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Abstract. Early diagnosis of Alzheimer’s disease (AD) is critical in preventing
from irreversible damages to brain cognitive functions. Most computer-aided
approaches consist of extraction of image features to describe the pathological
changes and construction of a classifier for dementia identification. Deep
learning technique provides a unified framework for simultaneous representation
learning and feature classification, and thus avoids the troublesome hand-crafted
feature extraction and feature engineering. In this paper, we propose an
ensemble of AlexNets (EnAlexNets) algorithm for early diagnosis of AD using
positron emission tomography (PET). We first use the automated anatomical
labeling (AAL) cortical parcellation map to detect 62 brain anatomical volumes,
then extract image patches in each kind of volumes to fine-tune a pre-trained
AlexNet, and finally use the ensemble of those well-performed AlexNets as the
classifier. We have evaluated this algorithm against seven existing algorithms on
an ADNI dataset. Our results indicate that the proposed EnAlexNets algorithm
outperforms those seven algorithms in differentiating AD cases from normal
controls.
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1 Introduction

Alzheimer’s disease (AD) is a chronic and progressive decline in cognitive function
due to the damage to brain cells. The number of patients suffering from AD worldwide
is more than 30 million, and this number is expected to triple by 2050 due to the
increasing life expectancy [1]. The onset of AD is typically insidious-cognitive decline
generally begins years before reaching the threshold of clinical significance and
functional impairment [2]. The prodromal stage of AD called mild cognitive impair-
ment (MCI) is not bound to fall in the deterioration with treatments performed in time.
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The conversion rate from MCI to AD is estimated to be between 10 and 25% per year
[3]. Although there are no current disease modifying agents to halt the progression of
AD, there are a number of clinical trials underway in patients with pre-symptomatic
disease. Thus, as effective therapies become available, the early identification of
patients with MCI will be of tremendous benefit to patients and their families.

The pathology of AD includes cortical and subcortical atrophy together with the
deposition of f-amyloid. Molecular medical imaging, such as the positron emission
tomography (PET), single-photon emission computed tomography (SPECT), and
magnetic resonance imaging (MRI), offers the ability to visualize hypometaboism or
atrophy introduced by AD, and hence has led to a revolution in early diagnosis of AD
[4]. In particular, functional PET and SPECT can detect subtle changes in cerebral
metabolism prior to anatomical changes are evident or a symptomatological diagnosis
of probable AD can be made with MR imaging [5]. Comparing to SPECT, PET is able
to provide higher resolution information than SPECT in evaluating patients with sus-
pected AD. 18-Fluorodeoxyglucose (FDG) is a widely used tracer in PET imaging for
studying glucose metabolism. The comparative study made by Silverman [6] demon-
strated that FDG-PET is superior to perfusion SPECT in identifying early changes
associated with AD and other neurodegenerative dementias.

However, early diagnosis of AD remains a challenging task, since the pathological
changes can be subtle in the early course of the disease and there can be some overlap
with other neurodegenerative disorders [7]. Most computer-aided approaches consist of
extraction of image features to describe the pathological changes and construction of a
statistical model of the disease from a set of training examples using supervised
methods [8]. The features that have been considered include global features, which are
computed by applying the entire brain volume to a linear transform, and local features,
such as the statistics, histograms, and gradients calculated from volumes of interest
(VOIs). Most pattern classification techniques, including the k-mean clustering [9],
artificial neural network (ANN) [10] and support vector machine (SVM) [5], have been
successfully applied to this task.

Recently, the deep learning technique has shown proven ability to analysis medical
images. It provides a unified framework for simultaneous learning image representation
and feature classification, and thus avoids the troublesome hand-crafted feature
extraction and feature engineering. Suk et al. [11] used the deep model learned image
representation to differentiate AD subjects from MCI ones based on the assumption that
those deep features inherent the latent high-level information. They also fused multiple
sparse regression networks as the target-level representation [12]. Ortiz et al. [13]
applied the deep belief network to the early diagnosis of the Alzheimer’s disease using
both MRI and PET scans. Valliani et al. [14] employed the deep residual network
(ResNet) that has been pre-trained on the ImageNet natural image dataset to identify
dementia types.

In this paper, we propose an ensemble of AlexNets (EnAlexNets) model to diag-
nosis between AD and NC and differentiate between stages of MCI, mild MCI (mMCI)
vs. severe MCI (sMCI). The uniqueness of our approach include: (1) using the auto-
mated anatomical labeling (AAL) cortical parcellation map to obtain 62 brain
anatomical volumes; (2) extracting image patches from each cortical volume to train a
candidate AlexNet, the champion model for the ILSVRC2012 image classification
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task; (3) selecting effective AlexNet models and ensemble them to generate more
accurate diagnosis. The proposed EnAlexNets model was evaluated against seven
methods on the ADNI dataset and achieved the state-of-the-art performance.

2 Dataset

Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched
in 2003 as a public-private partnership, led by Principal Investigator Michael W.
Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET,
other biological markers, and clinical and neuropsychological assessment can be
combined to measure the progression of MCI and early AD.

We selected 962 FDG-PET studies from the ADNI database, including 241 AD
cases, 306 mild MCI (mMCI) cases, 127 severe MCI (sMCI) cases and 288 normal
controls (NCs). 185 MBq of 18F-Fludeoxyglucose (FDG) was injected to the subjects
and PET scanning was commenced approximately 30 min after tracer injection that
produced 3D scan consists of six 5 min frames. The scans used for this study are
baseline or screening in the ADNI database, and had been through a pre-processing
pipeline that includes co-registration, averaging, voxel normalization, and isotropic
Gaussian smoothing [15]. This pre-processing work was done by the ADNI partici-
pants and it makes any subsequent analysis simpler as the data from different PET
scanners are then uniform. The demographic information of the selected dataset is
shown in Table 1.

Table 1. Demographics data of patients in our dataset

Diagnosis | Number | Gender (F/M) | Age

AD 241 99/142 75.1 £ 7.8
NC 288 137/151 744 £59
mMCI 306 135/171 714 £ 7.5
sMCI 127 42/85 75.6 £ 7.4

3 Method

The proposed algorithm consists of four major steps: anatomical volume detection, data
augmentation, patch classification, and dementia differentiation. A diagram that sum-
marizes this algorithm was shown in Fig. 1.

3.1 Anatomical Volume Detection

The AAL cortical parcellation map [16], which provides 62 brain anatomical volumes
including 54 symmetrical and 8 asymmetrical volumes, is well aligned with the tem-
plate brain PET image supplied with the statistical parametric mapping (SPM, Version
2012) package [17].
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Fig. 1. Diagram of the proposed EnAlexNets algorithm.

To map the anatomical labels from the atlas onto each study and maintain the
original brain image information, we spatially normalized the SPM brain PET template
to FDG-PET images, which are self-aligned, using the spatial normalization procedure
supplied with the SPM package. Thus each anatomical volume in the AAL atlas can be
transferred to our FDG-PET images. For each volume, we located its geometry center
on FDG-PET images and put a 67 x 67 window on that center for image patch
extraction.

3.2 Data Augmentation

Since number of extracted image patches is limited, we employed three data aug-
mentation techniques to enlarge our image patch dataset. First, we shifted the PET
image horizontally and vertically with a step of 5 voxels before patch extraction.
Second, we move the patch extraction window to its adjacent transverse slices for-
wardly and backwardly. Third, rotate the PET image clockwise and counter-clockwise
with 5 and 10°. With these operations, each image patch has nine augmented copies.
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3.3 Patch Classification

Considering the limited image patches we have, too complex deep neural networks
may suffer from over-fitting to our training data. Hence, we adopted the AlexNet, the
champion model for the ILSVRC2012 image classification task, as our classifier, which
consists of only 5 convolutional layers and 3 fully-connected layers (see Fig. 2).
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Fig. 2. Architecture of the AlexNet.

It has been widely acknowledged that the image representation learned from large-
scale datasets can be efficiently transferred to generic visual recognition tasks, which
have limited training data [18, 19]. Therefore, the AlexNet used for this study was
previously trained on the ImageNet training dataset, which is a 1000-category large-
scale natural image database. To adapt this model to our problem, we replaced its last
three layers with a fully connected layer, a softmax layer and a classification output
layer, and adjust the learning rates such that those new layers can be trained quickly
and other layers are trained slowly.

Since the AlexNet takes an input image of size 227 x 227 x 3, we duplicated each
image patch three times and resize each copy to 227 x 227 by the bilinear interpolation
algorithm.

3.4 Dementia Differentiation

Since we obtained 62 cortical volumes on each PET scan, we can use the image patches
extracted in each volume to fine-tune a pre-trained AlexNet. As we know, not all
cortical volumes play equally critical roles in dementia diagnosis. Therefore, the
diagnosis capacity of each fine-tuned AlexNet varies a lot. We chose 30% of the fine-
tuned AlexNets, which performed best on the validation dataset, and adopted the
majority voting scheme to combine their decisions for dementia differentiation. Such
ensemble learning acts as the role of expert consultation aiming to get a more accurate
diagnosis.
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3.5 Evaluation

We adopted the 5-folder cross-validation scheme to evaluate the performance of the
proposed algorithm. We randomly sampled the instances from each class to form five
folds, aiming to ensure the distribution of data in each fold is as similar as that of the
whole dataset. In each run, we used 80% of patches for training, 20% for validation and
20% for testing. The data augmentation procedure was not applied to test patches.

4 Results

Table 2 gives the accuracy of the proposed algorithm and other seven state-of-the-art
algorithms when applying them to differentiate AD cases from NCs. It shows that our
algorithm and the method reported in [13] achieved the highest classification accuracy.
However, the other algorithm used both PET and MRI data. Meanwhile, it reveals that
our algorithm achieved the highest specificity and the second best sensitivity among
those eight algorithms.

Table 2. Accuracy of eight methods (AD vs. NC)

Methods Accuracy | Sensitivity | Specificity
Karwath et al. [20] 0.89 0.85 0.91
Valliani et al. [21] 0.81 - -

Vu et al. [22] (PET) 0.85 - -

Vu et al. [22] (MRI + PET) 0.91 - -

Ortiz et al. [13] (PET + MRI) | 0.90 0.86 0.94

Suk et al. [11] (SAE-classifier) | 0.89 - -

Liu et al. [23] 0.87 0.88 0.87
Proposed 0.91 0.86 0.95

Figure 3 depicts the accuracy of the proposed algorithm when applying it to the
mMCI-sMCI classification. It shows that our algorithm achieved a classification
accuracy of 85% in this problem.

5 Discussion

The proposed EnAlexNets algorithm is based on the pre-trained and fine-tuned
AlexNets and ensemble of these models. Our experiments indicate that this algorithm is
robust in securing more distinguish features and achieving better performance than that
of using multi-modalities images. The EnAlexNets algorithm enables to effectively
compensate for the less amount of information afforded by single image mode and
reduce the complexity of diagnosis process requirements for multi-mode images. These
investigations can be further improved by improving the CNN structure and enlarging
the dataset. As for the time-complexity, the training time of multiple AlexNets summed
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up to 111,600 s same level as other state-of-art deep learning based methods. The
diagnosis time of one patient case in our method was around 10 s. With better com-
putation resources, this time consumed can be further diminished.
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Fig. 3. The performance of proposed algorithm (mMCI vs. sMCI).

6 Conclusion

In this study, we proposed a multi-AlexNets based method for computer-aided diag-
nosis of AD and MCI. This method not only utilized the combination of different brain
regions but also incorporated AlexNet with its strong feature representation ability.
Better performance was observed on two classification tasks. Apart from the traditional
diagnosis between AD and NC, we initially conducted the differentiation between
different stages of MCI, mMCI vs. sMCI. Due to the latent progression from MCI to
further stage, we intend to find the risk as early as possible, which is of great signif-
icance to both clinicians and patients. This study may be of great assistance to the
computer-aided diagnosis of dementia and other biomedical fields.
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