
Sergei N. Pozdniakov
Valentina Dagienė (Eds.)

 123

LN
CS

 1
11

69

11th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2018
St. Petersburg, Russia, October 10–12, 2018, Proceedings

Informatics in Schools
Fundamentals of Computer Science
and Software Engineering

Lecture Notes in Computer Science 11169

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Sergei N. Pozdniakov • Valentina Dagienė (Eds.)

Informatics in Schools
Fundamentals of Computer Science
and Software Engineering

11th International Conference on Informatics in Schools:
Situation, Evolution, and Perspectives, ISSEP 2018
St. Petersburg, Russia, October 10–12, 2018
Proceedings

123

Editors
Sergei N. Pozdniakov
Saint Petersburg Electrotechnical University
St. Petersburg, Russia

Valentina Dagienė
Vilnius University
Vilnius, Lithuania

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-02749-0 ISBN 978-3-030-02750-6 (eBook)
https://doi.org/10.1007/978-3-030-02750-6

Library of Congress Control Number: 2018958307

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-1899-9145

Preface

This volume contains the papers presented at the 11th International Conference on
Informatics in Schools: Situation, Evolution and Perspectives (ISSEP 2018). The
conference was held at the St. Petersburg Electrotechnical University LETI, Russia,
during October 10–12, 2018.

ISSEP is a forum for researchers and practitioners in the area of informatics edu-
cation, in both primary and secondary schools (K12 education). It provides an
opportunity for educators to reach the goals and objectives of this subject, its curricula,
and various teaching/learning paradigms and topics, possible connections to everyday
life, and various ways of establishing informatics education in schools. This conference
also has a focus on teaching/learning materials, various forms of assessment, traditional
and innovative educational research designs, the contribution of informatics to the
preparation of individuals for the 21st century, motivating competitions, and projects
and activities supporting informatics education in schools. The ISSEP series started in
2005 in Klagenfurt, with subsequent meetings held in Vilnius (2006), Torun (2008),
Zurich (2010), Bratislava (2011), Oldenburg (2013), Istanbul (2014), Ljubljana (2015),
Münster (2016), and Helsinki (2017). The 11th ISSEP conference was hosted by the St.
Petersburg Electrotechnical University LETI, Faculty of Computer Science and
Technology. The conference received 74 submissions. Each submission was reviewed
by at up to four Program Committee members and evaluated on its quality, originality,
and relevance to the conference. Overall, the Program Committee wrote 159 reviews
and 79 reviews were prepared by external reviewers. The committee selected 30 papers
for inclusion in the LNCS proceedings, leading to an acceptance rate of 40%. The
decision process was made electronically using the EasyChair conference management
system. ISSEP was federated with a teacher conference for K12 teachers. The con-
ference was geared toward teachers from St. Petersburg, although teachers from other
regions also participated. The decision to federate the teacher conference and ISSEP
was made so as to bring the results of computer science education research closer to
practising K12 teachers. We would like to thank all the authors who responded to the
call for papers, the members of the Program Committee, the external reviewers, and last
but not least the members of the Organizing Committee.

August 2018 Sergei N. Pozdniakov
Valentina Dagienė

Organization

Program Committee

Conference Co-chairs

Valentina Dagienė Vilnius University, Lithuania
Sergei Pozdniakov St. Petersburg Electrotechnical University, Russia

Steering Committee

Andreas Bollin University of Klagenfurt, Austria
Andrej Brodnik University of Ljubljana, Slovenia
Valentina Dagienė Vilnius University, Lithuania
Yasemin Gülbahar Ankara University, Turkey
Arto Hellas Helsinki University, Finland
Juraj Hromkovič Swiss Federal Institute of Technology Zurich, Switzerland
Ivan Kalas Comenius University, Slovakia
George A. Papadopoulos University of Cyprus, Cyprus
Sergei Pozdniakov St. Petersburg Electrotechnical University, Russia
Françoise Tort ENS Paris-Saclay, France

Program Committee

Erik Barendsen Radboud University Nijmegen and Open Universiteit,
The Netherlands

Liudmila Bosova Moscow Pedagogical State University, Russia
Christian Datzko SVIA-SSIE-SSII, Basel, Switzerland
Ira Diethelm Oldenburg University, Germany
Michalis Giannakos Norwegian University of Science and Technology,

Norway
Bruria Haberman Holon Institute of Technology, Tel Aviv, Israel
Peter Hubwieser Technical University Munich, Germany
Petri Ihantola Tampere University of Technology, Finland
Kirill Krinkin St. Petersburg Electrotechnical University LETI, Russia
Tiina Korhonen University of Helsinki, Finland
Peter Micheuz University Klagenfurt and Gymnasium Völkermarkt,

Austria
Mattia Monga Università degli Studi di Milano, Italy
Violetta Lonati Università degli Studi di Milano, Italy
Fedor A. Novikov ITMO University, St. Petersburg, Russia
Ralf Romeike University of Erlangen (FAU), Germany

Yuri B. Senichenkov St. Petersburg State Polytechnic University, Russia
Giovanni Serafini ETH Zrich, Switzerland
Maciej M. Syslo Nicolaus Copernicus University, Toru, Poland

Organizing Committee

Mikhail Kupriyanov St. Petersburg Electrotechnical University, Russia
Sergei Pozdniakov St. Petersburg Electrotechnical University, Russia
Liudmila Bosova Moscow Pedagogical State University, Russia

Additional Reviewers

A. Alekseeva
A. Chukhnov
V. Dolgopolovas
F. Faiella
N. Grgurina
U. Hauser
M. Ivanovic

E. Jasut
T. Jevsikova
U. Jung
F. Kalelioglu
M. Kesselbacher
T. Kohn
S. Pasterk

Y. Peryazeva
I. Posov
E. Reci
Y. Shichkina
J. Staub
G. Stupurien
M. Winczer

Sponsoring Institutions

St. Petersburg Electrotechnical University LETI
Publishing house BINOM. Knowledge Laboratory

VIII Organization

Contents

Role of Programming and Algorithmics in Informatics
for Pupils of All Ages

Exploring Control in Early Computing Education . 3
Ivan Kalas, Andrej Blaho, and Milan Moravcik

Autonomous Recovery from Programming Errors Made by Primary
School Children . 17

Martina Forster, Urs Hauser, Giovanni Serafini, and Jacqueline Staub

Effects on the School Performance of Teaching Programming
in Elementary and Secondary Schools . 30

Angélica Herrera Loyo

A Case Study on the Effect of Using an Anchored-Discussion Forum
in a Programming Course. 42

Jean-Philippe Pellet, Gabriel Parriaux, and Tristan Overney

Students Teach a Computer How to Play a Game . 55
Sylvia da Rosa Zipitría and Andrés Aguirre Dorelo

Teaching Programming and Algorithmic Complexity
with Tangible Machines . 68

Tobias Kohn and Dennis Komm

A Diagnostic Tool for Assessing Students’ Perceptions and Misconceptions
Regards the Current Object “this” . 84

Ragonis Noa and Shmallo Ronit

On Preferences of Novice Software Engineering Students: Temperament
Style and Attitudes Towards Programming Activities. 101

Tatjana Jevsikova, Valentina Dagienė, and Vladimiras Dolgopolovas

National Concepts of Teaching Informatics

Standards for Higher Secondary Education for Computer
Science in Germany . 117

Arno Pasternak, Lutz Hellmig, and Gerhard Röhner

Computer Science Teachers Perspectives on Competencies - A Case Study
in the Kingdom of Saudi Arabia . 129

Fayiq Alghamdi, Arnold Pears, and Aletta Nylén

A Core Informatics Curriculum for Italian Compulsory Education 141
Luca Forlizzi, Michael Lodi, Violetta Lonati, Claudio Mirolo,
Mattia Monga, Alberto Montresor, Anna Morpurgo, and Enrico Nardelli

Comparative Analysis of the Content of School Course of Informatics
in Russia and Subjects of the International Competition Bebras 154

Liudmila Bosova

Teacher Education in Informatics

Computational Thinking: Constructing the Perceptions of Pre-service
Teachers from Various Disciplines . 167

Ragonis Noa

Investigating the Pedagogical Content Knowledge of Teachers Attending
a MOOC on Scratch Programming . 180

Ebrahim Rahimi, Ineke Henze, Felienne Hermans, and Erik Barendsen

Informatics and Computational Thinking: A Teacher Professional
Development Proposal Based on Social-Constructivism 194

Carlo Bellettini, Violetta Lonati, Dario Malchiodi, Mattia Monga,
and Anna Morpurgo

Real Time Classroom Systems in Teachers Training 206
Viktória H. Bakonyi and Zoltán Illés

Case Study on the Process of Teachers Transitioning to Teaching
Programming in Python . 216

Eva Klimeková and Monika Tomcsányiová

An Investigation of Italian Primary School Teachers’ View on Coding
and Programming . 228

Isabella Corradini, Michael Lodi, and Enrico Nardelli

The Quality of Teaching - Is There Any Difference Between University
Teachers and School Teachers?. 244

Elisa Reçi and Andreas Bollin

Contests and Competitions in Informatics

Piaget’s Cognitive Development in Bebras Tasks - A Descriptive Analysis
by Age Groups . 259

Christine Lutz, Marc Berges, Jonas Hafemann, and Christoph Sticha

The Second Decade of Informatics in Dutch Secondary Education 271
Nataša Grgurina, Jos Tolboom, and Erik Barendsen

X Contents

The Bebras Contest in Austria – Do Personality, Self-concept and General
Interests Play an Influential Role? . 283

Andreas Bollin, Heike Demarle-Meusel, Max Kesselbacher,
Corinna Mößlacher, Marianne Rohrer, and Julia Sylle

Gender Differences in Graph Tasks - Do They Exist in High School Bebras
Categories Too? . 295

Lucia Budinská, Karolína Mayerová, and Michal Winczer

Differences Between 9–10 Years Old Pupils’ Results from Slovak
and Czech Bebras Contest . 307

Lucia Budinská, Karolína Mayerová, and Václav Šimandl

Problem Solving Olympics: An Inclusive Education Model
for Learning Informatics . 319

Roberto Borchia, Antonella Carbonaro, Giorgio Casadei, Luca Forlizzi,
Michael Lodi, and Simone Martini

Socio-psychological Aspects of Teaching Informatics

Evaluation of Learning Informatics in Primary Education:
Views of Teachers and Students . 339

Johannes Magenheim, Kathrin Müller, Carsten Schulte,
Nadine Bergner, Kathrin Haselmeier, Ludger Humbert,
Dorothee Müller, and Ulrik Schroeder

How an Ambitious Informatics Curriculum Can Influence Algebraic
Thinking of Primary School Children . 354

Francesca Agatolio, Fabio Albanese, and Michele Moro

Computer Tools in Teaching and Studying Informatics

Gamification of Problem Solving Process Based on Logical Rules 369
Fedor Novikov and Viktor Katsman

Music Computer Technologies in Informatics and Music Studies at Schools
for Children with Deep Visual Impairments: From the Experience. 381

Irina Gorbunovа and Anastasia Govorova

Computer Modeling of Secretary Problem and Its Interesting Results. 390
Olga Starunova, Valeriia Nemychnikova, and Anna Dronzik

Author Index . 395

Contents XI

Role of Programming and Algorithmics
in Informatics for Pupils of All Ages

Exploring Control in Early Computing
Education

Ivan Kalas1(&), Andrej Blaho1, and Milan Moravcik2

1 Comenius University, 842 48 Bratislava, Slovakia
{kalas,blaho}@fmph.uniba.sk

2 Edix, Bratislava, Slovakia
milan.moravcik@gmail.com

Abstract. In the paper we reflect on how our design research approach in the
current development allows us to study the increasing cognitive complexity of
different levels of control which pupils conduct when they program Emil, a
virtual character on the screen. In our earlier work we outlined conceptual
framework for primary programming, which recognised three different levels of
control: (a) direct manipulation, (b) direct control and (c) computational control
(i.e. programming) an actor. In the present research we managed to get deeper
into the complexity of control by identifying four instead of three of its levels.
Based on our close collaboration with three design schools we have also found
that it is more productive to project and analyse learning progression of pupils
connected with control within two-dimensional grid, where the first dimension is
control itself and the second explores the way how the control is represented.
Along this dimension we have identified five distinct levels of representation:
(a) none, (b) as internal record, (c) as external record, (d) as internal plan for
future behaviour, and finally (e) as external plan for future behaviour. In our
paper we explain the grid of control by presenting selected tasks from different
environments of Emil, our new approach to educational programming for Year 3
pupils.

Keywords: Primary programming � Program as record � Program as plan
Levels of control � Control/representation grid of cognitive demand

1 Background

Through giving instructions, young children gain mastery over their world. They create and
control things to execute their orders. They set them in motion, make them do things, and “boss
them around”. How could this not satisfy a 3 years olds’ craving for omnipotence!

E. Ackermann, 2012 in [1]

© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 3–16, 2018.
https://doi.org/10.1007/978-3-030-02750-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_1&domain=pdf

Actual interest in educational programming emphasizes the need to implement it
for every pupil from early primary stage. This is based on the perception of pro-
gramming as an important new skill for everybody. And naturally, it also motivates
researchers to study which computational constructs1 and computational practices to
introduce in lower primary school, so that systematic and appropriate interventions for
sustainable educational programming are being built.

In our current project we draw on the design principles and pedagogy of the
ScratchMaths intervention for Years 5 and 6 of the primary schools in England [4] but
move our focus to lower primary pupils and pre-Scratch programming: our goal is to
identify computational constructs and computational practices developmentally
appropriate for lower primary pupils2 and better understand how to break them into
productive gradations of suitable small steps3. We are developing new programming
environments for pupils to discover, explore and adopt these constructs and practices
through thoroughly designed activities supplemented with regular all-group
discussions.

In our work we are inspired by Papert’s position on programming as an opportunity
to experience and explore powerful ideas [5] and encourage pupils to perceive pro-
grams as instruments to do that, as objects to think with and think about. We have also
adopted Blackwell’s view [6, p. v] that pupils4 program whenever they stop … directly
manipulate observable things, but specify behaviour to occur at some future time.
Blackwell [ibid] continues by formulating two reasons that make programming hard:
(a) loss of the benefits of direct manipulation and (b) introduction of notational ele-
ments to represent abstraction. Another inspiration for our endeavour in understanding
how pupils control things to execute their orders… see [1], is Clayson when he
mentions computational control [7, p. 2.34]: Of course, we want to computationally
control the filling of design object parts… referring to our capacity to explicitly control
certain effect by expressing our intension in our own program, thus using programming
as an instrument to develop and explore better understanding of certain effect or
relation.

In fact, in this paper we focus our attention entirely on studying control, namely,
finding out in which steps pupils can learn how to plan future behaviour(s) of an actor,
how they can learn to externally represent their plans and work with them: read them

1 Here we borrow from [2] the dimensions of their computational thinking framework, however as we
explained in [3] we prefer to broaden the dimension of computational concepts into computational
constructs, i.e. concepts plus associated computational procedures (e.g. a sequence of steps as a
concept and acting it, interpreting, filling in a missing step, comparing two sequences, modifying a
sequence etc. as some of related computational procedures); and also, we consider control – the way
how pupils give orders to a sprite or a programmable toy – to be one of the key Brennan’s and
Resnick’s computational practices.

2 Aged 5 to 10.
3 By suitable steps we mean gradations of tasks which support all pupils in exploring these constructs
and practices and constructing their true and sustainable understanding. We strive to do so despite the
fact these concepts and practices are often wrongly considered trivial.

4 We deliberately narrowed Blackwell’s view from all non-professional programmers to pupils.

4 I. Kalas et al.

and envisage what they do, analyse them and compare, explain, modify, simplify and
share, simply think with them and think about them.

In our previous work, see [8], we identified three levels of control with growing
cognitive demand that pupils exploit5 when they control physical or virtual pro-
grammable devices. These are (a) direct manipulation, (b) direct control or direct drive
and (c) computational control. We can think of moving from one level to the higher
one as increasing the distance – in a symbolic or real way – between the device to be
controlled and the pupils who control it. In the following chapter we illustrate this with
two well-known instruments: Bee-Bots and Scratch.

2 How the Learners Control in Early Programming

To clarify our perception of the levels of control, let us select two typical represen-
tatives of programming tools in early computing education: (a) Bee-Bots, simple
physical programmable toys for very young learners; and (b) Scratch, currently the
most successful and influential virtual programming environment for older pupils and
after-school or out-of-school programming activities. We will characterise different
levels of control by examining how they manifest in these tools.

2.1 Controlling Bee-Bots

Bee-Bots are widespread physical programmable floor robots with five basic control
buttons (move forward and backward by a constant distance, turn left and right by 90°
and GO), plus extra buttons for Clear and Pause, well verified as a productive digital
technology for pupils aged 5 to 7 or so. It is a well-known practice of the lower primary
teachers in many countries, see our analytical survey [9], to integrate Bee-Bots into early
computing but also in various cross-curricular activities, often starting by young learners
moving the robot by hand through a constructed context (a ZOO, a house, a street, a
town etc.) on the carpet – thus exploiting direct manipulation control. Next step is to
press a navigation button to make it move a fixed distance forward or backwards, or turn
left or right, then running that command by pressing the GO button – conducting a kind
of direct drive control6.

In the sequence of growing cognitive demand, see [10], pupils then incrementally
collect (i.e. record) ‘one button – one step’ bits of planning while moving the robot in
parallel by hand on the carpet, thus physically interpreting the command by them-
selves. When the intended goal is reached, pupils move the Bee-Bot back to its initial
position and initial heading and press GO.

5 With occasional deflections, see our comment on controlling Bee-Bots later in the paper.
6 There is a deflection though from basic direct drive strategy in Bee-Bots. If we want to give it a
single command then run it, we have to press an arrow key, then press GO, then before the following
command is pressed, Clear the memory. Otherwise the next command would be added at the end of
the previously recorded steps. This makes direct drive with Bee-Bots less straightforward and we in
our Bee-Bot pedagogy recommend advancing from direct manipulation to incremental recording of
the program, as described above.

Exploring Control in Early Computing Education 5

Finally, pupils working in groups start planning the steps of the toy in advance,
without moving it by hand. From that moment they start controlling the robot
computationally.

It is significant for this paper and specific for Bee-Bots that the program pupils built
can easy be re-run by repeatedly pressing GO. And yet, learners cannot see the program
or access it in any other way, thus they cannot exploit it as an object to think with.
Sometimes experienced educators bypass this ‘limitation’7 by having pupils construct
the program both by pressing the buttons and building the program on the carpet using
paper cards, see [9, p. 62].

A step towards building explicitly represented program which pupils can work
with, i.e. read, analyse or modify is provided e.g. by Blu-Bots or Pro-Bots.

2.2 Controlling Sprites and Stage in Scratch

In Scratch environment the term ‘control’ is mostly used in the context of computa-
tional drive, referring either to:

• the Control category of blocks, including repeat, forever, if, ifElse, and repeat
until C blocks; wait and wait until stack blocks; and three blocks to control clones,
i.e. referring to standard CS concept of the order in which commands are executed,
or

• the More blocks category when Scratch scripts are used to control external hardware
such as LEGO WeDo, PicoBoard, InO Bot and others.

In the context of educational programming and research, where we want to better
understand the learning processes of pupils developing their computational thinking, all
three levels of control can be identified when working with Scratch:

• we directly manipulate a sprite when we ‘manually’ switch its costume in the
Costumes tab or drag8 it in the stage (not in the player mode) etc.

• we directly control a sprite or the stage when we click an isolated block in the
scripts area, such as next costume (block with no input), move 30 steps (block with
a number input) or switch backdrop to backdrop (block with a drop-down menu of
all alternatives) etc., thus directly executing the corresponding command,

• we computationally control a sprite, multiple sprites or a stage, if we build one or
several scripts, either incomplete (with no event block atop) or complete, and either
click the script or trigger the corresponding event. In that way we run (and can re-
run, debug, modify or delete) a future behaviour description which we previously
planned and constructed.

Although technically we can consider an isolated block to be a ‘short incomplete script’
and ignore differences between the two levels of control, in our educational context we
see clear and important distinctions here. In the ScratchMaths pedagogical framework

7 Although we consider it developmentally appropriate affordance of Bee-Bots.
8 Note that such dragging (we call it ‘meta dragging’) is in Scratch indicated by a shadow rim around a
sprite.

6 I. Kalas et al.

of 5Es, see [12] or [4], we encourage learners to explore a new block in isolation,
incrementally building the insight into the programming constructs in behind, only
then exploit it as an instrument in their thinking about, planning, or discussing a future
behaviour, see Fig. 1.

3 Method

In this paper we focus on exploring cognitive complexity embedded in control, one of
the key practices of educational programming, which pupils conduct when they pro-
gram a virtual sprite or sprites in the screen. To achieve that goal, it is natural that we
employ design research methods, see [13] or [14], as far as:

• we want to learn how demanding different levels of control are for primary pupils
and how to implement them in regular school context so that everybody can
experience them. To achieve that, however, we need new programming environ-
ments (which we failed to find among the existing ones9) to be used as our research
instruments,

• if we are to design such instruments in an appropriate way, we must better
understand the cognitive transformation of pupils when they are discovering and
exploring various constructs and practices, and understand which gradations of the
tasks will scaffold them in adopting those constructs and practices as their own.

In our research the decision to apply the design research approach with its numerous
small iterations immediately deployed in the real classes, evaluated and exploited in the
following design and development cycle in our three design schools proved to be
highly productive. We will present our resulting theory10 of how to classify and
understand the control in Emil environments in the next part. Before that, we will
briefly present some more details of how we proceed in the project.

In our iterative design we are closely working with three primary schools11 and five
classes, working in total with about 90 pupils. At the end of the first year of the project
we have completed the intervention for Year 3 (pupils aged 8 to 9). It consists of
12+ lessons with corresponding teacher materials, three software worlds or environ-
ments (connected into one common navigation interface) called Emil the Collector,
Emil the Caretaker and Emil the Collagist, plus pupils’ workbook with worksheets
attached to most of the units of tasks and several supplementary sheets with extension
unplugged activities to solve either at school or at home as homework.

Pupils always work in pairs using one tablet or laptop. The basic pedagogical
principle is that software does not provide usual feedback – pupils are always
encouraged by the teacher to discuss the solution and come to common agreement on
whether they solved the task correctly or not. Both members of the pair fill in their own

9 Having analysed and explored many alternatives.
10 In its current, not final state as this is on-going process. We comment on this issue in the closing

remarks.
11 We refer to them as the design schools, see more details in [11].

Exploring Control in Early Computing Education 7

worksheet. After solving a unit of tasks all pairs meet “on the carpet” in front of the
teacher and a common big screen and they discuss the tasks and the strategies they
applied. The discussion is moderated by the teacher, discussing the computational
constructs and practices involved. Both working in pairs then discussing with the
whole group are the most productive moments of “learning together”. The tasks and the
discussions (the questions asked by a teacher) are the key element of our pedagogy.

In our initial iterations we usually develop first one or two units of tasks and visit
our design schools where we run the lesson12 repeatedly in several classes. The team is
present, observing the process and talking to pupils and the teacher, then discussing our
notes and taking decisions for the next iteration. This usually results in transforming the
initial unit(s) of tasks into more and more detail gradation of units of tasks, after several
months becoming extended to ten or even more units of repeatedly trialled tasks.

After the first year of iterations well considered and trusted sequence of compu-
tational constructs and pre-constructs for Year 3 intervention has crystallised, together
with a series of the design principles that inform our development and a series of
powerful ideas which pupils experience, explore and construct in the units of tasks (see
[11], while the focus of this paper is studying control, the key computational practice).
At present we have already started developing the sequel intervention for Year 4.

4 Studying Control and Representation

Since the beginning of our design and development work in 80s we have always tried
to keep the principle that the actual programming of an actor13 should be preceded by
activities when the learners give isolated commands which the actor immediately

Fig. 1. In our ScratchMaths module 4 which focuses on place value, see [12], we use multiple
sprites with ten costumes displaying digits from 1 to 9 to 0. A learner can ‘manually’ switch the
costume in the Costumes tab, then explore the next costume block in isolation (making use of
the fact that costumes can be iterated in endless loop), then exploit it in a script, first with no
interaction, see (a), then broadcasting a message to a higher order digit, see (b).

12 Currently the lessons are already run by the class teachers themselves, with our continuous support.
13 i.e. planning its future behaviour.

8 I. Kalas et al.

carries out. We often included a functionality which automatically recorded these
commands and somehow made them visible – to make it possible to reflect on the
previous steps14.

All versions of Logo15 support (or supported) a way how to run a single command,
some versions collecting and providing these commands in a history. As explained
above, we refer to these different approaches as (a) direct control and (b) computational
control and consider the later one claiming higher cognitive demand on the learners
than the former one – based on our long-term experience as well as the recent
observations, and in harmony with Blackwell [6] who considers the loss of the benefits
of direct manipulation16 being one of the main reasons why programming is hard.
Working with very young children, see [15] or [9], and encouraged by [5] we learned
that the most natural introductory level of programming – to precede direct control
itself – is taking the ‘physical‘ actor by hand17, or identifying ourselves with it and ‘act’
the solution. We refer to this basic level of control as direct manipulation, coined by
Shneiderman [16] and frequently used also in the domain of human-computer inter-
faces, where it is defined as… an interaction style in which the objects of interest… are
visible and can be acted upon via physical, reversible, incremental actions whose
effects are immediately visible on the screen [17], a definition well acceptable in our
domain as well.

When starting our current development, we relied on this categorisation of the
levels of control of increasing cognitive demand as one of the key design principles.
However, analysing the tasks and data collected in numerous iterations with the pupils
in our design schools18 resulted in two important findings:

• we can better understand various aspects of control if we refine it to consist of four
different levels, three levels introduced above, with one additional – indirect
manipulation, see Fig. 2 – inserted in between direct manipulation and direct
control,

• we can get much deeper in understanding and supporting learning processes in
educational programming at the primary stage, when we study two important issues
of computing together: dimension of control and dimension of representation of the
corresponding computational process and the relations between them.

4.1 Dimension of Control

Let us characterise this dimension of computing by explaining its four levels in the
context of Emil the Collector and Emil the Caretaker environments.

14 As a preparation for later perciving programs to be objects to think about and think with.
15 Including Scratch, as explained in 2.2 How we control in Scratch.
16 Blackwell does not distinguish between direct manipulation and direct control.
17 Which in the case of virtual actor would correspond to what we call ‘meta dragging’ by mouse.
18 Which regularly led to modifying or reorganizing the tasks, adding new ones and removing others,

transforming a task into a whole new unit of tasks.

Exploring Control in Early Computing Education 9

Direct Manipulation. Emil is a virtual character living in his stage, thus directly
manipulating him (in the Scratch style) would mean dragging Emil by mouse ‘above’
the task19 to be solved. This, however, is not possible, thus the lowest level of control is
not applicable in our programming environments of Emil.

Indirect Manipulation. There is no way to move Emil by dragging him to another
position. However, we can click a position20 in his stage thus indicating where we want
him to float, see Fig. 2. At the beginning pupils usually start clicking neighbouring
positions of Emil. However, later units of tasks introduce new constraints which
gradually increase the need to optimise the number of clicks. These restrictions
encourage pupils to apply only ‘far clicks’: if any position in actual Emil’s row or
column is clicked, he will float there and collect all objects on his way. We tend to
distinguish such control from direct manipulation because learners do not act directly
upon Emil. More than that, it also increases the distance (both in real and symbolic
way) between the object which is controlled and the person who controls it. Thus, we
propose to call this level of control indirect manipulation.

For example, in the task E4 (i.e. 4th task of unit E) illustrated in Fig. 2 pupils are
asked to control Emil to collect the biggest amount possible, without picking up the
button – however, applying only four clicks. In this unit pupils will have already
completed adopting the practice of ‘far clicks’ as they have to minimize the number of
clicked positions, because each position clicked becomes ‘used up’ in that task, until
we click the Next or Again or Previous button.

Direct Control. When pupils start working with Emil the Caretaker, the ‘distance’
between him and them increases even more: no click in the stage is possible any more.
Instead, the arrow buttons (and soon also all other action buttons) will appear on the
right, see Fig. 3. Clicking any of them means giving a command to Emil who
immediately reacts – either by doing it (moving by one position or toggling the light in
a house on/off or other action) or by demonstrating he cannot carry that command out.

Fig. 2. In the first environment pupils control Emil by clicking a position in his actual row or
column whereto they want him to float. In the first seven units of tasks Emil immediately carries
out each command, if possible.

19 We sometimes refer to this as ‘meta dragging’.
20 with several constraints, which pupils will eventually discover by exploring – no diagonal clicks are

allowed, no clicks behind a missing possition and several other constraints.

10 I. Kalas et al.

We consider such control in Emil more powerful than indirect manipulation. In fact, it
is not manipulation any more – unlike in the previous level, each command issued now
acts directly upon Emil and has unambiguous meaning and effect in the stage.

Computational Control. The highest level of control is planning future behaviour in
advance. In our intervention, this level is always indicated by Emil sleeping in his
stage, expecting us to think about the problem and formulate its solution as a plan of
future steps (moves, actions etc.), see Fig. 4. When the planning is completed, we wake
Emil up by clicking him – only then he starts carrying the steps out.

4.2 Dimension of Representation

When trying to refine the theory of four levels of control in programming with Emil in
lower primary years after almost final iteration of our design – develop – deploy – use –
evaluate – analyse – formulate theory design research cycles we were not contented
with the resulting categorization of the tasks. Figure 4 shows an example of two
different ways how computational control is represented and manifests itself in first
two environments of Emil Year 3. We struggled with categorisation of the levels of
control referring to the tasks of both Emil the Collector and Emil the Caretaker
environments.

At that moment we realised our units of tasks and resulting progression of corre-
sponding cognitive demand – in the context of control – can be better understood and
categorised if we start characterising them from two different perspectives, the first one
being the control itself (as presented above), the second dimension being the way how
the process (steps taken to solve a problem) is represented21. In the units of tasks of our
two environments under discussion we identified five levels of representation, let us
present them one by one.

No Representation. When pupils start solving tasks of the first four units of Emil the
Collector conducting indirect manipulation, the steps are not represented or preserved
in any way. In the next two units a small move towards representation by internal
records (see below) is taken by greying each position which pupils click to make Emil
float there. They also discover here that greyed positions cannot be clicked again. This
new constrain motivates pupils to optimise their solutions without being asked to use as
few clicks as possible.

As Internal Record. Starting with unit G, see Fig. 5 for an example, each click – a
signal for Emil to float there immediately – is numbered and greyed, thus creating an
unambiguous history of the moves. Additionally, maximum number of clicks (i.e.
moves) is defined by a stock of numbers on the left (while each click removes cor-
responding number from there). In that way, the exact history of the moves is kept
within Emil’s stage, the reason why we refer to this representation an internal record of

21 As we discuss later, the second dimension gives different categorisation of the tasks then the control
dimension by itself. When we use both dimensions in one grid, see Fig. 6, each of the resulting 20
combinations (positions) has a meaningful interpretation in educational programming.

Exploring Control in Early Computing Education 11

Fig. 3. In the second environment, pupils directly control Emil by clicking the arrow or other
action buttons on the right – with Emil carrying out each click directly (in first four units). The
task here is to control Emil so that he lights up all houses. Each command is simultaneously
recorded in the panel above the stage. In part 5.2 we will refer to such representation of the
behaviour as its external record.

Fig. 4. Computational control level in Emil the Collector and Emil the Caretaker. Both formats
of plans are already familiar to pupils as the same notation has been used in the direct control
levels of these environments already, serving as a record of the steps and actions.

Fig. 5. The task here is to collect as many pears in a box as possible. Pupils will discover that
the number of clicks (i.e. moves) is limited and each click is recorded within Emil’s stage.

12 I. Kalas et al.

the process. An unexpected benefit of this decision is discussed in the concluding
chapter.

As External Record. In Emil the Caretaker we encourage the progression in the
context of control by moving from the indirect manipulation into direct control (see
above) and from the very beginning building a record of the steps (moves and actions)
in a separate panel above Emil’s stage, see Fig. 3 and also Fig. 4 on the right.

As Internal Plan. In the first environment with Emil, in the final two units, Emil is
initially displayed sleeping (in the second environment the same signal comes much
earlier). The opening task asks pupils to first plan the whole journey then wake Emil up –
he will start running the plan step by step. The plan itself is represented in an identical
way to the earlier internal record, see Fig. 4 on the left.

As External Plan. The highest level along the dimension of representation comes
when sleeping Emil waits until we construct the plan to be followed – and the plan is
externally represented in the panel above his stage. In that way, the program of a future
behaviour becomes an object to think with, discuss, analyse, and modify (in thoroughly
restricted way until last units of the tasks of the second environment and in the
third one).

5 Findings and Discussion

Resulting control/representation grid characterizes two dimensions in progression of
cognitive demand in developing basic programming constructs with Emil. Surprisingly,
each of its positions has a meaningful instantiation in educational programming at KS1
and KS2. While the goal of the educational programming is to reach the lower right
position of the grid – where an external plan of a future behaviour is interpreted by an
agent in a computational way – all other positions have meaningful interpretations as
well. For example, programming a Bee-Bot would fit in the lower left corner of the grid
(as the program is not accessible to the learner in any other way than running it by
pressing the GO button, i.e. from the learner’s perspective it is not represented at all).
On the other hand, if 5 or 6-year-old pupils interpret by hand a program for Bee-Bot
built of printed paper cards on the carpet, see [9, p. 62], they conduct an external plan
in a direct manipulation way – the upper right position of the grid.

Using the grid of control/representation has provided us with an effective means to
categorise the tasks of the first two environments of Emil, see the result in Fig. 6. It
illustrates that in Emil the Collector the progression of cognitive demand goes from
indirect manipulation/no representation to indirect manipulation/internal record to
computational control/internal plan, while Emil the Caretaker starts at direct
control/external record and progress to computational control with external plan. Our
conviction that the grid – when progressing from left to right and from top to bottom –

correctly corresponds to increasing cognitive demand in lower primary programming is
based on regular observations and iterative design and development of the units of the
tasks for pupils in our design schools and naturally needs further research.

Exploring Control in Early Computing Education 13

When pupils were solving indirect manipulation/internal record tasks in our design
class, see e.g. tasks in Fig. 7, they were asked to record their solutions in their
worksheets. When invited to the carpet to discuss that unit of tasks, the teacher asked
them how many pears they managed to collect, their answers ranged between 4 and 7.
As it is possible to collect six pears but not seven, teacher asked the ‘seven’ pairs to
demonstrate their solutions. At that moment several pupils ran back to their seats to
fetch their worksheets – so that they could read their solution and recapitulate them in
the teacher’s computer in front of others, an unexpected moment for us as the pupils
themselves discovered the value of the programs as records and effectively initiated
their transition to thinking of a program as of an executable plan.

Our understanding of control in early programming and how it relates to the way of
the representation of corresponding computational process has evolved considerably
since the beginning of the Emil design research and development. Presently, we are
approaching the final iteration of Emil the Collagist and we admit that a new com-
putational construct22 which pupils start exploring in this final environment for Year 3
may lead to further refinement of our perception of different levels of representation.
Next stage23 of this development will extend our effort both upwards to Year 4 but also
downwards into Years 1 and 2. We believe that these extensions will provide us with
many more opportunities to verify and refine our perception of the two dimensions of
computing: control and representation.

Fig. 6. Two-dimensional structure of increasing cognitive demand of the tasks in Emil the
Collector (E1) and Emil the Caretaker (E2). The positions of three labels of E1 (from left to right
and downwards) characterise three major steps in the gradation of the tasks in Emil the Collector,
ditto with two labels of E2. This classification resulted from our analysis of the tasks after final
iteration of working with the pupils in our design schools

22 In [11] we refer to it more precisely as a pre-construct.
23 To start in October 2018.

14 I. Kalas et al.

In this paper we wanted to share our transformational experience in understanding
the cognitive demand of programming in lower primary years, our strongest experience
ever resulting from the consistent design research approach, based on regular and
systematic work with the pupils of our five design classes. In numerous iterations we
have deepened our insight into the relation between levels of control and levels of
representation of the processes pertaining to the tasks in the two environments with
Emil for primary pupils. This experience helped us identify the second (out of four)
levels of control and five levels of representation and classify the tasks from the
perspective of this control/representation grid.

Acknowledgments. The authors would like to thank Indicia, non-for-profit organisation fund-
ing our project, all the teachers and pupils from our design schools for their invaluable contri-
butions to the design and development of Emil intervention, and Celia Hoyles, Richard Noss and
James Clayson for exciting discussions about the issue of control in educational programming.

References

1. Ackermann, E.: Programming for the natives: what is it? What’s in it for the kids? In:
Proceedings of Constructionism: Theory, Practice and Impact, Athens, 10 p. (2012). [CD-
ROM]

2. Brennan, K., Resnick, M.: New frameworks for studying and assessing the development of
computational thinking. In: Proceedings of the 2012 Annual Meeting of the American
Educational Research Association, Vancouver, Canada, (2012)

3. Kalas, I., Benton, L.: Defining procedures in early computing education. In: Tatnall, A.,
Webb, M. (eds.) WCCE 2017. IAICT, vol. 515, pp. 567–578. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-74310-3_57

Fig. 7. The task on the left is about collecting as many pears as possible in the box, while there
are only three clicks available, as signalled by three numbers at the left side. The task on the right
asks pupils to collect as many pairs of identical letters in the box as possible, with no single
letters collected. These scans of the pupils’ worksheets illustrate their own strategies how to
record the solutions.

Exploring Control in Early Computing Education 15

http://dx.doi.org/10.1007/978-3-319-74310-3_57

4. Benton, L., Hoyles, C., Kalas, I., Noss, R.: Bridging primary programming and mathematics:
some findings of design research in England. Digit. Exp. Math. Educ. 3(2), 115–138 (2017).
https://doi.org/10.1007/s40751-017-0028-x

5. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books, Inc., New
York (1980)

6. Blackwell, A.F.: What is programming? In: 14th Workshop of the Psychology of
Programming Interest Group, pp. 204–218 (2002)

7. Clayson, J.: A Computational Eye: Visual Modelling with Python. Deep Springs College,
Bishop (2015)

8. Kalas, I.: On the road to sustainable primary programming. In: Proceedings of the
Constructionism in Action: Constructionism, pp. 184–191. Suksapattana Foundation,
Bangkok, (2016)

9. Kalas, I.: Recognizing the potential of ICT in early childhood education. Analytical survey,
148 p. UNESCO IITE, Moscow (2010)

10. Moravcik, M., Pekarova, J., Kalas, I. Digital technologies at preschool: class scenarios. In:
Proceedings of 9th WCCE: IFIP World Conference on Computers in Education, Bento
Goncalves, 10 p. (2009). [CD-ROM]

11. Kalas, I.: Programming in lower primary years: design principles and powerful ideas.
Submitted to Constructionism, Vilnius, (2018)

12. Benton, L., Saunders, P., Kalas, I., Hoyles, C., Noss, R.: Designing for learning mathematics
through programming: a case study of pupils engaging with place value. Int. J. Child
Comput. Interact. 16, 68–76 (2018). https://doi.org/10.1016/j.ijcci.2017.12.004

13. diSessa, A.A., Cobb, P.: Ontological innovation and the role of theory in design
experiments. J. Learn. Sci. 13, 77–103 (2004)

14. Nieveen, N., Folmer, E.: Formative evaluation in educational design research. In: Plomp, T.,
Nieveen, N. (eds.) Educational Design Research, pp. 152–169. SLO – Netherlands Institute
for Curriculum Development (2013)

15. Moravcik, M., Kalas, I.: Developing software for early childhood education. In: Addressing
educational challenges: the role of ICT. In: IFIP Working Conference, Manchester, 12
p. MMU (2012). [CD-ROM]

16. Shneiderman, B.: Direct manipulation: a step beyond programming languages. Computer
16(8), 57–69 (1983)

17. Sherugar, S.M., Budiu, R.: Direct manipulation: definition. NN/g (2016). www.nngroup.
com/articles/direct-manipulation. Accessed 31 May 2018

16 I. Kalas et al.

http://dx.doi.org/10.1007/s40751-017-0028-x
http://dx.doi.org/10.1016/j.ijcci.2017.12.004
http://www.nngroup.com/articles/direct-manipulation
http://www.nngroup.com/articles/direct-manipulation

Autonomous Recovery
from Programming Errors Made

by Primary School Children

Martina Forster1, Urs Hauser1, Giovanni Serafini1, and Jacqueline Staub1,2(B)

1 Department of Computer Science, ETH Zürich,
Universitätstrasse 6, 8092 Zürich, Switzerland

martfors@student.ethz.ch,

{urs.hauser,giovanni.serafini,jacqueline.staub}@inf.ethz.ch
2 Pädagogische Hochschule Graubünden, Scalärastrasse 17, 7000 Chur, Switzerland

Abstract. Programming classes offer unique opportunities to learn both
semantic and syntactic precision, even for primary school children with-
out prior knowledge in computer science. In order to make students
progress autonomously, programming languages and environments need
to be chosen with care to their didactic quality. This paper introduces
four classes covering the majority of what we call structural programming
errors. These mistakes are either syntactical errors or the result of invoca-
tions that do not match the signature of any user-defined command, and
therefore prevent the execution of a program. Furthermore, we present a
methodology that allows for detecting as many structural programming
errors as possible, and show how we integrated this methodology in our
Logo programming environment for primary schools. Finally, we reflect
on an evaluation we carried out at school that confirms the didactic
benefits of the chosen approach.

1 Introduction

This paper introduces the idea of what we call a structural programming error
and discusses a methodology that allows for detecting as many of such errors as
possible early on, while writing Logo code in introductory programming classes.
A structural programming error occurs whenever (i) a program cannot be parsed
according to a given language specification due to a syntax error or (ii) a program
fails to execute because a call does not match the signature of any user-defined
command. In the latter case, it is not possible to decide whether the mistake has a
syntactic explanation (the programmer simply misspelled an existing command)
or if the error is of semantical nature (the programmer speculates about the
availability of some command that, in fact, does not exist).

Moreover, the paper describes how we integrated the proposed methodology
into our existing XLogoOnline [1] programming environment and how it supports
primary school children in rapidly locating and identifying frequent mistakes. In
our intention, the proposed approach is expected to facilitate autonomous recov-
ery from programming errors and therefore to smoothen independent learning.
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 17–29, 2018.
https://doi.org/10.1007/978-3-030-02750-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_2&domain=pdf

18 M. Forster et al.

1.1 Computer Science Is Rapidly Becoming a School Subject

The introduction of computer science as a mandatory school subject is currently
experiencing a sudden and promising acceleration. This phenomenon is not cir-
cumscribed to the subjective experience in our country, but it is supported by
several concrete initiatives like “Computer Science For All” in the United States
[2], “Programma il futuro” in Italy [3] and the well known “National curriculum
in England: computing programmes of study” [4], to only cite some of them.
There eventually seems to be a general consensus that the importance of com-
puter science for society, research, and economy finally requires a dedicated sub-
ject for all children attending the compulsory school.

In his Mindstorms book, Papert predicts and justifies the need for program-
ming classes at school by observing how “our culture is relatively poor in models
of systematic procedures” and thereafter inferring that “without the incentive or
the materials to build powerful, concrete ways to think about problems involv-
ing systematicity, children are forced to approach such problems in a groping,
abstract fashion” [5]. Nowadays, the contribution of computer science to general
and therefore to school education is subsumed with the concept of algorithmic
(or computational) thinking.

Our center for computer science education has more than fourteen years of
experience in introducing primary school children and their teachers to computer
science. The so-called Logo school projects represent one of our core activities.
They usually take place on-site at school, last up to 20 lessons and are distributed
over several weeks. Together with regional partners, we were able to visit more
than 200 schools and to teach more than 10 000 children and teachers. Such a
project mainly pursues two objectives: firstly, we aim at introducing the pupils to
the way computer scientists use to think when they face an algorithmic problem.
To this end, we teach children how to draw geometric shapes by writing Logo
programs. Starting with a reduced set of instructions, they learn how to stepwise
refine the language by applying modular design. Second, we train the hosting
primary school teachers and prepare them for taking over the programming
classes [6].

1.2 The Paradox of Teaching Programming in Half-Classes

Teachers, at least in our country, advocate for programming lessons in half-
classes of 10 to 12 pupils instead of full classes, and argue that otherwise a peda-
gogically adequate and didactically differentiated fostering of the specificities of
each pupil would not be possible. The question is undoubtedly controversial, but
the problem is hard to deny. We face a paradoxical scenario: children interacting
with a computer receive direct and individual feedback; and yet they seem to
need more personal support by the teacher than, e.g., children who are solving
math exercises with pencil and paper.

The theory of constructive alignment [7] implicitly allows for an explanation
of the depicted paradox and indirectly suggests the approach that can lead to
its resolution. This theory says that teachers who conceive learning materials

Autonomous Recovery from Programming Errors 19

should (i) define the educational objectives they are pursuing, (ii) develop learn-
ing activities and materials that allow for attaining those objectives, and (iii)
prepare summative assessments that measure how the learning outcome matches
the original educational goals or at least a sample of them. Moreover, the the-
ory states that teachers necessarily have to align the three above aspects by
design. Computer Science teachers are even expected to choose a programming
language that allows for reaching the learning objectives and to opt for a pro-
gramming environment that actively supports the learners and empowers them
to systematically identify mistakes and to autonomously recover from them. The
programming environment is a crucial element of the learning process, and has
therefore to be explicitly constructively aligned with all the other three aspects.

2 Related Work

In the literature, different solutions have been proposed that address the strug-
gles children face with structural programming errors. We highlight three com-
mon approaches: (i) reducing syntactic errors, (ii) simplifying syntax, and (iii)
error diagnosis. In this section, we illuminate how these approaches address the
problem of novices who struggle coping with errors autonomously.

2.1 Reducing Errors

In visual programming languages, such as Snap! [8], Blockly [9], App Inventor [10]
or EasyLogo [11], errors are reduced by making children snap command blocks
with semantic meaning. Blocks only fit in ways that comply with the underly-
ing language specification, which eliminates syntax errors altogether. Runtime
errors, however, can still occur. Scratch blocks are failsafe, meaning they try to
recover from errors rather than failing and showing error messages or hints to
programmers [12].

2.2 Simplifying the Language

Languages with small vocabularies and simple grammars are less susceptible for
mistakes. Logo’s keywords, for example, are simple two-letter abbreviations for
terms originating from natural languages like English. Working with such short
commands, the risk for typos reduces. This makes Logo a suitable language for
young audiences such as primary school children [6]. Python is another showcase
programming language that is widely used in high school education and comes
with a simple and small syntax. Thanks to its dynamic type system, Python
allows for high flexibility and eliminates static type errors entirely [13]. Remain-
ing errors can be resolved by providing purposeful diagnostics.

20 M. Forster et al.

2.3 Error Diagnosis

Once an error occurred, diagnostics are the only support autonomous program-
mers receive. Professional diagnosis tools (e.g. Clang [14] for C++ or C) pinpoint
errors by highlighting the affected range and the exact error location using col-
ors, carets and coordinates. Moreover, they provide information about the cause
of the error and fix-it hints. For beginning programmers, we need to keep an
eye on how to present errors – novices are prone not to pay attention to long,
redundant or overly detailed error messages [15]. Learning from errors, however,
is considered good practice in general education [16]. Pupils who commit errors
and receive corrective feedback deepen their understanding and learn how to
handle mistakes [17–20].

We consider autonomous error recovery a crucial skill that needs to be taught
as part of general education. Rather than preventing novice programmers from
making structural mistakes, we help them understanding the exact cause of
errors and teach them how to cope using purpose-built diagnostics and inline
hints.

3 What Structural Errors Do Beginners Make?

We want to build diagnostics that help novices to locate and resolve structural
defects in their Logo code and, to this end, we were interested in first establishing
what errors beginning programmers make in the early stage of them learning a
new language. In this section, we present four classes of structural errors that
are covered by our diagnostics.

3.1 Four Error Classes Cover the Vast Majority of All Structural
Errors

To detect what errors beginning programmers make, we ran a large-scale user
study with 180 primary school children, aged 11 and 12. They spent their very
first two hours programming in our labs and, after a 5-minute theoretical intro-
duction to Logo’s movement commands, they started solving exercises. We col-
lected a trace of all 5040 submissions and investigated what structural mistakes
they faced. Out of 6500 errors, we distilled four major categories of errors.

Towards the beginning, pupils got acquainted with the platform and made
deliberate errors in what we call exploration phase. Once this phase was over,
pupils settled in to programming but still made occasional mistakes, mostly
around erroneous invocations of built-in commands.

Exploration. Children do not know what happens within a computer. They
treat it as a magic black box and first need to discover that computers lack
human intelligence by exploring its boundaries. A few such examples include:

1. Wordy and descriptive instructions (as if they were talking to a human)
2. Commands in their native language (forward 100 becomes geradeaus 100)

Autonomous Recovery from Programming Errors 21

3. Misread characters that are substituted by optically similar ones (e.g. using
the letter ‘O’ in fd 1OO rather than real digits: fd 100)

4. Entirely random strings by mashing on the keyboard (hvgfghfzffzugo8zt7)

Programming in a language with formal syntax and rigorous structure
requires precision. The experience pupils gain during this initial phase is there-
fore valuable for building an intuition and demystifying how the language con-
structs work.

Program Invocation By this stage, pupils have been exposed to many exam-
ples from a workbook but not yet been formally introduced to the concept of
arguments or program design. We see this reflected in three types of errors:

1. Missing spaces: Students struggle to grasp the difference between fd 100
and fd100. This purely syntactical error shows that students are not aware
of the significance of whitespace in programming.

2. Incorrect number of arguments: Students provide too many or too few
arguments as in: ‘fd’ or ‘fd 100 100’. This error, by contrast, is semantic
and shows how operators are used without being fully understood yet.

3. Typos: Most built-in Logo commands are based on English terms like for-
ward or repeat. Our target group is at the early stage of learning English
and so we noticed many incorrect spelling variations. For example: repead,
repat, reapeat, repaet and repet (sorted in descending frequency) were all
common misspellings of the keyword repeat. Pupils tried several alternatives,
while a simple inline hint would have sufficed to put them back on track.

These three types of errors tie back to the broader topic of parameterized
commands and program decomposition, which pupils will be exposed to later in
the curriculum. With more expertise, the rate of these errors should decrease,
however, locating these subtle defects remains notoriously hard and makes them
worthy candidates for our diagnosis tool.

Program Declaration. In later stages of programming, children will learn to
design programs modularly. They assign names to sequences of commands, and
thus introduce new purpose-built commands. Errors within the body of such
commands fall into the class of faulty program invocations. Program signatures,
on the other hand, lead to new opportunities for errors such as:

1. Missing or extraneous keywords to or end (to to abc end)
2. Misspelled keywords to or end (to abc emd)
3. Missing program name (to end)
4. Missing colon before parameters (to abc a :b end)
5. Missing parameter name (to abc : :b end)

If a program call cannot be matched with the signature of any user-defined
command, the blame can be put either on the caller or the definition-side. Follow-
ing common design conventions, we trust program declarations over invocation
sites, which assumes that all program signatures are correctly specified.

22 M. Forster et al.

Brackets. Logo uses matching pairs of square brackets to unambiguously iden-
tify the beginning and end of code blocks, for example in repetition and con-
ditionals. In reality, children produce code where either or both brackets are
missing, as in repeat 4 [fd 100, or they choose the wrong kind of bracket:
repeat 4(rt 90). This is a common error which becomes increasingly difficult
to resolve as pupils start nesting multiple code blocks.

3.2 Challenges in Design

Language ambiguities place a major burden on diagnosis tools. In Logo, there is
no strict requirement for brackets around arguments. Therefore, in case of nested
commands with extraneous or missing arguments, we cannot know which of the
commands the argument was intended for. For example: Using command ‘fd’
(that takes one argument) and command ‘mod’ (that takes two), we build the
following ambiguous program, which has two interpretations: fd mod 5 3 7.

(a) fd (mod 5 3) 7
(b) fd (mod 5 3 7)

Either we understand it as ‘fd’ that was illegally given two arguments or
‘mod’ that illegally received three. Without brackets, we cannot know and react
by reporting overly generic error messages. To prevent this, the language would
need to be clearly specified and must not allow for ambiguities.

In the next section, we will explain how we extended our programming envi-
ronment such that it recognizes, localizes and reports all classes of errors men-
tioned in this section, while also providing actionable hints whenever possible.

4 Checking for Structural Errors Early On

In this section, we explain how we extended XLogoOnline with additional error
checking mechanisms that detect mistakes in both built-in and user-defined com-
mands and control structures. While pinpointing and reporting an arbitrary
number of flaws, we also provide useful hints on how errors could be resolved.
In the following, we first sketch the state of error detection we started from and
then describe how adding parser rules allows to map even syntactically-incorrect
programs into a parse tree. Last, we explain how to detect errors in program
calls by trying to match them against compatible program signatures.

4.1 State of Error Detection Prior to Our Modification

Language-specific constructs like Logo’s movement commands are defined in
grammars that contain two sets of grammatical rules: (i) lexer rules, that group
sequences of characters into tokens such as numbers or strings and (ii) parser
rules that organize tokens into a tree structure which reflects syntactical struc-
tures in a form suitable for execution. Whenever the parser successfully builds a

Autonomous Recovery from Programming Errors 23

Fig. 1. Example of a reduced grammar for a subset of Logo. The parser successfully
turns a sequence of characters into a parse tree. Prior to our extension, the grammar
only had ‘positive’ rules that match against valid syntactical elements.

parse tree (see Fig. 1), all underlying built-in language constructs are guaranteed
to be free of syntactical defects.

In error cases like missing or extraneous arguments, the parser cannot retrieve
a program’s syntactical structure. Instead, it crashes and fails to generate a parse
tree. Error detection is affected by this in two ways:

1. Identifying multiple errors requires repeated parsing: Every error
causes the parser to stop. Thus, without repeated parsing, it is not possible
to identify more than one error in a single pass through the code.

2. Poor classification quality: In ‘repeat [rt 90] 4’ the expression 4 is
provided at the wrong position. The parser crashes trying to match [rt 90]
against a number. At that point, it is ignorant of the subsequent expression.
Therefore, it cannot distinguish the example from ‘repeat [rt 90]’, where
the expression is missing entirely. The two errors are fundamentally different
and deserve to be classified individually.

4.2 Extending the Grammar to Detect Failure States

To overcome these issues, we extended the grammar with extra parser rules
which cover typical error cases involving built-in commands, program declara-
tions or bracket errors. Additional rules allow the parser to successfully retrieve
the syntactic structure of faulty Logo programs. Special markers are retained in
the parse tree to denote the location of errors and are presented to the user in
a later stage. Figure 2 shows a case where a defective program is parsed and the
resulting parse tree contains a special marker at the respective error location.
Note how the parser contains three rules related to the ‘fd’ built-in, each flagged
with an associated error case.

By adding extra rules to our grammar, parse trees can be constructed despite
them containing structural errors which are ordinarily not allowed. An important

24 M. Forster et al.

Fig. 2. Parser rules are enhanced with additional error cases that flag syntactic errors
while building the parse tree.

point to note is how this approach allows us to successfully parse programs
containing an arbitrary number of errors, without aborting the parsing process.

Logo also allows students to extend the language by defining new commands.
Detecting errors in invocations to user-defined commands is not possible by
extending parser rules, since new rules cannot be added dynamically. In the
next section, we will address this limitation by collecting program signatures to
be compared against.

4.3 Collecting Program Signatures to Match Against

A program is made up of a declaration and a body. By using the program name
and parameter definitions we have a signature which fully specifies how the com-
mand expects to be invoked. Without prior indexing of all program declarations,
it is not possible to tell whether a given program invocation matches any of the
defined signatures. In the following example we see three Logo programs, each
with one program declaration and one program call. Only the program on the
left is correct, while the middle one invokes a non-existent program named ‘foo’
and the one on the right calls a program with matching program name but too
few arguments and therefore does not match the declared program signature
(Table 1 and Fig. 3):

Since we cannot check program calls on-the-fly, we first need an indexing pass.
We process the entire program code and perform checks for all built-in commands
(as in Sect. 4.2). As we read through the program code, we additionally collect
all program calls and signatures and, in a second pass, validate whether program
calls can be matched with one of the user-declared programs.

With this last stage, it is possible to check the invoked program calls
against their actual declarations and inform the programmer in case of errors.
Unmatched program calls are analyzed for typos and missing spaces by calcu-
lating the edit distance to all available commands and showing a hint in case of
satisfying similarity. Further, we report missing or extraneous arguments. This

Autonomous Recovery from Programming Errors 25

Table 1. Invocations can be interpreted differently depending on surrounding context.
In order to validate program calls, we also need to know all user-defined modules and
their program signatures.

Fig. 3. Identifying errors in program calls to user-defined modules. After building the
parse tree, the program is indexed and program invocations are matched against avail-
able program signatures.

simple and effective mechanism is surprisingly inexpensive to run while the pupil
types and allows to validate programs on-the-fly even before the program has
been run.

5 How Do Diagnostics Aid with Preventing Runtime
Errors?

We wanted to know whether our diagnostics empower novices to actively prevent
runtime errors before they occur. For this, we conducted a classroom experiment
with primary school children whom we introduced to programming in Logo. The
children received a worksheet with two erroneous Logo programs whose execution
results in runtime errors. The task was to localize all errors and propose working
fixes without running the program. One half of the class was working with the
enhanced error diagnostics proposed in this work, the other had no support. Our
results show that children working with enhanced diagnostics outperform their
classmates at successfully preventing runtime errors.

26 M. Forster et al.

Hypothesis: Novices equipped with diagnostic support locate and resolve a
greater number of errors before execution than novices who face the same issues
without diagnostics.

5.1 Subjects and Context

We introduced a class of 37 primary school pupils aged 10 to 12 to programming.
For ten weeks, the children spent two hours per week learning about Logo’s
basic movement commands, repetition, modular design, and parametrization.
During the first nine programming sessions, all the pupils used a lean version
of XLogoOnline with no support for runtime error detection. During our last
two-hour programming session, we performed our experiment. The class was
divided into two groups: (i) a control group (N = 17), which received absolutely
no support and (ii) an experimental group (N = 20), which received diagnostic
support in the form of error messages and inline hints. After familiarizing with
the environment for one hour, both groups received an exercise sheet containing
erroneous Logo programs. The pupils were asked to first locate the errors and
then propose a solution to them.

5.2 Exercises

We crafted two faulty Logo programs (see Appendix) which contain (i) misspelled
program calls, and (ii) misspelled keywords. Those core errors were carefully
disguised by shuffling in uncommon but syntactically- and semantically-correct
Logo code snippets. Both errors are interpreted as program calls and, impor-
tantly, are not detected by both the old and the new parser. Our new diagnosis
tool checks whether program calls can be matched with existing program signa-
tures or, otherwise, it issues error messages and inline hints. We evaluated what
impact the availability of diagnostics has on children’s error prevention rates.

5.3 Results

For every task, we first validated whether the children correctly identified the
error (e.g. by marking or explaining the cause of it) and second, whether they
found a solution that fixes the underlying issue. Comparing the results, we found
the experimental group to consistently outperform the control group in both
locating and resolving errors. In Fig. 4, we find the ratio of children successfully
handling errors with diagnostics (in black) to be significantly higher than without
(in grey).

Moreover, during the familiarization phase, we noticed how errors related to
well-known concepts seemed to be easier to master than errors related to con-
cepts that were only just introduced. We generally think of programming learn-
ing as a two-dimensional process: while novices’ programming skills are widened
with new concepts, they also deepen prior knowledge. This entails that during
their learning, children have differing levels of expertise for distinct programming

Autonomous Recovery from Programming Errors 27

Fig. 4. The experimental group (black) outperformed the control group (grey) at both
identifying and resolving errors in all exercises

concepts. In our curriculum, children start by stringing together built-in move-
ment commands. Later, they learn about repetition and program design and,
only after ample time to practice, do we tackle the concept of parametrization.
In our experiment, the exercises cover built-ins and program design respectively,
both of which have been covered several weeks prior to our experiment.

6 Conclusion

Novice programmers are confronted with a wide range of different errors. Some
of them fall in the category of what we call structural errors. Those cover (i)
all syntactic errors and (ii) the subset of semantic errors that contain corrupt
program calls which cannot be matched with any declared program signature. In
this paper, we propose a methodology that provides novices with tailored diag-
nostics for structural errors and show how we integrated it into our programming
environment for primary schools. Using our error messages and hints, children
are able to actively prevent runtime errors without external support. Even pri-
mary school children are empowered to work at their own pace and recover from
errors autonomously. This alleviates pressure from the teachers and provides a
basis for more sustainable and effective programming classes.

Not all errors, however, are structural. In order to make children recover from
semantical errors, that cannot be detected by any computer, children need to
develop debugging strategies and require tools that are adequate to their age
and abstraction skills. Such a debugger is the focus of a promising project we
are currently carrying out.

28 M. Forster et al.

Appendix

See Table 2.

Table 2. Actual exercises solved in our study. Errors are marked red (note: this infor-
mation was not provided to the pupils). While our control group was solving the exercise
blindly, our diagnosis tool provided the experimental group with detailed information
and hints.

References

1. Hromkovič, J., Serafini, G., Staub, J.: XLogoOnline: a single-page, browser-based
programming environment for schools aiming at reducing cognitive load on pupils.
In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 219–231.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71483-7 18

2. Smith, M.: https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-
science-all. Status as of 15 June 2018

3. https://programmailfuturo.it/progetto/descrizione-del-progetto. Status as of 15
June 2018

4. https://www.gov.uk/government/publications/national-curriculum-in-england-
computing-programmes-of-study/, 15 June 2018

5. Mindstorms, S.P.: Children, Computers, and Powerful Ideas, 2nd edn. Basic Books,
New York (1993)

6. Hromkovič, J., Kohn, T., Komm, D., Serafini, G.: Combining the power of Python
with the simplicity of Logo for a sustainable computer science education. In: Brod-
nik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 155–166. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46747-4 13

https://doi.org/10.1007/978-3-319-71483-7_18
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-science-all
https://programmailfuturo.it/progetto/descrizione-del-progetto
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/
https://doi.org/10.1007/978-3-319-46747-4_13

Autonomous Recovery from Programming Errors 29

7. Biggs, J.: Enhancing teaching through constructive alignment. High. Educ. 32(3),
347–364 (1996)

8. Harvey, B., et al.: Snap! (build your own blocks). In: Proceedings of the 45th ACM
Technical Symposium on Computer Science Education. ACM (2014)

9. Fraser, N.: Ten things we’ve learned from Blockly. In: Conference: 2015 IEEE
Blocks and Beyond Workshop (Blocks and Beyond) (2015)

10. Wolber, D.: App inventor and real-world motivation. In: Proceedings of the 42nd
ACM Technical Symposium on Computer Science Education. ACM (2011)

11. Salanci, L.: EasyLogo - discovering basic programming concepts in a construc-
tive manner. Constructionism 2010, Paris. http://edi.fmph.uniba.sk/∼salanci/
EasyLogo/index.html

12. Maloney, J., Resnick, M., Rusk, N., Silverman, B., Eastmond, E.: The Scratch
programming language and environment. ACM Trans. Comput. Educ. 10, 4 (2010).
Article 16

13. Grandell, L., et al.: Why complicate things?: introducing programming in high
school using Python. In: Proceedings of the 8th Australasian Conference on Com-
puting Education, vol. 52. Australian Computer Society Inc. (2006)

14. Lattner, C., et al.: https://clang.llvm.org/diagnostics.html. Status as of 15 June
2018

15. Kohn, T.: Teaching Python programming to novices: addressing misconceptions
and creating a development environment. Doctoral thesis (2016)

16. Metcalfe, J.: Learning from errors. Annu. Rev. Psychol. 68, 6.1–6.25 (2016)
17. Gartmeier, M., Bauer, J., Gruber, H., Heid, H.: Negative knowledge: understanding

professional learning and expertise. In: Proceedings of Vocation and Learning 2008,
pp. 87–103. https://doi.org/10.10007/s12186-008-9006-1

18. Oser, F., Spycher, M.: Lernen ist schmerzhaft. Zur Theorie des negativen Wissens
und zur Praxis der Fehlerkultur. Weinheim; Beltz (2005)

19. Kummerfeld, S.K., Kay, J.: The neglected battle fields of syntax errors. In: ACE
2003 Proceedings of the Fifth Australasian Conference on Computing Education,
Adelaide, vol. 20, pp. 105–111 (2003)

20. Kornell, N., Metcalfe, J.: The effects of memory retrieval, errors, and feedback on
learning. In: Applying Science of Learning in Education. VA Benassi (2013)

http://edi.fmph.uniba.sk/~salanci/EasyLogo/index.html
http://edi.fmph.uniba.sk/~salanci/EasyLogo/index.html
https://clang.llvm.org/diagnostics.html
https://doi.org/10.10007/s12186-008-9006-1

Effects on the School Performance
of Teaching Programming in Elementary

and Secondary Schools

Angélica Herrera Loyo(B)

ABZ, ETH Zürich, Zürich, Switzerland
angelica.herrera@inf.ethz.ch

Abstract. The aim of this report is to describe some aspects of teach-
ing programming to teenagers from 10 to 13 years old. The examples,
data and impressions were taken from some courses given in public and
private schools in Mexico, Switzerland and Colombia. The paper is orga-
nized as follows: It starts with a description of the didactic proposal of
ABZ-ETHZ under which the courses were given. Then the observations
and reflexions are described with respect to several considerations: (a)
The ubiquitous recreational and social use that children and young peo-
ple make of the technology, (b) their motivation for programming, (c)
reading and writing in language acquisition and ((d) strengthening and
applying mathematics as a decisive aspect of the ability to think logically.

Keywords: Computational thinking · Teaching programming
LOGO · Logical thinking

1 Specific Aspects of the Didactic Proposal
of ABZ-ETHZ: Introductory Courses in Programming

Introductory workshops into programming could target children from the age of
ten. The exercises involved in these workshops were designed with the intention
of helping children grasp the central concepts of programming in an implicit,
experimental and entertaining way. This means that the concepts should not be
taught in an abstract way and be memorized meaninglessly, nor that there are
any simple or single answers. On the contrary, the workshops promote deeper
thinking, a systematic and constructive approach to finding efficient solutions
to the proposed problems [2]. This work environment is based on four aspects:
analysis, creativity, discipline and concentration. The language used is LOGO,
a free software designed for educational purposes.

1.1 The Thematic Structure of the Proposal

(1) To Familiarize Students/children with the Language and encourage
them to master the basic commands. This first goal can be achieved in a session
of two hours. Very early on in the course children will learn how important it is to
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 30–41, 2018.
https://doi.org/10.1007/978-3-030-02750-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_3&domain=pdf

Effects on the School Performance of Teaching Programming 31

be accurate when typing commands and before long, they will realize that they
themselves are creating new commands that can be reused to solve increasingly
complex problems. Already in this session students begin to understand the
concept of programming. We know that in LOGO a turtle uses simple commands,
such as fd 100, in which the turtle moves forward by 100 pixels (fd is an
abbreviation of the command forward) or bk , which makes it go backward.
By advancing the turtle, a line is drawn. Students have sufficient commands to
create images or geometric figures. The syntax of this language is very basic but
teaches students precision, spatial orientation, and logical thinking.

(2) The Command Repeat. In this lesson pupils implicitly understand the
concept of loop or cycle; they find out for themselves that instructions which
are repeatedly used can be programmed with a code without having to write
them again. They are pleased to see that they have a command at their disposal
which makes their work more efficient. At the same time, however, the structure
demands that a complex figure can be broken down into simpler ones, for which
routines are written which can then be assembled into more complex routines.
This process requires analytical thinking.

(3) Name and Run Programs. In LOGO it is possible to type in an instruc-
tion sequence, give it a name and then execute it. By doing so, students become
familiar with the concepts of input, execution and exit. They learn to reuse these
programs as pieces in order to create other programs. They will thus practice
the concept of modular programming.

(4) Draw Circles and Regular Polygons. In this lesson the students
strengthen their spatial orientation and reinforce the calculation of angles. Their
knowledge of geometry as well as their adding and subtracting skills will be
enhanced. Some find that they do not know how to do simple mental arithmetic
and are in need of internalizing it. On the other hand, while dealing with the
circle, which is an interesting geometric figure, they find out that its program-
ming properties are far from simple. However, at such times they can be offered
playful exercises, such as drawing mandalas and flowers using colors.

(5) Programs with Parameters. This theme is a first approach to the notion
of variables, which in computing is often complex. To the students the parameter
is initially a value that is fixed in the design of the program. Later they realize
that also non-fixed parameters may be chosen to run a program. In this way
they are given the possibility to work more efficiently and reuse the programs
more easily.

(6) Animations. Can increase the motivation of the learners but at the same
time, the previous lessons should be reviewed.

32 A. Herrera Loyo

1.2 Exercises and Tasks

Both the book and the notebook contain exercises for the students to learn the
above-mentioned concepts almost by themselves. Each block of exercises is pre-
ceeded by explanations and questions that invite learners to think for themselves.
In the book, pedagogical suggestions are made to teachers to put students on
the right track so as to prepare them for the workshops. In general, the pro-
posal suggests that only explanations should be given which induce thought
and reflexion, and that giving full answers should be avoided. For example, if
repeat 4 [fd 100 rt 90] results in a square of 100 in length, how could we
make a triangle? If necessary a second question could be phrased: “How many
sides does a triangle have?” The students begin to think logically and to observe
a language, which is in principle a formula. In this context though, they are
using and interpreting it to achieve a specific goal.

1.3 Work Dynamics

In teaching programming both, discipline as well as creativity, are important
aspects to ensure that students are motivated and learn to solve problems in an
implicit way. While they are doing the exercises, they realize that with discipline
they get better results. However, creativity should always be a constant. If they
practice something in which their ideas and intellect are not challenged, their
motivation for programming will decrease. It is recommended to keep a balance
between these two aspects. To achieve this, the thematic structure should be
combined with its playful and its reflexive side. In addition, the work dynam-
ics1 take into account the pace of each student but also add an ingredient of
competitiveness. The respect for the individuality of the students generates self-
confidence and at the same time encourages them to be competitive in their
ability to solve exercises. Although the time factor puts them under pressure,
they are concentrated for a longer period of time than in other classes and they
try to work efficiently and systematically paying attention to the accuracy of the
language.

2 Observations and Reflections Made
in the Programming Workshops in Schools
in Mexico, Switzerland and Colombia

The results and impressions of the workshops in Mexico, Switzerland and Colom-
bia are presented descriptively and qualitatively. In Mexico the courses were held
in a public elementary school, in a private high school2 and at the Swiss College
1 We mean this a whole: how the workshop develops and how it is conducted.
2 In September 2015 the Spanish edition of Introduction to programming with LOGO

written by Juraj Hromkovic was presented. The institution which sponsored this
edition was the CIMAT (Mathematics Research Center), which also organized a
programming course for a group of 25 children from first and second year of high
school in the city of Guanajuato in Mexico.

Effects on the School Performance of Teaching Programming 33

of Mexico City. In Switzerland they were held in a public school in the Canton
of Schaffhausen and in Colombia in a public school of the city of Medellin.

All courses had a duration of about 20 h.
The data were obtained by a questionnaire, where some questions were

answered at the beginning, as for example if they had access to a computer
at home. Other questions had to be answered at the end of each day on a scale
from 1 to 10, as for example if the exercises were easy to solve. Finally at the
end of the course they had to answer few questions more, as for example if
programming was fun on a scale from 1 to 3.

2.1 The Use of Computers and New Technologies at School
and in the Family

In most schools they have proper computer rooms and access to the internet.
The activities the children realize in these computer rooms are among others:
to gather information from the internet, to fill out questionaires for the proper
school, to solve exams online, to train with basic courses for storing and present-
ing information digitally, and in some cases they also use the computer room to
play video games.

The characteristics of the group confirm that none of the courses that the
teenagers had taken on a computer so far, had been about programming. Fur-
thermore, they show that the use of social networks and the recreative activities,
such as video games are omnipresent in their lives (see Fig. 1).

Fig. 1. Information about prior experience

Many politicians and educational institutions are mainly concerned with pro-
viding infrastructure, such as computers, networks, the internet and above all,
computer rooms. Schools, however, have not been able to take advantage of the

34 A. Herrera Loyo

newly-provided technology; on the contrary, they have merely suffered under
their implementation. This is basically due to two factors. On the one hand,
schools often lack a clear sense of purpose. On the other hand, teenagers are
accustomed to using computers for entertainment and communication in social
networks, which means that the computer is used in this context only for spe-
cific purposes. Most of the time, computer activities performed at school are
elementary and related to the handling of a specific piece of software, such as
word processing, spreadsheets or slides presentations. They learn how to open
and save a document, how to create a folder and so on. In their free time,
many children use applications, play games and are constantly connected to the
network.

It is interesting to compare the current uses of the computer with the vision
described 50 years ago in a magazine for children3. They explain how a computer
works and which utility is beneficial for the user. The computer is described as
a tool created by and for man and that its potential lies in the fact that it is
possible to “program” it. It is a machine which can do calculations, save, sort,
compare data, and take decisions according to a prescribed condition. However,
it is also stated that the computer is not able to make its own decisions, but
only carries out processes and routines which we regard as boring, wearisome,
complicated and far from interesting. According to the magazine, the main effect
of this great tool is that people will have more time to think.

It all started in the 80’s when the use of the computer spread to became to
be an indispensable tool in many homes. It was a tool for work as well as for
recreational activities and social communication. The use of the computer in the
household, compared with other equipment (such as TV), was soon generalized
and diversified. In addition, this diversified use of the computer gave access to
new forms of relationships and interactions between individuals and institutions.
This impacted our society in different ways. It was also at this time that some
ambivalence began to occur about the effects of the technology on the education
of teenagers.

As a matter of fact, the first generation of computers was designed to be a
tool essentially for scientific, academic and work-related purposes. Now, however,
with its expansion and ubiquity, the computer is also used -and maybe to an even
greater extent- for consumption, entertainment and social communication. It
cannot be denied that at present the recreational and social use of the computer
is in fact predominant. Social networks, videogames, photography, music videos,
private videos, among others, are known to represent a great distraction from
educational activities [1] and in extreme cases have come to cause situations of
violence and harassment within the school community. To counter this, students
are required to become autonomous and creative users, who can think and make
decisions for themselves.

Reaching a certain degree of autonomy is seen as the ultimate goal in the pro-
cess of growing up, learning and, therefore, in the process of education. The latter
is subsequently associated with the behaviour of the individual, which involves

3 Pestalozzi Kalendar 1974.

Effects on the School Performance of Teaching Programming 35

a reflexive attitude and a sense of responsibility for the world that surrounds
the young person (in this case the technology and its countless applications)4.
In this sense, we note that it is not the new technology in itself that creates
negative effects on young people, but rather the uses and applications which
they themselves make. People without proper knowledge of the technology will
most probably not be aware of the full potential it can provide.

2.2 About the Motivation and Interest in Programming

According to our experience in the workshops, we can say that students at
that age can easily be motivated for programming and that it stimulates their
interest. Although the differences are very subtle, “cases” of apathy or disinterest
are more frequent in groups of students who are on average older than 13 or who
have begun adolescence. Students aged between 10 and 13 can be motivated
more easily and they are also capable of maintaining a constant level of interest
during the workshop.

In Fig. 2 we see that first-year students of secondary school (students who are
12 years old) find programming slightly more fun than students in their second
year. This difference is due to the fact that one student (adolescent) showed no
interest right from the beginning. However, it is evident that what is difficult is
not necessarily boring. We also see that in general, programming is considered
to be more fun than easy, see Figs. 2 and 3.

Although in the courses in Mexico and Colombia girls and boys express
roughly the same level of interest, we can observe that girls tend to be a little less
interested than boys. In the case of Switzerland, however, boys and girls show
the same motivation and interest and the performance in the final test shows no
gender bias. In this case, there is probably more equality in the treatment and
education of boys and girls, and this also applies to the opportunities offered
[6] in schools and families. It could be that in the case of Mexico and Colombia
teachers and parents choose different recreational activities or tasks for boys
than for girls, and thus create some bias.

2.3 Literacy and Their Ability to Think, Analyze and Express
Themselves Accurately and Logically

The ability to communicate accurately is not promoted by the recreational and
social use of new technologies. Writing short messages and chatting has changed
the rules of written communication. Currently the messages exchanged have few

4 According to Piaget [5], there are two phases in human development (although they
are expressed in relation to moral behaviour). The first is known as the heteronomous
phase and the second as the autonomous phase. This means, that in the first phase
the child accepts the rules of the world as something given, as something concrete
and explicit. In the second phase, the young person agrees with and understands
consciously the way rules are formed and participates in the world that surrounds
him or her.

36 A. Herrera Loyo

Fig. 2. Perceptions of programming according to the grade on a scale from 1 to 3

Fig. 3. Perceptions of programming according to gender on a scale from 1 to 3

words and may be accompanied by short animations, leaving much to the inter-
pretation of each person. In direct communication between people the language
may to a certain extent be deficient but it does not affect because there is always
a cultural context. Precise and logical explanations are not necessary, since con-
notations or interpretations can always be adapted to the circumstances. In
computer programming this is very different: There is hardly any room for incor-
rectness. It is necessary to learn to design, code, and debug computer programs
using a formal language.

Programming languages are formal languages designed to encode processes
that a machine can interpret. In order to understand these types of languages,
children are required to be precise in their use of symbols. They also need to be
coherent and adhere to the rules of syntax and semantics consistently.

One of the most notable differences between classes in Mexico, Switzerland
and Colombia was the domain of literacy. In classes with deficiencies in read-
ing and writing instructions it was observed, especially at the beginning of the

Effects on the School Performance of Teaching Programming 37

course, that they had difficulties solving the exercises efficiently without getting
distracted. In these cases they were given individualized attention, in two consec-
utive steps: First they were monitored to read instructions and write the solution
(the program) and second, they were asked to solve the follow-up exercise on
their own and show it to the teachers.

Although this seems hard work, especially with groups of 25 students, after
the first session, many students with initial difficulties were able to work on their
own. They were grateful for the personal attention they were given and reveleated
their motivation by showing their achievements in the learning process.

In Switzerland we observed only a few isolated cases that needed this support.
In general it was evident that they could concentrate for longer periods and had
a better mastery of literacy. The most extreme case was the experience in the
school of Medellin. In this group the concentration time was very short, and they
found it hard to keep reading the instructions on their own. It was also evident
that they were not used to write and to express themselves in written form. In
this group we observed a lack of precision in thinking and expressing their ideas.

In the Public School in Mexico we observed a greater diversity among the
groups. There were students who stood out, average students and isolated cases
with difficulties in concentrating or reading. They were used to writing but
committed grammatical errors. We observed, especially in public schools, that
they are bare accustomed to making additions or subtractions mentally.

In general, the problems or deficiencies we observed are very diverse. Here
are two different examples that could be common in different schools.

Case A: Dyslexia A student (in Medellin, Colombia) at the beginning of the
course behaved very restlessly and tried to draw attention by showing distress.
When reviewing his exercises we noticed that he had written the same program
about ten times only that he had sometimes confused the command rt 90 with
rt 09. The student had not noticed the difference. He had executed the program
several times and did not observe any discrepancy, he had only seen that some-
times it worked and sometimes it did not. Only after showing the student each
of his programs pointing out the crucial detail did he become calmer because he
understood that he had not always observed the distinction of the position of
the digits. He realized his mistake and began to do the exercises with interest.

Case B: Following and Giving Instructions in A logical Order A student
first correctly did an exercise step-by-step in which she wrote a program for a
square and then used this as a subprogram to perform a vertical column of
squares. Then she was asked to write a program to produce a horizontal row of
squares. In doing so, she tried to proceed similarly, but after having drawn each
square she forgot to locate the turtle properly.

38 A. Herrera Loyo

to cuadrado10
repeat 4 [fd 10 rt 90]
end

to filacudrados10
repeat 11 [cuadrado10]
end

We see in her program that cuadrado10 is called as a subprogram but the
turtle is not located in the proper position to allow a easy repetition. Besides
this, when the task was to make 10 squares, she gave the instruction to repeat
the subprogram 11 times. These may seem to be very obvious mistakes, but
when she ran the program she did not achieve the desired figure. In order to
correct her program she had to follow the instructions mentally to detect the
missing commands and erroneous instructions.

This two cases show that in the programming courses it is possible to detect
students who need special attention and to locate their difficulties. Then, with a
few helpful instructions the students are able to solve the encountered problems
on their own. Sometimes the reasons for their problems are that their literacy is
not sound. And this can be the reason why students are not able to concentrate
on doing this type of exercises.

2.4 Teaching Programming with Regard to the Strengthening
the Students’ Understanding of Mathematics

In mathematics at a basic level children should practice and understand the four
basic arithmetic operations: Addition, subtraction, multiplication and division.
At the same time, the teaching of mathematics should in principle intend to
promote logical reasoning. There is an ongoing discussion about the primacy of
rote learning and discovering things by understanding. Should a student learn
the multiplication as a recipe or should he or she be given time to discover a
proper recipe for him- or herself? There does not seem to be a perfect solution
and many students struggle to master the basic operations after learning them
one way or another.

In our courses we could observe that the children practice the basic operations
as a by-product and that they realize that mathematics has an immediate use:
At some stage of the course students have to use parameters, that is, variables
which define specific attributes, such as the lengths of some lines or how many
times a pattern is repeated or to locate the turtle. In doing so, they use basic
calculations [4].

Some students do the necessary calculus in their head, other notice that these
calculations can be done directly by the computer. But for this, the student must
first understand the necessary calculus and then express it in a formula. They
thus notice that the instructions can be expressed in different ways. This seems
interesting and gives them the opportunity to be creative. In this way children
may discover an affinity for numbers.

Effects on the School Performance of Teaching Programming 39

For example: With the command fd 100 the turtle advances hundred units
and draws a line of 100 in length. But with the command bk 100 the turtle also
draws a line of the same length, with the difference that the turtle moves in the
opposite direction. On the other hand, if the child uses the command fd -100
he or she obtains the same result by using bk 100. In practice, the command fd
-100 is not used frequently.

Programming offers child two possibilities: One is to make the calculations
themselves and the other is to learn to use the symbols in order to give instruc-
tions to the computer. This distinction becomes clear in the following example.

We asked the students to draw an octagon. Some of them decided (a) to do
the calculations for the measurement of angles by hand while others (b) gave
the instructions through a division.
Option (a) repeat 8 [fd 100 rt 360/8]
Option (b) repeat 8 [fd 100 rt 45]

Either option gives the children the opportunity to exercise basic operations
and to become familiar with them. In any case, the child develops a practical
sense to use the computer and if their program is efficient, they will develop
computational thinking.

What we observed was that the children often began to write their pro-
grams using commands with fixed units, with little chance to reuse them and
without using symbols for operations. During the course, they learned to write
instructions as formulas. Later, they solved more complex exercises and used the
different operations with ease.

In the course given at the public school in Medellin the students encountered
difficulty using loops and reusing programs as subprograms. Therefore, their
programs, although written with a lot of creativity, tended to be very long. It
seems that they were not conscious of the utility of the computer as a tool
to automate jobs. One possible explanation for this could be that they used
computers mainly for recreational and social purposes. As the course went on,
they became more skill full and developed greater awarness.

On another occasion, in the private school in Guanajuato, the students had
to draw a house composed of a square with a triangle above. One of them used
the command repeat instead of a subprogram to create the square, (see the
program of case (a) below). To draw the triangle above he had to turn the turtle
the correct angle, advance the turtle to draw one side of the roof, turn by 120
degrees and draw the remaining side. This shows that the student reflected upon
several things: First he started the drawing in one of the two vertices, where the
square and the triangle meet, a choice which simplifies the program. Next, he
chose to start horizontally with the square, which implies that after turning 4
times the turtle comes back in a horizontally position again. Finally, he had
to calculate the angle by which the turtle turns. This is often a difficult task,
since first he has to turn by the interior angle and then by the exterior angle of
the triangle. It also requires the knowledge that in a triangle the interior angles
measures 180◦.

40 A. Herrera Loyo

Case (a): to casa :nc
rt 90 repeat 4 [fd :nc rt 90] <60
fd :nc
rt 120 fd :nc
end

The program casa2 of case (b) draws the same figure, but is achieved the
triangle with the command repeat, turning by 120 degrees in each step.

Case (b): to casa2 :lado
rt 90
repeat 4 [fd :lado rt 90]
repeat 3 [fd :lado lt 120]
end

In both solutions the students have to reflect on the measurements of certain
angles. In order to get a set of instructions that correctly draws the figure, they
have to use a certain amount of mathematics. If they are not sufficiently familiar
with the concepts, it is a good incentive to reflect on them, and if they are already
familiar, they will be able to practice them.

We observed that the children who have basic math skills perform usually
better in the courses. The examples above give us a good hint for this to be
so: Students with these skills are quicker in realizing relationship between the
involved angles and they are also faster in doing the necessary calculations.
However, the course sustains a good level of powerful motivation: each com-
pleted program, each set of instructions which correctly draws a given figure
provides incentive to carry on and to tackle the next problem. Therefore, even
pupils who have difficulty performing basic calculations will be in a position to
exercise these operations and receive immediate feedback and recognition for
their performance.

3 Concluding Remarks

One of the most important arguments of the proposal to teach programming in
basic education is: to give children the opportunity to learn and solve problems
on the basis of their analysis, and at the same time to favour the acquisition of
certain skills, such as abstraction, modularity and logical thinking.

An important aspect of teaching programming is to increase the time of
concentration in an activity which requires them to think. There is a diversity
of factors which can prevent children from concentrating: (a) Family factors or
more generally the socio-cultural context, (b) school factors, such as teacher
competence and access to good teaching materials, and also (c) the personality
and the abilities of each student [3].

(a) A positive family factor, which covers the basic needs, such as food,
security and affection, improves the ability to concentrate. This could be seen
as a socioeconomic context which guarantees access to resources, to culture and,
therefore, to a stress-free family environment. (b) It lies in the ability of the
teacher to not only transmit information, but also to develop the learning skills
of the students. For this, the teachers need to think about what and how to teach,

Effects on the School Performance of Teaching Programming 41

so that their students can learn well. With regard to this, their commitment,
workload and the operation of the school as an institution is of great importance.
(c) The third factor mentioned above is the personality or character of the child,
whose reactions will always depend on the circumstances. With this in mind, the
proposal to teach programming hinges on the commitment and willingness of the
school authorities, the capacity of the teachers and above all, on the experience
and motivation of the students. In this proposal the opportunity to program
is seen as a trigger factor that helps the child achieve results and deal with
situations of failure and error. We also believe that teaching programming to
children with problems at school could bring about a change in attitude towards
school.

The premise by which we consider teaching programming as a meansbring
about a better school performance is that through an induction process it is pos-
sible to develop a cognitive progress. This process starts by observing examples
or specific problems, finding different solutions and making generalizations. If
approached in this way, students at a more advanced level will learn to make
deductions. The experience or knowledge that children acquire should be very
specific and enable them to acquire the material step by step. Thus, children go
through the experience of suggesting and creating solutions which can then be
put to the test immediately. When programming, the student realizes what it
means to internalize, automate, assemble and reuse instructions (in a program).
The efficiency and complexity of a solution will automatically teach them to
think algorithmically.

To summarize, the general thesis of this proposal is to challenge the status of
the sociocultural context of children, improve cognitive abilities that modify the
superficial use of the new technology and to promote the acquisition of concrete
tools to be proactive.

References

1. Burbules, N.C.: Education: Risks and Promises of the New Information Technolo-
gies. Granica editions (2014)

2. Juraj, H.: Introduction to Programming with LOGO Spanish edition, translated
from German to Spanish by Angelica Herrera Loyo. Cimat Newton Editing and
Educational Technology, Mexico (2015)

3. Méndez-Ramı́rez, O.: Quality of education and school performance in sixth grade
students of Monterrey, Mexico. Iberóforum. Journal of Social Sciences of the
Universidad Iberoamericana, July–December, pp. 52–78 (2011)

4. Papert, S.: The Children’s Machine Rethinking School in the Age of Computers,
1st edn. Editorial Polity Press, Barcelona, Spain (1995)

5. Piaget, J.: The Moral Judgement of the Child. Kegan Paul, Trench, Trubner and
Co., London (1932)

6. Training Course “Introduction to programming with Logo” for primary school teach-
ers, taught by Giovanni Serafin on 28 October 2015, ABZ ETH Zurich, Switzerland

A Case Study on the Effect
of Using an Anchored-Discussion Forum

in a Programming Course

Jean-Philippe Pellet1,2(B), Gabriel Parriaux1, and Tristan Overney2

1 University of Teacher Education, Lausanne, Switzerland
{jean-philippe.pellet,gabriel.parriaux}@hepl.ch

2 École polytechnique fédérale de Lausanne, Lausanne, Switzerland
tristan.overney@gmail.com

Abstract. In the context of a programming course taught to college
freshmen, we give an account of the switch from a classical, Moodle-
based discussion forum to MIT’s NotaBene (NB) platform. One of the
defining features of NB is to anchor each discussion thread to a given rect-
angular zone freely highlightable in any of the course’s PDF documents.
In doing so, it forces a precise contextualization of every post–be it to a
slide from the lectures, to a sentence from the instructions in the exer-
cises, or to lines of code in the given exercise keys. We hypothesize that
this feature lowers the contextualization effort needed to ask a question,
thus strengthening students’ engagement and, ultimately, understanding
of the matter. Using historical data on three years of giving the same
course, we first examine and classify the students’ interventions with
both the traditional and the NB-based approach to see if the questions
significantly differ qualitatively or quantitatively. We also quantify the
contextualization effort needed in both approaches. Finally, we discuss
our teacher experience with both platforms and make recommendations
on the choice such a discussion forum in a programming course.

Keywords: Discussion forum · Contextualization
Anchored comments · Teaching of programming

1 Introduction

All courses require an understanding by the students of the matter being taught.
Whether the course is given in the form of a series of lectures, of group or project
work, of exercises, etc., very often, not all concepts required to be mastered by
the students can be acquired in the presence of the teacher or assistants. More-
over, time and human resources are limited: if every question students had could
be asked in the teacher’s presence, most probably, not all could be answered.
Besides, students may prefer asking questions in writing rather than orally. This
leads many teachers who use learning-management systems like Moodle to make
available some sort of forum, bulletin board, or other discussion systems which
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 42–54, 2018.
https://doi.org/10.1007/978-3-030-02750-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_4&domain=pdf

A Case Study on the Effect of Using an Anchored-Discussion Forum 43

allow asynchronous, written interactions between students and staff. Those inter-
actions may be part of prescriptive work assigned by the teacher or be simply
available to the students who wish to make use of it without any obligation to
participate. Another motivation for such a system is that teachers may want to
encourage student to interact with each other, ask and answer questions, thus
encouraging learning based on cognitive conflict [4].

In this paper, we are interested in the form that this forum may take tech-
nically in the context of an introductory programming course taught to college
freshmen at the Swiss Federal Institute of Technology in Lausanne (EPFL). In
an effort to encourage students to ask questions about the matter they do not
understand, we seek a system that lowers the engagement effort and avoids some
of the downsides of a traditional forum system. One early observation we made
is that the contextualization effort is important when asking a programming
question in a traditional, Moodle-style forum: students often copy significant
portions of code before asking a question related to it, or, when failing to do so,
must be asked to provide more details. Our experience shows that most ques-
tions are easily linked to a precise concept, or even to a precise piece of code,
that appears either in the lecture slides, in the exercise statements, or in the
exercise keys—all of which are readily available to all students and staff, thus
being easily referenceable.

For several years, we had been using Moodle’s built-in forum solution. Our
interest was sparked when we stumbled upon MIT’s NotaBene (NB) platform1.
Its main functionality is to allow a teacher to distribute PDF files while allowing
members to privately or collectively annotate portions of the PDFs. This system
thus links each private annotation or shared discussion thread to a precise rect-
angular zone of a PDF file. As such, it can be used in place of a discussion forum
and, because each interaction is linked to such a zone, automatically provides
the needed context for the question.

We were greatly interested in the effect of using NB instead of the Moodle
forum and collected data on usage of the Moodle and NB solutions on three years
giving the almost exact same programming course. We found several concerns
relevant, summed up in the following research questions:

(1) Which platform is more engaging for the students to ask questions?
As an indicator for this, we propose to count the number of interventions on
the two platforms and compare them after normalizing them by the number
of students. The results are shown in Subsect. 4.1.

(2) Which platform makes the effort of writing and reading questions lower?
Here, we compare the lengths of the posts made by students in the two
platform and we try to isolate the part of the post that is needed to explain
the context of the question, hypothesizing that NB’s anchored discussion will
reduce the contextualization effort. The results are discussed in Subsect. 4.2.

(3) Does the nature and the depth of the question change depending on the used
platform?
The platforms, by their design and through the way students use them, may
lead students to ask different kinds of questions. We propose a classification

1 http://nb.mit.edu.

http://nb.mit.edu

44 J.-P. Pellet et al.

for the nature of these questions and discuss potential differences and their
distribution in Subsect. 4.3.

The upcoming Sect. 2 lists related work. Section 3 explains the full context in
which data was collected, details how, and discusses how it was processed and
classified. We then divide Sect. 4 into subsections as shown above to attempt to
answer our research questions in light of the obtained data; finally, we conclude
in Sect. 5.

2 Related Work

Recently, anchored-discussion forums have been developed and discussed from a
variety of needs and points of view.

In [12], the author makes a short review of several systems—one of which
is NB—improving online discussion by focusing on 3 aspects: (a) extracting
information from large discussions; (2) situating the discussion in its context;
(3) more finely control delivery and notification settings. In a wider context,
[10] inspects how learner–instructor feedback can be gathered efficiently by the
means of NB-like anchored discussion forums.

Some of the most closely related work was done by the authors of NB them-
selves [14], who detail its deployment in 49 classes in 10 institutions. They are
interested in the design of a forum/discussion tool like NB according to stu-
dents’ and instructors’ practice. Their most important conclusions, based on log
data, questionnaires, and focus-group interviews are: (a) students like to inter-
leave reading with annotations and questions, progressively abandoning paper
for online reading; (b) students combine responses to “geographically close” dis-
cussion threads (especially in social sciences); (c) instructors express a large
interest in tools that encourage feedback and discussion; (d) student-to-student
feedback can be far faster than feedback from staff members.

Other authors have explored the benefits of anchoring student feedback to
course material. [7] shows a collaborative video-annotation system that overlays
translucent red circles on the slides whenever a student asks a clarification about
a geographically related concept. This yields a view of “muddy points” in the
lecture, allowing instructors to determine visually where the problematic con-
cepts are and to answer questions efficiently. [11] proposes a system where not
only text comments can be collectively deposited on documents, but also voice
and “gestural comments”, and suggest ways to make the audio annotation easily
accessible. [13] shows a visual discussion forum system used in an edX MOOC on
an introduction to programming in Python. The authors argue for the need for a
domain-specific implementation making it easy to discuss and visualize code and
program state during execution. [3] discusses the improvement of textbooks by
depositing and visualizing anchored collective annotations, showing which parts
of the text are unclear and would need rewriting.

On related topics, [9] details the extension of NB to handle annotations on
videos. The author specifically discusses the need of choreographers and the need
to determine the duration of visibility of the comment thread with respect to

A Case Study on the Effect of Using an Anchored-Discussion Forum 45

the video feed. In [6], the author shows how students, when using the anchored-
discussion system Open Rev for assignments in astrophysics, tended to prefer
traditional reading assignment outside of the platform but preferred discussing
them on the platform. Finally, [5] discusses a system allowing multiple references
to parts of documents as well as to timestamps in video feeds, and shows how it
reduces the overhead compared to other systems.

Despite the number of related publications, the work presented here has
the unique property of inspecting data collected for the very same course in very
similar conditions over three years, thus allowing valid comparisons along several
quantitative metrics.

3 Context and Methodology

In order to answer our research questions, we collected and analyzed forum posts
from 3 consecutive years of giving the same course to college freshmen at EPFL.
The course was an introduction to programming consisting of a one-hour weekly
lecture followed by a two-hour programming-exercise session in computer rooms.
Slide decks, distributed prior to the lectures as PDF files, were presented during
the lectures. Exercise statements were given as PDF files (and possibly some
base code as text files); exercise keys were given both as PDF files and as text
files. The semester lasted 14 weeks.

The forum system used in the first two years was the forum module of Moodle.
In year 3, it was NB. (Moodle continued to be used, albeit without the forum
part, to better structure weekly material distribution. For the sake of simplicity,
we now write “Moodle” to refer to the Moodle’s forum and not to the whole
platform.) Apart from that, we took care to change as little as possible to the
course and exercises so as to keep very close conditions for the students and
obtain data that can be compared. In particular, changes to the slide decks and
to the exercise statements were minimal (occasional typos and slide reorderings).

Two exams were given: a midterm and a final exam. Over the 3 years, all
6 exams were different, although they all tested the same concepts. For that
reason, we did not compare scores and grades on the exams.

All staff–student interaction going through the course forum was collected
over those 3 years. Staff consisted of the main instructor and about one teaching
assistant per 15 students in the class. As the main instructor does not have
an office or other office hours at EPFL, the forum was always recommended as
the preferred and only means of asynchronous interaction between students and
staff. Course interactions absent from the data collection detailed here consist
solely of the occasional, in-lecture question and of all synchronous questions and
answers between students and staff that happened orally during the exercise
sessions. The occasional questions asked by email were systematically redirected
to the forum so as to ensure a consistent data collection.

Each of our 3 datasets consists of a sequence of threads, each consisting
of a sequence of posts. Forum threads (on Moodle and NB alike) are almost
always started by a student asking a question. Typically, a staff member answers

46 J.-P. Pellet et al.

the question. Other students can answer the question, too, if they so wish. The
thread can then either stop, be concluded by a “thank you” post, or be continued
with a follow-up question by the original poster or by another student.

In order to better analyze and classify the posts, we have first split each
of them into units of meaning (UoMs) [8]. This accounts for the fact that
a single post may ask several questions, provide an answer to a question and
then ask a second one, act as “thank you” post while still asking a question, etc.
Splitting into UoMs acts as a normalization step—some students naturally make
two posts when asking two questions; some others combine them into one—and
allows us to apply a more fine-grained classification.

Each UoM was then classified as either:

(a) a question from a student;
(b) an answer from a staff member;
(c) an answer from an another student; or
(d) a concluding remark from a student (of the type “thank you”, “I now

understand”, “This helps”, etc.).

We were also interested in the possible differences in the nature of the ques-
tions asked on Moodle and on NB. To try and answer this, we further classified
each student question according to how “deep” it was. The following categories
are inspired by a categorization along the cognitive dimension proposed by [8],
simplified to follow the critical thinking categories proposed by [2]. (The first
category below, 0., was added by us to reflect this special case we were seeing in
our data.)

0. Logistic: not pertaining to course content per se, but related to organiza-
tional and technical issues that are not part of programming concepts. Exam-
ples are questions on the format of the exam, on the availability of the exercise
keys, or on how to solve network connectivity issues with one’s devices.

1. Elementary: prompting an answer that restates a concept discussed in the
lectures, well described in the slides, and considered relatively easy. No further
understanding is required to answer it than reading the slides and possibly
slightly generalizing one of the code examples in them. Examples are “I don’t
understand the loop variable”, “why must I use parentheses to call this func-
tion?” or “what is the constructor of this object?” Typically, they pertain to
concepts students are expected to grasp if they read the slides carefully.

2. Deep: prompting an answer that requires a somewhat deeper understanding
of the concept than what is presented in the slides and which cannot be
directly read from the course material, but which requires experimenting with
the code practically to acquire. Examples are “how do I initialize this variable
to make sure the loop ends?”, “why must I write a nested loop here?” or
“why mustn’t I pass these parameters in that method call?” These questions
usually arise from the need to combine several base concepts together while
solving a programming exercise and typically reflect the understanding gained
by students the exercise session that would be difficult to obtain from reading
the course slides alone.

A Case Study on the Effect of Using an Anchored-Discussion Forum 47

3. Inference: such questions go beyond what would be strictly needed to solve
all exercises and demonstrate, in the way they are formulated, an understand-
ing of base concepts and a questioning about the extension, generalization,
or universal applicability of some aspect. Examples are “so this means that
if I wanted to, say, sort the array, I cannot do it in a single loop”, “how can
you allocate memory correctly if you don’t know the size of your dynamic
array in advance?” or “how can this data structure know how to compare its
elements if it allows the insertion of arbitrary objects?”

4. Strategy: such questions are rare; they denote a very good understanding of
a series of concepts of the course and pertain to higher-level questioning about
the relevance of a global design decision, the merits of object orientation, the
way a given programming language implements an algorithmic concept, etc.
An example could be, “is the object-oriented idea to hide data in an object
and prevent access to its fields still valid if we use a style where all fields are
immutable?”

Conceptually, the four latter levels 1. through 4. can roughly be mapped to
levels of the Anderson–Krathwohl taxonomy [1] as follows: 1. → remembering
and understanding; 2. → applying; 3. → analyzing; 4. → evaluating.

Obviously, the classification of the above examples can only be reasonably
determined with the knowledge of what the course material covers and of which
concepts are expected to be masted, which others to be identified with no practi-
cal applications, and which others yet are not mentioned at all. Our classification
was thus done by two coders: (1) the course instructor (and first author of this
paper) and (2) the head TA (last author). These are the two people who know
the course material best: the instructor designed the slides, the exercises, the
keys, and the exams; the head TA carefully read and dry-ran all exercises and
exams. The head TA, however, has more superficial knowledge of the exact set
of base concepts clearly explained in the course slides vs. the concepts that are
expected to be acquired in the exercises, and this can make it harder for him to
apply the classification criteria described above. The resulting coders’ agreement
is discussed in the section below with the results.

4 Results and Discussion

As previously mentioned, we observed 3 datasets of three years of giving the same
course. The first 2 datasets come from the forum module built into Moodle; the
third comes from NB.

4.1 Basic Metrics: Threads, Posts, and UoMs

Table 1 shows basic information for our forum data.
First, note that the number of students varies from one year to the other.

In 2012 especially, two sections were taking the class together. The difference
between 2013 and 2014 is explained by normal fluctuations. Then, whatever

48 J.-P. Pellet et al.

Table 1. Basic metrics for our datasets. A normalized “density” (i.e., count divided
by number of students) is shown in parentheses for the last 3 rows. The highest rates
are typeset in boldface.

Year (Platform) 2012 (Moodle) 2013 (Moodle) 2014 (NB) Total

Students 297 171 113 581

Threads 71 (0.24) 41 (0.24) 60 (0.53) 172

Posts 254 (0.86) 104 (0.60) 160 (1.42) 518

UoM 279 (0.94) 112 (0.65) 163 (1.44) 554

the metric is—“density” of threads, posts, or UoMs—participation, prior to any
classification, seems to be roughly twice as important with NB than with Moodle.
Considering the derived metric of posts per thread (between 2.5 and 3.6) yields
no dependence to the chosen platform. Another derived metrics, UoMs per post
(Moodle: 1.08–1.10; NB: 1.02), tells us that students tended to ask questions
slightly more “atomically” with NB; i.e., there were fewer cases of multiple UoMs
per post. This tends to make it easier to answer questions, as answering a post
containing multiple UoMs usually implies additional text indicating which part
of the post is being answered where.

Based on this, we answer our research question “Which platform is more
engaging for the students to ask questions?” with: NB seems to yield roughly
twice as many posts as Moodle. Assuming, given that the course content and
delivery stayed the same, that students have a relatively constant level of (non)-
understanding, we allow ourselves to directly equate a higher number of posts
with a higher positive engagement and a greater willingness to ask about aspects
that were not understood.

4.2 Length of Posts and Contextualization Effort

Before moving on to the classification of the UoMs, we think it interesting to dis-
cuss the length of the forum posts (in terms of number of characters). A longer
post can be an indicator for several underlying phenomena: a longer question
could be more detailed, more articulate; it could reveal a higher contextualiza-
tion effort when the question has to refer to specific parts of the lecture or of
an exercise; it could be formulated differently as a result of the way a platform
presents its user interface, leading to a more formal style (salutations, signa-
ture). . . At any rate, a longer post takes more time to be read and usually to
be written.

As one of the differentiating features of NB is to have anchored discussions,
we decided to determine, for each post, the part of it that was needed to provide
context for the actual question. This context includes sentences like “I was
solving exercise X and. . . ”, “In the code of method Y”, or any copy-pasted code
or console output. In general, there may be several such parts in a post, and,
in a single post, several UoMs may share such context parts (this is why we
determine the context length for each post and not for each UoM).

A Case Study on the Effect of Using an Anchored-Discussion Forum 49

Table 2. Comparison of the mean lengths of posts, isolating the contextualization
length. The last row shows the mean fraction of the post dedicated to contextualization.
The figure following the ± sign represents the standard deviation.

Year (Platform) 2012 (Moodle) 2013 (Moodle) 2014 (NB)

Total Length 873± 873 424± 774 161± 124

Context Length 602± 838 76± 139 19± 50

Core Question Length 270± 184 240± 178 141± 102

Context Fraction .48± .34 .19± .23 .08± .16

Table 2 shows the results of the mean lengths, listing the total length of the
posts, the length of the context parts, and the difference—the length of the core
question actually being asked once context is set.

We see that Moodle yields, on average, much longer posts—statistically sig-
nificantly so as reported by a Welch two-sample t-test (t(df = 150) = 7.73, p ≈
1.5 × 10−12). The standard deviations for Moodle post lengths are also much
larger, reflecting the fact that student sometimes copy large chunks of code to
provide context for a question. This happens much less frequently with NB. Also
note that in 2013, remarks by the instructor to try and limit copy-pasted code
only to relevant portions yielded somewhat shorter posts than in 2012.

Copying and pasting large chunks of code might seem like a good idea as
the posters feel like they are providing every possible relevant context, but in
practice, the readers have to do an important amount of reading, parsing, and
comparing of the code with what they know of the exercise statement or of
the code they have themselves written. While, for the instructor, a quick visual
pattern-matching strategy is often enough to locate where, relative to the exer-
cise being solved, the pasted code comes from, it remains difficult to distinguish
the parts that were written or modified by the posters themselves from the parts
that were potentially provided in the initial exercise statement. Often, in prob-
lematic code, the devil hides in the details, and finding that precise devil is at
least linearly more complicated with respect to the length of the post.

Again, with NB, the context parts are about an order of magnitude smaller
(and again, statistically significantly so: t(df = 141.5) = 6.72, p ≈ 4.1 × 10−10).
Not only smaller, but also, again, more predicable (smaller standard deviation).

All this seems to indicate that questions are both easier to write and easier
to read with NB than with Moodle because of the sheer length of the post. Note,
however, that the length of the context parts does not in itself faithfully represent
the whole contextualization effort for the writer. Indeed, in Moodle, a student
can right away access the forum activity and ask a question immediately. In NB,
first, the PDF where the question should reside must be opened on NB, and a
relevant rectangular zone from it must be selected to anchor the question. We
did not quantify this effort. It can either be an additional effort (when students
must look for the relevant PDF or portion) or, as the authors of NB suggest
[14], a lesser burden, if we assume that questions arise most probably when the

50 J.-P. Pellet et al.

relevant PDF is being read and already displayed before the eyes of the students,
thus saving them from having to open a separate, disconnected browser window
to reach the forum activity as they would do in Moodle.

It is interesting to note, however, that the contextualization effort does not,
in itself, account for the whole difference in post length between NB and Moodle.
The “Core Question Length” column, obtained by subtracting the context length
from the total length, still shows a significant difference between NB and Moodle
(t(df = 206.9) = 6.11, p ≈ 4.9 × 10−9). The lengths of the non-context parts of
the post are still a little less than twice more important. Part of this is due, as
announced, to the more formal style used in Moodle than in NB (where saluta-
tions and signatures are often skipped altogether). We did not try to quantify
this part: if salutations and signatures are easy to spot, other stylistic changes
are more difficult to isolate numerically.

Finally, it is worth mentioning that some questions (for instance, strategy)
are difficult to attach to a very precise part of a PDF as they pertain to several
notions, exercises, or code excerpts at the same time. For those questions, the
NB need to anchor them could imply an additional effort to find a (somewhat
meaningful) anchor place rather than just freely asking away without context.

Based on this, we answer our research question “Which platform makes the
effort of writing and reading questions lower?” with: NB yields much shorter
posts that include, as expected, a much smaller textual part describing the
needed context, owing to the anchored-discussion design.

4.3 Question Depth

Without further classification, we now know that using NB yielded more ques-
tions, which were both shorter and required a smaller contextualization effort.
Our next interest lies in the nature of the questions: were they significantly
different?

In order to answer this, all student questions were classified according to
the categories described in Sect. 3. Interrater divergences did not surface in the
splitting of posts into UoM or in the initial categorizations of UoMs according to
the (a)–(d) criteria on p. 5; neither were there disagreements in the classification
of questions as either logistic (level 0 on p. 5) or non-logistic (i.e., as belonging to
one of the 4 following levels). There were disagreements, however, on the precise
level (1 to 4) assigned to non-logistic questions. Because we had 2 raters and
the ratings are ordered, we chose Spearman’s ρ rank correlation coefficient to
measure that. This yielded ρ = 0.54 on the 188 considered UoMs, with perfect
agreement on about 64% of them (120 out of 188).

While this may at first seem like a low agreement, first note that this measure
focuses on the part of classification where there were disagreements; i.e., on the
188 UoM which needed to be classified on levels 1 to 4. There was no disagree-
ment on the other 366 classified UoMs. A large part of the disagreement can be
explained by the fact that the definition of our levels required a very precise idea
of what concepts were presented in the lecture and what others were expected to
be acquired in the exercise sessions. The two raters were the instructor and the

A Case Study on the Effect of Using an Anchored-Discussion Forum 51

head TA: the instructor had a more precise knowledge of the repartition of the
concepts underlying the questions. After discussion on the classification of the
68 UoMs where there was disagreement, the head TA rejoined the instructor’s
classification 48 times, the instructor changed his 18 times, and on 2 occasions,
a third option was chosen. Except for these two data points, the disagreement
was never more than one level apart.

Table 3 shows the repartition of UoMs into the 4 general types (a)–(d) defined
earlier. We see that the part of student questions among all UoMs remains
roughly the same around 43%. Staff answered questions slightly more frequently
with NB than with Moodle and, accordingly (since no question ever went com-
pletely unanswered), students answered questions less frequently. In fact, with
NB, only one student ever answered a question, contrary to the Moodle years.
This a priori surprising finding can be explained, we believe, by the absence of
mail notifications showing whole post content when new questions were asked
on NB, contrary to Moodle. The mail notification setting can be changed on
NB, but defaults to none, which seemed to negatively impacts student answers
for us. Finally, conclusions were also slightly less frequent with NB than with
Moodle. Although the differences are subtle, they are still significant as shown
by a χ2 test of homogeneity (we compared all Moodle data on both years to the
NB data on the last year: χ2(df = 3) = 13.66, p ≈ 0.0034).

Table 3. Initial classification of UoMs into questions, answers, and conclusions. Shown
are the fractions of each category and year, with the absolute number in parentheses.

Year (Platform) 2012 (Moodle) 2013 (Moodle) 2014 (NB) Combined

Num. of UoMs 279 112 163 554

(a) student questions .41 (113) .42 (47) .45 (73) .42 (233)

(b) staff answers .40 (112) .47 (53) .50 (81) .44 (246)

(c) student answers .06 (17) .04 (4) .01 (1) .04 (22)

(d) conclusions .13 (37) .07 (8) .05 (8) .10 (53)

Let us now inspect the distribution of the levels 0 to 4 in student questions in
Table 4. This corresponds to a further breakdown of all UoMs represented by the
(a) student questions row from Table 3. First, we see from the Logistic question
level that the rate in the second Moodle year is especially high. In large parts,
this can be explained by questions pertaining to a network connectivity issue in
the computer rooms used for the exercise session. The rest of the distribution of
parts shows a preponderance of elementary questions (slightly more with NB), a
varying part of deep questions, quite a few more inference questions during the
first Moodle year, and almost inexistent strategy questions. At this point, it may
seem appropriate to mention that the course was given to future civil engineers
and not future computer scientists: the former, while being interested in getting
a good grade at the course, are not primarily interested in programming. This

52 J.-P. Pellet et al.

may explain the relative lack of inference and strategy questions, although the
lack of comparable data for a similar course given to computer scientists prevents
us from numerically validating this claim.

Table 4. Further classification of questions according to their level. Shown are the
fractions of each category and year, with the absolute number in parentheses.

Year (Platform) 2012 (Moodle) 2013 (Moodle) 2014 (NB) Combined

Num. of questions 113 47 73 233

0. Logistic .12 (14) .36 (17) .19 (14) .19 (45)

1. Elementary .39 (44) .45 (21) .49 (36) .43 (101)

2. Deep .31 (36) .17 (8) .26 (19) .27 (62)

3. Inference .17 (19) .02 (1) .05 (4) .10 (24)

4. Strategy .01 (1) 0 0 .00 (1)

Do these numbers reveal a different distribution of the question levels? A
Wilcoxon rank-sum test shows that this data does not provide enough evidence
again the hypothesis that the distribution of questions is different between the
Moodle case and the NB case (W = 6348.5, p ≈ 0.26). This lets us answer
our research question “Does the nature and the depth of the question change
depending on the used platform?” with: No, not significantly—over the 3 years
where data was collected, students basically had questions that were of a similar
level, independently of the platform used to allow them to ask questions.

5 Conclusion

In the context of an introductory programming course, we have tested two plat-
forms proposing asynchronous communication facilities: on the one side, Moo-
dle’s forum module; on the other side, NB’s anchored-discussion system. Data
was collected over three years of giving the almost exact same course and allows
us to numerically compare several indicators revealing that, on average and in
the described context of the given course:

– students are about twice as likely to write questions on NB than on Moodle;
– using NB yields shorter posts that are easier to write and read, with a much

lower contextualization effort;
– despite the previously mentioned differences, students do not ask questions

of a significantly different nature.

Besides these conclusions, there are less quantitative aspects of the two com-
pared platforms that are worth mentioning, both from the instructor’s and the
students’ points of view. For instance, students are used to using Moodle in other
courses and are familiar with it. Even when the instructor deposited the course

A Case Study on the Effect of Using an Anchored-Discussion Forum 53

PDFs on NB in the third year, NB links were posted to the main page of the
course to Moodle, which offers a richer, more structured interface (and allows
for many other activity types). Thus, students and staff had to switch back and
forth between two platforms, each with its own separate login system. This was
seen by some students as a disadvantage, albeit by a minority of them. One
other technical point is that NB uses a custom PDF renderer which rasterizes
the PDF files at a fixed, relatively low resolution. On high-resolution screens,
they tended to be shown in a blurry way. Finally, user interaction with NB on
tablets was sometimes cumbersome.

Based on all this, we have decided to stick with NB for now, but surely dif-
ferent instructors will weigh those aspects differently and decide whether using a
different platform for questions, however more engaging it may be, is worthwhile.

References

1. Anderson, L.W., Krathwohl, D.R.: A taxonomy for learning, teaching, and assess-
ing: a revision of Bloom’s taxonomy of educational objectives. In: Theory Into Prac-
tice (2001). https://www.amazon.com/Taxonomy-Learning-Teaching-Assessing-
Educational/dp/080131903X

2. Bullen, M.: A case study of participation and critical thinking in a university-
level course delivered by computer conferencing. Ph.D. thesis, University of British
Columbia (1997)

3. Chhabra, A., Iyengar, S.R.S., Saini, P., Bhat, R.S.: A framework for textbook
enhancement and learning using crowd-sourced annotations. CoRR (2015)

4. Chickering, A.W., Gamson, Z.F.: Seven principles for good practice in undergrad-
uate education. AAHE Bull. 3, 7 (1987)

5. Chua, S.H., Monserrat, T.J.K., Yoon, D., Kim, J., Zhao, S.: Korero: facilitating
complex referencing of visual materials in asynchronous discussion interface. Inter-
face 1, 6 (2017)

6. Feiden, G.: Pilot Study assessing student perception of the collaborative anno-
tation platform open rev in a classroom environment. In: Uppsala Workshop on
Pedagogical Research Projects (2015)

7. Glassman, E.L., Kim, J., Monroy-Hernández, A., Morris, M.R.: Mudslide: a spa-
tially anchored census of student confusion for online lecture videos. In: Proceedings
of the 33rd Annual ACM Conference on Human Factors in Computing Systems,
CHI 2015, pp. 1555–1564. ACM, New York (2015)

8. Henri, F.: Computer conferencing and content analysis. In: Kaye, A.R. (ed.) Col-
laborative Learning Through Computer Conferencing: The Najaden Papers, pp.
117–136. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-642-77684-
7 8

9. Lamia, L.M.: Video annotation for choreographers on the NB platform. Ph.D.
thesis, Massachusetts Institute of Technology (2015)

10. Pandeliev, V.: Anchored discussion as a source of feedback for lecturers. Ph.D.
thesis, University of Toronto (2016)

11. Yoon, D., et al.: RichReview++: deployment of a collaborative multi-modal anno-
tation system for instructor feedback and peer discussion. In: Proceedings of the
19th ACM Conference on Computer-Supported Cooperative Work and Social Com-
puting, pp. 195–205 (2016)

https://www.amazon.com/Taxonomy-Learning-Teaching-Assessing-Educational/dp/080131903X
https://www.amazon.com/Taxonomy-Learning-Teaching-Assessing-Educational/dp/080131903X
https://doi.org/10.1007/978-3-642-77684-7_8
https://doi.org/10.1007/978-3-642-77684-7_8

54 J.-P. Pellet et al.

12. Zhang, A.X.: Systems for improving online discussion. In: Adjunct Publication of
the 30th Annual ACM Symposium on User Interface Software and Technology,
UIST 2017, pp. 111–114. ACM, New York (2017)

13. Zhu, J., Warner, J., Gordon, M., White, J., Zanelatto, R., Guo, P.J.: Toward
a domain-specific visual discussion forum for learning computer programming: an
empirical study of a popular MOOC forum. In: Proceedings of IEEE Symposium on
Visual Languages and Human-Centric Computing, VL/HCC, pp. 101–109 (2015)

14. Zyto, S., Karger, D., Ackerman, M., Mahajan, S.: Successful classroom deployment
of a social document annotation system. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, pp. 1883–1892 (2012)

Students Teach a Computer
How to Play a Game

Sylvia da Rosa Zipitŕıa(B) and Andrés Aguirre Dorelo(B)

Institute of Computing, Facultad de Ingenieŕıa,
Universidad de la República, Montevideo, Uruguay

{darosa,aaguirre}@fing.edu.uy

Abstract. This paper describes a study into how secondary school stu-
dents construct knowledge of programming. The study consists of three
classroom sessions. In the first session the students play a simple video
game called LumberJack. Then, they are asked to describe the rules of
they themselves playing the game as an algorithm in natural language.
In the second session, the students are asked to design an automata for a
program that plays the game. In the third and final session, the students
write programs that play the game and execute them in the programming
language called TurtleBots.

The aim of the study is to help learners establish a correspondence
between the algorithm and the elements relevant to the execution of the
program. The results obtained in this study offers significant insights
which contribute to the development of didactic guidelines for the intro-
duction of programming to novice learners. These results are presented
and analysed in Sect. 4.

Keywords: Learning to program · Novice learners · Piaget’s theory

1 Introduction

Over the years we have investigated the construction of knowledge of algorithms
and data structures by novice learners with the main purpose of developing
of insights conducive to students learning how to write program texts [8–11].
However, if the key to education research in computer science is programming,
then knowledge about the text is necessary, but insufficient for learning how to
program. This is due to the dual nature of computer programs [14].

Therefore, the study described in this paper focuses on students’ awareness
of the relationship between knowledge of algorithms and data structures (the
text) and knowledge of the program as an object executed by a physical device.

In this paper we make two claims. First, we claim that the process of gain-
ing awareness of said relationship plays a fundamental role in learning to pro-
gram. This claim builds on a specific perspective of the didactics of programming,
grounded on a philosophical understanding of the notion of program, as a text
(an algorithm and data structures) and as an object executed by a machine [12].
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 55–67, 2018.
https://doi.org/10.1007/978-3-030-02750-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_5&domain=pdf

56 S. da Rosa Zipitŕıa and An. A. Dorelo

Our second claim is that for the development of didactic guidelines for the intro-
duction of programming to novice learners, each step involved in the process of
knowledge construction must be considered. We argue that the point of departure
for teaching formal knowledge must always be at the level of knowledge that the
student has already constructed. This claim is based on our theoretical framework,
based on Piaget’s theory of Genetic Epistemology, briefly described in Sect. 1.1.
In Sect. 2 we formulate an instance of Piaget’s general law of cognition [3].

Average school students between 13 and 15, of an ordinary public High School
in Uruguay, participated in this study. They were asked to play a simple video
game called Lumber Jack (https://tbot.xyz/lumber). We consider that playing
this game is an easily understandable activity to be programmed by the students.
The game is described below.

The game consists of helping the woodcutter, Jack, to cut a large tree, as
shown in Fig. 1. As Jack hits the tree with the ax, the tree descends a fixed
unit. Jack must prevent the branches of the tree from touching his head, if this
happens, then the game ends.

The player can move Jack to the left or to the right by pressing two arrow
buttons on the screen or the keyboard keys. Each time Jack moves he gives an
ax blow on the side of the tree where he has been positioned himself. The player
must choose where to position Jack to avoid being hit by the branches of the
tree as it descends. It is always possible to dodge the branches that appear since
the combination of having branches on the left and on the right is never given.

Fig. 1. Game playing sequence with row 2 highlighted

https://tbot.xyz/lumber

Students Teach a Computer How to Play a Game 57

1.1 Main Theoretical Principles

We have adopted Piaget’s theory -Genetic Epistemology- as our theoretical
framework. This theory explains the construction of knowledge and offers a
model that can be used in all domains and at all levels of development [4].

In Piaget’s theory, human knowledge is considered essentially active, that
is, knowing means acting on objects and reality, and constructing a system of
transformations that can be carried out on or with them [4]. The more gen-
eral problem of the whole epistemic development lies in determining the role
of experience and operational structures of the individual in the development
of knowledge, and in examining the instruments by which knowledge has been
acquired before their formalisation. This problem was deeply studied by Piaget
in his experiments about genetic psychology. From these he formulated a general
law of cognition [3,6], governing the relationship between know-how and concep-
tualisation, generated in the interaction between the subject and the objects
that he/she has to deal with to solve problems or perform tasks. It is a dialectic
relationship, in which sometimes the action guides the thought, and sometimes
the thought guides the actions.

Piaget represented the general law of cognition by the following diagram

C ← P → C′

where P represents the periphery, that is to say, the more immediate and exterior
reaction of the subject confronting the objects to solve a problem or perform a
task. This reaction is associated to pursuing a goal and achieving results, without
awareness neither of actions nor of the reasons for success or failure. The arrows
represent the internal mechanism of the thinking process, by which the subject
becomes aware of the coordination of his/her actions (C in the diagram), the
modifications that these impose to objects, as well as of their intrinsic properties
(C’ in the diagram). The process of the grasp of consciousness described by
the general law of cognition constitutes a first step towards the construction of
concepts.

Piaget also describes the cognitive instrument enabling these processes, which
he calls reflective abstraction and constructive generalisation [3,5].

The problem about the construction of computer science concepts is an
instance of the ones deeply studied by Piaget. The general law of cognition
regulates the construction of knowledge about (basic) algorithms (C) and data
structures (C’) from problems that students are asked to solve (P) (for instance
sorting, counting, searching elements) [7].

However, in the case that the object on which knowledge is to be constructed
is a program, some challenges inherent to the relevance of the machine that
executes it appear. These challenges took us to instantiate the law to the case
of knowledge about programs, as described in the next section.

2 Instantiating the General Law of Cognition

The construction of knowledge about algorithms and data structures is a process
regulated by the general law of cognition. Over the years we have investigated the

58 S. da Rosa Zipitŕıa and An. A. Dorelo

construction of knowledge by novice learners of algorithms and data structures.
Our research methodology is based on applying Piaget’s general law of cognition
to make students solve problems (for instance sorting, counting, searching ele-
ments [7–10]) and reflect about the method they employ and the reasons for their
success (or failure), as a first step towards the conceptualisation of algorithms
and data structures.

We developed an instance of Piaget’s general law of cognition as we identi-
fied the need to describe cases where the subject must instruct an action to a
computer. The thought processes and methods involved in such cases differ from
those in which the subject instructs another subject, or performs the action
themselves.

Our instance of Piaget’s law was developed to take into account the specifici-
ties of the subject instructing a computer to solve the problem of playing a video
game, in this case the Lumber Jack one. In such a case, the aim are for students;
on the one hand, to express the rules of they themselves playing the game as an
algorithm in natural language, on the other hand, to design an automata for a
program that plays the game, and finally to write and execute a program that
plays the game.

As Simon Papert says in [13] (p. 28) referring to the programming of a
turtle automata, Programming the turtle starts by making one reflect on how
one does oneself what one would like the Turtle to do. In this case, programming
an automata that plays a game starts by making the student reflect on how
he/she does herself what he/she would like the automata to do.

To programming an automata solving a problem, the learners have to estab-
lish a causal relationship between the algorithm (he/she acting on objects), and
the elements relevant to the execution of the program (the computer acting on
states). Not only they have to be able to write the algorithm (the text), but also
they have to be able to understand the conditions that make the computer run
the program.

The generalisation of Papert’s words above can be described as: programming
an automata starts by making one reflect on

how one does oneself
︸ ︷︷ ︸

what one would like the automata to do

The causal relationship between the first row and the second row is the key of
the knowledge of a machine executing a program. It is indicated with the brace
in above description.

By way of analogy with Piaget’s law we describe this relationship in the
following diagram

C ← P → C ′
︸ ︷︷ ︸

newC ←− newP −→ newC ′

where newP is characterised by a periphery centred on the actions of the subject
and the objects he/she acts on. The centres newC and newC’ represent awareness
of what happens inside the computer.

Students Teach a Computer How to Play a Game 59

The diagram describes the situation in which the subject reflecting on his/her
role as problem solver becomes aware of how to do to make the computer solve
the problem. According to Piaget, we identify that the construction of knowledge
of methods (algorithms) and objects (data structures) occurs in the interaction
between C, P and C’. Likewise, we claim that the construction of knowledge
of the execution of a program takes place in the internal mechanisms of the
thinking process; marked by the arrows between newC, newP and newC’. In
other words, the general law of cognition remains applicable to the thinking
process represented by the arrows; in both lines of the diagram pictured above.

2.1 A Pilot Study

The application of our research methodology in the case of this study is based
on getting the students to reflect about the method they employ to successfully
play the game and the reasons for their success, as a first step towards the
conceptualisation of the rules of the game as an algorithm. In order to achieve
such a reflection, we conducted activities consisting in several questions and
exercises. To designing those questions and exercises we conducted a pilot study
to detect aspects that could eventually be improved. In the pilot study the players
(not the students participating of the study) were asked to play the game for
a while and then to describe how they play in natural language in their own
words. They described actions and objects related to themselves; as exemplified
by the quotes below:

1. I try to play on the phone ... it is uncomfortable ... I use a notebook as
support to improve my posture. I get frustrated when I do not succeed and I
start again; paying attention to any mistakes in order to correct them. When
I start I look up the tree to anticipate movement ... I change the position of
my fingers; with index fingers it’s better.

2. I go slowly when I see a branch and I go faster if there is no branch. I try to
prevent. I go slower when it approaches.

3. Jack is cutting the trunk; moving to the right and left depending on where the
branches appear. When the branch is on the right side Jack runs to the left
and when the branch appears on the left side Jack moves to the right.

The most notable observation at this stage is that the players did not notice
that Jack’s movement depends on the actions of the player (for instance, at the
third quote the player describes Jack’s movements as independent from his/her
own actions of pressing the keys/buttons.) In other words, there is a lack of
awareness of the causal relationship between what the player does and what
Jack does.

Keeping in mind our task of inducing students’ reflection on how he/she does
herself what he/she would like the program to do, we set out to design questions
aimed to direct students’ attention away from newP (e.g. the position of their
fingers or how they feel) to newC and newC’ (Jack’s positions, branches states
at the row above Jack and what has to be done for not losing). By this we

60 S. da Rosa Zipitŕıa and An. A. Dorelo

mean, to be aware of the causal relationship between their own actions (perceive
the branches, press the keys/buttons) and the events in the computer (Jack’s
positions, the descending branches, the key/buttons events).

The result of the pilot study is the list of questions Q1 - Q4 of Sect. 3.1.

3 Describing the Study

The main objective of the study is to help learners establish a correspondence
between the algorithm and the elements relevant to the execution of the program.
To achieve this main objective the following tasks are proposed to students:

1. play the game and learn how it works
2. reflect on the rules and express them as inference rules in natural language
3. represent the rules in the previous point as a state machine (an automata)
4. program the automata in TurtleBots and make the program play the game

The strategy described by tasks 1 to 4 and the results of the study are based
and validated within our theoretical framework, as explained in Sect. 4.

These tasks were grouped into three classroom sessions conducted over sev-
eral months. In order of recalling the main concepts, each session began by
handing out students’ previous work with feedback. We also used activities, not
included here for space reasons, with the same purpose of recalling concepts.

Points 1 and 2 in the list above make the first session; the second session
includes point 3. Finally, point 4 takes place during the third session of the study.
We describe the three classroom sessions in the following sections. The activities
listed above are included in the descriptions but not explicitly numbered as
listed. The description of each classroom session also includes the motivation
behind the chosen formalisms.

3.1 First Classroom Session

The first classroom session took place on March 23 of 2017. The class taking part
consisted of 25 students and the session was divided into two sessions of 45 min
each with a break of 5 min. As a first task, the students were asked to play
the game for approximately 15 min. All 25 students were able to play the game
successfully. Based on the results of the pilot study, our assumption is that the
players would be unaware that their game playing caused the computer to follow
certain instructions of the algorithm of the game. Therefore, the first objective
of the session was for the students to become aware of this relationship and
conceptualise the rules of the player’s algorithm; successfully expressing them in
natural language in the form of inferences like if ... then

In order to facilitate the process we described the game emphasising the
critical moment before Jack changes side of the tree by displaying Fig. 1 on
the whiteboard (see p. 2) and using a table similar to Table 1 to represent the
critical situation of the game (as Jack may be hit) and the decisions of the player
(pressing of buttons to avoid Jack’s fall).

Students Teach a Computer How to Play a Game 61

Table 1. Table used in question 3

Line Jack Branch Button

1 Left No Left

2 Left Yes Right

3 Right No Left

4 Left No ?

5 Left Yes Right

6 Right Yes Left

7 Left No Left

8 ? Yes Right

9 Right No Right

10 Right Yes ?

11 Hit X X

Having played the game the players were asked to individually write down
the answers to the following questions:

Q1 Before starting to play, what are the possible positions that Jack can be
in, in relation to the tree?
Q2 How do you decide which buttons to press?
Q3 Could you complete the cells that have the symbol ‘?’ in the Table 1?
Q4 Could you explain in your own words when success and failure occur?

Examples of Students’ Answers. In the analysis we organised the answers
according to three levels; level 1, intermediate level and level 2. A description of
each level is included after the examples.

– Student 20 (level 1): Q4: You succeed when you press the correct buttons, for
example: Jack is on the left side and the branch is almost on top of him. You
have to go to the right so that the branch does not hit you and you die. Q3:
only line 1 has been filled in incorrectly.

– Student 14 (level 1): Q2: We press right when there is a branch on the left
and if one is on the right, we move to the left. Q3: all the lines are correct.
There is no inference in Q4 in this case. However, it is often the case that
students omit an answer if they feel they have already answered the question
elsewhere.

– Student 7 (intermediate level): Q2: Depending on the position of the branches,
the key we are going to press is: branch on the right, we press the arrow on
the left so that Jack moves to the left. Q3: No answer.

– Student 19 (intermediate level): Q2: You can use left or right buttons; the one
you use will depend on where Jack is. Q4: Success occurs when, for example,
Jack is on the left, there is no branch and we press the left button, or when

62 S. da Rosa Zipitŕıa and An. A. Dorelo

Jack is on the right, there is a branch and we press the left button. Q3: line
10 has been filled in incorrectly.

– Student 18 (intermediate level): Q4: Success occurs when we press the right
button: if Jack is on the left side and there is a branch, you press the other
button. Q3: line 10 has been filled in incorrectly.

– Student 4 (level 2): Q2: I decide to press the keyboard which is easier. Q3: all
lines incorrectly filled.

– Student 3 (level 2): Q2: I decide to go to the opposite side in order to cut the
tree. Q3: only line 4 is correct.

Analysis of Students’ Responses and Their classification in Three
Levels. For analysing students answers we use the following criteria: In the
students’ answers to questions 2 and 4 (Q2 and Q4) we were looking for explicit
inferences similar to “if Jack was on such a side and there is a branch on that
side, then the pressed button was such ... ”. In the students’ answers to question
3 (Q3) we were looking for implicit inferences, because the correct answer has
to be deduced from the lines above and/or below of Table 1 (used in question
3, see p. 7). The students find that on lines 4 and 8, the correct answer can be
deduced by looking only at the “Jack” and “Button” columns.

In contrast, line 10 of the table is a challenge because the correct answer has
to be deduced from the failure in the line below. In general students answered
correctly in lines 4 and 8 (in this case; success) and wrongly in line 10 (in this
case; failure). As a result we classify the thinking of the students into three
distinct levels:

– Level 1 is formed by the answers in which inferences appear in the students’
answers to Q2 and/or Q4 and the student has managed to fill line 10 in the
Table 1 correctly.

– The intermediate level is formed by two possible scenarios:
• inferences appear in the students’ answers to Q2 and/or Q4. However, in

this case the students did not manage to fill in line 10 correctly. Or:
• there are no inferences, but the Table 1 has been filled in correctly in its

totality; which indicates an implicit inference.
– Level 2 is formed by cases where there are no inferences to Q2 and Q4, and

the Table 1 has been filled in with the wrong answers, particularly in line 10.

Table 2 shows the distribution of the answers of the students according to these
three levels. The students are referenced by numbers from 1 to 25 and NA means
“no answer”.

3.2 Second Classroom Session

We now turn to the second classroom session in which the students face the
challenge of designing an automata like the one in the Fig. 2. This challenge
refers to the third point in the list of activities (see Sect. 3, p. 6).

Students Teach a Computer How to Play a Game 63

Table 2. Classification by level

Level Student Total

Level 1 14, 16, 20, 21 4

Intermediate 6, 7, 8, 13, 17, 18, 19, 22 8

Level 2 1, 2, 3, 4, 5, 9, 11, 12, 15, 23, 24 11

NA 10, 25 2

Fig. 2. Finite state machine that represents the winning behaviour of Jack as an
automata. The input predicate, branch present, represents the state of the row above
Jack, is true when there is a branch and false otherwise. The function press()
used as output in the machine, takes as parameter the constants LEFT KEY and
RIGHT KEY, to simulate a left key event and a right key event respectively.

The second activity of the study was carried out on May 9 of 2017 with the
same class of 25 students.

Following Piaget’s general law of cognition, our premise is that: having par-
ticipated in the first session, players now possess a higher level of knowledge of
the program/game than that of a novice learner who simply plays the game. The
qualitative difference resides in the experience of the novice learner who gains
knowledge about the game by playing, and the players whose gaming experience
has been followed by a process of reflection as a result of the activities in the
first classroom session. This fact is, indeed, revealed by the answers that players
provide during the first classroom session.

Therefore, the aim of activity three (see Sect. 3, p. 6) is to ground the knowl-
edge constructed during the first session by expressing the rules of the game as
a state machine. To do so, we begin the second classroom session by introduc-
ing the concepts of automata and of state machine as diagrams that provide a
visual representation that encompasses all the elements of an automata. We use
the example of programming instructions to help a blind person, connected to
devices equipped with sensors, to cross the street where there is a traffic light.
For space reasons this part is not included here.

For homework, the students were asked to design an automata for the Lumber
Jack game, based on the work they had done in the first classroom session, and on
the problem of the traffic light. A few days later, we received all of the students’
homework: of the 18 returned answers only four contained mistakes, all of which
were of minor significance. These mistakes were: three failed to indicate one of

64 S. da Rosa Zipitŕıa and An. A. Dorelo

the transitions in the diagram, and one failed to indicate the direction of the
transitions as the arrows were replaced by lines.

It is worth mentioning at this point that the state machine formalism is
generally introduced in tertiary or university education, and is often considered
complex by the students. By including the state machine formalism in the study
we were able to determine whether this formalism in itself implies a level of dif-
ficulty that is inappropriate for students aged 13 to 15. In other words; whether
novice learners would be able to convert an algorithm expressed in natural lan-
guage, into a diagram with representations of elements of implementation (states,
inputs, outputs) (see Fig. 2 p. 9).

Keeping this in mind, the students’ work on the state machine diagram was
kept fairly simple. Even so, we found it to be remarkable that out of all of the
activities in the study, it was in this particular task of designing the automata
using the state machine formalism that the students achieved the best results.

3.3 Third Classroom Session

The third and final session was held on August 10 of 2017. The purpose of
this session was to complete activities of point 4 of Sect. 3, p. 6. The students
were asked to implement the game Lumber Jack in TurtleBots. We chose the
programming language TurtleBots [2] because students already have some expe-
rience with the Scratch language which is based on blocks like TurtleBots. In
addition, TurtleBots contains a plugin called Xevents [1] that programmatically
generates keyboard and mouse events, and gathers screen information. These
features are necessary to implement the actuation and sensing components of
the LumberJack game controller. They were given a central axis and a series
of scattered blocks on which to work with, as shown in Figs. 3 and 4 in the
Appendix. The task consisted in placing the blocks in the correct places in order
to assemble the program and then execute it. Although every student completed
the task, they generally did not handle the blocks with ease, and mistakes were
made in the assembly of the blocks. In the following section, this and others
results are analysed.

4 Conclusions

The study has provided us with new theoretical and practical insights which we
will discuss here. Our premise is that the depth of the results of this study are
not clearly visible until we locate them within our theoretical framework. We
therefore use our theoretical principles in this section to explain, validate and
verify our results. More specifically, our results can be explained from theoretical
principles about the relationship between non-formal, conceptual and formal
knowledge. By non-formal we mean the instrumental knowledge constructed at
the level of actions [3]. This is the level in which novice learners can develop a
skill simply by playing. Their knowledge of the game may allow them to play it
successfully, but it remains at the level of action nonetheless.

Students Teach a Computer How to Play a Game 65

The first step towards the conceptual construction consists in the students’
reflection about the rules of the game in terms of inferences involving the ele-
ments of the program (Jack and branch positions, key/buttons). The reflection
players experienced during the first session, implies the transit of the students’
thought from a periphery (where it is focused on the goal of the player) towards
the awareness of how to do for an automata to play. This awareness implies a
conceptual construction and, therefore, a higher level of knowledge.

We argue that the point of departure for teaching formal knowledge (by
this we mean conceptual knowledge expressed in some formalism different from
natural language) must always be at the level of knowledge that the student has
already constructed. In other words; any learning process is built stepwise and
is governed by the general law of cognition. In the specific case of learning to
program, the process is governed by the instance of the law of cognition as we
have formulated it on p. 4.

Our theoretical argument is verified experimentally by students answers to
questions Q1 to Q4 in Sect. 3, p. 7. Two main factors are central to the task
of answering the questions: first, that the students have already internalised the
rules of the game by playing the game for 15 min and, thus, have developed
gaming skills in terms of their actions. Second, that the first question is formu-
lated directing students’ attention away from they themselves (newP) towards
the elements in the world model of the game (newC and newC’). They were then
able to express the causal relationship between their own actions and the events
in the computer. This factor is a direct consequence of applying our framework
of the instantiated law of cognition in designing the questions.

By explaining and theoretically locating the learning process that we have
studied empirically, we reaffirm the significance and fundamental role of the
learning process when developing teaching guidelines: the key is to respect the
process when teaching a class; for the conceptual we start at the non-formal, and
for the formal we begin at the conceptual. In accordance to this, we have verified
that the activity of introducing the formalism of a state machine for designing
the automata, which is usually considered complex, can be carried out without
difficulties by novice learners aged 13 to 15.

The fact that the results of the first classroom session revealed greater diffi-
culties also confirms the transition from actions to the construction of conceptual
knowledge. The reflective process the students have to experience in order to suc-
cessfully express themselves about the game in natural language, is a difficult
one. For this reason we felt it necessary to dedicate this part of the process a
section of analysis (see, p. 8).

In terms of the limitations we encountered we would highlight the unexpected
difficulties of the students in the implementation of the proposed exercise with
TurtleBots. In order to address this limitation we pose the following questions:

Given that the program in TurtleBots introduces repetition and variables to
represent the states, is the level of prior knowledge of the students sufficient to
model these concepts or is it necessary to work with them more carefully?

66 S. da Rosa Zipitŕıa and An. A. Dorelo

Are block languages an adequate tool to implement this type of problem
with students aged between 13 and 15? Or would it be more convenient to use
a textual programming language, like Python for example?

When considering future work we would direct our research towards answer-
ing the questions mentioned above.

Finally, we find necessary to point out that we have not included references
to other authors in this paper because the aim of the study is contributing of
designing a didactics for programming, based on our model of applying Piaget’s
theory. References to related work are included in our previous papers, already
cited in this paper.

Acknowledgements. We would like to thank teacher Néstor Larroca and students
of second year of Liceo 2, La Paz, Uruguay, where we developed the study; Bruno
Michetti for supporting the activities; and Manuela Cabezas for correcting the English.
The comments of the anonymous referees are gratefully acknowledged.

A Appendix

Figures of the third classroom session

Fig. 3. TurtleBots program template for Jack’s automata

Students Teach a Computer How to Play a Game 67

Fig. 4. TurtleBots blocks for Jack’s automata

References

1. InCo (2015). https://www.fing.edu.uy/inco/proyectos/butia/mediawiki/index.
php/Xevents. Accessed 17 Feb 2018

2. InCo, Sugarlabs: Turtlebots. https://www.fing.edu.uy/inco/proyectos/butia
(2015). Accessed 19 Apr 2017

3. Piaget, J.: La Prise de Conscience. Presses Universitaires de France (1964)
4. Piaget, J.: Genetic Epistemology, a series of lectures delivered by Piaget at

Columbia University. Columbia University Press (1977). Translated by Eleanor
Duckworth

5. Piaget, J.: Recherches sur la Généralisation. Presses Universitaires de France (1978)
6. Piaget, J.: Success and Understanding. Harvard University Press, Cambridge

(1978)
7. Rosa, S.: Designing algorithms in high school mathematics. In: Dean, C.N., Boute,

R.T. (eds.) TFM 2004. LNCS, vol. 3294, pp. 17–31. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30472-2 2

8. da Rosa, S.: The learning of recursive algorithms from a psychogenetic perspective.
In: Proceedings of the 19th Annual Psychology of Programming Interest Group
Workshop, Joensuu, Finland, pp. 201–215 (2007)

9. da Rosa, S.: The construction of the concept of binary search algorithm. In: Pro-
ceedings of the 22th Annual Psychology of Programming Interest Group Workshop,
Madrid, Spain, pp. 100–111 (2010)

10. da Rosa, S.: The construction of knowledge of basic algorithms and data structures
by novice learners. In: Proceedings of the 26th Annual Psychology of Programming
Interest Group Workshop, Bournemouth, UK (2015)

11. da Rosa, S., Chmiel, A.: A study about students’ knowledge of inductive structures.
In: Proceedings of the 24th Annual Psychology of Programming Interest Group
Workshop, London, UK (2012)

12. da Rosa, S., Chmiel, A., Gómez, F.: Philosophy of computer science and its effect on
education - towards the construction of an interdisciplinary group. Special edition
CLEI Electron. J. 19(1), 5 (2016). http://www.clei.cl/cleiej/

13. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books
(1980)

14. Tedre, M.: The Science of Computing: Shaping a Discipline. CRC Press (2014).
ISBN 9781482217698

https://www.fing.edu.uy/inco/proyectos/butia/mediawiki/index.php/Xevents
https://www.fing.edu.uy/inco/proyectos/butia/mediawiki/index.php/Xevents
https://www.fing.edu.uy/inco/proyectos/butia
https://doi.org/10.1007/978-3-540-30472-2_2
http://www.clei.cl/cleiej/

Teaching Programming and Algorithmic
Complexity with Tangible Machines

Tobias Kohn1 and Dennis Komm2,3(B)

1 University of Cambridge, Cambridge, UK
tk534@cam.ac.uk

2 Department of Computer Science, ETH Zurich, Zurich, Switzerland
dennis.komm@inf.ethz.ch

3 PH Graubünden, Chur, Switzerland

Abstract. Understanding the notional machine that conceptually exe-
cutes a program is a crucial step towards mastery of computer program-
ming. In order to help students build a mental model of the notional
machine, visible and tangible computing agents might be of great value,
as they provide the student with a conceptual model of who or what
is doing the actual work. In addition to programming, the concept of a
notional machine is equally important when teaching algorithmic design,
complexity theory, or computational thinking. We therefore propose to
use a common computing agent as notional machine to not only intro-
duce programming, but also discuss algorithms and their complexity.

Keywords: Python · Turtle graphics · Complexity · Efficiency
Notional machine

1 Introduction

Computer Science is in the process of becoming an accepted and integral part of
general education. This is mostly in the form of an introduction to programming.
However, the common goal of computer science programmes is “computational
thinking” and a fostering of problem solving skills, not necessarily the mastery of
a programming language. Hence, introductory programming is only a first step
on a path that is supposed to lead to computational thinking.

Unfortunately, programming has turned out to be difficult to master, and
few students advance to a level where they can start expressing and implement-
ing algorithmic thinking and design. As a consequence, many courses on K-12
levels focus on just the programming. On the other hand, another approach is
taken by the “Computer Science Unplugged” programme of Bell et al. [2–5] or
Gallenbacher [8], which does away with the programming altogether, and intro-
duces algorithms without the need for either programming or a computer at all.
Eventually integrating both approaches into a curriculum is, of course, a good
and fruitful idea. Yet, if programming courses cannot advance to a level where

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 68–83, 2018.
https://doi.org/10.1007/978-3-030-02750-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_6&domain=pdf

Teaching Programming and Algorithmic Complexity with Tangible Machines 69

algorithmic principles and computational thinking can be taught, what is the
actual benefit of programming education?

Despite popular belief, we are convinced that the mastery of a programming
language is not a necessary prerequisite to discuss and implement various algo-
rithms. Rather, learning to program offers a great opportunity to connect to
the concepts of algorithms, complexity theory, and eventually lead to the goal
of computational thinking even without the need of having introduced the full
range of programming structures. The key aspect of our approach is to shift
attention from the syntax of the language to the concept of the computing agent
or notional machine. In short, the crucial thing is not whether to use a “for”- or
a “while”-loop, but rather how the machine can do repetition and iteration to
solve a task or problem (cf. [10]).

The approach presented in this article has been used in outreach programmes,
and several workshops with the explicit goal of introducing the audience to the
basics of complexity theory within a very limited amount of time (cf. [13]). So far,
we have not had the opportunity to employ the concepts in large scale teaching,
and we therefore do not include any statistics on its actual usefulness but leave
this to future research.

2 The Notional Machine

One of the greatest challenges a programming novice faces is to understand the
notional machine. Originally, du Boulay named the notional machine as one of
five difficulties in learning to program, alongside syntax, semantics and other
issues [7].

The notional machine is a model of the machine that conceptually executes
the program code. In principle, it answers the question: what does a machine
need in order to understand, follow and execute the program code? As such it
differs from the actual implementation on any level, and is therefore not bound to
the physical computer, or a virtual machine. The notional machine is primarily
determined through the programming language, libraries and frameworks used.
An excellent treatment of the notional machine can be found in Sorva [23].

Getting a good understanding of the notional machine is crucial for program-
ming. When we regard programming as communication between man and the
machine, with the programmer being the sender of the message (the program
code), then the notional machine is the receiver of the message. It determines
the effect of a given program code, and answers accordingly to the programmer.
Of course, successful communication can only take place with a working model
and understanding of the second party involved, i.e., the notional machine.

2.1 The Notional Machine for Algorithms

The concept of the notional machine is not limited to programming, but is
equally important for algorithms in a more general setting. In the discussion
of algorithms, the notional machine is frequently not made explicit, but only

70 T. Kohn and D. Komm

assumed implicitly. When discussing searching in graph theory, for instance, we
usually implicitly assume a notional machine that can visit one vertex or node of
the graph at any given time, and travel along edges between the vertices. Hence,
in our discussion of search algorithms, we imagine to be “the mouse trapped in
the maze” rather than having a bird’s-eye view of the entire maze as a whole.
This also means that we cannot “look down an aisle” and determine that it is
an impasse to be skipped in our search.

Occasionally, we do make the notional machine explicit. For instance, when
we classify quicksort as a “comparison sort”. Or when we pose a specific problem
in the form “You only have a balance scale to compare items. . . ”. Note that, in an
educational setting, we might be required to go to great lengths to force students
to work with a specific notional machine, and keep them from “cheating” (they
might, for instance, determine the relative weight of objects without requiring
the scale at all).

Taking the view of complexity theory, we might argue that all algorithms are
executed by a Turing machine. However, when effectively designing and working
with algorithms, there is seldom the need to take such a drastically abstract
approach. Instead, the notional machine executing the algorithm might already
“know” how to add or subtract two numbers. Yet, based on our physically avail-
able machines, the numbers for addition could be limited in size, requiring special
algorithms for large numbers. Thus, depending on the model of the machine, we
might wish to factor in the size of the numbers when computing the runtime of
such operations, say.

It is imperative that we make the notional machine explicit when teaching
specific algorithms. For instance, most programming languages and computing
systems offer a function to compute the square root of a number. It can then
seem useless, even a waste of time for students to discuss Heron’s algorithm for
computing the square root – obviously, this is already there and available.

In the context of problem solving skills, the notional machine can be seen
as the toolbox that is available to solve a given problem. In education, we then
intentionally limit the toolbox, of course, to prompt and foster creativity, and
to effectively help the students train their problem solving skills “in the small”.

2.2 The Difficulty of the Notional Machine

The computer in its entirety is an incredibly inappropriate notional machine
to start with. On the one hand, almost no part of a modern computer can be
directly inspected. Unlike a steam engine, there are no moving parts that can
be observed and understood. The computer is a black box. Various studies have
found that, indeed, invisible parts in programming are one of the greatest source
of difficulties and misconceptions (cf., e.g., Sorva [23]).

There are three possibilities to address the situation.
First, we can use metaphors like the famous box-metaphor used for variables,

to help the student form a picture of the notional machine. Unfortunately, such
static metaphors tend to tacitly introduce misconceptions as students derive
inappropriate analogies from the metaphors. The box metaphor for variables,

Teaching Programming and Algorithmic Complexity with Tangible Machines 71

for instance, suggests to some students that a variable can store an arbitrary
amount of values.

Second, we can use visualisations to provide a window into the black box.
Debuggers allow to trace a program step by step, and display the current value
of variables during program execution. However, while such visualisations show
the machine’s state between two steps, the actual working remains hidden. It
is like taking pictures of a steam engine, and trying to understand its working
without actually seeing the parts move.

Besides displaying the execution of a student’s program code, visualisations
are also popular when explaining algorithms. For instance, the sorting of an array
of integers might be visualised by bars, where each bar represents a value inside
the array through its height. Even though the bars might be moving around
during the visualisation, it is important to understand that such a visualisation
does not display the algorithm itself, but rather its effect on the data.

Hence, visualisations do not automatically foster a better understanding.
Instead, students must be trained in using and understanding the visualisations
themselves (cf., e.g., [14,17,24]).

Third, we can use a simpler machine to work with. Instead of programming
the abstract “computer” with variables, memory, etc., we have the students pro-
gram a simple, tangible, and understandable machine. This machine can either
be physical or simulated. The crucial part is that no parts of it are hidden, and
that the students can build a conceptual model of what it can do and how it
works.

In reality, a simple machine might not be enough to truly act as the notional
machine for the entire program. However, the simple machine could act as the
computing agent. With “computing agent” we refer to a relatable and tangible
entity that is the receiver of the commands in the program code, and acts upon
them. In fact, the idea of a computing agent has been proposed in various forms
for decades, and a plethora of different systems exist (cf, e.g., Kelleher and
Pausch [11]). However, note that there is a danger in making the computing
agent too “human”, or too complex.

For our teaching, we use a turtle, as found in on-screen turtle graphics, as
the computing agent. The turtle executes commands such as forward(20).
However, the program code occasionally contains elements that escape the strict
turtle-as-agent metaphor. Examples for this might be forward(100/5) with
a computation in the program code (the turtle metaphor does not explain how
such a computation is performed), or control structures such as loops.

Even though the computing agent is not a full blown notional machine, it
seems to be sufficient for educational purposes, as it helps the students to form a
mental model of how the machine works and what it can do. It is, in fact, eluci-
dating to realise that practically all successful education environments provide a
computing agent (or several) as a core feature (cf., e.g., Logo [19], Greenfoot [12],
Kara [9], Scratch [20], Alice [21]). We might even hypothesise that large parts
of the success can be attributed to the computing agent rather than, say, what
programming language is used (for instance, Lewis [15] found little difference
between Logo and Scratch).

72 T. Kohn and D. Komm

3 Turtle-Graphics

The turtle, seen as a machine, has a small set of clearly defined and understand-
able basic commands. Most importantly, the semantics of these commands is
concrete: there is no need for variables, or hidden state to explain this machine
(even though the implementation typically makes heavy use of such abstrac-
tions). Instead of abstract variables to capture state, we can use, for instance,
the turtle’s colour, or the colour of its pen.

3.1 The Turtle as Computing Machine

We regard the turtle as a machine with two data registers (its proper colour
and the pen colour, respectively), and one address register (its location on the
canvas). The canvas itself acts as storage or memory. The turtle’s orientation
has the role of a “direction bit” to control the direction of commands such as
forward().

According to our model, we provide basic commands to read a value (which
is always a colour) from the storage (canvas) to a register, store a value in the
storage, copy a value between the registers, or swap the values of the two registers
or a register with the storage. If we denote the turtle’s colour value by rT (r for
“register”), the colour value of its pen by rP , and its position (address) by rA,
we can express the turtle commands in a more abstract manner as follows:

set pos(v) rA ← v
set color(v) rT ← v
set pen color(v) rP ← v
dot() rP → [rA]
swap color() rT ↔ [rA]
swap turtle colors() rT ↔ rP
assume pixel color() rT ← [rA]

In principle, the canvas is a two-dimensional array of pixels. With modern
devices, however, the pixels are far too small, so that, for most purposes, we use
dots with a diameter similar to the size of the turtle.

Comparing Colours. There are various colour models and spaces, such as RGB,
CMYK, HSB, etc. The prevalent colour model in programming is probably the
RGB -model, and colours are usually accessed as 24-bit integer values.

Since our algorithms are based on comparing colour values, we need to impose
an ordering on a usually three- or even four-dimensional space. We could, of
course, just use the 24-bit RGB -values, along with the usual ordering of integers.
However, we found the results to be aesthetically more pleasing when switching
to an HSB -model, where the primary key for comparison and ordering is the hue
of a colour value.

Further Extensions. In addition to the basic operations on the turtle’s state,
we have added two more concepts to our implementation: first, the turtle can
determine not only the value of the pixel underneath the turtle, but also the
value of the pixel directly in front of the turtle. Second, some dots are subject to
“gravity” and will fall down to the bottom of the screen, unless they hit another
dot (exposed through the command drop dot()).

Teaching Programming and Algorithmic Complexity with Tangible Machines 73

4 How to Measure Efficiency

For a theoretical computer scientist, the term “efficient algorithm” commonly
refers to an algorithm with polynomial time complexity. In a broader sense, it
depends on the context what is meant; “efficiency” may at times also correspond
to memory usage, energy consumptions, code maintenance, or scalability. How-
ever, our current efforts address algorithms’ time complexities, i.e., running time
as depending on the length of a given input.

Without a formal introduction to computer science, what usually first comes
to mind is to use some absolute measurements such as milliseconds. For the
purpose of discussing algorithms, however, this is unsatisfactory, because the
absolute time taken depends on many things that are independent of the algo-
rithm used, such as the machine it is run on, or the programming language.
What makes more sense is to count the number of elementary operations carried
out by the machine. This, of course, depends on the notional machine, and its set
of “elementary” operations. In fact, counting elementary operations is a prime
example of requiring a notional machine.

Different Classes of Complexity. Measuring the runtime of an algorithm is in
itself not an adequate measure for the quality of an algorithm. In the overall
picture, a particularly good algorithm distinguishes itself not by handling a spe-
cific instance of the problem well, but by scaling well with the size of the problem
instance.

In the context of single-number-based algorithms, we take the number of bits
(or digits) of the input number as a measure for the “problem size”. For a list of
values, we take the number of values in the list to be the appropriate measure.
We would then like to assess how much longer the algorithm needs if we add
another bit to the number, or value to the list, respectively.

To give a hands-on example, consider the problem of assessing the divisibility
of an integer N , represented by n decimal digits. We can then give three examples
of different complexity:

– We can check if N is divisible by 2 by checking the last digit of N , irrespective
of the size of N . Hence, assessing if a number is odd or even can be achieved
in constant time.

– In order to check if N is divisible by 3, we can build the sum of all digits, and
then check if the resulting sum is divisible by 3. This is commonly known by
all students. Building the sum of all digits depends on the number of digits
n. If we add one more digit, we have to add one more number. Hence, time
complexity for this problem is linear in n.

– To check if an integer N has any non-trivial divisor at all, much more work
is needed. As a first approximation, we can argue that we need to check more
or less each integer between 2 and N − 1, to assess if it is a factor of N .
Adding another digit usually multiplies the required work by a factor of 10.
Time complexity is therefore exponential and can be expressed as 10n.

Efficiency in Programming. The actual implementation of an algorithm may
seem to differ significantly from a theoretical presentation of the same algo-
rithm. Switching to an implementer’s perspective bears the danger of focusing

74 T. Kohn and D. Komm

too much on the efficiency of implementation details, as opposed to the efficiency
of the underlying algorithm as discussed above. This issue can be understood in
part originating from a change of the underlying notional machine: the notional
machine of any given programming language hardly ever coincides with the one
used to discuss the algorithm in a theoretical framework.

To smoothen the transitions between a theoretical discussion of an algorithm,
and its implementation, it is desirable to use a unified model. Turtle graphics as
presented here offers an opportunity for such an unified model. The efficiency can
then be described in turtle operations, which in turn, have direct correspondence
in code, and on the screen during program execution.

5 Primality Testing

In this section, we describe two different approaches of how to sharpen the
student’s view on complexity theory using the example of primality testing.

5.1 Geometric Approach

Testing for primality can be seen as a geometric problem. Given a number of dots
N ≥ 2, we try to arrange the dots in the shape of a rectangle. If this succeeds only
when all dots are in one column or one row, respectively, N is a prime number;
for instance, 15 dots can form a rectangle with dimensions 3 × 5, whereas there
is no rectangle with dimensions k × m for 17 dots with 1 < k,m < 17.

Fig. 1. Given a number of dots, the turtle takes dots from the top, and drops them into
the column on the right, trying to balance all columns and thereby create a rectangle.

Starting a single column of N dots on the very left of the screen, the turtle
tries to rearrange the dots so that they form a rectangle. To that end, the turtle
picks up the top-most dot, and drops it into the column to the right. During
this process, the turtle works its way from left to right, and jumps down to
the next row if no dot remains on the top-layer. If the column to the right has
been filled to the top, such that all columns have equal height, the number N is
(literally) obviously divisible. Otherwise, the turtle starts to drop the dots into
the next column, trying to balance all dots with one more column. By adding a
new column to the right whenever needed, the turtle continues trying to balance
the dots into the existing columns until it finds a solution (which always exists
in the form of a row of height one).

Teaching Programming and Algorithmic Complexity with Tangible Machines 75

Program 1 in AppendixA shows the implementation of a geometric primality
testing algorithm, using the dot-based turtle graphics (see Fig. 1).

Given this geometric approach, it is indeed evident that each possible
arrangement is actually tried twice. Divisibility by two, for instance, is once
tried using two columns, and once using two rows (if the number is a prime).
It can directly be reasoned that the algorithm can stop as soon as the number
of columns exceeds the number of rows. In a more abstract way, the turtle has
to test only factors up to �√N�, because once it is found out that there is no
rectangle with dimensions k × l with k ≤ �√N�, all possible k, l-combinations
to follow have already been tested with k and l being switched.

5.2 Semi-Geometric Approach

The geometric approach presented above has various limitations, particularly
with respect to possible optimisations. We therefore describe a semi-geometric
variant, which allows us to introduce various optimisations.

Fig. 2. For each possible factor d with 2 < d < N , the turtle jumps d steps, trying
to reach the N th dot (coloured red in our implementation). The dot at position d is
removed, and the turtle starts again at position d + 1. (Color figure online)

The basic algorithm is shown in Program2 in AppendixA. Based on the idea
of the sieve of Eratosthenes [18], we visualize a number N as a row of N − 2
blue, and one red dot (we have to omit the dot representing “1” since we do not
want to test whether N is divisible by 1). The turtle is then set on a dot d and
jumps forward in steps of d dots. If the turtle hits the red dot, d is a factor of
N . Otherwise, the dot representing d is removed and the turtle checks the next
possible factor. This is illustrated in Fig. 2.

In contrast to the true sieve of Eratosthenes, Program2 does not cross out
any multiples of a given number d. Hence, the turtle checks each integer up to N .

A first optimisation can be introduced by crossing out multiples of any tested
factor d, implementing Eratosthenes’ sieve properly. In our semi-geometric vari-
ant, this means that the turtle has to remove any dot it encounters. In our actual
implementation, this could be done by colouring the dot in a darker blue (against
a black background).

6 Sorting

As a second example to demonstrate the power of turtle graphics to illustrate
the efficiency of certain algorithms, we use the standard problem of sorting. Due
to space restrictions, we can only include a version of Minsort here.

76 T. Kohn and D. Komm

As setup for our algorithms, the turtle starts by drawing a column of coloured
dots in the middle of the screen. The colours are chosen at random, based on the
HSB-model, where only hue varies. Before a sorting algorithm starts, the turtle
is placed at the bottom of the column of coloured dots, heading up, and having
no colour of its own.

The turtle picks up the first (bottom-most) dot it encounters, assuming its
colour and removing the dot from the screen. Subsequently, the turtle moves
through all remaining dots, swapping its colour with any dot, whose colour is
to be found “less” than the current colour. Once the turtle reaches the top, it
moves slightly to the right and drops the coloured dot into a new column, before
returning to the initial position (called “origin” in Program3 in AppendixA) at
the bottom of the original column.

As before, the algorithm is simple enough so that no variables are needed,
beyond the turtle’s own colour. In other words, the entire algorithm is directly
visible on screen with no hidden state.

In addition to Minsort, we have also implemented Bubblesort, Quicksort,
and Mergesort in our turtle framework. However, the limited capabilities of the
turtle adds additional issues, and complexities. Mergesort, for instance, lends
itself very well to a framework with a total of three turtles cooperating. This, in
turn, requires more programming background from the students.

For a manageable implementation of Quicksort (see AppendixB), we had to
make use of a variable, thereby going beyond the initial framework of no hidden
state. Instead of discussing the Python code, we have discussed the visualisation
with the students, who were often quick to point out that the presented algorithm
would not be optimal if the initial array was “already sorted in reverse”.

7 Related Work

In order to make algorithms and complexity theory accessible to students in
a K-12 context, CS unplugged programs, such as those by Bell et al. [3] or
Gallenbacher [8], have been developed, and found widespread success. Moreover,
Bell et al. [2] argue that understanding complexity theory, even on a rather
intuitive level, gives high-school students a very good picture on what computer
science is about, and makes them less likely to choose studying it for the wrong
reasons.

Turtle graphics is often associated with the Logo programming language;
see, e.g., Thornburg [26]. Today, however, most educational programming lan-
guages provide libraries for turtle graphics, including Python. Caspersen and
Christensen [6], for instance, present an access to object-oriented programming
based on turtle graphics. One of the most essential aspects of turtle graphics
are its immediate visual feedback, and the support for a teaching style that goes
from the concrete towards the abstract [6].

One of the most extensive treatises on turtle graphics is offered by Abelson
and DiSessa [1]. In the early tradition of turtle graphics, their discussion, how-
ever, has a strong focus on geometry, mathematics, as well as simulations.

According to du Boulay, building a conceptual model of the notional machine
is one of the five difficulties a novice programmer faces. In the light of his and

Teaching Programming and Algorithmic Complexity with Tangible Machines 77

subsequent research, as presented below, we would argue that a comprehension
of the notional machine is, indeed, one of the crucial prerequisites to succeed in
learning to program.

The notional machine is often implicit or hidden from the novice programmer.
This invisibility of the machine’s operation has been mentioned as a hurdle
and source of misconceptions several times. Sorva [23], for instance, writes that
“Many misconceptions, if not most of them, have to do with aspects that are
not readily visible, but hidden within the execution-time world of the notional
machine”.

Sorva [23] reports that conceptual models, which might just be “a simple
metaphor or analogy, or a more complex explanation of the system”, are not
only useful tools, but help improve the understanding and performance of the
students (cf. also Schumacher and Czerwinski [22]). He advocates the use of
visualisations and metaphors, in particular to “concretize the dynamic aspects
of programs.” In addition, Sorva points out that an active engagement by the
students is, in fact, more important than the particular visualisation technique
used.

We see this in accordance with our approach to use a concrete, and visually
oriented notional machine to teach programming. The crucial part, however, is
that we do not use a visualisation of an underlying machine, but rather a visually
tangible computing agent, as this means that students actively engage with the
“visualisation” instead of merely consuming it.

Finally, it is interesting to compare these findings with the neo-Piagetian
theories as reported by Lister [16], or Lister and Teague [25]. Lister argues that
novice programmers initially work on a preoperational stage (or even sensimotor
stage), where “they can trace code accurately, but they struggle to reason about
code.” [25] In particular, his findings indicate that students use concrete values to
trace and understand code, and that this is a necessary step in the development
of higher abstraction and reasoning skills.

Hence, using concrete and directly visible values during program execution
might address students better on the level of their respective stage in reasoning,
and thereby help them progress in their learning. Further studies in this direction
are certainly warranted.

8 Conclusion

Even though programming is an important part of Computer Science Education,
it should not be limited to programming alone. Computational, or algorithmic
thinking needs to be treated as an equally important part. Computer Science
Unplugged programmes offer a great way to introduce computational thinking
early on, without extensive programming prerequirements.

In this article, we have presented an approach with focus on the notional
machine, and computing agent. Education in both programming, as well as
algorithmics could benefit strongly from explicit incorporation of assumptions
about the underlying computing agent. Instead of visualising just states of the

78 T. Kohn and D. Komm

machine, we can then visualise the actual work of the agent itself, and provide a
firmer framework for learning metaphors. For beginning classes, we have used an
enhanced turtle as the computational agent, with so far very positive experience.

Future research, as well as classroom experience will be needed to properly
evaluate the applicability, and validity of our approach.

A Python Programs

Program 1. Starting with a single column of dots, the turtle tries to rearrange
the dots to a true rectangle. If this succeeds, the number of dots is not prime.

def remove_dot():
pickup_dot() # remove a dot from the top
head_right() # and drop it to the right
forward() # of the current dots
while not is_pixel_empty():

forward()
drop_dot() # let dot fall down
check if the column to the right is full
if not is_pixel_empty():

head_left()
if is_pixel_ahead_empty():

pickup_dot() # drop the dot into
head_right() # a new column to
forward() # the right
drop_dot()

def find_next_dot():
head_left()
check if the rectangle is complete, i. e.
the number of dots is not prime
if is_pixel_ahead_empty():

turn_left()
forward()
turn_right()
if not is_pixel_empty():

if current_y() <= 1:
print "prime!"

else:
print "not prime!"

exit()
while not is_pixel_ahead_empty():

forward()

while True:
remove_dot()
find_next_dot()

Teaching Programming and Algorithmic Complexity with Tangible Machines 79

Program 2. An graphical implementation of a primality testing algorithm. In
contrast to the sieve of Eratosthenes, multiples of prime factors are not “crossed
out.” Hence, the algorithm tests each number up to N .

def test_factor():
set_pos("origin")
while is_pixel_empty():

forward()
if is_pixel_of_color("red"):

print "prime!"
exit()

drop_dot()
d = current_x()
while is_pixel_of_color("blue"):

forward(d)
if is_pixel_of_color("red"):

print "not a prime!"
exit()

while True:
test_factor()

Program 3. This implementation of Minsort is straightforward: the turtle picks
up the first colour in the list, and then swaps it whenever it finds a colour that
is “smaller.” The thus found minimal colour is dropped into the column on the
right.

while True:
Find the first (lowest) dot
set_pos("origin")
head_up()
while is_pixel_empty():

forward()
pickup_dot()
Search the dot with "smallest" colour
while not is_pixel_ahead_empty():

forward()
if get_pixel_hue() < get_turtle_hue():

swap_color()
head_right()
forward()
drop_dot()
Is the second column completely filled?
if not is_pixel_empty():

break

80 T. Kohn and D. Komm

B Quicksort

For Quicksort, the turtle assumes the colour of the first dot it encounters, and
then compares the colours of all subsequent dots to its own colour (the pivot
colour). Dots with a colour hue that is smaller (or equal) are placed to the left,
those with larger colour hue are placed to the right (see Program4 and Fig. 3).
As long as more than one dot remains in any stack, the procedure is repeated
recursively.

Fig. 3. In our implementation of Quicksort, the turtle takes the colour of the first dot
at the bottom as the pivot. It then moves all dots either to the left or to the right,
creating two new columns to be sorted afterwards. (Color figure online)

Fig. 4. An alternative implementation of Quicksort, where the dots are arranged hor-
izontally. Each pivot colour is dropped to the bottom after the sorting step: due to
the gap between the left and the right hand side, its position in the result is already
known. At the very bottom, the final solution is shown. (Color figure online)

Instead of arranging the dots as vertical stacks as in Fig. 3, it is also possible
to arrange the coloured dots as horizontal lines as in Fig. 4. Note that the line
on the right side grows from right to left, leading to the order of the dots being
reversed on each step. Since the pivot dot is neither added to the left, nor the

Teaching Programming and Algorithmic Complexity with Tangible Machines 81

right hand side, a gap forms in between the two sides. While an implementation
without additional variables is, in principle, feasible, the search for the right
spot to place the new dot might take a large amount of both program code, and
execution time.

So far, we have never progressed in class enough to actually discuss Python
code of Quicksort as shown in Program4. The use of recursion makes a discussion
on entry level difficult (it is possible to do it without recursion, but this does
not necessarily lead to better understandable program code). However, we have
presented the horizontal version several times as a basis for further discussion,
with great results: students often realised, for instance, that the algorithm works
best if the pivot colour divides the dots into two lines, or piles, of approximately
equal size, and fails to be efficient for dots, “which are sorted in reverse” (it
seems that the idea of sorting an already sorted line does not necessarily occur
to high school students).

Program 4. An implementation of Quicksort using turtle graphics. Here we
need an abstract variable “delta” to leave room for further columns, which
appear due to recursion.

def sort(delta):
set_pos("bottom") # only change y-coordinate
if delta < 1 or is_pixel_empty():

return
head_up()
assume_pixel_color()
while not is_pixel_ahead_empty():

forward()
swap_color() # save pivot color
if get_pixel_hue() > get_turtle_hue():

jump_left(delta)
drop_dot()
jump_right(delta)

else:
jump_right(delta)
drop_dot()
jump_left(delta)

assume_pixel_color() # assume pivot color
head_left() # sort columns on ...
forward(delta)
sort(delta // 2) # ... the left ...
head_right()
forward(delta * 2)
sort(delta // 2) # ... the right ...
head_left()
forward(delta) # back to middle pos

82 T. Kohn and D. Komm

References

1. Abelson, H., DiSessa, A.: Turtle Geometry. MIT Press, Cambridge (1981)
2. Bell, T., Andreae, P., Lambert, L.: Computer science in New Zealand high schools.

In: Proceedings of ACE 2010 (2010)
3. Bell, T., Witten, I., Fellows, M.: CS unplugged - computer science without a com-

puter. http://csunplugged.org. Accessed 17 Sept 2017
4. Bell, T., Rosamond, F., Casey, N.: Computer science unplugged and related

projects in math and computer science popularization. In: Bodlaender, H.L.,
Downey, R., Fomin, F.V., Marx, D. (eds.) The Multivariate Algorithmic Revo-
lution and Beyond. LNCS, vol. 7370, pp. 398–456. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-30891-8 18

5. Bell, T., Alexander, J., Freeman, I., Grimley, M.: Computer science unplugged:
school students doing real computing without computers. N. Z. J. Appl. Comput.
Inf. Technol. 13, 01 (2009)

6. Caspersen, M.E., Christensen, H.B.: Here, there and everywhere - on the recurring
use of turtle graphics in CS1. In: Proceedings of ACSE 2000 (2000)

7. Du Boulay, B.: Some difficulties of learning to program. J. Educ. Comput. Res.
2(1), 57–73 (1986)

8. Gallenbacher, J.: Abenteuer Informatik, 4th edn. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-53965-1

9. Hartmann, W., Nievergelt, J., Reichert, R.: Kara, finite state machines, and the
case for programming as part of general education. In: Proceedings of the IEEE
2001 Symposia on Human Centric Computing Languages and Environments (HCC
2001), p. 135. IEEE Computer Society, Washington, DC (2001)

10. Hromkovič, J., Kohn, T., Komm, D., Serafini, G.: Combining the power of python
with the simplicity of logo for a sustainable computer science education. In: Brod-
nik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 155–166. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46747-4 13

11. Kelleher, C., Pausch, R.: Lowering the barriers to programming: a taxonomy of
programming environments and languages for novice programmers. ACM Comput.
Surv. 37(2), 83–137 (2005)

12. Kölling, M.: The greenfoot programming environment. Trans. Comput. Educ.
10(4), 14:1–14:21 (2010)

13. Komm, D., Kohn, T.: An introduction to running time analysis for an SOI work-
shop. Olymp. Inform. 11, 77–86 (2017)

14. Lawrence, A.W., Badre, A.M., Stasko, J.T.: Empirically evaluating the use of ani-
mations to teach algorithms. In: Proceedings of 1994 IEEE Symposium on Visual
Languages, pp. 48–54, October 1994

15. Lewis, C.M.: How programming environment shapes perception, learning and
goals: Logo vs. Scratch. In: Proceedings of the 41st ACM Technical Symposium on
Computer Science Education, SIGCSE 2010, pp. 346–350. ACM, New York (2010)

16. Lister, R.: Concrete and other neo-Piagetian forms of reasoning in the novice pro-
grammer. In: Proceedings of the Thirteenth Australasian Computing Education
Conference, ACE 2011, vol. 114, pp. 9–18. Australian Computer Society Inc., Dar-
linghurst (2011)

17. Ma, L., Ferguson, J., Roper, M., Wood, M.: Investigating and improving the models
of programming concepts held by novice programmers. Comput. Sci. Educ. 21(1),
57–80 (2011)

http://csunplugged.org
https://doi.org/10.1007/978-3-642-30891-8_18
https://doi.org/10.1007/978-3-662-53965-1
https://doi.org/10.1007/978-3-319-46747-4_13

Teaching Programming and Algorithmic Complexity with Tangible Machines 83

18. O’Neill, M.E.: The genuine sieve of Eratosthenes. J. Funct. Program. 19(1), 95–106
(2009)

19. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Harvester Press,
Brighton (1980)

20. Resnick, M., et al.: Scratch: programming for all. Commun. ACM 52(11), 60–67
(2009)

21. Rodger, S.H., et al.: Enhancing K-12 education with Alice programming adven-
tures. In: Proceedings of the Fifteenth Annual Conference on Innovation and Tech-
nology in Computer Science Education, ITiCSE 2010, pp. 234–238. ACM, New
York (2010)

22. Schumacher, R.M., Czerwinski, M.P.: Mental models and the acquisition of expert
knowledge. In: Hoffman, R.R. (ed.) The Psychology of Expertise, pp. 61–79.
Springer, New York, New York (1992). https://doi.org/10.1007/978-1-4613-9733-
5 4

23. Sorva, J.: Notional machines and introductory programming education. Trans.
Comput. Educ. 13(2), 8:1–8:31 (2013)

24. Sorva, J., Lönnberg, J., Malmi, L.: Students’ ways of experiencing visual program
simulation. Comput. Sci. Educ. 23(3), 207–238 (2013)

25. Teague, D., Lister, R.: Manifestations of preoperational reasoning on similar pro-
gramming tasks. In: Proceedings of the Sixteenth Australasian Computing Edu-
cation Conference, ACE 2014, vol. 148, pp. 65–74. Australian Computer Society
Inc., Darlinghurst (2014)

26. D. D. Thornburg Friends of the Turtle: On Logo and Turtles. Compute! (1983)

https://doi.org/10.1007/978-1-4613-9733-5_4
https://doi.org/10.1007/978-1-4613-9733-5_4

A Diagnostic Tool for Assessing Students’
Perceptions and Misconceptions Regards

the Current Object “this”

Ragonis Noa1,2(&) and Shmallo Ronit3

1 Beit Berl College, Beit Berl, Kfar Saba, Israel
noarag@beitberl.ac.il

2 Technion Israel Institute of Technology, Haifa, Israel
3 Shamoon College of Engineering, Ashdod, Israel

ronit1@sce.ac.il

Abstract. Understanding of the object concept in Object Oriented Program-
ming (OOP) is obviously the center of the paradigm. Many educators and
researchers explored students’ difficulties and developed teaching materials
targeted at this central concept. The paper presents a diagnostic tool we
developed that aims to reveal students’ perception and understanding about the
current object, referring to it by the this annotation. Proper conceptualization of
this indicates an understanding of objects in general, and involves aspects of
memory allocation and programming approaches. The tool contains five ques-
tions, each devoted to covering different aspects in various frameworks, such as:
using this in constructors, using this as a visible parameter, using this in
inheritance, or making necessary changes in transition from a non-static context
that uses this to a static context. The questionnaire combines closed questions
with a request to explain the answers and open questions. In the paper we
present the purpose of each question, and address what it comes to examine. The
diagnostic tool is based on known educational approaches: Bloom’s taxonomy,
assessment for, as, and of learning and learning from errors. The tool can be
used by educators at high school or academic levels as a teaching tool, as a base
for discussions, or as an evaluation tool. A short report on the use of the tool
with different populations, including high school teachers, is presented. The
paper uses Java as the programming language, but it easily can be translated to
other OOP languages.

Keywords: Object oriented programming � The current object
The this annotation

1 Introduction

Objects are the core of Object Oriented Programming (OOP), and yet, they are the
source of enormous types of difficulties for learners, which lead to different perceptions
and misconceptions. Perceptions of different concepts regarding OOP have been
extensively studied in the last two decades, including the understanding of the basic
concept “Object” [e.g., 21, 27]. The this reference relates to the current object. It can be

© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 84–100, 2018.
https://doi.org/10.1007/978-3-030-02750-6_7

http://orcid.org/0000-0002-8163-0199
http://orcid.org/0000-0002-1783-6109
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_7&domain=pdf

used in any instance method including constructors, getters, and setters. The use of this
is not mandatory, and it can be omitted from most of the codes. However, it is included
by developers according to writing conventions or personal preferences. Understanding
the meaning of the this reference involves varied aspects of abstraction regarding the
object and its memory allocation. Previous studies pointed to different difficulties of
understanding objects, but few of them mentioned the this reference [e.g., 6]. None of
them was dedicated directly to the this reference and its varied interpretations.

To expand the understanding of students’ conceptions and preferences regarding
the use of this, we developed a diagnostic tool that can be used as an evaluation tool for
the advancement of learning. Moreover, looking at students’ errors allows in-depth
discussions in the class. The tool contains five questions; each explores different
aspects of using this in code, and hence sharpens students’ perceptions and miscon-
ceptions. All questions reflect high order cognitive levels according to Bloom’s
taxonomy [2].

The tool can be used with any population that learns OOP, and can be easily
translated to any OOP programming language. The tool was tested with 163 high
school and college students, and 48 high school teachers. It was improved according to
complications that occurred in its first version. Part of the findings from the research
with high school students and teachers was published [23].

In what follows, we present: background on students’ conceptions regarding
“Object” and on the educational approaches that led to the development of the tool; the
tool structure addresses the questions’ targets, the goals of each of its clauses, inter-
pretation of the question’s cognitive level according to Bloom’s taxonomy, and brief
lessons we learned from using the tool. We will summarize by presenting some
implications for teaching.

2 Literature Review

The literature review includes two sections that guided us in the construction of the
diagnostic tool. The first discusses the essential understanding of the concept of
“Object” in OOP and what was found by previous research, focusing on understanding
the current object this. The second relates to educational approaches that reflect the
origins for the development of the tool. Those are high order cognitive skills in the light
of Bloom’s taxonomy, along with considering the tool as an instrument to use in the
framework of assessment and for learning integrated with the approach of learning
from errors.

2.1 Understanding the Concept of “Object” in Learning OOP

An object is a capsule of attributes and their values, which is referred to by a single
reference, and at the same time each of its attributes’ values can be accessed separately.
The reserved word this refers to the current object and is usually used to distinguish
between parameters and their corresponding instance variables, when both share the
same names. This common use of this is not mandatory and is manifested mainly in
constructors and setters methods. Nevertheless, there are certain cases where the use of

A Diagnostic Tool 85

this is required, mainly in constructors in the context of inheritance when invoking
overloaded constructors, or when passing an object as a parameter.

Studies that related to the comprehending of OOP fundamental concepts dealt with
the understanding of the “object” and “class” concepts since they are essential for
realizing the meaning of OOP. Many misconceptions and difficulties regarding the
“object” concept arose: difficulties to distinguish between classes and their instances,
the objects [e.g. 11, 13, 26]; difficulties in comprehending the static role of classes in
comparison to the dynamic role of objects [e.g., 22, 25]; failure to distinguish between
the “object itself” and the variable/modifier that refers to the object [e.g. 28, 29];
incorrect models of the way objects are stored in the memory [30]; and assume that all
objects have the same size in the memory [14]. Some research related particularly to
students’ conceptions regard the role of “object” and “class” during program execution
[9, 31, 32]. They addressed that students gain better understanding of the class concept
than of the object concept; think of objects as pieces of code; and experience object as
something that is active in the program.

The research accumulated knowledge about students’ conceptions and miscon-
ceptions that has to affect the teaching and learning processes. The diagnostic tool
offered in the paper is considered by us as an evaluation tool that can serve educators to
identify their students’ perceptions, conceptions, and misconceptions. The collection of
students’ answers generates a wide base for meaningful discussions in the light of
“Assessment for, as and of Learning” and of “Learning from Errors”.

2.2 Teaching Approaches that Served the Tool Development

The diagnostic tool was built on the reliance and integration of some recognized
approaches in education: the development of high-order thinking skills, assessment for
the advancement of learning, and learning from errors. In what follows we describe
those approaches.

High-Order Cognitive Skills. The literature refers to high-order thinking skills in
operational terms that express different ways of implementation [24, 34, 35]. High-
order thinking skills involve skills such as problem-solving, asking questions, thinking
critically, making decisions, and taking responsibility. The analysis of high-order
thinking skills is based on Bloom’s taxonomy [2], which is considered to be the most
fundamental taxonomy. It consists of six levels involved in planning students’ learning
and evaluating their achievements: 1 - knowledge, 2 - comprehension, 3 - application, 4
- analysis, 5 - synthesis, and 6 - evaluation. Newman [17] suggested that high-order
thinking skills relate to Bloom’s taxonomy as complex and multifaceted thinking skills,
challenging the learner to interpret and analyze information. Newman further defined
the inclusive skill “thoughtfulness”, which is based on four traits: the ability to reason,
the tendency to reflect, the curiosity to explore new questions, and the flexibility to
consider alternative and original solutions. A revision of Bloom’s taxonomy was
suggested by Anderson and Krathwohl [1], who regarded Bloom’s levels 4, 5, and 6 as
referring to non-hierarchical components but as expressing similar cognitive abilities,
identified as metacognitive knowledge. This interpretation became accepted in the
educational research community. Anderson and Krathwohl also suggested six verbs

86 R. Noa and S. Ronit

corresponding to Bloom’s thinking levels: 1 - To remember, 2 - To understand, 3 - To
apply, 4 - To analyze, 5 - To evaluate, 6 - To create. According to researchers
investigating higher-order cognitive skills (HOCS), it is important to pose questions
during the learning process while highlighting its different aspects. Paul and Elder [19]
presented two complementary perspectives with respect to questions: (a) questions
students are asked in teaching scenarios, and (b) questions students practice and
experiment with themselves in problem-solving processes, i.e., questions that lead them
to reflective, critical, and judgmental thinking.

Assessment for, as, and of Learning. Assessment is an essential component of the
teaching and learning cycle, but should not be restricted in order to enable teachers to
gather evidence and make judgments about student achievement. Assessment for
learning and assessment as learning incorporate self-assessment or peer-assessment for
students to actively check and evaluate their own knowledge and understanding.
Assessment is probably the most important thing we can do to help our students learn
[5]. Hence, we have to do our best to ensure that our assessment practices help rather
than hinder learning.

Assessment as learning emphasizes using assessment as a process for developing
and supporting students’ metacognitions abilities [8]. The students critically connect
between their assessment and their learning. They are active, and apply critical thinking
to make sense of information and to relate it to their prior knowledge. This is a
constructivist metacognitive process where students construct new knowledge. Stu-
dents personally monitor what they are learning and use the feedback to make
adjustments, adaptations, and major changes in what they understand. In terms of class
practices, activities that evoke assessment as and for learning involve different peda-
gogical aspects such as student-teacher interaction, self-reflection, motivation, and
planning of learning environments [10]. The support of teachers in those types of
processes enables students to reach the next stage in their learning course. In this
process students are responsible for their knowledge and do not lean only on the
teacher’s feedback. The approach of “learning from errors” can be interpreted and
implemented as “assessment as and for learning”.

Learning from Errors. Errors may trigger cognitive conflicts, which yield a process
of reflection and critical thinking, and hence may be used for developing coherent
knowledge [3]. Learning through errors supports the constructivist approach, as the
utilization of errors is based on students’ prior knowledge, which is vague or partly
erroneous.

In the last two decades, researchers presented convincing results following the
learning from errors approach in mathematics [e.g., 4, 16, 18] and physics [e.g., 20,
33]. Ginat and Shmallo [12] developed the approach of learning from errors in com-
puter science, targeted on learning basic OOP concepts by college students. Their goal
was to refine students’ knowledge and skills by raising conflict or cognitive dissonance
in using errors, based on the assumption raised by Confrey [7] that conflict causes
review of one’s knowledge and procedures. In their research, students indicated that
learning from errors enabled them to realize their previous erroneous conceptions of

A Diagnostic Tool 87

which they were unaware and enabled them to deepen their understanding. It was
further evident that students were able to specify terms and mechanisms more clearly
and more accurately. The learning from errors approach in teaching contributed to
students’ understanding of OOP’s fundamental concepts.

Based on previous studies including ours and our vast experience in teaching at
academic levels, high schools, and training in-service and pre-service teachers, we
developed the diagnostic tool that can serve educators in the teaching-learning-
assessment processes they lead. Section 3 describes the tool in detail.

3 The Diagnostic Tool

The diagnostic tool is a questionnaire that contains five questions with different con-
ceptual focus. Sections 3.1–3.5 present each question, display parts of the questions
formulation, address the perceptions involved in the question regarding the current
object, and analyze the question’s contribution to assessing students’ understanding.
The full questionnaire appears in Appendix A.

3.1 Question 1: Where the Use of this is Needed

Question 1 presents a project that involves a simple class, a composed class, and a main
class.

Clause (a) reflects basic usage of this in traditional methods: constructors, toString,
and equals. The purpose of the question is to examine whether students can identify
where this must be used, actually, only when parameters and attributes have the same
identifiers. Otherwise, it is a matter of preference. Students were asked to mark where
this is required and where it is superfluous. The codes relate to: (#1) traditional con-
structor that uses parameters with same identifiers as the attributes; (#2) copy con-
structor; (#3) toString() method; and (#4) equals(…) method. To demonstrate this
question we present codes (#1) and (#2) in Table 1a.

Clause (a) allows observing if students actually understand the meaning of using
the this reference, or they just stick to their own/class/teacher habits.

Beyond the distinction whether this can or must be used, there are some commonly
used syntaxes. It is important that students will understand when and why to use those

Table 1a. Examples of question 1 codes.

Code #1 Code #2
public Date(int day, int month, int year) {

this.day = day; // line #1
 this.month = month;

this.year = year;
}

public Date(Date other){
 this.day = other.day; // line #2
 this.month = other.month;
 this.year = other.year;
}

88 R. Noa and S. Ronit

common syntaxes. For example, in Code (#1) this must be used so that the method
achieves its expected purpose, still syntactically it could be removed. Some students
can state that without this, there will be a compilation error, or “the computer will not
know what to do”. With regard to Code (#2) students can raise the issue that the use of
this is unnecessary, but state that it is clearer for them to see the referred relevant
objects with similar syntax. Meaning: this.day = other.day is more readable than
day = other.day.

Interpretation by Bloom’s taxonomy: 5 - Evaluate. Students have to determine and
to justify their decision based on their conceptualization.

The purpose of Question 1’s clauses (b)–(d) is to examine several advanced issues
of using and understanding the current object, in relation to calling a method that uses
this and involves static aspects as well. The clauses are presented in Table 1b.

To answer clause (b) students should understand the meaning of executing an
instance method that involves two objects. On the first one, the method is operated, and
it appears implicitly in the call statement – flight001, but becomes explicit within the
method using this. Particularly, it can be challenging in the case of composed class. To
answer clause (c) students should understand the differences between instance methods
to static methods. The needed changes are: (1) to include the reserved word static in the
method signature; (2) to use two object parameters; (3) any use of this should be
omitted; (4) using getters methods is expected. Answering clause (d) demands under-
standing that main methods do not relate to objects - they do not operate on objects.

Interpretation by Bloom’s taxonomy: (b) 4 - Analyze. Students have to distinguish
between the two objects; (c) 6 - Create. Students have to develop a new method taking
into consideration a variety of aspects; (d) 5 - Evaluate. Students have to deduce that
the main method is static, in opposition to the instance method, which is not static, and
to support their answer.

Table 1b. Description of question 1 clauses (b)–(d).

Question code Question wording
(b) public boolean equals(Flight other) {

if (this.flightDate.equals(other.flightDate)
&& this.flightNum==other.flightNum)

 return true;
return false;

}

Giving the method equals in class
Flight, when excecuting the next
instruction in the main method:

if (flight001.equals(flight003))
to what does the this appearing in the
equals method refer?

(c) Refers to the equals method in class Date Develop a static method replacing the
instance method equals in class Date.

(d) public static void main(String[] args) {
…

}

Can this be used in the code of the
main method?

A Diagnostic Tool 89

3.2 Question 2: Personal Preferences

Question 2 includes four clauses, each displaying 2–3 different codes that execute the
same task. All codes relate to class Point, which is represented by two attributes (x,y).
Students are required to rank the versions in each clause according to their personal
code preference and to state their criteria for making their choice. The questionnaire
clearly states that all versions are correct.

The focus of the question clauses is: (a) the place where each Point object attributes
are initialized to be (0,0); (b) the identifiers used as parameters; (c) the access to
attributes in the copy constructor; (d) the access to attributes in equals method, where
two of the three versions involve the use of toString method. To demonstrate this type
of question we present clause (c) code versions in Table 2.

The question enables exploring students’ preferences, but actually enables dis-
cussion on the understanding of the current object. One issue that the question raises,
seemingly to question 1, is where/whether/why this should be used. Another central
issue that can be raised is where/whether/why getters methods should be used. Since it
appears in the instance method it is not mandatory, but maybe it is a good practice to
use it, and to not access the attributes of the parameter object directly – implementing
the principle of information hiding.

Interpretation by Bloom’s taxonomy: 5 - Evaluate. Students need to rank their code
preferences, and to justify their criteria based on the concepts they acquire.

3.3 Question 3: Use of this as a Parameter

Question 3 relates to a project including a simple class Circle and a main class Test.
The question focuses on the use of this as a formal parameter. Students are required to
relate to the execution of the instruction circle1.chooseWhatToDraw(‘X’, circle2); in
the main method, and to answer what the this appearing in the method choose-
WhatToDraw(…) in the instruction drawFlower(this); refers to. The method is dis-
played in Table 3.

This type of using this as a parameter is rarely taught in classes. But, students have
the knowledge to understand the new context. It is expected that students who grasp the

Table 2. Question 2 clause (c) codes.

Version1 Version2 Version3
public class Point {

 private int x;
 private int y;

 public Point(Point p) {
 this.x = p.getX();
 this.y = p.getY();

 }
}

public class Point {

 private int x;
 private int y;

 public Point(Point p) {
 this.x = p.x;
 this.y = p.y;

 }
}

public class Point {

 private int x;
 private int y;

 public Point(Point p) {
 x = p.x;
 y = p.y;

 }
}

90 R. Noa and S. Ronit

“object” concept, and particularly understand the role of the object in instance methods,
be able to apply it in the new context.

Interpretation by Bloom’s taxonomy: combination of 3 - Apply, 4 - Analyze, and
5 - Evaluate. Students need to use and interpret previous knowledge in a new situation
(Apply), to draw connections among ideas (Analyze), and to support their decision
(Evaluate). We consider the cognitive skill needed here similar to the inclusive skill
Newman [17] defined as “thoughtfulness” since it is based on the ability to reason, the
tendency to reflect, and the curiosity to explore new questions.

3.4 Question 4: Inheritance

Question 4 relates to a project that involves inheritance and includes classes AA, BB,
and Program. The question focuses on the use of this as the “name” of a method when
calling for a self-different constructor method in the same class, which itself calls a
super constructor. Students were asked to follow the execution of the main method by
drawing a trace table, displaying the program output, and further to determine what
does the this refer to in four different marked instructions when executing the particular
object creation in the main method: BB b = new BB();. The constructors of class BB are
presented in Table 4.

Table 3. The method in focus of question 3.

Question code Question wording
public void chooseWhatToDraw (char c, Circle circ) {

if (c == 'F')
drawFlower(this);

 if (c == 'X')
drawX(circ);

}

To what does the this refer?

Table 4. The constructors of class BB in question 4.

Question code Question wording
public class BB extends AA {

 public int y;

 public BB() {
 this(2); // line #3

 }

 public BB(int k) {
 super(k + 1);
 this.y = super.x + 1; // line #4

 }
}

To what does the this refer?

A Diagnostic Tool 91

Apart from using this, the question is considered as difficult since it is in the context
of inheritance, a field that is known to be difficult to understand for learners [15].

Interpretation by Bloom’s taxonomy: similar to question 3, answering the question
requires a combination of high-order thinking skills: 3 - Apply, 4 - Analyze, and 5 -
Evaluate. Students need to use and interpret previous knowledge in new and compli-
cated situations (Apply), to draw connections among ideas (Analyze), and to support
their decision (Evaluate). Here as well is a place to mention the inclusive skill
“thoughtfulness” [17].

3.5 Question 5: Open Comprehension Question

Question 5 is an open comprehension question, where students need to give written
answers that conceptualize their knowledge, conceptions, and perceptions. The ques-
tion clauses appear in Table 5.

The question requires students to conceptualize their insights in writing and
therefore to formalize their own understandings. Actually, the question is a summary of
the understanding that was sharpened while answering the questionnaire. It enables the
presentation of knowledge that became clear while answering the previous questions,
especially on the basis of justifying their responses. The answers to clauses (a)–(c) can
be formulated accurately and briefly. But clause (d) brings students to present their
“pure” conception about the concept of “object” that is manifested in the this notation –

that crucial central concept in OOP.

4 Summary

The paper presents a diagnostic tool for examining students’ conceptions and per-
ceptions regarding the current object this. The questionnaire is written in Java, but can
easily translate to any OOP languages. The different questions in the questionnaire
highlight wide and various aspects of the use of this, which actually reflects the
understanding of the “Object” concept on which the OOP approach is based. Some
questions related to basic aspects while other request to interact with new ideas and
advanced aspects.

Regarding Bloom’s taxonomy, all the questions reflect High-Order Cognitive
Skills, most of them express 4 - analysis, 5 - synthesis, and 6 - evaluation. Students

Table 5. Question 5.

Question wording

(a) When must this be used?
(b) When should this be used?
(c) When shouldn’t this be used?
(d) What is this?

92 R. Noa and S. Ronit

were asked to justify their decision, to distinguish between several options, to apply
knowledge when developing new code, and more. Addressing complex and non-trivial
questions, which do not usually appear in learning materials, allows accuracy and
refinement of the understanding. Since the concept of “Object” is known to be abstract
and difficult to grasp, as many previous researches showed, direct discussion about it in
the teaching process is recommended. Students’ success in completing the question-
naire indicates significant understanding of core OOP concepts.

We regard the tool as a learning tool and not as an assessment tool, even though it
can serve to assess students’ knowledge and conceptions. The questionnaire can be
used as a tool for learning – Assessment for and as Learning. Students can answer it as
an inquiry task, examine their understanding, check and run the codes on a computer,
and reduce the gap between what they understand currently and better accurate
knowledge. This approach corresponds to the second and significant type of questions
Paul and Elder [19] defined, questions students practice and experiment with them-
selves in problem-solving processes that lead them to reflective, critical, and judg-
mental thinking. Educators can use it in the Learning from Errors approach. Students
can interrupt their own mistakes, and educators can lead advanced discussion in the
classroom on case studies of errors in order to promote significant and in-depth
understanding. Discussions of errors have the potential to promote understanding as
found particularly regarding OOP concepts in Ginat and Shmallo’s [12] research. From
an educational point of view, we believe that it is better to introduce students to
contexts that compel them to validate their knowledge and attitudes with “reality”.
Such type of learning creates a conflict between prior knowledge and required
knowledge, stimulates metacognitive thinking processes, and enables meaningful
learning in accordance with the constructivism approach. In practice, enabling students
to express the inclusive skill “thoughtfulness” defined by Newman [17], which is based
on the ability to reason, the tendency to reflect, the curiosity to explore new questions,
and the flexibility to consider alternative and original solutions.

The tool was applied with high school students and college students (N = 163) and
also with high school teachers (N = 48), and was refined to the current version. The
findings from the students’ responses were surprising, meaning that significant aspects
of misunderstanding were indeed revealed. Parts of the results were published in our
previous paper [23]. Beyond the systematic analysis of students’ answers, two aspects
can be considered. First, students expressed satisfaction since they felt that they
expanded their knowledge and sharpened their conceptions. Moreover, they felt that
they learned during filling out the questionnaire. Second, students complained about
the length of the questionnaire; hence, we recommend to split it and to not use all the
questions in a row.

We believe that using this diagnostic tool can promote any teaching-learning
process. In particular it advances students’ understanding about the OOP core concept
“Object”, and emphasizes the different options of using the this reference or rather omit
it. In general the type of the questionnaire can be used to diagnose other crucial
concepts as well.

A Diagnostic Tool 93

Appendix A: The Questionnaire

Question 1: Where this is needed
The following is a project that includes a simple class Date, a composed class

Flight and a main class Program.

public class Date {

private int day;
private int month;
private int year;

 public Date(int day, int month, int year) {
this.day = day; // line #1

 this.month = month;
this.year = year;

 }

public Date(Date other) {
 this.day = other.day; // line #2
 this.month = other.month;
 this.year = other.year;
 }

 public String toString() {
return this.day + "/" + this.month + "/" + this.year; // line #3

}

 public boolean equals(Date other) {
if (this.day == other.day && this.month == other.month

&& this.year == other.year) // line #4
 return true;

return false;
}

}

public class Flight {

private int seats;
private int booked;
private Date flightDate;

 private String flightNum;

public Flight(int seats, Date flightDate, String flightNum) {
this.seats = seats;
this.booked = 0;
this.flightDate = new Date(flightDate);
this.flightNum = flightNum;

 }

94 R. Noa and S. Ronit

public Flight(Flight other) {
this.seats = other.seats;
this.booked = other.booked;
this.flightDate = new Date(other.flightDate);
this.flightNum = other.flightNum;

}

 public String toString() {
return ("Date : " + this.flightDate + "\nFlightNum " :

 + this. flightNum + "\nCapacity :"+ this.seats + "\nBooked " :
 + this.booked + "\n;)"

}

public boolean equals(Flight other) {
if (this.flightDate.equals(other.flightDate)

&& this. flightNum==other.flightNum)
return true;

return false;
}

}

public class Program {

public static void main(String[] args) {
Date date1 = new Date(1, 3, 2013);
Date date2 = new Date(3, 3, 2013);
Flight flight001 = new Flight(100, date1, "F83838");
Flight flight002 = new Flight(150, date2, "R38383");
Flight flight003 = new Flight(flight001);

System.out.println(flight003);

if (flight001.equals(flight002)) // line #5
System.out.println(flight001 + "," + flight002 + " are alternative flights");

else
System.out.println(flight001 + "," + flight002 + " are not alternative flights");

if (flight001.equals(flight003))
System.out.println(flight001 + "," + flight003 + " are alternative flights");

else
System.out.println(flight001 + "," + flight003 + " are not alternative flights");

}
}

(a) In relation to the rows marked with numbers 1–4 (//line #n) determine where this
is required to be used and where it is superfluous. Explain the reason for each of
your choices.

(b) When executing instruction #5 in the main method, to what does the this in the
equals method in class Flight refer?

(c) Develop a static method replacing the instance method equals in class Date.
(d) Can this be used in the code of the main method?

A Diagnostic Tool 95

Question 2: Personal preferences on using this in code
Each of the following methods relate to class Point described by two coordinates

(x,y). Some of the methods use this and some do not. The methods of each clause
execute the same task, and they are all syntactically correct. Please rank in each line
marked by (a)–(d) your personal preference codes by assigning numbers between 1 and
3, where 1 is your first priority. Explain your choices.

96 R. Noa and S. Ronit

Question 3: Using this as a parameter
The following is a project that includes a simple class Circle and a main class Test.

Some of the methods of class Circle include only the method signature without the
method full body. The method drawX(…) accepts a circle as a parameter and draws it,
the method drawFlower(…) accepts a circle as a parameter and draws a flower con-
sisting of circles, and the method chooseWhatToDraw(…) accepts a circle and a
character and determines what to draw.

public class Circle {

private int diameter;
private int xPosition;
private int yPosition;
private String color;

public Circle(int diameter, int xPosition, int yPosition, String color) {
this.diameter = diameter;
this.xPosition = xPosition;
this.yPosition = yPosition;
this.color = color;

}

private void drawX(Circle c) {
//

}

private void drawFlower(Circle c) {
//

}

public void chooseWhatToDraw(char c, Circle circ) {
if (c == 'F')

drawFlower(this);
if (c == 'X')

drawX(circ);
}

}

public class Tester {

public static void main(String[] args) {
Circle circle1 = new Circle(10, 100, 100, "yellow");
Circle circle2 = new Circle(10, 100, 100, "magenta");
circle1.chooseWhatToDraw('F', circle2);

}
}

In relation to the main method, and the execution of the instruction:

circle1:chooseWhatToDraw 0F0; circle2ð Þ;

to what does the this appearing in the method chooseWhatToDraw(…) in the
instruction drawFlower(this); refer?

A Diagnostic Tool 97

Question 4: Using this in inheritance
The following is a project that includes classes AA, BB, and Program. Review the

classes and answer the questions that follow.

public class AA {

 public int x;

 public AA() { this(1); } // line #1
 public AA(int k) { this.x = k * 10; } // line #2
 public String toString() { return "x = " + x; }
}

public class BB extends AA {

 public int y;

 public BB() { this(2); } // line #3
 public BB(int k) { super(k + 1); this.y = super.x + 1; } // line #4
 public String toString() { return "x = " + x + " y = " + y; }
}

public class Program {

 public static void main() {
 AA a = new AA();
 System.out.println(a);
 BB b = new BB();
 System.out.println(b);

}
}

Follow the execution of the main method, and:

(a) Use a trace table to present all variables’ values and all objects, including the
objects’ attributes values.

(b) Display the program output.
(c) In relation to the rows marked with numbers 1–4 (//line #n) determine to what

does the this refer, when executing the next instruction:

BB b ¼ newBBðÞ;

Question 5: Using this – an open comprehension question
Please answer the following questions briefly:

(a) When must this be used?
(b) When should this be used?
(c) When shouldn’t this be used?
(d) What is this?

98 R. Noa and S. Ronit

References

1. Anderson, L., Krathwohl, D.A.: Taxonomy for Learning, Teaching and Assessing: A
Revision of Bloom’s Taxonomy of Educational Objectives. Longman, New York (2001)

2. Bloom, B.S.: Taxonomy of Educational Objectives Handbook I - The Cognitive Domain.
David McKay Co., Inc., New York (1956)

3. Borasi, R.: Reconceiving Mathematics Instruction: A Focus on Errors. Ablex Publishing,
New York (1996)

4. Borasi, R.: Using errors as springboards for the learning of mathematics: an introduction.
Focus Learn. Probl. Math. 7(3), 1–14 (1985)

5. Brown, S: Assessment for learning. Learn. Teach. High. Educ. 1, 81–89 (2005). ISSN 1742-
240X

6. Chen, C., Cheng, S., Lin, J.M.: A study of misconceptions and missing conceptions of
Novice Java programmers. In: Proceedings of the 2012 International Conference on
Frontiers in Education, pp. 307–313. Computer Science & Computer Engineering (2012)

7. Confrey, J.: What constructivism implies for teaching. J. Res. Math. Educ. 4, 107–122
(1990)

8. Earl, L.M.: Assessment as Learning: Using Classroom Assessment to Maximize Student
Learning, 2nd edn. Corwin, Thousand Oaks (2012)

9. Eckerdal, A., Thunי, M.: Novice Java programmers’ conceptions of “object” and “class”, and
variation theory. SIGCSE Bull. 37(3), 89–93 (2005)

10. Gardner, L., Sheridan, D., White, D.: A web-based learning and assessment system to
support flexible education. J. Comput. Assist. Learn. 18, 125–136 (2002)

11. Garner, S., Haden, P., Robins, A.: My program is correct but it doesn’t run: a preliminary
investigation of novice programmers’ problems. In: Proceeding of ACE 2005 (Australasian
Computing Education Conference), pp. 173–180 (2005)

12. Ginat, D., Shmallo, R.: Constructive use of errors in teaching CS1. In: SIGCSE 2013-
Proceedings of 44th ACM Technical Symposium on Computer Science Education, pp. 353–
358. ACM New York (2013)

13. Holland, S., Griffiths, R., Woodman, M.: Avoiding object misconceptions. SIGCSE Bull.
29(1), 131–134 (1997)

14. Kaczmarczyk, L.C., Petrick, E.R., East, J.P., Herman, G.L.: Identifying student misconcep-
tions of programming. In: Proceedings of the 41st ACM Technical Symposium on Computer
Science Education (SIGCSE 2010), New York, pp. 107–111 (2010)

15. Liberman, N., Beeri, C., and Ben-David Kolikant, Y.: Difficulties in learning inheritance and
polymorphism. ACM Trans. Comput. Educ. 11(1), 23 (2011). Article 4

16. Melis, E., Sander, A., Tsovaltzi, D.: How to support meta-cognitive skills for finding and
correcting errors. In: Proceedings of the AAAI Fall 2010 Symposium, pp. 64–68 (2010)

17. Newman, F.M.: Higher order thinking in teaching social studies: A rationale for the
assessment of classroom thoughtfulness. J. Curric. Stud. 22, 41–56 (1990)

18. Ohlsson, S.: Learning from performance errors. Psychol. Rev. 103, 241–262 (1996)
19. Paul, R., Elder, L.: The Thinker’s Guide to the Nature and Functions of Critical and Creative

Thinking. Foundation for Critical Thinking Press (2008). http://www.criticalthinking.org/
files/CCThink_6.12.08.pdf

20. Pinkerton, K.D.: Learning from errors. Phys. Teach. 43(8), 510–513 (2005)
21. Ragonis, N., Ben-Ari, M.: A long-term investigation of the comprehension of OOP concepts

by novices. Comput. Sci. Educ. 15(3), 203–221 (2005)
22. Ragonis, N., Ben-Ari, M.: On understanding the statics and dynamics of object-oriented

programs. SIGCSE Bull. 37(1), 226–230 (2005)

A Diagnostic Tool 99

http://www.criticalthinking.org/files/CCThink_6.12.08.pdf
http://www.criticalthinking.org/files/CCThink_6.12.08.pdf

23. Ragonis, N., Shmallo, R.: On the (Mis) Understanding of the “this” reference. In:
Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (SIGCSE 2017), pp. 489–494. ACM, New York (2017)

24. Resnick, L.: Education and Leaning to Think. National Academy Press, Washington D.C
(1987)

25. Sajaniemi, J., Kuittinen, M., Tikansalo, T.: A study of the development of students’
visualizations of program state during an elementary object-oriented programming course.
In: Proceedings of the 3rd International Workshop on Computing Education Research (ICER
2007), pp. 1–16. ACM, New York (2007)

26. Sanders, K., Boustendt, J., Eckerdal, A., McCartney, R., Mostrצm, J. E., Thomas, L.,
Zander, C.: Student understanding of Object-Oriented programming as expressed in concept
maps. In: Proceedings of SIGCSE 2008, pp. 332–336 (2008)

27. Sanders, K., Thomas, L.: Checklists for grading object-oriented CS1 programs: concepts and
misconceptions. SIGCSE Bull. 39(3), 166–170 (2007)

28. Shmallo, R., Ragonis, N., Ginat, D.: Fuzzy OOP: expanded and reduced term interpretations.
In: Proceedings of ITiCSE 2012, pp. 309–314. ACM Press, New York (2012)

29. Sorva, J.: The same but different – students’ understandings of primitive and object
variables. In: Proceedings of the 8th International Conference on Computing Education
Research (Koli Calling 2008), New York, pp. 5–15 (2008)

30. Sorva, J.: Students’ understandings of storing objects. In: Lister, R., Simon (eds.)
Proceedings of the Seventh Baltic Sea Conference on Computing Education Research
(Koli Calling 2007), Koli National Park, Finland, CRPIT, vol. 88, pp. 127–135. ACS (2007)

31. Teif, M., Hazzan, O.: Partonomy and taxonomy in object-oriented thinking: Junior high
school students’ perceptions of object-oriented basic concepts. In Working Group Reports
on ITiCSE on Innovation and Technology in Computer Science Education (ITiCSE-WGR
2006), pp. 55–60. ACM, New York (2006)

32. Xinogalos, S: Object-oriented design and programming: an investigation of novices’
conceptions on objects and classes. ACM Trans. Comput. Educ. 15(3) (2015). Article 13

33. Yerushalmi, E., Polingher, C.: Guiding students to learn from mistakes. Phys. Educ. 41,
532–538 (2006)

34. Zohar, A.: The nature and development of teachers’ meta-strategic knowledge in the context
of teaching higher order thinking. J. Learn. Sci. 15, 331–377 (2006)

35. Zohar, A., Ben David, A.: Explicit teaching of meta-strategic knowledge in authentic
classroom situations. Metacognition Learn. 3(1), 59–82 (2008)

100 R. Noa and S. Ronit

On Preferences of Novice Software
Engineering Students: Temperament

Style and Attitudes Towards
Programming Activities

Tatjana Jevsikova(&), Valentina Dagienė,
and Vladimiras Dolgopolovas

Vilnius University Institute of Data Science and Digital Technologies,
Akademijos 4, 04812 Vilnius, Lithuania

{tatjana.jevsikova,valentina.dagiene,

vladimiras.dolgopolovas}@mii.vu.lt

Abstract. Educators’ experience shows that learning programming is in many
aspects problematic for novice software engineering students. On the other
hand, software engineering processes and the view of programming has been
changing during the recent years. In this paper, we address socio-cognitive
aspects of computer science and software engineering in order to contribute to
programming education enhancement: the research is focused on students’
temperament style and favorite programming learning activities. The study of
158 first and second year students, studying programming specialties in five
higher education institutions, has been presented. The “psychological portrait”
of the surveyed students reflects the evolution of the temperament style in
programming during last decades. The attitudes towards the programming
activities, presented in this paper, may contribute to the development of
enhancement of existing programming courses in higher education.

Keywords: Temperament style and programming
Personal characteristics and programming � Programming students
Novice programmers

1 Introduction

The topic we address in this article originally stems from the problem we face as
educators: novice software engineering students have difficulties in learning pro-
gramming. This often leads to students’ dissatisfaction, failure and high drop-out rates.
This problem has numerous roots. Most usually mentioned important factors for the
successful completion of programming courses, besides one’s abilities, are time con-
sumption and motivation [1, 2]. Therefore, factors that motivate students to learn
programming are important to know. An important reason is instruction type (in many
cases has remained the same in upper secondary school since the beginning of the
1970s, which could be the rationales for the difficulties in learning and teaching
computer programming) [3].

© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 101–113, 2018.
https://doi.org/10.1007/978-3-030-02750-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_8&domain=pdf

On the other hand, we observe changing trends in what students wish and how
students learn programming: application-oriented programming, programming as
combining and modifying pre-made components, and sharing programming projects [4].

With this research we wish to better understand socio-cognitive aspects of com-
puter science in order to enhance learning and teaching programming, and to help
students make carrier choices. In this study, we examine novice software engineering
students’ temperament style (in some publications addressed to as personality types or
personality traits) and students’ preferences towards programming activities in learning
programming, and possible relations within them. The study presented here contributes
to the knowledge on the topic in several aspects. First, it presents a “psychological
portrait” of novice software engineering students and helps to observe the evolution of
the temperament style in programming during last decades. Second, the study presents
Lithuanian case of temperament style distribution among programming students and
therefore reflects cultural differences. Third, we analyze the most attractive program-
ming tasks for students in conjunction with temperament style.

The rest of the paper is organized as follows. In Sect. 2 we discuss the main
research points done on temperament style in programming and software engineering.
Then we present the study conducted among first and second year students, studying
programming (software engineering) specialties in five higher education institutions. In
the next following sections we present results, discuss them, state the limitations of our
research, make conclusions and formulate directions for further research.

2 Background

2.1 Temperament Styles

Researchers show interest in studying programmers’ personal characteristics since the
start of the growth of demand in programmer’s profession and since the instruments to
study personality types have been developed, i.e. since 1970s. There are many
instruments to describe and assess personal characteristics (temperament styles). As
systematic literature review on personality type in programming shows [5], the most
popular instrument to describe and measure temperament style is Myers-Briggs type
indicator (MBTI), based on Jung’s type theory [6]. According to this type indicator,
personal preferences are classified according to four dimensions (dichotomies):

Extraversion (E) or Introversion (I). This dimension describes favorite world of the
person. Extraverts prefer to focus on the outer world of people and things, while
Introvert‘s attention is focused on the inner world of ideas, emotions and impressions.

Sensing (S) or Intuition (N). This dimension describes preferences of information
processing. People who prefer sensing like to take in information that is real and
tangible, observe what is happening around them, and they are especially attuned to
practical realities. People who prefer intuition take in information by seeing the big
picture, focusing on relations and connections between facts, and grasping patterns, and
are especially attuned to new possibilities.

102 T. Jevsikova et al.

Thinking (T) or Feeling (F). This dimension shows how one prefers to make decisions.
People who prefer thinking like to look at the logical consequences of the choice or
action, and they draw conclusions or make judgments dispassionately and analytically.
People who prefer feeling like to consider what is important to them and others
involved, they weight human factors, and place themselves into the situation.

Judging (J) or Perceiving (P). This dimension reflects preferences to the structure.
Judging means preference to live in a planned, orderly way, and seeking to regulate and
manage his/her life. People who prefer perceiving like to live in flexible, spontaneous
way, seeking to experience and understand life, rather than to control it.

MBTI person’s style is described by the combination of these four preferences of the
person, e.g. ENFJ and ISTP. In total, there are 16 type indicators. The authors of the
instrument emphasize that the types (styles) cannot be accepted as labels since they are
rather a person’s preferences, as can be compared to the preference of writing using
right or left hand.

According to Myers et al. [6], the combination of how the person prefers to process
information (S or N) and make decision (T or F) influences career interests and choices.
Analyzing descriptions, provided by the authors of MBTI, the combination of NT
might be most suitable for a programmer (software engineer) specialty: focusing on
possibilities, applying theoretical concepts and systems, being logical and analytical,
finding the scope of their interests in theoretical and technical frameworks like physical
sciences, research, management, computers, law, engineering, and technical work.
Another described combination that maps with general software engineering tasks
might be ST, which focuses on facts, applying objective analysis and experience,
tending to be practical and analytical, and finding their scope of interest in technical
skills in objects and facts, for example within applied sciences, business, administra-
tion, banking, law enforcement, production, and construction. The kind of work a
person chooses within the field may relate to the Extraversion–Introversion preference.
The way how people organize and complete the tasks of the particular job is influenced
by the Judging–Perceiving preference.

2.2 Temperament Styles in Software Engineering

The influence of personality in the education of a software engineer is seen by some
researchers as a key factor for successful learning [5]. Researchers are therefore seeking
to understand how teaching practices and styles can be tailored to specific student
temperament styles to improve learning process.

Previous studies, done in programmers’ temperament style, have shown that the
dominating dimensions among programmers are Introverts (I) over Extraverts (E),
Thinking (T) over Feeling (F), and Judging (J) over Perceiving (P). The percentage of
Sensing (S) and Intuitive (N) programmers are approximately equal [7]. A detailed
summary of personality type distribution in research done on this topic during the last
40 years is given in [5].

However, there are contradictory results regarding the relation between students’
temperament style and academic success. Some report that individual personality helps

On Preferences of Novice Software Engineering Students 103

to predict academic performance in programming [8–10]. Others report that personality
traits were not a significant factor in predicting academic success [11–13].

Even if there have been skeptical views on the ability of MBTI test to predict
success in professional area, and additional factors such as passion, professional
experience and financial rewards have been highlighted [14], personality type indicator
is successfully used by many researchers and is a helpful tool to learn about profes-
sional preferences in order to predict in which area a person’s motivation might be
stronger [7].

Capretz and Ahmed suggest mapping of temperament styles with software engi-
neering tasks [7]. In their research, the authors split the software engineering job into
categories (system analyst, software designer, etc.), formulate job requirements for each
category and skill required, and connect MBTI dimensions with every skill.

A broad range of personality types is beneficial to software engineering, especially
during the visible changes we observe in programming and its education.

2.3 Observing Changes in Programming Education

The capacity to code has been conceived for many years as a trait that an individual is
born with rather than as a craft that one can learn [15]. However, the diversity of
software engineering tasks is increasing: the skills necessary to successfully work in
this area 30 years ago might no longer apply. For instance, software design has become
much more than manipulating formal notations—it now revolves around the interaction
between designers and users [7].

During recent years, coding has been referenced to as a new literacy, alongside with
reading and writing [16]. Educators recognize significant shifts in (a) what students are
interested in programming, (b) the contexts in which they do it, and (c) how they do it
[4]. Kafai and Burke [4] highlight three dimensions, and in their more recent publi-
cation [15] add a fourth dimension of social shift in programming education:

1. A shift from code to actual applications. Attention is focused on the application
project being programmed and not on the programming language and its syntax.

2. A shift from tools to communities. A supportive and resourceful community is, in
fact, a tool in and of itself, and learning is built around these communities.

3. A shift from starting from scratch to remixing. The goal is not to build an entirely
new program but rather to leverage existing resources to improve and reimagine
content.

4. A shift from screens to tangibles. The question is no longer what is on your screen
but what is in your hands. Students learn programming a variety of devices.

Originally, these dimensions are addressing K-12 programming. In this paper, we
base on the dimensions of social shift in order to learn which types of programming
activities seem most attractive for university 1st–2nd year students, and whether pro-
gramming preferences are connected with temperament style.

104 T. Jevsikova et al.

3 Research Methodology

In this study, we utilize quantitative statistical research methods, including multivariate
methods (factor analysis) and non-parametric statistics. To detect students’ tempera-
ment style we use the Student Styles Questionnaire (SSQ) test, officially approved in
Lithuania. The study has been conducted by researchers in computer science, education
and psychology areas. The following Research Questions are posed in our study.

RQ1: What is the distribution of temperament styles among novice software
engineering students?
RQ2: What are the students’ attitudes towards different programming tasks?
RQ3: How are programming student’s temperament style and attitudes toward
programming activities related?

3.1 Respondents

In total, 158 students studying in five higher education institutions took part in the
study. These higher education institutions include three Universities and two Univer-
sities of Applied Sciences, located in four different cities of Lithuania.

The study was conducted in 2 stages. The first stage was carried out with 30
students (80% males and 20% females), studying programming-related specialties in
one of the Universities of Applied Sciences. The participants were those students who
expressed motivation to work as programmers in future and indicated their wish to take
part in the study. Among them, 23 were first year students, 6 students studied their
second year, and 1 student was a third year student. 90% of the respondents were 19–
22 years old.

During the second stage, the study was continued with 128 students, studying first
or second year in programming-related study programs. 119 of them were University
students, 9 studied in the University of Applied Sciences. Male students made up
82.8% of the respondents and female students 17.2%. 94% of the respondents were 19–
22 years old. The participation in the study was on a voluntary basis, and the main
selection criteria of participants in this stage therefore was a student’s expressed interest
in the study, which was shortly presented to the students.

Students’ average score in completed programming courses was 7.7 out of 10, with
median = 8.

In this paper, we analyze general results of the 2 stages, i.e. of total 158 respon-
dents, not detailing into differences between the groups of stage 1 and stage 2 due to the
differences in the group size.

3.2 Instrument

In order to define student’s temperament style and answer Research Question 1, we
used SSQ (Student Styles Questionnaire), patterned after the original Jungian con-
structs that were popularized by Myers and Briggs [17]. The SSQ instrument is adopted
in Lithuania by the psychologists, so the respondents filled in the questionnaire in their
native language. The questionnaire consists of 90 questions and requiring to select one

On Preferences of Novice Software Engineering Students 105

of the two suggested answers for each question. As MBTI instrument, the Student
Styles Questionnaire measures preferences rather than actual behaviors.

SSQ uses 4 dimensions: Extraverted (E) or Introverted (I), Practical (P) or Imag-
inative (I), Thinking (T) or Feeling (F), and Organized (O) or Flexible (F). These
dimensions correspond to the same concepts of the MBTI instrument, described in
Sect. 2.1. For simplicity and compatibility reasons with other published research,
further in this paper we “convert” SSQ labels into MBTI, i.e., we use MBTI dimension
labels, corresponding to the same construct as SSQ labels.

In order to answer Research Question 2, we used a questionnaire developed col-
laboratively by the authors of this paper. The statements were developed taking into
account the dimensions of social shift in programming, discussed in Sect. 2.3. The
participants of the study had to evaluate each statement using the 5-item Likert scale
(“totally disagree”, “disagree”, “neither agree, nor disagree”, “agree”, “totally agree”).
The questionnaire was made out of 14 statements and was intended to learn about
students’ preferences toward the main programming tasks (activities). The students’
had to think about the question “Programming assignment (programming project) tasks
I like” and rate presented statements using the 5-point Likert scale. The questionnaire is
presented below.

Programming Assignment Tasks (Activities) I Like
Please rate each statement from 1 (totally disagree) to 5 (totally agree):

Q1. To make a program‘s plan
Q2. To search for possible programming solutions on the Internet
Q3. To code (write program‘s text)
Q4. To learn programming language syntax and programming constructions
Q5. To look for errors in programs developed by other people
Q6. To debug each step of a program
Q7. To compose a program out of ready-made blocks
Q8. To develop a program‘s graphical user interface
Q9. To develop a program that one can apply (e.g. game, mobile app)
Q10. To develop a program in collaboration with group-mates (working in
pair/group)
Q11. To lead a group and to delegate roles in a group working on a programming
task
Q12. To discuss selected solution methods with my group-mates/professor
Q13. To discuss selected solution methods in social networks and/or forums
Q14. To share programs I develop (e.g. on social networks or other websites).

4 Results

4.1 Temperament Style Distribution Among Students

In the group of students who took part in the research (both stages, N = 158), Introvert,
Visual style (Intuitive), Thinking and Organized (Judging) styles dominate (Table 1).

106 T. Jevsikova et al.

The SSQ instrument allows to have T = F, which differs from the MBTI. Our
results show that 24 students have got equal values for the T and F dimensions.
Therefore, we included these types twice into the diagram.

The temperament style “portrait” of the students is presented in Fig. 1.

As we can see, the dominating types are ISTJ (16.5%), INTJ (12%), INTP (9.9%),
ESTJ (8.2%), and ISTP (7.1%).

Most frequent temperaments (the pairs of dimensions) are presented in Table 2
below. The asterisk on the right of the number marks respondents who received equal
value for T and F. We see that Introverts and Thinking as well as Thinking and Judging
combinations are the most frequent.

Table 1. Temperament style dimension distribution

Dimension Number (%) Dimension Number (%)

Extraversion 58 (36.7%) Introversion 100 (63.3%)
Practical (Sensing, MBTI) 75 (47.5%) Visual style (Intuitive, MBTI) 83 (52.5%)
Thinking 126* (79.7%) Feeling 56* (35.4%)
Organised (Judging, MBTI) 99 (62.7%) Flexible (Perceiving, MBTI) 59 (37.3%)

*24 respondents have the same value for Thinking and Feeling dimension

Fig. 1. Temperament style distribution among the students (N = 158 + 24 due to those 24 with
T = F)

Table 2. Dominant temperament among students, N = 158

Temperament Quantity % Temperament Quantity %

SJ 50 31.6 TJ 78 = 65 + 13* 49.4
NT 59 = 48 + 11* 37.3 TP 48 = 37 + 11* 30.4
IJ 63 39.9 IN 53 33.5
ST 67 = 54 + 13* 42.4 IT 83 = 66 +17* 52.5
NJ 49 31.0

*T = F

On Preferences of Novice Software Engineering Students 107

If we compare temperament style and average score in programming subjects (10-
point system), we see that the highest score belongs to INTJ type students (mean = 8.4,
std. deviation = 1.2, number of students = 22), INFJ (mean = 8.3, std. deviation = 0.8,
number of students = 12), and ISTJ (mean = 8.2, std. deviation = 1.2, number of
students = 30).

4.2 Attitudes Towards Programming Tasks

The results on rating statements on the favorite programming tasks (full questionnaire
is presented in Sect. 3.2) are shown in Fig. 2.

The activity most liked by the students was developing programs one can apply
(e.g. game, mobile app) (82.3% answered totally agree or agree to liking the task).
A majority of the students (65.2%) positively evaluated coding (writing program’s text)
as a task they like. Another activity liked by the students was discussing programming
solution in group (with their group-mates, professor) (liked by 60.1% of the students).
57.6% of respondents liked debugging program step-by-step. The majority of students
(54.4%) positively evaluate collaborative programming projects in groups. 53.8% of
respondents like searching for programming solution on the Internet. Developing
graphical user interface is a task liked by 53.2% of the respondents.

4.3 Relations of Students’ Temperament Style and Programming
Activity Preferences

In order to examine dependencies between students’ temperament style and preferences
on programming activities (tasks), exploratory factor analysis has been performed.
Factor analysis aims at identifying clusters of items for which responses for the
questionnaire on preferable programming tasks (Sect. 3.2) had common patterns of

Fig. 2. Attitudes towards programming tasks in terms of whether the students agree to liking the
task

108 T. Jevsikova et al.

variation. Each factor is denoted by a group of variables whose members correlate more
highly among themselves than they do with variables not included in the factor. As a
result, there were 3 factors identified for the attitudes towards programming tasks.

Table 3 shows the results of the factor analysis of the part of the study regarding
students’ attitudes towards programming tasks and the 3 factors identified: Tasks
requiring analysis (decomposition into steps) (includes questions Q2, Q3, Q4, Q5, Q6);
Product creation tasks (Q1, Q7, Q8, Q9, Q10), and Tasks requiring social interaction
(Q11, Q12, Q13, Q14).

First, we looked at the ratings of each factor by each of the 16 different tempera-
ment styles. In the following analysis we have derived students’ average ratings for
each factor. Table 4 presents average ratings of each factor, and the highest ratings
are written in bold font. The highest ratings correspond to students’ ratings “Agree” or
“Totally agree” (� 3.5).

Quite surprisingly, tasks requiring analysis (decomposition) were highly rated by
quite diverse set of temperament styles: ENTJ, ENFJ, ENTP, ESTP, ISFP, ESTJ, INTJ,
ISTJ. Several high ratings were given by students with Feeling (F) dimension, however
this factor might be predicted as more preferable for Thinking (T) dimension. Product
creation task was in general the most highly rated activity by any temperament style
students. Tasks, requiring social interaction, not surprisingly, are more preferable for
Extraverts: ESTJ, ESTP.

In order to find out if there were differences between the two “poles” of each
personal style dimension (Introversion–Extraversion, Sensing–Intuitive, Thinking–
Feeling, Judging–Perceiving), we have run Pearson’s Chi squared and Fisher’s Exact

Table 3. The results of factor analysis on the attitudes towards programming tasks

Question Factors
F1. Tasks requiring analysis
(decomposition into steps)

F2. Product
creation tasks

F3. Tasks requiring
social interaction

Q1 0.283 0.216 0.351
Q2 0.649 0.202 0.118
Q3 0.608 0.233 0.054
Q4 0.852 0.058 0.111
Q5 0.708 0.138 0.038
Q6 0.806 0.046 0.197
Q7 0.394 −0.034 0.640
Q8 0.005 −0.052 0.787
Q9 0.098 0.337 0.564
Q10 0.031 0.480 0.650
Q11 0.076 0.598 0.422
Q12 0.255 0.623 0.295
Q13 0.207 0.743 −0.005
Q14 0.101 0.675 0.013

On Preferences of Novice Software Engineering Students 109

tests for every factor. Null-hypothesis for each pair of groups was: There are no
significant difference between groups. In order to count positive, negative or neutral
answers, we counted average factor ratings falling into the appropriate interval (e.g.
(3.5; 4.5] for “agree” and (4.5; 5] for “strongly agree”). The results of p-value counted
for each dimension and each factor have shown that there was little significant dif-
ference between the answers of personality “opposite” dimension groups. Out of 12
results counted for 3 factor ratings by 4 dimension pairs, the null-hypothesis can be
rejected only in two pairs of groups if we consider p < 0.05:

• There is significant difference between Judging and Perceiving groups’ ratings of
factor F2 (Product creation tasks). Pearson’s Chi squared p-value = 0.0106, Fish-
er’s Exact test p-value = 0.01124. Judging students tend to more positively evaluate
product creation tasks.

• There is significant difference between Extravert and Introvert groups’ ratings of
factor F3 (Tasks, requiring social interaction). Pearson’s Chi squared p-
value = 0.0029, Fisher’s Exact test p-value = 0.0038. Extraverts prefer more than
Introverts tasks requiring a higher degree of social interaction.

The next step of our analysis was to see if there were significant differences
between positive ratings of the 3 factors by groups of two “poles” of each personal
dimension. However, no significant differences were found (p-value > 0.05). But if we
use confidence level a < 0.1, the difference is noticed between Extravert and Introvert
positive ratings. Introverts tend to like tasks requiring analysis (F1) more than Extra-
verts, but Introverts tend to like tasks requiring social interaction (F3) less.

Table 4. Average rating for factors by different temperament styles

Temp. Style F1. Tasks, requiring analysis
(decomposition into steps)

F2. Product
creation tasks

F3. Tasks, requiring
social interaction

ENFJ 3.7 3.8 3.3
ENFP 3.0 3.6 2.9
ENTJ 3.9 4.0 3.0
ENTP 3.6 3.7 3.1
ESFJ 2.6 3.6 2.8
ESFP 3.0 3.2 2.9
ESTJ 3.5 3.8 3.6
ESTP 3.6 3.4 3.5
INFJ 3.4 3.9 2.8
INFP 3.1 3.4 2.8
INTJ 3.5 3.6 2.9
INTP 3.1 3.2 2.6
ISFJ 3.1 3.6 2.6
ISFP 3.6 3.3 2.9
ISTJ 3.5 3.6 2.7
ISTP 3.1 3.1 2.6

110 T. Jevsikova et al.

5 Discussion and Conclusion

The “psychological portrait” of novice software engineering students, surveyed in this
study, is quite diverse. We see representatives of all 16 styles distinguished by the
instrument we use. However, the dominating types among surveyed students are ISTJ,
INTJ, INTP, ESTJ, and ISTP. This corresponds to the previous research in the area (the
most frequent types reported among programmers are ISTJ, INTJ, and INTP), and
confirms carrier preferences for software engineering described for perception and
judgement dimension combinations NT and ST in [6]. The rarest types among sur-
veyed students are ESFP, ISFP, ESFJ, and ENFP. The dominant dimension pairs
among students are IT, TJ, ST, IJ, NT, IN, and SJ. The rarest temperaments are SF, EP,
FP, EF, and SP. However, NF temperament, rarely present in other research results,
was comparatively frequent in our case (22%). The diversity of types might appear for
several reasons: (1) results reflect our exact case; (2) software engineering process and
the view on programming have been changing, and this attracts students with various
personal preferences to the programming specialty.

The two dimensions of social shift in programming education were confirmed by
students’ ratings of favorite programming tasks. The vast majority of students highly
positively evaluated application-oriented programming tasks (82%), which confirms
the first dimension of the social shift. 60% of students liked discussing programming
solution in group (confirms the second dimension of the social shift). However,
regarding discussions on programming tasks, students prefer face-to-face environment
rather than discussing solutions on a social network, forum, etc. (positively rated only
by 15% of the students). The majority of the students (65%) positively evaluated
Coding (writing program’s text) as a liked activity (which contradicted our expectations
and the statement about the change that students like composing program out of ready-
made blocks rather than to code from scratch (third dimension of social shift).

Tasks, requiring analysis (decompositions) were highly evaluated by different
temperament styles (not only by those of Thinking preference). Therefore, we can
make an assumption that the reason for such result might stem from the instruction
methods dominating today in universities (with focus on coding, programming lan-
guage and its syntax). Product creation task was in general the most highly rated
activity by many temperament style students. However, judging (J) students tend to
more positively evaluate product creation tasks than perceiving (P) students (possibly
due to lack of planning for perceiving preference). Tasks, requiring social interaction,
not surprisingly, are more preferable for Extraverts: ESTJ and ESTP.

Limitations of our study include the fact that only students who have shown interest
in the study (the programming profession and/or personality of programmers) took
part. Therefore, we see that the average score in programming-related subjects of the
participants was relatively high (7.7 out of 10). The results might be different if we run
this study among all students studying programming specialties.

The findings of little statistically significant differences between opposite pole
groups of each personal preference dimension and programming task factor ratings let
us formulate an assumption that regardless of personal preferences, students are
affected by the social shift in programming education. This assumption makes us to

On Preferences of Novice Software Engineering Students 111

rethink the ways we teach programming and develop appropriate programming course
materials.

The future steps of the research include studying of factors that motivated students
to select software engineering specialty, as well as relationships between motivational
factors, academic performance, and programming task preferences. The data are under
procession. The study, presented in this paper, should not be considered as research
giving “universal” results that can be generalized, but more as a process that can be
applied in other groups to shine light on socio-cognitive processes of the group and
help to enhance programming education in order to help students with professional
choices.

References

1. Kinnunen, P., Malmi, L.: Why students drop out CS1 course? In: Anderson, R., Fincher, S.
A., Guzdial, M. (eds.) 2nd International Workshop on Computing Education Research.
University of Kent, Canterbury, UK, 9–10 September 2006, pp. 97–108. ACM, New York
(2006)

2. Konecki, M.: Problems in programming education and means of their improvement. In:
DAAAM International Scientific Book 2014, Chap. 37, pp. 459–470 (2014)

3. Rolandsson, L.: Changing Computer programming education: the dinosaur that survived in
school: an explorative study about educational issues based on teachers’ beliefs and
curriculum development in secondary school. In: LaTiCE 2013: Learning and Teaching in
Computing and Engineering, Macau, China. IEEE (2013)

4. Kafai, Y.B., Burke, Q.: The Social turn in K-12 programming: moving from computational
thinking to computational participation. In: SIGCSE 2013: Proceeding of the 44th ACM
Technical Symposium on Computer Science Education, pp. 603–608 (2013)

5. Cruz, S., da Silva, F.Q.B., Capretz, L.F.: Forty years of research on personality in software
engineering: a mapping study. Comput. Hum. Behav. 46, 94–113 (2015)

6. Myers, I.B., McCaulley, M.H., Quenk, N.L., Hammer, A.L.: MBTI Manual. A Guide to the
Development and Use of the Myers-Briggs Type Indicator. Consulting Psychologists Press,
Palo Alto (1998)

7. Capretz, L.F., Ahmed, F.: Making sense of software development and personality types.
IEEE IT Prof. 12(1), 6–13 (2010)

8. Layman, L.: Changing students’ perceptions: an analysis of the supplementary benefits of
collaborative software development. In: CSEET 2006: Proceedings of the 19th Conference
on Software Engineering Education and Training, pp. 159–166. IEEE (2006)

9. Alspaugh, C.: Identification of some components of computer programming aptitude. J. Res.
Math. Educ. 3, 89–98 (1972)

10. Pocius, K.E.: Personality factors in human–computer interaction: a review of the literature.
Comput. Hum. Behav. 7, 103–135 (1991)

11. Golding, P., Facey-Shaw, L., Tennant, V.: Effects of peer tutoring, attitude and personality
on academic performance of first year introductory programming students. In: 36th Annual
Frontiers in Education Conference, pp. 7–12. IEEE (2006)

12. Lutes, K., Alka, H., Purdum, J. Do introverts perform better in computer programming
courses? In: Proceedings of the American Society for Engineering Education Conference,
pp. 12255–12263 (2009)

112 T. Jevsikova et al.

13. Corman, L.: Cognitive style, personality type, and learning ability as factors in predicting the
success of the beginning programming student. ACM SIGCSE Bull. 18, 80–89 (1986)

14. Norman, L.K., Weinberg, J., Coplien, J.: Call for the rational use of personality indicators.
Computer 31, 146–147 (1998)

15. Burke, Q., O’Byrne, W.I., Kafai, Y.B.: Computational participation: understanding coding
as an extension of literacy instruction. J. Adolesc. Adult Lit. 59(4), 371–375 (2015)

16. Rushkoff, D.: Program or be Programmed: Ten Commands for a Digital Age. O/R, New
York (2010)

17. Oakland, T., Glutting, J., Horton, C.: Student Styles Questionnaire (SSQ). Pearson (1996)

On Preferences of Novice Software Engineering Students 113

National Concepts of Teaching
Informatics

Standards for Higher Secondary
Education for Computer Science

in Germany

Arno Pasternak1(B), Lutz Hellmig2(B), and Gerhard Röhner3(B)

1 Fritz-Steinhoff-Schule Hagen, Technische Universität Dortmund,
Dortmund, Germany

arno.pasternak@cs.tu-dortmund.de
2 Universität Rostock, Rostock, Germany

lutz.hellmig@uni-rostock.de
3 Lichtenberg-Schule Darmstadt, Studienseminar Darmstadt,

Darmstadt, Germany
groehner@t-online.de

Abstract. In this paper we will report on the Standards for Higher
Secondary Education for Computer Science in Germany. After the first
results of the PISA-studies in Germany the administration in the cen-
tral and the federal states switched standards and curricula from setting
teaching aims and cognitive learning objectives to describing students’
learning outcome with practices.

On the central level this work was only done for the major subjects
like Mathematics, Mother Tongue, Foreign Language and Natural Sci-
ence. This is a disadvantage for the other subjects in school.

Therefore the German CS society—Gesellschaft für Informatik (GI)—
installed a working group to develop standards for higher secondary edu-
cation in 2013. By the end of 2015 this group finished the task and in
January 2016 the board of the GI published this academic work as the
official standards in Germany for higher secondary CS education [2].

It is to be hoped that these standards will have a positive impact on
the standardisation of computer science teaching in the various German
federal states, just as the standards for lower secondary education had
almost 10 years earlier.

Keywords: Higher secondary computer science education
Education standards · CS in Germany

1 Introduction

In the late 1990s OECD has started to monitor and compare the performance of
students with the PISA studies [11–13]. Germany’s students did not match the
expectations. As a consequence, stakeholders in Germany’s educational system
decided to shift from setting teaching aims and cognitive learning objectives
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 117–128, 2018.
https://doi.org/10.1007/978-3-030-02750-6_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_9&domain=pdf

118 A. Pasternak et al.

to describing students’ learning outcome with practices. In subsequent years,
federal authorities developed standards for a set of important subjects—but not
regarding CS education [1,7].

The German non-governmental professional organisation for CS—
Gesellschaft für Informatik (GI)—took this task to empower CS education as
a subject in schools. GI published national standards for lower secondary educa-
tion in 2008 [1,15]. These standards left an evident impact on the development
of curricula in the 16 federal states of Germany. However, there is no compulsory
CS in the lower secondary education in many schools.

In 2013 the GI continued by appointing a working group to develop standards
for the higher secondary education. This working group finished its work in the
end of 2015, and in January 2016 the GI board adopted these standards as the
official position of the GI [2].

In this paper we give an account of the key ideas of these standards.

2 Computer Science Education in Germany

2.1 German Educational System in a Nutshell

Due to the responsibility of the 16 federal states of Germany, the German educa-
tional system is a ‘hexadecimal assortment’ of different approaches to establish a
general education in each federal state. Nevertheless, there are some key points
in common for all federal states: Education starts at the age 6 with primary
school from grade 1 to grade 4 or in some federal states to grade 6. In each
federal state, three degrees of qualification can be achieved by students: SEK
I after grade 9 or grade 10. The range from grade 7 to grade 9 or grade 10 is
called the lower secondary level. The third degree of qualification is attainable
in the ‘Gymnasiale Oberstufe’. It includes the lower secondary level together
with the higher secondary level in grades 11 and 12—in some federal states until
grade 13—and implies the higher education entrance qualification. In the higher
secondary level, students are taught in a few core subjects (i.e. German, Math-
ematics, English), furthermore they attend lectures of an individual selection of
subjects in different scientific domains. Besides that, the students may choose
which subject he or she attends on a basic level1 or on an advanced level2.

Efforts to ensure a common, standardized higher education entrance quali-
fication in Germany are conducted by the Permanent Conference of the Minis-
ters of Education and Cultural Affairs of the States of the Federal Republic of
Germany (KMK).

2.2 Higher Secondary Education

The history of CS education in schools started in the 1960s. In some schools,
voluntary courses took place in physical logic and programming with mini-
computers. These were the precursor for CS in school. In the middle of the
1 In German: Grundkurs or Grundfach.
2 In German: Leistungskurs or Hauptfach.

Standards for Higher Secondary Education for CS in Germany 119

1960s many people were involved in general discussions about the educational
system in Germany [3,14]. The result of these discussions was a new constitu-
tion of the higher secondary education in Western Germany with a system with
compulsory and elective courses in grade 11 to grade 13 [5]. CS as a full-credit-
subject was one of the innovations. The problem in 1972 was the same as today:
the lack of CS teachers. Consequently there were many schools without an offer
in CS.

In the GDR, between 1949 and 1990 an independent state of Germany, the
government enacted a comprehensive program for CS education from grade 9
in schools up to vocational training and university education in 1985. As a part
of this, eleven special schools for STEM education started to teach CS in 1986.
Furthermore, curricula for CS education in grades 9/10 and 11/12 at schools
for general education were developed and implemented successively. These offers
were accompanied by a program of computer science teacher education [9].

Meanwhile in most of the federal states of Germany there are educational
programs for CS, but the quantity is too small. The curriculum of CS in schools
is different in the federal states. For example databases were not always part
of the curriculum in the past. The quantity of lessons with information about
hardware is slight. The programming language changed from mostly preferred
language Basic in the first years via Pascal to Java.

Students have to fulfill many conditions in other subjects like Mathematics,
First Language etc., so they often are not interested in learning CS. It is not
easy, to make CS a part of a special permanent education.

In other papers there are more details about CS education in some federal
states of Germany [4,8].

2.3 Lower Secondary Education

CS as a topic in the lower secondary education in German schools followed CS
in higher education a few years later. With a few exceptions only the situation
in schools was worse than in higher education. There were and are not enough
teachers for CS. Often teachers have to devise their own curriculum. Many teach-
ers and administrators mistake CS for ICT. Mostly CS is offered as an elective
course for the students. In the last few years there is a new discussion about
CS in lower secondary education. In some federal states CS is established with a
minimum of lessons and importance. Unfortunately a significant number of influ-
ential people struggle again and again with the idea of a compulsory subject in
lower secondary education.

3 Standards for Computer Science for Higher Secondary
Education

The lack of consideration for Computer Science Education by nationwide edu-
cational authorities was the reason for the German Society of Computer Science
(GI) to develop recommendations for standards in computer science education,

120 A. Pasternak et al.

beginning with standards for lower secondary education in 2008. Since the stan-
dards for CS for higher secondary education are continuing the ideas in this
paper, it is advised to describe the main ideas of lower secondary standards first
in Sect. 3.1.

The situation for higher secondary education is similar to lower secondary
education. There are some official standards for some subjects, but not for CS
Education yet. Instead of that the Unified Requirements for Examinations in
Higher Secondary Education [6] describe the demands for the final exams for
the higher education entrance qualification. The authors of the higher secondary
standards also had to keep in mind the compatibility of the unified requirements
with the higher secondary standards.

3.1 Standards for Computer Science Education for Lower
Secondary Education

History. From 2003 to 2008 researchers and teachers of CS developed national
standards for CS in lower secondary education. After its finalisation they asked
the German society for CS (GI) for a takeover of these standards as an official
GI-paper [1]. At the beginning of 2008 the GI approved this request.

As a result, in Germany we have on the one hand ‘official’ standards for
some key subjects developed by the inter-federal-state official organisation KMK,
on the other hand ‘semi-official’ recommendations for standards, including the
Standards for Computer Science Education, developed by the GI.

While there were no official nationwide curricula in CS and additionally in
many federal states there were no experience and no paper either, administration
in most federal states orientated towards these GI-standards in the following
years. This was not the expectation at the beginning of the work and represents
a great success of these standards.

Today CS in lower secondary education is effectively defined by these stan-
dards in Germany.

Information and Data

Modeling and Implementing

Algorithms

Reasoning and Evaluating

Languages and Automata

Structuring and Connecting

Computing Systems

Communicating and Cooperating

Computing and Society

Representing and Implementing

C
noettnS at dnrasd

Pra
ctic

es

Fig. 1. Matrix of practices in lower secondary education, according to [15]

Standards for Higher Secondary Education for CS in Germany 121

Structure. The structure of these guidelines is based on the Principles and
Standards for School Mathematics [10]. The standards are divided in two parts:
principles and standards. The principles are sub-divided in equal opportunities,
curriculum, teaching and learning, quality assurance and the multidisciplinarity
of CS. The standards are sub-divided in contents and practices respective Fig. 1.
Afterwards these standards are first described and made concrete for grades 5
to 7 and secondly for grades 8 to 10.

3.2 Underlying Views on Computer Science

In Germany, CS in schools is generally referred to as the science of theoreti-
cal analysis, conception and the concrete implementation of complex IT sys-
tems. We consider an IT system as a specific assembly of hardware, software
and components of networks to solve a problem. This assembly contains the
non-technical aspects of embedding IT systems in social contexts. Therefore CS
contains elements of Mathematics, Engineering, Social and Natural Science as
well as Humanities.

The core products in CS are immaterial in contrast to the traditional engi-
neering sciences. The impact of these products is very powerful. The development
of an IT system is based on strategies that are not learnable from experiences
from real life.

We need a new additional view for the information society inside the general
education – the computational education. The basic science of this computational
education is computer science.

CS makes aware of the regularity of information processing in society, nature
and technology. Additionally CS and computational thinking completes the pro-
fessional spread of other subjects. Computational development and problem solv-
ing is a creative process with covering theory, abstraction and design. Compu-
tational thinking and tools are involved in all parts of science, economy and
technology. Everybody is concerned with CS at least as a user.

CS lessons give students many opportunities for the increase of competences,
which are important for a self-determined life in a computational society. Stu-
dents cannot extrapolate the comprehension of the modern computational soci-
ety with everyday experiences. The qualification in knowledge, methodical, social
and self competences happens in CS lessons in a mutual and a holistic way with
situations of the students’ everyday life. The use of and the interaction with con-
cepts of modeling and structuring, software tools and programming languages
is essential in a CS education. Learning and working in teams lead to a better
qualification in study and profession.

3.3 Model of Competences for Higher Secondary Education

The model of competences for higher secondary education (respective Fig. 2)
is based on the Tyler matrix of practices and contentual competences [16] and
on the standards of computer science education for lower secondary education

122 A. Pasternak et al.

(see Fig. 1). The structure is the result of a longer discussion in the community
of scientists, educators, and teachers in the field of computing.

Fig. 2. Competence model of the standards for computer science in higher secondary
education

Competences are the result of the amalgamation of contentual and practical
components. Upholding this system is a key concept for the acceptance and the
use of the standards by stakeholders. Regarding the framework conditions of
higher secondary education in Germany, it was necessary to modify the system.

3.4 Practices

Practices describe the way in which students should deal with specific content.
Thus the inherently cognitive abilities and skills, which are specific to the subject,
are linked, but are not tied to special computer science contents. They can be
used by students only in active involvement with the content and enable them to
apply their acquired knowledge and skills for solving problems in new situations.

The following five different practices are used according to the educational
standards for the lower secondary education:

Modeling and Implementing
These are the central parts of the modeling cycle: to analyze a problem, to design
and implement a CS-model, test and evaluate the implementation on a computer
system.

Standards for Higher Secondary Education for CS in Germany 123

Reasoning and Evaluating
Reasoning is the idea of verification of a given statement or fact by rationally
comprehensible arguments. The evaluation is to formulate a value judgement by
considering the context and using transparent and appropriate criteria.
Structuring and Connecting
In structuring, facts are analyzed from a CS point of view. Objects and process
as well as their interaction are systematically noted. In networking, existing
contexts, effects and analogies in and outside of computer science are recognized
and used.
Communicating and Cooperating
Communication in oral and written form uses the technical language as well as
the use of methods for information dissemination from different sources.
Cooperation is necessary for teamwork in the field of computer science, especially
for a project. Students use network based platforms for communication and
cooperation and reflect their opportunities and risks.
Representing and Interpreting
Concepts and facts of computer science are presented in a variety of forms.
Formal representations enable automatic information processing and serve for
professional communication. Representations of the modeled reality are inter-
preted. Interpreting is a prerequisite for assessing facts. Data are obtained by
interpretation of information.

3.5 Stages of Complexity in the Dimension of Practices

Since the standards are only recommendation up to now, the Unified Require-
ments for Examinations in Higher Secondary Education are obligatory in all
federal states. They are based on a system of three stages with increasing com-
plexity. Since the construct is in common for all subjects in every federal state of
Germany, it has been included in the standards for higher secondary education
for CS. The authors of the standards have labeled the stages.

They have been labeled in the standards for higher secondary education
for CS.

1. Reproduction contains the display of known facts of a definite area in a
trained context; the description and representation of procedures, methods,
and principles of computer science as well as the use of skilled procedures in
well-known situations.

2. Reorganization and Transfer connotes the self-reliant use of known facts
for answering further questions in familiar contexts; the transfer of know-
ledge to slightly modified questions, situations, and methods; and the use
of known techniques, methods and principles for solving new problems in
familiar situations.

3. Reflection and Problem Solving is represented by a systematic approach
to understand, represent and judge complex conditions and to draw conclu-
sions. Furthermore, the students purposely choose and modify their acquired
knowledge to solve new problems.

124 A. Pasternak et al.

The levels of complexity relate to the competences of the students to be
developed. Therefore, they were transferred into the section of practices. For
each of the five components Modeling and Implementing, Reasoning and Evalu-
ating, Structuring and Connecting, Communicating and Cooperating as well as
Representing and Interpreting, three stages of complexity are defined separately
and cumulatively.

We describe the levels of practices by the example of Modeling and Imple-
menting. Modeling and Implementing are the key elements of the circle of mod-
eling, including the analysis of a problem and the design of a computational
model, which will be implemented, tested and evaluated.

At the lowest stage of reproduction, the students are able to display an already
known model in a familiar representation; discover a given model or investi-
gate a given implementation and test an implementation with given cases. The
medium level—reorganization and transfer—has been achieved if the students
prove the applicability of a given model for solving a problem, accomplish mod-
eling and implementing—according to an analysis of a problem—with a familiar
method of modeling. Furthermore, they use IDEs in an appropriate way for
implementing a model and prove an implementation on functionality and cor-
rectness, including special cases, systematically. Reflection and Problem Solving
takes place, if students—according to an analysis of a problem with a higher
grade of complexity—model and implement with a method (not necessarily with
a familiar one) of modeling. They revise their own work, considering aspects of
efficiency, generality, and reusability. Students reflect their practice of problem
solving and use their insights for further work.

3.6 Fundamental and Extended Level of Requirements
in the Contentual Dimension

Each subject in higher secondary education can be offered on a basic level or on
an advanced level with twice the time. For that reason, the standards have two
stages for each contentual section. The first stage is mandatory for both levels,
while the second stage describes advanced contents and concepts in addition to
the first level.

There are five areas of contents: Computer Science and data, algorithms, lan-
guages and automata, Computer Science systems, Computer Science and society.
Each content area is described with about five notes in each stage.

In the next paragraph we will extensively outline three examples of content
areas and the other two briefly.

Selected Examples of Content

Information and Data. Information is the context-related sense of a state-
ment, instruction or message. Computer science is characterized by the system-
atic representation and automatic processing of data as a carrier of information.

Standards for Higher Secondary Education for CS in Germany 125

Data is a representation of information in a formalized way for communi-
cation, interpretation and processing, represented by strings that follow in a
suitable syntax. Data become information again when interpreted in a concrete
context.

Fundamental Level. The students . . .

– distinguish between characters, data and information as well as between syn-
tax and semantics,

– analyze data on their structure,
– form information as data with data types and data structures,
– use, model and implement operations on static and dynamic data structures,
– create a data model and implement a data model as a database,
– investigate and organize data while regarding redundancy, consistency and

persistence,
– use a query language to display and manipulate data and interpret the data.

Advanced Level. The students . . .

– use, model and implement operations on complex datastructures,
– develop a real part of the life with complex relationships in a database.

Algorithms. Algorithms are finite descriptions of processes for solving prob-
lems and result in a clearly defined sequence of actions during execution. An exe-
cution on a computer requires the formulation in a programming language. Com-
plex problems can be solved, if—in addition to the algorithmic basic structures—
design methods and data structures are developed. The implementation of an
algorithm requires sufficient testing and, if necessary, revisions.

Fundamental Level. The students . . .

– use algorithmic basic structures (sequence, alternative, repetition) and imple-
ment an application using a programming language,

– analyze given programs respectively the basic concepts including variables,
references, nesting and functional decomposition,

– implement algorithms and describe them in adequate form,
– use modularization for structuring of algorithms and use them for their imple-

mentation,
– use software libraries or available modules to implement an algorithm,
– test and revise a program systematically.

Advanced Level. The students . . .

– model and implement iterative and recursive algorithms and data structures,
– compare and assess algorithms for solving a problem, including efficiency,
– analyze examples of the complexity of algorithms
– assess the practical and theoretical boundaries of algorithmization.

126 A. Pasternak et al.

Languages and Automata. Formal languages are the basis for communication
with automata and are used in a variety of application scenarios in computer
systems. In contrast to natural languages, formal languages have a definitive
syntax defined by grammar, syntax diagrams, or language descriptions.

Automata are state-based systems that read and handle an input character
after character. Automata types can be differentiated according to the design of
their memory and thus according to their basic possibilities and limits.
(Following ditto the fundamental and the advanced level.)

IT Systems. A computer system is a specific combination of hardware, software
and network components to solve an application problem. Also included are non-
technical aspects that are relevant by e.g. embedding in a sociocultural system,
inclusion of the potential users in the development process, the economic and
environmental consequences. Competent use, design and evaluation of computer
systems require a fundamental understanding of their structure and function-
ing. For the development of computer systems, machine-processable facts of the
real world are identified and modeled. Typical fields of application of computer
systems are data management, communication, graphics, simulation, robotics,
process control and regulation or speech processing.
(Following ditto the fundamental and the advanced level.)

Computer Science and Society. Information systems shape our information
society and interact with people and society. Based on socially relevant questions
or own experiences in dealing with IT systems, interactions between IT systems
and their social embedding are analysed. In confrontation with normative, legal,
ethical and social aspects, an orientation framework and a sense of responsibility
in dealing with modern information technology are developed. Freedom of choice
in dealing with IT systems in accordance with social norms and standards and
appropriate responses to risks when using computer systems are reflected.
(Following ditto the fundamental and the advanced level.)

3.7 Illustrating Tasks

Presenting tasks is an effective way to illustrate the generally formulated items
and make them vivid. Depending on the situation, different kinds of tasks are
needed to acquire new knowledge, to consolidate knowledge or examine the
adopted competencies. Learning is a process which includes phases of performing
as a subset. Performing can be a self-examination to reflect the improvement of
the learning progress by the learner. If somebody else (e.g. a teacher) judges the
result of the learning process by giving marks, we call it scoring. A model of the
relationship between Learning, Performing and Scoring is given by Fig. 3.

Regarding the model, three types of tasks illustrate the standards: A col-
lection of eight complex tasks from written exams of different federal states of
Germany show an impression of different approaches to prove students’ compe-
tences. Furthermore, the document includes four tasks for oral exams developed

Standards for Higher Secondary Education for CS in Germany 127

Fig. 3. Relationship between learning, performing and scoring

by experienced teachers. Last but not least, five tasks show examples how knowl-
edge can be developed and trained according to the standards.

Every task is complemented with an anticipated typical solution and an
assignment to the related contentual and processual sections, and to the stage
of complexity.

Finally a list of suitable operators is part of the document to ensure a clear
understanding of the required demands of the tasks.

4 Conclusion

CS in Germany today is not a substantial part of education in lower and higher
secondary education. During the last 10 years the Permanent Conference of the
Ministers of Education and Cultural Affairs of the federal states in the Federal
Republic of Germany have developed standards in subjects like Mathematics,
Languages and Natural Sciences. In the majority of the federal states of Germany
curricula are introduced, the contents are more or less different. The German
CS organization GI undertook the task and developed CS standards for higher
secondary education in Germany. In January 2016 these standards were adopted
by the board of the GI. These standards can be seen as an extension of the
standards for lower secondary education, written in 2008.

Better than expected the standards for lower secondary education have been
involved in the development of curricula in the federal states of Germany. We
hope the standards for higher secondary education fulfill the same role.

Acknowledgments. In Germany standards were usually developed in working groups
installed by administration organizations without a considerable discussion with teach-
ers or other people. These standards for CS were developed without involving any
administration structure. The goal was to involve many teachers in this process. Experts
were invited by the working group to discuss part of these standards. In September
2015 these standards were reviewed on the German conference INFOS (Informatik und
Schule). Additionally an online survey was conducted in November 2015. Thanks to all
the people involved in this process.

128 A. Pasternak et al.

References

1. Arbeitskreis ‘Bildungsstandards’ der GI: Grundsätze und Standards für die Infor-
matik in der Schule. LOGIN-Verlag, Berlin (2008)

2. Arbeitskreis ‘Bildungsstandards SII’ der GI: Bildungsstandards Informatik für die
Sekundarstufe II. LOGIN-Verlag, Berlin (2016). http://informatikstandards.de/
docs/Bildungsstandards SII.pdf. Accessed 09 June 2016

3. Dahrendorf, R.: Bildung ist Bürgerrecht. Plädoyer für eine aktive Bildungspolitik.
Nannen-Verlag, Hamburg (1965)

4. Hubwieser, P.: Computer science education in secondary schools – the introduction
of a new compulsory subject. Trans. Comput. Educ. 12(4), 16:1–16:41 (2012)

5. KMK (Ständige Konferenz der Kultusminister der Länder der Bundesrepublik
Deutschland): Vereinbarung zur Gestaltung der gymnasialen Oberstufe in der
Sekundarstufe II (1972)

6. KMK (Ständige Konferenz der Kultusminister der Länder der Bundesrepublik
Deutschland): Einheitliche Prüfungsanforderungen in der Abiturprüfung Infor-
matik. Luchterhand, Neuwied (2004)

7. KMK (Ständige Konferenz der Kultusminister der Länder der Bundesrepublik
Deutschland): Bildungsstandandards im Fach Physik für den mittleren Bildungsab-
schluss - Beschluss vom 16.12.2004. Wolters Kluwer Deutschland - Luchterhand,
Neuwied (2005)

8. Knobelsdorf, M., et al.: Computer science education in North-Rhine Westphalia,
Germany. A Case Study. Trans. Comput. Educ. 15(2), 9:1–9:22 (2015)

9. Merkel, G.: Über Informatikkenntnisse des gebildeten Bürgers. In: Stetter, F.,
Brauer, W. (eds.) Informatik und Schule 1989: Zukunftsperspektiven der Infor-
matik für Schule und Ausbildung, pp. 56–68. Springer, Heidelberg (1989). https://
doi.org/10.1007/978-3-642-75163-9 5

10. NTCM: Principles and Standards for School Mathematics. National Council of
Teachers of Mathematics, Reston (2000)

11. OECD: Measuring Student Knowledge and Skills A New Framework for Assess-
ment: A New Framework for Assessment. Measuring Student Knowledge and Skills
A New Framework for Assessment, OECD Publishing (1999)

12. OECD, Adams, R., Wu, M., Program for International Student Assessment,
Organisation for Economic Co-operation Development: Pisa 2000 Technical report.
OECD (2002)

13. OECD, Statistics, U.: PISA Literacy Skills for the World of Tomorrow Further
Results from PISA 2000: Further Results from PISA 2000. OECD Publishing
(2003)

14. Picht, G.: Die Deutsche Bildungskatastrophe. Deutscher Taschenbuch Verlag,
München, 2 edn. (1965), 1. Auflage 1964, Walter-Verlag Olten

15. Puhlmann, H., Schulte, C., Brinda, T.: Bridging ICT and CS: educational stan-
dards for computer science in lower secondary education. Source ACM SIGCSE
Bull. Arch. 41(3), 288–292 (2009)

16. Tyler, R.W.: Basic Principles of Curriculum and Instruction. University of Chicago
Press, Chicago (2010)

http://informatikstandards.de/docs/Bildungsstandards_SII.pdf
http://informatikstandards.de/docs/Bildungsstandards_SII.pdf
https://doi.org/10.1007/978-3-642-75163-9_5
https://doi.org/10.1007/978-3-642-75163-9_5

Computer Science Teachers Perspectives
on Competencies - A Case Study
in the Kingdom of Saudi Arabia

Fayiq Alghamdi1,2(B), Arnold Pears3, and Aletta Nylén1

1 Uppsala University, Uppsala, Sweden
{fayiq.alghamdi,aletta.nylen}@it.uu.se
2 Al-Baha University, Al-Baha, Saudi Arabia

3 KTH Royal Institute of Technology, Stockholm, Sweden
pears@kth.se

Abstract. The Kingdom of Saudi Arabia (KSA) has recently adopted
the Saudi Teaching Competencies Standard (STCS). This paper tries
to answer how these competencies are achieved, how they are main-
tained, and what support exists to support teaching CS competently in
the KSA. This paper presents the results of an investigation of teacher
awareness of, and attitudes to, the STCS in the Kingdom. Through the
study reported here, we address an urgent need in the Kingdom to under-
stand teacher preparedness in terms of CS teaching competencies. The
study draws on interviews with ten CS teachers in five different cities
in the KSA. A thematic coding analysis approach was used. This study
explores the CS teaching competencies held by teachers in three areas
of CS teaching, focusing on connection to society, professional practice
and professional development. The results of the study highlight the CS
teaching competencies that CS teachers feel they currently grasp well in
the KSA. By enhancing awareness of what teachers currently do well we
contribute to the adjustment and improvement of the STCS and help to
build a program which addresses the current in-service training needs of
CS teachers. The outcomes also help to raise awareness of the challenges
of implementing the Computer Education curriculum in KSA schools.

Keywords: CS teachers · Computing education
Teaching competency · CS teaching competencies

1 Introduction

Computer Science (CS) is a fast-moving field. Paradoxically, it is often taken for
granted that teachers who graduated from CS colleges are qualified to teach
the technical content of the CS subject. Clearly a continuous learning pro-
cess is required to become an excellent CS teacher, as the CS domain develops
rapidly. While there are challenges faced by teachers who have graduated with
CS degrees, there are also many teachers with mathematics, business or other
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 129–140, 2018.
https://doi.org/10.1007/978-3-030-02750-6_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_10&domain=pdf

130 F. Alghamdi et al.

backgrounds who teach CS in schools for these teachers for the challenges are
much more severe [9]. Excellent CS teachers are necessary if high-quality learn-
ing outcomes are to be achieved in the Kingdom’s schools. As a result teachers
need to improve their competencies in order to teach CS effectively.

Crick defines competencies as the “complex combination of different knowl-
edge, skills, understanding, values, attitudes, and desire which lead to effective,
embodied human action in the world, in a particular domain” [1]. Competen-
cies are self-motivated and multidisciplinary, and teachers’ competencies can be
classified into five groups specialized by the European Council: cognition, collab-
oration, connection, creativity and communication [2]. Indeed, teaching compe-
tencies are related to all activities in the classroom, as Hagger claims “focused on
the role of the teacher in the classroom, directly linked with the ‘craft’ of teaching
- with professional knowledge and skills mobilized for action” [3].

The National Center for Assessment (NCA) has concluded in a recent assess-
ment of teaching standards that CS teachers in KSA lack a number of key
competencies. Approximately, half of the teachers have not passed the Com-
puter Teacher Exam (CTE) annually that tests the teachers’ competencies in
CS in compliance with the Saudi Teachers Competencies Standards [4]. Alr-
shedi observes that CS teachers in the KSA tend to have low competency in
teaching CS, and many teachers are in need of more in-service training in CS
professional development [5]. In addition to this, Alrshedi notes that using a pro-
fessional website in the CS subject created a positive trend in CS female teachers’
self-efficacy [6].

Studies in other countries have also addressed the issue of teachers’ com-
petencies. Bender et al. investigated a new competency model for teaching CS
in Germany and proposed a framework to support CS teachers based on results
reached using content analysis of thirteen curricula [7]. Sentance et al. developed
a program to support CS teachers in England using action research with twenty-
two teachers. They focus on CS content knowledge and pedagogical expertise and
resulted in teachers changing their practice [8].

Sue and Csizmadia described a program called the Certificate in Computer
Science Teaching (CCST) that supports teachers who have made the transition
to teaching CS. The participants were thirty-six teachers, and the method was
a short survey with five open questions. The program is based on three parts:
the reflection on the journey, programming skills, and focus on pedagogy. The
CCST was adopted as the national certification standard for CS teachers, and it
is an appropriate approach through which to support in-service teachers in other
countries [15]. Finally, Hubwieser et al. compared the education system for CS
Education in thirteen countries aiming a deductive qualitative text analysis.
They arrived at a classification based on four competency groups which are;
representing, understanding, creating, and testing [10].

The identification of new issues related to preparing CS teachers in schools
and universities is the result of AlGhamdi [11]. In this study we argue that
students were positively motivated to choose to study CS due to the influence
their CS teachers had during their studies. In light of the previous discussion,
the current study focuses on conceptions of KSA teachers in terms of what

Computer Science Teachers Perspectives on Competencies 131

constitutes teaching competencies in CS. The outcomes contribute to insights
into how these competencies are achieved, how they are maintained, and what
support mechanisms currently exist to support CS teaching competence in the
KSA.

2 The Saudi Teachers Competencies Standards

The Government in the KSA approved the Saudi Teachers Competencies Stan-
dard (STCS) in 2016 under authority of the governor of the Public Education
Evaluation Commission [12]. The standard is based on educational research that
emphasizes the influential role teachers who are active life-long learners [13].
These educators are those who are most likely to actively engage in seeking new
knowledge and skills [14]. The Ministry of Education, through this initiative,
expects to improve teachers’ educational practices thus ensuring that the King-
dom maximizes the chances of students’ accessing their full potential within the
educational system. The STCS is structured into three major areas; values and
responsibilities; knowledge and practice. See Fig. 1. The standard builds on the
premise that the quality of learning depends on the quality of teaching, and that
excellence in teaching requires high levels of specialized knowledge and skills,
and a high degree of commitment, passion, and professionalism. Among the
most important specifications on which the STCS are based are the following:

Fig. 1. The Saudi Teachers Competencies Standard, STCS.

– Student-oriented improvement: Focus on teachers’ knowledge and practices
that have a greater impact on outcomes.

– Focus on development: Supporting development for all teachers.

– High quality: Highly relevant and achievable standards.

132 F. Alghamdi et al.

– Inclusiveness: Standards cover all stages of the teachers’ careers.

– Credibility: Standards accurately describe the work of teachers in the KSA.

– Focus on practice: Standards are built professionally.

The STCS is the core of all initiatives that are relevant to the teaching profession,
including:

– Pre-service teacher qualification.

– Issuing professional licenses and associated incentives.

– Rewards for teachers.

– Assessment of the professional performance of teachers.

– Growth, development and professional learning.

The STCS consists of eight interrelated standards, grouped into three overlap-
ping and interrelated areas and eight standards:

Professional Teaching

– The Islamic values and the Saudi culture in the education process.

– Professional interaction with educators and society.

Professional Knowledge

– Knowing the students and how to teach them.

– Knowing the content of the specialization and curriculum.

– Knowing the teaching methods.

Professional Practice

– Planning and applying learning and teaching units.

– Creating an interactive learning environment and sustainable practice.

– Evaluating students.

The STCS as a national standard occupies an interesting position in relation
to the particular cultural context in which it is devised and the relationship of
the standard to the broader international context regarding knowledge and skills
in different educational domains [4].

Computer Science Teachers Perspectives on Competencies 133

3 Research Question

The aim of this paper is to explore the relationship between CS teaching com-
petencies held by practicing teachers, and those required by the STCS in the
KSA. This work is based on the CS teachers experiences in the Saudi context.
The question is: What competencies in teaching CS do teachers experience as
valuable and how are these practices related to the STCS?

4 Methodology

A case study approach was chosen as the basis for an initial empirical exploration
of the phenomenon within its local context [16]. Semi-structured interview data
collection was selected as a means to obtain in-depth data from the ten par-
ticipants [17]. The interview questions are based on the major competencies
identified in the STCS. The interview was structured to follow the standard,
and consists of items addressing the three main parts, professional teaching,
knowledge, and practice. The responses of teachers provide the researcher with
a pool of data in which teachers reason about their skills in the areas covered
by the standard. In order to perform a classification of competencies in teaching
CS in the population represented by the study participants a detailed analysis
of the pool of data was conducted by the first author.

The informants in this study are CS teachers who are working in KSA schools.
Participants were contacted through the director of CS teachers in the Min-
istry of Education. The director forwarded the proposal of this study to the CS
teachers mailing list. As a result, twelve male CS teachers and three female CS
teachers indicated interest in participating in the study of whom ten completed
the interview. The three female CS teachers were later excluded due to logistical
difficulties associated with conducting the interviews. The KSA culture imple-
ments gender segregation in Education [18], and it is consequently difficult to
interview female teachers face to face. The researcher also excluded two male
teachers who were not available during the interview time frame. Finally, ten
CS teachers representing five different major cities in the KSA were interviewed.
The interviews were conducted in Arabic, and the data (questions and answers)
were transcribed in Arabic then translated to English with effort taken to pre-
serve the nuances of the original narration. In order to ensure the credibility of
the translation the first author translated it, then, an English teacher who is
also an Arabic speaker read and confirmed the translation.

Thematic coding analysis [19] was used to categorize the competencies of
teaching CS that teachers hold in the KSA.

First the recording was listened to and then the researcher read the transcript
of each interviewee, highlighted the statements associated with value, feeling and
practicing in relation to the standard. Next, the first author began to generate
codes, which resulted in forty-two initial themes. As the first author is famil-
iar with the CS curriculum and context in the KSA, it was possible through
further analysis to merge themes which were close to each other. This phase

134 F. Alghamdi et al.

of analysis resulted in a reduction of the original thematic grouping to twelve
intermediate themes. Further clustering and abstraction of themes resulted at
six high level themes. In the last step, these were grouped into three main cat-
egories. These three categories are linked to society, professional practice, and
professional development.

While the primary analysis is based on the translated data file, the Ara-
bic version has been used in parallel throughout the analysis to provide addi-
tional assurance that the thematic interpretations were justified. The researcher
chose to analyze the data in English to allow for an open discussion with fellow
researchers. The outcome of the analysis is supported using citations from the
responses of teachers.

5 Results

Based on our thematic analysis a tree of categories emerges, in which nuances
of CS teachers experiences and practices have been thematically grouped At
the highest level, the most commonly discussed aspects of CS teaching practice
are described. The high level themes in each category are listed in Table 1 and
described in detail later in the section.

The categories and high level themes discussed by the CS teachers correspond
to the categories mentioned in STCS to a considerable extent. The main differ-
ence lies in the theme “professional development”, where the teachers experience
that self-directed learning plays a significant role in their practice and compe-
tence development. This is, however, a task that the standard does not consider.

Table 1. Categories of the CS teaching in the KSA

Category Theme Example

Connection to society Culture Arabic language

Islamic values

Context Student

Teachers

Charity

Professional practicing Need of technical infrastructure Equipment

Maintenance

Teaching approaches Active learning

Students centric

Focusing on practical

Professional development Formal requirements Teachers’ license

Self-directed learning Students’ need

Computer Science Teachers Perspectives on Competencies 135

5.1 Connection to Society

The first category deals with teacher’s experiences of CS teaching in connection
to society. In the interview, CS teachers were asked questions related to their
CS teaching experiences in the classroom. This category illustrates how teachers
talked about the connection between CS education and society. In this high level
category two sub-themes emerge from more detailed analysis, one culture and
the another to context. The two most frequently mentioned aspects of Saudi
Arabian culture are language and religion. The participants refer to Arabic as
a teaching language and also as a means to keep their culture visible. Most of
the participants teach in Arabic, and they are using English for CS terminology.
Thus, the teachers use two languages while they are teaching. This could explain
the teachers’ values when they are keeping Arabic language visible. for example
CS teacher D said: “Both are best without disturbing them. Arabic is important
to us as a culture and English is important to keep up with the development”.

The Islamic religion is mentioned as a fundamental moral ground which per-
meates the students’ learning. Half of the participants declared that they apply
the values and morals in their teaching that are mandatory in regards to the
education policy document in the KSA [20] which describes what is required in
order to conform to the legal requirement to implement Islamic values in the
school system. The teachers referred to Islamic religion guidelines such as hon-
esty and devotion. For example, CS teacher B said “I want to instill Islamic
values in my students. As well as I seek to develop students knowledge-abilities
and skill. They should know that specialization is required in order to deliver
their missions as they are entrusted to them according to the teaching of our
religion and under the leadership of our kingdom”.

The “context” theme is dominated by statements concerning aspects of CS
education. Most commonly mentioned are students, teachers and content. Four
CS teachers expressed the one aspect of the learning outcomes is to make stu-
dents increase the use of technology at home. They specified that this goal is
achievable when students have learned some applications and e-services in class,
or when they have had a project related to family duty. CS teacher B mentioned
“I seek to make students benefit from what they have learned in a school and
apply that in their daily life.”.

The CS teaching community provide both formal and informal support to
practicing teachers. For instance, CS teacher E said “There is certainly a spe-
cial group on “Whats up” for CS teachers, and it benefits us through sharing
experiences with colleagues regarding problems face us and how to solve them.
In addition, we learn about the methods of teaching and explanations of some
programs”.

Three of the participants said CS teachers are always expected to help other
teachers with technology or solve technological problems. Being regarded as
experts in technology serves as a motivation for CS teacher to stay updated. CS
teacher B said “As CS teacher, teachers and students will look at you as their
first reference in technology”. The respondents talked about student projects as
a way to connect what students learn to different ways of applying it to support

136 F. Alghamdi et al.

the community. An example is that students work on digital learning materials
for other subjects as projects. CS teacher C said “Building educational lessons
for other materials or teachers is a core object for student projects. Teachers,
and students will look at you as their first reference in technology”. Four par-
ticipants stated that they encouraged students to work on projects aimed at
charity. For instance, CS teacher B observed that “Students collaborated with
the social development committee of our neighborhood to design a program that
fostered knowledge on alms each deserves and knowledge on revenues, expenses,
and inventory”.

5.2 Professional Practice

The second category, professional practice, describes issues related to the actual
teaching activities of our interview participants. The main two themes are need of
technical infrastructure and teaching approaches. Almost all CS teachers stated
that technical infrastructure in the lab is an under-addressed issue. Some of them
talked about obsolete devices without plays for replacement, some mention the
broken computer networks. Also, they believed the new curriculum requires the
Internet as a platform, but unfortunately the reliability of the Internet con-
nection in most schools is weak. The participants see adequate equipment as
necessary to teach CS effectively. For example, CS teacher D said “There is not
enough equipment in the laboratory, and the ministry does not care about that”,
and CS teacher H said “Most labs have no Internet access; this brings difficulties
upon teachers in teaching some lessons”.

Half of the CS teachers mentioned poorly structured maintenance in connec-
tion with labs. In fact, many of them do the maintenance in addition to their
teaching duties and are often viewed as technical support for teachers in other
subjects. In their view, labs need to be maintained to fully support teaching and
learning according to the new curriculum. For example, CS teacher F observed
“Labs in schools, infrastructure, and maintenance as well as licenses programs
that we work on it are only for a year and then shut down and need to renew
and follow-up ongoing”, and CS teacher B said “We are confronted with the lack
maintenance of some of the devices”. Two of the respondents do not speak about
problems with labs (equipment and maintenance). These respondents teach in a
new school, and in a school where the labs have been upgraded recently.

Regarding teaching approaches, the participants discussed student centered
approaches to teaching and active learning strategies. We observe that , the
amount of experience of teaching CS affects the particular practices used. Our
study participants were in agreement that there is a gap between the way they
had been taught during their own studies at the university and the way they
are currently teaching CS. Six of the CS teachers identified that they learned
in the past thought indoctrination or lecturing, they reflect that this is a weak
and passive way to learn CS. Today the CS teachers are applying active learning
strategies in their classrooms, a trend started by the new CS curriculum. For
instance, CS teacher B said “In the first year, I adopted a purely traditional
teaching method which is synonymous with the style of indoctrination. Today,

Computer Science Teachers Perspectives on Competencies 137

I use the active learning method which contains many strategies. Each strategy
fits a specific lesson and fits a specific category. I always follow active learning
methods in my preparation”.

Most of the CS teachers are focusing more on practice than theory. They
spent more of the teaching time on giving students chance to apply what they
learned. Some CS teachers assessed students based on projects. For instance, CS
teacher J mentioned “My overall goal is to focus on the practical part so that
students will need not to know the new terms, but how to use it in reality. I want
my students to be creative and innovative in terms of new ideas. As we develop an
application in CS curriculum today, teachers also need to professionally develop
themselves to be able to transfer knowledge to students”.

5.3 Professional Development

The third category identified is that of professional development. Participants
utterances linked to this theme include, the CS teachers’ Exam, teachers per-
formance indicators, special course-training (Computer Teachers for the New
Curriculum), and teacher’s book guidelines. They referred to a kind of evalu-
ation that teachers must pay attention to, and that performance is necessary
in order to gain a pass in these evaluations. For example, CS teacher C said
“The exam measured the degree of achievement of the professional competency
of the teacher and proved the reality of his success. Meanwhile, some teachers
oppose the test, but it is an exam of honest measurement”, and CS teacher E
claimed “I am a supporter of the exam because it aims to measure the extent
of the advanced knowledge and skills required for teaching. This is because of its
significant impact in the educational process”.

It is clear that teachers appreciate the intent of the accreditation examina-
tion, and also the need for re-certification despite the stress involved. Most of
the CS teachers obligate themselves to develop and keep updating CS knowledge
and teaching approaches. Some of them are working to achieve the curriculum
outputs only, however, some of them aim to achieve more than curriculum. These
teachers talk about the need to engage in self-directed learning as an appropri-
ate method to continue learning and develop their capabilities. For instance, CS
teacher K said “Keep updating with the technology and new information. This
is the most important thing we suffer from. Self-development depends on the
teacher himself”. Moreover, CS teacher J said “Today, the professional develop-
ment is very fast, and CS teachers need hard work to bridge this gap. However,
my self-efficacy has been evolving in front of my students”.

6 Discussion

This study investigates the link between the Saudi teaching competencies stan-
dard (STCS) and, how a group of CS teachers perceive their practice. The main
research question was: What competencies in teaching CS do teachers experience
as valuable and how are these skills related to the STCS?

138 F. Alghamdi et al.

What teachers need is obvious from their reflections. They identify the need
to provide a connection to society, develop professional practice and engage in
professional development. The link between what they need and what the STCS
emphasis is also discussed by many of our participants. The STCS focuses on
the importance of the professional teaching contents, Saudi values, and commu-
nication with society. It is clear from our results how the participants express
their connection to society, as you can see in Fig. 2. Moreover, the professional
knowledge in STCS establishes that teachers should focus on knowing student,
technical CS content and methods. That is explicit in our data when we consider
how participants’ responses emerge as grouped in teaching approaches under the
branch of the professional practice.

Furthermore, the professional practice areas of the STCS emphasize planning
lessons, managing the learning environment and evaluating students. However,
in our results, planning and evaluating is one of the teaching approaches that
grouped under the focus on practice. Finally, there is a branch regarding the
support and maintenance of labs and other infrastructure, which is not covered
by the STCS.

The standard refers to how to teach students, but the participants iden-
tify the need for functioning laboratories, computers, and Internet. Two of the
categories found in the study, the connection to society and the professional
practice, are almost identical to the STCS categories professional teaching and
professional knowledge. Regarding more general teaching practice, these cate-
gories cover exactly the same themes, but they have been grouped differently.
The STCS covers teaching all subjects, CS specific themes do not occur.

One new item not covered by the STCS has been identified in this study, the
need of technical infrastructure. In this area the teachers mention both need of
equipment and the requirement for timely and regular maintenance, a task that
is now often delegated to these very same teachers with a negative impact on

Fig. 2. The CS Teaching Competencies (Model), CSTC.

Computer Science Teachers Perspectives on Competencies 139

their workload. Indeed, the professional development category is unique when the
teacher’s point out what they needed and that was less important in the STCS.
However, the self-directed learning is priority for CS teachers in this study.

7 Conclusion

The Ministry of Education in the KSA has commenced implementation of the
SCTS to increase the quality of CS education. This study investigates what CS
teachers’ competencies carefully exist, and what further support for teachers
might be needed. The procedures of becoming a CS teacher in the KSA ensues
that all teachers should be well qualified, since all CS teachers had a college
degree in CS and passed the CS teachers’ exam. Our study identified a gap
between what the CS teachers have learned and what they teach. The gap alerts
us to the attitudes and approaches to professional development of CS teachers as
they strive to keep pace with rapid development in CS in one side and in teaching
CS in another. The Ministry of Education should now focus on enhancing CS
teachers’ competencies by improving CS teachers’ professional development.

The STCS is the new standard in the KSA schooling, and it will take time to
combine with the teachers performance indicators. The Ministry of Education
should be aware of the need for professional development of teaching especially
self-directed learning and encourage teachers to engage in this practice. In addi-
tion, the results of this study show that CS teaching competencies are strongly
related to teachers’ views on society, professional practice and professional devel-
opment.

While the number of participants in this study was relatively few, each par-
ticipant represents a different region in the KSA, and this makes the sample quite
representative of the Kingdom as a whole. Teachers were selected from both new
and older schools to gain an overview of the level of infrastructure in place in
schools throughout the Kingdom. More investigation is needed, but this paper
provides an important first step in analyzing the impact of the STCS. Indeed,
the result contribute significantly to the understanding of the CS teaching com-
petencies, and the model could be the basis of the new teachers competencies
standard in the CS subject in the KSA.

This study recommends that the Ministry of Education needs to improve
the CS curriculum in schools and colleges and reduce the gap between the CS
college and the curriculum in schools. Also, CS teachers should pay attention
to the teachers license as a mechanism for enhancing teaching competencies
during the teaching career. The Ministry of Education should review approaches
to introducing CS into primary schools and encourage transfer of some topics
between school level. CS teachers should be more involved in developing their
self-directed learning, and be ready to change the belief of teaching CS.

Acknowledgment. I would like to thank the Ministry of Education of the Kingdom
of Saudi Arabia, and especially the director of CS teachers. I would also like to extend
my sincere thanks to the CS teachers who participated in this study for many inspiring
discussions, comments and their time.

140 F. Alghamdi et al.

References

1. Deakin Crick, R.: Pedagogy for citizenship. In: Getting Involved: Global Citizen-
ship Development and Sources of Moral Values, pp. 31–55 (2008)

2. Hutmacher, W.: Key Competencies for Europe. Report of the Symposium, Berne,
Switzerland, 27–30 March 1996. A Secondary Education for Europe Project (1997)

3. Hagger, H., McIntyre, D.: Learning Teaching from Teachers: Realizing the Potential
of School-Based Teacher Education. McGraw-Hill Education, London (2006)

4. Public Education Evaluation Commission: Saudi Teachers Competence Standard.
The Minstry of Education, Al-Riyadh, KSA (2016)

5. Alrshedi, H.: Methods of teaching CS, reality, and hope in KSA, knowledge, p.
4115 (2016)

6. Alrshedi, H.: Training program for CS female teachers parameter skills. Master
thesis (2011)

7. Bender, E., et al.: Towards a competency model for teaching computer science.
Peabody J. Educ. 90(4), 519–532 (2015)

8. Sentance, S., Sinclair, J., Simmons, C., Csizmadia, A.: Teacher research projects
in computing. In: Proceedings of the 11th Workshop in Primary and Secondary
Computing Education, pp. 110–111. ACM (2016)

9. Sentance, S., Csizmadia, A.: Professional recognition matters: certification for in-
service Computer Science Teachers. In: Proceedings of the 2017 ACM SIGCSE
Technical Symposium on Computer Science Education, pp. 537–542. ACM (2017)

10. Hubwieser, P., et al.: A global snapshot of computer science education in k-12
schools. In: Proceedings of the 2015 ITiCSE on Working Group Reports, pp. 65–
83. ACM (2015)

11. Alghamdi, F.: Why do female students choose to study CS in the Kingdom of
Saudi Arabia? In: Fifth International Conference on Learning and Teaching in
Computing and Engineering. IEEE Digital Library (2017)

12. Alsadaawi, A.S.: Raising the quality of education: developing professional stan-
dards for Saudi teachers (2018). https://iaea.info/documents/raising-the-quality-
of-education-developing-professional-standards-for-saudi-teachers/

13. Alarfaj, M.M.: Science education in Saudi Arabia. In: Mansour, N., Al-Shamrani, S.
(eds.) Science Education in the Arab Gulf States. CHPSE, pp. 155–168. SensePub-
lishers, Rotterdam (2015). https://doi.org/10.1007/978-94-6300-049-9 8

14. CSTA K: Computer Science Standards, Computer Science Teachers Association
15. Quais: Teachers Standers Indecetrs (2017). http://www.qiyas.sa/Sites/English/

Tests/VocationalTests/Pages/Teachers-Test.aspx
16. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications, Thou-

sand Oaks (2013)
17. Drever, E.: Using Semi-Structured Interviews in Small-Scale Research. A Teachers

Guide. ERIC (1995)
18. El-Sanabary, N.: Female education in Saudi Arabia and the reproduction of gender

division. Gend. Educ. 6(2), 141–150 (1994)
19. Braun, V., Clarke, V.: Using thematic analysis in psychology. Qual. Res. Psychol.

3(2), 77–101 (2006)
20. Oyaid, A.: Education Policy in Saudi Arabia and its Relation to Secondary School

Teachers ICT Use, perceptions, and views of the future of ICT in education (2009)

https://iaea.info/documents/raising-the-quality-of-education-developing-professional-standards-for-saudi-teachers/
https://iaea.info/documents/raising-the-quality-of-education-developing-professional-standards-for-saudi-teachers/
https://doi.org/10.1007/978-94-6300-049-9_8
http://www.qiyas.sa/Sites/English/Tests/VocationalTests/Pages/Teachers-Test.aspx
http://www.qiyas.sa/Sites/English/Tests/VocationalTests/Pages/Teachers-Test.aspx

A Core Informatics Curriculum
for Italian Compulsory Education

Luca Forlizzi1 , Michael Lodi2 , Violetta Lonati3 , Claudio Mirolo4 ,
Mattia Monga3(B) , Alberto Montresor5 , Anna Morpurgo3 ,

and Enrico Nardelli6

1 Università degli Studi dell’Aquila, L’Aquila, Italy
luca.forlizzi@univaq.it

2 Alma Mater Studiorum, Università di Bologna & INRIA Focus, Bologna, Italy
michael.lodi@unibo.it

3 Università degli Studi di Milano, Milan, Italy
mattia.monga@unimi.it

http://aladdin.di.unimi.it
4 Università degli Studi di Udine, Udine, Italy

claudio.mirolo@uniud.it
5 Università degli Studi di Trento, Trento, Italy

alberto.montresor@unitn.it
6 Università degli Studi di Roma “Tor Vergata”, Rome, Italy

nardelli@mat.uniroma2.it

Abstract. In order to bring informatics, its ideas and ways of think-
ing of major educational value to all primary and secondary school stu-
dents, the Italian Inter-universities Consortium for Informatics (CINI),
in collaboration with the academic associations who gather together
researchers in informatics (GRIN) and computer engineering (GII), has
recently proposed a core informatics curriculum for all the levels of com-
pulsory school. This paper summarizes the proposed curriculum, high-
lights the key underlying motivations, and outlines a possible strategy
to ensure that its implementation in schools can be effective.

Keywords: Curriculum · Compulsory education
Non-vocational programs

1 Introduction

Informatics1 is no longer a subject area cultivated only by professionals, but is
relevant to every citizen and should be part of general education since the earliest
stages in order to develop “students’ computational and critical thinking skills”
and show “them how to create, not simply use, new technologies.” Informatics
“provides a fundamental set of concepts and skills needed to prepare students for
1 We adopt here the term “Informatics,” more common in continental Europe, instead

of “Computer Science” or “Computing”.

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 141–153, 2018.
https://doi.org/10.1007/978-3-030-02750-6_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_11&domain=pdf
http://orcid.org/0000-0002-3923-7668
http://orcid.org/0000-0002-3330-3089
http://orcid.org/0000-0002-4722-244X
http://orcid.org/0000-0002-1462-8304
http://orcid.org/0000-0003-4852-0067
http://orcid.org/0000-0001-5820-8216
http://orcid.org/0000-0003-0081-914X
http://orcid.org/0000-0001-9451-2899

142 L. Forlizzi et al.

the 21st century, regardless of their ultimate field of study or occupation.”2 As
a matter of fact, the role of computing in school curricula is currently a topical
issue of the education policies all over the world. In the US, for instance, the
Computer Science Teachers Association (CSTA) in cooperation with the ACM
have proposed comprehensive standards for K-12 education [19], and since 2015
the “Computer Science for All” initiative3 puts school informatics on a par with
other scientific and technological fields. In the UK, following the exhortations
from the Royal Society Report “Shut Down or Restart” [22], Computing is a
mandatory subject for all instruction levels starting from s.y. 2014–15—see in
particular England’s “Computing at School” curriculum [9]. Similar démarches
are under way in several other countries, although there is not yet full consensus
as to what should be taught in K-12, and the associations Informatics Europe
and ACM Europe have jointly put forth to the European Commission the “Infor-
matics for All” proposal,4 whose aim is to establish informatics as an essential
discipline for students in Europe at all levels throughout the educational system.
A broad picture of the state of CS education worldwide can be found in [1,16].

In this paper we present a recent proposal on behalf of our academic informat-
ics community, which is meant to contribute to the development of informatics
education in the Italian primary and secondary school [7]. It is the outcome of
a long process, which has also benefited from important contributions of peda-
gogists and experienced school teachers who took part in the discussion. We are
nevertheless aware that it is just a step in a longer path to make all people in
charge of school policies aware of what is at stake for the students’ future. As
stated in the preamble to our document, informatics is having, and will continue
to have, a growing impact on the development of production, economy, health,
science, culture, entertainment, communication and society in general. In order
to cope with the ubiquity of information technology, all citizens must acquire
the conceptual tools necessary to understand the science underlying the digital
world in which they are immersed and on which the quality of their life will
depend. Although we are experiencing a rapid evolution of digital devices and
of their applications, its scientific foundations are firm and rest on a homoge-
neous range of concepts, methodologies and skills. Informatics should then be
considered as an independent knowledge field with its peculiar ways of think-
ing, of interpreting the world, of approaching problems. As Duchâteau pointed
out [11], informatics is a relentless endeavor to disclose meaning from form and
to confine meaning within form. The conceptual understanding of the scope of
its tools revealed, according to Mazoyer [15], the “miracles” that combining a
large number of times a small set of elementary operations can achieve a huge
potential; that this potential is not specific to some particular type of operations;
that the limits to this potential can be expressed and explored formally.

2 “Why K-12 computer science?” http://code.org and http://computinginthecore.org.
3 http://cs4all.nyc.
4 http://www.informatics-europe.org/news/434-inf4all.html.

http://code.org
http://computinginthecore.org
http://cs4all.nyc
http://www.informatics-europe.org/news/434-inf4all.html

A Core Informatics Curriculum for Italian Compulsory Education 143

2 Context, Process and Background of the Proposal

In the following subsections we briefly outline the Italian context of primary and
secondary education; then we summarize the overall process which has led to
the current version of the proposal [7]; finally we review its relevant background.

2.1 The Italian School System

Starting from 2007, the Italian school system has undergone a broad reform pro-
cess, aimed at renewing both the educational approach and the curricular orga-
nization. Compulsory education spans now over 10 years, usually corresponding
to the age range 6–16, and is subdivided into three main stages: primary school
(grades 1–5), lower secondary school (grades 6–8) and early upper secondary
school (grades 9–10). In 2012 the Italian Ministry of Education, University and
Research (MIUR) issued the curricular recommendations for the primary and
lower secondary levels, that are common to all schools. As opposed to the previ-
ous instructional programmes, where the content of each subject area was mainly
arranged in temporal sequence, the new framework aligns with the recent Euro-
pean trends in pre-tertiary education, focusing on skills and competences to be
acquired in broad areas.5 The upper secondary level, on the other hand, is char-
acterized by a variety of strands, whose curricula are substantially differentiated
from the outset, as appears from the list of specific documents. See [4] for a more
comprehensive summary of the secondary school system in Italy. In the outlined
picture, primary school teachers do not have subject-specific qualifications.

According to the current national curricular recommendations, computing-
related topics and digital technologies should pertain to two rather broad areas:

– A cross-disciplinary key citizenship digital competence area:6 proficiency and
critical attitude in the use of ICTs for work, life, communication; use of
computer to retrieve, assess, retain, produce, present, share information as
well as to cooperate through the Internet.

– A general technology subject area (grades 1–8) or a specific informatics/IT-
related subject (grades 9–10 for some types of schools, to be taught by quali-
fied teachers), which partly overlaps with the above area, but may also include
some computer and/or robot programming.

Moreover, with regard to the basic competences at the end of lower secondary
education for the scientific-technological area, the national recommendations
refer to some general awareness of the implications of using ICTs (for society,
environment, health, etc.) and just add that “whenever possible, students can
be introduced to simple and flexible programming languages in order to develop
a taste for creation and for the accomplishment of projects [...] and in order to
understand the relationships between source code and resulting behavior.”7

5 In particular, the Italian Ministry has adopted the “Recommendation of the Euro-
pean Parliament and of the Council” of 18 December 2006 on key competences for
lifelong learning (2006/962/EC).

6 Digital competence is one of the seven broad areas listed in 2006/962/EC.
7 http://www.indicazioninazionali.it/ (in Italian).

http://www.indicazioninazionali.it/

144 L. Forlizzi et al.

However, the actual implementation of the curricular recommendations is
to a large extent responsibility of each school, in accordance with the degree
of autonomy introduced by the reform—autonomy that may occasionally be
exploited by self-motivated teachers to propose valuable initiatives also in infor-
matics education.

2.2 Writing and Revision Process

The proposal of a core informatics curriculum for all the levels of compulsory edu-
cation is a recent initiative of the Italian Inter-universities Consortium for Infor-
matics (CINI), promoted by its interest group for “Informatics and School”, and
carried out in cooperation with the academic associations who gather together
researchers in informatics (GRIN) and computer engineering (GII). The process
started in June 2017, when the assembly of the interest group charged an edi-
torial board to write a first draft of the proposal. The draft was subjected to
discussion and refinement during several distance meetings of the editorial board,
held between June and early August. The document was then made available
to all members of the CINI interest group for Informatics and School, who con-
tributed some valuable feedback and were eventually able to reach an agreement
on it in a meeting convened in September 2017. The next step was to publish the
proposal in the form agreed upon by the interest group and to invite the whole
informatics community (represented by CINI, GRIN and GII) to provide com-
ments and suggestions. In the meanwhile, further contributions were collected
through discussions with experienced teachers, pedagogists and other experts
of school policies. By the end of October 2017 the editorial board examined
the feedback from the informatics community and edited the current revision
of the document. The revised proposal obtained an official status in Novem-
ber, after formal approval from the assemblies of CINI, GRIN, GII. Finally, in
December 2017 it was presented within an initiative of the Italian Chamber
of Deputies. For convenience, the proposal8 has been organized in conformity
with the competence-based model of MIUR documents reporting curricular rec-
ommendations. It attempts to introduce the general educational motivations as
well as to explain as clearly as possible our community’s cultural and scientific
perspective. The discussion is currently continuing on practical issues, such as
the need for instructional material and the involvement of in-service teachers. In
March 2018 the document was also submitted to the chair of the MIUR Scientific
Committee for the National Curricula for the primary school.

2.3 Background of the Proposal

Informatics has recently been introduced in the official curricula for compulsory
school of several countries [12]. Regardless of the approach or tools used, as

8 An English translation of the official proposal [7] is available at https://www.
consorzio-cini.it/gdl-informatica-scuola.

https://www.consorzio-cini.it/gdl-informatica-scuola
https://www.consorzio-cini.it/gdl-informatica-scuola

A Core Informatics Curriculum for Italian Compulsory Education 145

pointed out by Hubwieser et al. [13], “there is a convergence towards computa-
tional thinking as a core idea of the K-12 curricula” and “programming in one
form or another, seems to be absolutely necessary for a future oriented” infor-
matics education. As far as the learning of programming is concerned, we should
also note that its scope is now broader than it used to be. Indeed, practicing
programming can be seen as a means of self-expression and social participa-
tion [14,18], as a component of a new form of literacy [6,24], as a way to widen
experience and experiment with personal ideas [5], and maybe also as an instru-
ment to foster children’s metacognition [17].

However, to set the background of the present proposal, we can mention, in
particular, three noteworthy curricular models:

1. The CSTA/ACM K-12 standards [19], which identify five major strands:
computational thinking, collaboration, computing practice and programming,
computers and communication devices, and community, global and ethical
impacts.

2. The English implementation of the new computing subject [10], structured
into three components emanating from the Royal Society report [22]: com-
puter science, information technology, and digital literacy.

3. The report of the French Academy of Science [8], which distinguishes between
three ways of learning informatics, each appropriate for a different instruction
level: discovery (primary school), acquisition and autonomy (lower secondary),
and mastering concepts (high school).

3 A Core Informatics Curriculum

Informatics at school is often misrepresented as mere use of digital technologies,
but this is of course a distorted view. Its real educational value, both as an
independent scientific discipline and as a cross-disciplinary field, lies in that it
offers new and meaningful ways to interpret the world around us and to approach
problems. The general term Computational Thinking (CT) [25,26] is commonly
used to refer to such new ways of characterizing natural as well as artificial
systems. However, students need an adequate informatics education to actually
take a CT perspective as well as to fully participate in the digital society.

The proposed curriculum has been conceived in a two-dimensional frame-
work. The former dimension, starting from grade 1 of primary school, is charac-
terized by three main learning stages:

1. In the first stage (primary school) pupils are encouraged to ask questions, as
well as to discover in their everyday life and to explore some basic ideas
of informatics. They can be engaged either in plugged, i.e. implying the
use of computing devices, or unplugged activities, i.e. without using digital
technologies [2].

2. In the second stage (lower secondary school) students are expected to grow
in autonomy. To achieve this educational objective, they have to learn more
about the organization of data and the concept of algorithm. Moreover, they

146 L. Forlizzi et al.

should be offered opportunities to develop abstract thinking and to acquire
new specific as well as cross-disciplinary skills. In particular, programming
tasks can play a key role in this respect.

3. The first two stages lay the foundations for mastering the concepts and for
enhancing the skills at the core of the third stage (upper secondary school),
at the end of which students should be able to model problems and to design
algorithms. Abstraction, organization and accuracy are essential traits of the
problem solving approach in the informatics field, that foster the development
of critical thinking and provide helpful keys to master complexity.

The latter dimension concerns the content, which is organized into five key
areas: algorithms, programming, data and information, digital creativity and dig-
ital awareness. Each such area will be the subject of a separate subsection. Over-
all, as reported in the list of general learning goals, at the end of compulsory
school each student should be able:

– to understand and to apply basic concepts and principles of informatics;
– to approach problems by exploiting tools and methods of the field;
– to solve problems by devising formal representations, by designing algorithms

and by coding the algorithms in a programming language;
– to evaluate the potential benefits as well as the limits of applying a range of

digital technologies to achieve a given task;
– to use digital technologies in a conscious, responsible, confident, purposeful

and creative way.

3.1 Area of Algorithms

Algorithms are at the core of informatics. They predate programming, as several
noteworthy algorithms have been designed well before the advent of computers.
Pupils should meet the concept of algorithm since the early years of primary
school, in an informal and playful way at first. Starting from the lower sec-
ondary school, the level of formality is progressively increased and the concept
of algorithm is linked to other school subjects. By the end of the curriculum,
pupils are expected to master the notion of algorithm and the related scientific
concepts. To achieve these general goals, the curriculum tackles four main topics.

Algorithms as Procedures. Pupils first encounter algorithms in grades 1–3, as a
way to describe the procedures representing the activities of everyday life; e.g.,
brushing one’s teeth, dressing, leaving the classroom in an emergency drill. The
initial approach could be unplugged, to later evolve into plugged activities, for
example to solve coding puzzles. In grades 6–8, the collection of processes that
are studied algorithmically is extended to include examples taken from other
disciplines, such as mathematics, science and technology. Towards the end of the
curriculum, pupils should know a selection of simple algorithms that solve fun-
damental informatics problems such as search and sorting. Apart from studying

A Core Informatics Curriculum for Italian Compulsory Education 147

existing ones, pupils should progressively grow in autonomy and start to design
their own algorithms, a skill that should be accomplished by the end of the
curriculum.

Interpretation and Disambiguation. The process of learning and designing algo-
rithms should be accompanied by an increasing understanding that algorithms
need to be described in a precise and unambiguous manner. In grades 1–5, this
goal could be accomplished by having the pupils perform the role of the execu-
tor, in an unplugged way. In grades 6–8, the need of precision is reinforced, by
making pupils reflect on the instructions performed by the automatic executor
and how they are always completed in the same way. Pupils are thus expected
to reflect on the ambiguities hidden in an algorithm described using natural
language.

Decomposition. By grade 3, pupils should understand that difficult problems
could be solved by breaking them down in smaller parts; by grade 5, such under-
standing should become operational, i.e., pupils should be able to actually solve
simple problems in such way. These concepts are later reinforced by the concept
of modularity introduced in Sect. 3.2.

Reasoning About Algorithms. During the second and third stage of the cur-
riculum (lower and upper secondary school), pupils are introduced to a larger
spectrum of issues related to algorithmics. They should move away from the con-
cept of algorithms solving specific instances of a problem, and understand that
algorithms should solve problems in their generality. By grade 8, pupils should
be able to reflect on the correctness of their solutions, in particular by detecting
and describing the conditions under which these processes can terminate. By
grade 10, pupils should also be able to evaluate, in simple terms, the efficiency
of basic algorithms and use logical reasoning to evaluate different algorithms
that solve the same problem. They should also be able to understand that not
all problems can be solved by algorithms in an efficient way.

3.2 Area of Programming

Starting in the early grades pupils should get familiar with writing computer
programs. In primary schools pupils write structurally simple programs, that
possibly react to events, within a friendly—e.g., visual—programming environ-
ment. By grade 8, pupils are expected to design, write and debug, using easy-
to-use programming languages, programs that apply selection, loops, variables
and elementary forms of input and output. By grade 10, pupils are expected
to comply with syntax while writing simple programs in a textual program-
ming language; moreover they should be able to define, implement and validate
programs and systems that model or simulate simple physical systems or famil-
iar processes, that occur in the real world or are studied in other disciplines.
Overall, pupils should be able to operate on a program in order to understand
its behaviour, modify it, identify and fix flaws. In primary schools, pupils first
observe errors in programs and act spontaneously to correct them, then they

148 L. Forlizzi et al.

start examining programs in order to detect and fix errors and should be able to
use logical reasoning to understand why a simple program fails; by grade 8 they
should intentionally experience small changes in a program to understand and
modify its behaviour; by grade 10 they should recognize how the various parts
of a program contribute to its functioning, and be able to predict the outcome
of a program without running it. To achieve these general goals, the following
specific skills should be progressively developed from grade 1 to 10.

Sequencing, Selection and Iteration. In early primary school pupils are expected
to sort a sequence of instructions correctly, use one-way selection to make deci-
sions within simple programs, and explore the use of two-way selection to imple-
ment mutually exclusive actions. The first use of loops in primary school is to
concisely express that a certain action has to be repeated a given number of
times; then loops can be used to repeat a certain action while an easy-to-test
condition holds. By grade 8 pupils should be able to nest selection and loops
as above, and start using variables in the conditions of selections and loops; by
grade 10, they should be able to write conditions that use a logical operator, and
use conditionals/selections within loops to describe the repetition of parametric
actions.

Use of Variables. In primary school, variables are used to represent input and
output data, or to represent data computed during the execution of a program;
by grade 8, simply typed variables are used to represent the state of a program
and track the progress of the computation; by grade 10, students should write
programs with structured variables, and be able to use variables in loops to
define exit conditions or parametric actions.

Modularity. By grade 5, pupils recognize that a sequence of instructions can be
considered as a single action subject to repetition or selection; by grade 8 they
should be able to re-arrange a program to improve it, by organizing it in modular
components as functions and procedures; by grade 10 they should design and
develop modular programs using procedures and functions.

3.3 Area of Data and Information

The possibility of representing information through symbols, which can be stored
and manipulated by an automatic processing system, lies at the very foundations
of computing and then must be part of any informatics curriculum. Represent-
ing information is inherently connected to an abstraction process. Therefore
concepts and methods in this area are acquired throughout the whole span of
the curriculum, following the progression of pupils’ abstraction abilities. Start-
ing at grade 5, the curriculum aims at developing awareness that computers deal
merely with raw data, encoded as symbols, and that information pertains only
to the sphere of meaning, intrinsic to the human mind, what necessarily implies
some degree of subjectivity. The main goals of the curriculum in this area can
be classified by theme as follows.

A Core Informatics Curriculum for Italian Compulsory Education 149

Data Representation. Starting from grade 1, pupils gradually explore potential
representations of various kinds of data (e.g., numbers, images, sounds), using
different formats, possibly even some of their own conception. By the end of
grade 3, they should be able to select and use suitable items to represent sim-
ple data they are familiar with (e.g., colors, words). At the end of grade 8,
pupils should realize whether two alternative representations of the same data
are interchangeable for a given purpose. The conventional character of any data
representation, relative to what it is meant to describe, should be fully under-
stood in grades 9–10. As a consequence, pupils become aware that different ways
of representing data may affect both the effectiveness and the efficiency of a com-
putation on such data. This achievement is also a prerequisite for the subsequent
development of the ability to identify and choose the data representations best
suited to an intended purpose.

Structure and Organization of Data. At grades 4–5 pupils start to represent
simple structured data (e.g., bitmap images) as well as, through combinations
of symbols, a little more complex data familiar to them (e.g., secondary colors,
sentences). From grade 6 to 8 they develop the ability to classify data according
to their kind (e.g., numerical, textual), that leads to the data type concept. At
the same time, they should learn to perform simple manipulations of symbols
that represent structured data (e.g., binary numbers, bitmap images), and to use
structured variables to represent collections of homogeneous data (e.g., vectors,
lists). At the end of grade 10, pupils should know the features of basic data
structures (e.g., lists, vectors, matrices, dictionaries) and learn how to select an
appropriate structure to approach a given problem.

Roles of Data. The perception that data can be used in fundamentally dissimilar
ways is to be developed in parallel with the programming skills, in particular
those in connection with the use of variables. At the end of grade 8, pupils should
be capable to distinguish the different roles played by the data within a program.
Starting with the identification of input and output data, pupils should become
familiar with the representation of the state of a computation carried out by a
computer program. The idea of metadata should be introduced, in some specific
context such as HTML or a simple data description language, in grades 9–10.

3.4 Area of Digital Creativity

Information Technologies (IT) are a very powerful means of self-expression and
creativity. Starting from grade 1, pupils should become aware that they can use
IT to express themselves, whereas too often they are just passive consumers of
ready-to-use technological products and applications. As their ability to program
improves, they are encouraged to engage with actively creating digital content
and computer programs (in suitable environments), progressively using and com-
bining different media, technologies and services. Moreover, they should start to
reflect, to decide whether to use or not available technologies, and possibly to
select appropriate technologies for different expressive purposes or to solve small
problems they are personally interested in.

150 L. Forlizzi et al.

Use and Creation of Digital Content. Using digital content and computer appli-
cations is just a first step: in grades 1–5, pupils should learn how to create
simple and multimedia digital content; in addition, they start to select appropri-
ate content, as well as to modify and combine it in simple ways. In grades 6–8
pupils should experiment with different ways of processing digital content (e.g.,
bitmaps versus vectorial images), while learning how to effectively present it.

Active Creation of Software Applications. From grade 3, pupils should start to
create simple computer applications like stories, games, music, using environ-
ments designed for their age (e.g., visual programming languages with blocks).
In grades 6–8 they should be able to take advantage of their increasing expe-
rience with programming to create applications. In grades 8–10, pupils should
use more advanced environments (e.g., text-based programming languages) to
create more elaborate content. Moreover, they should combine programming and
on-line services to solve problems and to achieve tasks.

3.5 Area of Digital Awareness

Computer-based devices have pervaded everybody’s life and it is important to
develop awareness in pupils, since early years at school, with respect to their use
and how they affect life and relations. This goal is pursued by our curriculum
along two paths: a first one focusing on expanding pupils’ knowledge of the infor-
mation technology systems and devices, and a second one where students reflect,
in increasing depth, on the personal and social impact of digital technologies.

Knowledge of Information Technology. In primary school pupils progress from
recognizing the presence of IT devices all around them to being able to iden-
tify their main components and the main services they provide, while becoming
aware of the importance of protecting personal data also in their various dig-
ital instantiations. In lower secondary school this knowledge is deepened with
a comprehension of the main physical and functional principles at the core of
computing systems and their communication networks, and through first experi-
ences of interconnecting computer-based systems and input-output peripherals,
and collecting and analyzing data. In the early upper secondary school pupils
understand the importance of taking into account enduser requirements for the
development of computer-based applications and deepen their experience with
using computers to interact with and control external devices.

Social Impact. In primary school pupils are progressively sensitized to the impor-
tance of interacting respectfully with others, even when using digital platforms,
and to identifying and reporting problems in social interactions mediated by
information technology. In lower secondary school they grow in their under-
standing of the value of data, both from a personal viewpoint and from a general
one, and of how the collection and processing of large quantities of data affects
society. In the early upper secondary school pupils arrive at critically reflecting
on the multifaceted relations between information technology and society, span-
ning any domain of interest, and on the importance of keeping human beings in
control of critical steps whenever computer-based decisions affect people.

A Core Informatics Curriculum for Italian Compulsory Education 151

4 The Future of Our Proposal in the Schools

In order to have a real impact on schools we need to face several challenges and
operational difficulties. A major challenge is to cope with the general shortage
of teachers with sufficient familiarity with the basic concepts of informatics, an
issue emerging also in other countries [21,23]. Even in vocational schools it is
common to find teachers with a poor background in the field [3] and, given the
current state of the recruitment process, we can hardly hope that the situation
will improve in the next few years. Thus, the teachers at all levels, but especially
at the earliest grades, need support to cope with the need to reshape their teach-
ing practice. A national effort is then required to identify and validate suitable
instructional methodologies and learning materials that can support effective
learning by distilling and formalizing what in essence amounts to the so called
Pedagogical Content Knowledge—i.e., the “the knowledge of teachers to help
others learn”, including “the ways of representing and formulating the subject
that makes it comprehensible to others” [20]. We believe this could be achieved
by designing and carrying out small-scale action-research projects in cooperation
between school teachers and researchers in computer science education, as well
as by documenting the results, strengths and weaknesses of a variety of teach-
ing approaches. However, the next crucial steps to be successful in introducing
informatics in the Italian school are to design a systematic way to disseminate
best practices and to make available appropriate textbooks.

The recommendations outlined here may still sound a little utopian to anyone
who knows the current state of the Italian schools. In fact, our main goal was to
raise awareness among stakeholders and, in particular, policy makers by offering
a comprehensive view of how informatics could be introduced in schools as well
as by pointing out the potential benefits for every citizen of the 21st century. Our
proposal has gained the endorsement of the reference informatics communities
and is based on a sensible pedagogical analysis of its major themes. Moreover,
as we have tried to explain in this paper, the informatics curriculum has been
conceived as a whole, built up of strongly interconnected parts: the learning goals
of later grades would appear much more plausible in light of the achievements
expected at earlier stages. Finally, we are well aware that the strategy we envisage
presupposes a strong political commitment towards informatics education in
schools with a focus, beyond the hype of digital competences, on the scientific
principles underlying the development of a digital society.

References

1. Barendsen, E., et al.: Concepts in K-9 computer science education. In: Proceedings
of the 2015 ITiCSE on Working Group Reports, pp. 85–116. ACM (2015)

2. Bell, T., Alexander, J., Freeman, I., Grimley, M.: Computer Science Unplugged:
school students doing real computing without computers. N. Z. J. Appl. Comput.
Inf. Technol. 13(1), 20–29 (2009)

3. Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Pedersini,
F.: La formazione degli insegnanti della classe 42/A-informatica: l’esperienza

152 L. Forlizzi et al.

dell’università degli studi di milano. In: E questo tutti chiamano informatica:
L’esperienza dei TFA nelle discipline informatiche, Collana Manuali, Chap. 4, vol.
14, pp. 53–76. Sapienza Univ. Ed. (2015). In Italian

4. Bellettini, C., et al.: Informatics education in Italian secondary schools. Trans.
Comput. Educ. 14(2), 15:1–15:6 (2014)

5. Boyatt, R., Beynon, M., Beynon, M.: Ghosts of programming past, present and
yet to come. In: du Boulay, B., Good, J. (eds.) Proceedings of the 25th Annual
Workshop of the Psychology of Programming Interest Group - PPIG 2014, pp.
171–182 (2014)

6. Burke, Q.: The markings of a new pencil: Introducing programming-as-writing in
the middle school classroom. J. Media Lit. Educ. 4(2), 121–135 (2012)

7. CINI: Proposta di indicazioni nazionali per l’insegnamento dell’informatica nella
scuola, December 2017. https://www.consorzio-cini.it/index.php/it/component/
attachments/download/745. In Italian

8. Committee on Science Education: Teaching computer science in France:
tomorrow can’t wait. Technical report, Institut de France - Académie des
Sciences (2013). http://www.academie-sciences.fr/en/Advice-Notes-and-Reports/
teaching-computer-science-in-france-tomorrow-can-t-wait.html

9. Computing at School: Computer science: a curriculum for schools (2012). http://
www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf

10. Department for Education: National curriculum for England: computing
programme of study. Technical report, Department for Education (2013).
https://www.gov.uk/government/publications/national-curriculum-in-england-
computing-programmes-of-study/national-curriculum-in-england-computing-
programmes-of-study

11. Duchâteau, C.: Peut-on définir une “culture informatique”? Journal de Réflexion
sur l’Informatique (Institut d’Informatique, FUNDP, Namur) 23–24, 34–39 (1992)

12. European Schoolnet: Computing our future: computer programming and coding:
priorities, school curricula and initiatives across Europe - Update 2015 (2015)

13. Hubwieser, P., Armoni, M., Giannakos, M.N., Mittermeir, R.T.: Perspectives and
visions of computer science education in primary and secondary (K-12) schools.
Trans. Comput. Educ. 14(2), 7:1–7:9 (2014)

14. Kafai, Y.B., Burke, Q.: The social turn in K-12 programming: moving from compu-
tational thinking to computational participation. In: Proceeding of the 44th ACM
Technical Symposium on Computer Science Education, pp. 603–608. ACM (2013)

15. Mazoyer, J.: Universalité de la notion de calcul. L’enseignement de l’informatique
de la maternelle à la terminale, Académie des sciences - workshop (2005)

16. McCartney, R., Tenenberg, J. (eds.) Special issue on computing education in K-
12 schools. Trans. Comput. Educ. 14(2) (2014). https://dl.acm.org/citation.cfm?
id=2642651

17. Resnick, M., et al.: Scratch: programming for all. Commun. ACM 52, 60–67 (2009)
18. Schulte, C.: Reflections on the role of programming in primary and secondary com-

puting education. In: Proceedings of the 8th Workshop in Primary and Secondary
Computing Education, WiPSE 2013, pp. 17–24. ACM, New York (2013)

19. Seehorn, D. (ed.) K-12 Computer Science Standards - Revised 2011: The
CSTA Standards Task Force. ACM (2011). http://csta.acm.org/Curriculum/sub/
K12Standards.html

20. Shulman, L.S.: Those who understand: knowledge growth in teaching. Educ. Res.
15(2), 4–14 (1986)

https://www.consorzio-cini.it/index.php/it/component/attachments/download/745
https://www.consorzio-cini.it/index.php/it/component/attachments/download/745
http://www.academie-sciences.fr/en/Advice-Notes-and-Reports/teaching-computer-science-in-france-tomorrow-can-t-wait.html
http://www.academie-sciences.fr/en/Advice-Notes-and-Reports/teaching-computer-science-in-france-tomorrow-can-t-wait.html
http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
http://www.computingatschool.org.uk/data/uploads/ComputingCurric.pdf
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://www.gov.uk/government/publications/national-curriculum-in-england-computing-programmes-of-study/national-curriculum-in-england-computing-programmes-of-study
https://dl.acm.org/citation.cfm?id=2642651
https://dl.acm.org/citation.cfm?id=2642651
http://csta.acm.org/Curriculum/sub/K12Standards.html
http://csta.acm.org/Curriculum/sub/K12Standards.html

A Core Informatics Curriculum for Italian Compulsory Education 153

21. The Committee on European Computing Education (CECE): Informatics edu-
cation in Europe: are we all in the same boat? (2017). http://www.informatics-
europe.org/component/phocadownload/category/10-reports.html?download=60:
cece-report

22. The Royal Society: Shut down or restart? The way forward for computing in UK
schools. The Royal Society, London (2012)

23. The Royal Society: After the reboot: computing education in UK schools. The
Royal Society, London (2017)

24. Vee, A.: Understanding computer programming as a literacy. Lit. Compos. Stud.
1(2), 42–64 (2013)

25. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
26. Wing, J.M.: Computational thinking: what and why? The Link Magazine (2011)

http://www.informatics-europe.org/component/phocadownload/category/10-reports.html?download=60:cece-report
http://www.informatics-europe.org/component/phocadownload/category/10-reports.html?download=60:cece-report
http://www.informatics-europe.org/component/phocadownload/category/10-reports.html?download=60:cece-report

Comparative Analysis of the Content
of School Course of Informatics in Russia

and Subjects of the International
Competition Bebras

Liudmila Bosova(B)

Moscow Pedagogical State University, Moscow, Russian Federation
abosova@gmail.com

Abstract. During of the first twenty-five years of its existence, the infor-
matics course in Russian school was structured around following cross-
cutting content lines: information and information processes; represen-
tation of information; computer; modeling and formalization; algorith-
mization and programming; Information Technology; computer telecom-
munications, social informatics. Recently thematic block Mathematical
foundations of computer science has been more clearly formed in it. In
addition traditional line of algorithmization and programming, which
was transformed into the thematic block Algorithms and programming
elements, which includes robotics and mathematical modeling, has devel-
oped significantly. In general content of the course of informatics is sta-
ble, its fundamental component is the basis of the state final certification
of graduates of primary and senior schools. At the same time students,
their parents as well as representatives of the higher education and IT
industry express concern about content of the modern school informatics
course, rightly believing that this discipline has much greater potential
for mastering such key competences of the digital economy as basic pro-
gramming, basics of working with data, communication in modern digi-
tal environments. Since 2012, Russian students successfully participate in
the international distant competition Bebras, in the tasks of which prior-
ity is given to the issues of theoretical informatics as the basis of modern
information technologies. The subject field of the competition is in many
respects consonant with the content lines of Russian informatics course
in school, the main differences lie in approaches to the representation of
key concepts, ideas, methods and algorithms. Materials of the interna-
tional competition Bebras can become a basis for the modernization of
Russian informatics course in school by expanding its theoretical base as
well as ensuring the unity of its theoretical and practical components.

Keywords: Content of school course of informatics in Russia
International course Bebras

The course of Informatics, which appeared in Russian school in 1985, always
had mandatory status, although it occupied a different place in educational plans
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 154–164, 2018.
https://doi.org/10.1007/978-3-030-02750-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_12&domain=pdf

Comparative Analysis of the Content of School Course of Informatics 155

of educational organizations. At present, Informatics is formally represented at
all levels of Russian school education; final state attestation (certification) on
Informatics (exam for choice) for graduates of secondary and high school.

In Federal State Educational Standards of primary general education the sub-
ject area “Mathematics and Informatics” has been singled out, but compulsory
study of the independent subject“Informatics” is not provided: the fundamen-
tal concepts of Informatics are integrated into mathematics; the formation of
elementary user skills is envisaged within the framework of the course “Tech-
nology (Handicraft, manual training)”. In a number of schools the study of an
independent subject“Informatics” in an elementary school (2–4 or 3–4 grades) is
introduced in the part of the curriculum, formed at the choice of participants in
educational relations. In recent years, modern interactive media for early learn-
ing algorithms and programming have become widespread in primary school:
Piktomir, Scratch, Studio Code, and others.

Compulsory study of Informatics at the level of basic general education is
provided only in grades 7–9 in meeting 1 h per week, only 105 h for three years
of study; trying to resolve the apparent contradiction between the educational
potential of the school course of Informatics and the insufficient amount of study
time allocated for its implementation, many educational organizations indepen-
dently design a continuous course of Informatics in the secondary school, adding
for this from the variable part of the curriculum (the parts formed by the partic-
ipants in educational relations) hours on the study of Informatics in grades 5–6.

In high school, the study of the course of Informatics is not mandatory,
although depending on the profile of education, educational organizations can
choose to study this subject at a basic or advanced level. The results of the
basic level of Informatics (1 h per week, 70 h in total for 2 years) are focused
on general functional literacy, obtaining competencies for daily life and general
development; the results of the advanced level of studying Informatics (4 h a
week, 280 h in total for 2 years of training) are aimed at obtaining competences
for the subsequent professional activities both within the framework of this sub-
ject area and in related fields.

During the first twenty-five years of its existence, the Informatics course at
Russian school was structured around the following cross-cutting content lines:
information and information processes; presentation of information; a computer;
modeling and formalization; algorithmization and programming; Information
Technology; computer telecommunications; social Informatics. Recently, the the-
matic block “Mathematical foundations of Informatics” has been more clearly
formed in it, including such questions as: texts and coding; sampling; number sys-
tems; elements of combinatorics, set theory and mathematical logic; lists, graphs,
trees. In addition, the traditional line of algorithmization and programming,
which was transformed into the thematic block“Algorithms and programming
elements”, which now includes a number of aspects of robotics and mathematical
modeling, has developed significantly.

156 L. Bosova

A general idea of the current content of the Russian course in Informatics is
given by the current basic educational program of compulsory education) [2], in
which the material to be studied is structured as follows:

Section 1. Introduction
1. Information and information processes
2. A computer is a universal data processing device
Section 2. Mathematical Foundations of Informatics
3. Texts and coding
4. Discretization
5. Number systems
6. Elements of combinatorics, set theory and mathematical logic
7. Lists, graphs, trees
Section 3. Algorithms and elements of programming
8. Performers and algorithms. Managing performers
9. Algorithmic constructions
10. Building Algorithms and Programs
11. Analysis of algorithms
12. Robotics
13. Mathematical modeling
Section 4. Using software systems and services
14. File system
15. Preparation of texts and demonstration materials
16. Electronic (dynamic) spread sheets
17. Databases. Search for information
18. Work in the Informational Space. Information and communication tech-

nologies.
In general, the content of the course of Informatics is stable, its fundamental

component is the basis of the final state certification of graduates of primary and
senior schools. The set of requirements for the planned results of the study of
Informatics, the planned results and the content of Informatics in the school are
fully consistent with the principle of the didactic spiral underlying the method-
ology of teaching Informatics: first, the general acquaintance of students with
the subject of study is carried out, assuming that their experience is taken into
account; then the subsequent development and enrichment of the subject of
study, which creates the prerequisites for scientific generalization in the upper
grades.

At the same time, students, their parents, as well as representatives of the
higher school and IT industry express concern about the content of the mod-
ern school Informatics course, rightly believing that this discipline has a much
greater potential for mastering such key competences of the digital economy as
basic programming, the basics of working with data, communication in mod-
ern digital environments. Correlation of our achievements in the field of school
Informatics with foreign experience can be useful for determining the vector of
further development of this subject, including for more substantiated adoption
of certain decisions on the modernization of its content.

Comparative Analysis of the Content of School Course of Informatics 157

Since 2012 Russian schoolchildren of grades 1–11 successfully participate
in the international remote competition “Bebras” (the official site of the con-
test in Russia http://bebras.ru/), in the tasks of which priority is given to the
issues of theoretical Informatics as the basis of modern information technolo-
gies. The“Bebras” contest is the only contest in Informatics recognized by the
world community as one for all countries. The contest provides tasks for dif-
ferent age groups of students, who are asked to solve 12 to 16 tasks in 40–45
minutes. A fairly complete idea of the subject of the problems of the “Bebras”
contest can be formed on the basis of the materials of the site http://bebras.ru/,
where currently the conditions of all the tasks of the 2013–2016 contests are pre-
sented. The subject field of the competition (algorithms and programming, data
and data structures, computer architecture and processes, communications and
network interaction, systems and society) is in many respects consonant with
the content lines of the Russian course of school Informatics, the main differ-
ences lie in approaches to the representation of key concepts, ideas, methods and
algorithms. We show this using the example of the tasks of the“Bebras-2015”
competition for pupils of grades 7–8, comparing their subjects with the contents
of the Russian Informatics course for grades 7–9 of the main school, since it is at
this stage that the study of the Informatics course in our country is mandatory
(Table 1). At the same time we will rely on the content of the school Informatics
course, presented in the approximate basic educational program of basic general
education (BEP BGE), as well as the contents of the author’s program [1]. See
Table 1

Table 1. Content of the Informatics course for the basic school in the Russian Feder-
ation.

N Tasks of the
competition “Bebras”

Sample program Author’s program

1 Country: Japan. Task
title: Animation. The
idea of the task:
Objects, object classes.
Information modeling
of objects of the real
world by means of the
list of signs and their
values. Computer
image processing to
find the differences
between them

Content in the BEP
BGE is not provided. It
is advisable to include
it in Section 1
“Introduction”, the
topic “Information and
Information Processes”.
Current
content:information as
data that can be
processed by an
automated system, and
information as
information intended
for human perception

The theme is presented
fully in the textbooks
of Informatics of grades
5–6

(continued)

http://bebras.ru/
http://bebras.ru/

158 L. Bosova

Table 1. (continued)

N Tasks of the competition
“Bebras”

Sample program Author’s program

2 Country: Germany. Task
title: Lunch of the beaver.
The idea of the problem:
A tree as a model of a
hierarchical structure

The content in the BEP
BGE is presented:
Section 2 “Mathematical
Foundations of
Informatics”, the topic
“Lists, graphs, trees”.
Current content:Tree.
Root, leaf, top (node).
Previous vertex,
successive vertices. Under
the tree. The height of
the tree. Binary tree.
Family tree

The theme is presented
fully in the textbooks of
Informatics of grades 7–9

3 Country: Bulgaria. Task
name: String Pyramid.
The idea of the task:
Imitation of simple
calculations on a
computer’s chip, when
input information is
processed in several steps
to get the result

Content in the BEP BGE
is not provided. It is
advisable to include it in
Section 1 “Introduction”,
the topic “Computer - a
universal data processing
device”. Current
content:Computer
architecture: processor,
RAM, external
non-volatile memory,
input-output devices;
their quantitative
characteristics

In the textbooks of the
7th and 8th grades, the
talk about microcircuits
is conducted, but
theoretically, without
reinforcement by the
solution of any problems.

4 Country: Austria. Task
title: Phonebook. The
idea of the problem:
Finding specific data in a
large data set

The content in the BEP
BGE is presented, but
somewhat already - as a
file search in the file
system: Section 4 “Using
software systems and
services”, the theme “File
system”. Current content:
principles of building file
systems. Catalog
(directory). Basic
operations when working
with files: creating,
editing, copying, moving,
deleting. Types of files.
File manager. Search in
the file system

The theme is presented
in the 7th class
Informatics textbook - as
a file in the file system

(continued)

Comparative Analysis of the Content of School Course of Informatics 159

Table 1. (continued)

N Tasks of the competition
“Bebras”

Sample program Author’s program

5 Country: Spain. Task
title: Baskets with
flowers. The idea of the
problem: Sorting
algorithms as the most
popular algorithms for
processing large amounts
of data. Sort by bubble

The content in the BEP
BGE is presented: Section 3
“Algorithms and
programming elements”, the
topic “Building algorithms
and programs”. Current
content: familiarity with the
formulation of more complex
data processing tasks and
algorithms for their solution
- sorting the array,
performing element-wise
operations with arrays

The topic is presented in
the Informatics textbook
of the 9th grade.

6 Country: Hungary. Task
title: Acrobats. The idea
of the problem: A
recursive algorithm. The
variation of the famous
puzzle “Hanoi Tower”

Content in the BEP BGE is
not provided

The theme is presented
fully in the textbooks of
Informatics of grades 5–6,
7–9.

7 Country: Czech Republic.
Task title: Relations
between passengers. The
idea of the problem: The
graph as a means of
modeling. A complete
graph.

The content in the BEP
BGE is presented (see clause
2). Complete graphs are not
considered, their properties
are not studied; tasks of this
kind are not proposed for
consideration

The topic is presented in
part in the textbooks of
Informatics 5–6, 7–9
grades

8 Country: Taiwan. Task
title: Dams. The idea of
the problem: The task of
finding the longest path
in the graph. Algorithm
for topological sorting of
vertices in an oriented
graph

The content in the BEP
BGE is presented: Section 2
“Mathematical Foundations
of Informatics”, the topic
“Lists, graphs, trees”.
Current content:Graph. A
vertex, an edge, a path.
Oriented and undirected
graphs. The initial vertex
(source) and the final vertex
(sink) in the oriented graph.
Length (weight) of the rib
and path. The concept of a
minimal path. Matrix of
contiguity of graph (with
lengths of edges).Formally,
the topic is presented in the
course of Informatics of the
main school, although
similar algorithms are not
considered in it

The topic is presented in
part in the textbooks of
Informatics 5–6, 7–9
grades

(continued)

160 L. Bosova

Table 1. (continued)

N Tasks of the competition
“Bebras”

Sample program Author’s program

9 Country: Switzerland.
Task title: Cheese price.
The idea of the problem:
Recording the algorithm
using flowcharts.
execution of an algorithm
written using a flowchart.
Cyclic algorithm. A cycle
with a postcondition.
Algorithm for calculating
the factorial

The content in the BEP
BGE is presented: Section 3
“Algorithms and
programming elements”, the
theme “Algorithmic
constructions”. Current
content: The construction of
“repetition”: loops with a
given number of repetitions,
with a run condition, with a
variable loop. Checking the
condition for executing the
loop before the loop body
starts executing and after
executing the loop body: the
postcondition and the
precondition of the loop

The theme is presented
fully in the textbook of
Informatics of the 8th
grade

10 Country Russia. Task
title: Chakhokhbili. The
idea of the problem:
Multiprocessing, parallel
computing

The content in the BEP
BGE is presented: Section 1
“Introduction”, the topic
“Computer - Universal Data
Processing Device”. Current
content: parallel computing

The topic is presented in
the 7th grade textbook in
the most general terms

11 Country: Canada. Task
title: Fireworks. The idea
of the problem: Binary
coding. Uniform and
uneven coding. Prefix
code

The content in BEP BGE is
presented: section 2
“Mathematical foundations
of Informatics”, the theme
“Texts and coding”. Current
content:Coding characters of
one alphabet using code
words in another alphabet;
code table, decoding. Binary
codes with a fixed code word
length. Dependence of the
number of code
combinations on the code
capacity. Distortion of
information during
transmission. Codes that
correct errors. The
possibility of unambiguous
decoding for codes with
different code words length

The theme is presented
fully in the textbook of
Informatics of the 7th
grade

(continued)

Comparative Analysis of the Content of School Course of Informatics 161

Table 1. (continued)

N Tasks of the competition
“Bebras”

Sample program Author’s program

12 Country Russia. Task
title: Leaping
kangaroo.Executor.
System of commands of
the executor.The idea of
the problem: The theory
of graphs. The problem
of finding the
Hamiltonian path

The content in the BEP
BGE is presented: Section 3
“Algorithms and
programming elements”, the
topic “Executors and
algorithms”. Current
content:Performers. The
states, possible situations
and the system of commands
of the performer.The content
in the BEP BGE is
presented (see clause
2).Topics are considered in
isolation; tasks of this kind
are not proposed for
consideration

The topic is presented in
part in the textbooks of
Informatics of grades 8–9

13 Country: Poland. Task
title: Elegant graphs. The
idea of the problem:
Weighted graph.
Acquaintance with the
graceful marking of the
graph’s vertices

The content in the BEP
BGE is presented (see clause
2).Problems of this kind are
not proposed for
consideration

The topic is presented in
part in the textbook of
Informatics 9 class

14 Country: Slovenia. Task
title: Spyware. The idea
of the problem: Data
exchange. Network.
Cryptography

Content in the BEP BGE is
not provided. It is advisable
to include it in Section 4
“Using software systems and
services”, the topic “Work in
the Information Space”.
Current content: Computer
networks. The Internet.
Addressing in the Internet.
Domain name system. Site.
Network storage of data.
Large data in nature and
technology (genomic data,
the results of physical
experiments, Internet data,
in particular, data from
social networks).
Technologies of their
processing and storage

Individual elements are
presented in the
textbooks of Informatics
of 10–11 classes
(advanced level)

(continued)

162 L. Bosova

Table 1. (continued)

N Tasks of the
competition “Bebras”

Sample program Author’s program

15 Country Ukraine. Task
title: Drinks and
containers. The idea of
the problem: Logic.
Statements and their
analysis. Truth tables

The content in BEP BGE
is presented: section 2
“Mathematical
foundations of
Informatics”, the theme
“Elements of
combinatorics, set theory
and mathematical logic”.
Current
content:Statements.
Simple and complex
statements. Logical
meanings of statements.
Logical expressions.
Logical operations: “and”
(conjunction, logical
multiplication), “or”
(disjunction, logical
addition), “not” (logical
negation). Rules for
writing logical expressions.
Priorities of logical
operations.Truth tables.
Building truth tables for
logical expressions

The theme is presented
fully in the textbook of
Informatics of the 8th
grade

So, the themes of the tasks of the “Bebras” competition and the content of
the Russian Informatics course for the main school are quite close. At the same
time, even if there is a general content, the approaches to its implementation are
different. We will show this on the example of the elements of graph theory, which
are quite fully represented in the national Informatics course for the main school.
As for practical work with graphs, it is limited to an extremely narrow range
of typical problems. Thus, one of the most common problems is the problem
presented in Fig. 1, which has been consistently included in the control and
measuring materials of the basic state exam in Informatics for the last several
years [3]. See Table 2

To solve this problem, students are asked to move from the tabular form of
information to the graph; it is even better to construct a tree whose branches
will represent all possible paths between the vertices A and E.

It should be noted that the tasks related to graphs in the “Bebras” contest are
very common: each year their number varies from 4 to 6, while the total number
of tasks does not exceed 16. The tasks have a different level of complexity and

Comparative Analysis of the Content of School Course of Informatics 163

Fig. 1. Between the settlements A, B, C, D, E roads are constructed, the length of
which (in kilometers) is given in the table. Determine the length of the shortest path
between points A and E. You can move only on roads, the length of which is indicated
in the table (1) 4; (2) 5; (3) 6; (4) 7;

Table 2. The problem of determining the shortest path in a graph.

A B C D E
A 2 5 1
B 2 1
C 5 1 3 2
D 1 3
E 2

cover different issues from graph theory. It should be noted that the formulations
of these tasks, the practice-oriented submission of material are fundamentally
new for our schoolchildren. There is every reason to believe that schoolchildren
will have difficulty in solving such problems: not everyone will be able to apply
their knowledge of graph theory in a new situation or to come up with a way
to solve the problem on their own. In addition, they are unlikely to be able to
explain what kind of relationship such tasks have to do with Informatics. The
inclusion in the Russian course of school Informatics of a wider range of questions
from graph theory is one of the possible directions of its development.

Over the years of the contest existence there is a significant archive of assign-
ments offered at previous competitions. Anyone can get access to them through
the official website of the contest. These tasks develop logical thinking, they are
interesting, not beaten, they practically do not repeat tasks from traditional
problem books, although they are based on the same theoretical material.

Materials of the international competition “Bebras” can become a basis
for the modernization of the Russian school Informatics course by expanding
its theoretical base (for example, more complete representation of questions
related to graphs), as well as ensuring the unity of its theoretical and practical
components.

164 L. Bosova

References

1. Bosova, L.L., Bosova, A.Y.: Informatics. The program for the main school: grades
5–6, 7–9 grades. - M.: BINOM. Knowledge lab (2014)

2. Approximate basic educational program of basic general education. Approved by the
decision of the federal educational and methodological association for general educa-
tion (protocol of April 8, 2015 No. 1/15) [Electronic resource]. http://fgosreestr.ru/
wp-content/uploads/2017/03/primernaja-osnovnaja-obrazovatelnaja-programma-
osnovogo-obshchego-obrazovanija.docx. (Date of circulation 19 May 2018)

3. Federal Institute of Pedagogical Measurements. Demos, specifications, codifiers
OGE 2018. Informatics and ICT [Electronic resource]. http://www.fipi.ru/sites/
default/files/document/1511540449/inf oge 2018.zip. (Date of circulation: 19 May
2018)

http://fgosreestr.ru/wp-content/uploads/2017/03/primernaja-osnovnaja-obrazovatelnaja-programma-osnovogo-obshchego-obrazovanija.docx
http://fgosreestr.ru/wp-content/uploads/2017/03/primernaja-osnovnaja-obrazovatelnaja-programma-osnovogo-obshchego-obrazovanija.docx
http://fgosreestr.ru/wp-content/uploads/2017/03/primernaja-osnovnaja-obrazovatelnaja-programma-osnovogo-obshchego-obrazovanija.docx
http://www.fipi.ru/sites/default/files/document/1511540449/inf_oge_2018.zip
http://www.fipi.ru/sites/default/files/document/1511540449/inf_oge_2018.zip

Teacher Education in Informatics

Computational Thinking: Constructing
the Perceptions of Pre-service Teachers

from Various Disciplines

Ragonis Noa1,2(&)

1 Beit Berl College, Kfar Saba, Israel
noarag@beitberl.ac.il

2 Technion Israel Institute of Technology, Haifa, Israel

Abstract. In the last two decades, educators have been following the termi-
nology of Computational Thinking first posed by Wing. Different viewpoints
and commentaries have been adopted, and accordingly course syllabi and
learning materials were developed, particularly for K-12. The field has become a
mandatory part of the curriculum in various countries, even for preschool age.
The paper presents an academic course for pre-service teachers with the main
aim to facilitate and instruct students in the process of building their under-
standing and interpretation of Computational Thinking, in the context of
teaching their own discipline. The course pedagogical approach emphasizes the
adoption of Computational Thinking while identifying significant, non-trivial,
computational processes in different disciplines. The course model was imple-
mented with three pre-service teacher populations studying for their teaching
certificate in: (1) sciences for high school; (2) humanities and social sciences for
high school; and (3) various disciplines for elementary school. The course
allows future teachers to experience for themselves learning activities that are
recommended for implementation with their future students. The course peda-
gogical approach and rationale are presented, followed by detailed course
structure and learning assignments. The teaching, learning, and assessment
approach yielded impressive achievements, although not without obstacles and
difficulties. The details of the course presentation enable its implementation with
different populations of pre-service and in-service teachers, and can also be
implemented in schools.

Keywords: Computational Thinking (CT) � Teachers preparation
Active learning � Simulation of computational process

1 Introduction

The concept of computational thinking has many definitions, the common definition
stated by Wing [21] is that “Computational thinking is the thought processes involved
in formulating a problem and expressing its solution(s) in such a way that a computer—
human or machine—can effectively carry out”. The development of computational
thinking skill of 21st-century students is accepted as central and important. To achieve
this, consideration must be given to teacher training, which is always the most

© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 167–179, 2018.
https://doi.org/10.1007/978-3-030-02750-6_13

http://orcid.org/0000-0002-8163-0199
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_13&domain=pdf

significant link in the process. Although different definitions have been given to the
concept there is a significant core acceptable to all. It is important to allow teachers to
be exposed to the different approaches and to formulate their understanding and
meaning. The paper describes our interpretation of connecting computational thinking
with computational processes and algorithmic computational thinking. Emphasis is
placed on the importance of imparting Computational Thinking (CT) to learners of
different ages and in different school subjects as a thinking skill for life. The presented
pedagogical approach enables the development of algorithmic CT that links to com-
puterized systems, since understanding and control of those systems is also a necessary
skill for graduates of today’s education system. The course development maintained a
constant link between the conceptual and the applied levels. The central pedagogical
approach is that a school student can identify and define a computational process in a
particular discipline, and develop a script (in Scratch for example, a well-established
creative and community environment) that simulates the process. In so doing, the
students use their CT skills in two related areas: first, in the discipline while identifying
the process, and second, when developing the script. Students will deepen their
understanding of the computational process in the discipline since it should be very
precise in order to develop a computerized simulation. At the same time, students
acquire skills in developing algorithms, and acquire knowledge, skills, and control of
scripts environments.

To clarify the main pedagogical idea, we give an example of one of the teams’
projects. The computational process identified and defined by the team was movement
problems in mathematics. Most school students face obstacles when confronting a
problem such as: “A car drove from town A to town B at a speed of V1, and a truck
drove from town B to town A at a speed of V2. At what point did the vehicles pass each
other?” To develop a visual simulation of that process, a student must understand
precisely what factors have influence, how the relative movement of the vehicles looks,
the impact of different speeds of the vehicles, and of different distances between the
towns. It enables the student to move from an abstract technical question to a concrete
process that allows better understanding of it. All while investigating and developing
the algorithmic CT skill as well as a colorful and creative animation product.

In what follows we present a literature review and full details of the course structure
and assignments, and also share some key impressions from running the course three
times with three different populations.

2 Background

2.1 Computational Thinking

The concept of CT is recognized as first proposed by J. Wing in 2006 [19] and her
successive publications [20, 21]. The definition of CT as: “the thought processes
involved in formulating problems and their solutions so that the solutions are repre-
sented in a form that can be effectively carried out by an information-processing agent”
has been adopted by many educators [7]. In the last two decades, various viewpoints and
commentaries have been offered, many that connect CT to algorithms and computers

168 R. Noa

[1, 5, 8, 13, 17] and others that emphasize the need to disconnect it from technology and
computers [12, 22]. With or without computers, some key skills and processes com-
monly mentioned regarding CT are: formulating problems, logically organizing and
analyzing data, representing data through abstraction such as models and simulations,
suggesting and evaluating several solutions, implementing a possible solution, and
generalizing and transferring the solution to variety of problems [10, 12, 21]. Following
that, many educators deal with the concept and its acquisition. The greater percentage of
the interpretations linking CT to computerized systems is probably because the CSE
community dealt with it in the beginning [12], but now there are highly diverse
voices [22].

2.2 Implementation in Schools

Over time, the global teaching community has focused on the development of teaching
and learning materials. The focus is particularly on developing suitable curricula
for different ages, accompanied by developing extensive and varied learning materials
[3, 4, 6, 9]. Less attention is paid to the teachers. There are teachers’ guides, but a
specially-guided training process is needed, particularly when addressing a broad
audience of teachers. The computer science education research community falls short
regarding assessment of the success of the programs. Most of the papers present
descriptions of implementing the various curricula but offer less formal research to
evaluate their implementation. A valuable approach for assessing CT dimensions,
based on using Scratch, was presented by Brennan and Resnick [2], and results of
competitions such CodeMonkey or Bebras, that are based on algorithms and use
computerized systems, can serve as measures of success in developing students’
CT skills.

2.3 Teachers Preparation

It is clear that the implementation of the different curricula is based on teachers’
backgrounds, knowledge, mindsets, and attitudes. However, attention to planned,
structured teachers preparation programs has appeared mostly in the last two years
[11, 14, 22]. These programs were actually activated in parallel to the academic course
for pre-service teachers presented in this paper. The course is an approach to change the
state of mind of pre-service teachers in all teaching subjects. We wish them to leave the
perception of CT as a mathematical or at least a scientific concept, for a broader
concept, which actually has different facets even in the traditional scientific disciplines.

3 The Course

The course for pre-service teachers was developed based on our recognition of the
importance to develop school students’ CT skills, which should be led by teachers of
all teaching subjects. A key aspect is that we are not aiming to develop a new discipline
to be added to the school curricula, but rather relate to CT as a skill that students must

Computational Thinking 169

acquire throughout their various learning processes, similar to the development of
“critical thinking” in different contexts.

In this section, we present the prescribed course development, assumptions,
rationale, aims, and learning outcomes. Subsequently we present the course structure
and learning assignments.

3.1 Thoughts Towards Development

The implementation relies on three main pedagogical issues. First, we wish to develop
teachers’ Pedagogical Content Knowledge (PCK) as presented by Shulman [18], with
its expansion to Technological Pedagogical Content Knowledge (TPACK) presented
by Mishra and Koehler [15]. Second, we adopt the interpretation that CT can be
implemented in any discipline, and hence assume that it is possible to define a com-
putational process in any discipline. And third, we wish the computational process to
be accurate and concrete, and being such, to be implemented in Scratch simulation.

The decision to concentrate on a computational process that has importance to be
developed as a simulation, is significant. In relation to teachers this requires to lower
their concerns and to disconnect the immediate and inaccurate association of CT with
“computation” (or calculation). For teacher students who intend to teach Humanities,
Social Sciences or Languages, there is need to decrease their concern about any aspects
of math or technology. Teacher students who intend to teach Math or Sciences also
need to change their accustomed conceptions. For example, computing the coordinates
of a point on a graph in relation to a given function is an expression of a computational
process. But, we wish to emphasize and expand to other approaches of computational
processes, which go beyond obtaining a numerical value resulting from a direct cal-
culation, as demonstrated in the introduction to traffic problems.

The development of simulation as a concrete product of a defined computational
process is of great value. The development of a computerized script in a digital
environment, requires a precise refined definition of the selected process and enables
the development of algorithmic CT skills as well. Scratch was chosen as the envi-
ronment because of its known advantages [16].

Regarding the learning process, students should be given space to build their own
interpretation of computational thinking and computational process, since there are
indeed multiple viewpoints, with no single, precise definition. Our entire teaching-
learning approach is in light of constructivism, students must employ active learning, as
reflected in both the course structure and the assignments.

3.2 Course Rationale, Aims, and LO

Rationale. The rationale of the course is to develop the students’ CT, along with
developing their understanding and confidence regarding its implementation in their
teaching subject. Teachers should recognize the importance of the acquisition of CT by
school students, to be able to teach it. They have to experience it in a supportive
environment that encourages them to think about how to implement this “mindset” in
schools. The course has two main interwoven foundations. The first is the definition of

170 R. Noa

a computational process in the discipline – applying CT skills. The second is the
development of a simulation (to some extent depending on the course population) by
applying algorithmic CT skills.

Aims. The course’s main aims are:

(a) expose students to the concept of CT and raise awareness of its various
definitions;

(b) enable learners to build their own interpretation based on experience, literature
reading, class discussions, and hands-on positive learning experiences;

(c) make learning concrete and relevant through assignments that relate to their future
teaching and teaching subject;

(d) develop students’ CT skills in two integrated aspects: (i) develop their ability to
identify and define a Computational Process (CP) in their discipline; (ii) develop
algorithmic CT skills by developing a project that simulates the process.

Learning Outcomes (LO). At the end of the course, we expect students to be able to:

(1) identify a relevant interpretation of their own view of the CT concept;
(2) define a clear and systematic CP in their discipline;
(3) develop a precise script using Scratch that simulates a CP in their discipline;
(4) analyze given scenarios, define which expresses a CP, and explain their choice;
(5) appreciate the importance of developing CT skills in students at any age, to equip

them with essential skills in our era.

3.3 Course Structure

The course consists of 14 90-min meetings (28 academic hours), comprising five
sections. Week 1: Explore the content and the environment; Weeks 2–3: Learning and
working with Scratch; Weeks 4–5: Introduction to CT as a necessary 21st-century skill;
Weeks 6–10: Project development; deepening the conceptual and the application
levels; Weeks 11–14 Teaching CT. All content and activities were covered in each
course launched; flexibility was essential to meet students’ conceptual needs and
progress. Table 1 presents the course schedule.

3.4 Learning Assignments

The course had seven assignments requiring different degrees of depth in thinking, in
the time needed to accomplish them, and in type of performance – individual, in pair or
team work. The project is an anchor task intended to support students’ understanding
and interpretation of the CT concept, and to scaffold their views and visions about how
they might implement it in their future field work. Each assignment is presented below
with a brief explanation of its intentions and goals.

Assignment #1: Preliminary Questions to Check Background and Pre-conceptions
– Individually. Students are asked to complete a Google form questionnaire. Part A
includes background: age, teaching disciplines, study track, previous experience with
programming, and previous exposure to Scratch. Part B includes questions about

Computational Thinking 171

Table 1. Course schedule.

Week and assignments Content

Week 1
Classwork: assignment #1
Homework: assignment
#2

– Opening and completing a pre-questionnaire
– Light exposure to Scratch
– Guidelines: no definition of CT is presented; emphasis on the
main course target - each participant will develop his/her own
interpretation; we are learning together: they are the expert in
their discipline and the lecturer will try to integrate his own
knowledge with theirs

Weeks 2–3
Class and home work:
assignment #3

– Demonstrating the Scratch environment and its main principles
– Free personal or peer practice based on a suggested basic list of
exercises or self-experience

– Present solutions to some of the obstacles students faced
– Guidelines: the main target is to let students enjoy and
experience the environment mostly based on trial-and-error,
thereby acquiring basic algorithmic CT without giving it a title.
Reduce students’ concerns and previous attitudes (against)
technology/environments/computers

Week 4
Homework: assignment
#4

– First discussion on the CT concept based on HW assignment
#2

– Listen to students’ comprehension and make some key remarks
– Watch some of the videos students found for the task
– Guidelines: Delineate students’ current definitions; do not
disqualify positions; lead students to see other aspects; enable
different opinions

Week 5
Class and home work:
assignment #5

– Continue discussion if needed
– Present the main course project holistic perception
– Students teams start to raise preliminary ideas for CPs in their
discipline

– Guidelines: Most teams will suggest inappropriate topics.
Discuss the principles to evaluate the ideas

Weeks 6–10 – Main project development
– Guidelines: The project development is challenging as described
in assignment #5. Lecturer accompaniment and support is
crucial to gain a positive learning process, while students
construct their knowledge. Bring up leading questions and
ideas, and suggest references

Week 11
Homework: assignment
#6

– Present different curricula that implement CT ideas relevant to
the course population. For example: Code Monkey activities
and competition, Beaver activities and competition, CS-
unplugged activities, the national schools curricula if they exist

– Guidelines: The main aim is to expose students to existing
worldwide varied approaches for implementation at schools

Weeks 12–13 – Project presentations and discussion
– Guidelines: Teams present the CP they identified and
characterized in their discipline and presents the process
simulation on Scratch. The discussion enable reframing the
central concepts and the main messages

(continued)

172 R. Noa

concepts. It was emphasized that there are no incorrect answers; it is just to have the
opportunity to stop and think about the concepts before studying them. The questions
are: (1) Define briefly the concept “Computation”; (2) Define briefly the concept
“Computational Process”; (3) Write the words you think are related to “Computational
Process”; (4) Give an example of a Computational Process in your discipline; (5) Add
any additional comments.

Intentions and Goals: Part A is for the lecturer, to be aware of students’ back-
grounds and options for building teams. Part B, students’ pre-conceptions were con-
sidered and addressed in the first class discussion.

Assignment #2: Exploring Different Internet Resources - First Phase of Concep-
tualization – Individually. Students instructions: Locate a video on YouTube
explaining what computational thinking is. Write a paragraph describing the video
content and attach the video link.

Intentions and Goals: While choosing one video students usually explore more, and
become aware of the extent and variety of existing implementations and interpretations.
Students’ outcomes are uploaded to a shared forum so they can learn from their peers.

Assignment #3: Basic Exercises Using Scratch – Individually or in Pairs. The
course website offered students extensive web learning resources, among them guided
learning with demonstrations and developing exercises. Students can choose, according
to their preference and confidence, whether to practice using exercises that develop
slowly and gradually, choose exercises from the different guides, or develop their own
new idea script. The exercise guidelines relate to what knowledge students have to
demonstrate in their scripts. For example: use at least three characters – that move and
relate to each other or to the frame; include scheduled conversation or sounds.

Intentions and Goals: It is students’ first targeted practice. Students can progress at a
personal pace that suits them. The deliverables will be at different levels but the essence
is on understanding the meaning of developing a script that “does something”. This
practice is the first step in coping with the concept and skill of algorithmic CT.

Assignment #4: Learning About Computational Thinking and Taking a Stand -
Second Phase of Conceptualization – Individually. Students instructions: Read at
least one mandatory paper and one elective, use some web sources and videos from
assignment #2, and write a 1–2 page position paper referring to: (a) Your understanding

Table 1. (continued)

Week and assignments Content

Week 14
Class and home work:
assignment #7

– Demonstrating “fun” activities expressing CT in well-known
problems

– Course summary
– Guidelines: The colorful activities enable ending the course with
a good atmosphere, and at the same time exploring additional
applications that facilitate further analysis and
conceptualization. Examples: the Hanoi Towers problem or the
Konigsberg Bridges problem addressed by Euler

Computational Thinking 173

of the CT concept; (b) Your personal attention to any difficulty/challenge the concept
poses for you at this stage of learning; (c) Indicate what was interesting/surprising/
confusing/raised objections/aroused your curiosity; (d) What do you think about
developing CT skills among learners in your teaching subject? Explain your opinion.
Any supportive or opposing position is relevant.

Intentions and Goals: After uncovering some different aspects of CT and CP
throughout videos, discussions, and building scripts with Scratch, it is time to go
deeper and read academic papers. Students are asked to conceptualize the knowledge,
insights, and skills they have acquired, and reflect on their obstacles and impressions.

Assignment #5: Development of a Simulation Project - Concretizing Concepts – In
Teams of 2–3 Students. Students instructions: After experiencing, reading, and
learning about CT and experimenting with the Scratch environment, the goal of the
task is to deepen the thinking about CT in the context of your teaching discipline.
Based on the point of view that CT is a prerequisite thinking skill for citizens of the
future, how do we develop and implement it in our discipline? The product will be a
script in Scratch, which is a small simulation of a CP relevant to your discipline.
Follow the next steps: (a) Find and define a CP in your discipline - consult with the
lecturer about its suitability; (b) Consider a possible visual implementation of the
process you introduced, i.e., develop a simulation that is a model for the behavior of the
process in the real world; (c) Outline a script; (d) Create the simulation of the process.
For the final submission, each student should address a personal reflective page relating
to the change he/she experienced in relation to understanding the concepts of CT
and CP.

Intentions and Goals: This assignment is at the heart of the course. It reflects the
integration of the concepts and skills that the course wishes to impart. Students are
active and develop a significant product that enables a deeper understanding of the
concepts along with skills development. The project development consistently links
abstract thinking around the computational process with refining the arising ideas with
script-building skills and coping with the environment.

The main and unique pedagogical approach of the course is our desire for pre-
service teachers to see the opportunity their own future school students can benefit from
by doing the same assignment, as emphasized in the next text box.

A school student who develops a script in the learned subject through the lens of CT,
will deepen his understanding of the CP that takes place in the discipline, through the
construction of a computerized simulation of the process. In doing so, he/she refines the
understanding of the computational process in the discipline since it is translated into an
appropriate and precise visual script; and at the same time develops the skills of algo-
rithmic CT in relation to developing the script in the Scratch environment.

174 R. Noa

Assignment #6: Position Paper: Implementation in Teaching – In Pairs. Students
instructions: Write a 2–3-page position paper that present your position on the inte-
gration of CT in school instruction. Your personal learning and thinking processes are
valuable. There is room to express independent, supportive and/or critical, positions.
The position paper should be based on the contents of the course, on the methods of
learning in the course, and on at least three bibliography sources.

Intentions and Goals: After accomplishing the project development and being
exposed to different school curricula used around the world, students should state their
opinions in a reasoned and justified position paper, while looking at the application of
CT in their future classes.

Assignment #7: Analysis of Projects, Clarification of Concepts, and Reflection -
Third Phase of Conceptualization – Individually. Students are asked to complete a
Google form questionnaire. Part A relates to the projects developed in teams. Some
represented projects are selected by the lecturer and each student is required to evaluate
his or her opinion in relation to the question: “To what extent do you believe the project
reflects the principles of the computational process as you understand it?”. The eval-
uation was ranked as insufficient application, limited application, reasonable applica-
tion, good application, or excellent application. The goal is to enable students to apply
their own conceptions and principles on peer projects. Part B includes three statements
about concepts: (1) Today I understand that CT is: ___; (2) Today I understand that CP
is: ___; (3) Rank your faith (on a 1–5 scale) that CT is a skill that can be applied in
school and in your teaching subject, and explain your position.

Intentions and Goals: Bringing students to a high level of analysis while evaluating
given application of CP in light of their own conceptual mental model, and explaining
their judgments and conceptions.

4 Course Execution

The course was implemented similarly with three different populations. Changes and
adjustments were made between each launch of the course following conclusions
drawn from each previous course. The model shown here is the last approved one.

4.1 Populations

The course was conducted three times, each for different populations described in
Table 2. All populations were studying for their teaching certificate.

4.2 Course Journeys: Difficulties, Successes, and What Lies in Between

In this section we elaborate on some key aspects that arose while running the courses.
The course implementation was accompanied with research and the results will be
published in the near future.

A Distant Starting Point. The vast majority of students stated the more obvious
answers for “computation” and “computational process” and retained mathematical

Computational Thinking 175

explanations. An exceptional and expected answer of CS students in course A related to
computational theory, and in course B where students were adults with rich work
experience. There, the frequent but not major answer related to building a model.
However, looking farther to the following stages of the course, it was not easy to move
most of the students from their starting position of “mathematical calculation”.

Insecurity Since No Formal Declaration of CT Is Presented. Most of the students
constantly felt insecure at the conceptual level. Since no clear definition of CT was
presented by the lecturer, students felt confused. Emphasis on the varying interpreta-
tions and implementation of the concept and encouraging students to develop their own
view, was a new and challenging teaching approach for all populations.

What Should Have Been Mentioned Again and Again? It was necessary in almost
each course meeting to remind students that the focus of the course was on the
interpretation that a computational process is not built on calculations (even thought it
could include some). The process is composed of stages, which are developed to solve
a problem or build a knowledge map. When developing their project, most students
interpret their simulations as a tutoring tool for the school students. It was necessary to
constantly emphasize the course’s pedagogical approach that school students can
develop the simulation by themselves, and thereby deepen their understanding of the
CP occurring in a particular discipline.

Table 2. Description of the course populations.

Institution Learning track Teaching
Subjects

Number
of
Students

A: Technion, Faculty of Education in
Science and Technology. An
obligatory course for the CS track,
and elective for others.

Math, Sciences,
and Technology
for high school
Year: 2015–2016

– CS (18)
– Mathematics
(11)

– Chemistry (3)
– Physics (5)
– Electricity (1)

38

B: Beit Berl College, Faculty of
Education. An obligatory course for
the group of students.

Humanities and
Social Sciences for
high school
Year: 2016–2017

– Social
Sciences and
Citizenship
(28)

– History (3)
– English (1)
– CS (2)

34

C: Beit Berl College, Faculty of
Education. An elective course. Each
student combines two disciplines in
his/her track of learning.

Various disciplines
for elementary
school
Year: 2017

– Literature
– Language
– Bible
– History
– Sciences
– Mathematics

28

176 R. Noa

When the Idea Becomes Understandable. As expected, difficulties arose in two
significant stages of the project development process: one, in the selection and defi-
nition of the computational process, and the second, when programming the scripts,
since students have no previous background in the environment. The first is in the area
of CT, and the second is in the area of algorithmic CT (beyond the mastery of the
environment). Coping and passing those two critical stages clarifies the pedagogical
idea of the main assignment (#5) and makes it more understandable. In that stage of the
course, when the animated simulations appeared on the screens, the tension fell away,
leaving room for satisfaction, pride, and smiles. In relation to the main message we
wished to deliver – there were no meaningful differences between the populations.
Some of the topics of CP that students addressed in their projects, is presented in the
Appendix. We present one quote taken from the position paper (assignment #6) of a
student from course B, as an example of the success of the process:

“I would like to point out that there has been a profound change in my understanding and
approach of ‘There is nothing to do with computational thinking within the discipline of
teaching citizenship’, in a completely opposite direction, which indicates that this should be
especially involved in the field of citizenship I specialize in. In addition, I understand that I have
gone through a personal process with a clear disagreement about the ability to integrate the CT
topic, while taking a stubborn stance of not accepting the subject in any way - for under-
standing the ability to integrate CT in humanities and verbal fields. Thanks for the opportunity
given me to undergo an internal change and to be given the tools to implement such an
important process, which I believe will contribute greatly to the youth in the education system”

5 Reflective Summary

Following the process of designing and developing the course, the course achieved its
aims and learning outcomes. The pre-service teachers expanded their Pedagogical
Content Knowledge (PCK) and their Technological Pedagogical Content Knowledge
(TPACK). They constructed their knowledge in many facets and were active in the
entire learning process. They were able to define and elaborate on the main concepts:
computational thinking, computational process, and algorithmic computational think-
ing. All in the relevant context and interpretation of their own teaching subjects.

The course was conceptually very challenging for the diverse student populations.
As a lecturer, it took the skills of a magician and required great patience. The lecturer
functions as a psychologist, a facilitator, a leader, a questions asker, and does not
provide answers but only hints and reference to materials to follow. Although there was
a need to cope with objections, the effort was fruitful. It was very satisfying to follow
the students’ thought processes, to see their final projects, and particularly read their
reflections about the deep process that they went through and appreciated. Presenting
the course content and outcomes in the national leading CS teachers seminar aroused
interest and curiosity.

Acknowledgments. We wish to acknowledge all the students who participated in the three
courses. They are groundbreakers in being the first to experience that academic course. Students
overcame their obstacles since they trusted the route before them, despite the “bumps” along the
way.

Computational Thinking 177

Appendix

Examples of Students’ Projects

Following some of the topics of CP that students addressed in their projects, is pre-
sented, to enable partial expression from students’ products.

• Mathematics: The movement of ducks with and against the river current.
• Physics: Throwing an object on a slope.
• Chemistry: Simulation of splitting particles moving inside a container and colliding

with the walls and themselves.
• Computer Science: Simulation of the Dijkstra algorithm in Graph Theory.
• Citizenship: Presenting alternatives to building a coalition based on the political

platforms of parties.
• Social Sciences: Making decisions about the location of a new school according to

socio-economic, social, and infrastructure considerations.
• Language: Root word recognition.
• Literature: Identifying versification in songs.
• Mathematics for Elementary School: Identifying common and diagnostic properties

of the square family.

References

1. Barr, D., Harrison, J., Conery, L.: Computational Thinking: a digital age skill for everyone.
Learn. Lead. Technol. 3–4(2011), 2–23 (2011)

2. Brennan, K., Resnick, M.: New frameworks for studying and assessing the development of
computational thinking. Paper presentation at AERA 2012 (2012)

3. Csizmadia, A., et al.: Computational thinking: a guide for teachers. Comput. Sch. Community
1–18 (2015). https://community.computingatschool.org.uk/files/6695/original.pdf

4. Computing at schools web site. Material on Computational Thinking and related topics.
http://community.computingatschool.org.uk/resources/252

5. Computer Science Teachers Association (CSTA): Operational definition of Computational
Thinking for K–12 education – Flayer (2011). http://www.iste.org/docs/ct-documents/
computational-thinking-operational-definition-flyer.pdf?sfvrsn=2

6. Computer Science Teachers Association (CSTA) and the International Society for
Technology in Education (ISTE): Computational Thinking in K–12 education leadership
toolkit (2011). https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/471.11CT
LeadershiptToolkit-S.pdf

7. Cuny, J., Snyder, L., Wing, J.M.: Demystifying computational thinking for noncomputer
scientists. Unpublished manuscript (2010). http://www.cs.cmu.edu/*CompThink/resources/
TheLinkWing.Pdf. Key: citeulike:13256108

8. Denning, P.J.: The profession of IT beyond computational thinking. Commun. ACM 52(6),
28–30 (2009)

9. Duncan, C., Bell, T., Atlas, J.: What do the teachers think?: introducing computational
thinking in the primary school curriculum. In: Proceedings of the Nineteenth Australasian
Computing Education Conference (ACE 2017), pp. 65–74 (2017)

178 R. Noa

https://community.computingatschool.org.uk/files/6695/original.pdf
http://community.computingatschool.org.uk/resources/252
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf%3fsfvrsn%3d2
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf%3fsfvrsn%3d2
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/471.11CTLeadershiptToolkit-S.pdf
https://c.ymcdn.com/sites/www.csteachers.org/resource/resmgr/471.11CTLeadershiptToolkit-S.pdf
http://www.cs.cmu.edu/%7eCompThink/resources/TheLinkWing.Pdf
http://www.cs.cmu.edu/%7eCompThink/resources/TheLinkWing.Pdf

10. Google: Computational Thinking for Educators course. https://computationalthinkingcourse.
withgoogle.com/course?use_last_location=true

11. Hodhod, R., Khan, S., Kurt-Peker, Y., Ray, L.: Training teachers to integrate Computational
Thinking into K-12 teaching. In Proceedings of the 47th ACM Technical Symposium on
Computing Science Education (SIGCSE 2016), pp. 156–157 (2016)

12. Hu, C.: Computational thinking: what it might mean and what we might do about it. In:
Proceedings of the 16th Annual Joint Conference on Innovation and Technology in
Computer Science Education (ITiCSE 2011), pp. 223–227 (2011)

13. Lye, S.Y., Ling Koh, J.H.: Review on teaching and learning of computational thinking
through programming: what is next for K-12? Comput. Hum. Behav. 41, 51–61 (2014)

14. Lodi, M.: Growth Mindset in Computational Thinking teaching and teacher training. In:
Proceedings of the 2017 ACM Conference on International Computing Education Research
(ICER 2017), pp. 281–282 (2017)

15. Mishra, P., Koehler, M.J.: Technological pedagogical content knowledge: a framework for
teacher knowledge. Teach. Coll. Rec. 108(6), 1017–1054 (2006)

16. MIT Media Lab: Scratch – a free visual programming language. https://scratch.mit.edu/
about/

17. Sabitzer, B., Antonitsch, P.K., Pasterk, S.: Informatics concepts for primary education:
Preparing children for computational thinking. In: Proceedings of the 9th Workshop in
Primary and Secondary Computing Education (WiPSCE 2014), pp. 108–111 (2014)

18. Shulman, L.S.: Those who understand: Knowledge growth in teaching. Educ. Res. 15(2), 4–
14 (1986)

19. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
20. Wing, J.M.: Computational Thinking: What and Why? The Magazine of Carnegie Mellon

University’s School of Computer Science (2011). https://www.cs.cmu.edu/link/research-
notebook-computational-thinking-what-and-why

21. Wing, J.M.: Computational Thinking Benefits Society, Social Issues in Computing.
Academic Press Blog, New York (2014). http://socialissues.cs.toronto.edu/index.html%
3Fp=279.html

22. Yadav, A., Stephenson, C., Hong, H.: Computational thinking for teacher education.
Commun. ACM 60(4), 55–62 (2017)

Computational Thinking 179

https://computationalthinkingcourse.withgoogle.com/course%3fuse_last_location%3dtrue
https://computationalthinkingcourse.withgoogle.com/course%3fuse_last_location%3dtrue
https://scratch.mit.edu/about/
https://scratch.mit.edu/about/
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
https://www.cs.cmu.edu/link/research-notebook-computational-thinking-what-and-why
http://socialissues.cs.toronto.edu/index.html%253Fp%3d279.html
http://socialissues.cs.toronto.edu/index.html%253Fp%3d279.html

Investigating the Pedagogical Content
Knowledge of Teachers Attending
a MOOC on Scratch Programming

Ebrahim Rahimi1,2(B), Ineke Henze3, Felienne Hermans3,
and Erik Barendsen1,2

1 Radboud University, Nijmegen, The Netherlands
{e.rahimi,e.barendsen}@cs.ru.nl

2 Open University, Heerlen, The Netherlands
3 Delft University of Technology, Delft, The Netherlands

{f.a.henze-rietveld,f.f.j.hermans}@tudelft.nl

Abstract. The goal of this study is to investigate changes in PCK
(Pedagogical Content Knowledge) of Dutch primary and secondary com-
puter science teachers participating in a MOOC about Scratch pro-
gramming. We captured the teachers’ PCK using identical pre- and
post-questionnaires and conducted a qualitative deductive-inductive con-
tent analysis to identify changes in the PCK of the MOOC attendees. We
relate the observed differences between PCK before and after the MOOC
to Clarke and Hollingsworth’s model of teacher professional growth and
Van Driel and Henze’s model of PCK development. Our analysis gives
rise to four design principles meant to inform the pedagogical design of
such MOOCs and improve their pedagogical affordances with regard to
PCK development of their attendees.

Keywords: Pedagogical content knowledge
Computer science education · Secondary education · MOOC
Scratch programming

1 Introduction

An “effective CS teacher” needs to have a knowledge base consisting of both
content knowledge (CK) and pedagogical content knowledge (PCK) [4,16]. PCK
is needed by teachers to plan and deliver instruction and has been advocated
as the unique sort of knowledge held by teachers that distinguishes them from
experts and accounts more precisely for students’ learning [11].

In an American context, it has been claimed that primary and secondary
CS teachers generally have low PCK [22]. Solving this problem asks for proper
professional development programs [22,33]. The Internet serves as a promising
professional development platform for teachers. Teachers’ participation in online
professional development can enhance their self-efficacy and provide the possi-
bility to connect with people sharing similar pedagogical and content problems
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 180–193, 2018.
https://doi.org/10.1007/978-3-030-02750-6_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_14&domain=pdf

Investigating the Pedagogical Content Knowledge 181

[10,22]. It has been suggested that online and face-to-face professional develop-
ment programs may have similar learning outcomes for teachers [22].

Massive open online courses (MOOCs) represent a fairly new web-based edu-
cation inititive seeking to extend and offer educational services in an unprece-
dented scale [10]. MOOCs have been proposed as a “cost and resource effective
means” for addressing the professional development needs of teachers [7,10,20].
To do so, such MOOCs must provide teachers with“the features, tools, resources,
and interactions that will enable the acquisition of the various elements of good
teaching” (outlined by Burns in [4]) including PCK [10] (p. 3). Thus, given the
prominent role of PCK in teacher professional development, an important and
open question about such MOOCs concerns with their influence on the PCK
development of their attendees.

This study aims to investigate occurred changes in PCK of Dutch primary
and secondary CS teachers attending a MOOC about Scratch programming.
Notably, this MOOC was not initially devoted to supporting PCK development
of attendees. Instead, it was meant to help them learn the content knowledge
about Scratch programming. As such content-directed MOOCs are attended
frequently by teachers with the purpose of supporting classroom practices, it is
justifiable to investigate their influence on the teachers’ practical knowledge, in
particular, their PCK.

One may question the idea of measuring PCK in the context of a course that
is not meant for PCK development. Nevertheless, we support this idea for this
MOOC based on two reasons: first, research has shown that there is a strong link
between content knowledge (CK) and PCK in the context of mathematics and
science education, so that teacher’s CK is necessary for developing PCK, but is
not sufficient on its own [6]. This connection makes it appealing to investigate
what happens with the CS teachers’ PCK when they participate in a content-
focused course. Secondly, as the attendees are CS teachers, it is expected that
they already have PCK of programming. Participation in this MOOC, as an
external source according to [5,29], can contribute to changing their PCK of
Scratch programming.

For the purposes of this study, two open-ended pre- and post-questionnaires,
derived from the PCK model of Magnusson et al. [19] and a combination of CoRe
instrument [18] and retrospective PCK-directed interviews [14], were admin-
istered among the MOOC attendees. Then, following a qualitative deductive-
inductive research, the changes in the PCK of the attendees were identified.
The results then were used to inform a set of pedagogical design guidelines for
improving the effectiveness of such MOOCs concerning PCK development.

2 Background

The PCK concept has been introduced by Shulman as the “missing paradigm”
in the research on teacher knowledge and refers to“the blending of content and
pedagogy into an understanding of how particular topics, problems, or issues
are organized, represented, and adapted to the diverse interests and abilities

182 E. Rahimi et al.

of learners, and presented for instruction” [27] (p. 8). Teachers’ PCK is their
“pedagogical know-how” knowledge that develops during the years of teach-
ing experience and describes the processes that teachers follow and employ in
response to the challenges of teaching a given topic to particular students in
specific settings [3,27].

The most often cited model to describe teachers’ PCK has been proposed
by Magnusson et al. [19]. This model defines five elements for teacher PCK on
a specific topic, of which we use four (hereafter referred to as M1, M2, M3,
M4, respectively): teacher knowledge about the objectives of teaching that topic
(M1), teacher knowledge about the students’ understanding and learning dif-
ficulties with the topic (M2), teacher knowledge about effective instructional
approaches to teach the topic (M3), and teacher knowledge about appropriate
assessment strategies to assess the students’ understanding (M4) [19]. The Con-
tent Representation (CoRe) instrument, [18], captures the collective key ideas
(of a group of teachers) connected to a specific topic, and elicits the teachers’
knowledge about each idea using 8 open questions. These questions cover the
four elements of the PCK model of Magnusson et al. [19].

From a cognitive-constructivist perspective, the development of PCK goes
through a non-linear, iterative and constructive process where new information
is integrated with prior experiences, knowledge and beliefs captured from dif-
ferent domains, practices, and interactions. From a socio-cultural perspective,
teacher PCK shapes and is developed through the transformation of subject-
matter knowledge and communication process between teachers and students
during classroom practices and interactions [13,15], while from a situative
perspective PCK is situated in the everyday practices of teachers and not
only residing in individuals but also is distributed in their surrounding envi-
ronment including books, tools, and their communities [15]. Collegial cooper-
ation and knowledge, experience, and relationship exchanges among teachers
have been proven to be essential for the development of teachers PCK [30]. Such
exchanges might occur during face-to-face interactions happening within “con-
ferences, department meetings, casual hallway conversations” or remote inter-
actions emerging in various online platforms including social networking sites,
MOOCs, blogs, and mailing lists [10,12,30].

Clarke and Hollingsworth’s empirical model for professional growth of teach-
ers [5] and Van Driel and Henze’s theoretical model of PCK construction [29]
(see Fig. 1) seem promising models to explain the professional growth and PCK
development of teachers. Clarke and Hollingsworth’s model states that “external
sources of information or stimulus” can make changes in the teacher’s“personal
domain” by triggering her reflection on personal knowledge, beliefs, and atti-
tude. Furthermore, these external sources might change the teacher’s “domain
of practice” containing her professional experimentation by enacting new prac-
tices, for example, having experience with a new teaching strategy. According
to Clarke and Hollingsworth’s model, the professional growth of teachers results
from enactment and reflection mechanisms among external domain, personal
domain, the domain of practice, and domain of consequence.

Investigating the Pedagogical Content Knowledge 183

Fig. 1. Two models for explaining the PCK development process of teachers

As put by Van Driel and Henze, the development of PCK goes through
two processes: a knowledge transformation process which (partly) draws upon
external collective sources including learning theories, models for cognitive and
conceptual development, well-known misconceptions, general psychological the-
ories, methods of instruction, good practices, exemplary assessment tools, and
so on, and a knowledge connection and integration process aiming at the internal
coherence and relationship between the elements of PCK as a crucial factor to
enable effective scaffolding of students’ learning [21,29].

The PCK concept has been mainly investigated in connection with subjects
such as physics, chemistry, and language [3,15]. CS teachers’ PCK is a fairly
new but promising research domain. As yet, there have been few attempts to
elicit CS teachers’ PCK [1,3,16,26,32]. While the majority of the research on
investigating CS teachers’ PCK has been conducted in connection with physical
classrooms, we found only two studies examined the PCK development of CS
teachers in online settings (i.e. [12,22]). In the first study, Go and Dorn investi-
gated the PCK development of high school CS teachers participated in two online
knowledge-sharing communities: one community provided the CS teachers with
highly curated content devoted entirely to CS PCK, while another community
was focused on unstructured content devoted to general CS education matters.
The researchers discussed the strengths and weaknesses of both communities
and speculated on how their benefits might inform an online community meant
to facilitate CS teachers’ PCK development [12]. Another research, conducted
by Qian et al., presents the results of a 2-year study investigating how teach-
ers teaching the CS principles course for the first time used online professional
development (PD) materials. Their results show that novice teachers with a
CS educational background needed and used PD materials for developing their
PCK, while teachers with a Non-CS educational background needed and used
PD materials for gaining content knowledge [22].

184 E. Rahimi et al.

3 The Study Setting

As mentioned earlier, this study investigated the PCK change of a group of Dutch
primary and secondary school teachers participated in a MOOC on Scratch pro-
gramming. The primary aim of the MOOC in question was to help the attendees
learn about Scratch programming (i.e. content knowledge) and become confident
enough to implement it in their classrooms. The MOOC contained a set of videos,
forums, questions, and course materials and was ran for 6 weeks starting from
September 2017. Within the context of this MOOC, the study was directed by
the following research question:

RQ: How can the PCK and the changes in this PCK of the attendees of this
MOOC be characterized?

Data Collection: To answer the research question we constructed a question-
naire consisting of seven open-ended questions as presented in Table 1. The ques-
tions are based on the PCK model of Magnusson et al. [19] and a combination of
the proposed questions by CoRe instrument [14,18]. Two identical pre- and post-
test online questionnaires as Table 1 were used as our data collection instruments
in this study.

Table 1. The questions of pre- and post-test questionnaires

PCK elements ([19]) Questions about Scratch programming
(adapted from [14,18])

M1. Knowledge of goals and
objectives

1. What do you intend students to learn about
Scratch programming?

2. Why is it important for the students to learn
this?

M2. Knowledge of students’
understanding and practices

3. What do you know about students’ thinking
(prior knowledge, learning difficulties) that
influences your teaching of Scratch
programming?

M3. Knowledge about
instructional strategies

4. What do you think is a suitable method for
teaching Scratch programming?

5. What are your particular reasons for
choosing this method?

M4. Knowledge about ways to
assess students’ understanding

6. What would be a suitable way of assessing
students’ understanding or confusion around
Scratch programming?

7. What are your reasons for choosing this
particular way of assessment?

Investigating the Pedagogical Content Knowledge 185

Participants: 375 people enrolled at the beginning of the MOOC. We selected
the answers of those attendees who answered both pre- and post-test question-
naires (16 attendees) to do the analysis.

Data Analysis: A mixed deductive-inductive qualitative content analysis proce-
dure [8] was followed. First, the answers in each phase were uploaded into Atlas.ti
software collectively. Four elements (i.e. M1, M2, M3, M4) of Magnusson’s PCK
model [19] were used to group the answers in each phase. Within each group, the
content of the PCK was analyzed inductively through identifying various codes,
re-coding and merging into more general themes describing the variation among
the teachers’ PCK. Possible alternative interpretations of the identified codes were
discussed within the research team until a consensus was reached.

4 Results

We present the results according to the PCK elements. Within each element, we
describe the teachers’ PCK organized by the themes emerging from the inductive
analysis.

Knowledge About Goals and Objectives (M1)
We discerned three categories of objectives for teaching Scratch programming
expressed by the participants in the pre- and post-test questionnaires:

i. Knowledge-oriented objectives: consisting of the following objectives: to
learn about the structure of a program and its concepts, to understand how
computers think and work, and to be prepared for actual programming lan-
guages.

ii. Motivational objectives: consisting of these objectives: to make students
interested in programming through making a game, to prepare them for a
digital society, to motivate them by observing the influence of programming
in their daily life, to provide them opportunity to experience more freely, and
to make them prepared to work with Microbit.

iii. Personal development objectives: consisting of the following objectives per-
taining to improving soft and design competencies of students: enhancing
logical reasoning via drawing plan and decomposing a problem, building trust
and self-confidence in own abilities through discovering and expressing own
ideas, and collaboration.

No significant difference between the patterns of appearing these objectives
in the pre- and post-test questionnaires was identified.

Knowledge About Students’ Understanding and Performance (M2)
The following items present the participants’ knowledge on students’ under-
standing and performance in Scratch programming:

i. Students’ general learning specifications: reflected in statements such as stu-
dents can do more than what they show, students scare to try unknown

186 E. Rahimi et al.

subjects, students have difficulty with independent working, students’ lack
of thinking ahead and solution-oriented approach, students with more ICT
knowledge and experience resist to follow the instruction, and primary stu-
dents have problem with Micro: Bit.

ii. Students’ reaction to Scratch: including statements such as students find
Scratch programming childish, difficult, or interesting and students’ knowl-
edge about Scratch is more than me.

iii. Students cognitive development stages : representing general understanding
and concerns about the level of cognitive capabilities of pupils for program-
ming highlighted by some of the teachers in the post-test questionnaire.

These responses were observed with an almost identical pattern in the pre- and
post-test questionnaires. The only remarkable difference was about the last item
in the above list (i.e. Students cognitive development stages) which was only
observed in the post-test answers.

Knowledge About Instructional Strategies (M3)
The following items present the identified teachers’ knowledge about instruc-
tional strategies associated with Scratch programming:

i. The generation strategy for programming : referring teachers’ knowledge
about the generation approach to Scratch programming that emphasizes
the generation of new programs by students from beginning. This type of
knowledge was demonstrated in the pretest more than the post-test phase.

ii. The completion strategy for programming : referring to teachers’ knowledge
about the completion approach to Scratch programming that emphasizes
the modification and extension of existing programs by students. This type
of knowledge was demonstrated in the post-test more than the pretest phase.

iii. First giving concrete examples then teaching abstract concepts: denoting
teachers’ knowledge about a specific instructional strategy that asks teach-
ers to first provide and explain concrete examples about a topic in Scratch
programming (e.g. using video clips) and then use these examples to unpack
the abstract concepts related to that topic. It is noteworthy that the appear-
ance of this type of knowledge in the post-test was remarkably more than
the pretest phase.

iv. First teaching abstract concepts then giving concrete examples: implying
teachers’ knowledge about the traditional instructional strategy asking them
to first explain the theory and abstract concepts about a topic in Scratch
programming and then provide concrete examples to elaborate those con-
cepts. This type of knowledge was observed in the pretest more than the
post-test phase.

v. Fun-driven learning : referring to the teachers’ knowledge about the ways
of making students’ learning more playful via creating fun projects and
connecting Scratch programming to students-favorited contexts such as Lego
Mindstorms. Patterns of this type of knowledge were observed more in the
post-test than the pretest phase.

Investigating the Pedagogical Content Knowledge 187

vi. Unplugged activities: denoting teachers’ knowledge about unplugged activi-
ties and their benefits for teaching Scratch programming. We observed this
type of knowledge mainly in the post-test phase.

vii. Group-based learning : implying teachers’ knowledge about the group-based
learning strategies and their advantages. We saw no remarkable difference
between the patterns of this type of knowledge in the pretest and post-test
phases.

Knowledge About Ways to Assess Students’ Learning and Perfor-
mance (M4)
The following items describe teachers’ knowledge about ways to assess students’
understanding and performance in Scratch programming:

i. Generation-based assessment : denoting teachers’ knowledge about an assess-
ment strategy that emphasizes the generation of a new program by students
as a means for measuring their understanding and performance in Scratch
programming. This type of knowledge was demonstrated in the pretest more
than the post-test phase.

ii. Completion-based assessment : denoting teachers’ knowledge about an
assessment strategy emphasizing the completion, debugging, explaining and
predicting the results of an existing program by students as means for mea-
suring their understanding and performance in Scratch programming. This
type of knowledge was demonstrated in the post-test more than the pretest
phase.

iii. Unstructured, observation-based assessment : referring to teachers’ knowl-
edge about an open and observation-based assessment strategy that empha-
sizes allowing students’ group working with Scratch and listening to their
conversations to capture their possible understanding and misconceptions of
Scratch topics. This type of knowledge was mainly observed in the pretest
phase.

5 Discussion

The discerned teachers’ knowledge about the objectives of Scratch programming
(M1 element of PCK) in both pre-test and post-test phases depicts a continuum
ranging from more theoretical and knowledge-oriented objectives to more prac-
tical objectives with no significant difference in pre- and posttest phases. These
findings concur with the results reported by [1,23] pertaining CS teachers’ knowl-
edge about the objectives of programming.

The captured teachers’ knowledge on students’ understanding and perfor-
mance in Scratch programming is limited to general learning specifications of
students including knowledge about students general learning problems, their
reactions to Scratch and their cognitive development stages. The latter item
was only observed in the post-test phase which likely resulted from the explicit
emphasis of the MOOC instructor on neo-Piagetian perspectives of cognitive

188 E. Rahimi et al.

development of novice programmers (see [17]). No specific knowledge about stu-
dents’ needs, motivations, misunderstanding and problems with Scratch was
observed. Teachers’ insufficient understanding of their students decreases their
teaching quality [19,24]. As put by Berglund and Lister, “we know very little
about our students’ world and our students’ motivations... We tend to base our
teaching on our own needs, or our assumptions about the students’ needs.” [2]
(p. 42).

Figure 2 presents the participants’ evaluation of the MOOC elements. As
shown, the forums were perceived as least useful element of the MOOC.

Fig. 2. The evaluation of the participants about the usefulness of the MOOC elements

There are two interesting observations related to the development of the
participants’ knowledge about instructional strategies (M3): a shift from the
generation to completion instruction for programming (for more information
about these instructional strategies see [31]) and, a shift from First teaching
abstract concepts then giving concrete examples to First giving concrete examples
then teaching abstract concepts strategy. Arguably, these developments can be
attributed to the participants’ exposure to the MOOC and its underpinning
instructional strategy focused on the completion strategy as well as explaining
concrete examples before teaching abstract concepts.

Clarke and Hollingsworth’s model of teacher professional growth [5] along
with Van Driel and Henze’s model of PCK construction [29] (depicted in Fig. 1)
can be used to explain the mentioned PCK developments. Through the lens of
these models the external sources including the participants’ exposure to the
MOOC and its promoted instructional strategies as well as provided videos and
content appeared to have served to initiate a knowledge transformation process
or trigger the participants’ reflection on their personal domain of knowledge,
beliefs, and attitudes. The following quote by one of the participants is one
of the few examples explaining the ways that some of the discussed concepts
in the MOOC such as the Neo-Piagetian perspective of programming served to
trigger the teacher’s reflection on her personal knowledge domain (the knowledge

Investigating the Pedagogical Content Knowledge 189

transformation process) and connect and integrate her PCK elements (M2 and
M3) (the knowledge connection and integration process):

I found the discussion about the Neo-Piagetian perspective of programming
very interesting. There are teachers with high knowledge and experience in
Scratch. If they want to teach pupils to program in Scratch, their teaching might
be inappropriate to improve the thinking of a pupil who needs to learn some-
thing totally new [M2] ... I think recognizing the difference between teachers’
and pupils’ cognitive level [M2] is very important to teach programming and this
difference asks for a step by step instructional approach [M3].

As suggested by the results, the observed changes in the participants’ knowl-
edge of instructional strategy seem to be influential in the changes happened to
teachers’ knowledge about assessment (M4 elements). This observation suggests
a knowledge connection and integration process between M2 and M3 elements
of teachers’ PCK.

Although the presented analysis is based on the collective demonstration of
the participants’ PCK in the pre- and post-test phases, the outcomes can be
traced back to the individual level. Table 2 in appendix A presents the devel-
opments in the demonstrated instructional knowledge of the participants. The
developments of the instructional knowledge explained earlier can be seen at the
individual level for several participants including teachers 2, 4, 14, 16.

Informed by the above findings and discussions, we formulated the following
design principles to improve the pedagogical affordances of such MOOCs for
enhancing CS teachers’ PCK.

Explaining Well-Known Students’ Misconceptions Related to a Spe-
cific Topic: The results indicated low developments in the participants’ knowl-
edge about students’ understanding and performance in Scratch. Teachers’
knowledge of students’ understanding of a specific topic forms the core part
of their PCK on that topic. According to [29], teachers’ knowledge of strate-
gies to teach a certain topic is related to their knowledge of how students learn
that topic including their misconceptions [29] (p. 1). Thus, explaining the com-
mon misconceptions students experience in learning a topic and exploring their
reasons and solutions can contribute to enhancing teachers’ PCK on that topic.

Encouraging and Facilitating Social Interactions Around the Content:
As depicted by Fig. 2, the quality of social aspects and interactions between the
attendees in this MOOC was low. PCK is to some extent a collective and sharable
knowledge [30]. Collegial cooperation and exchanging knowledge, experience (e.g.
over students’ misconceptions and difficulties), values and relationships among
teachers is essential for the development of their PCK [30]. As asserted by [9],
stimulated reflection, attending PCK courses, and contact with other teachers
are typically part of effective interventions to promote PCK development in
initial teacher education. CS teachers, in particular, may suffer more from this
undermined social interaction given that they are most often the only people in
their schools teaching CS subjects and may lack formal training in CS content
[12,33].

190 E. Rahimi et al.

Recognizing the Diversity of CS Teachers’ Background and Experi-
ence: Diversity in the knowledge, background, and expertise of attendees is com-
mon in MOOCs [25]. As shown by [22], the teaching experience and computing
background of CS teachers have a significant impact on their need for and use of
online professional development materials including MOOC-based education. It
has been observed that novice CS teachers needed and used online professional
development materials for developing their PCK, while Non-CS teachers needed
and used these materials to gain content knowledge. Addressing this diversity
asks for matching professional development to teachers’ background [22].

Facilitating the Interaction Between the PCK Gained from MOOCs
and Teachers’ Educational Practices: As shown, the participants’ expo-
sure to this MOOC appeared to have served to enhance their knowledge about
instructional and assessment strategies. From the perspective of Clark and
Hollingsworth’s model [5] to promote professional growth of teachers this knowl-
edge should inform their “domain of practice” through professional experimen-
tation. On the other hand, through the lens of Van Driel and Henze’s model
of PCK construction [29], teachers’ experimentation in their“domain of prac-
tice” can connect and strengthen their PCK elements through knowledge inte-
gration and knowledge transformation processes. Along similar lines, Van Driel
[28] emphasized the importance of providing opportunities for teachers to exper-
iment in their own practice as a key factor to develop their knowledge including
their PCK. Explicating the pedagogical premises and strategies underpinning
such MOOCs seems useful to ease transferring the gained PCK by participants
to their domain of practice and facilitate the interaction between building PCK
and experimenting in practice.

6 Conclusions

This paper investigates changes in the PCK of the attendees at a Scratch
MOOC. Some remarkable PCK changes were observed mainly in the atten-
dees’ knowledge about instructional strategies and assessment. These changes
likely stem from the attendees’ exposure to the instructional strategies followed
in this MOOC. Four design principles were formulated to inform the pedagog-
ical design of such MOOCs and improve their effectiveness with respect to the
PCK development of their attendees. The formulated design principles emphasize
explaining well-known students’ misconceptions about MOOC topics, facilitating
social interactions within the MOOC, recognizing and capitalizing the diversity
in background and experience of MOOC attendees, and encouraging attendees
to apply their gained PCK in practice. The method and questionnaires used for
capturing participants’ PCK seem promising for supporting other studies about
the PCK development in MOOCs. We propose a follow-up study to embed the
suggested design principles in a similar MOOC and investigate the changes in
the PCK of its attendees.

Investigating the Pedagogical Content Knowledge 191

Appendix A

Table 2. The demonstrated instructional knowledge of the participants in the pre- and
posttest phases

Teacher Pretest Posttest

1 - First giving concrete examples then teaching
abstract concepts

2 First teaching abstract concepts then
giving concrete examples

First giving concrete examples then teaching
abstract concepts education, Differentiated
learning, Completion-based instruction

3 First teaching abstract concepts then
giving concrete examples, the
generation strategy

-

4 First teaching abstract concepts then
giving concrete examples, the
generation strategy

First giving concrete examples then teaching
abstract concepts, group working, the
completion strategy, unplugged activities,
fun-driven learning

5 - -

6 Fun-driven learning, First teaching
abstract concepts then giving concrete
examples

Group working

7 Group working -

8 - First giving concrete examples then teaching
abstract concepts, the completion strategy

9 Conducting short assignments First giving concrete examples then teaching
abstract concepts, the completion strategy,
fun-driven learning

10 Differentiated learning, First teaching
abstract concepts then giving concrete
examples

-

11 Accomplishing focused assignments First teaching abstract concepts then giving
concrete examples, Fun-driven learning

12 Fun-driven learning, group working,
the generation strategy, contextualized
learning, video-based teaching

-

13 the generation strategy, first teaching
abstract concepts then giving concrete
examples, fun-driven learning

-

14 The generation strategy, first teaching
abstract concepts then giving concrete
examples

First giving concrete examples then teaching
abstract concepts, the completion strategy

15 The completion strategy Group working

16 First teaching abstract concepts then
giving concrete examples

Fun-driven learning, differentiated learning,
group working

192 E. Rahimi et al.

References

1. Barendsen, E., Dagienė, V., Saeli, M., Schulte, C.: Eliciting computer science teach-
ers’ PCK using the Content Representation format: experiences and future direc-
tions. In: Gülbahar, Y., Karataş, E., Adnan, M. (eds.) Proceedings of the 7th
International Conference on Informatics in Schools: Situation, Evolution and Per-
spectives (ISSEP 2014), Selected Papers, pp. 71–82 (2014)

2. Berglund, A., Lister, R.: Introductory programming and the didactic triangle. In:
Proceedings of the Twelfth Australasian Conference on Computing Education, vol.
103, pp. 35–44. Australian Computer Society, Inc. (2010)

3. Buchholz, M., Saeli, M., Schulte, C.: PCK and reflection in computer science
teacher education. In: Proceedings of the 8th Workshop in Primary and Secondary
Computing Education, pp. 8–16. ACM (2013)

4. Burns, M.: Distance Education for Teacher Training: Modes, Models and Methods.
Education Development Center Inc., Washington (2011)

5. Clarke, D., Hollingsworth, H.: Elaborating a model of teacher professional growth.
Teach. Teach. Educ. 18(8), 947–967 (2002)

6. Daehler, K.R., Heller, J.I., Wong, N.: Supporting growth of pedagogical content
knowledge in science. In: Re-examining Pedagogical Content Knowledge in Science
Education, pp. 55–69. Routledge (2015)

7. Dikke, D., Faltin, N.: Go-Lab MOOC-an online course for teacher professional
development in the field of inquiry-based science education. In: 7th International
Conference on Education and New Learning Technologies (2015)

8. Elo, S., Kyngäs, H.: The qualitative content analysis process. J. Adv. Nurs. 62(1),
107–115 (2008)

9. Evens, M., Elen, J., Depaepe, F.: Developing Pedagogical Content Knowledge:
Lessons Learned from Intervention Studies. Education Research International 2015
(2015)

10. Fyle, C.O.: Teacher education MOOCs for developing world contexts: issues and
design considerations. In: Proceedings of the Sixth Conference of MIT’s Learning
International Networks Consortium (LINC) (2013)

11. Gess-Newsome, J.: A model of teacher professional knowledge and skill including
PCK. In: Berry, A., Friedrichsen, P., Loughran, J. (eds.) Re-examining Pedagogical
Content Knowledge in Science Education, pp. 28–42. Routledge (2015)

12. Go, S., Dorn, B.: Thanks for sharing: CS pedagogical content knowledge sharing
in online environments. In: Proceedings of the 11th Workshop in Primary and
Secondary Computing Education, pp. 27–36. ACM (2016)

13. Greeno, J.G., Collins, A.M., Resnick, L.B.: Cognition and learning. In: Berliner,
D.C., Calfree, R.C. (eds.) Handbook of Educational Psychology, pp. 15–46.
Macmillan, New York (1996)

14. Grossman, P.L.: The Making of a Teacher: Teacher Knowledge and Teacher Edu-
cation. Teachers College Press, New York (1990)

15. Henze, I., Van Driel, J.H.: Toward a more comprehensive way to capture PCK in
its complexity. In: Berry, A., Friedrichsen, P., Loughran, J. (eds.) Re-examining
Pedagogical Content Knowledge in Science Education, pp. 120–134. Routledge
(2015)

16. Hubwieser, P., Magenheim, J., Mühling, A., Ruf, A.: Towards a conceptualiza-
tion of pedagogical content knowledge for computer science. In: Proceedings of the
Ninth Annual International ACM Conference on International Computing Educa-
tion Research, pp. 1–8. ACM (2013)

Investigating the Pedagogical Content Knowledge 193

17. Lister, R.: Concrete and other neo-piagetian forms of reasoning in the novice pro-
grammer. In: Proceedings of the Thirteenth Australasian Computing Education
Conference, vol. 114, pp. 9–18. Australian Computer Society, Inc. (2011)

18. Loughran, J., Mulhall, P., Berry, A.: In search of pedagogical content knowledge
in science: developing ways of articulating and documenting professional practice.
J. Res. Sci. Teach. 41(4), 370–391 (2004)

19. Magnusson, S., Krajcik, J., Borko, H.: Nature, sources, and development of peda-
gogical content knowledge for science teaching. In: Gess-Newsome, J., Lederman,
N.G. (eds.) Examining Pedagogical Content Knowledge, pp. 95–132. Kluwer,
Dordrecht (1999)

20. Misra, P.K.: MOOCs for teacher professional development: reflections and sug-
gested actions. Open Praxis 10(1), 67–77 (2018)

21. Park, S., Chen, Y.C.: Mapping out the integration of the components of pedagogical
content knowledge (PCK): examples from high school biology classrooms. J. Res.
Sci. Teach. 49(7), 922–941 (2012)

22. Qian, Y., Hambrusch, S., Yadav, A., Gretter, S.: Who needs what: recommenda-
tions for designing effective online professional development for computer science
teachers. J. Res. Sci. Teach., 1–18 (2018)

23. Rahimi, E., Barendsen, E., Henze, I.: Typifying Informatics teachers’ PCK of
designing digital artefacts in dutch upper secondary education. In: Brodnik, A.,
Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 65–77. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46747-4 6

24. Rahimi, E., Barendsen, E., Henze, I.: Identifying students’ misconceptions on basic
algorithmic concepts through flowchart analysis. In: Dagiene, V., Hellas, A. (eds.)
ISSEP 2017. LNCS, vol. 10696, pp. 155–168. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71483-7 13

25. Ross, J., Sinclair, C., Knox, J., Macleod, H.: Teacher experiences and academic
identity: the missing components of MOOC pedagogy. J. Online Learn. Teach.
10(1), 57 (2014)

26. Saeli, M.: Teaching Programming for Secondary School: a Pedagogical Content
Knowledge Based Approach. Ph.D. thesis, Eindhoven University of Technology,
The Netherlands (2012)

27. Shulman, L.: Knowledge and teaching: foundations of the new reform. Harv. Educ.
Rev. 57(1), 1–23 (1987)

28. Van Driel, J.: Model-based development of science teachers’ pedagogical content
knowledge. In: International Seminar, Professional Reflections, National Science
Learning Centre, York (2010)

29. Van Driel, J.H., Henze, I.: Extended paper for PCK summit, Colorado (2012).
http://pcksummit.bscs.org

30. Van Driel, J.H., Verloop, N., de Vos, W.: Developing science teachers’ pedagogical
content knowledge. J. Res. Sci. Teach. 35(6), 673–695 (1998)

31. Van Merriënboer, J.J.: Strategies for programming instruction in high school: pro-
gram completion vs. program generation. J. Educ. Comput. Res. 6(3), 265–285
(1990)

32. Yadav, A., Berges, M., Sands, P., Good, J.: Measuring computer science pedagog-
ical content knowledge: An exploratory analysis of teaching vignettes to measure
teacher knowledge. In: Proceedings of the 11th Workshop in Primary and Sec-
ondary Computing Education, pp. 92–95. ACM (2016)

33. Yadav, A., Gretter, S., Hambrusch, S.: Challenges of a computer science classroom:
initial perspectives from teachers. In: Proceedings of the Workshop in Primary and
Secondary Computing Education, pp. 136–137. ACM (2015)

https://doi.org/10.1007/978-3-319-46747-4_6
https://doi.org/10.1007/978-3-319-71483-7_13
https://doi.org/10.1007/978-3-319-71483-7_13
http://pcksummit.bscs.org

Informatics and Computational Thinking:
A Teacher Professional Development

Proposal Based on Social-Constructivism

Carlo Bellettini , Violetta Lonati , Dario Malchiodi , Mattia Monga(B) ,
and Anna Morpurgo

Università degli Studi di Milano, Milan, Italy
mattia.monga@unimi.it

http://aladdin.di.unimi.it

Abstract. Teaching informatics with a socio-constructivist approach is
the theme of the Professional Development (PD) proposal for teachers
we present in this paper. This proposal is built upon the expertise we
developed in the last few years by designing and delivering enrichment
activities to school students, where constructivist strategies are used to
let students discover informatics as a scientific discipline, and to promote
computational thinking skills and problem solving competences. Starting
from the analysis of teachers’ training needs, we structured the proposal
into different units. We highlight their goals and contents, and illustrate
some of the proposed activities. We held some training sessions to test our
proposal; we report our findings and the feedback from the participants
who amount to a total of ninety-five in-service and prospective teachers.

Keywords: Computer science/Informatics education
Teachers professional development · Costructivism
Computational thinking

1 Introduction

Informatics is intrinsecally reflection on what one does and how one does it. As
Papert once said, “in teaching the computer how to think, children embark on
an exploration about how they themselves think. The experience can be heady:
Thinking about thinking turns every child into an epistemologist, an experi-
ence not even shared by most adults”, and informatics has exactly this poten-
tial. However, to release this power, we definitely need to avoid sterile attempts
to simply transfer informatic topics, or, even worse, to train people in using
informatic applications. We need instead to empower people with an informatic
understanding of the reality and everyone should feel in charge of improving
her/his own creative ability of inventing new approaches and devising solutions
to the problems — which we expect to be increasingly related to information
processing — they face daily.

This work was partially supported by CS[4]HS by Google [13].

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 194–205, 2018.
https://doi.org/10.1007/978-3-030-02750-6_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_15&domain=pdf
http://orcid.org/0000-0001-8526-4790
http://orcid.org/0000-0002-4722-244X
http://orcid.org/0000-0002-7574-697X
http://orcid.org/0000-0003-4852-0067
http://orcid.org/0000-0003-0081-914X

Informatics and Computational Thinking 195

An awarded best practice with this purpose is the series of ALaDDIn algo-
motricity workshops we designed for primary and secondary schools [3,4,6,19,
20]. Algomotricity, a portmanteau combining algorithm and motoric, is a teach-
ing methodology that applies constructivist strategies to informatics topics and
focuses on the central role of the learners as the active subjects of the process. In
algomotricity, learners are engaged in information processing problems, initially
through a mix of tangible and abstract object manipulations, and they have
the responsibility of finding their solutions; in a second phase they are helped
in building their mental models of the topic under investigation; finally they
are proposed computer-based activities designed to connect their own percep-
tions, solutions, and models, with the ones used in the real world of pre-existing
applications.

The algomotricity workshops were indeed quite popular, with around 3,000
participants in the 2010–2016 time span, and both teachers and pupils seem
to appreciate the proposed approach; several school teachers decided to bring
new classes to repeat the experience or to bring the same class to participate in
algomotricity workshops on different topics.

In order to let this initiative scale up and not remain confined within the
organizational power and time constraints of our research group, we held some
presentations (lasting around 3 h) of the workshops to teachers; they first expe-
rienced one algomotricity workshop, then a sort of debriefing was carried out
together with them, in order to highlight the purpose of the workshop, the
underlying informatics content and related skills, the methodological approach.

Teachers attending these sessions did appreciate the constructivist approach
applied to informatics topics. However, they generally expressed some difficul-
ties in proposing these activites in their classes, claiming that: the construc-
tivist approach is fascinating but somehow unpredictable and risky, they are not
accustomed to manage problem-based active learning settings, their background
in informatics is in general too limited.

From the mentioned experience, we inferred these main training needs:

(i) knowing the principles of informatics as a scientific discipline, its cultural
contribution referred to as “computational thinking”, and its connections
with the other school subjects, especially for the majority of teachers who
have no formal education in informatics [5];

(ii) acquiring competences and confidence in using constructivist strategies
(group work, problem-based learning, open settings, authentic tasks, meta-
cognitive reflection, . . .);

(iii) learning how to apply the constructivist approach to informatics topics,
clearly defining learning goals and steps.

We hence designed a PD proposal for in-service and prospective teachers
aimed at addressing these training needs. We structured the proposal into sep-
arate units that can be activated according to the background of the attendees.
The proposal obtained a CS[4]HS grant from Google [13] which allowed us to
set up materials and a testing phase. The paper presents the proposal and is

196 C. Bellettini et al.

organized as follows. Section 2 presents the Italian context as far as informat-
ics education is concerned, Sect. 3 summarizes the constructivist learning the-
ory with some specific reference to learning informatics. Section 4 presents the
format, methods and setting of the training proposal. The proposed units are
therein described by highlighting their learning goals and contents, and illus-
trating some of the proposed activities and materials. Section 5 describes how
the training activities have been tested with different groups of attendees and
reports the positive feedbacks received. Some concluding remarks in Sect. 6 end
the paper.

2 Informatics in Italian Compulsory Schools

The discussion about why and how informatics should be taught in schools is
rich of interesting contributions. For instance [26] brings strong educational argu-
ments in favour of teaching informatics in school, notwithstanding the difficulty
in recruiting prepared teachers or training new ones, as studying informatics pro-
vides a fruitfull way of thinking; [14] is a guide for informatics teachers proposing
an activity-based approach; [9] illustrates the use of Bebras tasks in school to
develop computational thinking skills; [16] discusses the need to change our app-
roach to teaching in order to prepare children for such a rapidly changing world
and presents a spiral curriculum to teach informatics. We believe that the main
reason to teach informatics is neither a desirable increasing of the consciousness
in the use of technology by youngsters, nor the training of crowds of future com-
puter scientists. Instead, informatics can bring an important contribution to the
achievement of more general competences, also recalled in the “key competences
for long life learning” recommended by the European Parliament [11]”.

In particular, learning informatics, as the science that studies the automatic
processing of information, promotes the acquisition of computational thinking
skills, i.e., those cross-disciplinary competences that computer scientists use in
their typical problem-solving work, and that can be fruitfully applied in many
school, work and everyday contexts: formulating problems in a way that enables
us to use a computer and other tools to help solve them; logically organizing and
analyzing data; representing data through abstractions such as models and sim-
ulations; automating solutions through algorithmic thinking (a series of ordered
steps); identifying, analyzing, and implementing possible solutions with the goal
of achieving the most efficient and effective combination of steps and resources;
generalizing and transferring this problem-solving process to a wide variety of
problems.”1

Informatics is not a specific subject in primary and lower secondary Italian
schools, however introducing informatics in schools would be widely consistent
with the national recommendations for school curriculum. On the one hand,
such recommendations only state goals and learning outcomes organized into
1 Operational definition of computational thinking for K-12 education, by

ISTE and CSTA http://www.iste.org/docs/ct-documents/computational-thinking-
operational-definition-flyer.pdf. See also [25].

http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf
http://www.iste.org/docs/ct-documents/computational-thinking-operational-definition-flyer.pdf

Informatics and Computational Thinking 197

disciplinary fields, but do not prescribe precise topics to be presented, while
the implementation of the curriculum is delegated to the schools, which can
act in wide autonomy with this respect. On the other hand, even though the
national recommendations mention informatics mainly with reference to ICT
fluency and use of electronic devices and applications, they contain several goals
that could be easily connected to informatics, in that learning informatics would
help achieving those goals, too.

For instance, for Mathematics one reads: “gradually, thanks to teacher direc-
tions and peer discussion, pupils will learn to face problematic situations with
confidence and determination. They will learn to represent them in different
ways, to conduct proper explorations, to spend the right time in identifying
what is known and what one has to find, to conjecture solutions and results,
to characterize potential solving strategies. [. . .] They recognizes recurring pat-
terns, establish analogies with known models, choose the actions needed, and
effectively chain them together to solve the problem at hand. Special atten-
tion will be devoted to develop the ability of presenting and discussing solution
strategies and methods with peers.”

Other goals having this informatics flavour also occur in other fields that
are usually considered distant from informatics, e.g., “decode and interpret the
notation” (Music, 8th grade); “use timeline to organize information, knowledge,
spans, detecting sequences, contemporaneity, durations, intervals” (History, 5th
grade); “follow written instructions to create objects or products, govern behav-
iors, accomplish a task, carry out a procedure” (Italian Language, 5th grade).

3 Social-Constructivism and Informatics

According to constructivist epistemology — that has its roots, among others, in
the work of Piaget — knowledge is built (constructed) through experiences and
reflection on these experiences themselves. Thus learners create their own knowl-
edge, and they create it relying, to a large extent, on what they already know
and understand: new concepts/facts should either fit on mental schemes and
conceptions, or the latter should be modified in order to deal with them [21].
In particular radical constructivism [12] even denies the existence of an onto-
logical truth, because knowledge derives from the learner’s experience which is
unique by definition. As a consequence, it is impossible to find a representation
of an independent reality which is ready to be transferred to students. Of course
something is needed in order to distinguish between what is knowledge and
what is not: the adopted criterion, borrowed from evolution theory, is to check
how knowledge fits with experiences (that is, its viability). Social-constructivism
includes also Vygotskij’s principle, according to which the construction of knowl-
edge is guided and influenced by the social context, and thus by the interactions
with others and in particular by their use of language [29].

With these premises, teachers cannot prepare ‘prepackaged’ representations
of reality and transfer them to pupils. Rather, their role is to support the con-
struction of knowledge through setting up contexts and scaffolding material

198 C. Bellettini et al.

favouring the activation of the learning process, in which the ultimate actor
is the learner itself.

Teachers should facilitate learners in their discoveries by promoting metacog-
nitive reflections about how their understanding is developing. This usually
means encouraging students to use active techniques (experiments, real-world
problem solving) to create more knowledge and then to reflect on and talk about
what they are doing and how their understanding is changing. The teacher must
make sure he/she understands a student’s preexisting conceptions and miscon-
ceptions, guiding the activity to address them and then build on them.

Among the main aspects constructivist teachers should consider, we mention
the following ones.

– Working in groups (cooperative learning [17]) has the power to foster cognitive
development and thus to empower learning.

– Pupils may have different learning styles and strategies [10] that have to be
taken into account when designing and proposing activities.

– Active listening [23] is a powerful tool to grasp pupil’s point of view and
cognitive models/processes, and help them reflect and elaborate new models
and strategies.

– The way we naturally learn from experience is by taking into account the
information we can gather on the effects of what we are doing with respect to
a goal to reach; individualized feedback [28] from teachers can play the same
role.

– Instead of a knowledge trasmitter, the teacher becomes the facilitator [22] of
the learning process.

– Reflecting on their teaching practice [24] teachers can improve their profes-
sional work; in a continuous process of self-observation and self-evaluation,
they are able to keep tools and strategies updated, in a research-action
setting.

Competences in problem solving are usually difficult to acquire just by means
of explanations and examples; indeed, learning starts happening precisely when
the already known solving procedures are insufficient for a new problem [15,18].

The constructivist approach is especially fruitful to develop competences in
problem solving in informatics and provides a new and powerful set of concepts
to guide reasonings on CSE [7]. The author emphasizes the usefulness of a con-
structivist approach in that it is able to soften the harshness of the interaction
with the computer and to facilitate the social dynamics by means of exploitation
of group assignments and closed labs supported by teachers and lab assistants
trained to encourage reflection. Moreover he suggests that considering the oppor-
tunity of explicitly teaching an initial model of the computer can be used, for
example, also as an argument for the choice of the programming paradigm for
novice programmers.

Algomotricity is a methodology that applies constructivist strategies to infor-
matics topics. Algomotricity exploits kinesthetic learning activities to informally
expose participants to a specific informatics topic, followed by an abstract learn-
ing phase devoted to let students build their mental models of the topic under

Informatics and Computational Thinking 199

investigation. Finally, a computer-based phase closes the loop with previous
acquaintance with applications. Activities start “unplugged” [1,27], but they
always end with work in which students are confronted with specially conceived
pieces of software in order to make clear the link (but also the intellectual hier-
archy) with the computing technology.

As an example, Fig. 1 shows an algomotorial workshop (“Wikipasta” [4,6]),
designed to foster reflection on information and meta-information representation
in formatted texts.

In the first activity, pupils in pairs are asked to freely play with pieces of
pasta and other small objects in order to estabilish a representation of the for-
matting information of a simple formatted text. In the second phase, through
the introduction of costs associated to the objects and a competition to reach
the cheapest representation, pupils gradually switch from an evocative use of the
objects (e.g., spaghetti are very naturally used to express underlined style) to
an abstract/symbolic one (e.g., a cheaper object used to indicate the start and
the end of an arbitrarily long underlined portion). With this game they arrive
to discover mark-up languages’ concepts. In the final activity they start using
a computer and are introduced to a lightweight “wiki” syntax by means of the
software tool shown in Fig. 1.

4 A PD Constructivist Proposal

Our PD proposal is for in-service or prospective teachers of any subject, who
are interested in introducing informatics in their classes, especially in primary
and lower secondary schools (grades 1–10). It takes into account Italian curric-
ular recommendations, school context, and teachers’ preparation [2]. It can be
organized differently according to the participants’ motivation and background,
and is made up of the following units.

A. Informatics and computational thinking basics.
B. Teaching informatics with a constructivist approach.
C. Designing and planning constructivist informatics learning units.

In all units, starting from unit A, constructivist methods are used. Therefore
we propose discussion groups and problem solving activities, interleaved with
recaps and brief thought explanations. For each unit, an explicit statement of the
methodological premises, the learning goals and the assessment criteria is made
available to participants before or at the beginning of the session. Metacognitive
sheets are used for self-assessment.

The constructivist methods applied to computing education become one of
the main content in units B and C, where simulations and authentic tasks are
used to let participants experience the role of the constructivist teacher as a
facilitator. Here rubrics and metacognitive sheets are presented as operational
tools for everyday teaching practice.

We now present purpose and learning outcomes of each unit and exemplify
their content with brief descriptions of some of the proposed activities.

200 C. Bellettini et al.

(a) Wikipasta

(b) The ad-hoc application developed to conclude the workshop

Fig. 1. An algomotorial activity designed to reflect on information and meta-
information

A. Informatics and Computational Thinking Basics

Purpose. This unit aims at presenting informatics as a scientific discipline to
teachers without a formal education in the field, and proposing the teaching
of informatics as a discipline that fosters the development of important cross
competencies, highlighting in particular the possible links with the other school
subjects.

Learning outcomes. Participants will know:

– basics in informatics as a scientific discipline that deals with automatic
processing of information (algorithmic thinking, information representation,
introduction to programming or coding);

– the vocabulary and skills of computational thinking, viewed as a cultural
product of the informatics discipline, and a cross-disciplinary competence.

Activities. Through algomotorial activities, attendees have the possibility to
explore some fundamental informatics topics and to put into practice the skills

Informatics and Computational Thinking 201

that are typical of computational thinking, and at the same time experience
directly, in the role of learners, constructivist tools and strategies. The proposed
activities are mainly taken and adapted from our workshops or inspired by tasks
taken from Bebras [8], a popular international initiative that “disguise” infor-
matics problems in fun friendly setting, so that they are understandable by young
pupils.

B. Teaching Informatics with a Constructivist Approach

Purpose. This unit’s aim is to let attendees know and experience, now from
a teacher’s point of view, constructivist theory, strategies, methods, and tools,
besides showing in particular, through a rich collection of both unplugged and
plugged activities, how they can be applied to fundamental informatics topics.
The focus is both on didactic aspects of the activities’ informatics contents and
on methodological aspects of the role of the teacher as a facilitator.

Learning outcomes. Participants will be able to:

– use active learning tools and methods applied to informatics topics,
– conduct algomotricity activities on informatics topics,
– reflect metacognitively about the role of a teacher in a constructivist learning

environment.

Activities. Attendees participate in simulations of problem-solving sessions in
small groups, playing the role of teachers, learners, or observers, so that they
can experience and reflect upon how to manage group work and timing, facilitate
work in an authentic task setting, give instructions and feedback. They are given
some real products of pupils who participated in our algomotricity workshops,
and have to analyze them in order to practice the ability to build a synthesis
giving value to pupils’ individual contributions. Finally, they examine different
instructional material on the same informatics topic, based on taught lessons
(slides and a book chapter) in one case, and on constructivist activities in another
case, in order to contrast the two approaches with respect to the teacher’s and
the learner’s roles.

C. Designing and Planning Constructivist Informatics Learning Units

Purpose. This module is focused around designing, planning, and assessing con-
structivist informatics learning units aimed at developing computational think-
ing skills.

Learning outcomes. Attendees will be able to:

– phrase specific goals for a unit,
– plan a sequence of both unplugged and computer-based activities useful to

achieve the set goals,
– set up assessment criteria and tools (e.g., rubrics) to evaluate the learning

process and its outcomes,
– organize materials, assignments, and instructions.

202 C. Bellettini et al.

Activities. Participants examine pre-existing constructivist learning activities
(chosen also by considering those encountered within the two previous units)
in order to phrase the learning goals in terms of knowledge, skills, and com-
petences, identify and describe their main phases, highlight the connections
between activities and goals. Then they are asked to design and plan a new
learning unit starting from a Bebras task or setting, working in groups and with
the help of trainers. To facilitate their work, a series of chained assignments is
proposed: first they have to identify a learning goal that could be promoted by
means of that task or setting; they identify intermediate steps and activities to
achieve the goal; they prepare instructions and material; they set up rubrics or
other assessment tools related to the goal.

5 Pilot Training Project and Preliminary Findings

In order to test the proposal described in Sect. 4, in 2017–18 we offered some PD
opportunities with different formats.

– We held unit A in autumn 2017 (as a series of three-hour long sessions) and in
spring 2018 (as a one-day long session) with a total of 57 in-service teachers.
We asked to fill out an anonymous customer satisfaction questionnaire posing
some questions with Likert 5-scale answers and space for free comments; 42
participants completed the form.

– We then scheduled a further one-day long session for unit B in spring 2018,
after a request by a group of 16 participants to unit A. An anonymous cus-
tomer satisfaction questionnaire for unit B was filled out by 14 of them.

– Since 2017 we have included units B and C as part of a master course on
“Computing education” attended by students graduated in informatics inter-
ested in teaching; each unit takes 16 h divided into 4 sessions; the remaining
16 h of the course are devoted to programming teaching; 14 students attended
in 2017, and 24 are attending in 2018. After the end of unit B during the first
edition (in 2017) we asked attendees to fill out an anonymous online question-
naire, and 12 over 14 students completed the form. For unit C, we evaluated
the assignments given during and at the end of the master course.

In all sessions, attendees showed interests and active participation. For unit A
and B, question “Did the PD opportunity meet your expectations?” received gen-
erally positive answers (except a little number of neutral answers), and question
“Are you satisfied about the unit” received only positive answers (in each edition
more than half of the participants claimed to be totally satisfied).

In particular, in the free space for comments for unit A teachers wrote that
the opportunity was clarifying, stimulating, interesting, satisfying, enriching,
fun, intriguing, convincing (20 answers), but also, in some cases, confusing or
tiring (2 answers). Some teachers, especially those who participated in unit B
(that was indeed scheduled in response to their request), announced they plan
to carry out some activities in their classes; moreover they suggested unexpected
school contexts for the application of the proposed activities and methods. Many

Informatics and Computational Thinking 203

of them also expressed their interest in having further PD opportunities in next
school year.

Master students were asked to evaluate the topics, teaching methods, mate-
rials and trainers’ competency, and they gave positive feedback (except one par-
tially critical answer). A couple of open questions asked for positive and critical
aspects of the unit. Students appreciated the combination of theory and exper-
imentation, the effect of practical exercises for experiencing the methodology
directly, the discussion/sharing sessions at the end of the activities, the novelty
of the topics w.r.t. the typical informatics lessons, the useful reflections about
informatics topics usually taken for granted (e.g., concept of algorithm). Criti-
cisms were expressed mostly about the need for more time to complete the group
activities and the mass of topics addressed in too little a time; the difficulties in
the simulation activities without the real presence of students, some repetitive
moments when groups presented their products. Assignments during the course
were accomplished positively and students reacted well to individuated feedback,
so that the quality of their products increased constantly. The final results and
marks were in general satisfying. Moreover, after the course some of the students
asked to be involved as tutors in workshops we hold in schools.

All in all, the activities and material proposed proved to be adequate with
respect to the defined purpose and learning goals of the proposal.

6 Conclusions

Informatics has a preeminent role in the human enterprise of knowledge accumu-
lation and dissemination. This creates an interesting and peculiar relationship
between informatics and education, and it makes it crucial that all people (not
just computer scientists) develop skills and competences in imagining new ways
of processing information. We believe that general education would benefit a lot
from introducing informatics in schools as the scientific discipline that studies the
automatic processing of information, but informatics is not (yet) a compulsory
subject in Italian schools.

And yet, even today, several goals stated in the national recommendations
for the current Italian school curriculum, do actually have a computing flavour,
even though they do not refer explicitly to informatics, mentioning it only as
far as ICT literacy is concerned. Also, informatics is naturally well suited to
be proposed using active learning approaches, like problem-based or cooperative
learning and, more generally, approaches based on the constructivist cognitive
theory: approaches that are often advocated by the current recommendations.

However, to introduce informatics successfully, with a real impact on pupils,
we need teachers who know the basics of informatics, are aware of the potential
of teaching informatics to pupils, and are able to manage the constructivist
methods so well suited to learn it.

Thus, we designed a professional development proposal, aiming at giving
teachers of different subjects and background — especially to the majority of
them, who have no formal education in informatics — the knowledge and tools

204 C. Bellettini et al.

to introduce informatics and computational thinking in their teaching practice.
We structured the proposal into three units, to be activated depending on the
background of the participants, and we tested them in some different groups for
a total of 95 in-service and prospective teachers. We collected feedback from the
attendees and evaluated the process and product of their work, which proved
that the activities and materials we proposed are adequate with respect to the
defined purpose and learning goals of the PD proposal.

During the next school year we will implement a PD plan based on this
proposal; we will schedule a series of periodical training sessions in order to
involve a growing number of teachers in a research-action setting, and we will
support the development of a community of teachers practicing the introduction
of informatics in their classes.

References

1. Bell, T., Alexander, J., Freeman, I., Grimley, M.: Computer science unplugged:
school students doing real computing without computers. New Zealand J. Appl.
Comput. Inf. Technol. 13(1), 20–29 (2009)

2. Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Pedersini,
F.: E questo tutti chiamano informatica. L’esperienza dei TFA nelle discipline
informatiche, Collana Manuali, vol. 14, chap. La formazione degli insegnanti della
classe 42/A – Informatica: l’esperienza dell’Università degli Studi di Milano, pp.
53–76. Sapienza Università Editrice (2015), http://www.editricesapienza.it/sites/
default/files/5281 QuestoTuttiChiamanoInformatica.pdf

3. Bellettini, C., et al.: Extracurricular activities for improving the perception of
informatics in secondary schools. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014.
LNCS, vol. 8730, pp. 161–172. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-09958-3 15

4. Bellettini, C., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A., Torelli, M.:
What you see is what you have in mind: constructing mental models for formatted
text processing. In: Proceedings of ISSEP 2013, pp. 139–147 (2013)

5. Bellettini, C., et al.: Informatics education in Italian secondary school. ACM Trans.
Comput. Educ. 14(2), 15:1–15:6 (2014). https://doi.org/10.1145/2602490

6. Bellettini, C., Monga, M., Lonati, V., Morpurgo, A., Malchiodi, D., Torelli, M.:
Exploring the processing of formatted texts by a kynesthetic approach. In: Pro-
ceedings of WiPSCE 2012, pp. 143–144. ACM (2012). https://doi.org/10.1145/
2481449.2481484

7. Ben-Ari, M.: Constructivism in computer science education. ACM SIGCSE Bull.,
vol. 8 (1998)

8. Calcagni, A., Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A.: Promoting
computational thinking skills: would you use this bebras task? In: Dagiene, V.,
Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 102–113. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71483-7 9

9. Dagienė, V., Sentance, S.: It’s computational thinking! bebras tasks in the cur-
riculum. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 28–39.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46747-4 3

10. Dunn, R.S., Dunn, K.J.: Teaching students through their individual learning styles:
a practical approach. Reston Pub. Co., Reston (1978)

http://www.editricesapienza.it/sites/default/files/5281_QuestoTuttiChiamanoInformatica.pdf
http://www.editricesapienza.it/sites/default/files/5281_QuestoTuttiChiamanoInformatica.pdf
https://doi.org/10.1007/978-3-319-09958-3_15
https://doi.org/10.1007/978-3-319-09958-3_15
https://doi.org/10.1145/2602490
https://doi.org/10.1145/2481449.2481484
https://doi.org/10.1145/2481449.2481484
https://doi.org/10.1007/978-3-319-71483-7_9
https://doi.org/10.1007/978-3-319-46747-4_3

Informatics and Computational Thinking 205

11. European Parliament, Council of the European Union: Recommendation of the
European Parliament and of the Council of 18 December 2006 on key competences
for lifelong learning, December 2006. http://data.europa.eu/eli/reco/2006/962/oj

12. Glasersfeld, E.V.: The radical constructivist view of science. Found. Sci. 6, 31–43
(2001)

13. Google Inc.: CS[4]HS (2017). https://www.cs4hs.com
14. Hazzan, O., Lapidot, T., Ragonis, N.: Guide to Teaching Computer Science: An

Activity-Based Approach. Springer, London (2011). https://doi.org/10.1007/978-
1-4471-6630-6

15. Hmelo-Silver, C.E.: Problem-based learning: what and how do students learn?
Educ. Psychol. Rev. 16(3), 235–266 (2004)

16. Hromkovič, J., Lacher, R.: The computer science way of thinking in human history
and consequences for the design of computer science curricula. In: Dagiene, V.,
Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 3–11. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71483-7 1

17. Johnson, D.W., Johnson, R.T.: Learning together and alone: cooperative, compet-
itive, and individualistic learning. Prentice-Hall, Inc. (1987)

18. Kolb, D.A., Boyatzis, R.E., Mainemelis, C.: Experiential learning theory: previous
research and new directions. Perspect. Think. Learn. Cognit. Styles 1, 227–247
(2001)

19. Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A.: Is coding the way to go?
In: Brodnik, A., Vahrenhold, J. (eds.) ISSEP 2015. LNCS, vol. 9378, pp. 165–174.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25396-1 15

20. Lonati, V., Malchiodi, D., Monga, M., Morpurgo, A.: Nothing to fear but fear itself:
introducing recursion in lower secondary schools. In: Proceedings of LATICE 2017,
pp. 91–98 (2017)

21. Piaget, J., Inhelder, B.: The Psychology of the Child. Basic Books (1969)
22. Rogers, C.: Freedom to Learn. Merrill (1969)
23. Rogers, C., Farson, R.E.: Active listening. Organ. Psyc., pp. 168–180 (1979)
24. Schön, D.A.: Educating the reflective practitioner: toward a new design for teaching

and learning in the professions. Jossey-Bass (1987)
25. Selby, C.C.: Relationships: Computational thinking, pedagogy of programming,

and bloom’s taxonomy. In: Proceedings of the Workshop in Primary and Secondary
Computing Education, WiPSCE 2015, pp. 80–87. ACM, New York (2015). https://
doi.org/10.1145/2818314.2818315

26. The Royal Society: Shut down or restart? The way forward for computing in UK
schools, January 2012

27. Thies, R., Vahrenhold, J.: Back to school: computer science unplugged in the wild.
In: Proceedings of ITiCSE 2016, pp. 118–123. ACM (2016). https://doi.org/10.
1145/2899415.2899442

28. Thurlings, M., Vermeulen, M., Bastiaens, T., Stijnen, S.: Understanding feedback:
a learning theory perspective. Educ. Res. Rev. 9, 1–15 (2013)

29. Vygotsky, L.: Mind in Society: Development of Higher Psychological Processes.
Harvard University Press, Cambridge (1978)

http://data.europa.eu/eli/reco/2006/962/oj
https://www.cs4hs.com
https://doi.org/10.1007/978-1-4471-6630-6
https://doi.org/10.1007/978-1-4471-6630-6
https://doi.org/10.1007/978-3-319-71483-7_1
https://doi.org/10.1007/978-3-319-25396-1_15
https://doi.org/10.1145/2818314.2818315
https://doi.org/10.1145/2818314.2818315
https://doi.org/10.1145/2899415.2899442
https://doi.org/10.1145/2899415.2899442

Real Time Classroom Systems
in Teachers Training

Viktória H. Bakonyi(B) and Zoltán Illés

Eötvös Loránd University, Budapest, Hungary
{hbv,illes}@inf.elte.hu
http://www.inf.elte.hu

Abstract. Nowadays students are surrounded by plenty of information
resources and they use these multimedia streams parallel. This multitask
working environment appears during lessons as well. This hyper attention
symptom blocks students in the effective participating of the common
work. Therefore more and more ICT tools appear and are used in schools
from elementary schools to higher education. One of these possibilities
is CRS (Classroom Response System) of which benefits are undoubted.
Their usage makes lessons more diversified, more motivating for students
who are used to and prefer to use applications and smart devices, more
interactive. However we must not forget about the disadvantages either
so in this paper we should like to give a look around this topic, present
our own newly developed CRS system and speak about how we can use
it in teachers training.

Keywords: Real-time · CRS · Higher education · Teachers training

1 Introduction

We may call the 21st century the age of information technology. Almost every-
body has got at least one smart device to help in the daily life to find informa-
tion, to give some entertain or to communicate with others. Therefore it would
be wrong not to use ICT tools in teaching as well! The advantage of using
applications, personal devices and smart boards is that they make lessons more
engaging and more interactive. But be careful: “Students are digital natives and
teachers may lose the prestige if they do not use modern technology or if they
use it awkwardly” (anonymous author, from the internet) Though we do not
have an up-to-date statistics about how many children owns a smart phone or
a tablet, we can state that most of them are familiar with their usage in very
early age. According to the paper [1] even in Hungary (which is not among
the richest countries https://bit.ly/1MAMA8L these devices and their dragging
functionality can be used for some experiments already in the age of 5 or 6!

Supported by organization EFOP-3.6.3-VEKOP-16-2017-00001: Talent Management
in Autonomous Vehicle Control Technologies The Project is supported by the
Hungarian Government and co-financed by the European Social Fund.

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 206–215, 2018.
https://doi.org/10.1007/978-3-030-02750-6_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_16&domain=pdf
http://orcid.org/0000-0001-5093-8492
http://orcid.org/0000-0002-6623-5721
https://bit.ly/1MAMA8L

Real Time Classroom Systems in Teachers Training 207

That is one of the reasons why it is highly important to teach future teachers
of any specialities to be familiar with this world too. In schools the spectrum of
the useable teaching applications are rather wide e.g. we may mention language
teaching interactive applications like Duolingo (https://bit.ly/1ctJqfI), GeoGe-
bra (https://bit.ly/1NGZwED) as a tool for teaching and learning geometry, or
Edison application (https://bit.ly/2Ks4prl) to teach physics.

There are general applications with which teachers are able to manage the
teaching process itself like LMS (Learning Management System), CMS (Content
Management System) or CRS (Classroom Response System). In this paper we
would like to focus on CRS systems and their possibilities. There are a lot of free
or not free CRS systems, some of them based on hardware and software compo-
nents, but the latest ones do not need additional hardware elements, they can
run on any network connected device. The functionality of these CRS systems
are generally available directly (without any installation) from the internet.

2 CRS - Classroom Response Systems

Using a CRS a teacher usually may send questions to the students, the system
shows the answers immediately and sometimes the students may send feedbacks
or questions to the teachers as well. Nowadays these systems are used from
elementary schools to universities. There are several ready-made CRS used in
education like Kahoot (https://bit.ly/2tcH72X), Sli.do (https://bit.ly/1lraGjY),
Poll Everywhere (https://bit.ly/1A0QWPz) and much more. We may find some
ready-made comparisons e.g. at [2] which may help us to choose from them. Just
one data about the popularity of Kahoot: it reached 70 million users / month in
2018. More than 50% of students in the USA work with it [3]. Though our first
question should be why they are so popular in modern schools at all. What kind
of advantages do we have using them?

2.1 Advantages and Disadvantages of Using CRS

Advantages:

– Students are digital natives, they adore and always use their mobile devices
(even during the lessons) therefore their usage should motivate them. It can
bridge the gap between the learning methods at home and in the school [4].

– Students, even shy ones are brave enough to involve them into the common
work if the system gives anonymous possibilities [5].

– It may inspire collaboration among students which is very important nowa-
days and engages students in learning [4].

– Doing and discussing something is much more effective than simply to read
or listen to it [6].

– Nobody is able to pay attention too long, so some changes in activity may
help to avoid mind wandering [7].

https://bit.ly/1ctJqfI
https://bit.ly/1NGZwED
https://bit.ly/2Ks4prl
https://bit.ly/2tcH72X
https://bit.ly/1lraGjY
https://bit.ly/1A0QWPz

208 V. H. Bakonyi and Z. Illés

– Real-time feed-backs can be executed quickly and we all know its benefits
from teachers and students viewpoints as well. One important viewpoint is
to using a formative evaluation is to give feedback timely [8].

– CRS helps in self-assessment it makes comparing our own knowledge to the
others possible.

– A modern CRS gives the possibility to make some data analyzes later to
enhance the effectivity of teaching methods.

Disadvantages:

– It is a fact that using a CRS (interaction, communication) the teacher always
loses time contrary to a frontal teaching method, therefore the whole content
must be rethought. (Anyway in the age of internet where every data can be
accessed within a click we should transform it to concentrate on contexts.)
Though this loss in time results a more interactive and engaging learning
process.

– Technology used in classrooms may distract students (but today we are not
able to avoid it) they are chatting, playing etc. during the lesson with their
devices [9]. Even worse case is that students may use feed-backs to disturb
the lesson as we experienced sometimes.

– First, if a student accustomed to use always CRS in classroom it may make
more difficult to pay attention in classical situations [10].

– If somebody is communicating always through a device may lose the skill of
natural human communication [3,9].

– Technical problems may occur during the lesson and teacher may lose time
using it [5].

– According to the answers teacher has to refine the methodology or even the
content in fly [5].

2.2 CRS and Hungarian Teachers

What is the situation in Hungary? Do Hungarian teachers know CRS systems?
Do they use them? We made a small survey which is available at (https://bit.
ly/2I2KmSt).

The survey

– was filled by 102 teachers or students of teacher training
– anonymous, on Google
– participants are divided into three groups (20–35 year olds (39 person), 36–50

year olds (31 person), above 50 (32 person))

From the OECD database we can see that the participants of our survey is
over represented in the case of the youngest group - the exact age groups used
by OECD is not the same as ours. Though we can state that the age-tree of
teachers are reversed from a point of view the youngest group counts the less
active teachers. (see Fig. 1).

https://bit.ly/2I2KmSt
https://bit.ly/2I2KmSt

Real Time Classroom Systems in Teachers Training 209

Fig. 1. Active Hungarian teachers’ age groups.

– The first thing we were interested in was that how many of them used CRS
in school. The possible answers were never, rarely and often. (some of the
persons skipped the question only 92 answers arrived.) (see Fig. 2, Fig. 3) Not
surprisingly, the younger the age group is the higher the percentage of the
usage of CRS is, either as a student or as a teacher.

Fig. 2. Frequency of using CRS.

Background Information: We asked some Hungarian specialists about the
facts. These researchers are working for the largest university in Hungary (ELTE)
in which there are teacher trainings.

1. Lower elementary teacher training (1–4) During the university education (4
years long in ELTE) students learn about several CRS attending Digital Ped-
agogy in Practice curse. (The previously mentioned course is compulsory from
this year for everybody.) Based on the knowledge students are able to choose
the adequate system for a given purpose.

2. Higher elementary teacher training (5–8) Secondary school teacher training
(6–12) During the university education (10–12 semesters in ELTE) students
attend compulsory course: The Foundations of teaching and learning with
ICT Innovative Teaching Practices. (The standard syllabus contains several

210 V. H. Bakonyi and Z. Illés

Fig. 3. CRS usage based on age groups and all together.

topics among them is CRS system.) Students have to try such systems in
practice as well (mainly Kahoot, Socrative), but the content of the course
slightly depend on the interests of the actual group and the research area of
the teacher. Their usage in formative evaluations is highlighted. The topic
got higher importance only in the last 2–3 years when free of charge systems
appeared.

– Our second question was: Do you think CRS is useful in school? (see Fig. 4).

Fig. 4. Opinions about the usefulness of CRS.

The result shows that practiced teachers (over 35) are open to use new technolo-
gies.

– 3. Our third main question was whether they learned about CRS systems in
university and if not are they interested in learning its usage? (see Fig. 5).

This results are very interesting, practiced middle-aged teachers (who never
learned about it) are more interested to learn CRS than the youngest group.
(Participants who filled the survey have to be engaged teachers or students
therefore a standard groups result would be weaker.) In the future our next

Real Time Classroom Systems in Teachers Training 211

Fig. 5. Who learned about CRS & who are interested in learning it?

question should be why the youngest specialists are not motivated enough to
learn new tools to improve the efficiency of teaching.

In the last decade professors all over the world experienced that classical
university lectures are not effective any long. Students are always surrounded
by smart devices and their learning methods have changed as well. To increase
general student activity during lessons we also thought to use a CRS system.
(Furthermore if they use their phones for getting information about the topic
and to communicate with the teacher they will have less time for playing on
them.) We must choose a cost effective solution with real authentication, with
own collected data for further examination, so we had to throw away to buy any
ready-made CRS with clickers.

3 E-Lection System

Therefore we decided to modernize our practice to involve students better into
the teaching process, to engage them in learning. The one way to do it seemed
to use a BYOD (Bring your Own Device) system

We made a survey (in 2015 and 2016) about smart device owners among
our university students. The results showed [11] that more than 95% of students
have got some smart mobile device. In the survey we asked: Would you consider
it benefiting if you could use your own mobile device (phone, laptop, etc.) during
lectures? (The aim of this question is to ask about their opinion using a BYOD).

We compared the collected data by a t-test and it shows that there is no
difference between the need of mobile devices in 1st and in 5th semester students.
Almost everybody wants to use them during lessons as well! (see Fig. 6).

Therefore we can state that we are ready to use a BYOD CRS for educational
purposes. The next question was to find the adequate system to use, but we came
up to against a lot of problems. One of the biggest problem was that, most of
the CRS was not free of charge totally. From other hand these free systems are
using anonymous or e-mail logins but in our future plans we wanted to do some
data-mining to be able to give personal help to our students. Some of these
systems are only able to handle one-way communication from teachers towards

212 V. H. Bakonyi and Z. Illés

Fig. 6. Need of using smart devices during lessons.

the students, but we wanted the ability of backward communication as well.
Furthermore our university wants to stream the lectures only for authenticated
users adding an interactive functionality to the system. After all, we did not find
a CRS suiting to all our needs, therefore we decided to implement an own BYOD
system, called e-Lection. We designed this as a web-based system avoiding to
implement an application for different smart devices. This web application is
a bidirectional lecture management system with which students also may send
do not understand signals or proper questions to professors besides teachers
questioning. (see Fig. 7) The system uses university LDAP to authenticate the
participant and save all the collected data which can be asked any time later.
(Naturally it can be used as an attendance list as well. The application is able
to filter the university IP addresses.) [12,13].

Fig. 7. Teachers user interface with questions and signals.

Real Time Classroom Systems in Teachers Training 213

E-Lection is now available in ELTE Hungary at https://election.inf.elte.hu
and a test version at university UKF Slovakia at https://election.fss.ukf.sk. We
showed the functionality of the application to our students attending teacher-
training and asked them to evaluate it, to evaluate the differences with the well-
known Kahoot and Socrative. Generally they liked it but a great deal of them
were against authentication. We are committed to use the system in teacher
training program as well to give them as many personal experience in several
CRS as it is possible. To use E-Lection is very easy, first the teacher must start
his virtual lesson (with generating a lesson ID, see Fig. 8.) and after it students
can join to this virtual course.

At the end of 2017 the stream functionality is built in our program (see
Fig. 8) and the first trial of it was tested under real life circumstances. With this
possibility we are able to build a mixed real and virtual classroom. Students
may join to the lecture and interact with teachers through it. It would be a very
good test possibility for future teachers. Though today we are still waiting for
some more tests and a new streaming device for the final put in operation.

Fig. 8. 2 E-Lection in action (Open day program 30th November 2017).

https://election.inf.elte.hu
https://election.fss.ukf.sk

214 V. H. Bakonyi and Z. Illés

We have further plans to give new question types to the system or to switch
on/off mechanism of the authentication (sometimes anonymous usage has got
additional benefits). We should like to create a question bank to help students in
learning for the exams and a fine-tune of lecture content according to the students
questions. We are thinking about the method how it can be used in personalized
grading as well. Now we have all data related to lessons (e.g. questions, student
activities, students answers, IP based connection places etc.) and this gives us
possibilities to analyze them to improve our future work.

As a conclusion, after the intensive test period we experienced that students
activity increased significantly with using e-Lection - though as we mentioned
previously in the meantime we lost some time. Their attention also increased they
used their devices not only for chatting and playing but mainly for interacting
with the professor. Furthermore we got feedbacks that they know about the
usage of such systems abroad (some of them experienced them during their
foreign studies) and they feel that using e-Lection we made a step forward into
the good direction.

4 Summary

Today students are digital natives their learning methods and attitudes are dif-
ferent from the previous generations therefore we have to modernize our teaching
methods according to their expectations. One possible way to use technology to
make lessons more interactive and engaging. We made a survey to map the teach-
ers affinity to use classroom response systems in Hungary. After all we presented
our lecture management system e-Lection with special functionality like strict
authentication and added video streaming and gave a sketch about our future
plans.

Acknowlegment. We should like to say special thanks to Szabó, Tibor (from Uni-
versity of Constanie the Philosopher) to take part in our project; to Misley, Helga;
Raush, Attila; Rapos, Nóra (from ELTE Faculty of Education and Psychology) and to
Temesi-Ferenczi, Kinga (from ELTE Faculty of Primary and Pre-School Education) to
help us by giving valuable information about teacher training specialities according to
CRS at their faculties.

References

1. Rausch, A. Pasztor, A.: Exploring the possibilities of online assessment of early
numeracy in kindergarten. In: Proceedings of the 41st Conference of the Interna-
tional Group for the Psychology of Mathematics Education, vol. 4. PME (2017)

2. SocialCompare. https://bit.ly/2rK0hM8. Accessed 29 May 2018
3. 70 million unique users on the Kahoot! platform we are stoked! https://bit.ly/

2k1yAdn. Accessed 29 May 2018
4. 6 Ways BYOD Technology in the Classroom Affects Students. https://bit.ly/

2wO5uHE. Accessed 29 May 2018

https://bit.ly/2rK0hM8
https://bit.ly/2k1yAdn
https://bit.ly/2k1yAdn
https://bit.ly/2wO5uHE
https://bit.ly/2wO5uHE

Real Time Classroom Systems in Teachers Training 215

5. Vanderbilt University, Center for Teaching, Classroom Response Systems (Click-
ers). https://bit.ly/2vxtWeJ. Accessed 29 May 2018

6. Kos, B.: The most effective way to learn new things. https://agileleanlife.com/the-
most-effective-way-to-learn-new-things/J. Accessed 29 May 2018

7. Bunce, D., Flens, E.A., Neiles, K.Y.: How Long can students pay attention in
class? A study of student attention decline using clickers. J. Chem. Educ. 87(12),
1438–01443 (2010)

8. Grant Wiggins: Seven Keys to Effective Feedback September 2012, Feedback for
Learning, vol. 70, no. 1, pp. 10–16. https://bit.ly/1bcgHKS. Accessed 29 May 2018

9. The Pros And Cons Of Technology In The Classroom. https://bit.ly/2IvQLXw.
Accessed 29 May 2018

10. Ortiz, M. The effects of student response systems students achievement and engage-
ment, thesis (2014). https://bit.ly/2KtE8K32A5Jhlq. Accessed 29 May 2018

11. Zitny, R., et al.: Education using mobile technologies. In: ICETA 24–25 November
2016, pp. 115–120. Stary Smokovec IEEE (2016). ISBN 9781509046997

12. Illés, Z., Bakonyi, V.H., Illés Jr., Z.: Supporting dynamic, bi-directional presenta-
tion management in real-time. In: CEUR Workshop Proceedings 2016, pp. 113–118
(2016). Proceedings of the 11th Joint Conference on Mathematics and Computer
Science (MaCS 2016). Eger, Magyarország: 20–22 May 2016

13. Bakonyi, V.H., Illés, Z.: Real-time tool integration for lectures. In: 15th IEEE
International Conference on Emerging eLearning Technologies and Applications:
ICETA 2017. Star Smokovec, Slovakia, 26–27 October 2017, pp. 31–36. IEEE Com-
puter Society Press, Denver (2017). ISBN 978-1-5386-3294-9

https://bit.ly/2vxtWeJ
https://agileleanlife.com/the-most-effective-way-to-learn-new-things/J
https://agileleanlife.com/the-most-effective-way-to-learn-new-things/J
https://bit.ly/1bcgHKS
https://bit.ly/2IvQLXw
https://bit.ly/2KtE8K3 2A5Jhlq

Case Study on the Process
of Teachers Transitioning

to Teaching Programming in Python

Eva Klimeková(B) and Monika Tomcsányiová

Department of Informatics Education, Comenius University in Bratislava,
Bratislava, Slovakia

{klimekova,tomcsanyiova}@fmph.uniba.sk

Abstract. The aim of our research was to investigate the process of
teachers transitioning to teaching programming in Python, with respect
to the challenges they face and support they require. Through the meth-
ods of qualitative research, we analysed a number of cases where com-
puter science teachers transitioned from teaching in Pascal to Python.
Based on the analysis of these cases, we propose a categorization for
the transformation process. We identified influencing factors and present
recommendations to support teachers transitioning to teaching a new
language. We believe our research will contribute to improved support
for teachers transitioning to teaching programming basics in new pro-
gramming languages.

Keywords: Teachers’ transition to a new programming language
Upper secondary education · Programming basics

1 Introduction

Trends in software development evolve quite dynamically. The popularity of
programming languages is no exception to this and it would be beneficial to
adapt computer science education to these trends. Therefore, the programming
language used in education, including the upper secondary level, is of significant
importance. Python is one of those languages with an ever increasing popularity
and ranks among the most used languages nowadays [1]. Since it is already
gaining ground in education [2–4], the continuation of this trend is anticipated
at the expense of the Pascal language, widely used at universities and upper
secondary schools. Beside pupils, this trend will also significantly affect teachers.
How are they going to deal with the change of the programming language used
for teaching programming basics.

Our goal was to understand the aspects of the transition to a different pro-
gramming language, and simultaneously examine the factors affecting the process
of this transformation. Another goal emerged during our research, to find ways
to help teachers in the transition to the Python programming language. While
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 216–227, 2018.
https://doi.org/10.1007/978-3-030-02750-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_17&domain=pdf

Case Study on Teachers’ Transition to Python 217

in our country there was no official textbook for teaching programming basics in
Python, we decided to create a methodical material. The design process helped
us better understand the process of transitioning to Python that indeed helped
us to experience the nature of this process [5].

2 Methodology

The primary aim of our research was to examine the process of transition. A
multiple case study was chosen as the main strategy and we used qualitative
methods of data collection and data analysis, such as one-on-one interviews,
asynchronous email interviews, questionnaires, observation (transcriptions and
field notes) and audiovisual materials (their work by recorded video) [6,7].

We formulated our goals to the research question:

Q: How does the process of teachers’ transition from teaching programming in
Pascal to Python look like?
• What factors affect teachers’ transition to a new programming language?
• How to help teachers with the transition to teaching in Python?

We used purposeful sampling, during our research (2014–2018) we were in con-
tact with 20 teachers since the beginning of the first phase and observed diversity
among them from the early stages of transition. We gradually gained understand-
ing about the progress of their transition to the new programming language and
the problems they face through personal and e-mail communication. By imple-
menting a questionnaire, which was filled out by 103 teachers, we wanted to con-
firm and extend our knowledge about this process. In the last phase we focused
on the in-depth analysis of five cases chosen by maximal variation sampling, con-
ducted independently and in parallel. Subsequently we did a mutual comparison
of these cases that resulted in a research report containing our findings.

3 Events Associated with the Transition

At the beginning of our research in 2014 a wave of transition to the Python
language among teachers just emerged in Slovakia. Python textbooks already
existing at that time often concentrated mainly at the syntax of the language,
respectively highlighted differences between the commands of Python and other
languages [8]. Though most teachers need materials for their teaching activities
that teach pupils the language while using it to solve problems. Therefore a lot
of teachers created their own materials [9,10], but their materials were often
tailored for a small circle of students, adapted to the needs of their school and
the characteristics along with the didactic principles of their teaching. At the
time our research began Python training for teachers or methodical materials for
teaching using this programming language did not exist. Python talks were very
rare at conferences for teachers. As time passed this started gradually changing
with meetings for teachers, materials, textbooks and training for teachers appear-
ing. In 2016 training organized by teachers by their own initiative appeared to

218 E. Klimeková and M. Tomcsányiová

support other teachers in their transition to Python. These meetings were still
not covered with a state institution and attendance was voluntary. In 2017 (and
later in 2018) to support teachers we organized a section for education on the
PyCon SK conference, on which we introduced them the Python language along
with its advantages, disadvantages and the possibilities to use it in education.

4 Case Studies of Teachers Transition

Throughout our research we were systematically looking for teachers with
recently awaken interest in the Python language and its feasibility as the lan-
guage for introductory programming courses on upper secondary schools. We
established e-mail communication with twenty teachers from such schools and
repetitively contacted them to monitor their transition to Python. By analysing
this communication, we created a categorization of steps that can be used by
teachers in case of transitioning to a different programming language.

Contacted teachers were from a variety of schools in cities of different sizes.
Three of them were from grammar schools and the rest from specialized sec-
ondary schools.

We focused on familiarization with Python, motives leading them to the
transition and the materials they use for teaching. To establish a categorization of
the transition to a new language we analysed cases, looking for both similarities
and differences and identified three steps that may be essential in the transition:

1. Motives leading to the transition
2. Learning the language
3. Preparation and implementation of teaching activities with the new language

These steps can be further divided by other criteria, forming different forms of
transitions.

4.1 Transition Motives

Transitions to a new programming language begin with motives that lead teach-
ers to the decision whether to conduct the transition or not. We were interested
in teachers who decided to undergo this transition. Our research sample included
teachers looking for a more suitable programming language for a longer period,
because the language (e.g. Pascal) or programming environment (e.g. Lazarus)
they used didn’t fulfil their expectations for various reasons. Some teachers were
closely watching computer science education trends and got familiar with Python
as a language suitable for teaching programming basics. Others were encouraged
in the transition by their pupils or colleagues. Some of them were motivated by
suitable and affordable Python training or books offered to them. We identified
three significant motives:

– internal – following current trends
– environmental – recommendation of students, colleagues
– external – training, course, book offers

Case Study on Teachers’ Transition to Python 219

4.2 Learning the Language

The transition continues by learning and getting hands-on experience with the
chosen language. This phase of the transition can be of significantly different
course and duration. Based on the responses we identified these courses:

– self-study only – books, online courses, various materials from the internet
– self-study and subsequent training
– training and subsequent self-study
– training only

We investigated the reasoning behind choosing self-study over training or the
other way around. Teachers who preferred training alleged reasons as lack of
time and “To absorb something on a training is more comfortable than self-
study”. Teachers favouring self-study underpinned their choice by the need to
complement their knowledge after a training or their unique style of teaching.
One respondent used self-study for her previous languages, but decided for a
Python training and started to use it immediately with the materials acquired
on the training (i.e. didn’t create any customized materials).

4.3 Preparation and Implementation of Teaching Activities

In this third step we focused on fundamental aspects of preparation and execu-
tion, the period of preparation and the materials used during the execution. By
the period of preparation, we can partition teachers into two categories:

– in advance
– continuously

Some teachers prepare their materials in advance for a whole semester/year
before starting to use the new programming language (e.g. summer holiday,
etc.). Respondents who use already existing materials acquired on a training
may be also included in this group. We were also in contact with teachers who
continuously prepared their own materials or tailored materials from a training to
their needs. These teachers reported to prepare for two-three lessons in advance.

A diversity showed up in the used materials as well. Teachers either created
or customized their own materials or used an already available material without
modifications. Some of them prepared their materials during the summer hol-
iday, while at the beginning of our research there was no official textbook for
teaching programming fundamentals using Python in Slovakia. There were vari-
ous materials available on the internet as well as materials from teachers [9,11].
By the materials used we identified the following categories:

– textbooks and course materials
– textbook supplemented with own tasks
– own, pre-existing materials adapted to the new language
– combination of various acquired materials
– specific materials from the internet

220 E. Klimeková and M. Tomcsányiová

Our analysis of these cases revealed that the identified three steps of teachers’
transition to a different programming language and their further classification
to categories define a number of different forms of transition. These forms are
complemented by various aspects and factors that affect this process and create
new, unique forms of transitions.

4.4 Questionnaire

To further strengthen the categories introduced in the previous section we
decided to send out a questionnaire that was filled out by 103 teachers teaching
at grammar schools, specialized secondary schools and elementary schools. 51%
of teachers had less than 10 years of experience in teaching programming, while
32% of them had it between 10 and 20 years, 13% between 20 and 30 years
and 4% over 30 years, with 36 being the maximum. The questionnaire was not
only supposed to confirm our categorization, but perhaps even enhance it and
depict different forms of transitions. We asked teachers about the difficulties they
faced during the transition and also about the tools that helped them or they
need for a fluent transition. Questions were based on our analysis of the e-mail
communication with teachers we discussed at the beginning of this section.

For the question What motivated you to transition to a different program-
ming language? we offered the following answers with the possibility of selecting
multiple:

– following current trends (89.3%)
– demand of students or parents (14.6%)
– training, course, book offers (22.3%),

where the percentage of respondents picking the particular answer is indicated
in brackets. There was a fourth option named other, where they could introduce
other motives. We received answers such as “the need to develop”, “graphics,
objects” or “connection with real life and what is used in programming nowa-
days”. It follows that most of the respondents were motivated by current trends
and influences of their close environment. This result is of great importance as it
demonstrates their effort to improve or at least preserve the quality of teaching
programming despite it increases the time to prepare their teaching activities.

We also asked them the question: How did you learn the new language?

– self-study only – books, online courses, various materials from the internet
– self-study and subsequent training
– training and subsequent self-study
– training only

From the answers it follows that the dominant strategy of learning is self-study
without any organized training (49% of respondents) that could have been caused
by lack of available training. Slightly less, 42% of respondents preferred self-
study in combination with training. Only a small number of them indicated
to absolve training not complemented with self-study. Teachers who picked the

Case Study on Teachers’ Transition to Python 221

Fig. 1. Results for the question How did you learn the new language?

option other reported about books of the language or several transitions with
different strategies used to learn the language. Our conclusion is that teachers
do not choose the learning strategy based only on their personal preferences, but
also considering the currently available options (Fig. 1).

We also asked a question regarding the preparation of educational materials.
To the question How does your preparation for teaching using a new programming
language look like?, 61% of teachers reported to prepare continuously (i.e. only
a few lessons in advance) and prepare their own materials. The rest replied
to be prepared in advance for the whole semester or year. Just like for other
questions we also offered the other answer to which some them responded to use
the combination of the prior answers. They prepared the materials in advance,
but kept changing them continuously during the semester.

Our next question According to what materials do you proceed during the
transition to a new language? offered the following answers:

– textbooks and course materials
– textbooks supplemented with own tasks
– combination of various acquired materials
– own, pre-existing materials adapted to the new language

Almost half of the respondents reported to use a combination of various acquired
materials, from each only parts that fits them. The rest of the answers ended up
with a lower percentage with one respondent choosing the answer other, describ-
ing his approach to be a combination of materials in the past, but currently using
an unofficial textbook, in both cases supplemented with own tasks (Fig. 2).

Using the questionnaire we also wanted to seek out the problems that teachers
face during the transition process. We asked them the question: What were your
greatest problems while transiting to the new programming language?, offering
the following answers:

– lack of materials, textbooks and tests in Slovak language (54.6%)
– lack of training, courses for teachers (39.2%)

222 E. Klimeková and M. Tomcsányiová

Fig. 2. Results for the question According to what materials do you proceed during the
transition to a new language?

– lack of time to learn a new language (37.1%)
– lack of support from colleagues (15.5%)

By means of the answer other we wanted to uncover problems we did not
encounter during the analysis of the e-mail communication. The question was
accompanied by another, open question that asked them to describe what dif-
ficulties did they face during the transition to the new language. As the two
questions are closely related, we examine answers to both together. Teachers
elaborated on their lack of time and the time consuming nature to prepare
materials. Some had problems that follow from the characteristics of the new
language and gave answers like Complexity of the programming language, missed
some of the integrated functions of Pascal/Delphi in C++ or Error notifications
I did not understand and syntax errors. Respondents also mentioned bad habits
that evolved while using the previous development environment to cause them
troubles. Another difficulty was the lack of cooperation with colleagues or as one
of them described it be left to oneself, having no possibility to consult my proceed-
ing with colleagues. Complications with mastering the language within the frame
of a training or course were described as When there were training sessions, they
often emerged too late, Detailed training sessions are missing – the existing are
short, shallow and we remain beginners after absolving them despite we are quite
proficient in another language. It is hard then to catch-up with self-study. and
Running into a problem while solving a more demanding task is followed by long
lasting search for the solution on forums.

By asking questions about the difficulties and necessary tools for teachers
pursued two objectives, the first being the ability to find an approach to help
teachers in their transition to a different programming language. The second
was to identify ways to help them to transition specifically to the Python lan-
guage. We also wanted to identify categories of the transition phases we did not
encounter during the analysis of the first group of teachers, but the question-
naire having a larger group of respondents as the first group showed us that the
already identified categories cover the stories of the second group and therefore

Case Study on Teachers’ Transition to Python 223

there is no need to extend the set of categories. The results of this phase of the
research acknowledged our opinion regarding the needs of teachers during the
transition to a different programming language.

4.5 Transition Stories

In Sect. 4.1 we analysed information gathered from a group of teachers about
their transition to a new programming language. We split up the transition
process to three steps that we refined to different types and ended up with our
final categorization of possible transition forms. We further strengthened our
categorization by realizing a questionnaire with a larger group of teachers with
being able to cover their transitions with our initial categories. Individual types of
transitions are in fact descriptions of teachers’ transitions to a new programming
language from the motives until the execution of teaching activities. To get more
insight into this process we decided to explore the transitions of selected teachers
in greater detail.

The set of respondents selected for the following case studies was determined
using the strategy of purposeful, maximal variation sampling. Our goal was to
gather information from individuals selected using individual criteria so that
we can cover various types of transitions. We selected five teachers represent-
ing different ways of familiarization with Python in combination with different
materials used, and applied the method of one-on-one interview. We were in con-
tact with three of them during the last three years of our research, visiting them
at their workplace, thus knowing their stories personally. We also conducted
interviews with them in their close environment. We expanded this sample by
another two teachers about who we knew they went through a transition process
different from the initial sample and likewise from each other. With these teach-
ers we conducted interviews using voice calls that we later analysed and rewrote
into the form of a story. We sent these stories back to them for completion and
potential error correction.

By means of the collected stories of their transitions we wanted to complete
our knowledge about the transition process and the needs they have during it.
The conducted interviews provided us a complete overview of transition types
as well as their approaches to the transition.

4.6 Conclusions from Case Studies of Teachers’ Transition
and Designing a Set of Recommendations

The result of analysing the case studies of teachers transition has confirmed the
lessons we have learned from the analysis of the transition of a larger group of
teachers. It has also brought some new insights that are beneficial to our research.
We consider these observations as important findings that have emerged from
our multiple case study. We used these findings to formulate a set of recommen-
dations and a support proposal for teachers transition to a new programming
language.

224 E. Klimeková and M. Tomcsányiová

Based on the interviews we have conducted, we present the following common
features that appeared in most of the teachers cases:

– They proceeded on the basis of their well-established approach to program-
ming (Pascal), and the changes that they made were based primarily on the
properties of the new language.

– After the first year of Python learning, they changed the details in their
lessons based on deeper Python knowledge, such as the sequence of the topics,
used didactic approaches or adding more tasks.

– Despite they learned Python by self-study, they later attended a training
to enhance their knowledge, make some programming techniques clear or to
prepare for discussion with colleagues. In case they attended a training first,
they deepened their knowledge by self-study.

– The preparation time for lessons got higher for all teachers, because they
either had to newly prepare whole lessons or in case of an acquired material
had to go through the whole material and solve the tasks before they present
them on the lesson.

The need for an inner motivation turned out to be a fundamental trigger of
the transformation to the new language in case of every analysed teacher. The
current acceptance of Python in world-leading companies also contributed to
their decision. Teachers have met colleagues on conferences who were already
teaching programming basics using Python, experts who recommend it and also
learned about support materials for teaching. Consequent upon teachers’ stories
and our questionnaire is that the climate in their school and the response of
their neighborhood that the transition is necessary contributes to their inner
motivation. Consequently, this transformation did not yet reach teachers who
do not have enough inner motivation to undergo the process of transition to a
new language. Focusing on this group of teachers could be a subject for another
research.

Based on our conclusions from teachers’ cases and categorization of the tran-
sition process we assembled a set of recommendations that may help teachers
during the transition to a different programming language:

– Ensure a convenient climate for the transition at schools and motivate teach-
ers in various ways. Offer information about the suitability of the new pro-
gramming language and show them possible paths of the transition.

– Perform training of the new language close to the place of their activity.
Training should be extensive enough to not only introduce the new language,
but give them also a deeper insight into useful didactic techniques applicable
during the transition of the teaching process.

– Create and make available broad and detailed materials for teachers that
should cover grades from the first up to the school leaving examination.
These materials should not only contain the didactic principles on lessons,
but should also contain examples, tasks along with their solutions and rec-
ommendations that support teachers even if they are new to the language or
do not have much experience with it.

Case Study on Teachers’ Transition to Python 225

– Prepare them advice that emerges from the characteristics of the new lan-
guage (e.g. Python) and includes warnings for differences from the language
used previously (e.g. Pascal). For example, notes that help teachers find errors
that pupils often do or clear warnings for constructs of the language that work
differently.

– Create and contribute to discussion groups on social networks to support
teachers who do not have other teachers in the same situation in their envi-
ronment.

– Facilitate adoption of the new language on programming contests so that
students learning programming using the new language can also participate.

To enable this support to reach teachers they themselves also have to perform
some steps:

– Actively seek discussion groups on social networks, conferences and teacher’s
clubs.

– Realize that the transition can make their preparation time for the lesson
significantly longer.

– Understand that in case of not having the chance to prepare sufficiently for
the new language, their lessons can be more demanding and could not always
be able to help pupils solving their problems with the elements and syntax
of the new language.

5 Discussion

The process of teachers transition to Python programming language in Slovakia
is not finished. Extensive long-term exploration of the transition process could
bring new insights into this area. Due to our observations, after a certain amount
of time, we expect the change of the situation in the area of support for teach-
ers to transition to the new programming language: there will be probably less
training of Python for teachers, but an increasing number of the available mate-
rials and textbooks for teachers. So the question arises as to how the process
will be progress of these teachers who decide to transit to Python a few years
later, when most of the teachers are already teaching in Python.

Contribution to this area could also be a comparison of our results with
similar foreign studies dealing with teachers’ transition to a new programming
language. During our research, we have been searching intensively for publica-
tions in various available libraries, e.g. ACM, IEEE Xplore2, Scholar.Google,
Springer catalog, ERIC, LearnTechLib, IATED. Researches on programming
languages in education are mostly focused on pupils, such as [12–14], in which
authors examined the transition between block- and textual programming lan-
guages focusing on pupils’ perception of it, or compared pupils’ results at the
introductory programming courses [3,4]. However, we did not find studies that
describe the process of transition between two programming languages in pro-
gramming basic courses which would be focused directly at the teachers. Some

226 E. Klimeková and M. Tomcsányiová

common features can be found in researches that are concerned with chang-
ing curriculum or educational standards. Sentance and Czizmadia [15] focused
on pedagogical strategies of teachers in introducing the content of computer
thinking. They asked teachers what difficulties they encountered in teaching the
non-programming part of the subject. Teachers mostly responded the lack of
materials or technical problems. Also, researchers Thompson et al. [16] in their
paper describe the process of implementing a new curriculum for Computer Sci-
ence in New Zealand in years 2010 to 2013. Following the publication of the new
curriculum they implemented a three-day symposium for teachers with work-
shops and seminars, but not all teachers have been able to attend this event.
They also organized regional workshops and established mailing lists and a sup-
porting website for material sharing. A year after the introduction of the new
curriculum researchers implemented a questionnaire filled in by teachers from
the mailing list, who were interested in implementing a new curriculum. Their
results also show that teachers need training sessions available in the vicinity of
their work.

Although in these researches transition of different aim and object were
examined, the comparison of these processes points to a significant difference
in the process of transformation. Researchers from the United Kingdom and
New Zealand describe processes of transition led by an institution, providing
teachers with materials and training. In Slovakia, the process of teachers’ transi-
tion to Python took place naturally, at the initiative of teachers themselves. The
process was not governed by any institution, teachers could decide to change the
programming language. From the beginning of this process, they did not have
any training, support mailing list or materials. Nevertheless, we can find com-
mon features in the investigated processes in Slovakia, the United Kingdom and
New Zealand as they encounter similar problems and difficulties as our teachers.

6 Conclusion

In our research, we focused on using the Python programming language as part
of teaching programming in the subject of Computer Science. The aim of our
research was to investigate the process of teachers transitioning to teaching pro-
gramming in Python, with respect to the challenges they face and support they
require. Through the methods of qualitative research, we analysed a number of
cases where computer science teachers transitioned from teaching in Pascal to
Python. Based on the analysis of these cases, we propose a categorization for
the transformation process. We identified influencing factors and present recom-
mendations to support teachers transitioning to teaching a new language. We
believe our research will contribute to improved support for teachers transition-
ing to teaching programming basics in new programming languages.

Case Study on Teachers’ Transition to Python 227

References

1. TIOBE Software: The coding standards company, January 2016. http://www.
tiobe.com/index.php/content/paperinfo/tpci/Python.html

2. Zelle, J.M.: Python as a first language, February 2015. http://mcsp.wartburg.edu/
zelle/python/python-first.htm

3. Ateeq, M., Habib, H., Umer, A., Rehman, M.u.: C++ or python? which one to
begin with: a learner’s perspective. In: Proceedings - 2014 International Conference
on Teaching and Learning in Computing and Engineering, LATICE 2014, pp. 64–
69. IEEE, April 2014. ISBN 978-1-4799-3592-5/14

4. Grandell, L., Peltomäki, M., Back, R.J., Salakoski, T.: Why complicate things?
Introducing programming in high school using python. In: Proceedings of the 8th
Australasian Computing Education Conference (ACE 2006), vol. 52, pp. 71–80.
Australian Computer Society, Inc., Hobart, January 2006

5. Klimeková, E.: Curriculum intervention for learning programming in python
with turtle geometry. In: Constructionism 2018 - Constructionism, Computa-
tional Thinking and Educational Innovation: Conference Proceedings, pp. 316–325
(2018), ISBN 978-609-95760-1-5

6. Yin, R.: Case Study Research: Design and Methods, 2nd edn. SAGE Publications,
Thousand Oaks (1994)

7. Creswell, J.W.: Educational Research: Planning, Conducting, and Evaluating
Quantitative and Qualitative Research, 4th edn. Pearson Education Inc., Upper
Saddle River (2012). ISBN 978-81-203-4373-3

8. Summerfield, M.: Python 3, Výukový kurz. Computer Press a.s., Brno, CZK
(2010). ISBN 970-80-251-2737-7

9. Belan, A.: Python, učebnica pre septimu osemročného alebo 3. ročńık štvorročného
gymnázia. Druska Books, Bratislava, SVK (2013). ISBN 978-80-89646-35-7

10. Kučera, P.: Programujeme v Pythone. Peter Kučera, Bratislava, SVK (2016). ISBN
978-80-972320-4-7

11. Mészárosová, E.: Python a korytnačia grafika: Metodický materiál pre vyučovanie
základov programovania pre gymánziá. SVK, 1st edn. Knižničné a edičné centrum
FMFI UK, Bratislava (2017). ISBN 978-80-8147-079-0

12. Kölling, M., Brown, N.C.C., Altadmri, A.: Frame-based editing: Easing the tran-
sition from blocks to text-based programming. In: Proceedings of the Workshop in
Primary and Secondary Computing Education (WiPSCE 2015), pp. 29–38. ACM,
New York (2015)

13. Dorling, M., White, D.: Scratch: a way to logo and python. In: Proceedings of the
46th ACM Technical Symposium on Computer Science Education, pp. 191–196.
ACM (2015)

14. Robinson, W.: From scratch to patch: easing the blocks-text transition. In: Pro-
ceedings of the Workshop in Primary and Secondary Computing Education (WiP-
SCE 2016). ACM, Münster, GER (2016). ISBN 978-1-4503-4223-0/16/10

15. Sentance, S., Czizmadia, A.: Teachers perspectives on successful strategies for
teaching computing in school. In: IFIP TCS 2015, June 2015

16. Thompson, D., Bell, T., Andreae, P., Robins, A.: The role of teachers in implement-
ing curriculum changes. In: Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (2013)

http://www.tiobe.com/index.php/content/paperinfo/tpci/Python.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/Python.html
http://mcsp.wartburg.edu/zelle/python/python-first.htm
http://mcsp.wartburg.edu/zelle/python/python-first.htm

An Investigation of Italian Primary
School Teachers’ View on Coding

and Programming

Isabella Corradini1, Michael Lodi2, and Enrico Nardelli3(B)

1 Themis Research Centre, Rome, Italy
isabellacorradini@themiscrime.com

2 University Bologna and INRIA Focus, Bologna, Italy
michael.lodi@unibo.it

3 University Roma “Tor Vergata”, Rome, Italy
nardelli@mat.uniroma2.it

Abstract. This paper reports the results of an investigation involving
almost a thousand primary school teachers in Italy, to explore their views
on the terms “coding” and “programming”, and how they are related to
their ideas on “computational thinking”.

When directly asked “if coding is different from writing programs”,
roughly 2 out of 3 teachers answered “no”. Among the teachers who
answered “yes”, almost 160 tried to motivate the difference: a few of
them gave admissible explanations, while the others showed various mis-
understandings, which we classify and discuss.

By contrast, when asked about their idea of “what coding is”, only 4
out of 10 of the teachers explicitly linked coding to programming, but an
additional 2 out of 10 cited an information processing agent executing
instructions. The remaining part of the sample did not provide explicit
or implicit links between coding and programming.

Our investigation shows that untrained teachers hold misconceptions
regarding CS and its related terms. Given the general public and media
attention on “coding” in schools, currently taught by existing teachers -
mostly not appropriately trained, professional development actions focus-
ing on CS scientific principles and methods are therefore a top priority
for the effectiveness of CS education in schools.

Keywords: Coding and programming · Primary school teachers
Informatics education

1 Introduction

1.1 Context

The word “coding” is becoming more and more a buzzword in Computer Science
Education (CSEd), especially in K-12 education. There are a lot of initiatives,
like Code.org, CoderDojo, Code Clubs and so on, aiming to teach students to
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 228–243, 2018.
https://doi.org/10.1007/978-3-030-02750-6_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_18&domain=pdf
https://code.org/

Italian Primary School Teachers’ View on Coding and Programming 229

“code”. These initiatives are spreading and, since many governments are intro-
ducing computational thinking (CT) or computer science (CS) in school curric-
ula, the term is used in many schools as well, especially referring to introductory
programming activities.

Unlike the expression “computational thinking”, that may sound abstract
and pretentious, and “programming” that seems to recall a boring professional
activity [4], the expression “coding” can capture the interest of students, and
“also provides an element of mystery (there are hints of a secret code), and
achievement (cracking the code)” [10]. There is a tendency in the media to use
the term “coding” extensively, as noted - among others - by [1,14], when talking
for example about “coding education”. Some media observers have noted that
“coding” is often used to denote a “more playful and non-intimidating descrip-
tion of programming for beginners” [13].

In popular culture, the term has also come to be used on the one hand as
a synonym for the entire software development process, and on the other as a
means to speak about what needs to be taught in school. This overlooks both
the fact that coding/programming is only a part of the software development
process, and that software development is only one of the important areas of
computer science [3].

We think that, while in the scientific community it is clear that “coding”
and “programming” have a strict relation, and that they are only tools to teach
what matters (i.e., CS - or CT, used to denote CS core aspects), the confusion
induced by this “coding mania” in the media can be very harmful. In fact,
in our culture CS has been plagued almost since its teenage years by a lot of
misconceptions [9] and it took decades to eradicate the limiting idea that CS is
only programming [1,16].

The expression “coding” is currently invested with excessive importance [3],
and this may lead to the wrong idea that its value is greater than the CS scien-
tific concepts themselves. This is particularly relevant since, in this initial phase
of introduction of CS in schools, many teachers self-train themselves and look
for ideas and materials in the media, given training materials and professional
developments initiatives are scarcely available.

Anecdotally, we spotted these tendencies in Italy too. Moreover, in Italian the
term “programming” (translated as programmazione) has a very broad meaning
(e.g. it is used for “schedules” like “movie show-times”) and, in the context of
schools, it is used to indicate “didactic planning”1. Furthermore, in Italy, there
is a trend to incorporate “as they are” foreign terms indicating new concepts,
rather than finding a corresponding Italian word. In facts, the term “coding”
was explicitly used (untranslated) in a major plan launched in 2015 by the
Italian government and aiming at rendering Italian schools more digital (Italian
National Plan for Digital Education - Piano Nazionale Scuola Digitale [11]), and
widely reported in communication actions related to it.

1 For example in primary schools teachers meet weekly to do an “hour of program-
ming”, namely to agree on the content of lessons of the week.

230 I. Corradini et al.

In view of the above, we decided to investigate the theme of relation between
coding and programming among Italian teachers.

1.2 Literature Overview

A few studies analyzed conceptions and misconceptions about computational
thinking in school teachers (see [6]), however none of them specifically investi-
gated their ideas about the relationship between coding and programming.

A research in the ACM Digital Library, restricted to the SIGCSE publica-
tions, returns 1,186 hits for the search term “coding” compared to the 8,674
hits for “programming”. However, the former shows an exponential growth from
1970s, while the latter just a linear growth (Appendix, Fig. 1).

There is no agreement in the CSEd community about the relationship
between coding and programming. In fact, some authors use the two terms inter-
changeably as synonyms or state both (e.g., they write “programming/coding”).
On the other side, a few authors do not consider them as equivalent and analyzed
their difference. They agree the term “coding” is more and more used in tech
business world as a jargon synonym word for programming, understood by other
professionals [1] (e.g. asking for “coders” instead of “programmers” in job offers).
They also observe that on one hand the term “coding” has a broader meaning
in CS (e.g. in cryptography or in information theory), and on the other hand it
is often used to indicate the stage of software development when programs are
actually written [1,2,10]. In other words, “coding” is considered as a narrower
concept excluding important phases like analysis, design, testing, debugging [3].

1.3 A Related Study on CT Definition

We analyzed in [6] a large sample of 972 Italian teachers of primary school
(students aged from 6 to 10) to investigate their knowledge level of CT. That
analysis was based on the descriptions of CT that teachers in the sample provided
by answering to the open-ended question “In my view computational thinking
is...”. Some of these answers did not provide a definition or were completely
out of scope (e.g.: they answered “interesting” or “useful”). We assigned each
of the remaining 779 admissible answers to one or more of 17 categories whose
identification was grounded on the descriptions themselves.

Subsequently, we evaluated the level of teachers’ understanding of CT with
the following model. First, we rated each category with an integer weight in
[-1, +2] to denote its relevance for CT definition, on the basis of the existing
literature. Then, we computed the level of an answer as the sum of weights of
categories it is assigned to. We used a value of at least 8 as the threshold to
identify a “good” admissible definition (again on the basis of the literature) and
a level of at least 6 to identify “acceptable” admissible definitions (since to reach
a level of 6 an answer had to be classified with at least one category with weight
+2 and at least some additional categories with positive weights).

Italian Primary School Teachers’ View on Coding and Programming 231

We found the following results: 1% (8) provided a good admissible definition
of CT, 10% (76) provided an acceptable (but not good) admissible definition,
and the vast majority (89%, 695) of the 779 admissible answers did not provide
an acceptable definition.

1.4 Purpose of the Study

This research has investigated how Italian primary school teachers define coding
and which relations they see between it and programming. More specifically we
addressed the following research questions:

RQ1 how do they define coding?
RQ1 how do they perceive the relation between coding and writing programs?

2 Methods

2.1 Context

The Italian project “Programma il Futuro” disseminates in Italian schools, since
school year 2014–15, a better awareness of CS as the scientific basis of digital
technologies [7] and carries out periodical surveys among teachers. The question-
naire sent in December 2016 received 3,593 answers from school teachers of all
levels, from kindergarten to upper secondary. In [6] we analyzed the 972 answers
of primary schools teachers, who participated to the project for the first time
in school-year 2016–17, to questions regarding their viewpoint on CT. For the
same set of teachers we analyze here their answers to a different set of questions.

2.2 Tools

We focused on teachers’ answers to the following questions (in square brackets
the actual Italian wording: coding is untranslated, as usual for this term in Italy).

The first one asked them to provide their definition of coding by completing:

Q1. In your view coding is. . . [Secondo te fare coding è. . .]

The second one asked teachers to answer:

Q2. In your view is there any difference between coding and writing programs?
[Secondo te c’è differenza tra “fare coding” e “scrivere programmi”?]

and to those answering positively it was asked:

Q3. If you wish, explain why [Se vuoi, spiega perché:]

232 I. Corradini et al.

2.3 Sample Description

In the current study we considered the same sample of 972 teachers analyzed
in [6]. The sample is made up for 93.7% (911) by women, hence 6.3% (61) are
men, which is almost the double of the national value (3.6%) for Italian primary
school teachers. This points in the direction of confirming the stereotype seeing
men more attracted to computing than women.

This is the age distribution in the sample: up to 30: 8 (0.8%), 31 to 40: 133
(13.7%), 41 to 50: 415 (42.7%), 51 to 60: 374 (38.5%), 61 and more: 42 (4.3%).

Teaching seniority in the sample is the following: up to 2: 18 (1.9%), 3 to 5:
16 (1.6%), 6 to 10: 104 (10.7%), more than 10: 835 (85.8%).

Both distributions show the sample is made, to a very large extent (>80%),
by mature and experienced teachers. This provides a reliable base of subjects for
the research, but it is also a sign that they do not have a formal or structured
CS training.

In fact, to become a pre-school and/or a primary school teacher in Italy,
one currently has to get a 5-year (Combined Bachelor and Master) Degree in
Primary Teacher Education. The course prepares students to become generalist
teachers, by giving theoretical, methodological and practical training to teach all
subjects included in primary school (Italian, Math, History, Geography, English,
Science, Technology, Sports, Music, to name the most important ones). Most of
the teachers teach more than one subject in a class, sometimes both literary
subjects and scientific/technical ones.

Informatics is not part of the primary school national curriculum (but can
be introduced as a local project of a specific school), even though it was asso-
ciated with the subject “Technology” for a brief period of time some years ago:
unfortunately, it was (and still is) mostly taught as learning how to use ICT
tools (e.g. using drawing programs or word processors).

Because of the lack of Informatics in the national curriculum, its contents
and teaching methods are not part of the Primary Teacher Education degree.

Much worse, that degree is mandatory to teach in primary schools in Italy
only since 2002. Before that year, you could become a primary school teacher just
with a High School Diploma specializing on Primary Teaching (again, preparing
students to teach all the subjects), without even the need of a degree. All teachers
that got the Diploma before 2002 (more or less all teachers older than 40) are
primary school teachers without a Primary Teacher Education degree. Due to
the seniority and age of teachers in our sample, the vast majority of them belongs
to this category.

In both cases, apart from isolated professional development courses, all teach-
ers most probably did not receive any formal training in CS and CS teaching
methods.

2.4 Procedures

We used a mixed methods approach, including both quantitative and qualitative
analysis.

Italian Primary School Teachers’ View on Coding and Programming 233

Quantitative analysis. We used standard descriptive statistical methods to
analyze the frequencies of both actual and relevant answers to our three ques-
tions. Moreover, we used the data and the model on CT definition of [6] to
analyze how the values provided by that model are distributed when restricted
to answers to our questions Q1, Q2 and Q3.

Qualitative analysis. We filtered out answers to Q1 that did not provide a
definition (e.g. “innovative”) and answers to Q3 that did not explained the dif-
ference (e.g. “coding is a discovery”).

We then proceeded for each of the remaining relevant answers to identify, by
reading and discussing, the conceptual categories to be used for their classifica-
tion.

In a first phase each of us independently analyzed the definitions and pro-
posed, for each question, a set of conceptual categories to classify them. We used
a mixed approach: some categories were defined “a priori”, on the basis of lit-
erature overview and related work described in Sect. 1.2, others were grounded
on the definitions themselves.

Secondly, we jointly examined, for each question, the proposed sets of cate-
gories and through discussion we agreed to a preliminary set.

Subsequently, we manually assigned each answer to one or more categories,
if the statement either declared the same nature as the category or stated being
relative to or useful for the category. For this process the set of answers for each
question was split between us, and we assigned answers in our own subset to one
or more categories. During this process proposals for modifications to categories
emerged.

Lastly, we jointly examined, for each question, both these proposed modifi-
cations and assignments. Through discussion, we came to agree on the final set
of categories for each question (described in Subsects. 4.1 for Q1 and 4.2 for Q3)
and the final assignment of each definition to one or more categories.

3 Quantitative Results

3.1 Q1 - Coding Is. . .

A definition was present in 88% (854) of all 972 answers. Among the 118 ones
which did not provide it, 50.8% (60) did not answer to Q2 either, 24.6% (29)
answered negatively with respect to (wrt, from now on) the difference between
coding and writing programs while a same (by chance) 24.6% (29) answered pos-
itively (but only 2 answers contained an explanation). Among the 854 provided
definitions, 7% (56) of them were not relevant (e.g., “coding is innovative”). The
qualitative analysis of the remaining 798 (=854 − 56) ones is in Subsect. 4.1.

3.2 Q2 - Is Coding Different from Writing Programs?

An answer was provided to Q2 by 78% (758) of the 972 teachers in the sample
and 60% (456) of them answered “no” and 40% (302) answered “yes”. Among

234 I. Corradini et al.

the 214 ones which did not provide an answer, 28% (60) did not answer to Q1
either.

Relationship with CT definition. We used the CT definition evaluation
model and the related set of data in [6] to analyze the distributions of values
provided by such model when restricted to the two significant subsets of possible
answers to our question Q2 (namely, “yes” or “no”).

The sample of 972 answers in [6] contained 779 answers with admissible CT
definitions. We analyzed the admissible ones and found 396 “no” and 246 “yes”
answers to Q2, while 137 did not answer at all. The percentage of acceptable CT
definitions2 is slightly higher for the admissible CT answers who also answered
“no” to Q2 (12%, 46/396) than for those who answered “yes” (10%, 25/246).

This shows that teachers having correctly identified that there is no difference
between coding and writing programs have performed slightly better, for what
regards the definition of CT, than those who think there is a difference. This is
confirmed also by comparing the average value for acceptable CT definitions in
the two subsets of teacher having answered “no” (avg = 6.33) and “yes” (6.12).

3.3 Q3 - the Difference Between Coding and Writing
Programs Is. . .

Among the 302 answers to Q2 incorrectly stating coding and writing programs
are different, only 53% (159) explained why by answering Q3: 25 of these were
not relevant, while the qualitative analysis of the remaining 134 ones is in Sub-
sect. 4.2.

Relationship with CT definition. Among the 779 admissible CT definitions
of [6] there were 123 who also answered to Q3, and none of these definitions
has a value greater than 6 according to their model. Also, the percentage of
those receiving a value at least 6 (acceptable definition) is lower in this subset of
teachers (7%, 9/123) than in the overall set (11%, 84/779) and the percentage
of unacceptable (<6) definitions in this subset (93%, 114/123) is higher than in
the overall set (89%, 697/779).

The fact that teachers having tried to characterize a difference between coding
and writing programs were not able to provide an acceptable CT definition shows
an agreement between this research and the evaluation provided by the model
in [6].

4 Qualitative Results

4.1 Q1 - Coding Is. . .

Categories. The analysis of the 798 relevant answers to Q1 using the procedure
described in Sect. 2.4 resulted in 10 categories. We grouped them in two classes,
according to whether they were somewhat related to writing programs or not.
2 In [6] a value of at least 6 characterizes an “acceptable” CT definition.

Italian Primary School Teachers’ View on Coding and Programming 235

– Related: All categories here somehow “speak” about writing programs,
either in a full (PROG) or simplified (SIMP) way, or are concerned with writ-
ing algorithms (or lists of instructions) making reference to some information
processing agent able to execute them mechanically (PROC).
PROC Specifying processes: devising an algorithm to solve a problem; pro-

viding a list of instructions to solve a problem; making an information
processing agent execute a sequence of elementary steps

PROG Writing programs: using programming languages
SIMP Simplified programming : programming with simplified environments/

languages (e.g.: visually, blockly); learning the basics of programming
– Unrelated: Categories in this class are not directly concerned to writing

programs in some form.
ACTI Being active towards information technology : creating computational

artifacts instead of simply using them; being able to find creative or orig-
inal solutions to problems

COLE Cognition and learning : reflecting about thinking or learning; program
to learn; learning to learn; develop/ improve cognitive abilities; a method/
approach to teaching/learning

DECT Developing computational thinking : a way to teach/ develop/ apply CT
ENGA Engagement : doing playful/ funny/ attractive/ interesting/ inspiring

activities
LOCR Logical/critical thinking : logical or reasoning or analytical skills; apply-

ing/developing critical thinking
PROB Solving problems: plan(s), design(s), action(s) or process(es) leading to

solve a problem, to reach a goal, to face a complex situation (includ-
ing splitting a complex problem in simpler subproblems to solve it more
easily)

TRAN Transversal competence: e.g. fourth skill, transversal skill, life skill, use-
ful in other fields, of general use

Analysis of Category distribution. The distribution of categories for the 798
relevant answers to this question is shown in Fig. 2 (see Appendix).

Category PROG, which directly relates coding to programming, is understand-
ably the most frequent one, but appears in only 4 out of 10 relevant answers
(323/798). If only the 456 teachers answering also “no” to Q2 are analyzed,
this percentage slightly increases to 43% (194/456), a slightly positive sign that
those teachers correctly relating “coding” and “writing programs” (i.e., the “no”
answers to Q2) were also better able to describe coding in terms of programming.

On the other side, by aggregating the answers in the related class (i.e., PROG,
PROC, and SIMP - remember each answer can receive more than one label) we
obtain that 59% (469) of answers relevant for Q1 use an expression somewhat
related to programming. In the light of the characteristics of our sample (see 2.3),
the fact that 6 out of 10 teachers were somewhat able to identify a correct relation
between coding (which for large part of their professional career most probably
they never heard about) and programming is certainly positive.

236 I. Corradini et al.

Also note that, given each relevant answer was assigned to one or more cat-
egories, there is a 29% (232) of answers falling both in the related and unrelated
classes. On the other side, there was a 30% (237) of answers belonging to at least
one of the related categories and none of the unrelated ones and a 41% (329) of
answers belonging to one of the unrelated ones and none of the related ones.

The third most frequent category is PROB, that with a 24% (190) is very
close to the 25% (197) of the second one, PROC, confirming the trend emerged
in [6] for CT, that in Italian schools CS education is often considered as a
general instrument for problem solving. The strict relation between CT and
programming is confirmed by the 17% (138) seeing coding as a way to teach/
develop CT (DECT).

It is interesting to note that 17% (138) of teachers highlights the engagement
value of coding (ENGA) and 15% (117) sees it as an aid for teaching or developing
cognitive abilities (COLE). We think these are important elements to ensure a
diffusion of computing education in schools, although one has to pay attention
they do not overshadow its core elements. The same reasoning applies to LOCR
(11%, 87) and TRAN (4%, 31).

Only a 7% (54) of teachers has remarked the importance of coding to become
active towards Information Technologies (ACTI), which is anyway positive given
the question was not investigating the role/ purpose of coding.

Relationship with CT Definition. Among the 798 relevant answers to Q1
there were 743 who also provided an admissible CT definition.

We show in Table 1 (see Appendix) how these 743 definitions are distributed
according to two subsets: one made up by all 458 answers to Q1 using terms
somewhat related to “writing programs” and the other one made up by the 285
remaining answers. The average value of the CT definition evaluation model for
all related teachers is 3.37, while for all the remaining ones is 2.62, showing a
positive correlation between understanding CT and being able to properly define
“coding”.

4.2 Q3 - the Difference Between Coding and Writing Programs
Is. . .

Categories. The analysis of the 134 relevant answers to Q3 using the procedure
described in 2.4 resulted in the 11 categories described below. We grouped them
in three classes according to how they described the difference between “coding”
(C, in the following description) and “writing programs” (P). Some descriptions
are tolerable while others are unacceptable. A few are completely out-of-scope.

– Tolerable: in this class we have categories expressing admissible relations,
given the wide variety of ways in which the two terms are used in both
literature and profession.
COMP - C is a part of P
EASY - C is a simplified P
PROP - C is preparatory to P

Italian Primary School Teachers’ View on Coding and Programming 237

– Unacceptable: categories in this class refer to wrong ways of describing
relations between C and P .
CONC - C is the conceptual part of P
GENA - C is more general/ abstract than P
LUPR - C is for playing/ learning, P is for working

– Out of scope: here we have categories which do not really address the dif-
ference but simply refer to characteristics of C.
DEVC - C is a means to develop computational thinking
GECO - C is a general competence
LOTH - C is a means to learn other subjects
SOCI - C has a social value
SOLV - C is problem solving

Analysis of Category Distribution. The distribution of categories is shown
in Fig. 3 (see Appendix).

In 43% (58) of relevant answers there were elements characterizing coding as
simpler than (EASY, occurring in 35 answers, 26%) or preparatory to (PROP, 23,
17%) or part of (COMP, 5, 4%) programming : we collectively denote these answers
as tolerable. In 54% (72) of cases there were elements expressing (at least one)
actual (and unacceptable) misunderstanding of the relation between coding and
programming. There were 17 answers with both tolerable terms and unacceptable
ones.

We classified these misunderstandings in three unacceptable categories: both
CONC (characterizing 13 relevant answers, 10%) and GENA (25, 19%) reverse the
position, expressed in the literature (see 1.1), that considers coding as a narrower
concept than programming in the software production process. The former by
assigning it a conceptual role CT is concerned with, the latter by ascribing to
coding a scope wider than the mere act of writing programs.

Answers classified as LUPR (28%, 38) have elements characterizing coding
as just a “toy” activity distinct from “the real thing”, that is programming
in a professional context. Clearly, this misunderstanding goes in the opposite
direction as the two previous ones, and none of the 134 relevant answers was
self-contradictory by expressing both LUPR and (CONC or GENA).

Reconsidering the relation between coding and writing programs. Fig. 4
(see Appendix) shows the Venn diagram of the classification of answers to Q3
according to the 3 classes grouping the 11 categories. A minority of the 58
relevant answers classified in the tolerable class were also classified in the unac-
ceptable one, but there were 41 whose classification did not have unacceptable
categories.

These are therefore teachers considering coding as distinct from writing pro-
grams, but whose answers can be aggregated with the 456 negative answers to
Q2 and removed from the positive ones. We thus obtain a 66% (497) of the
758 teachers who answered Q2 having an acceptably correct view of the relation
between coding and writing programs.

238 I. Corradini et al.

Finally, we have also analyzed the subset of teachers whose answers to Q1
featured both a classification as (PROG or SIMP) and as PROC: there are 71 of
them. In this subset of strongly related answers (9% of the 798 relevant answers
for Q1) there are 51 (72% of the subset) who were able to correctly relate coding
to programming (in the enlarged sense described in Sect. 4.2) while only 1 of
them described an unacceptable difference between coding and writing programs.

Relationship with CT Definition. Let us now define as tolerable-only answers
the 41 ones classified with at least one tolerable category and none unacceptable,
and as unacceptable-only the 55 ones with at least one unacceptable and none
tolerable (see again Fig. 4).

Table 2 (see Appendix) shows the values of CT definitions provided from the
model in [6] for these two subsets. Remember that no teacher who answered Q3
received a value greater than 6 in the CT definition evaluation. Note that there
are fewer answers in tolerable-only subset than in unacceptable-only (39 vs 48),
and teachers in the tolerable-only subset have a slightly higher average value
(3.49 vs 3.38) for the CT definition evaluation model.

4.3 Joint Distribution of Q1 and Q3

All the 134 teachers answering Q3 answered also to Q1. We present in Table 3
(see Appendix) the joint distribution of all answers to Q1 and those answers to
Q3 classified as tolerable-only or unacceptable-only.

In Tables 4 and 5 we present the two respective marginal distributions.
Table 4 (see Appendix) shows that both a majority (68%) of relevant answers

classified as tolerable-only wrt Q3 belong to related wrt Q1 and a majority (60%)
of relevant answers classified as unacceptable-only wrt Q3 belong to remaining3

answers in Q1. This indicates a positive correlation between the capability of
describing what coding is (Q1) and the capability of providing a description of
the difference between coding and programming (Q3).

This is confirmed also by Table 5 (see Appendix), showing that both a major-
ity (56%) of relevant answers classified as related wrt Q1 belong to tolerable-only
wrt Q3 and that a majority (72%) of the remaining relevant answers to Q1 belong
to unacceptable-only wrt Q3.

5 Conclusions and Further Work

We analyzed Italian primary school teachers’ ideas about coding and its rela-
tionship with programming.

3 This is the subset of Q1 answers that has not been classified in any of the related
categories.

Italian Primary School Teachers’ View on Coding and Programming 239

Regarding RQ1, we found that only 4 answers out of 10 directly mentioned
programming when defining coding. On the other hand, if we consider also
answers mentioning simplified programming environments/languages or the act
of designing algorithms or giving instructions to an executing agent in the defi-
nition of coding, the number of good answers grows to a more comforting 6 out
of 10. Answers highlighted also side aspects of coding, often overlapping with
elements more rightly belonging to CT.

For what concerns RQ2, when directly asked if there is a difference between
coding and write programs, 60.2% of them answered no. Another 5.4%, even if
answered yes, gave a completely tolerable explanation in the light of the variety
of ways the term coding is used in different contexts, resulting in an overall
2 out of 3 teachers expressing an acceptably correct relation between coding
and programming. The others giving an explanation (half of those answering
yes) listed some characteristics of coding without really explaining the difference
or used wrong (and conflicting) motivations: coding is the conceptual part of
programming, or more general and abstract than programming, or just a toy
while programming only for professionals.

We also compared our findings with ideas our sample had about CT [6]. We
found that teachers having acceptable ideas about it performed slightly better in:
(i) describing coding with programming-related terms, (ii) correctly identifying
coding with writing programs.

Finally, when comparing coding definitions and explanations of differences
between coding and writing programs, we found that 68% of those who pro-
vided a programming-related definition managed to provide also a completely
tolerable explanation of the difference. Dually, the vast majority of those who
failed to relate coding to programming activities in its definition also provided
unacceptable motivations for the difference.

Despite being limited to Italy, our study - showing that teachers have not a
clear picture of the relations between coding and programming - can be repre-
sentative of similar situations in K-12 education of many developed countries. It
would be interesting to learn more about the situation in other countries from
the local replication of a similar investigation.

The most probable cause for the misconceptions revealed by this study is the
fact that teachers have not been appropriately trained in CS and its teaching
methods. The importance of teacher training has already been identified in other
reports (e.g. [5,15]) as a key factor for a successful uptake of CS education in
schools.

These results support worries about the fact that focusing only on a specific
activity/ tool of CS (i.e., on programming) can be harmful, especially if referring
to it with a “buzzword” like coding, which takes on conflicting meanings. In
fact, our results show that such misconceptions have a high correlation with the
presence of reductive or wrong ideas about CS. On the other hand, having an
appropriate understanding of what coding and programming are is an important
requirement for teachers to be able to provide good CS education in schools.

240 I. Corradini et al.

This research has shed some light on the fact that lack of proper training
joined with confusion in terminology spread by media originated dangerous mis-
conceptions, which may harm effectiveness of CS education actions.

We therefore recommend, when speaking about CS education, to stress the
importance of CS scientific principles and methods. It has to be clearly stated
that CS (and not CT or coding) is the scientific discipline to be taught at
all school levels [12], both because it is the science underpinning the develop-
ment of the current digital society and because it provides conceptual methods
contributing to a better understanding of other disciplines [8]. This has to be
done at a communication level when presenting and discussing CS school edu-
cation initiatives, at the organizational level of CS school curricula specification
and in the context of teacher training in CS.

We plan to extend our analysis to teachers of other school levels and to
compare these results with those of teachers with more experience in CS teaching.
It would also be interesting to carry out surveys in other countries to obtain a
wider picture of the relations between misconceptions regarding CS related terms
and teacher training.

Acknowledgements. We greatly thank teachers and students involved in Programma
il Futuro project (coordinated by EN) and Code.org for their cooperation.

We acknowledge the financial support of Engineering, TIM; CA Technologies, De
Agostini Scuola, SeeWeb. Other companies have financially supported the project for
two school-years only: Samsung Italia; Microsoft Italia; Cisco, Hewlett-Packard, Oracle,
Facebook.

Rai Cultura, the culture department of Italian national public broadcasting com-
pany, is a media partner of the project since February 2017.

Appendix

Fig. 1. Growth of search hits for terms coding and programming in ACM SIGCSE
publications. Source: ACM Digital Library search results (Aug. 7th, 2018).

https://code.org/

Italian Primary School Teachers’ View on Coding and Programming 241

Fig. 2. Frequency of each category in Q1

Fig. 3. Frequency of each category in Q3

Fig. 4. Distribution of Q3 answers among classes.

242 I. Corradini et al.

Table 1. Distribution of CT values of relevant Q1 answers.

Value −1 0 1 2 3 4 5 6 7 8 9 10 11 12

Related 1 16 40 105 57 149 32 47 6 3 1 0 1 0

Remaining 5 27 65 58 28 60 16 21 2 2 0 0 0 1

Table 2. Distribution of CT values for a subset of Q3 answers.

Value −1 0 1 2 3 4 5 6

Tolerable-only 0 1 2 8 7 12 5 4

Unacceptable-only 0 3 5 7 4 18 7 4

Table 3. Joint distribution of answers to Q1 and Q3.

Tolerable-only Unacceptable-only SUM

Related 28 22 50

Remaining 13 33 46

SUM 41 55 96

Table 4. Marginal distribution of Q3 answers wrt to Q1.

Tolerable-only Unacceptable-only

Related 68% 40%

Remaining 32% 60%

SUM 100% 100%

Table 5. Marginal distribution of Q1 answers wrt to Q3.

Tolerable-only Unacceptable-only SUM

Related 56% 44% 100%

Remaining 28% 72% 100%

Italian Primary School Teachers’ View on Coding and Programming 243

References

1. Armoni, M.: Computing in schools: computer science, computational thinking, pro-
gramming, coding: the anomalies of transitivity in k-12 computer science education.
ACM Inroads 7(4), 24–27 (2016)

2. Barendsen, E., et al.: Concepts in k-9 computer science education. In: ITICSE-
WGR 2015, pp. 85–116. ACM (2015)

3. Bell, T.: What’s all the fuss about coding? In: ACER Research Conference 2016.
Australian Council for Educational Research, Melbourne, Australia (2016)

4. Ben-Ari, M.: In defense of programming. In: ITiCSE 2015. ACM (2015)
5. Caspersen, M.E., Gal-Ezer, J., Nardelli, E., Vahrenhold, J., Westermeier, M.: The

CECE report: creating a map of informatics in European schools. In: SIGCSE 2018
(2018)

6. Corradini, I., Lodi, M., Nardelli, E.: Conceptions and misconceptions about com-
putational thinking among Italian primary school teachers. In: ICER 2017 (2017)

7. Corradini, I., Lodi, M., Nardelli, E.: Computational thinking in Italian schools:
quantitative data and teachers’ sentiment analysis after two years of “Programma
il Futuro” Project. In: ITiCSE 2017. ACM, New York (2017)

8. Denning, P.J., Rosenbloom, P.S.: The profession of IT: computing: the fourth great
domain of science. Commun. ACM 52(9), 27–29 (2009)

9. Denning, P.J., Tedre, M., Yongpradit, P.: Misconceptions about computer science.
Commun. ACM 60(3), 31–33 (2017)

10. Duncan, C., Bell, T., Tanimoto, S.: Should your 8-year-old learn coding? In: Pro-
ceedings WiPSCE 2014, pp. 60–69. ACM (2014)

11. Italian Ministry of Education, University and Research: National Plan for Digital
Education (2016)

12. Nardelli, E.: Do we really need computational thinking? Commun. ACM (2018, to
be published)

13. Prottsman, K.: Coding vs. programming - battle of the terms! (2015). http://www.
huffingtonpost.com/kiki-prottsman/coding-vs-programming-bat b 7042816.html

14. Sentance, S.: Why teach computer science in school. In: Sentance, S., Barendsen,
E., Schulte, C. (eds.) Computer Science Education. Perspectives on Teaching and
Learning in School, chap. 1, pp. 3–4. Bloomsbury Academic, London (2018)

15. The Royal Society: After the Reboot: Computing Education in UK Schools. The
Royal Society, London (2017)

16. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)

http://www.huffingtonpost.com/kiki-prottsman/coding-vs-programming-bat_b_7042816.html
http://www.huffingtonpost.com/kiki-prottsman/coding-vs-programming-bat_b_7042816.html

The Quality of Teaching - Is There Any
Difference Between University Teachers

and School Teachers?

Elisa Reçi and Andreas Bollin(B)

Alpen-Adria-Universität Klagenfurt, Universitätstr. 65-67, Klagenfurt, Austria
{elisa.reci,andreas.bollin}@aau.at

https://www.aau.at/en/informatics-didactics/

Abstract. An important aspect of the profession of an educator is the
assessment and the improvement of the quality of the underlying teaching
process, but does this hold for all types of teachers? By collecting best
practices of computer science teachers in school we created a teaching
maturity model (called TeaM) and recently demonstrated its benefit.
The paper now takes this maturity model as a basis and investigates the
question about the differences in teaching at Universities and secondary
schools. To do so, we randomly selected computer science lectures at our
university, assessed them based on the Team Model and looked at the
practices in more detail. In our setting it turned out that not all practices
are covered at both types of institutions, and especially practices needing
documentation and methodologies are lacking at university teaching.

Keywords: CMMI · Teaching maturity model · School teachers
University teachers

1 Introduction

Even though university and school teachers (in informatics) deal with different
types of students and contents, they all have, among many others, a common
goal: assuring the quality of their lectures. There are different ways (and pro-
cesses) in dealing with the situation of measuring and leveling up the quality of
lectures. Existing standards, however, only consider specific factors (like teacher
education, course layout, environment, etc.) [19, p. 2], and a recent study empha-
sizes the fact that a better quality of teaching is achieved when considering the
teaching process as a whole (so all the teaching factors) [2,3]. The work of Chen
et al. is based on the Capability Maturity Model Integration (CMMI) from the
Software Engineering Institute (SEI) of Carnegie Mellon University [7]. The
model of Chen et al. has several limitations. First, its content is not suitable
for schools teachers (as it only focuses on university teachers). Secondly, they
conducted only an exploratory study, and finally, no empirical investigation is
done (so far) for a continual development of the model. Spurred by the work of

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 244–255, 2018.
https://doi.org/10.1007/978-3-030-02750-6_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_19&domain=pdf

The Quality of Teaching Between University Teachers and School Teachers 245

Chen et al., we thus created a Teaching Maturity Model (TeaM) [19] that tries
to overcome the above limitations and expands the focus from university to also
cover the teaching at schools.

The objective of this paper is now to investigate if, considering the TeaM
process model, informatics university teachers can learn from informatics school
teachers, and vice versa. To do so, a study was conducted with lectures at the
Alpen-Adria-Universität Klagenfurt, looking at their maturity level in detail and
comparing it with the official rating of their classes. It turns out that there are
still a lot of differences between teaching at universities and at schools, but
lessons can be learned from both settings.

The rest of the paper is organized as follows: Sect. 2 describes the background
work and briefly mentions how the TeaM model works. A detail description of
the study and the results is presented in Sect. 3. In Sect. 4 the results and the
threats to validity are discussed. Section 5 concludes with a summary and future
work.

2 Background

This section gives a short description of the Teaching Maturity Model’s structure
and the related models. It demonstrates how they are used to address the quality
of teaching.

2.1 Related Work

The traditional form for addressing the quality of teaching by giving personal
feedback is seen as quite subjective. This has opened a path for research in
assessment models which rely on standards. Here, a lot of authors address the
quality of teaching by mainly focusing either on teachers (preparation, com-
munication, engagement), pupils/students, course content, or the environment.
Taking a closer look at the existing work, we can divide these models into several
groups.

There are models that, for addressing the quality of teaching, focus only on
school teachers, and their results reveal the lesson learned by the teachers. Some
of the well-known models are: The AQRT model which addresses the quality
of teaching by assessing the teachers’ teaching practices [4]. There, the authors
applied the model in thirty physical education lessons with nine elementary
teachers in physics. The results emphasize the applicability of the model. The
competence based model is another model that assesses the teaching quality
through teacher-licensure tests [12]. Mehrens study is more an investigation and
analysis of licensure and teachers competency tests. A similar model is the “Com-
petence based model for teachers” defining how to teach [20], and the assessment
is based on these definitions.

Furthermore, there is the TALIS model which assesses the quality based on
working condition of teachers and the learning environment [16]. The OECD
article is a technical report where they applied the model in a pilot test with

246 E. Reçi and A. Bollin

five volunteering countries: Brazil, Malaysia, Norway, Portugal and Slovenia.
According to the article, the test was successful and helpful for teachers.

There are other approaches that consider the pupils/students and the teach-
ers’ interactions for addressing the quality. However, these models fail in demon-
strating any practical effect. The CEM model is one of them. It assesses teacher
quality based on students’ outcomes [1]. Azam and Kingdon applied their model
to compare the students’ results of the exams from the tenth-grade to the twelfth-
grade. Based on the results (that might have improved or not) the teacher’s con-
tribution was estimated. Another one is a standard-based learning and assess-
ment system of the National Education Association to show how student learn-
ing standards can be connected with teacher education and assessment [14].
Although there is no concrete implementation in practice, they suggest to use
the system to measure the quality of teaching. The assessment of teacher compe-
tencies and students learning and feelings is another model presented by Snook
et al. [21]. In their article, they investigate the school system in New Zealand.
The”Angebots-Nutzungs Modell” is a model used to address teaching quality
based on teacher-student interaction (results, feelings, and environment) [8].
TEQAS is another model where quality is addressed by assessing the educa-
tion of teachers [5]. Dilshad showed the applicability of the model by covering
five quality variables through interviews (questionnaire) with 350 students and
M.Ed. programmes.

Beyond the traditional forms and the assessment methods mentioned above,
some maturity models based on principles of CMMI were created. These models
do not considered teachers in particular so it is not possible to find out if teachers
learned from the model. Researchers in the field of computer science education
created maturity models to assess and to improve the curricula or the institution
itself [6,9,10]. The validation of these models is referred to a later stage and so
far no results are published yet. Ling et al. applied their model in a case study
in a private institution of Higher Learning (IHL) in Malaysia and mention that
a larger participation of IHLs will be used in future for a better validation of the
model [9]. The adaption of CMMI in the educational domain has also be done
for courses design either in a classroom environment [17] or online [11,15]. The
model of Petri is not validated yet. Neuhauser did the validation of the model in
relation to usability, and the answers from the questionnaires revealed that 88
percent of the responders agree with the suggested process areas [15]. Similarly,
Marshall and Mitchell validated the processes and the model in the analysis of
an e-learning module at New Zealand University [11].

Likewise, in primary and secondary schools, some CMMI-like implementation
models with the focus on the institutional level or on the syllabus [13,22,23] were
created as well. Montgomery applied her model in six schools for defining the
level of using computers and technologies in schools. The models provides goals
and practices for making improvements [13]. Solar et al. conducted a pilot study
to test the validity of the model and its associated web-support tool [22]. They
tested the applicability of the model in different schools and obtained positive
feedback from them.

The Quality of Teaching Between University Teachers and School Teachers 247

Fig. 1. Graphical representation of the teaching process as defined in the TeaM Model.

Only Chen et al. established a maturity model for observing the teaching
process with the focus on university teachers [3]. Although not explicitly stated,
teachers should learn from the model. In their paper, Chen et al. address the
implementation of their model for primary and secondary schools, but to the best
of our knowledge, such a model has not been implemented and/or published yet.

We believe that the quality of teaching is a process that includes all the
relevant factors of teaching. So, unlike the aforementioned models, but like Chen
et al., we address the quality by looking at the teaching process as a whole. In
contrast to Chen et al. we consider not only university teachers but primary and
secondary teachers as well.

2.2 The TeaM Model Context

This section contains a brief explanation of the TeaM model’s structure and the
way how it works. The TeaM model arose from the lack of standards to address
the quality of the teaching process with the focus on informatics university and
school teachers. Within the TeaM model, the teaching process is composed of
four main phases (see Fig. 1):

– Initialization – where administrative issues are managed;
– Preparation – where the course is planned and prepared by teachers;
– Enactment – where the implementation of the teaching unit takes place;
– Quality and Incident Control – where possible incidents and the teaching

process itself are observed, analyzed and refined.

For each of these phases, factors related to the quality of teaching are defined,
and in the TeaM model they constitute the basic component named as Process
Areas (PAs). The TeaM model has in total 12 PAs, and each consists of some

248 E. Reçi and A. Bollin

goals and the related practices [19]. The set of practices was built by the col-
lection of best practices from experienced school teachers (and one university
teacher) [19]. The implementation of these practices and the associated goals
is done by two representation forms: as continued representation (as Capability
Levels - CL), where only one PA is assessed and further managed for improve-
ment, and as stage representation (Maturity Levels - MLs), where a group of
PAs associated to a specific ML are assessed.

Following the idea of the TeaM model, a teaching process is mature to a
certain level when all the PAs corresponding to that level reach the maximum
level of Capability. Making use of the TeaM model helps teachers to evaluate
and improve their teaching process by their own, or (which is also possible), the
educational institution uses it to evaluate the overall quality of teaching, and
when required, to produce a ranking, too.

3 Learning from the TeaM Model

The TeaM model has a twofold aim: first, assessing the maturity of the teaching
process and, secondly, learning from the practices of the more mature levels
in order to improve the quality of teaching. The practices of the model were
collected from informatics school teachers. Making the model more holistic means
also testing the practices with university teachers.

3.1 Research Objectives

The focus of the TeaM model is on informatics university and school teachers,
although the practices of the model stem from educational sciences and were
mainly defined by informatics school teachers so far. The question now is, if the
TeaM model is appropriate for all types of teachers, and thus, which practices
are useful, useless, and eventually also new. The objective of the study presented
in this paper is to deal with this question and to see which practices and goals of
the model are shared and which, eventually, could be shared in order to improve
the way of teaching. So, within the scope of this paper the following question is
raised:

– To what extent do the informatics university and schools teachers differ in
their way of teaching (and what could they learn from each other)?

For answering this question, the TeaM model was used by informatics lectur-
ers at Alpen-Adria-Universität Klagenfurt and the results are presented here-
inafter.

3.2 Settings

For conducting the study, we selected 19 informatics courses from the Bachelor
and Master program at the Alpen-Adria-Universität Klagenfurt. A question-
naire covering the practices and goals of the TeaM model was distributed to the

The Quality of Teaching Between University Teachers and School Teachers 249

lecturers of these courses. The questions were answered by the teachers in the
presence of members of the department of informatics-didactics, and it is worth
to mention that we clearly stated at the beginning of each interview that the
aim of the questionnaire was not to assess the quality of teaching but to check if
and what teachers can learn from the model. The questions required “Yes/No”
answers, but free-text answers were allowed and, for later analysis, recorded.

As mentioned before, the model has 12 Process Areas (PAs), and each PA
contains one or more goals to be fulfilled during the teaching process. The goals
itself contain practices. And, every practice was associated with one question.
Thus, in total there were 76 questions. The questions were provided in an elec-
tronic format using Google forms. This makes the questionnaire public and acces-
sible by those who are interested to use such a model1. The participation is
anonymous as no personal data is collected. The questionnaire itself was divided
in two parts. First, the 19 interviewees answered the corresponding “Yes/No”
questions according to the practices. Secondly, they were invited to provide their
opinion or suggestions concerning the practices, goals or the way of how they
are assigned to Maturity Levels. All the answers from the interviewees were also
collected in an electronic form.

3.3 Results

In the TeaM model framework, a Process Area is satisfied when the related
goals are achieved. On the other side, the goals are achieved when the related
practices are fulfilled. Due to the size of the TeaM’s practices (76 practices),
we generalized them with the corresponding goals and present the results of the
study by focusing only on the 31 TeaM goals (running from SG1.1 up to SG4.3,
see Fig. 2 for an overview). For a clear understanding of how goals and practices
are introduced in the TeaM model, Appendix A in the article from Reci and
Bollin [19] provides further information.

Feedback from Teachers. During the initialization phase of the teaching
process, stakeholders think about their commitments (like defining their duties,
checking the related curricula, etc.). Two goals are associated to it: G1.1.1:
Define Agreements on Duties and G1.1.2: Agree upon Embedding into Curricula.
Almost all the 19 interviewees (except 2) were aware and agreed about imple-
menting the related practices. Another set of questions tangles the resources
needed during the teaching process. More concretely, the goals are SG1.2.1 Man-
age the Classroom Settings and SG1.2.2 Manage the Technical Infrastructure.
Half of the interviewees do not think about arranging the classroom settings
based on the methodology they used, as methodology is stable to them. On
the other side they take care to provide an adequate atmosphere in the class-
room and to use technical infrastructure. SG1.3.1 Specify the Requirements is
another goal that deals with the predefinition of the knowledge students should
1 Interested readers can join and give their personal experience in form of practices

by visiting the web-site of the TeaM project [18].

250 E. Reçi and A. Bollin

Fig. 2. The number of interviewees who did or did not implement the TeaM model’s
goals. In total, 19 university teachers interviewed.

have before starting a course, with the requirements that might come from other
stakeholders and with their documentation. Almost all of the university lecturers
do not implement only the documentation practice, while the other practices are
fully fulfilled.

In the second phase of the teaching process (preparation phase), impor-
tant goals of the lecture are related with the design of the course objectives (like
course aim, course plan, measurable objectives, etc.). The two goals SG2.1.1
Define the Course Aims and the Course Plan and SG2.1.2 Define the Quantita-
tive and Qualitative Objectives for the Course are known and implemented by the
lecturers. Planning the content of the course is another process required during
the second phase. The goals are: SG2.2.1 Define the Learning Content, SG2.2.2
Prepare and Integrate the Materials and SG2.2.3 Define the Unit Schedule. This
includes all the steps like defining the course materials, topics and sub-topics,
external material, a plan of the unit phases, etc. These goals include also the
documentation of the practices. What is noticeable here is the fact that almost
all the lectures are aware of such practices, implement most of them, but still do
not consider those practices that require a documentation. One such example is
“Assign time to each unit phase and document the schedule”. Only four out of
19 lectures do it that way. Methodology selection deals with two goals: SG2.3.1
Analyze Methodologies to be Used and SG2.3.2 Define the Methodologies to be
Used. This implies searching for available (suitable) methodologies, their advan-
tages and disadvantages, their effects on the learning outcomes, etc. Ten from
the lecturers do not deal with methodologies and consider them in their teach-
ing process. They stick to the one they have been using for a while. However,
they try to implement the rest of the practices. The good news is that nine
lecturers look for methods of teaching and, when suitable, do implement them.
Management of the risk is the last sub-process considered in the preparation
phase. SG2.4.1 Identify Possible Problems, SG2.4.2 Analyze Possible Problems

The Quality of Teaching Between University Teachers and School Teachers 251

and SG2.4.3 Establish Corrective Plan for Problems are the goals related to this
sub-process. The practices here consider problems in the classroom, with infras-
tructure, during unit delivery, and also their analysis, corrective plan and related
documentation. Also, here is noticeable that the major part of the lecturers (13
of them) do not think about and document possible problems that might occur.

The third phase of the teaching process (enactment), comprises only two
Process Areas. In the first PA the delivery and consolidation of the unit based
on the schedule, plan, requirements, etc is established. It has two goals: SG3.1.1
Conduct Lessons According To Agreements/Plan and SG3.1.2 Adapt the Lesson
based on Requirements. The results from the questionnaire shows that all the
lecturers implements at least one practices, and four of them do not consider to
adapt the lecture according to a corrective plan. As they do not consider possible
requirement changes during their preparation phase they do not think about a
following a plan. In the second PA the assessment is managed. The two goals
SG3.2.1 Define the Knowledge Test Criteria for the Delivered Units and SG3.2.2
Implement the Knowledge Test deal mainly with practices like the definition of
criteria for an assessment, type and form of an assessment, the implementation of
the assessment, collection and analysis of results, etc. The lecturers interviewed
are familiar with these practices and implement all of them during their teaching.

The last phase of the teaching process is quality and incident control.
One necessary process is the observation of the teaching process. The related
goals are: SG4.1.1 Monitor Teaching (from Initialization and Preparation phase),
SG4.1.2 Aggregate the Monitoring Results and SG4.1.3 Monitor Incidents. As
their names reveal, the practices deal with the time plan of courses, objectives,
methodologies, documentation from the observation and the problems during
teaching, etc. The results from the interview show that only two practices are
fully implemented by the lecturers. The documentation practices are again not
considered at all from almost all the interviewees. As a results, this PA is basi-
cally unknown to university teachers. After the observation process, a reflection
is necessary. All this is done in order to learn from the sub-processes, reflect
on them and to improve teaching at the end. SG4.2.1 Analyze the results and
SG4.2.2 Define corrective action are the two goals of the sub-process. The prac-
tices suggest to do periodically analysis of the experiences during observation, to
reflect about with colleagues, document the results, think about corrective plans
for incidents, etc. The results show that only two practices are implemented. The
practices related to the documentation and corrective plan for incidents are not
implemented by a considerable part of the lecturers. They explained this with
the arguments that bad experiences are directly solved and no further analysis
and documentation is needed. The improvement of the teaching process is the
last area considered in the TeaM model. It contains seven goals: SG4.3.1 Improve
the Agreements and the Curricula, SG4.3.2 Improve the Classroom Settings and
the Technical Infrastructure, SG4.3.3 Improve the Course Aims and the Plans,
SG4.3.4 Improve the Learning Content, SG4.3.5 Improve the Teaching Method-
ology, SG4.3.6 Improve the Teachers Skills, and SG4.3.7 Deal with Incidents. So
basically, the practices point at the improvement of curricula, classroom settings,

252 E. Reçi and A. Bollin

infrastructure, course aim and plan, the learning content of the course, method-
ology, personal training, documentation of all these practices, etc. Some of the
practices are implemented by the lecturers, but when it comes to documenta-
tion again, nearly none of them does do it. It is also interesting to mention the
fact that four lecturers do not do further personal training during their career
(SG4.3.6 Improve the Teachers Skills).

Interviewees Suggestions and Comments. At the end of the questionnaire
the interviewees had the change to provide feedback and suggestions for the
model. Different interviewees gave different suggestions that were collected and
assigned to answer categories. Looking at the results, a considerable part of the
practices are known and implemented by the teachers. But, the documentation
practices are seen as more problematic and not favorable by the lecturers.

Documentation seems to be an issue. One interviewee suggested to rethink
the practices in these areas, as based on her/his opinion, not all the improvement
activities should be documented. Other lecturers said that no documentation is
done because there is no policy that required that, and he or she is not aware if
this documentation will be used or shared with the others for further benefits.
Another argument against documentation was that lecturers do not have time
to do a documentation. Documentation should be considered only in shared
laboratory courses as then it can be shared with the colleagues.

Apart from looking closer at the process areas, there has been a set of sug-
gestions to improve the set of practices. In some sense, we see this as practices,
that school teachers can now learn from university teachers.

– One interviewee suggested to include student feedback (as it is collected twice
a semester in Klagenfurt) as a practice in the TeaM model. The feedback
should then be analyzed and taken into consideration during the lecture.

– A lecturer suggested to add a practice where teachers use an anonymous
forum to collect questions.

– On a goal level, it was suggested to add a subprocess for motivating and
activating inactive students.

According to the questions dealing with practices and goals, we also got some
useful comments: First, the TeaM model should consider the different types of
lectures (seminar, lecture, lab, etc.) as some of the goals might then be obsolete
or more important. Secondly, there should not just be “Yes/No” answers. Next,
it was suggested to avoid longer questions (so breaking sentences apart). Finally,
we were advised to not just stick to Google-Forms interviews, but also making
use of an instructor (assessor) leading through the evaluation.

In all, acceptability was satisfying. The lecturers implemented quite some of
the practices, but they were never thinking about some relation between them
and that all of them are important for the teaching process as a whole. Have
a TeaM model assessment now already had a positive impact on them as they
started to think more about the quality of teaching and the use of standards to
help them managing that quality.

The Quality of Teaching Between University Teachers and School Teachers 253

4 Discussion and Threats to Validity

For answering the question about the (number of) differences in teaching prac-
tices between university and school teachers, we looked at all the different part
of the teaching process step-by-step. The suggestions and comments received
during the questionnaire now allows us to tell more about the commonalities
and differences. The practices related to documentation aspects were the largest
problem for university lecturers and they tried to argue why such practices were
not to be implemented. From the perspective of school teachers, we still see doc-
umentation as something important and necessary. On the other side, university
teachers are quite open-minded according to being evaluated, something that we
find harder in the school setting.

Another difference between school and university teachers is to be found
in SG2.4. There, incident management is not seen as something important by
university teachers. Identification and resolution of incidents is only dealt with
when required. This is, due to a different setting, handled different in the case of
school teachers, where teachers, members of the rectorate and/or in the best case
also psychotherapists work together to prevent or resolve incidents in classes.

Another difference can be found in SG4.1, where the observation of the teach-
ing process is seen as not so significant by university teachers. Quite often the
only feedback they get is by looking closer to the students’ results and the stu-
dents’ feedback at the end of the semester. This is contrary to schools teachers,
where the continuous observation is related to class improvements and also pupils
motivations. A partial difference is also shown in SG4.2, where the absence of the
reflection over the teaching process is observed. From the perspective of schools
teachers, this is a practice that always needs special consideration and university
teachers could learn a lot from it.

Finally, a small difference is to be found in SG2.3, methodology selection, and
in its improvement in SG4.3. Choosing suitable methodologies is important for
schools teachers, but the same holds for university teachers.

To summarize, only 12 out of 31 goals are nearly completely met by university
teachers. 9 goals are at least partially fulfilled. The teachers are weak in the
aspects of documentation, incident management, teaching process observation
and reflection. But they are strong in the areas of commitments, dealing with
resources, discovering needs, designing course objectives and in content planning.

To conclude, there might also be some threats to the validity of the study. For
its implementation, we tried to avoid any bias by selecting different informatics
lectures at our university, choosing lectures from different fields of study, and also
of different characteristics. However, the results are restricted to our university
and might not be generalizable to other universities.

The same interviewees were present until the end of the study. The ques-
tionnaire remained the same until the last lecturer was interviewed. The study
duration was no more than three weeks, and the participant did not have the
possibility to evolve their ways of teaching in-between. However, we can not
guarantee that some of them had the chance to speak to each other, influencing
the results. The participation in the questionnaire was voluntary, and we assume

254 E. Reçi and A. Bollin

that the answers were correct. But, we can not guarantee that the interviewees
were honest in their answers, even though that we belief so, as their answers had
no influence on their reputation.

5 Summary and Future Work

It was clear from the beginning that there are differences between university and
school teachers (in informatics). However, this work systematically focuses on all
different areas related to teaching and analyzes the situation. This study shows
that there are in total 4 main differences: Documentation, methodology, teach-
ing process observation and reflection are not considered by university teachers.
On the model level, we can say that university and schools teachers differ in 9
out of 12 PAs in our TeaM model. Apart from differences, we also have addi-
tional practices suggested by the university teachers that might be relevant and
considered by the schools teachers. Basically two practices are suggested: the
repetitive and standardized evaluation of the course and using different (and
anonymous) ways in communicating with the pupils. The comments from the
interviewees show that they like the idea behind the TeaM model and looking at
the teaching process as a whole. They were somehow surprised about the com-
pact representation of the practices in our framework. The TeaM model made
them think about some practices they ignored before. Looking at the feedback
results, we answered our research question and can also state that, eventually
with some minor extensions, it is appropriate for university teachers, too.

For future work, we plan to look closer at the quantitative results that we
collected and relate them to the quantitative feedback that students provide end
of the semester. The objective is to see if there is a correlation that helps us
identifying more influential factors in our model.

References

1. Azam, M., Kingdon, G.: assessing the teaching quality in India. In: Azam, M.,
Kingdon, G.G. (eds.) Assessing Teacher Quality in India, 21 October 2014.
SSRN (2014). https://ssrn.com/abstract=2512933. https://doi.org/10.2139/ssrn.
2512933

2. Bollin, A., Reçi, E., Szabó, C., Szabóová, V., Siebenhofer, R.: Applying a maturity
model during a software engineering course - experiences and recommendations.
In: 2017 IEEE 30th Conference on Software Engineering Education and Training
(CSEE&T), pp. 9–18 (2017)

3. Chen, C.Y., Chen, P.C., Chen, P.Y.: Teaching quality in higher education: an intro-
ductory review on a process-oriented teaching-quality model. Total Qual. Manage.
Bus. Excellence 25(1–2), 36–56 (2014)

4. Chen, W., Mason, S., Staniszewski, C., Upton, A., Valley, M.: Assessing the quality
of teachers’ teaching practices. Educ. Assess. Eval. Accountability 24(1), 25–41
(2012)

5. Dilshad, R.M.: Assessing Quality of Teacher Education: a student perspective.
Pakistan J. Soc. Sci. 30(1), 85–97 (2010)

https://ssrn.com/abstract=2512933
https://doi.org/10.2139/ssrn.2512933
https://doi.org/10.2139/ssrn.2512933

The Quality of Teaching Between University Teachers and School Teachers 255

6. Duarte, D., Martins, P.: A maturity model for higher education institution. In: Pro-
ceedings of the 23rd International Conference on Advanced Information Systems
Engineering Doctoral Consortium (CAISE), pp. 25–45 (2011)

7. Forrester, E.C., Buteau, B.L., Shrum, S.: CMMI for Services: Guidelines for Supe-
rior Service. Pearson Education (2011)

8. Helmke, A., et al.: Studienbrief Unterrichtsdiagnostik. Projekt EMU (Evi-
denzbasierte Methoden der Unterrichtsdiagnostik) der Kultusministerkonferenz.
Universität Koblenz-Landau, Landau (2010)

9. Ling, T.C., Jusoh, Y.Y., Abdullah, R., Alwi, N.H.: A review study: applying capa-
bility maturity model in curriculum design process for higher education. J. Adv.
Sci. Arts 3(1), 46–55 (2012)

10. Lutteroth, C., Luxton-Reilly, A., Dobbie, G., Hamer, J.: A maturity model for
computing education. In: Proceedings of the 9th Australasian Conference on Com-
puting Education, vol. 66, pp. 107–114. Australian Computer Society, Inc. (2007)

11. Marshall, S., Mitchell, G.: Applying SPICE to e-learning: an e-learning maturity
model? In: Proceedings of the Sixth Australasian Conference on Computing Edu-
cation, vol, 30, pp. 185–191. Australian Computer Society, Inc. (2004)

12. Mehrens, W.A.: Assessment of Teaching: Purposes, Practices, and Implications
for the Profession, chap. Assessing the Quality of Teacher Assessment Tests, pp.
77–136. Digital Commons University of Nebraska - Lincoln (1990)

13. Montgomery, B.: Developing a Technology Integration Capability Maturity Model
for K-12 Schools. Ph.D. thesis, Concordia University (2003)

14. National Education Association: The National Education Association’s Framework
for Transforming Education Systems to Support Effective Teaching and Improve
Student Learning. http://www.nea.org/home/41858.htm. Accessed 06 Aug 2018

15. Neuhauser, C.: A maturity model: does it provide a path for online course design.
J. Interact. Online Learn. 3(1), 1–17 (2004)

16. OECD: TALIS Techn. Rep. Teaching and Learning International Survey. http://
www.oecd.org/education/talis. Accessed 06 Aug 2018

17. Petrie, M.: A model for assessment and incremental improvement of engineer-
ing and technology education in the americas. In: Proceedings of Second LACCEI
International Latin American and Caribbean Conference for Engineering and Tech-
nology (LACCEI2004) (2004)

18. Reçi, E., Bollin, A.: Department of Informatics-Didactics, Universität Klagenfurt.
http://iid.aau.at/bin/view/Main/Projects. Accessed 01 June 2018

19. Reçi, E., Bollin, A.: Managing the quality of teaching in computer science educa-
tion. In: Proceedings of the 6th Computer Science Education Research Conference,
CSERC 2017, pp. 38–47 (2017)

20. Sekretariat der Ständigen Konferenz der Kultusminister der Länder in der
Bundesrepublik Deutschland: Standards für die Lehrerbildung: Bildungswis-
senschaften. Beschluss der Kultusministerkonferenz (2004) (in German)

21. Snook, I., O’Neill, J., Birks, K.S., Church, J., Rawlins, P.: The Assessment of
Teacher Quality: An Investigation into Current Issues in Evaluating and Reward-
ing Teachers. Education Policy Response Group, Institute of Education, Massey
University (2013). SSRN: https://ssrn.com/abstract=2326315

22. Solar, M., Sabattin, J., Parada, V.: A maturity model for assessing the use of ICT
in school education. J. Ed. Tech. & Soc. 16(1), 206 (2013)

23. White, B.A., Longenecker, H.E., Leidig, P.M., Yarbrough, D.: Applicability of
CMMI to the IS curriculum: a panel discussion. In: Information Systems Edu-
cation Conference (ISECON 2003), pp. 1–5 (2003)

http://www.nea.org/home/41858.htm
http://www.oecd.org/education/talis
http://www.oecd.org/education/talis
http://iid.aau.at/bin/view/Main/Projects
https://ssrn.com/abstract=2326315

Contests and Competitions in
Informatics

Piaget’s Cognitive Development
in Bebras Tasks - A Descriptive Analysis

by Age Groups

Christine Lutz(B) , Marc Berges , Jonas Hafemann, and Christoph Sticha

School of Education, Technical University of Munich,
Arcisstr. 21, 80333 Munich, Germany

{christine.lutz,berges,jonas.hafemann,christoph.sticha}@tum.de

Abstract. The Bebras contest started as a small computer-science com-
petition in Eastern Europe and is now well-established all around the
world. In the meantime, the challenge also addresses primary school stu-
dents; in Germany since 2015. In the light of the ongoing discussion
on introducing computer science in primary education, the question of
whether the tasks differ between the age groups moved to the focus. So,
we analyzed how Bebras tasks look like, especially comparing the differ-
ent age of the participants. Here, only characteristics of the task descrip-
tions are examined, showing that both, text and pictures differ through
the age groups. Their complexity increases and also, addressed objects
and subjects manifest a clear separation of Piaget’s stage of cognitive
development between primary school and secondary school students. All
the findings enable to concisely characterize Bebras tasks for their use in
regular computer-science classes or for further research on the cognitive
processes involved in solving those tasks.

Keywords: Bebras contest · Primary education
Computer science education

1 Introduction

Integrating computer science into primary school curricula is one of the urgent
topics in computer science education at the moment. Most of these efforts con-
centrate on computational thinking as a synonym for computer science. Cur-
rently, numerous projects are trying to figure out which computer science or
computational thinking topics can be integrated into existing curricula [1–4].

The Bebras Challenge focusing on computational thinking [5] started as a
small contest in Eastern Europe and is now one of the biggest challenges around
the world [6]. In 2011, the Bebras community introduced a challenge address-
ing primary school students [7]. The range of age groups covered by the tasks
makes the Bebras Challenge a valuable source of investigations how to address
computational thinking in primary education.

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 259–270, 2018.
https://doi.org/10.1007/978-3-030-02750-6_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_20&domain=pdf
http://orcid.org/0000-0002-5056-5902
http://orcid.org/0000-0002-9982-547X

260 C. Lutz et al.

In design and evaluation of secondary education programming courses neo-
Piagetian approaches have been followed [8–10]. Having in mind Piaget’s stages
of cognitive development [11] proofed to be of value for task creation when aiming
at certain age groups.

So, in addition to the efforts conducted on the integration into curricula
this article provides a closer look at how tasks are presented for different age
groups and how these differences can be categorized. Therefore pictures and
texts describing tasks are analyzed in a qualitative approach, focusing on the
question whether tasks descriptions differ between primary school age levels and
secondary school. For that reason, after introducing the theoretical background
and related work, the methodology is briefly introduced, and the results are
presented. Finally, the results are discussed and implications on the teaching
practice or task development, respectively, is given.

2 Theoretical Background

2.1 Piaget’s Theory of Cognitive Development

In his theory Piaget proposes four stages of cognitive development: sensorimo-
tor (ages 0–2), pre-operational (2–7), concrete operational (7–11) and formal
operational (11–16) [11]. According to his theory when entering the concrete
operational stage children can engage in logical problem-solving processes that
are linked to concrete objects and tasks. The latter restriction ceases to exist
when they enter the formal operational stage. In this stage, children are capable
of solving hypothetical problems and abstract tasks.

Neo-Piagetian approaches share the idea of stages in children’s cognitive
development but unlike Piaget they do not define the stages based on logical
operations that children are capable of. Rather, the increasing ability of process-
ing information is considered crucial. This leads to a variety of theories, some
of which introduce substages and an ongoing development up to adultery [12].
These approaches are able to overcome shortcomings of classical Piagetian the-
ory some of which have been observed in the field of novice programming. In
particular, neo-Piagetian theory distinguishes several independent domains of a
persons’ development [8–10].

2.2 The Bebras Challenge

In 2004 Dagiene founded a contest named Bebras aiming to motivate children
to learn and engage in computer science [13]. From its first year when 3,500
Lithuanian students took part in the annual Bebras online contest has grown
continuously and in 2017 had over 2,000,000 participants from 36 countries.

Dagiene names interest in computer science and development of computa-
tional thinking abilities as main goals of Bebras [5]. For this purpose she provides
15 criteria for good tasks like “can be solved in 3 min”, “are adequate for the
age of contestants”, “have easy understandable problem statements” as well as
“should have pictures” [14].

Piaget’s Cognitive Development in Bebras Tasks 261

Following these criteria, tasks of the German Bebras contest, for instance,
are assigned to one or more of five age groups: grades 3–4 (introduced in 2015),
grades 5–6, grades 7–8, grades 9–10, and grades 11–13 [6].

3 Related Work

As stated above, Dagiene and Futschek [14] demanded a good Bebras task should
have a picture. “It should not be a mere illustration. Pictures are supporting
visual thinking.” Tomcsanyiova and Kabatova [15] have analyzed more than 300
contest tasks from the Slovak national Bebras database, regarding the “impor-
tance and meaning of pictures in a process of learning” especially with contest
tasks. In short words, they considered every visual component as a picture that
“cannot be handled as a plain sequence of ASCII characters”, which for exam-
ple also includes tables. According to this definition, 76.8% of tasks contained
pictures. They aimed to find a categorization of task-pictures in matters of their
use, content, and type to improve their understanding of “meaning and nature of
the pictures”. They concentrated on images directly linked to computer science
concepts, such as algorithms or data structure.

Carney and Levin [16] offer a classification of pictures in textbooks accord-
ing to their function: decorational pictures (without important connections to
the task content), representational pictures (only reflecting all or a part of the
task’s content), organizational pictures (providing a structure for the content),
interpretational pictures (clarifying the difficulties), transformational pictures
(designed to improve recalling of a text’s information). In [15] Tomcsanyiova
and Kabatova found the necessity for an additional category substitutional pic-
tures for pictures that are the task itself without a text, carrying the same
information. For grouping pictures according to their content, they “proposed
three categories (problem setup pictures, pictures depicting a computer science
concept, and pictures showing a user application interface) covering majority of
task pictures.”

Also, Hubwieser et al. [17] found a connection between the appearance of the
tasks’ pictures and the performance of girls in these tasks. They analyzed the
results of 217,604 participants in the 2014 Bebras challenge. First, they found out
that boys performed significantly better compared to girls in every age group.
However, the difference increased from the youngest to the oldest participants.
The boys outperformed the girls in all 18 tasks of the two uppermost age groups,
but the girls were better in certain tasks in the lower age groups. They could
find three criteria based on Keller’s ARCS model of motivation [18] that these
type of questions share: “the tasks have to look nice to attract the attention of
the girls, they have to represent a situation relevant for real life, and they have
to be comparably easy to solve.” [17]

A detailed analysis of the structure of task descriptions was provided by
Ruf et al. in [19,20]. They classified programming tasks regarding the required
knowledge and skills. With the help of qualitative content analysis, they cat-
egorized the knowledge elements represented in the given problem description

262 C. Lutz et al.

as well as in the anticipated solutions. The cognitive processes underlying the
used skills for transferring the problem to the solution was coded as well. In
contrast to this work, the present research focuses on how the given problems
are presented to the participants of the Bebras challenge.

4 Methodology

4.1 Data Gathering

All German Bebras tasks from 2007 to 2017 including example solutions are
publicly accessible and can be downloaded1. To compare tasks for primary edu-
cation to those tasks designed for secondary education, we survey all 125 tasks
from 2015 to 2017. For the analysis, we picked the tasks without having a look
at the solutions. All five age groups (grades 3–4, 5–6, 7–8, 9–10, and 11–13) were
analyzed separately. Tasks that address more than one age group are put into
the analysis of each presented age group which leads to some overlaps in the
assignment of a code to the corresponding group. For a better identification for
each task, an identifier built of the year of appearance and an ongoing number
representing their position in the task booklet was added to the title.

4.2 Data Analysis

The data analysis we conducted on the tasks was twofold. Pictures, as well as
task descriptions, were analyzed based on Mayring’s qualitative content analysis
(QCA). In [21] Mayring describes QCA as an approach to combine qualitative
and quantitative methods, such as “working through many text passages” as
qualitative and “analysis of frequencies of categories” as quantitative steps. His
methods are designed to gain a high level of objectivity, reliability, and validity
of analyzing texts [22]. The precise approach is described in [21]; the investigated
text is cleaned up, generalized, and summed up to fit categories that are either
found in the text or derived from literature. Generally, a category consists of its
name, a definition, and a sample text illustrating the coding rules.

Similar to Tomcsanyiova and Kabatova [15] we consider every visual compo-
nent as a picture, which provides more than only verbal information, which also
includes components such as tables. For the analysis, we decided to write a brief
description of the picture representing its content. An example is shown in Fig. 1.
Several of those descriptions were validated by redrawing scatches (Fig. 1c). In
the end, the resulting texts were coded according to the methodology described
above.

To analyze the texts, we gather the information, who or what is actively
taking action as a main grammatical subject in a task, who or what is passively
taking part as an object in a task and what is the whole setting of a task. We
develop categories inductively. Whenever there is only a name in a task’s text,
we consider it to belong to a human as they always act like humans.
1 https://www.bwinf.de/biber/downloads/.

https://www.bwinf.de/biber/downloads/

Piaget’s Cognitive Development in Bebras Tasks 263

(a) Original picture

Three beavers in
sporty outfits are
standing in front
of a mountain with
stones on it. On
the left, there is a
checkered flag. Sun
is shining.

(b) Description (c) Sketch

Fig. 1. Sample of the recoding process (task: 2015.10)

To measure intercoder agreement quantitative measures are applied to a set
of codes. For maintenance reasons, only a representative subset of codes is re-
coded (≈20%). Von Eye presents a set of coefficients that can be applied to
calculate the ratio between agreements and the complete sample adjusted by
the ratio of an agreement by chance. To be able to apply the coefficients, the
rated objects have to be independent, the coders have to act independently, and
the used categories have to be independent, mutually exclusive, and exhaus-
tive [23]. The last assumption is difficult to hit in a setting of rating complex
texts like the tasks that are the content of the provided research. For this rea-
son, to improve intercoder-agreement, both coders analyzed a bunch of tasks
together (about 22% of all tasks). Additionally, another 20% of the codings were
reviewed between the two coders. Any disagreements are marked regarding the
classification. The disagreements are discussed until the conflicts can be resolved.
Moreover, during the complete coding process, the coders stayed in contact to
discuss ambiguities immediately.

5 Results

5.1 Category System

The first result is the derived category system. On the top level, three main cat-
egories ultimately result from the methodology: picture objects (P), addressed
subjects (S), and addressed objects (O). The picture objects can be separated
into three basic categories regarding the level of abstraction. On the one hand,
there are abstract objects including text-like objects (e.g., numbers, tables,
graphs, or arrows) (P1), and geometric objects (e.g., triangles, rectangles, cir-
cles) (P2). In contrast, the pictures contain real things that are either lifeless

264 C. Lutz et al.

(e.g., banners, furniture) (P3), or living (e.g., trees, flowers, beavers, bees, faces,
hands). The living objects are distinguished between plants (P4), animals (P5),
and humans (P6). Table 1 shows the categories, with samples of the description,
the abstraction, and the category assignment. The sample for category P5 exem-
plifies that the assignment of the categories is not distinct and, therefore, the
categories are not mutually exclusive.

The descriptions of the tasks address subjects acting on objects. While cod-
ing, basically the question “who or what is doing something with whom or what”
was in focus, which leads to a categorization of the tasks focusing on subjects on
the one hand and objects on the other hand. Table 2 shows the resulting cate-
gories for the subjects. Finally, a task can contain no acting subject (e.g., a set of
pictures is meant to be rearranged to fit a specific order) (S0), an acting animal

Table 1. Categories of objects in the presented pictures

CodeName Description Abstraction Categorization

Abstract (P1) Texturing
objects

Tree diagram with
fictitious animal names
in its nodes.
(task: 2016.02)

Tree diagram P1

(P2) Geometric
objects

Stars, squares, circles,
triangles in different
colors arranged on a
string. (task: 2015.02)

Stars,
squares,
circles,
triangles,
string

P2

Real lifeless (P3) Lifeless
objects

Smoking pizza oven
made of stone with an
open door. There is a
pizza and a loaf of
bread inside.
(task: 2017.28)

Smoke,
oven, pizza,
bread

P3

Real living (P4) Plants Ten flowers in different
colors which are either
opened or closed.
(task: 2016.06)

Flowers P4

(P5) Animals Three beavers in sporty
outfits are standing in
front of a mountain
with stones on it. On
the left, there is a
checkered flag. Sun is
shining. (task: 2015.10)

Beaver,
mountain,
stones, flag,
sun

P3, P5

(P6) Humans Six children with
different hairstyles and
outfits. (task: 2016.39)

Children P6

Piaget’s Cognitive Development in Bebras Tasks 265

Table 2. Categories of subjects in the presented texts

CodeName Description Step 1

(S0) No acting subject Six beaver pictures are meant to create an
animation. Therefore the pictures have to be
arranged in a way that only one characteristic
changes in comparison to the following picture:
whisker, mouth nose, ears, and teeth. The last
picture is already set. (task: 2015.06)

-

(S1) Animals Beaver Ben collected five trunks on a plank.
(task: 2017.22)

Beaver Ben

(S2) Humans Tina and Ben help to prepare a special
exhibition at the Computer Science Museum.
(task: 2016.33)

Tina, Ben

(e.g., Beaver Ben) (S1), or acting humans (e.g., Tina and Ben) (S2). Besides the
category, sample task descriptions, and the abstraction are displayed.

The corresponding categories describing the objects of a task description
are similar to the other categories. First, there are tasks with no object (O0).
Furthermore, categories are describing real objects like the categories for the
pictures. Here, they are grouped in things and plants (O1), animals (O2), and
humans (O3). Finally, the non-physical objects build the last category (O5).
As we could not find any humans acting as an object in the tasks, there is
no sample in the following Table 3. Besides the code and the name the table

Table 3. Categories of subjects in the presented texts

CodeName Description Abstraction Categorization

(O0) No objectsThree determined beavers compete in a
race. [. . .] In the picture you can see the
running course goes uphill first, followed
by boulders. Afterward, the course goes
downhill again, followed by boulders
again. [. . .] What will be the finishing
order? (task: 2015.10)

- O0

(O1) Things
and
plants

Tim wishes for a birdhouse as a birthday
present. [. . .] (task: 2017.36)

Birdhouse O1

(O2) Animals The magician can transform things. [. . .]
How many shamrocks does he need to
create a kitten. (task: 2015.15)

Shamrocks,
kitten

O1, O2

(O3) Humans - - -

(O4) Non-
physical
objects

Karaoke is big fun. [. . .] In which picture
is the music app configured the loudest?
(task: 2016.26)

Music app O4

266 C. Lutz et al.

presents a sample from different tasks accompanied by the abstraction step and
the corresponding categories. Again, like in Table 1 the sample in category O2
shows that more than one category can be assigned to a specific task.

5.2 Categorization

Figure 2 illustrates the occurrence of the six picture object categories through-
out the tasks of all age-groups. Compared to other age groups tasks for grades
3–4 quite often show real lifeless (P3) or living (P4, P5, P6) objects but rarely
any texturing objects (P1). For the successive age-groups, the shape of the fre-
quency diagrams continuously changes as the frequency of texturing objects rises
while the occurrence of real objects, in particular, those of categories P3 and P4
gets rare.

In our analysis of acting subjects, we found three categories. Some tasks
have no acting subjects (S0) at all while in most tasks there were animals (S1)
or humans (S2) acting as a subject. Only in one task humans and personified
animals are acting together.

Figure 3a shows how the observed frequency of the categories changes over
the tasks’ age-groups: while the occurrence of acting subjects (S1, S2) decreases

(a) All age groups (b) Age group 3 - 4 (c) Age group 5 - 6

(d) Age group 7 - 8 (e) Age group 9 - 10 (f) Age group 11 - 13

Fig. 2. Relative frequency of tasks’ pictures that were assigned to the six picture object
categories by age group. Categories are texturing objects (P1), geometric objects (P2),
lifeless objects (P3), plants (P4), animals (P5), and humans (P6).

Piaget’s Cognitive Development in Bebras Tasks 267

(a) Acting subjects assigned to
category S0 (no acting sub-
ject), S1 (animals) and S2 (hu-
mans).

(b) Objects assigned to category O0
(no objects), O1 (things and plants),
O2 (animals), and O4 (non-physical
objects).

Fig. 3. Relative frequency of tasks regarding the occurrence of subjects and objects.
Within each category, bars from left to right depict occurrence among the tasks for age
groups 3–4, 5–6, 7–8, 9–10, and 11–13.

in the tasks for older pupils, tasks with no acting subjects at all become more
common.

Regarding the passive objects we expand the subject-categories to five object-
categories: no objects (O0), things and plants (O1), animals (O2), humans (O3),
and non-physical objects (O4) like a chat-program, a music-app or the internet.
As depicted in Fig. 3b O1 is very common in the grade 3–4 tasks and becomes less
frequent in the tasks for older pupils. In opposite to O1, texts with non-physical
objects (O4) appear with increasing frequency among the tasks for pupils in
higher grades.

6 Discussion

According to Piaget at the age of 11 children’s cognitive stage develops from
concrete to abstract operational. In terms of German beaver age-groups, this
development can be expected when changing from 3–4 (age 7–11) to 5–6 (age
11–16). As Fig. 2 shows, there is a well established difference in the pictures of
the tasks for the age groups 3–4 (Fig. 2b) and 5–6 (Fig. 2c). The main difference
can be seen in the increase of texture objects (P1, which is following the step
from concrete operational to formal operational). A more detailed view of the
Figs. 2b–f shows an ongoing smooth development of the categories from concrete
to abstract. So, there is not only an increase of texture objects (P1) along with
the age groups but also a decrease in the occurrence of pictures containing lifeless
or living objects.

268 C. Lutz et al.

In addition to the analysis of the pictures, the tasks’ descriptions were ana-
lyzed regarding acting subjects and objects. As Figs. 3a and b show, the step
that can be seen in the pictures’ analysis is either not present or only weak rep-
resented. However, the development mentioned above from concrete to abstract
can be observed. Following neo-Piagetian theories, children undergo a cognitive
development from concrete to formal operational independently for different spe-
cific domains. As Bebras tasks cover a variety of topics this may explain why
there is a smooth transition between Piaget’s age groups. Here, there is a high
potential for further investigations described in the conclusion.

Figure 3a shows a similar development over the age groups in the categories
“animals” (S1) and “humans” (S2). In this case, a special characteristic of the
Bebras’ tasks can have a strong influence. Most animals described in the text
show human behavior. The description of task 2015.10 at the top of Table 3 gives
an example. So we had a look at the data when combining S1 and S2, resulting
in the same tendencies regarding the development over the age groups. Finally,
however, we decided to keep the categories separated as in contexts other than
Bebras categories S1 and S2 might have diverging characteristics.

Again, Fig. 3b supports the trend of presenting tasks more concrete for lower
age groups and more abstract for higher age groups for O1 and O4. The category
O3, which was introduced to cover the categories of the acting subjects, is missing
in the figure because no codings were found. O0 and O2 have only a tiny number
of codings. So no tendency is observable.

7 Conclusion and Future Work

According to Mayring [22], we qualitatively analyzed the Bebras tasks. Gener-
ally, there is a strong tendency from concrete to abstract addressing increasing
age. This tendency is found in the presented pictures as well as in the describing
text of the tasks. The presented methodology can be generalized for all tasks
addressing different age levels. Especially, with the discussion whether computer
science is to be introduced to primary education, the adaption of tasks from
upper to lower age groups gets more important. Foremost, the “translation”
of the pictures to descriptive texts and the following analysis enabled insights
into the complexity as well as the degree of abstraction. The importance of
illustrating pictures and the corresponding problems are discussed in the the-
ory of instructional design [24] and cognitive load [25,26]. All in all, we were
able to show that the design of the tasks for the different age levels of the
Bebras contest follows the cognitive development described in the neo-Piagetian
theory [12].

Nevertheless, we have to indicate some limitations: although our sample com-
prises the Bebras tasks of three years in one country, there might be differences
when regarding several countries or even elder tasks. However, one of our goals
was to compare tasks’ descriptions for different age levels. Here, the Bebras tasks
are unique as different age groups are addressed with one task. Another limi-
tation is that we only analyzed the tasks descriptions. For future research, the

Piaget’s Cognitive Development in Bebras Tasks 269

cognitive processes implied by the tasks are of great interest. Here, another qual-
itative analysis is crucial that could be accompanied by quantitative research on
the contest results using methods from item-response theory. So, next research
can investigate, how the design of a task affects the result and the performance
of students in this task.

Finally, we can conclude that we have shown a tendency in the level of
abstraction following the steps of cognitive development introduced by Piaget.
The specific methodology enabled us to get a deeper insight into illustrating
pictures. Altogether, the presented methodology and the results can enhance
planning of task by increasing the sense of age-specific addressing in tasks.

References

1. Sabitzer, B., Antonitsch, P.K., Pasterk, S.: Informatics concepts for primary edu-
cation: preparing children for computational thinking. In: Proceedings of the 9th
Workshop in Primary and Secondary Computing Education, pp. 108–111. ACM,
New York (2014)

2. Falloon, G.: Building computational thinking through programming in K-6 educa-
tion: a New Zealand experience. In: Gómez Chova, L., López Mart́ınez, A., Candel
Torres, I. (eds.) EduLearn15 Proceedings, pp. 882–892. IATED Academy, Valencia
(2015)

3. Yadav, A., Hong, H., Stephenson, C.: Computational thinking for all: pedagog-
ical approaches to embedding 21st century problem solving in K-12 classrooms.
TechTrends 60(6), 565–568 (2016)

4. Bell, T., Duncan, C., Atlas, J.: Teacher feedback on delivering computational think-
ing in primary school (2016)

5. Dagien, V., Stupurien, G., Vinikien, L.: Promoting inclusive informatics education
through the Bebras challenge to all K-12 students. In: Rachev, B., Smrikarov, A.
(eds.) Proceedings of the 17th International Conference on Computer Systems and
Technologies 2016, CompSysTech 2016, pp. 407–414. ACM Press, New York (2016)

6. Dagiene, V., Stupuriene, G.: Bebras - a sustainable community building model
for the concept based learning of informatics and computational thinking. Inform.
Educ. 15(1), 25–44 (2016)

7. Tomcsányiová, M., Tomcsányi, P.: Little beaver – a new bebras contest category
for children aged 8–9. In: Kalaš, I., Mittermeir, R.T. (eds.) ISSEP 2011. LNCS,
vol. 7013, pp. 201–212. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-24722-4 18

8. Lister, R.: Concrete and other neo-piagetian forms of reasoning in the novice pro-
grammer. In: Proceedings of the Thirteenth Australasian Computing Education
Conference - Volume 114, ACE 2011, pp. 9–18. Australian Computer Society, Inc.,
Darlinghurst (2011)

9. Gluga, R., Kay, J., Lister, R., Teague, D.: On the reliability of classifying program-
ming tasks using a neo-piagetian theory of cognitive development. In: Clear, A.,
Sanders, K., Simon, B. (eds.) ICER 2012, pp. 31–38. ACM, Auckland University
of Technology, Auckland (2012)

10. Szabo, C., Falkner, K., Falkner, N.: Experiences in course design using neo-
piagetian theory. In: Simon, Kinnunen, P., (eds.) The 14th Koli Calling Inter-
national Conference, pp. 81–90 (2014)

https://doi.org/10.1007/978-3-642-24722-4_18
https://doi.org/10.1007/978-3-642-24722-4_18

270 C. Lutz et al.

11. Piaget, J.: Science of Education and the Psychology of the Child. Orion Press,
New York (1970)

12. Morra, S., Gobbo, C.: Cognitive Development: Neo-Piagetian Perspectives.
Lawrence Erlbaum Associates, New York (2007)

13. Dagiene, V.: Information technology contests: introduction to computer science in
an attractive way. Inform. Educ. 5(1), 37–46 (2006)

14. Dagienė, V., Futschek, G.: Bebras international contest on informatics and com-
puter literacy: criteria for good tasks. In: Mittermeir, R.T., Sys�lo, M.M. (eds.)
ISSEP 2008. LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-69924-8 2

15. Tomcsányiová, M., Kabátová, M.: Categorization of pictures in tasks of the Bebras
contest. In: Diethelm, I., Mittermeir, R.T. (eds.) ISSEP 2013. LNCS, vol. 7780, pp.
184–195. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36617-
8 16

16. Carney, R.N., Levin, J.R.: Pictorial illustrations still improve students’ learning
from text. Educ. Psychol. Rev. 14(1), 5–26 (2002)

17. Hubwieser, P., Hubwieser, E., Graswald, D.: How to attract the girls: gender-
specific performance and motivation in the Bebras challenge. In: Brodnik, A., Tort,
F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 40–52. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46747-4 4

18. Keller, J.M.: Motivational Design for Learning and Performance. Springer, Boston
(2010)

19. Ruf, A., Berges, M., Hubwieser, P.: Types of assignments for novice programmers.
In: Proceedings of the 8th Workshop in Primary and Secondary Computing Edu-
cation, pp. 43–44. ACM, New York (2013)

20. Ruf, A., Berges, M., Hubwieser, P.: Classification of programming tasks according
to required skills and knowledge representation. In: Brodnik, A., Vahrenhold, J.
(eds.) ISSEP 2015. LNCS, vol. 9378, pp. 57–68. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25396-1 6

21. Mayring, P.: Qualitative Content Analysis. Basic Procedures and Software Solu-
tion. Social Science Open Access Repository. Theoretical Foundation, Klagenfurt
(2014)

22. Mayring, P.: Qualitative content analysis. Forum Qual. Sozialforschung/Forum:
Qual. Soc. Res. 1(2), 1–10 (2000). Qualitative methods in various disciplines i:
psychology

23. von Eye, A.: An alternative to cohen’s k. Eur. Psychol. 11(1), 12–24 (2006)
24. Merrill, M.D., Twitchell, D.: Instructional Design Theory. Educational Technology

Publications, Englewood Cliffs (1994)
25. Sweller, J.: Cognitive load during problem solving: effects on learning. Cogn. Sci.

12(2), 257–285 (1988)
26. Chandler, P., Sweller, J.: Cognitive load theory and the format of instruction.

Cogn. Instr. 8(4), 293–332 (1991)

https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1007/978-3-642-36617-8_16
https://doi.org/10.1007/978-3-642-36617-8_16
https://doi.org/10.1007/978-3-319-46747-4_4
https://doi.org/10.1007/978-3-319-46747-4_4
https://doi.org/10.1007/978-3-319-25396-1_6
https://doi.org/10.1007/978-3-319-25396-1_6

The Second Decade of Informatics in Dutch
Secondary Education

Nataša Grgurina1(&), Jos Tolboom2, and Erik Barendsen3,4

1 Teaching and Teacher Education, University of Groningen,
Groningen, The Netherlands
n.grgurina@rug.nl

2 Stichting Leerplanontwikkeling, Enschede, The Netherlands
j.tolboom@slo.nl

3 Radboud University, Nijmegen, The Netherlands
e.barendsen@cs.ru.nl

4 Open University, Heerlen, The Netherlands

Abstract. In 1998, informatics was introduced as an elective subject for all
students in the upper grades of senior general secondary education and pre-
university education in the Netherlands. Rather than focusing on digital literacy
or the use of office applications, it focuses on informatics as a scientific disci-
pline. In its first decade, it faced growing pains while fighting for recognition
and necessary facilities from the stakeholders: students, parents, school
administrators, politicians and the general public. In 2007, the curriculum was
slightly streamlined but not updated. In its second decade, informatics reached
adulthood with established teacher training programs and a new curriculum
which is to be introduced in 2019. In this paper we describe the events and
processes that led to the renewal of the curriculum, the curriculum itself with the
principles it is based on and its aims, the current process of teaching material
development, the related research, the teacher training, curriculum reform in
primary and lower secondary education, and the current situation of informatics
as an upper secondary school subject, together with the challenges it still faces.

Keywords: Secondary informatics � Curriculum development
Country report

1 Introduction

In 2008, in our article The First Decade of Informatics in Dutch High Schools [11] we
described the introduction of informatics in secondary education in the Netherlands as
an elective subject in grades 10 and 11 of the senior general secondary education
spanning grades 7 through 11 (in Dutch: HAVO) and in grades 10 through 12 of the
pre-university education spanning grades 7 through 12 (in Dutch: VWO). We reported
about its position in the secondary school curriculum, its objectives, teacher training,
teaching practices, the discussions taking place around it and problems and challenges
it faced. We concluded by remarking,

© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 271–282, 2018.
https://doi.org/10.1007/978-3-030-02750-6_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_21&domain=pdf

“During the first decade of Informatics in Dutch high schools, the objectives outlined in the
1990s do seem to have been achieved. What Informatics will look like in its second decade
depends on the outcome of the discussions about the introduction of a national exam and
whether to make it a compulsory subject, as well as on the repercussions from the fact that
many Informatics teachers are not licensed and/or adequately trained. Furthermore, it is not
yet clear whether the government intends to reform education in the upper grades of high
school again, and if so, what consequences this will have for Informatics. And, last but not
least, we believe that clearing up the misconceptions surrounding Informatics and bringing
proper attention to bear on its significance would contribute to a bright(er) future for Infor-
matics education.”

Now, ten years later, we report on the second decade of informatics in Dutch secondary
education: it did not become compulsory and no national exam was introduced.
However, there was a informatics curriculum reform, new technologies have changed
our lives in ways unforeseen ten years ago and these developments have led to a whole
new set of discussions and challenges surrounding informatics.

This paper focuses on the events that led to the curriculum reform, the curriculum
itself, the current situation of informatics, and on other developments related to
informatics such as an advised introduction of a foundational module in lower sec-
ondary education [19] focusing on digital literacy. In the Netherlands, digital literacy is
considered to consist of four skills: basic ICT-skills, media literacy, information literacy
and computational thinking [22].

2 Second Decade

2.1 Situation in Practice

In this chapter, we describe the present situation of informatics in the Netherlands.
Beginning with the most recent figures from 2017, we present the results of the 2014
research project charting the actual situation in schools, describe the events leading to
the new 2019 curriculum and finally we discuss the newest developments.

Schools, Students and Teachers
Looking at the numbers of schools offering informatics and numbers of students fol-
lowing it, we see that during the period 2002–2006, out of about 474 independent
schools, the percentage of schools that do offer informatics was fairly constant at
around sixty percent with about ten percent of students following it [21], cited in [11].
In the period 2011–2017 out of approximately 500 schools, the percentage of schools
offering informatics dropped from 55% to 47%, while the proportion of students fol-
lowing it remained fairly constant at around 11% for HAVO and around 12% for the
VWO type of school [8].

In 2013, the government commissioned an inquiry and a report by the Netherlands
Institute for Curriculum Development (in Dutch: Stichting leerplanontwikkeling, SLO)
to explore the teachers’ ideas about the necessity to change the informatics curriculum.
In this section we present the data that were collected concerning the teachers and their
ideas about desired curriculum changes. and in the section on the curriculum, we report
extensively about the results of this inquiry [23]. Regarding the teachers themselves,
89% are male and 11% are female. Almost two out of three are the sole informatics

272 N. Grgurina et al.

teachers in their schools, with 31% of schools having two teachers and 4% having three
teachers. The majority—55%—teaches another subject as well, both in science (mostly
mathematics) and in humanities and other subjects (e.g. geography, history, economy,
arts and languages). When teaching informatics, almost two-thirds of them cooperate
with the teachers of other subjects, mostly physics, mathematics and business, but also
from other sciences, humanities and, notably, arts. Most of the teachers—62%—have
been teaching informatics for more than six years. Concerning education they attended
to qualify them to teach informatics, 52% of the teachers said they attended the CODI
in-service program (described in our earlier paper [11]), 18% followed an university
educational master, and 36% did something else. Since these numbers add up to more
than 100%, we suspect that a number of teachers took several educational routes. Most
teachers actively engage in staying up-to-date by following in-service training courses
(67%), participating in teacher networks (65%), reading professional literature (81%)
and engaging in other activities (39%). Still, most of them—62%—find the in-service
training courses offered to be insufficient and see that as a problem threatening the
quality of informatics as a school subject [23].

When it comes to teaching materials they use, we see that the online books offered
by the three publishers are often combined with each other and with other teaching
material, either found elsewhere or written by the teachers themselves [23]. Compe-
titions have made their way into the classroom too: The Informatics Olympiad1

including CodeCup2 and the international Bebras competition [7].
When asked about their opinion on the informatics curriculum, 7% of the teachers

said they were not familiar with it. One out of four teachers did not find it useful, 38%
would like it to contain less or other learning objectives, and 36% were satisfied with it.
When asked what learning objectives to strike from the curriculum, almost half of the
teachers—45%—said none but added that they would like the curriculum to offer more
guidance. Other teachers, those wishing to strike some learning objectives, most often
mentioned those related to business aspects of informatics (organizations and infor-
mation flow) and information analysis. When asked what they were missing in the
curriculum, they most often mentioned (more) programming, social and professional
aspect of informatics, security aspects, and networks and communication [23].

Teacher Training
Eight years after the introduction of informatics in secondary education, regular pre-
service teacher training was established first at the University of Groningen in 2006,
and then another four universities followed. As pre-service university teacher training
for other subjects, this is a two-year educational master. Specifically, for informatics,
only students with a university bachelor degree for informatics (or an equivalent) are
admitted. During this master, the students both deepen their subject matter knowledge
and learn about teaching through extensive internships at school and accompanying
theoretical underpinnings concerning informatics didactics, pedagogy and educational
science [4]. For those who already possess a master’s degree in informatics, a one-year
program is available. The number of students obtaining this degree and thus becoming

1 http://www.informaticaolympiade.nl.
2 http://www.codecup.nl/intro.php.

The Second Decade of Informatics in Dutch Secondary Education 273

http://www.informaticaolympiade.nl
http://www.codecup.nl/intro.php

qualified informatics teachers in the years 2008–2013 was nation-wide six on average;
in 2014 and 2015 there were four, and in 2016 there were three. These numbers do not
come anywhere near the perceived need: the expected unfulfilled vacancies are esti-
mated to be 36 in 2018, 52 in 2020 and rising to 86 in 2025—implying that roughly a
third of schools offering informatics might not be able to find qualified teachers [3].

While the number of regular university students interested in becoming teachers is
tiny, every year in the meetings of informatics teachers’ educators from the five uni-
versities involved, we hear about dozens of professionals with a background in IT
industry who show interest in becoming informatics teachers. However, due to the
strict requirements, only a few get admitted to the teacher training straight away.

To help people with university degrees in technology or science to meet the teacher
training admission requirements, in 2015 the beta4all3 project was started for chemistry
(chem4all), and in 2016 physics (natk4all) and informatics projects were added:
inf4all4. Beta4all project is a result of a cooperation of universities offering teacher
training (i.e. educational master) where a number of courses are offered to interested
candidates as well as to interested teachers, in the form of specifically tailored courses
of 6 ECTS each. For informatics, these courses are Foundations, Algorithms, Advanced
Object Oriented Programming, Networks, Databases and Information Retrieval; Media,
Games and User experience; Artificial Intelligence, and finally, Internet of Things. The
courses are taught biweekly during one semester in the form of three-hour lectures on
Fridays in Utrecht, in the center of the Netherlands, thus allowing people from all over
the country to participate.

The admission procedure is then as follows: a candidate interested in becoming an
informatics teacher approaches the university of their choice where their educational
background and relevant professional experience are assessed. In case the candidate is
not admissible yet, a tailored plan is put together consisting of appropriate inf4all
courses (and possibly other courses taught at the university itself) to be taken in order
to fulfill the admission requirements for the educational master.

2.2 Curriculum Reform and Curriculum

Here we describe the events leading to the informatics curriculum reform and the new
curriculum itself.

The Royal Netherlands Academy of Arts and Sciences Report (KNAW Report)
Ever since the late 2000’s, in the Netherlands, just like in the international field of
experts [9], several stakeholders have been expressing concerns about outdated cur-
riculum and position of informatics as a school subject in general and advocated a
curriculum revision. However, the government refused to draw consequences from
periodic evaluations [21] and the Ministry of Education, Culture and Science main-
tained that there was no apparent need for a curriculum reform since there were no
complaints “from the field”. In 2012, triggered by serious concerns expressed by a
number of influential informatics education specialists, The Royal Netherlands

3 http://www.beta4all.nl.
4 http://www.beta4all.nl/prog_inf4all.htm.

274 N. Grgurina et al.

http://www.beta4all.nl
http://www.beta4all.nl/prog_inf4all.htm

Academy of Arts and Sciences (in Dutch: Koninklijke Nederlandse Akademie van
Wetenschappen, KNAW) formed a committee to investigate the situation of infor-
matics in secondary education. This committee wrote a critical report containing five
recommendations aimed at improving informatics education in general, reaching far
beyond the scope of the current informatics course. The report recommends to
“Completely overhaul the optional subject informatics in the upper years of HAVO and
VWO” and suggests to make it modular and flexible, relevant and attractive to all
students. Furthermore, it recommends to “Introduce a new compulsory subject Infor-
mation & communication in the lower years of HAVO and VWO” and goes on to make
recommendations about encouraging “interaction between these subjects and other
school subjects”, adequately training teachers, instructing higher education to collab-
orate in this regard and, finally; to “promote instruction in digital literacy” to help
achieve the goals set in the nation’s ICT policy concerning innovation and economic
development [19].

Even though this report was received with great enthusiasm by the informatics field,
the government was still reluctant to initiate a curriculum reform, without exactly
knowing the concerns of the secondary informatics teachers.

The Netherlands Institute for Curriculum Development Report
In 2013, under pressure from the stakeholders, the government commissioned an
inquiry and a report by the Netherlands Institute for Curriculum Development (in
Dutch: Stichting Leerplanontwikkeling, SLO) in order to assess (1) what is needed to
realize a modern and attractive informatics education in upper grades of senior sec-
ondary education and pre-university education and (2) in case it turns out that a change
of curriculum is required, what should that change entail. The Institute appointed a
team of three researchers for this job. First, they conducted a literature study about the
importance of informatics education, both nationally and internationally. Then they
invited Informatics teachers to fill in an online questionnaire about their current
informatics teaching practice and about their wishes and suggestions concerning pos-
sible changes in the Informatics curriculum. Subsequently, they conducted in-depth
interviews with a small number of these teachers. Finally, they consulted a large
number of informatics experts, not all of them involved in secondary informatics
education.

This investigation resulted in early 2014 in a report containing three recommen-
dations and a description of four factors playing a decisive role in subsistence of
informatics in secondary education. First of all, the report recommends to design a new
informatics curriculum aimed at a diverse student population, varied enough to be
relevant and attractive to all students. The second recommendation instructs to design a
curriculum containing a limited number of compulsory learning objectives and a
number of objectives from which a student can choose. Finally, it recommends to keep
the assessment as it is (ie. at the school level only, rather that introducing a national
final exam which most other subject have). Furthermore, the report lists four critical
factors which need to be addressed in order to make and keep informatics a viable
school subject:

1. quality of the assessment (with no national final exams, there is no quality control
across different schools);

The Second Decade of Informatics in Dutch Secondary Education 275

2. development of modular teaching material in order to provide for rapid advances of
the discipline;

3. in-service training of the teachers;
4. training of adequate numbers of new teachers [23].

Within weeks of the publication of this report, the government appointed a committee
of nine members—teachers, informatics specialists, experts from higher education, and
curriculum and assessment specialists—to redesign the informatics curricula for the
HAVO and VWO types of schools, that was formulated as follows:

– The committee’s task is to design a new curriculum for the elective course infor-
matics in the upper grades of HAVO and VWO types of school.

– The purpose of the new curricula is to enhance the quality of this course by
updating and modernizing the its learning objectives.

– The curricula need to be formulated globally: for the teachers it needs to be clear
what the curricular goals are, while at the same time the schools keep sufficient
room for their own interpretation.

– There is sufficient distinction between the HAVO and VWO curricula without them
being two separate curricula.

– Each curriculum contains a number of compulsory core components and elective
components. The elective components are related to the educational tracks the
students follow (either one of the two humanities tracks or one of the two science
tracks), yet they are within reach of all the students choosing informatics, regardless
of the track they actually follow.

– The curriculum design is to follow the context-concept approach.

Furthermore, when formulating the new curriculum, the committee needs to take into
account the following requirements: The assessment should remain as it is, consisting
of a school exam only and no national exam. This curriculum is to be aligned with the
curricula in lower secondary and primary education, which are to be developed in the
near future. The study load needs to remain the same. The curriculum should not be
overloaded and it must be possible to implement it within the available time. The
curriculum does not favor any particular didactical approach; it describes the “what”
and not the “how”. The new curriculum needs to be able to count on the wide support
of the teacher community. The textbook publishers need to be kept informed on the
progress in order to enable them to prepare the teaching materials in time [1].

Lorentz Workshop
At the same time when The Netherlands Institute for Curriculum Development inquiry
took place in 2013, but independently of it, a number of leading Dutch scholars
proposed to organize a Lorentz Workshop5. By the time the workshop took place in
September 2014, the committee for the reform of the informatics curriculum had
already been appointed.

5 “The Lorentz Center is an international center that coordinates and hosts workshops in the sciences,
based on the philosophy that science thrives on interaction between creative researchers.” http://
www.lorentzcenter.nl/aim.php.

276 N. Grgurina et al.

http://www.lorentzcenter.nl/aim.php
http://www.lorentzcenter.nl/aim.php

The aim and goal of the Lorentz workshop were described as follows: “secondary
education on informatics and digital literacy urgently needs thorough improvement.
The workshop intends to develop a contemporary design for the discipline, following
and learning from similar efforts in other countries.” The attendees were international
experts from Belgium, France, Germany, Israel, Lithuania, UK and USA and Dutch
computer scientists, teachers, education specialists, students and policy makers. During
the five-day workshop, the international experts presented their country reports and
various topics were discussed in focus groups:

– Definition: what comprises an ideal curriculum for a “digital literacy” course in the
lower grades of secondary education and an “informatics” course in the upper
grades;

– Sustainability: how to make “the curriculum sustainable in a rapidly developing
field”;

– Concepts and contexts: context-based teaching approach similar to the one adopted
for other science subjects;

– Diversity: catering to the needs of students with different educational backgrounds
and interests;

– Integration with other subjects in secondary education;
– Teacher training [2].

On the final day, the results of the workshop were presented and discussed in a meeting
with a representative of the Ministry of Economic affairs, a member of parliament
specialized in education, a representative of the Dutch informatics teacher association6,
representatives from higher professional education and universities, a CEO from
industry and the chairman of the KNAW committee who authored the KNAW
report [19].

2.3 The New Informatics Curriculum

Design Principles
The new curriculum is based on a number of design principles intended to make it
modern and robust, and to cater to the needs of all those involved in its use. To ensure
the relevance of the new curriculum in the long term, the curriculum committee decided
to follow the so-called concept-context approach—a pedagogical principle that was
already applied to several science subjects, for example chemistry [6]. The fundamental
concepts—that were described concretely—were separated from the contexts described
generically. In order to deal with the diversity of students, stemming from their varying
interest in informatics, the educational track they follow (science or humanities), and
the fact that division into HAVO and VWO type of school is not always reflected in
students’ achievements for informatics, it was decided to divide the curriculum into a
core curriculum that is mandatory for all students, and a number of elective themes.
Furthermore, as many see informatics as a constructive discipline where one engages in

6 http://ieni.org.

The Second Decade of Informatics in Dutch Secondary Education 277

http://ieni.org

creation of artifacts, ‘design and development’ is positioned as a central skill in the new
curriculum. Finally, in order to balance guidance and freedom experienced by the
informatics teachers, the committee drafted comprehensive learning objectives: 30 of
these are in the core curriculum and the other 34 in the elective themes, thus allowing
the schools to shape their informatics educations according to their preferences [4, 5].

Learning Objectives
The learning objectives of the new curriculum are organized in six compulsory
domains forming the core curriculum and twelve elective themes from which a HAVO
student needs to choose two and a VWO student four. The domains forming the core
curriculum are: (A) Skills, (B) Foundations, (C) Information, (D) Programming,
(E) Architecture, and (F) Interaction. The elective themes are: (G) Algorithms, com-
putability and logic, (H) Databases, (I) Cognitive computing, (J) Programming para-
digms, (K) Computer architecture, (L) Networks, (M) Physical computing,
(N) Security, (O) Usability, (P) User Experience, (Q) Social and individual impact of
informatics, and (R) Computational Science [4].

2.4 Teaching Materials for Elective Themes

In this section we describe the project in which teacher teams develop teaching
materials for the elective themes. We first provide the general description of this project
and then focus on one particular team—the one working on Computational science.

Teacher Teams Developing Teaching Materials
The curriculum specifies only high-level learning objectives and does not provide
further details about them, nor about the instruction or assessment. In line with the
Dutch tradition, this is left to the educators and authors of teaching materials, usually
employed by publishing companies. In the Netherlands, there are three publishers of
teaching materials for informatics. With 11 to 12% of the students in HAVO and VWO
schools electing to take this course [8], the market for the publishers is rather small.
This situation, combined with the fact that elective themes in the new curriculum will
inevitably be chosen by even smaller numbers of students, means that the publishers
have no financial incentive to develop teaching materials for the elective themes and
are only interested in developing teaching materials for the core domains. To alleviate
this problem, the Ministry of education provided financial means and asked the
Netherlands Institute for Curriculum Development (SLO) to coordinate a project where
teams of teachers would develop teaching materials for elective themes. SLO devel-
oped a procedure describing the participants and stakeholders in the project, the
guidelines outlining the process they engage in, and finally, the products to be deliv-
ered. In accordance with this procedure, for each of the twelve elective themes a team
should be formed, consisting of at least two informatics teachers, an expert and a
teacher educator specialized in didactics of informatics. First, the team writes a global
description of the module they work on, which specifies the intended learning out-
comes, target audience, planning and other relevant details. Then they engage in the
actual writing of the module which needs to satisfy the following criteria:

278 N. Grgurina et al.

– suitable for self-study because not all teachers are expected to possess adequate
expertise for that particular domain

– embed the intended learning outcomes in rich and relevant contexts
– incorporate at least one of the three basic skills in the curriculum, namely: design

and development, using informatics as a perspective, and finally, cooperation and
interdisciplinarity

– suitable for both the HAVO and the VWO students, yet provide for their differences
– suitable to be published online
– accompanied by teachers’ instruction and a suitable form of assessment (e.g. a test

or a practical assignment).

When a module is finished, it should be tested in at least two schools. The feedback
from the teachers and their students who engage in testing of a module should then be
collected, and a new version of a module should be written. The final version of the
module should be presented to an external expert and a certifying body for final
approval. This certification serves as quality control in multiple ways, not the least to
partly compensate the lack of a national exam and corresponding lack of quality control
and lack of ways to compare students’ achievements across different schools.

Development of Teaching Materials for Computational Science
We will illustrate this process with the example of teaching materials being developed
for the elective theme R: Computational Science where the first author of this paper
leads the teacher team. In the new curriculum, the learning objectives of this theme are
described as “Modeling: The candidate is able to model aspects of another scientific
discipline in computational terms” and “Simulation: The candidate is able to construct
models and simulations, and use these for the research of phenomena in that other
science field.” [4] In the context of a larger research project on teaching Computational
Science in informatics in Dutch secondary education, we investigate pedagogical
aspects and teachers’ pedagogical content knowledge (PCK) about modeling. Fol-
lowing Magnusson et al. [20], we distinguish four elements of content-specific peda-
gogy: (M1) goals and objectives, (M2) students’ understanding and difficulties, (M3)
instructional strategies, and (M4) assessment. First, we refined the CSTA definition of
computational thinking (CT) [14], made initial explorations of teachers’ PCK [15, 16],
and of the computational modeling process [13]. We then obtained an operational
description of the intended learning outcomes of the learning objectives of Computa-
tional science—thus focusing on Magnusson’s element M1, observed students working
on modeling tasks—focusing on Magnusson’s element M2, established what data
sources were suitable for assessment—Magnusson’s element M4 [17], investigated
teachers’ initial pedagogical content knowledge on modeling and simulation [12], and
finally, explored the characteristics of the assessment instrument for the measurement
of the intended learning outcomes for computational science [10]. The results of this
research, supplemented with the decision to employ the 4C-ID instructional design
[18], form the starting points for the teams and thus insure that the teaching materials,
accompanying assessment instruments and teachers’ manuals will be set up upon solid
theoretical foundations. All aspects of the implementation in schools will be monitored
closely and will form the input for further research into the teaching and learning of
computational science.

The Second Decade of Informatics in Dutch Secondary Education 279

2.5 Research

During the last decade, informatics education research in the Netherlands was given a
new impulse with the appointment of the first full professor in informatics education.
He set up a nation-wide research group conducting research on various aspects of
teaching and learning of informatics in primary, secondary and tertiary education. The
research topics in secondary education include programming, design-based informatics
education, assessment, context-based teaching and learning of fundamental concepts
including algorithms, and finally, computational science (i.e. modeling and simulation)
—the research project described in the previous section where the first author engages
in. In all of the research projects mentioned here, specific attention is given to the
teachers and their pedagogical content knowledge (PCK).

We consider this as a special and a beneficial situation when aiming at research-
based informatics curriculum development.

2.6 Informatics Curriculum Reform in Primary and Lower Secondary
Education

One of the recommendations of the 2013 report by The Royal Netherlands Academy of
Arts and Sciences [19] was to introduce digital literacy into the Dutch lower secondary
education. The report led to the chain reaction described earlier in this paper, thus
mainly focused at what already existed in the curriculum: informatics in upper sec-
ondary education. Nevertheless, both primary and secondary schools started experi-
menting with integrating digital literacy in their school-based curriculum. Very
interesting initiatives emerged, deployed by creative and innovative teachers at primary
and secondary schools. While experimenting, the question arose at schools, from
teachers, students and parents: is what we are doing now aligned with the formal
national curriculum? The answer to this question was: yes, but only because in this
formal curriculum—outside upper secondary education—the relevant learning objec-
tives are global and non-specific.

The somehow strange situation – where educators were asking for guidelines that
did not exist—was resolved in March 2018, when the curriculum.nu7 project was
started: design teams consisting of selected teachers started to rethink the whole of the
curriculum. One of the domains to be inspected is digital literacy. A national system for
feedback was implemented in order to facilitate revision of and wide support for the
vision (April 2018), big ideas (June 2018) and curricular brick stones (October 2018) as
deliverables from the design team. This project is planned to end in May 2019 with an
advice by the design team on how to revise the Dutch primary and secondary cur-
riculum with respect to digital literacy. This may lead to the introduction of learning
goals with respect to digital literacy in primary and lower secondary education.

We see that informatics, now clearly visible in the upper secondary education, has
gained that much momentum, that it could possibly contribute to reforms in the Dutch
educational system.

7 https://curriculum.nu.

280 N. Grgurina et al.

http://curriculum.nu
https://curriculum.nu

3 Conclusion and Discussion

In this paper we described the present situation of the elective subject informatics in
upper secondary education in the senior general secondary education and the pre-
university education in the Netherlands, the informatics curriculum reform together
with the events leading to it and we sketched the developments related to teaching
informatics in primary and lower secondary education. We see that on one hand,
significant progress has been made with five universities offering regular teacher
training, a nation-wide research group performing research of international relevance
and a grassroots movement with parents, teachers, headmasters and other stakeholders
demanding more, earlier and broader informatics education. On the other hand, the
teacher population forms one of the weak spots in the informatics ecosystem: many
teachers are underqualified, far too few new informatics teachers are being trained, and
it is not clear who should teach informatics or digital literacy if it gets introduced into
primary and lower secondary education. Some stakeholders see the informatics cur-
riculum reform as a missed opportunity to make informatics a mandatory subject or for
the introduction of a national exam. Finally, it is not clear yet what will happen with the
desire and all the initiatives employed to introduce informatics, in whatever form, into
the primary and lower secondary education.

References

1. Opdracht vernieuwingscommissie informatica 2014–2015 (2014)
2. Lorentz Worksop (2015)
3. Adriaens, H., Fontein, P., den Uijl, M., de Vos, K.: De toekomstige arbeidsmarkt voor

onderwijspersoneel po, vo en mbo 2015–2025; Update November 2016. CentERdata,
Tilburg (2016)

4. Barendsen, E., Tolboom, J.: Advisory report (intended) curriculum for informatics for upper
secondary education. SLO, Enschede (2016)

5. Barendsen, E., Grgurina, N., Tolboom, J.: A new informatics curriculum for secondary
education in The Netherlands. In: Brodnik, A., Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973,
pp. 105–117. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46747-4_9

6. Bennett, J., Holman, J.: Context-based approaches to the teaching of chemistry: what are
they and what are their effects? In: Gilbert, J.K., De Jong, O., Justi, R., Treagust, D.F.,
Van Driel, J.H. (eds.) Chemical Education: Towards Research-Based Practice, pp. 165–184.
Kluwer, Dordrecht (2002)

7. Dagiene, V., Stupuriene, G.: Bebras-a sustainable community building model for the concept
based learning of informatics and computational thinking. Inform. Educ. 15(1), 25 (2016)

8. DUO: Leerlingen in het voortgezet onderwijs, 13 June 2018
9. Gander, W., et al.: Informatics education: Europe cannot afford to miss the boat. Report of

the Joint Informatics Europe & ACM Europe Working Group on Informatics Education,
(2013)

10. Grgurina, N., Barendsen, E., Suhre, C., van Veen, K., Zwaneveld, B. Assessment of
Modeling Projects in Informatics Class. In Anonymous (2018, in press)

11. Grgurina, N., Tolboom, J.: The first decade of informatics in Dutch high schools. Inform.
Educ. 7(1), 55–74 (2008)

The Second Decade of Informatics in Dutch Secondary Education 281

http://dx.doi.org/10.1007/978-3-319-46747-4_9

12. Grgurina, N., Barendsen, E., Suhre, C., van Veen, K., Zwaneveld, B.: Investigating
informatics teachers’ initial pedagogical content knowledge on modeling and simulation. In:
Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS, vol. 10696, pp. 65–76. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71483-7_6

13. Grgurina, N., Barendsen, E., van Veen, K., Suhre, C., Zwaneveld, B.: Exploring students’
computational thinking skills in modeling and simulation projects: a pilot study. In:
Anonymous Proceedings of the Workshop in Primary and Secondary Computing Education,
pp. 65–68. ACM (2015)

14. Grgurina, N., Barendsen, E., Zwaneveld, B., van de Grift, W., Stoker, I.: Computational
thinking skills in Dutch secondary education. In: Anonymous Proceedings of the 8th
Workshop in Primary and Secondary Computing Education, pp. 31–32. ACM (2013)

15. Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., Stoker, I. Computational
thinking skills in Dutch secondary education: exploring pedagogical content knowledge. In:
Anonymous Proceedings of the 14th Koli Calling International Conference on Computing
Education Research, pp. 173–174. ACM (2014)

16. Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., Stoker, I.: Computational
thinking skills in Dutch secondary education: exploring teacher’s perspective. In:
Anonymous Proceedings of the 9th Workshop in Primary and Secondary Computing
Education, pp. 124–125. ACM (2014)

17. Grgurina, N., Barendsen, E., Zwaneveld, B., van Veen, K., Suhre, C.: Defining and
observing modeling and simulation in informatics. In: Brodnik, A., Tort, F. (eds.) ISSEP
2016. LNCS, vol. 9973, pp. 130–141. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46747-4_11

18. Kirschner, P.A., Van Merriënboer, J.: Ten steps to complex learning a new approach to
instruction and instructional design. In: Anonymous (2008)

19. KNAW: Digitale geletterdheid in het voortgezet onderwijs. Koninklijke Nederlandse
Akademie van Wetenschappen, Amsterdam (2013)

20. Magnusson, S., Krajcik, J., Borko, H.: Nature, sources, and development of pedagogical
content knowledge for science teaching. In: Gess-Newsome, J., Lederman, N.G. (eds.)
Examining Pedagogical Content Knowledge, pp. 95–132. Kluwer, Dordrecht (1999)

21. Schmidt, V. Vakdossier 2007 informatica. Technical report, SLO, Stichting Leerplanon-
twikkeling, Enschede, The Netherlands (2007)

22. Thijs, A.M., Fisser, P., van der Hoeven, M.: Digitale geletterdheid en 21e eeuwse
vaardigheden in het funderend onderwijs: een conceptueel kader (draft). SLO, Enschede
(2014)

23. Tolboom, J., Kruger, J., Grgurina, N.: Informatica in de bovenbouw havo/vwo: Naar
aantrekkelijk en actueel onderwijs in informatica. SLO, Enschede (2014)

282 N. Grgurina et al.

http://dx.doi.org/10.1007/978-3-319-71483-7_6
http://dx.doi.org/10.1007/978-3-319-46747-4_11
http://dx.doi.org/10.1007/978-3-319-46747-4_11

The Bebras Contest in Austria – Do
Personality, Self-concept and General
Interests Play an Influential Role?

Andreas Bollin, Heike Demarle-Meusel, Max Kesselbacher(B),
Corinna Mößlacher, Marianne Rohrer, and Julia Sylle

Alpen-Adria-Universität Klagenfurt, 9020 Klagenfurt, Austria
{Andreas.Bollin,Heike.Demarle-Meusel,Max.Kesselbacher,
Corinna.Moesslacher,Marianne.Rohrer,Julia.Sylle}@aau.at

https://www.aau.at/en/informatics-didactics

Abstract. The Bebras (Beaver) contest aims at testing of and motivat-
ing for Informatics and Computer fluency, and as such it is designed to
be a contest for all pupils between 8 and 19. But, does it really attract
and favor all types of children likewise? This paper takes a closer look
at different types of personality, self-concept and interests of the winners
of the Bebras contest in Austria and discusses those factors that might
contribute to a successful participation. It concludes with some recom-
mendations that might help in increasing the number of participation at
the event.

Keywords: Bebras contest · Personality · Self-concept

1 Motivation

It is a big challenge for society to foster interest in computing as a 21st century
skill among children and adolescents. A single definition on what should be
taught at school is hard to give, and this is the responsibility of the respective
ministries of each country. However, in the future, the need on skilled workforce
to meet the requirements of the industry 4.0 will increase. Thus, it gets more
and more important for the education sector to honor this evolution. There
are already initiatives on different levels in place to foster competences and
interests in informatics, e.g. from ministries or other organizations up to private
groups like CoderDojo (more examples were shown by Grandl and Ebner [9]).
In the field of informatics, the Bebras (Beaver) Contest (described by Dagienė
and Futschek [7]) has a competitive character to motivate pupils of different ages
with the aim to make them familiar with informatics concepts and computational
thinking. On the one hand it fosters basic skills in informatics, but it also can,
and according to the key driver behind the contest it also should, attract all
different types of pupils for this field of science.

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 283–294, 2018.
https://doi.org/10.1007/978-3-030-02750-6_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_22&domain=pdf

284 A. Bollin et al.

Participants have to be nominated by schools and cannot register individu-
ally. There are both advantages and disadvantages to this approach. Pupils that
did not consider participating might get in touch with informatics and their
interest may be aroused, but on the other hand interested individuals rely on
the willingness of their school to be part of this competition. This causes a broad
range of levels of interest, from high to low attentiveness. But, very little is known
about the personalities and structure of interests of the participants, especially
the differences between winners and unsuccessful contestants. Relevance to gain
greater knowledge on this issues is obvious, having the requirements of the 21st
century in mind. Tailor-made offers to attract children and adolescents to infor-
matics can help to avoid skills shortage in this field. To obtain satisfactory effects,
it is important to intervene at an early age.

For this reason, the objective of this paper is to take a closer look at the
different types of personality, the self-concept and the interests of the winners
of the Bebras contest in Austria and to discusses those factors that might con-
tribute to a successful participation. The results are additionally compared to
two other populations: two school classes who participated at the Bebras Con-
test without winning, and a set of teenagers who successfully took part at an
international (and quite demanding) coding contest – as we also wanted to check
for pronounced differences.

The rest of the paper is structured as follows: Sect. 2 provides background
information about related work and summarizes the tests used during our study.
Section 3 presents the details of the study, introduces the hypotheses and sum-
marizes the results. Section 4 then reflects on the findings and Sect. 5 concludes
with a summary and an outlook.

2 Background

2.1 Testing the Masses

Contests for testing students in their abilities in certain subjects and topics have
been developed and implemented in many countries. However, the number of
studies looking at criteria, ability and skills determining whether someone is
among successful students is very low.

In the field of informatics and computational thinking, the probably widest-
known contest is the Bebras Contest [7]. In the meantime, Bebras turned into a
diverse event, where individuals or teams are competing to each other at various
settings and levels of difficulty. The tasks in the Bebras Contest are developed
considering a set of criteria (some have to be and some should be fulfilled by all
tasks), e.g. ‘Good tasks are related to informatics, computer science or computer
literacy’. The criteria provide general information about the development of the
tasks (topics, representation of the tasks, no previous knowledge required). Some
of the criteria consider the abilities of the students: The tasks ‘have a difficulty
level (3 levels)’, ‘are adequate for the age of the contestants (3 age groups)’ and
‘are independent from any curriculum’. The difficulty levels have a range from

The Bebras Contest in Austria: Possible Factors for Winning 285

‘all pupils of the target group should be able to solve’ to ‘only the best can solve
these tasks’. A revision to these criteria was stated in 2014 by Vańıček [16].
Amongst others, the acceptance of tasks that require no(!) pre-knowledge is
recommended. A rich and still ongoing discussion about good tasks can be found
on the web-site of the Bebras contest [4].

A comparable contest in the field of mathematics is the International Mathe-
matical Kangaroo [2]. A study by Applebaum looking at the results of the Math-
ematical Kangaroo showed that the achievements of mathematically motivated
students in tasks that require spatial abilities correlate with their achievements
in non-standard problems [3]. This study links a cognitive skill, the spatial abil-
ity, with the achievements in mathematics of this student.

The perception of learning activities is an issue for different studies. Theodor-
opoulos et al. performed a study in Greek schools to assess the relationship of
certain students’ personality structures (the cognitive styles) and the students’
attitude (the students’ quality of learning experience) towards the game-based
programming activities of code.org. The study shows that specific cognitive
styles differed by the Myers-Briggs Type Indicator (MBTI) correlate with higher
achievements in the provided tasks. Therefore a more balanced and personalized
approach is recommended [15].

2.2 Personality, Self-concept and General Interests

Psychological theories, like the theory of work adjustment by Dawis [8] and the
RIASEC theory of careers by Holland [10] assume, that individual needs and
skills become relative stable between the age 14 and 24 (as shown by Nerdinger
et al. [13]). Individual needs is a generic term and includes motives, person-
ality, interests and social values, which are essential for successful professional
careers. Influencing variables on the career choice are vocational interests, intel-
ligence and personality (shown by Ackermann and Beier [1]). Career choice is a
conscious decision; people try to find a job with the highest match between per-
sonality structure and the job profile (person-job-fit). When there is a good fit
between the personality type and environmental requirements, people are much
more satisfied and successful in their jobs [10]. Holland formulates six interest
dimensions: Realistic (R), Investigative (I), Artistic (A), Social (S), Enterprising
(E), and Conventional (C). The dimensions are presented hexagonal in the order
of RIASEC. Dimensions of interests are more similar to each other, the closer
they are presented at the Hexagon. Example giving, Realistic and Investigative
have much more in common, than Realistic and Social. Bergmann and Eder
presented a list to identify fields of study or careers consistent with the indi-
vidual interest dimensions [5]. Each profession is assigned a three-letter code.
Informatics and information management is allocated to the code CIS (Conven-
tional, Investigative and Social). There are some code variations depending on
the vocational specifications, e.g. ICE for business informatics. The dimensions
Conventional and Investigative seem very important for a good fit to the field
of informatics.

https://code.org/

286 A. Bollin et al.

Interests play an important role in the career finding process and far beyond
in the success and satisfaction within the job. So the question is, how to fos-
ter these interests in an early stage. Building up opportunities for the main-
stream to get in touch with concepts of informatics and computational thinking
– like the Bebras – is a practicable way. Such experiences may foster a positive
subject-specific self-concept. The self-concept gives an assessment about indi-
vidual strength and weaknesses. A positive self-concept has an influence on the
learning process. It influences the decision, which learning objectives and tasks
pupils set. Results from PISA demonstrate a positive correlation between self-
concept and results [14]. The development of the self-concept is affected from
self-observation and feedback, e.g. from teachers or success in competitions. A
positive self-concept will be built up by experience.

3 The Study

3.1 Setting

In order to assess influences of personality, academic self-concept and general
interest on Bebras participation, a survey was employed to collect these factors
from different groups. The survey was conducted in paper form as well as in the
online environment KAUA1, and contains the following data fields:

Demographic data: Sex (male/female/other), age
General interests: Six Likert items for the six dimensions of interests

(RIASEC) following Holland [10]. Two variants of formulations are used,
depending on the age of the participants. Survey participants older than 14
receive the standard formulation (scale with 9 items) of the general inter-
ests test [5]; others receive a re-formulation for children (scale with 3 items).
The results per dimension are grouped in three equally sized brackets: not
interested, partly interested, very interested.

Personality: Two Likert items (scale with 13 items) for two dimensions
(Dominant/Easy-Going, Formal/Informal) of the Five-Factor and Stress The-
ory [12,17]. Two variants of formulations are used, depending on the age of
the participants. Survey participants older than 14 receive the standard for-
mulation; others receive a re-formulation for children.

Academic self-concept: A set of questions for verbal as well as mathematical
self-concept is surveyed. Each consists of three statements2 regarding the
respective self-concept, on a scale with 4 items between disagreement and
agreement, which are also included in PISA surveys [11]. Moreover, for both

1 KAUA is an online survey system with support for anonymous, longitudinal studies,
designed for and implemented at the Department of Informatics Didactics, Alpen-
Adria-Universität Klagenfurt.

2 V1: I am hopeless in German classes. V2: I learn things quickly in German classes. V3:
I get good marks in German. M1: I get good marks in mathematics. M2: Mathematics
is one of my best subjects. M3: I have always done well in mathematics.

The Bebras Contest in Austria: Possible Factors for Winning 287

German (the medium of instruction in Austria) and Mathematics, the last
received school grades and the self-given grades are surveyed (VGrade, verbal,
and MGrade, mathematical).

The data was collected for three groups to compare the different factors:

Bebras winner group: 43 Austrian Bebras winners (20 males, 23 females,
mean age 11.57 ± 2.13) were surveyed in paper form during the Bebras 2018
award ceremonies.

Bebras control group: 36 non-winning Austrian Bebras participants
(12 males, 21 females, 3 others, mean age 12.08 ± 0.84) were surveyed in online
form to provide a means of comparing winner and non-winner participants.

School Coding-contest group: 20 male participants of the Catalysts School
Coding Contest3 2018 in Klagenfurt (mean age 17.80 ± 0.62) were surveyed in
online form to provide another control group of computer science interested
students.

Two sets of hypotheses are evaluated for the collected data:

H1-H2: Bebras winners statistically differ significantly in personality, academic
self-concept and general interests from the control group (H1) and the coding-
contest group (H2).

H3-H5: Factors of personality (H3), academic self-concept (H4) and general
interests (H5) contribute to winning the Bebras contest in Austria.

Hypotheses H1-H2 are evaluated with the help of U-test statistics, and analysis
of correlations and plots. Hypotheses H3-H5 are evaluated with the help of mean
value comparisons, t-test statistics, correlation analysis and linear regression.

Table 1. Mean values for: Six dimensions of interest (range [−1, 1], from not inter-
ested to very interested), two personality dimensions (range [−6, 6]), agreement to six
statements of academic self concept (Vi and Mi, range [1, 4] from disagreement to
agreement), actual and self-given grades in the subjects German and Mathematics
(VGrade/MGrade, range [1, 5]).

Group R I A S E C Easy-Going Informal

Winner 1 0.26 0.64 3 0.45 3 0.56 0.39 0.12 2 1.791 0.002

Control 2 0.27 0.39 0.22 3 0.61 0.39 0.11 1,3 −1.500 −0.417

School-CCC 3 0.33 0.68 1 −0.13 1,2 0.19 0.29 0.15 2 0.800 −0.250

Group V1 V2 V3 VGrade
Actual / Self

M1 M2 M3 MGrade
Actual / Self

Winner 1 1.71 2 3.14 3.21 1.88 / 1.74 2 3.58 2 3.31 2 3.41 1.72 / 1.57

Control 2 1.94 1 2.75 2.81 2.39 / 1.94 1 3.19 1 2.75 1 2.94 2.08 / 1.81

School-CCC 3 1.60 2.90 3.15 2.10 / 2.00 3.55 3.25 3.15 1.75 / 1.65

3 More information: https://register.codingcontest.org/.

https://register.codingcontest.org/

288 A. Bollin et al.

3.2 Results

This section contains descriptive result tables summarizing the data, and tables
and plots of additional analysis. The results are discussed in the next section.

Table 1 shows a summary of the data for the three surveyed groups of stu-
dents. Mean values for the different dimensions of data are reported. Questions
regarding the areas of interest are answered on a scale of three items (winner and
control group) or nine items (School-CCC group) ranging from not interested to
very interested, and are encoded numerically in the range [−1, 1]. The middle
interpretation partly interested is encoded as 0 on the coarse scale and in the
range [−0.25, 0.25] in the more fine-grained scale. Negative values of personality
indicate the first personality types (Dominant and Formal), positive values indi-
cate the second personality types (Easy-Going and Informal). For brevity, only
the positive ones are written. The questions regarding the academic self-concept
(Vi and Mi) are answered on a scale of four items ranging from disagreement to
agreement, encoded from 1 to 4. Low values indicate a weak self-concept, high
values indicate a strong self-concept. This is true for all items but V1, which is an
inverse item. Furthermore, the students were asked to report their last received
grades and the grades they would give themselves in the subjects German and
Mathematics, encoded from 1 to 5; lower numbers indicate better grades.

Table 1 also shows significant differences between groups. Shapiro-Wilk tests
with significance level p < .05 were used to test for the null hypothesis of normal
distribution. For most of the data columns, the null hypothesis could not be
rejected. Therefore, significant differences were found employing non-parametric
Mann-Whitney-U-Tests with significance level p < .05. Significant differences are
marked with subscript row numbers signifying the relationships (1 for differences
to the winner group, 2 for differences to the control group, 3 for differences to
the School-CCC group), and are marked symmetrically.

Table 2 shows statistical analysis results employed on the combined groups of
all Bebras participants (winner+control). A binary variable winner with value 0
for non-winners and 1 for winners was introduced. For this variable, all significant
correlation scores are reported in the table (significance level p < .05, linear
and rank correlation was examined, Kendall results are omitted as they are the
same as Spearman results). Moreover, a linear regression model was fitted for the
response variable winner, with iterative backward selection and significance level
p < .05. The table reports all significant variables with their estimated prediction
factors, and reports the regression scores measured as multiple and adjusted R2.
SexM and the not significant SexF are binary auxiliary variables introduced with
value 1 for participants of the respective sex and 0 for others. The Spearman
correlation scores between the significant factors of linear regression are also
reported for the winner and control group.

Figure 1 shows the distribution of the surveyed students in a plane with the
personality dimensions Dominant/Easy-Going and Formal/Informal. Each point
corresponds to one student, distinct points may overlap. For each group, the
mean personality values are included in the plane, together with a circle repre-
senting the 33% percentile of data points nearest to the mean for the resp. group.

The Bebras Contest in Austria: Possible Factors for Winning 289

Table 2. Statistical analysis of binary variable winner, computed for both Bebras
groups (n = 79). Factors and correlations significant at p < .05 are marked bold.
Results show significant correlation scores for the variable winner, linear regression
model fitted with iterative backward selection for the response variable winner, and
spearman correlation scores between regression factors.

Correlations for winner
Correlation Easy-Going V2 VGrade Actual M1 M2 M3

Pearson 0.46 0.23 -0.22 0.24 0.26 0.25
Spearman 0.46 0.23 -0.20 0.23 0.29 0.25

Linear Regression for winner
Feature Intercept SexM Artistic Social Easy-Going M3

Estimated Factor -0.147 0.529 0.217 -0.161 0.089 0.147
Multiple R2 0.4909 Adjusted R2 0.4560

Spearman Correlations for Regression Factors
Top half winner (n = 43), bottom half control (n = 36)

Control \Winner SexM Artistic Social Easy-Going M3

SexM 1 -0.57 -0.49 -0.53 0.16
Artistic -0.74 1 0.51 0.20 -0.32
Social -0.16 0.27 1 0.56 0.05
Easy-Going -0.72 0.54 0.10 1 -0.04
M3 0.18 0.16 0.05 -0.42 1

Figure 2 show scatter plots between the variable winner and four of the sig-
nificant factors of correlation and linear regression analysis shown in Table 2.
Figure 3 shows the distribution of the responses for each area of interest for the
winner and control groups. For the students, it is possible to choose the same
level of interest for multiple areas.

3.3 Discussion

Concerning interests, differences were uncovered between the groups. According
to the RIASEC test (see Table 1 and Fig. 3), Bebras winners are more investiga-
tive (mean 0.64 compared to 0.39) and more artistic (mean 0.45 compared to
0.22) than the control group. The result is not statistical significant, but Fig. 3
also shows that winners are, with the exception of the social dimension, in gen-
eral more interested in all the other fields of interest. Bebras winners (and coding
contest participants) seem to be more curious and open to explore new things.
It is notable that the School-CCC participants are less interested in the social
dimension (the smaller number-labels in Table 1 indicate that this observation
is also statistical significant to the winner and control group).

In some sense this tells us that Bebras participants are quite comparable
to the control group, they just show a bit higher interest in everything and
are more interested in the artistic field. The type of Bebras questions (which
are quite often very creative and try to be out of different domains) seems to

290 A. Bollin et al.

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●●

●

●●

●

●

●

●

●

Winner Male
Winner Female
Control Male
Control Female
School−CCC Male

Avg. Winner
Avg. Control
Avg. School−CCC

33% Winner
33% Control
33% School−CCC

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−6
−5

−4
−3

−2
−1

0
1

2
3

4
5

6

Formal

Informal

D
om

in
an

t

Ea
sy

−G
oi

ng
Fig. 1. Distribution of the students of the different groups in the plane of the two
personality dimensions Dominant/Easy-Going and Formal/Informal.

●

●

●

●

●

● ●

●●

● ●

● ●

●

●● ● ●

● ●

●

●

●

● ●

●

●

● ●

●

●

●

●

●●●

●●

● ●

●

●

●

●

● ● ● ●

●●● ●●

● ●

●●

●

●

●

●

●

●

●

●●

●

●

● ●●

●

●

●

●

● ●●

●

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Agreement to V2

Control Winner
2 1

13 9

13 16

8 17
●

●

●

●

●

● ●

●

●

● ●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●●

●

−6

−4

−2

0

2

4

6
Personality Dominant / Easy−Going

Control Winner
D: 21 D: 12

B: 7 B: 3

EG: 8 EG: 28

●

●

●

●

● ●

●

● ●

●

●

●

●

●●

●

●

● ●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

● ●

● ●●

●

● ● ●

●

●

● ●

●

●

●

●

● ●

●

●

●

● ●

●

● ●

●

● ● ●

●

●● ●●●
●

●

●

●

●

●● ●

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Agreement to M3

Control Winner
3 0

9 10

11 5

13 28 ●

●

●

●

● ●● ●

●

●

●

● ●

● ●● ●● ● ● ●●

●

● ● ●

●

● ●

●

●

●

●

●

● ●

●

●●● ●

● ●

● ●

●

●●●●●●●● ● ●

●

● ●

●●

●

●

● ●

●

● ●

●

● ●

●

● ●

● ●

●

●

●−1.0

−0.5

0.0

0.5

1.0
Interest in Artistic

Control Winner
10 7

8 12

18 24

Fig. 2. Scatter plots for four of the significant factors of Table 2 against the binary
variable winner. The x-axes contain jitter for the winner variable to avoid point overlap,
the y-axes plot the respective factor.

The Bebras Contest in Austria: Possible Factors for Winning 291

R
I

A
S

E
C

0.0 0.2 0.4 0.6 0.8 1.0

Bebras Winner

R
I

A
S

E
C

0.0 0.2 0.4 0.6 0.8 1.0

Bebras Control no interest part interest high interest

Fig. 3. Areas of interests of the Bebras participants.

support them in some sense. On the other hand, School-CCC participants might
already have developed their own set of interests and have less interest in some
dimensions: they are older with a mean age of 17.80 compared to the mean ages
of 11.57 (winner) and 12.08 (control).

Concerning personality, there is a big (statistically significant) difference
between the winner and the control group. Winners (and to some extent also the
coding contest group) are more easy-going, neither formal nor informal, and not
really dominant. Figure 1 shows this difference with mean values and quantile
areas. Additionally, there is an observable difference between Bebras Winner and
School-CCC participants. The latter are less easy-going than Bebras winners.

In some sense, this observation contradicts the myth that for being good in
computational thinking one needs to be quite formal. Formality might be useful
in some contexts, but not in the case of the Bebras contest.

Concerning self-concept, there are again observable differences. Bebras win-
ner have better grades in German (so, in their mother tongue) and in Mathemat-
ics, and they also have a higher self-concept in both of the fields compared to the
control group. The differences between winner and control groups are significant,
and it indicates that Bebras winners do have a higher verbal and mathematical
self-concept. To some sense this is not so surprising as mathematical thinking,
reading and text comprehension are helpful in understanding and solving Bebras
tasks. Lastly, School-CCC participants are comparable to Bebras winner, with
lower verbal self-concept and grades, but still higher than the control group. To
conclude, we can answer Hypotheses H1 and H2 in the following way.

(H1) Bebras winners significantly differ from the control group in respect
to personality and verbal/mathematical self-concept. They are a bit more easy-
going, have better grades and a stronger self-concept. They also show some
differences in respect to the interests dimension.

292 A. Bollin et al.

(H2) Bebras winners significantly differ from the School-CCC group in
respect to interests. They are more interested in the artistic and social domain.
They also show some differences in personality (they are more easy-going and
a bit more informal). Also, their verbal and mathematical self-concept and the
grades are slightly better.

In order to answer the remaining hypotheses, we were taking a closer look at
the correlations between the different factors and compute a regression formula,
eliminating all the factors that are not contributing to the result (of winning the
Bebras contest). Due to reason of space, we do not provide the full correlation
tables, but Table 2 presents the significant correlation and regression factors
(p < 0.05). It turns out that, of all the factors, personality has the highest (i.e. a
medium-size) influence onto winning the contest. The verbal and mathematical
self concept (V2, M1, M2, M3) and the grade in German (V GradeActual, lower
grades are better, a negative correlation raises the chance to win) also have some
influence. The regression consists of five factors for predicting a winner.

Winning ≈ −0.147 + 0.529 · SexM + 0.217 · Artistic
− 0.161 · Social + 0.089 · EasyGoing + 0.147 · M3

It is notable that SexM (of being a man) is part of the formula. Table 1 shows
that SexM and being artistic or easygoing are highly correlated, so SexM is
somehow a corrective factor in the formula to fit both, male and female winners.

A power test was used to describe the power of the employed correlation
test. For the combined Bebras participants group (n = 79) and a significance
level of 0.05 and a test power of 0.95, a correlation score of 0.3895 has sufficient
power [6]. Therefore, only the correlation to the personality factor (Easy-Going)
statistically holds with the given parameters. This does not mean that the other
factors do not have any influence, and so we extended our analysis by scatter
plots to look for correlations. Figure 2 summarizes the plots for four of the sig-
nificant factors of Table 1 against the binary variable winner. As can be seen
(data points in the area), in all the 4 plots, winners have a slightly higher verbal
and mathematical self-concept, and interest in the artistic field. To conclude, we
now can answer Hypotheses H3 to H5 in the following way.

(H3) The factor of personality contributes to winning the Bebras contest.
The more easy-going a participant is, the higher the chance to win.

(H4) The academic self-concept contributes to winning the Bebras contest
in some sense. A strong verbal self-concept and mathematical skills raise the
chance to win.

(H5) General interests have some influence on winning the Bebras contest.
Interests in the artistic dimension seem to help in winning the contest.

3.4 Threats to Validity

As basically all Bebras winners were at the award ceremony in Klagenfurt in
2018, we had a unique chance to reach the full population. However, the results
of the study have to be taken with some care. First, the size of the population

The Bebras Contest in Austria: Possible Factors for Winning 293

is still quite small. Even though some of the findings are statistically significant,
some others are, up to now, of anecdotal evidence. Secondly, the results might not
be transferable to other countries. There also is no guarantee that the findings
hold for the next contests. Being aware of that, we included the coding contest
group to get an even better picture, and the results seem comprehensible.

Some of the data has been collected in written form, so there might have
been errors during data-transfer. However, we checked all the data several times,
following a four-eye-principle. The statistical analysis has been done with the R
framework, so, we assume the data and the results to be valid.

4 Recommendations

In the light of the results we now dare some prudent recommendations, with the
objective to even raise the chance to win a Bebras contest in the future.

At first, it is apparent that Bebras winner are interested in a lot of different
domains, they are artistic, social, and are good and feel confident in their mother
tongue and in Mathematics. The winners are also a bit more of an ease-going
personality and of an investigative nature. At the beginning we raised the ques-
tion if the Bebras contest is attractive to everybody. In the light of the results
we can give a defensive “Yes” as an answer. The differences to the control group
are not that big, and it is the creativity in the Bebras tasks and the social event
(often the whole class takes part) that is a strong argument for its attractiveness.

Now, in order to raise the chance of being a Bebras winner, educators should
try to do the following: (a) keep pupils interested and open-minded, (b) support
social activities whenever possible, (c) try to provide more incentives to also
attract dominant pupils, and finally, (d) try to increase the mathematical and
verbal self-concept whenever possible.

5 Summary and Outlook

In this paper we took a closer look at different types of personality, self-concept
and interests of the winners of the Bebras contest in Austria and compared
them with a control group and group of pupils taking part at a programming
contest. It turned out that (in our setting) there is a significant difference between
the Bebras winners and the control group in the personality, self-concept and
interest dimensions. We also looked at factors predicting winning the contest,
and it turned out that a strong verbal self-concept and mathematical skills, as
well as artistic interest and an easy-going personality have a positive influence.

Due to the small group sizes there are for sure many more things to learn,
and so we are currently working on making the KAUA platform more popular
and continue collecting RIASEC, personality and general interest data, and we
also plan to repeat the study for the next and upcoming contests.

Acknowledgement. We want to express our deepest thanks to all the participants of
the study and to all the colleagues that helped us in gathering the data. A big Thank

294 A. Bollin et al.

You goes to Max Kesselbacher for implementing (maintaining) the KAUA platform
and for investing countless hours in dealing with the data used in this study.

References

1. Ackerman, P.L., Beier, M.E.: Intelligence, personality, and interests in the career
choice process. J. Career Assess. 11(2), 205–218 (2003)

2. AKSF: Kangourou Sans Frontieres. http://www.aksf.org/. Accessed 15 June 2018
3. Applebaum, M.: Spatial abilities as a predictor to success in the Kangaroo contest.

J. Math. Syst. Sci. 7, 154 (2017)
4. Bebras Webpage - Publications. https://www.bebras.org/?q=publications. 06 Aug

2018
5. Bergmann, C., Eder, F.: AIST-R. Allgemeiner Interessen-Struktur-Test mit

Umwelt-Struktur-Test (UST-R) - Revision. Manual. Hogrefe, 1 edn. (2005)
6. Cohen, J.: Differences between Correlation Coefficients. In: Cohen, J. (ed.) Sta-

tistical Power Analysis for the Behavioral Sciences, pp. 109–143. Academic Press
(1977)

7. Dagienė, V., Futschek, G.: Bebras international contest on informatics and com-
puter literacy: criteria for good tasks. In: Mittermeir, R.T., Sys�lo, M.M. (eds.)
ISSEP 2008. LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-69924-8 2

8. Dawis, R.V.: Work adjustment theory and person-environment-congruence coun-
selling. In: Brown, D., Brooks, L. (eds.) Career Choice and Development, pp. 75–
120. Jossey-Bass Publishers (1996)

9. Grandl, M., Ebner, M.: Informatische Grundbildung - ein Ländervergleich (2017).
https://www.medienimpulse.at/articles/view/1069. Accessed 15 June 2018

10. Holland, J.: Exploring careers with a typology - what we have learned and some
new directions. Am. Psychol. 51(4), 397–406 (1996)

11. Kunter, M., et al.: PISA 2000: Dokumentation der Erhebungsinstrumente. Mate-
rialien aus der Bildungsforschung, vol. 72 (2002)

12. Mujkanovic, A., Bollin, A.: Improving learning outcomes through systematic group
reformation - the role of skills and personality in software engineering education.
In: 2016 IEEE First International Conference on Connected Health: Applications,
Systems and Engineering Technologies (CHASE), pp. 97–103 (2016)

13. Nerdinger, F.W., Blickle, G., Schaper, N.: Arbeits- und Organisationspsychologie.
Springer-Lehrbuch (2001)

14. OECD: Organisation For Economic Co-Operation And Development. PISA 2006:
Naturwissenschaftliche Kompetenzen für die Welt von morgen. OECD Publishing,
Paris and W. Bertelsmann Verlag, Germany (2008)

15. Theodoropoulos, A., Antoniou, A., Lepouras, G.: How do different cognitive
styles affect learning programming? Insights from a game-based approach in greek
schools. Trans. Comput. Educ. 17(1), 3:1–3:25 (2016). https://doi.org/10.1145/
2940330, http://doi.acm.org/10.1145/2940330

16. Vańıček, J.: Bebras informatics contest: criteria for good tasks revised. In:
Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014. LNCS, vol. 8730, pp. 17–28. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-09958-3 3

17. Yamada, Y., et al.: The impacts of personal characteristic on educational effec-
tiveness in controlled-project based learning on software intensive systems devel-
opment. In: 2014 IEEE 27th Conference on Software Engineering Education and
Training (CSEE&T), pp. 119–128. IEEE, April 2014

http://www.aksf.org/
https://www.bebras.org/?q=publications
https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1007/978-3-540-69924-8_2
https://www.medienimpulse.at/articles/view/1069
https://doi.org/10.1145/2940330
https://doi.org/10.1145/2940330
http://doi.acm.org/10.1145/2940330
https://doi.org/10.1007/978-3-319-09958-3_3

Gender Differences in Graph Tasks - Do
They Exist in High School Bebras

Categories Too?

Lucia Budinská(B), Karoĺına Mayerová, and Michal Winczer

Department of Informatics Education,
Comenius University in Bratislava, Bratislava, Slovakia
{lucia.budinska,mayerova,winczer}@fmph.uniba.sk

Abstract. This paper explores gender differences across the abilities of
Junior (15–17 year old) and Senior (17–19 year old) students in terms
of solving graph problems. As a basis to our assessment, we look at the
graph tasks from the Slovak Bebras competition in 2012 to 2017 across
both Junior and Senior categories. In our earlier research on this topic,
we introduced a new method of categorising graph problems. This was
based on an in-depth analysis of the various problem types aimed at
8–15 year old students, whereby a set of indicators were defined to pre-
dict whether a task was more likely to be successfully solved by girls or
boys. In this paper, we apply the new categorisation onto graph tasks
aimed at Junior and Senior students with an aim to verify whether the
same predictors of girls’ and boys’ success remain valid. A qualitative
analysis indicates that our categorisation of graph tasks is suitable for
Junior and Senior categories with minor adaptation only. As a result of
a subsequent quantitative analysis, we find a significant difference in the
solution success rates between girls and boys in 38 out of 65 analysed
graph tasks. In 35 tasks boys were significantly more successful and these
were tasks with an overall lower success rate. Furthermore, a few tasks
with contradictory results concerning girls’ and boys’ solution success
were identified. We selected one of these tasks where a higher error ten-
dency in older students was apparent, and further analysed it together
with the students themselves (15–19 years old) in order to better under-
stand the methods used by them while solving this task. Our findings
can be used to enable authors of task sets and lesson plans to define
problems in a manner that will minimize gender success differences such
as the ones described in this study.

Keywords: Bebras · High school · Graph tasks · Gender differences

1 Introduction

The Bebras international competition in Informatics was held in Slovakia in
2017 for the 11th time, with a total of 74 216 students and pupils from 992

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 295–306, 2018.
https://doi.org/10.1007/978-3-030-02750-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_23&domain=pdf

296 L. Budinská et al.

schools taking part. Our aim is to keep continuously improving the contents of
the contest which attracts a relatively broad spectrum of students from various
educational backgrounds and is by no means limited to a small population of
gifted students with strong academics. The growing number of participants year
on year motivates us to create new and better problems for the future rounds
of the competition. As part of the preparation of the problems for the Bebras
competition, we are concerned both in terms of the content as well as the formal
definition of the tasks. To do this more effectively, results from prior years are
extensively analysed. In doing so, we wish to better understand the relationship
between students’ solution success rates and the content and form of the tasks
introduced in the Slovak competition.

In our previous research we focus on participant categories concerning stu-
dents aged 8–15 years, i.e. Little Beavers, Benjamins and Cadets. In [1] our
initial data sample covers the Little Beaver category (7–9 years old) during the
2012–2017 period. Based on a qualitative analysis of the problems presented
to the contestants, a new task categorization is defined, distinguishing between
‘programming’, ‘logical’, ‘algorithmic’ and ‘user’ tasks. An indication of gender
differences in terms of solution success rates is observed within a subset of the
‘logical’ task category where graphs in any form were present. However, as the
overall number of problems in this category was low, we expand our sample to
also include the Benjamin (10–12 years) and Cadet (13–14 years) categories.
Our findings confirm significant differences in problem solutions depending on
gender [2]. Specifically, we are able to identify a set of criteria which allows one
to predict whether a given task is more likely to be successfully solved by boys
as opposed to girls or vice versa. Identification of gender differences allows us
to adopt a better informed problem setting strategy with a view to make the
contest equally accessible and enjoyable for both girls and boys, which was the
main motivation behind this study. The results can also help teachers lectur-
ing on graph structures and/or algorithmic problem solving, as both of these
thematic areas are part of the Slovak Informatics curriculum.

Other research [3,4] suggests that boys tend to be generally more successful
than girls in solving the Bebras tasks. We argue that these findings can be fur-
ther expanded on by encompassing task-specific considerations, i.e. accounting
for commonalities between some of the contest problems. The attractiveness of
Bebras tasks to girls is studied in [3], indicating that “girls perform better in a
certain task if three conditions of Keller’s ARCS Model of Motivation are met:
the tasks have to be visually appealing to attract the attention of girls, they
have to represent a situation relevant to real life, and they have to be compara-
bly easy to solve.” Valentina Dagiene [5] further states that “(a) boys and girls
show different results when it comes to problems that require spatial thinking.
It takes them the same amount of time to solve the task, but boys do it better.
(b) Pupils’ performance in terms of contest problem solving increases with age,
but boys of lower grades have almost equal results as girls of upper grades. (c)
Guessing is frequent in multiple-choice questions: about 10% of contestants try
to guess the right answer, with boys doing this more frequently.” There is a vast

Gender Differences in Graph Tasks 297

array of literature [6,7] focusing on estimating the difficulty of contest problems,
however the success of these methods is only moderate.

Furthermore, there are studies aimed at delving into the differences and sim-
ilarities between genders [8]. However, the goal of this paper is not to focus on
a specific feature of one of the genders or to try enforcing their success in the
competition. Our aim is to understand how to set contest tasks in a way that
makes them equally attractive and solvable for both genders, and as a next step,
help teachers overcome the issues that boys or girls may have when solving spe-
cific types of problems. Ilomaki [9] also agree that it is extremely important and
entirely possible to set problems in a manner that would entice girls’ motiva-
tion and thus make graph tasks more attractive to girls. We believe this may be
crucial in order for girls not to lose interest in Informatics.

2 Graph Tasks

In previous research we studied graph tasks in primary and lower secondary
school participant categories. We consider a task to be a graph task when there
is a graph data structure (contains vertices and edges). Graphs can be repre-
sented as a diagrams or tables or even text. As a graph task we count diagrams
representing actions or relationships, quadratic grids in which orientation and
adjacency of cells is relevant.

2.1 Categories of Graph Tasks

Based on a qualitative analysis [10] of tasks that we considered to be graph
tasks from participant categories Little Beaver, Benjamin and Cadet, we used
the following criteria to assign tasks to specific categories.

– Type of structure: tree, quadratic grid, directed or undirected graph, etc.
– Method of how the task is solved:

• Reading the graph: gathering information from the structure.
• Creating the graph: creating or adapting the graph according to the

instructions.
• Transformation of the graph: changing the graph representation (e.g. from

diagram to a table).
– Type of algorithm used: set only if the assignment required using the algo-

rithm (e.g. finding the shortest path, vertex cover, backtracking, traversing
of the graph).

– Interactivity: choosing from four possibilities or interactive task.

Based on previous criteria we established five categories of methods/strategies
that we assume students have used to solve the problems. These are:

– Developing the strategy: to solve the task one needs to choose a strategy
for traversing or modifying the graph, or simply to reduce the number of
possibilities that have to be examined.

298 L. Budinská et al.

– Discovering the strategy: a hint concerning the strategy is included in the
text of the assignment or in the examples, and hence the student only needs
to discover it and use it appropriately.

– Graph search with certain constraints: one has to account for the con-
straints set within the assignment or the constraints that are given by the
graph structure (e.g. direction of the edges or their values).

– The “look and see” method: to solve the task one simply needs to grasp
the graph structure and read the answer from it.

– Try all possibilities: in these problems there is usually a small number of
possibilities (4–6). Students can try all of them and realize which one is the
correct one. The possibilities can be set directly, or one has to identify them.

As part of the qualitative analysis we were also considering the length of the
assignment text and the type of pictures.

2.2 “Girls”’ and“boys”’ Tasks

In previous research, chosen graph problems from categories Little Beavers (7–9
years), Benjamins (10–12 years) and Cadets (13–14 years) were further exam-
ined based on the associated participants’ solution success rates. With the use of
statistical methods three groups of tasks were obtained: (1) group in which girls
and boys were equally successful, (2) group in which boys were substantially
more successful and (3) group in which girls were more successful than boys.
The type of problems in the latter group (3), i.e. the “girls” tasks, contained
complex structures (e.g. automata, labyrinths, graphical representation of mul-
tilist, directed and undirected graphs and trees) however the used operations
were quite simple (reading directly from the graph or evaluation of a small num-
ber of possibilities) and the beginning of the solution within the graph structure
was marked or visible in a straight way. The assignment text for these prob-
lems was shorter as the pictures of the actual graph structures contained more
information (often with labelled vertices and/or edges). Hence one could say the
tasks were less abstract. On the other hand, the “boys” tasks had longer text,
but the structures were simpler (quadratic grid, undirected graphs) than the
ones observed in the “girls” tasks. Pictures in the text assignments were more
abstract and one cannot immediately see the starting vertex. Many of the tasks
had a large number of potential (sometime even correct) solutions and there-
fore one had to use a certain strategy or algorithm to obtain the right solution.
With this type of problems, the students either developed their own strategy or
performed a graph search with some constraints to reach the solution. A huge
portion of “boys” tasks had an overall low success rate and were categorised as
hard.

3 Research Methods

The research presented in this paper had several research goals. The first goal was
to validate if our problem categorization mentioned in Sect. 2.1 can be applied

Gender Differences in Graph Tasks 299

to tasks relating to older participant categories or if it needs be redefined (and
if so, then how). The second but equally important goal was to establish as to
what extent the observed solution success rate differences between boys and girls
were dependent on age. Can we find the same differences among older students
too? At first, we tried to apply our categorisation on problems from the Junior
and Senior participant categories. We chose qualitative research [11] whereby
a method of coding was used to apply our categorisations to all tasks in both
categories across years 2012 to 2017. 65 graph tasks were selected, consisting of
35 Senior tasks and 31 Junior tasks (one used in both categories).

To answer our second research goal, we used quantitative data analysis to
determine if we can predict the success of girls and/or boys in the tasks across
the two secondary school participant categories according to the same rules that
were used for the primary school (Little Beavers, Benjamins and Cadets) task
analysis. Based on the data available we analysed how students proceeded with
solving the selected tasks. There were three possible outcomes: correct, incorrect
and not solved. These are by definition categorical data and hence we used a
test described in [12–14]. The data used was based on anonymized results of all
participants in the actual contest. In each year there were about 10 000 students
in both categories. Detailed numbers including gender specifics can be found in
Table 1.

Table 1. Numbers of participants in both categories

12–13 13–14 14–15 15–16 16–17 17–18

Senior Girls 1150 1206 1439 1633 1392 1698

Boys 3006 2793 3106 2921 2962 3018

All 4156 3999 4545 4554 4354 4716

Junior Girls 2334 2542 2935 3648 3385 3181

Boys 4132 4066 4138 4988 4794 4594

All 6466 6608 7073 8636 8179 7775

Considering the categorical nature of our data we used a contingency table.
We observe gender: female or men, r = 2 and success in solving a given task:
correct, wrong and do not solve, c = 3. Therefore a 2 × 3 (r × c) contingency
table was used and the hypothesis H0: gender and success in solving the task
are independent, H1: gender and success in solving the task are dependent, were
tested. We used Pearson chi-square test of independence (in contingency tables).
The testing criterion is

χ2 =
2∑

i=1

3∑

j=1

(nij − ninj

n)2
ninj

n

,

where nij is value in row i and column j in contingency table, nx sum of all values
in row/column x and n sum of the whole table. If χ2 > χ2

(1)(2)(α), (obtained
from statistical tables) we did not accept H0 at level α. In case of rejecting H0

we examined standardized Pearson residuals.

300 L. Budinská et al.

4 Results

In contrast with categories for younger students (7–14 years) we observed a
different ratio of girls’ and boys’ tasks across the categories for older students.
In our analysis of 65 graph tasks, girls were more successful than boys in only
3 tasks, 27 tasks were neutral (no statistically significant difference between
genders) and in 35 tasks boys were more successful. (Part of the results can be
seen in Table 2.) Thus, we can argue that boys (15–19 years old) are significantly
more successful in solving graph problems than girls in the same age group.
Similar results were obtained in [5]. All three girls’ tasks do not show significant
common attributes. One task contained finite automaton and the other two tasks
were about a family tree, whereby in one it was shown as a picture and in the
second one only a table description was given.

Our analysis of the contest problems indicates that tasks which were con-
sidered girls’ tasks in younger categories (shorter text in assignment, concrete
picture of graphs, one should do simple transition in graph or examine a small
number of possibilities, or the answer is observable) were mostly neutral in cat-
egories for older students.

Abstract structures, discovering and mainly developing a strategy together
with optimization tasks are usually boys’ tasks, the same as it was in categories
for younger students. However, such tasks are much more frequently used in
categories for older students. Most of boys’ tasks contained some graph algorithm
(e.g. vertex cover, minimal spanning tree, graph search) or the starting point of
the solution was not clearly shown and it was necessary to use a certain strategy
(there were usually too many possibilities and it was inevitable to eliminate them

License Plate

Beaver built a new ra . He needs to register it with a license which is composed
according to diagram below:

The licence starts with the le er B (arrow from outside) and ends with digit 0 or
1 (double circle).

Which of the following licences cannot be created by this diagram?

A) BB001 B) BSA001 C) BE0S01 D) BR00A1

2016-LT-02

Fig. 1. Girls’ task – Senior (17–19 years old), year 2016/17, girls’ success rate: 82%,
boys’ success rate: 77%

Gender Differences in Graph Tasks 301

or to go through them in a systematic way). Sample tasks can be seen in Figs.1,
2, 3 and 4.

Beaver‘s teritory
The territory of Beaver is defined by the area he can reach from his home in less
than 5 minutes.

The diagram below represents Beaver’s home (the red circle), and the surrounding
area. Every minute, Beaver can move from his current square to the squares
above, below, to the le or to the right of his current square, but he cannot move
into black squares.

Color every square of Beaver’s territory, by clicking on all the squares he can reach
within 5 minutes of his home. To help you keep track, you can change color by
clicking on the rectangles on the right. Once a square is colored, you can click again
on it to cancel.

2012-FR-07

Fig. 2. Boys’ task – Senior (17–19 years old), year 2012/13, girls’ success rate: 23%,
boys’ success rate 42%

E-Friends
Friendship of 5 animals is shown in the picture and in the table below. The lines show
which animals are friends with each other. The table records how many friends each
animal has.

Which of the following cannot be the table recording friendships of 5 other animals?

A) B) C) D)

Animal Number of
Friends

beaver 4

rabbit 2

hedgehog 2

squirrel 1

skunk 1

Animal Number of
Friends

fox 4

groundhog 2

chipmunk 2

turtle 1

snake 1

Animal Number of
Friends

fox 4

groundhog 2

chipmunk 2

turtle 1

snake 1

Animal Number of
Friends

fox 4

groundhog 2

chipmunk 2

turtle 1

snake 1

Animal Number of
Friends

fox 4

groundhog 2

chipmunk 2

turtle 1

snake 1

2016-PL-01

Fig. 3. Neutral task - Senior (17–19 years old), year 2016/17, girls’ success rate: 46%,
boys’ success rate: 46%

302 L. Budinská et al.

Table 2. Example of three neutral, boys’ and girl’ tasks. Columns girls and boys show
task success rate. Pearson residuals are from left to right for boys’ correct answer,
boys without answer (not solved) and boys’ incorrect answer. (Residual table is 2 × 3.
Residuals for girls are the opposite numbers.)

Task Girls Boys Pearson residuals

Neutral 2013-TW-04 45% 44% −0.26 −0.273 0.43

2015-IL-01 76% 76% 0.049 −0.979 0.43

2016-PL-01 46% 46% 0.118 0.981 −0.56

Boy’s 2012-FR-07 23% 42% 11.42 −2.698 −9.88

2013-UA-01 47% 57% 5.513 −0.265 −5.67

2017-RO-06 46% 56% 8.39 0.974 −8.6

Girl’s 2016-LT-02 82% 77% −3.13 1.353 2.84

2012-HU-06 84% 82% −2.16 0.695 2.05

2011-IT-01b 53% 51% −1.45 −1.944 2.45

The task Text Machine (Fig. 4) turned out to be a contradictory one as our
analysis goes. Girls and boys (15–17 years) solved it equally successfully, however
older boys (17–19 years) were significantly more successful than girls in the same
age group. We are not able to explain this discrepancy, as this was not supposed
to be a boys’ task according to our criteria classification.

We were interested in understanding the reasoning behind this paradox.
Hence, a slightly modified assignment (we changed the input word and re-drew
the picture) was prepared and submitted for solving to high school students via
an electronic questionnaire form. We shared the link to the questionnaire with a
group of teachers that we collaborate with as part of our other research activities.
Alongside the problem solution we further asked students to specify their grade,
gender, whether they participated in the Bebras competition and if they have
Informatics as a compulsory or elective module at their school. Students were
also asked to describe the strategy or method they used to solve the problem.

We received 178 questionnaire responses, with 93 falling under the 15–17 age
group (Junior) out of which 36 were girls, and 85 falling under the 17–19 age
groups (Senior) out of which 44 were girls. 131 students answered correctly -
the detailed solution success rates can be found in Table 3. The results show
the same trend as what was previously observed from the data from the actual
competition. Younger girls and boys had similar solution success rates. There
were more incorrect answers among older girls. Based on their answers, younger
students tried all possibilities whereas older students attempted to find a “bet-
ter” strategy and (maybe therefore) often made a mistake. Some of the younger
boys and older girls specified that they were guessing the correct answer. Usu-
ally these guessed answers were provided by students attending an Informatics
module due to it being compulsory at their school and who have not taken part
in the Bebras competition in the past. Hence we may conclude that these were

Gender Differences in Graph Tasks 303

Text machine
We have two kinds of text machines. The Glue machine takes two words and glues
them together (upper le picture), the Reverse machine takes one word and reverses
it (lower le picture).

We created a complex machine as you can see in the right picture. Our complex
machine needs three words to work on (grey ellipses), processes them, and gives one
word as the result of its work in the bo ommost ellipse.

From which words was the word JAZIERKO created?

A) EIR AJ KRO B) RIE ZAJ KO C) AJ EIZ RKO D) REI ZAJ KO

2012-SK-02

Fig. 4. “Contradictory task” - Junior and Senior (15–19 years old), year 2012/13,
Junior girls’ success rate: 60%, Junior boys’ success rate: 59%, Senior girls’ success
rate: 60%, Senior boys’ success rate: 65%

students with a lower interest in Informatics as a subject. Considering the results
of the questionnaires we did not find a statistically significant difference between
boys’ and girls’ solutions, however there was a significance in difference between
Juniors’ and Seniors’ solutions in favour to Juniors, Pearson residual was 2.57.

5 Discussion

We have identified a few potential areas of weakness in relation to our study.
We acknowledge that there may have been an instance of imprecision during
the task coding process with a risk of an incorrect category being assigned to
a given task. This may stem from an expansion of the research team, whereby
new members were applying categories to the graph problems, however they did
not partake in the creation of these categories. On the other hand, we see this
as a form of verification of the criteria clarity. It was shown that criteria are
applicable to tasks in the 15–19 years categories with minor adjustments only.
Certain more complex data structures, graph problems and graph traversing
algorithms (e.g. the Eulerian path, Hamiltonian path and articulation points),
which would naturally be too advanced for younger students, were added to the
sample as these were relevant with the higher competition category.

From the results it is strongly evident that boys are significantly more success-
ful than girls as we see from 35 boys’ tasks vs. 3 girls’ tasks. The reasoning behind
this discrepancy can be only assumed. Nevertheless, our criteria are still valid

304 L. Budinská et al.

Table 3. Answers of questionnaire

Correct Wrong

15–17 year Girls 83,33% (30) 16,67% (6)

Boys 80,70% (46) 19,29% (11)

All 81,72% (76) 18,28% (17)

17–19 year Girls 56,82% (25) 43,18% (19)

Boys 73,17% (30) 26,83% (11)

All 64,71% (55) 35,29% (30)

for some subsets of the tasks. While analysing the possible reasons behind such a
large imbalance in successful solving of graph problems among boys versus girls,
we came to a conclusion that with increasing difficulty of graph problems, girls’
success in identifying a correct solution decreases. This occurred in younger stu-
dent categories too, which further strengthens our belief that this hypothesis may
be true. In [15] the author finds that girls “sought a deep, conceptual understand-
ing of mathematics” and in latter work [16] she adds that girls need to know how,
when and why methods work and without this understanding they can lose inter-
est and motivation to complete the task. Even though the problems analysed in
this paper are not purely mathematical (graph theory is mostly considered inter-
disciplinary), similar reasons could be causing girls’ underachieving in harder
tasks (which often required to create or uncover strategy, and thus involved
methods which could not have been known by secondary school students).

Another potential explanation of our results could be the fact that the Junior
category appears to be a significant step-up in terms of difficulty in comparison
with the categories below. As part of their feedback to the organizers, contestants
in the Junior category often mention lack of time as a constraint for completing
the full set of tasks. Furthermore, motivation elements (e.g. fun story, pictures,
etc.) are used less in assignments for Juniors and Seniors than they are in the
lower categories. All of the aforementioned may cause a decreasing number of
female participants in the higher categories of the competition, as well as a
potentially decreased motivation to solve the tasks successfully. These findings
serve as a strong incentive for us to ensure that in future rounds of the com-
petition, we set tasks so that the motivational aspect or the formal assignment
of the tasks does not discourage girls from partaking or adversely affect their
results in the contest.

Based on a further analysis of the questionnaires we assume that the source
of a lower success rate in higher categories could also be caused by the stu-
dents’ ambition to discover strategies that will enable them to reach the solution
much faster than trying all of the possibilities. In these cases, students often
choose a wrong answer possibly due to a combination of distractors among the
four possible answers which tend to include some of the most frequent solution
misconceptions.

Gender Differences in Graph Tasks 305

The authors of this paper have personal experience teaching students of this
age group and they have empirically observed that girls tend to be more often
interested in subjects other than Informatics, and some of them get enrolled into
the competition without any particular intrinsic motivation.

6 Conclusion

The main aim of our research was to apply our own categorization of graph
tasks for pupils aged 7–14 years to tasks from categories Junior and Senior (stu-
dents aged 15–19 years). Our intention was to verify the usability of our previous
graph tasks categorization and we were also interested in finding out if the fac-
tors determining the gender relative task success from the lower categories could
be applied to the higher categories. We analysed 65 graph tasks from Junior and
Senior categories. Only a few new data structures and algorithms were neces-
sary to add as subcategories, otherwise the categorization stayed identical. The
methods/strategies students used in solving these tasks also remained largely
the same and these mostly showed dependence with gender performance.

Out of the 65 analysed tasks, there were 3 tasks identified where girls’ solution
success rate was significantly higher, 27 tasks with no differences in success
rates of girls and boys (we call this group neutral) and 35 task where boys
where significantly more successful. It can be concluded that criteria for boys’
tasks (i.e. tasks with significantly higher success rate in boys) are the same as
for the lower competition categories that we studied before. Boys’ tasks include
abstract pictures, require good understanding of the given structure, however the
structures may be relatively simple. On the other hand, girls’ tasks and neutral
tasks (in which there was no significant difference between boys and girls, but
girls had slightly better results) show graphs with relationships, vertices or edges
and are often labelled with real world objects. These properties are the same as
properties of girls’ tasks in the lower competition categories.

The big discrepancy between the numbers of girls’ and boys’ tasks could be
explained by mostly boys’ motivation being used in tasks. In lower categories
the graph tasks were generally posed as easy, whereas in categories Junior and
Senior graph tasks were usually posed as medium to hard, thus having lower
overall success rate. Understanding differences between solution success rates of
boys and girls at a deeper level could help us uncover possible weak spots in the
Bebras competition. Therefore, we plan to further study the differences between
boys and girls task success rates, specifically focusing on how task formulation
could make the task success rate of girls and boys more alike.

As graph theory is an essential part of computer science, and many of its
problem are posed as logical puzzles to secondary school students, we consider
many of the analysed tasks applicable in school Informatics lessons. Therefore,
the presented results can also help Informatics teachers create better materials,
as setting only boys’ tasks can demotivate girls and vice versa. We also plan
to perform a further in-depth study of students’ solution process in relation
to graph problems, aiming to gain an even better understanding of why some

306 L. Budinská et al.

problems are harder for girls or for boys, and perhaps going as far as identifying
the source of their error tendency. We believe that with the right approach all
individuals should be able to successfully solve graph problems and experience
the beauty of graph theory.

Acknowledgement. We would like to thank referees for their comments on this
paper. This research was supported by the VEGA 1/0797/18 and the UK/249/2018
grants.

References

1. Budinská, L., Mayerová, K., Veselovská, M.: Bebras task analysis in category lit-
tle beavers in Slovakia. In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS,
vol. 10696, pp. 91–101. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71483-7 8

2. Budinská, L., Mayerová, K.: Graph tasks in Bebras contest: what does it have to
do with gender? In: Proceedings of the 6th Computer Science Education Research
Conference, pp. 83–90. ACM (2017)

3. Hubwieser, P., Hubwieser, E., Graswald, D.: How to attract the girls: gender-
specific performance and motivation in the Bebras challenge. In: Brodnik, A., Tort,
F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 40–52. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46747-4 4

4. Hubwieser, P., Mühling, A.: Playing PISA with Bebras. In: WiPSCE 2014. ACM,
Berlin (2014)

5. Dagien, V., Pelikis, E., Stupurien, G.: Introducing computational thinking through
a contest on informatics: problem-solving and gender issues. Informacijos Mok-
slai/Inf. Sci. 73, 55–63 (2015)

6. Vegt, W.: Predicting the difficulty level of a Bebras task. Olympiads Inf. 7, 132–139
(2013)

7. Vańıček, J.: What makes situational informatics tasks difficult? In: Brodnik, A.,
Tort, F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 90–101. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46747-4 8

8. Shibley Hyd, J.: The gender similarities hypothesis. Am. Psychol. 60(6), 581–592
(2005)

9. Ilomaki, L.: The effects of ICT on school: teachers’ and students’ perspectives:
Ph.D. thesis, University of Turku (2008)

10. Švař́ıček, R., Šed’ová, K.: Kvalitativńı výzkum v pedagogickéch vědách. Portál,
Praha (2014)

11. Creswell, J.W.: Educational Research: Planning, Conducting, and Evaluating
Quantitative and Qualitative Research, Enhanced Pearson eText with Loose-Leaf
Version-Access Card Package (2015)

12. Chráska, M.: Metody pedagogického výzkumu. Grada (2007)
13. Agresti, A.: Categorical Data Analysis. 2nd edn. Willey (2002)
14. Wimmer, G.: Štatistické metódy v pedagogike. GAUDEAMUS, Hradec Králové

(1993)
15. Boaler, J.: Paying the price for “Sugar and Spice”: shifting the analytical lens in

equity research. Math. Thinking Learn. 4(2–3), 127–144 (2002)
16. Boaler, J.: Mathematical Mindset – Unleashing Students’ Potential Through Cre-

ativeMath, Inspiring Messages and Innovative Teaching. Jossey-Bass (2016)

https://doi.org/10.1007/978-3-319-71483-7_8
https://doi.org/10.1007/978-3-319-71483-7_8
https://doi.org/10.1007/978-3-319-46747-4_4
https://doi.org/10.1007/978-3-319-46747-4_4
https://doi.org/10.1007/978-3-319-46747-4_8

Differences Between 9–10 Years Old
Pupils’ Results from Slovak and Czech

Bebras Contest

Lucia Budinská1(B), Karoĺına Mayerová1, and Václav Šimandl2

1 Comenius University, 842 48, Bratislava, Slovakia
{lucia.budinska,mayerova}@fmph.uniba.sk

2 University of South Bohemia, 371 15 České Budějovice, Czech Republic
simandl@pf.jcu.cz

Abstract. The education system in Czechia and the education system
in Slovakia are very similar but while in Slovakia the education reform
(together with the reform of the curriculum for Informatics) was imple-
mented some years ago, in Czechia it is currently being prepared. Infor-
matics in Slovakia is taught from primary school, unlike in Czechia where
it only appears in some types of high school. Nevertheless, both coun-
tries organise the Bebras challenge - the international Informatics con-
test. Therefore, we were interested in the achievement of pupils from the
two countries, expecting Slovakian contestants to be more successful. We
analysed the results from both competitions, focusing on the age cate-
gory Little Beavers/Mini, which includes younger primary school pupils.
This paper presents a case study, in which we compare Year 4 contestants
(9 to 10 years old) from the two countries. Their results from 15 tasks
with the same form and wording (to minimise the influence of other fac-
tors) were studied. As it results from the study, Slovakian Year 4 pupils
are more successful in digital literacy tasks and in algorithmic tasks and
they are slightly more successful in statement logic tasks and in pro-
gramming tasks. In logic tasks dealing with graph theory no significant
differences between among Year 4 pupils in Slovakia and Czechia were
revealed. For each from the 15 tasks’ results, gender differences were
also analysed - dividing tasks into three groups (girls’ tasks, boys’ tasks,
neutral tasks), with almost the same distribution for both countries.

Keywords: Bebras contest · Informatics education
Slovakia vs. Czechia · Computer science · Gender differences
Country comparison

1 Introduction

Czechia is preparing to reform the provision of informatics by beginning to teach
algorithms and programming in primary schools. This new teaching approach is
very different from the current concept of teaching informatics at primary/lower

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 307–318, 2018.
https://doi.org/10.1007/978-3-030-02750-6_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_24&domain=pdf

308 L. Budinská et al.

secondary level. Contrarily, a similar reform had already been introduced in
Slovakia several years ago, first in 2008. The breadth and depth of informatics
and its content is currently set out in the Innovated National Curriculum [1]. It
requires schools to teach a minimum of 1 lessons of informatics a week in two
years at primary level1 and 1 lesson a week in four years at lower secondary level.
Hence, informatics focuses not only on the teaching of digital literacy but also
on the teaching of computational thinking and computer science basics from the
earliest age groups.

At the moment, the informatics section of the Czech national Curriculum for
primary and lower secondary schools completely fails to take into account com-
putational thinking, including algorithms and programming [2]. Table 1 shows
that schools are required to teach a minimum of one lesson per week throughout
the primary level [2]. However, schools can decide to increase this number by
using extra lessons they have at their disposal.

According to the curricular documents mentioned above, there are clearly
great differences in the teaching of computational thinking at primary/lower sec-
ondary schools in the two countries. What unifies both countries in this respect
is their participation in the Bebras contest, which aims to support computa-
tional thinking at all levels of education. Both countries organize the contest in
several age categories, ranging from primary school pupils to high school stu-
dents in their final year, for primary and lower secondary school categories see
Table 1. In the past, the two countries have worked together to compare results
from the contest [3,4]. The authors faced problems with implementation and
incoherency of data, having compared data from the school years 2007/8 and
2008/9. Finland, Lithuania and Sweden also attempted to carry out an interna-
tional comparison of results from this contest [5]. Their findings indicate that
there was a slight mismatch between the difficulty level of the tasks used in
the contest and students’ actual abilities, as some tasks were too difficult. Their
results also show that there is no difference in performance between boys and
girls in this age group. A German research [6] reveals that there is no significant
difference between the performance of girls and boys in younger age group in

Table 1. Differences between informatics in school in Slovakia and Czechia, together
with respective Bebras categories

Typical age: 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14-15
primary school lower secondary school

Year: 1. 2. 3. 4. 5. 6. 7. 8. 9.
Czech categories in Bebras contest Mini Benjamins Cadets

Czechia 1 1Number of years
of informatics Slovakia 1 1 1 1 1 1

until 2016 Little Beavers Benjamins CadetsSlovak categories
in Bebras contest from 2017 Mini Little Beavers Benjamins Cadets

1 Primary level in Slovakia includes Years 1 to 4 only.

Differences Between Pupils from Slovak and Czech Bebras Contest 309

this contest. However, the differences increase dramatically with the age of the
contestants [6].

In the run-up to a reform in Czechia, it would be of benefit to ascertain to
what extent and in which areas the competences of Slovakian primary pupils
differ from the competences of Czech pupils in the same year group and if the
differences in gender performance could be caused by informatics education. We
assume the Czech and Slovakian versions of the Bebras contest could provide a
suitable platform for such research, measuring pupils’ results achieved in com-
parable tasks. The two countries have a very similar culture, both having very
similar sets of values, a similar education system and school curriculum. It can
therefore be expected that school teaching will be the real cause of particular
differences in pupils’ competences. Another reason for selecting this platform is
the large number of participants.

2 Research Aims

Our main research aim is thus to ascertain whether there are differences in Czech
and Slovakian primary pupils’ achievement in the Bebras contest and, if so, in
which areas of informatics. The impact of informatics teaching on Slovakian
pupils as compared to Czech pupils, who are not taught informatics to such an
extent, will be of interest to us. We are aware that this research problem should
have a clear answer that the teaching of informatics positively influences con-
testants’ achievement in Slovakia. However, this was not unanimously confirmed
by some of the results of the pilot study examining this issue. For that reason,
we decided to investigate this in more detail.

As stated above, there is no significant difference in boys’ and girls’ overall
achievement in the Bebras contest in this age group. However, among older
pupils, boys are more successful than girls. Therefore, our additional research aim
is to ascertain whether informatics education influences the difference in boys’
and girls’ achievement in some task group from the Bebras contest. It is possible
that informatics teaching has a significant positive impact on achievement of one
gender while the other gender is not influenced to such an extent. The impact of
informatics teaching on differences in Slovakian girls’ and boys’ achievements as
compared to differences in Czech girls’ and boys’ achievements will be of interest
to us.

Two hypotheses were created and tested using analysis of gathered data:

1. Slovakian Year 4 pupils’ achievement in identical tasks in the Bebras contest
is statistically significantly higher than that of Czech pupils of the same age
in identical tasks in the Bebras contest.

2. Differences in Year 4 boys’ and girls’ achievement in identical tasks are the
same in both countries.

310 L. Budinská et al.

3 The Bebras Contest

Both Czechia and Slovakia take part in the international Bebras contest, aimed
at informatics and computational thinking [7]. This contest is designed for
primary/lower secondary pupils and high school students and is organised into
several age categories2. The contest is called Bobř́ık informatiky in Czechia and
iBobor in Slovakia. Both countries base their contests on the common Bebras
core but they differ in partial decisions. Take the list of tasks used in the contest
for example - despite a database of contest tasks being available to be accessed
by all countries, each country is entitled to use its own subset of tasks [3].

3.1 Primary Level Contest Categories

Category Mini is designated for pupils in year 4 and 5 in the Czech version
of the Bebras contest and in the Slovakian version this includes Benjamin and
Little Beavers categories. Year groups which each category is designated for
can be found in Table 1. Regarding our research aim, it appears to be most
convenient to compare the results of pupils in the Mini (CZ) and Little Beavers
(SK) categories. These categories focus on the competences of primary pupils
(as opposed to the Benjamins category, which could include tasks verifying the
competence of lower secondary pupils) and have been running in the contest
for several years (category Mini (CZ) since 2012 and Little Beavers (SK) since
2011). The following part provides a comparison of the characteristics which the
categories Mini (CZ) and Little Beavers (SK) have in common and those they
differ in.

3.2 A Comparison of Categories Mini (CZ) and Little Beavers (SK)

Category Mini (CZ) and category Little Beavers (SK) have the same 30 min
time limit for solving 12 tasks. There are three types of tasks in both categories:
(a) multiple choice with four possible answers, (b) short-answer tasks (e.g. the
contestant enters a certain number), (c) interactive tasks, where the contestant
e.g. might drag cards with pictures to designated positions.

Tasks in both categories are divided into three levels of difficulty - easy,
medium and hard. Contestants receive a certain number of points for a correct
answer, whereas points are subtracted for an incorrect answer. The contestant’s
score remains unchanged if he leaves the question blank [8,9].

There are differences between the contests as well, though. One of them
concerns interactive tasks. In the Slovakian category Little Beavers, interactive
tasks often have a lower success rate. Interactivity offers pupils more possible
answers, thus making it more difficult. The conception of interactive tasks in the
Czech category Mini is to use them more as a help and they may even comprise
answer checks, increasing their success rate as opposed to the Slovakian ones.
Another difference is also linked to answering. Although contestants in both

2 http://bebras.org/?q=structure.

http://bebras.org/?q=structure

Differences Between Pupils from Slovak and Czech Bebras Contest 311

countries have the right to decide whether to answer a question or not, the way
of leaving a question blank differs. In the category Mini (CZ), the contestant can
check a special box Leave blank, whereas he can cancel his choice by pressing a
Delete answer button in the category Little Beavers (SK). Results indicate that
this is a significant difference and Czech contestants decide to leave a question
blank much more often than Slovakian contestants. Another difference between
the categories is in the way contestants register for the contest. In the Mini (CZ)
category, contestants register for the contest themselves just before the contest
is about to start by using a so-called school code provided by the contest’s
school coordinator. This code is common for all contestants in one school. In
the Little Beavers (SK) category, the school coordinator registers a contestant
for the contest. The selection of contestants is left to the coordinator and often
depends on the school’s capacity possibilities. If the school does not have a
sufficient number of computers available, coordinators must select pupils who
will compete.

4 Research Method

4.1 Choice of Comparable Tasks in the Mini and Little Beavers
Categories

Tasks that were mutually comparable or the same were selected for research from
the Czech Mini category and the Slovakian Little Beavers category. The selection
of such tasks was carried out qualitatively. As each task is named differently in
the Czech and Slovakian version, task content had to be compared. Comparison
was done by means of qualitative coding [10] of the wording of the assigned
task. Tasks were analysed by each researcher separately then jointly discussed.
We focused on task type, wording of answer choices including incorrect answers
(so-called distractors) and accompanying graphics. Tasks were not compared
only within one year of the contest but throughout the duration of the contest
from 2012 to 2017. By doing this, 15 tasks were identified as seeming to be fully
comparable and being used in both the Czech Mini category and the Slovakian
Little Beavers category. Along with them, another 9 tasks were identified as
seeming to be comparable to a certain extent, differing only slightly (for example
different distractors or different question). Particular care needs to be taken in
interpreting comparisons of contestants’ achievement and for that reason these
9 tasks will not be used for further analysis. Only the 15 identical tasks will be
explored.

4.2 Data Processing

The Bebras contest already has its own task categorization, but we have formed
our own categorization during the last year, based on tasks from Slovakian con-
test, to suit our research [11]. In the first phase of this research, i.e. during

312 L. Budinská et al.

the qualitative phase, tasks were placed into individual categories from our own
categorization. A brief description of the categories follows:

– Digital literacy tasks – focusing on verifying knowledge and skill that prove
a good software or hardware understanding;

– Logical tasks subdivided into:
• graph tasks – pupils work with a graph structure (net, binary tree, etc.),

carrying out complicated or less complicated operations on it;
• statement tasks – by examining statements, pupils have make judge-

ments as to which answer is correct. Statements may be in the form of
text or picture.

– Algorithmic tasks – pupils observe a procedure, algorithm or set of instruc-
tions to guide them to find the result of operating with objects or information.
It is usually a matter of dynamic action.

– Programming tasks – pupils either create or interpret a program in the
form of simple commands, cards or icons.

4.3 Sample of Participants

Having identified appropriate tasks, the second part of the research was
approached. This was of a quantitative character. The sample of research par-
ticipants was made up of contestants from the Mini(CZ) and Little Beavers(SK)
categories, i.e. Year 4 primary school pupils. This is the only primary year group
that competed in the same category in both Slovakia and Czechia. From the
Czech Mini category, all contestants who had not been explicitly excluded by
the school coordinator of the contest (for example due to cheating) and had
registered themselves as Year 4 pupils became participants. It can be said that
this is a case of nonprobability sampling, more specifically convenience sampling
[12]. In the Slovakian Little Beavers category, it was all the contestants from
Year 4 who had responded to at least one task. This was close to double the
number of participants than in the Czech contest. Numbers of contestants are
given in Table 2.

Table 2. Number of Year 4 girls and boys in Slovak and Czech competition for each
analysed year

Contest year Mini (CZ) Little Beavers (SK)

Boys Girls Boys Girls

2017 2 407 2 157 4 714 4 309

2016 3 037 2 714 4 280 3 940

2015 1 719 1 568 4 267 3 923

2014 1 503 1 348 3 794 3 288

2013 1 040 901 3 597 3 186

2012 1 152 470 3 020 2 697

Differences Between Pupils from Slovak and Czech Bebras Contest 313

4.4 Data Analysis

Data needed for the analysis were gained from databases. Although both coun-
tries use their own database, differences between them are not significant for
data analysis. Table 2 indicates the considerable differences in numbers of Year
4 pupils, i.e. our research participants. For that reason, we searched for a statis-
tical method that would take the differing sample sizes into account and prove
to be suitable for comparing the two distinct groups. For each task there was
created contingency table with two nominal variables, country (SK or CZ) and
answer (correct, incorrect, none) and we seek to find out if the results in the
task is dependent on the participants’ country. Therefore, we decided to use the
Chi square test of independence [13,15] for each task which we identified as fully
comparable. While chi-square test provides little information about the nature
of the association [15], Pearson residuals were also computed. See example in
Table 33. If there turned out to be significant differences in the zero response
option between Slovakian and Czech Year 4 pupils, we decided to analyse only
the number of correct and incorrect responses, excluding pupils who had not
completed the task from the analysis.

Table 3. Example of country differences statistical analysis in task 2016-SK-10

2016-SK-10 Correct answer No answer Incorrect answer Total

CZ pupils 1 833 559 3 359 5 751

(1 943) (347) (3 461)

(−3.98) (15.27) (−3.58)

SK pupils 2 886 285 5 049 8 220

(2 776) (497) (4 947)

(3.98) (−15.27) (3.58)

Total 4 719 844 8 408 13 971

Our null hypothesis for each of the 15 observed tasks was: There is no differ-
ence in the response given for the chosen task between Year 4 pupils at Czech
and Slovakian primary schools. This was set at level α = 0.025, providing χ2 was
smaller than 5.02 (according to statistical tables for (2 − 1)(2 − 1) = 2 degrees
of freedom) [14]. In other instances, we dismissed the hypothesis, because test
showed a strong evidence of an association (i.e. results of contestants are depen-
dent on a country they come from).

In the analysis of differences by gender, we examined the differences sepa-
rately for each country, which means there were two nominal variables – gender
(boys, girls) and answer (correct, incorrect, none) and the same method as above
was used. We investigated if answer is independent of gender of Year 4 pupils
separately for each of the identical tasks. The Pearson residuals [15] were used
3 Second column contains estimated expected frequencies for testing independence,

third column contains standardized Pearson residuals.

314 L. Budinská et al.

to enable us to identify the level of significance the differences occurred at. If
the score was between 1.96 and 2.93, the difference was at level α = 0.05. If it
was between 2.93 and 3.3, it was at level α = 0.01. If it was higher than 3.3, the
significance of the difference was at level α = 0.001.

5 Results

Thanks to appropriate statistical methods, we were able to work with an unequal
number of participants, Slovakia having involved many more Year 4 primary
school pupils than Czechia. Presumably, this is related to the compulsory teach-
ing of computational thinking in Slovakian primary schools. Despite such a dis-
proportion, pupils from both countries achieved the same results in several tasks,
even considering their decision not to answer a question, something which Czech
pupils would have been more likely to do otherwise. In several tasks, however,
statistically significant differences between countries in the number of correct
and incorrect answers were disproved, but there were statistically significant dif-
ferences in non-response. All these tasks shall be considered as tasks with the
same result in both countries.4

5.1 Differences Between Countries

The results of the analysis show that there is no statistically significant difference
between Czech and Slovakian contestants’ answers in 5 tasks. On the contrary,
there is a statistically significant difference in 10 tasks (Czech pupils having done
better in 1 of them). It follows that Slovakian pupils’ achievement in most tasks
is statistically significantly higher than that of Czech pupils. To better under-
stand what categories of tasks these statistically significant differences came up
in (or did not come up in), the tasks were split into categories from our task
categorization, see Fig. 1.

As Slovakian Year 4 primary school pupils (as opposed to Czech pupils in
the same year group) had informatics lessons, the observed results can lead
us to assume that the teaching of informatics in Slovakian primary schools:
(1) is likely to influence digital literacy competences, algorithmic competences
and programming abilities of Year 4 primary school pupils, (2) has a possible
influence on pupils’ statement logic ability, (3) is unlikely to have influenced
pupils’ graph logic abilities.

5.2 Differences by Gender

The quantitative analysis described in Sect. 4.4 enabled us to observe the sta-
tistically significant difference to determine whether girls or boys had achieved
better results in each particular task. If a common characteristic can be iden-
tified in certain tasks in this respect, it is stated. The analysis shows that the
4 Complete results of all analysed tasks can be obtained from www.edi.fmph.uniba.

sk/∼budinska/issep2018-appendix.pdf.

www.edi.fmph.uniba.sk/~budinska/issep2018-appendix.pdf
www.edi.fmph.uniba.sk/~budinska/issep2018-appendix.pdf

Differences Between Pupils from Slovak and Czech Bebras Contest 315

Fig. 1. Numbers of tasks by category and existence of statistically significant difference
in answers

outcome of 10 tasks out of 15 was the same in both countries, as far as gender
is concerned – i.e. either boys achieved better results in both countries; or girls
did; or boys and girls achieved the same results in both countries. It follows that
differences in boys’ and girls’ achievement in most tasks are the same in both
countries. More precisely it can be stated that:

– In both countries:
• boys achieved better results in two tasks;
• girls achieved better results in four tasks (those four tasks being from the

Statement logic category);
• girls and boys achieved the same results in four tasks.

– boys and girls achieved the same results in 5 tasks in one country, while
either girls or boys achieved better results in the other country (each option
occurred).

In addition to the above mentioned findings, the following facts were also
observed: (1) there were more significant differences between boys and girls in
Slovakia, (2) tasks where pupils achieved the same results in both countries had
differences in results according to gender, (3) tasks in which either Slovakian
pupils or Czech pupils did better had the same outcome as far as gender is
concerned.

Observed result did not show some trends or tendencies that gender perfor-
mance is dependent on task category (apart from 4 aforementioned girls’ tasks).
Ten tasks with same results can lead us to assume that the teaching of infor-
matics in Slovakian primary schools does not influence the differences in boys’
and girls’ competencies.

316 L. Budinská et al.

6 Discussion

The qualitative analysis revealed several factors among the Slovakian and Czech
tasks that may have led to very similar tasks differing in difficulty. These include
different wording of tasks, different distractors, different accompanying graphics
and different ways of formulating answers. Despite a task leading to the same
outcome, different wording or highlighting a certain part of the task may cause
differences in how pupils understand a task. Different distractors may confuse
several pupils if they contain answers that pupils are often misled by. If the
distractors do not reflect such behaviour, the correct answer can often be revealed
by way of trial and error. The use of varying task types is also related to this,
where multiple choice tasks might be set in one country, but interactive tasks
may be set or short answers required in the other. In some short-answer tasks,
there were cases where one of the most frequent wrong answers was not even
included in the four available options. The most visible differences were in tasks
with accompanying graphics. The Crispy Cake task (see Fig. 2) is one example
where signposts providing links to the next ingredient in the recipe made the
Slovakian version more user-friendly than the Czech one, which only displayed
pictures with a different background.

Fig. 2. Comparison of graphics for the same task in the Slovakian version (on the left)
and the Czech version (on the right)

The research participants themselves are another factor which could have
influenced the results of our research. Bearing in mind that computational think-
ing is not to be taught at primary schools as part of the Czech National Curricu-
lum for informatics, it could be assumed that primary school pupils often enter
the contest in Czechia due to their enthusiastic teachers. This might be a lower
secondary informatics teacher (who does not usually teach at primary level and
therefore does not directly influence primary pupils’ abilities) or it could be the
primary teachers themselves whose enthusiasm leads to pupil involvement. To
distinguish these two cases, we traced how many Czech schools took part in only
the Mini category of the Bebras contest (which is intended for primary school
pupils). According to the findings for years 2012 to 2017, there are always around
a quarter of schools which only took part in the Mini category; the remaining
three quarters of schools that took part in the Mini category also competed
in the Benjamin and Cadet categories, which are intended for lower secondary

Differences Between Pupils from Slovak and Czech Bebras Contest 317

pupils. On the other hand, teachers in Slovakia can, due to capacity problems,
enroll only pupils with better school results or high intrinsic motivation.

Pupils’ achievement in the statement logic category may have been influenced
by mathematics education in both countries, while in Czechia there are more
schools that use different, non-traditional ways of teaching mathematics.

Our research could be considered to have been limited by the low number of
quantitatively analysed tasks, of which there were only 15. The low number of
analysed tasks was a result of efforts to eliminate the influence of differing task
difficulty, which has been discussed above. For that reason, only tasks that were
fully comparable were included in our quantitative research. To generalize the
results, more task should have been studied.

7 Conclusion

The aim of our article was to ascertain whether and in which areas of informatics
there are differences in Czech and Slovakian primary school pupils’ achievement
in the Bebras contest. We compared the success rate of Slovakian and Czech
pupils in those contest tasks that were identical in both countries. 15 such tasks
were found in 2012 to 2017 contests. Due to differences in targeted age groups in
primary school contest categories in the two countries, we narrowed the analysis
of results down to Year 4 primary school pupils. Our own form of categorisation
was then carried out on the analysed tasks [12]. Slovakian Year 4 pupils are
more successful in digital literacy and algorithmic tasks, slightly more successful
in statement logic and programming tasks. In tasks involving graph logics, there
is no difference between Czech and Slovakian Year 4 pupils. The question here
is to what extent graph logics should be included in an appropriate scope and
form in the primary school informatics curriculum, this area having turned out
to be the weakest of the areas researched in both countries.

If we are to focus on difference by gender, 10 tasks out of 15 had the same
outcome in both countries, i.g. either boys did better in both countries; or girls
did; or boys and girls achieved the same results in both countries. Slovakian
pupils’ results showed significant differences in the number of right and wrong
answers, whereas these differences were mainly in right answers in Czech pupils’
results.

We find the recommended improvements for the creators of contest tasks
useful. They are to look more closely at the wording of tasks in Slovakian or
Czech and harmonize the wording of tasks in both countries. It would also be
possible to prevent double translation from English by arranging to cooperate
on the translation, Czech and Slovakian syntax being much more similar as
compared to English.

At the very end, let us state that the teaching of informatics in Slovakia is
perceived positively by us, both from the point of view of achievement in the
contest and in terms of the number of contestants. However, we believe that
Czech pupils will also manage to achieve similar or even better results after the
informatics teaching reform has been implemented.

318 L. Budinská et al.

Acknowledgement. We would like to thank all referees for their comments on
this paper. This research was supported by grant VEGA 1/0797/18 and grant
UK/249/2018.

References

1. Innovated National Slovak Curriculum: Informatics (2014). http://www.statpedu.
sk/sites/default/files/dokumenty/inovovany-statny-vzdelavaci-program/
informatika nsv 2014.pdf. Accessed 29 May 2017

2. Framework education program for elementary education in CZ. www.nuv.cz/
uploads/RVP ZV 2017 verze cerven.pdf. Accessed 12 June 2018

3. Tomcsányi, P., Vańıček, J.: Implementation of informatics contest Bebras in
Czechia and Slovakia. In: Mechlov, A., Valcha, A. (eds.) Information and Com-
munication Technology in Education (2009)

4. Tomcsányi, P., Vańıček, J.: International comparison of problems from an infor-
matics contest. In: Proceedings of the Information and Communication Technology
in Education, pp. 219–223 (2009)

5. Dagiene, V., Mannila, L., Poranen, T., Rolandsson, L., Stupuriene, G.: Reasoning
on children’s cognitive skills in an informatics contest: findings and discoveries from
Finland, Lithuania, and Sweden. In: Gülbahar, Y., Karataş, E. (eds.) ISSEP 2014.
LNCS, vol. 8730, pp. 66–77. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-09958-3 7

6. Hubwieser, P., Hubwieser, E., Graswald, D.: How to attract the girls: gender-
specific performance and motivation in the Bebras challenge. In: Brodnik, A., Tort,
F. (eds.) ISSEP 2016. LNCS, vol. 9973, pp. 40–52. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-46747-4 4

7. Bebras competition. http://www.bebras.org. Accessed 14 April 2018
8. Competition rules in SK. http://ibobor.sk/pravidla-Bobrici.php. Accessed 14 April

2018
9. Competition rules in CZ. https://www.ibobr.cz/o-soutezi/23-pravidla-souteze.

Accessed 14 April 2018
10. Švař́ıček, R., Šedová, K.: Kvalitativńı výzkum v pedagogických vědách. Portál,

Praha (2014)
11. Budinská, L., Mayerová, K., Veselovská, M.: Bebras task analysis in category lit-

tle beavers in Slovakia. In: Dagiene, V., Hellas, A. (eds.) ISSEP 2017. LNCS,
vol. 10696, pp. 91–101. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
71483-7 8

12. Creswell, J.W.: Educational Research: Planning, Conducting, and Evaluating
Quantitative and Qualitative Research, Enhanced Pearson eText with Loose-Leaf
Version-Access Card Package (2015)

13. Chráska, M.: Metody pedagogického výzkumu. Grada (2007)
14. Values of the Chi-squared distribution. MedCalc Software. https://www.medcalc.

org/manual/chi-square-table.php. Accessed 1 May 2018
15. Agresti, A.: Categorical Data Analysis, 2nd edn. Willey, Hoboken (2002)
16. Recommended curriculum for class 4. http://www.vuppraha.cz/wp-content/

uploads/2011/03/Doporucene-ucebni-osnovy-predmetu-CJL-AJ-a-M-pro-
zakladni-skolu.pdf. Accessed 1 May 2018

http://www.statpedu.sk/sites/default/files/dokumenty/inovovany-statny-vzdelavaci-program/informatika_nsv_2014.pdf
http://www.statpedu.sk/sites/default/files/dokumenty/inovovany-statny-vzdelavaci-program/informatika_nsv_2014.pdf
http://www.statpedu.sk/sites/default/files/dokumenty/inovovany-statny-vzdelavaci-program/informatika_nsv_2014.pdf
www.nuv.cz/uploads/RVP_ZV_2017_verze_cerven.pdf
www.nuv.cz/uploads/RVP_ZV_2017_verze_cerven.pdf
https://doi.org/10.1007/978-3-319-09958-3_7
https://doi.org/10.1007/978-3-319-09958-3_7
https://doi.org/10.1007/978-3-319-46747-4_4
https://doi.org/10.1007/978-3-319-46747-4_4
http://www.bebras.org
http://ibobor.sk/pravidla-Bobrici.php
https://www.ibobr.cz/o-soutezi/23-pravidla-souteze
https://doi.org/10.1007/978-3-319-71483-7_8
https://doi.org/10.1007/978-3-319-71483-7_8
https://www.medcalc.org/manual/chi-square-table.php
https://www.medcalc.org/manual/chi-square-table.php
http://www.vuppraha.cz/wp-content/uploads/2011/03/Doporucene-ucebni-osnovy-predmetu-CJL-AJ-a-M-pro-zakladni-skolu.pdf
http://www.vuppraha.cz/wp-content/uploads/2011/03/Doporucene-ucebni-osnovy-predmetu-CJL-AJ-a-M-pro-zakladni-skolu.pdf
http://www.vuppraha.cz/wp-content/uploads/2011/03/Doporucene-ucebni-osnovy-predmetu-CJL-AJ-a-M-pro-zakladni-skolu.pdf

Problem Solving Olympics: An Inclusive
Education Model for Learning Informatics

Roberto Borchia1, Antonella Carbonaro2(B), Giorgio Casadei2,
Luca Forlizzi3, Michael Lodi2,4, and Simone Martini2,4

1 Istituto Tecnico Industriale “Q. Sella”, Biella, Italy
antonella.carbonaro@unibo.it

2 Dip. di Informatica–Scienza e Ingegneria, Università di Bologna, Bologna, Italy
3 Dip. di Ingegneria e Scienze dell’Informazione e Matematica,

Università dell’Aquila, L’Aquila, Italy
4 INRIA Sophia-Antipolis, Valbonne, France

Abstract. The paper presents the Olimpiadi di Problem Solving, a mild
and inclusive competition aimed to promote computational thinking
and general problem-solving in Italian schools. We describe motivation,
teaching strategies behind the initiative, as well as its structure, orga-
nization and give some sample of the problems proposed to students.
We also present some data that show the broad participation of Ital-
ian schools to the initiative, and a preliminary analysis of the results
obtained by the students in the last 5 editions, which suggests that the
competition fosters deep learning of computational thinking knowledge
and skills.

Keywords: Inclusive competitions · Computational thinking
Problem-solving

1 Introduction

The Olimpiadi di Problem Solving - Informatica e pensiero computazionale nella
scuola dell’obbligo (“Problem Solving Olympiad - Informatics and computational
thinking in compulsory education”) (henceforth: OPS) is an initiative of the
Italian Ministry of Education, University and Research (henceforth: MIUR), to
foster both problem-solving and team-working skills in a single action.1

Usually in the education world the expression “Olympics of X” means a
competition aimed to single out and promote exceptional skills at the individual
level in the age of 16–18. However:

– OPS are mainly training activities: the core of OPS are the training contests,
followed by two rounds of competitive contests (regional and national);

– OPS are mainly team-work activities;
1 The project guide is entrusted to the Directorate-General for Education Guidelines

(D.g. per gli ordinamenti scolastici e per l’autonomia scolastica) of MIUR.

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 319–335, 2018.
https://doi.org/10.1007/978-3-030-02750-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_25&domain=pdf

320 R. Borchia et al.

– OPS are aimed at all the compulsory education age range; activities are orga-
nized at three levels: the last two years of primary school (4–5 grade), lower
secondary school (6–8 grade), the first two years of upper secondary school
(9–10 grade);

– OPS are aimed to reach all students, and not only exceptional ones: each
school is encouraged to participate with as many teams as possible (for each
level);

– OPS are gender neutral: each team is required to have people of both genders.

It was noted by Nobel laureate Carl Wieman [11] that competitions outside of
school fail to improve STEM education; since 2008 MIUR has promoted OPS
as training/competition within the school system to pave the way for a more
widespread introduction of Informatics in curricula and to foster the learning of
effective competences for general problem-solving.

The remainder of this paper is organised as follows. Section 2 discusses the
variety and diffusion of contests focusing on Informatics organized worldwide
in the last decades. Section 3 describes main features and goal of OPS, and the
structure of the competitions. Furthermore, it proposes some examples of stan-
dard problems and presents how the training and the contests, at the different
levels, are organized. Section 4 presents some data about participation in the
initiative and a preliminary analysis of the results obtained by the students in
the last editions, to evaluate the training effect on students on their problem-
solving skills. Section 5 proposes the question of digital gender gap and evaluates
the involvement of girls and boys in OPS. Finally, some considerations close the
paper.

2 Promoting Informatics Through Competitions

Several contests focusing on Informatics have been organized worldwide in the
last decades. They vary in design, difficulty levels, and type of audience they
cater to.

Such events mainly result from two attitudes of mind: one focused in selecting
particularly talented students and another one aimed at spreading the basic
concepts of the discipline to a vast audience of students. This section only shares
a few examples to show the variety and diffusion of such events. See [1] and [8]
for recent reviews about contests, classification criteria and a selection of existing
online programming contests.

ACM International Collegiate Programming Contest (ICPC)2 is the most
sought after programming competition in the world. Every year, the ICPC con-
tests include contestants from over 2000 universities and colleges from across
the world. The contestants receive problems that they have to solve, providing
a program written in a widespread programming language such as C, C++ or
Java.

2 https://icpc.baylor.edu/.

https://icpc.baylor.edu/

Problem Solving Olympics 321

IEEE also proposes a contest, namely the IEEEXtreme Programming Com-
petition3, which lasts 24 h and is dedicated to teams of students. All the teams
receive a set of programming problems and as for ACM-ICPC, they have to solve
the greatest number of problems.

Among the events targeted to secondary school students, the International
Olympiad in Informatics (IOI)4 is the most popular worldwide. Like in ICPC,
contestants are challenged to provide, in few hours, programs written in main-
stream programming languages that solve problems of algorithmic nature. Unlike
ICPC and IEEEXtreme Programming Competition, IOI is an individual contest.
A lot of countries do have online programming contests to make the selection
for their national team to be sent to the IOI. Just to mention some of them:
USA Computing Olympiad (USACO), Italian Olympiad in Informatics, France-
IOI, Indian Computing Olympiad (ICO), French-Australian Regional Informat-
ics Olympiad (FARIO). All those contests are following the same philosophy as
the IOI, encouraging young talent from high schools to programming challenges.

The Bebras contest [4] is a competition organized on an annual basis in
several countries since 2004. In the past few years, the number of the Bebras
participants has been notably growing. The contest has been spreading over 40
countries involving various activities, e.g. several rounds of the contest, discus-
sion on Informatics topics, task solving seminars, teacher workshops, and task
developing events. The Bebras challenge has been developed for all primary and
secondary school pupils. The second full week of November is the official time for
the Bebras challenge (first round) in participating countries. Several countries
have established a second round of the Bebras challenge, usually at the end of
January or beginning of February, and it is dedicated for the best participants
of the first round challenge.

It is a well-known consensus in the community around Informatics contests
that the difficulty of these contests progressively increases, as observed, for exam-
ple, by Verhoeff et al. in [10]. Kelevedjiev and Dzhenkova [6] mention that in
many countries the age at which children start with programming is already
as low as ages 11 to 12. Thanks to this early start, the set of topics used in
contest tasks is growing. Kiryukhin in [7] describes the development of the
Russian Olympiad in Informatics: since 1995 the focus in programming con-
tests started to shift from “implement a correct algorithm” towards the much
harder “implement a correct algorithm that is as efficient as possible”. As a
result, and even more so than previously, only the best students are involved
in these kind of competitions. All the other students lose the opportunity to
develop, in an engaging way, fundamental problem-solving knowledge and skills
required for living and working in our society, having applicability in the entire
sphere of economic, social, political and cultural life. The dissatisfaction with this
state of affairs motivated MIUR, back in 2008, to start OPS with the goal to
spread problem-solving and computational thinking across all the compulsory

3 https://www.ieee.org/membership/students/competitions/xtreme/index.html.
4 http://ioinformatics.org/index.shtml.

https://www.ieee.org/membership/students/competitions/xtreme/index.html
http://ioinformatics.org/index.shtml

322 R. Borchia et al.

education age range, which in Italy goes up to grade 10. Moreover, OPS are
aimed to reach all students, and not only exceptional ones.

3 OPS: An Inclusive Education Model for Learning
Informatics/Computational Thinking

3.1 Main Features and Goals

The main goal of OPS is to disseminate problem-solving skills and computational
thinking [12] in Italian education.

Since no explicit provision of problem-solving teaching is present in the Italian
guidelines for primary and secondary education (while computational thinking
has been recently introduced, for the moment only as a transversal competence),
OPS promote activities in this area with a trans-disciplinary approach, trying
to captivate teachers of various disciplines. Being activities directly offered to
classes as contests, they are appealing and have an immediate impact on the
participating youngsters [3]. However, no real successful participation is possible
without support and training from local teachers. This implies that teachers
should develop and promote curiosity, interest and consensus in their own classes.
Teachers themselves are therefore stimulated to engage in the game even if skills
and competences needed are foreign, at least explicitly, even for them.

The collaboration is recognized as one of the most effective means of spread-
ing problem-solving skills and also allows for significant motivational and rela-
tional benefits. For this reason, the OPS foster collaboration by offering mainly
team work activities. In designing the teaching strategy for OPS we have taken
into account the dual nature of team competition (competitive and collabora-
tive); actually this strategy offers many possibilities when facing a heterogeneous
group of student [9].

Problem-solving as interpreted in OPS is intended as one of the most effective
paths to the acquisition of computational thinking attitudes. For this purpose,
one component of OPS is the ability to understand simple formal structures (such
as terms, lists and graphs), and to follow, simple (and less simple) algorithms
expressed in semi-formal languages, thus forming the background on which an
explicit teaching of programming and Informatics may be based. This component
is further strengthened (in grades 9 and 10) by administering some problems that
require the execution of (easy) calculations to be repeated a number of times so
large to make the solution infeasible unless one writes and executes a program.

Another important feature of the OPS, which differentiates it from most
of the similar initiatives, is the fact that they favor incremental learning by
offering explicit training sessions for both students and teachers during every
entire school year. After each training session, the scientific committee of the
OPS releases the solutions and the comments to the solutions for the various
exercises proposed. Both the involved students and the teachers judge in a very
positive way the usefulness of the solutions for the incremental acquisition of
skills.

Problem Solving Olympics 323

We may therefore summarize the main goals of OPS:

– offer explicit problem-solving training to students at the compulsory educa-
tion age range (including team-working skills);

– involve the teachers in such a way that they also acquire and consolidate the
needed skills (to use in their everyday teaching);

– use semi-formal setting and pseudo language to embed problem solving in
the context of computational thinking with the perspective of (eventually)
acquiring programming skills;

– offer training sessions during the entire school year to both students and
teachers.

3.2 Joining the OPS

Participation is on a voluntary basis. Italian teachers are expected to participate
in “additional activities” as well as to teach their discipline. MIUR promotes
various initiatives that qualify as additional activities: OPS is one of them. In
September/October, MIUR issues the annual bylaw for OPS, with the dates of
the contests. Since participation in the project is the responsibility of the scholar
institution, teachers have to negotiate adhesion with the principal.

Involved teachers (often in mathematics, but also in other disciplines) form
teams within their classes; again participation of the students is voluntary, but
very often discussion about OPS problems, assignment of exercises and study of
problem-solving techniques are extended to the whole class and are not limited
just to the team(s): this fact is the main added value of OPS.

3.3 Structure of Competitions

At the beginning, OPS were exclusively based on contests where students receive
problems that are asked to solve in a well-defined time frame. Students partic-
ipating to contests of this kind are divided in three levels: (i) grades 4–5; (ii)
grades 6–8; (iii) grades 9–10.

In the first editions, OPS consisted in three series of team contests, one for
each level. Each team is made up of 4 students, possibly with gender equality. In
the last few years two more series of contests of the same nature have been added,
for individual students of the second and third levels. In each OPS edition, all
series have the same number of contests, usually six (see Table 1). All the contests
except the last two are training contests, which means that the score achieved by
a team (or an individual) is only provided as a feedback. The last two contests
are competitive: the first one is used to select, for each series, the best teams (or
individuals) of each Italian region, while the final one decides the winners.

The team contests consist of 12 problems: the amount of work to be done in
the allotted time (120 min for the training contests and 90 min for the competitive
ones) to solve them largely exceeds the effort that can be expected from a single
participant; hence planning, collaboration, specialization and team-working are

324 R. Borchia et al.

necessary. The individual contests consist in 8 slightly simpler problems, in the
same amount of time (120 and 90 min).

The given problems are prepared by means of a controlled process, with a
strict time schedule, which involves two committee: the problem editors (mainly
university researchers with experience in computer science education) define the
problems and write texts and commented solutions, while the problem reviewers
(mainly selected teachers with experience in the OPS topics) check for errors
and difficulty.

More recently, along with the above “classic” OPS, that remain the core
contests of the competition, other team contests have been added as “side”
activities:

– Coding (grades 1–5 and 6–8), where students engage with creative program-
ming activities, realizing a project on a topic chosen by the committee, with
suitable environments (e.g. Scratch);

– Programming (grades 9–13), where students solve a complex programming
task (e.g. implement a graph algorithm);

– Making (grades 1–5, 6–8, 9–13) where student realize a physical project using
electronic boards (e.g. Arduino) on a topic chosen by the committee.

In the following we refer only to “classic” OPS, with particular focus on team
contests, the original and distinguishing contests of the OPS.

3.4 Topics

OPS proposes at the three levels the same kinds of problems, with differences
(among the levels) in size or abstractness. Each year five o six topics are chosen:
from these, “standard” problems come up. In the last school years the chosen
topics where: formal deduction from a set of rules, paths in a maze or in a
chessboard, knapsack, hierarchies, graph covering, graph traversal, cryptography,
subsequences and reading/tracing of procedures written in a pseudo-code.

A semi-formal syntax about terms, lists, strings is used in problems and
answers. Additional topics are comprehension of a text (in Italian) and non
“standard” problems, each time of a new kind (and often formulated in English),
to stimulate creativity and the ability to deal with new situations.

3.5 Examples of Standard Problems

Examples of a “standard” problem are shown in Appendix - Figs. 4, 6 and 8
(originally in Italian, translated for this work).

The first problem was part of the second training for primary school: prob-
lems, on the same subject (graphs), in following contests were gradually more
complex, and the solution had to be chosen among up to a dozen of paths. The
second problem was part of the fifth training for secondary school. The third
problem was part of the final contest for lower secondary school: as you can see
it involved a lot of programming structures (e.g. variable assignments, vectors,
while loops, if-then-else), introduced gradually during the training contests.

Problem Solving Olympics 325

3.6 Commented Solutions

A key feature of the OPS is that, along with the solution to each problem, after
each contest, “comments” are provided; often this section makes up an outline
for the in-depth study and analysis that teachers are invited to follow along
with the students. In this way, knowledge and skills are spread among teachers
and students. As you can see in the examples in Appendix, as the level and the
difficulty grows, the comments become much longer and elaborate.

3.7 The Training Contests

In a training contest, on a fixed date, problems are proposed on a secure web
platform and are accessible for a suitable interval of time (e.g. 9:00 – 17:00).
Schools connect to the platform when they deem suitable (within the given
interval of time) and, under the supervision (and the guarantee of fairness) of
local teachers, the teams and the individual students participate to the contest.
Problems are administered and their solutions should be entered within 120 min
from the first access. During the contest each team/individual is allowed to use
any additional material as it sees fit (books, notes, additional PCs, browsing the
Internet, etc.), the ability to quick retrieve and organize relevant information
being one of the key components of effective problem-solving. When the access
to problems is closed, correct solutions and comments are made available; then
answers are evaluated and teams ranked.

Three to five different training contests are organized in this way from Novem-
ber to March: the difficulty of the problems is gradually increasing. Then, for
each level, each school selects teams and individual students for a regional com-
petition; the winning teams and individual students of each region (20) meet in
Cesena for the final competition.

3.8 The Final Contest

The final contest is a fierce competition; around twenty teams and twenty indi-
vidual contestants for each level are invited in Cesena. The final contest takes
place in the Department of Computer Science and Engineering, University of
Bologna, under control of a Jury and with strict rules.

1. Each team has the same type of workplace available, which includes one
workstation.

2. Teams are allowed to bring books, notes and an extra PC.
3. Participants are not allowed to communicate with other persons during the

contest, except with members of their own team and the Jury.
4. Use of hardware other than watches, medical equipment, the PC and the

provided workstations is not allowed.
5. A team can be disqualified for any activity that jeopardizes the contest.
6. When a team presume that a problem is ambiguous or incorrect, the team

can ask a clarification to the Jury. The Jury will respond and if the answer
is relevant to all teams, the Jury will communicate the answer to all teams.

326 R. Borchia et al.

The Jury determines the final team ranking as follows.

– Teams are sorted by the number of accepted solutions, in non-increasing order.
– When two or more teams have the same number of accepted solutions, these

teams will next be sorted by total time, in ascending order. The total time is
the time passed between the start of the contest and the time at which the
last solution was submitted.

– There is no penalty for unsolved problems.

4 Participation and Results

OPS were proposed, organized and developed with the guidance of several
“working hypotheses”, among which those that participation to OPS: (i) fosters
and develops problem-solving skills, both at the personal and the class level;
(ii) enhances the success level in standardized performance tests, like Italian
INVALSI, or OECD’s PISA; (iii) is an effective way to induce computational
thinking habits in the students; (iv) facilitates the introduction of explicit, dis-
ciplinary teaching of computer science. Although we have qualitative indicators
confirming these hypotheses (especially the feedback from instructors who have
proposed OPS for more than 10 years), available data are not sufficient to discuss
here all these far-reaching goals. We report only on the first one.

The first 10 editions of the OPS have recorded a noteworthy participation,
both in terms of students and teachers involved, as shown in Table 1. These
data show that the OPS are among the most successful initiatives, in terms of
participation, for the diffusion of computational thinking in Italy.

Table 1. Participation to the first 10 editions of the OPS

School year Number of rounds Teachers Students

2008/2009 3 550 10200

2009/2010 5 500 9850

2010/2011 6 400 7400

2011/2012 6 630 11400

2012/2013 4 880 16500

2013/2014 6 400 15100

2014/2015 7 500 12000

2015/2016 6 830 16700

2016/2017 6 850 23357

2017/2018 6 730 22225

Problem Solving Olympics 327

4.1 First Results

The comparative impact of OPS on participants is difficult to establish due
to a selection effect: in fact, participation in OPS is voluntary, so we expect
that the best and most innovative teachers are better represented among those
participating in OPS. Moreover, we cannot rule out that participating teams are
made up of some of the smarter students in their classes. This selection bias
is difficult to asses and avoid in data analysis; a comparison of the educational
careers of those who have participated in OPS and students from another sample
is an extremely delicate task (see Sect. 6).

On the other hand, the training effect on students is clearly visible, especially
because problems, from contest to contest, become progressively more difficult.
Some examples can be given, by considering the average scores obtained by the
teams who participated in the project during the last 5 editions5 on algorithmic
problems, which are the most indicative of computational thinking competencies.
For grades 4–5 (see Fig. 1) the trend, in each edition, has no marked fluctuations.
This, related to the progressive increase in the difficulty of the problems, indi-
cates a development of the problem-solving skills of the pupils. It can be noted
that in the second or third contest there is often a slight lowering of the perfor-
mances, which corresponds to the introduction of problems that are considerably
more difficult than those proposed in the first contest of each edition.

Fig. 1. Average score in algorithmic problems for grades 4–5

Data for grades 6–8 (Fig. 2) highlight, in most of the editions, two contests
in which the scores decrease, which is explained by a more rapid increase in the
difficulty of the problems in this level. The trend, however, remains positive and
strong growth in the two competitive contests.

At the third level (Fig. 3) we register more differences between one edition
and another. This can be explained by the fact that the set of problems proposed
5 These editions are comparable since all of them had 6 rounds, with the only exception

of 2014/15. For that specific school year, we noted that two consecutive intermediate
rounds had very similar results at all levels, so we normalized it to 6 rounds too.

328 R. Borchia et al.

Fig. 2. Average score in algorithmic problems for grades 6–8

at this level changes more from year to year. In any case, the trends are similar
to those shown in the other levels, with a more marked improvement in cor-
respondence with the competitive contests, typical of the greater commitment
that students to this level of maturation can profuse.

Another impact difficult to assess is on teachers; it was noted that the com-
petitions (at least in computer science) encourage teachers to learn more to
support their students; currently, besides a qualitative confirmation, it does not
seem possible to measure this effect.

Fig. 3. Average score in algorithmic problems for grades 9–10

Problem Solving Olympics 329

5 OPS and Gender

A recent European Parliaments Policy Department for Citizens Rights and
Constitutional Affairs study attempts to reveal the links between the different
factors which prevent women from having equal access to digital technology [5].
While ICTs are recognised as having the potential to promote gender equality
and womens empowerment, a digital gender divide has been identified, whereby
women access and use ICTs less than men. Increasing the number of women in
ICT-related education could be a policy consideration. Women may also have
more to gain from ICT than men, in time, freedom and opportunities. Address-
ing the underlying causes of digital gender disparities is vital, as dealing with
the symptoms without fighting the causes would lead to superficial measures.

We attempted to evaluate the involvement of girls and boys in OPS by cal-
culating the number of participants per gender on the three school levels. The
goal is to try to understand at what time the disinterest of the girls towards the
computer disciplines occurs, so as to suggest the best time to propose remedies.
We evaluated the numerical participation of girls and boys on the three levels of
school. It is almost equal in elementary school; then the number of girls involved
in competitions concerning first and second grade of secondary school drasti-
cally decreases. These results are similar to those found in another, independent
MIUR initiative to promote Informatics and computational thinking [2].

Based on our experience, the measures that can be taken to combat digital
gender gap must be implemented in the early years of elementary schools. Doing
it later can be useless because the factors that cause the digital gender gap have
already pushed away the female component.

6 Conclusions

We presented OPS, an Italian initiative to disseminate problem-solving skills
and computational thinking activities with a trans-disciplinary approach. OPS
are targeted at all the compulsory education age range and are aimed to reach
all students, and not only exceptional ones. In the past few years, the number
of participating students and teachers has been notably growing, as a testament
to the validity of the initiative.

Among the advantages of the OPS approach we may cite: interactivity, col-
laborative work inside the group, active participation, challenge versus duties,
and motivation for the students to explore their own topics, on problem-solving
skills and computational thinking, to support the challenges. The best feedback
obtained is probably the feeling of the involved students and teachers.

Preliminary data show an increase in scores of algorithmic problems from the
first contest to the last in each school year, at all levels. Given that the difficulty
of problems increases from one context to the next, this may indicate an increase
in algorithmic problem solving skills in pupils.

Large direct feedback from the teachers involved in OPS makes evident a
positive correlation between participation to OPS and general performance of
students (as measured in standard tests, like PISA). This has been a working

330 R. Borchia et al.

hypothesis of our work since the firsts editions of OPS. Turning this hypothesis
into a scholarly acceptable evaluation is one of the main directions of our current
work on the evaluation and assessment of OPS.

Appendix

See Figs. 4, 5, 6, 7 and 8.

Fig. 4. Example of a standard problem (team contest, primary school, grades 4–5,
second training contest

Problem Solving Olympics 331

Fig. 5. Part A

332 R. Borchia et al.

Fig. 6. Part B. Example of a standard problem (secondary school, grades 9–10, fifth
training contest)

Problem Solving Olympics 333

Fig. 7. Part A

334 R. Borchia et al.

Fig. 8. Part B. Example of a standard problem of pseudo-code reading (lower secondary
school, grades 6–8, national final contest

References

1. Combéfis, S., Wautelet, J.: Programming trainings and informatics teaching
through online contests. Olymp. Inform. 8, 21–34 (2014)

2. Corradini, I., Lodi, M., Nardelli, E.: Computational thinking in Italian schools:
quantitative data and teachers’ sentiment analysis after two years of “programma il
futuro”. In: Proceedings of 2017 ACM Conference on Innovation and Technology in
Computer Science Education, ITiCSE 2017, pp. 224–229. ACM, New York (2017).
http://doi.acm.org/10.1145/3059009.3059040

3. Dagienė, V.: Sustaining informatics education by contests. In: Hromkovič, J.,
Královič, R., Vahrenhold, J. (eds.) ISSEP 2010. LNCS, vol. 5941, pp. 1–12.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11376-5 1

4. Dagienė, V., Futschek, G.: Bebras international contest on informatics and com-
puter literacy: criteria for good tasks. In: Mittermeir, R.T., Sys�lo, M.M. (eds.)
ISSEP 2008. LNCS, vol. 5090, pp. 19–30. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-69924-8 2

5. Davaki, K.: The underlying causes of the digital gender gap and possible solu-
tions for enhanced digital inclusion of women and girls. Technical report, Policy
Department for Citizen’s Rights and Constitutional Affairs - European Parlia-
ment’s Committee on Women’s Rights and Gender Equality (2018)

http://doi.acm.org/10.1145/3059009.3059040
https://doi.org/10.1007/978-3-642-11376-5_1
https://doi.org/10.1007/978-3-540-69924-8_2
https://doi.org/10.1007/978-3-540-69924-8_2

Problem Solving Olympics 335

6. Kelevedjiev, E., Dzhenkova, Z.: Tasks and training the youngest beginners for
informatics competitions. Olymp. Inform. 2, 75–89 (2008)

7. Kiryukhin, V.M.: The modern contents of the Russian national olympiads in infor-
matics. Olymp. Inform. 1, 90–104 (2007)

8. Raman, R., Vachharajani, H., Achuthan, K.: Students motivation for adopting
programming contests: innovation-diffusion perspective. Educ. Inf. Technol. (2018).
https://doi.org/10.1007/s10639-018-9697-3

9. Verdú, E., Lorenzo, R.M., Revilla, M.A., Regueras, L.M. (eds.): A New Learn-
ing Paradigm: Competition Supported by Technology. CEDETEL, Sello Editorial,
Madrid (2010)

10. Verhoeff, T., Horváth, G., Diks, K., Cormack, G.: A proposal for an IOI syllabus.
Teach. Math. Comput. Sci. 4(1), 193–216 (2006)

11. Wieman, C.: Applying new research to improve science education. Issues Sci. Tech-
nol. 29(1), 25–32 (2012). http://www.jstor.org/stable/43315691

12. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006).
http://doi.acm.org/10.1145/1118178.1118215

https://doi.org/10.1007/s10639-018-9697-3
http://www.jstor.org/stable/43315691
http://doi.acm.org/10.1145/1118178.1118215

Socio-psychological Aspects of Teaching
Informatics

Evaluation of Learning Informatics
in Primary Education

Views of Teachers and Students

Johannes Magenheim1(B), Kathrin Müller1, Carsten Schulte1,
Nadine Bergner2, Kathrin Haselmeier3, Ludger Humbert3, Dorothee Müller3,

and Ulrik Schroeder2

1 University of Paderborn, Paderborn, Germany
{johannes.magenheim,kathrin.mueller,carsten.schulte}@uni-paderborn.de

2 RWTH Aachen University, Aachen, Germany
{bergner,schroeder}@cs.rwth-aachen.de

3 University of Wuppertal, Wuppertal, Germany
{khaselmeier,humbert,dmueller}@uni-wuppertal.de

Abstract. How does learning about informatics in primary education
unfold in the eyes of teachers and their students? We report on the
evaluation results from a distributed project in Germany (North Rhine-
Westphalia) and some implications of these findings for future improve-
ments. Three modules for informatics in primary education and a cor-
responding concept for teacher training were developed collaboratively
by researchers and practitioners. The project was assessed with methods
of formative and summative evaluation. The first results indicate that
teaching and learning of informatics in primary education are possible.
It is regarded overall as rewarding and exciting, but it was difficult for
primary school students and teachers as well to discern the bigger picture
of informatics education and thus to relate the topics taught and learned
to everyday experiences.

Keywords: Informatics education · Teacher training
Primary education

1 Introduction

Informatics Education at primary level gets increased attention in the last years,
see e.g. recent publications at this and related conferences. In general, these
publications give the impression that it is possible to teach about informatics at
this level. Discussion unfolds on topics like e.g. unplugged approaches, teacher
education, and other issues. Tim Bell et al. suggest that one issue for teachers

Supported by North Rhine-Westphalia Ministry of Education.

c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 339–353, 2018.
https://doi.org/10.1007/978-3-030-02750-6_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_26&domain=pdf

340 J. Magenheim et al.

is discerning the so called Bigger Picture. In [1] they give an example of the
missing big picture:

For example, in some of the professional development with the teachers using

black and white cards to represent binary values, teachers have asked which

colour is used for 0 and 1. The real concept is that some sort of convention must

be agreed on, rather than rote-learning a rule about this particular abstraction.

The quote hints at a general problem for teachers, who usually are not trained
in the subject, to teach informatics: Their own limited or even wrong conceptu-
alization of the subject, leading to shallow approaches to teaching and learning,
like rote-learning isolated rules. Even if they were aware of the relevance of
the rule, the problem probably would persist, as teaching in primary education
should not only be construed as introduction to an academic field of study, but
linked to everyday experiences – like everyday actions or problems children might
encounter, or in connection to informatics systems they get in touch with – but
how should children be able to link topics learned at school to these experiences
if teachers aren’t aware of them? In this paper we report on experiences from a
distributed, three years lasting (2016–2018) project, with three universities, 30
primary schools and 37 primary school teachers from the state of North Rhine-
Westphalia (Germany) and about 450 students involved. Three modules and
corresponding materials for teacher training were developed, covering three dif-
ferent topic areas: data representation; robotics and programming; cryptology.
They were taught mainly according to a CS-unplugged learning approach. The
article presents the project, evaluation methods and initial evaluation results
obtained with qualitative methods (content analysis of teachers’ answers) and
quantitative methods (factor analysis of ratings) in students’ answers. The first
results indicate that teaching and learning about informatics in primary edu-
cation are possible. It is regarded overall as rewarding and exciting, but it was
difficult for primary school students, and teachers as well, to discern the big-
ger picture of computing education and thus to relate the topics taught and
learned to everyday experiences. Based on the findings we discuss implications
for teacher education and future initiatives to support informatics education in
primary schools.

2 Project Overview

The project started in 2015 for three years in cooperation of three universi-
ties and the local ministry of education. Main goal of this R&D-project was to
investigate the implementation of informatics in primary schools. For this pur-
pose, scientists and active teachers developed general informatics skills, which
are already supposed to dominate primary school children. Using an unplugged
teaching approach, informatics can be (initially) taught independent from techni-
cal equipment of schools (computers, tablets, software). Supplementary materials
will also make use of computing technology for optional later transfer. The mod-
ules cover the three different topic areas: (1) data representation, (2) robotics and
programming and (3) cryptography. Furthermore, a corresponding concept for

Evaluation of Learning Informatics in Primary Education 341

teacher training was developed and put into practice with the teachers involved
in the project.

The modules are based on a curricular model for informatics [2] which need
to be adapted for students in the age of 8–10 to define a proper competence
model for primary level. The underlying constructivist didactic concept supports
discovering learning with hands on materials which relate to everyday experience
of the students. The instructional design is influenced by various existing projects
such as CS unplugged [5] which specifically relates enactive, iconic, and symbolic
representations and allows for action-based learning. The didactic design is based
on findings of primary education. The modules pick up aspects of the children’s
lifeworld and answer children’s questions.

The main goals of the project are
– to form a concept of breaking down principles in informatics to describe

competencies to be acquired by students of primary education,
– to develop teaching materials and guidelines for the prototypical lessons, and
– to model further education for teacher training regarding primary teachers.

The topics of the modules are independent from each other and can be taught
in any sequence. Each module will cover 6–8 lessons. At each site the con-
cepts, materials and teaching guidelines were developed by scientists and primary
teachers who contributed with their experience in primary school didactics, and
also pre-tested the first versions in their classes. Based on the feedback from the
first test runs, the modules were iteratively improved. All teachers tested the
modules developed at the other locations and provided comprehensive feedback.
Alternatives regarding the didactical and methodological design were developed.

In a second phase, teachers from about 30 schools were trained, and tested
the modules with their students. Thus, along with the teaching concepts and
materials one and a half day seminars for primary teachers were developed for
each module. During these seminars primary teachers acquired the core aspects
of informatics, the required technical as well as pedagogical knowledge and com-
petences for teaching each of the modules. Through these trials under different
conditions, further improvements and alternative implementations were created.
All three modules were thus revised several times and expanded with new ideas.
Overall, the concepts and materials are well transferable to other schools.

In the following you find a short description of the three modules.

2.1 Module 1: Digital World

It is the goal for this module to enable primary school teachers to explore the
digital world together with their students and understand the principles on which
it functions. The use of data should be understood by primary students to at
least a rudimentary degree. Typical everyday questions like “How can a com-
puter save thousands of photos?” and “How does a video fit through a cable?”
are answered. Abstract concepts in informatics like digitalization are visualized
through lightbulbs (on and off). Binary numbers build the baseline for digital
data storage and transfer, as well as error detection and thus 0 and 1 make the
connecting element of this module.

342 J. Magenheim et al.

2.2 Module 2: How Does a Robot Work?

Main focus of this module is on first programming concepts. Students learn
that robots work with commands and that these commands have to be exact.
They “program” a paper robot with simple commands and control it over a
playground. As an enactive support commands are printed on jigsaw pieces as
in block based programming languages like Scratch. During their work with
a research journal the students become familiar with parameters and simple
control structures. Another focus of this module is the fundamental working
principle of a robot as an interplay of sensors, actors and a program (IPO-
principle).

2.3 Module 3: I Have a Secret

Using the example of cryptology, in this module a central topic area is opened up
for primary school students. The module provides an introduction to the basic
standard algorithms of encryption, based on primary school didactics and infor-
matics pedagogy. Under the headline “I have a secret” the teaching framework
around the well-known protagonists Alice, Bob and Eve offers an attractive scene
for historical secrecy, code usage and symmetric encryption. Two basic encryp-
tion concepts are made accessible to the children: transposition and substitution.
They are approached without the use of computer systems, just by using enactive
and haptic material like, for example, wooden sticks, paper and pencil.

3 Evaluation Setup

For the setup of the evaluation it is important to have the overall project struc-
ture in mind: It was a distributed project with three universities as core develop-
ment hubs. Each facility had also a group of assorted teachers from local schools,
and administered short teacher trainings to their groups before the teachers then
tested the developed teaching concepts and materials in their classes. While each
project partner was responsible for one module (including the teacher training
material), each partner was also responsible for teacher training and observing
the trials of the imported modules from the other two partners.

In a cyclic development and evaluation approach the materials and concepts
were refined in a cyclic approach. First, each site developed a teaching unit
together with local teachers. These were then locally tested; e.g. tried in a class-
room. Then also locally a corresponding teacher training and supplementary
material for the teachers about the unit was developed. Then feedback on these
materials from the other two sites were included. Second, the teacher trainings
were distributed to the other sites, so that each site tried the two external teacher
trainings and the local teachers then taught all three modules in their classrooms
(ideally, not all teachers could incorporate all modules, but only one or two). In
a third phase the experiences were used to refine the teaching material, and then
the refined units were again tested (the first phase is not ended by the time of
writing).

Evaluation of Learning Informatics in Primary Education 343

Although this overall project structure is aligned to cyclic educational design
research as proposed and described by e.g. [3], the systematic collection of feed-
back data was challenging, in part because resources for the evaluation of the
project were granted only after beginning of the project, so that the approach and
the infrastructure for data collection had to developed just in time. A concept
for the formative evaluation of the project was therefore difficult to implement
and was only available in principle in a late project phase.

A more systematic approach to data collection and formative assessment was
possible only for the three project phases highlighted in the enumeration above.
This was done by observing and note-taking by the local partners who collected
feedback from the local teachers on their experiences with teaching the material
developed in the project. In addition, teachers filled out a feedback-questionnaire
developed as part of the evaluation concepts. For summative evaluation a set of
questionnaires for students was developed:

1. General Pre-Test: Interests, motivation, attitudes
2. Specific Post-Test for each module: Module-specific interests and

comprehension
3. General Post test: Interests, motivation, attitudes (some comprehension

questions)

The questionnaires contained general items for motivation, self-efficacy, and
interest in informatics topics, as well as test items for students learning suc-
cess. The questionnaires for teachers mainly focus on their classroom experience
in teaching informatics and their evaluation of teacher training

Since the approved test instruments for the general pre-test were only avail-
able relatively late, they were used at different times at the specific locations,
possibly only during or after the first run of the module. In this paper we present
first results of the data obtained at students level. These data are related to
students interests and attitudes towards general aspects of informatics and to
their thematic motivation as well as to their module-specific interests and their
content-related comprehension. Furthermore, results of the evaluation of the
teacher survey by means of qualitative data are presented, which focus on the
teachers’ reflection on the three modules after completion of their lessons as well
as on their further training in the project and their perceived qualification needs.

4 Evaluation – Students’ Results

4.1 Students Attitudes, Interests and Motivation

A total of 450 data records were evaluated, 207 of them female, 222 male and
21 not specified. The average age is 9.15 years. 61 students are in the second
class, 110 in the third class and 138 of them in the fourth class. 141 partici-
pants of the survey haven’t entered the class level. The data were entered partly
with paper questionnaires distributed in the classroom and partly directly from
the classroom online by the students. To assess the students’ learning interests,

344 J. Magenheim et al.

motivation and attitudes, we applied statements with a five-level Likert scale.
Some selected results of the assessment are presented here. The statement “I am
interested in informatics because...” (Fig. 1 was evaluated with the reasoning of
the following Likert Items (1 = do not agree at all; 2 = hardly agree; 3 = agree
about; 4 = agree pretty much; 5 = agree very much).

(A) ...I find it exciting (M = 4.1; sd = 0.9)
(B) ...I want to know more about computer science (M = 4.0; sd = 1.0)
(C) ...we did it in class (M = 4.0; sd = 1.2)
(D) ...my friends find it exciting (M = 2.7; sd = 1.3)
(E) ...my parents want me to. (M = 2.4; sd = 1.4)

The data show that the items A and B, which are aimed at intrinsic motivation
and interest in content, are rated significantly higher by the students than the
items which represent rather extrinsic aspects. Students take part in computer
science lessons mainly out of interest in the subject and topic-related motivation.
The same tendency also shows the students’ assessments about their computer
science lessons. The following ratings were given for the corresponding Likert
items:

(A) The computer science classes are fun. (M = 4.3; sd = 1.0)
(B) I look forward to the computer science classes. (M = 4.1; sd = 1.0)
(C) The computer science classes are exciting. (M = 4.1; sd = 1.0)

The students of primary school age perceive their computer science lessons in
the three modules as predominantly exciting and motivating and also state that
they most enjoy them. Regarding the students’ interests or value beliefs (see
comparable items from [4]) towards the importance of computers for their future,
the evaluation of the following Likert items was instructive:

(A) I find it useful to be able to use the computer. (M = 4.3; sd = 0.9)
(B) Most professions will need computer knowledge in the future (M = 4.2;

sd = 1.0)
(C) It is important to me to be able to use computers better and better (M = 3.9;

sd = 1.2)
(D) It is important to me to know a lot about computers (M = 3.7; sd = 1.1)

Here, too, there is a clear interest of the students in computer science (comput-
ers), which is accompanied by the assessment of the high importance of comput-
ers in a future professional activity. These items represent the computer value
belief scale from [4], who found that boys had slightly higher value beliefs then
girls. In our data overall values are a little lower (3.7 compared to 4.1 in the
study from Vekri et al.), but now differences between boys and girls.

The students are flexible towards the computer as a learning medium in
informatics lessons and are open to both ‘plugged’ and ‘unplugged’ methods.
However, the analysis of the individual statements shows that there is a clear
tendency to learn with computers.

(A) I want to use a computer for learning (M = 4.4; sd = 1.0)

Evaluation of Learning Informatics in Primary Education 345

(B) I want to work with and without a computer (M = 3.8; sd = 1.3)
(C) I want to learn without a computer (M = 2.2; sd = 1.3)

A factor analysis of the students’ interest in computer science and their
assessment of the teaching of computer science with these and other items led to
the extraction of three relevant factors that can clarify 55% of the total variance.

Factor 1: Intrinsic motivation (interest in using, knowing and programming IT
systems; f-ld: 3.34)

Factor 2: Extrinsic motivation (participation in class because of friends and par-
ents; f-ld: 1.65)

Factor 3: PC as medium for learning (function of the PC in informatics learning:
f-ld: 1.61)

The results of the factor analysis also show that the students’ attitudes to com-
puter science learning are primarily shaped by intrinsic motivation and an inter-
est in learning more about computers. This result is also supported if one com-
pares the assignment of persons in a two-dimensional orthogonal coordinate sys-
tem, which is spanned by 2 factors. Thus, it can be revealed that rather lower
values on factor 2 accompany high values on factor (number of persons with
factor 1 > 0.5 and factor 2 < 0.5: 75%). This group of students also shows a
certain preference for learning with computers in informatics lessons.

4.2 Module-Specific Results: Digital World

For the first module “Digital World”, 224 data sets were evaluated, 94 of which
were female, 113 male and 17 without information. The average age is 8.95 years.
Of the students, 44 are in the second grade, 106 in the third grade and 61 in the
fourth grade, 13 students did not make an entry in the grade level.

After the module, the children solved some informatics tasks. Some tasks
had already been worked out in the classroom before, others required a transfer.
The results of selected tasks are explained below. Table 1 shows the distribution
of points.

At the beginning, the children answer the MC-question “What happens if a
key is pressed on the computer?”. This question was not explicitly discussed in
the classroom and yet answered by nearly 40% of the students correctly.

In the second task the children should mark and describe three IT-systems in
a big picture. This task has not been practiced before. Through their everyday
experiences, 60% of the students could recognize three IT-systems and describe
their function correctly

The next two tasks dealt with converting from binary to decimal and vice
versa. This was explicitly practiced in class. Accordingly, almost half of the chil-
dren have solved all four tasks correctly. Nevertheless, a quarter of the children
could not solve the task at all.

Also very close to the lesson was the fifth task to calculate the transmitted
binary number from switched on and off light bulbs and read off the correspond-
ing letters using a table. 48.7% of the children were able to solve this complex
task without any errors.

346 J. Magenheim et al.

Table 1. Results of module-specific questions - module 1: Digital World

Question Score

Max 0 1 2 3 4

1 Technical understanding (keystroke) 1 60.7% 39.3%

2 Recognition of computer systems 3 14.7% 10.7% 13.8% 60.7%

3 Converting from binary to decimal 4 21.0% 7.6% 8.9% 21.4% 41.1%

4 Converting from decimal to binary 4 29.5% 8.0% 3.6% 19.2% 39.7%

5 Bulbs message 1 51.3% 48.7%

6 IPO-principle: drinks machine 1 22.3% 77.7%

7 IPO-principle: tablet 3 71.4% 13.8% 13.8% 0.9%

8 How computers work 2 25.0% 46.9% 28.1%

9 Error detection - one-dimensional 1 54.0% 46.0%

10 Error detection - two-dimensional 1 90.6% 9.4%

Two other tasks asked for an understanding of the IPO-principle. In this
case, the children should correctly assign the input, processing and output of
a drinks vending machine and a tablet. The majority of the students (77.7%)
were able to correctly reproduce the IPO-principle using the example of a drinks
machine. However, the transfer to a tablet succeeded only a few students.

In the eighth tasks, the students should recognize how computers work. There
was an MC-question with two correct answers. 63 out of the 224 students inter-
viewed responded with both correct answers. Another 105 kids ticked one of the
two correct answers.

The last topic of the module was the error detection. There were two tasks
for this: application and transmission. Almost half of the students were able to
apply the learned method of error detection correctly. The transfer of the learned
one-dimensional process to a two-dimensional process was achieved by 21 of the
224 Kids.

4.3 Module Specific Results: How Does a Robot Work?

In addition to general questions of interest, the questionnaire for the robotics
module focuses on recognizing robots as IT systems, the IPO-Principle and pro-
gramming. Here we present the results of 178 data sets (85 female, 83 male,
10 not specified). The average age was 8.87 years. The evaluation results are
very different with regard to the different foci of the questionnaire. A total of
17 points were achieved in the area of content, which no participant achieved.
Nevertheless, the results of most participants are in the upper midfield (median
11 points) as shown in Table 4.

Evaluation of Learning Informatics in Primary Education 347

Table 2. Results of specific questions

Question Max score Score

0 1 2 3

Which picture shows a robot? 2 9,5% 43,3% 47,2%

Which object is equipped with a computer? 3 5,1% 27,5% 20,8% 46,6%

Which object can be used to control a robot? 3 3,9% 30,4% 21,3% 44,4%

Assign Items to IPO-Principle 1 48,3% 51,7%

How can a robot understand you? 1 10,1% 89,9%

Understand simple program 1 50,6% 49,4%

Understand program with loop 1 94,4% 5,6%

Understand program with loop and condition 1 84,8% 15,2%

The results for interesting questions are shown in Table 2 and named in the
following: The children could easily identify robots between other objects. In
addition, they were able to identify the objects that are equipped with a com-
puter. In the context of how a robot works, the IPO-Principle was well under-
stood and the children understood that robots need clear commands. With
regard to programming, it became clear that simple programs could be eas-
ily understood by the children With the constructs condition and loop, however,
the evaluation results show difficulties in understanding. The poor results of the
evaluation in context of the constructs condition and loop led to a revision of the
working sheets for the children. The children now only have to understand the
constructs condition and loop and no longer have to program them themselves.
We hope that this will make it easier for the children to develop an understanding
of these constructs.

4.4 Module Specific Results: I Have a Secret

A factor analysis on students’ interests in the contents of the module ‘Cryp-
tology’ shows that they have a great need for knowledge on both the subject-
related and the application-related aspects of the subject area. The factor anal-
ysis reveals two factors that clarify a total of 49% of the variance. Factor 1
Technical knowledge of cryptology (encryption and decryption; hiding informa-
tion, decrypting messages; f-load: 1.99). Factor 2 Cryptology in everyday life
(encryption on the PC, codes in everyday life, use of encryption tables; f-load:
1.90). The technical terms of the module must be introduced, explained and
justified very well in order to understand the underlying informatics principles.
The materials addressed the following content aspects: encryption, decryption
and algorithms as a comprehensive aspect. In order to test to what extent the
students have understood algorithmic concepts of cryptology, several respective
test items were included in the test-instruments. For example, the students had
to assess whether listed elements are to be classified as algorithms or not. Out of

348 J. Magenheim et al.

Table 3. Results of module-specific questions - module 3: I have a secret

Question Score

Max 0 1 2 3 4 5 6

1 Knowledge of encryption 3 43.7% 34.5% 19.5% 2.3%

2 determine algorithm 6 16.7% 17.8% 24.1% 27.6% 10.3% 3.4% 0%

3 Operation principle for the caesar disc 3 20.7% 29.3% 24.1% 25.9%

4 Recognize correct order of an algorithm 1 21.9% 78.1%

5 Correct flowchart for scytale-decryption 1 67.0% 33.0%

6 Importance of encryption 4 7.5% 9.2% 21.3% 31.6% 20.5%

six possible correct answers, they recognized an average of 1.4 items as an algo-
rithm and none of them could correctly identify exactly six algorithms. When
the terms were clearly and child-friendly introduced, the students had little diffi-
culties. The following table shows the evaluation points of the module (Table 3):

The data allow different interpretations: On the one hand, the students had
too little time to put the foreign words into an everyday context and then,
provided with a concept, to anchor them in their personal knowledge memory.
On the other hand, primary school teachers do not have the necessary specialist
knowledge and are therefore unable to introduce the terms with the necessary
accuracy. They cannot highlight the overarching aspects of their teaching and
make them available to pupils. Furthermore, there is the possibility that the
children can act very well algorithmically, but their linguistic ability falls behind
their practical ability. The historical perspective on cryptology, combined with
the prospect of writing “secret messages”, offered an attractive framework for
dealing with cryptology. The great interest in the topic led, among other things,
to the fact that the difference between transposition and substitution could be
reconstructed historically and evaluated with regard to its relevance. Questions
on data security and copyright could not be answered sufficiently within the
framework of the module and form central elements of the further development.
Finally, it can be stated that cryptological concepts were well understood, but
that the comprehensive informatics concept “Algorithms” was predominantly
action-oriented and that the big picture must be significantly further developed
and sharpened.

5 Evaluation – Teachers’ Results

The following results of the evaluation and reflection of teachers’ teaching expe-
rience in the project are based, on the one hand, on observations made during
the training and, on the other hand, on feedback forms filled in by teachers for
each module. The results of the feedback forms were obtained inductively using
MaxQDA. Frequently mentioned aspects were summarized to common content
categories, and on this basis, a quantification of the statements was conducted.
These categories are based on feedback to the contents, their didactic processing

Evaluation of Learning Informatics in Primary Education 349

and the competences to be achieved; feedback to the material and the equipment
at school, to differentiation possibilities and didactical social forms, additionally
to the target group and their previous educational experience, and last, but
not least to the time factor and the perceived overload of the curriculum. The
observed diffuse expectations of the teachers at the beginning of the training
series gave a hint that even these voluntary participants, selected as interested,
do not have a differentiated picture of informatics. A classification of the mod-
ules’ informatics content into a bigger picture, therefore cannot succeed. Rather,
there was a surprise effect, since the modules are designed unplugged, i.e. they
refer more to the informatics idea than to a technical implementation. Exemplary
statements from the training context were: “So this is informatics?”, That’s not
what I had in mind underneath. In the course of the training, it also became
clear that the teachers involved were initially unsure why it was precisely these
topics that were to be taught. Hence they could only gradually develop an idea
of why the selected module contents were relevant to informatics, indeed cen-
tral. Although the diffuse expectations could be somewhat structured by the real
training, the overall view on the topics of informatics could not be structured
and sharpened in the context of the training as the feedback results show.

The close orientation to the material made it possible for the teachers to
develop their own informatics ideas and to communicate them to the students
in a very closely guided manner. The bottom line, however, is that the handling
of informatics ideas is very complex and difficult, which means that students’
further questions and considerations cannot always be answered competently
by the teachers. This promotes uncertainty in the classroom and there is a risk
that this uncertainty will be transferred to the students. The teachers have an
increasingly urgent desire to understand the world of informatics, but a still
missing bigger picture shows that further training is highly needed.

Nevertheless, the teachers involved have gone through the training courses
and tested the materials in their lessons. 15.9% of the participants changed,
expanded, modified or reduced the material and adapted it to their learning
group. In summary, it can be said that material creation is very time-consuming
and a offered material package should be helpful (28.6% indicate this). However,
20.6% of the teachers involved would like to concentrate on fewer contents and
smaller goals. Further feedback allows conclusions to be drawn regarding the
necessary school equipment.

Due to inadequate equipment in schools, 57.1% of the teachers surveyed
stated that although it is possible to use computers for half class sizes on average
per school, they work too slowly or are not connected to the Internet at all. There
are massive problems as to whether the systems are ready for use and whether
programs may be installed on the systems, so that this infrastructure is hardly
usable for a technical deepening of the informatics contents with digital media.
Nevertheless, a total of 12.7% of teachers would like digital media to be available
to convey the content and to be implemented with suitable programs. They not
only expect to have a direct connection of the learning materials to the everyday
world of children (27%) but also see the need to address the ideas of computer

350 J. Magenheim et al.

science in a technical realization, especially for programming a robot or dealing
with QR codes. The results of the evaluation show that both, the teachers and the
students involved, have an interest in transferring their acquired knowledge into a
computer-based learning environment and respective software applications. This
step cannot be taken by the teachers without training. The follow-up project is
therefore to be devoted to this task.

The conviction of the necessity of informatics education leads teachers to the
assessment that the complexity of the topic must be met by intensive training
and further education offers in order to be able to deal competently with the
content and the available material, to modify it, to differentiate it and to process
it for their own learning group. The focus is on linguistic accuracy, the definition
of terms and the description of the underlying informatics concepts. In addition,
the classification in the overall context must be comprehensible and relevant for
teachers and students.

6 Discussion of Results

When looking at the results for teachers’, it’s probably no surprise that they
closely stick to the material, and had problems with the so-called bigger picture.
We found two aspects interesting: First, that this also resulted in problems of
understanding the relevance of the material; and second that at the same time
some of the teachers’ nevertheless reworked and adapted the material for their
classes.

Probably, for future initiatives teacher workshops should focus more on dis-
cussing the bigger picture, to help teachers to be able to adapt the materials to
their classes - but in the direction of a suitable bigger picture.

When looking at the material and evaluation more closely, we found four
strands for such a bigger picture at least implicitly in our three modules: These
are organized around the four themes: understanding and perceiving technical
systems as informatics systems; comprehend the IPO-principle of those systems;
understanding simple algorithms ideas; get an idea of coding and (programming)
languages.

In future teacher trainings such underlying principles could be discussed more
explicitly, in order to give teachers a better understanding how the different
topics are connected to an overall big picture of informatics education. When we
write big picture of informatics education, and not big picture of informatics, we
want to hint at another issue for discussion and further work: What is a suitable
big picture to be taught and learned in primary schools? This questions also
deserves a closer look in the future.

Further issues for teacher training, as based on the teacher feedback, are
the role of technology-based teaching and the needed prerequisites to so. As
mentioned already above, this question also needs further attention, as currently
the teaching technology installed at schools does not work out of the box (at
least in the perception of our teachers).

The inclusion of technology-based teaching is also an issue from the students’
point of view. The overwhelming majority of our students want to learn at least

Evaluation of Learning Informatics in Primary Education 351

also with technology. Based on our results we think that including technology
should not only be used as motivator or as teaching aid for the topics taught, but
also as a means to foster understanding the big picture. On the one hand finding
informatics principles in technology at school could foster the applicability and
the transfer to everyday experiences – on the other hand including technology
might lead to mis-perceptions of the nature of informatics (in the form of e.g.
informatics is the science of using computers or similar misconceptions). So this
is another issue for future work.

With regard to the specific content related results we learned that the three
main themes are realistic goals to pursue in primary education, but the more
abstract themes quickly become difficult to grasp; see e.g. the results in the three
modules.

A Tables and Figures

See Figs. 2 and 3.

I want to know more about
informatics

we did it in class

my parents want me to

Fig. 1. Interests in informatics

Table 4. Results of the participants for module robotics

Score 0 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of children 3 3 3 5 12 15 14 10 17 30 23 20 14 8 1

352 J. Magenheim et al.

Fig. 2. Results cluster analysis 1

Fig. 3. Cluster analysis module cryptography

Evaluation of Learning Informatics in Primary Education 353

References

1. Duncan, C., Bell, T., Atlas, J.: What do the teachers think?: introducing computa-
tional thinking in the primary school curriculum. In: Proceedings of the Nineteenth
Australasian Computing Education Conference, pp. 65–74. ACM, New York (2017)

2. Brinda, T., Puhlmann, H., Schulte, C.: Bridging ICT and CS: educational standards
for computer science in lower secondary education. ACM SIGCSE Bull. 41, 288–292
(2009)

3. Plomp, T., Nieveen, N.: Educational Design Research. Part A: An Introduction.
SLO Netherlands Institute for Curriculum Development (2013)

4. Vekiri, I., Chronaki, A.: Gender issues in technology use: perceived social support,
computer self-efficacy and value beliefs, and computer use beyond school. Comput.
Educ. 51(3), 1392–1404 (2008)

5. Bergner, N., et al.: Zieldimensionen informatischer Bildung im Elementar- und Pri-
marbereich. In: Stiftung Haus der kleinen Forscher (Hrsg.) Frühe informatische Bil-
dung Ziele und Gelingensbedingungen fr den Elementar- und Primarbereich. Berlin
(2018)

How an Ambitious Informatics
Curriculum Can Influence Algebraic
Thinking of Primary School Children

Francesca Agatolio1(B), Fabio Albanese2, and Michele Moro1

1 University of Padova, Padua, Italy
francesca.agatolio@phd.unipd.it, michele.moro@unipd.it

2 Collegio Pio X, Treviso, Italy
fabio.albanese@fondazionecollegiopiox.org

Abstract. In this paper we describe the special case of an informatics
curriculum implemented in a primary school, and the observed learn-
ing outcomes. The particularity of this curriculum is based on both the
variety of the contents and on their apparent complexity. The children
experienced different programming languages, including one text-based,
and became confident with many educational robotics kits such as Lego
WeDo, MBot and Arduino. During this path, children appeared strongly
involved also in dealing with complex challenges and seemed to have
developed their mathematical thinking. In particular, even if they had
never worked with the formal structures of algebra during the math
classes, children appeared confident with the concept of variable found
in programming. For this reason, we decided to investigate whether these
competencies applied even to mathematics, using a well-known national
test developed to gauge the level of skills and selecting some questions
related to algebra and designed for 8th grade students. The results that
emerged were encouraging, suggesting that informatics could be useful in
reinforcing algebraic thinking and introducing some mathematical con-
cepts particularly complex for many students, such as variables.

Keywords: Education in informatics · Informatics curriculum
Algebraic thinking · Computational thinking

1 Introduction

Since its first mention by Wing [27], computational thinking (CT) is a success-
ful expression that incorporates several meanings in itself. In particular, Wing
emphasizes the mental process activated by searching an interpretable and not
ambiguous solution of a problem, i.e. a computational solution, which in gen-
eral terms involves humans and machines. Literature provides other designations
such as algorithmic thinking [4] but we think that the frequent major associa-
tion with computer programming skills proofs rather reductive. Actually CT
can be classified as a kind of analytical thinking: this is why it is easy to find
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 354–365, 2018.
https://doi.org/10.1007/978-3-030-02750-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_27&domain=pdf

The Impact of an Informatics Curriculum on Algebraic Thinking 355

relations with mathematical thinking (problem solving, abstraction), engineering
thinking (design and evaluation of complex systems connected with real environ-
ments), scientific thinking (understanding computability, intelligence, the mind
and human behavior) [28]. In [7] the authors present a survey of the core concepts
and skills related to CT they found in some fundamental works in literature.
They also provide an interesting addendum of dispositions/attitude/attributes
such as persistence, collaboration, and others, which, together with knowledge
and skills, form the essence of competences. Moreover, this work reminds us
that CT is not simply digital literacy because it goes beyond the objective to
prepare competent and safe users of digital tool, trying to make them aware of
what is “behind the curtain”. Abstraction, problem-solving, programming and
debugging skills, collaborative attitudes are all considered relevant components
of the CT process and its outcomes. This means that there is a general consen-
sus on the valuable transversal impact that promoting CT at curricular level
may have within an innovative education [19,24]. There are several practical
ways to “feed” CT, depending on the level of school, but teaching program-
ming and practicing coding is considered the central engine to this purpose [4].
Among these, Educational Robotics (ER) is a powerful approach to introduce
programming in a way which is attractive, rewarding and enforced by the build-
ing of “intelligent” artefacts [1]. Actually ER has proved as one of the powerful
tool to stimulate and guide CT from kindergarten to University [3]. Like CT,
ER is denoted as supporting STEM teaching-learning but more recently it has
been related to the wider spectrum of STREAM disciplines which includes also
Reading-writing and Arts [9]. As far as the multidisciplinary power of CT is
concerned, we can expect positive effects on single disciplines, either in form
of a reinforcement of an already evident attitude, particularly in presence of a
special talent, or, maybe more interestingly, making the student previously in
difficulty more confident and less frightened by a certain discipline. In this paper
we would focus on the declination of CT as mathematical and algebraic thinking
and its impact on affordable mathematical competences. Literature shows that
the strict relationship between CT and Mathematical thinking (MT) comes from
the analytic perspective and the degree of abstraction applied in mathematical
problem-solving [21]. The relevance of MT does increase due to the rapid evolu-
tion in professional fields which are related to mathematics and sciences, from
which the necessity of a more realistic view is actually required to better pre-
pare students for pursuing careers in these fields [25]. In [26] Wilkerson et al.
underlines the relationship between CT/MT and the ability of building precise
models able to support innovative investigations and to provide predictive data
so important in the XXI centrury information society. “Immaginative program-
ming” is also another expression used to explain that through CT Mathematics
is brought to life [5]. The paper aims to show, dealing with a direct experience in
a primary school Italy that includes ER, the validity of the abovementioned prin-
ciples with special attention to mathematical skills. In Sect. 2 we would argue on
how the teaching-learning of CS and programming can support the introduction
of mathematical concepts and abilities at this level. Our specific experience is

356 F. Agatolio et al.

presented in Sect. 3 and the paper is concluded by a final discussion and possible
future developments.

2 Algebraic Thinking

Algebraic thinking refers to a set of cognitive processes involved in using algebra
that have a lot in common with CT. In K-12 education (i.e. by the end of the
usual secondary education), algebra can be described as [16]:

– manipulation and transformation of symbolic statements;
– generalizations of laws about numbers and patterns;
– the study of structures and systems;
– rules for transforming and solving equations;
– learning about variables, functions and expressing change and relationships;
– modelling the mathematical structures of situations within and outside math-

ematics.

In all these aspects the role of variables and symbolization in general is funda-
mental. Although it is possible to introduce many algebra’s aspects since early
age through the use of a pre-algebric approach [14] (i.e. without using letters),
the symbolization becomes essential as soon as the more formal aspects are intro-
duced. For many students, this is a watershed point in the learning of mathemat-
ics. In fact, the literature reports the frequent difficulties that can arise over the
transition from an arithmetic to an algebraic form of reasoning: in particular,
students struggle to imagine a letter as standing for a range of numbers or as
representing an object rather than a number and they have great difficulty oper-
ating on unknowns [8,13]. This transition in the italian education happens just
around the 7th grade (12 years old), but the literature suggests that many mech-
anism of the algebraic thinking can be introduced much earlier [8] so that the
students can familiarize with some concepts before they appear in the secondary
grades. To achieve this objective, computer-based tools are good allies. In the
literature, the use of modern technologies to support the learning of mathemat-
ics and mathematical thinking in general is well documented [11]. In particular
two kinds of approach emerge: the first one concerns the use of technological
tools explicitly aimed to enhance the learning of some mathematical concepts,
such as graphic calculators or specific environment (e.g Geogebra, Bebras) [10].
In the second approach, instead, informatics, and in particular programming, is
used to implicitly promote this [6,15]. The curriculum we are going to describe
uses this second approach that follows essentially the Seymour Papert theories:
in fact, in [17] Papert guessed that “children could also benefit, [. . .], from the
way in which computer models seemed able to give concrete form to areas of
knowledge that had previously appeared so intangible and abstract.” The out-
comes observed at the end of the three years course described here, show that
this idea is effective, and that the cognitive transfer between the two concepts
of variable - as it appears in programming, and as it is taught in mathematics -
is possible. We consider this hypothesis as representative of overall educational
value of artifacts as “comfortable” vehicles of various mathematical skills.

The Impact of an Informatics Curriculum on Algebraic Thinking 357

3 Curriculum

The informatics curriculum hereby described is an anomaly within the italian
primary school. What makes it different from the ordinary informatics teachings
in Italy is primarily the richness of the contents and of the tools involved in the
pattern (Fig. 1), combined with the apparent complexity of some topics covered,
if compared to the age of the students (8–10 years old). The curriculum was
implemented in a class of 27 students of a private school. The time employed
was about two hours per week. In the following sections we describe the contents
addressed during the 3rd, 4th and 5th grade programs, discussing the main
applied methodologies and the conditions that had made it possible.

3.1 Contents

The contents addressed during the three years dealt with different areas of com-
puter science. In the Table 1 we briefly present these topics, divided into five cat-
egories partially inspired to the “Scheme of Work for Computing” designed by
the CAS community (https://community.computingatschool.org.uk/resources/
2119/single). Because of the great importance given to educational robotics,
we choose to create a specific category reserved to this topic. The sixth cate-
gory,“Connection to real world” underlines the great importance given to the
applications and to multidisciplinarity.

(a) Educational robots (b) 3D printer

Fig. 1. Examples of technological tools used in the activities

3.2 Activities Examples

3rd Grade: Pinocchio Digital Story. During this activity children repro-
duced the Pinocchio fairy tale using Scratch (scratch.mit.edu). Digital story-
telling is often used to introduce programming [12], but the particularity of the
experience described here relies on the technological tools employed. After seeing
the Pinocchio movie, the teacher split the students into groups and required from
each of them to reproduce a scene from the cartoon using Scratch. The children
had to keep in mind two constraints: each scene should have lasted 120 s, and

https://community.computingatschool.org.uk/resources/2119/single
https://community.computingatschool.org.uk/resources/2119/single
https://scratch.mit.edu/

358 F. Agatolio et al.

the scenes of the different groups should have been mutually consistent. The
second request aimed to enhance communication among the groups. After that,
the teacher sequenced all the scenes and the students had the possibility to dub
them with the collaboration of the music teacher and thanks to the presence in
the school of an apposite small voice-acting room.

4th Grade: App + Robotics Animation + Videogame. During the first
part of the year, the students increased their programming skills through the
creation of videogames and apps. They were introduced to educational robotics
with the Lego WeDo robot. In the second part of the year the teacher pro-
posed the “App + robotics animation + videogame” activity with the aim to
strengthen the acquired competencies and to enhance the students’ autonomy,
increasing their sense of responsibility. The students were divided into groups of
4–5 members each and they were required to create a videogame, a little project
using Lego WeDO and an interactive app. They had four months and they were
left the choice to distribute tasks among themselves or to face each step together
one at a time: collecting the information, designing the app’s structure, providing
for the script, etc., all in complete autonomy.

5th Grade: Create a 3D Lighted Sign with Arduino. Arduino (arduino.cc)
has been introduced after some lessons dedicated to the study of electricity and
energy. Therefore, after they have met Arduino, children were able to recognize
physical concepts such as the electrical current, the resistance, the voltage and
the relationship among those physical quantities - i.e. the Ohm law. Although
these contents were introduced in a simplified way, students showed to under-
stand their general meaning. For this purpose, the teacher used also technical
instruments (e.g. the multimeter); to program the hardware, students used the
MBlock environment. The reasons behind this choice were two: the first one is
that MBlock is very similar to Scratch, which children already knew; the second
is that MBlock allows an immediate automatic translation from graphical to
textual language. This way students could have a taste of the C++ language
and, as a result, they were able to write very simple programs using the Arduino
IDE environment. An example of such activities is the creation of a lighted sign
using Arduino and the 3D printer. Students designed the physical structure using
the TinkerCad software, then they added some LEDs controlled by Arduino. In
doing this, they applied some theoretical physics concepts to build a tangible
artifact, such as the LED polarization. The aim was to make them aware of the
applicability of the knowledge transmitted by school.

3.3 The Guiding Principles

The curriculum aimed to develop and to reinforce three main aspects.

The Development of Computational Thinking. CT had a wide space in the
curriculum, firstly because the students were continuously involved in program-
ming. Therefore, for all the time they were required to solve problems traducing
them in a language understandable by a computer. Moreover, thanks to the wide

The Impact of an Informatics Curriculum on Algebraic Thinking 359

Table 1. The contents addressed in the curriculum

Algorithms Programming &

development

Data & Repre-

sentation

Hardware &

processing

Educational

robotics

Connection

with real world

3th gradeUse of

instructions’

sequences to

create stories;

sprites’

temporal syn-

chronization

Programming

with Scratch using

only simple

commands (e.g.

movements,

dialogues)

Strings and

numbers

Computer general

structure based

on Von Neumann

architecture.

Introduction of

the concepts of

CPU, RAM,

ROM, input and

output peripheral

devices

Creation of

simple cartoon

in the form of

digital

storytelling

4th gradeUse of more

advance

commands

such as loop,

if/else and

logical

operators.

Sprites syn-

chronization

using the

broadcast

commands

Creation of

videogames in

Scratch. Creation

of personalized

blocks.

Introduction of

the routine

concept.

Programming

Lego WeDo using

Scratch

Variable

concept in

informatics.

Introduction

of the data

types. Concept

of

digitalization

Study of simple

network

architectures.

Information

binary

representation.

Building simple

logical circuits

using Logic Lab

software (Fig. 2)

Introduction to

educational

robotics

through Lego

WeDo

Solving

mathematical

problems in

Mblock through

generalized

algorithms (es.

Creation of a

program to

calculate the

perimeter of a

regular

polygon)

5th gradeDeepening of

the if/else

statement

associated to

the use of

sensors

Programming

robots such as

MBot and

Arduino using

Mblock

environment.

Introduction of a

textual

programming

environment for

Arduino (IDE)

Instances of

digitalization

techniques for

text, images

and sounds.

Transmission

of the binary

information

Sensors and

actuators

concepts.

Introduction to

the 3D printing

Implementation

of simple

projects with

Arduino using

LEDs and

buttons. Study

of a smart

home model

based on

Arduino

Comparison

between the

virtual

environment

and the real

one.

Introduction to

simple physical

concepts using

MBot

(es.friction,

speed, electric

current,

battery, Ohm

law)

(a) An app (work-in-progess) (b) Logic Lab

Fig. 2. Examples of activities

360 F. Agatolio et al.

set of technological tools employed, children had the opportunity to face problem
of different kinds that required diverse strategies to be solved. For instance, the
two tasks of designing components with the 3D printer and of creating an app
with Scratch both needed to translate an idea in a form consistent with the used
software even if radically different. Furthermore, with educational robotics the
children had to take into account also new issues related to the real environment.
An aspect we consider fundamental in the development of CT, is the “white-
box” approach adopted by the teacher: he tried to make students aware of the
functioning of the technologies they were using, for example showing the inter-
nal components of a computer or discussing with them the physics principles at
the basis of some devices, such as the battery or the ultrasonic sensor (see also
section below). Behind this approach, there was the idea that the understanding
of how thing works is a fundamental step to realize something new.

Connection with the Real World and Multidisciplinarity. The impor-
tance to make a didactic tied to reality is well-known in literature [23]. In fact,
this bond allows to motivate children to accept in a good mood even the more
complex challenges. Educational robotics is particularly useful for this purpose,
because the activities it proposes are inspired to day-to-day issues [3], such as,
for example, the study of a smart home with Arduino, an activity covered dur-
ing the K5 year; moreover, the usage of robots such as MBot prompted them to
rethink about the differences between the virtual environment they met using
Scratch and the physical world, with its laws and imperfections: for example,
the movements of the robot can be used to introduce the concepts of physical
error and of forces like friction but also to treat advanced concepts, such as the
motion laws, in a simple and understandable way. One of the key aspects of
the curriculum has been, in fact, the intention to make students engaged and
aware of a wider perspective about the school subjects - perspective that allowed
them to perceive the teachings of each subject as an “unicum”, giving them an
anticipated, if partial, knowledge of the future contents. This approach is guided
by the deep conviction that this anticipation is fundamental to give students an
idea of the structure of the surrounding world, and to help them to understand
the role of the school both in explaining the world to them, and to make them
prepared to face the same subjects with a higher degree of complexity.

Sense of Responsibility and Cooperative Learning. The students’ sense
of responsibility proceeds step by step through cooperative learning; in fact,
the awareness of the importance of each one’s contribution to the collective
effort was a key factor in creating motivation and self-esteem in students [20].
Moreover, most of the activities were simply presented by the teacher, with the
concrete realization left to the students’ creativity, hoping to stimulate their
resourcefulness.

3.4 The Applied Methodology

Constructionism, as described by Seymour Papert, was the guiding methodology.
As stated by Papert in [18], the presence of computer and other computer-based

The Impact of an Informatics Curriculum on Algebraic Thinking 361

tools “shifts the balance between transfer of knowledge to students and the pro-
duction of knowledge by students”. The students were actively involved in the
learning process, also thanks to the great importance given to the creation of
physical artifacts. The word “artifact” here had a double meaning: on the one
hand it was the cognitive tool by which to apply the acquired knowledge and
build a new one (e.g. computer, robot, 3D printer); on the other hand it is the
results of a learning creative process to which the students put their effort. As a
result“children might come to want to learn it because they would use it in build-
ing these models” [18] and this happens also when complex abstract concepts
are involved. Also the teacher acted following the constructivist perspective: he
did not work as a traditional teacher - transferring ready knowledge to students -
but rather acted as an organizer, coordinator and facilitator. He gave the guide-
lines of the activity, provided to students with many materials for thoughts and
observed their learning process. His presence was very discrete and his help was
be offered only when necessary [2].

3.5 The Effects on Algebraic Thinking

At the end of the three years, observing the meaningful goals reached by the
children, we tried to investigate whether this path had an impact on their math-
ematical thinking. In particular we were interested in evaluating if they were able
to understand the use of symbolization in the representation of mathematical
problems after they have experienced something similar in programming. For this
purpose, we used INVALSI (http://www.invalsi.it/invalsi/index.php), that is a
national test developed to gauge the level of the students’ skills in some specific
years of their education (2nd, 5th, 8th and10th grades). We chose four questions
from the 8th and 10th grade questionnaires. In fact the 5th grade test does not
contain references to the use of symbolization since, in italian education, it is
introduced just around the 7th grade. The Fig. 3 reports the selected questions
(Q1, Q2 and Q4 come from the 8th grade level, while Q3 belongs to the 10th
grade level). In all the questions we replaced the words “formula”,“expression”
and “equation” with the term“option” in order to make it understandable to the
children.

In the Table 2 there are reported the results performed by the students,
compared with the national percentage of correct answers; the students who
took the test was 25 over 27.

The positive students’ performance in the questions 1,3 and 4 indicates that
the most part of them was able to identify the algebraic model of a problem,
recognizing the symbolical representation both of the numbers and of the rela-
tionships among them. We think their experience with variables in programming
provided them of an intuitive interpretation of the use of variables in mathemat-
ics. Moreover, the scientific approach grown during the three years, could have
make them familiar with the mathematical way of describing a problem. Indeed,
many of the addressed activities called for solving a problem translating it in
a programming language, a process that has a lot in common with the mathe-
matical one. The lower performance in Q2 could be explained by the graphical

http://www.invalsi.it/invalsi/index.php

362 F. Agatolio et al.

Fig. 3. The math test: questions from INVALSI test

representation of the question: students may not have identified the variable x
with a part of the segment in the figure or they may had difficulties in under-
standing that the length of the entire segment was 53. In fact, they didn’t met
such kind of representation within programming. Surely, there are some limita-
tions: the use of closed-ended questions does not allow observing the cognitive

The Impact of an Informatics Curriculum on Algebraic Thinking 363

Table 2. Percentage of correct answers. The national results refer to 8th grade and
10th grade levels.

Our students’ performance National performance

Q1 (8th grade) (a) 84%, (b) 88% (a) 90%, (b) 85%

Q2 (8th grade) 24% 49%

Q3 (10th grade) 60% 56%

Q4 (8th grade) (a) 44%, (b) 60%, (c) 56% (a) 50%, (b) 57%, (c) 52%

processes involved; moreover, selecting the correct answer from among a range
of options, is easier than asking students to discover their own a formula. Nev-
ertheless, the collected data provided us with several points of consideration for
further development.

4 Further Development and Conclusion

In this paper we described an advanced informatics curriculum implemented in
a primary school and we discussed about its impact in the students’ algebraic
thinking. Although, the concept of variable in computer science is not exactly
the same than in mathematics [22], the emerged data suggest that, through
programming, children can be introduced to the use of symbolization so that a
variable appears quite familiar when it is used within the mathematical context.
Of course, we are not saying that our students acquired the same knowledge of
students in 8th or 10th grade, but the results seem to indicate that programming
is an effective way to anticipate mathematical concept that are particularly tricky
for the students. Somehow we can assume that the variable concept, apparently
so unnatural for many students, lies instead in a sort of Vygotskian “zone of
proximal development” since the primary school. Therefore, the computer, under
the teacher’s guidance, acted as a“bridge” between the arithmetic reasoning and
the algebraic one. In the future work we aim at further investigating the obtained
results asking students to find their own algebraic representation of a certain
problem, in order to discover how deep and well-structured is their understanding
of variables. Finally, all the questions we selected aimed at evaluating a specific
aspect of algebra that is the modelling of problems through the mathematical
language - the same process at the base of computational thinking. The affinities
existing between the algebraic thinking and the CT, suggest that the evaluation
of the first could be used, at least partially, to assess the second. We plan to
organize further investigations to obtain a stronger evidence of our hypothesis
though the obtain results are in our opinion already encouraging.

Acknowledgement. We thank the school “Collegio Pio X” and all the students from
class “5 Attivamente” that cooperated eagerly in this study.

364 F. Agatolio et al.

References

1. Agatolio, F., Moro, M.: A workshop to promote Arduino-based robots as wide
spectrum learning support tools. In: Merdan, M., Lepuschitz, W., Koppensteiner,
G., Balogh, R. (eds.) Robotics in Education. AISC, vol. 457, pp. 113–125. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-42975-5 11

2. Alimisis, D.: Exploring paths to integrate robotics in science and technology educa-
tion: from teacher training courses to school classes. IJREA: Int. J. Robot., Educ.
Art 2(2), 16–23 (2012)

3. Alimisis, D.: Educational robotics: open questions and new challenges. Themes Sci.
Technol. Educ. 6(1), 63–71 (2013)

4. Ambrosio, A.P., Almeida, L.S., Macedo, J., Franco, A.H.R.: Exploring core cog-
nitive skills of computational thinking. In: Psychology of Programming Interest
Group Annual Conference 2014 (PPIG 2014), pp. 25–34 (2014)

5. Barr, V., Stephenson, C.: Bringing computational thinking to k-12: what is involved
and what is the role of the computer science education community? ACM Inroads
2(1), 48–54 (2011)

6. Benton, L., Hoyles, C., Kalas, I., Noss, R.: Building mathematical knowledge with
programming: insights from the scratchmaths project. Suksapattana Foundation
(2016)

7. Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., et al.: Devel-
oping computational thinking in compulsory education-implications for policy and
practice. Tech. rep, Joint Research Centre (Seville site) (2016)

8. Carraher, D.W.: Early algebra and algebraic reasoning. Second Handbook of
Research on Mathematics Teaching and Learning, pp. 669–705 (2007)

9. Eguchi, A.: Educational robotics for promoting 21st century skills. J. Autom. Mob.
Robot. Intell. Syst. 8(1), 5–11 (2014)

10. Ferrara, F., Pratt, D., Robutti, O., et al.: The role and uses of technologies for the
teaching of algebra and calculus. In: Handbook of Research on the Psychology of
Mathematics Education. Past, Present and Future, pp. 237–274 (2006)

11. Hoyles, C., Lagrange, J.B.: Mathematics Education and Technology: Rethinking
the Terrain. Springer, Boston (2010). https://doi.org/10.1007/978-1-4419-0146-0

12. Kelleher, C., Pausch, R.: Using storytelling to motivate programming. Commun.
ACM 50(7), 58–64 (2007)

13. Kieran, C.: Research on the learning and teaching of algebra. In: Handbook of
Research on the Psychology of Mathematics Education: Past, Present and Future,
pp. 11–49 (2006)

14. Linchevski, L.: Algebra with numbers and arithmetic with letters: a definition of
pre-algebra. J. Math. Behav. 14(1), 113–120 (1995)

15. Noss, R.: Constructing a conceptual framework for elementary algebra through
logo programming. Educ. Stud. Math. 17(4), 335–357 (1986)

16. Nunes, T., Bryant, P., Watson, A.: Key Understandings in Mathematics Learning.
Nuffield Foundation, London (2009)

17. Papert, S.: Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Inc. (1980)

18. Papert, S., Harel, I.: Situating constructionism. Constructionism 36(2), 1–11
(1991)

19. Qualls, J.A., Sherrell, L.B.: Why computational thinking should be integrated into
the curriculum. J. Comput. Sci. Colleges 25(5), 66–71 (2010)

https://doi.org/10.1007/978-3-319-42975-5_11
https://doi.org/10.1007/978-1-4419-0146-0

The Impact of an Informatics Curriculum on Algebraic Thinking 365

20. Slavin, R.E.: Synthesis of research of cooperative learning. Educ. Leadersh. 48(5),
71–82 (1991)

21. Sung, W., Ahn, J., Black, J.B.: Introducing computational thinking to young learn-
ers: practicing computational perspectives through embodiment in mathematics
education. Technol. Knowl. Learn. 22(3), 443–463 (2017)

22. Usiskin, Z.: Conceptions of school algebra and uses of variables. Ideas Algebra,
K-12 8, 19 (1988)

23. Vallerand, R.J., Fortier, M.S., Guay, F.: Self-determination and persistence in a
real-life setting: toward a motivational model of high school dropout. J. Pers. Soc.
Psychol. 72(5), 1161 (1997)

24. Voogt, J., Fisser, P., Good, J., Mishra, P., Yadav, A.: Computational thinking in
compulsory education: Towards an agenda for research and practice. Educ. Inf.
Technol. 20(4), 715–728 (2015)

25. Weintrop, D., et al.: Defining computational thinking for mathematics and science
classrooms. J. Sci. Educ. Technol. 25(1), 127–147 (2016)

26. Wilkerson, M.H., Fenwick, M.: Using mathematics and computational thinking.
In: Helping Students Make Sense of the World Using Next Generation Science and
Engineering Practices, pp. 181–204 (2017)

27. Wing, J.M.: Computational thinking. Commun. ACM 49(3), 33–35 (2006)
28. Wing, J.M.: Computational thinking and thinking about computing. Philos. Trans.

R. Soc. Lond. A Math. Phys. Eng. Sci. 366(1881), 3717–3725 (2008)

Computer Tools in Teaching and
Studying Informatics

Gamification of Problem Solving Process
Based on Logical Rules

Fedor Novikov(B) and Viktor Katsman(B)

St. Petersburg Polytechnic University, St. Petersburg, Russia
fedornovikov51@gmail.com, vikto9494@gmail.com

Abstract. One of the main elements of the modern educational process
in the field of IT is the solution of logical-combinatorial problems. When
solving such problems, learners need to build a new solution based on
the set of basic operations studied before being combined according to
certain rules. To consolidate these skills, leaner need to solve a reasonable
number of problems that leads to need of verification of a huge number
of solutions.

Many systems allow us to automate the verification of solutions. In
most cases, these systems check pure answer only, but not the progress
of the solution itself. Such a method of verification does not exclude the
possibility of obtaining the correct answer and the credited task with an
incorrect or inconsistent solution.

We propose a method for verifying the solution of problems, based
on search of valid transformations, or stepwise refinements, similar to
search for proof in logical calculi. This means that, the system at each
step effectively sorts out all possible transformations, trying to find one
that the learner applied. In this case, the system not only can find an
error in the solution, but also indicate the source of this error, which is
wrong transition between steps.

In addition to automatically verifying the solutions, this approach
allows us to generate tasks that require the application of specific rules.
Also the application of the rules can be interpreted as “moves” in the
intellectual game. Then the solution of the problem turns into a game
process, and the correct solution corresponds to a sequence of steps lead-
ing to the victory in the game.

The proposed approach was tested on students of the junior courses
and showed good results. Namely, in the conducted experiments the effi-
ciency of the teacher’s work when checking solutions increased more than
4 times.

Keywords: Education · Problem solution · Learning automation
Logical rules · Stepwise refinement

1 Introduction

To date, automation is one of the most effective, and therefore widespread
ways to increase productivity. In particular, automatic learning environment
systems become much more popular. Such systems are able to perform part
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 369–380, 2018.
https://doi.org/10.1007/978-3-030-02750-6_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_28&domain=pdf

370 F. Novikov and V. Katsman

of the teacher’s work or significantly simplify it, allowing teachers to concen-
trate on the most important and interesting aspects of their work. More routine
things can be performed by machines, which will not get tired or annoyed, unlike
live teachers. Teachers are required to thing only once, but very carefully what
exactly has to be done and how to do it. After that machines will work and
their work is much easier to scale, and the quality of their work does not depend
on their mood and personal circumstances, but only on the original algorithm
inherent in them [1,2].

Different aspects of the teachers functions could be automated: the presen-
tation of new material, discipline maintenance during classes, checking solutions
and answers, and others. Automation of many of these aspects is already actively
used, for example, during the lesson some part of the teacher’s instruction is
replaced by a video recording. In online learning systems, video recording allows
the teacher to replicate their instruction. Such automation requires the teacher
only one-time qualitative preparation of the video recording, instead of having
to repeat recorded instruction time and time again.

It is much more difficult to competently automate the work of a teacher in
situations where an individual approach to the learner is required, as well as
understanding of his or her psychology, mood, and level of knowledge. After
initial instruction, it is necessary to consolidate it, which is achieved by means
of solving a large number of tasks.

It is desirable to select the tasks individually for each learner so that to solve
them, he or she would be required to apply the newly acquired skills, as well
as their poorest skills from the recent training course. In addition to selecting
tasks for learners it is also necessary to check their response and solutions. It is
desirable that when receiving the results of the test, the learner could understand
where exactly he or she could have made a mistake, and, perhaps, could also get
a clue how this error should be corrected.

The opportunity to generate tasks and check their answers and solutions
automatically, taking into account the requirements described in the previous
paragraph, opens a lot of prospects in the field of teaching. In particular, it
reduces the time that the teacher takes to check solutions. In addition to the
diversity of full-time education and the development of distance learning, this
opportunity also helps to turn the learning process into a game, which signifi-
cantly increases the learners motivation and makes the hole process of learning
more engaging.

In this article, we describe a method that allows generating tasks and check-
ing their solutions automatically, as well as the opportunities for the learning
process to be gamified based on the proposed method. The method is partic-
ularly well suited for tasks in Computer Science and Discrete Mathematics in
the areas of set theory and combinatorics and has been repeatedly tested by
us on the junior students of the Peter the Great Saint-Petersburg Polytechnic
University.

Gamification of Problem Solving Process Based on Logical Rules 371

The paper is organized as follows. Section 2 provides an overview of the exist-
ing methods that allow generating task conditions and verifying their solutions.
The Sect. 3 describes the basis of the proposed method. Section 4 covers the
opportunities of using this method, and, also, for the gamifying of the learning
process. The final Sect. 5 contains the results of experimental verification of the
effectiveness of the method.

2 Existing Methods Exercises Automation

To date, the verification of the answer is a common method of automated ver-
ification of the solution of the problem. In this case, the teacher manually sets
the condition of the problem and the correct answer criteria, which will deter-
mine the correctness of the answer given by the learner. Accordingly, the task is
counted for the learner if and only if his or her answer meets the criteria set by
the teacher.

Criteria for the correctness of the answer are different. The simplest criterion
for the correct answer is the correct answer itself. In the field of IT, it is usually
a number or some sequence of symbols, for example, corresponding to the result
of the work of some algorithm. If the answer can be written in different ways,
for example, with different precision or different symbolic expressions, then you
can either supplement the condition with the rules for formulating an answer
or allow the learner to pick one of the multiple choose options. Both options
theoretically allow the teacher to test the answer in any Computer Science task
and are widely used in both Computer Science exams and distance learning, for
example, on the Coursera [3], Stepic [4], WebWork [5], Moodle [6] and many
others.

Nevertheless, in many cases, these methods significantly increase the routine
component of the problem-solving process. For example, if the learner is asked
to choose the right program from the suggested ones, he or she will be required
to read all the suggested programs, including those which will not lead to the
desired result. This is because the skills necessary to construct the learners own
program differ significantly from the skills necessary to read and understand
existing ones. Also, the answer can be guessed by chance, and the skill will not
be mastered.

In some cases, answers recorded in different ways can also be unambigu-
ously compared. For example, the equality of two symbolic expressions could
be checked automatically if these expressions contain only natural numbers and
variables that are linked with addition, subtraction and multiplication. Tarski’s
algorithm allows us to verify the truth of closed arithmetic formulae of the first
order with variables for real numbers, that is, with a finite set of real numbers
[7]. But for most problems there are no simple checks: for example, the impos-
sibility of automatically checking the equivalence of two programs by their code
follows from Rice’s theorem [8]. The impossibility of automatically verifying the
equality of symbolic expressions using rational numbers and the operations of
exponentiation follows from Richardson’s theorem [9].

372 F. Novikov and V. Katsman

Thus, we cannot verify the correct answer in all cases given the single value
only. For example, consider the answer in a form of symbolic expression that
contains variables: (x+1)/x = 1+1/x. Which form should be considered as the
only right one?

In many cases, the problem of the ambiguity of the answer form is solved by
testing. The method involves in comparing the learner’s answer with the correct
one by performing a series of computational experiments, in each of which the
result obtained by the learner at certain values of the parameters is compared
to the correct answer. If in all computational experiments the learner’s answer
coincides with the correct one, the solution is considered correct, otherwise, you
can give the learner a counterexample.

Such a verification method is probabilistic, since an incorrect answer can be
interpreted as correct if the test coverage is not complete. Thus, the selection of
the values of the parameters for which it is required to perform computational
experiments (test cases) becomes the key factor. The teacher needs either to
conduct it manually - to work out the tests, or to provide an algorithm for this
selection - to design the automatic tests generation. Both methods require a
serious effort. Nevertheless, this method of verification is widely used in distance
learning systems, especially for software testing. For example, when creating
online courses in the Stepic system, you can ask the learners to write programs,
and you can use automatic tests as a test criterion [10].

For example, when testing the expression “a+b = a∗b”, the test “a = b = 2”
passes, and the test “a = b = 3” does not.

In addition to the chance of interpreting the wrong answer as correct, such
testing has another drawback, namely the lack of form verification. However, the
form of the answer is often important. When programming it is important to
follow the style of coding. When specifying a symbolic expression in an answer,
it is desirable to simplify it. Sometimes it is required to verify if the learner has
or has not applied a certain operation in his or her solution.

In most school tasks in Computer Science, the methods listed above make it
possible to automatically verify the correctness of the answer, and sometimes to
show the learner where he or she made a mistake. But all these methods allow
you to check only the final result without analyzing the way in which the learner
has obtained it. In fact, it often happens that learners come to the right answer
by chance, without taking into account a number of important things. If you
check not only the value of the answer, but the solution itself, you can help the
learner find the point from which his or her reasoning became erroneous.

Another important aspect is the automatic task generation. This aspect
seems less important since it is required to check the solution of problems much
more often than to draw up tasks. In addition, in most cases, you can find
ready-made tasks, rather than inventing your own. Therefore, the main research
is carried out in the field of automatic distribution of tasks already prepared by
the teacher among the learners, depending on their individual progress.

This issue is usually solved due to the detailed manual categorizing of tasks by
their complexity, topics and manual setting of the rules for the learners transition

Gamification of Problem Solving Process Based on Logical Rules 373

between tasks, depending on the tasks already solved by them and their feedback
on how difficult it was to solve these tasks. Similar adaptive learning approaches
are used in many distance learning systems, for example, in NeuroRehabLab
[11], Coursera [3] or Stepic [4].

Nevertheless, the compilation or even the selection of tasks also requires a
significant effort from the teacher, and in many cases it is a routine work. For
example, in situations where a large number of similar tasks are required, for
instance, different options for different learners in order to combat the learner’s
cheating. In this case, the teacher can be helped by an approach that allows
you to create a task template, and then on this template automatically generate
tasks individually for learners. This approach is implemented, for example, in the
WebWork system, where the task template is a text in which special variables
and expressions can occur. When generating each variable, a random value is
assigned to it, which then replaces all occurrences of this variable [5].

The approach proposed in the article significantly expands the prospects both
for automated verification of solutions and for generating tasks.

3 Rule-Searching Method

In the process of solving a typical problem, the learner, first of all, reads and
interprets the condition of the problem. After that, step by step he or she begins
to derive corollaries from the condition and it continues until the next deduced
consequence leads them to the solution of the problem. As a solution to the prob-
lem, the learner presents a sequence of transformations (steps). Such a sequence
corresponds to the process of solving the problem after understanding its condi-
tion and is the only information that the teacher receives for verification. That
is, when verifying a written solution, the teacher can check only the correctness
of the sequence presented by the learners without any chance to trace the course
of the learner’s reasoning when interpreting the condition. The teacher can check
only the final result: the expressions and formulae, not the learners thoughts.

The process of creating a sequence of transformations by the learner can
be divided into steps: each step corresponds to the derivation of a new conse-
quence based on the condition and the consequences already deduced from pre-
vious steps. The consequences are deduced with the help of previously learned
rules describing arithmetic-logical transformations (operations). The step taken
according to these rules is considered correct. If the entire solution consists of
correct steps, and the required result is found, then the solution should be con-
sidered correct.

If it is impossible to find the rule by which the step was taken, then the
step must have been either incorrect or too complicated, that is too many rules
might have been applied at once. Both of these two cases should be the subject
of criticism: in the first case the step itself contradicts the theory, in the second
case the learner made an unclear, vague transition: learner could have guessed
it or could have missed an important detail. That is, we consider reasonable the
behavior of the verification system if in those cases when no suitable rules are
found, it will give a message about the incomprehensibility of the transition.

374 F. Novikov and V. Katsman

A design which allows you to use the method of rule-searching to verify the
correctness of the steps performed by the learner in the process of solving the
problem is as follows:

1. The teacher once sets the rules adequate for the solution of problems, corre-
sponding to the theory and the level of the learners knowledge, so that each
rule is an elementary and fully understandable step for the learner. Also,
according to the level of the learners, the teacher can set the weight to the
rules and the upper limit to the total weight of rules that can be applied
simultaneously, in one step. The step should be split into several steps if it
has too large weight.

2. The learner prepares the solution of the problem step by step in a special
format, understood by the checking system.

3. The checking system sequentially follows the steps taken by the learner and
at each step it sorts out the rules set by the teacher. If for some step no rules
are found, permitting to take this step from the previous ones, the system
gives a message: ‘the transition to such a step is not valid’. Afterwards, the
learner can correct the decision of a problem and submit it again for checking.

This design is well extensible, some additions to the method give a very
significant increase in speed and ease of solution of problems for the learner. For
example, in addition to the steps of the solution, the learner can be allowed to
derive new rules based on the existing ones, and then use them as the existing
ones. That is, if there is a rule that is too complicated for one step, which the
learner wants to use repeatedly, he or she can once derive this rule out of existing
rules, and then use it in one step. This is analogous to using auxiliary lemmas
in a long derivation.

Consequently, the proposed method allows us to check the problem solutions
that can be described by the rules, for the formulation of which it will be possible
to create a language. The ideas of the method are very close to the physics of
the process of problem solution verifying and therefore one can expect that this
method will be easy for both students and teachers to understand.

4 Method Application in School Combinatorics

The rules of school combinatorics are simple and well known. To apply the
method, it is necessary to specify the language or notation interpreted by the
learner and the automatic checking system, and also to specify the rules describ-
ing the transformations permitted in the school combinatorics.

By the problems of school combinatorics, we mean the problems of prov-
ing and solving equations in which, in particular, the following combinatorial
numbers can be used:

1. U(m,n) = mn - number of placements with repetitions
2. A(m,n) = m!/(m − n)! - number of placements
3. P (n) = n! Is the number of permutations

Gamification of Problem Solving Process Based on Logical Rules 375

4. C(m,n) = m!/n!/(m − n)! - number of combinations
5. V (m,n) = (m+n−1)!/(m−1)!/n! - number of combinations with repetitions

To write a solution, the learner uses the common text notation for record-
ing arithmetic transformations of numbers, variables, and functions similar to
programming languages such as C++ or Java. Complex constructs, such as the
sum or product of n expressions, are introduced as functions in combination with
the rules for converting them. The learner can put additional rules inside square
brackets and annotate the application of the transformation to both sides of the
equation - in curly brackets.

Let’s consider some features of the proposed notation on the example of
solving a specific problem: “solve the equation: ‘C(v + 1, v) = k’ relative to the
variable ‘v”’.

1. v = [// unknown
2. C(v + 1, v) = k; // initial equation, C - number of combinations
3. k = C(v + 1, v) = (v + 1)!/v!/(v + 1 − v)! = (v + 1)!/v!/1! = (v + 1)!/v! =

(v + 1) ∗ v!/v! = v + 1; // the expansion and simplification of C (v + 1, v)
4. v + 1 = k;−1; // the subtraction of 1 from both parts is announced
5. v = k − 1 // the rule derived from the initial equation
6.] = k − 1 // answer: the derived rule immediately gives an expression for v

The system splits the solution of the problem into steps and checks for each
pair of steps whether there is a conversion rule between them. For example, in
line 3 the learner consecutively applied the rules for expanding the number of
combinations, reducing terms, eliminating 1! and similar constants, expanding
the factorial, reducing fractions.

In order for the system to be able to test tasks on combinatorics, in addition
to the standard rules for converting arithmetic expressions, it is required to
specify the transformation rules used for solving combinatorial numbers, as well
as transformations of the sum and product of n expressions.

As rules for transforming arithmetic operations, we have taken the rules that
correspond to the basic properties of these operations: commutativity, associa-
tivity and distributivity, and, also, the well-known algebra rules (for example,
rules for removing parenthesis when rearranging the exponent of a sum and dif-
ference of powers). It can be suggested that the sum and product of n expressions
be transformed by dividing it into two parts and omitting the summation sign
in trivial parts whose upper limit coincides with the lower one. The rules of
transformations of combinatorial numbers correspond to their definitions. Addi-
tional rules, for example, expressing some combinatorial numbers through others,
learners, if they need, can derive by themselves.

4.1 Automated Check of Solutions to Tasks

The method can be used to check combinatorial problems of solving equations
and the proof of identities. In solving problems of proof, it is required that the
learners sequence of transformations bind the left and right sides of the identities

376 F. Novikov and V. Katsman

to be proved. When solving equations, it is required to check that expressions for
all the unknown variables are derived from the condition and that the unknown
variables themselves are not used in these expressions.

The second section describes how to apply a method to verify the correct-
ness of the transformation sequence. Accordingly, when verifying the proof, it is
required to verify that the learner has deduced a sequence of equivalent transfor-
mations that connects both the left and the right sides of the statement that had
to be proved. This means that the right and the left sides of the statement must
be found among the consequences of one sequence. Checking the equivalence of
the transformation will automatically follow from the equivalence of the rules by
which it was carried out, that is, not only the result of applying the rule follows
the initial statement, but also vice versa: the result of its application follows the
original statement.

4.2 Automated Task Generation

The idea of representing problem solving process in the form of consecutive steps,
following one another according to specified rules, makes it possible to generate
tasks that require the application of precisely those rules that the learner knows
the worst. Statistics on the mastering of the rules can be obtained automatically
when checking previously solved problems. Thus, the learning process can be
individually adjusted to the learner as accurately as possible if a sufficient bank
of various tasks is collected.

The parameters of task generation are set on the basis of the generating
grammar, the rules of which correspond to the meaningful rules of transforma-
tions in the conferred area. In addition, these rules can be weighed by scales in
accordance with their complexity for the learner. Then, the generation of tasks
can occur as follows: an assertion or expression is generated randomly, which is
then becomes the left-hand side of the statement you need to prove or to find.
Then this statement or expression is transformed by chosen at random rules, and
at that the rules the worst mastered by the learner are chosen with the most
weight. The result of the transformations becomes the right-hand side of the
statement that the learner has to prove or the initial condition in the equation.

For example, a learner has difficulties in transforming the number of combi-
nations with repetitions V (m,n). Then the basic formulation of the condition
“m ∗C(m− 1, n− 1) = n ∗C(m,n)” can be transformed with a high probability
into the following: “m ∗ C(m − 1, n − 1) = n ∗ V (m − n + 1, n)”.

4.3 Gamification Based on Rule Search

Teaching games can pursue two tasks: developing the learner’s skills of rules
manipulation when solving a problem and, also, remembering the permissible
transformation rules themselves. The skills of rule manipulation are extremely
wide: it is assumed that the learner, in possession of a goal and the rules, can
achieve the goal using these rules, at least in the area under study. The memo-
rization of rules also occurs when they are repeatedly applied.

Gamification of Problem Solving Process Based on Logical Rules 377

To date, there are many games to memorize the rules, in which the conversion
rules are simply to be written, composed of characters, choose the right one and
many others. To win this game you need either to memorize the rules or to
thoroughly understand their logic. On the basis of the method proposed, it is
possible to build games in which the main emphasis is not on memory training,
but on the skills of constructing a solution or proof based on acquired rules.

For example, the player at any given time sees on the screen some formula
and a set of rules that can be applied to this formula. The player can select a
rule and drag it to a specific place in the formula. If the rule is applicable to
this place of the formula, the formula automatically changes according to this
rule, and then the new formula and a new set of rules applicable to it appear on
the screen. The purpose of the game is to derive a new formula from the given
one. Besides the new formula being determined by an expression, it can also be
predetermined by some criteria. The first case corresponds to the problems of
identity proof. The second can correspond to the problems of solving equations.

In addition to standard interest boosters, such as shooting formulae in the
direction of the place of substitution or modern graphics with inspiring music, the
game may contain specific additions appropriate to the tasks of the educational
process. For example, a task may be reach the goal in the least number of steps,
that is, with minimum applications of rules. If weighed rules are used, the task
may be to apply rules with the largest average weight.

Besides, a serious symbolic significance can be attached to the transition to
a new level of complexity. It can correspond to a profound familiarization of the
learner with the ways of applying all the rules at this level and the emergence
of the new ones, without which the tasks at the new level cannot be solved. The
new tasks at the level can be generated in such a way that to solve them the
learner is required to use the rules used at this level the least often.

The range of gamification possibilities is not limited to combinatorics. It can
also be successfully applied for the purpose of developing the learners’ skills of
logical transformations and their memorization in almost any field if the theory
is described by the rules. The work of the teacher when creating and config-
uring such games is minimized: just as for verifying the solution of problems,
the teacher is required to specify the permissible transformation rules only. If
the game consists of several levels and other additions, the teacher may need to
adjust the parameters of these additions, for example, set the new rules intro-
duced at the new levels in a logical sequence for learning.

Thus, the proposed method can be used not only for automatic generation
and verification of problem solutions, but also for creating a class of games
applicable for studying the fields of knowledge which are described by rules. At
the same time, the application of the method requires minimal expenses from the
teacher, incomparably less time, which is spent on manual creating and checking
solutions of numerous tasks (Fig. 1).

378 F. Novikov and V. Katsman

Fig. 1. The player receives the original expression (in the center) and the target expres-
sion (in the bottom right-hand corner) to which it should be reduced. At the top of
the screen, possible transformations are displayed. With each step the player selects
one of them and drags it to the original expression, which is modified according to the
transformation. This happens until the original expression is converted to the target
expression. To pass the level, you have to reach the goal for a certain number of steps.

5 Experiments

The experiments were carried out to make sure that the proposed method is
applicable not only for teachers but for learners as well. Namely, it is necessary
to verify that the notation and rules proposed for writing expressions can be
quickly mastered, that the problem solving will take approximately the same
time to put it into the computer as it takes to write the solution on paper, and
that the results obtained by automated verification of solutions will be close to
the results deduced by the teacher.

So far we have already managed to conduct experiments on 2 groups of 2nd-
year students of the Polytechnic University within the framework of the course
“Discrete Mathematics” in 2017 and 2018. Over the past year, the testing pro-
gram has been slightly improved: some bugs were fixed and logic was improved,
but the overall concept of experiments has not been changed. In the frame-
work of experiments, first the learners were briefly explained the principles of
the system, and then they were asked to solve a number of problems in com-
binatorics, set theory, and logical calculi. During the solution process, students
had possibilities to run automatic checking for current version of solution, to
see the checking results with information about exact place where the error was
made and to correct the solution. After deadline the final versions of students’s
solutions were automatically verified by the system.

Gamification of Problem Solving Process Based on Logical Rules 379

The results show that students are able to quickly absorb the new rules for
recording solutions. There was only one learner in two groups who could not
solve any problem at all. The problem solving speed on the computer on average
turned out to be about one and a half times less than the speed of solving
problems on paper. It is possible to increase the speed of recording the solution
by means of significant improvements in notation and interface.

Another goal of the experiment was to get an idea of how much time the
teacher saves due to automated verification. It took about an hour to compile the
rules (one-time routine), another half-hour took was spent on bringing together
of the results of the automated verification. Manual verification of solutions of
the same tasks for the reference group of students took more than 6 h.

Thus, the conducted experiments confirm the possibility and relevance of
using the proposed expression method for automated verification of solutions of
standard problems.

6 Conclusion

The proposed method significantly expands the prospects for generating tasks
in informatics and verifying their solutions. The results of using this method
substantially depend on the degree of ease with which the learner perceives the
recording of problem solutions, which should also be understood by the checking
system.

The language used for combinatorics problems seems to be acceptable for use,
but there are possibilities for significant improvements we keep working in this
direction. We also carry on working on creating languages for tasks from other
subject areas, including logical transformations of sets, logical calculi, coding,
and some others.

References

1. Vene, V.: Comparing different styles of automated feedback for programming exer-
cises. In: Proceedings of the 17th Koli Calling International Conference on Com-
puting Education Research, Koli Calling 2017, pp. 183–194 (2017). https://doi.
org/10.1145/3141880.3141909

2. Tirronen, M., Tirronen, V.: A framework for evaluating student interaction with
automatically assessed exercises. In: Proceedings of the 16th Koli Calling Inter-
national Conference on Computing Education Research, Koli Calling 2016, pp.
180–181 (2016). https://doi.org/10.1145/2999541.2999568

3. Coursera Homepage. https://ru.coursera.org/. Accessed 19 May 2017
4. Stepik Homepage. https://welcome.stepik.org/en. Accessed 19 May 2017
5. WeBWorK Homepage. https://webwork.elearning.ubc.ca/webwork2/. Accessed 19

May 2017
6. Moodle Homepage. https://moodle.org/. Accessed 19 May 2017
7. Rogers, H.: The Theory of Recursive Functions and Effective Computability. MIT

Press (1987). ISBN: 0-262-68052-1; ISBN: 0-07-053522-1

https://doi.org/10.1145/3141880.3141909
https://doi.org/10.1145/3141880.3141909
https://doi.org/10.1145/2999541.2999568
https://ru.coursera.org/
https://welcome.stepik.org/en
https://webwork.elearning.ubc.ca/webwork2/
https://moodle.org/

380 F. Novikov and V. Katsman

8. Rice, H.: Classes of recursively enumerable sets and their decision problems. Trans.
Am. Math. Soc. 74(2), 358 (1953). https://doi.org/10.2307/1990888

9. Richardson, D.: Some unsolvable problems involving elementary functions of a real
variable. J. Symb. Log. 33(4), 514–520 (1968). https://doi.org/10.2307/2271358

10. Stepik Code Lesson. https://stepik.org/lesson/9173/step/1?course=Epic-Guide-
to-Stepik&unit=1718. Accessed 19 May 2017

11. NeuroRehabLabHomepage. https://neurorehabilitation.m-iti.org/TaskGenerator/.
Accessed 19 May 2017

https://doi.org/10.2307/1990888
https://doi.org/10.2307/2271358
https://stepik.org/lesson/9173/step/1?course=Epic-Guide-to-Stepik&unit=1718
https://stepik.org/lesson/9173/step/1?course=Epic-Guide-to-Stepik&unit=1718
https://neurorehabilitation.m-iti.org/TaskGenerator/

Music Computer Technologies in Informatics
and Music Studies at Schools for Children

with Deep Visual Impairments: From
the Experience

Irina Gorbunovа1(&) and Anastasia Govorova1,2

1 Herzen State Pedagogical University of Russia,
48, emb. river Moika, 191186 St. Petersburg, Russia

gorbunovaib@herzen.spb.ru
2 Children’s Art School “Okhta Center for Aesthetic Education”,
8 “A”, Marshal Tukhachevsky st., 195253 St. Petersburg, Russia

Abstract. Music computer technologies (MCT) open up wide opportunities for
blind students to more effectively study the diverse content and methods of
presentation of educational material in Informatics, contributing to the
achievement of positive learning outcomes in a shorter time. This is especially
important for children who study in children’s music schools. Mastering of
MCT by children with profound visual impairment has a number of charac-
teristic features, which are most clearly manifested in the initial period of
studying Informatics. With the help of contemporary computer technologies
(speech synthesizers, Braille displays, etc.), as well as due to the possibility of
using “hot keys” blind students quickly master many MCT-programs.
The main objectives of the lessons on musical informatics are: to study the

basic concepts related to the receipt and use of information, both in school and
in everyday life; to obtain skills in working with a computer and some
peripherals. In the program considered by the authors of the article it is supposed
to study the basic concepts and acquire the skills included in the existing pro-
grams in informatics, taking into account the fact that all tasks in informatics are
based on materials related to music.
The program is designed in such a way that it is possible to perform the

proposed tasks not only with the help of a computer keyboard and “hotkeys”,
but also with the help of MIDI-keyboard. This is achieved by the connection
between the actual music and informatics.
The authors also propose to consider the application software – a tool that

would be accessible to the sighted and blind and would not cause difficulties in
working with him/her both in some and in others: the exchange of information
between the teacher and the blind student or vice versa - the blind teacher and
the ordinary/seeing pupil.

Keywords: Inclusive education � Informatics � Music computer technologies
Visual impairment pupil

© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 381–389, 2018.
https://doi.org/10.1007/978-3-030-02750-6_29

http://orcid.org/0000-0003-4389-6719
http://orcid.org/0000-0002-5693-9856
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_29&domain=pdf

1 Introduction

The development of computer technology in the late 20s – early 21st century has
significantly expanded the ways of obtaining information. High-tech information
educational environment requires the search for new approaches and fundamentally
new systems of education in the School of the Digital Age. “The ICT revolution brings
along an increased potential for inclusion and participation, but also risks for exclusion
and thus the responsibility for implementing eAccessibility. It provokes a growing
number of challenging research questions. Old boundaries of concepts dissolve, new
approaches and fresh thinking are formed: not only in technical terms, but also in
social, economic, pedagogic and other terms” – G. Kouroupetroglou, General Chair of
the 16th International Conference on Computers Helping People with Special Needs
ICCHP-2018 (July 11–13, 2018, Linz, Austria) said [9].

Innovative pedagogy of music and informatics at the present stage is associated
with the use of music computer technologies (MCT), it is a contemporary and effective
means of improving the quality of teaching the art of music and informatics at all levels
of the educational process [5].

MCT is a unique technology for the implementation of inclusive pedagogical
process in teaching children with disabilities.

Possibilities of MCT for inclusion and participation in the information society
strive for better Assistive Technology “for support, enhancement and restoration of
resources for people with disabilities and compensating limitations of standardized
Human Computer Interaction (HCI)”. These opportunities still gains “more importance
due to the ongoing ICT revolution (Internet/ Web of Things/ Ubiquitous computing/
Cloud based services)” [9].

It should be noted that the consequent application of MCT in inclusive pedagogy
still remains little known among the contemporary pedagogical approaches.

Nevertheless, there are some remarkable premises for forming and developing the
methods constituting this approach. These premises have been discussed by the authors
of the article with colleagues in Hungary, including Prof., Dr. N. Maczelka, Pianist,
Head of the Arts Institute and the Department of Music Education Faculty, Prof., Dr.
T. Csendes, Head of Department of Computational Optimization University of Szeged,
Prof., Dr. M. Benedict, Department of Theoretical Physics, some colleagues from the
Eszterhazy Karoly University (Eger) and Eötvös Loránd University (ELTE), Budapest,
- as well as with Dr. I. G. Alieva, Baku Musical Academy named after U. Hajibaili,
Azerbaijan.

All of them have marked that MCT are able to make a significant contribution to
the improvement of the life of pupil with disabilities.

2 MCT as New Creative Educational Medium

The authors were guided by the general principles that had been developed at the
Educational and Methodical Laboratory ‘Music Computer Technologies’, Herzen State
Pedagogical University of Russia (Saint Petersburg). Sphere of interests of its members
includes the problems of interrelation of natural and technical sciences and humanities,

382 I. Gorbunovа and A. Govorova

as well as the possibilities of applying the results of such interrelation for the purposes
of music education and upbringing. Scientific group of the Laboratory also take part in
working out the specialized software for computer music devices and in application of
this software in pedagogical processes.

Research activities of the members of Laboratory including such directions as:

– MCT in professional musical education (as a means to expand creative
opportunities),

– MCT in general musical education (as one of the means of education),
– MCT as a means of rehabilitation of people with disabilities,
– MCT as the new direction in preparation of specialists of humanitarian and tech-

nological profile,
– MCT in the field of digital arts,
– MCT in information technology, psychoacoustics and musical acoustics.

Developments and researches in the field of musical pedagogics and musicology,
music computer science (musical informatics), computer modeling of processes of
musical creativity, timbre programming, art of performing skill and arrangement on
electronic musical instruments, creative work in the field of computer music, mathe-
matical methods in musicology, etc. – all these directions in its totality allow to work
up the methodological principles and pedagogical approaches to the use of MCT in
inclusive education (as part of eInclusion) for children with profound visual impair-
ment. (See: [4, 5, 10] a.o.)

3 From the Experience

3.1 Psychological and Pedagogical Features of Teaching MCT
for the Visually-Impaired

The process of teaching the MCT to people with profound visual impairments is related
to the following main points. First of all, the computer facilitates a blind person’s
access to information of all kinds, but at the same time people with LHO on vision have
a complex set of mental reactions that the teacher needs to keep in mind when giving
classes.

The specificity of the training of blind MCT is also in the fact that this contingent of
students is heterogeneous in the type of visual pathologies available, in the form of
visual impairments, etc. at the same time, each group of people with LHO in vision,
combined on the basis of the severity of visual pathology, is characterized by the
presence of certain mental features that must be taken into account in the organization
of the educational process. A significant role in the development of the blind basic
computer skills play their visualization. A comprehensive study of this problem is
being carried out by Y. Krivodonova (Ural State Pedagogical University, Ekaterinburg,
Russia) and A. Voronov (Educational and Methodical Laboratory ‘Music Computer
Technologies’, Herzen State Pedagogical University of Russia, Saint Petersburg).
According to contemporary scientists, vision provides a person with about 90% of
information. The image analysis allows us to study the spatial structures of the object,

Music Computer Technologies in Informatics and Music Studies 383

and the distribution of optical densities and colors reflects the most important infor-
mation about the properties of both real and virtual objects of the world. Thus, we can
say that visualization is of great importance in the process of development of the blind
people, because it is thanks to the ability of a person to create a certain imaginary
picture in the study of a computer program he has an adequate idea of their own
actions; this “forms <…> the image of themselves as a figure, able to understand
certain things, in certain computer programs” [11, p. 255].

Visualization plays a particularly important role in the development of the blind; it
is objectively more difficult to study the basic, MCT-programs. It should be noted that
each person who has an LHO on vision, regardless of the time of the onset of damage
to the visual analyzer and the degree of its severity, the visualization is purely indi-
vidual. This phenomenon is caused by a complex of various factors and largely
depends on the strategy of family education, on the method of formation of a blind
child or an adult who has lost his sight, “the ability to dream – visualize, to attract the
desired images of certain objects to his/her imagination” [10, p. 256]. It should be
emphasized that the development of MCT people with LHO on vision ability of a
particular person to visualize often becomes a powerful mechanism that allows him/her
to master a particular music program.

Thus, to achieve the best results in teaching people with LHO on vision, the teacher
of the MCT should take into account the above features. The teacher, first of all, should
form the ability of blind students to correlate the real image that appears in the process
of mastering certain knowledge with the imaginary one. In this case, close attention
should be paid to the individual characteristics of each individual student. For example,
it should be borne in mind that the visualization of people with congenital blindness has
an important distinctive feature: the image that arises from them in the study of a
particular material is initially created on the basis of tactile sensation, and then can be
endowed with visual elements. The teacher should be given material based on the
method of visualization of a particular student. In particular, if a person with born
blindness is given material based only on visual information, he/she will not be able to
understand a lot, and if the same information is given out taking into account the
peculiarities of his/her perception, the result will be noticeable immediately.

In addition, it is necessary to pay attention to the fact that in recent years, people
with visual impairments are increasingly found in so-called “comorbidities”, that is,
along with deep visual impairment, there are concomitant diseases, often associated
with the defeat of the central nervous system. These diseases are mainly responsible for
difficulties in assimilating the information offered, which greatly complicates the
successful implementation of the learning process. In this regard, the same information
should be presented by the ICT-teacher in different ways, taking into account the whole
complex of psychophysical characteristics of a particular person. At the same time, for
people with concomitant diseases, the work should be dosed, so as not to harm their
health. It is noted that such people are not recommended to work permanently in the
headphones, listening to the voice synthesizer programs JAWS (Job Access With
Speech) or NVDA (NonVisual Desktop Access), because sounding headphones and
voice synthesizer cause the rehabilitant increased feelings of fatigue.

We also note that all of the above psychological and pedagogical features of MCT
training for students of specialized music schools and music classes for children with

384 I. Gorbunovа and A. Govorova

profound visual impairment determine the need for an individual approach, taking into
account the state of health and psychological characteristics of a particular person,
which is the basic principle of working with blind people of any age.

3.2 The Use of MCT in Teaching Informatics for Children with Deep
Visual Impairment

For musicians with profound visual impairment, the use of a musical computer (MC) is
of a particular importance [10]. First of all, the MC is for them a means of contact with
the “outside world”, however, it helps in the realization of their creative potential and
adaptation in the modern social environment. MCT opens up a lot of opportunities for
blind musicians to more effectively study a variety of content and methods of pre-
sentation of educational material, contributing to the achievement of positive learning
outcomes in a shorter period of time [7]. However, the development of MCT by
musicians with profound visual impairment has a number of characteristic features that
are most clearly manifested in the initial period of training [3, 4].

First of all, it should be noted that with the help of contemporary computer tech-
nologies (speech synthesizers, Braille displays), as well as the possibility of using “hot”
keys, blind people can master many MCT programs. Nevertheless, the specifics of
teaching the ICT to people with profound visual impairment, is that the professional
development of the ICT programs involves the presence of blind students’ basic skills
of a PC user. Getting skills to work with a “talking” computer is a time-consuming
process that requires special training not only from students but also from their
teachers. This is due to the widespread use of MCT by people with profound visual
impairment, mainly in the field of secondary and higher music education, while at
present, MCT is actively used at the early stages of education, including inclusive
education (when working with children with hearing impairment, muscle-skeleton
disorder).

One of the types of computers – a laptop – blind, like no other, is actively used,
justifying in the literal sense the translation of its name: the laptop for them was not just
a notebook, as well as a library, recorder and organizer. And for blind musicians, the
computer has become even more of an assistant: with the advent of screen access
programs, people with visual impairment were able to create, process, record and edit
music on their own.

In training, we faced a shortage of Braille notes. And this fact helped us to look at
the problem more broadly and deeply. After all, the problem is not in the notes or
books themselves with these notes, but in the interaction of the teacher and the student.
Exchange of information between a teacher and a blind student, or vice versa – a blind
teacher and an ordinary student. The most important thing is to convey the information
so that this information is correctly (adequate) interpreted. At this stage, there are many
difficulties with different conventions: for the blind student, a teacher with specific
knowledge is needed, and the blind teacher needs to explain to the sighted student
certain symbols and styles of various signs, to be able to set new material, a new play.

Music Computer Technologies in Informatics and Music Studies 385

3.3 The Use of Special Software in Teaching Informatics and Music
for Schoolchildren with Visual Impairments

In the process of overcoming these difficulties, the idea was born to create an appli-
cation software with which to solve these difficulties and overcome the barrier in the
transmission of training information. To create a tool that would be accessible to the
sighted and blind, and would not cause difficulties in working with it, both in some and
in others. (In particular, we examine the concepts constituting the bases of education
technologies that has earlier been used in inconsistent and contradictory ways.)

Of course, this software will be presented with certain requirements: full access
from the keyboard, both in the set of the score, and in the management of all functions
of this application; full information output through the speech synthesizer and Braille
display; printout on solid media; the adequacy of the information displayed on the
display.

This program should have the following properties and meet the following
parameters:

1. The program should represent music notation editor with which possible to have a
seamless set of notes or revision of the scores.

2. An important condition is the ability to enter notes and other necessary characters,
as well as other manipulations and commands from the keyboard. Due to the fact
that the blind person can’t see the mouse, he/she performs the usual for the sighted
person standard tasks using keyboard shortcuts (hot keys). In order for a blind
person to fully use this program, the hot keys of this program should not coincide
with the hot keys of the operating system, and simultaneously running programs.

3. The program must be “readable” using a speech synthesizer through screen access
programs such as NVDA or JAWS. A screen access program is a special program
for blind or visually impaired people, which performs the following functions:
displays information from the computer monitor by means of sound (speech syn-
thesizer) or tactile output to the Braille line. Often we are faced with a situation
where the program is developed without taking into account the features of the
interaction with the program screen access. In the future, at the request of the blind
community, they try to adapt the interface of the already developed program for the
needs of people with visual impairment. Our idea is that we initially take into
account all the features of the screen access programs.

4. Adequate visualization of the interface. Quite often, special programs for the blind
are developed without the correct graphical interface. For example, there is a sit-
uation when the program for the blind meets all the specifics of the work of people
with visual impairment, but the computer monitor can be either a blank screen
without images or a contour image, which is an inconvenience for the seeing users.
In the development of our music editor, we aim to make this software available for
everyone, both visually and with a full sound output.

5. Ability to import and export a music text to files of popular extensions. There are
many music editors that save a music text in files with their extensions. Accord-
ingly, there are many scores written in these extensions. Or another situation: the
user either does not want to learn a new editor, or wants to use the familiar editor.

386 I. Gorbunovа and A. Govorova

One of the tasks of our development is the fact that our software allows you to
import files with various extensions into your environment. With this software
property we want to achieve easier interaction between the sighted and the blind
musician.

6. Ability to convert scanned scores to available formats. One of the known disad-
vantages of the screen access programs is the need to convert graphic images
(graphic information is not readable or requires a certain recognition system). To
date, there is no adequate Converter of a music text with access for blind users. This
proposal is also due to the fact that there are a lot of scanned scores on the Internet,
but, as due to the lack of screen access program mentioned above, blind people do
not have access to these materials.

It should be that teaching materials on teaching informatics include: a set of
materials for the teacher; a set of computer tasks for the pupil; a set of tasks in
workbooks; a set of tasks for active logical and creative games using musical material.

4 Conclusions and Future Work

It is possible to solve the problems of information education for schoolchildren with
deep visual impairments using specific software.

This application can be used in various fields of activity of blind musicians:

1. When teaching music to blind students of children’s musical schools and children’s
schools of arts, this application will expand the available material. This program can
be used in the process of teaching such disciplines as solfeggio, harmony, music
theory, music literature, analysis of musical works, a special instrument, etc. The
teacher can give a pre-prepared music text to the blind student, while he/she does
not own Braille. And most importantly, from our point of view, the universal
property of this program – the blind teacher has the opportunity to teach a sighted
student, giving material through this program, which will contribute to the devel-
opment and implementation of inclusive education.

2. Today there is a fact that the number of blind musicians is increasing. This cir-
cumstance is due to two main factors: firstly, children deprived of vision, by def-
inition, possess acute hearing, which “takes over” partial replenishment of
information about the outside world, and, secondly, the development of Information
Technology (IT), in general, and MCT, in particular, open up unique prospects for
people with visual impairment to provide and obtain musical information in almost
full [1, 2, 6]. With the use of specially developed technologies, blind people are able
to access all kinds and ways of transmitting information about music; all this gives
blind people the opportunity to get a profession of a contemporary musician, cor-
responding to their interests and abilities. In this regard, our application will be
useful and in demand for many, because it, for example, gives the opportunity to a
trained musician to write a work and to share his/her work without anybody’s
assistance.

3. Thanks to the appearance of such an instrument as a music editor, the blind
musician has the opportunity to become a full member of the creative group, to join

Music Computer Technologies in Informatics and Music Studies 387

on stage, because in the process of work he/she can freely type music texts to
exchange music and other materials.

We also propose to consider the application software – a tool that would be
accessible to the sighted and blind and would not cause difficulties in working with
him/her both in some and in others: the exchange of information between the teacher
and the blind student or vice versa – the blind teacher and the ordinary/seeing student.

With the appearance of such an instrument, blind musicians have wide horizons:
free exchange of a music text, free transfer of the material to the sighted musician, the
possibility of full and unhindered cooperation between musicians [8].

This application software is now being worked up.
The results of the methodological principles and pedagogical approaches con-

cerning the use of MCT in informatics and music studies at schools for children with
deep visual impairments, worked out by the authors of the article, were presented at the
Russian-Hungarian Education Forum, February 17, 2017 (Hungarian Cultural, Scien-
tific and Information Centre, Moscow), at the annual International Research and
Practical Conference ‘Contemporary Musical Education’ (2015, 2016, 2017, Saint
Petersburg, Russia), and at the 16th International Conference on Computers Helping
People with Special Needs, July 11–13, 2018 (Linz, Austria). The participants of the
conferences have estimated these results as having good perspectives.

In the future, the developed software will become a multitasking tool for blind
musicians in working with a music text, which will open up more horizons for musical
creativity and allow the blind musician to work in a team with sighted people on an
equal basis, without experiencing difficulties in reading and editing musical material.
The application, developed on the basis of the latest achievements in the field of MCT,
may become one of the essential elements of inclusive music education in the future [5]
in various directions of its implementation.

References

1. Gorbunova, I.B.: Computer science and computer music technologies in education. Theory
Pract. Soc. Dev. 12, 428–432 (2015)

2. Gorbunova, I.B.: Information technology in music and music education. World Sci. Cult.
Educ. 63(2), 206–210 (2017)

3. Gorbunova, I.B.: Music computer: modeling the process of musical creativity. World Sci.
Cult. Educ. 4(65), 145–148 (2017)

4. Gorbunova, I.B.: Music computer technologies and digital humanities. In: Contemporary
Musical Education – 2015, Proceedings of the 14th International Research and Practical
Conference, vol. 1, pp. 29–34. Publishing House “The Herzen State Pedagogical University
of Russia”, St. Petersburg (2015)

5. Gorbunova, I.B.: Musical-computer technology: the laboratory. Mediamusic, no. 1, pp. 5–7
(2012). http://mediamusic-journal.com/Issues/1_5.html

6. Gorbunova, I.B., Chibirev, S.V.: Music computer technologies and the problem of modeling
the process of musical creativity. In: Regional Informatics “RI-2014”, Proceedings of the
XIV St. Petersburg International Conference, pp. 293–294 (2014)

388 I. Gorbunovа and A. Govorova

http://mediamusic-journal.com/Issues/1_5.html

7. Gorbunova, I.B., Govorova, A.A.: Music computer technologies as a means of teaching
people with visual impairment musical art. Theory Pract. Soc. Dev. 11, 298–301 (2015)

8. Hargreaves, D.J., MacDonald, R., Miell, D.: How do people communicate using music. In:
Miell, D.E., MacDonald, R.A.R., Hargreaves, D.J. (eds.) Musical Communication, pp. 1–26.
Oxford University Press, Oxford (2005)

9. Kouroupetroglou, G.: Welcome to ICCHP 2018! (2012) http://www.icchp.org/welcome-
chair-18

10. Voronov, A.M., Gorbunova, I.B., Kameris, A., Romanenko, LYu.: Music computer
technologies in the digital age school. Proc. Irkutsk. State Tech. Univ. 5(76), 256–261
(2013)

11. Voronov A.M., Krivodonova J.E.: Psychological and pedagogical features of information
technology with visual impairment people. In: Child in the Modern World: Proceedings of
the International Scientific Conference, pp. 251–256. Publishing House “The Herzen State
Pedagogical University of Russia”, St. Petersburg (2013)

Music Computer Technologies in Informatics and Music Studies 389

http://www.icchp.org/welcome-chair-18
http://www.icchp.org/welcome-chair-18

Computer Modeling of Secretary Problem
and Its Interesting Results

Olga Starunova, Valeriia Nemychnikova(B), and Anna Dronzik

Moscow South-Eastern School named after Marshal V.I. Chuikov, Moscow, Russia
sooobus@gmail.com

Abstract. A methodics of composing research work in programming
for middle school students (1–2 years of programming experience) is
offered in this article. This methodics is demonstrated using one inter-
esting problem: secretary problem, or marriage problem. This problem
is too complex to be theoretically solved in school and comprises prob-
ability theory and calculus. However it can be easy modeled using pro-
gramming and it allows many modifications that can be invented by
students. Moreover, results of such computer modeling allow to make
non-trivial practical conclusions about decision making and optimal of
choice strategies.

Keywords: Project-based approach · Secretary problem
Numerical simulation · Monte-Carlo method · PascalABC

1 Introduction

It is often believed that school students, especially schoolchildren of middle (not
high) school, achieve success and new results in research on mathematics only in
exceptional cases. Therefore, the programming courses for middle school students
are often constructed as a cycle of short algorithmic problems with pre-known
answers. Along with the undoubted effectiveness of this approach for the devel-
opment of programming techniques, it is useful to educate students about the
programming as laboratory of mathematics. In particular, to offer them math-
ematical problems, maybe inaccessible to them for a theoretical solution, but
useful for a numerical simulation. In such experiments, students can understand
how scientists work, and as a side effect new or little-known, but beautiful results
are possible. One of the examples of work on this problem is described in detail
in this article.

2 Formulation of Problem

Secretary problem is known also as marriage problem, sultan’s dowry problem,
etc. [1]. It firstly appeared in the middle of 20 century and is formulated (in
terms of marriage) below [3]:
c© Springer Nature Switzerland AG 2018
S. N. Pozdniakov and V. Dagienė (Eds.): ISSEP 2018, LNCS 11169, pp. 390–394, 2018.
https://doi.org/10.1007/978-3-030-02750-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02750-6_30&domain=pdf

Computer Modeling of Secretary Problem and Its Interesting Results 391

Fig. 1. Illustration for the problem

A bride invites N grooms in random order (ill. Fig. 1).
Each groom has a measure of quality—how good he is. The bride does not

know this number beforehand, but after a meeting with each groom she can
compare him with any of the previous ones and say which one is better (the
grooms can theoretically be sorted by quality in strict growing order). After
talking with one of them, she either chooses him, and he becomes her husband,
and the process stops, or rejects him, he leaves and can not be returned. The
bride wins if the groom she chose as a result is the best of all. Otherwise, she
loses. Question: what should be the optimal strategy of the bride to ensure
maximum probability of winning? What is the probability of winning with the
optimal strategy?

This task has a fascinating solution: it turns out that the optimal strategy
is to skip N/e of grooms, remember the best among them, and then choose
the next one that outperforms him in quality. Following this strategy, the bride
maximizes the probability of winning, and this probability is 1/e.

Methodical sense of using this task on programming lessons is the following.
Theoretical solution of this problem is understandable by a high school stu-

dent, if he or she is familiar with the theory of probability and material analysis.
Computer simulation of this task (and many of its modifications) is not difficult
and is available even for a sixth-grade student after 1 year of programming in
any algorithmic language. In addition, this problem gives a wide scope for the
computational experiment: there are many parameters in the condition, that can
be changed to create new sub-problems. Since the middle of the 20th century
more than 2000 articles [2] have been written on this subject, but interest in the
problem does not stop, more and more results are obtained [2,5].

In 2018, we tried to offer this task to a group of two school students who
finished the sixth grade. Pupils spent two years programming in Pascal. The
task was given within the framework of the after-hours project. The students
were asked to simulate the problem in a classical formulation, then to come up
with variations of the experiment and ask their own questions to research. It was
interesting to find out what tools they would try to apply and in what direction
the research would go, and in addition—how they would interact inside the team.

3 Results

Firstly (approximately during the first two days of work), the students managed
to model the condition of the problem and conduct a numerical experiment,
writing a program in PascalABC (about 300 lines). Figure 2 shows the graph
of the percentage of winning brides depending on strategy. “Strategy” here is
defined as the number of the groom, up to whom the bride rejects everyone,

392 O. Starunova et al.

remembering the current maximum. Here the number of candidates is N = 100,
the “quality” of each is a random non-repeating number from 1 to 100, each
strategy was tested by a group of 100,000 brides, for each group the percentage
of the winners was calculated.

The result of the calculations matches the theory: the optimal is the strategy
in which the brides miss 100/e 37 candidates and then choose the one who
is better than the best of this group. At the same time, approximately 37%
brides won.

One should noted that at this stage group work has appeared. One student
was responsible for graphically displaying the results on the screen, a graphical
interface and explanatory descriptions, the other was responsible for the direct
implementation of the experiment. Both parts of the work were critically impor-
tant for obtaining the result. In school group projects it is not always possible to
successfully split the task into two independent parts, but here it was possible.

Then the question arose: where to go next? Students offered quite obvious,
but for them a nontrivial thought: what if the bride wins not only choosing the
best, but choosing one of the k best grooms? (For example, for k = 3 this means
that the bride wins by choosing the groom with a quality of 100, 99 or 98). How
the graph Fig. 2 changes depending on k?

The next day schoolchildren obtained an empirical answer to this question.
They made plots for different k (see Fig. 3) and realized that if the bride’s

requirements for grooms were reduced, the proportion of those who won with
the optimal strategy is growing, and the optimal strategies tend to letting go
less and less grooms when choosing one of the best.

The next natural question was: how does the probability of winning change
depending on k, provided that all brides act optimally? In other words, what
happens to the probability of winning if we gradually relax the requirements for
the quality of winning grooms and the bride will be considered the winner if she
chooses a groom with a quality of not less than 101 − k?

Fig. 2. Numerical simulation of the problem. Function of winning probability depend-
ing on a number of groom (see explanation in the text). Parameters: N = 100 grooms
with “quality” 1 to 100, each strategy was tested by 100000 brides

Computer Modeling of Secretary Problem and Its Interesting Results 393

Fig. 3. Comparing of plots of percentage of winning brides depending on strategy. (a)
Bride wins only when chooses a groom with quality 100. (b) she wins when chooses 99
or 100. (c) 98–100 (d) 90–100

This pattern was revealed by students at the end of a week’s work on the
project. From the graph shown in Fig. 4 one can draw several mathematical,
practical and worldview conclusions.

Firstly, it can be seen from the graph that only slightly weakening the require-
ments for the groom, the bride greatly increases her chances of winning. For
example, by agreeing not for the best, but to one of the two best grooms, the
bride increases her chances of winning from 37% to 52%. And by agreeing to one
of the top ten, it raises the chances of 82%. It would be useful to invite students
to come up with other examples from real life, when the same effect works: a
slight decrease in the requirements for the candidate dramatically increases the
chances of success.

Secondly, it can be seen from the graph that too much reduction of require-
ments does not lead to any noticeable increase in the chance of winning. If the
bride agrees to the groom from the best 33%, her chances of winning are equal
to 92%, if she greatly reduces the requirements and agrees to the groom from
the best half, her chances of winning are 95%, the difference in chances is not
great compared with the price of victory.

Thirdly, it is useful to think about the other paramaters of the problem that
can change the shape and properties of this graph. What processes in real life
have a different type of sensitivity to changing requirements for candidates?

4 Discussion

The main pedagogical result of the work on this problem is that students were
able to conduct their own small research on a small scale. It had many char-
acteristic features of this scientific research: an open-ended problem with an
unobvious solution, a great degree of freedom in questions and experiments.

It must be said that the results of numerical experiments related to the
secretary problem are published in serious scientific journals at the moment [5].

In addition, there is a whole direction of setting not computer, but real
experiments with real users, which are modifications of this problem. One of the

394 O. Starunova et al.

Fig. 4. Percentage of winning brides depending on quality requirements. X axe shows
minimal quality of the groom that is acceptable

ways to develop this work for school students can be the development of a web
application for studying the training of real people for an optimal strategy, just
as it was done in [5], but with a different formulation of the question.

5 Conclusion

There is a wide range of research tasks available for middle and high school
students. Frequently, in problems where the students lack the mathematical
technique for the analytic solution because of age, there is room for numeri-
cal modeling. In this area, students can achieve successful and sometimes even
scientifically new personal results.

References

1. Secretary problem formulation. https://en.wikipedia.org/wiki/Secretary problem#
cite note-2

2. Goldstein, D.G., et al.: Learning in the Repeated Secretary Problem. Microsoft
Research (2017). arXiv:1708.08831v1 [cs.GT]

3. Ferguson, T.S.: Who solved the secretary problem? Stat. Sci. 4(3), 282–289 (1989)
4. Freeman, P.R.: The secretary problem and its extensions: a review. Int. Stat. Rev.

51(2), 189–206 (1983)
5. Bearden, J.N.: A new secretary problem with rank-based selection and cardinal pay-

offs. J. Math. Psychol. 50, 58–9 (2006). https://doi.org/10.1016/j.jmp.2005.11.003

https://en.wikipedia.org/wiki/Secretary_problem#cite_note-2
https://en.wikipedia.org/wiki/Secretary_problem#cite_note-2
http://arxiv.org/abs/1708.08831v1
https://doi.org/10.1016/j.jmp.2005.11.003

Author Index

Agatolio, Francesca 354
Albanese, Fabio 354
Alghamdi, Fayiq 129

Bakonyi, Viktória H. 206
Barendsen, Erik 180, 271
Bellettini, Carlo 194
Berges, Marc 259
Bergner, Nadine 339
Blaho, Andrej 3
Bollin, Andreas 244, 283
Borchia, Roberto 319
Bosova, Liudmila 154
Budinská, Lucia 295, 307

Carbonaro, Antonella 319
Casadei, Giorgio 319
Corradini, Isabella 228

da Rosa Zipitría, Sylvia 55
Dagienė, Valentina 101
Demarle-Meusel, Heike 283
Dolgopolovas, Vladimiras 101
Dorelo, Andrés Aguirre 55
Dronzik, Anna 390

Forlizzi, Luca 141, 319
Forster, Martina 17

Gorbunovа, Irina 381
Govorova, Anastasia 381
Grgurina, Nataša 271

Hafemann, Jonas 259
Haselmeier, Kathrin 339
Hauser, Urs 17
Hellmig, Lutz 117
Henze, Ineke 180
Hermans, Felienne 180
Herrera Loyo, Angélica 30
Humbert, Ludger 339

Illés, Zoltán 206

Jevsikova, Tatjana 101

Kalas, Ivan 3
Katsman, Viktor 369
Kesselbacher, Max 283
Klimeková, Eva 216
Kohn, Tobias 68
Komm, Dennis 68

Lodi, Michael 141, 228, 319
Lonati, Violetta 141, 194
Lutz, Christine 259

Magenheim, Johannes 339
Malchiodi, Dario 194
Martini, Simone 319
Mayerová, Karolína 295, 307
Mirolo, Claudio 141
Monga, Mattia 141, 194
Montresor, Alberto 141
Moravcik, Milan 3
Moro, Michele 354
Morpurgo, Anna 141, 194
Mößlacher, Corinna 283
Müller, Dorothee 339
Müller, Kathrin 339

Nardelli, Enrico 141, 228
Nemychnikova, Valeriia 390
Noa, Ragonis 84, 167
Novikov, Fedor 369
Nylén, Aletta 129

Overney, Tristan 42

Parriaux, Gabriel 42
Pasternak, Arno 117
Pears, Arnold 129
Pellet, Jean-Philippe 42

Rahimi, Ebrahim 180
Reçi, Elisa 244
Röhner, Gerhard 117

Rohrer, Marianne 283
Ronit, Shmallo 84

Schroeder, Ulrik 339
Schulte, Carsten 339
Serafini, Giovanni 17
Šimandl, Václav 307
Starunova, Olga 390

Staub, Jacqueline 17
Sticha, Christoph 259
Sylle, Julia 283

Tolboom, Jos 271
Tomcsányiová, Monika 216

Winczer, Michal 295

396 Author Index

	Preface
	Organization
	Contents
	Role of Programming and Algorithmics in Informatics for Pupils of All Ages
	Exploring Control in Early Computing Education
	Abstract
	1 Background
	2 How the Learners Control in Early Programming
	2.1 Controlling Bee-Bots
	2.2 Controlling Sprites and Stage in Scratch

	3 Method
	4 Studying Control and Representation
	4.1 Dimension of Control
	4.2 Dimension of Representation

	5 Findings and Discussion
	Acknowledgments
	References

	Autonomous Recovery from Programming Errors Made by Primary School Children
	1 Introduction
	1.1 Computer Science Is Rapidly Becoming a School Subject
	1.2 The Paradox of Teaching Programming in Half-Classes

	2 Related Work
	2.1 Reducing Errors
	2.2 Simplifying the Language
	2.3 Error Diagnosis

	3 What Structural Errors Do Beginners Make?
	3.1 Four Error Classes Cover the Vast Majority of All Structural Errors
	3.2 Challenges in Design

	4 Checking for Structural Errors Early On
	4.1 State of Error Detection Prior to Our Modification
	4.2 Extending the Grammar to Detect Failure States
	4.3 Collecting Program Signatures to Match Against

	5 How Do Diagnostics Aid with Preventing Runtime Errors?
	5.1 Subjects and Context
	5.2 Exercises
	5.3 Results

	6 Conclusion
	References

	Effects on the School Performance of Teaching Programming in Elementary and Secondary Schools
	1 Specific Aspects of the Didactic Proposal of ABZ-ETHZ: Introductory Courses in Programming
	1.1 The Thematic Structure of the Proposal
	1.2 Exercises and Tasks
	1.3 Work Dynamics

	2 Observations and Reflections Made in the Programming Workshops in Schools in Mexico, Switzerland and Colombia
	2.1 The Use of Computers and New Technologies at School and in the Family
	2.2 About the Motivation and Interest in Programming
	2.3 Literacy and Their Ability to Think, Analyze and Express Themselves Accurately and Logically
	2.4 Teaching Programming with Regard to the Strengthening the Students' Understanding of Mathematics

	3 Concluding Remarks
	References

	A Case Study on the Effect of Using an Anchored-Discussion Forum in a Programming Course
	1 Introduction
	2 Related Work
	3 Context and Methodology
	4 Results and Discussion
	4.1 Basic Metrics: Threads, Posts, and UoMs
	4.2 Length of Posts and Contextualization Effort
	4.3 Question Depth

	5 Conclusion
	References

	Students Teach a Computer How to Play a Game
	1 Introduction
	1.1 Main Theoretical Principles

	2 Instantiating the General Law of Cognition
	2.1 A Pilot Study

	3 Describing the Study
	3.1 First Classroom Session
	3.2 Second Classroom Session
	3.3 Third Classroom Session

	4 Conclusions
	A Appendix
	References

	Teaching Programming and Algorithmic Complexity with Tangible Machines
	1 Introduction
	2 The Notional Machine
	2.1 The Notional Machine for Algorithms
	2.2 The Difficulty of the Notional Machine

	3 Turtle-Graphics
	3.1 The Turtle as Computing Machine

	4 How to Measure Efficiency
	5 Primality Testing
	5.1 Geometric Approach
	5.2 Semi-Geometric Approach

	6 Sorting
	7 Related Work
	8 Conclusion
	A Python Programs
	B Quicksort
	References

	A Diagnostic Tool for Assessing Students’ Perceptions and Misconceptions Regards the Current Object “this”
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Understanding the Concept of “Object” in Learning OOP
	2.2 Teaching Approaches that Served the Tool Development

	3 The Diagnostic Tool
	3.1 Question 1: Where the Use of this is Needed
	3.2 Question 2: Personal Preferences
	3.3 Question 3: Use of this as a Parameter
	3.4 Question 4: Inheritance
	3.5 Question 5: Open Comprehension Question

	4 Summary
	Appendix A: The Questionnaire
	References

	On Preferences of Novice Software Engineering Students: Temperament Style and Attitudes Towards Programming Activities
	Abstract
	1 Introduction
	2 Background
	2.1 Temperament Styles
	2.2 Temperament Styles in Software Engineering
	2.3 Observing Changes in Programming Education

	3 Research Methodology
	3.1 Respondents
	3.2 Instrument

	4 Results
	4.1 Temperament Style Distribution Among Students
	4.2 Attitudes Towards Programming Tasks
	4.3 Relations of Students’ Temperament Style and Programming Activity Preferences

	5 Discussion and Conclusion
	References

	National Concepts of Teaching Informatics
	Standards for Higher Secondary Education for Computer Science in Germany
	1 Introduction
	2 Computer Science Education in Germany
	2.1 German Educational System in a Nutshell
	2.2 Higher Secondary Education
	2.3 Lower Secondary Education

	3 Standards for Computer Science for Higher Secondary Education
	3.1 Standards for Computer Science Education for Lower Secondary Education
	3.2 Underlying Views on Computer Science
	3.3 Model of Competences for Higher Secondary Education
	3.4 Practices
	3.5 Stages of Complexity in the Dimension of Practices
	3.6 Fundamental and Extended Level of Requirements in the Contentual Dimension
	3.7 Illustrating Tasks

	4 Conclusion
	References

	Computer Science Teachers Perspectives on Competencies - A Case Study in the Kingdom of Saudi Arabia
	1 Introduction
	2 The Saudi Teachers Competencies Standards
	3 Research Question
	4 Methodology
	5 Results
	5.1 Connection to Society
	5.2 Professional Practice
	5.3 Professional Development

	6 Discussion
	7 Conclusion
	References

	A Core Informatics Curriculum for Italian Compulsory Education
	1 Introduction
	2 Context, Process and Background of the Proposal
	2.1 The Italian School System
	2.2 Writing and Revision Process
	2.3 Background of the Proposal

	3 A Core Informatics Curriculum
	3.1 Area of Algorithms
	3.2 Area of Programming
	3.3 Area of Data and Information
	3.4 Area of Digital Creativity
	3.5 Area of Digital Awareness

	4 The Future of Our Proposal in the Schools
	References

	Comparative Analysis of the Content of School Course of Informatics in Russia and Subjects of the International Competition Bebras
	References

	Teacher Education in Informatics
	Computational Thinking: Constructing the Perceptions of Pre-service Teachers from Various Disciplines
	Abstract
	1 Introduction
	2 Background
	2.1 Computational Thinking
	2.2 Implementation in Schools
	2.3 Teachers Preparation

	3 The Course
	3.1 Thoughts Towards Development
	3.2 Course Rationale, Aims, and LO
	3.3 Course Structure
	3.4 Learning Assignments

	4 Course Execution
	4.1 Populations
	4.2 Course Journeys: Difficulties, Successes, and What Lies in Between

	5 Reflective Summary
	Acknowledgments
	Appendix
	Examples of Students’ Projects

	References

	Investigating the Pedagogical Content Knowledge of Teachers Attending a MOOC on Scratch Programming
	1 Introduction
	2 Background
	3 The Study Setting
	4 Results
	5 Discussion
	6 Conclusions
	References

	Informatics and Computational Thinking: A Teacher Professional Development Proposal Based on Social-Constructivism
	1 Introduction
	2 Informatics in Italian Compulsory Schools
	3 Social-Constructivism and Informatics
	4 A PD Constructivist Proposal
	5 Pilot Training Project and Preliminary Findings
	6 Conclusions
	References

	Real Time Classroom Systems in Teachers Training
	1 Introduction
	2 CRS - Classroom Response Systems
	2.1 Advantages and Disadvantages of Using CRS
	2.2 CRS and Hungarian Teachers

	3 E-Lection System
	4 Summary
	References

	Case Study on the Process of Teachers Transitioning to Teaching Programming in Python
	1 Introduction
	2 Methodology
	3 Events Associated with the Transition
	4 Case Studies of Teachers Transition
	4.1 Transition Motives
	4.2 Learning the Language
	4.3 Preparation and Implementation of Teaching Activities
	4.4 Questionnaire
	4.5 Transition Stories
	4.6 Conclusions from Case Studies of Teachers' Transition and Designing a Set of Recommendations

	5 Discussion
	6 Conclusion
	References

	An Investigation of Italian Primary School Teachers' View on Coding and Programming
	1 Introduction
	1.1 Context
	1.2 Literature Overview
	1.3 A Related Study on CT Definition
	1.4 Purpose of the Study

	2 Methods
	2.1 Context
	2.2 Tools
	2.3 Sample Description
	2.4 Procedures

	3 Quantitative Results
	3.1 Q1 - Coding Is…
	3.2 Q2 - Is Coding Different from Writing Programs?
	3.3 Q3 - the Difference Between Coding and Writing Programs Is…

	4 Qualitative Results
	4.1 Q1 - Coding Is…
	4.2 Q3 - the Difference Between Coding and Writing Programs Is…
	4.3 Joint Distribution of Q1 and Q3

	5 Conclusions and Further Work
	References

	The Quality of Teaching - Is There Any Difference Between University Teachers and School Teachers?
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 The TeaM Model Context

	3 Learning from the TeaM Model
	3.1 Research Objectives
	3.2 Settings
	3.3 Results

	4 Discussion and Threats to Validity
	5 Summary and Future Work
	References

	Contests and Competitions in Informatics
	Piaget's Cognitive Development in Bebras Tasks - A Descriptive Analysis by Age Groups
	1 Introduction
	2 Theoretical Background
	2.1 Piaget's Theory of Cognitive Development
	2.2 The Bebras Challenge

	3 Related Work
	4 Methodology
	4.1 Data Gathering
	4.2 Data Analysis

	5 Results
	5.1 Category System
	5.2 Categorization

	6 Discussion
	7 Conclusion and Future Work
	References

	The Second Decade of Informatics in Dutch Secondary Education
	Abstract
	1 Introduction
	2 Second Decade
	2.1 Situation in Practice
	2.2 Curriculum Reform and Curriculum
	2.3 The New Informatics Curriculum
	2.4 Teaching Materials for Elective Themes
	2.5 Research
	2.6 Informatics Curriculum Reform in Primary and Lower Secondary Education

	3 Conclusion and Discussion
	References

	The Bebras Contest in Austria – Do Personality, Self-concept and General Interests Play an Influential Role?
	1 Motivation
	2 Background
	2.1 Testing the Masses
	2.2 Personality, Self-concept and General Interests

	3 The Study
	3.1 Setting
	3.2 Results
	3.3 Discussion
	3.4 Threats to Validity

	4 Recommendations
	5 Summary and Outlook
	References

	Gender Differences in Graph Tasks - Do They Exist in High School Bebras Categories Too?
	1 Introduction
	2 Graph Tasks
	2.1 Categories of Graph Tasks
	2.2 ``Girls''' and``boys''' Tasks

	3 Research Methods
	4 Results
	5 Discussion
	6 Conclusion
	References

	Differences Between 9–10 Years Old Pupils' Results from Slovak and Czech Bebras Contest
	1 Introduction
	2 Research Aims
	3 The Bebras Contest
	3.1 Primary Level Contest Categories
	3.2 A Comparison of Categories Mini (CZ) and Little Beavers (SK)

	4 Research Method
	4.1 Choice of Comparable Tasks in the Mini and Little Beavers Categories
	4.2 Data Processing
	4.3 Sample of Participants
	4.4 Data Analysis

	5 Results
	5.1 Differences Between Countries
	5.2 Differences by Gender

	6 Discussion
	7 Conclusion
	References

	Problem Solving Olympics: An Inclusive Education Model for Learning Informatics
	1 Introduction
	2 Promoting Informatics Through Competitions
	3 OPS: An Inclusive Education Model for Learning Informatics/Computational Thinking
	3.1 Main Features and Goals
	3.2 Joining the OPS
	3.3 Structure of Competitions
	3.4 Topics
	3.5 Examples of Standard Problems
	3.6 Commented Solutions
	3.7 The Training Contests
	3.8 The Final Contest

	4 Participation and Results
	4.1 First Results

	5 OPS and Gender
	6 Conclusions
	References

	Socio-psychological Aspects of Teaching Informatics
	Evaluation of Learning Informatics in Primary Education
	1 Introduction
	2 Project Overview
	2.1 Module 1: Digital World
	2.2 Module 2: How Does a Robot Work?
	2.3 Module 3: I Have a Secret

	3 Evaluation Setup
	4 Evaluation – Students' Results
	4.1 Students Attitudes, Interests and Motivation
	4.2 Module-Specific Results: Digital World
	4.3 Module Specific Results: How Does a Robot Work?
	4.4 Module Specific Results: I Have a Secret

	5 Evaluation – Teachers' Results
	6 Discussion of Results
	A Tables and Figures
	References

	How an Ambitious Informatics Curriculum Can Influence Algebraic Thinking of Primary School Children
	1 Introduction
	2 Algebraic Thinking
	3 Curriculum
	3.1 Contents
	3.2 Activities Examples
	3.3 The Guiding Principles
	3.4 The Applied Methodology
	3.5 The Effects on Algebraic Thinking

	4 Further Development and Conclusion
	References

	Computer Tools in Teaching and Studying Informatics
	Gamification of Problem Solving Process Based on Logical Rules
	1 Introduction
	2 Existing Methods Exercises Automation
	3 Rule-Searching Method
	4 Method Application in School Combinatorics
	4.1 Automated Check of Solutions to Tasks
	4.2 Automated Task Generation
	4.3 Gamification Based on Rule Search

	5 Experiments
	6 Conclusion
	References

	Music Computer Technologies in Informatics and Music Studies at Schools for Children with Deep Visual Impairments: From the Experience
	Abstract
	1 Introduction
	2 MCT as New Creative Educational Medium
	3 From the Experience
	3.1 Psychological and Pedagogical Features of Teaching MCT for the Visually-Impaired
	3.2 The Use of MCT in Teaching Informatics for Children with Deep Visual Impairment
	3.3 The Use of Special Software in Teaching Informatics and Music for Schoolchildren with Visual Impairments

	4 Conclusions and Future Work
	References

	Computer Modeling of Secretary Problem and Its Interesting Results
	1 Introduction
	2 Formulation of Problem
	3 Results
	4 Discussion
	5 Conclusion
	References

	Author Index

