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Abstract. Blockchain is built on the basis of peer-to-peer network,
cryptography and consensus mechanism over a distributed environment.
The underlying cryptography in blockchain, such as hash algorithm and
digital signature scheme, is used to guarantee the security of blockchain.
However, past experience showed that cryptographic primitives do not
last forever along with increasing computational power and advanced
cryptanalysis. Therefore, it is crucial to investigate the issue that the
underlying cryptography in blockchain is compromised.

This paper aims at the challenge that the underlying hash algorithm
is compromised in blockchain. In 2017, M. Sato et al. firstly addressed
the issue by proposing a framework of transition approach from the com-
promised hash algorithm to a secure one. Nevertheless, this approach is
actually a hardfork if it is applied to proof-of-work blockchain, which
is much likely to cause disagreement of the blockchain community and
should be avoided accordingly. To fill this gap, we propose a softfork tran-
sition scheme to deal with the challenge that compromised hash brings
into proof-of-work blockchain. Our scheme provides a secure transition
in the case of compromised hash, keeping the validity of past data in the
blockchain as well. We also show that a proof-of-work blockchain with
our scheme is much more secure than the original one (i.e. without our
scheme).
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1 Introduction

Blockchain technology has attracted great interest of researchers and developers
since Bitcoin [1] was proposed by Nakamoto in 2008. As the first remarkably suc-
cessful and secure implementation of blockchain, Bitcoin took groundbreaking
use of proof-of-work mechanism, to solve double-spending problem in cryptocur-
rency and maintain consistency of data in a decentralized environment. In proof-
of-work blockchain, block is constructed with collected transactions and hash of
previous block header by nodes called miners. Miners contribute computational
power to competition in solving a hard cryptographic puzzle. In return for the
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computational work, the miner who first solves out the puzzle will receive mining
reward (i.e. newly generated coins) and transactions fee, and the block generated
by him could have the chance to be accepted by the network and appended to
the chain. To maximize the profit, rational miners will always follow the longest
chain to do computation. Split from main chain may appear when two miners get
solutions almost at the same time, but it will be eliminated soon when length of
one branch outweighs the others. If an adversary maliciously intends to overturn
transactions in a block followed by k block, the only way is to re-do computation
to create another chain from this block overtaking the currently longest chain.
However it is hard to succeed when k and the whole computational power in
network are large enough. In Bitcoin, a block with 6 following blocks is usually
considered safe since the success probability of generation of a branch from it
overwhelming main chain, for an adversary with 10% computational power of
the entire network, is less than 0.1% [1].

The underlying hash algorithm in proof-of-work blockchain is one of the
key factors for security of the blockchain. More specifically, in proof-of-work
blockchain, hash is used in computing reference of block (i.e. hash of previ-
ous block in each block) and proof-of-work puzzle, constructing Merkle Tree
and hashing the transactions to be signed. Thus the hash algorithm adopted in
blockchain should have sufficient security margin against known attacks. An eli-
gible cryptographic hash algorithm ought to be computationally secure against
pre-image, second pre-image and collision attacks. But history of cryptography
showed that all hash algorithms can not stay computationally secure forever.
Evolution in mathematical cryptanalysis and quantum computing are two main
reasons to bring possible compromise to hash algorithm. The blockchain proto-
col will face severe security risk or even fail to work if the hash algorithms used
are compromised.

To deal with the challenge, the most intuitive measure is to replace com-
promised hash algorithm with a more secure one, which is also a response to
0-day failure of SHA256 in Bitcoin contingency plans [2]. It is a kind of hardfork
solution, i.e. an upgrade strategy adopting new form of blocks or transactions
that are incompatible with original blockchain protocol [3]. However, hardfork is
much likely to result in disagreement in the blockchain community. The success
of hardfork depends on switch of the entire computational power from origi-
nal blockchain protocol to new blockchain protocol. In the decentralized envi-
ronment, such an agreement outside consensus protocol is hard to achieve in
blockchain community. Danger of split of original blockchain will come even if
only a small fraction of computational power staying at non-upgraded chain.
Until now, Bitcoin has never implemented any hardfork successfully and safely
without split [3]. Besides the intuitive hardfork, M. Sato et al. have proposed a
transition approach to protect transactions in the case of compromised hash [4].
Their scheme utilizes proof of existence (PoE) model and archives transactions
using a more secure hash algorithm. Nevertheless, this approach is also actually
a hardfork if it is applied to proof-of-work blockchain.
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This paper aims to tackle the challenge that the underlying hash algorithm
is compromised in proof-of-work blockchain, as well as to avoid hardfork which
is difficult to deploy without split of the original blockchain.

Contribution. With the proof of existence model given in [4], we introduce
two-layer proof-of-work framework and then establish a novel transition scheme
from the compromised hash to a secure one. As far as we know, this is the first
softfork scheme against compromised hash in proof-of-work blockchain, which is
more feasible, practical and easier-to-deploy than hardfork solutions since it is
backward-compatible such that nodes that still run original blockchain protocol
can admit blocks of new version, and softfork mechanism can completely avoid
split of blockchain system when the majority computational power of the system
fulfills upgrading blockchain protocol. Our scheme provides secure transition for
a proof-of-work blockchain in the case of compromised hash, keeping the validity
of past data in the blockchain as well. We also analyze the security of our newly-
proposed scheme and show that a proof-of-work blockchain with our scheme is
much more secure than the original one (i.e. without our scheme).

Paper Organization. The remainder of the paper is organized as follows.
Section 2 introduces proof-of-work consensus, compromised hash and its impact
briefly. In Sect. 3, we describe the existing solution to compromised hash in
blockchain. Section 4 presents a novel secure approach against compromised
hash. Finally, Sect. 5 concludes this paper.

2 Preliminaries

2.1 Proof of Work

In proof-of-work blockchain, miners compete in brute-force search to successfully
solve a hard cryptographic puzzle and win reward for block generation. Practi-
cally the puzzle is to construct a block whose hash is less than a certain value,
which also known as difficulty of mining. Only block that follows the latest block
and has a hash value less than difficulty of mining will be accepted by network.
In the view of long term, the received reward for mining is proportional to rate
of computational power nodes contribute in network.

Within block structure, a target field indicates the difficulty of mining. For
a blockchain where value domain of hash algorithm used by consensus is D, the
probability of successfully finding an eligible block is as follows:

Pr[H ≤ T ] =
T

D

Where H is the hash value of generated block and T is the value of target.
Target is not a constant value but will be adjusted periodically, to make

block generation time stable when the network’s overall computational power is
changed. In Bitcoin, for example, target will be re-calculated every 2016 blocks
to keep average block generation time at 10 min:

T ′ =
tsum

14 ∗ 24 ∗ 60 ∗ 60s
∗ T
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where T is old target, T ′ is the new target after adjustment and tsum is the
accumulated time to produce latest 2015 blocks [5,6], which is calculated based
on timestamp written by miners within block.

Beyond that, a nonce field is afforded in block to provide a enough space to
find proof-of-work solution. Before computing to mine a block, miners should at
first collect transactions and then construct a complete block structure. After
that they fill nonce with a random value until hash value of the block meets
target requirement.

2.2 Compromise of Hash

The basic security of an ideal cryptographic hash algorithm h(x) can be defined
by the following properties.

1. Pre-image resistance. Given a hash value y it is difficult to find a value x such
that h(x) = y.

2. Second pre-image resistance. Given a value x1 it is difficult to find a different
value x2 such that h(x1) = h(x2).

3. Collision resistance. It is difficult to find two distinct values x1 and x2 such
that h(x1) = h(x2). Pair (x1, x2) is called a collision.

Collision resistance implies second pre-image resistance, while reduction from
pre-image resistance to collision resistance is proved impossible [7]. In practice,
collision always exists because of the fixed and limited output size of hash. Since
the meaning of “difficult” here is infeasibility of breaking these properties in
polynomial time, the three resistances indicate that there is no method for an
adversary to modify a value without change of its hash value in a computational
way.

Practically, security of a practical cryptographic hash algorithm can be esti-
mated with its output size as a security parameter. A hash algorithm can be
considered computationally secure when the possibility of successful attack in
polynomial time is negligible. For a hash algorithm with k-bits output size, the
computational complexity of brute force attacks to find a collision is O(2k/2).
Computational safety could be satisfied when k is large enough.

However in the history of cryptography, most hash algorithms suffer poten-
tial attacks, and breakages of them within certain amount of time are possible.
Security of a hash algorithm does not fall abruptly, but will happen in a compar-
atively smooth process. In general, collision resistance is the relatively weakest
part to be broken, followed by pre-image and second pre-image resistance. For
example, widely-used hash algorithms MD5 and SHA-1 have turned out to be
vulnerable to collision attacks – In 2005 Wang et al. firstly proposed efficient
attacks to find collision for full version of MD5 within 232 operations [8], and
SHA-1 within 269 operations [9] rather than 280 for brute-force attack. The com-
plexity of collision attack for SHA-1 is reduced to 263 in later research. Until the
first collision for full SHA-1 has been found under a practical attack by Google
in 2017 [10], SHA-1 survives for over 12 years from proposal of the first attack
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in theory. Besides cryptanalysis on particular algorithm, quantum computing
like Grover’s fast quantum mechanical algorithm for pre-image attack [11], will
accelerate the process of hash compromise as well.

2.3 Impact of Compromised Hash

Giechaskiel et al. have discussed potential impact of compromised hash algo-
rithms used by Bitcoin [12]. In Bitcoin protocol, compromised hash algorithms
results in steal of coins, double-spend and complete failure of the blockchain.
Here we apply and extend their research into general proof-of-work blockchain
protocol. We summary the impact in the aspect of mining, Merkle Tree and
signature as follows.

Mining. Since the pre-image for a given hash value can be found through pre-
image attack, miners can easily mine a block whose hash value less than target of
proof of work. Thus split from main chain will be easier to happen. Moreover, an
malicious adversary can use second pre-image attack or collision attack to mine
two blocks with the same hash value. If the adversary has a sufficient control
of network, he can transmit these two blocks into different network respectively.
Since nodes always accept the first one they received and reject the latter, parti-
tion of the entire network consequently occurs and reverse of transactions become
possible. In such case, blockchain protocol will fail to work.

Merkle Tree. Merkle Tree is constructed from transactions, and root of it will
be put into block header for simplified verification. Generally, when computing
a Merkle Tree with transactions, miners can include their own transactions with
arbitrary data filled in some certain fields, e.g. input of coinbase transaction for
Bitcoin [5,13] and data field in transactions for Ethereum [14]. With the help of
these field, there may be enough bytes space for an adversary to launch second
pre-image attack, to construct a distinct Merkle Tree with the same root value as
an existing one. Therefore even a confirmed block is possible to be altered. The
adversary can transmit the altered block to newly joined nodes and lead to failure
of them to reach agreement with the network. Finally failure of the blockchain
happens as well. Similar attack strategy can be applied to other specific fields
within block structure, like the stored hash value of previous block.

Signature. Signature is computed based on hash of transaction in blockchain.
If the used hash algorithm is compromised, two transactions as the hashed mes-
sages are possible to be found for a single hash value. The adversary can create a
transaction with the same hash value as a on-chain transaction, such that these
two transactions can both be acknowledged by network. For cryptocurrency like
Bitcoin, as a result coins will possibly be stolen. Ownership of other data secured
by signatures can also be broken.
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3 Existing Solution to Compromised Hash in Blockchain

In this section we give an introduction and analysis of M. Sato et al.’s method
[4] that applies proof of existence model with a decentralized manner into
blockchain to resolve the problem of compromised hash.

3.1 Model of Proof of Existence

Sato et al. are the first to give the definition of proof of existence to describe
validity of transactions in blockchain [4].

Definition 1 (Proof of Existence). Supposing d is the data needed to be ver-
ified, we have the following definitions for d:

• poed: the proof of existence for d, which is calculated from d.
• vpoed: the data required for verification of poed.
• v: the verification algorithm outputing true only when input d and vpoed are

both valid, otherwise outputing false.
• A time-wise order can be obtained when poed is produced from d.

Under centralized system poed is the signature produced by public key certifi-
cate from a trustful authority, while in decentralized scenario poed is determined
by consensus of the whole network.

Proof of Existence for Blockchain. Under the model of proof of existence,
we give a description of validity of transactions in blockchain. At first we define
the following terms for blockchain:

• bi: i-th block.
• txij : j-th transaction in bi (1 ≤ j ≤ Ni where Ni is the number of transactions

in bi).
• hbi: The reference of previous block bi stored in bi+1, i.e. hash value of bi.
• txidij : The transaction ID of txij , i.e. hash value of txij .
• H1: hash algorithm in use.

bi is constructed as follows:

bi = [hbi−1,mkrooti, [txi1, . . . , txiNi
]]

where mkrooti is root of Merkle Tree calculated from txidi1, . . . , txidiNi
.

Here transaction txij(1 ≤ j ≤ Ni) is the data d needed to be verified, hbi is
the proof of existence poed for d and bi−1 serves as vpoed for poed. The verification
algorithm v to check if txij is existent is as follows:

1. Check d: calculate Merkle Root from txidi1, . . . , txidiNi
and check if it is equal

to mkrooti.
2. Check vpoed: calculate H1(bi−1) from bi−1(=vpoed) and check if it is equal

to hbi−1 in bi.
3. Calculate H1(bi) and check if it is equal to hbi in bi+1.
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3.2 Transition Scheme on Blockchain

Long-term signature scheme is a secure transition method originally designed
for PKI (Public Key Infrastructure) model [15,16]. It extends validity of digital
signature and keeps a time-wise order of data relying on valid timestamps signed
by a centralized trustful authority from PKI. Long-term signature scheme aligns
model of proof of existence.

Sato et al. apply similar concept to secure transactions in the case of com-
promised hash in blockchain [4]. Their method can keep a block-wise order of
transactions without participation of a trusted third party. Here we give a brief
description of the method.

In proof-of-work blockchain once H1 is compromised, poed will become an
invalid PoE (proof of existence) for d because the mathematic relationship
between them is broken. To deal with this problem, the transition scheme cre-
ates new PoE with a more secure hash algorithm H2, to make verification of
transactions available again. There are two ways to implement this method -
basic transition procedure and support chain transition procedure.

Assuming that transition scheme starts from bM+1, then we divide historical
blocks bi(1 ≤ i ≤ M) into r groups of s blocks. Let b′

M+k be the new block
constructed with H2. Generation of new PoE poe′

d in basic transition procedure
is as follow.

1. Calculate archive hash

archiveHashk = H2(b(k−1)s+1, b(k−1)s+2, . . . , b(k−1)s+s)

2. Calculate new transaction ID txid′
(M+k)j from tx(M+k)j with H2

txid′
(M+k)j = H2(tx(M+k)j)

3. Build Merkle Tree from txid′
(M+k)j(1 ≤ j ≤ NM+k) with H2 and set

mkroot′M+k as the Merkle Root
4. Calculate hb′

M+k−1 as follows:

hb′
M+k−1 = H2(b′

M+k−1)

when k = 1, hb′
M+k−1 = H2(bM )

5. Construct b′
M+k

b′
M+k = [archiveHashk, hb′

M+k−1,mkroot′M+k,

[tx(M+k)1, . . . , tx(M+k)NM+k
]]

6. Calculate new PoE
poe′

d = H2(b′
M+k)

where d is the collection of all transactions from b(k−1)s+1, . . . , b(k−1)s+s and
b′
M+k.
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After generation of b′
M+k for 1 ≤ k ≤ r, each transaction in bi for 1 ≤ i ≤ M

will have corresponding new PoE protected by H2, and the further blocks store
newly collected transactions only, but not archive hash.

As mentioned in Subsect. 4.4.2 of [4], the above basic transition procedure
is actually a hardfork since it inserts archive hash for past blocks into future
blocks (that is, introducing new block structure into original blockchain proto-
col). Hardfork requires all nodes to follow new blockchain protocol to contribute
computation but it always brings disagreement to blockchain community. The
possible split can not be eliminated completely even if the computational power
that still supports the original blockchain is very small. As a result, it will be
divided into two blockchains. In example of Ethereum, after the DAO attack
[17,18], a hardfork was processed from original chain to reverse state at the
approval of majority of community members, but at the support of a minor-
ity of computational power the original chain still survived known as Ethereum
Classic.

For the support chain transition procedure given in [4], new PoE poe′
d is

stored in block from a second chain called support chain, which is maintained
by the same or a part of miners of original chain, while block structure of original
chain stays the same as before. As mentioned in Subsect. 4.4.3 of [4], proof-of-
work competition is applied to one of these two chains, and both chains store
the same transactions after completion of all archive hashes. Transactions veri-
fication is only conducted in original chain for most of time, but when dispute
arises support chain will serve for final verification. This is a way of external
protection. However, if proof of work is only applied to support chain, then
proof-of-work mechanism in original chain should be removed. This is equal to
introduction of hardfork into original chain, which results in the same issue as
basic transition procedure. On the other hand, if proof of work is only applied to
original chain, then block generation in support chain is not a computationally
hard problem any more. Consequently, blocks in support chain will have no pro-
tection of accumulated computation. Even at some point where support chain
has been maintained to be a very long chain, it is still possible for an adversary
to take attacks on the compromised hash to replace blocks in original chain and
then generate new corresponding support chain.

4 A Secure Approach Against Compromised Hash
in Blockchain

In this section, based on the above proof of existence model, we introduce two-
layer proof-of-work framework and then propose a softfork transition approach
rather than a hardfork way, to provide a more feasible, practical and easier-to-
deploy solution to the challenge of compromised hash algorithm in proof-of-work
blockchain. Our scheme conforms to the model proposed by Garay et al. for
secure blockchain backbone protocol [19].
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4.1 A Novel Transition Scheme

To keep a proof-of-work blockchain secure, a transition from the compromised
hash algorithm H1 to a more secure one H2 should be processed together with
generation of new PoE. We define the following terms about proof of work with
H1 for block bi:

1. targeti: current target for mining bi.
2. noncei: the field that can be filled with random value to meet target require-

ment for bi.
3. tspi: timestamp stored in bi

When considering proof of work, bi is constructed as follows:

bi = [hbi−1,mkrooti, [targeti, noncei, tspi], [txi1, . . . , txiNi
]]

In the following part, we let target′i, nonce′
i and tsp′

i represent corresponding
parameters for proof of work with H2. Adjustment rule of target′i can be set to
the same algorithm as original blockchain protocol.

We assume that our scheme starts from bM+1. Past M blocks will be divided
into r groups of s blocks each, and we let bM+k(k ≥ 1) be the block of new
version. The new PoE is generated as follows:

1. Solve out H1 puzzle: collect transactions and mine a complete block bM+k

that satisfies target of proof of work with H1, i.e. using H1 construct

bM+k = [hbM+k−1,mkrootM+k,

[targetM+k, nonceM+k, tspM+k],
[tx(M+k)1, . . . , tx(M+k)NM+k

]]

to subject to
H1(bM+k) ≤ targetM+k

2. Calculate archive hash

archiveHashk = H2(b(k−1)s+1, b(k−1)s+2, . . . , b(k−1)s+s)

3. Calculate transaction ID txid′
(M+k)j from tx(M+k)j using H2

txid′
(M+k)j = H2(tx(M+k)j)

4. Calculate Merkle Root mkroot′M+k from txid′
(M+k)j(1 ≤ j ≤ NM+k) using

H2

5. Calculate hb′
M+k−1 as follows:

hb′
M+k−1 = H2(b′

M+k−1)

where hb′
M+k−1 = H2(bM ) for k = 1.
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6. Construct outer block obM+k.

obM+k =[hb′
M+k−1,mkroot′M+k,

[target′M+k, nonce′
M+k, tsp′

M+k]]

7. Construct the new block by

b′
M+k = [bM+k, obM+k, archiveHashk]

8. Solve out H2 puzzle: mine b′
M+k to make it meet H2 target requirement, i.e.

fill nonce′
M+k with random data such that to

H2(b′
M+k) ≤ target′M+k

9. New PoE is generated as

poe′
d = hb′

M+k = H2(b′
M+k)

where d are transactions from b(k−1)s+1, . . . , b(k−1)s+s and b′
M+k.

Construction of outer block obM+k and new PoE hb′
M+k are respectively

shown in Figs. 1 and 2.

Fig. 1. Construction of outer block obM+k

Protection under H2 of all historical transactions from b1, . . . , bM will be
completed when b′

M+r+1 is mined. For block b′
M+k(k > r), new PoE is processed

at the same way except to set archiveHashk empty. Chain structure of our solu-
tion is shown in Fig. 3. Since two kinds of proof of work for the hash algorithms
H1 and H2 respectively both need to be solved out, we call the construction of
the chain structure a two-layer proof-of-work framework.
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Fig. 2. Construction of new PoE hb′
M+k

Fig. 3. Chain structure in our scheme

4.2 Verification Procedure in Blockchain

All participants in network can verify the validity of transactions when our
scheme is implemented successfully. For nodes who run our upgraded blockchain
protocol, as poe′

d is the new proof of existence for transactions, the algorithm v
to verify hb′

M+k(= poe′
d) is shown below.

1. Check transactions (=d)
(a) if 1 ≤ k ≤ s, then calculate archiveHashk from historical blocks

b(k−1)s+1, . . . , b(k−1)s+s

archiveHashk = H2(b(k−1)s+1, b(k−1)s+2, . . . , b(k−1)s+s)

otherwise set archiveHashk empty. And check if this archiveHashk is
equal to the stored archiveHashk in b′

M+k

(b) Calculate txid′
(M+k)j from tx(M+k)j(1 ≤ j ≤ NM+k)

txid′
(M+k)j = H2(tx(M+k)j)

(c) Calculate root of Merkle Tree from txid′
(M+k)j , . . . , txid′

(M+k)NM+k
and

check if it is equal to mkroot′M+k in b′
M+k

2. Check proof of work and b′
M+k−1(=vpoed):

(a) Calculate H1(bM+k) and check if it meets the proof-of-work target for H1

specified by targetM+k
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(b) Calculate H2(b′
M+k) and check if it meets the proof-of-work target for H2

specified by target′M+k

(c) Check if H2(b′
M+k−1) is equal to hb′

M+k−1 in b′
M+k

3. Check if value of H2(b′
M+k) is the same as hb′

M+k in b′
M+k+1.

These upgraded nodes consider that a complete block is formed with bM+k,
obM+k and archiveHashk. But in the view of old nodes that still run orig-
inal blockchain protocol, they see bM+k as a valid block, and obM+k and
archiveHashk are transparent data to them. Therefore our scheme is a softfork
strategy backward-compatible with original blockchain protocol. When verifying
transactions, old nodes run the same verification algorithm as before, and do not
check proof of work and Merkle Tree calculated with H2.

4.3 Security Analysis

The key point to process our scheme safely is the implementation of upgraded
blockchain protocol with majority computational power. In order to prevent
the possible split, our transition scheme should be activated at a certain safe
threshold of supported hast rate - that is, the dominant computational power
should be migrated from original proof of work with H1 to the two-layer proof
of work with H1 and H2. Miners that still stay at original blockchain protocol
recognize bM+k within block of new version as a valid block, but upgraded nodes
do not acknowledge the block generated by non-upgraded miners (i.e. bM+k) as a
complete block and will not follow it to mine further blocks. Therefore, according
to the longest chain rule, branch generated only by non-upgraded miners will
be given up by majority computational power switching to upgraded blockchain
protocol. As for non-miners or light nodes, they do not contribute computational
power and thus can still run original blockchain protocol.

Next, we consider the scenario where the adversary maliciously tries to mine
an alternative chain with block of new version, to overtake the honest chain.
Under hypothesis of rational man, miners always chase and extend the longest
chain in order to maximize the benefits. Once the malicious branch outweighs
the honest chain, rational miners will follow the malicious branch as the longest
chain and abandon honest chain. As a result, blocks mined by honest miners
will be overthrown and the adversary can benefit from it, e.g. taking back coins
from transactions in honest chain. The probability of success for such an attack
is related to the proportion of computational power that the adversary controls
in whole network. To calculate out the probability, we first define the following
terms.

• p1 and q1 are probabilities that honest miners and the adversary solve out
H1 puzzle respectively.

• p2 and q2 are probabilities that honest miners and the adversary solve out
H2 puzzle respectively.

• qz is probability that the adversary overtakes honest chain from z blocks
behind.
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Then we can know that the relative probability for honest miners to find
next block is p = p1p2

q1q2+p1p2
and for the adversary is q = q1q2

q1q2+p1p2
. According to

calculations in [1], we can compute probability P that the adversary overtakes
the honest chain by the following formula:

P = 1 −
z∑

k=0

λke−λ

k!
(1 − (

q

p
)(z−k))

Table 1. Solution to P less than 0.1% for different proof-of-work consensus, where q1
and q2 are probabilities that an adversary solves out H1 and H2 puzzle respectively,
and z is the minimum number of blocks behind where an adversary can not generate
an alternative chain overtaking the honest chain with probability more than 0.1%.

q1 q2 z

0.10

0.10 2
0.20 3
0.30 4
0.40 4
0.50 5

0.15

0.10 3
0.20 3
0.30 4
0.40 6
0.50 8

0.20

0.10 3
0.20 4
0.30 5
0.40 7
0.50 11

0.25

0.10 3
0.20 5
0.30 6
0.40 9
0.50 15

q1 q2 z

0.30

0.10 4
0.20 5
0.30 8
0.40 12
0.50 24

0.35

0.10 4
0.20 6
0.30 10
0.40 17
0.50 41

0.40

0.10 4
0.20 7
0.30 12
0.40 26
0.50 89

0.45

0.10 5
0.20 9
0.30 17
0.40 43
0.50 340

(a) Our Two-layer Proof of Work

q1 z

0.10 5
0.15 8
0.20 11
0.25 15
0.30 24
0.35 41
0.40 89
0.45 340

(b) Original Proof of Work with H1

The result of solving out P less than 0.1% for our scheme is shown in Table 1a.
Compared with that for original proof of work with H1 presented in Table 1b, we
can see that two-layer proof-of-work framework in our scheme provides higher
security since fewer blocks can reach the same security level of preventing chain
from being reversed on the occasion that H1 is risky to be compromised but still
computationally secure.

Moreover, when complete break of second pre-image resistance or collision
resistance for H1 happens, transactions and blocks can not be modified under
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protection of H2. In the case that pre-image resistance for H1 is totally broken,
i.e. x can be found in polynomial time for a given h(x), solving out H1 puzzle is
not any more a hard job, but proof of work with H2 and the majority compu-
tational power switching to the upgraded blockchain protocol can serve as the
main guarantee to prevent malicious split and reverse of transactions.

5 Conclusion

This paper aimed to propose a secure solution against compromised hash in
proof-of-work blockchain. Firstly, we analyzed the known approach given by M.
Sato et al. which presented two transition procedures, i.e. the basic transition
procedure and the support chain transition procedure. For the basic transition
procedure, it is actually a hardfork which is difficult to be implemented since
it always brings disagreement into blockchain community, while in the different
case of support chain transition procedure, we observed that hardfork would also
be introduced or support chain is risky to be tampered.

Then, we proposed the first softfork scheme against compromised hash in
proof-of-work blockchain - a novel transition scheme with two-layer proof-of-work
framework from the compromised hash to a secure one. Unlink hardfork solution,
our scheme is backward-compatible such that potential splits from original chain
can be avoided when the majority of computational power of the blockchain
network migrates to our scheme. Furthermore, in our analysis we presented that
a proof-of-work blockchain with our scheme can provide much more security
than the original protocol in the aspect of resistance of malicious split attack.
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