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Abstract. The prediction of learning performance is an important task in the
context of smart tutoring systems. A growing community from the field of
Learning Analytics and Educational Data Mining investigates the methods and
technologies to make predictions about the competencies and skills, learners
may reach within a specific course or program. Such performance predictions
may also enrich the capabilities and the effectiveness of serious games. In game-
based assessment, predictions add a novel dimension for the personalization and
adaption in games for which these functions may provide a valuable data basis.
The Learning Performance Vector (LPV) allows utilizing information about the
learning domain (i.e., the competencies and the structure of competencies) and
log file information from games to make performance predictions. In a simu-
lative study based on existing datasets, we explored the characteristics of the
approach and compared it to a linear regression model. The results indicate that
the LPV is a promising method, specifically in data rich game-based scenarios
with limited external information.
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1 Introduction

The assessment of learning performance plays a crucial role in many serious games.
Specifically adaptive games require a certain understanding of competencies of the
learners and their learning progresses. Accordingly important is a sound, valid, and
theoretically grounded assessment. The evidences, thereby, may be divided into per-
formance related aspects, emotional-motivational as well as personality related aspects
[1]. The performance related aspects include measuring, gathering, analyzing, and
interpreting scores, task completion rates, completion times, success rates, success
depths (the quality or degree to which a ask has been accomplished), etc. [2]. The
approaches to in-game assessment, stealth assessment, and non-invasive adaptation of
games have been refined significantly over the past decade [3, 4]. There exist structural
models (related to KST and micro-adaptivity [5]), cognitive diagnosis models [6, 7],
Bayesian approaches [8], latent variable models [9] and methods from the field of
learning analytics (LA) research [10]. A concept that is not as popular in the context of
serious games as assessment approaches are, is the prediction of learning performance
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in games. Performance prediction has a long(er) tradition in the context of Learning
Analytics, for example.

In the context of serious games, prediction of learning performance may be
important in two areas. The one is game-based assessment, the assessment of certain
performance constructs on the hand of games or simulations. A prominent example is
the National Observational Teaching Exam (NOTE) by the Educational Testing Ser-
vice (ETS) [11]. NOTE is a test instrument for teacher’s abilities based on simulated
classroom scenarios, accredited in the USA. Meanwhile already a number of com-
mercial psychometric games exist. Prediction of achievements may be a valuable
dimension of such games and simulations. The second area is assessment for games,
for example to inform personalization and adaption of games. An example is the
approach of micro-adaptivity [5], which is a probabilistic, non-numerical framework to
build believe models about learner performance on the basis of fine grained activities in
the game. This paper describes an extension of the micro-adaptivity concept, aiming at
the prediction of a so-called learning horizon of a learner. This concept refers to the
likelihood with which a particular learner will achieve the learning goals in the domain
of the learning game. This approach is specifically interesting for serious games
because with each action of a learner in the game, the prediction model can be updated
and the prediction gets more accurate. By this means, the game may predict possible
achievements already at a comparably early stage and the right didactic consequences
can be drawn (e.g., an adaptation of the game at an early stage).

2 Predictive Learning Analytics

The prediction of academic success has a longer tradition, for example in the context of
university entry exams, which in the end aim to predict the performance and the
chances to graduate. This research basically focuses on two types of predictors: cog-
nitive ability or traditional measures, and non-cognitive, affective or non-academic
factors. Cognitive factors usually refer to measures such as high school grades and
standardized test scores whereas non-cognitive measures are related to psychological
factors, like social support and academic related skills [12]. Of course, there are mixed
approaches as well [13]. Often, very simple measures – such as engagement – predict
study success best [14]. In general, one has to distinguish the attributes and variables on
which predictions are based and, second, the methods how these variables are pro-
cessed. The most frequent methods to process variables are classifications, regressions,
and categorizations. In a review [15] list and describe the following methods: Decision
Tree, Artificial Neural Networks, Naive Bayes, K-Nearest Neighbor, and Support
Vector Machine. These authors conclude that Neural Network and Decision Tree
approaches have the highest prediction accuracy. [16] provide an overview of
approaches over the past fifteen years. These authors also demonstrate the effectiveness
and the limitations of four approaches (Logistic Regression, Naïve Bayes, Support
Vector Machine) in the context of an early alert system. An interesting comparison of
eight methods (ranging from K-Nearest Neighbor to Decision Tree algorithms) along a
variety of learning factors was published by [17] who found only fair prediction
accuracy (60 to 80%). Also, the various algorithms did not differ substantially. [18]
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compared different methods from data mining and from the field of recommender
systems such as Bayesian Probabilistic Matrix Factorization and Bayesian Probabilistic
Tensor Factorization and could demonstrate that the methods are, in principle, equally
accurate [19] demonstrated, that prediction accuracy can be improved when binary
regression algorithms are extended to partial credit models and when the algorithms
includes penalties for hints and attempts.

Using multiple and continuously changing sources of data are the basis for pre-
dictions, which perfectly suits the nature of serious games. [20] discuss how the pre-
dictive capacity of different sources of data changes as the course progresses and also
how a student’s pattern of behavior changes during the course, which in turn affects
predictions. [16] conclude that prediction and risk detection approaches do work,
however, they have their strengths in large lecture-style electronic courses. It remains
unclear though, to what extend these methods are helpful in smaller, perhaps more
limited games.

In conclusion, an overview of the literature indicates that a number of sophisticated
prediction models do exist and that the accuracy of the methods is widely acceptable.
The different prediction models and methods appear to have a lower impact on the
accuracy in comparison to the underlying data basis (the variables and attributes of
students). A critical factor, obviously, is the settings within which the methods can be
applied. Only few studies outside “ideal” settings such as (i) a general forecast of
academic success (likelihood of completing a course or school) or (ii) as MOOCs or
distance learning scenarios report a practical success. This argument is mirrored by
studies that yielded that conventional methods could not predict student success (e.g.,
[20–22]). A number of researchers argue that further work is needed to investigate the
applicability of methods in small scale, heterogeneous scenarios with incomplete data
basis (e.g., [16]). The literature indicates that a differentiating factor is whether pre-
dictions are made over a long period (e.g., by predicting college success at the time of
the enrollment) or on a short scale (e.g., a course or a game, cf. [20]). In general, such
settings reveal the limitations of prediction methods in general. With this paper, I want
to introduce a different approach of predicting student performance, originating from
the community of probabilistic and combinatorial test theory.

3 Competence Spaces

We developed a combinatorial approach to educational personalization in games, which
is called micro-adaptivity. In projects such as ELEKTRA and 80Days (www.
eightydays.eu) we introduced and evaluated the usefulness of this approach. The goal
was to complement the widely bottom-up driven, data mining and statistics focused
methods of assessment and adaptation with a top-down approach, driven by psycho-
pedagogical theories. At the same time, we attempted to work towards solutions for the
areas, within which typical methods have certain weaknesses (as discussed above). One
direction, micro-adaptivity pursued was Competence-based Knowledge Space Theory
(CbKST), which is an extension of Knowledge Space Theory (KST) established by [23,
24]. KST is a set-theoretic framework for addressing the relations among problems (e.g.,
test items). It provides a basis for structuring a domain of knowledge and for
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representing the knowledge based on prerequisite relations. Similar to Item Response
Theory (IRT), KST attempts to order test items and problems. As opposed to IRT, which
establishes linear orders, KST allows for multiple dimensions. It establishes a Knowl-
edge Structure by identifying relationships between the items. While KST focuses only
on the items – or rather whether learners are able to master the item (performance),
CbKST introduces a separation of observable performance and latent, unobservable
knowledge and competences, which determine the performance [25]. Very briefly, the
fundamental idea of CbkST is to assume a set of atomic competencies and a so-called
Prerequisite Relation between them. Such relation is, in fact, a pedagogical model that
explains the course of learning and development in a specific domain and the structural
relations in the domain. As an example, one such relationship is to assume that adding
integers is a prerequisite to learn multiplying integers. An individual learner can have
none, all, or a specific set of competencies of a domain (e.g., being able to add, subtract,
and multiply integers) – this is called the learner’s Competence State. By a combina-
torial permutation, the Prerequisite Relation induces a so-called Competence Space, the
collection of all possible Competence States (cf. Fig. 1). Due to the pedagogical model,
not all possible combinations of competencies are meaningful states; for example being
able to multiply integers but not to add them is not reasonable state. This happens on a
latent, conceptual level; the knowledge, the competencies and skills, the aptitude of a
learner cannot be observed directly. CbKST now links the performance to the compe-
tence level on a stochastic level by so-called Representation Functions. Concrete test
items and problems serve as behavioral indicators. Mastering an item increases the
probabilities of all those Competence States that include the associated competencies.
By this means, the probability distribution over the Competence Space is updated on the
basis of a continuous interpretation of all sorts of behavioral indictors. Each gaming
activity, each achievement, each learning activity contributes to CbKST’s believe
model. [5] demonstrate that this approach can be broken down to a very fine granularity
and that it can be utilized in the context of serious games.

Fig. 1. The left part shows a Competence Space including the admissible learning paths. The
red path may be that of a particular student. The left part of the figure illustrates the prediction
principle of the LPV. (Color figure online)
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4 The Learning Performance Vector

In the game context, it might be important to estimate the competence states a learner
may reach within a reasonable time span of gaming. This helps, for example, pre-
venting the learner to fail in reaching the goals of a game. As outlined initially, a good
portion of the existing methods are statistics-based data mining techniques. These
perform well on a general, statistical basis however have clear weaknesses when
operating on a level of individual learners. Also, many statistical approaches build upon
a set of (at least) debatable statistical assumptions and decision criteria. In this paper,
we introduce a first evaluation study, comparing a simple statistical prediction method
with a CbKST-based one, we term Learning Performance Vector (LPV). The purpose
is to elucidate primarily the prediction characteristics of the method.

The origin of the prediction algorithm is a Competence Space. This space gives us a
model of the learning domain, starting from having no competencies in a domain,
leading to the complete mastery. This allows us to identify the progress of a particular
learner given the timeline of a course. Mathematically speaking, we have the set of all
admissible learning paths. This indicates the average learning efforts, given that tran-
sitions have specific difficulties or weights. We have a set of competencies Q ¼
fa; b; c; . . .g with a relationship c � c’ among the competencies, which establishes the
Competence Space. The sum of the resulting Competence States is

P ð Qj jrÞ. Given
that the transitions from one competence state to another has a difficulty parameter,
which in turn is the average of the difficulty parameters of the competencies being a
part of the state, we have a set of tuples of the initial state, the end state, and the
difficulty s ¼ s1; s2;w½ �. This results in a set of such tuples for the entire Competence
Space T ¼ P ðrjQÞ. In addition, we have a set of indicators providing evidences for
competencies: I = {ei, {c} * w}, with a given weight w. Based on the evidences we
can estimate the likelihood of each competency. The probability of a Competence State
is the average of its competencies p sð Þ ¼ P ðpÞ=n. To identify the learning path of a
person, we identify the states with the highest probability at each assessment point. For
each step, we compute the difficulty (as a value between 0 and 1). The sum of the
values gives us an indicator of the efforts a student spent on her learning history (the
individual learning path). In a next step, given the concrete Competence State of the
learner, we have to identify the possible paths towards the final learning goal, which is
a (rather small) subset of all possible paths. Equal to the computation of the difficulty to
reach the current state, we can compute the potential difficulties of all possible paths
towards the goal. This now is an indicator for the efforts that are necessary for an
individual learner to reach the learning goal.

As illustrate in Fig. 1, considering the progress of a student within a given span of
time, we can make a prediction about how far a student can come within the remaining
time (of a course, for example). So, as a final step, we can identify exactly those states
(and therefore the competencies) a particular learner will be able to reach within the
time limits. We call the set of the reachable Competence States the learning horizon.
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5 Identifying the Prediction Characteristics

The purpose of this study was to investigate the characteristics of the prediction method
as opposed to an existing, well-elaborated approach. To judge the accuracy, it is
necessary to compare the predictions with – what often is called – “ground truth”.
Therefore, we simulated the learning performance of excellent, medium, and poor
learners. On this basis, we made systematic comparisons. Since no particular examples
exists for the prediction with games, we used a conventional test data set.

5.1 Data Set

The first step for this study is to select an appropriate data set. To build upon a realistic
data we selected a data set from Carnegie Mellon’s DataShop. It is a data set of
“Assistments Math 2004–2005”, data set id 92 (accessible at pslcdatashop.web.cmu.
edu/DatasetInfo?datasetId=92). This data set covers mathematics (which offers an easy
‘playground’ because it is a well-defined domain) and includes the data of 912 students.
The data set is based on in total 80 competencies (knowledge components). For the
simulation study, we selected a subset of 11 competencies and established a compe-
tence model (see Fig. 2). The weights are derived from the inverse solution frequencies
of the real data set. Furthermore, we selected 12 item types and 111 items from the data
set. These cover one or more of the selected competencies, partially also other com-
petencies (Fig. 2). Based on the real data set, we simulated prototypical learners, taking
the characteristics of 912 students and the item solution frequencies into account. The
ability parameter was defined on a scale from 1 to 10, while 1 means no knowledge in
the domain and 10 means having all competencies. The parameters were simulated
based on a normal distribution, assuring the medium level abilities are most common
and extreme position rather seldom. Finally, because this study is about prediction, we
simulated 9 time points with the assumption that in the time intervals learning occurs,
depending on the student abilities. In summary, we simulated the answer patterns of 15
students across 9 time points in 111 fictitious test items, covering 12 competencies. The
simulated data set consists of 1665 data points. The following chart shows the pro-
totypical simulated results of an excellent learner (squares), a medium learner (circles),
and a poor learner (diamonds) (Fig. 3a). The values show the relative increase in
correctly solved items over the 9 time intervals. The bold black diagonal indicates the
optimal increase, so that with each of the 9 points in time 1/9 of the items is solved
correctly – or in other terms, 1/9 of the competencies have been acquired.

The results show that the increase is determined by the student abilities, due to error
rates (lucky guesses and careless errors) we see that the optimal learner is a bit below
the ideal diagonal while thee poor learner still shows a slight increase.

5.2 A Simple Linear Prediction Model

To evaluate the characteristics of the LPV, we established a baseline prediction model.
The model is a simple linear regression model based on a retrospective view of a
particular student’s performance. The model considers the performance of a particular
student and predicts the future performance on the basis of the slope the general
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regression lines. This is demonstrated in Fig. 3. The low performing (diamonds) stu-
dent reached a solution frequency of 0,054 at the end of interval 4. The model pre-
diction is indicated in the grey line. This, however, is a significant overestimation of a
student’s abilities. There is a strong discrepancy between the results of a student and
such estimations (dotted line in the figure). Figure 4 reports the predictive power of this
approach over time. The left panel shows the predicted final achievements over the
time intervals for the good (bold line) and the poor (dashed line) students. The right
panel shows the accuracy (difference of simulated end values and predictions) of the
approach. It is evident that the method overestimates the achievements by far, even for
a nearly optimally performing student. This optimal and average linear increase is a
problematic approach, obviously.

Fig. 2. From left to right: the selected competencies, the selected test items, the simulated
students, and the derived competence model (prerequisite relation).

Fig. 3. Panel (a) shows the simulated results of three prototypical students as opposed to the
ideal learning performance. Panel (b) shows the prediction results of the CbKST approach for a
good (bold line), medium (dotted line) and poor (dashed line) student.
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5.3 The CbKST-Based LPV

The regression model, of course, is over simple. Methods that are more sophisticated
are available, as introduce in this paper. These methods use more information about
student performance and establish more complex, non-linear models. The contribution
of CbKST is to use the multidimensional domain and learner models (the Competence
Spaces) to add information about the nature of a learning domain to the model. This
information includes the number and complexity of competencies as well as the
relationships between them. Moreover, since the Competence Space is composed of the
admissible Competence States, the lines between the states indicate the set of different
learning paths that are possible – starting from having none of a domain’s competencies
to having all (cf. Fig. 1, left part).

The prediction logic of the LPV is to assume a finite number of learning paths
leading from the trivial Competence State of having no competencies (the empty set) to
the trivial state of having all competencies (the full set). We assume a well-graded
space, claiming that in each step in the learning paths only one competency is acquired.
The set of learning paths a learner is on can be identified on the basis of the current and
past answer patterns (i.e., which item types were mastered and which not). The various
paths can be characterized by their complexity, which is determined by the weights of
the individual steps, which in turn result from the item solution frequencies in the
original data set. The advantage is that we have a specific instance of the prediction
model for each individual learner and her specific learning paths. In other words,
mastering many easy items at an early stage is a weak indicator because major chal-
lenges are still ahead for the student. In turn, mastering highly complex items (with
high weights and perhaps a larger number of prerequisites) is a very strong indicator
because all prerequisite items are assumed to be possessed by the learner. The fol-
lowing figure shows the prediction results for the same simulated data set and the same
students. In this example, the sum of weights assigned to the competence structure is
4.98 (the grey curve in Fig. 3b indicates the average prediction of this approach,
contrasting the linear approach we described above). The curves show the performance
of the three prototypical students across the 9 time intervals.

Fig. 4. The left panel shows the predicted achievements over time; the right panel shows the
accuracy of the prediction method over time. The bold line refers to the LPV, the dashed line to
the linear model.
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Figure 5(a and b) illustrates the final values predicted at each point in time. For the
low performing student (dashed line) we obtain a clear overestimation of achievements
but this overestimation is decreasing very quickly; after time interval 5, the prediction
is very low – which is an accurate prediction. In case of a high performer (bold line) we
have similar predictions as for the low performer and we see the same decrease in the
predicted achievements. This decrease is much smaller and after time interval 5 the
prediction becomes quite accurate also for the high performer. Figure 5b shows the
accuracy, defined as the difference of predicted and actual achievements. When ana-
lyzing the different answer patterns (which items were processed in which order) for the
12 item types in our data, we found that the order of item types strongly influences the
prediction characteristics (the predictive accuracy) of the LPV approach. If items that
are more difficult are presented already at an early stage, the accuracy of the LPV can
be increased, while such item order effects do not affect the accuracy of a linear model.
Figure 5c illustrates the accuracy depending on the item order. With difficult items in
the beginning, the accuracy of the LPV is very high already after 3 time intervals and
superior to the linear model (Fig. 5c). In turn, the linear model has higher accuracy
only when the order of item presentation strictly follows the assumption of an evenly
distributed linear increase of item difficulty (Fig. 5d).

Fig. 5. Panel (a) shows the predicted performance over time, panel (b) the method’s accuracy.
The bold line displays an optimal student, the dashed line a poor student. Panels (c) and (d) show
a comparison of predictive power (LPV vs. linear).
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6 Discussion

The aim of this simulation study was to identify the characteristics of the LPV and if
and to what extent the LPV is a suitable method to predict learning performance in
serious games. The simulation-based study, developed on the basis of a real data set,
allowed us to explore the characteristics and dependencies of the method in its
application to various data characteristics. In this paper, we described the main
findings.

As benchmark, we used a simple, linear regression model. Although there are much
more sophisticated methods available, for the prediction of performance within a single
course and without additional information about the learner, only few suitable methods
exist [20]. Considering the development of the LPV as a robust prediction method, at
this stage of our research, we avoided to involve too many student attributes. And
certainly, one of the main goals of the LPV is to provide a performance prediction
method that operates in scenarios with little to no background data available, with a
shallow and incomplete data basis, and that allows a continuous monitoring of per-
formance. Insofar, we obtained promising results. The information added to the pre-
diction model – the domain structure and the weights of competencies – allows a more
accurate performance prediction and the predictions converge quicker to a reasonable
accuracy.

A critical aspect is the weighting process for the competencies and indirectly the
test items (by associating items and competencies). This process clearly has a strong
influence on the predictions. KST as well as CbKST describe a number of approaches
for the structuring and weighting of a domain, ranging from data mining approaches to
expert decisions (see [25] for details). With respect to the weighting process, a simple
but practical method is a manual assignment of weights by teachers. This, however,
bears the peril of an arbitrary and unfounded weighting. On the other hand, the strength
of this approach could be that the weights would be grounded on the very concrete and
practical experiences of a teacher. A second and more data driven approach is to refer
to the solution frequencies of items in large data sets. This is the method we used in this
study. If items are solved with a high frequency, we can assume a low difficult of the
competencies covered by the item and also a low predictive power in terms of CbKST-
type prerequisites between the competencies. A third method we will explore in future
work is the so-called Component Attribute Approach [26]. This theoretical approach
describes test items by components and their attributes. Components are major char-
acteristics, for example, which algebraic operations are included in a math item. The
attributes describe the individual components, for example, which types of numbers are
part of the item. It was shown, that a Competence Space can be derived due to
mathematical set inclusion. In our context decomposing and analyzing the components
and their attributes can support the domain analysis and the weighting process because
for typical course settings, usually elaborated curricula are available. A forth method is
to analyze existing test items on the basis of their cognitive depth. This refers back to
the famous taxonomy of Benjamin Bloom, revised by [27]. In the so-called Concept –
Action Verb approach. Bloom proposed six such levels. An example would be “un-
derstand that a house has windows and apply this understanding in a new situation”.
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The taxonomy also separates the knowledge dimensions factual, conceptual, proce-
dural, and metacognitive knowledge, which in the end established a two-dimensional
hierarchy. In our context, this taxonomy provides a scaffolding to analyze the items, to
identify the covered competencies, and to rank the competencies according the tax-
onomy – which in the end specifies the weights.

Certainly, the LPV presented in this paper stands in close relationship to other game
analytics and game learning analytics (GLA) solutions [28]. Gaming Learning Ana-
lytics refers to analyzing gaming behaviors of students to obtain the relevant infor-
mation about the learning process of the student. The goal is to understand how a
student learns something new and how to help students achieve a higher outcome of
their interaction with it – either in form of new designs or in-game adaptions. Several
complex frameworks have been proposed and realized [28]. The aspect of the pre-
diction of learning performance, however, was not necessarily in the focus of the
systems. Instead they rather provide the information necessary for the predictions to
stakeholders (students, teachers), for example in form of dashboards. Future steps will
demonstrate the use of the LPV (and other predictive analytics approaches) in the
context of a math game, developed by the Technical University of Graz. Moreover, we
will formally extend the micro-adaptivity concept for serious games by performance
predictions. In conclusion, the recent initiatives of introducing assessment, prediction,
and adaptation methods from fields such as psychometrics and Learning Analytics
should be intensified to make games stronger and more reliable means of educational
assessment.

References

1. Kickmeier-Rust, M.D., Albert, D. (eds.): An Alien’s Guide to Multi-Adaptive Educational
Games. Informing Science Press, Santa Rosa (2012)

2. Wiemeyer, J., Kickmeier-Rust, M.D., Steiner, C.M.: Performance assessment in serious
games. In: Dörner, R., Göbel, S., Effelsberg, W., Wiemeyer, J. (eds.) Serious Games:
Foundations, Concepts and Practice, pp. 273–302. Springer, Berlin (2016). https://doi.org/
10.1007/978-3-319-40612-1_10

3. Bellotti, F., Kapralos, B., Lee, L., Moreno-Ger, P., Berta, R.: Assessment in and of serious
games: an overview. Adv. Hum.-Comput. Interact. (2013)

4. Shute, V.J., Ventura, M.: Stealth Assessment. Measuring and Supporting Learning in Video
Games. The MIT Press, Cambridge (2013)

5. Kickmeier-Rust, M.D., Albert, D.: Micro adaptivity: protecting immersion in didactically
adaptive digital educational games. J. Comput. Assist. Learn. 26(2), 95–105 (2010)

6. Heller, J., Stefanutti, L., Anselmi, P., Robusto, E.: Erratum to: on the link between cognitive
diagnostic models and knowledge space theory. Psychometrika 81, 250–251 (2016)

7. Heller, J., Stefanutti, L., Anselmi, P., Robusto, E.: On the link between cognitive diagnostic
models and knowledge space theory. Psychometrika 80, 995–1019 (2015)

8. Käser, T., et al.: Design and evaluation of the computer-based training program Calcularis
for enhancing numerical cognition. Front. Psychol. 4, 289 (2013)

9. Mislevy, R.J.: Evidence-centered design for simulation-based assessment. Mil. Med. 178
(10), 107–114 (2013)

Predicting Learning Performance in Serious Games 143

http://dx.doi.org/10.1007/978-3-319-40612-1_10
http://dx.doi.org/10.1007/978-3-319-40612-1_10


10. Kickmeier-Rust, M.D. (ed.): Learning analytics for an in serious games. In: Proceedings of
the Joint workshop of the GALA Network of Excellence and the LEA’s BOX project at EC-
TEL 2014, 17 September 2014, Graz, Austria (2014). http://css-kmi.tugraz.at/mkrwww/leas-
box/ectel2014.htm

11. Sandberg, H.: The Good and the Bad of Game-Based Assessment. ETS, Focus on R&D,
Issue 1, April 2016. https://www.ets.org/research/policy_research_reports/focus_on_rd/
issue1

12. Ma, Y., Liu, B., Wong, C., Yu, P., Lee, S.: Targeting the right students using data mining.
In: Proceedings of the 6th International Conference on Knowledge Discovery and Data
Mining (KDD), Boston, Massachusetts, USA, 20–23 August, pp. 457–464 (2000)

13. Shahiria, A.M., Husaina, W., Rashid, N.A.: A review on predicting student’s performance
using data mining techniques. Procedia Comput. Sci. 72, 414–422 (2015)

14. Christian, T.M., Ayub, M.: Exploration of classification using nbtree for predicting students’
performance. In: Proceedings of the International IEEE Conference on Data and Software
Engineering (ICODSE), pp. 1–6 (2014)

15. Romero, C., López, M.I., Luna, J.-M., Ventura, S.: Predicting students’ final performance
from participation in on-line discussion forums. Comput. Educ. 68, 458–472 (2013)

16. Jayaprakash, S.M., Moody, E.W., Lauría, E.J.M., Regan, J.R., Baron, J.D.: Early alert of
academically at-risk students: an open source analytics initiative. J. Learn. Anal. 1(1), 6–47
(2014)

17. Gray, G., McGuinness, C., Owende, P., Hofmann, M.: Learning factor models of students at
risk of failing in the early stage of tertiary education. J. Learn. Anal. 3(2), 330–372 (2016)

18. Sahebi, S., Huang, Y., Brusilovsky, P.: Predicting student performance in solving
parameterized exercises. In: Trausan-Matu, S., Boyer, K.E., Crosby, M., Panourgia, K.
(eds.) ITS 2014. LNCS, vol. 8474, pp. 496–503. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07221-0_62

19. Ostrow, K., Donnelly, C., Heffernan, N.: Optimizing partial credit algorithms to predict
student performance. In: Proceedings of Educational Data Mining (EDM) 2015 (2015)

20. Wolff, A., Zdrahal, Z., Herrmannova, D., Knoth, P.: Predicting student performance from
combined data sources. In: Peña-Ayala, A. (ed.) Educational Data Mining. SCI, vol. 524,
pp. 175–202. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02738-8_7

21. Strang, K.D.: Can online student performance be forecasted by learning analytics? Int.
J. Technol. Enhanc. Learn. 8(1), 26–47 (2016)

22. Papamitsiou, Z., Economides, A.: Learning analytics and educational data mining in
practice: a systematic literature review of empirical evidence. Educ. Technol. Soc. 17(4), 49–
64 (2014)

23. Doignon, J.-P., Falmagne, J.-C.: Spaces for the assessment of knowledge. Int. J. Man-Mach.
Stud. 23, 175–196 (1985)

24. Doignon, J.-P., Falmagne, J.-C.: Knowledge Spaces. Springer, Berlin (1999). https://doi.org/
10.1007/978-3-642-58625-5

25. Albert, D., Lukas, J. (eds.): Knowledge Spaces: Theories, Empirical Research, and
Applications. Lawrence Erlbaum Associates, Mahwah (1999)

26. Heller, J., Steiner, C., Hockemeyer, C., Albert, D.: Competence-based knowledge structures
for personalized learning. Int. J. E-Learn. 5, 75–88 (2006)

27. Anderson, L.: Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom’s
Taxonomy of Educational Objectives. Pearson Education, Boston (2013)

28. Freire, M., Serrano-Laguna, Á., Iglesias, B.M., Martínez-Ortiz, I., Moreno-Ger, P.,
Fernández-Manjón, B.: Game learning analytics: learning analytics for serious games. In:
Spector, M., Lockee, B., Childress, M. (eds.) Learning, Design, and Technology. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-17727-4_21-1

144 M. D. Kickmeier-Rust

http://css-kmi.tugraz.at/mkrwww/leas-box/ectel2014.htm
http://css-kmi.tugraz.at/mkrwww/leas-box/ectel2014.htm
https://www.ets.org/research/policy_research_reports/focus_on_rd/issue1
https://www.ets.org/research/policy_research_reports/focus_on_rd/issue1
http://dx.doi.org/10.1007/978-3-319-07221-0_62
http://dx.doi.org/10.1007/978-3-319-07221-0_62
http://dx.doi.org/10.1007/978-3-319-02738-8_7
http://dx.doi.org/10.1007/978-3-642-58625-5
http://dx.doi.org/10.1007/978-3-642-58625-5
http://dx.doi.org/10.1007/978-3-319-17727-4_21-1

	Predicting Learning Performance in Serious Games
	Abstract
	1 Introduction
	2 Predictive Learning Analytics
	3 Competence Spaces
	4 The Learning Performance Vector
	5 Identifying the Prediction Characteristics
	5.1 Data Set
	5.2 A Simple Linear Prediction Model
	5.3 The CbKST-Based LPV

	6 Discussion
	References




