
Revisiting Yasuda et al.’s Biometric
Authentication Protocol: Are You Private

Enough?

Elena Pagnin(B), Jing Liu, and Aikaterini Mitrokotsa

Chalmers University of Technology, Gothenburg, Sweden
elenap@chalmers.se

Abstract. Biometric Authentication Protocols (BAPs) have increas-
ingly been employed to guarantee reliable access control to places and
services. However, it is well-known that biometric traits contain sensi-
tive information of individuals and if compromised could lead to serious
security and privacy breaches. Yasuda et al. [23] proposed a distributed
privacy-preserving BAP which Abidin et al. [1] have shown to be vul-
nerable to biometric template recovery attacks under the presence of a
malicious computational server. In this paper, we fix the weaknesses of
Yasuda et al.’s BAP and present a detailed instantiation of a distributed
privacy-preserving BAP which is resilient against the attack presented
in [1]. Our solution employs Backes et al.’s [4] verifiable computation
scheme to limit the possible misbehaviours of a malicious computational
server.
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1 Introduction

Biometric authentication has become increasingly popular as a fast and conve-
nient method of authentication that does not require to remember and manage
long and cumbersome passwords. However, the main advantage of biometrics,
i.e., their direct and inherent link with the identity of individuals, also rises
serious security and privacy concerns. Since biometric characteristics can not be
changed or revoked, unauthorised leakage of this information leads to irrepara-
ble security and privacy breaches such as identity fraud and individual profiling
or tracking [18]. Thus, there is an urgent need for efficient and reliable privacy-
preserving biometric authentication protocols (BAPs).

The design of privacy-preserving BAPs is by itself a very delicate procedure.
It becomes even more challenging when one considers the distributed setting
in which a resource-constrained client outsources the computationally heavy
authentication process to more powerful external entities. In this paper, we focus
on Yasuda et al.’s protocol for privacy-preserving BAPs in the distributed set-
ting [23] and show how to mitigate the privacy attacks presented by Abidin
et al. [1] by employing Backes et al.’s verifiable computation scheme [4].
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1.1 Background and Related Work

Distributed privacy-preserving BAPs usually involve the following entities: (i) a
client/user C, (ii) a database DB, (iii) a computational server CS, and (iv) an
authentication server AS. The granularity of roles and entities in the biometric
authentication process facilitates the privacy-preservation of the sensitive infor-
mation. This distributed setting, indeed guarantees that no single entity has
access to both the biometric templates (fresh and stored ones) and the identity
of the querying user.

Several existing proposals of privacy-preserving BAPs use the distributed set-
ting, e.g., [5,21–23], and make leverage on advanced cryptographic techniques
such as homomorphic encryption [7,23], oblivious transfer [8] and garbled cir-
cuits [14]. In particular, Yasuda et al.’s protocol [23] was claimed to be privacy-
preserving since it is based on the distributed setting and relies on a novel
somewhat homomorphic encryption scheme based on ideal lattices. Abildin et
al. [1] showed that Yasuda et al.’s BAP is privacy-preserving only in the honest-
but-curious model and described an algorithm that enables a malicious CS to
recover a user’s biometric template. Intuitively, Abidin et al.’s attack succeeds
because AS does not detect that the malicious CS returns a value different from
the one corresponding to the output of the (honest) outsourced computation,
leaving space for hill-climbing strategies [20] that may lead to the disclosure of
the stored reference biometric template.

Verifiable delegation of computation (VC) is a cryptographic primitive that
enables a client to securely and efficiently offload computations to an untrusted
server [11]. Verification of arbitrary complex computations was initially achieved
via interactive proofs [2,13] and then moved towards more flexible and efficient
schemes such as [3,9,10,19]. The setting of VC schemes is by nature distributed
and thus perfectly fits the basic requirement of privacy-preserving BAPs. For
this reason, Bringer et al. [6] suggested to use VC techniques to detect malicious
behaviours in BAP.

In this paper, we provide the first explicit instantiation of a distributed
privacy-preserving BAP which achieves security against malicious CS thanks
to the verifiability of the delegated computation.

1.2 Our Contributions

In this paper, we mitigate Abidin et al.’s attack [1] against Yasuda et al.’s
privacy-preserving biometric authentication protocol [23] by the means of the
verifiable computation scheme by Backes et al. [4]. We combine the two schemes
in an efficient and secure way, and obtain a modification of Yasuda et al.’s pro-
tocol with strong privacy guarantees. As a result, we obtain a new BAP which
builds on top of Yasuda et al.’s and is truly privacy-preserving in the distributed
setting.

From a general point of view, this paper offers a strategy to transform
privacy-preserving BAPs that are secure in the honest-but-curious model into
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schemes that can tolerate a malicious CS by addressing the most significant chal-
lenges in privacy-preserving BAPs: to guarantee integrity and privacy of both the
data and the computation. Despite the idea of combining VC and BAP is quite
natural and intuitive [6], the actual combination needs to be done carefully in
order to avoid flawed approaches.

Organisation. The paper is organized as follows. Section 2 describes the back-
ground notions used in the rest of the paper. Section 3 contains our modifi-
cation of Backes et al.’s VC scheme to combine it with the somewhat homo-
morphic encryption scheme used in [23]. Section 4 presents an improved version
of Yasuda et al.’s BAP together with a security and efficiency analysis. The
proposed privacy-preserving BAP incorporates the new construction of VC on
encrypted data of Sect. 3. Section 5 is an important side-note to our contribu-
tions, as it demonstrates how näıve and straight-forward compositions of VC and
homomorphic encryption may lead to leakage of private information. Section 6
concludes the paper.

2 Preliminaries

Notations. We denote by Z and Zp = Z/pZ the ring of integers and the integers
modulo p, respectively. For two integers x, d ∈ Z, [x]d denotes the reduction of
x modulo d in the range of [−d/2, d/2]. We write vectors with capital letters,
e.g., A, and refer to the i-th component of A as Ai. The symbol x ←$ X denotes
selecting x uniformly at random from the set X .

We denote the Hadamard product for binary vectors as � : Zn
2 � Z

n
2 → Z

n
2 ,

with A � B = C, Ci = Ai · Bi ∈ Z2 for i = 1, 2, . . . , n. The Hadamard product is
similar to the inner product of vectors except that the output is a vector rather
than an integer.

Bilinear Maps. A symmetric bilinear group is a tuple (p,G,GT , g, gT , e), where
G and GT are groups of prime order p. The elements g ∈ G and gT ∈ GT are
generators of the group they belong to, and e : G × G −→ GT is a bilinear
map, i.e., ∀A,B ∈ G and x, y ∈ Zp it holds that e(xA, yB) = e(A,B)xy and
e(g, g) �= 1GT

. In the setting of VC, the map e is cryptographically secure, i.e., it
should be defined over groups where the discrete logarithm problem is assumed
to be hard or it should be hard to find inverses. In bilinear groups there exists
a natural isomorphism between G and (Zp,+) given by φg(x) = gx; similarly
for GT . Since φg and φgT

are isomorphisms, there exist inverses φ−1
g : G →

Zp and φ−1
gT

: GT → Zp, that can be used to homomorphically evaluate any
arithmetic circuit f : Zn

p → Zp, from G to GT . More precisely, there exists a
map GroupEval (as defined in [4]):

GroupEval(f,X1, . . . , Xn) = φgT
(f(φ−1

g (X1), . . . , φ−1
g (Xn))).

For security, we assume φg and φgT
are not efficiently computable.
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Homomorphic MAC Authenticators. In this paper, we make use of Backes, Fiore
and Reischuk’s verifiable computation scheme based on homomorphic MAC
authenticators [4], which we refer to as BFR. The BFR scheme targets func-
tions f that are quadratic polynomials over a large number of variables. Figure 1
contains a succinct description of the BFR scheme.

Fig. 1. The BFR verifiable delegation of computation scheme.

For further details we refer the reader to the main paper [4].

Homomorphic Encryption. Let M denote the space of plaintexts that support an
operation �, and C be the space of ciphertexts with � as operation. An encryp-
tion scheme is said to be homomorphic if for any key, the encryption function
Enc satisfies: Enc(m1�m2) ← Enc(m1)�Enc(m2), for all m1,m2 ∈ M, where
← means computed without decryption. In this paper, we only use Somewhat
Homomorphic Encryption schemes (SHE). As the name suggests these schemes
only support a limited number of homomorphic operations, e.g., indefinite num-
ber of homomorphic additions and finite number of multiplications. The choice
to use SHE instead of Fully Homomorphic Encryption [12] is due to efficiency:
SHE, if used appropriately, can be much faster and more compact [15].

The Yasuda et al. Protocol. Yasuda et al. [23] proposed a privacy-preserving
biometric authentication protocol that targets one-to-one authentication and
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relies on somewhat homomorphic encryption based on ideal lattices. Two packing
methods facilitate efficient calculations of the secure Hamming distance, which
is a common metric used for comparing biometric templates. The protocol uses a
distributed setting with three parties: a client C, a computation server CS (which
contains the database DB) and an authentication server AS. The protocol is
divided into three phrases.

Setup Phase: AS generates the public key pk and the secret key sk of the SHE
scheme in [23]. AS gives pk to C and CS and keeps sk.

Enrollment phase: C provides a feature vector A from the client’s bio-
metric data (e.g., fingerprints), runs the type-1 packing method and out-
puts the encrypted feature vector vEnc1(A). The computation server stores
(ID, vEnc1(A)) in DB as the reference template for the client ID.

Authentication phase: upon an authentication request, C provides a fresh bio-
metric feature vector B encrypted with the type-2 packing method and sends
(ID, vEnc2(B)) to the computational server. CS extracts from the database the
tuple (ID, vEnc1(A)) using ID as the search key. CS calculates the encrypted
Hamming distance ctHD and sends it to the authentication server. CS decrypts
ctHD and retrieves the actual Hamming distance HD(A,B) = Dec(sk, ctHD).
AS returns yes if HD(A,B) ≤ κ or no if HD(A,B) > κ, where κ is the
predefined accuracy threshold of the authentication system.

Figure 2 depicts the authentication phase of Yasuda et al.’s BAP.
For additional details on biometric authentication protocols and systems we

refer the reader to [16].

Fig. 2. Authentication phase in the Yasuda et al.’s BAP [23].

3 Combining the BFR and the SHE Schemes

In this section, we describe how to efficiently combine the verifiable computation
scheme BFR by Backes et al. [4] with the somewhat homomorphic scheme SHE
by Yasuda et al. [23]. We call the resulting scheme BFR+SHE. Our motivation
for defining this new scheme is to build a tailored version of BFR that we insert
in Yasuda et al.’s biometric authentication protocol to mitigate the template
recovery attack of [1].
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As a preliminary step, we explain the most challenging point of the combi-
nation of the two schemes: the ring range problem. This problem rises because
the elements and operations in BFR and SHE are defined over two different
rings. This passage is quite mathematical, but it is necessary to guarantee the
correctness of our composition BFR+SHE, presented later on in this section.

3.1 The Ring Range Problem

The most significant challenge in combining the Backes et al. VC scheme with
the Yasuda et al. SHE scheme is the different range of the base rings. While
BFR handles all operations in Zp, where p is a prime, the operations in the
SHE scheme [23] are handled in Zd, where d is the resultant of two polynomials.
Therefore, in our BFR+SHE scheme, we need to tweak the input data if there
is a mismatch in the ranges. In the calculation of the secure Hamming distance,
there is a constant term equal to −2, which lives in [−d/2, d/2) but not in [0, p).
In order to verify and generate proper tags, we can write −2 as D = (d − 2)
mod p. Furthermore, we need to check the impact of the range difference to the
verification carried out by the client. The first equation in the Ver algorithm of
BFR is:

ctHD = y
(HD)
0 , (1)

where ctHD ∈ Zd and y
(HD)
0 ∈ Zp. In our instantiation, the term ctHD corre-

sponds to the encrypted Hamming distance between the fresh and the reference
templates, while y

(HD)
0 is a component of the final authentication tag. As long as

d �= p, Eq. (1) is not satisfied even when the computation is carried out correctly.
We present a general solution to this problem. For simplicity, we assume p < d

(as the tag size should be ideally small), although the reasoning also applies when
p > d by swapping the place of p and d. Our solution relies on keeping track
of the dividend. Given a stored template α ∈ Zd and a fresh template β ∈ Zd,
both encrypted, we have that: α = α′ + mp,α′ = α mod p ∈ Zp, β = β′ + kp
and β′ = β mod p ∈ Zp.

Let SWHD(x, y) be the arithmetic circuit for calculating the encrypted
Hamming distance without the final modulo d. Let c = SWHD(α, β) and
c′ = SWHD(α′, β′), we can derive: SWHD(α, β) mod p = SWHD(α′, β′) mod p;
and c = � · p + c′. The value � is the dividend. In our case of study, we want
to perform the comparison between the Hamming distance (of the biometric
templates) and the threshold κ which determines if the templates match, i.e.,
the client is authenticated, or not. To this end, we would track � mod d instead
of � directly. The reason is that � contains more information and would lead to
a privacy leak. Relating back to Eq. (1) we have: ctHD = c mod d ∈ Zq and
y
(HD)
0 = c′ ∈ Zp. Given c = � · p + c′, it holds that:

ctHD = c mod d = (� ∗ p + c′) mod d

= c′ mod d + (� mod d) · (p mod d)

= (y(HD)
0 mod d) + (� mod d) · (p mod d)

(2)



Revisiting Yasuda et al.’s Biometric Authentication Protocol 167

Thus, if we define �d := (� mod d) · (p mod d), the verification equation
in (1) becomes ctHD = y

(HD)
0 ( mod d + �d), which is satisfied whenever ctHD is

computed correctly (as we show in Sect. 3.3).

3.2 Our BFR+SHE Scheme

To facilitate the intuition of how we incorporate BFR+SHE in Yasuda et al.’s
BAP we describe the algorithms of BFR+SHE directly in the case the encrypted
vectors are biometric templates:

BFR+SHE.KeyGen(λ): The key generation algorithm of BFR+SHE runs
SHE.KeyGen(λ) → (pk, sk) and BFR.KeyGen(λ) → (ek, vk). The output
is the four-tuple (ek, pk, sk, vk).

BFR+SHE.Enc(pk,A, phase): The encryption algorithm takes as input the
(encryption) public key pk, a plaintext biometric template A ∈ {0, 1}2048
and a phase ∈ {1, 2} to select the appropriate packing method. It outputs
the ciphertext ct computed as ct = vEncphase(A), using the type-phase pack-
ing method of the SHE scheme.

BFR+SHE.Auth(vk, L, ct): on input the verification key vk, a ciphertext ct and
a multi-label L = (Δ, τ), with Δ the data set identifier (e.g., the client’s
ID) and τ the input identifier (e.g., “stored biometric template” or “fresh
biometric template”); this algorithm outputs σ ← BFR.Auth(vk, L, ct), with
σ = (y0, Yi, 1) = (ct, FK(Δ, τ) · g−ct)1/θ), where the value θ and the function
FK are defined in vk.

BFR+SHE.Comp(pk, ct1, ct2): The compute algorithm takes as input the
encryption public key pk, and two ciphertexts ct1, ct2, which intuitively cor-
respond to the encryptions vEnc1(A) and vEnc2(B) respectively. The output
is the encrypted Hamming distance HD calculated as: ctHD = C2 · vEnc1(A)+

C1 · vEnc2(B) + (−2 · vEnc1(A) · vEnc2(B)) ∈ Zd, where C1 :=
[

n−1∑
i=0

ri

]
d

and

C2 := [−C1 + 2]d and r, d are extracted from pk. To solve the ring range
problem described in Sect. 3.1 we compute �d as follows. Let c be the result
of the (encrypted) Hamming distance computation without the final mod-
ulo d. Then c′ = c mod p and c = �p + c′, where c′ is a component in the
authentication tag and � is a dividend. We compute �d = � mod d = (c − [c
mod p])/p mod d. The output is (ctHD, �d).

BFR+SHE.Eval(ek, pk, σ1, σ2): The evaluation algorithm takes as input the
evaluation key ek, the ecryption public key pk, and two tags, which intu-
itively correspond to the authenticators for the two biometric templates,
A,B. In our case of study, the function to be evaluated is fixed to be
f = HD the Hamming distance. This algorithm outputs σHD = (y0, Y1, Ŷ2) ←
BFR.Eval(ek,HD, (σ1, σ2)).
In details, every input gate accepts either two tags σA, σB ∈ (Zp ×G×GT )2,
or one tag and a constant σ, c ∈ ((Zp × G × GT ) × Zp). The output of a
gate is a new tag σ′ ∈ (Zp × G × GT ), which will be fed into the next gate
in the circuit as one of the two inputs. The operation stops when the final
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gate of f is reached and the resulting tag σHD is returned. A tag has the
format σ(i) = (y(i)

0 , Y
(i)
1 , Ŷ

(i)
2 ) ∈ Zp × G × GT for i = 1, 2 (indicating the two

input tags), which corresponds respectively to the coefficients of (x0, x1, x2)
in a polynomial. If Ŷ

(i)
2 is not defined, it is assumed that it has value 1 ∈ GT .

Next we define the specific operations for different types of gates:
• Addition. The output tag σ′ = (y0, Y1, Ŷ2) is calculated as:

y0 = y
(1)
0 + y

(2)
0 , Y1 = Y

(1)
1 · Y

(2)
1 , Ŷ2 = Ŷ

(1)
2 · Ŷ

(2)
2 .

• Multiplication. The output tag σ′ = (y0, Y1, Ŷ2) is calculated as:

y0 = y
(1)
0 · y

(2)
0 , Y1 = Y

(1)
1 · Y

(2)
1 , Ŷ2 = e(Ŷ (1)

1 , Ŷ
(2)
1 ).

Since the circuit f has maximum degree 2, the input tags to a multipli-
cation gate can only have maximum degree 1 each.

• Multiplication with constant. The two inputs are one tag σ and one
constant c ∈ Zp. The output tag σ′ = (y0, Y1, Ŷ2) is calculated as: y0 =
c · y

(1)
0 , Y1 = (Y (1)

1 )c, Ŷ2 = (Ŷ (1)
2 )c.

BFR+SHE.Ver(vk,PΔ, ctHD, σHD, �d): The verification algorithm computes b ←
BFR.Ver(vk, sk,PΔ, ctHD, σHD, κ) to verify the correctness of the outsourced
computation. In our case of study, PΔ is a multi-labeled program [4] for the
arithmetic circuit for calculating the encrypted HD. The BFR.Ver algorithm
essentially performs two integrity-checks:

ctHD = y0 mod (d + �d) (3)

W = e(g, g)y0 · e(Y1, g)θ · (Ŷ2)θ2
(4)

If the verification output is b = 0 the algorithm returns

(accVC, accHD) = (0, 0).

Otherwise, if b = 1, it proceeds with the biometric authentication check: it
computes w ← SHE.Dec(ct) to retrieve the actual Hamming distance w =
HD(A,B). If HD(A,B) ≤ κ, here κ corresponds to the accuracy of the BAP,
the algorithm returns

(accVC, accHD) = (1, 1).

If HD(A,B) > κ, the output is

(accVC, accHD) = (1, 0).

3.3 Correctness Analysis

In our BFR+SHE scheme the outsourced function is the Hamming distance HD,
that can be represented by a bi-variate deterministic quadratic function. Thus,
we can avoid using gate-by-gate induction proofs, as done in [4], and demonstrate
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the correctness in a direct way. In what follows, we adopt the notation in [4],
and we prove the correctness of BFR+SHE by walking through the arithmetic
circuit of HD step by step.

Figure 3 depicts the arithmetic circuit for calculating the encrypted Ham-
ming distance. A and B denote the encrypted stored and fresh biometric tem-
plates respectively. C1 and C2 are the constants in the function as defined in
the BFR+SHE.Comp algorithm. The D letter indicates the −2 in the func-
tion, but since −2 is not in the valid range Zp required by the original BFR
scheme, we need to have an intermediate transformation of D = d − 2. All
A,B,C1 and C2 are in Zd. Finally, the σs are the outcome tags of the form
σ(i) = (y(i)

0 , Y
(i)
1 , Ŷ

(i)
2 ) ∈ Zp × G × GT after each gate operation, and the Rs

are values in either G or GT, which are used for homomorphic evaluation over
bilinear groups (i.e., GroupEval in [4]).

Fig. 3. The arithmetic circuit
for calculating the encrypted
Hamming distance.

We let α and β be vEnc1(A) and vEnc2(B)
and each of them has a tag: σα = (y(A)

0 , Y
(A)
1 , 1)

and σβ = (y(B)
0 , Y

(B)
1 , 1). These two tags are

generated by the BFR.Auth algorithm, which
specifies that y

(A)
0 = α and Y

(A)
1 = (Rα ·

g−α)1/θ. Similarly, we have y
(B)
0 = β and

Y
(B)
1 = (Rβ · g−β)1/θ. To verify the correct-

ness of our BFR+SHE scheme, we need to check
that the two equations specified in the BFR.Ver
algorithm are satisfied if the computation is
performed correctly. To this end, let σHD =
(y(HD)

0 , Y
(HD)
1 , Ŷ

(HD)
2 ) be the final tag (which is

equivalent to σ6 in the arithmetic circuit depicted in Fig. 3).
The first step is to derive the tags for the intermediate calculation and even-

tually the final tag. If we run the SHE.Eval algorithm homomorphically through
the circuit, we will get the outcome tags σ1, . . . , σ6 (for details see AppendixA).
We thus derive σHD (equivalent to σ6):

σHD = (y(HD)
0 , Y

(HD)
1 , Ŷ

(HD)
2 )

= ( C2 · y
(A)
0 + C1 · y

(B)
0 + D · y

(A)
0 · y

(B)
0 ,

(Y (A)
1 )y

(B)
0 ·D+C2 · (Y (B)

1 )y
(A)
0 ·D+C1 , e(Y (A)

1 , Y
(B)
1 )D).

Now we show the proofs for the two verification equations. First we need to
prove Eq. (3), i.e., ctHD = y0 mod (d + �d). The equality holds as for Eq. (2).
The end result is: ctHD = y

(HD)
0 mod d + (� mod d) · (p mod d). As we define

�d = (� mod d) · (p mod d), we can derive Eq. (3). Secondly, we need to prove
that Eq. (4) holds, i.e., W = e(RC2

α · RC1
β , g) · e(Rα, Rβ)D. To this end, we run

GroupEval(f,Rα, Rβ) and execute the bilinear gate operations. Recall that
Rα and Rβ correspond to RA and RB in the notation used in the construction,
Denote by R6 the final result of running GroupEval over the circuit of HD. It
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holds that:

R6 = GroupEval(f,Rα, Rβ) = e(RC2
α · RC1

β , g) · e(Rα, Rβ)D

= GroupEval(f,Rα, Rβ) = e(g, g)yHD
0 · e(Y HD

1 , g)θ · (Ŷ (HD)
2 )θ2

By expanding the last expression the desired result (see Appendix A for details).
Thus, we have proved the correctness of the BFR+SHE scheme. which are the
results of the pseudo-random function FK in the BFR.Ver algorithm.

4 Improving the Yasuda et al. Protocol

In this section, we describe a modified version of the Yasuda et al. [23] proto-
col that is secure against the recently identified hill-climbing attack that can be
performed by a malicious computation server CS. It is composed of four dis-
tributed parties: a client C (holding the keys pk, ek and vk), a computation
server/database CS (holding the keys pk and ek), an authentication server AS
(holding the keys pk, sk and vk). In the proposed protocol, we preserve the
assumption that AS is a trusted party and furthermore assume the client C
and the database DB are also trusted parties. C is responsible to manage the
secret key vk for the verifiable computation scheme and DB stores the encrypted
reference biometric templates with the identities of the corresponding clients.
However, CS can be malicious and cheat with flawed computations. We describe
the three main phases of our proposed improvement of Yasuda et al.’s privacy-
preserving biometric authentication protocol:

Setup Phase: In this phase the authentication server AS runs SHE.KeyGen(λ)
to generate the public key pk and the secret key sk of the somewhat homo-
morphic encryption (SHE) scheme. AS keeps sk and distributes pk to both
the client C and the computation server CS.

Enrollment Phase: Upon client registration, the client C runs BFR.
KeyGen(λ) to generate the public evaluation key ek and the secret veri-
fication key vk. C distributes ek to CS and vk to AS. The client C gen-
erates a 2048-bit feature vector A from the client’s biometric data, runs
BFR+SHE.Enc(pk,A, 0) to obtain the ciphertext ctA. C authenticates ctA by
running BFR+SHE.Auth(vk, LA, ctA) and outputs a tag σA. Then C sends
the three-tuple (ID, ctA, σA) to the database. This three-tuple serves as the
reference biometric template for the specific client with identity ID.

Authentication Phase: The client provides fresh biometric data as a feature
vector B ∈ {0, 1}2048. C runs BFR+SHE.Enc(pk,B, 1) to obtain the cipher-
text ctB and authenticates it by running σB ← BFR+SHE.Auth(vk, LB , ctB).
C sends (ID, ctB , σB) to CS, who extracts the tuple (ID, ctA, σA) corresponding
to the client to be authenticated (using the ID as the search key). CS calculates
the encrypted Hamming distance ctHD ← BFR+SHE.Comp(pk, ctA, ctB) and
generates a corresponding tag σHD ← BFR+SHE.Eval(ek, pk, σA, σB). Then,
CS sends (ID, ctHD, σHD) to the authentication server. AS runs (accVC, accHD)
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← BFR + SHE.Ver(vk, sk,PΔ, ctHD, σHD, κ), where κ is the desired accuracy
level of the BAP. If either accVC or accHD is 0 AS outputs a no, for authen-
tication rejection. Otherwise, (accVC, accHD) = (1, 1) and AS outputs yes, for
authentication success.

4.1 Security Analysis of the Proposed BAP

Our primary aim is to demonstrate that our privacy-preserving biometric authen-
tication protocol is not vulnerable to Abidin et al.’s template recovery attack
[1]. To this end, we sketch the attack setting in Fig. 4.

Fig. 4. Setting for Abidin et al.’s template recovery attack in [1].

We recall that for this attack, the adversary is a malicious computational
server who tries to recover the stored reference biometric template of a client with
identity ID. All the other parties of the BAP, are trusted and behave honestly.

In what follows, we show that the malicious CS cannot forge a tag σHD′ that
passes the verification checks performed in BFR. It is possible for the adversary to
cheat on the first equality (Eq. (3)) as it only tests that the returned computation
result (ctHD or ctP ) aligns with the arithmetic circuit used to generate the tag
(σHD or σHD′). In [1], CS succeeds by computing the arithmetic circuit for the
inner product instead of HD. In this case, it is not possible for the malicious
computational server to fool the second integrity check (Eq. (4)). In details, AS
calculates W = GroupEval(f,Rα, Rβ), and since AS is honest, f = HD is the
arithmetic circuit for the Hamming distance. If CS returns incorrect results, with
overwhelming probability the second verification equation does not hold, thus
the attack is mitigated.

Other Threats. In what follows, we consider attack scenarios in which one of
the participating entities in the BAP is malicious.

Malicious Client. C is responsible to capture the reference template and the
fresh template as well as to perform the encryption. If the client is malicious,
the knowledge of the encryption secret key and of the identity ID enables C to
initiate a center search attack and recover the stored template A as explained
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in [17]. Unfortunately, Pagnin et al. [17] show that this class of attacks cannot
be detected using verifiable computation techniques, since the attacker is not
cheating with the computation.

A new concern with the modified Yasuda et al. protocol is the key genera-
tion for BFR. In the protocol, we let the client C generate the private key vk,
the evaluation key ek and the authentication tags because we assume C is a
trusted party. If C turns malicious, it could give a fake vk to the authentication
server AS and initiate the template recovery attack with the inner product by
simulating CS. Since the adversary (C) controls vk, the computation verification
step becomes meaningless.

Malicious Computation Server. The main motivation to integrate VC in BAPs
is indeed to prevent CS from behaving dishonestly. Unlike the client C, CS only
has access to the encrypted templates vEnc1(A) and vEnc2(B) and the user
pseudonyms. CS cannot modify the secret key of the BFR scheme. We have
analysed how the template recovery attack conducted by CS can be countered
and hence we shorten the discussion here.

In contrast to the original protocol, CS needs to calculate an extra value
�d to solve the range issue after integrating BFR. However, �d is still operated
on the ciphertext level and is not involved in the second verification equation.
Thus learning �d does not provide any significant advantage in recovering the
templates.

Malicious Authentication Server. A malicious AS will completely break down
the privacy of the BAP since it controls the secret key sk used by the SHE
scheme. If AS successfully eavesdrops and obtains the ciphertext vEnc1(A) or
vEnc2(B), it can recover the plaintext biometric templates.

4.2 Efficiency Analysis

The original BFR scheme in [4] allows alternative algorithms to improve the
efficiency of the verifier. Although in our instantiation we did not use these
algorithms, the current definition of the multi-labels in BFR+SHE is extensible.
Given also that the function to be computed is f = HD and has a very simple
description as arithmetic circuit, running the BFR+SHE.Ver algorithm requires
O(|f |) computational time. In addition, if the amortized closed-form efficiency
functionality is adopted, the verification function will run in time O(1). Nonethe-
less, the arithmetic circuit of HD has 6 gates only and the saved computation
overhead would be relatively small.

5 A Flawed Approach

Privacy and integrity are the two significant properties desired in a privacy-
preserving BAP. There are two possible ways to combine VC and homomorphic



Revisiting Yasuda et al.’s Biometric Authentication Protocol 173

encryption (HE): running VC on top of HE, and viceversa, running HE on top of
VC.

In the first case, the data (biometric template) is first encrypted and then
encoded to generate an authentication proof. Our construction of BFR+SHE
follows this principle. In this approach, AS can make the judgement whether
the output of CS is from a correct computation of HD before decrypting the
ciphertext.

In the second case, the data is first encoded for verifiable computation and
then the encoded data is encrypted. This combination is not really straightfor-
ward and is prune to security breaches.

In this section, we demonstrate an attack strategy that may lead to informa-
tion leakage in case the homomorphic encryption scheme (henceforth FHE)1 is
applied on top of a VC scheme. For the sake of generality, we define FHE =
(KeyGenFHE , Enc,Dec,Eval). For verifiable computation scheme we adopt
the notation of Gennaro et al. [11] and define VC = (KeyGenV C , P robGen,
Compute, V er), where KeyGenV C outputs the private key skvc and public key
pkvc; ProbGen takes skvc and the plaintext x as input and outputs the encoded
value σx; Compute takes the circuit f , the encrypted encoded input and outputs
the encoded version of the output; V er is performed to verify the correctness
of the computation given the secret key skvc and the encoded output σy. The
main idea of the flawed approach is to first encode the data in plaintext and
then encrypt the encoded data. It can be represented by x̂ = Enc(ProbGen(x)),
where x̂ is what the malicious server gets access to.

5.1 The Attack

We describe now a successful attack strategy to break the privacy-preservation
property of a BAP built with the second composition method: HE on top of VC
(or HE after VC). The adversary’s goal is to recover σy, i.e., the encoded value
of the computation result. The attack runs in different phases. We show that the
privacy-preserving property is broken if q ≥ n, where q is the number of queries
in the learning phase and n is the length of the encoded result σy. For simplicity
we collect the two entities C and AS into a single trusted party V that we refer
to as the Verifier.

The attack is depicted in Fig. 5, a more detailed description follows.

Setup phase: V generates the keys of the protocol and gives pkvc, pkFHE to A.
Challenge phase: V generates the encoded version σx for the input x. V

encrypts the encoded input and sends Enc(σx) to A.
Learning phase: A uses V as a decryption oracle by sending verification queries,

which can be further divided into the following steps:
1. A performs honest computations and derives the Enc(σy).
2. A constructs a vector A′ ∈ Z

n
2 equal in length to σy. A′ is initialized with

the last bit set to 0 and the rest of the bits set to 1. For the ith trial, we

1 The same leakage of information could happen if a SHE scheme is used.
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Fig. 5. An attack strategy against the näıve the integration of FHE on top of VC.

set A′ = (11, . . . , 0i, 1i+1, . . . , 1n−1, 1n), i.e., set the ith bit to 0 and the
rest bits to 1.

3. A encrypts the tailored vector A′ and reuses the honest result Enc(σy)
from step 1. Then she computes: Enc(σy′) = Enc(A′)�Enc(σy), where �
represents the Hadamard product for binary vectors and sends the result
to V for verification.

4. V decrypts Enc(σ′
y). Thanks to the homomorphic property of FHE, V can

derive σy′ = A′�σy. V checks the computation based on the encoded result
σy′ and returns either accept if V er(sk, σy′) = 1 or reject, otherwise.

5. The attacker A′ acts as a “mask”: it copies all the bit values of σy into
σy′ except for the ith bit, which is always set to zero. Consequently, if
the output of the verification is accept, A will learn that σy = σy′ as well
as Enc(σy) = Enc(σy′), which reveals that the ith bit of σy equals to 0.
Similarly, if the output of the verification is reject, A learns that the ith

bit of σy is 1. In both cases, one bit of σy is leaked.
Output phase: After q ≥ n verification queries, where n equals the length of

σy, A outputs σy′ .

It is trivial to check that that σy′ = σy and thus V er(sk, σ′
y) = V er(sk, σ′

y) = 1
and attacker’s goal is achieved.

The attack demonstrates that the order of combining a VC and a (F)HE is
very crucial: the verifier must decrypt the ciphertext before it can determine
whether it is the result of the correct outsourced computation. Adopting such
a scheme in a BAP would make AS a decryption oracle. Leaking information
on the Hamming distance may be exploited to perform further attacks that
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might lead to the full recovery of biometric templates as it has been recently
shown [17]. Formally speaking, we can say that the HE on top of VC is not a
chosen-ciphertext attack (CCA) secure scheme.

6 Conclusions

Biometric authentication protocols have gained considerable popularity for
access control services. Preserving the privacy of the biometric templates is
highly critical due to their irrevocable nature. Yasuda et al. proposed a biomet-
ric authentication protocol [23] using a SHE scheme. However, a hill-climbing
attack [1] has been presented against this protocol that relies on a malicious
internal computation server CS that performs erroneous computations and leads
to the disclosure of the biometric reference template. We counter the aforemen-
tioned attack by constructing a new scheme named BFR+SHE which adds a veri-
fiable computation layer to the SHE scheme. We then describe a modified version
of the Yasuda et al. protocol that utilizes our BFR+SHE scheme, and demon-
strate that the improved BAP provides higher privacy guarantees. Although
employing VC to mitigate hill-climbing attack techniques seems a quite straight-
forward step, we demonstrate that not all combinations of a VC scheme with a
HE one are secure, and show how a näıve combination leads to a drastic private
information leakage in BAP.
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A Details in the Correctness Analysis

In this section, we show the intermediate steps of the calculation.
The derived tags are:

σ1 = (C2 · y
(A)
0 , (Y (A)

1 )C2 , 1); σ2 = (C1 · y
(B)
0 , (Y (B)

1 )C1 , 1);
σ3 = (y(A)

0 · y
(B)
0 , (Y (A)

1 )y
(B)
0 · (Y (B)

1 )y
(A)
0 , e(Y (A)

1 , Y
(B)
1 ));

σ4 = (D · y
(A)
0 · y

(B)
0 , (Y (A)

1 )y
(B)
0 ·D · (Y (B)

1 )y
(A)
0 ·D, e(Y (A)

1 , Y
(B)
1 ))D;

σ5 = (C2 · y
(A)
0 + C1 · y

(B)
0 , (Y (A)

1 )C2 · (Y (B)
1 )C1 , 1);

σ6 =

⎛
⎜⎝

C2 · y
(A)
0 + C1 · y

(B)
0 + D · y

(A)
0 · y

(B)
0

(Y (A)
1 )y

(B)
0 ·D+C2 · (Y (B)

1 )y
(A)
0 ·D+C1

e(Y (A)
1 , Y

(B)
1 )D

⎞
⎟⎠

The homomorphic bilinear map calculation results are:

R1 = RC2
α ; R2 = RC1

β ; R3 = e(Rα, Rβ); R4 = e(Rα, Rβ)D;
R5 = RC2

α · RC1
β ; R6 = e(RC2

α · RC1
β , g) · e(Rα, Rβ)D.
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To prove that W = GroupEval(f,Rα, Rβ) satisfies Eq. (4), we start by
analysing the three factors that made up the righthand of the equation, namely:
e(g, g)yHD

0 · e(Y HD
1 , g)θ · (Ŷ (HD)

2 )θ2
.We in turn expand each one of the factors and

finally compute the product of the results, evaluating it against W .
The first factor can be expanded as:

e(g, g)yHD
0 = e(g, g)C2·y(A)

0 +C1·y(B)
0 +D·y(A)

0 ·y(B)
0 = e(g, g)C2α+C1β+αβD.

The second factor is expanded as:

e(Y HD
1 , g)θ = e((Y (A)

1 )y
(B)
0 ·D+C2 · (Y (B)

1 )y
(A)
0 ·D+C1 , g)θ

= e((Rα · g−α)(βD+C2)/θ · (Rβ · g−β)(αD+C1)/θ, g)θ

= e(RβD+C2
α · RαD+C1

β · g−2αβD−αC2−βC1 , g)

= e(Rα, g)βD+C2 · e(Rβ , g)αD+C1 · e(g, g)−2αβD−αC2−βC1 .

The third factor is expanded as:

(Ŷ (HD)
2 )θ2

= e(Y (A)
1 , Y

(B)
1 )Dθ2

= e((Rα · g−α)1/θ, (Rβ · g−β)1/θ)Dθ2

= e(Rα · g−α, Rβ · g−β)D = e(Rα, Rβ · g−β)D · e(g−α, Rβ · g−β)D

= e(Rα, Rβ)D · e(Rα, g)−βD · e(RB , g)−αD · e(g, g)αβD.

Here we need to prove the right hand side is equal to W . We use a temporary
variable P = e(g, g)yHD

0 · e(Y HD
1 , g)θ · (Ŷ (HD)

2 )θ2
to denote the expansion result of

the righthand-side. The expression below proves the correctness of the second
verification Eq. (4).

P = e(g, g)C2·α+C1·β+D·α·β · e(Rα, g)
βD+C2 · e(Rβ , g)

αD+C1 · e(g, g)−2αβD−αC2−βC1 ·
· e(Rα, Rβ)D · e(Rα, g)

−βD · e(RB , g)−αD · e(g, g)αβD

= e(g, g)0 · e(Rα, g)
C2 · e(Rβ , g)

C1 · e(Ra, Rb)
D

= e(RC2
α , g) · e(RC1

β , g) · e(Ra, Rb)
D

= e(RC2
α ·RC1

β , g) · e(Ra, Rb)
D = W.
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