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Abstract. Dynamic binary analysis is difficult and burdensome. In
practice, analysts always develop dynamic binary analyzers (DBAs)
based on binary instrumentation tools (BITs), which are responsible for
extracting information from a binary, monitoring or altering the execu-
tion of the binary. However, existing BITs either expose machine instruc-
tions to analysts or lack user-friendly APIs. Such problems result in a
steep learning curve to grasp BITs and difficulties in eliminating bugs
in DBAs. This work designs DBAF, a dynamic binary analysis framework
that instruments binaries dynamically, conducts an online translation
from machine code into an easy-to-handle intermediate representation
(IR) and provides tens of APIs for IR processing. With DBAF, analysts
can process binaries in the level of IR without the troubles to interpret
machine instructions. Then, we develop five DBAs on top of DBAF, which
are a division-by-zero protector, an IR counter, a memory tracer, a taint
analyzer and a concolic executor. It demonstrates that DBAF can reduce
the development effort for DBAs, especially the ones requiring semantic
interpretation of instructions. Experiments show that DBAF brings about
reasonable overhead in online translation.

1 Introduction

Binary analysis is a fundamental technique in many research fields, e.g., malware
analysis, obfuscation/deobfuscation, software similarity analysis, and vulnerabil-
ity discovery. It can be roughly classified into three categories, static analysis,
dynamic analysis and hybrid analysis which combines static and dynamic anal-
ysis. This work focuses on dynamic binary analysis. Dynamic binary analysis
is difficult and burdensome which needs rich experiences and considerable cod-
ing effort. In practice, analysts often develop dynamic binary analyzers (DBAs)
based on existing binary instrumentation tools (BITs). With BITs, analysts can
focus on the functionalities of the DBAs rather than the low-level details about
how to load binaries into memory, parse binary files, extract information (e.g.,
control flow graph) from binaries, monitor or alter the execution of binaries.

However, exiting BITs have several shortcomings. First, some BITs (e.g.,
Pin [24], Dyninst [1], DynamoRIO [2]) expose machine instructions to analysts
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directly, leaving analysts a complicated and error-prone process of semantic inter-
pretation. Second, some BITs (e.g., Valgrind [28]) do not provide user-friendly
APIs and documents, leading to a steep learning curve for analysts to grasp the
BITs. Consequently, analysts have to search for the APIs of interest from less-
clear documentations, example code developed by inexperienced programmers
and even the huge source code of DITs.

This work designs DBAF, a dynamic binary analysis framework that instru-
ments binaries dynamically, translates machine instructions into an easy-to-
handle intermediate representation (IR). Moreover, DBAF provides tens of APIs,
enabling analysts to process binaries in the level of IR. With DBAF, analysts do
not need to interpret the semantics of machine instructions, and hence consid-
erable development effort for DBAs can be saved. The implementation of DBAF
is based on Pin and hence the invocation fashion of the provided APIs is similar
with Pin’s APIs. Besides, DBAF selects LLVM IR [20] as its IR format and reuse
some code of Mcsema [10] for translation. Therefore, people who have experi-
ences in Pin and LLVM can use DBAF without difficulties. We do not consider
the requirement is an obstacle to use DBAF because Pin and LLVM are widely-
accepted in both academia and industry.

To demonstrate the utility of DBAF, we implement five DBAs on it using
the provided APIs. Three out of them are simple, which are a division-by-zero
protector, an IR counter and a memory tracer. The code amount of them is
comparable with those DBAs implemented on Pin directly. The taint analyzer
and concolic executor are two complicated DBAs because they need to interpret
the semantics of IR. The code amount of them is significantly lower than those
directly implemented on Pin since the semantics of LLVM LR is much simpler
than the semantics of machine instructions. Finally, experiments show that the
translation process of DBAF incurs reasonable overhead.

In summary, the contribution of this work is threefold.

– This work designs DBAF, which instruments binaries dynamically and trans-
lates instructions into LLVM IR.

– DBAF provides tens of APIs, allowing analysts to handle binaries in the level
of IR.

– We implement five DBAs on top of DBAF, using its APIs.

This paper is organized as follows. Section 2 focuses on the design of DBAF.
Section 3 concerns the implementation of DBAs. Section 4 evaluates the transla-
tion overhead of DBAF and presents two practical cases about the taint analyzer.
Section 5 reviews the related studies and Sect. 6 concludes.

2 DBAF

2.1 Overview

Figure 1 illustrates the high-level architecture of DBAF which takes in a binary,
instruments it and then runs the instrumented binary. The workflow of DBAF
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consists of six steps. Step one loads the binary into memory, parses the binary
format and extracts relevant information. Then, DBAF fetches machine instruc-
tions from the binary, followed by the process of translation. The outcome of the
translation step is LLVM IR. The instrumentor instruments the code of DBAs
into IR and then IR is converted back to machine instruction in step five. Please
note that step five is the reverse process of step three. Finally, step six runs the
instrumented binary.

Binary

1:Loader 2:Ins fetcher 3:Translator IR 4:Instrumentor 6:Runner

APIs

Div0 
protector IR counter Memory 

tracer
Taint 

analyzer
Concolic 
executor

DBAF

5:Translator

Fig. 1. High-level overview of DBAF

DBAF provides tens of APIs, allowing analysts to instrument binaries in the
level of IR. Therefore, all the five DBAs invokes the proposed APIs without the
troubles to interpret the semantics of machine instructions. The modules in Fig. 1
with the dark background are completely implemented by us (i.e., all DBAs and
APIs) or adapted from existing BITs (i.e., translator and instrumentor), and the
modules with light background directly leverage Pin. The code amount of DBAF
has 6672 lines of C++, including 2258 lines for implementing the five DBAs.

2.2 Translation

The interpretation of machine instructions is burdensome and error-prone
because an instruction set (e.g., x86) has hundreds of different instructions and
many of them have complex semantics. Here taking a common x86 instruction
cmp as an example, it has two operands which can be immediate numbers, regis-
ters and memory addresses. The bit-width of operands can be 8, 16 and 32. The
execution of cmp does not change operands but affects flags. Which and how
flags are affected are determined by the operands. For example, considering an
instruction cmp eax, ebx where eax and ebx are two unsigned numbers, CF will
be set to 1 if eax is smaller than ebx or 0 otherwise, and ZF will be set to 1 if the
two operands are equal. Consequently, analysts have to spend significant effort
to implement and debug complicated DBAs which requires semantic interpre-
tation. For instance, Triton [34], a concolic execution framework that directly
interpret x86/x64 instructions, has 35,120 lines of C++ code.

We propose to conduct an online translation from machine instructions into
IR. An alternative is translating the binary into IR statically and then map-
ping instructions to IR dynamically. However, this method encounters similar
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challenges that exist in static disassembly, such as data embedded in the code
regions, variable instruction size, indirect branches [31]. Therefore, DBAF pro-
poses online translation that fetches an instruction right before CPU executes
the instruction, and hence DBAF overcomes the aforementioned challenges.

We select LLVM IR as the IR of DBAF due to its advantages. LLVM IR is
a low-level RISC-like virtual instruction set, which supports linear sequences
of simple operations like add, subtract, compare, and branch [19]. Therefore,
the semantics of LLVM IR is much simpler than machine instructions like x86.
Besides, LLVM IR is in three address form and strongly typed which facili-
tates program analysis and optimization [19]. In implementation, DBAF adapts
Mcsema [10], which is a library lifting binaries into LLVM IR. As a static transla-
tion tool, Mcsema suffers from the similar drawbacks with static disassembly [31].
DBAF reuses the code from Mcsema [10] for lifting an instruction rather than a
binary into LLVM IR, and hence it circumvents those drawbacks. Besides, we
discover a bug in Mcsema resulting in an exception during translation due to a
type mismatch. Mcsema accepted our suggestion and fixed the bug soon [13].

1 adc bx, dx

1    %1 = load i16, *%bx

2    %2 = load i16, *%dx

3    %3 = load i1, *%CF

4    %4 = zext i1 %3 to i16

5    %5 = add i16 %4, %2

6    %6 = add i16 %5, %1

7 store i16 %6, i16 *%bx

Fig. 2. Translate adc into LLVM IR

Figure 2 presents the translation of adc bx, dx into LLVM IR. The instruction
adds dx to bx, and then add CF to bx. The LLVM IR after translation consists
of seven statements. Statement 1 loads the value of bx into memory. %1 is
actually a label representing load i16, *%bx. Therefore, one can simply think
%1 is the value of bx. Similarly, statement 2 and 3 load the values of dx and
CF, respectively. Statement 4 extends the 1 bit CF to 16 bits. The result of
addition is represented by %6. Finally, statement seven stores the result into
bx. The observation from this example is that the semantics of LLVM IR is
much simpler than x86 instructions. Moreover, there are no implicit operands
in LLVM IR; however, x86 instructions can have implicit operands (e.g., CF).
Hence, the implementation of DBAs can be simplified after translation from
machine instructions into LLVM IR.
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2.3 API

Table 1 shows twenty representative APIs provided by DBAF. The APIs have sim-
ilar invocation fashion with those APIs provided by Pin, so we explain some of
them here. IR AddInstrumentFunction() adds a function func to instrument in
the level of IR, and hence func will be invoked after an instruction is translated
into IR. Therefore, func can be considered as a callback function that processes
each IR. IR InsertCall() inserts a call to a function func before or after a specified
IR, so that func will be called right before or after the execution of the IR. The
two APIs IR Ins() and IR Address() map an IR to its corresponding instruction,
so they bridge the gap between instruction instrumentation and IR instrumen-
tation. IR Opcode() and IR Category() return the opcode and category of the
IR, respectively. Please note that the opcode and category are defined in LLVM
IR, rather than the instruction set.

Table 1. Twenty representative APIs provided by DBAF

API Description

IR AddInstrumentFunction Add a function used to instrument at IR granularity

IR InsertCall Insert a call to a function relative to an IR

IR Address The instruction address of the IR

IR ReadMemory The address of the memory read by the IR

IR WriteMemory The address of the memory written by the IR

IR Opcode The opcode of IR

IR OperandIsImmediate Whether the specified operand of the IR is an immediate number

IR OperandIsReg Whether the specified operand of the IR is a register

IR OperandIsTmp Whether the specified operand of the IR is a temporary variable

IR OperandTmp Get the specific temporary variable of the IR

IR OperandReg Get the specific register of the IR

IR OperandImmediate Get the specific immediate number of the IR

IR OperandWidth The bit-width of the specified operand processed by the IR

IR IsMemoryWrite Whether the IR write memory

IR IsMemoryRead Whether the IR read memory

IR Category The category of the IR

IR Ins Get the instruction corresponding to the IR

syscall entry Call a function at the entry of a system call

syscall exit Call a function at the exit of a system call

LLVM IR can operate memory, registers, temporary variables and immedi-
ate numbers [23]. DBAF provides APIs to determine whether an IR read or write
memory, whether an operand is an immediate number, register or a temporary
variable, get the memory addresses, immediate numbers, registers or temporary
variables operated by an IR. IR OperandWidth() is responsible for obtaining
the bit-width of a specific operand. Moreover, syscall entry() and syscall exit()
allow DBAs to handle system calls without much effort. The usage of the
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proposed APIs is similar with the APIs provided by Pin [30], so analysts who
have experiences in Pin can learn DBAF easily.

3 DBAs Based on DBAF

To demonstrate the utility of DBAF, we implement five DBAs on top of it. This
section focuses on the implementation details of DBAs and shows how to use
the provided APIs.

3.1 IR Counter

IR counter counts the number of executed IR, which maintains an integer rep-
resenting the number of IR executed so far and increases it by one if an IR will
be executed. IR counter outputs the integer when the instrumented binary fin-
ishes execution. Therefore, IR counter needs to invoke IR InsertCall() to insert
a call to a function which will be executed right before the execution of every
IR. Figure 3 presents the core source code of IR counter, which uses two APIs
(in bold at Line 6 and Line 12) provided by DBAF.

1 unsigned long long gRunInsCount = 0;

2 VOID IR_counter(ADDRINT addr) {
3 gRunInsCount += 1;
4 }

5 VOID ir_instrument_entry(IR ir, VOID* v) {
6 IR_InsertCall(ir, IPOINT_BEFORE, (AFUNPTR)IR_counter,
7 IARG_INST_PTR, IARG_END);}

8 VOID Finish(INT32 code, VOID *v) {
9 cout << "Executed IR count:" << gRunInsCount << endl;
10 }

11 int main(...){
12 IR_AddInstrumentFunction(ir_instrument_entry, 0);
13 PIN_AddFiniFunction(Finish, 0);
14 PIN_StartProgram();
15 return 0;}

Fig. 3. Core code of IR counter

3.2 Memory Tracer

Memory tracer records the memory address read or written by an IR and the cor-
responding instruction address. Figure 4 shows the core code of memory tracer.
We omit the code of main() since it is the same with the main() of IR counter.
Line 1 declares a file to record the trace. RecordMemRead() is responsible for
recording the address read by the IR and the IR (i.e., instruction) address, which
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are acquired by invoking the proposed APIs IR ReadMemory() (Line 9) and
IR Address() (Line 7), respectively. The call to RecordMemRead() is inserted
before the IR (Line 10) which reads memory (Line 8). The recording of memory
write is handled in a similar way.

1 ofstream OutFile("trace.txt");

2 VOID RecordMemRead(ADDRINT insAddr, ADDRINT memAddr) {
3 OutFile << "0x" << hex << insAddr << ": R 0x" << hex << memAddr << endl;}

4 VOID RecordMemWrite(ADDRINT insAddr, ADDRINT memAddr) {
5 OutFile << "0x" << hex << insAddr << ": W 0x" << hex << memAddr << endl;}

6 VOID ir_instrument_entry(IR ir, VOID* v) {
7 ADDRINT insAddr = IR_Address(ir);
8 if (IR_IsMemoryRead(ir)) {
9 ADDRINT irReadMemoryAddr = IR_ReadMemory(ir);
10 IR_InsertCall(ir, IPOINT_BEFORE, (AFUNPTR)RecordMemRead,
11 IARG_UINT32, insAddr, IARG_UINT32, irReadMemoryAddr, IARG_END);
12 } else if (IR_IsMemoryWrite(ir)) {
13 ADDRINT irWriteMemoryAddr = IR_WriteMemory(ir);
14 IR_InsertCall(ir, IPOINT_BEFORE, (AFUNPTR)RecordMemWrite,
15 IARG_UINT32, insAddr, IARG_UINT32, irWriteMemoryAddr, IARG_END);

}
}

Fig. 4. Core code of memory tracer

3.3 Division-By-Zero Protector

Division-by-zero protector monitors the execution of a binary and halts its execu-
tion if an instruction divides zero. Figure 5 presents the core code of our division-
by-zero protector (main() is omitted). The current version support unsigned
integer division (UDIV OP) and signed integer division (SDIV OP) (Line 12).
The extension for supporting floating-point division and modulo operation is
straightforward. The second operand of UDIV OP and SDIV OP is the divisor
and it can be memory (Line 16), register (Line 18) and immediate number (Line
14). The protector handles each case accordingly. The function TargetDiv() (Line
1) is responsible for checking the divisor and halting execution if the divisor is
equal to zero. The call to TargetDiv() is inserted before the execution of each
UDIV OP and SDIV OP (Line 15, 17, 19).

3.4 Taint Analyzer and Concolic Executor

Taint analysis consists of taint sources, taint propagation and taint sinks [36].
In particular, a taint analyzer marks inputs of interest (e.g., untrusted data)
as taints, tracks taint propagation and takes actions (e.g., halt execution) if
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1 void TargetDiv(int flag, void * para) {
2 bool nonzero = true;
3 if (1 == flag){//memory
4 nonzero = (*para != 0);
5 } else if (2 == flag) {//reg value or immediate number
6 nonzero = (para != 0);

}
7 if (!nonzero) {
8 cerr << "Detected: divided by zero" << endl;
9 exit(-1);

} 
}

10 VOID ir_instrument_entry(IR ir, VOID* v) {
11 INT opcode = IR_Opcode(ir);
12 if(opcode != UDIV_OP || opcode != SDIV_OP)
13   return;
14 if (IR_OperandIsImmediate(ir, 1)) {
15 IR_InsertCall(ir, IPOINT_BEFORE, (AFUNPTR)(TargetDiv), IARG_UINT32,

2, IARG_PTR, (void*)IR_OperandImmediate(ir, 1), IARG_END);
16 } else if (IR_IsMemoryRead(ir)) {
17 IR_InsertCall(ir, IPOINT_BEFORE, (AFUNPTR)(TargetDiv), IARG_UINT32,

1, IARG_UINT32, IR_ReadMemory(ir), IARG_END);
18 } else if (IR_OperandIsReg(ir, 1)) {
19 IR_InsertCall(ir, IPOINT_BEFORE, (AFUNPTR)(TargetDiv), IARG_UINT32,

2, IARG_REG_VALUE, IR_OperandReg(ir, 1), IARG_END);
}

}

Fig. 5. Core code of division-by-zero protector

taints flow into the specific place (e.g., disk files). To find taint sources and taint
sinks in binaries, DBAs always instrument system calls. Our taint analyzer uses
two APIs syscall entry() and syscall exit() to insert calls to analyst-provided
functions before or after the execution of system calls. In the analyst-provided
functions, taint sources are marked and actions are taken. To track taint prop-
agation, taint analyzer conducts instrumentation in the level of IR (invoking
IR AddInstrumentationFunction()) and insert a call to a function func before
the execution of each IR (invoking IR InsertCall()). func is responsible for inter-
preting the semantics of IR and understand which operands should be affected
by taint propagation.

Concolic execution, alias dynamic symbolic execution that runs a program
concretely, tracks symbol propagation, collects constraints when encountering
branches, and generates new inputs by querying a theorem prover [6]. Like taint
analysis, concolic execution needs to mark symbol sources. In other words, we
need to mark data of interest (e.g., test cases) as symbols. In implementation, our
concolic executor instruments system calls using the provided APIs. Moreover,
the concolic executor needs to track symbol propagation which is significantly
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difficult than tracking taint propagation. That is because concolic execution
requires elaborate interpretation of IR semantics to find how (not just which)
operands are affected by symbol propagation.

Therefore, our concolic executor instruments the binary in the level of IR
and interprets the semantics of each IR statement. Besides, our concolic execu-
tor leverages Z3 [26] to produce new inputs. The fact is that more complicated
the instruction set, more effort should be made to implement and debug a con-
colic executor. The code amount of our concolic executor is 1,035 lines of C++.
For comparison, Triton [34] which interprets machine instruction without IR
translation has 35,120 lines of C++, including 15,698 lines of code under “Tri-
ton/src/libtriton/arch/x86” are dedicated to interpret x86 semantics [33].

4 Experiments

This section presents the results of the experiments concerning the translation
overhead, followed by two practical cases about our taint analyzer.

4.1 Translation Overhead

Translation overhead is a critical factor to evaluate the efficiency of DBAF because
the translation process is conducted online. We select ten benchmark programs
from several well-known benchmark sets. All the benchmark programs are open
source and have been used to evaluate other tools. In particular, four benchmark
programs are for the purpose of I/O subsystem performance testing; two aim to
evaluate the performance of memory subsystem; two evaluate CPU performance;
one attempts to evaluate the performance of multi-thread and the last evaluates
the performance of mutex. The purpose and code amount of those benchmark
programs are presented in Table 2. Please note that SysBench is an integrated
benchmark, and SysBench1, SysBench2, SysBench3, SysBench4, SysBench5 indi-
cate its different functionalities. For the same reason, we do not count the code
amount of those five benchmark programs separately.

To accurately measure translation overhead, we implement two versions of
NullTool (termed by NullPin and NullDBAF) which are directly built on top
of Pin and DBAF, respectively. NullPin just loads the benchmark programs into
memory and runs them without instrumentation. NullDBAF loads the bench-
mark programs, translates machine instructions into IR, then converts back to
instructions and runs the programs. We measure the execution time of each
benchmark program loaded by NullPin and NullDBAF, respectively and then
we compute the overhead as shown in Fig. 6. The overhead averaged from the ten
benchmark programs is about 4x. We need to remind that the results are conser-
vative because NullTool does not instrument the benchmark programs. Imaging
the DBAs with practical functionalities, the instrumentation overhead should be
much higher than translation overhead. For example, a concolic executor often
slows down the execution of analyzed programs hundreds of times. Therefore, the
translation overhead incurred by DBAF is reasonable. We plan to find methods
to further reduce translation overhead in our future work.
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Table 2. Benchmark programs to evaluate translation overhead

Benchmark Purpose Code amount

Bonnie++a I/O 2,919

fs markb I/O 1,067

IOzonec I/O 26,681

mbwd memory 207

stresse CPU 628

SysBench1f CPU 7,452

SysBench2 Memory 7,452

SysBench3 Multi-thread 7,452

SysBench4 Mutex 7,452

SysBench5 I/O 7,452

https://sourceforge.net/projects/bonnie/.
https://github.com/josefbacik/fs mark.
http://www.iozone.org/.
https://github.com/raas/mbw.
http://people.seas.harvard.edu/∼apw/
stress/.
https://github.com/nuodb/sysbench.

Fig. 6. Translation overhead of DBAF

4.2 Practical Cases

We evaluate the effectiveness of our taint analyzer through validating two prac-
tical vulnerabilities. To speedup the validation process, we record the memory
range of the analyzed binary and restrict instrumentation in this range. In other
words, we do not process the code of libraries.

CVE-2010-4051. This vulnerability exists in the function regcomp() of the
GNU C library that processes untrusted inputs without preliminary checking the

https://sourceforge.net/projects/bonnie/
https://github.com/josefbacik/fs_mark
http://www.iozone.org/
https://github.com/raas/mbw
http://people.seas.harvard.edu/~apw/stress/
http://people.seas.harvard.edu/~apw/stress/
https://github.com/nuodb/sysbench
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input for the sanity [9]. Consequently, attackers can craft an exploit containing
adjacent bounded repetitions (e.g., {10,}{10,}{10,}{10,}{10,}) to trigger a stack
overflow in regcomp(), resulting in a crash. To detect various kinds of control-flow
hijacking attacks (including stack overflow), we enrich the taint sinks of our taint
analyzer. In particular, we consider all indirect rets/jumps/calls as taint sinks,
and therefore our taint analyzer detects a control-flow hijacking if the target
of an indirect ret/jump/call is tainted. Please note that direct jumps/calls are
not included in the taint sinks because attackers cannot subvert the jump/call
targets. Our taint analyzer instruments 135,082 IR (corresponding to 21,652
instructions) and detects the vulnerability in 68 s. Before triggering the bug,
7,154,041,604 IR (corresponding to 713,671,310 instructions) are executed.

CVE-2010-0001. This vulnerability results from an integer overflow in function
unlzw() of gzip before 1.4 on 64-bit platforms, allowing remote attackers to
launch a DoS attack or possibly execute arbitrary code [8]. The outcome of the
overflowed integer computation is used as an array index, and hence attackers
control the array index and then possibly get access to arbitrary memory address.
To detect memory corruption, we enrich the taint sinks of our taint analyzer. In
particular, we consider all memory operations (i.e., load, store) as taint sinks,
and hence our taint analyzer detects an attack for memory corruption if the
binary gets access to a tainted address. Our taint analyzer instruments 109,913
IR (corresponding to 17,298 instructions) and detects the vulnerability in 170 s.
Before triggering the flaw, 21,875,318,127 IR (corresponding to 2,956,988,800
instructions) are executed.

5 Related Work

This section reviews studies about binary instrumentation tools, rather than the
applications based on binary instrumentation tools. Pin [24], Dyninst [1] and
DynamoRIO [2] are three well-known dynamic instrumentation tools (DITs)
that have been widely used in both academia and industry. Besides, new DITs
usually either build on top of them or compare with them. Pin [24] is devel-
oped by Intel Corp. that is efficient and provides rich APIs and well-written
documents. Dyninst [1] supports both dynamic instrumentational static instru-
mentation (i.e., binary rewrite) and provides unified APIs for both. DynamoRIO
attempts to construct a transparent instrumentation environment because the
behaviors of the instrumented binary may be changed if it is aware of the fact
that it is running in an instrumentation environment [3].

To reduce the runtime overhead of the binary after instrumentating by a
static instrumentation tool (SIT), PEBIL uses function level code relocation in
order to insert large but fast control structures and then allows analysts to insert
assembly code directly [21]. Compared with a DIT, a binary after processing
by a SIT has lower runtime overhead, however, the instrumentation of SITs
is easy to be bypassed. Consequently, SITs are less commonly-used to analyze
malware. PSI enhances SITs by ensuring a non-bypassable instrumentation [45].
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In particular, PSI enforces three properties to achieve the non-bypassability,
e.g., all direct and indirect control-ow transfers made from the original code
must target instructions in the original code that were validly disassembled by
the disassembler [45].

EEL proposes a RISC-like IR, allowing analysts to write machine- and OS-
independent applications [18]. Strata is a dynamic instrumentation framework
supporting SPARK and MIPS instruction sets [37]. Unlike EEL, Strata does not
translate machine instructions into IR possibly because SPARK and MIPS are
RISC instructions sets. Vulcan supports both dynamic and static instrumen-
tation, which translates instructions into MSIL (an IR designed by Microsoft
Corp.) and provides APIs [11]. Hazelwood and Klauser extends Pin to support
ARM instruction set [16]. Dimension is a DIT for virtual execution environments
(VEEs) that has two advantages in design [44]. First, Dimension is not tightly
coupled with VEE, so it can be reused easily be different VEEs. Besides, it is
able to instrument both source and target binaries. HDTrans is a light-weight
DIT designed for those binaries with a small and hot working set [39]. DSPInst
is a SIT for Blackfin DSP processor [40], DPCL is the extension of Dyninst for
supporting parallel MPI applications [22,35] and PMaCinst is a SIT supporting
PowerPC instruction set [41].

Guillon proposes to instrument binary via QEMU, a cross-platform emu-
lation tool, in order to instrument the entire software stack, including kernel
modules [14]. For the similar purpose, PinOS leverages XEN, a virtual machine
hypervisor to extends Pin with the ability to instrument the whole operating
system [4]. Technically, PinOS runs under the guest OS to manipulate the guest
OS. Feiner et al. propose a different design which implements a Linux kernel
module to conduct a whole-system instrumentation [12].

Mobile devices are weaker than desktop computers in terms of process-
ing/memory/storage capability. SIF is a selective instrumentation framework
for mobile applications, enabling analysts to specify a small amount of code
in applications to be instrumented, thus overhead on mobile devices can be
reduced [15]. DIOTA circumvents the challenges of constructing a control flow
graph and enables to instrument self-modifying code [25]. VMAD first instru-
ments the source code of the analyzed software by LLVM and then monitors
its execution in a virtual machine [17]. SecondWrite is a SIT that is able to
instrument stripped binaries (i.e., without relocation information) [38]. It is a
technical challenge for DITs to instrument multi-thread programs. Chung et al.
apply transactional memory to enclose the data and metadata accesses within
an atomic transaction, thus thread safe is maintained [7]. DIABLO is a static
instrumentation framework, which translates various instruction sets into IR and
provides APIs [32].

To overcome the limitation of static disassembling, BIRD combines static
disassembly with an on-demand dynamic disassembly approach to guarantee
that each instruction in a binary file is analyzed or transformed before it is
executed [27]. SuperPin proposes to speedup instrumentation by dividing the
analyzed binary into non-overlapped instruction sequences, and then starts mul-
tiple instrumentation threads to process each sequence in parallel [43]. Upton and
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Cohn observe that both data collection and data analysis of binary instrumenta-
tion are time-consumption. They propose to decouple data collection from anal-
ysis and buffer the data for analysis [42]. To ease its usage for analysts, Hijacker
proposes rule-based instrumentation that allows analysts to write instrumenta-
tion requirements in an xml file [29]. Our previous work designs a middleware to
take care of the differences of various instrumentation tools and expose easy-to-
use APIs to analysts [5]. However, the middleware does not translate instructions
into IR, so analysts have to interpret instruction semantics by themselves.

6 Conclusion

Dynamic binary instrumentation is a fundamental technique for various applica-
tions. Existing DITs have their shortcomings. This study design DBAF, a dynamic
binary analysis framework that translates machine instructions into LLVM IR
and provides tens of Pin-like APIs enabling analysts to instrument the binary
in the level of IR easily. Moreover, we present five applications based on DBAF.
Experiments show that the translation overhead is reasonable. We will try to
further reduce the translation overhead in our future work.
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