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Abstract. Biometrics and cloud computing are converging towards a
common application context aiming at deploying biometric authentica-
tion as a remote service (Biometrics as a Service - BaaS). The advan-
tages for the final user is to be relieved from the burden related to
acquire/maintain specific software, and to gain the ability of building per-
sonalized applications where biometric services can be embedded through
suitable cloud APIs. Gait is one of the promising biometric traits that
can be investigated in this scenario. In particular, this paper deals with
the processing techniques based on wearable sensors, e.g., accelerometers.
These sensors are nowadays ubiquitous in mobile devices, and allow the
acquisition of lightweight signals that can be sent remotely for process-
ing. As an example of possible applications, a positive recognition may
automatically allow access to restricted zones without an explicit action
by the user, that has just to approach the entrance walking normally.

Keywords: Gait recognition · Wearable sensors · Cloud services
Biometrics as a Service · BaaS

1 Introduction

Modern mobile devices are not only ubiquitous, but also embed an increasing
number of sensors. The original aim of those sensors is, basically, to provide
an increasingly “natural” interaction (e.g., triggering functions just by shacking
the device), and advanced features (e.g., sending directly a captured image).
Thanks to them, the equipped smartphones, tablets and wearables can further
lend themselves to unanticipated uses. It is worth noticing that the variety of
tasks that are performed nowadays trough them, especially for some user groups,
often overcomes the use of traditional desktop computers. However, for some spe-
cific applications, either storage or computational capabilities may still be not
sufficient. This is the typical, if not main, context where cloud computing may
represent an effective and efficient solution. Among the mobile applications gain-
ing popularity, biometric authentication is one that can take significant advan-
tage from the mobile+cloud architectural schema. The biometric community
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usually classifies the biometric traits into two main categories, namely hard and
soft. The hard ones better meet the conditions for a sufficient accuracy and
reliability of subject recognition, e.g., universality, uniqueness, permanence, and
ubiquitousness [19]. Popular examples, which are consolidated also in everyday
practice, are face, fingerprint, and iris. Hard traits are basically static ones, i.e.,
bound to subject appearance and physical features. Thanks to good levels of
discriminating power and permanence they can achieve good performance in
terms of accurate recognition, especially in controlled conditions. However their
strict relation to physical/appearance features makes systems based on “strong”
traits suffer from the problems that typically affect pattern recognition based
on visual characteristics, and that are caused by uneven illumination, different
orientation with respect to a capture device, special trait configurations (e.g.,
expression in face). Moreover, just because they are “visible”, they are easier
to “copy” and are subject to spoofing. As a consequence, for those traits it is
especially important to verify the liveness of the presented sample, in order to
distinguish a real user from a photo or a video used for a presentation attack.

The biometric traits classified as soft, instead, lack to meet one or more of
the required conditions mentioned above. Nevertheless, they can be useful at
least to delimit specific classes of persons, and to reduce the search space in
recognition operations. Some examples are represented by either physical traits
bound to subject (static) appearance, e.g., face shape, height, skin or hair color,
or demographic features (gender, age, ethnicity), that can be in turn inferred
from physical appearance and identify groups of subjects rather than a single
one. Several traits in the “soft” category are related to subject behavior instead:
gait time progression, dynamics of signature, writing behavior in general, and
keystroke dynamics are only some examples. The idea underlying the use of these
traits to identify people is that, while humans are not very good at remembering
passwords, they are quite good at simply being (and behaving as) themselves.
But the same traits can be affected by behavioral as well as emotional factors,
so that they may lack permanence. Moreover, they may still lack a completely
reliable/accurate processing. Notwithstanding their limitations, those traits can
be used in controlled conditions, or can further enforce recognition accuracy of
strong ones. In addition, they are more difficult to forge and/or replicate.

This contribution deals with gait recognition, which is included among soft
biometrics. There are different approaches tackling this problem, that can be
divided into three classes. The earliest ones used for user recognition rely on
machine vision-based techniques, that exploit visual models for both the static
and dynamic aspects of the gait pattern of a subject. Gait analysis for medical
applications traditionally exploits floor sensors-based techniques, that capture
features of subject gait through special sensors equipping an ambient floor, e.g.,
pressure and/or weight sensors. Finally, wearable sensors-based techniques move
sensors from the ambient to the subject body, therefore achieving an ubiquitous
recognition ability. This latter class of techniques is the object of the present
proposal. While verification (1:1 matching with a claimed identity) might be
carried out locally, both security and privacy issues claim for a remote pro-
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cessing when identification (1:N matching) is requested. Moreover, the possible
application of wearable sensor-based gait recognition as a cloud-related service is
investigated, sketching a possible architecture. In fact, cloud computing offers an
efficient storage/processing infrastructure to exploit mobile user authentication
also with large scale populations.

2 Wearable Sensors: A Possible Solution for Gait
Recognition?

The errors of a biometric recognition system occur either when a subject is con-
fused with another due to inter-personal similarities, or when a subject is not
recognized due to intra-personal differences. Both problems are related to the
discriminative power of adopted traits and related approaches. In addition, both
intrinsic and external variations can modify the appearance or, more generally,
the characteristics of a biometric trait. This holds at a different level for hard
and soft biometrics. For example, A-PIE variations (age, pose, illumination, and
expression) affect face recognition. Gait is not an exception in the biometric
scenario. Walking speed is the main factor affecting gait dynamics, but also
the kind of shoes (e.g., heels for women shoes, or heavy working shoes [17,18]),
the irregular ground slope, and also some temporary illness (e.g., leg contusions
or other problems related to articulation or feet) can cause variations of the
individual gait pattern. Gait recognition techniques that are based on process-
ing silhouettes extracted from video sequences, can further suffer from common
image processing problems, e.g., illumination, occlusion or self-occlusion, pose,
and perspective with respect to the camera. The last two raise similar issues, but
the first one is intrinsic to the user while the second is an extrinsic factor acting
notwithstanding the user absolute position. Finally, clothes and carried objects
can also affect the reliable extraction of silhouette features. In practice, each
class of approaches may present specific problems, besides those that character-
ize this biometric trait (see Fig. 1). Gait recognition also presents some positive
aspects. As for the other behavioral traits, it is quite difficult to copy or forge a
gait pattern. In approaches based on machine vision, it can be carried out at a
distance of 10 m or more, therefore the user is not necessarily aware of the recog-
nition. In wearable sensor-based approaches distance is not a problem since the
acquisition devices are located on user body, and in this case the user is usually
cooperative. Floor sensor-based approaches are a special case, since the acqui-
sition devices are inside the floor. In all cases, gait recognition is non-intrusive
and does not require a strong cooperation from the user. Moreover, it is non-
invasive because it does not require the user to do any specific action but walk,
except for very limited cases. The following analysis focuses on wearable sensor-
based techniques, in particular on advantages and issues characterizing sensors
built in modern smartphones and other personal mobile devices [8,9]. The use of
mobile devices to carry out biometric recognition is gaining increasing interest
in scientific community. The wearable sensors embedded in smartphones, tablets
and smart watches. e.g., accelerometers and gyroscopes, allow exploring new
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Fig. 1. Gait recognition methodologies and specific problems raised.

research topics that go beyond biometric recognition based on traditional traits,
such as face and fingerprints. In general, a gait template acquired by an inertial
sensor is made up by 3 time series. When an accelerometer is used, these are
the acceleration values from the 3 axes over which the signal is captured. When
a gyroscope is exploited too, there is a further triplet of signals, synchronized
with the accelerometer ones, and acquired over the same 3 axes. Figure 2 shows
an example from the BWR MultiDevice dataset [7] of the data recorded by an
embedded accelerometer in a commercial smartphone, namely a OnePlus One.

Fig. 2. An example of walking signal from the BWR Dataset.

Besides gait recognition, new behavioral patterns are also being inves-
tigated, whose analysis exploits ubiquitous and cheap user equipment. For
instance, Google is developing the Abacus project [21], in the context of Google’s
Advanced Technology and Projects group (ATAP). This is a team and in-house
technology incubator created by former DARPA. Abacus explores the use of the
phone sensors to gather data about their user.
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3 Related Works: Some Proposals for Gait Recognition
via Wearable Devices

Works in literature addressing the topic of gait recognition via wearable devices
report the use of different kinds of devices, sometimes not readily available in
an everyday context. From an operational point of view, it is possible to sketch
a rough classification into two main categories, out of which some examples fol-
low. The first category includes proposals that rely on a preliminary step/cycle
detection (in general, a cycle is a pair of steps). In this way, instead of comparing
the full signals, “chunks” of them are matched, either choosing the best repre-
sentative subset or fusing results from matching each chunk on its own. Two
examples of this category are [17,18]. They exploit a Motion Recording Sensor
(MRS), which measures acceleration in three orthogonal directions, namely up-
down, forward-backward and sideways, with a sampling frequency of 100 Hz. The
MRS includes an internal memory to record the signal and a port to transfer
it. The device is attached to the ankle. Walking cycles are detected and nor-
malized in time, so that each cycle contains 100 acceleration values. Matching
is carried out by Euclidean distance, either between the average steps of each
walk, or between each pair of steps respectively in the two works. The work
in [15] exploits the accelerometer embedded in Google G1 phone. During gait
signal recording, the phone is placed in a pocket attached to the belt of the
subject on the right-hand side of the hip. The phone is positioned horizontal,
the screen points to the body, the upper part of the phone points in walking
direction. Matching exploits the classical Dynamic Time Warping (DTW) algo-
rithm. This is also common to other methods. The use of DTW allows, up to a
certain extent, to avoid constraining cycles to be of the same size. The last exam-
ple reported here is the work in [26]. It adopts a completely different approach
using signature points and neighbor search. Proposals in the second group lack
the preliminary phase of step/cycle segmentation, and generally use machine
learning techniques. For example, [22] exploits Support Vector Machine (SVM)
technique. The gait characteristics are captured using the built-in accelerometer
of the same kind of smartphone as in [15], but gait features are extracted from
the times-series data from a selected time window without a preliminary iden-
tification of the contained gait cycles. Various features are extracted from the
measured accelerations and used to train a SVM. It is interesting to notice that
the extracted features include the Mel- and Bark-frequency cepstral coefficients
(MFCC, BFCC) which are commonly used in speech and speaker recognition.
As a further example, still capturing data by Google G1 phone, [23] exploits
Hidden Markov Models (HMM) for modeling the time series data corresponding
to the gait signal. A modified version of Viterbi algorithm is used for matching.
The works in [24,25] both rely on k-NN algorithm, but the second one takes
again cycles into consideration, and moreover exploits the addition of gyroscope
signal. Finally, [31] is an evolution of the system proposed in [26], that fuses the
use of the signature points with a preliminary clustering phase to increase the
final performances.
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4 From Wearable Sensors to the Cloud

In few words, the cloud model and its solutions especially address the needs of
companies or consumers needing to exploit specific technologies, but lacking the
necessary software/hardware/technical resources, or preferring an outsourcing
strategy. Therefore, many major stakeholders started providing cloud services,
also in the form APIs to be embedded in proprietary software (e.g., Microsoft
Azure [30]).

Biometric applications are becoming more and more widespread and sophis-
ticated [1]. Moreover, the last trend of the market is to make them available even
on devices, e.g. personal mobiles, that may not be equipped with the necessary
storage/computational resources. The Biometrics-as-a-Service (BaaS) model can
be considered similar to the Software-as-a-Service (SaaS) model, because it pro-
vides software tools (in this case related to biometric recognition tasks) in the
cloud and makes it available to customers. An example of prototypical consumer
application that uses Cognitive Services included in Microsoft Azure is presented
in [13,14].

The cloud paradigm raises new challenges, both related in general to cloud
computing and Software-as-a-Service, and in particular to Biometrics-as-a-
Service [5]. As for any cloud-based model, anomalous behavior from the appli-
cation can be raised by misconfigurations, non-fatal hardware errors or by pro-
gramming mistakes. These problems can derive, for example, from the virtu-
alization layer, e.g., from the Virtual Machine (VM) Monitor, and they “may
cause failures, ranging from simply detectable crashes to unpredictable and erratic
runtime behaviors” [6]. Of course, problems in such level will propagate upwards
the above levels. Moreover, software failures can also happen at higher levels, for
example they can regard the hosted Web server or databases. The causes can be
manifold, spacing from natural disasters, human errors, application bugs, erro-
neous configurations. Notwithstanding the possible cause(s) of rising issues, the
service must be maintained available on a continuous basis (resilient). Other-
wise a degradation of the quality of service (QoS) can be perceived by the users
and practically represent a violation of the Service Level Agreement (SLA) con-
tract. This may ultimately rise possible legal actions. In order to increase fault-
tolerance, the cloud-based services tend to duplicate resources, e.g., physical
servers in possibly different locations and more hosting per service. Interested
reader can find more detailed information about cloud services in [27], while
[16] provides an exhaustive description of structure, approaches and issues for
systems dealing with mobile cloud computing. Finally, [29] provides information
about security issues risen in this field.

The use of mobile devices for biometric gait recognition raises specific issues.
First of all, capture of the reference sample to use for the future recognition oper-
ations (enrollment) may be carried out by the user without the assistance of an
operator. This calls for user interaction features implementing a robust protocol,
in order to support the acquisition of good quality signals even by non-expert
users [2,10–12]. After capture and local processing of the biometric sample, this
must be secured in order to avoid its theft. Recognition operations can be carried
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out either through a verification procedure, that entails an identity claim and a
1:1 matching, or an identification procedure. In this case the matching is 1:N,
and requires to compare the new incoming sample (probe) with all enrolled ones
(gallery). Of course, it is hard to hypothesize that this latter kind of operation
can be carried out locally. One of the reasons that is often mentioned is the lack
of sufficient computing power on present mobile devices. Actually, though being
a real possible problem, this is not the main one. In order to carry out iden-
tification locally, any single personal device should store the complete gallery
of samples of enrolled subjects. Besides being hardly feasible, both privacy and
security issues advise against this solution. Notwithstanding any securing and/or
anonymizing procedure, the replication on poorly attended/secured devices of
potentially sensible data can create a serious flaw. Therefore, a secure transmis-
sion protocol must be devised, that submits a probe to recognize to a dedicated
cloud service. The latter both includes storing facilities for possibly large size gal-
leries, and enough computing resources to carry out recognition in real time even
against massive amounts of data. In order to ensure data protection, the model-
ing of cryptographic protocols [3,4] and distributed ledger might be deployed to
ensure the exclusive use of sensitive data, either local or distributed. Being the
gait signal quite cheap in terms of storage (with respect to images) both storage
and processing can be especially efficient.

Of course, a real market deployment requires to address problems specifically
related to the gait signal. It is important to consider that the accelerometers
present inter-device differences [7], that can be relevant even in the case of the
same sensor model exiting from the same production line and built in identical
conditions. Calibrations and systematic errors can especially happen when the
sensor is built in a smartphone. This is because in this case the required accuracy
is generally not especially high. In addition, the data might be either read with a
constant frequency or on “significant” value changes, as for Android standard for
accelerometer signal. This causes relevant differences in the “shape” of the cap-
tured signal. The acceleration values are not even independent from the sensor
orientation and this creates further significant problems when the device in which
the sensor is built-in can freely rotate. Different kinds of approaches are studied
in literature in order to reduce these problems. These topics are addressed by
ongoing research [15,21,24,31]. However, it is interesting to notice the possibility
of significant improvement even with simple preliminary solutions. Tables 1 and
2 show results from a set of experiments carried out to validate the feasibility of
a signal normalization procedure that can be carried out by the user when the
application is installed on the telephone. Three smartphones of different brands
were used to test cross-device performances, each with a different accelerometer
model embedded, namely a OnePlus One (with a LIS3DH Accelerometer, by ST
Microelectronics), a Samsung Galaxy S4 Active (with a K330 3-axes Accelerome-
ter), and a Sony Xperia S (with a Bosch Sensortec BMA250 accelerometer). Walk
signals belong to 25 subjects in two acquisition sessions with an average time
distance of about 15 days. The subjects wore different kinds of shoes but no high
heels. Each single session is composed by 6 acquisitions, 2 for each smartphone,
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for a total of 300 walk signals. The adopted procedure [7] allows to increase the
accuracy of both intra- and inter-device (cross-device) matching. In Tables 1 and
2, the performance are measured in terms of Recognition Rate (RR) for closed
set identification (the most popular 1:N matching modality in literature: the
probe subject is always present in the system gallery): the higher the RR, the
better; Equal Error Rate (EER) is used instead for both verification (1:1 match-
ing with identity claim) and open set identification (1:N, but the probe user may
not be an enrolled one): the lower the EER, the better. Two different matching
algorithms are used, one applying Dynamic Time Warping (DTW) to the whole
gait signal (WHOLE WALK), whose results are reported in Table 1, and the
second one using a segmentation procedure to match single steps (SEPARATE
STEPS), whose results are reported in Table 2. In the figure, AllDevices refers
to a situation where the matched gait signal may be either captured by the same
device or not. Device vs Device represents the average performance achieved by
matching a probe captured with one device with a gallery sample captured by
a different device. SameDevice represents the average performance achieved by
matching only signals coming from the same device. O.D. stands for Original
Dataset, while N.D. denotes the Normalized Dataset.

Table 1. Example of performance achieved by accelerometer-based gait recognition in
a cross-device setting with a complete walk.

Closed Set Identification - WHOLE WALK

Test RR - O.D. RR - N.D. Improv.
AllDevices 52.0% 54.5% 4.81%
Device vs Device 35.3% 49.3% 39.62%
SameDevice 50.3% 52.0% 3.31%

Verification - WHOLE WALK

Test ERR - O.D. ERR - N.D. Improv.
AllDevices 31.8% 29.6% 7.43%
Device vs Device 31.4% 29.5% 6.23%
SameDevice 28.8% 29.0% -0.69%

Open Set Identification - WHOLE WALK

Test ERR - O.D. ERR - N.D. Improv.
AllDevices 31.8% 29.6% 7.43%
Device vs Device 79.2% 72.3% 9.45%
SameDevice 25.2% 25.0% 0.67%

Once the above problems are addressed, the combination of mobile gait recog-
nition and cloud storage/computing can create a kind of transparent authenti-
cation, e.g., to access protected areas. The user has no need to either claim an
identity or carry out a specific operation. A pair of very small Bluetooth emitting
sources (beacons) suitably positioned along the controlled pathway drives the
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Table 2. Example of performance achieved by accelerometer-based gait recognition in
a cross-device setting with segmented steps.

Closed Set Identification - SEPARATE STEPS

Test RR - O.D. RR - N.D. Improv.
AllDevices 22.5% 34.5% 53.33%
Device vs Device 15.2% 26.7% 47.06%
SameDevice 22.0% 29.0% 106.67%

Verification - SEPARATE STEPS

Test ERR - O.D. ERR - N.D. Improv.
AllDevices 50.0% 50.0% 0.00%
Device vs Device 47.2% 42.5% 11.17%
SameDevice 44.9% 43.1% 4.26%

Open Set Identification - SEPARATE STEPS

Test ERR - O.D. ERR - N.D. Improv.
AllDevices 83.3% 71.3% 16.83%
Device vs Device 92.2% 88.7% 3.95%
SameDevice 65.8% 47.7% 38.11%

start and stop of the sample acquisition. In general, the only function of beacons
is to broadcast their IDs. Once they are registered within a specific application,
capture of the broadcasted ID can trigger the start of signal acquisition as well
as its termination and sending to the remote authentication/storage service. In
this way, the user is free from the duty to start and stop capture and send the
data. All operations happen according to the model of implicit interaction [28].
No cooperation is required by the user except for turning on Bluetooth on the
mobile device and walk to reach the interested area (see Fig. 3).

Fig. 3. A possible architecture for gait recognition via mobile devices and cloud
resources.
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From the point of view of privacy protection and robustness to spoofing, it
is to say that these two aspects are both less critical when gait is involved. As
for the former, acquiring the gait signal of a person does not allow to recover its
identity, as it may happen for example with face images seen by chance in other
contexts. As for the latter, mimicking the walking pattern of another person
has been found to be very hard [20]. From the communication security point of
view, the new standards, such as HTTPS with TLS 1.21 or the new 1.3 version,
are increasing more and more their encryption/protection capabilities, allowing
a secure data transfer between a mobile device and the recognition server/cloud
service. Moreover, it is possible to include in the acquisition application the
requirement for a specific “fingerprint” on the Certification Authority (CA) TLS
certificate, effectively blocking rogue CA, possibly used in Man in the Middle
(MITM) attacks.

This kind of architecture can also be adapted to other biometric traits. How-
ever, the only one that can be captured via mobile without any user explicit
action is gait, and this makes related features particularly appealing. Figure 4

Fig. 4. The user simply carries the smartphone fixed to the belt.

1 https://tools.ietf.org/html/rfc5246.

https://tools.ietf.org/html/rfc5246
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shows a possible use of the technology, with the smartphone simply fixed to the
belt. There will be no need for pushing buttons, issuing commands, or whatever.

It is to say that for other biometric traits the combined use of biometric
recognition and cloud computing is already a concrete possibility. An example
is represented by Microsoft Cognitive Services2, which are part of the Azure
framework and include face, voice and emotion recognition services that can be
called via provided APIs. Actually other service providers have also embraced the
strategy of Biometrics as a Service (BaaS) or “Biometric security in the Cloud”
to provide services to companies (see for example Fujitsu3 and AWARE4). The
next challenge is to widen the use of these technologies from company to user
applications.

5 Conclusions

Gait recognition by wearable sensors is a promising approach that tries to solve
problems related to computer vision-based techniques. The entailed signal cap-
ture procedure is definitely unobtrusive, since the user has only to wear a smart-
phone, which is nowadays an extremely common practice. Automatic capture can
be triggered by small Bluetooth radio transmitters, according to the paradigm of
implicit interaction. Authorized users can be free to move along the places where
access is granted without needing to provide smartcards or passwords. However,
even if the kind of produced signals (temporal series from accelerometers and
other sensors) is lightweight if compared to images, large scale processing can still
pose cost problems for in-house large scale applications. In this scenario, BaaS
is a possible solution. BaaS may follow the same growth, from company to con-
sumer, of other cloud-based services. Two issues are to be considered: price and
privacy. The price of the service is normally computed on the basis of bunches of
API calls, and therefore depends on the scale of the hosting application, and on
the level of requested service. An extension to consumer applications calls for a
reasonable scaling of present service costs for a more limited scope. For example,
a private consumer might be attracted by the idea of automatically identifying
on the doorstep only a small set (order of ten) of trusted subjects allowed to
enter home. Privacy and safe storing of personal data have to be addressed too.
A biometric service provider would become a critical collector of sensible data
to be strongly protected. Once costs and security issues will be addressed, BaaS
may really become a part of everyday life.
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