
Evaluating a Faceted Search Index
for Graph Data

Vidar Klungre(B) and Martin Giese

University of Oslo, Oslo, Norway
vidarkl@ifi.uio.no

Abstract. We discuss the problem of implementing real-time faceted
search interfaces over graph data, specifically the “value suggestion prob-
lem” of presenting the user with options that makes sense in the context
of a partially constructed query. For queries that include many object
properties, this task is computationally expensive. We show that good
approximations to the value suggestion problem can be achieved by only
looking at parts of queries, and we present an index structure that sup-
ports this approximation and is designed to scale gracefully to both very
large datasets and complex queries. In a series of experiments, we show
that the loss of accuracy is often minor, and additional accuracy can in
many cases be achieved with a modest increase of index size.

1 Introduction

Faceted search [7] is a popular search and exploration paradigm (used by e.g.
Ebay), which enables users to extract information from structured data sources
without needing to know the relevant formal query language. Systems providing
faceted search present multiple orthogonal dimensions (facets) of the data to the
user, and allows him to apply or remove filters via an intuitive UI. As this is done,
the system immediately updates the lists of results and new filter suggestions.
To support this functionality, the system needs fast access to the underlying
data. This is often provided by specialised software like e.g Lucene, Sphinx or
Elasticsearch, which provides better performance for the queries required by
faceted search than standard triple stores and RDB-based implementations.

In this paper we focus on ontology-based Visual query systems (VQSs) like
Rhizomer [2], SemFacet [1], and OptiqueVQS [5]. The purpose of these systems is
to allow non-experts to construct SPARQL queries and execute them over RDF-
graphs. A good overview of VQSs and their target audience is described in [6].
Most VQSs provide an intuitive UI, and allow the user to apply or remove filters
on different facets, similar to standard faceted search systems. For each variable
in the SPARQL query, every datatype property is considered to be a facet.
Furthermore, object properties are used to connect the variables, and they allow
the user to construct complex graph queries. This is a difference from standard
faceted search, where only one variable of exactly one type is considered.

In particular we look at one specific feature of faceted search: The ability
to suggest reasonable filter values for each facet. One way of doing this, is to
c© Springer Nature Switzerland AG 2018
H. Panetto et al. (Eds.): OTM 2018 Conferences, LNCS 11230, pp. 573–583, 2018.
https://doi.org/10.1007/978-3-030-02671-4_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02671-4_36&domain=pdf

574 V. Klungre and M. Giese

pre-compute and present all the values from the RDF-graph that are related
to the given datatype property. This method is very straightforward, and since
it does not depend on the current state of the query, all computations can be
done outside the query session starts. However, some of these values may feel
superfluous to the user, because they are incompatible with existing filters. So
instead we aim for what we call adaptive value suggestions:

Adaptive Value Suggestion: Calculate and suggest the complete set of
filter values for a facet that are compatible with both the existing filters
and underlying data, in order to avoid a query that returns no results.

Unfortunately, the indices used to acheive adaptive value suggestions for
faceted search, like Lucene, do not support querying graph data. The obvious
way of achieving this over the original graph data (i.e. without an index) requires
running the whole partial query once for every facet (see So in Sect. 2). For very
large datasets and queries with many joins, this will be too slow. Some of the
queries constructed with OptiqueVQS include up to 9 object properties, and
are intended to be run over data stores of several PB. Even with very fast
hardware, these queries cannot be executed within tenths of seconds as required
for interactive systems. It becomes clear that some kind of custom-built solution
is needed to achieve our goal sufficiently fast.

Based on the visual query system OptiqueVQS [5], we have devised a system
that combines faceted search with graph queries, and that uses an indexing
structure for suggesting facet values that can easily be scaled out arbitrarily. In
return, it compromises some accuracy in the presented values, but in a highly
configurable manner.

Formal Framework. For the purpose of this paper, we work with a number
of simplified notions of ontology, dataset, and query. These are less general than
OWL, RDF, and SPARQL, respectively, but they cover the essential notions
for VQSs that we require. See [3] and [4] for a more complete description and
examples.

We assume that the VQS supports tree-shaped conjunctive queries Q that
conforms to the given ontology O. In addition each variable must be associated
with either a concept in O (concept variables), or a data type (datatype vari-
ables). Filters are specified by a filter function F that returns a set of values
for each datatype variable in Q. We do not include an “optional” operator, i.e.
all variables of Q have to be bound. Furthermore, we assume that the system
is given a dataset (RDF graph) D, and when the query is finished, he will be
running it over D in order to retrieve results. We use Ans(Q,D) to denote the
set of tuples we get by running Q over D. We also assume that the user can
select and focus on one specific variable v of Q, called the focus variable. It is
convenient to define Q as a tree rooted in v (possibly reversing the direction of
some triples), and for the reminder of this paper we assume this is the case. And
for convenience we also let C denote the type of v.

Evaluating a Faceted Search Index for Graph Data 575

During query construction, the user is presented with a list of suggestions
for every relevant property t of v. These suggestions are based on the current
state of the session, i.e Q, in addition to the underlying dataset D. Before we
continue, we need to formalize the idea of a suggestion function:

Definition 1. Suggestion function: A suggestion function S takes as input
a dataset D, a query Q, and some datatype property t linked to the focus variable
v of Q, and returns a set of literal values Sugg = S(D, Q, t).

By selecting values X ⊆ Sugg, the user modifies the filter related to w, where
w is the datatype variable linked to v via t. I.e. Q is updated to Q ∧ t(v, w),
and F(w) = X. Notice that the Definition 1 does not restrict S on neither its
computation time nor the quality of suggested values. However, it should be clear
by now that we are looking for functions that return adaptive value suggestions
without spending so much time that it ruins the user experience of the VQS. In
this work we target the following problem:

Value Suggestion Problem. Find a suggestion function S that
1. is efficiently enough for interactive use, even for large D and complex

Q
2. includes all values, that can be filtered on without making the

answer set empty, i.e. Ans(Q ∧ t(v, x),D) �= ∅ =⇒ x ∈
S(D, Q, t) for all values s in D

3. includes as few values as possible that will make the answer set empty,
i.e. S(D, Q, t) is as small as possible while satisfying condition 2.

Condition 1 is necessary because suggestions have to be calculated after every
user interaction with the UI, and the user should not have to wait for suggestions.
So they have to be calculated efficiently, and scale with respect to both D and Q.
The second condition formalizes the idea that all values that are compatible with
the partial query should also be suggested to the user. Otherwise, some sensible
queries could not be constructed. I.e. we want perfect recall. Finally, condition 3
reflects that we want to suggest as few options as possible to the user that are
incompatible with the partial query. I.e. the suggestion function should be as
precise as possible. These three conditions are in conflict, and as indicated in
the problem description, we consider conditions 1 and 2 to be non-negotiable.

2 Suggestion Functions and Indexing

Optimal Suggestion Function So . Based on standard faceted search sys-
tems, we will now define what we consider to be the gold standard for the value
suggestion problem (with respect to accuracy), namely the optimal suggestion
function So:

So(D, Q, t) = Ans(Qo(x),D) where Qo(x) = Q ∧ t(v, x).

576 V. Klungre and M. Giese

It considers both the underlying dataset D and the partial query Q, and calcu-
lates suggestions that never lead the user into a combination of filters that are
too restrictive, i.e. it returns adaptive value suggestions. Unfortunately, So does
not scale for large Q and D, because it has to calculate the answers to the query
Qo(x) = Q ∧ t(v, x), which is more complex than Q itself.

Range-Based Suggestion Function Sr . Another important suggestion func-
tion is the function that computes suggestions based only on the value range
of t for instances of type C found in D. We call this function the range-based
suggestion function Sr:

Sr(D, Q, t) = Ans(Qr(x),D) where Qr(x) = C(v) ∧ t(v, x).

Notice that C and t are the only two parameters used by Sr that change
during the query session: D is fixed during the session, and except for the focus
concept C, Q is just ignored. This means that we can calculate the suggestion
set for each possible combination of C and t offline, and providing suggestions is
then just a matter of fetching the correct pre-calculated set. The number of such
combinations is limited, and Qr is a very simple query, so any system based on
Sr is efficient w.r.t. both time and space.

Approximate Suggestion Function Sa . The optimal suggestion function So

is too costly to compute in practice, while the range-based function, on the other
hand, is quite inaccurate but can be pre-computed with reasonable effort. There
is a gap between these two suggestion functions, and we now present a family of
approximate suggestion functions Sa to fill this gap.

Each member SZ
a of Sa is configured by what we call a facet configuration

Z, which is a function returning one tree-shaped query (with root of type C)
ZC for every concept C. We call ZC the concept configuration of C. Now, given
Q and the corresponding focus concept C, SZ

a computes a pruned version of
Q: Qpr = Q ∩ ZC . Qpr is then used together with the underlying dataset D to
calculate value suggestions:

SZ
a (D, Q, t) = Ans(Qa(x),D) where Qa(x) = Qpr ∧ t(v, x) = Q ∩ ZC ∧ t(v, x).

Intuitively the concept configuration ZC just defines what to consider when
calculating suggestions. Every part of Q which is not covered by ZC is simply
ignored, and removed as the intersection Q ∩ ZC is calculated.

The most aggressive member of Sa is the suggestion function defined by
concept configurations that only contains the root, i.e. ZC = C(v) for all concepts
C. This member will actually return Qpr = C(v) for any partial query given to
it, regardless of its shape, size and focus concept. But this means that Qa(x) =
C(v)∧ t(v, x) = Qr(x), so this particular member of Sa returns exactly the same
suggestions as Sr. And in fact, the range-based suggestion function is just the
special case of Sa where only the root of the partial query is considered, and
everything else is ignored.

Now let us consider the opposite case: instances of Sa with very large concept
configurations. If the partial query is completely covered by the tree defined

Evaluating a Faceted Search Index for Graph Data 577

by the concept configuration i.e. ZC ⊆ Q, we get Qpr = Q. Hence Qa(x) =
Q∧t(v, x) = Qo(x), which shows that So is the limit case of Sa for configurations
that cover all possible queries. In general, for every partial query Q and facet
configuration Z, the following holds:

Q ⊆ Qpr ⊆ C(v) ⇒ Qo ⊆ Qa ⊆ Qr ⇒ So ⊆ SZ
a ⊆ Sr. (1)

As we focus on a certain query, we can ignore large parts of the facet config-
uration Z, since only one concept configuration ZC is needed to calculate value
suggestions. In some cases, we will therefore use SZC

a instead of SZ
a , as short

hand notation. Similarly, we may only use the word “configuration” if it is clear
whether we mean“facet configuration” or “concept configuration”.

Index Structure for Sa . As seen above, Sa reduces the complexity of calcu-
lating suggestions by only considering Qpr instead of Q. This will often reduce
the query execution time, but it is not guaranteed to be good enough for our
purpose: If Qpr combines several concepts, it will result in bad user experience
due to the time consuming join operations it requires.

The solution to this problem is to pre-compute all joins covered by the facet
configuration Z, and store the results in an index structure. The system can then
execute Qa over this index structure instead of the original dataset D, in order to
retrieve answers fast enough. It is important though, that the final constructed
query is executed over the original dataset. Sa and its index should only be used
to support adaptive value suggestion, not to answer the user’s final information
need.

The index is guaranteed to contain all the data needed to answer Qa since
they both are limited by the variables defined by ZC . Notice that constructing
such an index would not be possible if we wanted a perfect system described
by So – it is impossible to construct an index that fits all the data needed to
cover any possible query, because there are infinitely many of them. By using
Sa, we only need to consider Qpr, which is limited by ZC , hence pre-computing
and indexing is possible.

We now describe how to construct and use the index. It will consist of multiple
tables – one for each concept C. Each table is based on the corresponding concept
configuration ZC , and is constructed as follows:

1. One column is added for each variable in the query defined by ZC .
2. One row is added for each distinct tuple of Ans(Z ′

C ,D), where Z ′
C is a modified

version of ZC , where everything except for the root node is made optional.

The result is a large denormalized table containing all the data that is covered
by ZC . By using the optional version Z ′

C instead of ZC directly, we ensure that
we also get the data that is just partly covered by ZC .

Answering Qa over this table is then just a simple table scan, and the query
response time can be reduced to a satisfactory level by indexing the columns
and/or parallellizing the storage and processing, similar to what state of the art
search engines do. Such scaling out is much easier for a single pre-joined table than

578 V. Klungre and M. Giese

for relational or graph storage. But it requires the pruning defined by a fixed con-
figuration, which is precisely the point of our approximate suggestion functions.

With data stored denormalized, we essentially have the same situation as for
standard faceted search with only one concept: We just act like every column
(i.e. variable of the configuration) is a facet. This means that we can achieve
adaptive value suggestions (over the variables in the configuration) with the
same performance as standard faceted search systems by simply using the same
underlying search engine technology.

Earlier we stated that ZC = C(v) is the smallest possible concept configu-
ration one can use for Sa. This is true if we use the original dataset, but not
if we use the index, because we need to answer C(v) ∧ t(v, x) for each datatype
property t we want suggestions for, which cannot be done if a data column for t
does not exist. We want to provide suggestions for each local datatype property
t ∈ T , hence ZC = C(v) ∧ ∧

ti∈T ti(v, xi) is the smallest configuration we allow.
With the index construction method described above, we get one column

containing only URIs for each concept variable included in the concept configu-
ration. But this is just a waste of space, since only filtering on datatype variables
are allowed. So instead of storing the full URI, we use a boolean value to indicate
whether an instance assignment exists or not. This reduces the index size con-
siderably, compared to the case where all URIs are stored, because multiple rows
where only one URI differs can now be collapsed into only one row. In our first
experiment, we explored how much the accuracy increases by adding another
layer of these existential concepts nodes to the index, which is a comparatively
cheap investment.

3 Evaluation

We have implemented a faceted search module for OptiqueVQS based on Sa and
the index structure described in Sect. 2. Furthermore, we implemented both Sr

and So in order to compare them to Sa in our experiments.
In Sect. 2 we argued that our system is at least as efficient (w.r.t. index

access) as state of the art faceted search engines using only one concept, so we
have not spent any effort on measuring the time our system uses. We have also
not measured the performance of the index construction process, since it is not as
time crucial as index access. In other words, we do not claim that our implemen-
tation is suited for systems that require real-time update. Instead, we explored
how facet configurations of different size and shape affect the constructed index,
and how accurately they can suggest values for different kinds of queries. In total
we conducted two experiments with the goal of answering the following three
questions about Sa:

1. How does the accuracy increase as the size of ZC increases?
2. How much does the accuracy rise by adding existential concept variables to

ZC?
3. How much does the index size have to be increased in order to obtain a given

increase in accuracy?

Evaluating a Faceted Search Index for Graph Data 579

Dataset, Ontology and Queries. In the experiments we used the RDF ver-
sion of the NPD Factpages1 – a dataset covering details about oil and gas drilling
activities in Norway. This dataset contains 2.342.597 triples, and it has a corre-
sponding OWL ontology containing 209 concepts and 375 properties. The NPD
Factpages is actually a RDB, containing information that all oil companies in
Norway are legally required to report to the authorities. This means that the
RDF version, which is generated from this RDB, is fairly complete and homoge-
neous. This is optimal for persons who want answers to complex queries. Among
the different concepts we considered in our queries, each have on average 14.1
different outgoing datatype properties, and 6.4 outgoing object properties in
NPD Factpages. The number of distinct individuals/literals each such property
leads to is 572 on average (with a median of 12).

The query catalogue2 we used for the experiments consists of complex queries
covering a wide set of possible cases. It consists of 29 queries ranging from 5 to
8 concept variables and 0 to 12 datatype variables, and the corresponding result
sets over the NPD dataset range from just 12 tuples, to over 5 million tuples.

Accuracy Measure. Providing the value suggestions is an information retrieval
problem, where So defines the set of relevant values. We therefore use the well
established measures of precision and recall to measure the accuracy of Sa (and
Sr). From Eq. 1 we know that So ∩ Sa = So and So ∩ Sr = So which gives:
pre(Sa) = |So|

|Sa| , pre(Sr) = |So|
|Sr| and rec(Sa) = rec(Sr) = 1.

Both Sa and Sr have perfect recall. Hence, when evaluating these systems,
only the precision matters, so in the reminder of this paper, we will use and
mention precision instead of accuracy. Furthermore, since the user is exposed
to several local datatype properties at the same time, and we want to do more
high-level experiments on the system, we average the precision over all the local
datatype properties.

So given Q, D, ZC , we will use this average as the overall measure of precision.
From Eq. 1, we can derive the following relationship between the precision of our
three suggestion functions: pre(Sr) ≤ pre(SZ

a) ≤ pre(So) = 1.

Test Cases and General Setup. In both of our experiments we ran multiple
test cases, where each test case was based on one of the 29 queries from the query
catalogue, and a generated concept configuration ZC covered by the tree defined
by this query. Since each test case only considers one query and one concept
configuration, the index based on the configuration will only contain one table,
so we use the number of cells in the table as a measure for index size. Value
suggestions are then calculated by running Qa over the table, and precision is
calculated by comparing to So as explained above.

Notice that a real world scenario would be more complex than this. The
success of a concept configuration and its corresponding table index would not

1 https://gitlab.com/logid/npd-factpages.
2 https://github.com/Alopex8064/npd-factpages-experiments.

https://gitlab.com/logid/npd-factpages
https://github.com/Alopex8064/npd-factpages-experiments

580 V. Klungre and M. Giese

only depend on the success of one single query, but rather a large set of possibly
very different queries. One of our future goals is to develop methods for finding
configurations that works well for a large set of queries.

Exp. 1 - Configuration Type/Size vs Precision. In Experiment 1 we
wanted to show how the accuracy of Sa changes as configurations of different
size and shape are used. To do this, we first generated a set of random “config-
urations cores” c for each query Q in the query catalogue. Each core consisted
of one or more connected concept variables from Q, and was just used as a basis
for generating two other concept configurations:

– Dat(c): Every possible datatype property is added to the concept variables
in c.

– ObjDat(c): Every possible datatype property and object property is added
to the concept variables in c.

The only difference between these two configurations, is that ObjDat(c) con-
tains one extra layer of concept variables. As explained earlier, it is relatively
cheap (w.r.t. storage usage) to add these concept variables, but the precision will
(potentially) increase by doing it. So the split between Dat(c) and ObjDat(c)
was created in order to measure how much the precision increases, and thereby
answering question 2.

Both Dat(c) and ObjDat(c) were used in one test each, and in general the
following holds: pre(Sr) ≤ pre(SDat(c)

a) ≤ pre(SObjDat(c)
a) ≤ pre(So) = 1. After

running through every test case, the results were grouped by both the configura-
tion type (Dat or ObjDat) and the size of the configuration, where the size of a
configuration is defined by the number of concept variables in the configuration
core c. Finally the average precision of each group was calculated and the results
visualized.

Figure 1 displays the average precision for all the queries of size 6 (15 of the
29 queries). Similar charts for queries of size 5, 7 and 8 are omitted from the
paper, but can be found on Github3 together with charts for each individual
query.

The yellow line shows the precision of the range-based function Sr, which is
always constant. Since this is the suggestion function with the lowest precision
we consider, it acts as a baseline – marking the worst case scenario for Sa. The
blue and red curves show the average precision of SDat

a and SObjDat
a respectively.

As expected, these two curves are non-decreasing and pre(SDat
a) ≤ pre(SObjDat

a)
for all configuration sizes.

It is worth noting the relatively high precision of the range-based function.
In our experiment, its precision ranged from 0.22 to 0.96 (depending on the
query), with an average of 0.56. This does not sound too bad, but user studies
on OptiqueVQS show that the users are not always satisfied with Sr.

3 https://github.com/Alopex8064/npd-factpages-experiments.

https://github.com/Alopex8064/npd-factpages-experiments

Evaluating a Faceted Search Index for Graph Data 581

Fig. 1. Average precision of size 6 queries.
(Color figure online)

In the cases where key restric-
tions are associated with object prop-
erties, SObjDat

a performs much bet-
ter than SDat

a . In fact, it quite often
returns suggestions with perfect pre-
cision, which was the case for many
of our individual queries. The average
difference between SObjDat

a and SDat
a ,

shown in Fig. 1, indicates that it is
worth adding this extra layer of object
properties to the configuration, espe-
cially since the resulting increase in the
index size is relatively small (one extra
boolean column).

Exp. 2 - Index Size vs Precision. In Experiment 2 we made a direct com-
parison between the index size and the precision. We did this by first making one
test case for every query Q, and each possible configuration ZC covered by it.
Then, for each such test case, we calculated both the size of the table generated
by ZC , and the precision of SZC

a . Finally we analysed and visualized the results.

Fig. 2. Scatter plot for Query 6.2.
Pareto optimal configurations are con-
nected. Index size is not normalized.

Fig. 3. Pareto optimal configurations
for all queries with median (red) and
upper quartile (blue). Index size is nor-
malized. (Color figure online)

Figure 2 shows the results for Query 6.2 visualized as a scatter plot, where
each point represents a test case/concept configuration/index table. Some of
the points are pareto optimal, which means that neither of the two dimensions
(precision and index size) can be improved without weakening the other. These
points are located in the bottom right part of the plot (smaller index and higher
precision are better), and are connected by line segments. The frontier of pareto

582 V. Klungre and M. Giese

optimal points shows how large the index must be in order to achieve a given
precision in a best-case scenario, i.e. when the configuration is chosen optimally.

We cannot expect to achieve results like this consistently, but it does give an
indication of what might be achieved with an optimal choice of configuration.
The fact that we investigate the best-case scenario also explains why it is suffi-
cient to only consider the configurations covered by Q: For any configuration ZC′

with branches outside Q, there exists another concept configuration ZC which
leads to the same precision, but a smaller index. Visually, the set of all such test
cases would appear as points above the already existing points, and hence not
be candidates for pareto-optimality.

The set of pareto-optimal points for each query defines a monotonically
increasing curve. Let Zmin

C and Zmax
C denote the configurations used for the

first and last of these points. Zmax
C is the configurations that is isomorphic to

Q. I.e. it fully covers Q, but it has no branches outside of it. The precision given
by this configuration is perfect, but it also uses the largest index of the pareto-
optimal configurations. Zmin

C on the other hand contains only the root and all
local datatype properties. This is the smallest configuration that can provide
value suggestions for each of the local datatype properties.

When we look at the pareto-optimal configurations for all the different
queries, we see that the index size of Zmin

C differs depending on the focus concept
of the query: we can’t expect the index to become smaller than a table of the
instances of the class along with their attributes, which mostly depends on the
number of instances in the dataset. So in order to compare them under equal
conditions, we normalized the index size by dividing by the index size of Zmin

C .
The y-axis then becomes just a factor, where e.g 2.0 means that the index is
twice as large as the index constructed from Zmin

C . The pareto-optimal points
for all the 29 queries are displayed in Fig. 3, together with the median (red) and
upper quartile (blue).

The overall results from Fig. 3 seems promising, as most of the transitions
between pareto optimal points (black line segments) are more horizontal than
vertical. This means that with clever selection of configuration branches, one can
transition to a much higher precision without having to increase the index very
much. The median and upper quartile have similar horizontal profiles, but with
a slight increase as they approach 100% precision, resulting in a more convex
curve.

From Experiment 1 and Fig. 1 we know that the average precision of Sa when
using the smallest possible configuration for each query (Zmin

C) is 0.61. Figure 3
shows that this precision can be increased to 100% with an index that is less
than 2.1 times larger, with the exception of three queries that are orders of
magnitude higher. This is caused by their highly restrictive filters on branches
far away from the root.

4 Conclusion and Future Work

We discussed the combination of visual query systems for graph queries with the
adaptive value suggestions of faceted search. After defining the “value suggestion

Evaluating a Faceted Search Index for Graph Data 583

problem”, we introduced three suggestion functions: an optimal one that is slow
for large datasets and complex queries; a range based one that is rather inaccu-
rate, but allows fast implementation; and a configurable family of intermediate
(precise enough and fast enough) solutions to the problem, based on only look-
ing at a part of the constructed query. We conducted a series of experiments to
conclude that

1. good approximations to the value suggestion problem can often be reached
by taking into account only relatively small parts of the constructed query.

2. the precision of the approximations can often be improved dramatically by
including the presence of required object properties in the configuration,
rather than only connected datatype properties.

3. modest increases in index size often leads to a significant increase in accuracy.

In future work we intend to study alternative storage formats for the pre-
joined index. In particular a document database like MongoDB could be suitable.
A related question is how to share storage space between indices for sub- and
super-classes in the type hierarchy. The viability of our approach depends on
a good choice of the facet configuration: it should be possible to determine an
optimal configuration given a log of previous user queries. Another approach to
reducing the index size is to work with “buckets” that combine ranges of facet
values. Also suitable bucketing strategies can be determined from the query log
and data.

Acknowledgement. This project is partially funded by NFR through the SIRIUS
center.

References

1. Arenas, M., Grau, B.C., Kharlamov, E., Marciuška, Š., Zheleznyakov, D.: Faceted
search over RDF-based knowledge graphs. J. Web Semant. 37, 55–74 (2016)

2. Brunetti, J.M., Garćıa, R., Auer, S.: From overview to facets and pivoting for inter-
active exploration of semantic web data. IJSWIS 9(1), 1–20 (2013)

3. Klungre, V.N.: A faceted search index for graph queries. Technical report 469, Uni-
versity of Oslo, Department of Informatics (2017). https://www.duo.uio.no/handle/
10852/56755

4. Klungre, V.N., Giese, M.: Approximating faceted search for graph queries. In: 12th
Scalable Semantic Web Systems (SWSS) (2018)

5. Soylu, G., Giese, M., et al.: Experiencing OptiqueVQS: a multi-paradigm and
ontology-based visual query system for end users. UAIS 15(1), 129–152 (2016).
https://doi.org/10.1007/s10209-015-0404-5

6. Soylu, A., Giese, M., et al.: Ontology-based end-user visual query formulation: why,
what, who, how, and which? UAIS 16(2), 435–467 (2017). https://doi.org/10.1007/
s10209-016-0465-0

7. Tunkelang, D.: Faceted search. Synthesis lectures on information concepts, retrieval,
and services, 1(1), 1–80 (2009)

https://www.duo.uio.no/handle/10852/56755
https://www.duo.uio.no/handle/10852/56755
https://doi.org/10.1007/s10209-015-0404-5
https://doi.org/10.1007/s10209-016-0465-0
https://doi.org/10.1007/s10209-016-0465-0

	Evaluating a Faceted Search Index for Graph Data
	1 Introduction
	2 Suggestion Functions and Indexing
	3 Evaluation
	4 Conclusion and Future Work
	References

