
Secure Code Updates for Smart
Embedded Devices Based on PUFs

Wei Feng1(B), Yu Qin1(B), Shijun Zhao1, Ziwen Liu2(B), Xiaobo Chu1,
and Dengguo Feng1

1 Trusted Computing and Information Assurance Laboratory, Institute of Software
Chinese Academy of Sciences, Beijing, China

vonwaist@gmail.com
2 School of Software Engineering, South China University of Technology,

Guangzhou, China
ziwenliu@scut.edu.cn

Abstract. Code update is a very useful tool commonly used in low-end
embedded devices to improve the existing functionalities or patch discov-
ered bugs or vulnerabilities. If the update protocol itself is not secure, it
will only bring new threats to embedded systems. Thus, a secure code
update mechanism is required. However, existing solutions either rely on
strong security assumptions, or result in considerable storage and com-
putation consumption, which are not practical for resource-constrained
embedded devices (e.g., in the context of Internet of Things). In this
work, we first propose to use intrinsic device characteristics (i.e., Physi-
cally Unclonable Functions or PUF) to design a practical and lightweight
secure code update scheme. Our scheme can not only ensure the fresh-
ness, integrity, confidentiality and authenticity of code update, but also
verify that the update is installed correctly on a specific device without
any malicious software. Cloned or counterfeit devices can be excluded
as the code update is bound to the unpredictable physical properties
of underlying hardware. Legitimate devices in an untrustworthy soft-
ware state can be restored by filling suspect memory with PUF-derived
random numbers. After update installation, the initiator of the code
update is able to obtain the verifiable software state from device, and the
device can maintain a sustainable post-update secure check by enforcing
a secure call sequence. To demonstrate the practicality and feasibility,
we also implement the proposed scheme on a low-end MCU platform (TI
MSP430) by using onboard SRAM and Flash resources.

Keywords: Firmware update · Secure code update
Physically Unclonable Function (PUF) · Remote attestation
Embedded security

1 Introduction

With the rise of new trends like the Internet of Things (IoT), Industry 4.0, or
Industrial Internet, smart embedded devices are being increasingly used in var-
ious scenarios, such as industrial control, smart home, wireless sensor networks,
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 325–346, 2018.
https://doi.org/10.1007/978-3-030-02641-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_15


326 W. Feng et al.

etc. Firmware or code update is an important mechanism for these scenarios as it
offers many benefits [31,35]: fix bugs or vulnerabilities that have been disclosed
in the deployed devices; add new features or functionalities to system; enable or
disable product functionality in the field; reduce the number of product returns
to be handled. For example, as recently reported, Dyn DNS DDoS attack1 is
caused by a large number of IoT botnet nodes infected with the Mirai malware.
Code update mechanisms may be used to repair these embedded nodes without
having to recall or destroy these devices. However, if the update process itself
is vulnerable, it can be exploited by attackers to compromise the security of
embedded systems. As low-end embedded devices are resource-constrained and
often lack the security capabilities of general purpose computing platforms, it’s
difficult and challenging to design a secure code update mechanism for them.

A secure code update scheme for embedded systems should not only consider
a protocol for secure downloading, but also ensure that the newly downloaded
code is installed properly and its memory can be verified with the confidence that
no attacker or malicious code is involved. Ideally, a secure code update should
provide the following security attributes [31,35]: (1) Freshness, the downloaded
code is newest, not a simple replay or downgrading; (2) Integrity, the update
code installed on device is expected and unmodified; (3) Authenticity, the
update code comes from an authorized source and is loaded onto an authorized
device (cloning can also be detected), i.e., mutual authentication is needed; (4)
Confidentiality, the code may be an important intellectual property, which
should not be revealed to other parties; (5) Feasibility, the scheme is applicable
to existing commodity low-end embedded devices based on existing resources;
(6) Verifiability, after update installation, the software state of the updated
device should be verified and the verification result should be eventually fed back
to the source who issues the update; (7) Restorability, secure code update is
able to restore the software state of a compromised device; and (8) Secure Call,
only trustworthy code can be called and executed on the device after the update
process is complete, which aims to alleviate TOCTOU attack [14].

Currently, there are few solutions that can satisfy all these attributes. By
pointing out the inadequacies of existing techniques (hardware and software-
based attestation), Perito and Tsudik [42] introduced a new notion called Proofs
of Secure Erasure (PoSE) for secure code update, in which new code is down-
loaded onto an embedded device after secure erasure of all its prior state. PoSE
meets the integrity, feasibility and restorability attributes. However, other secu-
rity attributes are not supported. Furthermore, PoSE relies on strong security
assumptions [42], e.g., the adversary maintains complete communication silence
during attestation, and it also results in considerable energy and time overhead.
The follow-up researches [16,32] of PoSE all focus on reducing the communi-
cation and computation overhead, and rarely consider to improve the assump-
tions or strengthen security guarantees. Recently, Kohnhauser et al. [35] pro-
posed a novel secure code update scheme for mesh networked embedded devices,
which achieves much stronger security guarantees and satisfies most of the secu-

1 https://en.wikipedia.org/wiki/2016 Dyn cyberattack.

https://en.wikipedia.org/wiki/2016_Dyn_cyberattack


Secure Update for IoT Devices 327

rity attributes. Their method relies on three hardware security requirements:
immutable code, secure storage and uninterruptible execution. Nevertheless,
their method has the following flaws: (1) it uses the traditional secure storage
technology (like EEPROM, BBRAM or eFuse) for device secret or private keys,
which is expensive, inflexible and unsafe [39,53]; (2) it uses public-key cryptog-
raphy, which results in apparent storage consumption (66KB for signature) and
increased running time; and (3) it is vulnerable to device cloning attack and
TOCTOU attack.

Contributions. In this paper, we propose the first secure code update scheme
for current commodity low-end embedded devices by using Physically Unclon-
able Functions (PUFs). Firstly, our scheme reserves the design of secure era-
sure from PoSE; however, the prover does not need to download random data
as large as its own memory from the verifier. As an improvement, we fill the
prover’s memory with high entropy data derived from PUF. Additionally, we
don’t rely on the strong security assumption like communication silence. Sec-
ondly, as opposed to the latest method in ESORICS 2016 [35], we use PUF-based
secure key generation to replace traditional secure key storage, and use symmet-
ric cryptography and message authentication code (MAC) instead of public-key
cryptography to achieve confidentiality and authenticity. Thirdly, we design a
secure code update protocol based on reverse fuzzy extractor, which satisfies all
the security attributes mentioned above. To illustrate this, we conclude eight
possible security threats that may break these security attributes and show how
our scheme can be used to address them. Finally, we implement and evaluate our
protocol building blocks in a low-cost and general-purpose MSP430 MCU. The
evaluation results demonstrate the feasibility and validity of PUF-based secure
code update in low-end embedded devices.

Outline. In Sect. 2, we conclude the security threats and present some back-
ground knowledge about PoSE and PUF. In Sect. 3, we first give the system
requirements and adversary model, and then introduce our new proposal for
secure code update by using PUF. In Sect. 4, we implement and evaluate the
building blocks of our novel scheme using a MSP430 device. In Sect. 5, we
overview the related work, and we conclude the paper in Sect. 6.

2 Background and Preliminaries

2.1 Security Threats of Code Update

Code update involves a verifier V and a prover P . P is a generic embedded
device with constrained resources, e.g. a medical instrument, a wearable device
or an industrial control device. V is a more powerful computing device, e.g. a
smartphone, a laptop or a cloud platform. Secure code update can be viewed as
a means to ensure that a code update issued by a trusted V has been securely
distributed and correctly installed on P . Specifically, for secure code update, we
aim to provide measures to solve the following security threats [21,31,35]:



328 W. Feng et al.

Threat-1 Code Alteration. The binary code (or firmware image) distributed
by V is modified by attackers during the update process.

Threat-2 Code Reverse Engineering. Attackers intercept the binary image
code, and use the reverse engineering technique to analyze the func-
tionality and contents of the update image code.

Threat-3 Loading Unauthorized Code. The update binary code may be
created by an unauthorized party, and P is cheated to install the
unauthorized or malicious code.

Threat-4 Loading Code onto an Unauthorized Device. The code intended
for one device is installed on another, or the code generated by the
product manufacturer is loaded onto an unauthorized device.

Threat-5 Code Downgrading. An attacker in possession of an old code pack-
age may resend it to the device reverting it to a previous, possibly
vulnerable, state in order to exploit it.

Threat-6 Incomplete Update. A compromised device may simply deny the
execution of code update or execute it inappropriately without restor-
ing software integrity. And at the same time, V is cheated with a
response indicating a successful update.

Threat-7 TOCTOU (Time Of Check to Time Of Use). After a complete
update, the update code stored in the device may have been tampered
with when it’s called to run a specific embedded task.

Threat-8 Device Cloning. Attackers may simply copy the memory contents
(including code, data, secrets or keys, and other intellectual property)
and create a cloned device to replace the original one.

2.2 Proofs of Secure Erasure (PoSE)

While hardware-based attestation [8,41] is not practical for low-cost embedded
systems and software-based attestation [47] offers unclear security guarantees,
Perito and Tsudik [42] proposed a new technique called Proofs of Secure Erasure
(PoSE) for low-end embedded devices.

Fig. 1. Secure code update protocol based on PoSE

According to [42], PoSE can be used to implement a secure code update pro-
tocol, which we conclude in Fig. 1. Suppose the size of P ’s memory (all writable



Secure Update for IoT Devices 329

storage on the embedded device) is n, the verifier V first encrypts the update
code using a random key K ′. Upon receiving the ciphertext blocks {R1, ..., Rn},
P uses the last k-blocks of randomness as the key to compute a MAC (Message
Authentication Code) and sends the MAC to V . V verifies the MAC to ensure
that P ’s memory is reliably erased with the high entropy data (ciphertext) sent
by V . If MAC verified correctly, V sends the encryption key K ′ to P in order for
P to decrypt the ciphertext into the new code {C1, ..., Cn−k}. Both the perfor-
mance and security of the PoSE mechanism are not optimistic, and a detailed
analysis is given in the full version [18]. Our approach attempts to improve per-
formance and security without relying on any hardware modification.

2.3 Physically Unclonable Function and Reverse Fuzzy Extractor

A physically unclonable function (PUF) is an entity that uses manufacturing
variation to generate a device-specific output, which can be seen as the fin-
gerprint of a device [11]. Specifically [44], when queried with a challenge Ci, a
PUF generates a response Ri = PUF (Ci) that depends on both, Ci and the
unique IC intrinsic physical properties of the device containing PUF. The tuples
(Ci, Ri) are thereby termed the challenge-response pairs (CRPs) of the PUF.
PUFs are inherently noisy and their responses are not uniformly random, thus
some mechanisms are needed to correct noise and extract randomness from the
PUF responses. Depending on the computing power of the prover device, there
are two different mechanisms [10,23]: fuzzy extractor (FE) and reverse fuzzy
extractor (RFE). In the full version of the paper [18], we provide a detailed
description about FE and RFE. In our update protocol, we adopt RFE to
extract reconstructible random keys from PUF, in which FE.Gen (the gener-
ation procedure of FE) and FE.Rep (the reproduction procedure of FE) are
represented as follows:

(K,h) ← FE.Gen(R′) :

{r ← RNG(), CW ← Encode(r), h ← R′ ⊕ CW,K ← Ext(R′)}
K ← FE.Rep(R, h) :

{CW ′ ← R ⊕ h, r ← Decode(CW ′), CW ← Encode(r),K ← Ext(CW ⊕ h)}

Encode and Decode are two procedures included in the error correction. The ran-
dom extractor (Ext) is used to obtain a full-entropy key K from PUF response.
A random number generator RNG is used to choose a random codeword (CW ),
and CW only serves for error correction.

3 Secure Code Update Based on PUF

3.1 System Requirements and Adversary Model

Our system consists of (at least) two players: a verifier V and a resource-
constrained prover P . We denote the adversary with A. The main goal is to



330 W. Feng et al.

allow V to update the application code of P , while providing effective measures
to mitigate all kinds of security threats mentioned above.

Verifier V. We assume V to be trusted. Further, V initializes and deploys P in
a secure environment, extracts adequate (at least two) challenge-response pairs
(CRPs) from the PUF of P and stores them securely. V also keeps a copy of the
update’s binary code generated by the product manufacturer of P .

Prover P. We assume P to be equipped with a root of trust (RoT ), which
contains a robust and unpredictable PUF, a reverse fuzzy extractor, a random
number generator, a symmetric cryptographic algorithm, a secure one-way hash
function and a message authentication code. We also assume P has a static non-
volatile write-protected memory region R, which can be implemented based on
Flash memory with dedicated lock bits as described in [35]. We assume the RoT
code is stored in the protected region R isolated from the application code, and
once the RoT code in R gets executed, it cannot be interrupted until the control
flow intentionally leaves R. The difference from [35] is that R here doesn’t rely on
a traditional secure storage, which is replaced by PUF-based key generation. We
also assume the protection on R can be temporarily removed by RoT during
the update and is restored immediately after the update, which can also be
implemented on existing commercial embedded devices as described in [30]. It is
worth noting that the update of RoT code itself (infrequently) should be offline
in a secure environment.

Adversary A. We assume that A has complete control over the communication
channel between V and P . This means that A can eavesdrop, manipulate and
reroute all messages sent between V and P . We assume A cannot clone or tam-
per the PUF feature of P . Following the typical assumptions on PUF-based key
generation (like [10,23]), we assume that A cannot access the challenge-response
interface of PUF and cannot obtain temporary data (such as PUF-derived key
information) stored in registers or on-device RAM during the update protocol.
The temporary data can be erased by RoT immediately after the update pro-
tocol. In addition, we assume that A can be physically present and introduce
additional (cloned) prover device. Finally, we assume A cannot bypass any of
the hardware protections and cryptographic algorithms used in P . Data rema-
nence attacks and physical attacks are not considered in our mechanism. We
assume RoT code is immune from vulnerabilities, but the application code may
be vulnerable. The device debug interfaces are disabled after deployment.

3.2 Update Protocol

Our new code update protocol is described in Fig. 2, and the memory lay-
out of P during the protocol execution is illustrated in Fig. 3. V prepares a
code update package cupkg, which includes (at least) the binary update code
(cupkg.code), the current package version number (cupkg.ver), and the hash val-
ues over the expected memory contents for a successful update (cupkg.hash). P
stores the RoT code and the expected integrity data (consisting of cupkg.ver



Secure Update for IoT Devices 331

Fig. 2. Secure code update protocol based on PUF

and cupkg.hash) in the protected region R, and the integrity data can also be
updated securely by RoT during the protocol. Two PUF CRPs are used in the
protocol, one for encryption and the other for mutual authentication.

Before each update protocol, we assume a temporary session key (tsk) is
established between V and P by using a key exchange protocol (e.g., Diffie-
Hellman or ECDH). Liu et al [37] have presented an efficient implementation of
ECDH key exchange for MSP430 devices. tsk is mainly used to build a secure
channel, and {M}tsk denotes that a message M is encrypted with tsk. All the
exchanged messages are encrypted with tsk by using a symmetric encryption
algorithm. Specifically, the key features of the protocol can be summarized as
follows:

Fig. 3. Illustration of prover’s memory layout during protocol execution



332 W. Feng et al.

(1) Key Generation based on PUF and Reverse Fuzzy Extrac-
tor without Relying on Secure Storage. V randomly chooses two CRPs
(C1, R1) and (C2, R2), and sends the challenges to P . After receiving C1 and C2,
P reads the physical PUF responses R′

1 ← PUF (C1) and R′
2 ← PUF (C2),

and generates the secret key and helper data as (K1, h1) ← FE.Gen(R′
1),

(K2, h2) ← FE.Gen(R′
2). The helper data h1 and h2 are sent to V , and V

uses them to recover K1 ← FE.Rep(R1, h1) and K2 ← FE.Rep(R2, h2). In this
way, P doesn’t need to store keys with the help of NVM-based secure storage,
and can generate random keys on demand every time the protocol is started.

(2) Mutual Authentication based on K2 and MAC. Based on the
reproducibility property of PUF, V and P share the same keys K1 and K2 now.
We use K2 and MAC to achieve authentication. As the correct CRPs are only
known to the trusted V and the physical PUF embedded in P is unclonable and
unpredictable, no other party (e.g., A) can forge a valid key. Thus, the authen-
tication can be mutual. In detail, P generates a random nonce NP and sends
it to V . Once V receives NP , it uses K2 to create an authenticated message
δV ← MAC(K2,M1) where M1 contains the nonce NP and other exchanged
messages between V and P . δV serves as a signature, and prevents any modifica-
tions to the exchanged messages since P checks MAC(K2,M

′
1)? = δV . Similarly,

δP is an authenticated message created by P , and verified by V .
(3) Encryption Transmission and Secure Code Erasure based on

PUF. The code update package cupkg is encrypted by using K1 and symmet-
ric cryptography. Only P with a valid K1 can decrypt the encrypted package.
After P receives epkg, it first checks the authenticated message. If δV passes
the verification, P believes that the messages come from an authorized V . Then
P performs a secure code erasure (Algorithm 1): the encrypted package epkg is
used to overwrite the memory occupied by the old code, and the extra memory
space is filled with PUF-derived pseudorandom noises. The parameters K2 and
NV assure that the secure code erasure is device-specific and protocol-specific,
and no attackers can predict a valid memory layout. The use of cnt (inspired
by [51]) is convenient for V to reconstruct the prover’s memory layout and com-
pute expected integrity values in advance. Secure code erasure can also eliminate
possible malicious codes and restore P to a clean environment.

Algorithm 1: SecureErasure(epkg,K2,NV ).
Variables:

The counter value, cnt;
The extra memory range, [MemStart : MemEnd].

1 Mem(OldCode, size) ← epkg ;
2 cnt = 0;
3 for i = MemStart; i < MemEnd; i + + do
4 prandom ← Hash(K2, NV , cnt);
5 Mem[i] ← prandom;
6 cnt + +;

7 end



Secure Update for IoT Devices 333

(4) Local Code Integrity Attestation. After a secure code erasure, P
can decrypt epkg and finish the installation of the update binary code. In order
to attest an untampered and up-to-date software state, the RoT code in the
protected region R triggers a local attestation routine. As illustrated in Algo-
rithm2, the attestation routine uses cupkg to perform three checks: (1) check
whether the version number contained in cupkg is higher than the version num-
ber stored in R, (2) check whether the hash values in cupkg are different from
the values stored in R, and (3) check whether the hash values over all memory
regions match the expected integrity reference values specified in cupkg.hash
(denoted by CheckCodeIntegrity()). If all checks pass, the verification of code
update and software integrity is successful. Upon a successful verification, RoT
disables the protection on R and writes the newest integrity reference values
(cupkg.ver and cupkg.hash) into R. As the prover device has just performed
secure code erasure and integrity attestation, no malicious values can be written
into R at this moment. Once R is updated, RoT enables the write protection
immediately.

Algorithm 2: LocalAttestation(cupkg).
if (cupkg.ver ≤ R.ver) ∨ (cupkg.hash == R.hash) ∨ ¬CheckCodeIntegrity(cupkg.hash)
then

return False ;
else

Disable protection on R ;
UpdateR(cupkg.ver, cupkg.hash) ;
Enable protection on R ;
return True ;

end

(5) Verification Result Feedback and Secure Call. The result of local
integrity attestation is included in the computation of δP to ensure integrity,
and it is sent back to V along with δP . If δP is verified successfully, V can ensure
that the result comes from the correct P as no attackers can forge K2. According
to the feedback result, V knows whether P is in an up-to-date and unmodified
software state. After a successful update, RoT code in P will enforce a strict
white list policy to ensure a secure code call: the entry point of the update binary
application code is hardcoded in R, and each time the control flow is passed to
the application code only when CheckCodeIntegrity() returns True.

Since SRAM is used for PUF in implementation (Sect. 4), a reboot is needed
for each update protocol. In the experiment, we turn off the power manually
to implement a full power cycle to collect SRAM PUF data. The initial SRAM
values are used as R1 and R2 for each reboot, and RoT uses these values to
generate K1 and K2. RoT is always executed after device reset, and the whole
update process is handled by RoT. After the update, the keys are immediately
erased by RoT. RoT also decides if the application code can be executed. Thus,
we define a standard secure call sequence for P in Fig. 4.



334 W. Feng et al.

Fig. 4. Secure call sequence of P

Memory Integrity Check. If P ’s memory space is relatively large, we can
divide it into multiple small sections and use hash tree (or Merkle tree) [19] to
implement memory integrity check (CheckCodeIntegrity()). Figure 5 illustrates
an example of a binary hash tree, in a setting where the memory is divided into
four sections, denoted by S1, S2, S3 and S4. The hash values of these sections
are the leaves, and a parent is the hash of the concatenation of its children.
Only hroot (the root of the tree) is stored in the protected region R. Before each
update, V must decide the size of each section, and prepare a bran-new hash
tree as the integrity reference value. During the update, all the sections should
be checked, i.e., RoT should compute:

Hash(Hash(Hash(S1),Hash(S2)),Hash(Hash(S3),Hash(S4))).

Fig. 5. A binary hash tree. Hash values of each memory section are aggregated to the
root of the tree.

All intermediate values during the computation should match the hash values
in the tree (including all nodes). After a succssful check, the root value hroot is
written into R, and other hash values are stored in the mutable memory along
with the code. As the check of the entire memory is time-consuming, the hash
tree method also supports to check the integrity of a specific memory section
(e.g., the memory section containing the application code). For example, to check
the integrity of S1, RoT only needs to read S1, h2 and h6, and the resultant
aggregation value Hash(Hash(Hash(S1), h2), h6) is compared to hroot.

3.3 Analysis

The security of reverse fuzzy extractor is described in [23]. In this section, we
mainly focus on the analysis of security threats (Sect. 2). We also give some
comparisons and discussions about our method.



Secure Update for IoT Devices 335

Our mechanism can defend against all mentioned security threats, and the
specific analysis is as follows:

(1) Code Alteration. For each update, a local attestation is used to check
the code integrity and any changes to the update binary code will be found.

(2) Code Reverse Engineering. It is almost impossible to absolutely guar-
antee the code confidentiality. Our main goal is to prevent code extraction
during the network transmission and increase the difficulty of breaking the
prover device P . As shown in Fig. 2, the communication channel only dis-
closes epkg, which is encrypted with PUF-based key K1. As we assume
PUF is secure, A cannot decrypt epkg. Moreover, secure code erasure can
remove any malicious code in P during the update, and at other times,
RoT maintains a secure code call by enforcing a strict white list policy.
Thus, it’s difficult for A to break P and extract the update code.

(3) Loading Unauthorized Code. The update binary code is included in
epkg, which is sent to P along with δV . epkg is created based on K1 and δV
is generated based on K2. Since K1 and K2 originate from the PUF of the
same prover device P , it can be inferred that epkg is from an authorized V if
δV is verified successfully by P . If an unauthorized epkg (created randomly
or using a malicious key) arrives at P , its decryption is meaningless and
cannot pass the verification of a local integrity attestation.

(4) Loading Code onto an Unauthorized Device. Due to the uniqueness
and unpredictability of PUF, an unauthorized device cannot derive a cor-
rect decryption key K1 and thus cannot install a update code intended for
another device.

(5) Code Downgrading. An ascending version number cupkg.ver is included
in each code update package cupkg, the attestation routine will check the
version number.

(6) Incomplete Update. Firstly, the result of LocalAttestation is included in
δP , and thus V can ensure the integrity and authenticity of the feedback
result. Secondly, RoT resides in the protected region R which is write-
protected and execution-uninterruptible, the only entry to RoT is reset,
and the only chance to write R is after a secure code erasure and an
integrity check CheckCodeIntegrity(). Since the feedback result and δP
are created by RoT, the result True indeed indicates a complete update
and the result False illustrates the other situations.

(7) Alleviating TOCTOU. It’s difficult to completely prevent TOCTOU,
e.g., runtime attacks may break our system easily, which are not dis-
cussed here. Our mechanism uses the post-update defense to alleviate the
TOCTOU attack, which is not considered in previous update mechanisms.
During each update, the code is checked in the local integrity attestation
routine and the newest reference values are written to R. After update
(post-update defense), RoT checks the integrity of application code by
using the newest reference values to run CheckCodeIntegrity() each time
the application code is called. If the code has been tampered with, RoT
will never give the system control to the code. In this case, RoT could
trigger a new update protocol.



336 W. Feng et al.

(8) Device Cloning. Even if A obtains all the memory contents (including
RoT code) of an authorized prover device, it cannot copy or clone a similar
device to pretend to be a legitimate P because A cannot clone a physical
PUF or predict the responses of a particular PUF.

(9) Control-flow Attack. Our system provides no control flow integrity, and
we assume RoT code is immune from vulnerabilities. But the application
code may be compromised, we need to prevent application code from jump-
ing to the RoT code arbitrarily. We can achieve this by enforcing a single
well-defined entry point to RoT code in the ARMv8-M architecture [52].
Or in other devices, we can use software fault isolation [45] to sandbox the
application code.

(10) Physical Adversary. Due to the unclonability and unpredictability of
PUF, a physical clone or replacement of a valid prover device will be found.
However, we cannot defend against other physical attacks, such as repro-
gramming the whole flash memory, data remanence of SRAM, or invasive
attacks with micro-probing. Possible solutions to mitigate physical adver-
sary contain the heartbeat protocol in DARPA [27].

Comparison with PoSE [42] and [35]. Our comparison with recently proposed
update mechanisms mainly covers five aspects: the dependent assumptions, the
supported security attributes, the ability to resist all mentioned security threats,
the main communication and computation costs. As shown in Table 1, our mech-
anism has the following advantages: (1) Don’t rely on a traditional secure stor-
age; (2) Resist all 8 security threats by providing security attributes like mutual
authentication, confidentiality (or secrecy), integrity, unclonability and secure
call; (3) The message transmitted from V to P is the size of the update binary
code, and the extra memory of P is filled with PUF-derived pseudorandom
numbers; and (4) Use symmetric cryptography and MAC instead of public-key
cryptography and signature, which is more suitable for low-end embedded sys-
tems.

Comparison with Remote Attestation. Remote attestation mechanisms are
mainly used for verifying the software integrity of a remote device. Our update
mechanism not only verifies the integrity of a remote device after an update
installation, but also needs to ensure the correctness, freshness, confidentiality
and authenticity of code update. Schulz et al. [44] gave a lightweight remote
attestation by combing software-based attestation and PUF. PUFatt [36] imple-
mented Schulz’s idea by presenting a novel PUF design (called ALU PUF) based
on the delay difference in two different arithmetic and logic units (ALUs). These
works mainly focused on remote attestation, and did not consider secure code
update. Furthermore, ALU PUF needs to change the microprocessor of device
and is not available in current embedded devices. Researches (like SMART [17],
Sancus [40], TyTAN [13], etc.) all tried to propose lightweight secure architecture
for embedded devices, which can be used to implement remote attestation (also
called hybrid attestation by [1]). In our opinion, these architecture can be eas-
ily extended to implement secure code update although none of them mentioned



Secure Update for IoT Devices 337

Table 1. Comparison.

Our mechanism [42] (ESORICS 10) [35] (ESORICS 16)

Assumptions Immutable Code,
uninterruptible
execution and a
robust and
unpredictable PUF

Immutable code
and secure
communication (P
only communicates
with V and no
other party)

Immutable code,
secure storage and
uninterruptible
execution

Security Attributes
Supported

Freshness,
Integrity,
Authenticity,
Confidentiality,
Feasibility,
Verifiability,
Restorability and
Secure Call

Integrity,
Feasibility and
Restorability

Freshness,
Integrity,
Authenticity,
Feasibility,
Verifiability, and
Restorability

Resisting Security
Threats

Threat-1, 2, 3, 4, 5,
6, 7, 8

Only Threat-1 Threat-1, 3, 5, 6

Communication
costs

The size of cupkg The size of P ’s
writable memory

The size of cupkg

Computation costs Symmetric
cryptography,
MAC, Hash, RFE

Symmetric
cryptography,
MAC, Hash

Symmetric and
Asymmetric
cryptography,
Signature and
verification, Hash

this. However, all hybrid attestation schemes need some hardware modifications,
which are not available commercially. Our secure code update mechanism can
be applicable using existed resources in current commodity embedded devices.

Limitation. Firstly, our method requires that the prover device must have
enough SRAM space, meeting the memory requirements for PUF and program
variables at the same time. For low-end embedded devices, we may consider
increasing the size of SRAM memory or exploring new PUF primitives (like
Flash-based PUF [50]). Secondly, the scalability of our scheme is not good. To
update multiple devices in a large network, V has to establish an update protocol
for each individual device. Even if all devices have the same configuration (that
is, the same cupkg), V must prepare different hash reference values and different
encryption package epkg for different devices. Our future work will be focused on
the design and implementation of a scalable and lightweight secure code update
mechanism based on PUF. A preliminary idea is to combine PUF physical prop-
erties with attribute-based encryption (ABE) [2], where PUF responses can be
viewed as specific attributes associated with a decryption key.

Discussion. Helfmeier et al. [22] used a Focused Ion Beam (FIB) circuit edit
(CE) to successfully produce a physical clone of a SRAM PUF. Although we



338 W. Feng et al.

assume a ‘good’ PUF in the adversary model, it’s better to strengthen SRAM
PUF with synthesized logic as recommended in [22] or adopt other PUF instances
(like Flash-based PUF [50]) for high-security applications. Recently, data rema-
nence attack [4] brought a new threat to SRAM PUF, but the attack needs a
harsh condition (low-temperature between −110 ◦C and −40 ◦C). Verifying the
temperature using the sensors within embedded devices before each update may
mitigate this attack. Note that, our work is not to design an ideal PUF, but to
use PUF to design a secure code update mechanism. Actually, any PUF instances
can be used in our update protocol. In addition, we adopt SRAM PUF because
SRAM is ubiquitous in various computing devices and there are no modeling
attacks currently found against weak PUFs. But we have to assume A cannot
access the challenge-response interface of the PUF and cannot obtain temporary
data stored in volatile memory during the update protocol. Although this is a
strong assumption (the assumption is also used in other literatures like [10,23]),
it is necessary because no secure execution environment (like TEE) exists in
current embedded devices. However, this assumption can be improved by forc-
ing memory access control based on a Memory Protection Unit (MPU) [13,34]
or using other techniques such as obfuscation and white-box cryptography. We
adopt reverse FE due to less performance overhead, actually any FEs (like a
computationally secure FE [15]) can be used if they are more effective. Finally,
our work mainly focuses on providing security without changing hardware for
legacy devices. However, in many embedded scenes, modifying hardware is nec-
essary to provide strong security, and we think ARM TrustZone technology in
ARMv8-M architecture will be a good choice.

4 Implementation and Performance Considerations

Setup. We implement and evaluate our proposed secure code update scheme
on a MSP-EXP430G2 LaunchPad Development Board. The board is a com-
plete USB-based development and experimenter tool from Texas Instrument
with a MSP430G2553 MCU by default. The key features of the MSP430G2553
MCU include [29]: ultralow-power, von-Neumann architecture; 16-bit RISC CPU
(up to 16 MHz); 16 KB of programmable Flash; 512 bytes of SRAM.

We use the on-board SRAM as the source of entropy to implement the PUF
and random number generator (RNG). For reverse fuzzy extractor (RFE ), we
adopt the BCH error correction code to eliminate noises and use a hash func-
tion as an entropy accumulator to generate unpredictable random keys. We
implement the hash function using SHA256, while the symmetric algorithm uses
128-bit AES. The MAC computation is implemented by using the construct of
HMAC-SHA256. As no hardware acceleration is supported in MSP430G2553,
all of the cryptographic algorithms are implemented in software based on [28].
As 512B SRAM is relatively small, our implementation is based on the follow-
ing guidelines: (1) Use more constants and Flash space; (2) Use fewer variables
and RAM space; (3) Initial SRAM values are written to Flash used for PUF and
RNG, and the actual SRAM space is reserved for global and local variables (.bss,



Secure Update for IoT Devices 339

.data and .stack). Our time performance is measured in clock cycles. As we set
the clock frequency to 1MHz, m cycles are equal to m/1, 000, 000 seconds. Our
evaluation code (in python) and data for PUF are uploaded to the Github2.

SRAM PUF and SRAM RNG. We collect the startup SRAM values from
two different MSP430G2553 devices, each measured over 50 power cycles. Based
on these data, we first evaluate the robustness, uniqueness and randomness of
SRAM PUF by analyzing the min-entropy and Hamming distance. For robust-
ness, we compute the intra-chip Hamming distance (HDIntra) between repeated
measurements of SRAM cells from the same chip. The resulting HDIntra is 260
(260/4096 = 6.3%) at average, and 743 (743/4096 = 18%) at worst. For unique-
ness, we compute the inter-chip Hamming distance (HDInter) and min-entropy
over the measurements from different chips. The average ratio for HDInter is
42.3%, and the min-entropy rate is 87% which means the average min-entropy
per bit is 0.87. For randomness, we compute the min-entropy over 50 repeatedly
measured SRAM values from the same chip, which gives an average min-entropy
rate of 7.76%. This means that we need at least 1/7.76% = 12.88 SRAM cells to
obtain one random bit. These evaluated results show a well-featured PUF.

4096-bit (=512B) SRAM space is allocated as follows: 2628 bits are used to
generate two PUF CRPs, and the remaining 1468 bits are used to derive random
numbers. The address spaces are separated to avoid direct correlation between
PUF and RNG. As only two CRPs can be used in each device, C1 and C2 needs
not to be transmitted over the network. Using multiple CRPs corresponds to
storing multiple session keys. It means that we have two default session keys.
Additionally, we use 256 bits SRAM to derive a 16-bit random nonce, which
is achieved by XORing adjacent bytes 16 times. Thus, 5 (1468/256) random
numbers can be used for each power cycle. Aysu et al. [10] showed that the
SRAM data can pass all experiments in the NIST statistical Test Suite after 8-
fold XORing, thus our 16-fold XORing is random enough. RNG is implemented
in assembly by using only two registers (one for the start address of SRAM RNG
and the other for the xor result). The code size of RNG is 56 bytes and it takes
44 clock cycles to output one random number. Theoretically, a random extractor
should be used instead to generate RNG, we choose XOR due to low overhead
and Aysu’s experience in [10].

Reverse Fuzzy Extractor. A BCH(n, k, d = 2t+1) [39] code allows to correct
errors up to t-bit within a n-bit block. We customize a BCH(127,15,53) based
on the open source code3, which can correct up to 20.5% noisy bits (greater
than the worst SRAM noise level of 18%). As the average min-entropy rate for
uniqueness is 87%, 1314 (2628/2) bits SRAM data contains 1143 (1314×0.87)
bits entropy. We use 1143 bits PUF entropy in 9 blocks of a BCH(127,15,53)
code, and 1008(=(127−15)×9) bits are leaked in the helper data. The remaining
entropy is 135 (=1143−1008) bits, which are enough for a 128-bit key. We use
SHA256 to hash the PUF response, and the 256-bit result is 2-XORed to obtain

2 https://github.com/vonwaist/PUFRNG.
3 http://www.eccpage.com/.

https://github.com/vonwaist/PUFRNG
http://www.eccpage.com/


340 W. Feng et al.

a 128-bit key. We assume that a single bit flips with a probability of Perror = 7%
(greater than the average HDIntra), then the probability that 27 bits or more
will flip in a 127-bit block is Pblock =

∑n=127
i=27

(
127
i

)
P i
error(1 − Perror)(127−i) ≈

1.87 × 10−7, and thus the error cannot be corrected in this case. For 9 blocks of
a BCH(127,15,53) code, the probability that a key can be fully reconstructed is
Pcorrect = (1 − Pblock)9 > 1 − 1.69 × 10−6.

The PUF and RFE.Gen are implemented in C with a code size of 3274 bytes,
and it also uses 768 bytes constant space and 426 bytes variable space. To save
RAM, we pre-compute the coefficients of the generator polynomial, log table
and antilog table of the Galois field GF(2m), and store these parameters as the
constants in the flash memory. The implementation contains four steps: read
SRAM values to generate a 1314-bit PUF response (it takes 1471 cycles); use
SHA256 and 2-XORing to generate a 128-bit key (it takes 290,951 clock cycles);
BCH Encoder for 9 blocks (it takes 585,504 clock cycles); write the result to
Flash (132,982 cycles).

Symmetric Algorithm, Hash and MAC. There is a decryption operation for
each update protocol, and we adopt 128-bit AES algorithm. The code size of Dec
is 910 bytes, and the memory requirements for its constants and variables are
522 bytes and 119 bytes, respectively. To decrypt a 128-bit cipher text, Dec takes
about 23,487 CPU cycles. The hash function is SHA256, and its implementation
costs 1530 bytes of code size, 288 bytes of constant space and 271 bytes of variable
space. The performance of SHA256 depends on the specific input size, e.g., 96,617
cycles for 50-byte input, 291,040 cycles for 150-byte. HMAC is implemented
based on SHA256, and its code size is 2348 bytes. For a 16-byte message, HMAC-
SHA256 takes about 392,174 clock cycles. As many MCUs support cryptographic
hardware security4, the performance can be improved further.

Secure Erasure and Local Attestation. Two algorithms SecureErasure()
and LocalAttestation() are both implemented based on SHA256. The code size of
SecureErasure() is 2,568 bytes, and the number of clock cycles it takes to erase a
512B flash section is 1,615,880. The main time consumption of SecureErasure()
is caused by SHA256 computation and Flash write operation. The primary role
of LocalAttestation is CheckCodeIntegrity(), which is also the most time-
consuming part. CheckCodeIntegrity() computes the hash value of a given
memory block and compares it with the reference value, and it takes about
292,422 clock cycles for a 128-byte application program code.

Protected Memory. In our method, write-protection is needed for storing the
version, reference hashes and RoT code, and we use existing hardware resources
in embedded devices to implement a static non-volatile write-protected region R.
In MSP430G2553, the hardware resources are Flash memory. According to [29],
the Flash memory of MSP430G2553 is partitioned into main and information
memory sections. The information memory has four 64-byte segments, and the
main memory has multiple 512-byte segments. The information memory can be
locked separately from the main memory with a LOCKA bit. When LOCKA is
4 http://www.ti.com/ww/en/embedded/security/index.shtml.

http://www.ti.com/ww/en/embedded/security/index.shtml


Secure Update for IoT Devices 341

set, the information memory is protected and cannot be written or erased. Thus,
RoT code can be stored in the information memory. As the size (256-byte) of
information memory in MSP430G2553 is smaller than the size of our RoT code,
our evaluation described above uses the main memory. However, this does not
affect the evaluation results because there are no other differences between the
information and main memory except for the lock bit.

In MSP430FR family [30], the protected hardware resources are FRAMs
similar for MPU. An FRAM is a non-volatile memory that can be read and
written like a standard SRAM. An MPU can be used to divide the device’s
main memory into three variable-sized segments with configurable read, write
and execute access. Furthermore, the protection of the second segment can be
temporarily removed when necessary by the bootloader, which can be used to
store and update the integrity reference hash values. Bootloader (similar to our
RoT ) locks the MPU settings before jumping to the application, preventing the
application from corrupting or overwriting the protected area. For the security
of PUF, we propose to allow only the RoT code to access the start-up values at
boot time, and after that the SRAM space is erased by RoT.

For uninterruptible execution, we suggest to disable the interrupt during the
execution of RoT code. Before the control is handed over to the applicaton
code, RoT enables the interrupt and at the same time checks the integrity of
application code and all interrupt handlers.

Comparison with Public-Key Cryptography. As the MSP430G2553 device
does not have enough resources to implement and run a ECC/RSA algorithm,
we compare our PUF-based AES encryption (with 128-bits key) with a RSA
encryption (with 2048-bits key) in a host environment. RSA is implemented
based on the open-source mbed TLS library5. For a 100-bytes plain message,
we test the two encryption operations 1000 times respectively. The min, max
and average runtime for PUF-based AES encryption are 0.023 ms, 1.927 ms,
and 0.0549 ms; and the runtime for RSA are 1.076 ms, 16.07 ms, and 1.37 ms.
Obviously, our method is more lightweight and more suitable for tiny embedded
devices. In the future, we plan to purchase a more rich embedded development
board (e.g., MSP430FR family) to make a more comprehensive comparison.

5 Related Work

Remote Attestation. Remote attestation can be categorized in three main
branches: hardware-based attestation, software-based attestation and hardware-
software co-design with minimum hardware requirements. Hardware-based attes-
tation relies on strong hardware features, such as TCG’s TPM [8,41], ARM
TrustZone [6] and Intel SGX [5], which are not supported on low-cost commod-
ity embedded devices. Software-based attestation [7,26,46,48] does not require
secure hardware and thus is well suitable for constrained embedded systems.

5 https://tls.mbed.org/.

https://tls.mbed.org/


342 W. Feng et al.

However, its security guarantee is weak. Between the two mechanisms, hardware-
software co-design [13,17,34,36,40] aims to build a dynamic trust anchor in a
low-end embedded device with minimal changes to existing MCUs. The trust
anchor established can be further used to design a scalable collective attestation
protocol (SEDA [9] and SANA [3]), meeting the global security requirements of
large groups of interconnected smart devices. In our opinion, all remote attes-
tation mechanisms can be used to strengthen secure updates, e.g., to verify the
code integrity after update. But a complete secure code update is more than a
remote attestation mechanism.

Secure Code Updates For Embedded Devices. SCUBA [47] is a secure
code update mechanism by using software-based attestation to ensure indis-
putable code execution (ICE) on a remote sensor node. PoSE [42] is a different
approach that can enable a prover device to convince a verifier that it has erased
all its memory. As the overhead of PoSE is relatively high, some researchers try
to explore effective skills to reduce the overhead including uncomputable hash
function [16], invert-hash PoSE and graph-based PoSE [33], and All or Nothing
Transforms [32]. Recently, Kohnhauser and Katzenbeisser [35] presented a novel
code update scheme which verifies and enforces the correct installation of code
updates on all commodity low-end embedded devices in a mesh network. To
address the security threats involved with the in-field firmware updates process,
Texas Instruments [21,30,31] proposes to integrate cryptographic algorithms and
security mechanisms into the bootloader of its ultra-low-energy MCUs.

SRAM PUF. The SRAM PUF was first introduced in 2007 by Holcomb et
al. [24,25] and Guajardo et al. [20] concurrently and independently. Holcomb
et al. [24,25] proposed to use SRAM physical fingerprints for identification and
generation of true random numbers in RFID tag circuits, while Guajardo et
al. [20] used initial SRAM values to design new protocols for IP protection on
FPGAs. To provide a viable alternative to costly protected non-volatile mem-
ory (NVM), Maes et al. [38] presented a low-overhead implementation of helper
data algorithm for SRAM PUFs using soft decision information. The SRAM
PUF was implemented and evaluated on a microcontroller in [12]. Researchers
from intrinsic-ID showed the construction of a FIPS 140-3 compliant random bit
generator based on SRAM PUF in [49], and presented a comparative analysis of
several types of SRAM memories from different technology nodes and demon-
strated the reliability and uniqueness of all the tested SRAMs when used as PUFs
in [43]. Aysu et al. showed in [10] that SRAM PUF can be used to design and
implement a provably secure protocol that supports privacy-preserving mutual
authentication.

6 Conclusion

In this paper, we presented a novel secure code update scheme for commod-
ity low-end embedded devices by combing the advantages of secure erasure and
physically unclonable function. We concluded eight security threats that may



Secure Update for IoT Devices 343

happen in secure code updates from the existing literature, and showed how our
scheme can be used to prevent or mitigate these threats. Our scheme doesn’t rely
on secure storage or secure communication. By using the symmetric cryptogra-
phy and lightweight construction of a reverse fuzzy extractor, our approach offers
acceptable communication and computation overhead. Finally, we also eliminate
the gap from the world of protocol theory to concrete realization through evalu-
ating all protocol components in a single TI MSP430 device. Our implementation
uses only on-board SRAM and the protected memory resources without requir-
ing any hardware modifications, which is applicable to a broad range of popular
low-end embedded systems.

Acknowledgments. The work has been supported by the National Natural Science
Foundation of China (No. 61602455 and No. 61402455). We thank anonymous reviewers
for their helpful comments. We specially thank Aurlien Francillon for his suggestions
on improving the paper.

References

1. Abera, T., et al.: Invited: things, trouble, trust: on building trust in IoT systems. In:
53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6 (2016)

2. Ambrosin, M., Anzanpour, A., Conti, M., Dargahi, T., Moosavi, S.R., Rahmani,
A.M., Liljeberg, P.: On the feasibility of attribute-based encryption on internet of
things devices. IEEE Micro 36(6), 25–35 (2016)

3. Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.-R., Schunter, M.:
SANA: secure and scalable aggregate network attestation. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS
2016, pp. 731–742. ACM, New York (2016)

4. Anagnostopoulos, N.A., Katzenbeisser, S., Rosenstihl, M., Schaller, A., Gabmeyer,
S., Arul, T.: Low-temperature data remanence attacks against intrinsic SRAM
PUFs. Cryptology ePrint Archive, Report 2016/769 (2016). http://eprint.iacr.org/
2016/769

5. Anati, I., Gueron, S., Johnson, S.P., Scarlata, V.R.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, vol. 13 (2013)

6. ARM. Arm security technology: Building a secure system using trustzone technol-
ogy. Technical report, ARM Technical White Paper (2009)

7. Armknecht, F., Sadeghi, A.-R., Schulz, S., Wachsmann, C.: A security framework
for the analysis and design of software attestation. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2013, pp.
1–12. ACM, New York (2013)

8. Arthur, W., Challener, D.: A Practical Guide to TPM 2.0: Using the Trusted
Platform Module in the New Age of Security. Apress, Berkely (2015)

9. Asokan, N., et al.: SEDA: scalable embedded device attestation. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS 2015, NY, USA, pp. 964–975 (2015)

10. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end design
of a PUF-based privacy preserving authentication protocol. In: Güneysu, T., Hand-
schuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 556–576. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 28

http://eprint.iacr.org/2016/769
http://eprint.iacr.org/2016/769
https://doi.org/10.1007/978-3-662-48324-4_28


344 W. Feng et al.

11. Bhm, C., Hofer, M.: Physical Unclonable Functions in Theory and Practice.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-5040-5

12. Bohm, C., Hofer, M., Pribyl, W.: A microcontroller SRAM-PUF. In: 5th Interna-
tional Conference on Network and System Security (NSS), pp. 269–273, September
2011

13. Brasser, F., El Mahjoub, B., Sadeghi, A.-R., Wachsmann, C., Koeberl, P.: TyTAN:
tiny trust anchor for tiny devices. In: Proceedings of the 52nd Annual Design
Automation Conference, DAC 2015, pp. 34:1–34:6. ACM, New York (2015)

14. Bratus, S., D’Cunha, N., Sparks, E., Smith, S.W.: TOCTOU, traps, and trusted
computing. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 14–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68979-9 2

15. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 5

16. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-19571-6 9

17. Eldefrawy, K., Francillon, A., Perito, D., Tsudik, G.: SMART: secure and minimal
architecture for (establishing a dynamic) root of trust. In: 19th Annual Network
and Distributed System Security Symposium, NDSS 2012, San Diego, USA, 5–8
February (2012)

18. Feng, W., Qin, Y., Zhao, S., Feng, D.: Secure code updates for smart embed-
ded devices based on PUFs. Cryptology ePrint Archive, Report 2017/991 (2017).
http://eprint.iacr.org/2017/991

19. Gassend, B., Edward Suh, G., Clarke, D., van Dijk, M., Devadas, S.: Caches and
hash trees for efficient memory integrity verification. In: Proceedings of the 9th
International Symposium on High-Performance Computer Architecture, HPCA
2003, Washington, DC, USA, p. 295 (2003)

20. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74735-2 5

21. Guillen, O., Nisarga, B., Reynoso, L., Brederlow, R.: Crypto-bootloader secure in-
field firmware updates for ultra-low power MCUs. Texas Instruments Incorporated
(2015)

22. Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.P.: Cloning physically unclonable
functions. In: 2013 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 1–6, June 2013

23. Van Herrewege, A.: Reverse fuzzy extractors: enabling lightweight mutual authen-
tication for PUF-enabled RFIDs. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 374–389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32946-3 27

24. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In: Proceedings of the Conference
on RFID Security, vol. 7 (2007)

25. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying
fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–
1210 (2009)

https://doi.org/10.1007/978-1-4614-5040-5
https://doi.org/10.1007/978-3-540-68979-9_2
https://doi.org/10.1007/978-3-540-68979-9_2
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-642-19571-6_9
http://eprint.iacr.org/2017/991
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-642-32946-3_27
https://doi.org/10.1007/978-3-642-32946-3_27


Secure Update for IoT Devices 345

26. Horsch, J., Wessel, S., Stumpf, F., Eckert, C.: SobTra: a software-based trust anchor
for ARM cortex application processors. In: Proceedings of the 4th ACM Conference
on Data and Application Security and Privacy, pp. 273–280. ACM (2014)

27. Ibrahim, A., Sadeghi, A.-R., Tsudik, G., Zeitouni, S.: DARPA: device attestation
resilient to physical attacks. In: Proceedings of the 9th ACM Conference on Secu-
rity and Privacy in Wireless and Mobile Networks, WiSec 2016, pp. 171–182. ACM,
New York (2016)

28. Texas Instruments Incorporated. C implementation of cryptographic algorithms,
SLAA547A-July 2013 (2013)

29. Texas Instruments Incorporated. MSP430x2xx family user’s guide, SLAU144J-
December 2004, Revised July 2013

30. Texas Instruments Incorporated. Crypto-bootloader (CryptoBSL) for MSP430FR
59xx and MSP430FR69xx MCUs, user’s guide, SLAU657-November 2015 (2015)

31. Texas Instruments Incorporated. Secure in-field firmware updates for MSP MCUs,
application report, SLAA682-November 2015 (2015)

32. Karame, G.O., Li, W.: Secure erasure and code update in legacy sensors. In: Conti,
M., Schunter, M., Askoxylakis, I. (eds.) Trust 2015. LNCS, vol. 9229, pp. 283–299.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22846-4 17

33. Karvelas, N.P., Kiayias, A.: Efficient proofs of secure erasure. In: Abdalla, M., De
Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 520–537. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10879-7 30

34. Koeberl, P., Schulz, S., Sadeghi, A.-R., Varadharajan, V.: TrustLite: a security
architecture for tiny embedded devices. In: Proceedings of the Ninth European
Conference on Computer Systems, EuroSys 2014, pp. 10:1–10:14. ACM, New York
(2014)

35. Kohnhäuser, F., Katzenbeisser, S.: Secure code updates for mesh networked com-
modity low-end embedded devices. In: Askoxylakis, I., Ioannidis, S., Katsikas, S.,
Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 320–338. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45741-3 17

36. Kong, J., Koushanfar, F., Pendyala, P.K., Sadeghi, A.-R., Wachsmann, C.: PUFatt:
embedded platform attestation based on novel processor-based PUFs. In: Proceed-
ings of the 51st Annual Design Automation Conference, DAC 2014, pp. 109:1–
109:6. ACM, New York (2014)

37. Liu, Z., Seo, H., Hu, Z., Hunag, X., Grosschadl, J.: Efficient implementation of
ECDH key exchange for MSP430-based wireless sensor networks. In: Proceedings
of the 10th ACM Symposium on Information, Computer and Communications
Security, ASIACCS 2015, pp. 145–153. ACM, New York (2015)

38. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft deci-
sion helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04138-9 24

39. Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-
based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33027-8 18

40. Noorman, J., et al.: Sancus: low-cost trustworthy extensible networked devices
with a zero-software trusted computing base. In: Proceedings of the 22nd USENIX
Conference on Security, SEC 2013, Berkeley, CA, USA, pp. 479–494 (2013)

41. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping trust in commodity computers.
In: 2010 IEEE Symposium on Security and Privacy, SP 2010, pp. 414–429. IEEE
Computer Society, May 2010

https://doi.org/10.1007/978-3-319-22846-4_17
https://doi.org/10.1007/978-3-319-10879-7_30
https://doi.org/10.1007/978-3-319-45741-3_17
https://doi.org/10.1007/978-3-642-04138-9_24
https://doi.org/10.1007/978-3-642-04138-9_24
https://doi.org/10.1007/978-3-642-33027-8_18
https://doi.org/10.1007/978-3-642-33027-8_18


346 W. Feng et al.

42. Perito, D., Tsudik, G.: Secure code update for embedded devices via proofs of
secure erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15497-3 39

43. Schrijen, G.-J., van der Leest, V.: Comparative analysis of SRAM memories used
as PUF primitives. In: Proceedings of the Conference on Design, Automation and
Test in Europe, DATE 2012, pp. 1319–1324. EDA Consortium, San Jose (2012)

44. Schulz, S., Sadeghi, A.-R., Wachsmann, C.: Short paper: lightweight remote attes-
tation using physical functions. In: Proceedings of the Fourth ACM Conference on
Wireless Network Security, WiSec 2011, pp. 109–114. ACM, New York (2011)

45. Sehr, D., et al.: Adapting software fault isolation to contemporary CPU archi-
tectures. In: Proceedings of the 19th USENIX Conference on Security, USENIX
Security 2010, p. 1. USENIX Association, Berkeley (2010)

46. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: SWATT: software-based attes-
tation for embedded devices. In: Proceedings of 2004 IEEE Symposium on Security
and Privacy, pp. 272–282, May 2004

47. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: SCUBA: secure code
update by attestation in sensor networks. In: Proceedings of the 5th ACM Work-
shop on Wireless Security, WiSe 2006, pp. 85–94. ACM, New York (2006)

48. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer:
verifying code integrity and enforcing untampered code execution on legacy sys-
tems. In: Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles, SOSP 2005, pp. 1–16. ACM, New York (2005)

49. van der Leest, V., van der Sluis, E., Schrijen, G.-J., Tuyls, P., Handschuh, H.:
Efficient implementation of true random number generator based on SRAM PUFs.
In: Naccache, D. (ed.) Cryptography and Security: From Theory to Applications.
LNCS, vol. 6805, pp. 300–318. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28368-0 20

50. Wang, Y., Yu, W., Wu, S., Malysa, G., Edward Suh, G., Kan, E.C.: Flash memory
for ubiquitous hardware security functions: true random number generation and
device fingerprints. In: Proceedings of the 2012 IEEE Symposium on Security and
Privacy, SP 2012, pp. 33–47. IEEE Computer Society, Washington (2012)

51. Yang, Y., Wang, X., Zhu, S., Cao, G.: Distributed software-based attestation for
node compromise detection in sensor networks. In: 26th IEEE International Sym-
posium on Reliable Distributed Systems, SRDS 2007, pp. 219–230, October 2007

52. Yiu, J.: White paper: ARMv8-M architecture technical overview (2015)
53. Zhao, S., Zhang, Q., Hu, G., Qin, Y., Feng, D.: Providing root of trust for arm

trustzone using on-chip SRAM. In: Proceedings of the 4th International Workshop
on Trustworthy Embedded Devices, TrustED 2014, pp. 25–36. ACM, New York
(2014)

https://doi.org/10.1007/978-3-642-15497-3_39
https://doi.org/10.1007/978-3-642-15497-3_39
https://doi.org/10.1007/978-3-642-28368-0_20
https://doi.org/10.1007/978-3-642-28368-0_20

	Secure Code Updates for Smart Embedded Devices Based on PUFs
	1 Introduction
	2 Background and Preliminaries
	2.1 Security Threats of Code Update
	2.2 Proofs of Secure Erasure (PoSE)
	2.3 Physically Unclonable Function and Reverse Fuzzy Extractor

	3 Secure Code Update Based on PUF
	3.1 System Requirements and Adversary Model
	3.2 Update Protocol
	3.3 Analysis

	4 Implementation and Performance Considerations
	5 Related Work
	6 Conclusion
	References




