	,v) ≥ δ and (ii) h(	, F (v,u)) ≥ δ for all

u ∈ supp
(
Ῡ

)
;

(D3) if 	 = in and v |= φ then
(D3.1) Σu∈Z|R| Ῡ (u) · h(	, F (v,u)) ≤ h(	,v), and
(D3.2) Σu∈Z|R| Ῡ (u) · |g(	,v,u)| ≥ δ where g(	,v,u) := h(	, F (v,u))−h(	,v);

(D4) (for difference-boundedness) |g(in,v,u)| ≤ ζ for all u ∈ supp
(
Ῡ

)
and

v ∈ Z
|X| such that v |= φ, and h(in, F (v,u)) ≤ ζ for all v ∈ Z

|X| and
u ∈ supp

(
Ῡ

)
such that v |= φ and F (v,u) �|= φ.

Thus, h is a supermartingale map if conditions (D1)–(D3) hold. Furthermore, h
is difference bounded if in extra (D4) holds.

Intuitively, the conditions (D1), (D2) together ensure non-negativity for the
function h. Moreover, the difference between “= 0” in (D1) and “≥ δ” in (D2)
ensures that h is positive iff the program still executes in the loop. The condition
(D3.1) ensures the supermartingale condition for h that the next expected value
does not increase, while the condition (D3.2) says that the expected value of the
absolute change between the current and the next step is at least δ, relating to the
same amount in the LBCAD condition. Finally, the condition (D4) corresponds
to the difference-boundedness in supermartingales in the sense that it requires
the change of value both after the loop iteration and right before the termination
of the loop should be bounded by the upper bound ζ.

Now we state the main theorem of this section which says that the existence
of a difference-bounded supermartingale map implies almost-sure termination.

Theorem 1 (Soundness). If there exists a difference-bounded supermartingale
map h for P , then for any initial valuation v0 we have P(T < ∞) = 1 and
k �→ P(T ≥ k) ∈ O

(
1√
k

)
.
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Key Proof Ideas. Let h be any difference-bounded supermartingale map h for the
single while loop program P , v be any initial valuation and δ, ζ be the parameters
in Definition 1. We define the stochastic process Γ = {Xn}n∈N0 adapted to
{Fn}n∈N0 by Xn = h(	n,vn) where 	n (resp. vn) refers to the random variable
(resp. the vector of random variables) for the program counter (resp. program
valuation) at the nth step. Then P terminates iff Γ stops. We prove that Γ
satisfies the conditions in Proposition 1, so that P is almost-surely terminating
with the same tail bound.

Theorem 1 suggests that to prove almost-sure termination, one only needs
to find a difference-bounded supermartingale map.

Remark 2. Informally, Theorem 1 can be used to prove almost-sure termination
of while loops where there exists a distance function (as a supermartingale map)
that measures the distance of the loop to termination, for which the distance
does not increase in expectation and is changed by a minimal amount in each
loop iteration. The key idea to apply Theorem 1 is to construct such a distance
function. �
Below we illustrate an example.

Example 4. Consider the single while loop in Example 1 where the distribution
for r is given as P(r = 1) = P(r = −1) = 1

2 and this program can be viewed
as non-biased random walks. The program has infinite expected termination
so previous approach based on ranking supermartingales cannot apply. Below
we prove the almost-sure termination of the program. We define the difference-
bounded supermartingale map h by: h(in, x) = x+1 and h(out, x) = 0 for every
x. Let ζ = δ = 1. Then for every x, we have that

– the condition (D1) is valid by the definition of h;
– if 	 = in and x ≥ 1, then h(	, x) = x+1 ≥ δ and h(in, F (x, u)) = F (x, u)+1 ≥

x − 1 + 1 ≥ δ for all u ∈ supp
(
Ῡ

)
. Then the condition (D2) is valid;

– if 	 = in and x ≥ 1, then Σu∈ZῩ (u) ·h(in, F (x, u)) = 1
2 ((x+2)+x) ≤ x+1 =

h(in, x) and Σu∈ZῩ (u) · |g(in, x, u)| = 1
2 (1 + 1) ≥ δ. Thus, we have that the

condition (D3) is valid.
– The condition (D4) is clear as the difference is less than 1 = ζ.

It follows that h is a difference-bounded supermartingale map. Then by Theo-
rem 1 it holds that the program terminates almost-surely under any initial value
with tail probabilities bounded by reciprocal of square root of the thresholds.
By similar arguments, we can show that the results still hold when we consider
that the distribution of r in general has bounded range, non-positive mean value
and non-zero variance by letting h(in, x) = x + K for some sufficiently large
constant K. �

Now we extend Proposition 1 to general supermartingales. The extension lifts
the difference-boundedness condition but derives with a weaker tail bound.

Proposition 2 (General Supermartingales). Consider any supermartingale
Γ = {Xn}n∈N0 adapted to a filtration {Fn}n∈N0 satisfying the following condi-
tions:
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1. X0 is a constant random variable;
2. for all n ∈ N0, it holds for all ω that (i) Xn(ω) ≥ 0 and (ii) Xn(ω) = 0

implies Xn+1(ω) = 0;
3. (LBCAD). there exists δ ∈ (0,∞) such that for all n ∈ N0, it holds a.s. that

Xn > 0 implies E(|Xn+1 − Xn||Fn) ≥ δ.

Then P(ZΓ < ∞) = 1 and the function k �→ P (ZΓ ≥ k) ∈ O
(
k− 1

6

)
.

Key Proof Ideas. The key idea is to extend the proof of Proposition 1 with the
stopping times RM ’s (M ∈ (E(X0),∞)) defined by RM (ω) := min{n | Xn(ω) ≤
0 or Xn(ω) ≥ M} . For any M > 0, we first define a new stochastic process
{X ′

n}n by X ′
n = min{Xn,M} for all n ∈ N0 . Then we define the discrete-time

stochastic process {Yn}n∈N0 by

Yn :=
e−t·X′

n

∏n−1
j=0 E

(
e−t·(X′

j+1−X′
j)|Fj

)

for some appropriate positive real number t. We prove that {Yn}n∈N0 is
still a martingale. Then from Optional Stopping Theorem, by letting Y∞ :=
lim

n→∞ Ymin{n,RM }, we also have E (Y∞) = E (Y0) = e−t·E(X0) . Thus, we can also
obtain similarly that

E (Y∞) = e−t·E(X0) ≤ 1 −
(

1 −
(

1 +
δ2

16
· t2

)−k
)

· P (RM ≥ k) .

For k ∈ Θ(M6) and t = 1√
k
, we obtain P (RM ≥ k) ∈ O( 1√

k
) . Hence,

P (RM = ∞) = 0. By Optional Stopping Theorem, we have E(XRM
) ≤ E(X0).

Furthermore, we have by Markov’s Inequality that P(XRM
≥ M) ≤ E(XRM

)

M ≤
E(X0)

M . Thus, for sufficiently large k with M ∈ Θ(k
1
6 ), we can deduce that

P(ZΓ ≥ k) ≤ P(RM ≥ k) + P(XRM
≥ M) ∈ O( 1√

k
+ 1

6√
k
). ��

Remark 3. Similar to Theorem 1, we can establish a soundness result for general
supermartingales. The result simply says that the existence of a (not necessarily
difference-bounded) supermartingale map implies almost-sure termination and
a weaker tail bound O(k− 1

6 ). �

The following example illustrates the application of Proposition 2 on a single
while loop with unbounded difference.

Example 5. Consider the following single while loop program

in : while x ≥ 1 do
x := x + r · �√x�

od
out :
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where the distribution for r is given as P(r = 1) = P(r = −1) = 1
2 . The

supermartingale map h is defined as the one in Example 4. In this program, h is
not difference-bounded as �√x� is not bounded. Thus, h satisfies the conditions
except (D4) in Definition 1. We now construct a stochastic process Γ = {Xn =
h(	n,vn)}n∈N0 which meets the requirements of Proposition 2. It follows that the
program terminates almost-surely under any initial value with tail probabilities
bounded by O

(
k− 1

6

)
. In general, if r observes a distribution with bounded range

[−M,M ], non-positive mean and non-zero variance, then we can still prove the
same result as follows. We choose a sufficiently large constant K ≥ M2

4 + 1 so
that the function h with h(in, x) = x+K is still a supermartingale map since the
non-negativity of h(in, x) = x−M ·√x+K = (

√
x− M

2 )2− M2

4 +K ≥ −M2

4 +K
for all x ≥ 0. �

4 Central Limit Theorem Based Approach

We have seen in the previous section a supermartingale-based approach for prov-
ing almost-sure termination. However by Example 3, an inherent restriction is
that the supermartingale should be non-negative. In this section, we propose a
new approach through Central Limit Theorem that can drop this requirement
but requires in extra an independence condition.

We first state the well-known Central Limit Theorem [35, Chap. 18].

Theorem 2 (Lindeberg-Lévy’s Central Limit Theorem). Suppose
{X1,X2, . . .} is a sequence of independent and identically distributed random
variables with E(Xi) = μ and Var(Xi) = σ2 > 0 is finite. Then as n approaches
infinity, the random variables

√
n(( 1

n

∑n
i=1 Xi) − μ) converge in distribution to

a normal (0, σ2). In the case σ > 0, we have for every real number z

lim
n→∞P(

√
n((

1
n

n∑

i=1

Xi) − μ) ≤ z) = Φ(
z

σ
),

where Φ(x) is the standard normal cumulative distribution functions evaluated
at x.

The following lemma is key to our approach, proved by Central Limit Theo-
rem.

Lemma 1. Let {Rn}n∈N be a sequence of independent and identically distributed
random variables with expected value μ = E(Rn) ≤ 0 and finite variance
Var(Rn) = σ2 > 0 for every n ∈ N. For every x ∈ R, let Γ = {Xn}n∈N0

be a discrete-time stochastic process, where X0 = x and Xn = x + Σn
k=1Rk for

n ≥ 1. Then there exists a constant p > 0, for any x, we have P(ZΓ < ∞) ≥ p.

Proof. According to the Central Limit Theorem (Theorem 2),

lim
n→∞P(

√
n(

Xn − x

n
− μ) ≤ z) = Φ(

z

σ
)
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holds for every real number z. Note that

P(
√

n(
Xn − x

n
− μ) ≤ z) = P(Xn ≤ √

n · z + n · μ + x) ≤ P(Xn ≤ √
n · z + x).

Choose z = −1. Then we have P(Xn ≤ 0) ≥ P(X ≤ −√
n + x) when n > x2.

Now we fix a proper ε < Φ(−1
σ ), and get n0(x) from the limit form equation such

that for all n > max{n0(x), x2} we have

P(Xn ≤ 0) ≥ P(X ≤ −√
n + x) ≥ P(

√
n(

Xn − X0

n
− μ) ≤ −1) ≥ Φ(

−1

σ
) − ε = p > 0.

Since Xn ≤ 0 implies ZΓ < ∞, we obtain that P(ZΓ < ∞) ≥ p for every x. ��

Incremental Single While Loops. Due to the independence condition required
by Central Limit Theorem, we need to consider special classes of single while
loops. We say that a single while loop P in the form (1) is incremental if Q is a
sequential composition of assignment statements of the form x := x+

∑|R|
i=1 ci ·ri

where x is a program variable, ri’s are sampling variables and ci’s are constant
coefficients for sampling variables. We then consider incremental single while
loops. For incremental single while loops, the function F for the loop body Q is
incremental, i.e., F (v,u) = v + A · u for some constant matrix A ∈ Z

|X|×|R|.

Remark 4. By Example 3, previous approaches cannot handle incremental single
while loops with unbounded range of sampling variables (so that a supermartin-
gale with a lower bound on its values may not exist). On the other hand, any
additional syntax such as conditional branches or assignment statements like
x := 2 · x + r will result in an increment over certain program variables that is
dependent on the previous executions of the program, breaking the independence
condition. �

To prove almost-sure termination of incremental single while loops through
Central Limit Theorem, we introduce the notion of linear progress functions.
Below we fix an incremental single while loop P in the form (1).

Definition 2 (Linear Progress Functions). A linear progress function for
P is a function h : Z|X| → R satisfying the following conditions:

(L1) there exists a ∈ R
|X| and c ∈ R such that h(v) = aT ·v + c for all program

valuations v;
(L2) for all program valuations v, if v |= φ then h(v) > 0;
(L3)

∑|R|
i=1 ai · μi ≤ 0 and

∑|R|
i=1 a2

i · σ2
i > 0, where

• (a1, . . . , a|R|) = aT · A,
• μi (resp. σ2

i ) is the mean (resp. variance) of the distribution Υ (ri), for
1 ≤ i ≤ |R|.

Intuitively, the condition (L1) says that the function should be linear; the con-
dition (L2) specifies that if the value of h is non-positive, then the program
terminates; the condition (L3) enforces that the mean of aT · A · u should be
non-positive, while its variance should be non-zero. The main theorem of this
section is then as follows.



New Approaches for Almost-Sure Termination of Probabilistic Programs 195

Theorem 3 (Soundness). For any incremental single while loop program P ,
if there exists a linear progress function for P , then for any initial valuation v0

we have P(T < ∞) = 1.

Proof. Let h(v) = aT · v + c be a linear progress function for P . We define
the stochastic process Γ = {Xn}n∈N0 by Xn = h(vn), where vn is the vector of
random variables that represents the program valuation at the nth execution step
of P . Define Rn := Xn −Xn−1. We have Rn = Xn −Xn−1 = h(vn)−h(vn−1) =
h(vn−1 + A · un) − h(vn−1) = aT · A · un for n ≥ 1. Thus, {Rn}n∈N is a
sequence of independent and identically distributed random variables. We have
μ := E(Rn) ≤ 0 and σ2 := Var(Rn) > 0 by the independency of ri’s and the
condition (L3) in Definition 2. Now we can apply Lemma 1 and obtain that there
exists a constant p > 0 such that for any initial program valuation v0, we have
P(ZΓ < ∞) ≥ p. By the recurrence property of Markov chain, we have {Xn} is
almost-surely stopping. Notice that from (L2), 0 ≥ Xn = h(vn) implies vn �|= φ
and (in the next step) termination of the single while loop. Hence, we have that
P is almost-surely terminating under any initial program valuation v0. ��

Theorem 3 can be applied to prove almost-sure termination of while loops
whose increments are independent, but the value change in one iteration is not
bounded. Thus, Theorem 3 can handle programs which Theorem 1 and Propo-
sition 2 as well as previous supermartingale-based methods cannot.

In the following, we present several examples, showing that Theorem 3 can
handle sampling variables with unbounded range which previous approaches
cannot handle.

Example 6. Consider the program in Example 1 where we let r be a two-sided
geometric distribution sampling variable such that P(r = k > 0) = (1−p)k−1p

2

and P(r = k < 0) = (1−p)−k−1p
2 for some 0 < p < 1. First note that by the

approach in [1], we can prove that this program has infinite expected termina-
tion time, and thus previous ranking-supermartingale based approach cannot
be applied. Also note that the value that r may take has no lower bound. This
means that we can hardly obtain the almost-sure termination by finding a proper
supermartingale map that satisfy both the non-negativity condition and the
non-increasing condition. Now we apply Theorem 3. Choose h(x) = x. It follows
directly that both (L1) and (L2) hold. Since E(r) = 0 for symmetric property
and 0 < Var(r) = E(r2) − E

2(r) = E(r2) = E(Y 2) = Var(Y ) − E
2(Y ) < ∞

where Y is the standard geometric distribution with parameter p, we have (L3)
holds. Thus, h is a legal linear progress function and this program is almost-sure
terminating by Theorem 3. �
Example 7. Consider the following program with a more complex loop guard.

in : while y > x2 do
x := x + r1 ;
y := y + r2

od
out :
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This program terminates when the point on the plane leaves the area
above the parabola by a two-dimensional random walk. We suppose that
μ1 = E(r1), μ2 = E(r2) are both positive and 0 < Var(r1),Var(r2) < ∞.
Now we are to prove the program is almost-surely terminating by construct-
ing a linear progress function h. The existence of a linear progress function
renders the result valid by Theorem 3. Let h(x, y) = −μ2 · x + μ1 · y + μ2

2
4μ1

.

If y > x2, then h(x, y) > μ1 · x2 − μ2 · x + μ2
2

4μ1
= μ1(x − μ2

2μ1
)2 ≥ 0. From

aT · A · (E(r1),E(r2))T = −μ2 · μ1 + μ1 · μ2 = 0, we have h is a legal linear
progress function for P . Thus, P is almost-surely terminating. �

5 Algorithmic Methods and Extensions

In this section, we discuss possible extensions for our results, such as algorithmic
methods, real-valued program variables, non-determinism.

Algorithmic Methods. Since program termination is generally undecidable, algo-
rithms for proving termination of programs require certain restrictions. A typical
restriction adopted in previous ranking-supermartingale-based algorithms [6,8–
10] is a fixed template for ranking supermartingales. Such a template fixes a spe-
cific form for ranking supermartingales. In general, a ranking-supermartingale-
based algorithm first establishes a template with unknown coefficients for a rank-
ing supermartingale. The constraints over those unknown coefficients are inher-
ited from the properties of the ranking supermartingale. Finally, constraints are
solved using either linear programming or semidefinite programming.

This algorithmic paradigm can be directly extended to our supermartingale-
based approaches. First, an algorithm can establish a linear or polynomial tem-
plate with unknown coefficients for a supermartingale map. Then our conditions
from supermartingale maps (namely (D1)–(D4)) result in constraints on the
unknown coefficients. Finally, linear or semidefinite programming solvers can be
applied to obtain the concrete values for those unknown coefficients.

For our CLT-based approach, the paradigm is more direct to apply. We first
establish a linear template with unknown coefficients. Then we just need to find
suitable coefficients such that (i) the difference has non-positive mean value and
non-zero variance and (ii) the condition (D5) holds, which again reduces to linear
programming.

In conclusion, previous algorithmic results can be easily adapted to our
approaches.

Real-Valued Program Variables. A major technical difficulty to handle real num-
bers is the measurability condition (cf. [35, Chap. 3]). For example, we need to
ensure that our supermartingale map is measurable in some sense. The measur-
ability condition also affects our CLT-based approach as it is more difficult to
prove the recurrence property in continuous-state-space case. However, the issue
of measurability is only technical and not fundamental, and thus we believe that
our approaches can be extended to real-valued program variables and continuous
samplings such as uniform or Gaussian distribution.
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Non-determinism. In previous works, non-determinism is handled by ensur-
ing related properties in each non-deterministic branch. For examples, previ-
ous results on ranking supermartingales [6,8,9] ensures that the conditions for
ranking supermartingales should hold for all non-deterministic branches if we
have demonic non-determinism, and for at least one non-deterministic branch
if we have angelic non-determinism. Algorithmic methods can then be adapted
depending on whether the non-determinism is demonic or angelic.

Our supermartingale-based approaches can be easily extended to handle non-
determinism. If we have demonic non-determinism in the single while loop, then
we just ensure that the supermartingale map satisfies the conditions (D1)–(D4)
no matter which demonic branch is taken. Similarly, for angelic non-determinism,
we just require that the conditions (D1)–(D4) hold for at least one angelic branch.
Then algorithmic methods can be developed to handle non-determinism.

On the other hand, we cannot extend our CLT-based approach directly to
non-determinism. The reason is that under history-dependent schedulers, the
sampled value at the nth step may not be independent of those in the previous
step. In this sense, we cannot apply Central Limit Theorem since it requires the
independence condition. Hence, we need to develop new techniques to handle
non-determinism in the cases from Sect. 4. We leave this interesting direction as
a future work.

6 Applicability of Our Approaches

Up till now, we have illustrated our supermartingale based and Central-Limit-
Theorem based approach only over single probabilistic while loops. A natural
question arises whether our approach can be applied to programs with more
complex structures. Below we discuss this point.

First, we demonstrate that our approaches can in principle be applied to all
probabilistic programs without nested loops, as is done by a simple compositional
argument.

Remark 5 (Compositionality). We note that the property of almost-sure termi-
nation for all initial program valuations are closed under sequential composition
and conditional branches. Thus, it suffices to consider single while loops, and the
results extend straightforwardly to all imperative probabilistic programs without
nested loops. Thus, our approaches can in principle handle all probabilistic pro-
grams without nested loops. We plan the interesting direction of compositional
reasoning for nested probabilistic loops as a future work. �

Second, we show that our approaches cannot be directly extended to nested
probabilistic loops. The following remark presents the details.

Remark 6. Consider a probabilistic nested loop

while φ do P od
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where P is another probabilistic while loop. On one hand, if we apply super-
martingales directly to such programs, then either (i) the value of an appro-
priate supermartingale may grow unboundedly below zero due to the possibly
unbounded termination time of the loop P , which breaks the necessary non-
negativity condition (see Example 3), or (ii) we restrict supermartingales to be
non-negative on purpose in the presence of nested loops, but then we can only
handle simple nested loops (e.g., inner and outer loops do not interfere). On
the other hand, the CLT-based approach rely on independence, and cannot be
applied to nested loops since the nesting loop will make the increment of the
outer loop not independent. �

To summarize, while our approaches apply to all probabilistic programs with-
out nested loops, new techniques beyond supermartingales and Central Limit
Theorem are needed to handle general nested loops.

7 Related Works

We compare our approaches with other approaches on termination of probabilis-
tic programs. As far as we know, there are two main classes of approaches for
proving termination of probabilistic programs, namely (ranking) supermartin-
gales and proof rules.

Supermartingale-Based Approach. First, we point out the major difference
between our approaches and ranking-supermartingale-based approaches [3,6,
8,9,13]. The difference is that ranking-supermartingale-based approaches can
only be applied to programs with finite expected termination time. Although
in [1] a notion of lexicographic ranking supermartingales is proposed to prove
almost-sure termination of compositions of probabilistic while loops, the app-
roach still relies on ranking supermartingales for a single loop, and thus cannot
be applied to single while loops with infinite expected termination time. In our
paper, we target probabilistic programs with infinite expected termination time,
and thus our approaches can handle programs that ranking-supermartingale-
based approaches cannot handle.

Then we remark on the most-related work [26] which also considered
supermartingale-based approach for almost-sure termination. Compared with
our supermartingale-based approach, the approach in [26] relaxes the LBCAD
condition in Proposition 1 so that a more general result on almost-sure termi-
nation is obtained but the tail bounds cannot be guaranteed, while our results
can derive optimal tail bounds. Moreover, the approach in [26] requires that
the values taken by the supermartingale should have a lower bound, while
our CLT-based approach do not require this restriction and hence can handle
almost-sure terminating programs that cannot be handled in [26]. Finally, our
supermartingale-based results are independent of [26] (see the arXiv versions [25]
and [7, Theorems 5 and 6]).

Proof-Rule-Based Approach. In this paper, we consider the supermartingale
based approach for probabilistic programs. An alternative approach is based
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on the notion of proof rules [20,29]. In the approach of proof rules, a set of rules
is proposes following which one can prove termination. Currently, the approach
of proof rules is also restricted to finite termination as the proof rules require
certain quantity to decrease in expectation, similar to the requirement of ranking
supermartingales.

Potential-Function-Based Approach. Recently, there is another approach through
the notion of potential functions [28]. This approach is similar to ranking super-
martingales that can derive upper bounds for expected termination time and
cost. In principle, the major difference between the approaches of ranking super-
martingales and potential functions lies in algorithmic details. In the approach
of (ranking) supermartingales, the unknown coefficients in a template are solved
by linear/semidefinite programming, while the approach of potential functions
solves the template through inference rules.

8 Conclusion

In this paper, we studied sound approaches for proving almost-sure termination
of probabilistic programs with integer-valued program variables. We first pre-
sented new mathematical results for supermartingales which yield new sound
approaches for proving almost-sure termination of simple probabilistic while
loops. Based on the above results, we presented sound supermartingale-based
approaches for proving almost-sure termination of simple probabilistic while
loops. Besides almost-sure termination, our supermartingale-based approach is
the first to give (optimal) bounds on tail probabilities of non-termination within
a given number of steps. Then we proposed a new sound approach through Cen-
tral Limit Theorem that can prove almost-sure termination of examples that
no previous approaches can handle. Finally, we have shown possible extensions
of our approach to algorithmic methods, non-determinism, real-valued program
variables, and demonstrated that in principle our approach can handle all prob-
abilistic programs without nested loops through simple compositional reasoning.
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Abstract. The Geometry of Interaction (goi) has its origins in logic,
but many of its recent applications concern the interpretation and analy-
sis of functional programming languages. Applications range from hard-
ware synthesis to quantum computation. In this paper we argue that for
such programming-language applications it is useful to understand the
goi as a module system. We derive an ML-style module system from
the structure of the particle-style goi. This provides a convenient, famil-
iar formalism for working with the goi that abstracts from inessential
implementation details. The relation between the goi and the proposed
module system is established by a linear version of the F-ing modules
elaboration of Rossberg, Russo and Dreyer. It uses a new decomposition
of the exponential rules of Linear Logic as the basis for syntax-directed
type inference that minimises the scope of exponentials.

1 Introduction

Modularity is very important for software construction. Virtually all program-
ming languages have some kind of module system for the compositional con-
struction of large programs. Modularity is also becoming increasingly important
at a much smaller scale, e.g. [3]. For formal verification and program analysis,
one wants to decompose programs into as small as possible fragments that can
be verified and analysed independently. For the application of formal methods,
modularity is essential even when it comes to the low-level implementation of
programming languages.

The Geometry of Interaction (goi) is one approach to the modular decom-
position of programming languages. It was originally introduced by Girard [8] in
the context of the proof theory of Linear Logic. It has since found many appli-
cations in programming languages, especially in situations where one wants to
design higher-order programming languages for some restricted first-order model
of computation. Examples are hardware circuits [6], logspace-computation [4],
quantum computation [10], distributed systems [5], etc. These applications use
the particle-style variant of the goi, which constructs a model of higher-order
programming languages in terms of dialogues between simple interacting enti-
ties. These interactive entities are simple enough to be implemented in the first-
order computational model. Overall, one obtains a translation of higher-order
programs to first-order programs.
c© Springer Nature Switzerland AG 2018
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In this paper, we connect the Geometry of Interaction to ML-style module
systems. Rather than explaining the goi in terms of interaction dialogues, we
explain it as an implementation of a module system with structures, signatures
and functors, as in Standard ML and OCaml. Interactive entities can be seen as
modules that interact using function calls.

The main motivation of this work is to make the presentation of the goi
more economical and accessible. In programming language applications of the
goi, one usually defines it from scratch. This is not ideal and could be compared
to writing a paper on functional programming starting from assembly language.
The low-level implementation details are essentially standard, but their explana-
tion can be quite technical and complicated. Since one wants to focus on actual
applications, one is led to giving a very concise presentation of an as simplified-
as-possible low-level implementation. Such presentations are hard to read for
non-experts and thus become an unnecessary hurdle in the way of interesting
applications. What is needed is a formalism that abstracts from the low-level
implementation and that can be understood informally.

To this end, we propose an ML-style module system as a formalism for the
goi. It captures important constructions of the goi in terms that are already
familiar from programming languages like SML and OCaml. We can use it to
study applications of the goi independently of its efficient low-level implemen-
tation.

In the literature, it is common to use variants of System F to abstract from
implementation details of the goi. Indeed, we shall use such a calculus as an
intermediate step in Sect. 4. However, while such calculi capture the right struc-
ture, they can be quite laborious to work with, especially when it comes to using
existential types for abstraction [15,16]. This is much like in SML. Its module
system can be seen as a mode of use for System Fω [14], which is more convenient
to use than System Fω terms themselves. Moreover, a module system directly
conveys the computational intention of the goi. The goi captures an approach
of the compositional construction of larger programs from small independent
fragments. This intention is captured well by a module system. With a variant
of System F, some explanation is needed to convey it, as is evidenced by Sect. 4.

Readers who are not familiar with the goi may read the paper as a way
of constructing an ML-style module system even for restricted first-order pro-
gramming languages. The construction requires few assumptions and applies in
particular to first-order low-level languages for the restricted models of compu-
tation mentioned above. One can think of the goi as producing a higher-order
module system for first-order languages for free. With such a module system it
becomes very easy, for example, to implement higher-order programming lan-
guages like Idealized Algol efficiently.

The paper is organised as follows. We fix a simple generic notion of core com-
putation in Sect. 2. Then we define a simple first-order programming language
for core computation in Sect. 3. It will be the target of the module system. We
then construct the module system in two steps. First, we construct a linear type
system for the particle-style goi in Sect. 4, which we then use as the basis of an
ML-style module system in Sect. 5. We conclude with examples in Sect. 6.
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2 Core Expressions

We fix a very basic language of computational expressions as the basis for all
further constructions. Modules will organise these kinds of expressions.

Core types A :: = int | unit | A × A | empty | A+A

Core values v, w :: = x | n | () | (v, w) | inl v | inr v
Core expressions e :: = return v | op(v) | let x = e in e |

| let (x, y) = v in e | case v of inl(x) ⇒ e; inr(x) ⇒ e

In this grammar, n ranges over integers and op ranges over primitive opera-
tions, such as add , sub and mul . It is possible to have effectful operations, such as
print for I/O, or put and get for global state. They can be added as needed, but
we do not need to assume any specific operations in this paper. The type int is
an example of a base type; let us assume that it represents fixed-width integers.
The term let (x, y) = v in e is a pattern matching operation for product types.

We use standard syntactic sugar, such as writing e1 + e2 for expressions.

3 First-Order Programs

We start from a first-order programming language for core expressions. The
particular details are not very important for this paper. The first-order language
is a stand-in for the first-order models of computation that one uses as a starting
point for goi constructions. It may also be seen as an idealisation of low-level
compiler intermediate languages like llvm-ir.

First-order types B :: = core types | raw
First-order expressions e :: = core expressions | f(vi) | let x = coercB(v) in e

| let coercB(x) = v in e

First-order programs P :: = empty | fn f(xi: Bi) → B {e} P

The phrase ‘core types’ means that we include all cases from the grammar for
core types, only now with B in place of A. In the syntax, as in the rest of this
paper, we use the notation ai for a vector a1, . . . , an.

In contrast to the other calculi in this paper, the type system of first-order
programs is not intended to capture interesting correctness properties. Types
are nevertheless useful for documentation and implementation purposes, e.g. to
statically determine the size of values for efficient compilation.

A program consists of a list of function definitions, which are allowed to be
mutually recursive. The new term f(vi) is a function call. The syntax is perhaps
best explained with a typical example:
fn fact aux(x: int , acc: int) → int

{ if x = 0 then return acc else fact aux(x - 1, acc * x) }
fn fact(x: int) → int { fact aux(x, 1) }
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The new type raw is a type of raw, unstructured data. It abstracts from
implementation issues that are out of scope for this paper. With the new term
let x = coercB(v) in e one can cast a value v of any type B into its raw
underlying data x: raw. The term let coercB(y) = w in e allows one to cast
w: raw into a value y: B. This may produce nonsense. The only guarantee is that
if one coerces v: B into raw and then back into B, then one gets back v.

We consider not just complete programs, but also programs that are incom-
plete in the sense that they may contain calls to external functions. An interface
(I; O) for a program consists of two sets I and O of function signatures of the
form f : (B1, . . . , Bn) → B. The functions in I must all be defined in the program.
They are considered as its public functions. The set O must contain at least the
signatures (of appropriate type) of all functions that are called in the program.
Note a program may have more than one interface. The set I need not contain
all defined functions and O may contain more functions than are actually called.

Programs can be linked simply by concatenation. If m is a program of inter-
face (P �I; J �O) and n is a program of interface (J ; P ), then m,n is a program
of interface (I; O). Here, � means the disjoint union where no function label may
be defined twice. This kind of linking is standard in operating systems.

4 Linear Types for Linking

The particle-style goi has many presentations, e.g. [1,2,6,11]. Here we present
it in the form of a higher-order lambda calculus with the syntax shown below. It
will be the basis of the module system in the next section, so we explain it as a
calculus for constructing and linking first-order programs. While the calculus is
close to previous type systems for the goi, there are some novelties: a new way of
tracking the scope of value variables; a flexible formulation of exponentials that
reduces them to value variables; a generalisation to returning functions; a direct
elaboration to first-order programs suitable for the elaboration of modules.

Base types D :: = first-order types | α

Interaction types S, T :: = MD | {�i: Si} | D → S | S � T | ∀α. S | ∃α. S | D·S
Interaction terms s, t :: = core expressions | X | {�i = ti} | let {�i = Xi} = s in t

| fn (x:D) → t | t(v) | λX: S.t | s t | Λα. t | t D

| pack(D, t) | let pack(α, X) = s in t

The syntax uses value variables x, y, z, interactive variables X, Y , Z and type
variables α, β. Value variables can appear only in core values, they are bound
by core expressions and by the abstraction fn (x:C) → t. The interactive terms
(let {�i = Xi} = s in t) and (let pack(α,X) = s in t) are pattern matching
operations for records and existential types.

The base type MD represents core computations that return a value of first-
order type D. The notation M(−) signifies the possible presence of the effects
from core computations. The type D → S is a type of functions that take a value
of first-order type D as input. The type {�i: Si} is a record type. A typical use of
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these three types is to define a list of first-order functions. For example, the term
{f = fn (x:int) → return x, g = fn (x:int) → let y = add(x, 1) in return y}
has type {f : int → Mint, g : int → Mint}. It represents a list of first-order
functions, just like in the first-order programs from the previous section.

The type S � T represents incomplete programs that make use of external
definitions of type S that will be linked later. The application of this function
type will correspond to first-order program linking. For example, a term of type
{f1 : D1 → MD2, f2 : D3 → MD4} � {g1 : D5 → MD6, g2 : D7 → MD8}
represents a program that defines the functions g1 and g2 and that may call
the external functions f1 and f2. An application of the �-function amounts to
linking the missing external definitions.

Of course, any type system with records and functions can represent the
examples shown so far. The key point of the type system is that terms of
type {f1 : B1 → MB2, f2 : B3 → MB4} and {f1 : B1 → MB2, f2 : B3 →
MB4} � {g1 : B5 → MB6, g2 : B7 → MB8} will correspond, respectively,
to first-order programs of interfaces ({f1: B1 → B2, f2: B3 → B4}; ∅) and
({g1:B5 → B6, g2: B7 → B8}; {f1: B1 → B2, f2: B3 → B4}). The application of
these terms corresponds to linking these programs. This distinguishes � from
the normal function space →. The former is a way of composing programs, while
the latter represents value passing as in the first-order language.

The reader should think of an interactive type S as specifying the interface of
a first-order program and of terms of this type as denoting particular first-order
programs of this interface. This also explains why the type system is linear.
A term provides a single implementation of the interface S that is consumed
when it is linked to a program of type S � T . Once it is linked in one way, it
cannot be linked again in a different way.

The types ∀α. S and ∃α. S allow a weak form of polymorphism. In particular,
type variables range only over first-order types.

Finally, the type D·X is a slight generalisation of the exponential from Linear
Logic. In the present interpretation it can be understood as a type for managing
scope and lifetime of a value variable of type D, which is explained below. We
write !X for the special case raw·X. A reader who prefers to do so, may only
consider this special case. The generalisation from raw to an arbitrary type D
allows more precise typing and simplifies technical details.

4.1 Type System

The type system is a linear variant of System F and derives typing judgements of
the form Γ � t : T . The context Γ is a finite list of variable declarations, of which
there are three kinds: interaction variable declarations X: S, value declarations
x: D and type declarations α. As usual, no variable may be declared twice.

We identify contexts up to the equivalence induced by Γ, X: S, Y : T, Δ =
Γ, Y : T, X: S, Δ. This means that interaction variable declarations may be
exchanged. The order of value declarations is important, however. They may
not be exchanged with any other variable declaration.
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We define a partial operation of joining two contexts Γ and Δ into a single
context Γ + Δ as follows.

(X: S, Γ1) + Γ2 := X: S, (Γ1 + Γ2) Γ1 + (X: S, Γ2) := X:S, (Γ1 + Γ2)
(x: A, Γ1) + (x: A, Γ2) := x:A, (Γ1 + Γ2) (α, Γ1) + (α, Γ2) := α, (Γ1 + Γ2)

This is well-defined by the above identification. The typing rules will use +
with the effect of treating module variables linearly (i.e. multiplicatively) and all
other variables non-linearly (i.e. additively). Moreover, each type S remains in
the scope of the same value variables. Indeed, we consider an interactive type S
as a different type if it is moved to a context with different value variables.
For example, in the empty context, the type {f : int → Mint} represents the
interface ({�.f : int → int}; ∅). In context x : bool, the same type represents
the interface ({�.f : (bool, int) → int}; ∅). In the elaboration, value variables
from the context will become extra arguments.

Given the definition of contexts, most of the typing rules become unsurpris-
ing. For example, the rules for � and → are:

�-i
Γ, X: S � t : T

Γ � λX: S.t : S � T
�-e

Γ � s : S � T Δ � t : S

Γ + Δ � s t : T

fn-i
Γ, x: D � t : S

Γ � fn (x:D) → t : D → S
fn-e

Γ � t : D → S Γ � v : D

Γ � t(v) : S

Since the meaning of types depends on the value variables in the context,
weakening is available only for interaction variables and the variable rule is
restricted to the last variable.

weak
Γ, Δ � t : T

Γ, X: S, Δ � t : T
var

Γ, X: S � X : S

The rules for the exponentials D·S are mostly like in Linear Logic (if one
thinks of the special case !S). For example, there is a contraction rule

contr
Γ, X1: D1·S, X2: D2·S, Δ � t : T

Γ, X: (D1 + D2)·S, Δ � t[X1 �→ X, X2 �→ X] : T
X /∈ {X1, X2}.

(The reader who considers only exponentials of the form !S, i.e. D1 = D2 = raw,
may consider also (D1 + D2)·S as an example of !S. This is because a value of
type raw + raw can be cast into one of type raw and there is a subtyping rule
for exponentials.) There are similar structural rules for dereliction and digging.

In the current type system, one may think of D·S as the type S, but in an
extended context with an additional variable of type D. This is formalised by
the following two rules, which refine the promotion rule from Linear Logic.

close-l
Γ, x:D, X:S, Δ � t : T

Γ, X:D·S, x:D, Δ � t : T
========================= close-r

Γ, x:D � t : S

Γ � t : D·S============= x /∈ FV (t)
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Fig. 1. Interaction types: elaboration

The double line in these rules means that they can be applied both from
top to bottom and from bottom to top. A standard promotion rule becomes
admissible.

With rule close-r, it becomes possible to use variables from all positions
in the context. For example, the judgement Γ, X: (D·S), x: D, Y : T � X : S is
derivable using weak, close-r (upside down) and var. The exponential in the
type of X is necessary to keep the value variable scope unchanged.

4.2 Elaboration into First-Order Programs

The type system can be seen as calculus for first-order programs. In this view,
interactive terms and types are abbreviations for programs and their interfaces.
The elaboration that expands these abbreviations is defined directly as an anno-
tation on the typing rules.

If one includes the elaboration part, then the type system has the follow-
ing judgements: Γ � D � B for the elaboration of base types, Γ � S � I; O
for the elaboration of interactive types, and Γ � t : S � m for typing and the
elaboration of terms. We outline them in turn.

The judgement Γ � D � B is defined as follows: The base type D is obtained
from B by subtituting raw for all type variables. Polymorphism is thus imple-
mented by casting any value into its raw representation.

The judgement Γ � S � I; O expresses that, in context Γ , the interactive
type S elaborates to the first-order interface (I; O). The rules appear in Fig. 1.
The sets I and O in it contain function labels that are generated by the grammar
L :: = � | X | L.�, in which � represents a hole, X ranges over module variables,
and � is a label. We write short (−)[L] for the substitution operation (−)[� �→ L].

To understand the meaning of these labels, it is useful to look at the elabo-
ration judgement for terms Γ � t : S � m first. It translates the module term t
to a first-order program m of interface (I; O) where Γ � S � I; O. The pro-
gram m defines all the functions in I and it may call the functions from O. But,
of course, t may also make use of the modules that are declared in Γ . So, if
Γ is Δ, X:T, . . . and Δ � T � J ; P , then m may assume that the module X
is available as a first-order program with interface (J [X]; P [X]). This means
that m may also invoke the functions from J [X]. In return, it must define all
functions from P [X].
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The type MD elaborates in context Γ to the interface of a first-order program
with a single function �: (Bi) → B. The judgement Γ � Bi, whose definition is
omitted, means that the types Bi are the elaboration of the value types in Γ .
The function therefore gets the values from the context as input and performs
the computation to return a value of type B, the elaboration of D.

The elaboration of type D → S differs from that of S only in that all functions
in the set of entry points I take an additional argument of type D. For example,
the term fn (x:int) → return x of type int → Mint elaborates to the first-
order function fn �(x: int) → int {return x} of type (int) → int.

The record type {�i: Si} elaborates all the Si and joins their interfaces by
prefixing them with the �i. This explains the informal examples given above.

Type S � T elaborates to the interface of a program that implements T while
making use of the interface of some external program with interface S. Suppose S
elaborates to (I; O) and T to (J ; P ). To implement T , such a program must
define all functions in J , while it can call the functions in P . To use the external
program of interface S, it may additionally call all the functions in I. It must,
however, provide the external program all functions that it may need, i.e. it must
define all functions in O. This would lead to (O ∪ J ; I ∪ P ), but we must take
care to avoid name clashes. Therefore we use (O[�.arg] ∪ J [�.res]; J [�.arg] ∪
P [�.res]). For example, the type (Mint � Mint) � Mint elaborates to the
interface ({�.res : () → int,�.arg.arg : () → int}; {�.arg.res : () → int}).

Application then becomes linking. Suppose we have a term t : S � T ,
which elaborates to a program m of interface (I[�.arg] ∪ J [�.res]; O[�.arg] ∪
P [�.res]). An argument s : S elaborates to a program n of interface (I; O).
By renaming and concatenation, we get the program n[�.arg],m of interface
(J [�.res]; P [�.res]). From this one gets a program of interface (J ; P ) by adding
forwarding functions, such as fn f(x) { f [�.res](x)}.

For a concrete example, consider the following term:

λX: {f : int → Mint}. let {f = Y } = X in {f = fn (x:int) → Y (x) + 1, g = Y (0)}
While the type system treats interaction variables linearly, using Y twice here is
justified by rule dupl explained below. The term has type {f : int → Mint} �
{f : int → Mint, g : Mint} and elaborates to (we simplify elaboration exam-
ples for readability):

fn �.res.f (x: int) → int { �.arg.f (x)+1 }
fn �.res.g() → int { �.arg.f (0) }

Suppose we apply it to the actual argument {f = fn (x:int) → return x + x}.
Elaborating the application has the effect of linking the following definitions.

fn �.arg.f (x: int) → int { return x+x }
fn �.f (x: int) → int { �.res.f (x) }
fn �.g() → int { �.res.g() }

Finally, the type D·S elaborates simply by adding a new value variable to
the context. This has the effect of adding a new argument of type D to the
elaboration S. In the Linear Logic reading of !S as infinitely many copies of S,
this new variable plays the role of storing the number of the copy. The reader
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should also note that the elaboration of D·S is such that the rules close-l and
close-r elaborate as the identity. They have no effect on the elaboration and
are used just for scope management in the type system.

Consider the elaboration of contraction. We have a term that uses two vari-
ables X1: (D1·S) and X2: (D2·S), which we want to replace by a single variable
X: ((D1 + D2)·S). Suppose (D1 + D2)·S, D1·S and D2·S elaborate to (I; O),
(I1; O1) and (I2; O2) respectively. These interfaces differ only in the type of the
newly added value variable, which is D1 +D2, D1 and D2 respectively. Contrac-
tion is then implemented by defining each function in I[X1] and I[X2] to invoke
the corresponding function in I[X] with the same arguments, except that the
new argument of type D1 or D2 is injected into D1 + D2, and by defining each
function in O[X] to perform a case distinction on the value of type D1 +D2 and
to call the corresponding functions in O[X1] and O[X2]. This works because the
new variable in D·S is anonymous and may cannot be accessed by a term of this
type. It is essentially a callee-save argument.

For a concrete example of contraction, consider first the term X1: S, X2: S �
X1(return 1) + X2(return 2) : Mint, where S abbreviates Mint � Mint. Its
derivation does not need contraction and elaborates to:

fn �() → int { X1.res() + X2.res() }
fn X1.arg() → int { return 1 }
fn X2.arg() → int { return 2 }

One can derive X: (unit + unit)·S � X(return 1) + X(return 2) : Mint by
changing S into unit·S using dereliction, followed by contraction. The resulting
elaboration is:

fn �() → int { �.res(inl()) + �.res(inr()) }
fn X1.arg(x: unit) → int { return 1 }
fn X2.arg(x: unit) → int { return 2 }
fn X.arg(i: unit + unit)→ int

{ case i of inl(x)⇒X1.arg(x);inr(x)⇒X2.arg(x) }

Note that in the elaboration of contraction, the new argument is only ever
used if O is nonempty. Indeed, the following rule is sound:

dupl
Γ, X: D·S, Δ � t : T Γ � S � I; ∅

Γ, X: S, Δ � t : T

This concludes our outline of the elaboration of linear types into first-order
programs. With the elaboration of types given, the elaboration of terms becomes
essentially straightforward. It is instructive to try to write out the elaboration
for some the above rules for terms.

4.3 Relation to Particle-Style Geometry of Interaction

We have presented the linear type system as a calculus for defining and linking
first-order programs. Its elaboration procedure is new and is designed to produce
a natural, direct implementation of ML-style modules. Nevertheless, it can be
seen as a slight generalisation of the particle-style Geometry of Interaction.
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The correspondence is most easily explained for the categorical formula-
tion [1,2] of the goi. It identifies the Int-construction, applied to sets and partial
functions, as the core of the particle-style goi. In this construction, one defines
two sets T− and T+ for each type T and interprets a term of type X: S � t : T
as a partial function S+ + T− → S− + T+. Our elaboration implements this
function in continuation-passing style. A function S+ +T− → S− +T+ becomes
((S− +T+) → ⊥) → ((S+ +T−) → ⊥) in continuation-passing style. Such func-
tions are in one-to-one correspondence to functions ((S− → ⊥) × (T+ → ⊥)) →
((S+ → ⊥) × (T− → ⊥)). Such functions can be implemented by first-order
programs of interface (I; O) with I = {�1: S+ → empty, �2: T− → empty} and
O = {�1: S− → empty, �2: T+ → empty}.

Our elaboration implements the Int-construction up to this correspondence.
The definition of S− and S+ for the various types S in the goi matches our
definition of interfaces in Fig. 1. For example, the case for S � T matches the
standard definitions (S � T )− = S+ + T− and (S � T )+ = S− + T+. The
case for records matches (S ⊗ T )− = S− + T− and (S ⊗ T )+ = S+ + T+.
The type MD is slightly generalised. In the Int-construction, one would have
only Mempty and define returning computations in continuation-passing style
as e.g. [D] := (D → Mempty) � Mempty. The generalisation from Mempty to
MD, i.e. from non-returning functions to returning ones, is useful since this leads
to a natural, direct elaboration of ML-modules.

Token-passing formulations of the goi can be seen as instances of the Int-
construction, but it may be helpful to outline the correspondence for them con-
cretely. They are based on viewing proof-net interpretations of proofs as token-
passing networks. Recall [7] that in Linear Logic, proofs can be represented by
proof-nets. For example, the canonical proof of Y, X � X ⊗ Y would lead to
the graph on the left below. Its edges are labelled by formulae and the nodes
correspond to proof rules. In general, the proof of a Linear Logic judgement
X1, . . . , Xn � Y leads to proof-net g as on the right.

⊗
X ⊗ Y

X
Yax

X

ax

Y

g

X1 X2 Xn Y

Token-passing formulations of the goi consider proof-nets as message-passing
networks, in which a token travels along edges from node to node. Think of the
nodes as stateless processes. An edge label X specifies what messages may be
passed along the edge: elements of type X+ may be passed with the direction
of the edge, and elements of type X− against the direction of the edge. The
nodes are passive until they receive a message along one of the edges connected
to them. They then process the incoming message, construct a new outgoing
message, which they send along a connected edge of their choice before becoming
passive again. Nodes have extremely simple, fixed behaviour. For example, if the
node ⊗ in the example net receives v ∈ X+ on its left input edge, then it passes
inl(v) ∈ (X ⊗ Y )+ along its output edge. The ax -nodes just forward any input
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on one edge to the other edge. This behaviour is essentially already determined
by the type of the token.

Consider now how one can implement token-passing graphs by first-order
programs. Message passing may be implemented simply by function calls. To an
edge e with label X in the proof-net, we associate two function labels, one for
each end of the edge: send−

e : X− → empty may be invoked to pass a message
against the direction of the edge, and send+e : X+ → empty may be invoked to
pass a message in the other direction. In both cases, the return type is empty,
as message passing cedes control to the recipient of the message. With this
approach, a node in a proof-net implements the send-functions for the ends of
all the edges that are connected to it. The ax -nodes in the above example net
would be implemented simply by two functions fn send−e1(x) { send+e2(x) } and
fn send+e2(x) { send−e1(x) }, where e1 is the left edge connected to the node and e2
is the other. The program for the whole net consists of the (mutually recursive)
implementations of all nodes. Its interface is determined by the edges that have
an end that is not connected to a node. For each such edge, the program defines a
send-function function for sending a message from the environment into the net.
The other send-function of this edge is used to return a value to the environment.

The elaboration of the linear type system above can be seen as a direct way
of implementing token-passing in this way (with some immediate simplification).

4.4 Correctness

We end this section by outlining in which sense the elaboration provides a correct
implementation of the linear type system. We define the intended meaning of
the type system by a simple denotational semantics that ignores linearity.

To define the semantics, we assume a monad M on Sets that is sufficient to
interpret the systems-level language. In the simplest case, this will be just the
non-termination monad MX = X + {⊥}.

The first-order language can be interpreted in a standard way. The inter-
pretation �B� of a first-level type B is defined to be the set of closed val-
ues of type B. A first-order function f : (B1, . . . , Bn) → B is interpreted as
a function �B1� × · · · × �Bn� → M�B�. A first-order program m is inter-
preted as �m�σ, where σ is an environment that maps function signatures like
f : (B1, . . . , Bn) → B to corresponding functions �B1� × · · · × �Bn� → M�B�.
The semantics of the program �m�σ is then a mapping from function signatures
(the ones defined in m) to corresponding functions (of the same format as in σ).

The denotational semantics of the linear type system interprets types as
follows. For any closed interaction type S, we define the set �S� as follows:

�MD� = M�D� �{�i: S�i}� =
∏

�∈{�i}�S�� �B · S� = �S�

�S � T � = �S� → �T � �∀α. S� =
∏

B�S[α �→ B]�
�D → S� = �D� → �S� �∃α. S� =

∑
B�S[α �→ B]�

We omit the interpretations of terms.
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Elaboration correctly implements the denotational semantics. To express
this, we define a relation m ∼S f , which expresses that the first-order pro-
gram m implements the semantic value f ∈ �S�. The program m must have the
interface (I; O) determined by � S � I; O. The relation ∼S is defined by induc-
tion on S. On the base type, we let m ∼MD f if, and only if, �m�(�.main)() = f .
This is extended to all types in a logical way. For example, m ∼S�T f if, and
only if, n ∼S g implies app(m,n) ∼T f(g), where app(m,n) is the elaboration
of application as in rule �-e. For a full definition we would need more details
of the elaboration than can be included, so we just state the correctness result:

Proposition 1. If � t : S � m then m ∼S �t�.

5 Higher-Order Modules for First-Order Programs

We now capture the structure of the linear type system by a module system.
With our explanation of the linear type system as a calculus for the compositional
construction of first-order programs, this is a natural step to make. A module
system directly conveys this intuition. It also accounts for common application
patterns, especially for type declarations and abstraction, in a more usable way.

The module system is intentionally kept fairly standard in order to express
the goi in terms that are familiar to anyone familiar with ML. It is implemented
by elaboration into the linear type system and has the following syntax.

Paths p :: = X | p.�

Base types C :: = core types | p

Module types Σ :: = MC | type | type=C | sig �i(Xi): Σi end

| functor(X : Σ) → Σ | C → Σ | B·Σ
Module terms M :: = p | type C | struct �i(Xi) = Mi end | functor(X : Σ) → M

| M X | M :>Σ | fn (x:C) → M | M(v) | core expressions

In paths, X ranges over an infinite supply of module variables. These variables
are distinct from the value variables that may appear in core values. Base types
are core types with an additional base case for paths, as usual, so that one can
write types like int × X.t.

The type MC is a base case for computations that return a value of type C.
Again, one should think of M(−) as a type of core computations. We make
it explicit to make clear where computational effects may happen. Note that
the module system does not allow value declarations like val x:A in ML. This
simplifies the development, as we do not need to think about the evaluation
order of modules, which is essential in the presence of effects. Without value
declarations, all possible effects are accounted for by the type MC.

Type declarations come in two forms: type and type=C. The former declares
some base type, while the latter is a manifest type [13] that is known to be the
same as C. For example, one can write sig t : type = int, f : Mt end, which
means that t is the type int. We shall allow ourselves to write both type t and
type t = int as syntactic sugar for t : type and t : type=int.
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Signatures have the form sig �1(X1): Σ1, . . . , �n(Xn): Σn end. In such a sig-
nature, the �i are labels for referring to the components from the outside using
paths. The Xi are identifiers for referring to the components from within the
signature. In a programming language, one would typically write only labels, i.e.
write sig �1: Σ1, . . . , �n: Σn end. However, since labels may be used to access
parts of the signature from the outside, they cannot be α-renamed. For this rea-
son, one introduces the additional identifiers, which can be α-renamed without
harm [9].

While the module system does not allow value declarations, it allows param-
eterisation over values with the type C → Σ. In ML notation, C → Σ would
be written as functor(X: sig val x:C end) → Σ. The typical use here is for
first-order function types of the form C1 → MC2.

Most module terms should be familiar from other module systems, partic-
ularly type declarations, signatures, functors and type sealing. For example, if
M has type sig type t = int, f: Mt end, then sealing M :>Σ allows one to
abstract the signature to Σ = sig type t, f: Mt end.

The terms for the value-passing function C → Σ are an abstraction over
value variables fn (x:C) → M and a corresponding application M(v), in which v
is a core value. They have the same meaning as in the linear type system.

The module terms are also closed under the term formers for core expressions.
Core expressions may not only be used for terms of type MC. One can use the
terms let (x, y) = v in M and case v of inl(x) ⇒ M1; inr(y) ⇒ M2 for M ,
M1 and M2 of arbitrary module type. We give examples in the next section.

5.1 Examples

We give a few very simple examples to illustrate that the module system is close
to standard ML-like module systems. The signature Stream defines an interface
for infinite streams. The structure Nats implements the stream 0, 1, 2, . . . .

Stream := sig
t: type ,
init: Mt,
next: t → M(int*t)

end

Nats := struct
t = type int ,
init = return 0,
next = fn(x: t) →

return (x, x+1)
end :> Stream

Without sealing, one could also write t : type=int in the type of Nats. An exam-
ple of a functor is a module that multiplies a given stream with 1,−1, 1,−1, . . .

A := functor(X: Stream) →
struct

t = type (int × X.t),
init = let x = X.init in return (1, x),
next = fn ((s, x): t) → let (i, x’) = X.next(x) in

return (s * i, (-s, x’))
end :> Stream

The following example shows how modules can be defined by case-distinction.
G := fn(b: unit+unit) → case b of inl_⇒ A(Nats); inr_⇒ Nats
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It has type (unit + unit)→ Stream. The elaboration of case distinction trans-
lates this term into a form of dynamic dispatch. A call to G(v).next(x) will first
perform a case distinction on v and then dispatch to either of the two imple-
mentations of next from the two branches.

The following example shows that higher-order functors are available. In it,
Σ1 and Σ2 abbreviate sig f: int → Mint end and sig g: int → Mint end.

functor(F: (unit + unit)·(functor(X:Σ1) → Σ2)) →
struct

A1 = struct f = fn(x:int) → int { return x+1 } end ,
A2 = struct f = fn(x:int) → int { return x+2 } end ,
h = fn (x:int) → int { F(A1).g(x) + F(A2).g(x) }

end

The exponential (unit + unit)·− in the argument is essential because F is being
used twice. We make exponentials explicit in the module systems, because they
are visible in the public interface of first-order programs after elaboration.

5.2 Elaboration

The type system for modules is defined by elaboration into the linear type sys-
tem. Most parts of the module system have corresponding types in the linear
type system. In particular, structures and functors elaborate to records and
� respectively. The main difficulty is to account for type declarations, their
abstraction and the use of paths to access them.

To address this, we follow the approach of F-ing modules [14], which elabo-
rates an ML-style module system into System Fω. Here we adapt it to translate
our module system into the linear type system. Module types translate to inter-
action types and module terms translate to interaction terms. In short, structures
translate to records, functors translate to �, and any type declaration type or
type=D in a module type is replaced by the unit type {} (the empty record).
As unit types elaborate to an empty first-order interface, this means that type
declarations are compiled out completely and are only relevant for type checking.

While one wants to remove type declarations in the elaboration process,
type information is needed for type checking. In order to be able to express
elaboration and type-checking in one step, it is useful to use labelled unit types
that still record the erased type information. We define the type [=D] as a
copy of the unit type {}, labelled with D. This type could be made a primitive
type, but it can also be defined as the type [=D] := D → {} with inhabi-
tant 	D := fn (x:D) → {}. Note that [=D] elaborates to an empty first-order
interface. The labelling can now be used to track the correct usage of types:
type=D becomes [=D] and type becomes [=α] for a new, existentially quan-
tified, type variable α. For example, sig s : type, t : type, f : Mt, g : Ms end

becomes ∃α, β. {s: [=α], t: [=β], f: Mβ, g: Mα}. The elaborated type contains
the information that f returns a value of type t, which would have been lost had
we used {} instead of [=β]. Elaborated types thus contain all information that
is needed for type-checking.
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Fig. 2. Base type elaboration (selection)

Elaboration is defined by five judgements, which we describe next and in
which S and Ξ are interaction types defined by the following grammar.

Ξ:: = ∃α. S S:: = [=D] | MD | {�i: S} | ∀α. S � Ξ | D → Ξ | D·S

The elaboration judgements use the same kind of contexts Γ as the linear type
system. However, all module variable declarations in it must have the form X: S,
where S is generated by the above grammar.

The judgement Γ � C � D in Fig. 2 elaborates base types. The variable case
is where the labelled unit types are being used.

The judgement Γ � Σ � Ξ in Fig. 3 formalises module type elaboration. For
example, Σ = sig t : type, f : Mt end elaborates to Ξ = ∃α. {t: [=α], f: Mα}.

The judgement Γ � M : Ξ � t in Fig. 4 expresses that M is a module term
whose type elaborates to Ξ and that the module itself elaborates to the inter-
action term t with Γ � t : Ξ.

The judgement Γ � Ξ ≤ Ξ ′� t in Fig. 5 is for subtyping. In it, t is a coercion
term from Ξ to Ξ ′ that satisfies Γ, X: Ξ � t X : Ξ ′.

Finally, Γ � S ≤ Ξ� D, t in Fig. 5 is a matching judgement. By definition,
Ξ has the form ∃α. S′. The matching judgement produces a list of types D and
a term t, such that Γ � S ≤ S′[α �→ D]� t.

In all judgements, the context records the already elaborated type of vari-
ables. Labelled unit types record enough information for type checking.

Module type elaboration in Fig. 3 implements the idea of translating struc-
tures to records, functors to �-functions and to replace type declarations by
labelled unit types. Functors are modelled generatively. If the argument and
result elaborate to ∃α. S and ∃β. T respectively, then the functor elaborates
to ∀α. S � ∃β. T . The type β may therefore be different for each application
of the functor. To cover existing applications, such as [17], generative functors
were a natural choice (indeed, types of the form ∀α. S � ∃β. T already appear
in [15,17]); in the future, applicative functors may also be useful.

A selection of elaboration rules for terms is shown in Fig. 4. These rules are
subject to the same linearity restrictions as the linear type system. The structural
rules are the same. Indeed, the new form of contexts in the linear type system
was designed to support a direct elaboration of modules.

To capture a suitable notion of linearity, the elaboration of paths is different
from other approaches [13,14]. In rule var, the base case of term elaboration is
defined only for variables, not for arbitrary paths. However, rule sig-e allows one
to reduce paths beforehand. To derive X: {f : S, g: T} � X.f : S � . . ., one can
first use sig-e to reduce the goal to Y : S, Z:T � Y : S � . . ., for example. This
approach is more general than syntactic linearity. For example, if X: {f : S, g: T}
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Fig. 3. Module type elaboration (selection)

Fig. 4. Module term elaboration (selection)

then one can give a type to the module struct Y = X.f, Z = X.g end. The
use of X counts as linear because the two uses pertain to different parts of
the structure. However, the module struct Y = X.f, Z = X end cannot (in
general) be given a type, as both Y and Z contain X.f .

Finally, the rules for subtyping and matching appear in Fig. 5. From a techni-
cal point of view, they are very similar to the rules in [14]. However, type variables
only range over base types, which means that subtyping can be decided simply
using unification.

Elaboration is defined to maintain the following invariant.

Proposition 2. If Γ � M : Ξ � m then Γ � m : Ξ in the linear type system.

5.3 Examples

To give an example for elaboration, consider the module Nats from above. The
struct in it elaborates to: {t = 	int, init = return 0, next = fn (x:int) →
(x, x + 1)} of type {t: [=int], init: Mint, next: int → M(int × int)}. Sealing
packs it into ∃α. {t: [=α], init: Mα, next: α → M(int × α)},which is the elab-
oration of Stream.The first-order elaboration of Nats is:
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Fig. 5. Module subtyping and matching (selection)

fn �.init() → raw { let x = coercint(0) in return x }
fn �.next(x:raw) → int { let coercint(y) = x in

let z = coercint(y + 1) in return (y,z) }

It is a direct first-order implementation of the module. The use of raw in it is an
idealisation for simplicity. In practice, one would like to use a more precise type.
To this end, one may refine the quantifiers from ∃α. S to ∃α�D.S, much like we
have refined !S into D·S. The annotation D can be computed by type inference.
In this case, one can use int instead of raw and coercions are not needed at all.

The example higher-order functor from Sect. 5.1 elaborates to:
fn �.res.A1.f(x: int) → int { return x+1 }
fn �.res.A2.f(x: int) → int { return x+2 }
fn �.res.h(x:int) → int

{ �.arg.res.g(inl(),x) + �.arg.res.g(inr(),x) }
fn �.arg.arg.f(i: unit + unit , x: int) → int

{ case i of inl(x) ⇒ �.res.A1.f(x); inr(x) ⇒ �.res.A2.f(x) }

5.4 Type Checking

For practical type checking, it is possible to bring the type system into an algo-
rithmic form. This is necessary because rules like contr and sig-e can be applied
in many ways and there are many possible ways to place exponentials.

The choice of derivation in such an algorithmic formulation is important. In
the elaboration to first-order programs, it is desirable to minimise the scope of
the value variables introduced by exponentials. For example, suppose we have
a module term that contains a module variable X such that X.�1 is used once
and X.�2 is used twice. It can be typed with X: (unit + unit)·{�1: Σ1, �2: Σ2},
but it would be better to use X: {�1: Σ1, �2: (unit + unit)·Σ2}, as first-order
elaboration produces functions with fewer arguments. We have found the stan-
dard rules for exponentials to be inconvenient for developing a typing strategy
that achieves such an innermost placement of exponentials. If one wants to derive
the goal Γ � t : D·Σ, then one cannot always apply the standard promotion rule
right away. In contrast, rule close-r can be always be applied immediately.
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The elaboration rules can be brought into a syntax-directed form as fol-
lows: Of the structural rules, we only keep close-r (from top to bottom).
Rules �-i and sig-i2 are modified to integrate sig-e, contr and dupl. One
applies sig-e as often as possible to the newly introduced variable and uses
contr as needed to the newly introduced variables. This eliminates the non-
syntax-directed rules sig-e and contr. Finally, one shows that a rule deriving
Γ, X: D1·S, Δ � X : D2·S for suitable D2 (depending on Δ and D1) can be
derived using Var, weak, close-r (upside down) and digging. The remaining
rules are all syntax-directed.

Proposition 3. There is an algorithm, which, given Γ and M , computes Ξ
and m such that Γ � M : Ξ � m, if such Ξ and m exist, and rejects otherwise.

As it is stated, the statement of the proposition quite weak, since Ξ is allowed to
contain full exponentials !S everywhere. In practice, one would like to optimise
the placement of exponentials. There is an easy approach to doing so. One inserts
exponentials of the form α·(−) for a fresh variable α in all possible places and
treats them like !(−). This leads to constraints for the α, which are not hard to
solve. In places where no exponential is needed, one can solve the constraints
with α := unit, which effectively removes the exponential.

6 Intended Applications

Having motivated the module system as a convenient formalism for programming
language applications of the goi, we ought to outline intended applications of
the module system and potential benefits of its use. Since we intend exponentials
to be computed automatically during type checking, we do not show them here
and treat them as if they were written with invisible ink.

The goi is often used to interpret functional programming languages, e.g. [4–
6,10]. Let us outline the implementation of the simply-typed λ-calculus with
the types X,Y :: = N | X → Y . With a call-by-name evaluation strategy, an
encoding is easy. One translates types by letting �N� := sig eval: Mint end

and �X → Y � := functor(_:�X�)→ �Y �. The translation of terms is almost the
identity. This translation is used very often in applications of the goi.

The case for call-by-value is more interesting and shows the value of the
module system. One can reduce it to the call-by-name case by cps-translation,
but the resulting implementation would be unsatisfactory because of its ineffi-
cient use of stack space [15]. A more efficient goi-interpretation is possible, but
quite technical and complicated [15,17]. With the module system, its definition
becomes easy. To make the evaluation strategy observable, let us assume that
the λ-calculus has a constant print : N → N for printing numbers.

To implement call-by-value evaluation, one can translate a closed λ-term t: X
to a module of type M�X� := sig T: I�X�, eval: M(T.t) end, where:

I�N� := sig t: type=int end
I�X → Y � := sig t: type , /∗ a b s t r a c t ∗/

T: functor (X: I�X�) → sig
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Fig. 6. Example cases for the translations of terms

T: I�Y �,
apply: t × X.t → M(T.t)

end
end

In effect, a closed term t:N translates to a computation eval : Mint that com-
putes the number and performs the effects of term t. A term of type N → N

translates to a computation eval : Mt that computes the abstract function value
and a function apply : t × int → Mint for function application. In the higher-
order case, where X is a function type, the function apply can make calls to
X.apply. If Y is also a function type, then the module T : I�Y � defines the apply-
function for the returned function, see [17].

Defining the translation of terms is essentially straightforward. Examples for
application and the constant print:N → N are shown in Fig. 6. It should not be
hard for a reader familiar with ML-like languages to fill in the rest of the details.
The result is a compositional, modular translation to the first-order language.
By adding a fixed-point combinator to the module system, this approach can be
extended to a full programming language.

For comparison, a direct definition of the above translation appears in [17]. It
is also possible to use a type system as in Sect. 4 directly [16,17]. But, in effect,
F-ing is performed manually in this. For example, M�X → Y � elaborates to
∃α. {eval : Mα, T: {t : [=α], T: ! (∀β. Sβ � ∃γ. {T: Tγ , apply: !(α × β → Mγ)})}
if M�X� and M�Y � elaborate to ∃β. Sβ and ∃γ. Tγ respectively. In [16,17], the
authors work directly with types of this form. This is unsatisfactory, however,
as one needs to pack and unpack existentials often. Here, the module system
does this job for us. Also, we hope that the module type M�X → Y � is easier
to understand for programmers who are not familiar with the goi.

7 Conclusion

We have shown how the goi constructs an ML-style module system for first-order
programming languages. The module system can be seen as a natural higher-
order generalisation of systems-level linking. In contrast to other higher-order
module systems, its elaboration does not need a higher-order target language.

The module system captures the central structure of the goi in familiar
terms. This makes the constructions of the goi more accessible. It may also help
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to clarify the goi. For example, computational effects are standard in ML-like
module systems, but their role has only recently been studied in the goi [11].

The module system also helps to separate implementation from application
concerns. Especially for programming-language applications of the goi, where
one is interested in efficient implementations, the amount of low-level detail
needed for efficient implementation can become immense. A module system
encapsulates implementation aspects. We believe that the module system is a
good basis to investigate it separately from higher-level applications of the goi.
Examples of implementation issues that were out of the scope of this paper are
the elimination of the idealised use of raw and the separate compilation with
link-time optimisations, such as [12].

We have adapted the F-ing to a linear type system. This has required us to
develop a more flexible way of handling the scope of value variables. Decomposing
the promotion rule into the close-rules has allowed us to define a simple syntax-
directed type checking method that minimises the scope of values.
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details. I also want thank the anonymous reviewers for their feedback.
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Abstract. Polikarpova et al. have recently proposed a method for syn-
thesizing functional programs from specifications expressed as refinement
types, and implemented a program synthesis tool Synquid. Although
Synquid can generate non-trivial programs on various data structures
such as lists and binary search trees, it cannot automatically generate
programs that require auxiliary functions, unless users provide the spec-
ifications of auxiliary functions. We propose an extension of Synquid
to enable automatic synthesis of programs with auxiliary functions. The
idea is to prepare a template of the target function containing unknown
auxiliary functions, infer the types of auxiliary functions, and then use
Synquid to synthesize the auxiliary functions. We have implemented a
program synthesizer based on our method, and confirmed through exper-
iments that our method can synthesize several programs with auxiliary
functions, which Synquid is unable to automatically synthesize.

1 Introduction

The goal of program synthesis [2–4,6,7,9,11] is to automatically generate pro-
grams from certain program specifications. The program specifications can be
examples (a finite set of input/output pairs) [2,3], validator code [11], or refine-
ment types [9]. In the present paper, we are interested in the approach of synthe-
sizing programs from refinement types [9], because refinement types can express
detailed specifications of programs, and synthesized programs are guaranteed to
be correct by construction (in that they indeed satisfy the specification given in
the form of refinement types).

Polikarpova et al. [9] have formalized a method for synthesizing a program
from a given refinement type, and implemented a program synthesis tool called
Synquid. It can automatically generate a number of interesting programs such
as those manipulating lists and trees. Synquid, however, suffers from the lim-
itation that it cannot automatically synthesize programs that require auxiliary
functions (unless the types of auxiliary functions are given as hints).

In the present paper, we propose an extension of Synquid to enable auto-
matic synthesis of programs with auxiliary functions. Given a refinement type
specification of a function, our method proceeds as follows.

c© Springer Nature Switzerland AG 2018
S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 223–241, 2018.
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Fig. 1. The type of a sorting function

Fig. 2. A template for list-sorting function

Step 1: Prepare a template of the target function with unknown auxiliary func-
tions. The template is chosen based on the simple type of the target function.
For example, if the function takes a list as an argument, a template that
recurses over the list is typically selected.

Step 2: Infer the types of auxiliary functions from the template.
Step 3: Synthesize the auxiliary functions by passing the inferred types to Syn-

quid. (If this fails, go back to Step 1 and choose another template.)

We sketch our method through an example of the synthesis of a list-sorting
function. Following Synquid [9], a specification of the target function can be
given as the refinement type shown in Fig. 1. Here, “List Int 〈λx.λy.x ≤ y〉”
is the type of a sorted list of integers, where the part λx.λy.x ≤ y means that
(λx.λy.x ≤ y)v1 v2 holds for any two elements v1 and v2 such that v1 occurs
before v2 in the list. Thus, the type specification in Fig. 1 means that the target
function sort should take a list of integers as input, and returns a sorted list
that is of the same length and has the same set of elements as the input list.

In Step 1, we generate a template of the target function. Since the argument
of the function is a list, a default choice is the “fold template” shown in Fig. 2.
The template contains the holes �1 and �2 for unknown auxiliary functions.
Thus, the goal has been reduced to the problem of finding appropriate auxiliary
functions to fill the holes.

In Step 2, we infer the types of auxiliary functions, so that the whole function
has the type in Fig. 2. This is the main step of our method and consists of a few
substeps. First, using a variation of the type inference algorithm of Synquid,
we obtain type judgments for the auxiliary functions. For example, for �2, we
infer:

l : List Int , x : Int , xs : {List Int | len ν = len l − 1 ∧ elems ν + [x] = elems l}
� �2::x′ : {Int | ν = x}

→ l′ : {List Int 〈λx.λy.x ≤ y〉 | len ν = len xs ∧ elems ν = elems xs}
→ {List Int 〈λx.λy.x ≤ y〉 | len ν = len l ∧ elems ν = elems l}.

Here, for example, the type of the second argument of �2 comes from the
type of the target function sort. Since we wish to infer a closed function for �2
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Fig. 3. The type of the auxiliary function

Fig. 4. A synthesized list-sorting function

(that does not contain l, x, xs), we then convert the above judgment to a closed
type using quantifiers. For example, the result type becomes:

{List Int 〈λx.λy.x ≤ y〉 |
∀l, x, xs.(len xs = len l − 1 ∧ elems xs + [x] = elems l

∧len l′ = len xs ∧ elems l′ = elems xs)
⇒ len ν = len l ∧ elems ν = elems l}.

Here, the lefthand side of the implication comes from the constraints in the type
environment and the type of the second argument. We then eliminate quantifiers
(in a sound but incomplete manner), and obtain the types shown in Fig. 3.

Finally, in Step 3, we just pass the inferred types of auxiliary functions to
Synquid. By filling the holes of the template with the auxiliary functions syn-
thesized by Synquid, we get a complete list-sorting function as shown in Fig. 4.

We have implemented a prototype program synthesis tool, which uses Syn-
quid as a backend, based on the proposed method. We have tested it for several
examples, and confirmed that our method is able to synthesize programs with
auxiliary functions, which Synquid alone fails to synthesize automatically.

The rest of the paper is structured as follows. Section 2 defines the target
language. Section 3 describes the proposed method. Section 4 reports an imple-
mentation and experimental results. Section 5 discusses related work and Sect. 6
concludes the paper. Proofs omitted in the paper are available in the longer
version [10].

2 Target Language

This section defines the target language of program synthesis. Since the language
is essentially the same as the one used in Synquid [9], we explain it only briefly.
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Fig. 5. Syntax of programs

For the sake of simplicity, we omit polymorphic types in the formalization below,
although they are supported by the implementation reported in Sect. 4.

Figure 5 shows the syntax of program terms. Following [9], we classify terms
into E-terms, branching, and function terms; this is for the convenience of for-
malizing the synthesis algorithm. Apart from it, the syntax is that of a standard
functional language. In the figure, x and C range over the sets of variables and
data constructors respectively. Data constructors are also treated as variables
(so that C is also an E-term). The match expression first evaluates e, and if the
value is of the form Ci ṽ, evaluates [ṽ/x̃i]ti; here we write ·̃ for a sequence. The
function term fix x.t denotes the recursive function defined by x = t.

The syntax of types is given in Fig. 6. A type is either a refinement type
{B | ψ} or a function type x : T1 → T2. The type {B | ψ} describes the
set of elements ν of ground type B that satisfies ψ; here, ψ is a formula that
may contain a special variable ν, which refers to the element. For example,
{Int | ν > 0} represents the type of an integer ν such that ν > 0. For a
technical convenience, we assume that ψ always contains ν as a free variable, by
considering ψ∧ (ν = ν) instead of ψ if necessarily. The function type x :T1 → T2

is dependent, in that x may occur in T2 when T1 is a refinement type. A ground
type B is either a base type (Bool or Int), or a data type D T1 · · · Tn, where D
denotes a type constructor. For the sake of simplicity, we consider only covariant
type constructors, i.e., D T1 · · · Tn is a subtype of D T ′

1 · · · T ′
n if Ti is a subtype

of T ′
i for every i ∈ {1, . . . , n}. The type List Int 〈λx.λy.x ≤ y〉 of sorted lists in

Sect. 1 is expressed as (List〈λx.λy.x ≤ y〉)Int , where List〈λx.λy.x ≤ y〉 is the
D-part. The list constructor Cons is given a type of the form:

z : {B | ψ′} → w : (List〈λx.λy.ψ〉){B | ψ′ ∧ [z/x, ν/y]ψ}
→ {(List〈λx.λy.ψ〉){B | ψ′} | len ν = len w + 1 ∧ elems ν = elems w + [z]}

for each ground type B and formulas ψ,ψ′. Here, len and elems are unin-
terpreted function symbols. In a contextual type let C in T , the context
C binds some variables in T and impose constraints on them; for example,
let x : {Int | ν > 0} in {Int | ν = 2x} denotes the type of positive even
integers.

A type environment Γ is a sequence consisting of bindings of variables to
types and formulas (called path conditions), subject to certain well-formedness
conditions. We write Γ � T to mean that T is well formed under Γ ; see
Appendix A for the well-formedness conditions on types and type environments.
Figure 7 shows the typing rules. The typing rules are fairly standard ones for a
refinement type system, except that, in rule T-App, contextual types are used
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T (types) ::= {B | ψ} | x : T1 → T2

B (ground types) ::= Bool | Int | D T1 · · · Tn

C (contexts) ::= · | x : T ;C
T̂ (contextual types) ::= let C in T

Fig. 6. Syntax of types

to avoid substituting program terms for variables in types; this treatment of
contextual types follows the formalization of Synquid [9].

In the figure, FV(ψ) represents the set of free variables occurring in ψ. In
rule T-Match, x̃i : ˜Ti → T represents xi,1 : Ti,1 → · · · xi,ki

: Ti,ki
→ T .

We write �Γ �vars for the formula obtained by extracting constraints on the
variables vars from Γ . It is defined by:

�Γ ;ψ�vars = ψ ∧ �Γ �vars∪FV(ψ)

�Γ ;x : {B | ψ}�vars =
{

[x/ν]ψ ∧ �Γ �vars∪FV(ψ) if x ∈ vars
�Γ �vars otherwise

�Γ ;x : T1 → T2�vars = �Γ �vars
�·�vars = �.

The goal of our program synthesis is, given a type environment Γ (that
represents the types of constants and already synthesized functions) and a type
T , to find a program term t such that Γ � t :: T .

3 Our Method

This section describes our method for synthesizing programs with auxiliary func-
tions. As mentioned in Sect. 1, the method consists of the following three steps:

Step 1: Generate a program template with unknown auxiliary functions.
Step 2: Infer the types of the unknown auxiliary functions.
Step 3: Synthesize auxiliary functions of the required types by using Synquid.

3.1 Step 1: Generating Templates

In this step, program templates are generated based on the (simple) type of an
argument of the target function. Figure 8 shows the syntax of templates. It is
an extension of the language syntax described in Sect. 2 with unknown auxiliary
functions �i. We require that for each i, �i occurs only once in a template.

We generate multiple candidates of templates automatically, and proceed to
Steps 2 and 3 for each candidate. If the synthesis fails, we backtrack and try
another candidate.

In the current implementation (reported in Sect. 4), we prepare the following
templates.
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Fig. 7. Typing rules
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Fig. 8. The syntax of templates

– Fold-style (or, catamorphism) templates: These are templates of functions
that recurse over an argument of algebraic data type. For example, the fol-
lowings are templates for unary functions on lists (shown on the lefthand
side) and those on binary trees (shown on the righthand side).

f = λl. match l with

Nil �→ �1

| Cons x xs �→ �2 x (f xs )

f = λt. match t with

Empty �→ �1

| Node v l r �→ �2 x (f l) (f r)

– Divide-conquer-style templates: These are templates for functions on lists (or
other set-like data structures). The following is a template for a function that
takes a list as the first argument.

f = λl. match l with

Nil �→ �1

| Cons x Nil �→ �2 x

| Cons x xs �→ (match (split l) with Pair l1 l2 �→ �3 (f l1) (f l2))

The function f takes a list l as an input; if the length of l is more than 1, it
splits l into two lists l1 and l2, recursively calls itself for l1 and l2, and combines
the result with the unknown auxiliary function �3. A typical example that
fits this template is the merge sort function, where �3 is the merge function.

Note that the rest of our method (Steps 2 and 3) does not depend on the choice
of templates; thus other templates can be freely added.

3.2 Step 2: Inferring the Types of Auxiliary Functions

This section describes a procedure to infer the types of auxiliary functions from
the template generated in Step 1. This procedure is the core part of our method,
which consists of the following three substeps.

Step 2.1: Extract type constraints on each auxiliary function.
Step 2.2: From the type constraints, construct closed types of auxiliary func-

tions that may contain quantifiers in refinement formulas.
Step 2.3: Eliminate quantifiers from the types of auxiliary functions.
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Step 2.1: Extraction of Type Constraints. Given a type T of a program
to synthesize and a program template t� with n holes, this step derives a set
{Γ1 � �1 :: T1, . . . , Γn � �n :: Tn} of constraints for each hole �i. The constraints
mean that, if each hole �i is filled by a closed term of type stronger than Ti,
then the resulting program has type T .

The procedure is shown in Fig. 9, obtained based on the typing rules in
Sect. 2. It is similar to the type checking algorithm used in Synquid [9]; the
main difference from the corresponding type inference algorithm of Synquid is
that, when a template of the form �i e1 . . . en is encountered (the case for e� in
the procedure step2.1, processed by the subprocedure extractConst), we first
perform type inference for the arguments e1, . . . , en, and then construct the type
for �i. To see this, observe that the template �i e1 . . . en matches the first pat-
tern e�::T of the match expression in step2.1, and the subprocedure extractConst
is called. In extractConst, �i e1 . . . en (with n > 0) matches the second pattern
e′
� e (where e′

� and e are bound to �i e1 . . . en−1 and en respectively), and
the type Tn of en is first inferred. Subsequently, the procedure extractConst is
recursively called and the types Tn−1, . . . , T1 of en−1, . . . , e1 (along with contexts
Cn−1, . . . , C1) are inferred in this order, and then y1 : T1 → · · · → yn : Tn → T
(along with a context) is obtained the type of �i. In contrast, for an application
e1e2, Synquid first performs type inference for the function part e1, and then
propagates the resulting type information to the argument e2.

Example 1. Given the type T of a sorting function in Fig. 1 and the template t�
in Fig. 2, step2.1(Γ � t�::T ) (where Γ contains types for constants such as Nil)
returns the following constraint for the auxiliary function �2 (we omit types for
constants).

l : List Int ;x : Int ; xs : List 〈λx.λy.x ≤ y〉 {Int | x ≤ ν} ;
z : {List Int | ν = l}; len xs + 1 = len z ∧ elems xs + [x] = elems z
�
�i::y : {Int | ν = x}

→ ys : {List〈λxλy.x ≤ y〉 {Int | x ≤ ν}
| len ν = len xs ∧ elems ν = elems xs}

→ {List〈λxλy.x ≤ y〉 Int | len ν = len l ∧ elems ν = elems l}.

�
The theorem below states the soundness of the procedure. Intuitively, it

claims that a target program of type T can indeed be obtained from a given
template t�, by filling the holes �1, . . . ,�n with terms t1, . . . , tn of the types
inferred by the procedure step2.1.

Theorem 1. Let Γ be a well-formed environment, t� a program template and
T a type well-formed under Γ . Suppose that step2.1(Γ � t� :: T ) returns

{Δ1 � �1 :: U1, . . . , Δn � �n :: Un}.

If ∅ � Si and Δi � Si <: Ui for each i ∈ {1, . . . , n}, then
Γ ; �1 : S1, . . . ,�n : Sn � t� :: T.
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Fig. 9. The algorithm for Step 2.1

Step 2.2: Construction of Closed Types. We have obtained a constraint
Γi � �i :: Ti for each hole �i, and now it suffices to find an auxiliary function
(i.e. a closed term) of type Ti for each i. We shall use Synquid [9] to synthesize
a desired function but the type Ti itself cannot be an input of Synquid since it
is not closed in general. The goal of Step 2.2 is, thus, to calculate a closed type
Si such that Γ � Si <: Ti, using universal and existential quantifiers.

In order to solve the problem above by induction on Ti, we generalize the
problem as follows: Given a well-formed type Γ � T and a set var of variables,

(a) find a type S such that Γ � S <: T and FV(S) ⊆ var , and
(b) find a type S such that Γ � T <: S and FV(S) ⊆ var .
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Let us first consider the simplest but most important case, where T is a
scalar type {B | ψ} with B = Bool or Int . Suppose that ψ has free variables
{ν}∪var∪{y1, . . . , yn}, where yi (1 ≤ i ≤ n) comes from the environment Γ and
yi /∈ var . Let var = {x1, . . . , xk} and x be the sequence of variables x1, . . . , xk.
The goal is to find a formula ψ0(ν,x) with free variable {ν, x1, . . . , xk} such that

Γ � {B | ψ0(ν,x)} <: {B | ψ(ν,x,y)}.

By the subtyping rule, this subtyping judgment holds if and only if

�Γ �x,y (x,y,z) ∧ ψ0(ν,x) ⇒ ψ(ν,x,y)

is valid. The weakest formula ψ0(ν,x) that satisfies the above condition can be
given by using the universal quantifier, namely,

ψ0(ν,x) := ∀yz.
(

�Γ �x,y (x,y,z) ⇒ ψ(ν,x,y)
)

.

The dual problem can be solved in a similar way: the formula ψ′
0(ν) defined by

ψ′
0(ν,x) := ∃yz.

(

�Γ �x,y (x,y,z) ∧ ψ(ν,x,y)
)

satisfies the subtyping judgment Γ � {B | ψ(ν,x,y)} <: {B | ψ′
0(ν,x)}.

The case T = {D U1 . . . U� | ψ} is similar to the above case, except that we
should replace each Ui with a closed type Si. We recursively call the procedure
to construct such a Si.

When T = (x : T1 → T2), we simply invoke the procedures recursively. Every
solution S must be of the form S = (x : S1 → S2), and the requirements are
Γ � T1 <: S1 (with FV(S1) ⊆ var) and Γ ;x : T1 � S2 <: T2 (with FV(S2) ⊆
var∪{x}). These subproblems can be solved by recursively calling the procedure.

Figure 10 gives a formal definition of the procedures; necessType(Γ � T, var)
solves the problem (a) and suffType(Γ � T, var) does (b).

Example 2. We continue discussing the example of the list sorting function. So
far, the following constraint for the hole �2 is derived. (Γ is same as the envi-
ronment shown in Example 1)

Γ � �2:: y : {Int | ν = x}
→ ys : {List〈λxλy.x ≤ y〉 {Int | x ≤ ν}

| len ν = len xs ∧ elems ν = elems xs}
→ {List〈λxλy.x ≤ y〉 Int | len ν = len l ∧ elems ν = elems l}

In this step, we construct a closed type from the above constraint. The result
is shown in Fig. 11.

The type returned by the procedure indeed satisfies the requirement.

Theorem 2. Let Γ � T be a well-formed type and var be a set of variables.

– If S = necessType(Γ � T, var), then Γ � S <: T and FV(S) ⊆ var.
– If S = suffType(Γ � T, var), then Γ � T <: S and FV(S) ⊆ var.

Hence, if S = necessType(Γ � T, ∅), then Γ � S <: T and S is closed.
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Step 2.3: Elimination of Quantifiers. By Step 2.2, closed types of auxiliary
functions have been obtained, but these types cannot be passed to Synquid yet
because Synquid can handle only types with quantifier-free refinement formu-
las. Therefore, in Step 2.3, we eliminate quantifiers from the types derived by
Step 2.2. Depending on the underlying logic, there may not exist a sound and
complete quantifier elimination procedure. For example, in our running example,
we use a combination of uninterpreted function symbols, linear integer arith-
metic, and sets, for which a complete procedure does not exist. We thus apply a
sound but incomplete procedure, so that, given the type T obtained by Step 2.2,
produces a subtype T ′ of T that does not contain quantifiers.

An important observation in designing a sound procedure is that, by the
definition of the procedure for Step 2.2, existential quantifiers may occur in
the form ∃x̃.(ψ1 ∧ · · · ∧ ψk) only in negative positions of types, and universal
quantifiers may occur in the form ∀x̃.(ψ1∧· · ·∧ψk ⇒ ψ) only in positive positions.
Here, as usual, we say that ψ occurs positively in {B | ψ}, and that ψ occurs
positively (resp. negatively) in x:T1 → T2 if ψ occurs positively (resp. negatively)
in T2 or negatively (resp. positively) in T1. Thus, it suffices to replace each
existential formula ψ with a quantifier-free formula ψ′ weaker than ψ (i.e., ψ ⇒
ψ′), and each universal formula ψ with a quantifier-free formula ψ′ stronger than
ψ. We discuss two procedures below.

The first procedure, which is naive but was adopted in our implementation
and effective in the experiments reported in Sect. 4, just propagates equality
information so that quantified variables are removed as much as possible. Given
an existentially-quantified formula ∃x̃.(ψ1 ∧ · · · ∧ ψ�), we collect the subset of
{ψ, . . . , ψ�} consisting of equality constraints, orient the equations (so that terms
containing quantified variables tend to be replaced by those that do not contain
quantified variables), and rewrite each ψi to ψ′

i using the equations. We then
collect the subset {ψ′

i}i∈I of {ψ′
1, . . . , ψ

′
k} that do not contain quantified vari-

ables, and replace ∃x̃.(ψ1 ∧ · · · ∧ ψ�) with ∧i∈Iψ
′
i. Similarly, given a universally

quantified formula ∀x̃.(ψ1 ∧ · · · ∧ ψk ⇒ ψ), we rewrite ψ by using the equal-
ity constraints in ψ1, . . . , ψk. If the resulting formula ψ′ contains no quantified
variables, we return ψ′; otherwise the whole formula is replaced by ⊥.

Example 3. We continue Example 2. The type obtained in Step 2.2 is shown in
Fig. 11. Here,

P5 ≡ ∀ x, xs, z, l.
(z = l ∧ len xs + 1 = len z ∧ elems xs + [x] = elems z ∧ x = y

∧len ys = len xs ∧ elems ys = elems xs
⇒ len ν = len l ∧ elems ν = elems l )
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Fig. 10. The algorithm for Step 2.2

Using the equations on the lefthand side of ⇒, the righthand side can be rewrit-
ten as follows.

len ν = len l ∧ elems ν = elems l
� len ν = len z ∧ elems ν = elems z (by z = l)
� len ν = len xs + 1 ∧ elems ν = elems xs + [x]

(by len xs + 1 = len z, elems xs + [x] = elems z)
� len ν = len ys + 1 ∧ elems ν = elems ys + [y]

(by x = y, len ys = len xs, elems ys = elems xs)
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Fig. 11. An example output of Step 2.2

Since the resulting formula does not contain quantified variables, we obtain
len ν = len ys + 1 ∧ elems ν = elems ys + [y] as a sound approximation of P5.
We can eliminate quantifiers from P1, . . . , P4 in a similar manner, and obtain
the following type for auxiliary function �2.

�2:: y : Int → ys : List〈λxλy.x ≤ y〉 Int →
{List〈λxλy.x ≤ y〉 Int | len ν = len ys + 1 ∧ elems ν = elems ys + [y]}

�
Though the naive algorithm above may be effective for formulas consisting

of equality constraints, it is not so for formulas containing other constraints. For
example, ∃y.(lenx ≤ 1+len y∧2×len y ≤ z) is equivalent to 2×lenx ≤ 2+z,
but the naive algorithm obviously fails to output it, as there is no equality infor-
mation available. The second method we discuss below first eliminates uninter-
preted function symbols, and then applies quantifier elimination to the formula
without uninterpreted function symbols. Consider the following formula (which
is a twisted version of the formula above):

∃y, w.(lenx ≤ 1 + len y ∧ y = w ∧ 2 × lenw ≤ z).

We first pick equality constraints; y = w in the case above. For each equality
constraint v1 = v2, we add equalities of the form

E[v1] = E[v2]
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Fig. 12. Step 2

whenever the term E[v1] or E[v2] occurs in the formula. In the example above,
we obtain

∃y, w.(lenx ≤ 1 + len y ∧ y = w ∧ 2 × lenw ≤ z ∧ len y = lenw)).

We then replace each term t constructed by uninterpreted function symbols with
a fresh variable vt.

∃y, w, vlen y, vlenw.(vlen x ≤ 1 + vlen y ∧ y = w ∧ 2 × vlenw ≤ z ∧ vlen y = vlenw).

Note that the resulting formula is weaker than the original formula, because
we have lost correlations between, e.g., x and vlen x. In general, an existential
formula (a universal formula, resp.) may be replaced by a weaker (a stronger,
resp.) formula, but this is what we need for the soundness of our quantifier
elimination. In the example above, we can now apply quantifier elimination for
linear integer arithmetic, and obtain 2 × vlen x ≤ 2 + z. Finally, by recovering
terms containing uninterpreted function symbols, we obtain 2 × lenx ≤ 2 + z,
as required. This approach would be effective in particular when the underlying
logic is a logic L extended with uninterpreted function symbols, such that a
complete quantifier elimination procedure exists for L.

Soundness of Step 2. The whole procedure for Step 2 is summarized in Fig. 12;
step-2.3 is one of the sound but incomplete quantifier procedures discussed
above. Theorem 3 below states soundness of the procedure. The first property
states that the inferred types are closed (so that they can be passed to Synquid),
and the second one implies that if we can find auxiliary functions of the inferred
types, we can obtain a target function of type T by filling the template t with
the auxiliary functions.

Theorem 3. Given {�i : T�i
} = infer aux types(Γ � t :: T ), the following prop-

erties hold.

1. FV(T�i
) = ∅

2. (Γ ;�i : T�i
) � t :: T
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3.3 Step 3: Synthesizing Auxiliary Function Using Synquid

Finally, we pass to Synquid the types of auxiliary functions inferred in Step 2
(Sect. 3.2). By filling the template with the auxiliary functions, we obtain a
required target function. If Synquid fails to discover auxiliary functions (this can
happen either if the types inferred in Step 2 are not inhabited by any programs,
or if they are inhabited but Synquid is not powerful enough to find inhabitants),
we go back to Step 1 and try another template.

Fig. 13. An invalid divide-and-conquer template

3.4 Limitations

Our procedure for program synthesis may fail for various reasons, due to limi-
tations of each step. First, the syntax of templates in Fig. 8 is rather restricted.
For example, consider another divide-conquer template shown in Fig. 13, which
is obtained by replacing split of the divide-and-conquer template in Sect. 3.1
with a hole, and instead instantiating �3 to the append function. This template
is invalid due to the position in which �3 occurs; if it were valid, we would
be able to obtain a quick sort function, by instantiating �3 with the partition
function. Unfortunately allowing this (invalid) template is problematic for type
inference in Step 2.1. A problem is that, in order to conclude that the subterm
append (f l1) (f l2) returns a sorted list, we need to infer that all the elements
of l1 are no greater than those of l2. It is not clear at all how to infer such
information from the specification of f .

The other sources of failures of our program synthesis include the incom-
pleteness of the quantifier elimination procedure in Step 2.3, and limitations of
the backend tool Synquid used in Step 3.

4 Implementation and Experiments

We have implemented a prototype program synthesis tool based on our method.
The tool is written in OCaml and uses Synquid [8,9] for the final step of our
method.

We have run our tool and compared it with Synquid for several problems
of synthesizing programs that manipulate lists and binary search trees. We have
checked the standard libraries of functional languages such as the list library
of Haskell, and chosen, as the benchmark problems, library functions whose
specifications can be expressed by refinement types and whose implementations
are expected to require auxiliary functions. In all the problems, no information
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Table 1. Experimental results (times are in seconds).

Programs Our method Synquid Synquid + foldr

Total Type-infer Synquid Total Total

list-intersect 1.290 0.166 1.103 - -

list-sub 0.603 0.110 0.478 - -

list-to-bst 1.934 0.059 1.860 - -

list-sort 0.910 0.105 0.791 - 3.931

list-reverse 0.574 0.104 0.457 - -

list-unique 0.568 0.101 0.455 - 2.937

list-concat 0.466 0.052 0.400 - -

bst-to-list 2.752 0.091 2.644 - -

list-mergeSort 5.865 0.207 5.655 - N/A

about auxiliary functions was given to our tool and Synquid. Our tool uses the
fold-style templates and the divide-conquer template discussed in Sect. 3.1. The
experiment was conducted on a machine with 1.8 GHz Intel Core i5 (8 GB of
memory).

The experimental results are summarized in Table 1. The column “programs”
shows the names of functions to synthesize. We briefly describe them below.

– list-intersect: given two sets (represented as lists), returns the intersec-
tion.

– list-sub: given two sets (represented as lists), returns the difference.
– list-to-bst: converts a list to a binary search tree.
– list-sort: sorts a list.
– list-reverse: reverses a list.
– list-unique: removes duplicate elements in a list.
– list-concat: flattens a list of lists.
– bst-to-list: converts a binary search tree to a list.
– list-mergeSort: sorts a list; the divide-conquer pattern is used as the default

template.

The fold-style template was used as the default template, except for the last
one. The three sub-columns in the column “our method” respectively show the
total execution time, the time spent for the inference of the types of auxiliary
functions (in Steps 1 and 2 in Sect. 3), and the time spent by Synquid (in
Step 3 in Sect. 3). The cell “-” represents a failure. The column “Synquid” shows
the result of running Synquid with no hints, and “Synquid+foldr” shows the
result of running Synquid with the type of the fold-right function (shown in
Fig. 14) as a hint (so that Synquid can use the fold-right function in the target
functions). The latter is based on the method for discovering auxiliary functions
as proposed by Polikarpova [9]. The result “N/A” for list-mergeSort means
“non-applicable”; given the type of the fold-right function, Synquid synthesizes
an insertion sort program instead of a merge sort program.
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Fig. 14. The type of the fold-right function [9]

As the table shows, our tool could successfully synthesize all the programs.
In contrast, Synquid could synthesize none of the benchmark programs; it is as
expected, because the benchmark programs require auxiliary functions. It may
come as a surprise that, even given the type of the fold-right function, Synquid
could synthesize only two of the benchmark programs. This is because of the
limitation that the full behavior of the fold-right function is not expressed by
its type, The type in Fig. 14 is quite general: roughly, it describes that, for any
predicate p on a list of elements of type β and a value of type γ, foldr f seed ys
returns a value r such that p ys r, provided that p Nil seed holds and the
accumulation function f preserves the invariant p between an input list and the
corresponding output. The type still fails to describe certain information about
the behavior of fold-right; for example, the type of the first argument f does not
directly express the relationship between the accumulation parameter acc and
the return value.

5 Related Work

We have already discussed the work of Polikarpova et al. [9], which we have
extended to enable synthesis of programs with auxiliary functions. There are
other studies of automated synthesis of functional programs [2,6,7,9,11], but we
are not aware of previous methods that can automatically synthesize auxiliary
functions from the specification of a main function alone. Kneuss et al. [6] discuss
the synthesis of a merge sort function from a user-supplied template similar to
our divide-and-conquer template, but they also require that the specification of
the auxiliary function “merge” be provided by a user.

To express precise specifications of target functions, we have borrowed the
type system of Polikarpova et al. [9], which is in turn based on Vazou et al.’s
type system with abstract refinement types [12].

In the context of automated theorem proving, there have been studies on
techniques for automated discovery of lemmas [1,5]. Through the Curry-Howard
correspondence between proofs and programs, lemmas correspond to auxiliary
functions; thus, we plan to investigate the techniques for lemma discovery to
refine our method.

6 Conclusion

We have proposed a method for automatically synthesizing functional programs
that require auxiliary functions. We have implemented a prototype synthesis
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tool that uses Synquid as a backend, and confirmed that it is able to synthesize
several functions with auxiliary functions. Overcoming the limitations discussed
in Sect. 3.4 is left for future work.

Acknowledgments. We would like to thank anonymous referees for useful com-
ments. This work was supported by JSPS KAKENHI Grant Number JP15H05706
and JP16K16004.

Appendix

A Well-Formedness of Types and Type Environments

A formula ψ is well formed in the environment Γ , written Γ � ψ, when it has
a boolean sort under the assumption that each free variable in ψ has the sort
declared in Γ .

The well-formedness relations on types and type environments, Γ � T and
� Γ respectively, are defined by the rules given below.

Γ ; ν : B � ψ

Γ � {B | ψ} (WfT-Sc)
Γ ;C � T

Γ � let C in T
(WfT-Ctx)

Γ � {B | ψ} Γ ;x : {B | ψ} � T

Γ � x : {B | ψ} → T
(WfT-Fun1)

Tx is not of the form {B | ψ} Γ � Tx Γ � T

Γ � x : Tx → T
(WfT-Fun2)

� ∅ (WfTE-Emp)

� Γ Γ � T x does not occur in Γ

� Γ ;x : T
(WfTE-T)

� Γ Γ � ψ

� Γ ;ψ
(WfTE-P)
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Abstract. Inline assembly code is common in system software to inter-
act with the underlying hardware platforms. Safety and correctness of
the assembly code is crucial to guarantee the safety of the whole sys-
tem. In this paper we propose a practical Hoare-style program logic for
verifying SPARC assembly code. The logic supports modular reason-
ing about the main features of SPARCv8 ISA, including delayed control
transfers, delayed writes to special registers, and register windows. We
have applied it to verify the main body of a context switch routine in a
realistic embedded OS kernel. All of the formalization and proofs have
been mechanized in Coq.

1 Introduction

Operating system kernels are at the most foundational layer of computer software
systems. To interact directly with hardware, many important components in OS
kernels are implemented in assembly, such as the context switch code or the
code that manages interrupts. Their correctness is crucial to ensure the safety
and security of the whole system. However, assembly code verification remains a
challenging task in existing work on OS kernel verification (e.g. [8,9,18]), where
the assembly code is either unverified or verified based on operational semantics
without a general program logic.

SPARC (Scalable Processor ARChitecture) is a CPU instruction set architec-
ture (ISA) with high-performance and great flexibility [2]. It has been widely used
in various processors for workstations and embedded systems. The SPARCv8
ISA has some interesting features, which make it a non-trivial task to design a
Hoare-style program logic for assembly code.

– Delayed control transfers. SPARCv8 has two program counters pc and npc.
The npc register points to the next instruction to run. Control-transfer
instructions in SPARCv8 change npc instead of pc to the target program
point, while pc takes the original value of npc. This makes the control transfer
to happen one cycle later than the execution of the control transfer instruc-
tions.
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CALLER : ChangeY :

. . .
1 mov 1, %o0
2 call ChangeY
3 save %sp, −64, %sp

4 mov %o0, %l0
. . .

5 rd Y, %l0
6 wr %i0, 0, Y

7 nop

8 nop

9 nop

10 ret

11 restore %l0, 0, %o0

Fig. 1. An example for SPARC code

– Delayed writes. The wr instruction that writes a special class of registers does
not take effect immediately. Instead the write operation is buffered and then
executed X cycles later, where X is a predefined system parameter which
usually ranges from 0 to 3.

– Register windows. SPARCv8 uses register windows and the window rotation
mechanism to avoid saving contexts in the stack directly and achieves high
performance in context management.

We use a simple example in Fig. 1 to show these three features. The func-
tion CALLER calls ChangeY, which updates the special register Y and returns its
original value.

ChangeY requires an input parameter as the new value for the special register
Y. CALLER calls ChangeY at line 2, and pc and npc point to line 2 and 3 respec-
tively at this moment. The call instruction changes the value of pc to npc and let
npc points to ChangeY at line 5, which means the control-flow will not transfer
to ChangeY in the next cycle, but in the cycle after the execution of the save
instruction following the call. Similarly, when ChangeY returns (at line 10), the
control is transferred back to the caller after executing the restore instruction
at line 11. We call this feature “delayed control transfers”.

SPARCv8 uses the save instruction (at line 3 in the example) to save the
current context and restore (at line 10) to restore it. Its 32 general registers
are split into four logic groups as global (r0–r7), out (r8–r15), local (r16–r23)
and in (r24–r31) registers. Correspondingly, we give aliases “%g0–%g7”, “%o0–
%o7”, “%l0–%l7” and “%i0–%i7” for these groups respectively. The out, local
and in registers form the current register window. The local registers are for
private use in the current context. The in and out registers are shared with
adjacent register windows for parameters passing. The save instruction rotates
the register window from the current one to the next. Then the local and in
registers in the original window are no longer accessible, and the original out
registers becomes the in registers in the current window. The restore instruction
does the inverse. The arguments taken by the save and restore instructions
are irrelevant here and can be ignored.
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At line 6, the wr instruction tries to update the special register Y with the
value of %i0 ⊕0 (bitwise exclusive OR). However, the write is delayed for X
cycles, where X is some predefined system parameter that ranges from 0 to
3. For portability, programmers usually do not rely on the exact value of X
and assume it takes the maximum value 3. Therefore three nop instructions are
inserted. Reading of Y earlier than line 9 may give us the old value. This feature
is called “delayed writes”.

These features make the semantics of the SPARCv8 code context-dependent.
For instance, a read of a special register (e.g. the register Y in the above example)
needs to make sure there are enough instructions executed since the most recent
delayed write. As another example, the instruction following the call can be
any instruction in general, but it is not supposed to update the register r15,
which contains the return address saved by the call instruction. In addition,
the delayed control transfer and the register windows also allow highly flexible
calling conventions. Together, they make it a challenging task to have a Hoare-
style program logic for local and modular reasoning of SPARCv8 assembly code.

Working towards a fully certified OS kernel for aerospace crafts whose inline
assembly is written in SPARCv8, we try to address these challenges and propose
a practical program logic for realistically modelled SPARCv8 code. We have
applied our logic to verify the main body of the task context switch routine in
the kernel. Our work is based on earlier work on assembly code verification but
makes the following contributions:

– Our logic supports all the above features of SPARCv8. We redefine basic
blocks to include the instruction following the jump or return as the tail of
a block, which models the delayed control transfer. To reason about delayed
writes, we introduce a modal assertion �tsr �→ w, saying that the special
register sr will hold the value w in up to t cycles. We also give logic rules for
save and restore instructions that do register window rotation.

– Following SCAP [7], our logic supports modular reasoning of function calls
in a direct-style. We use the standard pre- and post-conditions as function
specifications, instead of the binary assertion g used in SCAP. This allows
us to reuse existing techniques (e.g. Coq tactics) to simplify the program
verification process. The logic rules for function call and return is general and
independent of any specific calling convention.

– We give direct-style semantic interpretation for the logic judgments, based on
which we establish the soundness. This is different from previous work, which
either does syntactic-based soundness proof (e.g. SCAP [7]) or treats return
code pointers as first-class code pointers and gives CPS-style semantics. Those
approaches for soundness make it difficult to verify the interaction between
the inline assembly and the C code in the kernel, the latter being verified
following a direct-style program logic.

– Context switch of concurrent tasks is an important component in OS kernels.
It is usually implemented as inline assembly because of the need to access
registers and the stack. We verify the main body of the context switch rou-
tine in a realistic embedded OS kernel for aerospace crafts, which consists of
around 250 lines of SPARCv8 code.
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(Word) w, f, l ∈ Int32

(Prog) P ::= (C, S, pc, npc) (CodeHeap) C ∈ Word ⇀ Comm
(State) S ::= (M, Q, D) (RState) Q ::= (R, F )

(Memory) M ∈ Word ⇀ Word (ProgCount) pc, npc ∈ Word
(OpExp) o ::= r | w (AddrExp) a ::= o | r + o

(Comm) c ::= i | call f | jmp a | retl | be f

(SimpIns) i ::= ld a rd | st rs a | nop | save rs o rd | restore rs o rd
| add rs o rd | rd sr rd | wr rs o sr | . . .

(InstrSeq) I ::= i; I | jmp a; i | call f; i; I | retl; i | be f; i; I

Fig. 2. Machine states and language for SPARCv8 code

The program logic, its soundness proof and the verification of the context switch
module have been mechanized in Coq [1].

In the rest of paper, we present the program model and operational semantics
of SPARCv8 in Sect. 2. Then we propose the program logic in Sect. 3, including
the inference rules and the soundness proof. We show the verification of the main
body of the context switch routine in Sect. 4. Finally we discuss more on related
work and conclude in Sect. 5.

2 The SPARCv8 Assembly Language

We introduce the key SPARCv8 instructions, the model of machine states, and
the operational semantics in this section.

2.1 Language Syntax and States

The machine model and syntax of SPARCv8 assembly language are defined in
Fig. 2. The whole program configuration P consists of the code heap C, the
machine state S, and the program counters pc and npc. The code heap C is a
partial function from labels f to commands c. Labels are 32-bit integers (called
words), which can be viewed as memory addresses where the commands are
saved. Commands in SPARCv8 can be classified into two categories, the simple
instructions i and the control-transfer instructions like call and jmp.

The machine state S consists of three parts: the memory M , the register
state Q which is a pair of register file R and frame list F , and the delay buffer
D. As defined in Fig. 3, R is a partial mapping from register names to words.
Registers include the general registers r, the processor state register psr and
the special registers sr. The processor state register psr contains the integer
condition code fields n, z, v and c, which can be modified by the arithmetic and
logical instructions and used for conditional control-transfer, and cwp recording
the id of the current register window. We explain the frame list F and the delay
buffer D below.
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(RegFile) R ∈ RegName ⇀ Word (RegName) rn ::= r0 | . . . | r31 | psr | sr
(PsrReg) psr ::= n | z | v | c | cwp (SpeReg) sr ::= wim | Y | asr0 | . . . | asr31

(FrameList) F ::= nil | fm::F (Frame) fm := [w0, . . . , w7]
(DelayBuff) D ::= nil | (t, sr, w) ::D (DelayCycle) t ∈ {0, 1, . . . , X}

Fig. 3. Register file, frame list and DelayBuffer

w7 ins

w7 locals

w7 outs

w6 ins

w6 locals

w6 outs
w5 ins

w5 locals

w5 outs

w4 ins

w4 localsw4 outs

w3 ins

w3 locals

w3 outs

w2 ins

w2 locals

w2 outsw1 ins

w1 locals

w1 outs

w0 ins

w0 locals w0 outs
CWP+1

CWP
(current window)

CWP 1

WIM

RESTORE,
RETT

SAVE,
trap

Fig. 4. Register windows (figure taken from [2])

Register Windows and Frame List. SPARCv8 provides 32 general registers,
which are split into four groups as global (r0–r7), out (r8–r15), local(r16–r23)
and in (r24–r31) registers. The latter three groups (out, local and in) form the
current register window.

At the entry and exit of functions and traps, one may need to save and restore
some of the general registers as execution contexts. Instead of saving them into
stacks in memory, SPARCv8 uses multiple register windows to form a circular
stack, and does window rotation for efficient context save and restore. As shown
in Fig. 4, there are N register windows (N = 8 here) consisting of 2 × N groups
of registers (each group containing 8 registers). The cwp register (part of psr)
records the id number of the current window (cwp = 0 in this example).

The in and out registers of each window are shared with its adjacent windows
for parameter passing. For example, the in registers of the w0 is the out registers
of the w1, and the out registers of the w0 is the in registers of the w7. This
explains why we need only 2 × N groups of registers for N windows, while each
window consisting of three groups (out, local and in).
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Fig. 5. Auxiliary definitions for instruction save and restore

To save the context, the save instruction rotates the window by decrements
the cwp pointer (modulo N). So w7 becomes the current window. The out regis-
ters of w0 becomes the in registers of w7. The in and local registers of w0 become
inaccessible. This is like pushing them onto the circular stack. The restore
instruction does the inverse, which is like a stack pop.

The wim register is used as a bit vector to record the end of the stack. Each
bit in wim corresponds to a register window. The bit corresponding to the last
available window is set to 1, which means invalid. All other bits are 0 (i.e.
valid). When executing save (and restore), we need to ensure the next window
is valid. We use the assertion win valid(wid, R) defined in Fig. 5 to say the
window pointed to by wid is valid, given the value of wim in R.

We use the frame list F to model the circular stack consisting of register
windows. As defined in Fig. 3, a frame is an array of 8 words, modeling a group
of 8 registers. F consists of a sequence of frames corresponding to all the register
windows except the out, local and in registers in the current window. Then save
saves the local and in registers onto the head of F and loads the two groups
of register at the tail of F to the local and out registers (and the original out
registers becomes the in group). The restore instruction does the inverse. The
operations are defined formally in Fig. 5.

The Delay Buffer. The delay buffer D is a sequence of delayed writes. Because
the wr instruction does not update the target register immediately, we put the
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write operation onto the delay buffer. A delayed write is recorded as a triple
consisting of the remaining cycles t to be delayed, the target special register sr
and the value w to be written.

Instruction Sequences. We use an instruction sequence I to model a basic block,
i.e. a sequence of commands ending with a control transfer. As defined in Fig. 2,
we require that a delayed control-transfer instruction must be followed by a sim-
ple instruction i, because the actual control-transfer occurs after the execution
of i. The end of each instruction sequence can only be jmp or retl followed by
a simple instruction i. Note that we do not view the call instruction as the end
of a basic block, since the callee is expected to return, following our direct-style
semantics for function calls. We define C[f] to extract an instruction sequence
starting from f in C below.

C[f] =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

i; I C(f) = i and C[f + 4] = I

c; i c = C(f) and c = jmp a or retl
and C(f + 4) = i

c; i; I c = C(f) and c = call f or be f

and C(f + 4) = i and C[f + 8] = I

undefined otherwise

2.2 Operational Semantics

The operational semantics is taken from Wang et al. [17], but we omit features
like interrupts and traps. We show the selected rules in Fig. 6. The program
transition relation C � (S, pc, npc) �−→ (S′, pc′, npc′) is defined in Fig. 6(a).
Before the execution of the instruction pointed by pc, the delayed writes in D
with 0 delay cycles are executed first. The execution of the delayed writes are
defined in the form of (R,D) ⇒ (R′,D′), as shown below:

(R, nil) ⇒ (R, nil)

(R, D) ⇒ (R′, D′)

(R, (t+1, sr, w) ::D) ⇒ (R′, (t, sr, w) ::D′)

(R, D) ⇒ (R′, D′) sr ∈ dom(R)

(R, (0, sr, w) ::D) ⇒ (R′{sr � w}, D′)

(R, D) ⇒ (R′, D′) sr �∈ dom(R)

(R, (0, sr, w) ::D) ⇒ (R′, D′)

Note that the write of sr has no effect if sr is not in the domain of R. Since
R is defined as a partial map, we can prove the following lemma.

Lemma 2.1. (R,D) ⇒ (R′,D′) and R = R1 �R2, if and only if there exists R′
1

and R′
2, such that (R1,D) ⇒ (R′

1,D
′), (R2,D) ⇒ (R′

2,D
′), and R′ = R′

1 � R′
2.

Here the disjoint union R1 � R2 represents the union of R1 and R2 if they
have disjoint domains, and undefined otherwise. This lemma is important to give
sound semantics to delay buffer related assertions, as discussed in Sect. 3.

The transition steps for individual instructions are classified into three cate-
gories: the control transfer steps ( � ◦−−→ ), the steps for save, restore and
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Fig. 6. Selected operational semantics rules
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wr instructions ( •−−→ ), and the steps for other simple instructions ( −−→ ).
The corresponding step transition relations are defined inductively in Fig. 6(b),
(c) and (d) respectively.

Note that, after the control-transfer instructions, pc is set to npc and npc
contains the target address. This explains the one cycle delay for the control
transfer. The call instruction saves pc into the register r15, while retl uses
r15+8 as the return address (which is the address for the second instruction
following the call). Evaluation of expressions a and o is defined as �a�R and
�o�R in Fig. 6(e).

The wr wants to save the bitwise exclusive OR of the operands into the special
register sr, but it puts the write into the delay buffer D instead of updating R
immediately. The operation set delay(sr, w,D) is defined below:

set delay(sr, w, D)
�
= (X, sr, w) ::D

where X (0 ≤ X ≤ 3) is a predefined system parameter for the delay cycle.
The save and restore instruction rotate the register windows and update

the register file. Their operations over F and R are defined in Fig. 5.

3 Program Logic

In this section, we introduce the assertion language and program logic designed
for SPARCv8 program.

3.1 Assertions

We define syntax of assertions in Fig. 7, and their semantics in Fig. 8. We extend
separation logic assertions with specifications of delay buffers and register win-
dows. Registers are like variables in separation logic, but are treated as resources.
The assertion emp says that the memory and the register file are both empty.
l �→ w specifies a singleton memory cell with value w stored in the address l.
rn �→ w says that rn is the only register in the register file and it contains the
value w. Also rn is not in the delay buffer. Separating conjunction p ∗ q has the
standard semantics as in separation logic.

Fig. 7. Syntax of assertions

The assertion �tsr �→ w describes a delayed write in the delay buffer D. It
describes the uncertainty of sr’s value in R, which is unknown for now but will
become w in up to t+1 cycles. We use ⇒k to represent k-step execution of
the delayed writes in D. It also requires that there be at most one delayed write
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Fig. 8. Semantics of assertions

for a specific special register sr in D (i.e. noDup(sr,D)). This prevents more
than one delayed writes to the same register within 4 instruction cycles, which
practically have no restrictions on programming. By the semantics we have

sr �→w =⇒ �tsr �→w �t sr �→w =⇒ �t+ksr �→w

The assertion p ↓ allows us to reduce the uncertainty by executing one step
of the delayed writes. It specifies states reachable after executing one step of
delayed writes from those states satisfying p. Therefore we know:

(�0sr �→w)↓=⇒ sr �→w (�t+1sr �→w)↓=⇒ �tsr �→w

Also it’s easy to see that if p syntactically does not contain sub-terms in the
form of �tsr �→w, then (p↓) ⇐⇒ p.

The following lemma shows ( )↓ is distributive over separating conjunction.

Lemma 3.1. (p ∗ q)↓⇐⇒ (p↓) ∗ (q↓).

The lemma can be proved following Lemma 2.1.
We use cwp �→ �wid, F � to describe the pointer cwp of the current register

window and the frame list as a circular stack. Note that F is just a prefix of the
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Fig. 9. Example for function specification

frame list, since usually we do not need to know contents of the full list. Here
we use F ·F ′ to represent the concatenation of lists F and F ′. Therefore we have
cwp �→�wid, F ·F ′ � =⇒ cwp �→�wid, F �.

The assertions a=a w and o= w describe the value of a and o respectively.
They are intuitionistic assertions. Since a is used as an address, we also require it
to be properly aligned on a 4-byte boundary (i.e. word align, whose definition
is omitted here).

3.2 Inference Rules

The code specification θ and code heap specification Ψ are defined below:

(valList) ι ∈ list value (pAsrt) fp, fq ∈ valList → Asrt
(CdSpec) θ ::= (fp, fq) (CdHpSpec) Ψ ::= {f � θ}∗

The code heap specification Ψ maps the code labels for basic blocks to their
specifications θ, which is a pair of pre- and post-conditions. Instead of using
normal assertions, the pre- and post-conditions are assertions parameterized over
a list of values lgvl. They play the role of auxiliary variables—Feeding the pre-
and the post-conditions with the same lgvl allows us to establish relationship of
states specified in the pre- and post-conditions.

Although we assign a θ to each basic block, the post-condition does not spec-
ify the states reached at the end of the block. Instead, it specifies the condition
that needs to be specified in the future when the current function returns. This
follows the idea developed in SCAP [7], but we use the standard unary state
assertion instead of the binary state assertions used in SCAP, so that existing
proof techniques (such as Coq tactics) for standard Hoare-triples can be applied
to simplify the verification process.

We give a simple example in Fig. 9 to show a specification for a function,
which simply sums the values of the registers %i0, %i1 and %i2 and writes the
result into the register %l7. The specification (fp, fq) says that, when provided
with the same lv as argument, the function preserves the value of %i0, %i1 and
%i2, %l7 at the end contains the sum of %i0, %i1 and %i2, and the function
also preserves the value of r15, which it uses as the return address. To verify the
function, we need to prove that it satisfies (fp lv, fq lv) for all lv.

Figure 10 shows selected inference rules in our logic. The top rule CDHP
verifies the code heap C. It requires that every basic block specified in Ψ can be
verified with respect to the specification, with any argument ι used to instantiate
the pre- and post-conditions.
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Fig. 10. Selected inference rules

The SEQ rule is applied when meeting an instruction sequence starting with
a simple instruction i. The instruction i is verified by the corresponding well-
formed instruction rules, with the precondition p ↓ and some post-condition p′.
We use p ↓ because there is an implicit step executing delayed writes before
executing every instruction. The post-condition p′ for i is then used as the
precondition to verify the remaining part of the instruction sequence.

Delayed Control Transfers. We distinguish the jmp and call instructions—
The former makes an intra-function control transfer, while the latter makes
function calls. The JMP rule requires that the target address is a valid one
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specified in Ψ . Starting from the precondition p, after executing the instruction
i following JMP and the corresponding delayed writes, the post-condition p′ of
i should satisfy the precondition of the target instruction sequence, with some
instantiation ι of the logical variables and a frame assertion pr. Since the target
instruction sequence of jmp is in the same function as the jmp instruction itself,
the post-condition fq specified at the target address (with the same instantiation
ι of the logical variables and the frame assertion pr) should meet the post-
condition q of the current function. As we explained before, the post-condition q
does not specify the states reached at the end of the instruction sequence (which
are specified by p′ instead).

The CALL rule is similar to the JMP rule in that it also requires the post-
condition p2 of the instruction i following the call satisfy the precondition of
the target instruction sequence, with some instantiation ι of the logical variables
and a frame assertion pr. Here we need to record that the code label f is saved in
r15 by the call instruction. When the callee returns, its post-condition fq (with
the same instantiation of auxiliary variables ι) needs to ensure r15 still contains
f, so that the callee returns to the correct address. Also the fq with the frame
pr needs to satisfy the precondition p′ for the remaining instruction sequences
of the caller.

The RETL rule simply requires that the post-condition q holds at the end of
the instruction i following retl. Also i cannot touch the register r15, therefore
r15 specified in p must be the same as in q. Since at the calling point we already
required that the post-condition of the callee guarantees r15 contains the correct
return address, we know r15 contains the correct value before retl.

Delayed Writes and Register Windows. The bottom layer of our logic is
for well-formed instructions. The WR rule requires the ownership of the target
register sr in the precondition (sr �→ ). Also it implies there is no delayed writes
to sr in the delay buffer (see the semantics defined in Fig. 8). At the end of the
delayed write, we use �3sr �→ w1 ⊕ w2 to indicate the new value will be ready
in up to 3 cycles. Since the maximum delay cycle X cannot be bigger than 3
and the value of X may vary in different systems, programmers usually take a
conservative approach to assume X = 3 for portability of code. Our rule reflects
this conservative view. The RD rule says the special register can be read only if
it is not in the delay buffer. The SAVE and RESTORE rules reflect the save
and recovery of the execution contexts, which is consistent with the operational
semantics of the save and restore instructions given in Figs. 5 and 6.

3.3 Semantics and Soundness

We first define the safety of instruction sequences, safe insSeq(C,S, pc, npc, q, Ψ).
It says C can execute safely from S, pc and npc until reaching the end of the
current instruction sequence (C[pc]), and q holds if C[pc] ends with the return
instruction. It is formally defined in Definition 3.2. Here we use “ �−→n ” to
represent n-step execution.
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Definition 3.2 (Safety of Instruction Sequences). safe insSeq(C,S, pc,
npc, q, Ψ) holds if and only if the following are true (we omit the case for be
here, which is similar to jmp):

– if C(pc) = i then:
• there exist S′, pc, npc′, such that C � (S, pc, npc) �−→ (S′, pc′, npc′),
• for any S′, pc′, npc′, if C � (S, pc, npc) �−→ (S′, pc′, npc′), then
safe insSeq (C,S′, pc′, npc′, q, Ψ)

– if C(pc) = jmp a then:
• there exist S′, pc′, npc′, such that C � (S, pc, npc) �−→2 (S′, pc′, npc′),
• for any S′, pc′, npc′, if C � (S, pc, npc) �−→2 (S′, pc′, npc′), then there

exist fp, fq, ι and pr, such that the following hold:
(1) npc′ = pc′+4, Ψ(pc′) = (fp, fq),
(2) S′ |= (fp ι) ∗ pr, (fq ι) ∗ pr ⇒ q.

– if C(pc) = be f then . . .
– if C(pc) = call f then:

• there exist S′, pc′, npc′, such that C � (S, pc, npc) �−→2 (S′, pc′, npc′),
• for any S′, pc′ and npc′, if C � (S, pc, npc) �−→2 (S′, pc′, npc′), then there

exist fp, fq, ι and pr, such that the following hold:
(1) npc′ = pc′+4, Ψ(pc′) = (fp, fq),
(2) S′ |= (fp ι) ∗ pr,
(3) for any S′, if S′ |= (fq ι) ∗ pr, then safe insSeq (C,S′, pc + 8, pc +

12, q, Ψ),
(4) for any S′, if S′ |= (fq ι), then S′.Q.R(r15) = pc.

– if C(pc) = retl then:
• there exist S′, pc′, npc′, such that C � (S, pc, npc) �−→2 (S′, pc′, npc′),
• for any S′, pc′ and npc′, if C � (S, pc, npc) �−→2 (S′, pc′, npc′), then

S′ |= q, pc′ = S′.Q.R(r15)+8, and npc′ = S′.Q.R(r15)+12.

Then we can define the semantics for well-formed instruction sequences and
well-formed code heap.

Definition 3.3 (Judgment Semantics)

– Ψ |= {(p, q)} f :I if and only if, for all C and S such that C[f] = I and S |= p,
we have safe insSeq(C,S, f, f+4, q, Ψ).

– |= C :Ψ if and only if, for all f, fp and fq such that Ψ(f) = (fp, fq), we have
Ψ |= {(fp ι, fq ι)} f :C[f] for all ι.

Next we define the safety safen(C,S, pc, npc, q, k) of whole program execu-
tion. It says that, starting with pc, npc and the state S, and with the depth k
of function calls, the code C either halts in less than n steps, with the final state
satisfies q, or it executes at least n steps safely. Here we say C halts if it reaches
the return point of the topmost function (when the depth k of the function call
is 0). In the definition below, the depth k increases by the call instruction and
decreases by retl (unless k = 0).
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Definition 3.4 (Program Safety). safe0(C,S, pc, npc, q, k) always holds.
safen+1(C,S, pc, npc, q, k) holds if and only if the following are true:

1. if C(pc) ∈ {i, jmp a, be f}, then:
– there exist S′, pc′, npc′, such that C � (S, pc, npc) �−→ (S′, pc′, npc′);
– for any S′, pc′, npc′, if

C � (S, pc, npc) �−→ (S′, pc′, npc′), then safen (C, S′, pc′, npc′, q, k);
2. if C(pc) = call f, then:

– there exist S′, pc′, npc′ such that C � (S, pc, npc) �−→2 (S′, pc′, npc′);
– for any S′, pc′, npc′, if C � (S, pc, npc) �−→2 (S′, pc′, npc′),

then safen(C, S′, pc′, npc′, q, k + 1);
3. if C(pc) = retl, then:

– there exist S′, pc′, npc′ such that C � (S, pc, npc) �−→2 (S′, pc′, npc′);
– for any S′, pc′, npc′, if C � (S, pc, npc) �−→2 (S′, pc′, npc′), then

if k = 0 then
S′ |= q

else
safen(C, S′, pc′, npc′, q, k−1).

Then the following theorem and corollary show the soundness of our logic.

Theorem 3.5 (Soundness). � C :Ψ =⇒|= C :Ψ

Corollary 3.6 (Function Safety). If Ψ |= {(p, q)} pc : C[pc], S |= p, and
|= C :Ψ , then ∀n. safen(C,S, pc, pc+4, q, 0).

4 Verifying a Realistic Context Switch Module

We apply our program logic to verify the main body of a context switch routine
implemented in SPARCv8, which is used to save the current task’s context and
restore the new task’s context. Figure 11 shows the structure of the code.

– SwitchEntry is the entry of the module. It checks SwitchFlag to see if a
context switch is needed. If yes, it enters the Window OK block.

– Window OK checks if the current task is null (which may happen if the switch
follows the delete of the current task). If yes, it jumps to Adjust CWP, which
resets the pointer cwp of the current register window so that it points to the
last valid window. It essentially pops all the frames to empty the circular
stack of register windows. If the current task is not null, it calls reg save
to save the general registers into the TCB, and then enter the code block
Save UsedWindows to save other register windows (F in our state model).

– Save UsedWindows saves the register windows (except the current one) into
the current task’s stack in memory.

– Switch NewContext restores the general registers and other register windows
from the new task’s TCB and its stack in memory, respectively. Then it sets
the new task as the current one.
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SwitchEntry

Window OK
tc �= null

tc = null

reg save

Save UsedWindows

Adjust CWP

Switch NewContext reg restore
call

retl

Fig. 11. The structure of context switch module

The main complexity of the verification lies in the code manages the regis-
ter windows. To save all the register windows, Save UsedWindows repetitively
restores the next window into general registers (as the current window) and then
saves them into memory, until all the windows are saved.

Specification. Below we give the pre- and post-conditions (apre and apost) of
the verified module. Each of them takes 5 arguments, the id of the current task
tc, the id of the new task tn, the value flag of the SwitchFlag, the values env of
general registers and all other register windows, and the new task’s context nst
that needs to be restored.

apre(tc, tn,flag, env,nst)
�
= Env(env) ∗ (SwitchFlag �→flag) ∗ (TaskNew �→ tn)∗

(flag=false ∨ CurT(tc, , env)∗NoCurT(tn,nst))

apost(tc, tn,flag, env,nst)
�
= ∃env′. Env(env′) ∗ (SwitchFlag �→ false) ∗ (TaskNew �→ tn)∗

(flag=false ∧ p env(env)=p env(env′)
∨(CurT(tn,nst, env′) ∧ p env(env′)=nst)∗

NoCurT(tc, p env(env)))

In the specification, we use Env(env) to specify the values of general registers
and the register windows. The variable TaskNew records the identifier of the new
task. If SwitchFlag is false, we do not need any knowledge about the current and
the new tasks since there is no context switch. Otherwise we describe the state
of the current task (its TCB and stack in memory) using CurT(tc, , env), and
the saved context of the new task using NoCurT(tn,nst). Due to space limitation
we omit the detailed definitions here.

If we compare apre and apost, we can see that tn becomes the current task
(CurT(tn,nst, env′)), and its general registers and stack, specified by Env(env′),
are loaded from the saved context nst (i.e. p env(env′)=nst). Here p env(env′)
refers to the part of the environment that we want to save or restore as context.
Correspondingly, tc becomes non-current-thread, and part of its environment env
at the entry of the context switch is saved, as specified by NoCurT(tc, p env(env)).

We omit the code that manages interrupt and float registers in the original
system, which are not supported in our logic. The segment we verify has around
250 lines of assembly code, and we verify it by 6690 lines of Coq proof scripts.
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5 Related Work and Conclusion

There has been much work on assembly or machine code verification. Most
of them do not support function calls or simply treat function calls in the
continuation-passing style where return addresses are viewed as first class code
pointers [3,10,11,13,14,16,20]. SCAP [7] supports assembly code verification
with various stack-based control abstractions, including function call and return.
We follow the same idea here. However, SCAP gives a syntactic-based soundness
proof by establishing the preservation of the syntactic judgment, which makes
it difficult to interact with other modules verified in different logic. Since our
goal is to verify inline assembly and link the verified code with the verified C
programs, we give a direct-style semantic model of the logic judgments. Also
SCAP is based on a simplified subset of assembly instructions, while our work
is focused on a realistically modeled subset of SPARCv8 instructions.

In terms of the support of realistic instruction sets, previous work on proof-
carrying code (PCC) and typed assembly language (TAL) mostly supports sub-
sets of x86. Myreen’s work [12] presents a framework for ARM verification based
on a realistic model (but it doesn’t support function call and return).

As part of the Foundational Proof-Carrying Code (FPCC) project [3], Tan
and Appel present a program logic Lc for reasoning about control flow in assem-
bly code [16]. Although Lc is implemented on top of SPARC machine language,
the underlying logic is a type system instead of a full-blown program logic for
functional correctness. It reasons about functions in the continuation-passing
style. Also handling SPARC features such as delayed writes or delayed control
transfers is not the focus of Lc. There has been work on mechanized semantics
of the SPARCv8 ISA. Hou et al. [21] model the SPARCv8 ISA in Isabelle/HOL.
Wang et al. [17] formalize its semantics in Coq. Our operational semantics of
SPARCv8 follows Wang et al. [17].

Ni et al. [15] verify a context switch module of 19 lines in x86 code to show
case the support of embedded code pointers (ECP) in XCAP [14]. The context
switch module we verify comes from a practical OS kernel, which is more realistic
and consists of more than 250 lines of assembly code, but our logic does not
really support the switch of return addresses, which requires further extension
like OCAP [6]. Our focus is to verify the code manages the register windows,
and the function calls made internally.

Yang and Hawblitzel [19] verify Verve, an x86 implementation of an exper-
imental operating system. Verve has two levels, the high-level TAL code and
the low-level “Nucleus” that provides primitive access to hardware and memory.
The Nucleus code is verified automatically using the Z3 SMT solver, while the
goal of our work is to generate machine checkable proofs. Another key difference
is the use of different ISAs. Here we give details to verify specific features of
SPARCv8 programs.

There have been many techniques and tools proposed for automated program
verification (e.g. [4,5]). It is possible to adapt them to verify SPARCv8 code. We
propose a new program logic and do the verification in Coq mainly because the
work is part of a big project for a fully certified OS kernel for aerospace crafts
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whose inline assembly is written in SPARCv8. We already have a program logic
implemented in Coq for C programs, which allows us to verify C code with Coq
proofs. Therefore we want to have a program logic for SPARCv8 so that it can
be linked with the logic for C and can generate machine-checkable Coq proofs
too. That said, many of the automated verification techniques can be applied to
reduce the manual efforts to write Coq proofs, which we would like to study in
the future work.

Conclusion. We present a program logic for SPARCv8. Our logic is based on
a realistic semantics model and supports main features of SPARCv8, including
delayed control transfer, delayed writes, and register windows. We have applied
the program logic to verify the main body of the context switch routine in
a realistic embedded OS kernel. Our current work can only handle sequential
SPARCv8 program verification for partial correctness. We will extend it for
concurrency and refinement verification in the future. Also we would like to link
the verified inline assembly with verified C code for whole system verification.
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Abstract. We formally verify an abstract machine for a call-by-value λ-
calculus with de Bruijn terms, simple substitution, and small-step seman-
tics. We follow a stepwise refinement approach starting with a naive stack
machine with substitution. We then refine to a machine with closures,
and finally to a machine with a heap providing structure sharing for
closures. We prove the correctness of the three refinement steps with
compositional small-step bottom-up simulations. There is an accompa-
nying Coq development verifying all results.

1 Introduction

The call-by-value λ-calculus is a minimal functional programming language that
can express recursive functions and inductive data types. Forster and Smolka [12]
employ the call-by-value λ-calculus as the basis for a constructive theory of
computation and formally verify elaborate programs such as step-indexed self-
interpreters. Dal Lago and Martini [8] show that Turing machines and the call-
by-value λ-calculus can simulate each other within a polynomial time overhead
(under a certain cost model). Landin’s SECD machine implements the call-by-
value λ-calculus with closures eliminating the need for substitution [14,18].

In this paper we consider the call-by-value λ-calculus L from [12]. L comes
with de Bruijn terms and simple substitution, and restricts β-reduction to terms
of the form (λs)(λt) that do not appear within abstractions. This is in con-
trast to Plotkin’s call-by-value λ-calculus [18], which employs terms with named
argument variables and substitution with renaming, and β-reduces terms of the
forms (λx.s)(λy.t) and (λx.s)y. L and Plotkin’s calculus agree for closed terms,
which suffice for functional computation.

The subject of this paper is the formal verification of an abstract machine
for L with closures and structure sharing. Our machine differs from the SECD
machine in that it operates on programs rather than terms, has two flat stacks
rather than one stack of frames, and provides structure sharing through a heap.
Our goal was to come up with a transparent machine design providing for an
elegant formal verification. We reach this goal with a stepwise refinement app-
roach starting with a naive stack machine with programs and substitution. We
then refine to a machine with closures, and finally to a machine with a heap. As
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S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 264–283, 2018.
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it comes to difficulty of verification, the refinement to the naive stack machine
is by far the most substantial.

We prove the correctness of the three refinement steps with compositional
small-step bottom-up simulations (i.e., L is above the machines and simulates
machine transitions). While L has only β-steps, our machines have β- and τ -
steps. L simulates a machine by following β-steps and ignoring τ -steps, and a
machine simulates a lower-level machine by following β-steps with β-steps and
τ -steps with τ -steps. To obtain bisimulations, we require progress conditions:
Reducibility must propagate downwards and machines must stop after finitely
many τ -steps.

The first verification step establishes the naive stack machine as a correct
implementation of L, the second verification step establishes the closure machine
as a correct implementation of the naive stack machine, and the third verifica-
tion step establishes the heap machine as a correct implementation of the closure
machine. The second and third verification step are relatively straightforward
since they establish strict simulations (no silent steps). Strict simulations suf-
fice since the programs of the naive stack machine already provide the right
granularity for the structure sharing heap machine.

The entire development is formalised with the Coq proof assistant [22]. Coq’s
type theory provides an ideal foundation for the various inductive constructions
needed for the specification and verification of the machines. All reasoning is
naturally constructive. In the paper we don’t show Coq code but use mathe-
matical notation and language throughout. While familiarity with constructive
type theory is helpful for reading the paper, technical knowledge of Coq is not
required. For the expert and the curious reader, the definitions and theorems
in the paper are hyperlinked with their formalisations in an HTML rendering
of the Coq development. The Coq formalisation is available at https://www.ps.
uni-saarland.de/extras/cbvlcm2/.

Related Work
We review work concerning the verification of abstract machines for call-by-

value λ-calculus.
Plotkin [18] presents the first formalisation and verification of Landin’s SECD

machine [14]. He considers terms and closures with named variables and proves
that his machine computes normal forms of closed terms using a step-indexed
evaluation semantics for terms and top-down arguments (from λ-calculus to
machine). He shows that failure of term evaluation for a given bound entails
failure of machine execution for this bound. Plotkin does not prove his sub-
stitution lemmas. Ramsdell [19] reports on a formalisation of a Plotkin-style
verification of an SECD machine optimising tail calls using the Boyer-Moore
theorem prover. Ramsdell employs de Bruijn terms and de Bruijn substitution.

Felleisen and Friedman [10] study Plotkin’s call-by-value λ-calculus extended
with control operators like J and call/cc. They prove correctness properties relat-
ing abstract machines, small-step reduction systems, and algebraic theories. Like
Plotkin, they use terms and closures with named variables.

Rittri [20] seems to be the first who verifies an abstract machine for a call-
by-value λ-calculus using a small-step bottom up simulation. Rittri’s work is

https://www.ps.uni-saarland.de/extras/cbvlcm2/
https://www.ps.uni-saarland.de/extras/cbvlcm2/
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also similar to ours in that he starts from a λ-calculus with simple substitution
reducing closed terms, and in that his machine uses a control and an argument
stack. Rittri gives detailed informal proofs using terms with named variables.
He does not consider a naive intermediate machine nor a heap realisation.

Hardin et al. [13] verify several abstract machines with respect to a fine-
grained λ-calculus with de Bruijn terms and explicit substitution primitives. Like
us, they simulate machine steps with reduction steps of the calculus and disallow
infinitely many consecutive silent steps. They consider the Krivine machine [7]
(call-by-name), the SECD machine [14,18] (call-by-value), Cardelli’s FAM [5]
(call-by-value), and the categorical abstract machine [6] (call-by-value).

Accattoli et al. [1] verify several abstract machines for the linear substitution
calculus with explicit substitution primitives. They simulate machine steps with
reduction steps of the calculus and model internal steps of the calculus with a
structural congruence. They employ a global environment acting as heap. Among
other machines, they verify a simplified variant of the ZINC machine [15].

Leroy [16,17] verifies the Modern SECD machine for call-by-value λ-calculus
specified with de Bruijn terms and an environment-based evaluation semantics
in Coq. The modern SECD machine has programs and a single stack. Leroy’s
semantic setup is such that neither substitution nor small-step reduction of terms
have to be considered. He uses top-down arguments and compiles terms into
machine states. Using coinductive divergence predicates, Leroy shows that the
machine diverges on states obtained from diverging terms. Leroy’s proofs are
pleasantly straightforward.

Danvy and Nielsen [9] introduce the refocusing technique, a general proce-
dure transforming small-step reduction systems defined with evaluation contexts
into abstract machines operating on the same syntax. Biernacka and Danvy [4]
extend refocusing and obtain environment-based abstract machines. This yields
a framework where the derived machines are provably correct with respect to
small-step bisimulation. Biernacka et al. [3] formalise a generalisation of the
framework in Coq.

Swierstra [21] formally verifies the correctness of a Krivine machine for simply
typed λ-calculus in the dependently typed programming language Agda. Also
following Biernacka and Danvy [4], Swierstra does this by showing the correct-
ness of a Krivine-style evaluator for an iterative and environment-based head
reduction evaluator. This way substitution does not appear. Swierstra’s depen-
dently typed constructions also provide normalisation proofs for simply typed
λ-calculus. Swierstra’s approach will not work for untyped λ-calculus.

Contribution of the Paper
We see the main contribution of the paper in the principled formal verification

of a heap machine for a call-by-value λ-calculus using a small-step bottom-up
simulation. A small-step bottom-up verification is semantically more informative
than the usual evaluation-based top-down verification in that it maps every
reachable machine state to a term of L. The entire Coq development consists
of 500 lines of proof plus 750 lines of specification. The decomposition of the
verification in three refinement steps provides for transparency and reusability.
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The use of the naive stack machine as an intermediate machine appears to be
new. We also think that our simple formalisation of structure sharing with code
and heap is of interest.

We envision a formal proof showing that Turing machines can simulate L with
polynomial overhead in time and constant overhead in space (under a suitable
cost model) [11]. The verifications in this paper are one step into this direction.

Plan of the Paper
After some preliminaries fixing basic notions in Coq’s type theory, we specify

the call-by-value λ-calculus L and present our abstract framework for machines
and refinements. We then introduce programs and program substitution and
prove a substitution lemma. Next we specify and verify the naive stack machine
for L. This is the most complex refinement step as it comes to proofs. Next we
specify the closure machine and verify that it is an implementation of the naive
stack machine and hence of L (by compositionality). Finally, we define abstrac-
tions for codes and heaps and verify that the heap machine is an implementation
of the closure machine and hence of L.

2 Preliminaries

Everything in this paper is carried out in Coq’s type theory and all reasoning
is constructive. We use the following inductive types: N providing the numbers
n :: = 0 | Sn, and O(X) providing the options ∅ and ◦x, and L(X) providing the
lists A :: = [] | x :: A.

For lists A,B : L(X) we use the functions length |A| : N, concatenation
A++B : L(X), map f@A : L(Y ) where f : X → Y , and lookup A[n] : O(X)
where (x :: A)[0] = ◦x, and (x :: A)[Sn] = A[n], and [][n] = ∅. When we define
functions that yield an option, we will omit equations that yield ∅ (e.g., the third
equation [][n] = ∅ defining lookup A[n] : O(X) will be omitted).

We write P for the universe of propositions and ⊥ for the proposition falsity.
A relation on X and Y is a predicate X → Y → P, and a relation on X is a
predicate X → X → P. A relation R is functional if y = y′ whenever Rxy and
Rxy′. A relation R on X and Y is computable if there is a function f : X → O(Y )
such that ∀x. (∃y. fx = ◦y ∧ Rxy) ∨ (fx = ∅ ∧ ¬∃y. Rxy).

We use a recursive membership predicate x ∈ A such that (x ∈ []) = ⊥ and
(x ∈ y :: A) = (x=y ∨ x ∈ A).

We define an inductive predicate terR x identifying the terminating points of
a relation R on X:

∀x′. Rxx′ → terR x′

terR x

If x is a terminating point of R, we say that R terminates on x or that
x terminates for R. We call a relation terminating if it terminates on every point.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#functional
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#computable
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#terminatesOn
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#terminatesOn
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#terminatesOn
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Let R be a relation on X. The span of R is the inductive relation �R on X
defined as follows:

¬∃y. Rxy

x �R x

Rxx′ x′ �R y

x �R y

If x �R y, we say that y is a normal form of x for R.

Fact 1. 1. If R is functional, then �R is functional.
2. If R is functional and x has a normal form for R, then R terminates on x.
3. If R is computable, then every terminating point of R has a normal form

for R.

A reduction system is a structure consisting of a type X and a relation R
on X. Given a reduction system A = (X,R), we shall write A for the type X
and 
A for the relation of A. We say that a reduces to b in A if a 
A b.

3 Call-by-Value Lambda Calculus L

The call-by-value λ-calculus we consider in this paper employs de Bruijn terms
with simple substitution and admits only abstractions as values.

We provide terms with an inductive type

s, t, u, v : Ter :: = n | st | λs (n : N)

and define a recursive function sk
u providing simple substitution:

kk
u := u (st)k

u := (sk
u)(tku)

nk
u := n if n �= k (λs)k

u := λ(sSk
u )

We define an inductive reduction relation s 
 t on terms:

(λs)(λt) 
 s0λt

s 
 s′

st 
 s′t
t 
 t′

(λs)t 
 (λs)t′

Fact 2. s 
 t is functional and computable.

We define an inductive bound predicate s < k for terms:

n < k

n < k

s < k t < k

st < k

s < Sk

λs < k

Informally, s < k holds if every free variable of s is smaller than k. A term is
closed if s < 0. A term is open if it is not closed.

For closed terms, reduction in L agrees with reduction in the λ-calculus.
For open terms, reduction in L is ill-behaved since L is defined with simple
substitution. For instance, we have (λλ1)(λ1)(λ0) 
 (λλ1)(λ0) 
 λλ0. Note

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#evaluates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#evaluates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#evaluates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#evaluates_fun
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#evaluates_fun
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#normalizes_terminates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#terminates_normalizes
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Prelims.html#ARS
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#term
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#subst
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#stepL
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#stepL_funct
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#boundL
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#closedL
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that the second 1 in the initial term is not bound and refers to the De Bruijn
index 0. Thus the first reduction step is capturing.

We define stuck terms inductively:

stuck n

stuck s

stuck (st)
stuck t

stuck ((λs)t)

Fact 3 (Trichotomy). For every term s, exactly one of the following holds:
(1) s is reducible. (2) s is an abstraction. (3) s is stuck.

4 Machines and Refinements

We model machines as reduction systems. Recall that L is also a reduction
system. We relate a machine M with L with a relation a � s we call refinement.
If a � s holds, we say that a (a state of M) refines s (a term of L). Correctness
means that L can simulate steps of M such that refinement between states and
terms is preserved. Concretely, if a refines s and a reduces to a′ in M, then either
a′ still refines s or s reduces to some s′ in L such that a′ refines s′. Steps where
the refined term stays unchanged are called silent.

The general idea is now as follows. Given a term s, we compile s into a
refining state a. We then run the machine on a. If the machine terminates with
a normal form b of a, we decompile b into a term t such that b refines t and
conclude that t is a normal form of s. We require that the machine terminates
for every state refining a term that has a normal form.

Definition 4. A machine is a structure consisting of a type A of states and two
relations 
τ and 
β on A. When convenient, we consider a machine A as a
reduction system with the relation 
A:= 
τ ∪ 
β.

The letter X ranges over reduction systems and A and B range over machines.

Definition 5. A refinement A to X is a relation � on A and X such that:

1. If a � x and x is reducible with 
X , then a is reducible with 
A.
2. If a � x and a 
τ a′, then a′ � x.
3. If a � x and a 
β a′, then there exists x′ such that a′ � x′ and x 
 x′.
4. If a � x, then a terminates for 
τ .

We say that a refines x if a � x.

Figure 1 illustrates refinements with a diagram. Transitions in X appear in
the upper line and transitions in A appear in the lower line. The dotted lines
represent the refinement relation. Note that conditions (2) and (3) of Defini-
tion 5 ensure that refinements are bottom up simulations (i.e., X can simu-
late A). Conditions (1) and (4) are progress conditions. They suffice to ensure
that refinements also act as top-down simulations (i.e. A can simulate X), given
mild assumptions that are fulfilled by L and all our machines.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#stuck
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.L.html#L_trichotomy
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#Machine
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#Machine
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#M_A
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#M_rel
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#M_rel
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#M_rel
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#Machine
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#refinement_ARS
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x � x′

a �τ · · · �τ a′′ �β a′

Fig. 1. Refinement diagram

Fact 6 (Correctness). Let � be a refinement A to X and a � x. Then:

1. If a �A a′, there exists x′ such that a′ � x′ and x �X x′.
2. If a �A a′, a′ � x′, and � is functional, then x �X x′.
3. If x terminates for 
X , then a terminates for 
A.
4. If x terminates for 
X and 
A is computable, then there exists a′ such that

a �A a′.

Proof. (1) follows by induction on a �A x. (2) follows with (1) and Fact 1. (3)
follows by induction on the termination of x for 
X and the termination of a
for 
τ . (4) follows by induction on the termination of x. ��

We remark that the concrete reduction systems we will consider in this paper
are all functional and computable. Moreover, all concrete refinements will be
functional and, except for the heap machine, also be computable.

A refinement may be seen as the combination of an invariant and a decompi-
lation function. We speak of an invariant since the fact that a state is a refinement
of a term is preserved by the reduction steps of the machine.

Under mild assumptions fulfilled in our setting, the inverse of a refinement is
a stuttering bisimulation [2]. The following fact asserts the necessary top-down
simulation.

Fact 7. Let � be a refinement A to X where 
X is functional and 
τ is com-
putable.

1. If a � x 
X x′, then there exist a′ and a′′ such that a �τ a′′ 
β a′ � x′.
2. If a � x �X x′, then there exists a′ such that a �A a′ � x′.

Proof. (1) follows with Fact 1. (2) follows by induction on x �X x′ using (1). ��
We will also refine machines with machines and rely on a composition theorem

that combines two refinements A to B and B to X to a refinement A to X. We
define refinement of machines with strict simulation.

Definition 8. A refinement A to B is a relation � on A and B such that:

1. If a � b and b is reducible with 
B, then a is reducible with 
A.
2. If a � b and a 
τ a′, then there exists b′ such that a′ � b′ and b 
τ b′.
3. If a � b and a 
β a′, then there exists b′ such that a′ � b′ and b 
β b′.

Fact 9 (Composition). Let �1 be a refinement A to B and �2 be a refine-
ment B to X. Then the composition λac. ∃b. a �1 b ∧ b �2 c is a refinement A
to X.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#upSim
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#upSim
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#rightValue
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#termination_propagates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#evaluation_propagates
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#one_downSim
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#one_downSim
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#downSim
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#refinement_M
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#refinement_M
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Refinements.html#composition
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5 Programs

The machines we will consider execute programs. Programs may be seen as lists
of commands to be executed one after the other. Every term can be compiled into
a program, and programs that are images of terms can be decompiled. There are
commands for variables, abstractions, and applications. We represent programs
with a tree-recursive inductive type so that the command for abstractions can
nest programs:

P,Q,R : Pro ::= ret | varn;P | lamQ;P | app;P (n : N)

We define a tail recursive compilation function γ : Ter → Pro → Pro trans-
lating terms into programs:

γnP := var n;P γ(λs)P := lam(γsret);P
γ(st)P := γs(γt(app;P ))

The second argument of γ may be understood as a continuation.
We also define a decompilation function δPA of type Pro → L(Ter) →

O(L(Ter)) translating programs into terms. The function executes the program
over a stack of terms. The optional result acknowledges the fact that not every
program represents a term. We write A and B for lists of terms. Here are the
equations defining the decompilation function:

δ retA := ◦A
δ(var n;P )A := δP (n :: A)

δ(lamQ;P )A := δP (λs :: A) if δ Q [] = ◦[s]
δ(app;P )A := δP (st :: A′) if A = t :: s :: A′

Decompilation inverts compilation:

Fact 10. δ(γsP )A = δP (s :: A).

Fact 11. Let δPA = ◦A′. Then δP (A++A′′) = ◦(A′ ++ A′′).

We define a predicate P � s := δP [] = ◦[s] read as P represents s.
The naive stack machine will use a substitution operation P k

R for programs:

ret k
R := ret (lamQ;P )k

R := lam(QSk
R );P k

R

(var k;P )k
R := lamR;P k

R (app;P )k
R := app;P k

R

(var n;P )k
R := var n;P k

R if n �= k

Note the second equation for the variable command that replaces a variable
command with a lambda command. The important thing to remember here is
the fact that the program R is inserted as the body of a lambda command.

For the verification of the naive stack machine we need a substitution lemma
relating term substitution with program substitution. The lemma we need
appears as Corollary 13 below. We prove the fact with a generalised version that
can be shown by induction on programs. We use the notation Ak

u := (λs.sk
u)@A.
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ret :: T, V �τ T, V

(lamQ;P ) :: T, V �τ P :: T, Q :: V

(app;P ) :: T, R :: Q :: V �β Q0
R :: P :: T, V

Fig. 2. Reduction rules of the naive stack machine

Lemma 12 (Substitution). Let R� t and δQA=◦B. Then δ Qk
R Ak

λt =
◦Bk

λt.

Corollary 13 (Substitution). If P � s and Q � t, then P k
Q � sk

λt.

We define a bound predicate P < k for programs that is analogous to the
bound predicate for terms and say that a program P is closed if P < 0:

ret < k

n < k P < k

varn;P < k

Q < Sk P < k

lamQ;P < k

P < k

app;P < k

Fact 14. If s < k and P < k, then γsP < k.

It follows that γsP is closed whenever s and P are closed.

6 Naive Stack Machine

The naive stack machine executes programs using two stacks of programs called
control stack and argument stack. The control stack holds the programs to be
executed, and the argument stack holds the programs computed so far. The
machine executes the first command of the first program on the control stack
until the control stack is empty or execution of a command fails.

The states of the naive stack machine are pairs

(T, V ) : L(Pro) × L(Pro)

consisting of two lists T and V representing the control stack and the argument
stack. We use the letters T and V since we think of the items on T as tasks
and the items on V as values. The reduction rules of the naive stack machine
appear in Fig. 2. The parentheses for states are omitted for readability. We will
refer to the rules as return rule, lambda rule, and application rule. The return
rule removes the trivial program from the control stack. The lambda rule pushes
a program representing an abstraction on the argument stack. Note that the
programs on the control stack are executed as they are. This is contrast to
the programs on the argument stack that represent bodies of abstractions. The
application rule takes two programs from the argument stack and pushes an
instantiated program obtained by β-reduction on the control stack. This way
control is passed from the calling program to the called program. There is no
reduction rule for the variable command since we will only consider states that
represent closed terms.
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Fact 15. The relations 
τ , 
β, and 
τ ∪ 
β are functional and computable.
Moreover, the relations 
τ and 
β are terminating.

We decompile machine states by executing the task stack on the
stack of terms obtained by decompiling the programs on the value
stack. To this purpose we define two decompilation functions. The
decompilation function δV for argument stacks has type L(Pro) → O(L(Ter))
and satisfies the equations

δ[] := ◦[]
δ(P :: V ) := ◦(λs :: A) if P � s and δV = ◦A

Note that the second equation turns the term s obtained from a program
on the argument stack into the abstraction λs. This accounts for the fact
that programs on the argument stack represent bodies of abstractions. The
decompilation function δTA for control stacks has type L(Pro) → L(Ter) →
O(L(Ter)) and satisfies the equations

δ[]A := ◦A
δ(P :: T )A := δTA′ if δPA = ◦A′

We now define the refinement relation between states of the naive stack
machine and terms as follows:

(T, V ) � s := ∃A. δV = ◦A ∧ δTA = ◦[s]

We will show that (T, V ) � s is in fact a refinement.

Fact 16. (T, V ) � s is functional and computable.

Fact 17 (τ-Simulation). If (T, V ) � s and T, V 
τ T ′, V ′, then (T ′, V ′) � s.

Proof. We prove the claim for the second τ -rule, the proof for the first τ -rule is
similar. Let lamQ;P :: T, V 
τ P :: T, Q :: V . We have

δ(lamQ;P :: T )(δV ) = δT (δ(lamQ;P )(δV ))
= δT (δP (λs :: δV )) Q � s

= δ(P :: T )(δ(Q :: V )) ��

Note that the equational part of the proof nests optional results to avoid
cluttering with side conditions and auxiliary names.

Proving that L can simulate β-steps of the naive stack machine takes effort.

Fact 18. If δV = ◦A, then every term in A is an abstraction.

Fact 19. δ(app;P :: T )(t :: s :: A) = δ(P :: T )(st :: A).

Fact 20. δ(P :: T )A = δT (s :: A) if P � s.
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Proof. Follows with Fact 11. ��
Lemma 21 (Substitution). δ(Q0

R :: T )A = δT (s0λt :: A) if Q � s and R � t.

Proof. By Corollary 13 we have Q0
R � s0λt. The claim follows with Fact 20. ��

We also need a special reduction relation A 
 A′ for term lists:

s 
 s′ ∀t ∈ A. t is an abstraction
s :: A 
 s′ :: A

A 
 A′

s :: A 
 s :: A′

Informally, A 
 A′ holds if A′ can be obtained from A by reducing the term in
A that is only followed by abstractions.

Lemma 22. Let A 
 A′ and δPA = ◦B. Then ∃B′. B 
 B′ ∧ δPA′ = ◦B′.

Proof. By induction on P . We consider the case P = app;P .
Let δ(app;P )(t :: s :: A) = ◦B and t :: s :: A 
 t′ :: s′ :: A′. Then

δP (st :: A) = ◦B and st :: A 
 s′t′ :: A′ (there are three cases: (1) t = t′,
s = s′, and A 
 A′; (2) t = t′, s > s′, A = A′, and A contains only abstrac-
tions; (3) t 
 t′, s :: A = s′ :: A′, and s :: A contains only abstractions). By the
inductive hypothesis we have B 
 B′ and δP (s′t′ :: A′) = ◦B′ for some B′. Thus
δ(app;P )(t′ :: s′ :: A′) = ◦B′. ��
Fact 23 (β-Simulation). If (T, V ) � s and T, V 
β T ′, V ′, then
∃s′. (T ′, V ′) � s′ ∧ s 
 s′.]

Proof. Let app;P :: T, R :: Q :: V 
β Q0
R :: P :: T, V . Moreover, let R � t,

Q � u, and δV = ◦A. We have:

◦[s] = δ(app;P :: T )(δ(R :: Q :: V ))
= δ(app;P :: T )(λt :: λu :: A)
= δ(P :: T )((λu)(λt) :: A) Fact 19


 δ(P :: T )(u0
λt :: A) Lemma 22 and Fact 18

= δ(Q0
R :: P :: T )A Lemma 21

= ◦[s′] for some s′

Note that s′ exists since 
 preserves the length of a list. We now have s 
 s′ by
the definition of 
 and (Q0

R :: P :: T, V ) � s′, which concludes the proof. ��
It remains to show that states are reducible if they refine reducible terms.

For this purpose, we define stuck term lists:

stuck s ∀t ∈ A. t is an abstraction
stuck (s :: A)

stuck A

stuck (s :: A)

Note that s is stuck iff [s] is stuck.
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Lemma 24. Let A be stuck and δPA = ◦B. Then B is stuck.

Lemma 25. Let A be stuck and δTA = ◦B. Then B is stuck.

Fact 26 (Trichotomy). Let T, V � s. Then exactly one of the following holds:

1. (T, V ) is reducible.
2. (T, V ) = ([], [P ]) and P � s′ with s = λs′ for some P, s′.
3. T = var x;P :: T ′ for some x, P, T ′ and s is stuck.

Proof. Let δV = ◦A and δTA = ◦[s], and s be reducible. By Fact 18 we know
that A contains only abstractions. Case analysis on T .

T = []. Then A = [s] and the second case holds by definition of δ.
T = ret :: T ′. Then (T, V ) is reducible.
T = varn;P :: T ′. We have

◦[s] = δ(var n;P :: T ′)A = δT ′(δ(var n;P )A) = δT ′(δP (n :: A))

Since n :: A is stuck, we know by Lemmas 24 and 25 that [s] is stuck. Thus the
third case holds.

T = lamQ;P :: T ′. Then (T, V ) is reducible.
T = app;P :: T ′. Then ◦[s] = δ(app;P :: T ′)A = δT ′(δ(app;P )A) and hence

A = t :: s :: A′. Thus V = R :: Q :: V ′. Thus (T, V ) is reducible. ��
Corollary 27 (Progress). If T, V � s and s is reducible, then (T, V ) is
reducible.

Proof. Follows from Fact 26 using Fact 3. ��
Theorem 28 (Naive Stack Machine to L). The relation

(T, V ) � s := ∃A. δV = ◦A ∧ δTA = ◦[s]

is a functional and computable refinement. Moreover, ([γ s ret], []) � s holds for
every term s.

Proof. The first claim follows with Facts 16, 27, 17, 23, and 15. The second claim
follows with Fact 10. ��

7 Closures

A closure is a pair consisting of a program and an environment. An environment
is a list of closures representing a delayed substitution. With closures we can
refine the naive stack machine so that no substitution operation is needed.

e : Clo ::= P/E closure
E,F, T, V : L(Clo) environment
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(ret/E) :: T, V �τ T, V

(varn;P/E) :: T, V �τ (P/E) :: T, e :: V if E[n] = ◦e

(lamQ;P/E) :: T, V �τ (P/E) :: T, (Q/E) :: V

(app;P/E) :: T, e :: (Q/F ) :: V �β (Q/e :: F ) :: (P/E) :: T, V

Fig. 3. Reduction rules of the closure machine

For the decompilation of closures into plain programs we define a
parallel substitution operation P k

W for programs (W ranges over lists of pro-
grams):

ret k
W := ret

(app;P )k
W := app;P k

W

(lamQ;P )k
W := lam(QSk

W );P k
W

(var n;P )k
W := if n ≥ k ∧ W [n − k] = ◦Q then lamQ;P k

W else varn;P k
W

We will use the notation W < 1 := ∀P ∈ W. P < 1.

Fact 29 (Parallel Substitution)

1. P k
[] = P .

2. If P < k and k ≤ k′, then P < k′.
3. If P < k, then P k

Q = P .
4. If W < 1, then P k

Q::W = (P Sk
W )k

Q.
5. If W < 1 and P < |W | + k, then P k

W < k.

Note that Fact 29 (4) relates parallel substitution to single substitution.
We define a function δ1e of type Clo → Pro translating closures into pro-

grams:

δ1(P/E) := P 1
δ@E

We also define an inductive bound predicate e < 1 for closures:

P < S|E| E < 1
P/E < 1

E < 1 := ∀e ∈ E. e < 1

Note the recursion through environments via the map function and via the
membership predicate in the last two definitions.

Fact 30. If e < 1, then δ1e < 1.
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8 Closure Machine

We now refine the naive stack machine by replacing all programs on the control
stack and the argument stack with closures, eliminating program substitution.

States of the closure machine are pairs

(T, V ) : L(Clo) × L(Clo)

consisting of a control stack T and an argument stack V .
The reduction rules of the closure machine appear in Fig. 3. The variable rule

(second τ -rule) is new. It applies if the environment provides a closure for the
variable. In this case the closure is pushed on the argument stack. We see this
as delayed substitution of the variable. The variable rule will be simulated with
the lambda rule of the naive stack machine.

The application rule (β-rule) takes two closures e and Q/F from the argu-
ment stack and pushes the closure Q/e :: F on the control stack, which rep-
resents the result of β-reducing the abstraction represented by Q/F with the
argument e.

We will show that the closure machine implements the naive stack machine
correctly provided there are no free variables.

There is the complication that the closures on the control stack must be
closed while the closures on the argument stack are allowed to have the free
variable 0 representing the argument to be supplied by the application rule.

We define closed states of the closure machine as follows:

P/E < 0 := P < |E| ∧ E < 1
T < 0 := ∀e ∈ T. e < 0

closed (T, V ) := T < 0 ∧ V < 1

We define a function δ0e of type Clo → Pro for decompiling closures on the
task stack:

δ0(P/E) := P 0
δ@E

We can now define the refinement relation between states of the closure
machine and states of the naive stack machine:

(T, V ) � σ := closed (T, V ) ∧ (δ0@T, δ1@V ) = σ

We show that (T, V ) � σ is a refinement.

Fact 31. (T, V ) � σ is functional and computable.

Fact 32 (Progress). Let (δ0@T, δ1@V ) be reducible. Then (T, V ) is reducible.

Fact 33. Let (T, V ) be closed and (T, V ) 
 (T ′, V ′). Then (T ′, V ′) is closed.
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Fact 34 (τ -Simulation). Let (T, V ) 
τ (T ′, V ′).
Then (δ0@T, δ1@V ) 
τ (δ0@T ′, δ1@V ′).

Fact 35 (β-Simulation). Let (T, V ) be closed and (T, V ) 
β (T ′, V ′).
Then (δ0@T, δ1@V ) 
β (δ0@T ′, δ1@V ′).

Proof Follows with Facts 29 (4) and 30. ��
Theorem 36 (Closure Machine to Naive Stack Machine). The relation

(T, V ) � σ := closed (T, V ) ∧ (δ0@T, δ1@V ) = σ

is a functional and computable refinement. Moreover, ([P/[]], []) � ([P ], []) holds
for every closed program P .

Proof. The first claim follows with Facts 31, 32, 33, 34, and 35. The second claim
follows with Fact 29 (1). ��

Note that Theorems 28 and 36 Facts 9 and 14 yield a refinement to L.

9 Codes

If a state is reachable from an initial state in the closure machine, all its programs
are subprograms of programs in the initial state. We can thus represent programs
as addresses of a fixed code, providing structure sharing for programs.

A code represents a program such that the commands and subprograms of
the program can be accessed through addresses. We represent codes abstractly
with a type Code, a type PA of program addresses, and two functions # and ϕ
as follows:

C : Code code
p, q, r : PA program address

# : PA → PA

Com := ret | var n | lam p | app command
ϕ : Code → PA → O(Com)

Note that commands are obtained with a nonrecursive inductive type Com. The
function # increments a program address, and the ϕ yields the command for a
valid program address. We will use the notation C[p] := ϕCp. We fix the seman-
tics of codes with a relation p �C P relating program addresses with programs:

C[p] = ◦ret
p �C ret

C[p] = ◦varn #p �C P

p �C var n;P

C[p] = ◦lam q q �C Q #p �C P

p �C lamQ;P
C[p] = ◦app #p �C P

p �C app;P
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Fact 37. The relation p �C P is functional.

We obtain one possible implementation of codes as follows:

PA := N ϕCn := lam (n + k) if C[n] = lam k

Code := L(Com) ϕCn := C[n] otherwise
#n := Sn

For this realisation of codes we define a function ψ : Pro → L(Com) compiling
programs into codes as follows:

ψ ret := [ret] ψ(lamQ;P ) := lam (S|ψP |) :: ψP ++ ψQ

ψ(var n;P ) := var n :: ψP ψ(app;P ) := app :: ψP

The linear representation of a program lamQ;P provided by ψ is as follows: First
comes a command lam k, then the commands for P , and finally the commands
for Q (i.e., the commands for the body Q come after the commands for the
continuation P ). The number k of the command lam k is chosen such that n+Sk
is the address of the first command for Q if n is the address of the command
lam k.

Fact 38. |C1| �C1 ++ψP ++C2 P . In particular, 0 �ψP P .

10 Heaps

A heap contains environments accessible through addresses. This opens the pos-
sibility to share the representation of environments.

We model heaps abstractly based on an assumed code structure. We start
with types for heaps and heap addresses and a function get accessing heap
addresses:

H : Heap heap
a, b, c : HA heap address

g : HC := PA × HA heap closure
HE := O(HC × HA) heap environment

get : Heap → HA → O(HE)

We will use the notation H[a] := getH a. We fix the semantics of heaps with an
inductive relation a �H E relating heap addresses with environments:

H[a] = ◦∅
a �H []

H[a] = ◦◦((p, b), c) p �C P b �H F c �H E

a �H (P/F ) :: E

Fact 39. The relation a �H E is functional.
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We also need an operation put : Heap → HC → HA → Heap×HA extending
a heap with an environment. Note that put yields the extended heap and the
address of the extending environment. We use the notation

H ⊆ H ′ := ∀a. H[a] �= ∅ → H[a] = H ′[a]

to say that H ′ is an extension of H. We fix the semantics of put with the following
requirement:

HR. If putH g a = (H ′, b), then H ′[b] = (g, a) and H ⊆ H ′.

Fact 40. If H ⊆ H ′ and a �H E, then a �H′ E.

We define a relation g �H e relating heap closures with proper closures:

(p, a) �H (P,E) := p �C P ∧ a �H E

Fact 41. If H ⊆ H ′ and g �H e, then g �H′ e.

We define a lookup function H[a, n] : O(HC) yielding the heap closure appear-
ing at position n of the heap environment designated by a in H:

H[a, 0] := ◦(p, b) if H[a] := ◦((p, b), c)
H[a,Sn] := H[c, n] if H[a] := ◦((p, b), c)

Fact 42. Let a �H E. Then:

1. If E[n] = ◦e, then H[a, n] = ◦g and g �H e for some g.
2. If H[a, n] = ◦g, then E[n] = ◦e and g �H e for some e.

Here is one possible implementation of heaps:

HA := N

Heap := L(HC × HA)
get H 0 := ◦∅

get H (Sn) := ◦◦(g, a) if H[n] = ◦(g, a)
put H g a := (H ++[(g, a)], S |H|)

Note that with this implementation the address 0 represents the empty environ-
ment in every heap.

Given that Coq admits only structurally recursive functions, writing a func-
tion computing a �H E is not straightforward. The problem goes away if we
switch to a step-indexed function computing a �H E.

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#HR1
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#representsEnv_extend
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#representsClos
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#representsClos
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#representsClos_extend
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#lookup
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#lookup_unlinedEnv
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#nth_error_unlinedEnv
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.Heaps.html#lookup_unlinedEnv


Formal Small-Step Verification of a Call-by-Value Lambda Calculus Machine 281

(p, a) :: T, V, H �τ T, V, H if C[p] = ◦ret

(p, a) :: T, V, H �τ (#p, a) :: T, g :: V, H if C[p] = ◦varn

and H[a, n] = ◦g

(p, a) :: T, V, H �τ (#p, a) :: T, (q, a) :: V, H if C[p] = ◦lam q

(p, a) :: T, g :: (q, b) :: V, H �β (q, c) :: (#p, a) :: T, V, H ′ if C[p] = ◦app

and putH g b = ◦(H ′, c)

Fig. 4. Reduction rules of the heap machine

11 Heap Machine

The heap machine refines the closure machine by representing programs as
addresses into a fixed code and environments as addresses into heaps that reside
as additional component in the states of the heap machine.

We assume a code structure providing types Code and PA, a code C : Code,
and a heap structure providing types Heap and HA. States of the heap machine
are triples

(T, V,H) : L(HC) × L(HC) × Heap

consisting of a control stack, an argument stack, and a heap. The
reduction rules of the heap machine appear in Fig. 4. They refine the reduction
rules of the closure machine as one would expect.

Note that the application rule is the only rule that allocates new environments
on the heap. This is at first surprising since with practical machines (e.g., FAM
and ZINC) heap allocation takes place when lambda commands are executed.
The naive allocation policy of our heap machine is a consequence of the naive
realisation of the lambda command in the closure machine, which is common
in formalisations of the SECD machine. Given our refinement approach, smart
closure allocation would be prepared at the level of the naive stack machine with
programs that have explicit commands for accessing and constructing closure
environments.

Proving correctness of the heap machine is straightforward:

Theorem 43 (Heap Machine to Closure Machine). Let a code structure,
a code C, and a heap structure be fixed. Let T �H Ṫ and V �H V̇ denote the
pointwise extension of g �H E to lists. Then the relation

(T, V,H) � (Ṫ , V̇ ) := T �H Ṫ ∧ V �H V̇

is a functional refinement. Moreover, ([(p, a)], [],H) � ([P/[]], []) for all p, a, H,
and P such that p �C P and a �H [].

Proof. Follows with Facts 37, 39, 40, 41, and 42. Straightforward. ��

https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_heap.html#state
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_heap.html#stepH
https://www.ps.uni-saarland.de/extras/cbvlcm2/doc/LM.M_heap.html#heap_clos_refinement
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Using the refinement from the closure machine to L, Theorem 43 and Fact 9
we obtain a refinement from the Heap Machine to L.

If we instantiate the heap machine with the realisation of codes from Sect. 9
and the realisation of heaps from Sect. 10 we obtain a function compiling closed
terms into initial states. Moreover, given a function computing a �H E, we can
obtain a decompiler for the states of the heap machine.

12 Final Remarks

The tail call optimisation can be realised in our machines and accommodated in
our verifications. For this subprograms app; ret are executed such that no trivial
continuation (i.e., program ret) is pushed on the control stack.

The control stack may be merged with the argument stack. If this is done
with explicit frames as in the SECD machine, adapting our verification should
be straightforward. There is also the possibility to leave frames implicit as in the
modern SECD machine. This will require different decompilation functions and
concomitant changes in the verification.

We could also switch to a λ-calculus with full substitution. This complicates
the definition of substitution and the basic substitution lemmas but has the
pleasant consequence that we can drop the closedness constraints coming with
the correctness theorems for the closure and heap machines. The insight here is
that a closure machine implements full substitution. With full substitution we
may reduce β-redexes where the argument is a variable and show a substitutivity
property for small-step reduction.
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Abstract. Ensuring software correctness and safety for communication-
centric programs is important but challenging. In this paper we introduce
a solution for writing communication protocols, for checking protocol
conformance and for verifying implementation safety. This work draws
on ideas from both multiparty session types, which provide a concise
way to express communication protocols, as well as from separation-
style logics for shared-memory concurrency, which provide strong safety
guarantees for resource sharing. On the one hand, our proposal improves
the expressiveness and precision of session types, without sacrificing their
conciseness. On the other hand, it increases the applicability of software
verification as well as its precision, by making it protocol aware. We also
show how to perform the verification of such programs in a modular and
automatic fashion.

1 Introduction

Asynchronous distributed systems are ubiquitous in digital applications, yet
achieving their safe design and implementation is notoriously hard. The diffi-
culties in building such systems are many-fold. First, these systems are normally
described in the designing phase using communication protocols. The problem
at this phase is that, because of the lack of formal, yet easy-to-use specification
languages for communication protocols, designers prefer to draft the communica-
tion using RFC documents. But these drafts lack mathematical rigorosity, and,
therefore, lead to ambiguous interpretations of the communication. Secondly, a
developer often validates a system’s correct implementation via testing. However,
in the case of distributed systems, where reproductibility of execution is chal-
lenging, testing is rarely exhaustive. This kind of behavior commonly harbors
difficult-to-detect bugs. Thirdly, the safe coordination of independent entities
interacting with each other is problematic: on the one hand, the developer must

c© Springer Nature Switzerland AG 2018
S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 284–305, 2018.
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ensure exclusive access to shared resources in the case of tightly coupled enti-
ties, and, on the other hand, it must offer safe communication guarantees for
the loosely coupled ones. Lastly, it is often the case that the code refactoring of
one of the communicating entities requires the re-validation of the entire system.
Since validation might be expensive, or difficult to achieve if the source code of
certain components is not available, it is desirable for the developer to be able
to only validate her changes locally, rather than at the global level.

Over the last decades, behavioral types [26,35] have been studied as spec-
ifications of the interactions in communicating systems. In particular, multi-
party session types [23], or MPSTs, provide a user-friendly syntax for writing
choreographic specifications of distributed systems, and a lightweight mechanism
for enforcing communication safety. Communication is considered correct when
the system’s constituent processes are statically type-checked against the end-
point projections of the MPST. This formalism and its numerous extensions are
attractive in checking if the implementation follows the intended communica-
tion pattern, but it lacks the strong safety and correctness guarantees normally
provided by the resource-aware verification systems. Specifically, the MPST app-
roach checks if a transmission’s exchanged type is the expected one. However,
in their most common form, MPSTs are unable to assert something about the
message’s numerical properties, and even less so about its carried resources in
the case of tightly coupled systems. All these, while numerical properties and
resource sharing constitute the pièce de résistance for separation logic [38], a
logic for reasoning about resource sharing. In this work, we attach a communi-
cation logic in the user-friendly style of MPST, to a separation logic for program
verification. Even though we draw on ideas from MPST, the proposed logic
differs from MPST in a number of features which yield a more expressive com-
munication specification - without compromising its friendly syntax. The current
proposal ultimately leads to stronger guarantees w.r.t. the safety and correctness
of distributed system. We shall next highlight these differences.

Writing Multiparty Communication Protocols. The language we propose
for writing communication protocols is described in Fig. 1a. Similar to MPST, the
language contains the terminal notation S−→R : c〈v·Δ〉 to describe a transmission
from sender S to receiver R, over channel c. Different from type approaches where
a message abstracts a type, the exchanged message v is expressed in the logical
form Δ (defined in Fig. 1b). Do note that v·Δ is in fact a shorthand for the
lambda function (λv .Δ). This language uses G1 ∗ G2 for the concurrency of global
protocols G1 and G2, and G1 ∨ G2 for disjunctive choice between either G1 or G2,
and finally G1 ; G2 on the implicit sequentialization of G1 before G2 for either the
same party or the same channel. Let us next consider a series of examples to
introduce this language and to highlight the benefits over MPST.

Example 1: We consider a cloud service for video editing, where a client sends
to the cloud a file of some video format, and expects back an enhanced version
of the original file, see Fig. 2a. A client-server protocol to describe this simple
interaction is written as follows:
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Fig. 1. Mercurius

Cloud ServiceClient

file

ENH(file)

(a)

Server

Helper1

Helper2

file

ENH(file)

video

ENHv(video)

audio

ENHa(audio)

(b)

Fig. 2. A multimedia cloud service: A client requests the server for a video file enhance-
ment (a). The server engages two helpers to process the desired enhancement (b)

CSa � C−→S : c〈v·v : file〉 ; S−→C : c〈v·v : file〉.

The CSa lightweight protocol suffices to describe the order of communication
and the exchanged message type. A rigorous specification though, also empha-
sizes that the server applies some filter on the original file:

CSb � ∃fd : file · (C−→S : c〈fd〉 ; S−→C : c〈ENH(fd)〉).

where C−→S : c〈fd〉 is a prettyprint for C−→S : c〈v·v : file ∧ v=fd〉, and ENH(fd)
is a logical predicate describing the enhanced file, e.g. such as applying a bright-
ness, or a slow motion filter. For the simplicity of this explanation we do not
define ENH, keeping it abstract, however a user can always attach a definition
to ENH to reflect the changes over the file referenced by fd. To note that this
protocol not only highlights that the server returns an enhanced file, but that
it actually returns the enhancement of the original file since both transmissions
reference the same file via fd.



Automated Modular Verification for Relaxed Communication Protocols 287

Moreover, the protocol could also be instrumented to capture the server’s
enhancement action:

CSc � ∃fd : file · (C−→S : c〈fd〉 ; FILTER ; S−→C : c〈ENH(fd)〉).
If the server were to delegate its task to some helper processes - Fig. 2b, where,
for example, one processes the video and one handles the audio component of
the original media file, the enhancement protocol could be defined as follows:

FILTER � ∃H1, H2, c1, c2 · (S−→H1 : c1〈fd.vid〉 ; H1−→S : c1〈ENHv(fd.vid)〉) ∗
FILTER � ∃H1, H2, c1, c2 · (S−→H2 : c2〈fd.aud〉 ; H2−→S : c2〈ENHa(fd.aud)〉).

where ENHv and ENHa describe some video and audio effects, respectively.
The ∗ operator which denotes concurrent interactions, intentionally resem-
bles the separating conjunction of separation logic to express a clear sepa-
ration of communication. In this context, all of the following four possible
C-like implementations of the server faithfully follow the FILTER protocol:

(i)
send(c1,fd.vid);

send(c2,fd.aud);

fd.vid = receive(c1);

fd.aud = receive(c2);

(ii)
send(c1,fd.vid);

fd.vid = receive(c1);

send(c2,fd.aud);

fd.aud = receive(c2);

(iii)
(send(c1 ,fd.vid); fd.vid = receive(c1);)

||

(send(c2 ,fd.aud); fd.aud = receive(c2);)

(iv)
(send(c1,fd.vid); send(c2,fd.aud);)

||

(fd.vid = receive(c1); fd.aud = receive(c2);)

and the combinations could continue with the sequential permutations between
sends or receives in (i) and (iv), or the parallelization of selected pairs of inter-
actions in (i) and (ii) as long as the sending on a certain channel precedes the
local receive on the same channel. To the best of our knowledge, the current
state of the art in formalizing communication protocols does not allow such per-
missive protocols, where the relaxed order of transmissions is explicitly captured
by the communication protocol. We stress on the fact that the relaxed order of
transmissions is not restricted to just inter-party parallel composition specific
to MPST, but also comprises the intra-party parallel composition as exempli-
fied above. There is an attempt to tackle the arbitrary order of transmissions
in MPST [10], but instead of writing a relaxed protocol, the authors engage
a swap relation to check whether the interleaving of transmissions should be
allowed at the implementation level. The approach of [10] only checks against
cases (i) and (ii) though, and fail to recognize (iii) and (iv) as correct imple-
mentations of the server described by the FILTER protocol. Any other MPST
extension would require four different global types to capture the four different
kinds of implementation exemplified earlier.
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Another subtle point of this example is the careful usage of the resources,
the file in this case. The file pointed by fd is split into its two components,
fd.vid and fd.aud, respectively, and exclusively shared between helpers H1 and
H2. The server gains back the ownership of the two components only after the two
helpers have finished their job and return the resources back to the server. Any
attempt to access a resource before the helper returns its ownership to the server
is regarded as unsafe in our approach. To the best of our knowledge, this is the
first such approach where the safe resource usage is captured in a lightweight,
yet expressive multiparty protocol even in the case of hybrid communication,
with both loosely (C and S) and tightly (S, H1 and H2) coupled communicating
entities. Better yet, the communication protocol does not need to distinguish
between the loosely and the tightly coupled scenarios, consigning the choice of
the coupling degree to the developer.

Example 2: In the cloud service examples we described the interaction between
exactly one client and a cloud server. Clearly this is too restrictive, since a server
should be allowed to serve multiple clients. To support a dynamic number of
participants, we describe the protocol using recursive parameterized protocols:

CLOUD(S, c) � ∃C, c′ · C−→S : c〈c′〉 ; (CSd(C, S, c′) ∗ CLOUD(S, c)).
CSd(C, S, c) � ∃fd : file · (C−→S : c〈fd〉 ; FILTER ; S−→C : c〈ENH(fd)〉).

where the client-server CSd protocol is similar to CSc, except that it is now
parameterized with the communicating entities and corresponding channel. The
client first sends the server a private channel c′, which is then used for the
communication within the CSd protocol. The ∗ between CSd and the recursive
instance of CLOUD servers two purposes. On the one hand, it denotes exclusive
resource usage between the two protocols. On the other hand, it permits a relaxed
implementation of the cloud application, where the server could either (1) serve
one client at a time, or it could (2) serve multiple clients concurrently spawning
a new process once it receives the private channel of some client.

Contributions and Outline. The contributions of this paper are as follows:

– An expressive session logic called Mercurius, that is both precise (supports
logical message) and concise (in the style of session types) for modelling multi-
party protocols. Through its support for relaxed protocols, Mercurius offers
wider communication design choices than the current state of the art.

– A deductive verification system which embeds Mercurius for automatically
checking protocol conformance and safe implementation. This system copes
with both distributed as well as tightly coupled systems.

– A projection mechanism for each communicating party such that each party
follows its local specification. This enables modular verification, where each
party is verified independently from the other communication participants.

– A projection mechanism for each communication channel w.r.t. a party. The
verifier is instructed to manipulate channel specifications, exploiting thus the
possibility to delegate the communication to third parties in a natural way,
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without breaking locality and without the need of additional communication
primitives, except for the usual send/receive, open/close.

After formalizing the global protocol in Sect. 2, we describe the projection
rules in Sect. 3, and then embed the logic into a verification system in Sect. 4.

2 Global Protocols

We now formalize Mercurius, whose syntax is depicted in Fig. 1a. We first
describe the communication model, and then list down the elements of the pro-
tocol and discuss their properties.

Communication Model. To support a wide range of communication inter-
faces, the current session logic is designed for a permissive communication model,
where:

– The transfer of a message dissolves asynchronously, that is to say that sending
is non-blocking while receiving is blocking.

– The communication interface of choice manipulates linear FIFO channels in
the style of [3] (i.e. a message is delivered without interference from other
participants: the receiver is able to determine who the sender is without any
ambiguity).

– For simplicity, the communication assumes unbounded buffers.

Transmission. As described in Sect. 1, a transmission S−→R : c〈v · Δ〉 involves
a sender S and a receiver R transmitting a message v expressed in logical
form Δ over a buffered channel c. To access the components of a trans-
mission we define the following auxiliary functions: send(S−→R : c〈v · Δ〉) def= S,
recv(S−→R : c〈v · Δ〉) def= R, chan(S−→R : c〈v · Δ〉) def= c and msg(S−→R : c〈v · Δ〉) def=
v · Δ. We shall often quantify over the existing transmissions using the literal
i. Transmissions are irreflexive, send(i) 	= recv(i). We define a function TR(G)
which decomposes a given protocol G to collect a set of all its constituent trans-
missions, and a function TRfst(G) to return the set of all possible first transmis-
sions.

Two messages are said to be disjoint, denoted by v1 · Δ1#v2 · Δ2, if
UNSAT(Δ1 ∧ [v1/v2]Δ2). We next abuse the set membership symbol, ∈, to denote
the followings (and, correspondingly, /∈ to denote their negation):

(∈transm.) i ∈ G ⇔ i ∈ TR(G)
(∈channel) c ∈ i ⇔ chan(i) = c

( channel) c G i G c i

(∈party) P ∈ i ⇔ send(i) = P or recv(i) = P

(∈party) P ∈ G ⇔ ∃i ∈ G · P ∈ i

The parallel composition of global protocols forms a commutative monoid
(G, ∗, emp) with emp as identity element, while disjunction and sequence form
semigroups, (G,∨) and (G, ; ), with the former also satisfying commutativity.
emp acts as the left identity element for sequential composition:
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(G1 ; G2) ; G3 ≡ G1 ; (G2 ; G3)
(G1 ∗ G2) ∗ G3 ≡ G1 ∗ (G2 ∗ G3)

(G1 G2) G3 G1 (G2 G3)

G1 ∗ G2 ≡ G2 ∗ G1
G1 ∨ G2 ≡ G2 ∨ G1

G ∗ emp ≡ G

emp ; G ≡ G

Sequential composition is not commutative, unless it satisfies certain disjointness
properties:

G1 ; G2 ≡ G2 ; G1 when ∀c1∈G1, c2∈G2 ⇒ c1 	=c2 and ∀P1∈G1, P2∈G2 ⇒ P1 	=P2.

The equivalence of protocols could be reduced to that of graph isomorphism,
by interpreting the protocol as a graph whose vertexes are actions (message
sending or receiving), and whose directed edges are transmissions from a sending
to a receiving action. For lack of space and since these proofs are not of interest
for the current work, we treat the above equivalences as axioms.

2.1 Well-Formedness

Concurrency. The ∗ operator offers support for arbitrary-ordered (concurrent)
transmissions, where the order of their completion is not important for the final
outcome.

Definition 1 (Well-Formed Concurrency). A protocol specification, G1 ∗ G2,
is said to be well-formed w.r.t. ∗ if and only if ∀c∈G1 ⇒ c/∈G2, and vice versa.

This restriction avoids non-determinism of concurrent communications over the
same channel.

Choice. The ∨ operator is essential for the expressiveness of Mercurius, but its
usage must be carefully controlled:

Definition 2 (Well-Formed Choice). A disjunctive protocol specification,
G1 ∨ G2, is said to be well-formed with respect to ∨ if and only if all of the
following conditions hold, where T1 and T2 account for all first transmissions of
G1 and G2, respectively, namely T1=TRfst(G1) and T2=TRfst(G2):

(a) (same first channel) ∀i1, i2 ∈ T1 ∪ T2 ⇒ chan(i1) = chan(i2);
(b) (same first sender) ∀i1, i2 ∈ T1 ∪ T2 ⇒ send(i1) = send(i2);
(c) (same first receiver) ∀i1, i2 ∈ T1 ∪ T2 ⇒ recv(i1) = recv(i2);
(d) (mutually exclusive “first” messages).

∀i1, i2 ∈ T1 ∪ T2 ⇒ msg(i1)#msg(i2) ∨ i1=i2;

(e) (same pattern) Except for the parties in T1 and T2, the rest of the participants
must have a uniform local view of the communications across all disjuncts
(to avoid informing all the participants of the choice being made).

(f) (recursive well-formedness) G1 and G2 are well-formed with respect to ∨.
Definition 3 (Well-Formed Protocol). A protocol G is said to be well-
formed, if and only if G contains only well-formed concurrent transmissions,
and well-formed choices.

To ensure the correctness of our approach, Mercurius disregards as unsound
any usage of ∗ or ∨ which is not well-formed.
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3 Local Projection

Based on the communication interface, but also on the verifier’s requirements,
the projection of the global protocol to local specifications goes through a couple
of automatic projection phases before being used by the verification process. This
way, the projections of phase one (we call them per-party projections) describe
how each party is contributing to the communication. More granularly, the pro-
jections in the second phase (called per-channel projections) describe how each
communication channel is used by their respective communicating parties.

Projection Overview and Protocol Refinement

Example 3: Consider the following protocol between some parties C1, C2 and P,
communicating via channels c1 and c2:

G � C1−→P : c1〈v·Δ1〉; C2−→P : c2〈v·Δ2〉; C2−→P : c2〈v·Δ3〉; C1−→P : c1〈v·Δ4〉.
We visually represent the protocol G using sequence diagrams, as per Fig. 3,

where the arrows show the direction of transmission, and its labels show the
engaged channel and/or the transmitted message. The per-party projection
(middle diagram) only highlights the view of party P, and the per-channel projec-
tion (rightmost diagram) highlights the views of channels c1 and c2, respectively,
w.r.t. party P (ignoring the dashed arrows for now).

C1 P C2

c1(Δ1)

P

c1(Δ4)

c2(Δ2)

c2(Δ3)

c1(Δ1)

c1(Δ4)

c2(Δ2)

c2(Δ3)

Δ1

Δ4

Δ2

Δ3

+ ξ(1) - ξ(1)

+ ξ(3)- ξ(3)

c1 c2

Per-party 
projection

Per-channel 
projection

Fig. 3. A visual representation of protocol G (left sequenced diagram) projected onto
party P (middle diagram), and then projected over channel c1 and c2, respectively
(right diagram).

The specification of channel c1 features only the transmissions over this
channel, loosing thus the information that Δ1 should be transmitted before
Δ2. Similarly for channel c2, Δ3 should be transmitted before Δ4. To support
such fine granularity, namely the per-channel specification, without breaking the
sequence of transmissions when a party is engaging multiple channels, we pro-
pose the usage of a fencing mechanism. The fencing mechanism enforces a party
to respect the correct order of transmissions across multiple channels (fences are
represented by dashed arrows in the rightmost diagram of Fig. 3).

A fence is introduced w.r.t. a set of parties and a channel, say {C1, P} and
c1 for the first transmission of G, and must be proved to hold, locally, before P
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can engage channel c2 and before C1 can engage any other channel . Generally,
a fence is denoted by ξ({P∗}, c, n), and is uniquely identified by the id n. We
employ a refinement mechanism which introduces fences after each transmission
of a global protocol, and assume from now on that each global protocol is refined.
The details of this refinement are trivial, and therefore omitted. For the ongoing
example, protocol G is refined to:

C1−→P : c1〈v·Δ1〉; ξ({C1, P}, c1, 1); C2−→P : c2〈v·Δ2〉; ξ({C2, P}, c2, 2);

C2−→P : c2〈v·Δ3〉; ξ({C2, P}, c2, 3); C1−→P : c1〈v·Δ4〉; ξ({C1, P}, c1, 4).

Projection Language. Figure 4 describes the two kinds of specification men-
tioned above. The per party specification language is depicted in Fig. 4a. Here,
each send and receive specification refers to the communication instrument c
along with a message v described by a formula Δ. The congruence of all the
compound terms described in Sect. 2 holds for the projected languages as well,
with the exception of sequential commutativity since the disjointness conditions
for the latter do not hold (e.g. either the peer or the channel are implicitly the
same for the entire projected specification). To note that, for brevity of this
presentation, we denote the fences in the endpoint specification by the shorter
notation ξ(n) since the party and the channel are implicit. Moreover, to note the
notation for fence assumption, ⊕ ξ(n), and that for fence guard, � ξ(n), where the
former is assumed to hold, and the latter needs to be proved to hold.

Local protocol
Send/Receive/Transmission
HO variable
Concurrency
Choice
Sequence
Exists
Fence
Inaction

Υ ::=
c!v · Δ | c?v · Δ

| V
| Υ∗Υ

| Υ∨Υ

| Υ;Υ
| ∃c∗, v∗ · Υ

| ξ({P}, c, n)
| emp

(a) Per party

L ::=
!v · Δ | ?v · Δ

| V

| L∨L
| L;L
| ∃v∗ · L
| ⊕ ξ(n) | 	 ξ(n)

| emp
(b) Per channel

Fig. 4. Mercurius: the projection language

Automatic Projection. Using different projection granularities should not
permit event re-orderings (modulo ∗ composed events).

Proposition 1 (Projection Fidelity). The projection to a decomposed spec-
ification, such as global protocol to per party, or per party to per channel, does
not alter the communication pattern specified before the projection.
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Fig. 5. Projection rules

To support the above proposition, we have designed a set of structural projec-
tion rules, described in Fig. 5. The rules Fig. 5a, describing per party projection
rules, are standard, with the exception of disjunction and fences. As opposed to
MPST, which projects the choice constructs to branching and selection, respec-
tively, Mercurius maintains the disjunction through all the projection phases.
It is able to do that since it relies on the verification system to reason about the
underlying conditional constructs, verifying them against the disjunctive specifi-
cation: sending expects a disjunctive abstract state, while receiving is creating a
disjunctive abstract state. As expected, the per channel projection rules, Fig. 5b,
strips the channel information from the per party specifications, since it will be
implicitly available.

The projection of fences is a bit more subtle, and it obeys the following rules
for per party and per channel projection, respectively:

(ξ({P∗}, c, n))�P :=
{

ξ({P}, c, n) if P ∈ {P∗}
emp otherwise

(ξ({P}, c0, n))�c :=
{⊕ ξ(n) if c=c0

� ξ(n) if c	=c0

Inserting a fence guard � ξ(n) between adjacent transmissions on different chan-
nels on the same party ensures that the order of transmissions is accurately
inherited from the corresponding per party specification across different chan-
nels. Fences are assumed to hold ⊕ ξ(n), after consuming the transmission which
introduced this fence.

Example 4: To emphasize the behavior of fences we consider the following
sequence of receiving events captured by a per party specification, say (G)�P:

(G)�P : c1?v · Δ1 ; ξ({P}, c1, 1) ; c2?v · Δ2 ; ξ({P}, c2, 2) ; c2?v · Δ3 ; ξ({P}, c2, 3) ; c1?v · Δ4

(G)�P,c1 : ?v · Δ1 ; ⊕ ξ(1) ; emp ; � ξ(2) ; emp ; � ξ(3) ; ?v · Δ4

(G)�P,c2 : emp ; � ξ(1) ; ?v · Δ2 ; ⊕ ξ(2) ; ?v · Δ3 ; ⊕ ξ(3) ; emp
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The above local specification snapshot highlights how local fidelity is secured:
the events marked with red boxes are guarded by their immediately preceding
events, since they are handled by different channels. A subsequent refinement
removes redundant guards, grayed in the example above, since adjacent same
channel events need to guard only the last event on the considered channel.

Given the congruence of global protocols and local specifications, the pro-
jection is an isomorphism (closed under all operators). Specifically, given
two protocols G1 and G2, with P1..Pn∈G1 such that ∀P∈G1 ⇒ P∈{P1..Pn}, and
∀P∈G2 ⇒ P∈{P1..Pn}, and ∀P∈{P1..Pn} ⇒ P∈G2, and with c1..cm∈G1 such that
∀c∈G1 ⇒ c∈{c1..cm}, and ∀c∈G2 ⇒ c∈{c1..cm}, and ∀c∈{c1..cm} ⇒ c∈G2 the fol-
lowing isomorphism holds:

G1≡G2⇔{(G1)�Pj}j=1..n≡{(G2)�Pj}j=1..n

G1≡G2⇔{(G1)�Pj,ck}j=1..n,k=1..m≡{(G2)�Pj,ck}j=1..n,k=1..m

4 Verification of C-Like Programs

The user provides the global protocol which is then automatically refined accord-
ing to the methodology described in Sect. 3. The refined protocol is then auto-
matically projected onto a per party specification, followed by a per channel
endpoint basis. Using such a modular approach where we provide a specification
for each channel endpoint adds natural support for delegation, where a channel
(as well as its specification) could be delegated to a third party in the style of
binary session logic [14]. These communication specifications are made available
in the program abstract state using a combination of ghost assertions and release
lemmas (detailed in the subsequent). The verification could then automatically
check whether a certain implementation follows the global protocol, after it had
first bounded the program elements (processes and channel endpoints) to the
logical ones (parties and channels).

Language. Figure 6 depicts the syntax of a core language with support for com-
munication primitives, where a program contains data and method definitions.
Each method is decorated with a set of pre-/postconditions meant to guide the
verification process. All of the program constructs are standard, with the excep-
tion of open() with (c, P∗), which binds a logical channel c and parties P∗ to the
channel reference returned by open().

Concurrent Separation Logics. Due to its expressive power and elegant
proofs, we choose to integrate our session logic on top of concurrent separa-
tion logic. Separation logic is an attractive extension of Hoare logic in which
assertions are interpreted w.r.t. some relevant portion of the heap. Spatial con-
junction, the core operator of separation logic, P ∗ Q divides the heap between
two disjoint heaps described by assertions PandQ, respectively. The main benefit
of this approach is the local reasoning: the specifications of a program code need
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Program P ::= datat∗ meth∗

Data Struct. datat ::= struct d { (t f)∗ }
Method Definitions meth ::= t mn ((t v)∗) requires Φ, ensures Φ {e}
Types t ::= d | τ τ ::= int | bool | float | void
Expressions e ::= NULL | kτ | v | new d(v∗) | t v; e | v.f | mn(v∗) | skip

| v:=e | v.f :=e | e; e | e‖e | if (b) e else e | return e
| open() with (c, P∗) | close(v) | receive(v) | send(v, e)

Boolean Expressions b ::= e==e | !(b) | b&b | b|b
where kτ is a type τ constant, v is a program variable, f denotes a field

Fig. 6. A core imperative language

only mention the portion of the resources which it uses, the rest are assumed
unchanged. The details of the model and the semantics of the state assertions
can be found in [12].

Verification. To check whether a user program follows the stipulated communi-
cation scenario, a traditional analysis would need to reason about the behaviour
of a program using the operational semantics of the primitives’ implementation.
Since our goal is to emphasize on the benefits of implementing a protocol guided
communication, rather than deciding the correctness of the primitives machinery,
we adopt a specification strategy using abstract predicates [17,37] to describe
the behavior of the program’s primitives. Provided that the primitives respect
their abstract specification, developers could then choose alternative communi-
cation libraries, without the need to re-construct the correctness proof of their
underlying program.

The verification process follows the traditional forward verification rules,
where the pre-conditions are checked for each method call, and if the check
succeeds it adds their corresponding postcondition to the poststate. The ver-
ification of the method definition starts by assuming its precondition as the
initial abstract state, and then inspects whether the postcondition holds after
progressively checking each of the method’s body instructions.

Abstract Specification. We define a set of abstract predicates to sup-
port session specification of different granularity. Some of these predicates
have been progressively introduced across the paper, but for brevity we have
omitted certain details. We resume their presentation here with more details:
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Fig. 7. Communication primitives

Party(P, c∗,Υ)
associates a local protocol projection Υ to its
corresponding party P and the set of channels c∗ used by P
to communicate with its peers;

Peer(P)
flow-sensitively tracks the executing party, since the
execution of parties can either be in parallel or
sequentialized;

C(c, P, L) associates an endpoint specification L to its corresponding
party P and channel c;

initall(c∗)/
init(c)

hold only when the specifications corresponding to logical
channels c∗/c are available (have been released into the
abstract program state - Fig. 7b);

bind(P, c∗) binds a party P to all the channels c∗ it uses;

opened(c, P∗, ~c) binds a program channel ~c to a logical one c and to the
peers sharing ~c;

empty(c, ~c) holds only when all the transmissions on ~c have been
consumed (Fig. 7c).
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To cater for each verification phase, the session specifications with the
required granularity are made available in the program’s abstract state via the
lemmas in Fig. 7.

Channel endpoint creation and closing described by the [OPEN] and [CLOSE]
triples in Fig. 7, have mirrored specification: open associates the specification
of a channel c to its corresponding program endpoint ~c. The keyword res is a
dedicated ghost variable denoting the result returned by open in this particular
case, and the result of evaluating the underlying expression in the general case.
close regards the closing of a channel endpoint as safe only when all the parties
have finished their communication w.r.t. the closing endpoint.

To support send and receive operations, we decorate the corresponding meth-
ods with dual generic specifications. The precondition of [SEND] ensures that
indeed a send operation is expected, !v · V(v), with the transmitted message v
being described using a higher-order relation over v, namely V(v). To ensure
memory safety, the verifier also checks whether the program state indeed owns
the message to be transmitted and that it adheres to the properties described
by the freshly discovered relation, V(x). Dually, [RECV] ensures that the receiv-
ing state gains the ownership of the transmitted message. Both specifications
guarantee that the transmission is consumed by the expected party, Peer(P).

The proof obligations generated by this verifier are discharged to a Separation
Logic solver in the form of enatailment checks, detailed in the subsequent.

Entailment. Traditionally, the logical entailment between formalae written in
the symbolic heap fragment of separation logic is expressed as follows: Δa �
Δc ∗ Δr, where Δr comprises those residual resources described by Δa, but not
by Δc. Intuitively, a valid entailment suggests that the resource models described
by Δa are sufficient to conclude the availability of those described by Δc.

Since the proposed logic is tailored to support reasoning about communica-
tion primitives with generic protocol specifications, the entailment should also be
able to interpret and instantiate such generic specifications. Therefore we equip
the entailment checker to reason about formulae which contain second-order vari-
ables. Consequently, the proposed entailment is designed to support the instan-
tiation of such variables. However, the instantiation might not be unique, so we
collect the candidate instantiations in a set of residual states. The entailment has
thus the following form: Δa � Δc � S, where S is the set of possible residual
states. Note that S is derived and its size should be of at least 1 in order to
consider the entailment as valid. The entailment rules needed to accommodate
session reasoning are given in Fig. 8. Other rules used for the manipulation of
general resource predicates are adapted from Separation Logic [38].

To note also how [ENT-RECV] and [ENT-SEND] are soundly designed to be
the dual of each other: while the former checks for covariant subsumption of
the communication models, the latter enforces contravarinat subsumption since
the information should only flow from a stronger constraint towards a weaker
one. Considering the example below, a context expecting to read an integer
greater than or equal to 1 could engage a channel designed with a more relaxed
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Fig. 8. Selected entailment rules: πe is a shorthand for emp∧π, fv(Δ) returns all free
variables in Δ, and fresh denotes a fresh variable.

specification (i). However, a context expecting to transmit an integer greater
than or equal to 1 should only be allowed to engage a more specialized channel,
such as one which designed to transmit solely 1 (ii).

(i) (ii)
v1≥1 � [v1/v2]v2≥0

ENT-RECV
?v1 · v1≥1 �?v2 · v2≥0

ENT-CHANC(c, P, ?v1 · v1≥1) � C(c, P, ?v2 · v2≥0)

[v1/v2]v2=1 � v1≥1
ENT-SEND

!v1 · v1≥1 �!v2 · v2=1
ENT-CHANC(c, P, !v1 · v1≥1) � C(c, P, !v2 · v2=1)

Soundness. The soundness of our verification rules is defined with respect to
the operational semantics of [13] by proving progress and preservation. For lack
of space we omit the soundness statement and its corresponding proofs, but their
full details can be found in [13].
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5 Implementation

We have implemented Mercurius in OCaml and attached it to a well estab-
lished software verifier [12] for C-like languages. Even though this prototype
implementation was build to tackle C-like programs, its design may be used to
handle other languages as well, provided that this languages support communi-
cation primitives in the style of send/receive/open/close.

Moreover, the implementation is highly modular treating the communication
primitives as function definitions annotated with generic specifications. On the
one hand, thanks to the support for higher order variables, the send/receive
functions exhibit a polymorphic behavior being used to transmit different types
of values and different kinds of resources. On the other hand, the abstract behav-
ior of the communication primitives may be changed by simply changing its
abstract specification rather than changing the verifier’s behavior. Using lem-
mas to handle the auxiliary predicates allows us to support changes to the logic
by simply introducing new lemmas or changing the existing ones, lifting thus
the burden of changing the underlying verifier. The prototype comprises about
6 K lines of OCaml code, excluding the communication primitives (30 lines)
and lemmas (103 lines), considered specifications and given as input files to the
verifier.

We run the verifier to check the cloud service discussed in Sect. 1 for proto-
col conformance and communication safety. The results are depicted in Table 1.
We checked the client-sever protocol against different implementations of the
server, which are either purely sequential (Server-seq[1–3]) or contain some par-
allelism (Server-par[1–3]). No verification time took more than 8 s, despite the
high number of generated proofs. The reason why the solver needs to handle so
many proofs is that for each implementation, the verifier needs to re-check for
well-formedness all the specifications and predicates decorating the program, as
well as those within the configuration files for the primitives and lemmas.

Moreover we experimented both with the version of the cloud service which
handles only one client (CS), as well as the one which supports multiple clients
(CLOUD) sequentially (Server-seq) or in parallel (Server-par). For the (CLOUD)
protocol, we picked only the implementation of the CS which communicates with
the helpers concurrently, namely Server-par1. The verification worked seamlessly
in both cases, without the need to tweak the specification in any way irrespective
of the underlying implementation.

We also report our results on verifying a simple calculator adopted from
[39]. As opposed to [39] though, Mercurius is unable to handle a memoizing
calculator, since our lightweight approach did not instrument the global protocol
to assert anything about how the communication affects the local state of each
party. The changes in local states are only reflected by the generic specifications
of the communication primitives (not by the protocol itself) indicating what is
released into or consumed from the local state.

Lastly, we also report our results w.r.t. the “Rock, Paper, Scissors” protocol
adopted from [15]. In [15] the authors claim that this kind of protocol and its
logical pitfalls are common when building smart contracts - a form of distributed
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programs often engaged in cryptocurrency transactions. The logical bugs men-
tioned in [15], such as imprecise payments and inaccessible resources, may be
avoided with a rigorous verification system. More examples and their detailed
proofs can be found online [1], where the interested reader can also test Mer-
curius with her own protocols.

Example 5: In the subsequent we show how the specification of party P from
example 4, guides the verification process to identify a buggy implementation:
//C(c1, P, ?v · Δ1; ⊕ ξ(1); � ξ(3); ?v · Δ4) ∗ C(c2, P, � ξ(1); ?v · Δ2; ⊕ ξ(2); ?v · Δ3; ⊕ ξ(3))

1 x = receive(c1);

//C(c1, P, ⊕ ξ(1); � ξ(3); ?v · Δ4) ∗ C(c2, P, � ξ(1); ?v · Δ2; ⊕ ξ(2); ?v · Δ3; ⊕ ξ(3)) ∗ Δ1

//============ fire assume lemma to release ξ(1)============

//C(c1, P, � ξ(3); ?v · Δ4) ∗ C(c2, P, � ξ(1); ?v · Δ2; ⊕ ξ(2); ?v · Δ3; ⊕ ξ(3)) ∗ Δ1 ∗ ξ(1)

//============ fire guard lemma on ξ(1)============

//C(c1, P, � ξ(3); ?v · Δ4) ∗ C(c2, P, ?v · Δ2; ⊕ ξ(2); ?v · Δ3; ⊕ ξ(3)) ∗ Δ1 ∗ ξ(1)

2 y = receive(c2);

//C(c1, P, � ξ(3); ?v · Δ4) ∗ C(c2, P, ⊕ ξ(2); ?v · Δ3; ⊕ ξ(3)) ∗ Δ1 ∗ ξ(1) ∗ Δ2

//============ fire assume lemma to release ξ(2)============

//C(c1, P, � ξ(3); ?v · Δ4) ∗ C(c2, P, ?v · Δ3; ⊕ ξ(3)) ∗ Δ1 ∗ ξ(1) ∗ Δ2 ∗ ξ(2)

//FAIL to verify the next receive on c1 since ξ(3) is not available

3 t = receive(c1);

5 z = receive(c2);

where program’s statements are numbered 1–4, and the program’s abstract state
is prefixed by //. A correct implementation expects lines 3 and 4 to be swapped
such that fence ξ(3) required by c1 is available in the program’s abstract state.
ξ(3) is only released in the after the second receive on c2 is consumed.

6 Related Work

Behavioral Types. The behavioral types specify the expected interaction pat-
tern of communicating entities. Most of seminal works develop type systems
on the π-calculus [26] for deadlock [27] and livelock [25] detection. However,
these system do not account for communication protocols, nor do they express
messages in a logical form. To improve on the latter, Igarashi and Kobayashi
propose an abstraction of the behavior of pi-calculus processes as generic types
[24]. However, the generic type system finally throws away the information about
base values such as integers, as opposed to our proposal which uses the messages’
logical description to guide the verification of the implementation.

The session types [22,23] proposed by Honda et al. are probably the most
intensely studied refinement of the behavioral type systems, since they offer the
means of writing formal communication protocols in a concise and user-friendly
manner. Extensions of session types add support for: exception handling [8,9],
multithreaded functional languages [30,33,36], for MPI [31], for OO languages
[16,18], and, similar to our approach, for C-like languages [34]. However, none of
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Table 1. Evaluation of Mercurius

Component LOC Proofs. Verification time (sec)

Multimedia Cloud Service (CS) - 29 lines of spec

Client 2 958 1.1

Server-seq1 23 3987 6.7

Server-seq2 23 3987 6.7

Server-seq3 23 3987 6.7

Server-par1 38 3162 7.1

Server-par2 38 3345 7.2

Server-par3 34 3848 7.0

Multimedia Cloud Service (CLOUD) - 32 lines of spec

Client 3 1342 1.4

Server-seq 40 4569 7.7

Server-par 45 4348 7.9

Simple Calculator - 6 lines of spec

Client 3 575 0.8

Server-seq 4 1534 1.6

Server-par 7 933 1.4

“Rock, Paper, Scissors” - 11 lines of spec

Client 2 728 1.0

Server-seq 6 2252 2.3

Server-par 8 1774 3.0

these approaches exploit the possibility of expressing messages in a more precise
manner, since the type system constraints the messages to be abstracted to just
types. Expressing the messages in logical form could uncover implementation
bugs that would otherwise easily bypass a simple type check. Works such as
[6,11,29,42] draw a correspondence between linear logic and different session
types, while [4,40] combine session types with dependent type. While these works
have the potential to exploit their results in linear logic, they solely tackle the
type and numerical properties of the exchanged data. Our proposal goes beyond
numerical properties to resources sharing.

Closer to our goal, Caires and Seco [7] propose behavioral separation for disci-
plining the interference of higher-order programs in the presence of concurrency,
sharing and aliasing. Behavioural separation types build upon the knowledge
of behavioural type theories, behavioral-spatial types [5], and separation logic.
More recently, [2] also promotes non-determinism and shared channels in an
extension of linear logic-based session types. Even though these works permit
inter-party resource sharing, they do not explore the idea of relaxed protocols
in the sense described in this paper, where ∗ permits intra-party concurrency,
adding thus less constraints over the underlying protocol implementation.
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Concurrent Logics for Message Passing. The idea of coupling together the
model theory of concurrent separation logic with that of Communicating Sequen-
tial Processes [20] is studied in [21]. The processes are modeled by using trace
semantics, drawing an analogy between channels and heap cells, and distinguish-
ing between separation in space from separation in time. Our proposal shares
the same idea of distinguishing between separation in space and separation in
time, by using the ∗ and ; operators, respectively. However, their model relies on
process algebras, while we propose an expressive logic based on separation logic
able to also tackle memory management.

Heap-Hop [32,41] is a sound proof system for copyless message passing man-
aged by contracts. The system is integrated within a static analyzer which checks
whether messages are safely transmitted. Similar with our proposal, this work is
also based on separation logic. As opposed to ours, its communication model is
limited to solely two party communication.

IronFleet [19], embedded in Dafny [28], supports the verification of large
system focusing on their liveness and safety properties, and going as far as being
able to tackle consensus protocols. However, though important, their verification
efforts are not reusable, using highly specialized primitives and predicates to
express each verified system. We propose a lighter, yet more generic, verification
mechanisms, where the same communication primitives and predicates can be
reused for most of the verification scenarios. Moreover, our specification language
is designed to be accessible to less specialized system designers and developers,
while still offering safety guarantees.

Designed concurrently with out logic, DISEL [39] is a domain specific lan-
guage for describing, implementing and verifying distributed systems. The pro-
tocols are described in DISEL using state-transition systems, as opposed to the
more concise protocols of session types. The authors have also exploited the
benefits of separation logic for providing strong safety guarantees, embedded-
ing their proofs in Coq. On contrast, we promote automated verification, where
instead of using mechanized proofs, we rely on our verifier to automatically find
the proof or correctness or to identify bugs.

7 Discussions and Final Remarks

We have designed a multi-party session logic that goes beyond the traditional
type checking system, by embedding the communication protocols as guiding
tools for verification systems. We have shown how the messages can be described
in the more precise and expressive logical form, without sacrificing the concise-
ness of type approaches. We have shown how to write relaxed protocols that
offer wider design choices for the implementation of protocols. Moreover, we have
shown how a lightweight specification system in the style of session types can
be embedded into a deductive verification system to offer stronger correctness
and safety guarantees than those offered by type-checking. Moreover, automa-
tion is achieved without sacrificing modularity. [1,13] discuss deadlock checking,
delegation and recursion in Mercurius.
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As part of future work, we investigate how to improve the expressiveness
further such that Mercurius is able to handle more distributed properties, such
as consensus. Moreover, we intend to extend this work to other less mainstream,
yet important communication models, such as those using non-linear channels.
We also intend to go beyond the current limits of our well-formed disjunctions.
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Abstract. This work explores the application of deep learning, a
machine learning technique that uses deep neural networks (DNN) in
its core, to an automated theorem proving (ATP) problem. To this end,
we construct a statistical model which quantifies the likelihood that a
proof is indeed a correct one of a given proposition. Based on this model,
we give a proof-synthesis procedure that searches for a proof in the order
of the likelihood. This procedure uses an estimator of the likelihood of
an inference rule being applied at each step of a proof. As an implemen-
tation of the estimator, we propose a proposition-to-proof architecture,
which is a DNN tailored to the automated proof synthesis problem. To
empirically demonstrate its usefulness, we apply our model to synthesize
proofs of the minimal propositional logic. We train the proposition-to-
proof model using a training dataset of proposition–proof pairs. The
evaluation against a benchmark set shows the very high accuracy and an
improvement to the recent work of neural proof synthesis.

Keywords: Automated theorem proving · Deep learning
Neural networks

1 Introduction

Automated theorem proving (ATP) [5], a set of techniques that prove logical for-
mulas automatically, is becoming important as the realm of the areas that rely
on theorem proving is expanding beyond mathematics to, e.g., system verifica-
tion [20,22]. We are concerned with the following form of ATP called automated
proof synthesis (APS): Given a logical formula P , if P holds, return a proof M
of P . In the light of the importance of theorem proving, APS serves as a useful
tool for activities based on formal reasoning. For example, from the perspective
of the aforementioned system verification, APS serves for automating system
verification; indeed, various methods for (semi)automated static program verifi-
cation [3,7,9] can be seen as APS procedures. We also remark another impor-
tant application of APS: automated program synthesis. An APS algorithm can
c© Springer Nature Switzerland AG 2018
S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 309–328, 2018.
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be seen as an automated program synthesis procedure via the Curry–Howard
isomorphism [32], in which M can be seen as a program and P can be seen as a
specification. Not only is APS interesting from the practical viewpoint, it is also
interesting from the algorithmic perspective of theorem proving.

Traditionally, the main weapon from the programming-language community
to tackle APS has been symbolic methods; an APS algorithm inspects the syn-
tactic structure of the formula P and, using the obtained information, tries to
construct a proof derivation of P . A seminal work in this regard is by Ben-Yelles
[4]; they proposed a sound and complete APS algorithm for an implicational
fragment of the propositional logic.

This paper tackles the APS problem using another emerging technology: sta-
tistical machine learning. In particular, we explore an application of deep neural
networks (DNN) [12]. DNNs have seen a great success in recent years for solving
various tasks; to name a few, image recognition [14], speech recognition [15], and
natural language processing [2].

To this end, we build a rigorous statistical model of the APS problem; this
statistical model gives a specification of our DNN-based APS procedure by quan-
tifying how a partially constructed proof is likely to lead to a correct proof of
the given proposition P . Based on this statistical model, we define a proof-
synthesis procedure that searches for a proof of given proposition P in the order
of the likelihood. This proof-synthesis procedure requires a function to estimate
the likelihood of an inference rule being applied at a specific step of a proof (or,
equivalently, a specific position of a partially constructed proof). For this estima-
tion, we propose a novel DNN architecture named proposition-to-proof network,
which is tailored to the APS problem.1 We empirically evaluate the performance
of our network in proof synthesis of the minimal propositional logic and confirm
that it can predict the inference rules that fill the rest of a partially constructed
proof with 96.79% accuracy.

The contributions of this work are summarized as follows.

– We construct a statistical model for the APS problem to formally quantify
the likelihood of a partially constructed proof leading to a correct one of a
given proposition. Based on this statistical model, we design a proof-synthesis
procedure that searches for a proof of a given proposition in the descending
order of the likelihood.

– We propose a novel DNN architecture which we call proposition-to-proof
architecture that estimates the above likelihood.

– We implement the proof-synthesis procedure with a trained network and
empirically confirm its effectiveness with the minimal propositional logic. In
addition to measuring the accuracy of the trained proposition-to-proof model,
we conduct in-depth analyses of the performance of the model. We confirm
that our model estimates the inference rule that should be applied at each step
of a proof with 96.79% accuracy, which outperforms a previous DNN-based
APS procedure by Sekiyama et al. [29].

1 Following the convention of neural network research, we use the word “model” both
for a statistical model and for a trained DNN.
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Currently, we do not claim that our procedure outperforms the state-of-the-
art APS method for propositional logic. Rather, our contribution consists in the
statistical reformulation of the APS problem and application of deep learning,
which exposes superhuman performance in many areas. We believe that deep
learning is also useful in the APS problem and that the present work opens up
a new research direction in this regard.

The rest of this paper is organized as follows: Sect. 2 defines the logic and
the proof system that we use in this paper; Sect. 3 gives a statistical model of
proof synthesis and defines the proof-synthesis procedure based on the statistical
model; Sect. 4 introduces the proposition-to-proof architecture; Sect. 5 describes
the result of the experiments; Sect. 6 discusses related work; and Sect. 7 con-
cludes.

Due to the page limitation, we put several detailed discussions in the full
version [30].

2 The Simply Typed Lambda Calculus as the Minimal
Propositional Logic

In this work, we identify the simply typed lambda calculus with the minimal
propositional logic via the Curry–Howard isomorphism [32]. This view is indeed
beneficial for us: (1) a term of the simply typed lambda calculus is the concise
representation of a derivation tree, which is essentially the proof of a proposition
and (2) we can express a partially constructed proof as a term with holes, which
denote positions in a proof that needs to be filled. In the rest of this section,
we introduce the simply typed lambda calculus extended with product types
and sum types. The Curry–Howard isomorphism allows us to identify a product
type with the conjunction of propositions and a sum type with the disjunction.
We sometimes abuse the terminologies in the simply typed lambda-calculus for
those of the proof theory of the propositional logic.

The top of Fig. 1 shows the syntax of the simply typed lambda calculus. Types
(or propositions) are represented by the metavariables P , Q , and R; terms (or
proofs) are represented by the metavariables L, M , and N ; and typing con-
texts (or collections of assumptions) are represented by the metavariable Γ . The
definition of types is standard: they consist of type variables (or propositional
variables), function types P →Q , product types P ×Q , and sum types P +Q .
We use the metavariables a, b, c, and d for type variables. The syntax of terms
is that of the simply typed lambda calculus. Products are constructed by pair
(M ,N ) and destructed by caseM of (x , y) → M ; sums are constructed by injec-
tion LeftM and RightN and destructed by caseL of { Left x → M ; Right y → N }.
The term syntax is equipped with a hole [ ] to express partially constructed terms.
A hole denotes a position in a term that needs to be filled (see below). We use
metavariables x , y , and z for term variables.

A term that contains holes represents a partially constructed term. Our proof-
synthesis procedure introduced in Sect. 3 maintains a set of partially constructed
terms and fills a hole inside a term in the set at each step. We assume that holes
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Types
P ,Q ,R ::= a | P →Q | P ×Q | P +Q

Terms
L,M ,N ::= [ ] | x | λx .M | M N | (M ,N ) | caseM of (x , y) → N |

LeftM | RightM | caseL of { Left x → M ; Right y → N }
Typing contexts

Γ ::= ∅ | Γ, x :P

Γ � M : P

Γ � [ ] : P
Hole

x :P ∈ Γ

Γ � x : P
Var

Γ, x :P � M : Q
Γ � λx .M : P →Q

Abs
Γ � M : P →Q Γ � N : P

Γ � M N : Q
App

Γ � M : P Γ � N : Q
Γ � (M ,N ) : P ×Q

Pair
Γ � M : P ×Q Γ, x :P , y :Q � N : R

Γ � caseM of (x , y) → N : R
CasePair

Γ � M : P
Γ � LeftM : P +Q

Left
Γ � M : Q

Γ � RightM : P +Q
Right

Γ � L : P +Q Γ, x :P � M : R Γ, y :Q � N : R
Γ � caseL of { Left x → M ; Right y → N } : R

CaseSum

Fig. 1. Syntax and inference rules.

in a term are uniquely identified by natural numbers. We write [ ]i for a hole
with number i. We write M [N ]i for the term obtained by filling the hole [ ]i in
M with N .

We also define the typing relation Γ � M : P as the least relation that
satisfies the inference rules in the bottom of Fig. 1. This relation means that term
M is typed at P under Γ or, equivalently, M is a proof of P under assumptions
Γ . We write Γ �� M : P to denote that Γ � M : P does not hold. The rules
in Fig. 1 are standard except for the rule Hole for holes. This rule allows any
type to be given to a hole. We call the inference rules except for the rule Hole
proof inference rules. We say that M is a (complete) proof of P if ∅ � M : P is
derived and M has no holes. M is said to be partial or partially constructed if
∅ � M : P but M contains holes.

3 Proof-Synthesis Procedure with Statistical Model

3.1 Statistical Model of Automated Proof Synthesis

The strategy of our proof-synthesis procedure is to incrementally construct a
proof term M of a given proposition P so that the likelihood of M leading to a
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correct proof of P is as high as possible. In order to quantify the likelihood, we
introduce a statistical model of proof synthesis.

We assume an oracle that returns a complete proof M given a provable
proposition P ; our aim is to mimic the behavior of this oracle. To build the
statistical model, we designate two random variables: M that evaluates to a
complete proof and P that evaluates to a proposition. For a proposition P and
a complete proof M , we can consider a probability p(M = M |P = P) that
quantifies how M is likely to be a term returned by the oracle as a proof of P ;
this probability is one if M is returned by the oracle; zero otherwise. If we could
compute M that makes this probability one for a given P , we are done. However,
this is not possible because (1) we cannot precisely compute p(M = M |P = P)
without the oracle and (2) even if we could compute p(M = M ′|P = P) for any
M ′ and P , it would not be trivial to find M that makes p(M = M |P = P) one.

We solve this difficulty by approximating the probability distribution
p(M |P = P) from data. We could directly learn the probability distribution
p(M | P = P) from the training dataset using a certain machine leaning tech-
nique; this is the strategy taken by Sekiyama et al. [29]. However, such monolithic
approximation of the probabilistic distribution often leads to a bad approxima-
tion; indeed, the accuracy of the automated proof synthesizer by Sekiyama et
al. was around 50% at best.

We, instead, convert the probability distribution p(M | P = P) to a product
of easier-to-approximate ones. In order to derive this decomposition, we first
introduce several notions.

Definition 1 (One-depth contexts). The set of one-depth contexts is
defined by the following BNF:

C ∈ Ctx ::= λx . [ ] | [ ] [ ] | ([ ] , [ ]) | case [ ] of (x , y) → [ ] |
Left [ ] | Right [ ] | case [ ] of { Left x → [ ] ; Right y → [ ]}.

We assume that each hole in a one-depth context is equipped with a unique
natural number. We write C [Mi ]i for the term obtained by filling holes [ ]0 , ..., [ ]n
in C with terms M0, ...,Mn , respectively.

Definition 2 (Paths). A path ρ is a finite sequence of pairs (C , i) where i is
a natural number that identifies a hole in C . We write 〈ρ, (C , i)〉 for the path
obtained by postpending (C , i) to path ρ.

One-depth contexts represent term constructors other than variables. Using
one-depth contexts, ρ = 〈(C0, i0), (C1, i1), . . . , (Cn , in)〉 specifies a path in a term,
whose top-level constructor is identical to C0, from its root node in the following
way: C0; the hole in C0 with the natural number i0; C1; the hole in C1 with the
natural number i1; and so on. For example, let M be a term λx .case x of (y , z ) →
(z , y). Then, a path from the root of M to the reference to variable y is repre-
sented by the path 〈(λx . [ ]0 , 0), (case [ ]0 of (y , z ) → [ ]1 , 1), (([ ]0 , [ ]1), 1)〉.

We compute the probability p(M = M | P = P) by using the following
two probability expressions: p(x = x | P = P ,Q = Q ,ρ = ρ) and p(C = C |
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P = P ,Q = Q ,ρ = ρ). In both probability expressions, P is the final goal
proposition to be proved by the entire proof procedure. The former probability
quantifies how x is likely to be a correct proof of the proposition Q that appears
under the path ρ. The latter quantifies how the one-depth context C is likely
to be a correct proof constructor to be chosen to prove the proposition Q that
appears under the path ρ. These two probabilities are easier to approximate by
using data compared to approximating p(M = M | P = P) monolithically. The
experimental result presented in Sect. 5 also indicates that our strategy leads to
a better proof synthesizer than learning M directly.

Formally, we show that the function φP (x , ρ) defined below computes the
probability p(M = M | P = P) for a hole-free term M ; see the full version for
the detail of the proof.

Definition 3. For any term M , let typeof(M ) be the type of M .2 Let P be a
proposition, M be a hole-free term, and ρ be a path. Then, φP (M , ρ) is defined
by induction on the structure of M as follows:

φP (x , ρ) = p(x = x | P = P,Q = typeof(x),ρ = ρ)
φP (C [Mi ]i , ρ) = p(C = C | P = P,Q = typeof(C [Mi ]i),ρ = ρ)×∏

i φP (Mi , 〈ρ, (C , i)〉),

where the random variable x evaluates to a term variable; C evaluates to a one-
depth context; Q evaluates to a type to be proved by M ; and ρ evaluates to a path
that specifies the position where x or C is placed. Note that P evaluates to a type
that is supposed to be proved by the root node, not by M . The probability p(x =
x | P = P,Q = Q ,ρ = ρ) is that of x being a proof of Q under the condition that
it appears at the position specified by ρ; and p(C = C | P = P ,Q = Q ,ρ = ρ)
is the probability of C being the top-level constructor of a proof term of Q if it
appears at the position specified by ρ.

For proposition P , term M , and path ρ, the function φP (M , ρ) computes
the product of (1) p(C = C | P = P,Q = typeof(C [Mi ]i),ρ = ρ) for each
subterm C [Mi ]i of M whose path from the root node is ρ and (2) p(x = x |
P = P,Q = Q ,ρ = ρ) for each occurrence of variable x in M whose path
from the root node is ρ. Therefore, we can compute the value of φP (M , ρ) if we
can approximate p(x = x | P = P,Q = typeof(x),ρ = ρ) and p(C = C | P =
P,Q = typeof(C [Mi ]i),ρ = ρ). We show how we approximate these probabilities
in Sect. 4. Once we approximate these probabilities, we can synthesize M that
maximizes p(M = M | P = P) using the procedure that we present below.

3.2 Proof Synthesis Procedure

Based on the discussion in Sect. 3.1, we design a proof-synthesis procedure. Pro-
cedure 1 shows the definition of our procedure ProofSynthesize, which takes
2 We can annotate typeof(M ) by applying a standard type-inference algorithm for the

simply typed lambda calculus to M .
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Procedure 1 Proof synthesis
1: procedure ProofSynthesize(P)
2: Initialize priority queue Q that contains partial proofs constructed so far.
3: Push [ ] to Q with priority 1.0.
4: while Q is not empty do
5: Pop M with the highest priority P from Q.
6: Let ρ = arg maxρ∈hole (M ) maxr p

∗(r = r | P = P , Q = Q , ρ = ρ)
where Q is a proof obligation to be discharged at [ ]ρ.

7: for each Cx ∈ Ctx ∪ BV (M , ρ) such that ∅ � M [Cx ]ρ : P do
8: if hole (M [Cx ]ρ) = ∅ then
9: return M [Cx ]ρ

10: else
11: Let Q be a proof obligation to be discharged at [ ]ρ.
12: Let q be probability p∗(r = rCx | P = P , Q = Q , ρ = ρ).
13: Push M [Cx ]ρ to Q with priority q × P
14: end if
15: end for
16: end while
17: end procedure

proposition P to be proved. This procedure maintains a priority queue Q of
partially constructed terms. The priority associated with M by Q denotes the
likelihood of M forming a proof of P . In each iteration of Lines 4–6, ProofSyn-
thesize picks a term M with the highest likelihood and fills a hole in M with a
one-depth context or a variable. It returns a proof if it encounters a correct proof
of P . We write p∗(ϕ1 | ϕ2) for an approximation of p(ϕ1 | ϕ2) for predicates
ϕ1 and ϕ2.

Before going into the detail, we remark a gap between the procedure Proof-
Synthesize and the statistical model in Sect. 3.1. In that statistical model, we
defined the likelihood of a variable p(x | P = P,Q = Q ,ρ = ρ) and that of a
one-depth context p(C | P = P ,Q = Q ,ρ = ρ) as separate probability distribu-
tions. Although this separation admits the inductive definition of the function
φP , it is not necessarily plausible from the viewpoint of proof synthesis since, in
filling a hole, we do not know whether it should be filled with a variable or with
a one-depth context.

In order to solve this problem, we assume that we have an approximation of
the likelihood of a proof inference rule that should be applied at the position of a
hole. Concretely, we assume that we can approximate the probability distribution
p(r | P ,Q,ρ), where r is a random variable that evaluates to the name of a
proof inference rule in Fig. 1. This assumption requires that we estimate the
likelihood of Var being applied for a hole, which can be done in the same way
as the estimation of those of other inference rules.

Let us explain the inside of the procedure in more detail. A proof is synthe-
sized by the while loop, where the procedure fills the hole [ ]ρ pointed by ρ in
the partial proof M that has the highest likelihood P (Lines 4–16). We write
hole (M ) for the set of paths to holes in M . We select path ρ such that the
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inference rule applied at the position pointed by the path has the highest prob-
ability. After finding the hole to be filled, we replace it with Cx , which denotes
one-depth contexts or variables. BV (M , ρ) is the set of bound variables that can
be referred to at [ ]ρ and M [Cx ]ρ is the term obtained by filling [ ]ρ in M with
Cx . Note that Ctx is the set of all one-depth contexts. If M [Cx ]ρ is a proof of
P , which can be checked using an off-the-shelf type checker, then the procedure
returns it as the synthesis result (Line 9). Otherwise, M [Cx ]ρ is added to Q
with priority p∗(r = rCx

| P = P ,Q = Q ,ρ = ρ) × P, which is the likelihood
of M [Cx ]ρ leading to a correct proof (Line 13). rCx

is the proof inference rule
corresponding to Cx . Q is a proof obligation at [ ]ρ; how to find it is discussed
in Sect. 5.2.

We make a few remarks about the procedure:

– In the current implementation, we have not implemented the approximator of
p(x | P ,Q,ρ); instead, in filling a hole with a variable, we assume that p(x |
P ,Q,ρ) is the uniform distribution on the set of variables that are available at
this scope. Although this assumption may look naive, our implementation still
works well for many propositions; see Sect. 5.2. The problem of estimating the
likelihood of a variable is similar to the premise selection problem, for which
various work has been done [16,18,23,35]. Combining our synthesizer with
such a technique is an interesting future direction.

– In the current implementation, we assume that the type checking conducted
in Line 7 infers the type of each subexpression of M [Cx ]ρ and annotates these
types to them; this is indeed how we handle the typeof (M ) in Sect. 3.1. This
is a reasonable assumption as far as we are concerned with the propositional
logic. For more expressive logics, we may need some auxiliary methods to
guess the type of each expression.

– The procedure ProofSynthesize is not an algorithm. If it is fed with an
invalid (unprovable) proposition, then it does not terminate. Even if it is fed
with a valid (provable) proposition, it may not be able to discover a proof of
the proposition depending on the performance of the estimator of p∗.

4 Neural Proposition-to-Proof Architecture

In order to implement ProofSynthesize, we are to approximate the probability
distribution p(r | P ,Q,ρ) that produces the likelihood of a proof inference rule
being applied at a given position in a proof. To this end, we design a new
DNN architecture, which we call a proposition-to-proof architecture, tailored to
the classification task of inference rules. See, e.g., Goodfellow et al. [12] for an
overview of deep learning.

4.1 Proposition-to-Proof Architecture

We design a DNN architecture that takes three arguments, proposition P to
be proved, path ρ pointing to the hole to be filled, and proof obligation Q a
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Fig. 2. Representation of a × b → b in our proposition-to-proof architecture.

term of which should be placed in the hole, and approximates the likelihood of
a proof inference rule being applied at the position specified by ρ in a proof of
P . Following the standard style in deep learning, our architecture converts these
three arguments to real vectors and then approximates the likelihood of each
proof inference rule with them. We first explain how we translate P and Q to
real vectors. The vector representation of a path is computed by using that of
P . We finally concatenate vectors of Q and ρ into a single vector and use it to
estimate a proof inference rule that should be applied.

Proposition Encoder. The vector representation of P is computed from
the abstract syntax tree (AST) representation of P . Each node of the AST
is equipped with a proposition constructor (→, ×, or +) or a propositional
variable. Each of these proposition constructors and propositional variables are
associated with a vector described below. From these assigned vectors, the archi-
tecture computes the vector representation of the entire P .

One possible way to provide vectors that distinguish nodes of an AST is
to use so-called one-hot vectors, which are used broadly in natural language
processing. A one-hot vector for a word is an n-dimensional vector, where n is
the size of the vocabularies, that only the element corresponding to the word
has scalar value 1 and the others have 0. In this work, the information of a
proposition constructor is embedded into a vector as in one-hot vectors, while
a propositional variable a is embedded as a vector [f(a), 0, 0, 0] where f(a) is a
postive number that identifies the variable a.

Definition 4 (Vector representation of proposition node). Let f be a
bijective function that maps propositional variables to positive numbers. Then,
Enc gives a vector to node t as follows.

Enc (a) = [f(a), 0, 0, 0] Enc (→) = [0, 1, 0, 0]
Enc (×) = [0, 0, 1, 0] Enc (+) = [0, 0, 0, 1]

Figure 2 illustrates vectors given by Enc, which are similar to one-hot vectors
in that each dimension of them represents a class of a node. We consider that
all propositional variables belong to the same class; therefore, Enc assigns their
numerical values to the same dimension. On the other hand, different proposi-
tional variables should be distinguished; if a �= b, proofs generated for a → b → a
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and a → b → b should be different. Thus, Enc assigns different numbers to dif-
ferent propositional variables. We expect that this encoding of nodes to be more
informative especially for unknown propositional variables (i.e., variables that do
not occur in a training dataset) than encoding by one-hot vectors, because one-
hot vector encoding maps unknown entities to a single special symbol “unknown”
whereas our encoding does not drop the information on the identity of unknown
propositional variables.

After computing Enc(t) for each node t in a proposition P , we compute the
vector representation of P in two steps. The first step is AST convolution, which
updates the vector for each node t using those of the nodes around t by using
AST convolution layers. The second step aggregates the vectors of the nodes into
a single vector by an aggregation layer. The function of these two kinds of layers
parallels the convolution layer used in image processing [10,12]; a convolution
layer in image processing works as an image filter by transforming each pixel of
an image with the weighted sum of its neighborhoods. Our AST-convolutional
and aggregation layers transform an AST by transforming each node with the
weighted sum of its neighboring nodes. We benefit from this transformation since
our DNN can recognize the knowledge about the structure of AST.

AST Convolution Layer. An AST convolution layer updates a vector of each
node t in an AST by using the vectors of the nodes around t . Suppose that
parent (t) is the parent and child (t , i) is the i-th child of t . Let vt be an n-
dimensional vector of t . Then, the AST convolution layer updates all vectors
of nodes in a given AST simultaneously as follows. Let ςt be a class of node t ,
that is, a proposition constructor (→, ×, or +) or a class to denote propositional
variables. We write Wv for the matrix product of real matrix W in R

m×n and
the real column vector v ∈ R

n, v1 + v2 for the element-wise addition of real
vectors v1 and v2, and F (v) for the element-wise application of function F over
reals to real vector v. Then, the computation conducted by a convolution layer
is defined by

vt ← F conv

(
∑

i

W conv
ςt ,i vchild (t,i) + W conv

ςt vt + W conv
ςt ,p vparent (t) + bconvςt

)

(1)

where W conv
ςt ,i

∈ R
m×n is a weight parameter which is a coefficient of the vector

of the i-th child, W conv
ςt ∈ R

m×n is for t , W conv
ςt ,p ∈ R

m×n is for the parent,
bconvςt ∈ R

m is a bias parameter for ςt , and F conv is an activation function. Each
parameter is shared among the nodes with the same ςt . If t is the root node,
then vparent (t) denotes the zero vector. We use multiple AST convolution layers
to update the vector for each node.

The update (1) is inspired by tree-based convolution proposed by Mou et al.
[25]. Our definition, however, differs from theirs in the following aspects. First,
our update rule involves the vector of a parent node to capture the context where
a node is used, whereas Mou et al. do not. Second, the convolution by Mou et
al. deals with only binary trees; they require an AST is represented by a binary
tree before convolution is applied, which is essentially possible by, for example,
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representing an AST as a left-child right-sibling binary trees.3 They require the
binary-tree representation in order to fix the number of weight parameters for
children to be only two. However, a different tree representation may affect a
vector representation learned by DNNs and may not preserve the locality of
the original AST representation. Thus, instead of requiring a proposition to be
expressed as a binary tree, we design our network so that it can deal with an AST
as it is. Fortunately, the syntax of propositions is defined so that the number of
children of each node is fixed. Hence, we can fix the number of learnable weight
parameters for children: two for each proposition constructor.

Aggregation Layer. An aggregation layer integrates vectors of nodes in an AST
to a single vector.

Definition 5 (Aggregation layer). Let t be a node of an AST where nodes
are augmented with n-dimensional vectors. Function Agg (t) produces an n-
dimensional vector from t as follows:

Agg (t) = F agg

(
∑

i

W agg
ςt ,i

Agg (child (t , i)) + W agg
ςt vt + baggςt

)

where W agg
ςt and W agg

ςt ,i
∈ R

n×n are weight parameters which are coefficients of
vectors of t and its i-th child, respectively, baggςt ∈ R

n is a bias for ςt , and F agg

is an activation function. Each parameter is shared among the nodes with the
same ςt .

Another way to produce a single vector from an AST is a max-pool [25],
which, for each dimension, takes the maximum scalar value among all the vec-
tors in the AST. While max-pools are used by usual convolutional neural net-
works [21], for our purpose, it is not clear whether only the maximum value
describes the characteristic of the whole AST well. Our aggregation layer can be
considered as “fold” on trees with vectors; we expect that Agg (t) learns a vector
representation of the AST that fits better for our purpose because it takes not
only the maximum values but also the other elements of vectors of all nodes into
account.

In what follows, we write vP for the vector produced from P by applying
Enc, one or more AST convolution layers, and an aggregation layer sequentially.

Path Encoder. To achieve good performance, we have to know what assump-
tions are available at the position for which an inference rule is estimated. For
example, suppose we are to prove b at a certain hole of a partially constructed
term. If we know that there is a variable x of type a → b that is available at
this position, then we could use the rules App and Var to fill the hole with
x [ ]; then the remaining task is to fill the newly generated hole with a term of

3 It is not clear from Mou et al. [25] how they express an AST as a binary tree in their
implementation.
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type a. In our setting, the information of the available assumptions is accessible
via proposition P and path ρ. To make P available to the proposition-to-proof
architecture, we use vP ; for ρ we use Extract (ρ, vP ) defined as follows.

Definition 6 (Extraction). Extract (ρ, v) extracts a vector in the position to
which ρ points from v.

Extract (〈〉, v) = W ext v + bext

Extract (〈(C , i), ρ〉, v) = Extract (ρ, v ′) where v ′ = F ext
(
W ext

C ,i v + bextC ,i

)

where W ext, W ext
C ,i ∈ R

n×n and bext, bextC ,i ∈ R
n are learnable parameters and

F ext is an activation function. 〈(C , i), ρ〉 is the addition of (C , i) to path ρ at
the beginning.

We write vP,ρ for Extract (ρ, vP ). The weight parameters in Definition 6 have
a role of extracting vectors necessary to capture assumptions from vP . The biases
are expected to capture information of the context around the node to which
the path points.

Classification. We estimate what proof inference rule is most likely to be
applied by using two vectors vP,ρ, which is the extracted vector from P along
ρ, and vQ , which is the vector of proof obligation Q . For this estimation, we
apply multiple fully connected layers to the vector obtained by concatenating
vP,ρ and vQ . The number of the dimensions of the final output vo is equal to the
number of proof inference rules; eight in our logic. Each index in the vector vo
corresponds to an inference rule.

We use the values obtained by applying a softmax to vo as the approximation
of the likelihood of each inference rule. Concretely, the approximated probability
p∗(r = r | P = P ,Q = Q ,ρ = ρ) is calculated by:

exp(vo[nr ])
∑8

j=1 exp(vo[j ])
,

where v [i ] is the value of the i-th dimension of v and nr ∈ {1, ..., 8} is the index
corresponding to the proof inference rule r in vo.

5 Experiments

This section reports the performance of our proposition-to-proof model and the
proof-synthesis procedure combined with the model. We train the proposition-to-
proof architecture on a dataset that contains pairs of a proposition and its proof
by supervised learning. After explaining the details of our architecture, we detail
the configuration of the experiments including the dataset and hyperparameters.
We evaluate the trained model on the basis of accuracy; given a proposition, a
partially constructed proof, and a hole from a validation dataset, we check how
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Fig. 3. The architecture used in experiments. P is a proposition to be proved, ρ is a
path specifying the hole to be filled, and Q is a proof obligation to be discharged at
the hole.

accurately the model estimates the inference rule to be applied at the hole. We
also conduct in-depth analyses of the performance of the model; we especially
evaluate the influence of the depth of a hole to the accuracy. Finally, we evaluate
the proof-synthesis procedure given in Sect. 3.2.

We implemented the procedure ProofSynthesize and our model on Python
3 (version 3.6.3) with the deep learning framework Chainer [34] (version 2.1.0).
We use the Haskell interpreter GHCi (version 8.0.1) as the type checker used in
ProofSynthesize. All the experiments are conducted on a machine equipped
with 12 CPU cores (Intel i7-6850K 3.60 GHz), 32 GB RAM, and NVIDIA GPUs
(Quadro P6000).

5.1 Configuration

Figure 3 shows the proposition-to-proof architecture used in the experiments. For
the role of each layer, see Sect. 4. We use three AST convolution layers to encode
proposition P to be proved and one to encode proof-obligation proposition Q .
The concatenation of vP,ρ computed by Extract and vQ by Agg2 is fed to three
fully connected layers. The detailed specification of each layer is shown in the
full version [30]. We use a rectified linear unit (ReLU) [11] as activation functions
throughout the architecture.

The power of deep learning rests on datasets used to train DNNs. In this
work, we need a dataset of pairs of a proposition and its proof. We make dataset
Dall by generating proofs of sizes 2 through 9 exhaustively (their number is
136877) and about 30000 proofs of sizes 10 through 50 at random. The dataset
consists of tuples of proposition P to be proved by a proof, proof obligation Q
to be discharged at a hole, a path ρ which specifies the hole, and inference rule
r which should be applied at the position of the hole; note that P , Q , and ρ
are inputs to the proposition-to-proof architecture and r is an expected output
from it. We use 90% of Dall as the training dataset Dt and the remaining 10%
as the validation dataset Dv. See the full version [30] for details of the dataset.
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Table 1. Validation accuracy of the trained model for each inference rule per depth.
The column “#” shows the number of validation data and “All” does the accuracy for
all inference rules. “N/A” means that there are no validation data.

Depth # All Var Abs App Pair CasePair Left Right CaseSum

1 16774 100.0 N/A 100.0 N/A 100.0 N/A 100.0 100.0 N/A

5 27262 96.92 97.36 99.30 90.95 98.82 62.87 97.50 97.75 82.08

9 7616 92.57 97.90 96.16 30.51 92.46 34.10 93.88 95.86 33.00

14 1221 90.17 98.08 97.06 12.00 89.39 21.88 93.97 89.92 17.14

16–20 1158 90.50 97.91 95.75 19.05 91.11 8.33 95.05 86.79 3.70

1–26 193108 96.79 98.03 99.27 78.21 98.50 57.25 98.05 97.95 67.34

We train the proposition-to-proof architecture on dataset Dt by stochastic
gradient descent with a mini-batch size of 1000 for 20 epochs.4 Weights in each
layer of the architecture are initialized by the values independently drawn from

the Gaussian distribution with mean 0 and standard deviation
√

1
n where n is

the number of dimensions of vectors in the input to the layer. The biases are
initialized with 0. We use the softmax cross entropy as the loss function. As an
optimizer, we use Adam [19] with parameters α = 0.001, β1 = 0.9, β2 = 0.999,
and ε = 10−8. We lower α, which controls the learning rate, by 10 times when
the training converges. We regularize our model by a weight decay with penalty
rate λ = 0.0001. The training takes 50 hours per epoch in our environment.

5.2 Evaluation

Accuracy. Table 1 shows the accuracy of the trained model on the validation
dataset Dv, that is, the ratio of the number of tuples (P ,Q , ρ, r) in Dv such
that the trained model estimates r successfully given P , Q , and ρ. The bottom
row in the table reports the summarized accuracy. It shows that the trained
model achieves 96.79% accuracy in total. Looking at results per inference rule,
we achieve the very high accuracy for Var, Abs, Pair, Left, and Right. It is
interesting that the trained model chooses either of Left or Right appropriately
according to problem instances. It means that, given proposition P +Q , the
proof-synthesis procedure combined with our trained model can predict which
of P and Q to be proved correctly with high probability. The accuracy for
App, CasePair, and CaseSum are not as high as that for the other rules. One
of the reasons for this relatively low accuracy for these rules seems to be the
characteristic of the dataset; the numbers of training data that involves App,
CasePair, and CaseSum are much smaller than those of the other rules.5 Since

4 Epoch is the unit that means how many times the dataset is scanned during the
training.

5 See the full version [30] for the detail. The low accuracy of these rules does not
influence the overall accuracy much because the validation dataset does not contain
many applications of them either.
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the model is trained so that inference rules that often occur in the training
dataset are more likely to be estimated in order to minimize the loss, the trained
model may prefer to choose inference rules other than App, CasePair, and
CaseSum. Furthermore, it may be possible that the training data for those
rules are insufficient to learn vector representation of the likelihood of them
being applied. In either case, data augmentation would be useful, though we
need to establish effective augmentation of proofs.

Our model is supposed to access the assumptions via the P and ρ. Since ρ
becomes larger as the position of the hole does deeper, the depth of the hole is
expected to affect the performance of the model. To evaluate how large the influ-
ence is, we measure the relation between accuracy and the depths of holes in the
validation data, which is shown in Table 1; see the full version for the complete
results. The column “All” shows that the accuracy at a greater depth tends to
be lower. The accuracy of Abs, Pair, Left, and Right is still high even if holes
are at deep positions. We consider that this is because, rather than assumptions,
proof obligations play an important role to choose those inference rules. By con-
trast, the accuracy of App, CasePair, and CaseSum decreases as the depth of
the holes becomes greater. This is because these rules need information about
assumptions to judge whether they should be applied. We expect that we can
improve the accuracy of these rules by improving the vector representation of
assumptions. The accuracy of Var is very high at any depth, though whether
we can apply Var should depend on assumptions. This may be due to the large
number of training data for Var (the detail is in the full version [30]), which may
make it possible to learn vector representations of assumptions only for Var.

To confirm the power of explicit use of proof obligations, we train a DNN
architecture that does not use the vector of a proof obligation in the same way
as Sect. 5.1. The total accuracy of the trained obligation-free model is 83.90%.
The accuracy per inference rule/depth is also lower than the proposition-to-proof
architecture that uses proof obligations explicitly; see the full version [30] for the
detail.

Proof Synthesis. We also conduct experiments to evaluate ProofSynthesize
(Procedure 1) executed with the trained proposition-to-proof model. We make
two test datasets for evaluation by choosing 500 propositions from Dv respec-
tively. One dataset Dsmall consists of propositions that have proofs whose sizes
are not larger than 9. The other dataset Dlarge includes propositions that are
generated at random so that the sizes of their proofs are larger than 9. We abort
the proof synthesis if a proof is not generated within three minutes. We use the
principal type [24] for a proof obligation that is required by ProofSynthesize.

We compare our procedure with an existing method of APS with deep learn-
ing by Sekiyama et al. [29]. They view proof generation as a machine-translation
task from a proposition language to a proof language and apply a so-called
sequence-to-sequence architecture [33], which is a popular network in DNN-based
machine translation, in order to produce a token sequence expected to be a proof
from a token sequence of a proposition. They find that, though the response
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Table 2. The evaluation result of the proof-synthesis procedures: Rows “Number of
successes” show the number of propositions to which correct proofs are generated; Rows
“Average time (sec.) in success” show the average of elapsed time spent for a successful
proof synthesis.

ProofSynthesize Sekiyama et al. [29]

Dsmall Number of successes 500 500

Average time (sec.) in success 0.45 1.85

Dlarge Number of successes 466 157

Average time (sec.) in success 4.56 29.03

from the sequence-to-sequence model may not be a proof of the proposition,
the response is often “close” to a correct proof and, based on this observation,
propose a proof-synthesis procedure that uses the response from the sequence-
to-sequence model as a guide of proof search. We train the sequence-to-sequence
model on Dt for 200 epochs in the same way as Sekiyama et al. and apply their
proof-synthesis procedure to propositions in Dsmall and Dlarge.

Table 2 shows the number of propositions for which the proof synthesis suc-
ceeds. This figure also shows the average of the elapsed times spent by the
procedure for the successful propositions. Both procedures succeed in generat-
ing proofs for all propositions in Dsmall, which indicates that they work well, at
least, for propositions that have small proofs. As for Dlarge, ProofSynthesize
successfully generates proofs for 93.2% of propositions in Dlarge, while the proce-
dure of Sekiyama et al. does for only 31.4%. Since ProofSynthesize calculates
the likelihood of a proof being a correct one by the joint probability of inference
rules in the proof, we can generate a correct proof even in a case that the like-
lihoods of a few instances of inference rules in the correct proof are estimated
to be low, if the likelihoods of other instances are to be high. By contrast, the
procedure of Sekiyama et al. uses only a single term as a guide, so it is hard to
recover the mistake of the estimation by the sequence-to-sequence model. This
would also lead to a difference of elapsed times taken by two proof-synthesis
procedures—the procedure of Sekiyama et al. takes four times and six times as
long as ProofSynthesize for propositions in Dsmall and Dlarge, respectively.

Finally, we remark the comparison of our DNN-based APS technique with
an existing theorem prover. For comparison, we evaluate PITPINV [1], a the-
orem prover for propositional intuitionistic logic that solves the highest num-
ber of problems of the ILTP [26], on Dsmall and Dlarge.6 PITPINV solves all
problems of Dsmall and Dlarge and the average times to solve one problem of
Dsmall and Dlarge is 0.0035 and 0.0038 seconds, respectively. PITPINV is faster
than our approach because, while our approach involves many expensive matrix
operations for use of neural networks, PITPINV exploits domain knowledge of

6 The source code is at http://www2.disco.unimib.it/fiorino/pitp.html; accessed on
26/8/2018.

http://www2.disco.unimib.it/fiorino/pitp.html
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intuitionistic theorem proving effectively. It is left as future work how to make
the DNN-based approach cooperate with these traditional methods.

6 Related Work

Application of deep learning to ATP is becoming in trend recently. Roughly
speaking, there have been two research directions for ATP with deep learning:
enhancing existing solvers with deep learning and implementing ATP procedures
using deep learning. We discuss these two lines of work in the following.

6.1 Enhancing Existing Provers

Existing automated theorem provers rely on many heuristics. Applying deep
learning to improve these hand-crafted heuristics, aiming at enhancing them, is
an interesting direction. Premise selection, a task to select premises needed to
prove a given conjecture, is an important heuristic to narrow the search space of
proofs. Irving et al. [16] show the possibility of the application of deep learning
to this area using various DNN models to encode premises and a conjecture to
be proved in first-order logic. Kaliszyk et al. [18] make a dataset in the HOL
Light theorem prover [13] for several tasks, including premise selection, related
to ATP. Wang et al. [35] tackles the premise selection problem in higher-order
logic. Their key idea is to regard logical formulas as graphs by connecting a
propositional variable to its binder, while the other work such as Irving et al.
[16] and Kaliszyk et al. [18] deals with them as token sequences. This idea allows
a DNN model to utilize structural information of formulas and be invariant to
names of bound variables.

Loos et al. [23] apply several off-the-shelf DNNs to guide clause selection
of a saturation-based first-order logic prover E [28]. Given a conjecture to be
proved, E generates a set of clauses from logical formulas including the negated
conjecture and investigates whether a contradiction is derivable by processing the
clauses one by one; if a contradiction is found, the conjecture holds; otherwise, it
does not. If E processes clauses that derive a contradiction early, the proof search
finishes in a small number of steps. Hence, clause selection is an important task
in saturation-based theorem provers including E. Loos et al. use DNNs to rank
clauses that are not processed yet and succeed in accelerating the proof search
by combining the DNN-guided clause selection with existing heuristics.

This direction of enhancing the existing provers is orthogonal to our present
work. Although our goal is to generate proofs directly with deep learning, rather
than focusing on specific subproblems that are important in theorem proving,
we expect (as we discussed in Sect. 3.2) that the combination of our approach
with these techniques is also beneficial to our technique.

6.2 Formula Proving

Solving the Boolean satisfiability (SAT) problem by encoding problem instances
into neural networks has been attempted in early days [17]. Recent work uses
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DNNs as a binary classifier of Boolean logical formulas. Bünz and Lamm [6]
represent a Boolean formula in conjunctive normal form (CNF) as a graph where
variable nodes are connected to nodes that represent disjunctive clauses referring
to the variables and apply a graph neural network [27] to classify the satisfiability
of the formula. Similarly NeuroSAT [31] regards CNF formulas as graphs, but
it adopts a message passing architecture and can often (not always) produce a
Boolean assignment, which makes it possible to check that the formula is truly
satisfied. Evans et al. [8] tackle the entailment problem in the propositional
logic, that is, whether a propositional conjecture can be proved under considered
assumptions. They also develop a new DNN architecture that classifies whether
a given entailment holds. These lines of work do not guarantee the correctness of
the solution. Our work, although the procedure may not terminate, guarantees
the correctness of the returned proof.

Sekiyama et al. [29] applied deep learning to proof synthesis. Their key idea
is that the task of proof synthesis can be seen as a translation task from propo-
sitions to proofs. Based on this idea, they use a sequence-to-sequence architec-
ture [33], which is widely used in machine translation with deep learning, in order
to translate a proposition to its proof. As shown in Sect. 2, our proposition-to-
proof model outperforms their model from the perspectives of (1) the number
of propositions that are successfully proved and (2) the time spent by the proof-
synthesis procedures.

7 Conclusion

We present an approach to applying deep learning to the APS problem. We
formulate the APS problem in terms of statistics so that we can quantify the
likelihood of a term being a correct proof of a proposition. From this formulation,
we show that this likelihood can be calculated by using the likelihood of an
inference rule being applied at a specified position in a proof, which enables us
to synthesize proofs gradually. To approximate this likelihood, we develop a DNN
that we call a proposition-to-proof architecture. Our DNN architecture encodes
the tree representation of a proposition and decodes it to estimate an inference
rule to be applied by using the proof obligation to be discharged effectively.

We train the DNN architecture on a dataset of automatically generated
proposition-proof pairs and confirmed that the trained model achieves 96.79%
accuracy in the inference-rule estimation, though there is still room for improve-
ment. We also develop a proof-synthesis procedure with the trained DNN model
and show that it can synthesize many proofs of a proposition faster compared
to the existing DNN-based proof-syntehsis work [29].
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Abstract. We investigate the complexity consequences of adding
pointer arithmetic to separation logic. Specifically, we study an extension
of the points-to fragment of symbolic-heap separation logic with sets of
simple “difference constraints” of the form x ≤ y + k, where x and y are
pointer variables and k is an integer offset. This extension can be con-
sidered a practically minimal language for separation logic with pointer
arithmetic.

Most significantly, we find that, even for this minimal language,
polynomial-time decidability is already impossible: satisfiability becomes
NP-complete, while quantifier-free entailment becomes coNP-complete
and quantified entailment becomes ΠP

2 -complete (where ΠP
2 is the sec-

ond class in the polynomial-time hierarchy).
However, the language does satisfy the small model property, mean-

ing that any satisfiable formula has a model, and any invalid entailment
has a countermodel, of polynomial size, whereas this property fails when
richer forms of arithmetical constraints are permitted.

Keywords: Separation logic · Pointer arithmetic · Complexity

1 Introduction

Separation logic (SL) [23] is a well-known and popular Hoare-style framework
for verifying the memory safety of heap-manipulating programs. Its power stems
from the use of separating conjunction in its assertion language, where A ∗ B
denotes a portion of memory that can be split into two disjoint fragments satisfy-
ing A and B respectively. Using separating conjunction, the frame rule becomes
sound [27], capturing the fact that any valid Hoare triple can be extended with
the same separate memory in its pre- and postconditions and remain valid, which
empowers the framework to scale to large programs (see e.g. [26]). Indeed, sepa-
ration logic now forms the basis for verification tools used in industrial practice,
notably Facebook’s Infer [8] and Microsoft’s SLAyer [3].

Most separation logic analyses and tools restrict the form of assertions to a
simple propositional structure known as symbolic heaps [2]. Symbolic heaps are
c© Springer Nature Switzerland AG 2018
S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 329–349, 2018.
https://doi.org/10.1007/978-3-030-02768-1_18
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(possibly existentially quantified) pairs of so-called “pure” and“spatial” asser-
tions, where pure assertions mention only equalities and disequalities between
variables and spatial formulas are ∗-conjoined lists of pointer formulas x �→ y and
data structure formulas typically describing (segments of) linked lists (lsx y) or
sometimes binary trees. This fragment of the logic enjoys decidability in poly-
nomial time [11] and is therefore highly suitable for use in large-scale analy-
sers. However, in recent years, various authors have investigated the computa-
tional complexity of (and/or developed prototype analysers for) many other frag-
ments employing various different assertion constructs, including user-defined
inductive predicates [1,5,7,10,18], pointers with fractional permissions [13,22],
arrays [6,19], separating implication (−−∗) [4,9], reachability predicates [14] and
arithmetic [20,21].

It is with this last feature, arithmetic, and more specifically pointer arith-
metic, with which we are concerned in this paper. Although most programming
languages do not allow the explicit use of pointer arithmetic (with the exception
of C, where it is nevertheless discouraged), it nevertheless occurs implicitly in
many programming situations, of which the most common are array indexing
and structure/union member selection. For example, a C expression like ptr[i]
implicitly generates an address expression of the form ptr+(sizeof(*ptr)*i).
Thus a program analysis performing bounds checking for C arrays or strings,
say, must account for such implicit pointer arithmetic. We therefore set out by
asking the following question: How much pointer arithmetic can one include in
separation logic and remain within polynomial time?

Unfortunately, and perhaps surprisingly, the answer turns out to be: essen-
tially none at all.

We study the complexity of symbolic-heap separation logic with points-to for-
mulas, but no other data structure predicates, when pure formulas are extended
by a minimal form of pointer arithmetic. Specifically, we permit only conjunc-
tions of “difference constraints” x ≤ y + k, where x and y are pointer variables
and k is an integer. We certainly do not claim that this fragment is appropriate
for practical program verification; clearly, lacking constructs for lists or other
data structures, and using only a very weak form of arithmetic, it will be insuf-
ficiently expressive for most purposes (although it might possibly be practical
e.g. for some concurrent programs that deal only with shared memory buffers
of a small fixed size). The point is that any practical fragment of separation
logic employing pointer arithmetic will almost inevitably include our minimal
language and thus inherit its computational lower bounds.

We establish precise complexity bounds for the satisfiability and entailment
problems, in both quantified and quantifier-free forms, for our SL with minimal
pointer arithmetic. Perhaps our most striking result is that the satisfiability prob-
lem is already NP-complete; the entailment problem becomes coNP-complete for
quantifier-free entailments, and ΠP

2 -complete for existentially quantified entail-
ments (where ΠP

2 is the second class in the polynomial-time hierarchy [25]).
However, the language does at least enjoy the small model property, meaning
that any satisfiable symbolic heap A has a model of size polynomial in A, and



On the Complexity of Pointer Arithmetic in Separation Logic 331

any invalid entailment A |= B has a countermodel of size polynomial in A and
B—a property that fails when richer forms of arithmetical constraints are per-
mitted in the language. In all cases, the lower bounds follow by reduction from
the 3-colourability problem or its 2-round variant [15]. The upper bounds are by
straightforward encodings into Presburger arithmetic, but the ΠP

2 upper bound
for quantified entailments is not trivial, as it requires us to show that all quanti-
fied variables in the resulting Presburger formula can be polynomially bounded;
this follows from the small model property.

The remainder of this paper is structured as follows. In Sect. 2 we define
symbolic-heap separation logic with minimal pointer arithmetic. Sections 3 and 4
study the satisfiability and quantifier-free entailment problems, respectively, for
this language, and Sects. 5 and 6 establish the lower and upper complexity
bounds, respectively, for the general entailment problem. Section 7 concludes.

2 Separation Logic with Minimal Pointer Arithmetic

Here, we introduce a minimal language for separation logic with pointer arith-
metic (SLMPA for short), a simple variant of the well-known “symbolic heap”
fragment over pointers [2].

Our choice of language is influenced primarily by the need to ‘balance’ the
arithmetical part of the language against the spatial part. To show lower com-
plexity bounds, we have to challenge the fact that Σ0

1 Presburger arithmetic is
already NP-hard by itself; thus, to reveal the true memory-related nature of the
problem, we restrict the language to a minimal form of pointer arithmetic, which
is simple enough that it can be processed in polynomial time. This leads us to
consider only conjunctions of “difference constraints”, of the form x = y + k
and x ≤ y + k where x and y are variables and k is an integer (even disequality
x �= y is not permitted). We write bold vector notation to denote sequences of
variables, e.g. x for x1, . . . , xn.

Definition 2.1 (Syntax). A symbolic heap is given by

∃z. Π : F

where z is a tuple of variables from an infinite set Var, and Π and F are respec-
tively pure and spatial formulas, defined along with terms t by:

t ::= x | x + k

Π ::= x = t | x ≤ t | Π ∧ Π

F ::= emp | t �→ t | t �→ nil | F ∗ F

where x ranges over Var and k over integers Z. If Π is empty in a symbolic heap
∃z. Π : F , we omit the colon. We sometimes abbreviate ∗-conjunctions of spatial
formulas using “big star” notation:
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∗n

i=1
Fi =def F1 ∗ . . . ∗ Fn,

which is interpreted as emp if n < 1.

In our SLMPA, the pure part of a symbolic heap is a conjunction of difference
constraints of the form x = y + k or x ≤ y + k, where x and y are variables, and
k is a fixed offset in Z (we disallow equalities of the form x = nil for technical
convenience). Thus x < y + k can be encoded as x ≤ y + (k − 1), x ≤ y − k
as x ≤ y + (−k) and x + k ≤ y as x ≤ y − k; however, note that unlike
the conventional symbolic heap fragment in [2], we cannot express disequality
x �= y. The satisfiability of such formulas can be decided in polynomial time;
see [12]. The crucial observation for polynomial-time decidability is:

Proposition 2.2. A ‘circular’ system of difference constraints x1 ≤ x2 +
k12, . . ., xm−1 ≤ xm + km−1,m, xm ≤ x1 + km,m+1 implies that x1 − x1 ≤∑m

i=1 ki,i+1, which is a contradiction iff the latter sum is negative.

Semantics. As usual, we interpret symbolic heaps in a stack-and-heap model
of the standard type, as given, e.g., in Reynolds’ seminal paper on separation
logic [23] (which similarly permits unrestricted pointer arithmetic). For conve-
nience we consider the addressable locations to be the set N of natural numbers,
and values to be either natural numbers or a non-addressable null value nil .
Thus a stack is a function s : Var → N ∪ {nil}. We extend stacks to terms by
s(nil) = nil and, insisting that any pointer-offset sum should always be non-
negative: s(x + k) = s(x) + k if s(x) + k ≥ 0, and undefined otherwise. If s is
a stack, z ∈ Var and v is a value, we write s[z �→ v] for the stack defined as s
except that s[z �→ v](z) = v. We extend stacks pointwise over term tuples.

A heap is a finite partial function h : N ⇀fin N∪{nil} mapping finitely many
locations to values; we write dom (h) for the domain of h, and e for the empty
heap that is undefined on all locations. We write ◦ for composition of domain-
disjoint heaps: if h1 and h2 are heaps, then h1 ◦ h2 is the union of h1 and h2

when dom (h1) and dom (h2) are disjoint, and undefined otherwise.

Definition 2.3. The satisfaction relation s, h |= A, where s is a stack, h a
heap and A a symbolic heap, is defined by structural induction on A.

s, h |= x = t ⇔ s(x) = s(t)
s, h |= x ≤ t ⇔ s(x) ≤ s(t)
s, h |= Π1 ∧ Π2 ⇔ s, h |= Π1 and s, h |= Π2

s, h |= emp ⇔ h = e
s, h |= t1 �→ t2 ⇔ dom (h) = {s(t1)} and h(s(t1)) = s(t2)
s, h |= F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

s, h |= ∃z. Π : F ⇔ ∃m ∈ N
|z|. s[z �→ m], h |= Π and s[z �→ m], h |= F

We remark that the satisfaction of pure formulas Π does not depend on the heap,
which justifies writing s |= Π rather than s, h |= Π.
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Remark 2.4. Although our language allows unbounded integer offsets k to be
added to pointer variables, we would have exactly the same expressivity even if
offsets were restricted to 1 and −1. Namely, a difference constraint x ≤ y +k for
k > 0 can be encoded by introducing k auxiliary variables and k equalities:

z1 = y + 1 ∧ z2 = z1 + 1 ∧ . . . ∧ zk = zk−1 + 1 ∧ x ≤ zk.

3 Satisfiability and the Small Model Property

In this section we investigate the satisfiability problem for our SLMPA, defined
formally as follows:

Satisfiability Problem for SLMPA. Given a symbolic heap A, decide whether
there is a stack s and heap h with s, h |= A.

(Without loss of generality, we may consider A to be quantifier-free in the
above problem, because A and ∃z.A are equisatisfiable.)

We establish three main results about this problem: (a) an NP upper bound;
(b) an NP lower bound; and (c) the small model property, meaning that any
satisfiable formula has a model of polynomial size.

In fact, the NP upper bound is fairly trivial; there is a simple encoding of the
satisfiability problem into Σ0

1 Presburger arithmetic (as is also done for a more
complicated array separation logic in [6]). Nevertheless, we include the details
here, since they will be useful in setting up later results.

Definition 3.1. Presburger arithmetic (PbA) is defined as the first-order theory
of the natural numbers N over the signature 〈0, s,+,=〉, where s is the successor
function, and 0,+,= have their usual interpretations. The relations �=, ≤ and <
can be straightforwardly encoded (possibly introducing an existential quantifier).

Note that a stack is just a first-order valuation, and a pure formula in SLMPA

is also a formula of PbA, with exactly the same interpretation. Thus we overload
|= to include the standard first-order satisfaction relation of PbA.

Definition 3.2. Let A be a quantifier-free symbolic heap, of the general form

Π :∗m

i=1
ti �→ ui.

We define a corresponding PbA formula γA by enriching the pure part Π with
the constraints that the allocated addresses ti must be distinct:

γA =def Π ∧ ∧
1≤i<j≤m ti �= tj .

The above γA can be easily rewritten as a Boolean combination of elementary
formulas of the form x ≤ y + k where the ‘offset’ k is an integer.

Lemma 3.3. For any symbolic heap A in SLMPA, we have

(∃h. s, h |= A) ⇔ s |= γA.
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Proof. We assume A of the general form given by Definition 3.2.

(⇒) By assumption, we have s |= Π and dom (h) = {s(t1), . . . , s(tm)}, which
implies that all the ti are distinct. Hence s |= γA as required.

(⇐) By assumption, we have s |= Π and all of s(t1), . . . , s(tm) are distinct.
Hence, defining a heap h by dom (h) = {s(t1), . . . , s(tm)} and h(s(ti)) = ui for
each i, we have s, h |= A as required.

Proposition 3.4. Satisfiability for SLMPA is in NP.

Proof. Follows from Lemma 3.3 and the fact that satisfiability for quantifier-free
Presburger arithmetic belongs to NP [24].

Next, we tackle the lower bound. Satisfiability is shown NP-hard by reduction
from the 3-colourability problem [15].

3-Colourability Problem. Given an undirected graph with n ≥ 4 vertices,
decide whether there is a “perfect” 3-colouring of the vertices, such that no two
adjacent vertices share the same colour.

Definition 3.5. Let G = (V,E) be a graph with n vertices v1, . . . , vn. We encode
a perfect 3-colouring of G with the following symbolic heap AG.

First, we introduce n variables c1, . . . , cn to represent the colour (1, 2, or 3)
assigned to each vertex. The fact that no two adjacent vertices vi and vj share
the same colour will be encoded by allocating two cells with base address eij ∈ N

and offsets ci and cj respectively in AG. To ensure that all such pairs of cells
are disjoint, the base addresses eij are defined by:

eij = i · n2 + j · n (1 ≤ i < j ≤ n) (1)

We then define AG to be the following quantifier-free symbolic heap:
∧n

i=1(a + 1 ≤ ci ∧ ci ≤ a + 3): ∗(vi,vj)∈E
(ci + eij �→ nil ∗ cj + eij �→ nil)

where a is a “dummy” variable (ensuring that AG adheres to the strict formatting
of pure assertions in SLMPA).

The relevant fact concerning our definition of the base addresses eij in Defi-
nition 3.5 is the following.

Proposition 3.6. For distinct pairs of numbers (i, j) and (i′, j′), with 1 ≤
i, i′, j, j′ ≤ n, we have |ei′,j′ − eij | ≥ n.

Although for the present purposes we could have used a simpler definition of
the eij , such that they are all spaced 4 cells apart, the definition by Eq. (1) is
convenient as it will be re-used later on; see Definition 5.1.

Lemma 3.7. Let G be an instance of the 3-colouring problem. Then AG from
Definition 3.5 is satisfiable iff there is a perfect 3-colouring of G.
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Proof. Let G = (V,E) have vertices v1, . . . , vn, where n ≥ 4.

(⇐) Suppose G has a perfect 3-colouring given by assigning a colour bi to each
vertex vi, with each bi ∈ {1, 2, 3}. We define a stack s by s(a) = 0 and s(ci) = bi

for each 1 ≤ i ≤ n. Note that since bi ∈ {1, 2, 3} we have s(a + 1) ≤ s(ci) ≤
s(a + 3) for each i, and so s satisfies the pure part of AG. Now define heap h by

dom (h) =def

⋃
(vi,vj)∈E ({s(ci) + eij} ∪ {s(cj) + eij})

and h(�) = nil for all � ∈ dom (h). Clearly, by construction, s, h |= AG pro-
vided that none of the singleton sets involved in the definition of dom (h) are
overlapping.

Since we have a perfect 3-colouring of G, for any edge (vi, vj) ∈ E we have
s(ci) �= s(cj), so the subsets {s(ci) + eij} and {s(cj) + eij} of dom (h) do not
overlap. Furthermore, by Proposition 3.6, for any two distinct edges (vi, vj) and
(vi′ , vj′) in E, the base addresses eij and ei′j′ are at least 4 cells apart (because
n ≥ 4). Since 1 ≤ s(ci) ≤ 3 for any i, we cannot have s(ci) + eij = s(ci′) + ei′j′

either. Thus all involved singleton sets are non-overlapping as required.

(⇒) Supposing that s, h |= AG, we define a 3-colouring of G by bi = s(ci)−s(a)
for each 1 ≤ i ≤ n. Since s |= a + 1 ≤ ci ∧ ci ≤ a + 3 by assumption, we have
bi ∈ {1, 2, 3} for each i, so this is indeed a 3-colouring. To see that it is a perfect
3-colouring, let (vi, vj) ∈ E. By construction, we have that s, h′ |= ci + eij �→
nil ∗ cj + eij �→ nil for some subheap h′ of h. Using the definition of ∗, this means
that s(ci) + eij �= s(cj) + eij , i.e. s(ci) �= s(cj), and so bi �= bj as required.

In fact, given a graph G with m edges, one can see that the proof above still
works by taking the numbers eij to be {0, 4, 8, . . . , 4(m−1)}. Thus Definition 3.5
encodes the 3-colouring problem for G inside a heap region of size roughly 4m,
i.e., only a linear size expansion.

Theorem 3.8. Satisfiability for SLMPA is NP-hard.

Proof. From Lemma 3.7 and the fact that 3-colourability is NP-hard [15].

Corollary 3.9. Satisfiability in SLMPA is NP-complete.

Proof. From Proposition 3.4 and Theorem 3.8.

Finally, we tackle the small model property for SLMPA; that is, any satisfiable
formula A has a model (s, h) of size polynomial w.r.t. A (see e.g. [1]). Note that,
by “size”, we do not mean here the number of allocated cells in h (since clearly
any model of A only allocates as many cells as there are �→-assertions in A) but
the sizes of the addresses and/or values involved in their definition. Indeed, this
property breaks if we increase the expressivity of our system only slightly.

Remark 3.10. The small model property fails if we allow our symbolic heaps to
contain constraints of the form x ≤ y ± z where x, y and z are all variables. In
that case, we could define, e.g.,

An =def

∧n−1
i=0 xi+1 > xi + xi : ∗n

i=1
xi �→ nil
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(Note that the constraint xi+1 > xi + xi can be expressed in our syntax, e.g.,
as xi ≤ xi+1 − yi ∧ yi = xi + 1.) Then, for any model (s, h) of An, and for any
i < n, we have that s(xi+1) > 2s(xi), which implies s(xi+1) > 2i+1. Thus, (the
distances between) at least half the addresses in h must be of exponential size.

In order to prove the small model property for our SLMPA, we need a more
workable specification of γA:

Definition 3.11. Given a symbolic heap A, we rewrite the Presburger formula
γA by replacing every formula x = y + k by x ≤ y + k ∧ y ≤ x − k, and every
formula ti �= tj by ti ≤ tj − 1 ∨ tj ≤ ti − 1. Then γA can be viewed as

γA ≡ fA(Z1, Z2, . . . , Zm) (2)

where fA(z1, z2, . . . , zm) is a Boolean function, and within (2) the Boolean vari-
able zi is substituted with a difference constraint Zi of the form xi ≤ yi + ki

(where ki is an integer).

Proposition 3.12. Any model s of γA for a symbolic heap A can be conceived
of as a non-negative integer solution to the system γA,ζ̄ given by

Z1 ≡ ζ1, . . . , Zm ≡ ζm (3)

where (ζ1, . . . , ζm) is a tuple of Boolean values (� or ⊥) with fA(ζ1, . . . , ζm) = �,
where fA(Z1, . . . , Zm) is γA as a Boolean function over difference constraints,
as in Definition 3.11.

Proof. Rewriting γA as fA(Z1, . . . , Zm) as in Definition 3.11, we can evaluate
each difference constraint Zi as � or ⊥ under s, which gives an appropriate
value for each ζi such that s is a solution to (3). Clearly, fA(ζ1, . . . , ζm) = �.

Conversely, given a non-negative solution to (3), we can view this solution as
a stack s and observe that, since fA(ζ1, . . . , ζm) = �, we have s |= γA.

Definition 3.13. Given a model (s, h) for symbolic heap A, we further encode
the equation system γA,ζ̄ (3) in Proposition 3.12 as a constraint graph GA,ζ̄ ,
constructed as follows.

– For each variable x in γA,ζ̄ , we will associate a vertex x̂;

– An equation of the form (x ≤ y + k) ≡ � in (3) is encoded as an edge from
ŷ to x̂ labelled by k: ŷ

k−→ x̂.

– An equation of the form (x ≤ y + k) ≡ ⊥ in (3), meaning that y ≤ x − k − 1,
is encoded as an edge from x̂ to ŷ labelled by (−k − 1): x̂

−k−1−→ ŷ.

– Finally, to provide the connectivity we need for models, we always add, if
necessary, a “maximum node” x̂0, with the constraint xi ≤ x0, i.e. edges
x̂0

0−→ x̂i, for all xi.



On the Complexity of Pointer Arithmetic in Separation Logic 337

Example 3.14. Let A be the symbolic heap y ≤ x : x �→ nil ∗ y �→ nil. We have:

γA = (y ≤ x) ∧ ((x ≤ y − 1) ∨ (y ≤ x − 1)).

Following Definition 3.11, we can view γA as fA(Z0, Z1, Z2), where fA(z0, z1, z2)
is the Boolean function z0 ∧ (z1 ∨ z2), and Z0 = (y ≤ x), Z1 = (x ≤ y − 1) and
Z2 = (y ≤ x − 1) are difference constraints.

Since Z1 and Z2 are mutually exclusive, there are essentially two Boolean
vectors ζ̄ = ζ0, ζ1, ζ2 such that fA(ζ̄) = �:

(a) ζ̄ = �,�,⊥, giving us difference constraints γ1 =def (y ≤ x) ∧ (x ≤ y − 1).
(b) ζ̄ = �,⊥,�, giving us difference constraints γ2 =def (y ≤ x) ∧ (y ≤ x − 1).

Figure 1 shows the respective constraint graphs for γ1 and γ2. Notice that,
because of y ≤ x, the node x̂ is a “maximum node” in both cases, and so we do
not need to add one.

In the case of (a), we have no solution. Namely, there is a negative cycle of
the form x̂

0−→ ŷ
−1−→ x̂ , which encodes the contradictory x ≤ x − 1.

In the case of (b), the minimal weighted path from x̂ to ŷ has weight −1,
which guarantees that y = x − 1 is a model for γA and thereby for A.

Fig. 1. The constraint graphs for γ1 and γ2 from Example 3.14.

Theorem 3.15 (Small model property). Let A be a satisfiable symbolic heap
in minimal pointer arithmetic. Then we can find a model (s, h) for A in which
all values are bounded by M =

∑
i(|ki|+1), where ki ranges over all occurrences

of integers in A.

Proof. According to Proposition 3.12, there is a Boolean vector ζ̄ = ζ1, ζ2, . . . , ζm

such that the corresponding system, γA,ζ̄ , has a solution. Hence, the associated
constraint graph GA,ζ̄ has no negative cycles (see Proposition 2.2).

We define our small model with the following mapping s over all variables xi

in A, such that s |= γA. First we define s(x0) = M for the “maximum node” x̂0.
Then, s(xi) is defined as M + di, where di is the minimal weighted path from x̂0

to x̂i; this is well-defined since GA,ζ̄ has no negative-weight cycles. Note that di

can never be positive, as there is always, trivially, a path from x̂0 to x̂i of weight
0 by construction. Thus s is indeed “small”. To see that it is a model of γA,ζ̄ ,
consider e.g. the difference constraint x ≤ y + k; thus there is an edge from ŷ to
x̂ with weight k in the graph, and so dx cannot be greater than dy + k, meaning
s(x) ≤ s(y) + k. Hence s satisfies γA,ζ̄ and, by Proposition 3.12, s |= γA. Thus
by Lemma 3.3 there is an h such that s, h |= A; note that h only uses values
given by s(xi) and thus is also “small’.



338 J. Brotherston and M. Kanovich

Remark 3.16. In addition, the corresponding polytime sub-procedures are the
shortest path procedures with negative weights allowed (e.g., the Bellman-Ford
algorithm), which provides polynomials of low degrees.

4 Quantifier-Free Entailment

We now turn to the entailment problem for our SLMPA, given as follows:

Entailment in SLMPA. Given symbolic heaps A and B, decide whether s, h |= A
implies s, h |= B for all stacks s and heaps h (we say A |= B is valid).

Without loss of generality, A may be assumed quantifier-free, and any quan-
tified variables in B assumed disjoint from the free variables in A and B.

In this section, we focus on the case of (entirely) quantifier-free entailments,
for which we establish both an upper and a lower bound of coNP.

Definition 4.1. Let A |= B be an SLMPA entailment, where A and B are sym-
bolic heaps of the form

A = ΠA : ∗�

i=1
ti �→ t′i and B = ∃y.ΠB : ∗�′

j=1
uj �→ u′

j

We define a corresponding PbA formula εA,B by:

γA → ∃y (
γB ∧ ∧

i

∨
j(ti = uj ∧ t′i = u′

j) ∧ ∧
j

∨
i(uj = ti ∧ u′

j = t′i)
)

(4)

where γ− is given by Definition 3.2.

Lemma 4.2. For any SLMPA entailment A |= B and stack s, we have

(∃h. s, h |= A implies s, h |= B) ⇔ s |= εA,B .

Proof. We assume A and B of the general form given by Definition 4.1, and
assume w.l.o.g. that y is disjoint from all free variables in A and B. We write
qf(B) for the quantifier-free part of B.

(⇒) Assume that s |= γA, the antecedent of (4). By Lemma 3.3 we have h with
s, h |= A. By assumption, s, h |= B; i.e., for some values v with |v| = |y|, and
defining s′ = s[y �→ v], we have s′, h |= qf(B). Thus s′ |= γB by Lemma 3.3, and
dom (h) = {s′(u1), . . . , s′(u�′)} (all of which are disjoint), with h(s′(uj)) = s′(u′

j)
for each 1 ≤ j ≤ �′. Since no variable in y occurs in A and s, h |= A, we
also have s′, h |= A, and so dom (h) = {s′(t1), . . . , s′(t�)} (all disjoint), with
h(s′(ti)) = s′(t′i) for each 1 ≤ i ≤ �. Thus �′ = � and each pair (s′(ti), s′(t′i)) is
equal to some pair (s′(uj), s′(u′

j)). Thus s′ satisfies the quantifier-free consequent
of (4), meaning that s satisfies the entire consequent, as required.

(⇐) Suppose that s, h |= A for some heap h. We have s |= γA by Lemma 3.3, so,
for some s′ = s[y �→ v], we have that s′ satisfies the quantifier-free consequent
of (4). That is, s′ |= γB , so that s′, h′ |= qf(B) for some h′ by Lemma 3.3.
Moreover, for each pair (s′(ti), s′(t′i)) with 1 ≤ i ≤ �, there is an equal pair
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(s′(uj), s′(u′
j)) with 1 ≤ j ≤ �′, and vice versa. Now, since no variable in y occurs

in A and s, h |= A, we also have s′, h |= A, and so dom (h) = {s′(t1), . . . , s′(t�)}
(all disjoint), with h(s′(ti)) = s′(t′i) for each 1 ≤ i ≤ �. Simultaneously,
since s′, h′ |= qf(B), we have dom (h′) {s′(u1), . . . , s′(u�′)} (all disjoint), with
h′(s′(uj)) = s′(u′

j) for each 1 ≤ j ≤ �′. Thus �′ = � and, because of the iso-
morphism between the pairs (s′(ti), s′(t′i)) and (s′(uj), s′(u′

j)), we deduce that
in fact h′ = h. Thus s′, h |= qf(B) and so s, h |= B, as required.

As an immediate consequence of Lemma 4.2, the general entailment problem
for SLMPA is in Π0

2 Presburger arithmetic, which corresponds to ΠEXP
1 in the

exponential-time hierarchy [17]. However, as it turns out, this bound is exponen-
tially overstated; as we show in Theorem 6.7, the problem also belongs to the
much smaller class ΠP

2 , the second class in the polynomial time hierarchy [25].
The crucial difference between Presburger Π0

2 and polynomial ΠP
2 is that, in the

latter, all variables must be polynomially bounded.
However, the construction above does yield an optimal upper bound for the

quantifier-free version of the problem.

Theorem 4.3. The quantifier-free entailment problem for SLMPA is in coNP.

Proof. According to Lemma 4.2, deciding whether A |= B is valid is equivalent
to deciding whether the PbA formula ∀x. εA,B is valid (where x is the set of all
free variables in A and B). Although the latter is in general a Π0

2 formula, it
becomes a Π0

1 formula when B is quantifier-free; the validity of such formulas
can be decided in coNP time.

We now turn to the small model property. We note that this property
is sensitive to the exact form of our arithmetical constraints, and, similar to
Remark 3.10, it fails when we allow the addition of two pointer variables.

Theorem 4.4 (Small model property). Suppose that the quantifier-free
entailment A |= B is not valid. Then we can find a counter-model (s, h) such that
(s, h) |= A but (s, h) � |= B, in which all values are bounded by M =

∑
i(|ki|+1),

where ki ranges over all occurrences of numbers in A and B.

Proof. (Sketch) The proof follows the structure of the small model property for
satisfiability (Theorem 3.15), noting first that we can rewrite the PbA formula
∀x. εA,B as a Π0

2 Boolean combination of difference constraints x ≤ y+k, similar
to Definition 3.11.

As for the coNP lower bound, we use a construction similar to Definition 3.5,
based on the complement of 3-colourability.

Definition 4.5. Given a graph G with n vertices, and reusing notation from
Definition 3.5, we introduce a satisfiable symbolic heap A′

G by:
∧n

i=1(a + 1 ≤ ci ∧ ci ≤ d) : ∗(vi,vj)∈E
ci + eij �→ nil ∗ cj + eij �→ nil

and a satisfiable symbolic heap B′
G by d ≥ a + 4 : A′

G.
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Lemma 4.6. Let G be an instance of the 3-colouring problem, and let A′
G and

B′
G be given by Definition 4.5 above. Then A′

G |= B′
G is not valid iff there is a

perfect 3-colouring of G.

Proof. Let G = (V,E) have n vertices v1, . . . , vn, where n ≥ 4.

(⇐) Suppose G has a perfect 3-colouring given by assigning colours bi ∈ {1, 2, 3}
to vertices vi. By the argument in the (⇐) case of the proof of Lemma 3.7, if we
define s(a) = 0, s(ci) = bi and (new here) s(d) = 3 then there is a heap h such
that s, h |= A′

G. However, we do not have s, h |= B′
G because s �|= d ≥ a + 4.

Thus A′
G |= B′

G is not valid, as required.

(⇒) Conversely, suppose s, h |= A′
G but s, h �|= B′

G for some (s, h). By con-
struction of B′

G, this implies that s �|= a ≤ d − 4, which implies s(d) ≤ s(a) + 3.
We can then use this fact together with the fact that s, h |= A′

G to obtain a
3-colouring of G exactly as in the (⇒) case of the proof of Lemma 3.7.

Theorem 4.7. The quantifier-free entailment problem for SLMPA is coNP-hard,
even when both symbolic heaps are satisfiable.

Proof. Lemma 4.6 gives a reduction from the complement of the 3-colourability
problem, which is coNP-hard, using only satisfiable symbolic heaps.

Corollary 4.8. The quantifier-free entailment problem for SLMPA is coNP-
complete (even when both symbolic heaps are satisfiable).

Proof. Theorems 4.3 and 4.7 give the upper and lower bounds respectively.

5 Quantified Entailment: ΠP
2 Lower Bound

In this section, and the following one, we investigate the general form of the
entailment problem A |= B for our SLMPA, where B may contain existential
quantifiers. Here, we establish a lower bound for this problem of ΠP

2 in the
polynomial-time hierarchy (see [25]); in the next section we shall establish an
identical upper bound.

To prove ΠP
2 -hardness, we build a reduction from the so-called 2-round ver-

sion of the 3-colourability problem, defined as follows.

2-Round 3-Colourability Problem. Let G = (V,E) be an undirected graph
with n ≥ 4 vertices and k leaves (vertices of degree 1). The problem is to decide
whether every 3-colouring of the leaves can be extended to a perfect 3-colouring
of the entire graph, such that no two adjacent vertices share the same colour.

Definition 5.1 Let G = (V,E) be an instance graph with n vertices and
k leaves. In addition to the variables ci and a and the numbers eij which we
reuse from Definition 3.5, to each edge (vi, vj) we also associate a new variable
c̃ij, representing the colour “complementary” to ci and cj.

To encode the fact that no two adjacent vertices vi and vj share the same
colour, we shall use ci, cj, and c̃ij as the addresses, relative to the base-offset
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eij, for three consecutive cells within a memory chunk of length 3, which forces
ci, cj, and c̃ij to form a permutation of (1, 2, 3).
Formally, we define A′′

G to be the following quantifier-free symbolic heap:

∧k
i=1(a + 1 ≤ ci ∧ ci ≤ a + 3): ∗�∈{1,2,3}

(vi,vj)∈E
a + (eij + �) �→ nil

and B′′
G to be the following quantified symbolic heap:

∃z. ∧n
i=1 (a + 1 ≤ ci ≤ a + 3) ∧ ∧

(vi,vj)∈E (a + 1 ≤ c̃ij ≤ a + 3) :∗(vi,vj)∈E
ci + eij �→ nil ∗ cj + eij �→ nil ∗ c̃ij + eij �→ nil (5)

where the existentially quantified variables z are all variables occurring in B′′
G

that are not mentioned explicitly in A′′
G; namely, the variables ci for k+1 ≤ i ≤ n,

and the “complementary colour” variables c̃ij. Note that both A′′
G and B′′

G are
satisfiable.

Lemma 5.2. Let G be an instance of the 2-round 3-colouring problem, and let
A′′

G and B′′
G be given by Definition 5.1 above. Then A′′

G |= B′′
G is valid iff there

is a perfect 3-colouring of G given any 3-colouring of its leaves.

Proof. Let G = (V,E) have vertices v1, . . . , vn of which the first k are leaves.
We assume n ≥ 4.

(⇐) Let (s, h) be a stack-heap pair satisfying s, h |= A′′
G; we have to show that

s, h |= B′′
G. The spatial part of A′′

G yields

dom (h) =
⋃ �=1,2,3

(vi,vj)∈E { s(a) + eij + � } (6)

where these locations are all disjoint (and h maps each of them to nil); further-
more, s(a) + 1 ≤ s(ci) ≤ s(a) + 3 for each 1 ≤ i ≤ k. Take the 3-colouring of
the leaves obtained by assigning colours bi = s(ci) − s(a) to each of the leaves
v1, . . . , vk. According to the winning strategy, we can assign colours bi to the
remaining vertices vk+1, . . . , vn, obtaining a 3-colouring of the whole G such
that no two adjacent vertices share the same colour. In addition, we mark each
edge (vi, vj) by b̃ij , the colour complementary to bi and bj .

We extend the stack s to interpret the existentially quantified variables in B′′
G

as follows:
s(ci) = s(a) + bi for each k + 1 ≤ i ≤ n

s(c̃ij) = s(a) + 6 − bi − bj for each (vi, vj) ∈ E

The fact that no adjacent vertices vi and vj share the same colour means that

(s(ci), s(cj), s(c̃ij)) is a permutation of (s(a) + 1, s(a) + 2, s(a) + 3),

and, as a result, (s, h) is also a model for B′′
G; in particular,

s, h |= ∗
(vi,vj)∈E

s(ci) + eij �→ nil ∗ s(cj) + eij �→ nil ∗ s(c̃ij) + eij �→ nil. (7)
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(⇒) As for the opposite direction, let A′′
G |= B′′

G. Since A′′
G is satisfiable, there

is a model (s, h) for A′′
G so that, in particular, h satisfies (6).

We will construct the required winning strategy in the following way. Assume
a 3-colouring of the leaves is given by assigning colours bi to the leaves v1, . . . , vk.
We modify our original s to a stack s′ by defining s′(ci) = s(a) + bi for each
1 ≤ i ≤ k. This does not change the heap h, but provides

s(a) + 1 ≤ s′(ci) ≤ s(a) + 3 for each 1 ≤ i ≤ k.

It is clear that the modified (s′, h) is still a model for A′′
G, and, hence, a model

for B′′
G. Then for some stack sB , an extension of s′ to the existentially quantified

variables in B, we get sB, h |= B′′
G.

For each 1 ≤ i ≤ k, we have sB(ci) = s′(ci) = sB(a) + bi, which means
that these sB(ci) represent correctly the original 3-colouring of the leaves. By
assigning the colours bi = sB(ci) − sB(a) to each of the remaining vertices
vk+1, . . . , vn, we obtain a 3-colouring of the whole G.

The spatial part of B′′
G, cf. (7), provides that sB(ci) �= sB(cj), which implies

that no adjacent vertices vi and vj can share the same colours bi and bj . This
means that we have a perfect 3-colouring of G, as required.

Theorem 5.3. The general entailment problem for SLMPA is ΠP
2 -hard, even

when both symbolic heaps are satisfiable.

Proof. Definition 5.1 and Lemma 5.2 give a reduction from the 2-round 3-
colourability problem, which is ΠP

2 -hard [15].

6 Quantified Entailment: ΠP
2 Upper Bound

Following the ΠP
2 lower bound for quantified entailments in SLMPA given in

the previous section, we show here that the upper bound is also ΠP
2 , as well

as establishing the small model property. Indeed, we shall see that the former
result follows from the latter one.

Theorem 6.1 (Small model property). Suppose that A |= B, encoded as
εA,B in Definition 4.1, is not valid. Let x1, . . . , xn be the free variables in A and
B, and let y1, . . . , ym be the existentially quantified variables in B.

Then we can find a counter-model (s, h) such that s, h |= A but s, h �|= B,
in which all values of s(xi) are bounded by (n + 1) · M and all values of s(yj) by
(n + m + 2) · M , where M =

∑
i(|ki| + 1), with ki ranging over all occurrences

of ‘offset’ integers in A and B.

Proof Sketch. Let (s, h) be a counter-model for A |= B. For convenience (but
without loss of generality) we assume that s orders the variables as follows:
s(x1) = 0, and s(x1) < s(x2) < · · · < s(xn), and s(xn) ≤ s(ym), and, for all yj ,
s(x1) ≤ s(yj) ≤ s(ym). In particular, note that x1 is a “zero” variable and ym

a“maximum” variable under the valuation s.
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Note that, being a model for A, (s, h) is fully determined by the system:

γA,s =
∧n−1

i=1 (xi+1 = xi + di,i+1) (8)

where for all 1 ≤ i < j ≤ n, the dij is defined as: dij = s(xj) − s(xi).
Following Proposition 3.12, the fact that s, h �|= B means that for a cer-

tain Boolean function fA,B , whatever Boolean vector ζ̄ = ζ1, .., ζ� such that
fA,B(ζ1, .., ζ�) = � we take, the following system, GA,B,s,ζ̄ , has no integer solu-
tion for fixed s(x1), .., s(xn) given by γA,s from (8):

GA,B,s,ζ̄ = γA,s ∧ Z1 ≡ ζ1 ∧ · · · ∧ Z� ≡ ζ� (9)

This constraint system can be seen as a graph, in exactly the same way as is
done in Definition 3.13.

Example 6.2 (A running example). Let A and B be the following symbolic heaps:

A : x1 < x2 < x3 < x4 : x1 �→ nil ∗ x4 �→ nil
B : ∃y1∃y4. x2 ≤ y1 − 3 ∧ x3 ≤ y4 + 7: y1 �→ nil ∗ y4 �→ nil

As a ‘large’ counter-model for A |= B, we take (s, h), where s is defined by
⎧
⎨

⎩

s(x2) = s(x1) + 3D,
s(x3) = s(x2) + 2,
s(x4) = s(x3) + D,

where D is a very large number (say 21024). To show that (s, h) is not a model
for B, the spatial parts provide two cases to be considered: y1 = x1 ∧ y4 = x4

and y1 = x4 ∧ y4 = x1.

(a) In case of y1 = x1 ∧ y4 = x4, the corresponding system GA,B,s,ζ̄ in (9) has
no solution, e.g., because of the negative cycle:

x̂1
0−→ ŷ1

−3−→ x̂2
−3D−→ x̂1 (10)

(b) In case of y1 = x4 ∧ y4 = x1, the corresponding system GA,B,s,ζ̄ in (9) has
no solution, e.g., because of the negative cycle:

x̂4
0−→ ŷ1

−3−→ x̂2
−3D−→ x̂1

0−→ ŷ4
7−→ x̂3

D−→ x̂4 (11)

The intuitive idea of constructing a small counter-model is as follows.

Definition 6.3. Given a ‘large’ counter-model (s, h) and a small M , we con-
struct a small counter-model (s′, h′) by simply replacing all large gaps di,i+1 in
(8) with M , as follows:

s′(xi+1) :=
{

s′(xi) + di,i+1, if di,i+1 ≤ M
s′(xi) + M, otherwise

(The heap h′ is then obtained simply by updating h to use values given by s′

rather than s, in the evident way.)
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Lemma 6.4. We can check that (s′, h′) is still a model for A.

A real challenge is to prove that our (s′, h′) is not a model for B.

Example 6.5 (continuing Example 6.2). To show that s′, h′ �|= B, we have two
cases to be considered: y1 = x1 ∧ y4 = x4, and y1 = x4 ∧ y4 = x1.

(a) In case of y1 = x1 ∧ y4 = x4, the updated GA,B,s′,ζ̄ has no solution. E.g.,
by replacing the large 3D in the negative cycle (10) with our modest M , we
get a negative cycle in terms of (s′, h′):

x̂1
0−→ ŷ1

−3−→ x̂2
−M−→ x̂1

(b) In case of y1 = x4 ∧ y4 = x1, however, the same strategy fails. Namely, by
replacing the large D and 3D in the negative cycle (11) with M , we get a
cycle in terms of (s′, h′):

x̂4
0−→ ŷ1

−3−→ x̂2
−M−→ x̂1

0−→ ŷ4
7−→ x̂3

M−→ x̂4

but now with positive weight.

The challenge to our construction can be resolved by the following lemma.

Lemma 6.6. Having got a negative cycle C for (9), we can extract a smaller
negative cycle which is good for (s′, h′) as well.

Proof. (Sketch) We introduce the following reductions on negative cycles C. We
write x̂j

σ=⇒Y x̂i to denote a subpath of C from x̂j to x̂i with total weight σ
and whose intermediate nodes are all of the form ŷk. Then, assuming i < j, we
distinguish two cases:

Case: C contains x̂j
σ=⇒Y x̂i. We note that dij > 0, because s(xj) > s(xi) by

assumption. We distinguish two subcases:

Subcase (a1): −dij ≤ σ. In this subcase, we replace the above path with the

single labelled edge x̂j
−dij−→ x̂i, which ensures that the updated C still has negative

weight, but now also contains fewer nodes of the form ŷk.
E.g., within Example 6.5, replacing x̂4

0−→ ŷ1
−3−→ x̂2, the cycle (11) can be

transformed into the negative cycle:

x̂4
−D−2−→ x̂2

−3D−→ x̂1
0−→ ŷ4

7−→ x̂3
D−→ x̂4 (12)

Subcase (a2): −dij > σ. We identify the negative cycle:

x̂j
σ=⇒Y x̂i

dij−→ x̂j

Since dij < −σ ≤ M , we have d′
ij = dij , and hence this smaller negative cycle is

good for (s′, h′) as well. This completes the case.
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Case: C contains x̂i
σ=⇒Y x̂j . In that case, dij < 0, again because s(xj) > s(xi),

and we again distinguish two subcases:

Subcase (b1): dij ≤ σ. In this subcase, we replace this path with the edge x̂i
dij−→

x̂j , which ensures that the updated C remains negative, but has fewer nodes of
the form ŷk.

Subcase (b2): dij > σ. We identify the negative cycle:

x̂i
σ=⇒Y x̂j

−dij−→ x̂i

If dk,k+1 ≤ M for all k such that i ≤ k < j, then d′
ij = dij , and hence

this smaller negative cycle is good for (s′, h′), as well. Otherwise, for some k,
dk,k+1 > M , and thereby by construction d′

k,k+1 = M , and, hence, d′
ij ≥ M .

Then the following cycle defined in terms of (s′, h′),

x̂i
σ=⇒Y x̂j

−d′
ij−→ x̂i

is of negative weight, since σ − d′
ij ≤ σ − M < 0.

E.g., within Example 6.5 with: x̂1
0−→ ŷ4

7−→ x̂3, in (12), we obtain the
following cycle in terms of (s′, h′):

x̂1
0−→ ŷ4

7−→ x̂3
−2−M−→ x̂1

which is guaranteed to be of negative weight.
Finally, we show that any chain of reductions must terminate in one of the

subcases (a2) and (b2). To see this, suppose otherwise. Then, having eliminated
all nodes of the form ŷk in C via reductions (a1) and (b1), we would obtain a
negative cycle C (by Lemma 6.6) consisting only of nodes of the form x̂i, e.g.:

x̂i
dij−→ x̂j

−dij−→ x̂i

However, such a cycle necessarily has weight 0, and is therefore non-negative;
contradiction. This concludes the proof of the lemma, and thereby of Theo-
rem 6.1.

Theorem 6.7. The entailment problem in SLMPA is in ΠP
2 .

Moreover, given A and B, for a certain Boolean combination of difference
constraints R(x,y) defined by A and B as in Definition 4.1, A |= B is equivalent
to

∀x. (γA(x) → ∃y. R(x,y))

where all xi in x and all yj in y are bounded in accordance with Theorem6.1.

Proof. This follows from the small model property provided by Theorem6.1.
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Remark 6.8. The proof of Theorem6.1 provides quite efficient procedures for
the entailment problem in Theorem6.7, in which the corresponding polytime
sub-procedures are the usual shortest paths procedures with negative weights
allowed, providing polynomials of low degrees. Alternatively, Theorem5.3 and
Definition 4.1 give an encoding of entailment as a Π0

2 sentence of PbA and a poly-
nomial bound for all variables, which could be passed directly to an arithmetic
constraint solver.

In fact we prove that the entailment problem is ΠP
2 -complete, and enjoys the

small model property, even if we allow any Boolean combination of difference
constraints x ≤ y + k in the pure part of our symbolic heaps.

7 Conclusions and Future Work

In this paper, we study the points-to fragment of symbolic-heap separation logic
extended with pointer arithmetic, in a minimal form allowing only conjunctions
of difference constraints x ≤ y + k for k ∈ Z.

Perhaps surprisingly, we find that polynomial time algorithms are out of
reach even in this minimal case: satisfiability is already NP-complete, quantifier-
free entailment is coNP-complete, and quantified entailment is ΠP

2 -complete.
However, a small consolation is that the small model property holds for all three
problems.

We note that our upper bound complexity results for satisfiability and
quantifier-free entailment can be seen as following already from our earlier results
for array separation logic [6], where we allow array predicates array(x, y) as well
as pointers and arithmetic constraints. Of course, pointer arithmetic is often
an essential feature in reasoning about array-manipulating programs. The main
value of our findings, we believe, is in our lower bound complexity results, which
show that NP-hardness or worse is an inevitable consequence of admitting pointer
arithmetic of almost any kind. Moreover, the exact upper bound of ΠP

2 for entail-
ment in SLMPA is new, and not straightforward to obtain.

We remark that our lower-bound results do however rely on the presence of
pointer arithmetic, as opposed to arithmetic per se. Where pointers and data
values are strictly distinguished and arithmetic is permitted only over data, as is
done e.g. in [16], then polynomial-time algorithms may still be achievable in that
case. Another possibility might be to impose further restrictions on the version of
pointer arithmetic used here by adopting a different memory model, e.g. one that
only allows pointers to be compared within specified memory regions (similar to
the way pointers are intended to be used in C). To stand any chance of yielding a
complexity improvement, such regions would need to be bounded “in advance”,
since, as we point out in Sect. 3, one can encode a 3-colourability graph with m
edges as a satisfiability problem in SLMPA within a heap region of only linear size
in m. In any case, however, we are not aware of any such region-aware models
in the literature on separation logic.

It is worth mentioning the existence of software security measures that com-
bat attacks like “stack smashing” by deliberately reordering the heap memory.
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For programs employing such obfuscatory defensive measures, one typically can-
not say anything definitive about the relative ordering of pointers in memory, in
which case pointer arithmetic may be of limited utility as a reasoning tool.

Finally, we believe that our complexity results might well extend to the full
first-order version of SLMPA. For the entailment lower bound, the natural app-
roach would be to develop a reduction from the k-round 3-colourability problem
to Π0

k entailments, building on the reduction from 2-round 3-colourability to Π0
2

entailments1 with one alternation in Sect. 5. For the upper bound, the transla-
tion into an equivalent PbA formula in Definition 4.1 extends to quantifiers in
the obvious way; but, moreover, we believe that our small-model technique in
Sect. 6 might be also extended to alternating quantifiers, thus obtaining polyno-
mial bounds for all variables. If so, then this would result in ΠP

k -completeness
for Π0

k entailments in SLMPA, i.e., the standard polynomial-time hierarchy; but,
of course, that remains to be seen.

Acknowledgements. Many thanks to Josh Berdine and Nikos Gorogiannis for a num-
ber of illuminating discussions on pointer arithmetic, and to our anonymous reviewers
for their comments, which have helped us to improve the presentation of this paper.
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with Quadratic Equations, Regular
Expressions and Length Constraints
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Abstract. In this work, we consider the satisfiability problem in a logic
that combines word equations over string variables denoting words of
unbounded lengths, regular languages to which words belong and Pres-
burger constraints on the length of words. We present a novel decision
procedure over two decidable fragments that include quadratic word
equations (i.e., each string variable occurs at most twice). The proposed
procedure reduces the problem to solving the satisfiability in the Pres-
burger arithmetic. The procedure combines two main components: (i)
an algorithm to derive a complete set of all solutions of conjunctions of
word equations and regular expressions; and (ii) two methods to precisely
compute relational constraints over string lengths implied by the set of
all solutions. We have implemented a prototype tool and evaluated it
over a set of satisfiability problems in the logic. The experimental results
show that the tool is effective and efficient.

1 Introduction

The problem of solving word algebras has been studied since the early stage of
mathematics and computer science [16]. Solving word equation (which includes
concatenation operation, equalities and inequalities on string variables) was an
intriguing problem and initially investigated due to its ties to Hilbert’s 10th
problem. The major result was obtained in 1977 by Makanin [37] who showed
that the satisfiability of word equations with constants is, indeed, decidable. In
recent years, due to considerable number of security threats over the Internet,
there has been much renewed interest in the satisfiability problem involving the
development of formal reasoning systems to either verify safety properties or to
detect vulnerability for web and database applications. These applications often
require a reasoning about string theories that combines word equations, regular
languages and constraints on the length of words.

Providing a decision procedure for the satisfiability problem on a string logic
including word equations and length constraints has been difficult to achieve.
One main challenge is how to support an inductive reasoning about the combi-
nation of unbounded strings and the infinite integer domain. Indeed, the satisfi-
ability of word equations combined with length constraints of the form |x|= |y|
c© Springer Nature Switzerland AG 2018
S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 350–372, 2018.
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is open [11,22] (where |x| denotes the length of the string variable x). So far,
very few decidability results in this logic are known; the most expressive result
is restricted within the straight-line fragment (SL) which is based on acyclic
word equations [7,12,22,23,36]. This SL fragment excludes constraints combin-
ing quadratic word equations, the equations in which each string variable occurs
at most twice. For instance, the following constraint is beyond the SL fragment:
ec≡x·a·a·y = y·b·a·x where x and y are string variables, a and b are letters, and
· is the string concatenation operation. Hence, one research goal is to identify
decidable logics combining quadratic word equations (and beyond), based on
which we can develop an efficient decision procedure.

There have been efforts to deal with the cyclic string constraints in Z3str2
[50,51], CVC4 [34] and S3P [48]. While Z3str2 presented a mechanism to detect
overlapping variables to avoid non-termination, CVC4 proposed refutation com-
plete procedure to generate a refutation for any unsatisfiable input problem and
S3P [48] provided a method to identify and prune non-progressing scenarios.
However, none is both complete and terminating over quadratic word equations.
For instance, Z3str2, CVC4 and S3P (and all the state-of-the-art string solv-
ing techniques [6–9,12,23]) is not able to decide the satisfiability of the word
equation ec above.

In this work, we propose a novel cyclic proof system within a satisfiability pro-
cedure for the string theory combining word equations, regular memberships and
Presburger constraints over the length functions. Moreover, we identify decidable
fragments with quadratic word equations (e.g., the constraint ec above) where
the proposed procedure is complete and terminating. To the best of our knowl-
edge, our proposal is the first decision procedure for string constraints beyond the
straight-line word equations. Our proposal has two main components. First, we
present a novel algorithm to construct a cyclic reduction tree which finitely rep-
resents all solutions of a conjunction of word equations and regular membership
predicates. Secondly, we describe two procedures to infer the length constraints
implied by the set of all solutions.

Contributions. We make the following technical contributions.

– We develop a algorithm, called ω-SAT, to derive a cyclic reduction tree as a
finite representation for all solutions of a conjunction of word equations and
regular expressions. We show that if ω-SAT terminates with a reduction tree,
the tree forms a finite-index EDT0L system [41].

– We present a decision procedure, called Kepler22, with two decidable frag-
ments and provide a complexity analysis of our approach. This is the first
decidable result for the string theory combining quadratic word equations
with length constraints.

– We have implemented a prototype solver and evaluated it over a set of hand-
drafted benchmarks in the decidable fragments. The experimental results
show that when compared with the state-of-the-art solvers, our proposal is
both effective and efficient in solving string constraints with quadratic equa-
tions and length constraints.
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Organization. The rest of the paper is organized as follows. Section 2 presents
relevant definitions. Section 3 shows an overview of our approach through an
example. We show how to compute a cyclic reduction tree to finitely represent all
solutions of a conjunction of word equations and regular memberships in Sect. 4.
Section 5 presents the proposed decision procedure. Sections 6 and 7 describe the
two decidable fragments. Section 8 presents an implementation and evaluation.
Section 9 reviews related work and concludes.

2 Preliminaries

Concrete string models assume a finite alphabet Σ whose elements are called
letters, set of finite words over Σ∗ including ε - the empty word, and a set of
integer numbers Z. We work with a set U of string variables denoting words in
Σ∗, and a set I of arithmetical variables. We use |w| to denote the length of
w∈Σ∗ and v̄ a sequence of variables. A language L over the alphabet Σ is a set
L⊆Σ∗. A language L is a set of words generated by a grammar system. We use
L(L) to denote the class of all languages L.

disj formula π ::= φ | π1 ∨ π2 formula φ ::= e | α | s∈R | ¬φ1 | φ1 ∧ φ2

(dis)equality e ::= s1=s2 term s ::= ε | c | x | s1 · s2
regex R ::= ∅ | ε | c | w | R1 · R2 | R1 + R2 | R1 ∩ R2 | RC

1 | R∗
1

Arithmetic α ::= a1 = a2 | a1 > a2 | α1 ∧ α2 | α1 ∨ α2 | ∃v.α1

a ::=0 | 1 | v | |u| | i × a1 | −a1 | a1 + a2

Fig. 1. Syntax

Syntax. The syntax of quantifier-free string formulas, called STR, is presented in
Fig. 1. π is a disjunction formula where each disjunct φ is a conjunction of word
equations e, arithmetic constraints α and regular memberships s∈R. A word
equation e is an equality of string terms s. (We use either s or tr to denote a
string term.) A string term is a concatenation of the empty word ε, letters c ∈ Σ
and string variables x. We often write s1s2 to denote s1 ·s2 if it is not ambiguous.
Regular expression R over Σ is built over c ∈ Σ, w ∈ Σ∗, ε, and closing under
union +, intersection ∩, complement C, concatenation ·, and the Kleene star
operator ∗. Regular expressions R does not contain any string variables.

We use E to denote a conjunction (a.k.a system) of word equations. π[t1/t2]
denotes a substitution of all occurrences of t2 in π to t1. We use function FV(π)
to return all free variables of π. We inductively define length function of a string
term s, denoted as |s|, as: |ε| = 0, |c| = 1, and |s1 · s2| = |s1| + |s2|. Notational
length of the word equation e, denoted by e(N), is the number of its symbols.

A word equation is called acyclic if each variable occurs at most once. A word
equation is called quadratic if each variable occurs at most twice. Similarly, a
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η, βη |= π1∨π2 iff η, βη |= π1 or η, βη |= π2

η, βη |= π1∧π2 iff η, βη |= π1 and η, βη |= π2

η, βη |= ¬π1 iff η, βη � |=π1

η, βη |= s∈R iff ∃w∈L(R) · η, βη |= s = w
η, βη |= s1=s2 iff η(s1)=η(s2) and βη(s1)=βη(s2)
η, βη |= s1 �=s2 iff η, βη |= ¬(s1=s2)
η, βη |= a1	a2 iff η(a1) 	 η(a2), where 	 ∈ {=, ≤}

Fig. 2. Semantics

system of word equations is called quadratic if each variable occurs at most
twice.

A word equation system is said to be straight-line [7,22,36] if it can be
rewritten (by reordering the conjuncts) as the form

∧n
i=1 xi = si such that: (i)

x1, ..., xn are different variables; and (ii) FV(si) ⊆ {x1, x2, .., xi−1}. A formula
π ≡ e1 ∧ e2 ∧...∧ en ∧Υ is called in straight-line fragment (SL) if e1 ∧ e2 ∧...∧ en

is straight-line and the regular expression Υ is of the conjunction of regular
memberships xj ∈ Rj where xj ∈{x1, ..., xn}.

Semantics. Every regular expression R is evaluated to the language L(R). We
define:

SStacks def= (U∪Σ)→Σ∗ ZStacks def= I → Z .

The semantics is given by a satisfaction relation: η,βη |=π that forces the inter-
pretation on both string η and arithmetic βη to satisfy the constraint π where
η ∈ SStacks, βη ∈ZStacks, and π is a formula. We remark that ∀η ∈ SStacks:
η(c)= c for all c ∈ Σ and η(t1t2)= η(t1)η(t2). The semantics of our language is
formalized in Fig. 2. If η,βη |= π, we use the pair 〈η,βη〉 to denote a solution of
the formula π. Let e≡ x1·...·xl =xl+1·...·xn be a word equation. If e is satisfied
with the solution 〈η,βη〉, we also refer η(x1)·...·η(xl) as a solution word of e. A
solution word is minimal if the length of the solution word (|η(x1)|+ ...+ |η(xl)|)
is minimal. e1 is referred as a suffix of e2 if they are satisfied and the solution
word of e1 is a suffix of the solution word of e2.

Formal Language. A deterministic finite automaton (DFA) A is a tuple:
A= 〈Q,Σ, δ, qo, QF 〉, where Q is a finite set of states, δ ⊆ Q× (Σ ∪{ε})× Q
is a finite set of transitions, q0 ∈Q is the initial state and QF ⊆ Q is a set of
accepting states. We use L(A) to denote the (regular) language generated by a
DFA A. It is known that the languages generated by regular expressions are also
in the class of regular languages [26].

A context-free grammar (CFG) G is defined by the quadruple:
G= 〈V , Σ, P , S〉 where V is a finite nonempty set of nonterminals, Σ is a
finite set of terminals and disjoint from V , and P ⊆ V × (V ∪Σ)∗ is a finite rela-
tion. For any strings u, v ∈ (V ∪Σ)∗, v is a result of applying the rule (α, β)
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to u u ⇒G v if ∃(α, β) ∈ P u1, u2 ∈ (V ∪ Σ)∗ such that u = u1 α u2 and
v = u1 β u2. L(G)= {w ∈ Σ∗ | S ⇒∗

G w} to denote a language produced by the
CFG G. Given a CFG G= 〈V , Σ, P , S〉, we use GX (where X ∈ V ) to denote
a sub-language of L(G), defined by L(GX)= {w ∈ Σ∗ | X ⇒∗

G w}.

Normal Form. π ≡ E ∧Υ ∧ α is called in the normal form if it is of the form: E
is a system of word equations, Υ is a conjunction of regular memberships (e.g.,
X ∈ R) and α is a Presburger formula. (For the transformation of a formula pre-
sented in Fig. 1 into the normal form, [15,29] described how to eliminate negation
over word equations, and disjunction of word equations and [7] showed how to
remove the negation and the concatenation operator over regular expressions.)

Problem Definition. Throughout this work, we consider the following problem.

PROBLEM: SAT−STR.
INPUT: A string constraint π in normal form over Σ.
QUESTION: Is π satisfiable?

E0≡abx=xba∧ay=ya�

E11≡ab=ba∧ay=ya E12≡bax1=x1ba∧ay=ya

E21≡ay=ya♥

E31≡ε=ε E32≡ay1=y1a♥

E22≡abx2=x2ba∧ay=ya�

[ε/x] [ax1/x]

[ε/x1] [bx2/x1]

[ε/y]
[ay1/y]

[y/y1]

[x/x2]

Fig. 3. Reduction tree T3.

3 Overview and Illustration

The overall of our idea is an algorithm to reduce an input constraint to a set
of solvable constraints. In this section, we first define the reduction tree (Sub-
sect. 3.1). After that, we illustrate the proposed decision procedure through an
example (Subsect. 3.2).

3.1 Cyclic Reduction Tree

Formally, a cyclic reduction tree Ti is a tuple (V,E, C) where

– V is a finite set of nodes where each node represents a conjunction of word
equations E .

– E is a set of labeled and directed edges (E , σ, E ′) ∈ E where E ′ is a child of E .
This edge means we can reduce E to E ′ via the label σ, a substitution, s.t.:
E ′ ≡ Eσ.



A Decision Procedure for String Logic with Quadratic Equations 355

– And C is a back-link (partial) function which captures virtual cycles in the
tree. A cycle, e.g. C(Ec → Eb, σ), in C means the leaf Eb is linked back to its
ancestor Ec and Ec ≡ Ebσ. In this back-link, Eb is referred as a bud and Ec is
referred as a companion.

A path (vs, ve) is a sequence of nodes and edges connecting node vs with
node ve. A leaf node is either unsatisfiable, or satisfiable or linked back to an
interior node, or not-yet-reduced. If a leaf node is not-yet-reduced, it is marked
as open. Otherwise, it is marked as closed. A trace of a tree is a sequence of edge
labels of a path in the tree. We refer a trace as solution trace if it corresponds
to a path (vs, ve) where vs is the root and ve is a satisfiable leaf. This trace
represents a (infinite) family solutions of the equation at the root.

3.2 Illustrative Example

We consider the following constraint: π ≡ abx= xba ∧ ay = ya ∧ |x|= 2|y|
where x, y are string variables and a, b are letters. This constraint is beyond
the straight-line fragment [7,12,22,23,36]. Moreover, as the length constraint
|x|= 2|y| is not regular-based, the automata-based translation proposed in [12]
cannot be applied.

The proposed solver Kepler22 could solve the constraint π above through
the following three steps. First, it invokes procedure ω-SAT to construct a cyclic
reduction tree to capture all solutions of the word equations E0 ≡ abx= xba ∧
ay = ya. Next, it infers a precise constraint αxy implied by string lengths of all
solutions. Lastly, it solves the conjunction: αxy∧α where α is the arithmetic
constraint in the input π.

The Representation of All Solutions. ω-SAT derives the reduction tree T3

(V,E,C), shown in Fig. 3, as the finite presentation of all solutions for E0.
In particular, the root of the tree is E0. E0 has two children E11 and E12,
which are obtained by reducing x into two complete cases: x= ε and x= ax1

where x1 is fresh. Note that E12 is obtained by first applying the substitution:
E ′
12 ≡ E0[ax1/x]≡ abax1 = ax1ba∧ ay = ya prior to subtracting the letter a at the

heads of the two sides of the first word equation. Next, while E11 is classified
as unsatisfiable, (underlined) and marked closed, E12 is further reduced into
two children, E21 and E22. They are obtained by reducing x1 at the head of
the right-hand side (RHS) of E12 into two complete cases: x1 = ε to generate
E ′
21 ≡ E ′

12[ε/x1]≡ ab= ab∧ ay = ya and x1=bx2 (where x2 is a fresh variable) to
generate E ′

22 ≡ e′
12[bx2/x1]≡ babx2 = bx2ba. Next, E ′

21 is further reduced into E21

by matching a, b letters; and E ′
22 is further reduced into E22 by matching b letters

at the heads of its two sides. Lastly, E22 is linked back to E0 to form the back-
link C(E0 →E22, [x/x2]). Similarly, E21 is reduced until all leaf nodes are marked
closed.

A path (vs, ve) with trace σ represents for ve ≡ vsσ. If ve is satisfiable, then σ
represents for a family of solutions (or valid assignments). For instance, in Fig. 3,
the path (E0, E31) has the trace σ31 = [ax1/x, ε/x1, ε/y]. As E31 is satisfiable, we
can derive a solution of E0 based on σ31 as: x= a and y = ε. Moreover, trace
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solution that is involved in cycles represents a set of infinite solutions, since we
can construct infinitely many solution traces by iterating through the cycles an
unbounded number of times. For example, all solution traces σij obtained from
the path (E0, E31) above is as:

σij≡ [ax1/x] ◦ [bx2/x1, x/x2, ax1/x]i ◦ [ay1/y, y1/y]j ◦ [ε/x1 ◦ ε/y]

where ◦ is the substitution composition operation, σk means σ is repeatedly
composed zero, one or more times, and i≥ 0, j ≥ 0.

Computing αxy Constraint. Based on the solution trace σij above, Kepler22
first generates a conjunctive set of constrained Horn clauses to define the
relational assumptions over lengths of x and y in the set of all solutions.
After that it infers the length constraint as: αxy ≡∃i.|x|= 2i+ 1∧ i≥ 0 ∧
|y| ≥ 0. Now, the satisfiability of π is equi-satisfiable to the following formula:
π′ ≡ (∃i. |x|= 2i+ 1∧ i≥ 0 ∧ |y| ≥ 0) ∧ |x|= 2|y|. As π′ is unsatisfiable, so is π.

4 The Representation of All Solutions

In this section, we first present procedure ω-SAT which constructs a cyclic reduc-
tion tree for a conjunction of word equations E (Subsect. 4.1). After that, we
describe how to combine the tree with regular membership predicates Υ (Sub-
sect. 4.2). Finally, we discuss the correctness in Subsect. 4.3.

4.1 Constructing Cyclic Reduction Tree

ω-SAT transforms a conjunction of word equations E into a cyclic reduction tree
Tn which represents all its solutions. This procedure starts with the tree T0 with
only the input E at the root. After that, in each iteration it chooses one leaf
node to reduce (using function reduce) or to make a back-link (using func-
tion link back) until every leaf node is either irreducible or linked back. A leaf
node is irreducible if it either trivially true (i.e., w1 = w1 ∧...∧ wi =wi where
w1, ..., wi ∈Σ∗) or trivially false (i.e., either it is of the form: c1tr1 = c2tr2 ∧ E
where c1, c2 are different letters or its over-approximation over the length func-
tions is unsatisfiable). Function reduce takes a leaf node Ei as input and produces
a set Li each element of which is a pair of a node Eij and a corresponding substi-
tution σj such that Eij = Eiσj . For each pair (Eij , σj)∈ Li, it adds an new open
node Eij and a new edge (Ei, σj , Eij ). As a result, reduce extends the current
tree with the new nodes and new edges. In particular, function reduce is imple-
mented as: Li =

⋃
{matchs(Eij ) | Eij ∈ complete(Ei)} where function matchs

exhaustively matches and subtracts identical letters and string variables at the
heads of left-hand side (LHS) and right-hand side (RHS) of each word equation
using function match. In the following, we describe the details of the functions
used by ω-SAT.



A Decision Procedure for String Logic with Quadratic Equations 357

Matching. match(e) matches two terms at the heads of LHS and RHS of e as
follows.

match(u1 · tr1 =u2 · tr2) =

{
match(tr1 = tr2) if u1, u2 are identical
u1 · tr1 = u2 · tr2 otherwise

where u1, u2 are either letters or string variables.

Procedure complete. The overall goal of our reduction is to transform every
word equation, say e≡ u1tr1 =u2tr2 where Ei = e∧ E , into a set of “smaller”
string equation ei such that if e is satisfied, ei is a suffix of e. Word equations
in a node are reduced in a depth-first manner. Intuitively, our reduction over
the word equation e is based on the possible arrangements of two carrier terms,
the terms at the heads of LHS and RHS of e. Suppose that e is satisfied. Let
l1, r1 be the starting and ending positions of u1 in the solution word of e.
Similarly, let l2, r2 be the starting and ending positions of u1 in the solution
word of e. Obviously, l1 = l2. Our reduction, function complete, considers all
possible arrangements based on these positions. For arrangements in one-side
(LHS or RHS), it considers the cases: l1 = r1 (i.e., u1 = ε), l1 < r1 and l2 = r2
(i.e., u2 = ε), l2 < r2. For arrangements between the two sides, it considers the
cases: r1 ≥ r2 and r2 ≥ r1. In particular, function complete considers the following
two scenarios of the carrier terms.

Case 1: One term is a letter and another term is a string variable, e.g.
x1tr1 = c2tr2. complete generates the set Li as Li ≡{(Ei1 , σ1); (Ei2 , σ2)} where

– (1a) σ1 = [ε/x1]
– (1b) σ2 = [c2x′

1/x1], x′
1 is a fresh variable and referred as a subterm of x1.

Case 2: These terms are two different string variables, e.g. x1tr1=x2tr2.
complete generates the set Li as: Li ≡ {(Ei1 , σ1); (Ei2 , σ2); (Ei3 , σ3); (Ei4 , σ4)}
where

– (2a) σ1 = [ε/x1],
– (2b) σ3 = [x2x

′
1/x1], x′

1 is a fresh variable and referred as a subterm of x1,
– (2c) σ2 = [ε/x2]
– (2d) σ4 = [x1x

′
2/x2], x′

2 is a fresh variable and referred as a subterm of x2.

As both Case 2b and Case 2d include the scenario where x1 =x2, the reduction
tree generated represents a complete but not minimal set of all solution.

Linking Back. link back links a leaf node Eb to an interior node Ec if after some
substitution σcyc, two nodes are identical: Ec ≡Ebσcyc. In addition, for every
entry X/X ′ ∈ σcyc where X and X ′ are string variables, X ′ is a subterm of X.
σcyc can be considered as a permutation function on both U and the alphabet
Σ. We recap that we refer to this cycle as a triple C(Ec → Eb, σcyc) where Ec is
called a companion, Eb is called a bud.
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4.2 Combining with Regular Memberships

We propose to derive a finite representation of all solutions of a conjunction
of word equations and regular expressions. using procedure widentree. Pro-
cedure widentree takes a pair of a reduction tree Tn of E0 (generated by ω-
SAT) and a conjunction of regular expressions Υ as inputs and manipulates the
reduction tree Tn through the following three steps. First, it constructs a DFA
A = 〈Q,Σ, δ, qo, QF 〉 which generates the same language with Υ . Let m be the
number states in Q and M=m!. Intuitively, m+1 is the minimal times of a cycle

e0≡abx=xba

e′
12≡bax1=x1ba

e21≡ba=ba e′
22≡abx2=x2ba

e10≡abx3=x3ba

e1
′

12≡bax4=x4ba

e121≡ba=ba e1
′

22≡abx5=x5ba

e20≡abx6=x6ba
�

e2
′

12≡bax7=x7ba

e221≡ba=ba e2
′

22≡abx8=x8ba
�

[ax1/x]

[ε/x1] [bx2/x1]

[x3/x2]

[ax4/x3]

[ε/x4] [bx5/x4]

[x6/x5]

[ax7/x6]

[ε/x7] [bx8/x7]

[x6/x8]

Fig. 4. Extending tree T2 with x ∈ a∗.

to obtain the minimal solu-
tions of E0 ∧ Υ . M is the peri-
odic of the sets of all solu-
tions. Secondly, it unfolds
every cycles C(Ec →Eb, σ) of
Tn m + M times. It updates
link back functions by elim-
inating the old back-link
between Eb and Ec prior
to generating a new back-
link between Ebm+M

and Ecm

as well as marking Ebm+M

as closed. We note that
a solution corresponding to
a trace which visits the
companion Ecm l + 1 times
(i.e., including k new cycles
above) has the form: S ≡
u1w

m+1+lMu2. Lastly, it col-
lects label σj for every path
(E0, Ej) in the new tree where E0 is the root, Ej is a leaf node that is neither
unsatisfiable nor a bud prior to evaluating Ej . From σj , it generates the follow-
ing formula: πj ≡

∧
{Xi = si|(si/Xi)∈ σj}∧ Υ . πj is in a straight-line fragment

where the satisfiability problem SAT-STR is decidable [36].

Example 1. To illustrate our first decidable fragment, we use the following word
equation as a running example: abx= xba where x is string variable and a, b
are letters. This is the first equation in the motivating example (Sect. 3.2). Its
reduction tree T2 is presented in Fig. 5. We now illustrate how to use procedure

e0≡abx=xba�

e11≡ab=ba e12≡bax1=x1ba

e21≡ε=ε e22≡abx2=x2ba
�

[ε/x] [ax1/x]

[ε/x1] [bx2/x1]

[x/x2]

Fig. 5. Reduction tree T2.
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widentree above to extend the tree to represent all solutions of π1 ≡ abx=xba ∧
x∈ a∗. To do that, widentree first derives for the regular expression x ∈ a∗

a DFA as: A = 〈{q0}, {a}, {((q0, a), a)}, q0, {q0}〉, and then identifies m=1 and
M =m! = 1. Secondly, it clones the cycle of T2 m + M = 1 + 1 = 2 more times.
The resulting tree is described in Fig. 4. Lastly, it discharges the satisfiability of
solutions corresponding to the paths which start from the root and end at leaf
nodes e21, e121 or e221. The evaluation is as follows.

path formula outcome
(e0, e21) x= ax1 ∧x1 = ε ∧ x∈ a∗ SAT
(e0, e121) x = ax1 ∧x1 = bx2 ∧ x2 = x3 ∧ x3 = ax4∧x4 = ε ∧ x∈ a∗ UNSAT

(e0, e221)
x = ax1 ∧x1 = bx2 ∧x2 = x3 ∧ x3 = ax4 ∧x4 = bx5 ∧
x5 =x6 ∧x6 = ax7 ∧x7 = ε ∧ x∈ a∗ UNSAT

4.3 Correctness

In the following, we formalize the correctness of the proposed procedures and
show the relationship between the derived reduction tree with EDT0L system
[41].

Proposition 1. Suppose that ω-SAT takes a conjunction E as input, and pro-
duces a cyclic reduction graph Tn in a finite time. Then, Tn represents all solu-
tions of E.

Proposition 2. Suppose that Υ ≡ X1 ∈R1 ∧...∧ Xn ∈ Rn (Xi ∈FV(E0),∀1 ≤
i ≤ n) is a conjunction of regular memberships and Tn be the reduction tree
derived for E0. Then, widentree(Tn, Υ ) produces a reduction tree representing
all solutions of E0 ∧ Υ .

An interactionless Lindenmayer system (0L system) [41] is a parallel rewrit-
ing system which was introduced in 1968 to model the development of multicellu-
lar system. The class of EDT0L languages forms perhaps the central class in the
theory of L systems. The acronym EDT0L refers to Extended, Deterministic,
Table, 0 interaction, and Lindenmayer. In the following, we give a formal defi-
nition of EDT0L system.

Definition 1. An ET0L system is a quadruple G= 〈V , Σ, P, S〉 where V is a
finite nonempty set of nonterminals (or variables), Σ is a finite set of terminals
and disjoint from V , S ∈V is the start variable (or start symbol), P is a finite set
each element of which (called a table) is a finite binary relation included in V ×
(V ∪ Σ)∗. It is assumed that ∀P ∈ P,∀x∈ V,∃tr ∈ (V ∪ Σ)∗ such that (x, tr) ∈
P . An EDT0L system is a deterministic ET0L system in which ∀P ∈P,∀x ∈
V,∃!tr ∈ (V ∪ Σ)∗ s.t. (x, tr) ∈ P .
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For a production (x,tr) of P in P, we often write: x → tr. We also write
x →P tr for “x → tr is in P”. Let G= 〈V , Σ, P, S〉 be an ET0L system.

1. Let x,y ∈ (V ∪ Σ)∗, and x contains k nonterminals v1,..., vk in V . We say
that x directly derives y (in G), denoted as x ⇒G y, if there is a P ∈ P such
that y is obtained by substituting vi by si, respectively for all i ∈ {1, ..., k},
where v1 →P s1, ..., vk →P sk. In this case, we also write x ⇒P y.

2. Let ⇒∗
G be the reflexive transitive closure of the relation ⇒. If x ⇒∗

G y then
we say that x derives y (in G).

3. The language of G, denoted by L(G), defined by L(G) = {w ∈ Σ∗ | S ⇒∗
G w}.

A grammar system that is k-index is restricted so that, for every word gen-
erated by the grammar, there is some successful derivation where at most k
nonterminals appear in every sentential form of the derivation [42]. A system is
finite-index if it is k-index for some k. We use L(L)FIN to denote the class of
all L languages of finite-index.

Corollary 4.1. A reduction tree derived by ω-SAT forms a finite-index EDT0L
system.

Example 2. The tree in the Fig. 5 above forms the following finite-index EDT0L.
G= 〈{S, x, x1, x2}, Σ, {P1, P2}, S〉 where P1 = {(S, abx), (x, ax1), (x1, ε)} and
P2 = {(S, abx), (x, ax1), (x1, bx2), (x2, x)}.

5 Decision Procedure

Decision Procedure: Kepler22(E∧Υ∧α)
1 Tn ← postprotrim(ω−SAT(E));
2 if (is false(Tn)) return UNSAT;
3 Tn+1 ← widentree(Tn, Υ )
4 if (is false(Tn+1)) return UNSAT;
5 αw ← extract pres(Tn+1);
6 return SATpres(αw∧α);

Fig. 6. Satisfiability solving.

We present decision procedure Kepler22
to handle SAT-STR. Kepler22 takes a
constraint, say E∧Υ∧α, as input and
returns SAT or UNSAT. It works as fol-
lows. First, it invokes ω-SAT to con-
struct a reduction tree Tn as a finite
representation of all solutions of E .
After that, Tn is post-processed using
procedure postpro as below to expli-
cate all free variables. This step is crit-
ical to the next step. Secondly, it uses
procedure widentree to extend Tn with membership predicates Υ and obtains
Tn+1. Note that unsatisfiable nodes in the reduction tree are eliminated. Thirdly,
it computes the length constraints which are precisely implied by all solutions
generated through procedure extract pres(Tn+1). These length constrains, say
αw, are computed as an existentially quantified Presburger formula. Lastly,
Kepler22 solves that satisfiability of the conjunction αw∧α which is in the Pres-
burger arithmetic and decidable [21] (Fig. 6).
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e�
i

ei0 e�
ij

[ε/x]
[cjx

′/x]

[x/x′]

Fig. 7. Free variable x.

Post-processing. Given a path from the root e0 to a
satisfiable leaf node ei, a variable x appearing in this
path is called free if it has not been reduced yet. This
means x can be assigned any value in Σ∗ in a solution.
Procedure postpro aims to replace a free variable by
a sub-tree which represents for arbitrary values in Σ∗.
The sub-tree is presented in Fig. 7. This tree has a base
leaf node (with substitution [ε/x]) and k cycles (k is the size of the alphabet
Σ) one of which represents for a letter ci ∈ Σ. If a satisfiable leaf node has
more than one free variable, each variable is replaced by such sub-tree and these
sub-trees are connected together at base nodes.

Correctness. The correctness of step 1 and step 2 have been shown in the pre-
vious section. Thus, the remaining tasks to show Kepler22 is a decision proce-
dure in a fragment are the termination of ω-SAT as well as the decidability of
extract pres(Tn+1).

6 STREDT0L Decidable Fragment

Computing length constraint in this fragment is based on Parikh’s Theorem [38],
one of the most celebrated theorem in automata theory. The Parikh image (a.k.a.
letter-counts) of a word over a given alphabet counts the number of occurrences
of each symbol in the word without regard to their order. The Parikh image
of a language is the set of Parikh images of the words in the language. A lan-
guage is Parikh-definable if its Parikh image precisely coincides with semilinear
sets which, in turn, can be computed as a Presburger formula. In particular,
Parikh’s Theorem [38] states that context-free languages (and regular languages,
of course) are Parikh-definable. In fact, given a context-free grammar, we can
compute its Parikh image in polynomial time [19,49]. Moreover, the authors in
[42] show that finite-index EDT0L languages [41] are also Parikh-definable. In
our work, we use Par(L) to denote the Parikh images computed for the lan-
guage L.

A given constraint, say E ∧Υ ∧ π, is said to be in the fragment if the following
two conditions hold. First, ω-SAT terminates on E . Secondly, π ≡ α1 ∧..∧ αn

where FV(αi) contains at most one string length ∀i ∈ {1...n}. By the first
condition, Kepler22 can derive for E a finite-index EDT0L system (Corollary
4.1). Moreover, finite-index EDT0L can be translated into a Parikh-equivalent
DFA (by Parikh’s Theorem [38,42]). This means length of each string variable
in the set of all solutions can be computed as a DFA. By the second condition,
each constraint α1 is based on the length of one string variable. Hence, this
constraint can be translated into another DFA. As regular languages are closed
under intersection. Therefore, the satisfiability of π is decidable.

Kepler22 uses extract pres(Tn+1) to compute the length constraints repre-
sented for all solutions of E ∧ Υ as follows. Firstly, it transforms Tn+1 into a
finite-index EDT0L system. Secondly, it transforms the EDT0L grammar into
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a Parikh-equivalent CFG G (see [42]). Lastly, it computes the length constraints
αw for every string variables as: αw≡

∧
{Par(L(Gx)) | x ∈ FV(E ∧Υ )}.

6.1 Parikh Image of CFG

In order to infer the Parikh image for a given CFG, we first transform the
CFG into a Parikh equivalent communication-free Petri net and then compute
the Parikh image of the communication-free Petri net [49]. The correctness was
presented in [18,45,49]. Procedure Par takes a CFG G= 〈V , Σ, P , s0〉 as input
and produces a Presburger formula to represents the Parikh image of all words
derived from the start symbol s0. In particular, it first transforms the CFG into
a communication-free Petri net and then generates a Presburger formula αG for
this net.

A net N is a quadruple N = 〈S, T , W, s0〉 where S is a set of places, T is
a set of transitions, W is a weight function: (S × T ) ∪ (T × S) → N, and s0 is
the start place in the net. If W (x, y)> 0, there is an edge from x to y of weight
W (x, y). A net is communication-free if for each transition t there is at most one
place s with W (s, t) > 0 and furthermore W (s, t) = 1. A marking M , a function
S → N, associates a number of tokens with each place. A communication-free
Petri net is a pair (N,M) where N is a communication-free net and M is a
marking.

The CFG G is transformed into a communication-free Petri net (NG,MG)
as: NG = 〈V ∪Σ, P , W, s0〉. If A→s is a production p ∈ P then W (A, p) = 1
and W (B, p) is the number occurrences of B in s, for each B ∈V ∪ Σ. Finally,
MG(s0) = 1 and MG(X)= 0 for all other X ∈V ∪ Σ and X �= s0. Let xc be a
new integer variable for each letter c∈Σ, yp be a new integer variable for each
rule p ∈ P , and zs be a new integer variable for each symbol s∈ V ∪ Σ. We
assume that we have m variables yp1 , .., ypm

and n variables zs1 , .., zsn
. We note

that xc is used to count the number occurrences of the letter c∈ Σ in a word
derived by the grammar G. The output αG is generated through the following two
steps. Firstly, the procedure generates a quantifier-free Presburger formula αcount

which constrains the occurrences of letters in words derived by the grammar G.
In particular, αcount is a conjunction of the four following kinds of subformulas.

– xc ≥ 0 for all c∈ Σ.
– For each X ∈V , let p1, ..., pk be all productions which X is on the left-hand

side. And we recap W (X, p) denotes the number occurrences of X on the
right-hand side of the production rule p. Then, αcount contains the following
conjunct:

MG(X) + Σp∈P W (X, p)yp − Σk
i=1ypi

= 0

– For each c ∈ Σ, αcount contains the following conjuncts:

xc = Σp ∈ P W (c, p)yp ∧ (xc = 0 ∨ zc > 0)

– For each s ∈ V ∪ Σ, let p1, ..., pl be the productions where s is
on the right-hand side and X1, ... Xl are their corresponding left-hand
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sides. Then, αcount contains the following conjunct: (zs = 0 ∨
∨l

i=1(zs =
zXi

+ 1∧ ypi
> 0∧ zXi

> 0). If one of the Xi is the start symbol s0, the corre-
sponding disjunct is replaced by zs = 1∧ ypi

> 0.

Secondly, αG is generated as: αG ≡ ∃yp1 , .., ypm
, zs1 , .., zsn

.|s0|= Σc∈Σxc ∧
αcount.

Example 3. For the EDT0L in Example 2, we generate the following Parikh-
equivalent CFG G1 〈V1, Σ, P1, S1〉 where the start symbol S1 is fresh,
V1 = {S1, x, x1, x2, x3} and P1 ≡ {(S1, abx), (x, ax1), (x1, bx2), (x2, x), (x, x3),
(x3, ax1), (x1, ε)}.

Next, we show how to compute Par(L(G1x)), Parikh image of CFG G1x . Let
xa and xb be integer variables which count the occurrences of letters a and b,
resp., of every word. Let y1, y2,..., y7 be integer variables representing for the each
production in P1 following the left-right order. And let za, zb, zS1 , zx, zx1 , zx2 and
zx3 be integer variables which reflect the distance of the corresponding symbols
to the start symbol x in a spanning tree on the subgraph of the transformed
net induced by those p with yp > 0. The first kind of conjuncts in αcount is:
xa ≥ 0∧ xb ≥ 0. The second is:

Variable conjunct
x 1 + (y4 + y1) − (y2 + y5) = 0
S1 0 + 0 − y1 = 0
x1 0 + (y2 + y6) − (y3 + y7) = 0

Variable conjunct
x2 0 + y3 − y4 = 0
x3 0 + y5 − y6 = 0

The third kind of conjuncts in αcount corresponding to letter a and b is:
xa = y1 + y2 + y6 ∧ (xa = 0∨ za > 0) and xb = y1 + y3 ∧ (xb = 0∨ zb > 0), respec-
tively. The fourth is as follows.

x zx = 0 ∨ (zx = zx2 + 1 ∧ y4 > 0 ∧ zx2 > 0) ∨ (zx = zS1 + 1 ∧ y1 > 0 ∧ zS1 > 0)
S1 zS1 = 0
x1 zx1 > 0 ∨ (zx1 = 1 ∧ y2 > 0) ∨ (zx1 = zx3 + 1 ∧ y6 > 0 ∧ zx3 > 0)
x2 zx2 > 0 ∨ (zx2 = zx1 + 1 ∧ y3 > 0 ∧ zx1 > 0)
x3 zx3 > 0 ∨ (zx3 = 1 ∧ y5 > 0)
a za>0 ∨ (za=zS1+1 ∧ y1>0 ∧ zS1>0) ∨ (za=1∧y2>0) ∨ (za=zx3+1 ∧ y6>0 ∧ za>0)
b zb > 0 ∨ (zb = zS + 1 ∧ y1 > 0 ∧ zS1 > 0) ∨ (za = zx1 + 1 ∧ y3 > 0 ∧ za > 0)

Then, the length constraint of x is inferred as:

αG1x
≡ ∃y1, .., y7, za, zb, zx, zS1 , zx1 , zx2 , zx3 .|x|=xa +xb ∧ αcount

≡ ∃y1, .., y7, za, zb, zx, zS1 , zx1 , zx2 , zx3 .|x|=2y3 +1∧ xa = y3 +1∧ xb = y3∧αcount

6.2 STREDT0L: A Syntactic Decidable Fragment

Definition 2 (STREDT0L Formulas). E ∧ Υ ∧α1 ∧..∧ αn is called in fragment
STREDT0L if E is a quadratic system and FV(αi) contains at most one string
length ∀i ∈ {1...n}.
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For example, ec ≡xaby = ybax is in STREDT0L. But π ≡ abx=xba∧ ay =
ya∧ |x|= 2|y| (Sect. 3.2) is not in STREDT0L as the arithmetic constraint includes
two string lengths.

The decidability relies on the termination of ω-SAT over quadratic systems.

Proposition 3. ω-SAT runs in factorial time in the worst case for quadratic
systems.

Let SAT-STR[STREDT0L] be the satisfiability problem in this fragment. The
following theorem immediately follows from Proposition 3, Corollary 4.1, Parikh
image of finite-index EDT0L systems [42].

Theorem 1. SAT-STR[STREDT0L] is decidable.

7 STRflat Decidable Fragment

We first describe STRdecflat fragment through a semantic restriction and then show
the computation of the length constraints. After that, we syntactically define
STRflat.

Definition 3. The normalized formula E∧Υ∧α is called in the STRdecflat fragment
if ω-SAT takes E as input, and produces a tree Tn in a finite time. Furthermore,
for every cycle C(Ec → Eb, σcyc) of Tn, every label along the path (Ec, Eb) is of
the form: [cY/X] where X, Y are string variables and c is a letter.

This restriction implies that every node in a Tn belongs to at most one cycle
and Tn does not contain any nested cycles. We refer such Tn as a flat(able) tree.
It further implies that σcyc is of the form σcyc ≡ [X1/X ′

1, ...,Xk/X ′
k] and X ′

j is a
(direct or indirect) subterm of Xj for all j ∈ {1...k}. We refer the variables Xj for
all j ∈ {1...k} as extensible variables and such cycle as C(Ec→Eb, σcyc)[X1,...,Xk].

Procedure Extract pres. From a reduction tree, we propose to extract a system
of inductive predicates which precisely capture the length constraints of string
variables.

First, we extend the syntax of arithmetical constraints in Fig. 1 with induc-
tive definitions as: α ::= a1 = a2 | a1 > a2 | α1 ∧ α2 | α1 ∨ α2 | ∃v . α1 | P(v̄).
In intuition, α may contain occurrences of predicates P(v̄) whose definitions are
inductively defined. Inductive predicate is interpreted as a least fixed-point of
values [46]. We notice that inductive predicates are restricted within arithmetic
domain only. We assume that the system P includes n unknown (a.k.a. uninter-
preted) predicates and P is defined by a set of constrained Horn clauses. Every
clause is of the form: φij ⇒ Pi(v̄i) where Pi(v̄i) is the head and φij is the body.
A clause without head is called a query. A formula without any inductive pred-
icate is referred as a base formula and denoted as φb. We now introduce Γ to
denote an interpretation over unknown predicates such that for every Pi ∈ P,
Γ (Pi(v̄i)) ≡ φb

i. We use φ(Γ ) to denote a formula obtained by replacing all
unknown predicates in φ with their definitions in Γ . We say a clause φb ⇒ φh
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satisfies if there exists Γ and for all stacks η ∈Stacks, we have η |= φb(Γ ) implies
η |= φh(Γ ). A conjunctive set of Horn clauses (CHC for short), denoted by R,
is satisfied if every constraints in R is satisfied under the same interpretation of
unknown predicates.

We maintain a one to one function that maps every string variable x∈U to
its respective length variable nx ∈ I. We further distinguish U into two disjoint
sets: G a set of global variables and E a set of local (existential) variables. While
G includes those variables from the root of a reduction tree, E includes those
fresh variables generated by ω-SAT. Given a tree Tn+1 (V,E, C) (where E0 ∈V
be the root of the tree) deduced from an input E0 ∧Υ , we generate a system of
inductive predicates and CHC R as follows.

1. For every node Ei ∈V s.t. v̄i =FV(Ei) �= ∅, we generate an inductive predicate
Pi(v̄i).

2. For every edge (Ei, σ, Ej)∈ E, v̄i =FV(Ei) �= ∅, v̄j =FV(Ej), w̄j =FV(Ej) ∩ E,
we generate the clause: ∃w̄j . gen(σ)∧Pj(v̄j) ⇒ Pi(v̄i) where gen(σ) is defined
as:

gen(σ) ==

⎧
⎪⎨

⎪⎩

nx = 0 if σ ≡ [ε/x]
nx = ny + 1 if σ ≡ [cy/x]
nx = ny +nz if σ ≡ [yz/x]

3. For every cycle C(Ec →Eb, σcyc)∈C, we generate the following clause:
∧

{vbi = vci | [vci/vbi ] ∈ σcyc} ∧ Pc(v̄c) ⇒ Pb(v̄b)

The length constraint of all solutions of E0 ∧ Υ is captured by the query:
P0(FV(E0)).

In the following, we show that if Tn is a flat tree, the satisfiability of the gen-
erated CHC is decidable. This decidability relies on the decidability of inductive
predicates in DPI fragment which is presented in [46]. In particular, a system of
inductive predicates is in DPI fragment if every predicate P is defined as follows.
Either it is constrained by one base clause as: φb ⇒ P(v̄) or it is defined by two
clauses as:

φb
1∧..∧φb

m ⇒ P(v̄) ∃w̄.
∧

{v̄i + t̄i = k}∧ P(t̄) ⇒ P(v̄)

where FV(φb
j) ∈ v̄ (for all i ∈ 1..m) and has at most one variable; t̄ ⊆ v̄ ∪ w̄, v̄i

is the variable at ith position of the sequence v̄, and k ∈ Z.
To solve the generated clauses R, we infer definitions for the unknown pred-

icates in a bottom-up manner. Under assumption that Tn does not contain any
mutual cycles, all mutual recursions can be eliminated and predicates are in the
DPI fragment.

Proposition 4. The length constraint implied by a flat tree is Presburger-
definable.
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Example 4 (Motivating Example Revisited). We generate the following CHC for
the tree T3 in Fig. 3.

∃nx1 . nx =nx1 + 1 ∧ P12(nx1 ,ny) ⇒ P0(nx,ny)
nx1=0 ∧ P21(ny) ⇒ P12(nx1 ,ny)
∃nx2 . nx1 =nx2 + 1 ∧ P22(nx2 , ny) ⇒ P12(nx1 ,ny)
nx2 =nx ∧ P0(nx, ny) ⇒ P22(nx2 ,ny)
ny = 0 ⇒ P21(ny)
∃ny1 . ny = ny1 + 1 ∧ P32(ny1) ⇒ P21(ny)
ny1 = ny ∧ P21(ny) ⇒ P32(ny1)
P0(nx,ny) ∧ (∃k . nx = 4k + 3) ∧ nx = 2ny

After eliminating the mutual recursion, predicate P21 is in the DPI fragment
and generated a definitions as: P21(ny) ≡ ny ≥ 0. Similarly, after substituting
the definition of P21 into the remaining clauses and eliminating the mutual
recursion, predicate P0 is in the DPI fragment and generated a definitions as:
P0(nx,ny) ≡ ∃i . nx = 2i+ 1∧ ny ≥ 0.

STRflat Decidable Fragment. A quadratic word equation is called regular if it
is either acyclic or of the form Xw1 = w2X where X is a string variable and
w1, w2 ∈ Σ∗. A quadratic word equation is called phased-regular if it is of the
form: s1·...·sn = t1·...·tn where si=ti is a regular equation for all i ∈ {1...n}.

Definition 4 (STRflat Formulas). π ≡E ∧Υ ∧ α is called in the STRflat frag-
ment if either E is both quadratic and phased-regular or E is in SL fragment.

For example, π ≡ abx= xba∧ ay = ya∧ |x|= 2|y| is in STRflat. But
ec ≡xaby = ybax is not in STRflat.

Proposition 5. ω-SAT constructs a flat tree for a STRflat constraint in linear
time.

Let SAT-STR[STRflat] be the satisfiability problem in this fragment.

Theorem 2. SAT-STR[STRflat] is decidable.

8 Implementation and Evaluation

We have implemented a prototype for Kepler22, using OCaml, to handle the
satisfiability problem in theory of word equations and length constraints over the
Presburger arithmetic. It takes a formula in SMT-LIB format version as input
and produces SAT or UNSAT as output. For the problem beyond the decidable
fragments, ω-SAT may not terminate and Kepler22 may return UNKNOWN. We
made use of Z3 [14] as a back-end SMT solver for the linear arithmetic.

Evaluation. As noted in [12,22], all constraints in the standard Kaluza bench-
marks [43] with 50,000+ test cases generated by symbolic execution on
JavaScript applications satisfy the straight-line conditions. Therefore, these
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Table 1. Experimental results

#
√
SAT #

√
UNSAT #✗SAT #✗UNSAT #UNKNOWN #timeout ERR Time

Trau [4] 8 73 8 0 354 117 40 713min33 s

S3P [3] 55 110 1 0 100 253 81 801min55 s

CVC4 [1] 120 143 0 69 0 268 0 795min49 s

Norn [2] 67 98 0 3 432 0 0 336min20 s

Z3str3 [5] 69 102 0 0 292 24 113 77min4 s

Z3str2 [51] 136 66 0 0 380 18 0 54min35 s

Kepler22 298 302 0 0 0 0 0 18min58 s

benchmarks are not be suitable to evaluate our proposal that focuses on the
cyclic constraints. We have generated and experimented Kepler22 over a new
set of 600 hand-drafted benchmarks each of which is in the the proposed decid-
able fragments. The set of benchmarks includes 298 satisfiable queries and 302
unsatisfiable queries. For every benchmark which is a phased-regular constraint
in STRflat, it has from one to three phases. We have also compared Kepler22
against the existing state-of-the-art string solvers: Z3-str2 [51,52], Z3str3 [9],
CVC4 [34], S3P [48], Norn [7,8] and Trau [6]. All experiments were performed
on an Intel Core i7 3.6Gh with 12GB RAM. Experiments on Trau were per-
formed in the VirtualBox image provided by the Trau’s authors.

The experiments are shown in Table 1. The first column shows the solvers.
The column #

√
SAT (resp., #

√
UNSAT) indicates the number of benchmarks for

which the solvers decided SAT (resp., UNSAT) correctly. The column #✗SAT (resp.,
#✗UNSAT) indicates the number of benchmarks for which the solvers decided
UNSAT on satisfiable queries (resp., SAT on unsatisfiable queries). The column
#UNKNOWN indicates the number of benchmarks for which the solvers returned
unknown, timeout for which the solvers were unable to decide within 180 s, ERR
for internal errors. The column Time gives CPU running time (m for minutes
and s for seconds) taken by the solvers.

The experimental results show that among the existing techniques that deal
with cyclic scenarios, the method presented by Z3-str2 performed the most effec-
tively and efficiently. It could detect the overlapping variables in 380 problems
(63.3%) without any wrong outcomes in a short running time. Moreover, it could
decide 202 problems (33.7%) correctly. CVC4 produced very high number of cor-
rect outcome (43.8% - 263/600). However, it returned both false positives and
false negatives. Finally, non-progressing detection method in S3P worked not
very well. It detected non-progressing reasoning in only 98 problems (16.3%)
but produced false negatives and high number of timeouts and internal errors
(crashes). Surprisingly, Norn performed really well. It could detect the highest
number of the cyclic reasoning (432 problems - 72%). Trau was able to solve
a small number of problems with 8 false negatives. The results also show that
Kepler22 was both effective and efficient on these benchmarks. It decided cor-
rectly all queries within a short running time. These results are encouraging us
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to extend the proposed cyclic proof system to support inductive reasoning over
other string operations (like replaceAll).

To highlight our contribution, we revisit the problem ec ≡xaay = ybax (high-
lighted in Sect. 1) which is contained in file quad−004−2 − unsat of the bench-
marks. Kepler22 generates a cyclic proof for ec with the base case e1c ∨ e2c where
e1c ≡ ec[ε/x]≡ aay = yba and e2c ≡ ec[ε/y]≡ xaa= bax. It is known that for cer-
tain words w1, w2 and a variable z the word equation z ·w1 = w2 · z is satisfied if
there exist words A, B and a natural number i such that w1 =A · B, w2 =B ·A
and z = (A · B)i ·A. Therefore, both e1c and e2c are unsatisfiable. The soundness of
the cyclic proof implies that ec is unsatisfiable. For this problem, while Kepler22
returned UNSAT within 1 s, Z3str2 and Z3str3 returned UNKNOWN, S3P, Norn and
CVC4 were unable to decide within 180 s.

9 Related Work and Conclusion

Makanin notably provides a mathematical proof for the satisfiability problem of
word equation [37]. In the sequence of papers, Plandowski et al. showed that the
complexity of this problem is PSPACE [39]. The proposed procedure ω-SAT is
closed to the (more general) problem in computing the set of all solutions for a
word equation [13,20,27,28,40]. The algorithm presented in [27] which is based
on Makanin’s algorithm does not terminate if the set is infinite. Moreover, the
length constraints derived by [28,40] may not be in a finite form. In comparison,
due to the consideration of cyclic solutions, ω-SAT terminates even for infinite
sets of all solutions. ω-SAT is relevant to the Nielsen transform [17,44] and cyclic
proof systems [10,30–32]. Our work extends the Nielsen transform to the set of
all solution to handle the string constraints beyond the word equations. Further-
more, in contrast to the cyclic systems our soundness proof is based on the fact
that solutions of a word equation must be finite. The description of the sets of
all solutions as EDT0L languages was known [13,20]. For instance, authors in
[20] show that the languages of quadratic word equations can be recognized by
some pushdown automaton of level 2. Although [28] did not aim at giving such a
structural result, it provided recompression method which is the foundation for
the remarkable procedure in [13] which prove that languages of solution sets of
arbitrary word equations are EDT0L. In this work, we propose a decision pro-
cedure which is based on the description of solution sets as finite-index EDT0L
languages. Like [20], we also show that sets of all solutions of quadratic word
equation are EDT0L languages. In contrast to [20], we give a concrete procedure
to construct such languages for a solvable equation such that an implementation
of the decision procedure for string constraints is feasible. As shown in this work,
finite-index feature is the key to obtain a decidability result when handling a the-
ory combining word equations with length constraints over words. It is unclear
whether the description derived by the procedure in [13] is the language of finite
index. Furthermore, node of the graph derived by [13] is an extended equation
which is an element in a free partially commutative monoid rather than a word
equation.
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Decision procedures for quadratic word equations are presented in [17,44].
Moreover, Schulz [44] also extends Makanin’s algorithm to a theory of word equa-
tions and regular memberships. Recently, [24,25] presents a decision procedure
for subset constraints over regular expressions. [35] presents a decision procedure
for regular memberships and length constraints. [7,22] presents a decidable frag-
ment of acyclic word equations, regular expressions and constraints over length
functions. It can be implied that this fragment is subsumed by ours. [12,23,36]
presents a straight-line fragment including word equations and transducer-based
functions (e.g., replaceAll) which is incomparable to our decidable fragments.
Z3str [52] implements string theory as an extension of Z3 SMT solver through
string plug-in. It supports unbounded string constraints with a wide range of
string operations. Intuitively, it solves string constraints and generates string
lemmas to control with Z3’s congruence closure core. Z3str2 [51] improves Z3str
by proposing a detection of those constraints beyond the tractable fragment, i.e.
overlapping arrangement, and pruning the search space for efficiency. Similar to
Z3str, CVC4-based string solver [33] communicates with CVC4’s equality solver
to exchange information over string. S3P [47,48] enhances Z3str to incremen-
tally interchange information between string and arithmetic constraints. S3P
also presented some heuristics to detect and prune non-minimal subproblems
while searching for a proof. While the technique in S3P was able to detect non-
progressing scenarios of satisfiable formulas, it would not terminate for unsatis-
fiable formulas due to presence of multiple occurrences of each string variable.
Our solver can support well for both classes of queries in case of less than or
equal to two occurrences of each string variable.

Conclusion. We have presented the solver Kepler22 for the satisfiability of string
constraints combining word equations, regular expressions and length functions.
We have identified two decidable fragments including quadratic word equations.
Finally, we have implemented and evaluated Kepler22. Although our solver is
only a prototype, the results are encouraging for their coverage as well as their
performance. For future work, we plan to support other string operations (e.g.,
replaceAll). Deriving the length constraint implied by more expressive word
equations would be another future work.
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Abstract. This paper formalizes the correctness of a one-pass CPS
transformation for the lambda calculus extended with let-polymorphism.
We prove in Agda that equality is preserved through the CPS transfor-
mation. Parameterized higher-order abstract syntax is used to represent
binders both at the term level and the type level. Unlike the previous
work based on denotational semantics, we use small-step operational
semantics to formalize the equality. Thanks to the small-step formal-
ization, we can establish the correctness without any hypothesis on the
well-formedness of input terms. The resulting formalization is simple
enough to serve as a basis for more complex CPS transformations such
as selective one for a calculus with delimited control operators.

Keywords: One-pass CPS transformation
Parameterized higher-order abstract syntax · Let-polymorphism · Agda

1 Introduction

Continuation-passing style (CPS) transformations are important not only as an
intermediate language in compilers [1], but also as a solid foundation for control
operators [9]. In particular, the one-pass CPS transformation presented by Danvy
and Filinski [10] produces compact results by reducing administrative redexes
during the transformation.

However, formalizing a CPS transformation is not easy. Minamide and
Okuma [12] formalized the correctness of CPS transformations including the one
by Danvy and Filinski in Isabelle/HOL, but had to axiomatize alpha conversion
of bound variables. Handling of bound variables in formalizing programming
languages is known to be non-trivial and the PoplMark Challenge [4] was pre-
sented to overcome the problem. A standard technique to avoid the formalization
of alpha conversion is to use de Bruijn indices [5]. However, for the one-pass CPS
transformation, it is hard to determine the indices in general, because the result
of the CPS transformation is intervened by static abstractions that are reduced
at transformation time.

One of the promising directions to avoid the binding problem is to use param-
eterized higher-order abstract syntax (PHOAS) by Chlipala [6,7]. He proves the
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correctness of one-pass CPS transformations for the simply-typed lambda cal-
culus and System F in Coq, keeping the proof manageable using PHOAS.

In this paper, we prove the correctness of a one-pass CPS transformation for
the lambda calculus extended with let-polymorphism using PHOAS. Specifically,
we show that if a source term e1 reduces to a term e2, then their CPS transforms
are equal in the target calculus. Thanks to the use of PHOAS, the proof is simple
and reflects manual proofs. In the presence of let-polymorphism, it becomes non-
trivial both to define the CPS transformation and to prove its correctness. We
do so by making precise correspondence between types before and after the
CPS transformation. Unlike Chlipala’s work where a denotational approach is
taken, we use small-step operational semantics to formalize equality. The use of
small-step formalization avoids instantiation of variable parameters, making it
possible to show the correctness without assuming the well-formedness condition
on terms.

The contributions of this paper are summarized as follows.

– We prove the correctness of the one-pass CPS transformation for the lambda
calculus extended with let-polymorphism in Agda, without assuming any well-
formedness condition on terms.

– We show how to represent let-polymorphism naturally in PHOAS. We
describe the difficulty that occurs in defining the CPS transformation of poly-
morphic values and present a solution that makes exact type correspondence
before and after the CPS transformation.

– We identify where reduction is not preserved during the CPS transformation
and thus we need to fall back to equality. This is in contrast to Danvy and
Filinski [10] who show exact correspondence between reductions before and
after the CPS transformation.

The paper is organized as follows. In Sect. 2, we define polymorphic types,
source terms that contain let-polymorphism, typing rules and reduction rules,
before we attempt to define the CPS transformation. Since there is a problem
with this definition of the CPS transformation, in Sect. 3, we define target terms,
typing rules, reduction rules to avoid the problem, and define the CPS transfor-
mation from source terms to target terms. In Sect. 4, we prove the correctness
of the CPS transformation. We discuss related work in Sect. 5 and conclude in
Sect. 6.

The complete Agda code is available from http://pllab.is.ocha.ac.jp/∼asai/
papers/aplas18.agda.

2 Direct-Style Terms

In this section, we introduce source terms of the CPS transformation, the typed
lambda calculus extended with let-polymorphism, and show how to represent
them using PHOAS.

http://pllab.is.ocha.ac.jp/~asai/papers/aplas18.agda
http://pllab.is.ocha.ac.jp/~asai/papers/aplas18.agda
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2.1 Types and Type Schemes

We use the standard types and type schemes, informally defined as follows:

τ := α | Nat | τ → τ (types) σ := τ | ∀α.σ (type schemes)

To represent a type variable α and a binder ∀α.σ, we use parameterized higher-
order abstract syntax (PHOAS) proposed by Chlipala [6,7]. Using PHOAS, types
and type schemes are formally defined in Fig. 1.

typ(T) : ∗
| · | : T → typ(T)
Nat : typ(T)

· ⇒ · : typ(T) → typ(T) → typ(T)

Typ : ∗
Typ = ∀̂T : ∗. typ(T)

ts(T) : ∗
ty(·) : typ(T) → ts(T)

∀· : (T → ts(T)) → ts(T)

Ts : ∗
Ts = ∀̂T : ∗. ts(T)

Fig. 1. Definition of types and type schemes

The type of types, typ(T), and the type of type schemes, ts(T), are both
parameterized over the type T of type variables. A type variable is represented
by |α | which is bound by the constructor ∀· in ts(T). The dot · shows the
position of arguments.1 Note that the argument to ∀· is higher order: it receives
a value of type T → ts(T) which is a function in the metalanguage (in our case,
Agda). In other words, we represent the binder using the binder of Agda. For
example, the type informally written as ∀α.α → α is represented formally as
∀(λ̂α. |α | ⇒ |α |), where λ̂α. σ is a function in the metalanguage.

In this section, we explicitly distinguish the informal notation (such as ∀α. σ,
λx. e, and let x = v in e, the letter two of which appear in the next substi-
tution) and its formal definition (such as ∀(λ̂α. σ), λ(λ̂x. e), and let v (λ̂x. e),
respectively). We use the informal notation to explain ideas and examples, but
all the technical development in this paper is performed using the formal defini-
tion. The reader could regard the former as an abbreviation of the latter.

Unlike higher-order abstract syntax, PHOAS employs the type T of type
variables. The use of T instead of ts(T) in the definition of ∀· avoids negative
occurrences of ts(T) and thus makes it possible to define ts(T) in Agda at all,
without spoiling most of the merits of higher-order abstract syntax.

Since variables are all bound by the binder in the metalanguage, there is
no way to define an open type, such as ∀α.α → β → α. We will formalize all
these open types (and type schemes, terms, etc.) under a suitable binder in the
metalanguage.

Finally, we close typ(T) and ts(T) by quantifying over T using ∀̂ in the
metalanguage to obtain Typ and Ts. We require that T can be instantiated to
any type. Typ and Ts are the definition of types and type schemes that we use
in the final theorem.
1 We follow the notation employed by Chlipala [6].
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value(T,V ) : typ(T) → ∗
| · |· : ∀̂σ : ts(T).V(σ) → ∀̂τ : typ(T). σ > τ → value(T,V ) τ

n : value(T,V )Nat
λ · : ∀̂τ1, τ2 : typ(T). (V(ty(τ2)) → term(T,V ) τ1) → value(T,V ) (τ2 ⇒ τ1)

Value : Typ → ∗
Value τ = ∀̂T : ∗. ∀̂V : ts(T) → ∗. value(T,V ) (τ T)

term(T,V ) : typ(T) → ∗
Val(·) : ∀̂τ : typ(T). value(T,V ) τ → term(T,V ) τ

·@ · : ∀̂τ1, τ2 : typ(T). term(T,V ) (τ2 ⇒ τ1) → term(T,V ) τ2 → term(T,V ) τ1
let · · : ∀̂σ1 : ts(T). ∀̂τ2 : typ(T). (∀̂τ1 : typ(T). σ1 > τ1 → value(T,V ) τ1) →

(V(σ1) → term(T,V ) τ2) → term(T,V ) τ2

Term : Typ → ∗
Term τ = ∀̂T : ∗. ∀̂V : ts(T) → ∗. term(T,V ) (τ T)

Fig. 2. Definition of terms and values

2.2 Values and Terms

Values and terms are informally defined as follows:

v := x | n | λx. e (values) e := v | e@ e | let x = v in e (terms)

We employ the value restriction in let terms so that only values are allowed to
have polymorphic types. Since our calculus is pure, the value restriction is not
strictly necessary. We employ the value restriction, because we want to extend
the calculus with control operators, shift and reset [9], in the future, where some
kind of restriction is necessary.

Values and terms are formally defined in Fig. 2. We represent them with
type families, value(T,V ) τ and term(T,V ) τ , indexed by the type τ of values
and terms, respectively. They are parameterized over T and V, latter of which
represents the type of (term) variables. In a calculus with let-polymorphism, a
variable has a type scheme rather than a monomorphic type. Thus, V is param-
eterized over ts(T) and has the type ts(T) → ∗. In the definition of value(T,V )
and term(T,V ), types and type schemes bound by ∀̂ are assumed to be implicit
and are inferred automatically.

The values and terms are defined in a typeful manner. Namely, typing rules
are encoded in their definitions and we can construct only well-typed values
and terms. A (term) variable is represented as |x |p, where p represents a type
instantiation relation for x. Remember that if a variable x has a type scheme
σ, the type of x can be any τ that is an instantiation of σ (see Fig. 3 for the
standard typing rules [14]). We encode this relationship by p of type σ > τ to
be introduced later.

An abstraction is formally represented by λ e, where e is a function in the
metalanguage. The type V(ty(τ2)) of the domain of the function is restricted to
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Γ � n : Nat
(x : σ) ∈ Γ σ > τ

Γ � x : τ

Γ, x : τ2 � e : τ1

Γ � λx. e : τ2 → τ1

Γ � e1 : τ2 → τ1 Γ � e2 : τ2
Γ � e1 @ e2 : τ1

Γ � v1 : τ1 Γ, x : Gen(τ1, Γ ) � e2 : τ2

Γ � let x = v1 in e2 : τ2

Fig. 3. Standard typing rules (in informal notation)

ty(τ1) > τ1
(σ1)[τ2] �→ σ′

1 σ′
1 > τ1

∀σ1 > τ1

Fig. 4. Type instantiation relation

a monomorphic type ty(τ2), because lambda-bound variables are monomorphic.
For example, the type informally written as λx. λy. x is represented formally as
λ (λ̂x. λ (λ̂y. |x |p)) where p instantiates a monomorphic type of x to itself.

A term is formally defined as either a value Val(v), an application e1 @ e2,
or a let term let v1 e2. Among them, let v1 e2 requires explanation on both e2
and v1. First, we use PHOAS to represent a let binding: e2 is a function in the
metalanguage that receives the bound value v1. The standard (informal) notation
for let terms, let x = v1 in e′

2, is formally represented as let v1 (λ̂x. e′
2). Since

v1 is given a polymorphic type, the type V(σ1) of the let-bound variable is given
a polymorphic type. Consequently, we can use it polymorphically in the body
of e2. Secondly, in the standard typing rules (Fig. 3), the free type variables in
the type of v1 that does not occur free in Γ are generalized. Since we cannot
represent free (type) variables in the PHOAS formalization, however, we take
another approach. The definition of let v1 e2 in Fig. 2 can be informally written
as follows:

∀̂τ1. (σ1 > τ1 → Γ � v1 : τ1) Γ, x : σ1 � e2 : τ2
Γ � let x = v1 in e2 : τ2

Rather than generalizing a monomorphic type τ1 to σ1, we start from σ1: for v1 to
have a type scheme σ1, we require v1 to have any type τ1 that is an instantiation
of σ1. Finally, Value and Term are defined by generalizing over T and V. They
are indexed by τ of type Typ.

We next describe the type instantiation relation σ1 > τ1. See Fig. 4. A
monomorphic type ty(τ1) is instantiated to itself. To instantiate a polymorphic
type ∀σ1, where σ1 has a form λ̂α. σ, we need to substitute the topmost type
variable α in σ with some (monomorphic) type τ2. The type substitution rela-
tion (σ1)[τ2] �→ σ′

1 is used for this purpose. It expresses that substituting the
topmost variable α of σ1 in the body σ of σ1 with τ2 yields σ′

1. The definition
of the substitution relation is given in the next section.
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(λ̂α. | α |)[τ ] �→ τ (λ̂α. | β |)[τ ] |→� β | (λ̂α.Nat)[τ ] �→ Nat

(λ̂α. τ1(α))[τ ] �→ τ ′
1 (λ̂α. τ2(α))[τ ] �→ τ ′

2

(λ̂α. (τ1(α) ⇒ τ2(α)))[τ ] �→ τ ′
1 ⇒ τ ′

2

Fig. 5. Substitution relation for types

(λ̂α. τ1(α))[τ ] �→ τ ′
1

(λ̂α. (ty(τ1(α))))[τ ] �→ ty(τ ′
1)

∀̂β. ((λ̂α. ((σ1(α))β))[τ ] �→ σ′
1 β)

(λ̂α. ∀(σ1(α)))[τ ] ∀→� σ1

Fig. 6. Substitution relation for type schemes

2.3 Substitution Relation

Following Chlipala [6], the substitution relation for types is shown in Fig. 5. It has
the form (λ̂α. τ1(α))[τ ] �→ τ ′

1, meaning that τ1 possibly contains a type variable
α and if we substitute α in τ1 with τ , we obtain τ ′

1. If τ1 is the type variable
|α | to be substituted, the result becomes τ ; otherwise the result is the original
type variable |β | unchanged. Nat has no type variable and thus no substitution
happens. For a function type, the substitution is performed recursively.

Similarly, the substitution relation for type schemes is found in Fig. 6. For
ty(τ1(α)), the substitution relation for types is used. For ∀(σ1(α)), first remember
that σ1(α) is a function. It has a form λ̂β. ((σ1(α)) β), meaning that σ1 has
possibly a type variable α (to be substituted by τ) and is generalized over β.
To substitute α in σ1 with τ , we require that the substitution relation for σ1(α)
holds for any β. Note that the quantification over β is done in the metalanguage:
this is another instance where PHOAS is used in a non-trivial way.

Chlipala [6] shows two implementations of the substitution, one in a func-
tional form and the other in a relational form. We take the latter approach here,
because it works uniformly for all the choices of T (and V for the substitution
relation on values and terms). We can then concentrate on the parameterized
form of types ty(T ) only, when we prove the correctness of the CPS transfor-
mation. If we employ the functional approach, we need to instantiate T to the
type ty(T ′) (for some T ′) of the substituted type τ . It then forces us to consider
both ty(T ) and Typ, resulting in complication of proofs. We tried the functional
approach, too, to formalize the CPS transformation, but so far, we have not been
able to complete the correctness proof, even if we assume well-formedness [6] of
types and terms.

The substitution relation for values is shown in Fig. 7. It has the form
(λ̂y. v1(y)) [v] �→ v′

1 , meaning that substituting y in v1 with v yields v′
1. Because

we have let-polymorphism, the substituted value v can have a polymorphic type
σ. To account for this case, v in the substitution relation is a function in the
metalanguage that receives an instantiation relation p. If the variable y to be
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(λ̂y. | y |p)[v] �→ v p (λ̂y. | x |p)[v] |→� x |p (λ̂y. n)[v] �→ n

∀̂x. ((λ̂y. (e(y))x)[v] �→ e′ x)

(λ̂y. λ (e(y)))[v] �→ λ e′
(λ̂y. e1(y))[v] �→ e′

1 (λ̂y. e2(y))[v] �→ e′
2

(λ̂y. ((e1(y))@ (e2(y))))[v] �→ e′
1 @ e′

2

∀̂p. ((λ̂y. (v1(y)) p)[v] �→ v′
1 p) ∀̂x. ((λ̂y. (e2(y))x)[v] �→ e′

2 x)

(λ̂y. let (v1(y)) (e2(y)))[v] �→ let v′
1 e′

2

Fig. 7. Substitution relation for values and terms

(λ̂x. e(x))[v] �→ e′

(λ e) v � e′
e1 � e′

1

e1 e2 � e′
1 e2

e2 � e′
2

v1 e2 � v1 e′
2

(λ̂x. e(x))[v] �→ e′

let v e � e′

Fig. 8. Reduction relation for terms

substituted is found with the instantiation relation p, we replace the variable
with the value v applied to p, thus correctly instantiating the polymorphic value
v. Other rules are standard and follow the same pattern as the substitution rela-
tion for types and type schemes. For an abstraction, we use quantification over
(monomorphic) x in the metalanguage.

The substitution relation for terms is also shown in Fig. 7. For a let term, we
require that the substitution relation for the value v1 holds for any type instan-
tiation p. Then, the substitution relation for e2 is required for any polymorphic
x. Quantification in the metalanguage is used in both cases.

2.4 Reduction Relation

The call-by-value left-to-right reduction relation for terms is shown in Fig. 8. It
consists of β-reduction, reduction under evaluation contexts, and reduction of
let terms. Since v in let v e is restricted to a value, a let term is always a redex.
Note that the substituted value v can be polymorphic in the reduction of let
terms.

2.5 CPS Transformation (First Attempt)

In this section, we show our first attempt to define a CPS transformation. The
CPS transformation we formalize is based on the one-pass CPS transformation
presented by Danvy and Filinski [10] for the lambda calculus, which we extend
with let-polymorphism. The CPS transformation �·	 of types and type schemes
is shown in Fig. 9. Since we do not have any control operators, the answer type
of the CPS transformation can be arbitrary. We fix the answer type to Nat in
this paper.
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	·
 : ∀̂T : ∗. typ(T) → typ(T)
	Nat
 = Nat

	τ2 ⇒ τ1
 = 	τ2
 ⇒ (	τ1
 ⇒ Nat) ⇒ Nat

	·
 : ∀̂T : ∗. ts(T) → ts(T)
	ty(τ)
 = ty(	τ
)

	∀σ
 = ∀	σ


Fig. 9. CPS transformation for types and type schemes

	·
V : ∀̂T : ∗. ∀̂V : ts(T) → ∗. ∀̂τ : typ(T). value(T,V ◦ 	·
) τ →
value(T,V ) 	τ


	n
V = n
	| x |p
V = | x |p

	λ e
V = λ (λ̂x. λ (λ̂k. 	e x
D k))

	·
S : ∀̂T : ∗. ∀̂V : ts(T) → ∗. ∀̂τ : typ(T). term(T,V ◦ 	·
) τ →
(value(T,V ) 	τ
 → term(T, V )Nat) → term(T,V )Nat

	v
S = λ̂κ. κ 	v
V
	e1 @ e2
S = λ̂κ. 	e1
S (λ̂m. 	e2
S (λ̂n. (m@n)@λ (λ̂a. κ a)))
	let v1 e2
S = λ̂κ. let (λ̂p. 	v1 p
V) (λ̂x. 	e2 x
S κ) - - ill typed

	·
D : ∀̂T : ∗. ∀̂V : ts(T) → ∗. ∀̂τ : typ(T). term(T,V ◦ 	·
) τ →
value(T, V ) (	τ
 ⇒ Nat) → term(T, V )Nat

	v
D = λ̂k. k@ 	v
V
	e1 @ e2
D = λ̂k. 	e1
S (λ̂m. 	e2
S (λ̂n. (m@n)@ k))
	let v1 e2
D = λ̂k. let (λ̂p. 	v1 p
V) (λ̂x. 	e2 x
D k) - - ill typed

Fig. 10. CPS transformation (first attempt)

The CPS transformation of values, �·	V, is shown at the top of Fig. 10. Given
a value of type τ , it returns a value of type �τ	. A one-pass CPS transforma-
tion produces the result of a CPS transformation compactly by reducing the
so-called administrative redexes during the transformation [10]. For this pur-
pose, the right-hand side of the CPS transformation uses the abstraction and
the application in the metalanguage. We call such constructs static. For exam-
ple, �λ e	V contains two static applications in the metalanguage. (Namely, the
application of e to x and of �e x	D to k.) Those static constructs are reduced
during the CPS transformation and the result we obtain consists solely of values
of type value(T,V ) �τ	, which we call dynamic.

The CPS transformation of terms (also in Fig. 10) is divided into two cases
depending on whether the continuation is statically known at the transformation
time.2 When it is static, �e	S is used, where the application of κ is reduced at the

2 The two cases, �e�S and �e�D, correspond to [[e]] and [[e]]′ in Danvy and Filinski [10].
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transformation time. When the continuation is dynamic, �e	D is used, where the
continuation k is residualized in the final result. By separating �e	S and �e	D,
we can remove the so-called administrative η-redex [10].

The definition of the CPS transformation in Fig. 10 is well typed if we do not
have let terms. However, the cases for let terms, �let v1 e2	S and �let v1 e2	D, do
not type check. Remember that v1 in let v1 e2 is a polymorphic value having the
type

∀̂τ1 : typ(T). σ1 > τ1 → value(T,V ) τ1.

Similarly, after the CPS transformation, λ̂p. �v1 p	V needs to have the type

∀̂τ1 : typ(T). �σ1	 > τ1 → value(T,V ) τ1. (1)

However, λ̂p. �v1 p	V does not have this type, because we cannot pass p of type
�σ1	 > τ1 to v1 which expects an argument of type σ1 > τ1. Morally, τ1 in
�σ1	 > τ1 should be a CPS transform of some type τ ′

1 and (1) could be written
as:

∀̂τ ′
1 : typ(T). �σ1	 > �τ ′

1	 → value(T,V ) �τ ′
1	.

We could then somehow obtain a value of σ1 > τ1 from p of type �σ1	 > �τ ′
1	.

However, given a general type (1), there appears to be no simple way to show
that τ1 is in the image of the CPS transformation.

In order to make precise correspondence between the types of terms before
and after the CPS transformation, we will define CPS terms that keeps track of
the source type information.

3 CPS Terms

In this section, we define a new term that represents the image of the CPS
transformation but keeps the type information before the CPS transformation.
Using this term, it becomes possible to use the same type before and after
the CPS transformation, avoiding the type mismatch in the type instantiation
relation. We will call this term a CPS term, and the term in Sect. 2 a DS (direct-
style) term.

3.1 Continuations, Values, and Terms

By carefully observing the CPS transformation, it is possible to define the syntax
of results of the CPS transformation. Based on the definition given by Danvy
[8], we use the following (informal) definition:3

3 Values and terms correspond to serious expressions and trivial expressions in Danvy’s
notation, respectively. Besides the introduction of let terms, our notation differs from
Danvy’s in that we allow a term of the form c @K k where c is not necessarily a
continuation variable. We need the new form during the correctness proof.
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cpscont(T,V ) : typ(T) → ∗
| · |K : ∀̂τ : typ(T).V(ty(τ ⇒ Nat)) → cpscont(T,V ) (τ ⇒ Nat)
λK · : ∀̂τ : typ(T). (V(ty(τ)) → cpsterm(T,V )Nat) →

cpscont(T,V ) (τ ⇒ Nat)

CpsCont : Typ → ∗
CpsCont τ = ∀̂T : ∗. ∀̂V : ts(T) → ∗. cpscont(T,V ) ((τ T) ⇒ Nat)

cpsvalue(T,V ) : typ(T) → ∗
| · |C· : ∀̂σ : ts(T).V(σ) → ∀̂τ : typ(T). σ > τ → cpsvalue(V,T) τ

n : cpsvalue(T,V )Nat
λC · : ∀̂τ1, τ2 : typ(T). (V(ty(τ2)) → V(ty(τ1 ⇒ Nat)) →

cpsterm(T,V )Nat) → cpsvalue(T,V ) (τ2 ⇒ τ1)

CpsValue : Typ → ∗
CpsValue τ = ∀̂T : ∗. ∀̂V : ts(T) → ∗. cpsvalue(T,V ) (τ T)

cpsterm(T,V ) : typ(T) → ∗
ValC(·) : cpsvalue(T,V )Nat → cpsterm(T,V )Nat

·@C (·, ·) : ∀̂τ1, τ2 : typ(T). cpsvalue(T,V ) (τ2 ⇒ τ1) → cpsvalue(T,V ) τ2 →
cpscont(T,V ) (τ1 ⇒ Nat) → cpsterm(T,V )Nat

·@K · : ∀̂τ : typ(T). cpscont(T,V ) (τ ⇒ Nat) → cpsvalue(T,V ) τ →
cpsterm(T,V )Nat

letC · · : ∀̂σ : ts(T). (∀̂τ : typ(T). σ > τ → cpsvalue(T,V ) τ) →
(V(σ) → cpsterm(T,V )Nat) → cpsterm(T,V )Nat

CpsTerm : ∗
CpsTerm = ∀̂T : ∗. ∀̂V : ts(T) → ∗. cpsterm(T,V )Nat

Fig. 11. Definition of continuations, values, and terms in CPS

c := k | λKx. e (continuations)
v := x | n | λC(x, k). e (values)
e := v | v @C (v, c) | c@K v | letC v e (terms)

We introduce continuations as a new syntactic category. It is either a continua-
tion variable k or a continuation λKx. e that receives one argument. The standard
abstraction is represented as λC(x, k). e and receives a value and a continuation.
Accordingly, we have two kinds of applications, a function application and a
continuation application.

The formal definition is found in Fig. 11. In this section and the next section,
we mix the formal and informal notation and write λKx. e and λC(x, k). e as
abbreviations for λK (λ̂x. e) and λC (λ̂x. λ̂k. e), respectively.

Figure 11 is a straightforward typed formalization of the above informal def-
inition except for two points. First, the type of values is the one before the
CPS transformation. Even though λC(x, k). e receives x of type τ2 and k of type
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τ1 ⇒ Nat, the type of λC(x, k). e is τ2 ⇒ τ1 rather than τ2 ⇒ (τ1 ⇒ Nat) ⇒ Nat.
Accordingly, the type of v1 in v1 @C (v2, k) is also τ2 ⇒ τ1. We attach a type
before the CPS transformation to a value after the CPS transformation, thus
keeping the original type.4

Secondly, although the definition of letC v1 e2 appears to be the same as
before, the instantiation relation σ > τ is now with respect to the types before
the CPS transformation. Namely, even if we perform the CPS transformation,
we can use the type instantiation relation before the CPS transformation. With
this definition, we can define the CPS transformation.

3.2 Substitution Relation

Before we show the new definition of the CPS transformation, we show the
substitution relation for CPS terms. Since we have two kinds of applications,
one for a function application and the other for a continuation application, we
define two substitution relations. The substitution relation to be used for a
function application is shown in Fig. 12. It has the form (λ̂(y, k). e(y, k))[v, c] �→
e′, meaning that a term e possibly contains a variable y and a continuation
variable k, and substituting y and k in e with v and c, respectively, yields e′.
It is a straightforward adaptation of the substitution relation for DS terms.
As before, v is a polymorphic value receiving an instantiation relation. Since a
function in CPS is applied to its argument and a continuation at the same time,
we substitute a term variable and a continuation variable at the same time.

Likewise, the substitution relation for a continuation application is shown
in Fig. 13. For a continuation application, only a (term) variable is substituted,
because a continuation is applied only to a value and not to a continuation.
Thus, when the substituted term is a continuation variable | k |K, no substitution
occurs.

3.3 CPS Transformation

We now show the well-typed CPS transformation from DS terms to CPS terms
in Fig. 14.

This definition is exactly the same as the one in Fig. 10 except that the output
is constructed using CPS terms rather than DS terms. Because the type is shared
between a DS value and its CPS counterpart, the type mismatch described in
Sect. 2.5 does not occur: both v1 in the left-hand side and λ̂p. �v1 p	V in the
right-hand sides of �let v1 e2	S and �let v1 e2	D have type

∀̂τ1 : typ(T). σ1 > τ1 → value(T,V ) τ1.

4 As for continuations and terms, we keep the type after the CPS transformation. Since
the answer type is always Nat, we could elide it and write the type of continuations
and terms as ¬τ and ⊥, respectively.
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(λ̂(y, k). | k |K)[v, c] �→ c (λ̂(y, k). | k′ |K)[v, c] |→� k′ |K

∀̂x. ((λ̂(y, k). (e(y, k))x)[v, c] �→ e′ x)

(λ̂(y, k). λK (e(y, k)))[v, c] �→ λK e′ (λ̂(y, k). | y |Cp)[v, c] �→ v p

(λ̂(y, k). | x |Cp)[v, c] |→� x |Cp (λ̂(y, k). n)[v, c] �→ n

∀̂(x, z). ((λ̂(y, k). (e(y, k))x z)[v, c] �→ e′ x z)

(λ̂(y, k). λC (e(y, k)))[v, c] �→ λC e′

(λ̂(y, k). v1(y, k))[v, c] �→ v′
1

(λ̂(y, k). v2(y, k))[v, c] �→ v′
2 (λ̂(y, k). k1(y, k))[v, c] �→ k′

1

(λ̂(y, k). ((v1(y, k))@C (v2(y, k), k1(y, k))))[v, c] �→ v′
1 @C (v′

2, k
′
1)

(λ̂(y, k). k1(y, k))[v, c] �→ k′
1 (λ̂(y, k). v2(y, k))[v, c] �→ v′

2

(λ̂(y, k). ((k1(y, k))@K (v2(y, k))))[v, c] �→ k′
1 @K v′

2

∀̂p. ((λ̂(y, k). (v1(y, k)) p)[v, c] �→ v′
1 p) ∀̂x. ((λ̂(y, k). (e2(y, k))x)[v, c] �→ e′

2 x)

(λ̂(y, k). letC (v1(y, k)) (e2(y, k)))[v, c] �→ letC v′
1 e′

2

Fig. 12. Substitution relation for function application

(λ̂y. | k |K)[v] |→� k |K ∀̂x. ((λ̂y. (e(y))x)[v] �→ e′ x)

(λ̂y. λK (e(y)))[v] �→ λK e′ (λ̂y. | y |Cp)[v] �→ v p

(λ̂y. | x |Cp)[v] |→� x |Cp (λ̂y. n)[v] �→ n
∀̂x, z. ((λ̂y. (e(y))x z)[v] �→ e′ x z)

(λ̂y. λC (e(y)))[v] �→ λC e′

(λ̂y. v1(y))[v] �→ v′
1 (λ̂y. v2(y))[v] �→ v′

2 (λ̂y. k(y))[v] �→ k′

(λ̂y. ((v1(y))@C (v2(y), k(y))))[v] �→ v′
1 @C (v′

2, k
′)

(λ̂y. k1(y))[v] �→ k′
1 (λ̂y. v2(y))[v] �→ v′

2

(λ̂y. ((k1(y))@K (v2(y))))[v] �→ k′
1 @K v′

2

∀̂p. ((λ̂y. (v1(y)) p)[v] �→ v′
1 p) ∀̂x. ((λ̂y. (e2(y))x)[v] �→ e′

2 x)

(λ̂y. letC (v1(y)) (e2(y)))[v] �→ letC v′
1 e′

2

Fig. 13. Substitution relation for continuation application
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4 Correctness of CPS Transformation

In this section, we prove the correctness of the CPS transformation, which
roughly states that if e reduces to e′, then �e	S κ is equal to �e′	S κ. Since we
introduced CPS terms, we first define what it means for CPS terms to be equal.

	·
V : ∀̂T : ∗. ∀̂V : ts(T) → ∗. ∀̂τ : typ(T). value(T,V) τ → cpsvalue(T,V ) τ
	n
V = n

	| x |p
V = | x |Cp
	λ e
V = λC(x, k). 	e x
D k

	·
S : ∀̂T : ∗. ∀̂V : ts(T) → ∗.∀̂τ : typ(T). term(T,V) τ →
(cpsvalue(T,V ) τ → cpsterm(T,V )Nat) → cpsterm(T,V )Nat

	v
S = λ̂κ. κ 	v
V
	e1 @ e2
S = λ̂κ. 	e1
S (λ̂m. 	e2
S (λ̂n. m@C (n, (λKa. κ a))))
	let v1 e2
S = λ̂κ. letC (λ̂p. 	v1 p
V) (λ̂x. 	e2 x
S κ)

	·
D : ∀̂T : ∗. ∀̂V : ts(T) → ∗. ∀̂τ : typ(T). term(T,V) τ →
cpscont(T,V ) (τ ⇒ Nat) → cpsterm(T,V )Nat

	v
D = λ̂k. k@K 	v
V
	e1 @ e2
D = λ̂k. 	e1
S (λ̂m. 	e2
S (λ̂n. m@C (n, k)))
	let v1 e2
D = λ̂k. letC (λ̂p. 	v1 p
V) (λ̂x. 	e2 x
D k)

Fig. 14. CPS transformation from DS terms to CPS terms

(λ̂(y, k). e1(y, k))[	v
V, k1] �→ e′
1

eqBeta
(λC e1)@C (	v
V, k1) ∼ e′

1

(λ̂y. e1(y))[	v
V] �→ e′
1

eqCont
(λK e1)@K 	v
V ∼ e′

1

(λ̂y. e2(y))[	v1
V] �→ e′
2

eqLet
letC 	v1
V e2 ∼ e′

2

Fig. 15. Beta rules

4.1 Equality Relation for CPS Terms

The equality relations for CPS terms consist of beta rules (Fig. 15), frame rules
(Fig. 16), and equivalence rules (Fig. 17).

The beta rules are induced by β-reduction, continuation applications, or let
reduction. In the beta rules, we impose a restriction that the values to be sub-
stituted have always the form �v	V, a CPS transform of some DS term v. The
restriction is crucial: it enable us to extract the substituted DS value whenever
β-equality holds for CPS terms. Without this restriction, we would need some
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∀̂x. (e1 x ∼ e2 x)
eqFunK

λK e1 ∼ λK e2

∀̂x, y. (e1 x y ∼ e2 x y)
eqFunC

λC e1 ∼ λC e2

v1 ∼ v′
1

eqApp1
v1 @C (v2, k) ∼ v′

1 @C (v2, k)

v2 ∼ v′
2

eqApp2
v1 @C (v2, k) ∼ v1 @C (v′

2, k)

k ∼ k′
eqApp3

v1 @C (v2, k) ∼ v1 @C (v2, k′)
k ∼ k′

eqRet1
k@K v ∼ k′ @K v

v ∼ v′
eqRet2

k@K c ∼ k@K v′
∀̂p. (v1 p ∼ v′

1 p)
eqLet1

letC v1 e2 ∼ letC v′
1 e2

∀̂x. (e2 x ∼ e′
2 x)

eqLet2
letC v1 e2 ∼ letC v1 e′

2

Fig. 16. Frame rules

e ∼ e
e1 ∼ e2 e2 ∼ e3

e1 ∼ e3
e2 ∼ e1 e2 ∼ e3

e1 ∼ e3

Fig. 17. Equivalence rules

kind of back translation that transforms CPS terms to DS terms (see Sect. 4.3).
We prove the correctness of the CPS transformation according to this definition
of equality. The validity of the proof is not compromised by this restriction,
because the restricted equality entails the standard β-equality. To put it from
the other side, we need only the restricted β-equality to prove the correctness of
the CPS transformation.

The frame rules state that any context preserves equality, including under
binders. Finally, the equivalence rules define the standard equivalence relation,
i.e., reflexivity, symmetry (embedded in two kinds of transitivity), and transi-
tivity.

4.2 Schematic Continuation

The exact statement of the theorem we prove is as follows.

Theorem 1. Let e and e′ be DS terms. If e � e′, then �e	S κ ∼ �e′	S κ for any
static schematic continuation κ.

A continuation κ is schematic, if it does not inspect the syntactic structure of
its argument [10]. It is defined as follows.

Definition 1. A static continuation κ is schematic if it satisfies (λ̂y. κ (v1(y)))
[�v	V] �→ κ(v′

1) for any CPS values v1 and v′
1 and a DS value v that satisfy

(λ̂y. v1(y))[�v	V] �→ v′
1.
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In words, applying κ to v1(y) and then substituting �v	V for y is the same as
applying κ to the substituted value v′

1. Notice that the substituted value has,
again, the form �v	V. If we imposed stronger condition where the substituted
value needed to be an arbitrary CPS value for a continuation to be schematic,
it would become impossible to prove the correctness of the CPS transformation.

The reason the theorem requires κ to be schematic is understood as follows.
Let DS terms e and e′ be (in the informal notation) as follows, where we obviously
have e � e′.

e = (λx. x) @ 3
e′ = 3

Under an arbitrary continuation κ, the CPS transformation of these terms
become as follows:

�e	S κ = �(λx. x) @ 3	S κ = (λC(x, k). (k @K x)) @C (3, (λKa. κ a))
�e′	S κ = �3	S κ = κ 3

These two terms appear to be equal, because applying eqBeta and eqCont to
the first term would yield the second. This is not the case, however, since κ a
and κ 3 are reduced during the CPS transformation. If the continuation was κ0

that returns 1 when its argument is a variable and returns 2 otherwise, the CPS
transformation of the two terms actually goes as follows:

�e	S κ0 = �(λx. x) @ 3	S κ0 = (λC(x, k). (k @K x)) @C (3, (λKa. 1))
�e′	S κ0 = �3	S κ0 = 2

Since the first term reduces to 1, these two terms are not equal.
The theorem did not hold for κ0, because κ0 is not schematic: it examines

the syntactic structure of the argument and does not respect the property of an
abstract syntax tree where the substitution may occur. In particular, κ0 returns
1 when applied to a variable a, but returns 2 when applied to a substituted value
3. To avoid such abnormal cases, we require that κ be schematic.

4.3 Substitution Lemmas

To prove the theorem, we need to show that the substitution relation is preserved
after the CPS transformation. Because we have two kinds of substitution rela-
tions, one for function applications and the other for continuation applications,
we have two kinds of substitution lemmas. We first define an equality between
two continuations.

Definition 2. We write κ1 ∼V,C κ2, if for any v1 and v′
1 such that (v1)[�v	V, c]

�→ v′
1, we have (λ̂(x, k). (κ1 x k) (v1 x k))[�v	V, c] �→ κ2 v′

1.

This definition states that κ1 (after substitution) and κ2 behaves the same, given
arguments v1 (after substitution) and v′

1 that are the same.
Using this definition, we have the following substitution lemma, proved by

straightforward induction on the substitution relation.
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Lemma 1. 1. If (v1)[v] �→ v′
1, then (�v1	V)[�v	V, c] �→ �v′

1	V.
2. If (e)[v] �→ e′ and κ1 ∼V,C κ2, then (λ̂(x, k). �e x	S (κ1 x k))[�v	V, c] �→

�e′	S κ2.
3. If (e)[v] �→ e′ and (k1)[�v	V, c] �→ k2, then (λ̂(x, k). �e x	D (k1 x k))[�v	V, c]

�→ �e′	D k2.

Notice that the conclusion of the lemma states that the substitution relation
holds only for a value of the form �v	V. We cannot have the relation for an
arbitrary CPS value. Thus, we can apply this lemma only when the goal is in
this form. Otherwise, we would need a back translation to convert a CPS value
into the form �v	V. Likewise for continuation applications.

Definition 3. We write κ1 ∼V κ2, if for any v1 and v′
1 such that (v1)[�v	V] �→

v′
1, we have (λ̂x. (κ1 x) (v1 x))[�v	V] �→ κ2 v′

1.

Lemma 2. 1. If (v1)[v] �→ v′
1, then (�v1	V)[�v	V] �→ �v′

1	V.
2. If (e)[v] �→ e′ and κ1 ∼V κ2, then (λ̂x. �e x	S (κ1 x))[�v	V] �→ �e′	S κ2.
3. If (e)[v] �→ e′, then (λ̂x. �e x	D k)[�v	V] �→ �e′	D k.

4.4 Proof of Correctness of CPS Transformation

We are now ready to prove the main theorem, reshown here.

Theorem 1. Let e and e′ be DS terms. If e � e′, then �e	S κ ∼ �e′	S κ for any
static schematic continuation κ.

The proof goes almost the same as the untyped case [10]. We explicitly note
when the proof deviates from it, namely, when the reduction is not preserved
and the equality is instead needed (the third subcase of the case (λ e) @ v � e′)
and when the restriction on the definition of schematic is required (the case
e1 @ e2 � e′

1 @ e2).

Proof. By induction on the derivation of �:

(Case (λ e) @ v � e′ because (λ̂x. e(x))[v] �→ e′)

�(λ e) @ v	S κ = (λK(x, k). �e x	D k) @C (�v	V, (λKa. κ a))
∼ �e′	D (λKa. κ a) (eqBeta)
∼ �e′	S κ (see below)

To use eqBeta, we need (λ̂(x, k). �e x	D k)[�v	V, (λKa. κ a)] �→ �e′	D (λKa. κ a).
It is obtained from Lemma 1 (3) and the assumption (λ̂x. e(x))[v] �→ e′. The
last equality is proved by structural induction on e′:

(Case e′ = v)

�v	D (λKa. κ a) = (λKa. κ a) @K �v	V
∼ �v	V κ (eqCont)

To use eqCont, we need (λ̂a. κ a)[�v	V] �→ �v	S κ. It is obtained from κ being
schematic and a trivial substitution relation (λ̂a. a)[�v	V] �→ �v	V.
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(Case e′ = e1 @ e2)

�e1 @ e2	D (λKa. κ a) = �e1	S (λ̂m. �e2	S (λ̂n.m @C (n, (λKa. κ a))))
= �e1 @ e2	S κ

(Case e′ = let v1 e2)

�let v1 e2	D (λKa. κ a) ∼ �let v1 e2	S κ (eqLet2)

To use eqLet2, we need ∀̂x. (�e2 x	D (λKa. κ a) ∼ �e2 x	S κ). It is obtained by
the induction hypothesis under arbitrary variable x. This is where reduction
is not preserved. We used eqLet2, which, in informal notation, states that:

let x = v in e � e[v/x] ∼ e′[v/x] �let x = v in e′

Even if we assumed e[v/x] � e′[v/x], there is no way to reduce e′[v/x] to
let x = v in e′. We thus need equality here.

(Case let v1 e2 � e′
2 because (λ̂x. e2(x))[v1] �→ e′

2)

�let v1 e2	S κ = letC (λ̂p. �v1 p	V) (λ̂x. �e2 x	S κ)
∼ �e′

2	S κ (eqLet)

To use eqLet, we need (λ̂x. �e2 x	S κ)[λ̂p. �v1 p	V] �→ �e′
2	S κ. It is obtained

from Lemma 2 (2), the assumption (λ̂x. e2(x))[v1] �→ e′
2, and κ being

schematic.
(Case e1 @ e2 � e′

1 @ e2 because e1 � e′
1) Follows directly from the induction

hypothesis on e1 � e′
1 with a continuation κ′ = λ̂m. �e2	S (λ̂n.m @C (n, (λKa.

κ a))). The continuation κ′ being schematic is shown from Lemma 2 (2). This
is where the restriction on the definition of schematic is required. Since the
conclusion of Lemma 2 requires that the value to be substituted is of the form
�v	V, we can use the substitution relation for �v	V only. Thus, we cannot show
that κ′ respects the syntactic structure of its argument for an arbitrary CPS
value, only for a value of the form �v	V.

(Case v1 @ e2 � v1 @ e′
2 because e2 � e′

2) Follows directly from the induction
hypothesis on e2 � e′

2 with a continuation κ′ = λ̂n. �v1	S @C (n, (λKa. κ a)).
The continuation κ′ can be directly shown to be schematic. ��
From the theorem, we can prove the correctness of the CPS transformation

for terms with arbitrary T and V by quantifying Theorem1 over T and V .

Corollary 1. Let E and E′ be Terms such that E T V � E′ T V for any T and
V . Then, we have �E T V 	S κ ∼ �E′ T V 	S κ for any T and V and for any static
schematic continuation κ.

In particular, for an identity continuation id, we have the following, because an
identity continuation is schematic.

Corollary 2. Let E and E′ be Terms of type Nat such that E T V � E′ T V for
any T and V . Then, we have �E T V 	S id ∼ �E′ T V 	S id. for any T and V .
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5 Related Work

The most closely related work is the formalization of one-pass CPS transforma-
tions for the simply-typed lambda calculus and System F in Coq by Chlipala
[6], on which the present work is based. The idea of using PHOAS and of rep-
resenting substitution as a relation comes from his work. The difference is that
we target a language with let-polymorphism and that we use small-step seman-
tics as opposed to Chlipala’s denotational approach. While we can define the
semantics of terms easily in the denotational approach by mapping terms into
the metalanguage values, instantiation of parameterized variables becomes nec-
essary to define the mappings. Accordingly, one has to assume well-formedness
of terms, meaning that different instantiations of parameterized variables have
the same shape. In the small-step semantics approach, we can keep parameter-
ized variables in an abstract form all the time. Thus, we do not have to assume
the well-formedness of terms.

There are several other work on the formalization of one-pass CPS trans-
formations but for untyped calculus, as opposed to our typeful transformation
where type information is built into the CPS transformation. Minamide and
Okuma [12] formalized in Isabelle/HOL the correctness of three CPS transfor-
mations for the untyped lambda calculus, one of which is the one-pass CPS
transformation by Danvy and Filinski. They employ first-order abstract syntax
and completely formalized α-equivalence of bound variables.

Tian [15] mechanically verified correctness of the one-pass (first-order) CPS
transformation for the untyped lambda calculus using higher-order abstract syn-
tax. He represents the CPS transformation in a relational form (rather than the
standard functional form), and proved its correctness in Twelf. To represent
the one-pass CPS transformation in a relational form, one needs to encode the
transformation that is itself written in CPS into the relational form.

Dargaye and Leroy [11] proved in Coq the correctness of the one-pass CPS
transformation for the untyped lambda calculus extended with various language
constructs including n-ary functions and pattern matching. They use two kinds of
de Bruijn indices, one for the ordinary variables and the other for continuation
variables that are introduced during the transformation, to avoid interference
between them.

6 Conclusion

In this paper, we have formalized the one-pass CPS transformation for the
lambda calculus extended with let-polymorphism using PHOAS and proved its
correctness in Agda. In the presence of let-polymorphism, the key to the correct-
ness proof is to make the exact type correspondence before and after the CPS
transformation. We have also pinpointed where reduction is not preserved and
equality is needed.

Since the current formalization is clear enough, we regard it as a good basis
for formalizations of other CPS transformations. In particular, we would like to
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extend the proof to include control operators, shift and reset, by Danvy and
Filinski [9] and its let-polymorphic extension [2]. It would be also interesting to
prove correctness of the selective CPS transformation [3,13], where many case
analyses are needed and thus formalization would be of great help.

Acknowledgements. We would like to thank the reviewers for useful and construc-
tive comments. This work was partly supported by JSPS KAKENHI under Grant
No. JP18H03218.
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Abstract. We introduce the branching time temporal logic dpCTL* for
specifying differential privacy. Several differentially private mechanisms
are formalized as Markov chains or Markov decision processes. Using
our formal models, subtle privacy conditions are specified by dpCTL*. In
order to verify privacy properties automatically, model checking prob-
lems are investigated. We give a model checking algorithm for Markov
chains. Model checking dpCTL* properties on Markov decision processes
however is shown to be undecidable.

1 Introduction

In the era of data analysis, personal information is constantly collected and
analyzed by various parties. Privacy has become an important issue for every
individual. In order to address such concerns, the research community has pro-
posed several privacy preserving mechanisms over the years (see [18] for a slightly
outdated survey). Among these mechanisms, differential privacy has attracted
much attention from theoretical computer science to industry [16,24,35].

Differential privacy formalizes the tradeoff between privacy and utility in
data analysis. Intuitively, a randomized data analysis mechanism is differentially
private if it behaves similarly on similar input datasets [15,17]. Consider, for
example, the Laplace mechanism where analysis results are perturbed by random
noises with the Laplace distribution [16]. Random noises hide the differences of
analysis results from similar datasets. Clearly, more noises give more privacy
but less utility in released perturbed results. Under the framework of differential
privacy, data analysts can balance the tradeoff rigorously in their data analysis
mechanisms [16,24].
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Designing differentially private mechanisms can be tedious for sophisticated
data analyses. Privacy leak has also been observed in data analysis programs
implementing differential privacy [26,31]. This calls for formal analysis of differ-
ential privacy on both designs and implementations. In this paper, we propose
the logic dpCTL* for specifying differential privacy and investigate their model
checking problems. Data analysts can automatically verify their designs and
implementations with our techniques. Most interestingly, our techniques can be
adopted easily by existing probabilistic model checkers. Privacy checking with
existing tools is attainable with minimal efforts. More interaction between model
checking [2,12] and privacy analysis hopefully will follow.

In order to illustrate applicability of our techniques, we give detailed formal-
izations of several data analysis mechanisms in this paper. In differential privacy,
data analysis mechanisms are but randomized algorithms. We follow the stan-
dard practice in probabilistic model checking to formalize such mechanisms as
Markov chains or Markov decision processes [28]. When a data analysis mecha-
nism does not interact with its environment, it is formalized as a Markov chain.
Otherwise, its interactions are formalized by non-deterministic actions in Markov
decision processes. Our formalization effectively assumes that actions are con-
trolled by adversaries. It thus considers all privacy attacks from adversaries in
order to establish differential privacy as required.

Two ingredients are introduced to specify differentially private behaviors.
A reflexive and symmetric user-defined binary relation over states is required to
formalize similar datasets. We moreover add the path quantifier Dε,δ for specify-
ing similar behaviors. Informally, a state satisfies Dε,δφ if its probability of hav-
ing path satisfying φ is close to those of similar states. Consider, for instance, a
data analysis mechanism computing the likelihood (high or low) of an epidemic.
A state satisfying Dε,δ(Fhigh) ∧ Dε,δ(Flow) denotes similar states have similar
probabilities on every outcomes.

We moreover extend the standard probabilistic model checking algorithms
to verify dpCTL* properties automatically. For Markov chains, states satisfying
a subformula Dε,δφ are computed by a simple variant of the model checking
algorithm for Markov chains. The time complexity of our algorithm is the same as
those of PCTL* for Markov chains. The logic dpCTL* obtains its expressiveness
essentially for free. For Markov decision processes, checking whether a state
satisfies Dε,δφ is undecidable.

Related Work. An early attempt on formal verification of differential privacy
is [32]. The work formalizes differential privacy in the framework of information
leakage. The connection between differential privacy and information leakage
is investigated in [1,20]. Type systems for differential privacy have been devel-
oped in [19,30,34]. A light-weight technique for checking differential privacy
can be found in [36]. Lots of formal Coq proofs about differential privacy are
reported in [4–10]. This work emphasizes on model checking differential privacy.
We develop a framework to formalize and analyze differential privacy in Markov
chains and Markov decision processes.
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Contributions. Our main contributions are threefold.

1. We introduce the logic dpCTL* for reasoning about differential privacy. The
logic is able to express subtle and generalized differentially private properties;

2. We model several differentially private mechanisms in Markov chains or
Markov decision processes; and

3. We show that the model checking problem for Markov chains is standard. For
Markov decision processes, we show that it is undecidable.

Organization of the Paper. Preliminaries are given in Sect. 2. In Sect. 3 we discuss
how offline differentially private mechanisms are modeled as Markov chains. The
logic dpCTL* and its syntax are presented in Sect. 4. The semantics over Markov
chains and its model checking algorithm are given in Sect. 5. Section 6 discusses
differential privacy properties using dpCTL*. More examples of online differen-
tially private mechanisms as Markov decision processes are given in Sect. 7. The
semantics over Markov decision processes and undecidability of model checking
is given in Sect. 8. Finally, Sect. 9 concludes our presentation.

2 Preliminaries

Let Z and Z
≥0 be the sets of integers and non-negative integers respectively. We

briefly review the definitions of differential privacy, Markov chains, and Markov
decision processes [28]. For differential privacy, we follow the standard definition
in [16,21,22]. Our definitions of Markov chains and Markov decision processes
are adopted from [2].

2.1 Differential Privacy

We denote the data universe by X ; x ∈ X n is a dataset with n rows from the
data universe. Two datasets x and x′ are neighbors (denoted by d(x, x′) ≤ 1)
if they are identical except at most one row. A query f is a function from
X n to its range R ⊆ Z. The sensitivity of the query f (written Δ(f)) is
maxd(x,x′)≤1 |f(x)− f(x′)|. For instance, a counting query counts the number of
rows with certain attributes (say, female). The sensitivity of a counting query
is 1 since any neighbor can change the count by at most one. We only consider
queries with finite ranges for simplicity. A data analysis mechanism (or mech-
anism for brevity) Mf for a query f is a randomized algorithm with inputs
in X n and outputs in R̃. A mechanism may not have the same output range
as its query, that is, R̃ �= R in general. A mechanism Mf for f is oblivious if
Pr[Mf (x) = r̃] = Pr[Mf (x′) = r̃] for every r̃ ∈ R̃ when f(x) = f(x′). In words,
outputs of an oblivious mechanism depend on the query result f(x). The order
of rows, for instance, is irrelevant to oblivious mechanisms. Let x, x′ be datasets
and r̃ ∈ R̃. The probability of the mechanism Mf outputting r̃ on x is (ε, δ)-close
to those on x′ if

Pr[Mf (x) = r̃] ≤ eε Pr[Mf (x′) = r̃] + δ.
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A mechanism Mf is (ε, δ)-differentially private if for every x, x′ ∈ X n with
d(x, x′) ≤ 1 and r̃ ∈ R̃, the probability of Mf outputting r̃ on x is (ε, δ)-close to
those on x′.

The non-negative parameters ε and δ quantify mechanism behaviors prob-
abilistically; the smaller they are, the behaviors are more similar. Informally,
a differentially private mechanism has probabilistically similar behaviors on
neighbors. It will have similar output distributions when any row is replaced
by another in a given dataset. Since the output distribution does not change
significantly with the absence of any row in a dataset, individual privacy is thus
preserved by differentially private mechanisms.

2.2 Markov Chains and Markov Decision Processes

Let AP be the set of atomic propositions. A (finite) discrete-time Markov chain
K = (S, ℘, L) consists of a non-empty finite set S of states, a transition probability
function ℘ : S × S → [0, 1] with

∑
t∈S ℘(s, t) = 1 for every s ∈ S, and a labeling

function L : S → 2AP . A path in K is an infinite sequence π = π0π1 · · · πn · · · of
states with ℘(πi, πi+1) > 0 for all i ≥ 0. We write π[j] for the suffix πjπj+1 · · · .

A (finite) Markov decision process (MDP)1 M = (S,Act , ℘, L) consists of a
finite set of actions Act , a transition probability function ℘ : S ×Act ×S → [0, 1]
with

∑
t∈S ℘(s, α, t) = 1 for every s ∈ S and α ∈ Act . S and L are as for

Markov chains. A path π in M is an infinite sequence π0α1π1 · · · πnαn+1 · · ·
with ℘(πi, αi+1, πi+1) > 0 for all i ≥ 0. Similarly, we write π[j] for the suffix
πjαj+1πj+1 · · · of π.

Let M = (S,Act , ℘, L) be an MDP. A (history-dependent) scheduler for
M is a function S : S+ → Act . A query scheduler for M is a function Q :
S+ → Act such that Q(σ) = Q(σ′) for any σ, σ′ ∈ S+ of the same length.
Intuitively, decisions of a query scheduler depend only on the length of the
history. A path π = π0α1π1 · · · πn αn+1 · · · is an S-path if αi+1 = S(π0π1 · · · πi)
for all i ≥ 0. Note that an MDP with a scheduler S induces a Markov chain
MS = (S+, ℘S, L′) where L′(σs) = L(s), ℘S(σs, σst) = ℘(s,S(σs), t) for σ ∈
S∗ and s, t ∈ S.

3 Differentially Private Mechanisms as Markov Chains

To model differentially private mechanisms by Markov chains, we formalize
inputs (such as datasets or query results) as states. Randomized computation is
modeled by probabilistic transitions. Atomic propositions are used to designate
intended interpretation on states (such as inputs or outputs). We demonstrate
these ideas in examples.

1 The MDP we consider is reactive in the sense that all actions are enabled in every
state.
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3.1 Survey Mechanism

Consider the survey question: have you been diagnosed with the disease X? In
order to protect privacy, each surveyee answers the question as follows. The sur-
veyee first flips a coin. If it is tail, she answers the question truthfully. Otherwise,
she randomly answers 1 or 0 uniformly (Fig. 1a) [16].

Let us analyze the mechanism briefly. The data universe X is {+,−}. The
mechanism M is a randomized algorithm with inputs in X and outputs in {1, 0}.
For any x ∈ X , we have 1

4 ≤ Pr[M(x) = 1] ≤ 3
4 . Hence Pr[M(x) = 1] ≤ 3

4 =
3 · 1

4 ≤ eln 3 Pr[M(x′) = 1] for any neighbors x, x′ ∈ X . Similarly, Pr[M(x) =
0] ≤ eln 3 Pr[M(x′) = 0]. The survey mechanism is hence (ln 3, 0)-differentially
private. The random noise boosts the probability of answering 1 or 0 to at least
1
4 regardless of diagnoses. Inferences on individual diagnosis can be plausibly
denied.

output
1 0

in
p
u
t + 3

4 = 1
2 · 1

2 + 1
2 · 1 1

4 = 1
2 · 1

2 + 1
2 · 0

− 1
4 = 1

2 · 1
2 + 1

2 · 0 3
4 = 1

2 · 1
2 + 1

2 · 1

(a) Survey Mechanism

+

−
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t

out0
3
4

1
4

1
4

3
4

(b) Corresponding Markov Chain

Fig. 1. Survey mechanism with ln 3-differential privacy

Figure 1b shows the corresponding Markov chain. In the figure, the states
+ and − denote positive or negative diagnoses respectively; the states s and t
denote answers to the survey question and hence out1 ∈ L(s) and out0 ∈ L(t).
States + and − are neighbors. Missing transitions (such as those from s and t)
lead to a special state † with a self-loop. We omit such transitions and the state
† for clarity.

3.2 Truncated α-Geometric Mechanism

More sophisticated differentially private mechanisms are available. Consider a
query f : X n → {0, 1, . . . ,m}. Let α ∈ (0, 1). The α-geometric mechanism
outputs f(x)+Y on a dataset x where Y is a random variable with the geometric
distribution [21,22] :

Pr[Y = y] =
1 − α

1 + α
α|y| for y ∈ Z

The α-geometric mechanism is oblivious since it has the same output distribu-
tion on any inputs x, x′ with f(x) = f(x′). It is (−Δ(f) ln α, 0)-differentially
private for any query f with sensitivity Δ(f). Observe that the privacy guaran-
tee (−Δ(f) ln α, 0) depends on the sensitivity of the query f . To achieve (ε, 0)-
differential privacy using the α-geometric mechanism, one first decides the sen-
sitivity of the query and then computes the parameter α = e−ε/Δ(f).
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The range of the mechanism is Z. It may give nonsensical outputs such as
negative integers for non-negative queries. The truncated α-geometric mechanism
over {0, 1, . . . ,m} outputs f(x) + Z where Z is a random variable with the
distribution:

Pr[Z = z] =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if z < −f(x)
αf(x)

1+α if z = −f(x)
1−α
1+αα|z| if − f(x) < z < m − f(x)
αm−f(x)

1+α if z = m − f(x)
0 if z > m − f(x)

Note the range of the truncated α-geometric mechanism is {0, 1, . . . ,m}. The
truncated α-geometric mechanism is again oblivious; it is also (−Δ(f) ln α, 0)-
differentially private for any query f with sensitivity Δ(f). The truncated 1

2 -
geometric mechanism over {0, 1, . . . , 5} is given in Fig. 2a.

output
0 1 2 3 4 5

in
p
u
t

0 2/3 1/6 1/12 1/24 1/48 1/48
1 1/3 1/3 1/6 1/12 1/24 1/24
2 1/6 1/6 1/3 1/6 1/12 1/12
3 1/12 1/12 1/6 1/3 1/6 1/6
4 1/24 1/24 1/12 1/6 1/3 1/3
5 1/48 1/48 1/24 1/12 1/6 2/3

(a) 1
2 -Geometric Mechanism
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(b) Markov Chain

Fig. 2. A Markov chain for 1
2
-geometric mechanism

Similar to the survey mechanism, it is straightforward to model the truncated
1
2 -geometric mechanism as a Markov chain. One could näıvely take datasets as
inputs in the formalization, but it is unnecessary. Recall that the truncated 1

2 -
geometric mechanism is oblivious. The mechanism depends on query results but
not datasets. It hence suffices to consider the range of query f as inputs. Let
the state sk and tl denote the input k and output l respectively. Define S =
{sk, tk : k ∈ {0, 1, . . . ,m}}. The probability transition ℘(sk, tl) is the probability
of the output l on the input k as defined in the mechanism. Moreover, we have
ink ∈ L(sk) and outk ∈ L(tk) for k ∈ {0, 1, . . . , n}. If Δ(f) = 1, |f(x)−f(x′)| ≤ 1
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for every neighbors x, x′ ∈ X n. Subsequently, sk and sl are neighbors iff |k−l| ≤ 1
in our model. Figure 2b gives the Markov chain for the truncated 1

2 -geometric
mechanism over {0, 1, . . . , 5}.

3.3 Subsampling Majority

The sensitivity of queries is required to apply the (truncated) α-geometric mech-
anism. Recall that the sensitivity is the maximal difference of query results on
any two neighbors. Two practical problems may arise for mechanisms depend-
ing on query sensitivity. First, sensitivity of queries can be hard to compute.
Second, the sensitivity over arbitrary neighbors can be too conservative for the
actual dataset in use. One therefore would like to have mechanisms independent
of query sensitivity.

Subsampling is a technique to design such mechanisms [16]. Concretely,
let us consider X = {R,B} (for red and blue team members) and a dataset
d ∈ X n. Suppose we would like to ask which team is the majority in the dataset
while respecting individual privacy. This can be achieved as follows (Algo-
rithm 1). The mechanism first samples m sub-datasets d̂1, d̂2, . . . , d̂m from
d (line 3). It then computes the majority of each sub-dataset and obtains m
sub-results. Let countR and countB be the number of sub-datasets with the
majority R and B respectively (line 4). Since there are m sub-datasets, we have
countR +countB = m. To ensure differential privacy, the mechanism makes sure
the difference |countR−countB | is significantly large after perturbation. In line 6,
Lap(p) denotes the continuous random variable with the probability density func-
tion f(x) = 1

2pe−|x|/p of the Laplace distribution. If the perturbed difference is
sufficiently large, the mechanism reports 1 if the majority of the m sub-results
is R or 0 if it is B (line 7). Otherwise, no information is revealed (line 9).

Algorithm 1. Subsampling Majority
1: function SubsamplingMajority(d, f)
Require: d ∈ {R, B}n, f : {R, B}∗ → {R, B}
2: q, m ← ε

64 ln(1/δ)
, log(n/δ)

q2

3: Subsample m data sets d̂1, d̂2, . . . , d̂m from d where each row of d is chosen with
probability q

4: countR, countB ← |{i : f(d̂i) = R}|, |{i : f(d̂i) = B}|
5: r ← |countR − countB |/(4mq) − 1
6: if r + Lap( 1

ε
) > ln(1/δ)/ε then

7: if countR ≥ countB then return 1 else return 0
8: else
9: return ⊥

10: end function

Fix the dataset size n and privacy parameters ε, δ, the subsampling major-
ity mechanism can be modeled by a Markov chain. Figure 3 gives a sketch of
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the Markov chain for n = 3. The leftmost four states represent all possible
datasets. Given a dataset, m samples are taken with replacement. Outcomes
of these samples are denoted by (countR, countB). There are only m + 1 out-
comes: (m, 0), (m − 1, 1), . . . , (0,m). Each outcome is represented by a state in
Fig. 3. From each dataset, the probability distribution on all outcomes gives
the transition probability. Next, observe that |countR − countB | can have only
finitely many values. The values of r (line 5) hence belong to a finite set
{rm, . . . , rM} with the minimum rm and maximum rM . For instance, both out-
comes (m, 0) and (0,m) transit to the state rM = 1/(4q) − 1 with probability
1. For each r ∈ {rm, . . . , rM}, the probability of having r + Lap(1ε ) > ln(1/δ)/ε
(line 6) is equal to the probability of Lap(1ε ) > ln(1/δ)/ε − r. This is equal to
∫ ∞
ln(1/δ)/ε−r

ε
2e−ε|x|dx. From each state r ∈ {rm, . . . , rM}, it hence goes to the

state 	 with probability
∫ ∞
ln(1/δ)/ε−r

ε
2e−ε|x|dx and to the state ⊥ with proba-

bility 1 − ∫ ∞
ln(1/δ)/ε−r

ε
2e−ε|x|dx. Finally, the Markov chain moves from the state

	 to 1 if countR ≥ countB ; otherwise, it moves to 0. Two dataset states are
neighbors if they differ at most one member. For example, rrb is a neighbor of
rrr and rbb but not bbb.

rrr

rrb

rbb

bbb

m, 0

...

0,m

rm

...

rM

�

⊥

1

0

Fig. 3. Markov chain for subsampling majority

4 The Logic dpCTL*

The logic dpCTL* is designed to specify differentially private mechanisms. We
introduce the differentially private path quantifier Dε,δ and neighborhood rela-
tions for neighbors in dpCTL*. For any path formula φ, a state s in a Markov
chain K satisfies Dε,δφ if the probability of having paths satisfying φ from s is
close to the probabilities of having paths satisfying φ from its neighbors.

4.1 Syntax

The syntax of dpCTL* state and path formulae is given by:

Φ :: = p | ¬Φ | Φ ∧ Φ | PJφ | Dε,δφ

φ :: = Φ | ¬φ | φ ∧ φ | Xφ | φ U φ
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A state formula Φ is either an atomic proposition p, the negation of a state
formula, the conjunction of two state formulae, the probabilistic operator PJ

with J an interval in [0, 1] followed by a path formula, or the differentially
private operator Dε,δ with two non-negative real numbers ε and δ followed by a
path formula. A path formula φ is simply a linear temporal logic formula, with
temporal operator next (X) followed by a path formula, and until operator (U)
enclosed by two path formulae. We define Fφ ≡ true U φ and Gφ ≡ ¬F (¬φ) as
usual.

As in the classical setting, we consider the sublogic dpCTL by allowing only
path formulae of the form XΦ and Φ U Φ. Moreover, one obtains PCTL [23]
and PCTL* [11] from dpCTL and dpCTL* by removing the differentially private
operator Dε,δ.

5 dpCTL* for Markov Chains

Given a Markov chain K = (S, ℘, L), a neighborhood relation NS ⊆ S × S is a
reflexive and symmetric relation on S. We will write sNSt when (s, t) ∈ NS . If
sNSt, we say s and t are neighbors or t is a neighbor of s. For any Markov chain
K, neighborhood relation N on S, s ∈ S, and a path formula φ, define

PrK
N (s, φ) = Pr[{π : K,N, π |= φ with π0 = s}].

That is, PrK
N (s, φ) denotes the probability of paths satisfying φ from s on K

with N . Define the satisfaction relation K,NS , s |= Φ as follows.

K,NS , s |= p if p ∈ L(s)
K,NS , s |= ¬Φ if K,NS , s �|= Φ

K,NS , s |= Φ0 ∧ Φ1 if K,NS , s |= Φ0 and K,NS , s |= Φ1

K,NS , s |= PJφ if PrK
NS

(s, φ) ∈ J

K,NS , s |= Dε,δφ if for every t with sNSt,PrK
NS

(s, φ) ≤ eεPrK
NS

(t, φ) + δ and

PrK
NS

(t, φ) ≤ eεPrK
NS

(s, φ) + δ

Moreover, the relation K,NS , π |= φ is defined as in the standard linear
temporal logic formulae [25]. We only recall the semantics for the temporal
operators X and U:

K,NS , π |= Xφ if K,NS , π[1] |= φ

K,NS , π |= φ U ψ if there is a j ≥ 0 such that K,NS , π[j] |= ψ and
K,NS , π[k] |= φ for every 0 ≤ k < j

Other than the differentially private operator, the semantics of dpCTL* is
standard [2]. To intuit the semantics of Dε,δφ, recall that PrK

N (s, φ) is the proba-
bility of having paths satisfying φ from s. A state s satisfies Dε,δφ if the probabil-
ity of having paths satisfying φ from s is (ε, δ)-close to those from every neighbor
of s. Informally, it is probabilistically similar to observe paths satisfying φ from
s and from its neighbors.
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5.1 Model Checking

We describe the model checking algorithm for dpCTL. The algorithm follows
the classical algorithms for PCTL by computing the states satisfying sub state-
formulae inductively [2,23]. It hence suffices to consider the inductive step where
the states satisfying the subformula Dε,δ(φ) are to be computed.

In the classical PCTL model checking algorithm for Markov chains, states
satisfying the subformula PJφ are obtained by computing PrK

NS
(s, φ) for s ∈

S. These probabilities can be obtained by solving linear equations or through
iterative approximations. We summarize it in the following theorem (details
see [2]):

Lemma 1. Let K = (S, ℘, L) be a Markov chain, NS a neighborhood relation
on S, s ∈ S, and B,C ⊆ S. The probabilities PrK

NS
(s,©B) and PrK

NS
(s,B�C)

are computable within time polynomial in |S|.
In Lemma 1, we abuse the notation slightly to admit path formulae of the

form ©B (next B) and B � C (B until C) with B,C ⊆ S as in [2]. They are
interpreted by introducing new atomic propositions B and C for each s ∈ B and
s ∈ C respectively.

In order to determine the set {s : K,NS , s |= Dε,δφ}, our algorithm computes
the probabilities p(s) = PrK

NS
(s, φ) for every s ∈ S (Algorithm 2). For each s ∈ S,

it then compares the probabilities p(s) and p(t) for every neighbor t of s. If there
is a neighbor t such that p(s) and p(t) are not (ε, δ)-close, the state s is removed
from the result. Algorithm 2 returns all states which are (ε, δ)-close to their
neighbors. The algorithm requires at most O(|S|2) additional steps. We hence
have the following results:

Algorithm 2. SAT(K, NS , φ)
1: procedure SAT(K, NS , φ)
2: match φ with � by Lemma 1
3: case XΨ :
4: B ← SAT(K,NS , Ψ)
5: p(s) ← PrK

NS
(s, ©B) for every s ∈ S

6: case Ψ U Ψ ′:
7: B ← SAT(K,NS , Ψ)
8: C ← SAT(K,NS , Ψ ′)
9: p(s) ← PrK

NS
(s, B � C) for every s ∈ S

10: R ← S
11: for s ∈ S do
12: for t with sNSt do
13: if p(s) �≤ eεp(t) + δ or p(t) �≤ eεp(s) + δ then remove s from R

14: return R
15: end procedure
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Proposition 1. Let K = (S, ℘, L) be a Markov chain, NS a neighborhood rela-
tion on S, and φ a dpCTL path formula. {s : K,NS , s |= Dε,δφ} is computable
within time polynomial in |S| and |φ|.
Corollary 1. Let K = (S, ℘, L) be a Markov chain, NS a neighborhood relation
on S, and Φ a dpCTL formula. {s : K,NS , s |= Φ} is computable within time
polynomial in |S| and |Φ|.

The model checking algorithm for dpCTL* can be treated as in the classical
setting [2]: all we need is to compute the probability PrK

NS
(s, φ) with general path

formula φ. For this purpose one first constructs a deterministic ω-automaton R
for φ. Then, the probability reduces to a reachability probability in the prod-
uct Markov chain obtained from K and R. There are more efficient algorithms
without the product construction, see [3,13,14] for details.

6 Specifying Properties in dpCTL*

In this section we describe how properties in the differential privacy literature
can be expressed using dpCTL* formulae.

Differential Privacy. Consider the survey mechanism (Sect. 3.1). For v with
uNv, we have PrK

N (u,Xout1) ≤ 3PrK
N (v,Xout1) for the probabilities of satis-

fying Xout1 from u and v. The formula Dln 3,0(Xout1) holds in state u and sim-
ilarly for Dln 3,0(Xout0). Recall that differential privacy requires similar output
distributions on neighbors. The formula Dln 3,0(Xout1)∧Dln 3,0(Xout0) thus spec-
ifies differential privacy for states + and −. The survey mechanism is (ln 3, 0)-
differentially private.

For the 1
2 -geometric mechanism (Sect. 3.2), define the formula ψ =

Dln 2,0(Xout0) ∧ Dln 2,0(Xout1) ∧ · · · ∧ Dln 2,0(Xout5). If the state sk satisfies ψ
for k = 0, . . . , 5, then the 1

2 -geometric mechanism is (ln 2, 0)-differentially pri-
vate. For the subsampling majority mechanism (Sect. 3.3), consider the formula
ψ = Dε,δ(F0) ∧ Dε,δ(F1). If a state satisfies ψ, its probability of outputting is
(ε, δ)-close to those of its neighbor for every outcomes. The subsampling majority
mechanism is (ε, δ)-differentially private.

Compositionality. Compositionality is one of the building blocks for differen-
tial privacy. For any (ε1, δ1)-differentially private mechanism M1 and (ε2, δ2)-
differentially private mechanism M2, their combination (M1(x),M2(x)) is (ε1 +
ε2, δ1+δ2)-differentially private by the compositional theorem [16, Theorem 3.16].
The degradation is rooted in the repeated releases of information. To illustrate
this property, we consider the extended survey mechanism which allows two con-
secutive queries. In this mechanism, an input is either + or −; but outputs are
out1out1, out1out0, out0out1, or out0out0. The model is depicted in Fig. 4.

Consider the formula Dln 9,0(X(out1∧Xout1)). A path satisfies X(out1∧Xout1)
if the second state satisfies out1 and the third state satisfies out1 as well. We
verify that this formula is satisfied for states + and −. Moreover, the bound ε =
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Fig. 4. Markov chain of double surveys

ln 9 is tight since the probability of satisfying X(out1∧Xout1) from states + and −
are 9

16 and 1
16 respectively. Finally, the formula ∧a1,a2Dln 9,0(X(a1∧Xa2)) specifies

differential privacy for the model, where a1, a2 range over atomic propositions
{out1, out0}.

Let us consider two slightly different formulae for comparison:

– Dln 3,0(XXout1). In this case we claim there is no privacy loss, even though
there are two queries. The reason is that the output of the first query is not
observed at all. It is easy to verify that it is indeed satisfied by + and −.

– Dln 3,0(X(out1 ∧ Dln 3,0(Xout1))). This is a nested dpCTL formula, where the
inner state formula Dln 3,0(Xout1) specifies the one-step differential privacy.
Observe the inner formula is satisfied by all states. The outer formula has no
privacy loss.

Tighter Privacy Bounds for Composition. An advantage of applying model
checking is that we may get tighter bounds for composition. Consider the survey
mechanism, and the property D0,.5(Xout1). Obviously, it holds in states + and
− since PrK

N (u, out1) = 3
4 , 1

4 for u = +,− respectively (Fig. 1). A careful check
infers that one cannot decrease δ1 = .5 without increasing ε. Now consider the
formula Dε2,δ2(X(out1 ∧ Xout1)) in Fig. 4. Applying the compositional theorem,
one has ε2 = 2ε1 = 0 and δ2 = 2δ1 = 1. However, we can check easily that
one gets better privacy parameter (0, .5) using the model checking algorithm
because PrK

N (u, out1) = 9
16 , 1

16 for u = +,− respectively. In general, compo-
sitional theorems for differential privacy only give asymptotic upper bounds.
Privacy parameters ε and δ must be calculated carefully and often pessimisti-
cally. Our algorithm allows data analysts to choose better parameters.

7 Differentially Private Mechanisms as Markov Decision
Processes

In differential privacy, an offline mechanism releases outputs only once and
plays no further role; an online (or interactive) mechanism allows analysts to
ask queries adaptively based on previous responses. The mechanisms consid-
ered previously are offline mechanisms. Since offline mechanisms only release
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one query result, they are relatively easy to analyze. For online mechanisms, one
has to consider all possible adaptive queries. We therefore use MDPs to model
these non-deterministic behaviors. Specifically, adaptive queries are modeled by
actions. Randomized computation associated with different queries is modeled
by distributions associated with actions.

Consider again the survey mechanism. Suppose we would like to design
an interactive mechanism which adjusts random noises on surveyors’ requests.
When the surveyor requests low-accuracy answers, the surveyee uses the survey
mechanism in Sect. 3.1. When high-accuracy answers are requested, the surveyee
answers 1 with probability 4

5 and 0 with probability 1
5 when she has positive diag-

nosis. She answers 1 with probability 1
5 and 0 with probability 4

5 when she is not
diagnosed with the disease X. This gives an interactive mechanism corresponding
to the MDP shown in Fig. 5.

+

−

s

outY
t

outN

L, .75 L, .25
H, .8 H, .2

L, .25 L, .75
H, .2 H, .8

Fig. 5. Markov decision process

In the figure, the states +, −, s,
and t are interpreted as before. The
actions L and H denote low- and high-
accuracy queries respectively. Note that
the high-accuracy survey mechanism is
(ln 4, 0)-differentially private. Unlike non-
interactive mechanisms, the privacy guar-
antees vary from queries with different
accuracies.

7.1 Above Threshold Mechanism

Below we describe an online mechanism
from [16]. Given a threshold and a series
of adaptive queries, we care for the queries whose results are above the thresh-
old; queries below the threshold only disclose minimal information and hence is
irrelevant. Let us assume the mechanism will halt on the first such query result
for simplicity. In [16], a mechanism is designed for continuous queries by apply-
ing the Laplace mechanism. We will develop a mechanism for discrete bounded
queries using the truncated geometric mechanism.

Assume that we have a threshold t ∈ {0, 1, . . . , 5} and queries {fi : Δ(fi) =
1}. In order to protect privacy, our mechanism applies the truncated 1

4 -geometric
mechanism to obtain a perturbed threshold t′. For each query fi, the truncated 1

2 -
geometric mechanism is applied to its result ri = fi(x). If the perturbed result r′

i

is not less than the perturbed threshold t′, the mechanism halts with the output
	. Otherwise, it outputs ⊥ and continues to the next query (Algorithm 3). The
above threshold mechanism outputs a sequence of the form ⊥∗	. On similar
datasets, we want to show that the above threshold mechanism outputs the
same sequence with similar probabilities.

It is not hard to model the above threshold mechanism as a Markov decision
process (Fig. 6). In the figure, we sketch the model where the threshold and
query results are in {0, 1, 2}. The model simulates two computation in parallel:
one for the dataset, the other for its neighbor. The state tirj represents the input
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Algorithm 3. Input: private database d, queries fi : d → {0, 1, . . . , 5} with
sensitivity 1, threshold t ∈ {0, 1, . . . , 5}; Output: a1, a2, . . .

1: procedure AboveThreshold(d, {f1, f2, . . .}, t)
2: match t with � obtain t′ by 1

4
-geometric mechanism

3: case 0: t′ ← 0, 1, 2, 3, 4, 5 with probability 4
5
, 3
20

, 3
80

, 3
320

, 3
1280

, 1
1280

respec-
tively

4: case 1: t′ ← 0, 1, 2, 3, 4, 5 with probability 1
5
, 3
5
, 3

20
, 3
80

, 3
320

, 1
320

respectively
5: case 2: t′ ← 0, 1, 2, 3, 4, 5 with probability 1

20
, 3
20

, 3
5
, 3
20

, 3
80

, 1
80

respectively
6: case 3: t′ ← 0, 1, 2, 3, 4, 5 with probability 1

80
, 3
80

, 3
20

, 3
5
, 3

20
, 1
20

respectively
7: case 4: t′ ← 0, 1, 2, 3, 4, 5 with probability 1

320
, 3
320

, 3
80

, 3
20

, 3
5
, 1
5

respectively
8: case 5: t′ ← 0, 1, 2, 3, 4, 5 with probability 1

1280
, 3
1280

, 3
320

, 3
80

, 3
20

, 4
5

respec-
tively

9: for each query fi do
10: ri ← fi(d)
11: match ri with � obtain r′

i by 1
2
-geometric mechanism

12: case 0: r′
i ← 0, 1, 2, 3, 4, 5 with probability 2

3
, 1
6
, 1

12
, 1
24

, 1
48

, 1
48

respectively
13: case 1: r′

i ← 0, 1, 2, 3, 4, 5 with probability 1
3
, 1
3
, 1

6
, 1
12

, 1
24

, 1
24

respectively
14: case 2: r′

i ← 0, 1, 2, 3, 4, 5 with probability 1
6
, 1
6
, 1

3
, 1
6
, 1

12
, 1
12

respectively
15: case 3: r′

i ← 0, 1, 2, 3, 4, 5 with probability 1
12

, 1
12

, 1
6
, 1
3
, 1

6
, 1
6

respectively
16: case 4: r′

i ← 0, 1, 2, 3, 4, 5 with probability 1
24

, 1
24

, 1
12

, 1
6
, 1

3
, 1
3

respectively
17: case 5: r′

i ← 0, 1, 2, 3, 4, 5 with probability 1
48

, 1
48

, 1
24

, 1
12

, 1
6
, 2
3

respectively

18: if r′
i ≥ t′ then halt with ai = 
 else ai = ⊥

19: end procedure

threshold i and the first query result j; the state t′ir
′
j represents the perturbed

threshold i and the perturbed query result j. Other states are similar. Consider
the state t0r1. After applying the truncated 1

4 -geometric mechanism, it goes to
one of the states t′0r1, t′1r1, t′2r1 accordingly. From the state t′1r1, for instance, it
moves to one of t′1r

′
0, t′1r

′
1, t′1r

′
2 by applying the truncated 1

2 -geometric mechanism
to the query result. If it arrives at t′1r

′
1 or t′1r

′
2, the perturbed query result is

not less than the perturbed threshold. The model halts with the output 	 by
entering the state with a self loop. Otherwise, it moves to one of t′1r0, t′1r1, or
t′1r2 non-deterministically (double arrows). The computation of its neighbor is
similar. We just use the underlined symbols to represent threshold and query
results. For instance, the state t′2r

′
1 represents the perturbed threshold 2 and the

perturbed query result 1 in the neighbor.
Now, the non-deterministic choices in the two computation cannot be inde-

pendent. Recall that the sensitivity of each query is 1. If the top computation
moves to the state, say, t′1r0, it means the next query result on the dataset is 0.
Subsequently, the bottom computation can only move to t′jr0 or t′jr1 depending
on its perturbed threshold. This is where actions are useful. Define the actions
{mn : |m − n| ≤ 1}. The action mn represents that the next query result for
the dataset and its neighbor are m and n respectively. For instance, the non-
deterministic choice from t′1r

′
0 to t′1r0 is associated with two actions 00 and 01

(but not 02). Similarly, the choice from t′2r
′
1 to t′2r0 is associated with the actions
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t0r1

· · ·t′0r1· · ·t′1r0t′1r1t′1r2
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...
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Fig. 6. Markov decision process for above threshold

00 and 10 (but not 20). Assume the perturbed thresholds of the top and bottom
computation are i and j respectively. On the action 00, the top computation
moves to t′ir0 and the bottom computation moves to t′jr0. Actions make sure
the two computation of neighbors is modeled properly. Now consider the action
sequence −,−, 01,−, 22,−, 21 from the states t0r1 and t0r0 (“−” represents the
purely probabilistic action). Together with the first query results, it denotes four
consecutive query results 1, 0, 2, 2 on the top computation, and 0, 1, 2, 1 on
the bottom computation. Each action sequence models two sequences of query
results: one on the top, the other on the bottom computation. Moreover, the
difference of the corresponding query results on the two computation is at most
one by the definition of the action set. Any sequence of adaptive query results
is hence formalized by an action sequence in our model.

It remains to define the neighborhood relation. Recall the sensitivity is
1. Consider the neighborhood relation {(tirm, tirm), (tirn, tirn), (tirm, tirn),
(tirn, tirm) : |m − n| ≤ 1}. That is, two states are neighbors if they repre-
sent two inputs of the same threshold and query results with difference at most
one.
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8 dpCTL* for Markov Decision Processes

The logic dpCTL* can be interpreted over MDPs. Let M = (S,Act , ℘, L) be
an MDP and NS a neighborhood relation on S. Define the satisfaction relation
M,NS , s |= Φ for PJφ and Dε,δφ as follows (others are straightforward).

M,NS , s |= PJφ if PrMS

NS
(s, φ) ∈ J for every scheduler S

M,NS , s |= Dε,δφ if for all t with sNSt and query scheduler Q,PrMQ

NS
(s, φ) ≤ eε ·

PrMQ

NS
(t, φ) + δ and PrMQ

NS
(t, φ) ≤ eε · PrMQ

NS
(s, φ) + δ

Recall that MS is but a Markov chain. The semantics of MS,NS , π |= φ and
hence the probability PrMS

NS
(s, φ) are defined as in Markov chains. The semantics

of dpCTL* on MDPs is again standard except the differentially private operator
Dε,δ. For any path formula φ, Dε,δφ specifies states whose probability of having
paths satisfying φ are (ε, δ)-close to those of all its neighbors for query schedulers.
That is, no query scheduler can force any of neighbors to distinguish the specified
path behavior probabilistically.

Justification of Query Schedulers. We use query schedulers in the semantics for
the differentially private operator. A definition with history-dependent sched-
ulers might be

M,NS , s |= Dbad
ε,δ φ if for all t with sNSt and scheduler S,PrMS

NS
(s, φ) ≤ eε ·

PrMS

NS
(t, φ) + δ and PrMS

NS
(t, φ) ≤ eε · PrMS

NS
(s, φ) + δ.

A state satisfies Dbad
ε,δ φ if no history-dependent scheduler can differentiate the

probabilities of having paths satisfying φ from neighbors. Recall that a history-
dependent scheduler chooses actions according to previous states. Such a defini-
tion would allow schedulers to take different actions from different states. Two
neighbors could hence be differentiated by different action sequences. The speci-
fication might be too strong for our purposes. A query scheduler Q : S+ → Act ,
on the other hand, corresponds to a query sequence. A state satisfies Dε,δφ if no
query sequence can differentiate the probabilities of having paths satisfying φ
from neighbors. Recall query schedulers only depend on lengths of histories. Two
neighbors cannot be distinguished by the same action sequence of any length if
they satisfy a differentially private subformula. Our semantics agrees with the
informal interpretation of differential privacy for such systems. We therefore
consider only query schedulers in our definition.

8.1 Model Checking

Given an MDP M = (S,Act , ℘, L), a neighborhood relation NS , s ∈ S, and
a path formula φ, consider the problem of checking M,NS , s |= Dε,δφ. Recall
the semantics of Dε,δφ. Given s, t with sNSt and a path formula φ, we need
to decide whether PrMQ

NS
(s, φ) ≤ eεPrMQ

NS
(t, φ) + δ for every query scheduler Q.



410 D. Liu et al.

When φ is ©B with B ⊆ S, only the first action in the query sequence needs
to be considered. This can also be easily generalized to nested next operators:
one needs only to enumerate all actions query sequences of a fixed length. The
problem however is undecidable in general.

Theorem 1. The dpCTL* model checking problem for MDPs is undecidable.

The proof is in Appendix. We discuss some decidable special cases. Consider
the formula φ := FB with B ⊆ S and assume that states in B with only self-
loops. For the case ε = 0, the condition reduces to PrMQ

NS
(s, FB)−PrMQ

NS
(t, FB) ≤

δ. If δ = 0 it is the classical language equivalence problem for probabilistic
automata [29], which can be solved in polynomial time. However, if δ > 0, the
problem becomes an approximate version of the language equivalence problem.
To the best of our knowledge, its decidability is still open except for the special
case where all states are connected [33].

Despite of the negative result in Theorem 1, a sufficient condition for
M,NS , s |= Dε,δφ is available. To see this, observe that for s ∈ S and query
scheduler Q, we have

min
S

PrMS

NS
(s, φ) ≤ PrMQ

NS
(s, φ) ≤ max

S
PrMS

NS
(s, φ)

where the minimum and maximum are taken over all schedulers S. Hence,

PrMQ

NS
(s, φ) − eε · PrMQ

NS
(t, φ) ≤ max

S
PrMS

NS
(s, φ) − eε · min

S
PrMS

NS
(t, φ)

for any s, t ∈ S and query scheduler Q. We have the following proposition:

Proposition 2. Let M = (S,Act , ℘, L) be an MDP, NS a neighborhood rela-
tion on S. M,NS , s |= Dε,δφ if max

S
PrMS

NS
(s, φ) − eε · min

S
PrMS

NS
(t, φ) ≤ δ and

max
S

PrMS

NS
(t, φ) − eε · min

S
PrMS

NS
(s, φ) ≤ δ for any s, t ∈ S with sNSt.

For s ∈ S, recall that max
S

PrMS

NS
(s, φ) and min

S
PrMS

NS
(s, φ) can be efficiently

computed [2]. By Proposition 2, M,NS , s |= Dε,δφ can be checked soundly and
efficiently.

We model the above threshold algorithm (Algorithm 3) and apply Proposi-
tion 2 to check whether the mechanism is differentially private using the clas-
sical PCTL model checking algorithm for MDPs. Since concrete values of the
parameters ε and δ are computed, tighter bounds for specific neighbors can be
obtained. For instance, for the state t3r5 and its neighbor t3r4, we verify the
property

∧
k∈Z≥0 D0,0.17((Xk⊥)	) is satisfied. Note the reachability probabil-

ity goes to 0 as k goes to infinity. By repeating the computation, we verify that
the property

∧
k∈Z≥0 D1,0.74((Xk⊥)	) is satisfied for all neighbors. Subsequently,

the above threshold mechanism in Algorithm 3 is (1, 0.74)-differentially private.
Compared to the parameters for the neighbors t3r5 and t3r4, the parameter δ
appears to be significantly large. It means that there are two neighbors with
drastically different output distributions from our mechanism. Moreover, recall
that Proposition 2 is a sufficient condition. It only gives an upper bound of
privacy parameters. Tighter bounds may be computed by more sophisticated
sufficient conditions.
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9 Conclusions

We have introduced dpCTL* to reason about properties in differential privacy,
and investigated its model checking problems. For Markov chains, the model
checking problem has the same complexity as for PCTL*. The general MDP
model checking problem however is undecidable. We have discussed some decid-
able special cases and a sufficient yet efficient condition to check differentially
private subformulae. An interesting future work is to identify more decidable sub-
classes and sufficient conditions. As an example, consider the extended dpCTL*
formula

∧
k∈Z≥0 Dε,δ(Xk	). For the case ε = δ = 0, it reduces to a language

equivalence problem for probabilistic automata. It is interesting to characterize
other cases as well. Another interesting line of further works is to consider con-
tinuous perturbation (such as Laplace distribution used in [16]). We would need
Markov models with continuous state space.

A Proof of Theorem 1

Proof. The proof follows by a reduction from the emptiness problem for proba-
bilistic automata. A probabilistic automaton [29] is a tuple A = (S,Σ,M, s0, B)
where

– S is a finite set of states,
– Σ is the finite set of input alphabet,
– M : S×Σ×S → [0, 1] such that

∑
t∈S M(s, α, t) = 1 for all s ∈ S and α ∈ Σ,

– s0 ∈ S is the initial state,
– B ⊆ S is a set of accepting states.

Each input alphabet α induces a stochastic matrix M(α) in the obvious way.
Let λ denote the empty string. For η ∈ Σ∗ we define M(η) inductively by: M(λ)
is the identity matrix, M(xη′) = M(x)M(η′). Thus, M(η)(s, s′) denotes the
probability of going from s to s′ after reading η. Let vB denote the characteristic
row vector for the set B, and vs0 denote the characteristic row vector for the
set {s0}. Then, the accepting probably of η by A is defined as vs0 · M(η) · (vB)c

where (vB)c denotes the transpose of vB. The following emptiness problem is
know to be undecidable [27]:

Emptiness Problem: Given a probabilistic automaton A = (S,Σ,M, s0, B),
whether there exists η ∈ Σ∗ such that vs0 · M(η) · (vB)c > 0?

Now we establish the proof by reducing the emptiness problem to our
dpCTL* model checking problem. Given the probabilistic automaton A =
(S,Σ,M, s0, B), assume we have a primed copy A′ = (S′, Σ,M ′, s′

0, ∅).
Let AP := {atB}. Now we construct our MDP M = (S ·∪ S′, Σ, ℘, L) where

℘(s, a, t) equals to M(s, a, t) if s, t ∈ S and to M ′(s, a, t) if s, t ∈ S′. We define the
neighbor relation NS := {(s0, s′

0), (s
′
0, s0)} by relating states s0, s

′
0. The labelling

function L is defined by L(s) = {atB} if s ∈ B and L(s) = ∅ otherwise.
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Now we consider the formula Φ = D1,0(FatB). For the reduction we prove
s0 |= D1,0(FatB) iff for all η ∈ Σ∗ it holds vs0 · M(η) · (vB)c ≤ 0.

First we assume s0 |= D1,0(FatB). By dpCTL* semantics we have that for all
query scheduler Q ∈ Σω, PrMQ

NS
(s0, FatB) ≤ e ·PrMQ

NS
(s′

0, FatB). Since the set of
accepting state in the primed copy is empty, we have PrMQ

NS
(s′

0, FatB) = 0, thus
we have PrMQ

NS
(s0, FatB) ≤ 0. This implies vs0 · M(η) · (vB)c ≤ 0 for all η ∈ Σ∗.

For the other direction, assume that all η ∈ Σ∗ it holds vs0 ·M(η) ·(vB)c ≤ 0.
We prove by contradiction. Assume that s0 �|= D1,0(FatB). Since the relation
NS = {(s0, s′

0), (s
′
0, s0)}, there exists (s0, s′

0), and a query scheduler Q ∈ Σω

such that
PrMQ

NS
(s0, FatB) �≤ e · PrMQ

NS
(s′

0, FatB)

which implies PrMQ

NS
(s0, FatB) > 0. It is then easy to construct a finite sequence

η ∈ Σ∗ with vs0 · M(η) · (vB)c > 0, a contradiction.
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Abstract. Plotkin and Pretnar’s effect handlers offer a versatile
abstraction for modular programming with user-defined effects. Tradi-
tional deep handlers are defined by folds over computation trees. In this
paper we study shallow handlers, defined instead by case splits over com-
putation trees. We show that deep and shallow handlers can simulate one
another up to specific notions of administrative reduction. We present
the first formal accounts of an abstract machine for shallow handlers and
a Continuation Passing Style (CPS) translation for shallow handlers tak-
ing special care to avoid memory leaks. We provide implementations in
the Links web programming language and empirically verify that neither
implementation introduces unwarranted memory leaks.

Keywords: Effect handlers · Abstract machines
Continuation passing

1 Introduction

Expressive control abstractions are pervasive in mainstream programming lan-
guages, be that async/await as pioneered by C#, generators and iterators as com-
monly found in JavaScript and Python, or coroutines in C++20. Such abstrac-
tions may be simulated directly with higher-order functions, but at the expense
of writing the entire source program in Continuation Passing Style (CPS). To
retain direct-style, some languages build in several different control abstractions,
e.g., JavaScript has both async/await and generators/iterators, but hard-wiring
multiple abstractions increases the complexity of the compiler and run-time.

An alternative is to provide a single control abstraction, and derive others
as libraries. Plotkin and Pretnar’s effect handlers provide a modular abstrac-
tion that subsumes all of the above control abstractions. Moreover, they have
a strong mathematical foundation [20,21] and have found applications across a
diverse spectrum of disciplines such as concurrent programming [4], probabilistic
programming [8], meta programming [24], and more [12].

With effect handlers computations are viewed as trees. Effect handlers come
in two flavours deep and shallow. Deep handlers are defined by folds (specifi-
cally catamorphisms [18]) over computation trees, whereas shallow handlers are
defined as case-splits. Catamorphisms are attractive because they are seman-
tically well-behaved and provide appropriate structure for efficient implemen-
tations using optimisations such as fusion [23]. However, they are not always
c© Springer Nature Switzerland AG 2018
S. Ryu (Ed.): APLAS 2018, LNCS 11275, pp. 415–435, 2018.
https://doi.org/10.1007/978-3-030-02768-1_22
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convenient for implementing other structural recursion schemes such as mutual
recursion. Most existing accounts of effect handlers use deep handlers. In this
paper we develop the theory of shallow effect handlers.

As shallow handlers impose no particular structural recursion scheme, they
can be more convenient. For instance, using shallow handlers it is easy to model
Unix pipes as two mutually recursive functions (specifically mutumorphisms [7])
that alternate production and consumption of data. With shallow handlers we
define a classic demand-driven Unix pipeline operator as follows

pipe : 〈〈〉 → α!{Yield : β → 〈〉},〈〉 → α!{Await : β}〉 → α!∅
copipe : 〈β → α!{Await : β}, 〈〉 → α!{Yield : β → 〈〉}〉 → α!∅

pipe 〈p, c〉 = handle† c 〈〉 with

return x �→ x

Await r �→ copipe 〈r , p〉

copipe 〈c, p〉 = handle† p 〈〉 with

return x �→ x

Yield p r �→ pipe 〈r , λ〈〉.c p〉

A pipe takes two thunked computations, a producer p and a consumer c. A
computation type A!E is a value type A and an effect E , which enumerates the
operations that the computation may perform.

The pipe function specifies how to handle the operations of its arguments and
in doing so performs no operations of its own, thus its effect is pure ∅. Each of the
thunks returns a value of type α. The producer can perform the Yield operation,
which yields a value of type β and the consumer can perform the Await operation,
which correspondingly awaits a value of type β. The shallow handler runs the
consumer. If the consumer returns a value, then the return clause is executed and
simply returns that value as is. If the consumer performs the Await operation,
then the handler is supplied with a special resumption argument r , which is the
continuation of the consumer computation reified as a first-class function. The
copipe is now invoked with r and the producer as arguments.

The copipe function is similar. The arguments are swapped and the consumer
now expects a value. The shallow handler runs the producer. If it performs the
Yield operation, then pipe is invoked with the resumption of the producer along
with a thunk that applies the resumption of the consumer to the yielded value.

As a simple example consider the composition of a producer that yields a
stream of ones, and a consumer that awaits a single value.

pipe 〈rec ones 〈〉.do Yield 1; ones 〈〉, λ〈〉.do Await〉
�+ copipe 〈λx .x , rec ones 〈〉.do Yield 1; ones 〈〉〉
�+ pipe 〈λ〈〉.rec ones 〈〉.do Yield 1; ones 〈〉, λ〈〉.1〉 �+ 1

(The computation do � p performs operation � with parameter p.)
The difference between shallow handlers and deep handlers is that in the lat-

ter the original handler is implicitly wrapped around the body of the resumption,
meaning that the next effectful operation invocation is necessarily handled by
the same handler. Shallow handlers allow the freedom to choose how to handle
the next effectful operation; deep handlers do not. Pipes provide the quintessen-
tial example for contrasting shallow and deep handlers. To implement pipes with
deep handlers, we cannot simply use term level recursion, instead we effectively
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have to defunctionalise [22] the shallow version of pipes using recursive types.
Following Kammar et al. [12] we define two mutually recursive types for produc-
ers and consumers, respectively.

Producer α β = 〈〉→ (Consumer α β → α!∅)!∅
Consumer α β = β → (Producer α β → α!∅)!∅

The underlying idea is state-passing : the Producer type is an alias for a sus-
pended computation which returns a computation parameterised by a Consumer
computation. Correspondingly, Consumer is an alias for a function that consumes
an element of type β and returns a computation parameterised by a Producer
computation. The ultimate return value has type α. Using these recursive types,
we can now give types for deep pipe operators and their implementations.

pipe′ : (〈〉 → α!{Await : β}) → Producer α β → α!∅
copipe′ : (〈〉 → α!{Yield : β → 〈〉}) → Consumer α β → α!∅

pipe′ c = handle c 〈〉 with
return x �→ λy .x
Await r �→ λp.p 〈〉 r

copipe′ p = handle p 〈〉 with
return x �→ λy .x
Yield p r �→ λc.c p r

runPipe〈p; c〉 = pipe′ c (λ〈〉.copipe′ p)

Application of the pipe operator is no longer direct as extra plumbing is required
to connect the now decoupled handlers. The observable behaviour of runPipe is
the same as the shallow pipe. Indeed, the above example yields the same result.

runPipe 〈rec ones 〈〉.do Yield 1; ones 〈〉, λ〈〉.do Await〉 �+ 1

In this paper we make five main contributions, each shedding their own light on
the computational differences between deep and shallow handlers:

– A proof that shallow handlers with general recursion can simulate deep han-
dlers up to congruence and that, at the cost of performance, deep handlers
can simulate shallow handlers up to administrative reductions (Sect. 3).

– The first formal account of an abstract machine for shallow handlers (Sect. 4).
– The first formal account of a CPS translation for shallow handlers (Sect. 5).
– An implementation of both the abstract machine and the CPS translation as

backends for the Links web programming language [2].
– An empirical evaluation of our implementations (Sect. 6).

Section 2 introduces our core calculus of deep and shallow effect handlers.
Section 7 discusses related work. Section 8 concludes.

2 Handler Calculus

In this section, we present λ†, a Church-style row-polymorphic call-by-value cal-
culus for effect handlers. To support comparison within a single language we
include both deep and shallow handlers. The calculus is an extension of Hiller-
ström and Lindley’s calculus of extensible deep handlers λρ

eff [9] with shallow
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Fig. 1. Types, kinds, and environments

handlers and recursive functions. Following Hillerström and Lindley, λ† provides
a row polymorphic effect type system and is based on fine-grain call-by-value [16],
which names each intermediate computation as in A-normal form [6], but unlike
A-normal form is closed under β-reduction.

2.1 Types

The syntax of types, kinds, and environments is given in Fig. 1.

Value Types. Function type A → C maps values of type A to computations of
type C . Polymorphic type ∀αK .C is parameterised by a type variable α of kind
K . Record type 〈R〉 represents records with fields constrained by row R. Dually,
variant type [R] represents tagged sums constrained by row R.

Computation Types and Effect Types. The computation type A!E is given by a
value type A and an effect type E , which specifies the operations a computation
inhabiting this type may perform.

Handler Types. The handler type C ⇒δ D represent handlers that transform
computations of type C into computations of type D (where δ empty denotes a
deep handler and δ = † a shallow handler).

Row Types. Effect, record, and variant types are given by row types. A row
type (or just row) describes a collection of distinct labels, each annotated by a
presence type. A presence type indicates whether a label is present with type A
(Pre(A)), absent (Abs) or polymorphic in its presence (θ). Row types are either
closed or open. A closed row type ends in ·, whilst an open row type ends with
a row variable ρ. The row variable in an open row type can be instantiated with
additional labels. We identify rows up to reordering of labels. For instance, we
consider rows �1 : P1; · · · ; �n : Pn ; · and �n : Pn ; · · · ; �1 : P1; · equivalent. Absent
labels in closed rows are redundant. The unit type is the empty closed record,
that is, 〈·〉. Dually, the empty type is the empty, closed variant [·]. Often we omit
the · for closed rows.
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Fig. 2. Term syntax

Kinds. We have six kinds: Type, Comp, Effect, Handler, RowL, Presence, which
respectively classify value types, computation types, effect types, row types,
presence types, and handler types. Row kinds are annotated with a set of labels
L. The kind of a complete row is Row∅. More generally, RowL denotes a partial
row that may not mention labels in L. We write � : A as sugar for � : Pre(A).

Type Variables. We let α, ρ and θ range over type variables. By convention we
write α for value type variables or for type variables of unspecified kind, ρ for
type variables of row kind, and θ for type variables of presence kind.

Type and Kind Environments. Type environments (Γ ) map term variables to
their types and kind environments (Δ) map type variables to their kinds.

2.2 Terms

The terms are given in Fig. 2. We let x , y , z , r , p range over term variables. By
convention, we use r to denote resumption names. The syntax partitions terms
into values, computations and handlers. Value terms comprise variables (x ),
lambda abstraction (λxA.M ), type abstraction (ΛαK .M ), the introduction forms
for records and variants, and recursive functions (rec gA→C x .M ). Records are
introduced using the empty record 〈〉 and record extension 〈� = V ;W 〉, whilst
variants are introduced using injection (�V )R, which injects a field with label �
and value V into a row whose type is R.

All elimination forms are computation terms. Abstraction and type abstrac-
tion are eliminated using application (V W ) and type application (V T ) respec-
tively. The record eliminator (let 〈� = x ; y〉 = V in N ) splits a record V into
x , the value associated with �, and y , the rest of the record. Non-empty vari-
ants are eliminated using the case construct (case V {� x �→ M ; y �→ N }),
which evaluates the computation M if the tag of V matches �. Otherwise it
falls through to y and evaluates N . The elimination form for empty variants is
(absurdC V ). A trivial computation (returnV ) returns value V . The expres-
sion (let x ← M in N ) evaluates M and binds the result to x in N .

Operation invocation (do � V )E performs operation � with value argument
V . Handling (handleδ M with H ) runs a computation M using deep (δ empty)
or shallow (δ = †) handler H . A handler definition H consists of a return clause
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{return x �→ M } and a possibly empty set of operation clauses {� p r �→
N�}�∈L. The return clause defines how to handle the final return value of the
handled computation, which is bound to x in M . The operation clause for �
binds the operation parameter to p and the resumption r in N�.

We define three projections on handlers: H ret yields the singleton set contain-
ing the return clause of H and H � yields the set of either zero or one operation
clauses in H that handle the operation � and H ops yields the set of all operation
clauses in H . We write dom(H ) for the set of operations handled by H . Various
term forms are annotated with type or kind information; we sometimes omit
such annotations. We write Id(M ) for handleM with {return x �→ return x}.

Syntactic Sugar. We make use of standard syntactic sugar for pattern matching,
n-ary record extension, n-ary case elimination, and n-ary tuples.

2.3 Kinding and Typing

The kinding judgement Δ 
 T : K states that type T has kind K in kind
environment Δ. The value typing judgement Δ;Γ 
 V : A states that value
term V has type A under kind environment Δ and type environment Γ . The
computation typing judgement Δ;Γ 
 M : C states that term M has computa-
tion type C under kind environment Δ and type environment Γ . The handler
typing judgement Δ;Γ 
 H : C ⇒δ D states that handler H has type C ⇒δ D
under kind environment Δ and type environment Γ . In the typing judgements,
we implicitly assume that Γ , A, C , and D , are well-kinded with respect to Δ. We
define FTV (Γ ) to be the set of free type variables in Γ . We omit the full kinding
and typing rules due to lack of space; they can be found in the extended version
of the paper [10, Appendix A]. The interesting rules are those for performing
and handling operations.

T-Do
Δ; Γ � V : A E = {� : A → B ;R}

Δ; Γ � (do � V )E : B !E

T-Handle
Δ; Γ � M : C Δ; Γ � H : C ⇒δ D

Δ; Γ � handleδ M with H : D

T-Handler
C = A!{(�i : Ai → Bi)i ;R}
D = B !{(�i : Pi)i ;R}
H = {return x �→ M } 	 {�i p r �→ Ni}i

Δ; Γ, x : A � M : D
[Δ; Γ, p : Ai , r : Bi → D � Ni : D ]i

Δ; Γ � H : C ⇒ D

T-Handler†

C = A!{(�i : Ai → Bi)i ;R}
D = B !{(�i : Pi)i ;R}
H = {return x �→ M } 	 {�i p r �→ Ni}i

Δ; Γ, x : A � M : D
[Δ; Γ, p : Ai , r : Bi → C � Ni : D ]i

Γ � H : C ⇒† D

The T-Handler and T-Handler† rules are where most of the work happens.
The effect rows on the computation type C and the output computation type D
must share the same suffix R. This means that the effect row of D must explicitly
mention each of the operations �i to say whether an �i is present with a given
type signature, absent, or polymorphic in its presence. The row R describes the
operations that are forwarded. It may include a row-variable, in which case an
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Fig. 3. Small-step operational semantics

arbitrary number of effects may be forwarded by the handler. The difference in
typing deep and shallow handlers is that the resumption of the former has return
type D , whereas the resumption of the latter has return type C .

2.4 Operational Semantics

Figure 3 gives a small-step operational semantics for λ†. The reduction relation
� is defined on computation terms. The interesting rules are the handler rules.
We write BL(E) for the set of operation labels bound by E .

BL([ ]) = ∅ BL(let x ← E in N ) = BL(E)
BL(handleδ E with H ) = BL(E) ∪ dom(H )

The S-Ret rule invokes the return clause of a handler. The S-Opδ rules handle
an operation by invoking the appropriate operation clause. The constraint � /∈
BL(E) asserts that no handler in the evaluation context handles the operation: a
handler reaches past any other inner handlers that do not handle �. The difference
between S-Op and S-Op† is that the former rewraps the handler about the body
of the resumption. We write R+ for transitive closure of relation R.

Definition 1. We say that computation term N is normal with respect to effect
E if N is either of the form return V or E [do � W ], where � ∈ E and � /∈ BL(E).

Theorem 2 (Type Soundness). If 
 M : A!E then either M �∗ or there
exists 
 N : A!E such that M �+ N � and N is normal with respect to E.
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3 Deep as Shallow and Shallow as Deep

In this section we show that shallow handlers and general recursion can simulate
deep handlers up to congruence, and that deep handlers can simulate shallow
handlers up to administrative reduction. Both translations are folklore, but we
believe the precise simulation results are novel.

3.1 Deep as Shallow

The implementation of deep handlers using shallow handlers (and recursive func-
tions) is by a rather direct local translation. Each handler is wrapped in a recur-
sive function and each resumption has its body wrapped in a call to this recursive
function. Formally, the translation S�−� is defined as the homomorphic exten-
sion of the following equations to all terms.

S�handle M with H � = (rec h f .handle† f 〈〉 with S�H �h) (λ〈〉.S�M �)
S�H �h = S�H ret�h 	 S�H ops�h

S�{return x �→ N }�h = {return x �→ S�N �}
S�{� p r �→ N�}�∈L�h = {� p r �→ let r ← return λx .h (λ〈〉.r x ) in S�N��}�∈L

Theorem 3. If Δ;Γ 
 M : C then Δ;Γ 
 S�M � : C.

In order to obtain a simulation result, we allow reduction in the simulated
term to be performed under lambda abstractions (and indeed anywhere in a
term), which is necessary because of the redefinition of the resumption to wrap
the handler around its body. Nevertheless, the simulation proof makes minimal
use of this power, merely using it to rename a single variable. We write Rcong

for the compatible closure of relation R, that is the smallest relation including
R and closed under term constructors for λ†.

Theorem 4 (Simulation up to Congruence). If M � N then S�M � �+
cong

S�N �.

Proof. By induction on � using a substitution lemma. The interesting case is
S-Deep-Op, which is where we apply a single β-reduction, renaming a variable,
under the lambda abstraction representing the resumption.

3.2 Shallow as Deep

Implementing shallow handlers in terms of deep handlers is slightly more involved
than the other way round. It amounts to the encoding of a case split by a fold
and involves a translation on handler types as well as handler terms. Formally,
the translation D�−� is defined as the homomorphic extension of the following
equations to all types, terms, and type environments.
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D�C ⇒ D� = D�C � ⇒ 〈〈〉 → D�C �, 〈〉 → D�D�〉
D�handle† M with H � = let z ← handle D�M � with D�H � in

let 〈f , g〉 = z in g 〈〉
D�H � = D�H ret� 	 D�H ops�

D�{return x �→ N }� = {return x �→ return 〈λ〈〉.return x , λ〈〉.D�N �〉}
D�{� p r �→ N }�∈L� = {� p r �→

let r = λx .let z ← r x in let 〈f , g〉 = z in f 〈〉 in
return 〈λ〈〉.let x ← do � p in r x , λ〈〉.D�N �〉}�∈L

Each shallow handler is encoded as a deep handler that returns a pair of thunks.
The first forwards all operations, acting as the identity on computations. The
second interprets a single operation before reverting to forwarding.

Theorem 5. If Δ;Γ 
 M : C then D�Δ�;D�Γ � 
 D�M � : D�C �.

As with the implementation of deep handlers as shallow handlers, the imple-
mentation is again given by a local translation. However, this time the adminis-
trative overhead is more significant. Reduction up to congruence is insufficient
and we require a more semantic notion of administrative reduction.

Definition 6 (Administrative Evaluation Contexts). An evaluation con-
text E is administrative, admin(E), iff

1. For all values V , we have: E [return V ] �∗ return V
2. For all evaluation contexts E ′, operations � ∈ BL(E)\BL(E ′), values V :

E [E ′[do � V ]] �∗ let x ← do � V in E [E ′[return x ]]

The intuition is that an administrative evaluation context behaves like the empty
evaluation context up to some amount of administrative reduction, which can
only proceed once the term in the context becomes sufficiently evaluated. Values
annihilate the evaluation context and handled operations are forwarded.
Definition 7 (Approximation up to Administrative Reduction). Define
� as the compatible closure of the following inference rules.

M � M

M � M ′ M ′ � N

M � N

admin(E) M � N

E [M ] � N

We say that M approximates N up to administrative reduction if M � N .

Approximation up to administrative reduction captures the property that admin-
istrative reduction may occur anywhere within a term. The following lemma
states that the forwarding component of the translation is administrative.

Lemma 8. For all shallow handlers H , the following context is administrative:

let z ← handle [ ] with D�H � in let 〈f ; 〉 = z in f 〈〉
Theorem 9 (Simulation up to Administrative Reduction). If M ′ �
D�M � and M � N then there exists N ′ such that N ′ � D�N � and M ′ �+ N ′.

Proof. By induction on � using a substitution lemma and Lemma 8. The inter-
esting case is S-Op†, which uses Lemma 8 to approximate the body of the
resumption up to administrative reduction.
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4 Abstract Machine

In this section we develop an abstract machine that supports deep and shallow
handlers simultaneously. We build upon prior work [9] in which we developed an
abstract machine for deep handlers by generalising the continuation structure of
a CEK machine (Control, Environment, Kontinuation) [5]. In our prior work we
sketched an adaptation for shallow handlers. It turns out that this adaptation
has a subtle flaw. We fix the flaw here with a full development of shallow handlers
along with a proof of correctness.

The Informal Account. A machine continuation is a list of handler frames. A
handler frame is a pair of a handler closure (handler definition) and a pure
continuation (a sequence of let bindings). Handling an operation amounts to
searching through the continuation for a matching handler. The resumption is
constructed during the search by reifying each handler frame. The resumption
is assembled in one of two ways depending on whether the matching handler is
deep or shallow. For a deep handler, the current handler closure is included, and
a deep resumption is a reified continuation. An invocation of a deep resump-
tion amounts to concatenating it with the current machine continuation. For a
shallow handler, the current handler closure must be discarded leaving behind a
dangling pure continuation, and a shallow resumption is a pair of this pure con-
tinuation and the remaining reified continuation. (By contrast, the prior flawed
adaptation prematurely precomposed the pure continuation with the outer han-
dler in the current resumption.) An invocation of a shallow resumption again
amounts to concatenating it with the current machine continuation, but taking
care to concatenate the dangling pure continuation with that of the next frame.

Fig. 4. Abstract machine syntax

The Formal Account. The abstract machine syntax is given in Fig. 4. A con-
figuration C = 〈M | γ | κ ◦ κ′〉 of our abstract machine is a quadruple of a
computation term (M ), an environment (γ) mapping free variables to values,
and two continuations (κ) and (κ′). The latter continuation is always the iden-
tity, except when forwarding an operation, in which case it is used to keep track
of the extent to which the operation has been forwarded. We write 〈M | γ | κ〉
as syntactic sugar for 〈M | γ | κ ◦ []〉 where [] is the identity continuation.
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Values consist of function closures, type function closures, records, variants,
and captured continuations. A continuation κ is a stack of frames [θ1, . . . , θn ]. We
annotate captured continuations with input types in order to make the results
of Sect. 4.1 easier to state. Each frame θ = (σ, χ) represents pure continuation
σ, corresponding to a sequence of let bindings, inside handler closure χ. A pure
continuation is a stack of pure frames. A pure frame (γ, x ,N ) closes a let-binding
let x = [ ] in N over environment γ. A handler closure (γ,H ) closes a handler
definition H over environment γ. We write [] for an empty stack, x :: s for the
result of pushing x on top of stack s, and s ++ s ′ for the concatenation of stack
s on top of s ′. We use pattern matching to deconstruct stacks.

The abstract machine semantics defining the transition function −→ is
given in Fig. 5. It depends on an interpretation function �−� for values. The
machine is initialised (M-Init) by placing a term in a configuration alongside
the empty environment and identity continuation. The rules (M-AppClosure),
(M-AppRec), (M-AppCont), (M-AppCont†), (M-AppType), (M-Split),
and (M-Case) enact the elimination of values. The rules (M-Let) and
(M-Handle) extend the current continuation with let bindings and handlers
respectively. The rule (M-RetCont) binds a returned value if there is a pure
continuation in the current continuation frame; (M-RetHandler) invokes the
return clause of a handler if the pure continuation is empty; and (M-RetTop)
returns a final value if the continuation is empty. The rule (M-Do) applies the
current handler to an operation if the label matches one of the operation clauses.
The captured continuation is assigned the forwarding continuation with the cur-
rent frame appended to the end of it. The rule (M-Do†) is much like (M-Do),
except it constructs a shallow resumption, discarding the current handler but
keeping the current pure continuation. The rule (M-Forward) appends the
current continuation frame onto the end of the forwarding continuation.

4.1 Correctness

The (M-Init) rule provides a canonical way to map a computation term onto
a configuration. Figure 6 defines an inverse mapping �−� from configurations
to computation terms via a collection of mutually recursive functions defined
on configurations, continuations, computation terms, handler definitions, value
terms, and values. We write dom(γ) for the domain of γ and γ\{x1, . . . , xn} for
the restriction of environment γ to dom(γ)\{x1, . . . , xn}.

The �−� function enables us to classify the abstract machine reduction
rules according to how they relate to the operational semantics. The rules
(M-Init) and (M-RetTop) are concerned only with initial input and final out-
put, neither a feature of the operational semantics. The rules (M-AppContδ),
(M-Let), (M-Handle), and (M-Forward) are administrative in that �−� is
invariant under them. This leaves β-rules (M-AppClosure), (M-AppRec),
(M-AppType), (M-Split), (M-Case), (M-RetCont), (M-RetHandler),
(M-Do†), and (M-Do†), each of which corresponds directly to performing a
reduction in the operational semantics. We write −→a for administrative steps,
−→β for β-steps, and =⇒ for a sequence of steps of the form −→∗

a−→β .
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Fig. 6. Mapping from abstract machine configurations to terms

Each reduction in the operational semantics is simulated by a sequence of
administrative steps followed by a single β-step in the abstract machine. The Id
handler (Sect. 2.2) implements the top-level identity continuation.

Theorem 10 (Simulation). If M � N , then for any C such that �C� = Id(M )
there exists C′ such that C =⇒ C′ and �C′� = Id(N ).

Proof. By induction on the derivation of M � N .

Corollary 11. If 
 M : A!E and M �+ N �, then M −→+ C with �C� = N .
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5 Higher-Order CPS Translation

In this section we formalise a CPS translation for deep and shallow handlers.
We adapt the higher-order translation of Hillerström et al. [11]. They formalise
a translation for deep handlers and then briefly outline an extension for shallow
handlers. Alas, there is a bug in their extension. Their deep handler translation
takes advantage of the rewrapping of the body of a resumption with the current
handler to combine the current return clause with the current pure continuation.
Their shallow handler translation attempts to do the same, but the combination
is now unsound as the return clause must be discarded by the resumption. We
fix the bug by explicitly separating out the return continuation. Moreover, our
translation is carefully designed to avoid memory leaks. The key insight is that to
support the typical tail-recursive pattern of shallow handlers without generating
useless identity continuations it is essential that we detect and eliminate them.
We do so by representing pure continuations as lists of pure frames whereby the
identity continuation is just an empty list, much like the abstract machine of
Sect. 4.

Following Hillerström et al. [11], we present a higher-order uncurried CPS
translation into an untyped lambda calculus. In the style of Danvy and
Nielsen [3], we adopt a two-level lambda calculus notation to distinguish between
static lambda abstraction and application in the meta language and dynamic
lambda abstraction and application in the target language: overline denotes a
static syntax constructor; underline denotes a dynamic syntax constructor. To
facilitate this notation we write application as an infix “at” symbol (@). We
assume the meta language is pure and hence respects the usual β and η equiva-
lences.

5.1 Target Calculus

The target calculus is given in Fig. 7. As in λ† there is a syntactic distinc-
tion between values (V ) and computations (M ). Values (V ) comprise: lambda
abstractions (λx k .M ) and recursive functions (rec g x k .M ), each of which take
an additional continuation parameter; first-class labels (�); pairs 〈V ,W 〉; and
two special convenience constructors for building deep (resV ) and shallow
(res† V ) resumptions, which we will explain shortly. Computations (M ) com-
prise: values (V ); applications (U @ V @ W ); pair elimination (let 〈x , y〉 =
V In N ); label elimination (case V {� �→ M ; x �→ N }); and a special conve-
nience constructor for continuation application (app V W ).

Lambda abstraction, pairs, application, and pair elimination are underlined
to distinguish them from equivalent constructs in the meta language. We define
syntactic sugar for variant values, record values, list values, let binding, variant
eliminators, and record eliminators. We assume standard n-ary generalisations
and use pattern matching syntax for deconstructing variants, records, and lists.

The reductions for functions, pairs, and first-class labels are standard. To
explain the reduction rules for continuations, we first explain the encoding of
continuations. Much like the abstract machine, a continuation (k) is given by a
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Fig. 7. Untyped target calculus

list of continuation frames. A continuation frame (〈s, h〉) consists of a pair of a
pure continuation (s) and a handler (h). A pure continuation is a list of pure
continuation frames (f ). A handler is a pair of a return continuation (v) and an
effect continuation (e) which dispatches on the operations provided by a handler.
There are two continuation reduction rules, both of which inspect the first frame
of the continuation. If the pure continuation of this frame is empty then the
return clause is invoked (U-KAppNil). If the pure continuation of this frame is
non-empty then the first pure continuation frame is invoked (U-KAppCons).
A crucial difference between our representation of continuations and that of
Hillerström et al. [11] is that they use a flat list of frames whereas we use a
nested structure in which each pure continuation is a list of pure frames.

To explain the reduction rules for continuations, we first explain the encoding
of resumptions. Reified resumptions are constructed frame-by-frame as reversed
continuations—they grow a frame at a time as operations are forwarded through
the handler stack. Hillerström et al. [11] adopt such an intensional representation
in order to obtain a relatively tight simulation result. We take further advantage
of this representation to discard the handler when constructing a shallow han-
dler’s resumption. The resumption reduction rules turn reified resumptions into
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actual resumptions. The deep rule (U-Res) simply appends the reified resump-
tion onto the continuation. The shallow rule (U-Res†) appends the tail of the
reified resumption onto the continuation after discarding the topmost handler
from the resumption and appending the topmost pure continuation from the
resumption onto the topmost pure continuation of the continuation.

The continuation application and resumption constructs along with their
reduction rules are macro-expressible in terms of the standard constructs. We
choose to build them in order to keep the presentation relatively concise.

Fig. 8. Higher-order uncurried CPS translation of λ†

5.2 Static Terms

Redexes marked as static are reduced as part of the translation (at compile
time), whereas those marked as dynamic are reduced at runtime.

We make use of static lambda abstractions, pairs, and lists. We let κ range
over static continuations and χ range over static handlers. We let V,W range
over meta language values, M range over meta language expressions, and P,Q
over meta language patterns. We use list and record pattern matching in the
meta language.
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(λ〈P, Q〉.M) @ 〈V, W〉 = (λP.λQ.M) @ V @ W = (λ(P :: Q).M) @ (V :: W)

(λ〈P, Q〉.M) @ V = let 〈f , s〉 = V in (λP.λQ.M) @ f @ s = (λ(P :: Q).M) @ V

A meta language value V can be reified as a target language value ↓V .

↓V = V ↓(V :: W) = ↓V :: ↓W ↓〈V, W〉 = 〈↓V, ↓W〉

5.3 The Translation

The CPS translation is given in Fig. 8. Its behaviour on constructs for introduc-
ing and eliminating values is standard. Where necessary static continuations in
the meta language are reified as dynamic continuations in the target language.
The translation of returnV applies the continuation to �V �. The translation
of let x ← M in N adds a frame to the pure continuation on the topmost
frame of the continuation. The translation of do �V dispatches the operation
to the effect continuation at the head of the continuation. The resumption is
initialised with the topmost frame of the continuation. The translations of deep
and shallow handling each add a new frame to the continuation. The translation
of the operation clauses of a handler dispatches on the operation. If a match is
found then the reified resumption is turned into a function and made available
in the body of the operation clause. If there is no match, then the operation is
forwarded by unwinding the continuation, transferring the topmost frame to the
head of the reified resumption before invoking the next effect continuation. The
only difference between the translations of a deep handler and a shallow handler
is that the reified resumption of the latter is specially marked in order to ensure
that the handler is disposed of in the body of a matching operation clause.

Example. The following example illustrates how the higher-order CPS transla-
tion avoids generating administrative redexes by performing static reductions.

��handle (do Await 〈〉) with H � = �handle (do Await 〈〉) with H � @ K�
= �do Await 〈〉� @ 〈[], �H �〉 :: K�
= �do Await 〈〉� @ 〈[], 〈�H ret�, �H ops�〉〉 :: K�
= �H ops� @ Await 〈〈〉, 〈[], �H �〉 :: []〉 @ ↓K�

where K� = (〈[], 〈λx k .x , λz k .absurd z 〉〉 :: []). The resulting term passes Await
directly to the dispatcher that implements the operation clauses of H .

5.4 Correctness

The translation naturally lifts to evaluation contexts.

�[ ]� = λκ.κ

�let x ← E in N � = λ〈s, χ〉 :: κ.�E� @ (〈(λx k .�N � @ k) :: s, χ〉 :: κ)
�handleδ E with H � = λκ.�E� @ (〈[], �H �δ〉 :: κ)
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Lemma 12 (Decomposition). �E [M ]� @ (V :: W) = �M � @ (�E� @ (V :: W))

Though it eliminates static administrative redexes, the translation still yields
administrative redexes that cannot be eliminated statically, as they only appear
at run-time, which arise from deconstructing a reified stack of continuations. We
write �a for the compatible closure of U-Split, U-Case1 and U-Case2.

The following lemma is central to our simulation theorem. It characterises
the sense in which the translation respects the handling of operations.

Lemma 13 (Handling). If � /∈ BL(E) and H � = {� p r �→ N�} then:

1. �do � V � @ (�E� @ (〈[], �H �〉 :: W)) �+�∗
a

(�N�� @ W)[�V �/p, λy k .�return y� @ (�E� @ (〈[], �H �〉 :: k))/r ]
2. �do � V � @ (�E� @ (〈[], �H �†〉 :: W)) �+�∗

a

(�N�� @ W)[�V �/p, λy k .let (〈s, 〈v , e〉〉 :: k) = k in
�return y� @ (�E� @ (〈s, 〈v , e〉〉 :: k))/r ]

We now give a simulation result in the style of Plotkin [19]. The theorem
shows that the only extra behaviour exhibited by a translated term is the nec-
essary bureaucracy of dynamically deconstructing the continuation stack.

Theorem 14 (Simulation). If M � N then for all static values V and W, we
have �M � @ (V :: W) �+�∗

a �N � @ (V :: W).

Proof. By induction on the reduction relation (�) using Lemma 13.

As a corollary, we obtain that the translation simulates full reduction to a value.

Corollary 15. M �∗ V iff ��M � �∗�∗
a ��V �.

6 Empirical Evaluation

We conducted a basic empirical evaluation using an experimental branch of
the Links web programming language [2] extended with support for shallow
handlers and JavaScript backends based on the CEK machine (Sect. 4) and CPS
translation (Sect. 5). We omit the full details due to lack of space; they can
be found in the extended version of the paper [10, Appendix B]. Here we give a
brief high-level summary. Our benchmarks are adapted from Kammar et al. [12],
comprising: pipes, a count down loop, and n-Queens. Broadly, our results align
with those of Kammar et al. Specifically, the shallow implementation of pipes
outperforms the deep implementation. The shallow-as-deep translation fails to
complete most benchmarks as it runs out of memory. The memory usage pattern
exhibited by deep, shallow, and shallow-as-deep implementations are all stable.

Deep handlers perform slightly better than shallow handlers except on the
pipes benchmark (CEK and CPS) and the countdown benchmark on the CEK
machine. The former is hardly surprising given the inherent indirection in the
deep implementation of pipes, which causes unnecessary closure allocations to
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happen when sending values from one end of the pipe to the other. We conjecture
that the relatively poor performance of deep handlers on the CEK version of the
countdown benchmark is also due to unnecessary closure allocation in the inter-
pretation of state. Kammar et al. avoid this problem by adopting parameterised
handlers, which thread a parameter through each handler.

7 Related Work

Shallow Handlers. Most existing accounts of effect handlers use deep handlers.
Notable exceptions include Haskell libraries based on free monads [12–14], and
the Frank programming language [17]. Kiselyov and Ishii [13] optimise their
implementation by allowing efficient implementations of catenable lists to be
used to support manipulation of continuations. We conjecture that both our
abstract machine and our CPS translation could benefit from a similar repre-
sentation.

Abstract Machines for Handlers. Lindley et al. [17] implement Frank using an
abstract machine similar to the one described in this paper. Their abstract
machine is not formalised and differs in several ways. In particular, continua-
tions are represented by a single flattened stack, rather than a nested stack like
ours, and Frank supports multihandlers, which handle several computations at
once. Biernacki et al. [1] present an abstract machine for deep effect handlers
similar to that of Hillerström and Lindley [9] but factored slightly differently.

CPS for Handlers. Leijen [15] implements a selective CPS translation for deep
handlers, but does not go all the way to plain lambda calculus, relying on a
special built in handling construct.

8 Conclusion and Future Work

We have presented the first comprehensive formal analysis of shallow effect han-
dlers. We introduced the handler calculus λ† as a uniform calculus of deep and
shallow handlers. We specified formal translations back and forth between deep
and shallow handlers within λ†, an abstract machine for λ†, and a higher-order
CPS translation for λ†. In each case we proved a precise simulation result, draw-
ing variously on different notions of administrative reduction. We have imple-
mented the abstract machine and CPS translation as backends for Links and
evaluated the performance of deep and shallow handlers and their encodings,
measuring both execution time and memory consumption. Though deep and
shallow handlers can always encode one another, the results suggest that the
shallow-as-deep encoding is not viable in practice due to administrative over-
head, whereas the deep-as-shallow encoding may be viable. In future we intend
to perform a more comprehensive performance evaluation for a wider range of
effect handler implementations.
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Another outstanding question is to what extent shallow handlers are really
needed at all. We have shown that we can encode them generically using deep
handlers, but the resulting cruft hinders performance in practice. Extensions to
deep handlers not explored in this paper, such as parameterised handlers [12,21]
or a deep version of the multihandlers of Lindley et al. [17], offer the potential for
expressing certain shallow handlers without the cruft. Parameterised handlers
thread a parameter through each handler, avoiding unnecessary closure alloca-
tion. Deep multihandlers directly capture mutumorphisms over computations,
allowing a direct implementation of pipes. In future we plan to study the precise
relationship between shallow handlers, parameterised handlers, deep multihan-
dlers, and perhaps handlers based on other structural recursion schemes.
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