
Srdjan Capkun
Sherman S. M. Chow (Eds.)

 123

LN
CS

 1
12

61

16th International Conference, CANS 2017
Hong Kong, China, November 30 – December 2, 2017
Revised Selected Papers

Cryptology and
Network Security

Lecture Notes in Computer Science 11261

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Srdjan Capkun • Sherman S. M. Chow (Eds.)

Cryptology and
Network Security
16th International Conference, CANS 2017
Hong Kong, China, November 30 – December 2, 2017
Revised Selected Papers

123

Editors
Srdjan Capkun
ETH Zürich
Zürich, Switzerland

Sherman S. M. Chow
Chinese University of Hong Kong
Shatin, Hong Kong

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-02640-0 ISBN 978-3-030-02641-7 (eBook)
https://doi.org/10.1007/978-3-030-02641-7

Library of Congress Control Number: 2018953695

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0001-7306-453X
https://doi.org/10.1007/978-3-030-02641-7

Preface

The 16th International Conference on Cryptology and Network Security (CANS) was
held in Shatin, Hong Kong, from November 29 to December 2, 2017, organized by the
Department of Information Engineering (IE), The Chinese University of Hong Kong
(CUHK), in cooperation with the International Association for Cryptologic Research
(IACR).

CANS is an established annual conference, focusing on all aspects of cryptology,
and of data, network, and system security, attracting cutting-edge results from
world-renowned scientists in the area. Earlier editions were held in Taipei (2001),
San Francisco (2002), Miami (2003), Xiamen (2005), Suzhou (2006), Singapore
(2007), Hong Kong (2008), Kanazawa (2009), Kuala Lumpur (2010), Sanya (2011),
Darmstadt (2012), Parary (2013), Crete (2014), Marrakesh (2015), and Milan (2016).

We received 88 submissions from 28 different countries/regions (one submission
was later withdrawn). The review was done via a rigorous double-blind peer review by
a Program Committee (PC) consisting of 58 experts from the fields of cryptology and
network security. The PC was assisted by 86 external reviewers. Each regular sub-
mission was assigned to four reviewers while a short-paper/poster submission was
assigned to three reviewers. For any PC co-authored submission, an additional reviewer
was assigned. In total, 351 reviews were submitted, around four on average per sub-
mission, with around 70% of the reviews prepared by the PC and the remainder by the
external reviewers. The PC decided to accept 20 regular papers (an acceptance rate of
22.72%) and eight short papers. The present proceedings volume contains revised
versions of all the papers presented at the conference.

The program featured two invited keynotes given by Ahmad-Reza Sadeghi (TU
Darmstadt, Germany) on “Hardware-Assisted Security: From PUF to SGX” and Nico
Döttling (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany) on
“Identity-Based Encryption from Standard Assumptions (or the Unexpected Virtue of
Garbled Circuits).” We also shared two joint invited talks with the co-located Inter-
national Conference on Information Theoretic Security (ICITS), which were “Physical
Assumptions for Long-Term Secure Communication” by Reihaneh Safavi-Naini
(University of Calgary, Canada) and “Secret Sharing Schemes: Some New Approaches
and Problems” by Huaxiong Wang (Nanyang Technological University, Singapore).
Special thanks go to Stanislaw Jarecki (University of California, Irvine, USA).

We would like to thank the authors for submitting their papers to CANS, as well as
the hard work of the PC and external reviewers for deciding the program. In particular,
we would like to thank Amir, Aurélien, Bogdan, David, Dominique, Hong-Sheng,
Jiang, Patrick, Stjepan, Tarik, and Vincenzo for volunteering to help the authors shape
the revised versions of the papers. We thank EasyChair for its excellent review plat-
form and Springer for its continuous support of CANS.

Organizing a conference is not an easy task. We would like to thank the general
chair, Kehuan Zhang, publication co-chairs, publicity co-chairs, session chairs, and the

supporting staff of the hosting department (IE at CUHK). This year, CANS was
co-located with ICITS. We would also like to thank the ICITS 2017 PC chair, Junji
Shikata, the general chair, Kenneth W. Shum, and the joint local organizing committee
of CANS 2017 and ICITS 2017. Finally, we would like to thank the organizing team of
CANS 2016 and the Steering Committee for helpful advice.

December 2017 Srdjan Capkun
Sherman S. M. Chow

VI Preface

Organization

CANS 2017 is organized by the Department of Information Engineering, The Chinese
University of Hong Kong, in cooperation with the International Association for
Cryptologic Research (IACR).

Program Co-chairs

Srdjan Capkun ETH Zürich, Switzerland
Sherman S. M. Chow Chinese University of Hong Kong, SAR China

General Chair

Kehuan Zhang Chinese University of Hong Kong, SAR China

Publication Co-chairs

Russell W. F. Lai Friedrich Alexander University, Erlangen Nürnberg,
Germany

Yongjun Zhao Chinese University of Hong Kong, SAR China

Publicity Co-chairs

Reza Azarderakhsh Florida Atlantic University, USA
Aniello Castiglione University of Salerno, Italy
Aanjhan Ranganathan ETH Zürich, Switzerland
Qian Wang Wuhan University, China

Steering Committee

Yvo Desmedt University of College London, UK and University
of Texas at Dallas, USA

Juan A. Garay Yahoo! Labs, USA
Amir Herzberg Bar-Ilan University, Israel
Yi Mu University of Wollongong, Australia
David Pointcheval CNRS and ENS Paris, France
Huaxiong Wang Nanyang Technical University, Singapore

Program Committee

Elli Androulaki IBM Research Zürich, Switzerland
Frederik Armknecht University of Mannheim, Germany

Man Ho Au Hong Kong Polytechnic University, SAR China
Lejla Batina Radboud University Nijmegen, The Netherlands
Iddo Bentov Cornell University, USA
Igor Bilogrevic Google, Switzerland
Kevin Butler University of Florida, USA
Bogdan Carbunar Florida International University, USA
Aniello Castiglione University of Salerno, Italy
Yingying Chen Rutgers University, USA
Yu Chen Chinese Academy of Sciences, China
Pietro Colombo University of Insubria, Italy
Bernardo David Tokyo Institute of Technology, Japan
Adam Doupe Arizona State University, USA
Aurélien Francillon EURECOM, France
Arthur Gervais ETH Zürich, Switzerland
Jinguang Han University of Surrey, UK
Gerhard Hancke City University of Hong Kong, SAR China
Amir Herzberg Bar-Ilan University, Israel
Vincenzo Iovino University of Luxembourg, Luxembourg
Ramya Jayaram Masti Intel, USA
Florian Kerschbaum University of Waterloo, Canada
Aggelos Kiayias University of Edinburgh, UK
Kwangjo Kim Korea Advanced Institute of Science and Technology,

South Korea
Tancrède Lepoint SRI International, USA
Ming Li University of Arizona, USA
Yao Liu University of South Florida, USA
Zhe Liu University of Luxembourg, Luxembourg
Matteo Maffei TU Vienna, Austria
Ivan Martinovic University of Oxford, UK
Daniel Masny University of California, Berkeley, USA
Rene Mayrhofer Johannes Kepler University Linz, Austria
Tarik Moataz Brown University, USA
Refik Molva EURECOM, France
Antonio Nicolosi Stevens Institute of Technology, USA
C. Pandu-Rangan Indian Institute of Technology Madras, India
Panos Papadimitratos KTH Royal Institute of Technology, Sweden
Stjepan Picek Katholieke Universiteit Leuven, Belgium
Michalis Polychronakis Stony Brook University, USA
William Robertson Northeastern University, USA
Pierangela Samarati Università degli Studi di Milano, Italy
Thomas Schneider TU Darmstadt, Germany
Dominique Schroeder Friedrich-Alexander-Universiät Erlangen-Nürnberg,

Germany
Stelios Sidiroglou Massachusetts Institute of Technology, USA
Elizabeth Stobert ETH Zürich, Switzerland
Willy Susilo University of Wollongong, Australia

VIII Organization

Patrick Tague Carnegie Mellon University, USA
Nils Ole Tippenhauer Singapore University of Technology and Design
Patrick Traynor University of Florida, USA
Mayank Varia Boston University, USA
Ding Wang Peking University, China
Qian Wang Wuhan University, China
David J. Wu Stanford University, USA
Jiang Zhang State Key Laboratory of Cryptology, China
Yinqian Zhang The Ohio State University, USA
Yongjun Zhao Chinese University of Hong Kong, SAR China
Yunlei Zhao Fudan University, China
Hong-Sheng Zhou Virginia Commonwealth University, USA

Additional Reviewers

Muhamad Erza Aminanto
Hyeongcheol An
Monir Azraoui
David Barrera
Carsten Baum
Mai Ben Adar - Bessos
Alastair Beresford
Simon Birnbach
Cecilia Boschini
Jonas Böhler
Guoxing Chen
Haibo Cheng
Joseph Choi
Rakyong Choi
Hui Cui
Joan Daemen
Daniel Demmler
Christoph Egger
Kaoutar Elkhiyaoui
Katharina Fech
Nils Fleischhacker
Benny Fuhry
Michael Goberman
Clémentine Gritti
Vincent Grosso
Hui Guo
Yiming Guo
Florian Hahn
Thomas Hayes

Kexin Hu
Michael Hölzl
Peng Jiang
Jongkil Kim
Panagiotis Kintis
Agnes Kiss
Russell W. F. Lai
Iraklis Leontiadis
Minghui Li
Wenting Li
Zengpeng Li
Hui Ma
Xinshu Ma
Giulio Malavolta
Vasily Mikhalev
Martín Ochoa
Giorgos Panagiotakos
Sikhar Patranabis
Tran Viet Xuan Phuong
Ania Piotrowska
Sebastian Poeplau
Rakyong Rakyong
Ruben Recabarren
Manuel Reinert
Joost Renes
Katerina Samari
Sarah Scheffler
Clara Schneidewind
Emily Shen

Matthew Smith
Najmeh Soroush
Martin Strohmeier
Fei Tang
Vincent Taylor
Sri Aravinda Thyagarajan
Orfeas Stefanos

Thyfronitis Litos
Alberto Trombetta
Yiannis Tselekounis
Binbin Tu
Cédric Van Rompay
Dimitrios Vasilopoulos
Damian Vizár
Boyang Wang
Chengyu Wang
Jun Wang
Christian Weinert
Harry W. H. Wong
Lei Wu
Kang Yang
Rupeng Yang
Jingyue Yu
Fan Zhang
Xiaokuan Zhang
Lingchen Zhao
Minghao Zhao
Xinjie Zhao
Dionysis Zindros

Organization IX

Local Organizing Committee

Jiongyi Chen
Shuaike Dong
Yixuan Ding
Russell W. F. Lai
Fang Liu
Lilian Lun
Jack P. K. Ma

Kenneth W. Shum
Menghan Sun
Raymond K. H. Tai
Shuyang Tang
Jiafan Wang
Xiuhua Wang
Harry W. H. Wong

Huangting Wu
Fenghao Xu
Zisang Xu
Hoover H. F. Yin
Jixzin Zhang
Tao Zhang
Yongjun Zhao

X Organization

Invited Talks (Abstracts)

Hardware-Assisted Security: From PUF
to SGX

Ahmad-Reza Sadeghi

TU Darmstadt, Germany
ahmad.sadeghi@trust.tu-darmstadt.de

Abstract. Protecting modern software with hardware-based security is becom-
ing increasingly more important in practice. We are witnessing this trend
through recent developments in the processor technology such as Intel’s SGX
and AMD’s SEV. Moreover, veteran hardware-based security technologies such
as Physically Unclonable Functions (PUFs), Trusted Platform Modules
(TPM) and ARM’s TrustZone are still evolving.
However, all these solutions suffer from various shortcomings: they are

afterthought and ad-hoc, require strong trust in manufacturers or their
involvement, not accessible to third party developers, not scalable, or vulnerable
to side-channel or runtime attacks.
On the other hand, academic research has aimed at addressing some of these

problems in the recent past by providing various security architectures such as
AEGIS, Bastion, Sanctum, Sancus, TrustLite, TyTAN, to name some. Unfor-
tunately, these solutions have not found their way into practice yet.
This talk summarizes some of the recent hardware-assisted security tech-

nologies, discusses their strengths and deficiencies and future directions.

Biography: Ahmad-Reza Sadeghi is a full professor of Computer Science at the TU
Darmstadt, Germany. He is the head of the Systems Security Lab at the Cybersecurity
Research Center of TU Darmstadt. Since January 2012 he is also the director of the
Intel Collaborative Research Institute for Secure Computing (ICRI-SC) at TU Darm-
stadt. He holds a Ph.D. in Computer Science from the University of Saarland, Ger-
many. Prior to academia, he worked in R&D of Telecommunications enterprises,
amongst others Ericsson Telecommunications. He has been continuously contributing
to security and privacy research. For his influential research on Trusted and Trust-
worthy Computing he received the renowned German “Karl Heinz Beckurts” award.
This award honors excellent scientific achievements with high impact on industrial
innovations in Germany. He is Editor-In-Chief of IEEE Security and Privacy Maga-
zine, and on the editorial board of ACM Books. He served 5 years on the editorial
board of the ACM Transactions on Information and System Security (TISSEC).

Identity-Based Encryption from Standard
Assumptions (or the Unexpected Virtue

of Garbled Circuits)

Nico Döttling

Friedrich-Alexander-University Erlangen Nürnberg

Abstract. Until recently, explicit constructions of identity-based encryption
(IBE) required considerably more structure or stronger assumptions than public
key encryption from similar assumptions. In this talk, a framework is presented,
which significantly facilitates the construction of IBE schemes and leads to new
constructions from weaker assumptions. The central tool is a new primitive
called compact One-Time Signatures with Encryption (OTSE), which turns out
to be equivalent with IBE. This primitive can be built from weak assumptions
such as the computational Diffie-Hellman problem (in groups without pairings),
the Factoring problem, the Learning-with-Errors problem (with the same
parameters as Regev-encryption) and the sub-exponentially hard
Learning-Parity-with-Noise problem. The main technique of our framework is a
novel non-black-box transformation from compact OTSE to both fully secure
IBE and selectively secure hierarchical IBE. This new technique critically relies
on garbled circuits and suggests new applications for this versatile primitive.

Biography: Nico Döttling studied computer science at the University of Karlsruhe
(now KIT) and also obtained his PhD in Karlsruhe under the supervision of Jörn
Müller-Quade. After that, he joined the crypto group of Aarhus University, working
with Ivan Damgård and Jesper Buus Nielsen. He then joined UC Berkeley as a postdoc,
supported by a scholarship of the DAAD, to work with Sanjam Garg. In 2016 he joined
the Friedrich-Alexander-University Erlangen Nürnberg as assistant professor. He was
the winner of the best-dissertation in computer-science award at KIT in 2014 and the
winner of best-paper awards at ProvSec 2015 and Crypto 2017.

Contents

Foundation of Applied Cryptography

Forward-Security Under Continual Leakage . 3
Mihir Bellare, Adam O’Neill, and Igors Stepanovs

Tightly-Secure PAK(E) . 27
José Becerra, Vincenzo Iovino, Dimiter Ostrev, Petra Šala,
and Marjan Škrobot

Processing Encrypted Data

On the Security of Frequency-Hiding Order-Preserving Encryption 51
Matteo Maffei, Manuel Reinert, and Dominique Schröder

Privacy-Preserving Whole-Genome Variant Queries. 71
Daniel Demmler, Kay Hamacher, Thomas Schneider,
and Sebastian Stammler

A New Secure Matrix Multiplication from Ring-LWE 93
Lihua Wang, Yoshinori Aono, and Le Trieu Phong

Predicate Encryption

Subset Predicate Encryption and Its Applications . 115
Jonathan Katz, Matteo Maffei, Giulio Malavolta,
and Dominique Schröder

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests. 135
Tim van de Kamp, Andreas Peter, Maarten H. Everts, and Willem Jonker

Credentials and Authentication

Revisiting Yasuda et al.’s Biometric Authentication Protocol:
Are You Private Enough? . 161

Elena Pagnin, Jing Liu, and Aikaterini Mitrokotsa

Towards Attribute-Based Credentials in the Cloud. 179
Stephan Krenn, Thomas Lorünser, Anja Salzer, and Christoph Striecks

Unlinkable and Strongly Accountable Sanitizable Signatures from
Verifiable Ring Signatures . 203

Xavier Bultel and Pascal Lafourcade

Web Security

Out of the Dark: UI Redressing and Trustworthy Events 229
Marcus Niemietz and Jörg Schwenk

A Paged Domain Name System for Query Privacy 250
Daniele E. Asoni, Samuel Hitz, and Adrian Perrig

Bitcoin and Blockchain

A New Approach to Deanonymization of Unreachable Bitcoin Nodes. 277
Indra Deep Mastan and Souradyuti Paul

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure. . . 299
Christos Patsonakis, Katerina Samari, Mema Roussopoulos,
and Aggelos Kiayias

Embedded System Security

Secure Code Updates for Smart Embedded Devices Based on PUFs 325
Wei Feng, Yu Qin, Shijun Zhao, Ziwen Liu, Xiaobo Chu,
and Dengguo Feng

A Privacy-Preserving Device Tracking System Using a Low-Power Wide-
Area Network . 347

Tomer Ashur, Jeroen Delvaux, Sanghan Lee, Pieter Maene,
Eduard Marin, Svetla Nikova, Oscar Reparaz, Vladimir Rožić,
Dave Singelée, Bohan Yang, and Bart Preneel

Anonymous and Virtual Private Networks

Oh-Pwn-VPN! Security Analysis of OpenVPN-Based Android Apps 373
Qi Zhang, Juanru Li, Yuanyuan Zhang, Hui Wang, and Dawu Gu

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 390
Nethanel Gelernter, Amir Herzberg, and Hemi Leibowitz

Wireless and Physical Layer Security

Practical Evaluation of Passive COTS Eavesdropping
in 802.11b/n/ac WLAN . 415

Daniele Antonioli, Sandra Siby, and Nils Ole Tippenhauer

A Novel Algorithm for Secret Key Generation in Passive Backscatter
Communication Systems . 436

Mohammad Hossein Chinaei, Diethelm Ostry, and Vijay Sivaraman

XVI Contents

Short Papers

A Provably-Secure Unidirectional Proxy Re-encryption Scheme Without
Pairing in the Random Oracle Model. 459

S. Sharmila Deva Selvi, Arinjita Paul,
and Chandrasekaran Pandurangan

Computational Aspects of Ideal (t, n)-Threshold Scheme of Chen, Laing,
and Martin . 470

Mayur Punekar, Qutaibah Malluhi, Yvo Desmedt, and Yongee Wang

(Finite) Field Work: Choosing the Best Encoding of Numbers
for FHE Computation . 482

Angela Jäschke and Frederik Armknecht

An Efficient Attribute-Based Authenticated Key Exchange Protocol 493
Suvradip Chakraborty, Y. Sreenivasa Rao,
and Chandrasekaran Pandu Rangan

Server-Aided Revocable Attribute-Based Encryption Resilient to
Decryption Key Exposure . 504

Baodong Qin, Qinglan Zhao, Dong Zheng, and Hui Cui

A New Direction for Research on Data Origin Authentication
in Group Communication . 515

Robert Annessi, Tanja Zseby, and Joachim Fabini

Modelling Traffic Analysis in Home Automation Systems 526
Frederik Möllers, Stephanie Vogelgesang, Jochen Krüger, Isao Echizen,
and Christoph Sorge

VisAuth: Authentication over a Visual Channel Using an
Embedded Image . 537

Jack Sturgess and Ivan Martinovic

Author Index . 547

Contents XVII

Foundation of Applied Cryptography

Forward-Security Under Continual
Leakage

Mihir Bellare1, Adam O’Neill2, and Igors Stepanovs1(B)

1 Department of Computer Science and Engineering,
University of California San Diego, La Jolla, USA

{mihir,istepano}@eng.ucsd.edu
2 Department of Computer Science, Georgetown University, Washington D.C., USA

adam@cs.georgetown.edu

Abstract. Current signature and encryption schemes secure against
continual leakage fail completely if the key in any time period is fully
exposed. We suggest forward security as a second line of defense, so that
in the event of full exposure of the current secret key, at least uses of keys
prior to this remain secure, a big benefit in practice. (For example if the
signer is a certificate authority, full exposure of the current secret key
would not invalidate certificates signed under prior keys.) We provide
definitions for signatures and encryption that are forward-secure under
continual leakage. Achieving these definitions turns out to be challenging,
and we make initial progress with some constructions and transforms.

1 Introduction

Classically, cryptography assumes secure endpoints and an insecure communica-
tion channel. Malware and sidechannel attacks bring the threat to the endpoints:
Information about keys stored on our system can be leaked or exfiltrated to the
adversary. Let us begin by reviewing two ways to address this for public-key
cryptography, namely forward security and leakage resilience.

Forward Security. The threat of exposure of a secret (signing or decryption) key
due to compromise of the system storing the key is not new. Forward security
(FS) was developed in the late 1990s as a way to mitigate the damage. The
idea of forward secure signatures was suggested by Anderson [5] and formalized
by Bellare and Miner (BM) [8]. Later Canetti, Halevi and Katz (CHK) [15]
formalized forward secure encryption. Subsequent work gave many schemes and
extensions.

Forward-security [5,8] introduced the key evolution paradigm: evolve the
secret key over time while keeping the public key fixed. At time period i, the
secret key is ski, and the signing algorithm (we will discuss signatures rather
than encryption as an example), applied to it and a message m, produces a
signature that is a pair (i, σ), meaning the time period is explicitly included
in the signature. At the start of time period i + 1, a (public) update function
is applied to ski to get ski+1, and ski is deleted from the system. An attack
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 3–26, 2018.
https://doi.org/10.1007/978-3-030-02641-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_1

4 M. Bellare et al.

compromising the system at some time i obtains ski, and automatically skj for
any j ≥ i since the update function is public. Security of signatures as defined
in BM [8] required that possession of ski does not allow forgery of signatures
with time period j—meaning ones of the form (j, σ)—for j < i. It follows that
possession of ski does not allow recovery of skj for j < i, meaning the update
function must be one-way.

The CA Example. What does FS buy us? An illustrative example is when the
signer is a certificate authority (CA). Assume the CA creates certificates using a
normal (not forward secure) signature scheme, with its (single, static) secret key
sk. Say that in time period 1, it creates a certificate (m,σ) for Alice, where m
is Alice’s certificate data (her pubic key and so on) and σ is the CA’s signature
on m. Suppose, in time period 168, the CA system is infiltrated by malware (a
realistic possibility) and sk is exposed. Discovering this, the CA immediately
revokes its public key. Now suppose in time period 169, Bob receives from Alice
the (valid!) certificate (m,σ) in a TLS connection. Finding the CA public key on
his revocation list, he will reject certificate (m,σ) as invalid and deny the TLS
connection. Security-wise, this is the right and necessary thing to do: there is
no way for Bob to know that (m,σ) is not a forgery. But the cost is enormous:
all certificates the CA had issued prior to the revocation (which could be many
years worth of certificates) must be discarded, and many TLS connections will be
rejected, causing serious disruption to web services. Time-stamping the signature
will not fix this, since, once the adversary has the secret key, it can forge the
time-stamp too.

But now suppose the CA used a forward secure signature scheme instead
of a normal one, so that the January 1st signature has the form (1, σ), Alice’s
certificate thus being (m, (1, σ)). The infiltration in time period 168 exposes
secret key sk168. As before, the CA revokes its public key, and now we consider
Bob receiving the certificate (m, (1, σ)) in time period 169. He sees the CA public
key on his revocation list, but he also sees the revocation is marked with time
period 168 > 1. Now he can safely accept the certificate (m, (1, σ)) and proceed
with the TLS connection, because forward-security guarantees that (m, (1, σ))
cannot be a forgery. That is, certificates created prior to the exposure are still
secure and valid. This is a significant advantage in the event of compromise.

Note that FS does not prevent (or even make more difficult) exposure of a
secret key. That is not its aim. Its aim is to mitigate the damage caused by an
exposure, if and when the latter occurs.

Leakage-Resilience. Motivated by sidechannel attacks, leakage resilience aims to
preserve security even if some information f(sk) about the secret key sk is leaked.
In the bounded memory leakage model of Akavia et al. [2] and extensions [21,39],
f is any function returning a number of bits enough short of the length |sk| of
sk. However if the adversary has some sidechannel capability, it may, over time,
gather enough bits to expose the entire key, and then security is lost. To protect
against this, Dodis et al. [19] and Brakerski et al. [14] propose the continual
leakage (CL) model. As in FS, the secret key is updated in each time period
while the public key stays fixed. In each time period i, the adversary may obtain

Forward-Security Under Continual Leakage 5

a bounded amount of leakage fi(ski) on the current secret key, yet security must
be maintained. The gain is that the sidechannel attack has limited time to attack
a particular key before it is updated, and once that happens it must effectively
start from scratch.

Security is parameterized by a leakage rate, the scheme being δ-CL if it
remains secure when the number of bits leaked in any period is restricted to at
most a δ fraction of the length of the secret key. Achieving δ-CL-security is not
easy. One subtlety is that the update function, unlike for FS, must be random-
ized. Secure schemes have been provided in [14,19] for the cases of encryption and
signatures, while other works looked at extensions to basic notions and treated
other primitives [4,11,17,18,27,32,34,35,38,40].

The Problem. Security in the CL model relies on the assumption that the amount
of leakage in a particular time period is bounded, in particular short of the length
of the key itself. If the entire key is leaked in some time period, security is lost
entirely. One could make updates more frequent to restrict the time the attacker
has to expose a key before it is updated, but, while this may be reasonable for
certain kinds of side-channel attacks, it may not be effective when the attack is
malware on your system that can directly exfiltrate the key. Also it is not clear
how to pick an update frequency or evaluate the security benefits of a choice.
We introduce forward-security under continual leakage as a way to maintain the
CL guarantee but add a second line of defense against full key exposure via FS.

Forward-Security Under Continual Leakage. We continue, as with both FS and CL,
to work in the model where the public key is fixed but the secret key evolves with
time, a public update function being applied to the period i key ski to produce
the next key ski+1. (Indeed it is surprising that FS and CL were not explicitly
connected prior to our work, given that they work in the same model.) The first
definition one might consider is to ask that the scheme be both (1) CL-secure,
and (2) FS-secure. We can do better. We ask that FS holds even under CL, in the
following sense. In our game, in any time period, the adversary get a bounded
amount of leakage fi(ski) on the key ski in that time period i, just as in CL.
Additionally, it can, in some time period i of its choice, expose and obtain the
entire secret key ski. The requirement is that of FS, namely security of usages
of keys skj for j < i. Note a FS+CL scheme defined in this way is both CL
(restrict attention to adversaries that do not make the full expose query) and
FS (restrict attention to adversaries that do make this query but do not leak
any information on prior keys). But it requires more than the two individually
because security of keys skj for j < i is guaranteed even when ski is known to
the adversary and the adversary has leakage on all the keys skj . As with CL,
security is parameterized by a leakage rate δ.

Within this template, the precise definition of security depends on the prim-
itive. In Sect. 3, we define key-evolving signature schemes and a notion of δ-
FUFCL security, for Forward Unforgeability under Continual Leakage. The defi-
nition is parameterized by the leakage rate δ. We also define key-evolving encryp-
tion schemes and a notion of δ-FINDCL security, for Forward INDistinguisha-
bility under Continual Leakage. As a tool in obtaining security against continual

6 M. Bellare et al.

leakage, Dodis et al. [19] introduced the notion of relations that are one-way
under CL, and in analogy, as a tool to obtain forward security under contin-
ual leakage, we define in Sect. 5 the notion of a δ-FOWCL relation, for Forward
One-wanness under Continual Leakage.

The Benefits. To see the benefits provided by forward security under continual
leakage over CL security alone, let us return to the CA example discussed above.
Suppose that the CA is concerned about leakage and uses a CL-secure signature
scheme in place of the normal secure signature scheme. Alice’s certificate, pro-
duced in time period 1, has the form (m, (1, σ)). Now suppose, due to malware
on the system in time period 168, the secret key sk168 is exposed, and the public
key revoked. Bob receives the certificate (m, (1, σ)) for a TLS connection in time
period 169. Seeing the CA’s public key on the certificate revocation list, he can-
not accept Alice’s certificate, because, in a CL scheme, possession of sk168 could
allow forgery of signatures for time period 1. Thus millions of certificates, issued
over years by the CA, suddenly become obsolete. The cost in disruption to web
services (gmail, amazon, ...) using TLS is huge. However if the scheme is FS+CL
secure, Bob can in confidence accept Alice’s certificate, because the revocation
period is 168 > 1. Thus we have provided leakage resilience with a second line
of defense that significantly mitigates damage caused by full key exposures.

Challenges. We would like to give FS+CL schemes for both signatures and
encryption, meaning a δ-FUFCL signature scheme and a δ-FINDCL encryp-
tion scheme. This is surprisingly challenging. The first thought one may have
is that perhaps some existing CL-secure scheme is already FS+CL. This is not
true, because all existing CL schemes update their secret keys by merely re-
randomizing them. So a full exposure of the key ski in some time period i results
in full recovery of the secret keys for all time periods, meaning that the schemes
are not even FS, let alone FS+CL. The complementary question is whether
any existing FS scheme happens to be FS+CL, but this seems evidently false
because existing FS schemes provide no security under leakage. One reason is
that the update functions are deterministic, and no scheme with a deterministic
update function can be CL secure. The latter is because otherwise an adversary
can repeatedly leak bits of a secret key skt for some future time period t, by
querying fi(ski) for functions fi that use ski to compute skt.

The natural next construction approach to consider is a modular one. We
have CL-secure schemes, and we have FS-secure ones. Is there some way to
combine a CL scheme with an FS one to get a FS+CL one? We do not know
a fully general way to do this, but our first scheme is obtained by a generic
transform of this ilk, as we now discuss.

Generic Transform from CL. Our constructions are summarized in Fig. 1. Our first
result is a generic transform of any CL scheme into a FS+CL one in the case of
signatures. FS+CL security is proven with no extra assumptions beyond the CL
security of the base scheme. We can now use existing CL signature schemes [14,
19]. Thus we obtain the first constructions of FUFCL signatures schemes.

Forward-Security Under Continual Leakage 7

Our generic transform is tree-based. To get a FS+CL signature scheme, we
use the binary tree FS signature construction from BM [8] with a (any) CL
scheme as the base scheme. A drawback of this transform, however, is that it
degrades the relative leakage parameter: If we start with a δ-CL scheme and
the number of time periods is T = 2d then we get a δ′-FS+CL scheme with
δ′ = δ/(d + 1). In particular we do not get a FUFCL signature scheme with
constant relative leakage.

Fig. 1. Proposed constructions of δ′-FUFCL key-evolving signature schemes, and δ′-
FINDCL key-evolving encryption schemes for different values of continual-leakage frac-
tion δ′ and for T time periods. We assume that T = 2d for some d ∈ N.

This approach does not work in the case of encryption. For example, it is
tempting to start from the CL HIBE of Lewko, Rouselakis and Waters [35] and
use it to build binary-tree encryption (BTE) following the construction of FS-
encryption from CHK [15], but this fails. The problem is that FS+CL security
of the resulting scheme requires that multiple nodes of the BTE construction
can be leaked on jointly, whereas the CL security of HIBE only buys us leakage
on each such node individually. We will construct a FINDCL encryption scheme
in a different way that leverages both the FUFCL signature scheme we have just
built and witness encryption, as we discuss next.

Transforms Using Witness Primitives. The second set of constructions extends the
paradigm of Dodis et al. [19]. They used a key evolution scheme that is one-
way under continual leakage to build CL-secure signatures and encryption. We
assume a key evolution scheme that is forward one-way under continual-leakage
(FOWCL KE). Then we present a unified paradigm to get FS+CL signatures
and encryption using, as an additional tool, WX, where the “W” stands for
“Witness” and X = S for signatures, and X = E for encryption. In other words,
we use witness signatures (WS) [7,16] to get FS+CL signatures, and witness
encryption (WE) [6,26,28] to get FS+CL encryption. In this case there is no
loss of relative leakage, meaning if we start with a δ-FOWCL KE scheme we get
δ′-FS+CL encryption and signature schemes with δ′ = δ.

To obtain FS+CL schemes from these results, we need to instantiate the
components. This means we need: (1) A FOWCL key evolution scheme (2) A WS
scheme to get FS+CL signatures and a WE scheme to get FS+CL encryption.
For (2), witness signatures as we define them in Sect. 5 are, as explained there,
easily obtained from NIZKs since they are just another name for signatures of
knowledge [7,16], different from the (impossible) witness signatures of GJK [29].

8 M. Bellare et al.

In other words, these are readily available under standard assumptions. Witness
encryption is more difficult since we do require (a weak form of) extractability.
For (1), we can get a FOWCL KE scheme by using the tree-based FUFCL
signature scheme obtained via our first (generic transform) result.

The main outcome from this is the first construction of a FINDCL encryption
scheme. The assumptions are any CL signature scheme (which yields a FUFCL
signature scheme via our tree-based construction, and thence a FOWCL KE
scheme as noted above) plus extractable witness encryption. Due to the use of
our tree-based construction, the relative leakage will again degrade compared
to that of the starting CL signature scheme, so we again fail to get FINDCL
encryption with constant relative leakage. Extractable witness encryption is also
a suspect assumption due to the negative results of Garg et al. [25], but we
view our construction as evidence that this approach has merit and as first step
toward ones under more plausible assumptions.

This paradigm can be used to get FUFCL signatures too, but with the instan-
tiation we have of the FOWCL KE scheme itself coming from our tree-based
FUFCL signature scheme constructed above, we would not obtain anything over
and above our generic transform result discussed above. But the transforms are
still interesting both for signatures and encryption because if it were possible
to find a FOWCL KE scheme withstanding constant relative leakage, we would
immediately get a FUFCL signature scheme and a FINDCL encryption scheme
with the same constant relative leakage, assuming the witness primitives. Thus
they help to reduce the problem of FS+CL signatures and encryption to the
single and hopefully simpler problem of FOWCL KE.

Related Work. Bounded leakage-resilience and its extensions were studied for var-
ious primitives including encryption and signature schemes in [2,3,13,20,21,24,
36,39]. Continual leakage-resilience (CL) was studied in [14,19,35]. In particular,
[14,19] provide CL signature schemes with leakage rate 1 − o(1) (i.e. arbitrarily
close to 1) in bilinear groups. These schemes can be plugged into our generic
transform described above. Extensions of the basic CL notions have been con-
sidered in [4,11,17,18,27,32,34,35,38,40], which yield further CL schemes.

After the initial schemes of BM [8], various follow-up works constructed
more efficient forward-secure signature schemes or gave other extensions, includ-
ing [1,10,31,33]. Malkin et al. [37] constructed forward-secure signatures for
an unbounded number of time periods. Unfortunately, their framework does
not allow to get FS+CL schemes by composing CL-schemes. Their composi-
tion methods require the secret key to contain various components (other secret
keys, and random seeds) that remain unchanged for a number of time periods.
If leakage on these parts of their secret key is allowed, then security is lost.

Leakage on updates, where leakage is allowed on the coins used in updating
keys, is considered in [17,22,34]. Our model and results are a first step that do
not allow leakage on updates. It is an interesting consideration for future work.

Forward-Security Under Continual Leakage 9

2 Preliminaries

Notation. We denote by λ ∈ N the security parameter and by 1λ its unary
representation. For i ∈ N we let [i] denote the set {1, . . . , i}. We let ε denote the
empty string. We denote the length of a string x ∈ {0, 1}∗ by |x|. By x ‖ y we
denote the concatenation of strings x, y. Algorithms may be randomized unless
otherwise indicated. Running time is worst case. “PT” stands for “polynomial-
time,” whether for randomized algorithms or deterministic ones. If A is an algo-
rithm, we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs
x1, . . . and assigning the output to y. We let y ←$ A(x1, . . .) be the result of
picking r at random and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the
set of all possible outputs of A when invoked with inputs x1, We say that
f : N → R is negligible if for every positive polynomial p, there exists λp ∈ N

such that f(λ) < 1/p(λ) for all λ ≥ λp. We use the code based game playing
framework of Bellare and Rogaway [9]. (See Fig. 2 for an example.) By GA(λ)
we denote the event that the execution of game G with adversary A and security
parameter λ results in the game returning true. Booleans are assumed initialized
to false and integers to 0.

NP-Relations. Relation R specifies a PT algorithm R.Vf. Witness verification
algorithm R.Vf takes an instance x ∈ {0, 1}∗ and a candidate witness w ∈ {0, 1}∗

to return a decision in {true, false}. For any x ∈ {0, 1}∗ we let R(x) = { w ∈
{0, 1}∗ : R.Vf(x,w) } be the witness set of x. We let L(R) = { x ∈ {0, 1}∗ :
R(x) �= ∅ } be the language defined by R. We say that R is an NP-relation, and
L(R) an NP language, if there exists a witness-length polynomial R.wl : N → N

such that R(x) ⊆ ⋃
�≤R.wl(|x|){0, 1}� for all x ∈ {0, 1}∗.

3 Forward Security Under Continual Leakage

In this section we consider key-evolving signature and encryption schemes, for
which we provide definitions of forward security under continual leakage. A key-
evolving scheme has a single public key pk, while its secret key evolves with time,
sk1 → sk2 → · · · → skT , where “→” is implemented by an update algorithm
and T is the number of time periods supported by the scheme.

In the continual leakage setting, in every time period t the attacker can
obtain leakage on the current secret key skt. The security requirement from
prior work [14,19] is that security under all keys be maintained. For this to be
achievable, the leakage on each key must be assumed to be bounded. But this
boundedness assumption is unrealistic, and in practice a key may leak entirely.
In this case, prior systems require and provide no security. We propose to add
forward security as a second line of defense, asking that even if a key skt∗ leaks
fully for any time period t∗, security under prior keys will not be compromised.
This brings important gains, for example, when signing certificates, that those
signed prior to the full exposure do not have to be revoked. Forward-security
under continual leakage, as we define it, simultaneously implies both security
under continual leakage and classical forward security.

10 M. Bellare et al.

We now define forward unforgeability under continual leakage (FUFCL) for
key-evolving signatures, and forward indistinguishability under continual leakage
(FINDCL) for key-evolving encryption. Security games for both are in Fig. 2.

Public and Secret Components of a Secret Key. We will parameterize security
notions of key-evolving schemes by a function δ : N → [0, 1] that, informally,
denotes the fraction of the secret key that may leak in every time period. How-
ever, the secret key may contain some information that is necessary only for
the key-evolving functionality of the scheme, but is not required to be hidden
for the security of the scheme. Therefore, it is not useful to consider a leakage
metric that compares different schemes based on the fraction of the entire secret
key that may be leaked per time period: this fraction might be very small just
because the secret keys of a particular scheme contain a lot of information that
is not required to be kept secret. We address this by requiring that all secret
keys used by key-evolving schemes can be parsed as a pair (pc, sc), where pc
denotes the public component of the secret key and sc denotes the secret compo-
nent of the secret key. We then define δ-leakage security of key-evolving schemes
to denote the fraction of the secret component of the secret key that may leak
in every time period. Our security games provide the public components of all
secret keys to the adversary for free.

Key-Evolving Signature Schemes. A key-evolving signature scheme KES speci-
fies PT algorithms KES.Kg, KES.Up, KES.Sig and KES.Vf, where KES.Vf is
deterministic. Associated to KES are the following polynomials: public-key
length KES.pkl : N → N, secret-key length KES.skl : N → N, public compo-
nent length of the secret key KES.pcl : N → N, secret component length of the
secret key KES.scl : N → N, message length KES.ml : N → N, signature length
KES.sigl : N → N, and the maximum number of time periods KES.T : N → N.
For λ ∈ N we require that any secret key sk ∈ {0, 1}KES.skl(λ) can be parsed
as a pair (pc, sc) containing a public component pc ∈ {0, 1}KES.pcl(λ) and a
secret component sc ∈ {0, 1}KES.scl(λ), such that KES.skl(λ) = KES.pcl(λ) +
KES.scl(λ). Key generation algorithm KES.Kg takes 1λ to return a public key
pk ∈ {0, 1}KES.pkl(1λ) and base (time period one) secret signing key sk1 ∈
{0, 1}KES.skl(λ). Key update algorithm KES.Up takes 1λ,pk, i and a secret key
ski ∈ {0, 1}KES.skl(λ) for time period i to return a KES.skl(λ)-bit secret key for
the next time period. Signing algorithm KES.Sig takes 1λ,pk, i, ski and a mes-
sage m ∈ {0, 1}KES.ml(λ) to return a pair (i, σ), where σ ∈ {0, 1}KES.sigl(λ) is a
signature of m under secret key ski. Signature verification algorithm KES.Vf
takes 1λ,pk,m, (i, σ) to return a decision in {true, false} regarding whether σ
is a valid signature of message m relative to public key pk and time period
i ∈ [KES.T(λ)]. Correctness requires that KES.Vf(1λ,pk,m, (i, σ)) = true for all
λ ∈ N, all m ∈ {0, 1}KES.ml(λ), all (pk, sk1) ∈ [KES.Kg(1λ)], all i ∈ [KES.T(λ)],
all sk2, . . . , ski satisfying skj ∈ [KES.Up(1λ,pk, j − 1, skj−1)] for 2 ≤ j ≤ i, and
all σ such that (i, σ) ∈ [KES.Sig(1λ,pk, i, ski,m)].

Forward Unforgeability Under Continual Leakage. Consider game FUFCL of Fig. 2
associated to a key-evolving signature scheme KES and an adversary A, where

Forward-Security Under Continual Leakage 11

Fig. 2. Games defining forward unforgeability of key-evolving signature scheme KES
under continual leakage, and forward indistinguishability of key-evolving encryption
scheme KEE under continual leakage.

Lk takes as input a Boolean circuit L : {0, 1}KES.scl(λ) → {0, 1}. For λ ∈ N let
AdvfufclKES,A(λ) = Pr[FUFCLA

KES(λ)]. We say that FUFCL adversary A is valid if it
makes at most one query to its Exp oracle, and this is its last oracle query. We
say that A is δ-bounded, where δ : N → [0, 1], if A makes at most δ(λ)·KES.scl(λ)
queries to Lk per time period. That is, leakage on the secret component of secret
key in any one time period is restricted to this number of bits. We say that KES
is δ-FUFCL (δ-forward unforgeable under continual leakage) if AdvfufclKES,A(·) is
negligible for all valid, δ-bounded PT adversaries A.

The game begins by picking a public key pk and base secret key sk1 for the
first time period. The adversary receives pk and the public component pc of the
secret key sk1. The current time period is t and the corresponding key, skt, is
the one under attack. The Sign oracle allows the adversary to obtain signatures
under the current key. The adversary may obtain leakage about the secret com-
ponent sc of the secret key skt via its leakage oracle Lk. The latter takes an
adversary-provided boolean circuit L : {0, 1}KES.scl(λ) → {0, 1} and returns L(sc)
as leakage. Note that the adversary is restricted to querying Lk with circuits

12 M. Bellare et al.

that output only one bit, but it may adaptively query the oracle multiple times
to leak more bits. At any point the adversary may call Up to advance the key
to the next stage, receiving as output the public component of the new secret
key. Calls to Sign, Lk and Up may be adaptively interleaved. At any time the
adversary also has the option of fully exposing the current secret key via its
Exp oracle. The time period in which it does this is denoted t∗. At that point
it is disallowed any further calls to its oracles and must terminate. To win it
must output a valid message-signature pair relative to a time period prior to
t∗, where valid means that the signature-verification algorithm KES.Vf accepts
it, and that the message-signature pair for the particular time period was not
previously received as an output of the Sign oracle. Adversary’s advantage is
the probability that it wins.

Security under all keys is guaranteed as long as adversary learns at most a δ
fraction of every secret key’s secret component. If leakage exceeds this amount
(modeled by an Exp query being made) then, rather than all being lost, forward
security is provided, meaning security of prior keys is maintained. Forward-secure
signatures as defined in [8] are the special case of FUFCL signatures for adver-
saries that make no Lk queries. Signatures that are secure against continual
leakage are the special case of FUFCL signatures for adversaries that make no
Exp queries. Thus our model unifies the two notions under the new goal of
forward unforgeability under continual leakage. Our definitions of key-evolving
signatures and continual-leakage security are different from those used in the
prior work [11,12,14,19,27,38], but they are equivalent up to simple transfor-
mations, as explained below. The difference is that key-evolving signatures from
the prior work are defined to use signing and verification algorithms that are
oblivious to the current time period. However, a key-evolving scheme as per our
definition can be constructed from a standard key-evolving scheme by using the
latter to sign and verify messages of the form i ‖ m, which is a concatenation of
the current time period i and a message m. Furthermore, a standard key-evolving
scheme can be constructed from a key-evolving scheme as per our definition by
building the secret keys of the standard scheme as i ‖ ski, containing the cur-
rent time period i and the corresponding secret key ski for a scheme of our
type. The resulting constructions of key-evolving signature schemes inherit the
continual-leakage security of the original schemes.

Key-Evolving Encryption Schemes. A key-evolving encryption scheme KEE speci-
fies PT algorithms KEE.Kg, KEE.Up, KEE.Enc and KEE.Dec, where KEE.Dec is
deterministic. Associated to KEE are the following polynomials: secret-key length
KEE.skl : N → N, public component length of the secret key KEE.pcl : N → N,
secret component length of the secret key KEE.scl : N → N, message length
KEE.ml : N → N, and the maximum number of time periods KEE.T : N → N.
For λ ∈ N we require that any secret key sk ∈ {0, 1}KEE.skl(λ) can be parsed as
a pair (pc, sc) containing a public component pc ∈ {0, 1}KEE.pcl(λ) and a secret
component sc ∈ {0, 1}KEE.scl(λ), such that KEE.skl(λ) = KEE.pcl(λ)+KEE.scl(λ).
Key generation algorithm KEE.Kg takes 1λ to return a public key pk and base
(time period one) secret signing key sk1 ∈ {0, 1}KEE.skl(λ). Key update algorithm

Forward-Security Under Continual Leakage 13

KEE.Up takes 1λ,pk, i and a secret key ski ∈ {0, 1}KEE.skl(λ) for time period i
to return a KEE.skl(λ)-bit secret key for the next time period. Encryption algo-
rithm KEE.Enc takes 1λ,pk, i and a message m ∈ {0, 1}KEE.ml(λ) to return (i, c),
where c is an encryption of m under pk for time period i. Decryption algo-
rithm KEE.Dec takes 1λ,pk, i, ski, (j, c) to return m ∈ {0, 1}KEE.ml(λ) ∪ {⊥}.
Correctness requires that KEE.Dec(1λ,pk, i, ski, (i, c)) = m for all λ ∈ N,
all m ∈ {0, 1}KEE.ml(λ), all (pk, sk1) ∈ [KEE.Kg(1λ)], all i ∈ [KEE.T(λ)], all
sk2, . . . , ski satisfying skj ∈ [KEE.Up(1λ,pk, j − 1, skj−1)] for 2 ≤ j ≤ i, and all
c such that (i, c) ∈ [KEE.Enc(1λ,pk, i,m)].

Forward Indistinguishability Under Continual Leakage. Consider game FINDCL of
Fig. 2 associated to a key-evolving encryption scheme KEE and an adversary A,
where Lk takes as input a Boolean circuit L : {0, 1}KEE.scl(λ) → {0, 1}. For λ ∈ N

let AdvfindclKEE,A(λ) = 2Pr[FINDCLA
KEE(λ)] − 1. We say that FINDCL adversary A

is valid if it makes at most one query to its Exp oracle, and this is its last oracle
query. We say that A is δ-bounded, where δ : N → [0, 1], if A makes at most
δ(λ) · KEE.scl(λ) queries to Lk per time period. We say that KEE is δ-FINDCL
(δ-forward indistinguishable under continual leakage) if AdvfindclKEE,A(·) is negligible
for all valid, δ-bounded PT adversaries A.

Game FINDCL is similar to game FUFCL in terms of allowing the adversary
to obtain information about the secret keys in different time periods by providing
it with oracle access to Up, Lk and Exp. Having finished making queries to its
oracles, the adversary has to choose a time period (prior to the key exposure, if
Exp was called) and a pair of challenge messages of equal length. The adversary
then is given a challenge ciphertext for the specified time period, and it has
to guess which of the two challenge messages was encrypted in order to win
the game. Encryption secure against continual leakage as defined in [14] is the
special case of FINDCL encryption for adversaries that make no Exp queries
(these notions are equivalent up to simple transformations that are required due
to different semantics across the definitions of key-evolving schemes, similar to
the case for key-evolving signature schemes that we discussed above). Forward-
secure encryption as defined in [15] is the special case of FINDCL encryption for
adversaries that make no Lk queries. Our model unifies the two under the new
goal of forward indistinguishability under continual leakage.

Convention for Adversary Restrictions. Whenever we consider an adversary that
meets certain conditions (e.g. is PT, valid, and δ-bounded), we require that it
holds not just in the games defining security, but also regardless of adversary’s
inputs and how its oracle queries are answered. It will help us simplify the proof
of Theorem 2 where an FUFCL adversary will be simulated in an environment
that is different from the one it might expect from the FUFCL game.

4 FUFCL signatures from UFCL signatures

In this section we show how to construct a FUFCL signature scheme from
any key-evolving signature scheme that is unforgeable under continual leakage

14 M. Bellare et al.

(UFCL). The latter is a standard continual leakage security notion that is also a
special case of FUFCL with respect to adversaries that do not query Exp oracle.

Unforgeability Under Continual Leakage. Consider game FUFCL of Fig. 2 associ-
ated to a key-evolving signature scheme KES and an adversary A, where Lk
takes as input a Boolean circuit L : {0, 1}KES.scl(λ) → {0, 1}. For λ ∈ N let
AdvufclKES,A(λ) = Pr[FUFCLA

KES(λ)]. We say that UFCL adversary A is valid if
it makes no queries to its Exp oracle. We say that A is δ-bounded, where
δ : N → [0, 1], if A makes at most δ(λ) · KES.scl(λ) queries to Lk per time
period. We say that KES is δ-UFCL (δ-unforgeable under continual leakage) if
AdvufclKES,A(·) is negligible for all valid, δ-bounded PT adversaries A.

Fig. 3. The construction of a key-evolving signature scheme KES from depth-2 binary
tree, showing the information stored in the tree during the first 3 out of the 4 possible
time periods. Each node corresponds to an independent instance of the underlying key-
evolving signature scheme SIG. Superscripts denote the positions of displayed entities
in the tree, and subscripts denote the time periods of individual secret keys.

FUFCL Signatures from a Binary Tree of UFCL Signatures. We use the binary tree
construction of forward secure signatures by Bellare and Miner [8], with any
continual leakage secure signature scheme as the base scheme. The construction
is also similar to the one by Faust et al. [23], but the goal they achieve is different.

We now describe the high-level idea of our construction. Let SIG be a key-
evolving signature scheme; we compose many SIG key-pairs into a binary tree to
build a new key-evolving signature scheme KES. We will then show that if SIG is
UFCL then KES is FUFCL. Figure 3 shows an example of a binary tree of depth
2 for multiple subsequent time periods.

Each node of the tree containts an independently generated SIG public key. A
node may also contain the corresponding secret key, but the secret key is erased
as soon as both of its child nodes have been generated; this will ensure that
the constructed KES scheme is forward-secure. Each non-root node contains a
signature of its public key under its parent node’s secret key.

The SIG public key of the root node is used as the public key of the KES
scheme. The leaf nodes of the tree are used to produce KES signatures, each for
a separate time period, meaning that a tree-based construction of depth h has 2h

Forward-Security Under Continual Leakage 15

time periods. The secret key of the KES scheme contains all information about
the current tree structure besides its root’s public key; the secret component
of a KES secret key contains all currently available SIG secret keys, whereas
everything else is stored inside its public component. The KES signature of a
message m includes a SIG signature of m for a secret key of (the current) leaf
node, along with information about the path from the root node to this leaf;
for each non-root node on this path, it includes this node’s public key and its
signature under the node’s parent’s secret key. This allows to verify signatures
having only the public key of the root node.

The key update procedure of the KES scheme modifies the tree to generate
the next leftmost leaf node (if necessary) and set it as the one that is used
to generate signatures. For this to be possible, the current tree structure always
contains the nodes that branch to the right of the nodes that lie on the path from
the root to the current leaf node. To ensure the forward security of KES, the old
leaf node is erased at the end of the update procedure. For the continual-leakage
security of KES, all other SIG secret keys are updated at the end of the update
procedure, meaning their individual time periods get increased (this allows to
repeatedly leak on them during each separate KES time period).

For example, consider the tree-based key-evolving scheme KES from Fig. 3
in time period 1. Its public key is pkε. Its secret key sk = (pc, sc)
consists of a secret component sc = (sk00

1 , sk01
1 , sk1

1) and a public com-
ponent pc = ((pk0, 1, σ0), (pk00, 1, σ00), (pk01, 1, σ01), (pk1, 1, σ1)). A signa-
ture of message m is (1, σ) for σ = ((pk0, 1, σ0), (pk00, 1, σ00), (1, σ′)) and
σ′ ←$ SIG.Sig(1λ,pk00, 1, sk00

1 ,m). The first component of (1, σ) denotes the time
period of KES, whereas the first component of (1, σ′) denotes the time period
of key sk00

1 . The node information of the form (pk0, 1, σ0) indicates that σ0 is a
signature of pk0 under its parent node’s secret key, and the latter was used when
its time period was 1. A technical detail is that to distinguish parent node’s left
child from its right child, the signature σ0 will be produced for a concatenation
0 ‖ pk0 where bit 0 indicates that pk0 is the parent node’s left child.

Our Construction and Its Security. We define a key-evolving signature scheme
KES = KES-TREE[SIG, h] as a binary-tree construction described above, where
each node of the binary tree contains a key pair of key-evolving signature scheme
SIG, and the height of the binary tree is defined by a polynomial h (parameter-
ized by a security parameter). The formal definition of KES-TREE is in the full
version of the paper [30]. It is straightforward, but also very detailed.

We claim that if SIG is UFCL-secure, then KES is FUFCL-secure. Note that
for any security parameter λ ∈ N, the secret key of KES contains h(λ) + 1
secret keys of SIG. Therefore, the continual-leakage fraction supported by KES
is h(λ) + 1 times worse than that of SIG.

Theorem 1. Let δ : N → [0, 1]. Let SIG be a δ-UFCL key-evolving signature
scheme with SIG.ml = SIG.pkl+1. Let h : N → N a polynomial such that 2h(λ)−1 ≤
SIG.T(λ) for all λ ∈ N. Let γ(λ) = δ(λ)/(h(λ) + 1) for all λ ∈ N. Then the key-
evolving signature scheme KES = KES-TREE[SIG, h] is γ-FUFCL.

16 M. Bellare et al.

The proof is in the full version of the paper [30]. Informally, it proceeds as
follows. Assume that a PT adversary A breaks the FUFCL-security of KES. In
order to do that, it has to forge a valid message-signature pair of KES scheme for
some time period i (which must be prior to the time period of full key exposure).
In terms of the underlying binary tree structure, this means that A successfully
forges a valid message-signature pair for one of the SIG verification keys that
lie on the path from the root of the KES binary tree to the leaf node that is
associated to time period i. We build a PT adversary B against the UFCL-
security of SIG as follows. It attempts to guess the KES binary tree node x that
will be attacked by A (out of the 2h(λ)+1 − 1 possible nodes); this node will
correspond to the challenge key-pair in game UFCL. It then generates SIG key
pairs for all other 2h(λ)+1 − 2 nodes, and uses its UFCL security game oracles to
answer any of A’s oracle queries that depend on the secret key of node x (which
is unknown to B). The reduction works if B guesses the correct challenge node.

Extensions. Note that a binary tree pre-order traversal can be used to associate
each node of the binary tree with a separate time period of the resulting signature
scheme, rather than only use the leaf nodes as we currently do. This was done in
some of the previous results that used tree-based construction, such as [15,23].

5 A Unified Paradigm for Constructing FS+CL Schemes

In this section we define key-evolution schemes that model the process of repeat-
edly evolving a secret key in the presence of a single, fixed public key, and for-
malize a security notion for them called forward one-wayness under continual
leakage (FOWCL). We then show how to make a primitive FS+CL with the aid
of such a key-evolution scheme and a witness version of the primitive.

Key-Evolution Schemes. A key-evolution scheme KE specifies PT algorithms
KE.Kg, KE.Up and KE.Vf, where KE.Vf is deterministic. Associated to KE are
the following polynomials: secret-key length KE.skl : N → N, public component
length of the secret key KE.pcl : N → N, secret component length of the secret
key KE.scl : N → N, and the maximum number of time periods KE.T : N → N.
For λ ∈ N we require that any secret key sk ∈ {0, 1}KE.skl(λ) can be parsed as
a pair (pc, sc) containing a public component pc ∈ {0, 1}KE.pcl(λ) and a secret
component sc ∈ {0, 1}KE.scl(λ), such that KE.skl(λ) = KE.pcl(λ) + KE.scl(λ).
Key generation algorithm KE.Kg takes 1λ to return a public key pk and base
(time period one) secret key sk1 ∈ {0, 1}KE.skl(λ). Key update algorithm KE.Up
takes 1λ,pk, i and a secret key ski ∈ {0, 1}KE.skl(λ) for time period i to return
a KE.skl(λ)-bit secret key for the next time period. Key verification algo-
rithm KE.Vf takes 1λ, pk, i, ski to return a decision in {true, false} regarding
whether ski is a valid secret key relative to public key pk and time period
i ∈ [KE.T(λ)]. Correctness requires that KE.Vf(1λ,pk, i, ski) = true for all
λ ∈ N, all (pk, sk1) ∈ [KE.Kg(1λ)], all i ∈ [KE.T(λ)] and all sk2, . . . , ski sat-
isfying skj ∈ [KE.Up(1λ,pk, j − 1, skj−1)] for 2 ≤ j ≤ i. That is, all secret
keys that can be obtained via correct updates starting from sk1 should pass the
verification test.

Forward-Security Under Continual Leakage 17

Fig. 4. Game defining forward one-wayness of key-evolution scheme KE under continual
leakage.

Forward Security Under Continual Leakage. Consider game FOWCL of Fig. 4 asso-
ciated to a key-evolution scheme KE and an adversary A, where Lk takes
a Boolean circuit L : {0, 1}KE.scl(λ) → {0, 1}. For λ ∈ N let AdvfowclKE,A(λ) =
Pr[FOWCLA

KE(λ)]. We say that FOWCL adversary A is valid if it makes at
most one query to its Exp oracle, and this is its last oracle query. We say that
A is δ-bounded, where δ : N → [0, 1], if A makes at most δ(λ) ·KE.scl(λ) queries
to Lk per time period. We say that KE is δ-FOWCL (δ-forward one-way under
continual leakage) if AdvfowclKE,A(·) is negligible for all valid, δ-bounded PT adver-
saries A.

Game FOWCL is similar to games FINDCL and FUFCL from Sect. 3 in
terms of allowing the adversary to obtain information about the secret keys in
different time periods by providing it with oracle access to Up, Lk and Exp.
In order to win, the adversary must output a valid secret key relative to a time
period prior to t∗ (when exposure happened), where valid means that the key-
verification function of KE accepts it. Adversary’s advantage is the probability
that it wins. To recover relations that are one-way against continual leakage as
defined in [19], one could consider adversaries that make no Exp queries. The
two notions are equivalent up to simple transformations that are required due to
different semantics between the definitions of key-evolving schemes (similar to
the case of key-evolving signature schemes as discussed in Sect. 3). Considering
adversaries that make no Lk queries captures relations that provide forward one
wayness. Our model unifies the two security notions.

The familiar requirement for security of a key is that it be indistinguishable
from random. This is not achievable when the adversary is in possession of
leakage on the key. The requirement we make, following [19], is very weak, namely
that the adversary be unable to fully recover a valid key (one-wayness). Then
the difficulty is to be able to use such a key for a cryptographic application. This
will be done via witness primitives – encryption and signatures.

Witness Encryption and Witness Signatures. Witness encryption [6,26,28] for an
NP-relation R allows anyone to encrypt messages with respect to any instance

18 M. Bellare et al.

x ∈ {0, 1}∗. In order to decrypt a message encrypted to x, it is necessary to
know a witness w such that R.Vf(x,w) = true. Witness signatures [7,16] for an
NP-relation R allow to sign messages with respect to an instance-witness pair
(x,w) such that R.Vf(x,w) = true. In order to verify a signature produced this
way, it is sufficient to know the instance x that was used in the signing process.

Composing Key-Evolution Schemes with Witness Primitives. We now discuss how
to use an arbitrary FOWCL key-evolution scheme in order to obtain a FUFCL
signature scheme and a FINDCL encryption scheme. This is done in a generic
way via a unified paradigm. Below we show that FOWCL + Witness-X yields
FS+CL-secure X for X= signatures. The corresponding case of X= encryption
is available in the full version of the paper [30]. Note that our security proofs
will require some form of extractability from both witness primitives.

Let us explain the issues and the idea. The FOWCL key-evolution scheme
provides a way to obtain keys that remain unrecoverable in the FS+CL sense.
But it is not clear how to use these keys for signatures or encryption. The reason
is that signature and encryption schemes usually require keys of very specific
structure that varies from scheme to scheme, but here we are handed keys of a
complex structure that are not obviously suitable for any particular application.
But witness primitives are, in the terminology of [7], highly “key-versatile”. That
is, they are able to provide security of the application assuming nothing more
than that secret keys are hard to recover from the public key. We will combine
them with key evolution to achieve signatures and encryption. We know no direct
constructions of FOWCL schemes, but any FUFCL schemes we build based on
the construction in Sect. 4 are also FOWCL by definition.

The encryption and signature schemes constructed using our approach will
inherit the leakage rate of the used key-evolution scheme, as opposed to the
direct construction in Sect. 4 where the leakage rate detoriates logarithmically
with the maximum number of time periods. Another advantage of this approach
is modularity. We do not need to re-enter any details of our construction of
a FOWCL key-evolution scheme, leading to conceptual simplicity. Also, should
any new, more efficient or better constructions of FOWCL key-evolution schemes
arise in the future, the transforms in this section can be invoked to automatically
turn them into FS+CL signature and encryption schemes.

Witness Signatures. Towards detailing the transform for signatures, we define
witness signatures. Let R be an NP-relation as defined in Sect. 2. A witness
signature scheme WS for R specifies PT algorithms WS.Pg, WS.Sig, WS.Vf,
WS.SimPg, WS.SimSig and WS.Ext, where WS.Vf is deterministic. Associated
to WS is a message length polynomial WS.ml : N → N. Parameter genera-
tion algorithm WS.Pg takes 1λ to return public parameters wp. Signing algo-
rithm WS.Sig takes 1λ,wp, an instance x ∈ {0, 1}∗, a witness w ∈ {0, 1}∗

and a message m ∈ {0, 1}WS.ml(λ) to return a signature σ. Signature verifica-
tion algorithm WS.Vf takes 1λ,wp, x,m, σ to return a decision in {true, false}.
Correctness requires that WS.Vf(1λ,wp, x,m, σ) = true for all λ ∈ N, all
wp ∈ [WS.Pg(1λ)], all x,w such that R.Vf(x,w) = true, all m ∈ {0, 1}WS.ml(λ)

and all σ ∈ [WS.Sig(1λ,wp, x, w,m)].

Forward-Security Under Continual Leakage 19

Simulated parameter generation algorithm WS.SimPg takes 1λ to return sim-
ulated parameters wp, a signing trapdoor std and an extraction trapdoor xtd .
Simulated signing algorithm WS.SimSig takes 1λ,wp, an instance x, signing trap-
door std and a message m (but no witness) to return a simulated signature σ.
Extraction algorithm WS.Ext takes 1λ,wp, instance x, extraction trapdoor xtd ,
message m and signature σ to return a candidate witness w for x.

Fig. 5. Games defining signature simulatability of witness signature scheme WS for
NP-relation R, and witness extractability of witness signature scheme WS for NP-
relation R.

Signature Simulatability. Consider game SIM of Fig. 5 associated to an NP-
relation R, a witness signature scheme WS for R, and an adversary A. For λ ∈ N

let AdvsimWS,R,A(λ) = 2Pr[SIMA
WS,R(λ)] − 1. We say that WS,R is signature simu-

latable if AdvsimWS,R,A(·) is negligible for every PT adversary A. This requires that
the signature simulator, given simulated auxiliary parameters and a signature
trapdoor, can produce a signature σ indistinguishable from the real one pro-
duced under the witness, when not just the message m, but even the instance x
and witness w, are adaptively chosen by the adversary.

Witness Extractability. Consider game EXT of Fig. 5 associated to an NP-relation
R, a witness signature scheme WS for R, and an adversary A. For λ ∈ N let
AdvextWS,R,A(λ) = Pr[EXTA

WS,R(λ)]. We say that WS,R is witness extractable if
AdvextWS,R,A(·) is negligible for every PT adversary A. This requires that the wit-
ness extractor, given simulated auxiliary parameters and an extraction trapdoor,
can extract from any valid forgery relative to x an underlying witness w, even
when x is chosen by the adversary and the adversary can adaptively obtain
simulated signatures under instances and witnesses of its choice.

Obtaining Witness Signatures. Witness signatures as we define them above are
effectively another name for Signatures of Knowledge as defined by Chase and

20 M. Bellare et al.

Lysyanskaya [16] and refined by Bellare, Meiklejohn and Thomson [7]. Indeed the
latter say that one might refer to this primitive as witness signatures, and we have
followed that naming suggestion in order to have a unified terminology across
encryption and signatures. The construction uses simulation sound extractable
(SSE) NIZKs and follows [7,16,20]. Given any NP-relation R and polynomial
p, it is possible to construct a witness signature scheme WS such that WS,R
are signature simulatable and witness extractable and also WS.ml = p. We omit
the details and assume this capability in what follows. Note that these witness
signatures are different from the ones of Goyal, Jain and Khurana [29]. In the
latter, public parameters are not allowed and they show that in this case witness
signatures are impossible. In our case, the public parameters can simply be put
into the public key of the scheme we are constructing and are not an added
assumption. In this case witness signatures are easily constructed from NIZKs.

Construction of a FUFCL Signature Scheme. Assume we are given a key-evolution
scheme KE that is FOWCL secure as defined in Sect. 5. We want to build a
FUFCL secure key-evolving signature scheme. The difficulty is that the keys
in KE may not have the structure required for any particular signature scheme
and furthermore the security guarantee on them is weak, namely just that they
are hard to recover in full. We achieve our ends through witness signatures.
Informally, we associate to KE an NP-relation in which the role of the instance
x is played by a triple (1λ,pk, i) containing security parameter, public key and
time period for KE, and the role of the witness w is played by a secret key sk for
KE. We then define a key-evolving signature scheme that uses this NP-relation
to produce and verify signatures, as shown below.

NP-relation KE-REL. Let KE be a key-evolution scheme. We build an NP-
relation R = KE-REL[KE] as defined in Fig. 6, where R.wl = KE.skl.

Fig. 6. NP-relation KE-REL = KE-REL[KE].

Key-Evolving Signature Scheme WITNESS-KES. Let KE be a key-evolution
scheme. Let WS be a witness signature scheme for the NP-relation
R = KE-REL[KE]. We build a key-evolving signature scheme KES =
WITNESS-KES[KE,WS] as defined in Fig. 7. The values of KES.skl, KES.pcl,
KES.scl, KES.T are same as those of KE, and the values of KES.ml, KES.sigl
are inherited from WS. We show that if KE is FOWCL, and if WS is signature
simulatable and witness extractable for R, then KES is FUFCL-secure.

Forward-Security Under Continual Leakage 21

Fig. 7. Key-evolving signature scheme KES = WITNESS-KES[KE,WS].

Theorem 2. Let δ : N → [0, 1]. Let KE be a δ-FOWCL key-evolution scheme.
Let R = KE-REL[KE] be the NP-relation as defined above. Let WS be a wit-
ness signature scheme for R. Assume WS,R is signature simulatable and witness
extractable. Then key-evolving signature scheme KES = WITNESS-KES[KE,WS]
is δ-FUFCL secure.

Proof (Theorem 2). Let A be a valid, δ-bounded PT adversary attacking KES
in game FUFCL. We build a valid, δ-bounded PT adversary B attacking KE
in game FOWCL, and PT adversaries A1,A2 attacking signature simulatability
and witness extractability of WS,R giving

AdvfufclKES,A(λ) ≤ AdvsimWS,R,A1
(λ) + AdvextWS,R,A2

(λ) + AdvfowclKE,B(λ)

for all λ ∈ N. This justifies the claim in the theorem statement.

Consider games G0, G1, G2 of Fig. 8. Lines not annotated with comments are
common to all games. Game G0 is equivalent to game FUFCLA

KES(λ) with the
code of KES expanded according to its definition, so Pr[G0] = Pr[FUFCLA

KES(λ)].
Game G1 switches to using simulated parameters and signatures. Game G2 addi-
tionally requires that the forgery produced by A allows to extract a valid secret
key for the corresponding time period. We build PT adversaries A1,A2,B so
that for all λ ∈ N,

Pr[G0] − Pr[G1] = AdvsimWS,R,A1
(λ), (1)

Pr[G1 sets bad] ≤ AdvextWS,R,A2
(λ), (2)

Pr[G2] ≤ AdvfowclKE,B(λ). (3)

Games G1 and G2 are identical until bad, so by the Fundamental Lemma of
Game-Playing [9] and the above, for all λ ∈ N we have

AdvfufclKES,A(λ) = Pr[FUFCLA
KES(λ)] = Pr[G0]

= (Pr[G0] − Pr[G1]) + (Pr[G1] − Pr[G2]) + Pr[G2]

≤ AdvsimWS,R,A1
(λ) + AdvextWS,R,A2

(λ) + AdvfowclKE,B(λ).

22 M. Bellare et al.

Fig. 8. Games G0–G2 for proof of Theorem 2.

This bounds the advantage of A as required for the theorem statement.
PT adversaries A1,A2 are defined in Fig. 9. The procedures to simulate the

oracles of A are the same for both and thus for brevity written only once. PT
adversary B is defined in Fig. 10. We omit the proofs of Eqs. (1)–(3) and expla-
nations of the adversaries due to lack of space. A detailed proof is available in
the full version of the paper [30].

Acknowledgments. Bellare and Stepanovs were supported in part by NSF grants
CNS-1526801 and CNS-1717640, ERC Project ERCC FP7/615074 and a gift from
Microsoft.

Forward-Security Under Continual Leakage 23

Fig. 9. Adversaries A1, A2 for proof of Theorem 2.

Fig. 10. Adversary B for proof of Theorem 2.

References

1. Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In:
Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3 10

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and
cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-00457-5 28

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the
bounded-retrieval model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp.
36–54. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8 3

https://doi.org/10.1007/3-540-44448-3_10
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-00457-5_28
https://doi.org/10.1007/978-3-642-03356-8_3

24 M. Bellare et al.

4. Ananth, P., Goyal, V., Pandey, O.: Interactive proofs under continual memory
leakage. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8617, pp.
164–182. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-
1 10

5. Anderson, R.: Two remarks on public key cryptology (1997). http://www.cl.cam.
ac.uk/users/rja14

6. Bellare, M., Hoang, V.T.: Adaptive witness encryption and asymmetric password-
based cryptography. In: Katz, J. (ed.) PKC 2015. LNCS, vol. 9020, pp. 308–331.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46447-2 14

7. Bellare, M., Meiklejohn, S., Thomson, S.: Key-versatile signatures and applications:
RKA, KDM and joint Enc/Sig. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT
2014. LNCS, vol. 8441, pp. 496–513. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-55220-5 28

8. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48405-1 28

9. Bellare, M., Rogaway, P.: The security of triple encryption and a frame-
work for code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT
2006. LNCS, vol. 4004, pp. 409–426. Springer, Heidelberg (2006). https://doi.org/
10.1007/11761679 25

10. Boyen, X., Shacham, H., Shen, E., Waters, B.: Forward-secure signatures with
untrusted update. In: ACM CCS 2006 (2006)

11. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 89–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 7

12. Boyle, E., Segev, G., Wichs, D.: Fully leakage-resilient signatures. J. Cryptol. 26(3),
513–558 (2013)

13. Brakerski, Z., Goldwasser, S.: Circular and leakage resilient public-key encryption
under subgroup indistinguishability. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 1–20. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-14623-7 1

14. Brakerski, Z., Kalai, Y.T., Katz, J., Vaikuntanathan, V.: Overcoming the hole in
the bucket: public-key cryptography resilient to continual memory leakage. FOCS
2010 (2010)

15. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

16. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

17. Dachman-Soled, D., Dov Gordon, S., Liu, F.-H., O’Neill, A., Zhou, H.-S.: Leakage-
resilient public-key encryption from obfuscation. In: Cheng, C.-M., Chung, K.-M.,
Persiano, G., Yang, B.-Y. (eds.) PKC 2016. LNCS, vol. 9615, pp. 101–128. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49387-8 5

18. Dagdelen, Ö., Venturi, D.: A second look at Fischlin’s transformation. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp.
356–376. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6 22

19. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against con-
tinuous memory attacks. In: FOCS (2010)

https://doi.org/10.1007/978-3-662-44381-1_10
https://doi.org/10.1007/978-3-662-44381-1_10
http://www.cl.cam.ac.uk/users/rja14
http://www.cl.cam.ac.uk/users/rja14
https://doi.org/10.1007/978-3-662-46447-2_14
https://doi.org/10.1007/978-3-642-55220-5_28
https://doi.org/10.1007/978-3-642-55220-5_28
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/11761679_25
https://doi.org/10.1007/978-3-642-20465-4_7
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/978-3-642-14623-7_1
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/978-3-662-49387-8_5
https://doi.org/10.1007/978-3-319-06734-6_22

Forward-Security Under Continual Leakage 25

20. Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Efficient public-key cryptog-
raphy in the presence of key leakage. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 613–631. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-17373-8 35

21. Dodis, Y., Kalai, Y.T., Lovett, S.: On cryptography with auxiliary input. In: STOC
(2009)

22. Dodis, Y., Lewko, A., Waters, B., Wichs, D.: Storing secrets on continually leaky
devices. In: FOCS (2011)

23. Faust, S., Kiltz, E., Pietrzak, K., Rothblum, G.N.: Leakage-resilient signatures. In:
Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 343–360. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-11799-2 21

24. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of
the Fiat-Shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012.
LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-34931-7 5

25. Garg, S., Gentry, C., Halevi, S., Wichs, D.: On the implausibility of differing-
inputs obfuscation and extractable witness encryption with auxiliary input. In:
Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 518–535.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2 29

26. Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications.
In: STOC (2013)

27. Garg, S., Jain, A., Sahai, A.: Leakage-resilient zero knowledge. In: Rogaway, P.
(ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 297–315. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 17

28. Goldwasser, S., Kalai, Y.T., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.:
How to run turing machines on encrypted data. In: Canetti, R., Garay, J.A.
(eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 536–553. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40084-1 30

29. Goyal, V., Jain, A., Khurana, D.: Non-malleable multi-prover interactive proofs and
witness signatures. Cryptology ePrint Archive, Report 2015/1095 (2015). http://
eprint.iacr.org/2015/1095

30. Bellare, M., O’Neill, A., Stepanovs, I.: Forward-security under continual leakage.
Cryptology ePrint Archive, Report 2017/476 (2017). http://eprint.iacr.org/2017/
476

31. Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verify-
ing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8 20

32. Katz, J., Vaikuntanathan, V.: Signature schemes with bounded leakage resilience.
In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 703–720. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7 41

33. Krawczyk, H.: Simple forward-secure signatures from any signature scheme. In:
ACM CCS 2000 (2000)

34. Lewko, A., Lewko, M., Waters, B.: How to leak on key updates. In: STOC (2011)
35. Lewko, A., Rouselakis, Y., Waters, B.: Achieving leakage resilience through dual

system encryption. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 70–88.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6 6

36. Lyubashevsky, V., Palacio, A., Segev, G.: Public-key cryptographic primitives
provably as secure as subset sum. In: Micciancio, D. (ed.) TCC 2010. LNCS,
vol. 5978, pp. 382–400. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-11799-2 23

https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-17373-8_35
https://doi.org/10.1007/978-3-642-11799-2_21
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-642-34931-7_5
https://doi.org/10.1007/978-3-662-44371-2_29
https://doi.org/10.1007/978-3-642-22792-9_17
https://doi.org/10.1007/978-3-642-40084-1_30
http://eprint.iacr.org/2015/1095
http://eprint.iacr.org/2015/1095
http://eprint.iacr.org/2017/476
http://eprint.iacr.org/2017/476
https://doi.org/10.1007/3-540-44647-8_20
https://doi.org/10.1007/978-3-642-10366-7_41
https://doi.org/10.1007/978-3-642-19571-6_6
https://doi.org/10.1007/978-3-642-11799-2_23
https://doi.org/10.1007/978-3-642-11799-2_23

26 M. Bellare et al.

37. Malkin, T., Micciancio, D., Miner, S.: Efficient generic forward-secure signatures
with an unbounded number of time periods. In: Knudsen, L.R. (ed.) EUROCRYPT
2002. LNCS, vol. 2332, pp. 400–417. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-46035-7 27

38. Malkin, T., Teranishi, I., Vahlis, Y., Yung, M.: Signatures resilient to continual
leakage on memory and computation. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol.
6597, pp. 89–106. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-
19571-6 7

39. Naor, M., Segev, G.: Public-key cryptosystems resilient to key leakage. In: Halevi,
S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 2

40. Nielsen, J.B., Venturi, D., Zottarel, A.: Leakage-resilient signatures with graceful
degradation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 362–379.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0 21

https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/3-540-46035-7_27
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/978-3-642-19571-6_7
https://doi.org/10.1007/978-3-642-03356-8_2
https://doi.org/10.1007/978-3-642-54631-0_21

Tightly-Secure PAK(E)

José Becerra1, Vincenzo Iovino1, Dimiter Ostrev1, Petra Šala1,2,
and Marjan Škrobot1(B)

1 University of Luxembourg, Esch-sur-Alzette, Luxembourg
{jose.becerra,vincenzo.iovino,dimiter.ostrev,petra.sala,

marjan.skrobot}@uni.lu
2 Computer Science Department, École Normale Supérieure, Paris, France

Abstract. We present a security reduction for the PAK protocol instan-
tiated over Gap Diffie-Hellman Groups that is tighter than previously
known reductions. We discuss the implications of our results for con-
crete security. Our proof is the first to show that the PAK protocol can
provide meaningful security guarantees for values of the parameters typ-
ical in today’s world.

Keywords: Password-authenticated key exchange · PAK
Tight reductions · Random oracle

1 Introduction

1.1 PAKE Protocols

A password authenticated key exchange (PAKE) protocol allows two users who
only share a password to establish a high entropy shared secret key by exchang-
ing messages over a hostile network. PAKE protocols have only minimal require-
ments for the long-term secrets that users need to hold in order to succeed and
therefore are interesting both theoretically and in practice. To date, there have
been over twenty years of intensive research on PAKE, and PAKE protocols
have recently seen more and more deployment in applications such as ad hoc
networks [35] or the Internet of Things [32].

Numerous PAKE protocols have been proposed over the years. Among them,
only a handful have been considered for use in real-world applications: EKE
[6], SPEKE [17], SRP [36], PPK and PAK [8,25,26], KOY [19], Dragonfly [15],
SPAKE2 [3] and J-PAKE [14]. The last two protocols, along with SRP and
Dragonfly that have been standardized in the form of RFC2945 and RFC7664
respectively, are currently being considered by the Internet Engineering Task
Force (IETF).

When evaluating different PAKE designs, two main criteria are the protocol’s
efficiency in terms of computation and communication, and the security guaran-
tees that the protocol provides. Of these two criteria, the efficiency is easier to
understand by just looking at the protocol description. On the other hand, it is
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 27–48, 2018.
https://doi.org/10.1007/978-3-030-02641-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_2

28 J. Becerra et al.

difficult to judge whether a protocol is secure. A necessary condition for security
is that no attacks on the protocol have been found so far, but most researchers
agree that this is not sufficient.

1.2 Security Models and Reductions for PAKE

One way to rigorously discuss the security of PAKE protocols is to formally
define a security challenge: an interaction between two algorithms called a chal-
lenger and an adversary. The interaction is designed to model the capabilities
that a real world adversary is believed to have; the success of an adversary in
the security challenge corresponds to a successful attack on the protocol. Sev-
eral such security models have been introduced over the years. A few prominent
ones are the indistinguishability-based models of Bellare, Pointcheval and Rog-
away [5] and Abdalla, Fouque and Pointcheval [2], the simulation-based model of
Boyko, MacKenzie and Patel [8]1, and the Universally Composable (UC) model
of Canetti et al. [9].

In this approach, the security of a protocol is established in the following
way: given an adversary A that runs in time t and has success probability ε in
the security challenge, one constructs an algorithm BA known as a reduction.
BA runs A as a subroutine and solves some known hard computational problem
in time t′ and with success probability ε′. If it is widely believed that it is
impossible to solve the hard computational problem in time t′ and with success
probability ε′, then one can conclude that no adversary running in time t can
have a probability of ε to successfully attack the protocol.

1.3 Online Dictionary Attacks

Security models for PAKE must properly account for online dictionary attacks,
in which an adversary guesses a password and tries to run the protocol with
one of the honest users to verify the guess. Since passwords come from a small
set, this attack has a non-negligible chance of success. Online dictionary attacks
cannot be entirely prevented, but their effects can be mitigated to some extent
for example by requiring users to choose strong passwords, limiting the number
of unsuccessful login attempts, or even using machine learning to detect a pattern
in login attempts that suggests an online dictionary attack might be in progress.

From the point of view of cryptographic research on PAKE, online dictionary
attacks and the countermeasures listed above are taken as given; the focus is
on ensuring that the adversary can do essentially no better than to run the
best online dictionary attack in the circumstances. This intuitive requirement is
formalized differently in indistinguishability-based and simulation-based models.
In the indistinguishability-based model that we use in this paper2, the formal

1 For the relation between the indistinguishability-based and simulation-based models,
see the recent work [23].

2 A detailed description of the FtG model of Bellare, Pointcheval and Rogaway [5] can
be found in Sect. 4.

Tightly-Secure PAK 29

requirement is that for all PPT adversaries A that perform at most n online
dictionary attacks,

Adv(A) ≤ F(D,L, n) + ε (1)

where Adv(A) is the advantage3 of the adversary in breaking the protocol, where
F(D,L, n) is the maximum probability of success4 of any password guessing
strategy that uses n guesses against a password distribution D and login attempt
policy L, and where ε is a negligible term.

In the present work, we focus on the behavior of the term ε of equation (1).
A precise theoretical or empirical characterization of the function F(D,L, n) is
an important and interesting research question, but is outside the scope of this
paper. Here, we merely mention that many previous works use the formulation
F(D,L, n) = n/N of [2,5] which corresponds to making the simplifying assump-
tions that there is no login attempt policy and that passwords are independent
and uniformly distributed from a dictionary of size N . On the other hand, some
recent research [33] suggests that real-life passwords follow Zipf’s law, and pro-
poses [34, Sect. 3] the formulation F(D,L, n) = Cns where C, s are parameters
that have to be estimated empirically. Our results regarding the behavior of
the term ε of Eq. (1) hold independently of the password distribution and login
attempt policy, and in particular, they hold for any of the cases mentioned above.

1.4 The PAK Protocol

One of the PAKE protocols whose security has been studied in the provable
security framework is the PAK protocol [8,25,26]. It is a PAKE protocol with
several desirable characteristics: low computation and communication cost, and
security proofs in two different security models: the simulation-based model of
Boyko, MacKenzie and Patel [8] and the so-called Find-then-Guess (FtG) model
of Bellare, Pointcheval and Rogaway [5]. A modified version of PAK has been
used to detect man-in-the-middle attacks against SSL/TLS without third-parties
[10], and a lattice-based version of PAK has been used to provide security against
quantum adversaries [11]. Moreover, variants of the PAK protocol have been
included in IEEE standard [16], while the patent held by Lucent Technologies
[27] is expiring soon. Therefore, the PAK protocol is a candidate for wide-scale
practical deployment.

While there are security proofs for PAK in two different models, in both
cases the reductions are loose, meaning either that the running time t′ of the
reduction BA is much larger than the running time t of the adversary A or that
the success probability ε′ of BA is much smaller than the success probability ε
of A, or some combination of the two.

A loose reduction is usually considered less than ideal. From a qualitative
point of view, a reduction gives the assurance that “breaking the protocol is at
most a little easier than solving the hard computational problem” [12]. However,
if a reduction is loose, it leaves open the possibility that “a little easier” is in
3 The advantage is twice the success probability minus one.
4 By success we mean guessing the password of any user.

30 J. Becerra et al.

fact “substantially easier”. From a quantitative point of view, a loose reduction
means that larger security parameters must be chosen to guarantee a given level
of security, which in turn increases the communication and computation cost of
the protocol; therefore, a tight reduction is considered preferable [4].

We illustrate the last point by looking in detail at the best previous result
for PAK [25, Theorem 6.9], which we reproduce here for convenience.

Theorem 1 (Theorem 6.9 in [25]). Consider the PAK protocol5 instantiated
over a group G = 〈g〉 of order q and with password dictionary of size N . Let
A be an adversary that runs in time t and performs at most nse, nex, nre, nco,
nro queries of type Send, Execute, Reveal, Corrupt, Random Oracle and a
single Test query. Let Adv(A) be the advantage of this adversary in the security
challenge as defined in the FtG model (See footnote 2). Let texp be the time
required for an exponentiation in G. Then, for t′ = O(t+((nro)2+nse+nex)texp)

Adv(A) =
nse

N
+ O

(
nseAdvl - cdh

G (t′, (nro)2) +
(nse + nex)(nro + nse + nex)

q

)

(2)
where Advl - cdh

G (t′, (nro)2) is the maximum success probability of an algorithm
that is allowed to run for time t′ and to output a list of (nro)2 candidate solutions
to the CDH problem, and succeeds if at least one solution in the list is correct.

We plug in some concrete values in the above theorem. For the order of the
group q, we use the recommended q ≈ 2256 for long-term security from [12,
Chapter 7]. For the number of random oracle queries, we take nro ≈ 263, the
number of SHA1 computations performed in the recent attack [31]. Next, we use
the approximation that solving the discrete logarithm problem in group G takes
about

√
q ≈ 2128 operations [22, Sect. 7]. We see that with these values of the

parameters, we can estimate

Advl - cdh
G (t′, (nro)2) ≈ 1

and therefore the term

nseAdvl - cdh
G (t′, (nro)2) � 1

makes the right hand-side of Eq. 2 meaningless in bounding Adv(A), which,
by definition, is a number less than or equal to 1. This means that we cannot
reasonably claim that the security proof gives the guarantee “adversary can
essentially do no better than an online dictionary attack” except in the trivial
case when the online dictionary attack itself succeeds with probability close to
one.

1.5 Our Contribution

We provide a tight reduction for PAK instantiated over Gap Diffie-Hellman
groups; these are groups in which solving the Decisional Diffie-Hellman Problem
5 A detailed description of the protocol is in Sect. 3.

Tightly-Secure PAK 31

is easy but solving the Computational Diffie-Hellman problem is equivalent to
solving the Discrete Logarithm Problem and is believed to be hard [18]6. We
employ proof techniques that have been used previously in [1,20].

The formal statement of our result can be found in Theorem refT:main1.

Theorem 2. Consider the PAK protocol instantiated over a Gap Diffie-Hellman
group G1 = 〈g〉 of order q and with password dictionary of size N . Let A be an
adversary that runs in time t and performs at most nse, nex, nre, nco, nro

queries of type Send, Execute, Reveal, Corrupt, Random Oracle and a
single Test query. Let Adv(A) be the advantage of this adversary in the security
challenge as defined in the FtG model. Let texp and tddh be the time required
for an exponentiation in G1 and deciding DDH in G1, respectively. Then, for
t′′ = O(t + (nro + nse + nex)texp + (nse + nro)tddh)

Adv(A) ≤ F(D,L, nse) + 8Advgap - cdh
G1

(t′′) + O

(
(nse + nex)(nro + nse + nex)

q

)

(3)
where Advgap - cdh

G1
(t′′) is the maximum success probability of an algorithm that is

allowed to run for time t′′ in solving the Gap-Diffie-Hellman (Gap-DH) problem
in group G1.

We perform a similar analysis of our result as in the previous section, using
the same values of q, and nro. Since t′′ � 2128 (assuming the most powerful
adversaries today have t at most ≈280 to 285), we can assume that Advgap - cdh

G1
(≈

285) � 2−35. Furthermore, the term O ((nse + nex)(nro + nse + nex)/q) is negli-
gible compared to the other two terms. Thus, by using the tight reduction, we
are able to obtain the guarantee: assuming that Advgap - cdh

G1
(≈ 285) � 2−35 then

for all adversaries A with running time t � 285, the advantage in breaking the
PAK protocol instantiated over a Gap Diffie Hellman group of order ≈ 2256 is at
most ≈ 2−30 higher than the advantage of breaking the protocol using the best
online dictionary attack for the given password distribution and login attempt
policy.7

Thus, by relying on the Gap-Diffie-Hellman assumption instead of the List-
Diffie-Hellman assumption as in [25] we are able to remove the degradation fac-
tors that cause the previous security proof for PAK to fail to provide meaningful
guarantees for typical values of the parameters in today’s world.

1.6 Organization of the Paper

The rest of the paper is organized as follows: in Sect. 2, we introduce notation and
give details on the Gap Diffie-Hellman groups and hardness assumptions used
in this paper. In Sect. 3, we give a detailed description of the PAK protocol. In
6 More details on Gap Diffie-Hellman groups and the relevant computational problems

and assumptions are given in Sect. 2.
7 We refer to [34, Fig. 4] for an estimation of the advantage of online dictionary attacks

as a function of the number of guesses for two real-world password datasets.

32 J. Becerra et al.

Sect. 4, we introduce the security model FtG of Bellare, Pointcheval and Rogaway
[5]. In Sect. 5, we prove our main result. We conclude the paper in Sect. 6.

2 Preliminaries

In this section, we introduce notation, define pairings, and state the hardness
assumptions upon which the security of PAK protocol rests.

2.1 Notation

We write d
$←− D for sampling uniformly at random from set D and |D| to

denote its cardinality. The output of a probabilistic algorithm A on input x is
denoted by y ← A(x), while y := F (x) denotes a deterministic assignment of
the value F (x) to the variable y. Let {0, 1}∗ denote the bit string of arbitrary
length while {0, 1}l stands for those of length l. Let κ be the security parameter
and negl(κ) denote a negligible function. When we sample elements from Zq, it
is understood that they are viewed as integers in [1 . . . q], and all operations on
these are performed mod q. In general, we use G to denote any cyclic group
while G1 refers to a bilinear group. Let H1 be a full-domain hash mapping {0, 1}∗

to G1. All remaining hash functions, H2, H3 and H4, map from {0, 1}∗ to {0, 1}κ.

2.2 Cryptographic Building Blocks

Let G1,GT be cyclic groups of prime order q and g a generator of G1.

Definition 1. A bilinear map is a function e : G1 × G1 → GT such that the
following properties are satisfied:

1. Bilinear: ∀ u, v ∈ G1, a, b ∈ Zq, e(ua, vb) = e(u, v)ab.
2. Non-degenerate: e(g, g) generates GT .
3. Computable: ∀ u, v ∈ G1, a, b ∈ Zq, there is an efficient algorithm to compute

e(ua, vb).

Definition 2 (Bilinear Group). G1 is a bilinear group if there exists group GT

and a bilinear map e : G1 × G1 → GT .

2.3 Cryptographic Hardness Assumptions

Let G be any multiplicative cyclic group, with generator g and |G| = q. For
X = gx and Y = gy, let DH(X,Y) = gxy, where {gx, gy, gxy} ∈ G.

Definition 3 (Computational Diffie-Hellman (CDH) Problem). Given (g, gx,

gy) compute gxy, where {gx, gy, gxy} ∈ G and (x, y) $←− Z
2
q. Let the advantage of

a PPT algorithm A in solving the CDH problem be:

Advcdh
G (A) = Pr [(x, y) $←− Z

2
q,X = gx, Y = gy : A(X,Y) = DH(X,Y)].

Tightly-Secure PAK 33

CDH Assumption: There exist sequences of cyclic groups G indexed by κ such
that for all PPT adversaries A Advcdh

G (A) ≤ negl(κ), where κ is the security
parameter.

Definition 4 (List-Computational Diffie-Hellman (L-CDH) Problem). Given

(g, gx, gy) compute gxy, where {gx, gy, gxy} ∈ G and (x, y) $←− Z
2
q. Let A be a

PPT algorithm which attempts to solve the L-CDH problem and outputs a list
of n elements, its advantage is defined as follows:

Advl - cdh
G (A, n) = Pr [(x, y) $←− Z

2
q,X = gx, Y = gy : DH(X,Y) ∈ A(X,Y)].

L-CDH Assumption: There exist sequences of cyclic groups G indexed by κ such
that for all PPT adversaries A Advl - cdh

G (A, n) ≤ negl(κ), where κ is the security
parameter.

Definition 5 (Decision Diffie-Hellman (DDH) Problem). Distinguish a tuple

(gx, gy, gxy) from (gx, gy, gz), where {gx, gy, gz} ∈ G1 and (x, y, z) $←− Z
3
q. Let

the advantage of a PPT algorithm A in solving DDH problem be:

Advddh
G (A) = |Pr [(x, y) $←− Z

2
q,X = gx, Y = gy, Z = gxy : A(X,Y,Z) = 1]

− Pr [(x, y, z) $←− Z
3
q,X = gx, Y = gy, Z = gz : A(X,Y,Z) = 1]|. (4)

DDH Assumption: There exist sequences of cyclic groups G indexed by κ such
that for all PPT adversaries A Advddh

G (A) ≤ negl(κ), where κ is the security
parameter.

Gap Diffie-Hellman (Gap-DH) groups are those where the DDH problem can be
solved in polynomial time but no PPT algorithm can solve the CDH problem
with advantage greater than negligible, e.g. bilinear groups from Definition 2.
More formally:

Definition 6 (Gap-Diffie-Hellman (Gap-DH) Problem). Given (g, gx, gy) and
access to a Decision Diffie-Hellman Oracle (DDH-O) compute gxy.

Advgap - cdh
G1

(A) = Pr [(x, y) $←− Z
2
q,X = gx, Y = gy : Addh - o(X,Y) = DH(X,Y)].

Gap-DH Assumption: There exists sequences of bilinear groups G1 indexed by
κ, such that for all PPT A Advgap - cdh

G1
(A) ≤ negl(κ), where κ is the security

parameter.

3 The PAK Protocol

In this section, we describe the PAK protocol from [25], whose mathematical
description is presented in Fig. 1. A few other variants of PAK were developed
in [26].

34 J. Becerra et al.

Fig. 1. The PAK protocol.

3.1 Protocol Description

Here, we make use of the same notation as in [25] (October version). Now, we
describe the protocol informally.

Before any protocol execution, public parameters are fixed and passwords are
shared between clients and servers during the initialization phase. More specif-
ically, for efficiency reasons and security in case of password file compromise,
servers only keep the inverse element of each password’s hash value.

The PAK protocol consists of three message rounds. In the first message
round, the client sends a group element m – generated by multiplying a random
group element α with the mask γ (also a group element) that is derived from the
shared password π – along with its ID to the server. In the second message round,

Tightly-Secure PAK 35

upon receiving the message C,m, the server first checks with the acceptable
function if the received value m is an element of G1. Then, it selects a random
group element μ, removes the mask from the received m, and computes the
shared secret σ, confirmation codes k, k′, a session key sk and sets sid and pid
values (thus accepting). Once all these values are computed, the server sends μ
and k to the client. Upon receiving the second message, the client first checks if
μ is valid group element. If so, it computes the shared secret and confirmation
code k and checks the validity of the latter. If all checks are correct, the client
computes his confirmation code k′ and a session key sk, sets sid and pid values,
and then it sends k′ in the third message round and terminates. The server, once
it receives value k′ and checks its validity, also terminates.

3.2 Instantiating the Protocol over Gap Diffie-Hellman Groups

Gap-DH groups were introduced in the pioneering work of Boneh, Lynn and
Shacham [7]. For instance, Gap-DH groups can be derived by the supersingular
elliptic curve given by the equation y2 = x3 +2x± 1 over the field F3l . It can be
seen that for some values of l the number of points in this curve divides 36l − 1.
The value 6 is called the multiplier that has to be neither too small for the CDH
problem to be hard, nor too big for the Decision Diffie-Hellman Oracle (DDH-
O) to be efficient. An example of DDH-O on this curve is the Weil pairing [30].
Gap-problems were also studied by Okamoto and Pointcheval [29].

In order to have efficient PAK execution, H1 : {0, 1}∗ → G1 must be an effi-
ciently computable function. We point the reader to [26,28] for efficient imple-
mentations of H1. Note that it is crucial for such an algorithm to run in constant
time, otherwise timing attacks on a password are possible. For more details on
pairings, we refer readers to [13].

4 Model

For our proof, we will use the well-known Find-then-Guess (FtG) security model
from [5], which guarantees security against an adversary fully controlling the
network, concurrent sessions, loss of session keys, as well as forward secrecy.
Furthermore, the security model incorporates the essential requirements that
PAKE protocols must satisfy: (i) an eavesdropper adversary should not learn
any information about the password and (ii) an adversary can verify at most
one password guess per protocol execution in an active attack.

In the FtG model, security is defined via a security experiment Gftg played
between a challenger CHftg and some adversary A. The task of CHftg is to
administrate the security experiment while keeping the appropriate secret infor-
mation outside from A’s view. Roughly speaking, A wins the security experiment
if he is able to distinguish established session keys from random strings.

We will start by formally defining PAKE protocols. This will be followed by
an in-depth description of the FtG security model.

36 J. Becerra et al.

PAKE Protocol. A PAKE protocol can be represented as a pair of algorithms
(genPW,P), where genPW is a password generation algorithm and P is the
description of the protocol that specifies how honest parties behave. A genPW
algorithm takes as input a set of possible passwords Passwords, together with
a probability distribution P.

Participants and Passwords. In the two-party PAKE setting, each principal
U is either from a Clients set or a Servers set, both of which are finite, dis-
joint, nonempty sets. The set ID represents the union of Clients and Servers.
Furthermore, we assume that each client C ∈ Clients possesses a password πC ,
while on the other hand each server S ∈ Servers holds a vector of the passwords
of all clients πS := 〈πC〉C∈Clients.

Protocol Execution. P is a PPT algorithm that specifies reaction of princi-
pals to network messages. In a real scenario, each principal may run multiple
executions of P with different users, thus in our model each principal is allowed
an unlimited number of instances executing P in parallel. We denote with ΠU

i

the i-th instance of a U principal. In some places, where distinction matters, we
will denote client instances with ΠC

i and server instances by ΠS
j .

When assessing the security of P, we assume that the adversary A has com-
plete control of the network. Practically, this means that principals solely com-
municate through the adversary that may consider delaying, reordering, modi-
fying, dropping messages sent by honest principals or injecting messages of its
choice in order to attack the protocol. Moreover, the adversary has access to
instances of the principals through the game’s interface (offered by the chal-
lenger). Thus, while playing the security game, A provides the inputs to the
challenger CHftg – who parses the received messages and forwards them to cor-
responding instances – via the following queries:

– Send(U, i,M): A sends message M to instance ΠU
i . As a response, ΠU

i pro-
cesses M according to the protocol description P, updates its corresponding
internal state and outputs a reply that is given to A. Whenever this query
causes ΠU

i to accept, terminate or abort, it is indicated to A. Additionally,
to instruct client C to initiate a session with server S, the adversary sends
a message containing the name of the server to an unused instance of C, i.e.
Send(C, i, S).

– Execute(C, i, S, j): This triggers an honest run of P between instances ΠC
i

and ΠS
j . The transcript of the protocol execution is given to A. It covers

passive eavesdropping on protocol flows.
– Reveal(U, i): As a response to this query, A receives the current value of the

session key ski
U computed at ΠU

i . A may do this only if ΠU
i holds a session

key, e.g. it is in accept or terminate state. This query captures potential
session key leakage as a result of its use in higher level protocols. Also, it
ensures that if some session key gets compromised, other session keys remain
protected.

Tightly-Secure PAK 37

– Test(U, i): CHftg flips a bit b and answers this query as follows: if b = 1, A
gets ski

U . Otherwise, it receives a random string from the session key space.
This query can only be asked once by A at any time during the execution
of Gftg. This query simply measures the adversarial success and does not
correspond to any real-world adversarial capability.

– Corrupt(U): The password πU is given to A if U is a client, and the list of
passwords πU in case U is a server8.

As can be seen above, the adversary is allowed to send multiple Send, Execute,
Reveal and Corrupt queries to the challenger, and only a single Test query.

Accepting and Terminating. In the FtG model from [5], an instance ΠU
i

accepts whenever it holds a session key ski
U , a session ID sidi

U and a partner
ID pidi

U . Note that the meaning of ”accept” in this context is different from the
usage of ”accept” in other settings such as computational complexity.

An instance ΠU
i terminates if it holds ski

U , sidi
U , pidi

U and will not send nor
receive any more messages. Due to the protocol design, ΠU

i may accept once
and terminate later. Note also that it is possible for a server running the PAK
protocol to accept at the time it sends the second protocol flow and to later
abort if it receives a wrong confirmation code in the third protocol flow.

Partnering. We say that instances ΠC
i and ΠS

j are partnered if both oracles
accept holding (ski

C , sidi
C , pidi

C) and (skj
S , sidj

S , pidj
S) respectively and the

following conditions hold:

1. ski
C = skj

S , sidi
C = sidj

S , pidi
C = S, pidj

S = C
2. no other instance accepts with the same sid.

Freshness. It captures the idea that the adversary should not trivially know
the session key being tested. We incorporate forward secrecy in the definition of
freshness. An instance ΠU

i is said to be fs-fresh unless i) a Reveal query was
made to ΠU

i or its partner (if it has one) or ii) a Corrupt(U ′) query was made
before the Test query (where U ′ is any participant) and Send(U, i,M) query
was made at some point.

PAKE Security. The goal of A is to guess the bit b used to answer the test
query. Let SuccFtGP (A) be the event where A asks a single test query directed to
a fs-fresh instance and A outputs his guess b′, where b′ = b. The advantage of
A attacking P is defined as:

AdvFtG
P (A) = 2 · Pr [SuccFtGP (A)] − 1 (5)

8 This is the weak-corruption model of [5].

38 J. Becerra et al.

In the original formulation of the model from [5], we say that protocol P is FtG-
secure if there exists a positive constant B such that for every PPT adversary
A it holds that

AdvFtG
P (A) ≤ B · nse

N
+ ε (6)

where nse is an upper bond on the number of Send queries A makes, and ε is
negligible in the security parameter. Following our discussion in Sect. 1.3, we can
modify the definition to allow arbitrary password distribution and login attempt
policy; thus, we can define a protocol to be secure if for for every PPT adversary
A,

AdvFtG
P (A) ≤ F(D,L, nse) + ε (7)

where we are using nse as an upper bound on the number of online password
guesses the adversary can make.

The following fact can be easily verified using Eq. 5:

Fact 1

Pr [SuccFtGP (A)] = Pr [SuccFtGP ′ (A)]+ε ⇔ AdvFtG
P (A) = AdvFtG

P ′ (A)+2ε. (8)

5 Proof of Security

In this section, we prove the security of the PAK protocol instantiated over
Gap Diffie-Hellman groups. Due to similarity with the proof of the original PAK
protocol [25], we present an overview for those security games that remain the
same as in the original protocol and focus on those that deviate from the original
proof. In Fig. 2 we provide the description of the game hops and highlight those
games which differ from the original security proof. The terminology regarding
adversary’s actions, partnering and events stays as in [25] (see Appendix A).

G0 : Original protocol.
G1 : Force uniqueness of instances.
G2 : Forbid lucky guesses on hash outputs and backpatch for consistency.
G3 : Randomize session keys for Execute queries (L-CDH).
G4 : Check password guesses.
G5 : Randomize session keys for paired instances (L-CDH).
G6 : Forbid two password guesses per online attempt on server (L-CDH).
G7 : Internal password oracle.

Fig. 2. Description of games for the original PAK.

The main difference between the existing proof in the FtG model and our
proof is that our reduction algorithm makes use of a Decisional Diffie-Hellman

Tightly-Secure PAK 39

Oracle (DDH-O). Such oracle is available in gap groups, and it will output 1 on
input (g, gx, gy, gz) if gz = DH(gx, gy) and 0 otherwise. This additional infor-
mation can be leveraged – in games G3, G5 and G6 – to increase the success
probability and reduce the running time of the reduction compared to Theo-
rem6.9 in [25].

Proof of Theorem 2: We will denote by Pi the protocol executed in game Gi,
for i from 0 to 7. Before we start with the revised games, we will first describe
in Fig. 3 how the random oracle queries to H1 are answered by the simulator
(reduction). It is important to highlight that the simulator has access to ψ1[π]
values (see Appendix B).

Game G0 : Original protocol. In this game, the challenger runs the original
protocol P0 for the adversary A.

Game G1 : Force uniqueness of instances. Let G1 be exactly the same as
G0, except that if any of the values m and μ chosen by honest instances collide
with previously generated ones, the protocol aborts and the adversary fails.

The probability of this event happening is negligible in the security parameter
and limited by the birthday bound. More precisely, for all adversaries A:

AdvFtG
P0

(A) ≤ AdvFtG
P1

(A) +
(nse + nex)(nse + nex + nro)

q
. (9)

Game G2 : Forbid lucky guesses on hash outputs and backpatch for
consistency. Let G2 be the same as G1, with the difference that now the sim-
ulator answers Send and Execute queries without making any random oracle
queries, while ensuing random oracle queries are backpatched to ensure consis-
tency in the view of the adversary.

In addition, G2 forbids lucky guesses on hash functions. Specifically, in G1

there are cases where an unpaired client instance ΠC
i may accept a confirmation

code k, but the adversary has not asked the required random oracle queries to
H1 and H2 in order to compute k, i.e. he proactively produced the correct one.
The probability of this event happening is O(nro+nse)

q . A similar scenario occurs
when considering an unpaired server instance. Then:

AdvFtG
P1

(A) = AdvFtG
P2

(A) +
O(nro + nse)

q
. (10)

Game G3 : Randomize session keys for Execute queries. Let G3 be
exactly the same as G2, except that during processing of an Hl(C,S,m, μ, σ, γ′)
query for l ∈ {2, 3, 4}, there is no check for a testexecpw(C, i, S, j, πc) event.
As a result of this change, even if testexecpw(C, i, S, j, πc) event is triggered,
the simulator will answer an Hl(C,S,m, μ, σ, γ′) query with a random string
from {0, 1}κ.

40 J. Becerra et al.

Claim 1. For all adversaries A running in time t, there exists an algorithm D
running in time t′′ = O(t + (nro + nse + nex) · texp + nro · tddh), such that:

AdvFtG
P2

(A) ≤ AdvFtG
P3

(A) + 2Advgap - cdh
G1

(t′′). (11)

Proof: Let ε be the probability that testexecpw occurs in G2. In that case
Pr(SuccFtGP2

(A)) ≤ Pr(SuccFtGP3
(A)) + ε. By Fact 1, AdvFtG

P2
(A) ≤ AdvFtG

P3
(A) +

2ε. Note that games G2 and G3 are indistinguishable if testexecpw does not
occur.

Now, we will construct an algorithm D that attempts to win its Gap-DH game
against CHcdh by running A as a subroutine on a simulation of the protocol P2.
For fixed (X,Y) that are coming from CHcdh, D simulates G2 to A with the
following changes:

1. For every Execute(C, i, S, j) query, set m = X · gρiC , μ = Y · gρjS , where

(ρiC , ρjS) $←− Z
2
q, while k, k′ stay random strings from {0, 1}κ.

2. Each time A asks a Hl(C,S,m, μ, σ, γ′) query for l ∈ {2, 3, 4} – where values
m,μ were generated in Execute(C, i, S, j) query, and H1(πc) query returned
(γ′)−1 – D calls DDH-O with input (m ·γ′, μ, σ). Once DDH-O returns 1, the
“winning” Hl query is identified, and D computes Z value as follows

Z = σ · XρjS · Y ρiC · gρiC
·ρjS · μψ1[πc], (12)

submits it to CHcdh as a solution for (X,Y) challenge, and stops. The advantage
of D in solving Gap-DH is equal to ε and its running time is t′′ = O(t + (nse +
nex + nro)texp + nrotddh). ��
DISCUSSION. Notice that the running time of D in G3 has slightly increased (by
nrotddh − nrotexp) when comparing with MacKenzie’s reduction, since c · texp =
tddh, where c is some constant. As in [25], ε′ = ε. However, here only a single Z
value is computed and sent, in contrast to the existing reduction where a list of
size nro is submitted to CHcdh.

Game G4 : Check password guesses. The challenger executes P3 as in G3,
except that if correctpw event occurs, then the protocol execution aborts and
the adversary succeeds.

As consequence, before any Corrupt query, whenever the simulator detects
(via oracle queries) that the adversary uses the correct password to compute
the confirmation code k, the protocol will be aborted and the adversary will be
deemed successful, i.e., no unpaired client or server instance will terminate prior
to correctpw event or Corrupt query.

AdvFtG
P3

(A) ≤ AdvFtG
P4

(A). (13)

Game G5 : Randomize session keys for paired instances. G5 is identical
to G4, except in case pairedpwguess event occurs. In that case, the game stops
and adversary fails.

Tightly-Secure PAK 41

In this particular reduction, we will show that an adversary A who (i) can
adaptively corrupt user (thus knowing the password πc) and (ii) manages to
compute sk for paired instances ΠC

i and ΠS
j , could be used as a subroutine to

solve the Gap-DH problem.

Claim 2. For any adversary A running in time t, an algorithm D running in
time t′′ = O(t + (nse + nro + nexe)texp + (nse + nro)tddh) can be built such that:

AdvFtG
P4

(A) ≤ AdvFtG
P5

(A) + 2Advgap - cdh
G1

(t′′). (14)

Proof: If pairedpwguess does not occur, then games G4 and G5 are indistin-
guishable. Let ε be the probability that pairedpwguess event occurs, when A
is running in G4.

Next, we will construct an algorithm D that attempts to win its Gap-DH
game against CHcdh by running A as a subroutine on a simulation of the protocol
P4. For a given pair (X,Y), D simulates G4 to A with the following changes:

1. In CLIENT ACTION 0 query to ΠC
i and input S, set m = X · gρC,i where

ρC,i
$←− Zq.

2. In SERVER ACTION 1 query to ΠS
j and input 〈C,m〉, set μ = Y · gρS,j ,

where ρS,j
$←− Zq.

3. In CLIENT ACTION 1 to ΠC
i and input 〈μ, k〉, if ΠC

i is unpaired, D first
verifies k using DDH-O and the list of random oracle queries. If k is correctly
constructed (DDH-O outputs 1), ΠC

i outputs k′ and terminates, or rejects
otherwise.

4. In SERVER ACTION 2 query to ΠS
j with input k′, if ΠS

j was paired after its
SERVER ACTION 1 but is now unpaired, then D verifies k′. If k′ is correctly
constructed, then ΠS

j terminates. Otherwise, it rejects.
5. After A terminates, the simulator selects queries of the form Hl(C, S, m, μ,

σ, π), for which the following conditions are satisfied: (i) m and μ generated
by some instances ΠC

i and ΠS
j respectively, (ii) ΠC

i is paired with ΠS
j and

ΠS
j is paired with ΠC

i after SERVER ACTION 1, (iii) (γ′)−1 = H1(π). For
every such query, D calls DDH-O with input (m · γ′, μ, σ).

Once DDH-O returns 1, D computes Z value in the same way as for G3

(Eq. 12), submits it to CHcdh as a solution for (X,Y) challenge, and stops. The
advantage of D in solving Gap-DH is equal to ε and its running time is t′′ =
O(t + (nse + nro + nexe)texp + (nse + nro)tddh). ��
DISCUSSION. To explain why the original reduction from [25] contains nse

degradation factor, and how we can avoid such degradation in ours, consider the
following scenario:

Suppose that the adversary A against protocol P4 first makes a CLIENT
ACTION 0 query to ΠC

i and receives as an answer m = X · gρC,i value in
which Diffie-Hellman challenge X is planted. Next, A obtains πc = π[C,S] via
Corrupt(S) query. With this information, A may decide to impersonate S to
C by making a CLIENT ACTION 1 query with an input 〈μ, k〉 to ΠC

i . Since A
knows the correct password, he could compute and send the correct confirmation

42 J. Becerra et al.

code k; however, A could also choose to send an incorrect one. Now, the simulator
faces a problem: ΠC

i has to verify k and based on the verification outcome
either accept or reject. Put differently, the simulator is unable to verify whether
testpw(C, i, S, πc, l = 2) is triggered; this could be done by checking if σ =
DH(α, μ), but the simulator does not know the discrete log of X.

To circumvent this obstruction, the reduction in [25] has to guess an instance
that will be the target of the Test query: this provides guarantee that there won’t
be any corruption before session keys are accepted, and thus the simulator can
safely plant the received Diffie-Hellman challenge (X,Y) in the Test session.
This technique yields a factor of nse in front of Advl - cdh

G advantage in Theorem1.
In contrast, by using Gap-DH groups, our simulator can query DDH-O

with input (α, μ, σ) to verify if σ = DH(α, μ) and check whether the event
testpw(C, i, S, πc, l = 2) is triggered or not. Hence, we can avoid guessing of
the Test instance, which makes our reduction tight with respect to the success
probability. Compared to [25], the running time of the reduction algorithm has
increased by an additive term (nse + nro)tddh, due to the invocation of DDH-O
needed for the simulator to identify correct random oracle queries.

Game G6 : Forbid two password guesses per online attempt on server.
Let G6 be identical to G5, except that if doublepwserver event occurs, the
protocol halts and the adversary fails. We assume that the check for doublep-
wserver occurs before the check for pairedpwguess.

Claim 3. For any adversary A running in time t, there exists an algorithm D
running in time t′′ = O(t + (nse + nro + nexe)texp + nrotddh) such that

AdvFtG
P5

(A) ≤ AdvFtG
P6

(A) + 4Advgap - cdh
G1

(t′′) (15)

Proof: We will construct an algorithm D that attempts to win its Gap-DH game
against CHcdh by running A as a subroutine on a simulation of the protocol P5.
For a given pair (X,Y), D simulates G5 to A with the following changes:

1. In H1(π) query, output Xψ1[π]gψ′
1[π], where ψ1[π] $←− {0, 1} and ψ′

1[π] $←− Zq.
2. In a SERVER ACTION 1 query to a server ΠS

j with input 〈C,m〉 where
acceptable(m) is true, set μ = Y · gρ′

S,j .
3. Tests for correctpw and pairedpwguess, from G4 and G5 respectively, are

not made.
4. After A terminates, the simulator D using DDH-O first creates a list Lc of

Hl(C,S,m, μ, σ, γ′) queries, with l ∈ {2, 3, 4}, such that σ = DH(m · γ′, μ).
Then D selects from the list Lc two different queries, say Hl(C,S,m, μ, σ, γ′)
and Hl̂(C,S,m, μ, σ̂, γ̂′), for l, l̂ ∈ {2, 3, 4} such that there was (i) a SERVER
ACTION 1 query to a server instance ΠS

j with input 〈C,m〉 and output 〈μ, k〉,
(ii) an H1(π) query that returned (γ′)−1, an H1(π̂) query that returned (γ̂′)−1

and (iii) ψ1[π] �= ψ1[π̂]. Then D outputs:

Z =
(

σ · σ̂−1 · (γ′)−ρ′
S,j · (γ̂′)ρ′

S,j · Y ψ′
1[π]−ψ′

1[π̂]

)ψ1[π]−ψ1[π̂]

, (16)

where Z = DH(X,Y).

Tightly-Secure PAK 43

G6 is indistinguishable from G5 until the event doublepwserver occurs. Let
the ε be the probability that doublepwserver occurs when A is running in G5.
When doublepwserver occurs for two passwords π �= π̂, the success probability
of D is ε/2 and its running time is t′′ = O(t + (nse + nro + nexe)texp + nrotddh).

��
DISCUSSION. This game shows that A’s probability of simultaneously guessing
(discarding) more than one password during a single online attempt on a server
executing P6 is negligible. In most PAKE proofs (in [25] too), this reduction
typically brings the highest security degradation: e.g. 1/n3

ro appears in the case
of Dragonfly [21] and SPEKE [24]. In contrast, our protocol only suffers from a
constant loss (4) in the success probability.

The reason for 1/n2
ro degradation when using L-CDH in PAK reduction is

the following: D has to compute and output a list of possible DH values and he
expects the solution for CDH to be contained within the list if A wins its game.
The list is computed as follows: for particular pairs of queries Hl(C,S,m, μ, σ, γ′)
and Hl̂(C,S,m, μ, σ̂, γ̂′), for l, l̂ ∈ {2, 3, 4}, D computes Z as in Eq. 16 and adds
it to his list of possible DH values. The size of the list is upper bounded by
(nro)2, resulting in unfeasible running time for D.

In contrast, by using Gap-DH groups, D can identify the right pair of Hl

queries (at the cost of at most nrotddh in the running time) and then compute
a single, correct Z value using Eq. 16. As a result, we can remove the quadratic
factor in the running time of D.

Game G7 : Internal password oracle. The purpose of this game is to estimate
the probability of the correctpw event occurring, i.e. the adversary guessing the
correct password πc.

Let G7 be as G6, except that there is an internal password oracle Opw which
generates all passwords during the initialization of the users. The simulator uses
it to i) handle Corrupt queries and ii) test whether correctpw occurs. More
specifically, when A asks Corrupt(U), the query is simply forwarded to Opw

which returns πU if U ∈ Clients, otherwise returns 〈πU [C]〉C∈Clients. To deter-
mine whether correctpw occurs, the simulator queries Opw with test(π,C),
which returns TRUE if π = πC and FALSE otherwise.

By definition G6 and G7 are perfectly indistinguishable. Then:

AdvFtG
P6

(A) = AdvFtG
P7

. (17)

Claim 4. For all PPT adversaries A:

AdvFtG
P7

≤ F(D,L, nse). (18)

Proof: Let ψ denote the correctpw event and ψc its compliment. The proba-
bility that A succeeds in G7 is given by:

44 J. Becerra et al.

Pr [SuccFtGP7
(A)] = Pr [ψ] · Pr [SuccFtGP7

(A) | ψ] +

Pr [ψc] · Pr [SuccFtGP7
(A) | ψc] (19)

We look at the first term of Eq. 19. Since there are nse Send queries, the
probability of correctpw occurring is bounded by Pr [ψ] ≤ F(D,L, nse). Addi-
tionally, it follows from G4 that Pr [SuccFtGP7

(A) | ψ] = 1. Now we look at the
second term of Eq. 19. Given that correctpw does not occur, A succeeds by mak-
ing a Test query to a fresh instance ΠU

i and guessing the bit b used in the Test
query. By examining Reveal and H4 queries throughout the proof, it follows
that the view of A is independent of ski

U , therefore Pr [SuccFtGP7
(A) | ψc] = 1/2.

Putting everything together, using Eqs. 5 and 19:

AdvFtG
P7

≤ F(D,L, nse).

��

6 Conclusion

In this paper, we proposed a new instantiation for the PAK protocol and showed
that the security proof from [25] can be adapted to cover our proposal. Our
reduction to the Gap Diffie-Hellman problem is significantly tighter than the
previous reduction to the List Diffie-Hellman problem (see Table 1). From a
theoretical point of view, this shows that the security of PAK is closely related to
the security of Gap-DH assumption. In terms of concrete security, the advantage
of the tighter proof is that it provides the guarantee that with typical values of
the group size for today, even the most computationally powerful adversaries
today cannot do significantly better than an online dictionary attack. In future
work it would be interesting to see if similar techniques could lead to tighter
security proofs in other existing PAKE protocols.

Table 1. Comparison of running time and success probability of PAK reduction
algorithm when using different variants of CDH assumption. Variable texp represents
the running time to compute exponentiation in G, tddh the time for deciding DDH,
tsim = (nse + nro + nexe)texp, c is a constant, nro and nse are the number of random
oracle and send queries respectively.

Assumption t′ − t − tsim ε′/ε

Standard CDH O(c · texp) 1/n2
ro

L-CDH O((nro)
2 · texp) 1/nse

Gap-DH O(nro · tddh) 1

Acknowledgements. We would like to thank the anonymous referees for their com-
ments. This work was supported by the Luxembourg National Research Fund (CORE
project AToMS and CORE Junior grant no. 11299247).

Tightly-Secure PAK 45

A Terminology from the Original Proof of PAK

First, we introduce the terminology from [25] that deals with adversary’s actions
and partnering.

We say “in a CLIENT ACTION κ query to ΠC
i ”, to refer to “in a Send query

to ΠC
i that results in execution of CLIENT ACTION κ procedure” and “in a

SERVER ACTION κ query to ΠS
j ”, to refer to “in a Send query to ΠS

j that
results in execution of SERVER ACTION κ procedure”. A client instance ΠC

i is
paired with a server instance ΠS

j if there is a CLIENT ACTION 0 query to ΠC
i

with input S and output 〈C,m〉, there is a SERVER ACTION 1 query to ΠS
j

with input 〈C,m〉 and output 〈μ, k〉 and there is a CLIENT ACTION 1 query
to ΠC

i with input 〈μ, k〉. A server instance ΠS
j is paired with client instance

ΠC
i whenever there is a CLIENT ACTION 0 query to ΠC

i with input S and
output 〈C,m〉, there is a SERVER ACTION 1 query to ΠS

j with input 〈C,m〉
and output 〈μ, k〉, and if there is a SERVER ACTION 2 query to ΠS

j with input
k′, then there was previously a CLIENT ACTION 1 query to ΠC

i with input
〈μ, k〉 and output k′.

Next we describe those events taken from [25] which are required in our proof
of security.

– testpw(C, i, S, π, l): for some m,μ and γ′, A makes (i) an Hl(C,S,m, μ, σ, γ′)
query, (ii) a CLIENT ACTION 0 query to a client instance ΠC

i with input S
and output 〈C,m〉, (iii) a CLIENT ACTION 1 query to ΠC

i with input 〈μ, k〉
and (iv) an H1(π) query returning (γ′)−1, where the last query is either the
Hl(·) query or the CLIENT ACTION 1 query, σ = DH(α, μ), m = α · (γ′)−1

and l ∈ {2, 3, 4}.
– testpw!(C, i, S, π): for some k, a CLIENT ACTION 1 query with input 〈μ, k〉

causes a testpw(C, i, S, π, 2) event to occur, with associated value k.
– textpw(S, j, C, π, l): for some m,μ, γ′ and k, A makes an Hl(C,S,m, μ, σ, γ′)

query, and previously made (i) a SERVER ACTION 1 query to a server
instance ΠS

j with input 〈C,m〉 and output 〈μ, k〉, and (ii) an H1(π) query
returning (γ′)−1, where σ = DH(α, μ), m = α · (γ′)−1 and ACCEPT-
ABLE(m). The associated value of this event is k, k′′ or skj

s.
– testpw!(S, j, C, π): SERVER ACTION 2 query to ΠS

j is made with input k′,
and previously a testpw(S, j, C, π, 3) event occurs with associated value k′.

– testpw∗(S, j, C, π): testpw(S, j, C, π, l) event occurs for some l ∈ {2, 3, 4}.
– testpw(C, i, S, j, π) : for some l ∈ {2, 3, 4}, both a testpw(C, i, S, π, l) and

testpw(S, j, C, π, l) event occur, where ΠC
i is paired with ΠS

j , and ΠS
j is

paired with ΠC
i after its SERVER ACTION 1 query.

– testexecpw(C, i, S, j, π): for some m,μ and γ′, A makes an Hl(C,S,m, μ,
σ, γ′) query, for l ∈ {2, 3, 4}, and previously made (i) an Execute(C, i, S, j)
query that generates m,μ, and (ii) an H1(π) query returning (γ′)−1, where
σ = DH(α, μ) and m = α · (γ′)−1.

– correctpw: before any Corrupt query, either a testpw!(C, i, S, πC) event
occurs for some C,i and S, or a testpw∗(S, j, C, πC) event occurs for some
S, j, and C.

46 J. Becerra et al.

– doublepwserver: before any Corrupt query, both testpw∗(S, j, C, π) event
and a testpw∗(S, j, C, π̂), for some S, j, C and π �= π̂.

– pairedpwguess: a testpw(C, i, S, j, πC) event occurs, for some C, i, S and j.

B Hash Function Simulation

Fig. 3. Simulation of the hash function H1

References

1. Abdalla, M., Chevassut, O., Pointcheval, D.: One-time verifier-based encrypted key
exchange. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 47–64. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30580-4 5

2. Abdalla, M., Fouque, P.-A., Pointcheval, D.: Password-based authenticated key
exchange in the three-party setting. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol.
3386, pp. 65–84. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-
30580-4 6

3. Abdalla, M., Pointcheval, D.: Simple password-based encrypted key exchange pro-
tocols. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 191–208. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3 14

4. Bellare, M.: Practice-oriented provable-security. In: Damg̊ard, I.B. (ed.) EEF
School 1998. LNCS, vol. 1561, pp. 1–15. Springer, Heidelberg (1999). https://doi.
org/10.1007/3-540-48969-X 1

5. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure
against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol.
1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-
45539-6 11

6. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols
secure against dictionary attacks. In: 1992 IEEE Symposium on Research in Secu-
rity and Privacy, SP 1992, pp. 72–84 (1992)

7. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-45682-1 30

8. Boyko, V., MacKenzie, P., Patel, S.: Provably secure password-authenticated key
exchange using Diffie-Hellman. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 156–171. Springer, Heidelberg (2000). https://doi.org/10.1007/3-
540-45539-6 12

https://doi.org/10.1007/978-3-540-30580-4_5
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30580-4_6
https://doi.org/10.1007/978-3-540-30574-3_14
https://doi.org/10.1007/3-540-48969-X_1
https://doi.org/10.1007/3-540-48969-X_1
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45539-6_11
https://doi.org/10.1007/3-540-45682-1_30
https://doi.org/10.1007/3-540-45539-6_12
https://doi.org/10.1007/3-540-45539-6_12

Tightly-Secure PAK 47

9. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.: Universally com-
posable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005.
LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.
1007/11426639 24

10. Dacosta, I., Ahamad, M., Traynor, P.: Trust No One Else: detecting MITM attacks
against SSL/TLS without third-parties. In: Foresti, S., Yung, M., Martinelli, F.
(eds.) ESORICS 2012. LNCS, vol. 7459, pp. 199–216. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33167-1 12

11. Ding, J., Alsayigh, S., Lancrenon, J., RV, S., Snook, M.: Provably secure pass-
word authenticated key exchange based on RLWE for the post-quantum world.
In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 183–204. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-52153-4 11

12. Ecrypt, I.: ECRYPT II yearly report on algorithms and keysizes. Technical report,
European Network of Excellence in Cryptology II (2012)

13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discret.
Appl. Math. 156(16), 3113–3121 (2008)

14. Hao, F., Ryan, P.: J-PAKE: authenticated key exchange without PKI. Trans. Com-
put. Sci. 11, 192–206 (2010)

15. Harkins, D.: Simultaneous authentication of equals: a secure, password-based key
exchange for mesh networks. In: Proceedings of the 2008 Second International
Conference on Sensor Technologies and Applications, SENSORCOMM 2008, pp.
839–844. IEEE Computer Society (2008)

16. Standard Specifications for Password-Based Public Key Cryptographic Techniques:
Standard. IEEE Standards Association, Piscataway, NJ, USA (2002)

17. Jablon, D.P.: Strong password-only authenticated key exchange. ACM SIGCOMM
Comput. Commun. Rev. 26(5), 5–26 (1996)

18. Joux, A., Nguyen, K.: Deparating decision Diffie-Hellman from computational
Diffie-Hellman in cryptographic groups. J. Cryptol. 16(4), 239–247 (2003)

19. Katz, J., Ostrovsky, R., Yung, M.: Efficient password-authenticated key exchange
using human-memorable passwords. In: Pfitzmann, B. (ed.) EUROCRYPT 2001.
LNCS, vol. 2045, pp. 475–494. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44987-6 29

20. Krawczyk, H.: HMQV: a high-performance secure Diffie-Hellman protocol. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 546–566. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11535218 33

21. Lancrenon, J., Škrobot, M.: On the provable security of the dragonfly protocol. In:
Lopez, J., Mitchell, C.J. (eds.) ISC 2015. LNCS, vol. 9290, pp. 244–261. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23318-5 14

22. Lenstra, A.K.: Key lengths. Technical report, Wiley (2006)
23. Lopez Becerra, J.M., Iovino, V., Ostrev, D., Škrobot, M.: On the relation between

SIM and IND-RoR security models for PAKEs. In: SECRYPT 2017. SCITEPRESS
(2017)

24. MacKenzie, P.: On the security of the speke password authenticated key exchange
protocol. Cryptology ePrint Archive, Report 2001/057 (2001). http://eprint.iacr.
org/2001/057

25. MacKenzie, P.: The PAK suite: protocols for password-authenticated key exchange.
DIMACS Technical report 2002–46 (2002)

26. MacKenzie, P.: More efficient password-authenticated key exchange. In: Naccache,
D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 361–377. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45353-9 27

https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/11426639_24
https://doi.org/10.1007/978-3-642-33167-1_12
https://doi.org/10.1007/978-3-319-52153-4_11
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/3-540-44987-6_29
https://doi.org/10.1007/11535218_33
https://doi.org/10.1007/978-3-319-23318-5_14
http://eprint.iacr.org/2001/057
http://eprint.iacr.org/2001/057
https://doi.org/10.1007/3-540-45353-9_27

48 J. Becerra et al.

27. MacKenzie, P.: Methods and apparatus for providing efficient password authenti-
cated key exchange (2002). Publication number US20020194478 A1. https://www.
google.com/patents/US20020194478

28. Mrabet, N.E., Joye, M.: Guide to Pairing-Based Cryptography. Chapman &
Hall/CRC, Boca Raton (2016)

29. Okamoto, T., Pointcheval, D.: The gap-problems: a new class of problems for the
security of cryptographic schemes. In: Kim, K. (ed.) PKC 2001. LNCS, vol. 1992,
pp. 104–118. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44586-
2 8

30. Silverman, J.H.: The Arithmetic of Elliptic Curves. GTM, vol. 106. Springer, New
York (2009). https://doi.org/10.1007/978-0-387-09494-6

31. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. IACR Cryptology ePrint Archive 2017, 190 (2017). http://
eprint.iacr.org/2017/190

32. Thread-Group: Thread Protocol (2015). http://threadgroup.org/
33. Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE

Trans. Inf. Forensics Secur. 12, 2776–2791 (2017)
34. Wang, D., Wang, P.: On the implications of Zipf’s law in passwords. In: Askoxy-

lakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS,
vol. 9878, pp. 111–131. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
45744-4 6

35. Warner, B.: Magic Wormhole (2016). https://github.com/warner/magic-wormhole
36. Wu, T.D.: The secure remote password protocol. In: Proceedings of the Network

and Distributed System Security Symposium, NDSS 1998. The Internet Society
(1998)

https://www.google.com/patents/US20020194478
https://www.google.com/patents/US20020194478
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/3-540-44586-2_8
https://doi.org/10.1007/978-0-387-09494-6
http://eprint.iacr.org/2017/190
http://eprint.iacr.org/2017/190
http://threadgroup.org/
https://doi.org/10.1007/978-3-319-45744-4_6
https://doi.org/10.1007/978-3-319-45744-4_6
https://github.com/warner/magic-wormhole

Processing Encrypted Data

On the Security of Frequency-Hiding
Order-Preserving Encryption

Matteo Maffei1, Manuel Reinert2(B), and Dominique Schröder3

1 TU Wien, Wien, Austria
matteo.maffei@tuwien.ac.at

2 CISPA, Saarland University, Saarbrücken, Germany
reinert@cs.uni-saarland.de

3 Friedrich-Alexander Universität Erlangen-Nürnberg, Nürnberg, Germany
dominique.schroeder@fau.de

Abstract. Order-preserving encryption (OPE) is an encryption scheme
with the property that the ordering of the plaintexts carry over to
the ciphertexts. This primitive is particularly useful in the setting
of encrypted databases because it enables efficient range queries over
encrypted data. Given its practicality and usefulness in the design of
databases on encrypted data, OPE’s popularity is growing. Unfortu-
nately, nearly all computationally efficient OPE constructions are vulner-
able against ciphertext frequency-leakage, which allows for inferring the
underlying plaintext frequency. To overcome this weakness, Kerschbaum
recently proposed a security model, designed a frequency-hiding OPE
scheme, and analyzed its security in the programmable random oracle
model (CCS 2015).

In this work, we demonstrate that Kerschbaum’s definition is impre-
cise and using its natural interpretation, we describe an attack against
his scheme. We generalize our attack and show that his definition is, in
fact, not satisfiable. The basic idea of our impossibility result is to show
that any scheme satisfying his security notion is also IND-CPA-secure,
which contradicts the very nature of OPE. As a consequence, no such
scheme can exist. To complete the picture, we rule out the imprecision in
the security definition and show that a slight adaption of Kerschbaum’s
tree-based scheme fulfills it.

1 Introduction

Outsourcing databases is common practice in today’s businesses. The reasons
for that are manifold, varying from the sharing of data among different offices
of the same company to saving on know-how and costs that would be necessary
to maintain such systems locally. Outsourcing information, however, raises pri-
vacy concerns with respect to the service provider hosting the data. A first step
towards a privacy-preserving solution is to outsource encrypted data and to let
the database application operate on ciphertexts. However, simply encrypting all
entries does in general not work because several standard queries on the database
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 51–70, 2018.
https://doi.org/10.1007/978-3-030-02641-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_3

52 M. Maffei et al.

do no longer work. To maintain as much functionality of the database as possible
while adding confidentiality properties, researchers weakened the security prop-
erties of encryption schemes to find a useful middle ground. Examples include
encryption schemes that support plaintext equality checks, or order-preserving
encryption. In this work, we re-visit the recent work on frequency-hiding order
preserving encryption by Kerschbaum [11] (CCS 2015).

Background and Related Work. Order-preserving encryption (OPE) [3,20]
is arguably the most popular building block for databases on encrypted data,
since it allows for inferring the order of plaintexts by just looking at the respective
ciphertexts. More precisely, for any two plaintexts p1 and p2, whenever p1 < p2,
we have that E(p1) < E(p2). Hence, OPE allows for efficient range queries and
keyword search on the encrypted data. The popularity of this scheme is vouched
for by plenty of industrial products (e.g., Ciphercloud1, Perspecsys2, and Sky-
high Networks3) and research that investigates OPE usage in different scenar-
ios [1,2,10,13,17,18]. Despite the growing popularity and usage in practice, OPE
security is debatable. The ideal security notion for OPE is called indistinguisha-
bility against ordered chosen plaintext attacks (IND-OCPA), which intuitively
says that two equally ordered plaintext sequences should be indistinguishable
under encryption. Boldyreva et al. [3] show that stateless OPE cannot achieve
IND-OCPA, unless the ciphertext size is exponential in the plaintext size. Con-
sequently, either one has to relax the security notion or to keep a state.

The former approach has been explored in the context of classical OPE [3,
4,21] as well as a slightly different notion called order-revealing encryption
(ORE) [5,6,14,19]. ORE is more general than OPE in the sense that compari-
son on the ciphertexts can happen by computing a comparison function different
from “<”. Either way, those schemes do not achieve IND-OCPA but target differ-
ent, weaker security notions, which allow them to quantify the leakage incurred
by a scheme or to restrict the attacker’s capabilities. For instance, the scheme
by Boldyreva et al. [3] is known to leak about the first half of the plaintexts and
the scheme by Chenette et al. [6] leaks the first bit where two encrypted target
plaintexts differ. To date, there exist several works that exploit this extra leakage
in order to break OPE applied to different data sets such as medical data and
census data [7–9,15]. For instance, using a technique based on bipartite graphs,
Grubbs et al. [9] have recently shown how to break the schemes of Boldyreva
et al. [3,4], thereby achieving recovery rates of up to 98%. As opposed to earlier
work, this technique works even for large plaintext domains such as first names,
last names, and even zip codes.

With regards to the latter approach based on stateful OPE schemes, Popa
et al. [16] introduced a client-server architecture, where the client encrypts plain-
texts using a deterministic encryption scheme and maintains a search tree on the
server into which it inserts the ciphertexts. The server exploits the search tree
when computing queries on encrypted data. This approach requires a significant

1 http://www.ciphercloud.com/.
2 http://perspecsys.com/.
3 https://www.skyhighnetworks.com/.

http://www.ciphercloud.com/
http://perspecsys.com/
https://www.skyhighnetworks.com/

On the Security of Frequency-Hiding Order-Preserving Encryption 53

amount of communication between the client and the server both for encryp-
tion and queries. Similarly, but rather reversed, Kerschbaum and Schroepfer [12]
present an OPE scheme where the client stores a search tree that maps plaintexts
to ciphertexts. The ciphertexts are chosen such that ordering is preserved and
then inserted along with the plaintexts in the search tree. The server only learns
the ciphertexts. This approach has less communication between client and server
but requires the client to keep a state that is linear in the number of encrypted
plaintexts. Both of these schemes are provably IND-OCPA-secure.

Even though these schemes achieve the ideal IND-OCPA security notion,
Kerschbaum [11] raises general doubts about the security definition of OPE.
Aside the leakage that is introduced by many schemes on top of the order infor-
mation (e.g., leaking half of the plaintext [3] or the first bit where two plaintexts
differ [6]), one central problem of OPE is the leakage of the plaintext frequency. It
is easy to distinguish the encryption of data collections in which elements occur
with different frequencies. For instance, the encryption of the sequences 1, 2, 3, 4
and 1, 1, 2, 2 are not necessarily indistinguishable according to the IND-OCPA
security definition.

In order to solve the frequency-leakage problem, Kerschbaum has recently
strengthened the IND-OCPA definition of OPE so as to further hide the fre-
quency of plaintexts under the encryption, thus making the encryptions of
the above two sequences indistinguishable [11] (CCS 2015). To this end, Ker-
schbaum introduces the notion of randomized order, which is a permutation of
the sequence 1, . . . , n where n is the length of the challenge plaintext sequence.
Such a permutation is called randomized order if, when applied to a plaintext
sequence, the resulting plaintext sequence is ordered with respect to “≤”. The
original IND-OCPA security definition requires that the two challenge plaintext
sequences agree on all such common randomized orders, which implies that every
pair of corresponding plaintexts in the two sequences occurs with the same fre-
quency. For instance, this does not hold for the above two sequences 1, 2, 3, 4 and
1, 1, 2, 2, since the former can only be ordered using the permutation (1, 2, 3, 4)
while the latter can be ordered by any of (1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), or
(2, 1, 4, 3). Kerschbaum’s insight to make the definition frequency-hiding is that
the existence of one common randomized order should be sufficient in order not to
be able to distinguish them. For instance, the above sequences both share the ran-
domized order (1, 2, 3, 4) and should thus be indistinguishable when encrypted.
This intuition is captured by the security notion of indistinguishability against
frequency-analyzing ordered chosen plaintext attacks (IND-FA-OCPA). Besides
devising a novel definition, Kerschbaum also presents a cryptographic instan-
tiation of an OPE scheme and analyzes its security with respect to the new
definition in the programmable random oracle model.

Despite the seeming improvement added by Kerschbaum’s scheme, Grubbs
et al. [9] show that using auxiliary information, such as the plaintext distribution
that is likely to underlie a certain ciphertext collection, this scheme can be broken
with significant recovery rates. In contrast to the practical attacks in [9], our

54 M. Maffei et al.

work targets the purely theoretic side of frequency-hiding OPE and we do not
consider having auxiliary information at disposal.

Our Contributions. In this work, we present both negative and positive
results for frequency-hiding order-preserving encryption. On the negative side,
we observe that the original definition of IND-FA-OCPA is imprecise [11], which
leaves room for interpretation. In particular, the security proof for the scheme
presented in [11] seems to suggest that the game challenger chooses a randomized
order according to which one of the challenge sequences is encrypted. This fact,
however, is not reflected in the definition. Hence, according to a natural interpre-
tation of the definition, we show that it is, in fact, not achievable. We develop
this impossibility result for the natural interpretation of IND-FA-OCPA step
by step. Investigating on Kerschbaum’s frequency-hiding scheme [11], we show
that it can actually be attacked–without using auxiliary information as done by
Grubbs et al. [9]–allowing an adversary to win the IND-FA-OCPA game with
very high probability. We further observe that this concrete attack can be gen-
eralized into a result that allows us to precisely quantify an attacker’s advantage
in winning the security game for two arbitrary plaintext sequences that adhere
to the security game restrictions. Since Kerschbaum provides formal security
claims for his construction [11], we identify where the security proof is incorrect.
All these considerations on the concrete scheme finally lead to our main nega-
tive result: IND-FA-OCPA security is impossible to achieve or, more precisely,
any IND-FA-OCPA secure OPE scheme is also secure with respect to IND-CPA,
which clearly contradicts the very functionality of OPE. Hence, such an OPE
scheme cannot exist.

As mentioned above, the impossibility of IND-FA-OCPA is bound to an
imprecision in the definition in [11], which is only presented informally and lacks
necessary information to make it achievable. We hence clarify those impreci-
sions. The underlying problem of the original definition lies in the capability
of the game challenger, which, when reading the definition naturally, is very
restricted. The challenger has, for instance, no means to ensure that the encryp-
tion algorithm chooses a common randomized order of the two challenge plain-
text sequences. To remedy those shortcomings, we devise a more formal defini-
tion that removes the consisting imprecisions and makes it possible to devise a
frequency-hiding OPE scheme. In particular, we first augment the OPE model,
allowing for specifying a concrete ordering when encrypting plaintexts, e.g., to
concretely say that the sequence 1, 1, 2, 2 should be encrypted sticking to the ran-
domized order (1, 2, 4, 3). Secondly, we show that an extension of Kerschbaum’s
scheme [11], adapted to the new model, is provably secure with respect to the
correct definition.

To summarize, our contributions are as follows.

– We show that the original definition of IND-FA-OCPA is imprecise. We then
demonstrate that the frequency-hiding OPE scheme of [11] is insecure under
a natural interpretation of IND-FA-OCPA. We further generalize the attack,
which allows us to rigorously quantify the success probability of an attacker

On the Security of Frequency-Hiding Order-Preserving Encryption 55

for two arbitrary plaintext sequences. To conclude on the concrete scheme,
we identify and explain the problem in the security proof.

– Going one step beyond the concrete scheme, we prove a general impossibility
result showing that IND-FA-OCPA cannot be achieved by any OPE scheme.

– We clarify the imprecise points in the original security definition and provide
a corrected version called IND-FA-OCPA∗.

– To define IND-FA-OCPA∗ in the first place, we have to augment the OPE
model, adding a concrete random order as input to the encryption function.

– Finally, we prove that an extension of [11] fulfills our new definition.

Overall, we believe this work yields a solid foundation for order-preserving
encryption, showing that a state-of-the-art security definition is impossible to
realize along with an attack on a previously published scheme, and presenting
an achievable definition and a concrete realization.

Outline. The rest of the paper is structured as follows. We recall the OPE
model and its security definitions in Sect. 2. In Sect. 3 we describe the relevant
parts of Kerschbaum’s scheme [11]. We present our attack, its generalization, and
the problem in the security proof in Sect. 4. Section 5 proves the impossibility
result. In Sect. 6 we present the augmented OPE model and the definition of
IND-FA-OCPA∗. We show that an adaption of [11] to the new model achieves
IND-FA-OCPA∗ in Sect. 7. Finally, we conclude this work in Sect. 8.

2 Order-Preserving Encryption

In this section, we briefly review the formal definitions of order-preserving
encryption, originally proposed in [20], following the definition adopted in [11].

Definition 1 ((Order-Preserving) Encryption). An (order-preserving) en-
cryption scheme OPE = (K,E,D) is a tuple of ppt algorithms where S ← K(κ).
The key generation algorithm takes as input a security parameter κ and outputs
a secret key (or state) S.
(S′, y) ← E(S, x). The encryption algorithm takes as input a secret key S and a
message x. It outputs a new key S′ and a ciphertext y;
x ← D(S, y). The decryption algorithm takes as input a secret key S and a
ciphertext y and outputs a message x.

An OPE scheme is complete if for all S, S′, x, and y we have that if (S′, y) ←
E(S, x), then x ← D(S′, y).

The next definition formalizes the property of order preservation for an
encryption scheme. Roughly speaking, this property says that the ordering on
the plaintext space carries over to the ciphertext space.

Definition 2 (Order-Preserving). An encryption scheme OPE = (K,E,D) is
order-preserving if for any two ciphertexts y1 and y2 with corresponding messages
x1 and x2 we have that whenever y1 < y2 then also x1 < x2.

56 M. Maffei et al.

This general definition allows for modeling both stateful as well as stateless
versions of OPE. We focus on the stateful variant in this paper, hence, the key
S defined above is actually the state. The definition, moreover, does not specify
where the state has to reside, allowing us to model client-server architectures.

2.1 Security Definitions

Indistinguishability Against Ordered Chosen Plaintext Attacks. The
standard security definition for order-preserving encryption is indistinguisha-
bility against ordered chosen plaintext attacks (IND-OCPA) [3]. Intuitively, an
OPE scheme is secure with respect to this definition if for any two equally ordered
plaintext sequences, no adversary can tell apart their corresponding ciphertext
sequences. IND-OCPA is fulfilled by several schemes (e.g., [12,16]). We recall
the selective version of the definition in the following.

Definition 3 (IND-OCPA). An order-preserving encryption scheme OPE =
(K,E,D) has indistinguishable ciphertexts under ordered chosen plaintext
attacks (IND-OCPA) if for any ppt adversary A, the following probability is
negligible in the security parameter κ:

∣
∣
∣Pr[ExpA

OCPA(κ, 1) = 1] − Pr[ExpA
OCPA(κ, 0) = 1]

∣
∣
∣

where ExpA
OCPA(κ, b) is the following experiment:

Experiment ExpA
OCPA(κ, b)

(X0,X1) ← A where |X0| = |X1| = n and
∀1 ≤ i, j ≤ n. x0,i < x0,j ⇐⇒ x1,i < x1,j

S0 ← K(κ)
For all 1 ≤ i ≤ n run (Si, yb,i) ← E(Si−1, xb,i)
b′ ← A(yb,1, . . . , yb,n)
Output 1 if and only if b = b′.

Definition 3 requires that the challenge plaintext sequences are ordered
exactly the same, which in particular implies that the plaintext frequency must
be the same.

Indistinguishability Under Frequency-Analyzing Ordered Chosen
Plaintext Attacks. A drawback of the previous definition is that it can
be achieved by schemes that leak the plaintext frequency, although any two
sequences in which plaintexts occur with different frequencies, e.g., 1, 2, 3, 4 and
1, 1, 1, 1, are trivially distinguishable by the attacker. In order to target even
such sequences, Kerschbaum [11] proposes a different security definition: instead
of requiring the sequences to have exactly the same order, it is sufficient for
them to have a common randomized order. For a plaintext list X of length n,
a randomized order is a permutation of the plaintext indices 1, . . . , n which are
ordered according to a sorted version of X. This is best explained by an example:
consider the plaintext sequence X = 1, 5, 3, 8, 3, 8. A randomized order thereof

On the Security of Frequency-Hiding Order-Preserving Encryption 57

can be any of Γ1 = (1, 4, 2, 5, 3, 6), Γ2 = (1, 4, 3, 5, 2, 6), Γ3 = (1, 4, 2, 6, 3, 5), or
Γ4 = (1, 4, 3, 6, 2, 5), because the order of 3 and 3 as well as the order of 8 and 8
does not matter in a sorted version of X. Formally, a randomized order is defined
as follows.

Definition 4 (Randomized order). Let n be the number of not necessarily
distinct plaintexts in sequence X = x1, x2, . . . , xn where xi ∈ N for all i. For a
randomized order Γ = γ1, γ2, . . . , γn, where 1 ≤ γi ≤ n and i �= j =⇒ γi �= γj

for all i, j, of sequence X it holds that

∀i, j. (xi > xj =⇒ γi > γj) ∧ (γi > γj =⇒ xi ≥ xj)

Using this definition, Kerschbaum [11] defines security of OPE against
frequency-analyzing ordered chosen plaintext attacks. Since the definition is infor-
mal in [11], we report the natural way to read the definition.

Definition 5 (IND-FA-OCPA). An order-preserving encryption scheme
OPE = (K,E,D) has indistinguishable ciphertexts under frequency-analyzing
ordered chosen plaintext attacks (IND-FA-OCPA) if for any ppt adversary A,
the following probability is negligible in the security parameter κ:

∣
∣
∣Pr[ExpA

FA−OCPA(κ, 1) = 1] − Pr[ExpA
FA−OCPA(κ, 0) = 1]

∣
∣
∣

where ExpA
FA−OCPA(κ, b) is the following experiment:

Experiment ExpA
FA−OCPA(κ, b)

(X0,X1) ← A where |X0| = |X1| = n and X0 and X1

have at least one common randomized order Γ
S0 ← K(κ)
For all 1 ≤ i ≤ n run (Si, yb,i) ← E(Si−1, xb,i)
b′ ← A(yb,1, . . . , yb,n)
Output 1 if and only if b = b′

It is clear that while the standard IND-OCPA definition could be achieved,
in principle, by a deterministic encryption scheme, the frequency-hiding variant
can only be achieved by using randomized ciphertexts since otherwise frequencies
are trivially leaked.

Discussion. Comparing the two definitions, we observe that IND-FA-OCPA is
a generalization of IND-OCPA since the constraint on the sequences X0 and X1

allows for a greater class of instances. In order to see that, we have to consider
the constraint, which is

∀1 ≤ i, j ≤ n. x0,i < x0,j ⇐⇒ x1,i < x1,j .

This constraint is an alternative way of saying that X0 and X1 should agree
on all randomized orders. Hence, duplicate plaintexts may occur in any of the
sequences, but they should occur symmetrically in the other sequence as well.

58 M. Maffei et al.

3 Kerschbaum’s Construction

We review the OPE scheme of [11]. At a high level, encryption works by inserting
plaintexts into a binary search tree that stores duplicates as often as they occur.
When an element arrives at its designated node, a ciphertext is selected according
to this position.

More formally, let T be a binary tree. We denote by ρ the root of T . For a
node t ∈ T we write t.m to denote the message stored at t and t.c to denote
the respective ciphertext. We further use t.left and t.right to denote the left
and right child of t, respectively. There are several other parameters: N is the
number of distinct plaintexts, n is the number of plaintexts in the sequence
that is to be encrypted, k = log(N) is the required number of bits necessary
to represent a plaintext in a node, � = kκ is this number expanded by a factor
of κ and refers to the size of the ciphertexts. Finally, the construction requires
a source of randomness, which is called in terms of a function RandomCoin()
(hereafter called RC() for brevity). According to Kerschbaum, this function can
be implemented as a PRF that samples uniformly random bits.

We refer in the following to the client as the one storing the binary tree. This
is well motivated in the cloud setting where the client outsources encrypted data
to the cloud server who may not have access to the actual message-ciphertext
mapping. One may wonder why a client that anyway has to store a mapping of
plaintexts to ciphertexts cannot simply store the data itself: Kerschbaum also
presents an efficient compression technique for the tree which in some cases can
lead to compression ratios of 15.

Implementation of S ← K(κ). The client sets up an empty tree T . The state
S consists of the tree T as well as all parameters k, �, n, and N . Furthermore,
S contains the minimum ciphertext min = −1 and the maximum ciphertext
max = 2κ log(n). These minimum and maximum numbers are only necessary
to write the encryption procedure in a recursive way. Usually, n is not known
upfront, so it has to be estimated. If the estimation is too far from reality, the
tree has to be freshly setup with new parameters.

Algorithm 1. E(S, x) where S = t,min,max

1: if t = ⊥ then
2: t.m = x
3: t.c = min + �max−min

2
�

4: if t.c = 0 then
5: rebalance the tree
6: end if
7: return t.c
8: end if
9: b ← −1

10: if x = t.m then
11: b ← RC()
12: end if
13: if b = 1 ∨ x > t.m then
14: E(t.right , t.c + 1,max , x)
15: else
16: if b = 0 ∨ x < t.m then
17: E(t.left ,min, t.c − 1, x)
18: end if
19: end if

On the Security of Frequency-Hiding Order-Preserving Encryption 59

Implementation of (S′, y) ← E(S, x). To encrypt a plaintext x, the client pro-
ceeds as follows. Whenever the current position in the tree is empty (especially
in the beginning when the tree is empty), the client creates a new tree node and
inserts x as the plaintext (lines 1.1–1.8). The ciphertext is computed as the mean
value of the interval from min to max (line 1.3). In particular, the first cipher-
text will be 2κ log(n)−1. Whenever there is no ciphertext available (line 1.4), the
estimation of n has shown to be wrong and the tree has to be rebalanced. We do
not detail this step here since it is not important for our attack; instead we refer
the interested reader to [11] for a detailed explanation. If instead, the current
position in the tree is already occupied and the message is different from x, then
we either recurse left (line 1.17) or right (line 1.14) depending on the relation
between the occupying plaintext and the one to be inserted. The same happens
in case x is equal to the stored message, but then we use the RC procedure to
decide where to recurse (lines 1.9–1.12).

Implementation of x ← D(S, y). To decrypt a given ciphertext y, we treat the
tree as a binary search tree where the key is t.c and search for y. We return t.m
as soon as we reach a node t where t.c = y.

Fig. 1. An example for different binary search trees after inserting the sequence X =
1, 5, 3, 8, 3, 8, depending on the output of RC.

Example 1. To simplify the access to the construction, we review a detailed
example. Figure 1 shows the four possible resulting binary search trees after

60 M. Maffei et al.

inserting X = 1, 5, 3, 8, 3, 8, depending on the output of RC. We use a ciphertext
space of {1, . . . , 256}. Each different output of RC corresponds to one of the four
possible randomized orders Γi for 1 ≤ i ≤ 4.

Security. The scheme is proven secure against frequency-analyzing ordered cho-
sen plaintext attack. To this end, [11] constructs a simulator which, given the two
challenge plaintext sequences, produces identical views independent of which of
two sequences is chosen. We investigate on the proof in the next section.

4 An Attack on Kerschbaum’s FH-OPE Scheme

In this section, we investigate on the security achieved by Kerschbaum’s con-
struction [11]. In order to start, we observe that Kerschbaum proves his con-
struction secure. However, as we show later in this section, the security proof
makes an extra assumption on the game challenger’s capabilities, namely that
the challenger can dictate the randomized order used by the encryption algo-
rithm to encrypt either challenge plaintext sequence. Using the natural inter-
pretation of IND-FA-OCPA (see Definition 5), this additional assumption is not
justified and, hence, Kerschbaum’s scheme is no longer secure. We thus present
a concrete attack, which is related to the distribution based on which random-
ized sequences are chosen for encryption (Sect. 4.1). We then explain more in
detail why Kerschbaum’s security result is incorrect with respect to Definition 5
(Sect. 4.2). Finally, we show that even if randomized orders are chosen uniformly
at random, the scheme is still vulnerable (Sect. 4.3).

4.1 A Simple Attack

Our attack consists of two plaintext sequences that are given to the challenger
of the FA-OCPA game, who encrypts step-by-step randomly one of the two
sequences. By observing the sequence of resulting ciphertexts, we will be able to
determine which sequence the challenger chose with very high probability.

Fig. 2. The resulting binary search tree when encrypting sequence X0.

On the Security of Frequency-Hiding Order-Preserving Encryption 61

Consider the two plaintext sequences X0 = 1, 2, 3, . . . , n and X1 = 1, . . . , 1
such that |X0| = |X1| = n. Clearly, both X0 and X1 have a common randomized
order, namely Γ = 1, 2, 3, . . . , n, i.e., the identity function applied to X0. More-
over, consider the binary search tree produced by the scheme when encrypting
X0 in Fig. 2. This tree is generated fully deterministically since the elements in
X0 are pairwise distinct, or equivalently, X0 has only a single randomized order.
Now let us investigate how X1 would be encrypted by Algorithm1. In every step,
the RC procedure has to be called in order to decide where to insert the incoming
element. If coins are drawn uniformly at random then only with a probability
of 1/2n(n−1)/2 RC will produce the bit sequence 1 . . . 1 of length n(n − 1)/2,
which is required in order to produce the exact same tree as in Fig. 2. Notice
that the RC sequence must be of length n(n − 1)/2 since for every plaintext
that is inserted on the right, the function has to be called once more. Hence,
the Gaussian sum

∑n−1
i=1 i describes the number of required bits. Consequently,

an adversary challenging the FH-OCPA challenger with X0 and X1 will win
the game with probability (1/2)(1 − 1/2n(n−1)/2) where the factor 1/2 accounts
for the probability that the challenger chooses X1. Hence, if X1 is chosen, our
attacker wins with overwhelming probability, otherwise he has to guess. Notice
that the combined probability is nevertheless non-negligible.

In conclusion, the central observation is that the number of calls to RC
strongly depends on how many equal elements are met on the way to the final
destination when encrypting an element. Therefore, not all ciphertext trees are
equally likely.

4.2 Understanding the Problem

In this section, we analyze the core of the problem.

Artifacts of the Construction. The analysis in the previous section shows
that randomized orders are not drawn uniformly random. Otherwise, the adver-
sary’s success probability would be (1/2)(1−1/n!) since X1 has n! many random-
ized orders and the probability that a specific one is chosen uniformly is 1/n!.
Instead, we analyzed the probability that the encryption algorithm chooses that
specific randomized order, which depends on the number of calls to RC and its
results, which should all be 1.

In order to exemplify this artifact, we consider the sequence 1, 1, 1. We depict
the different trees when encrypting the sequence in Fig. 3. As we can see, dif-
ferent trees require a different number of calls to RC, and have thus a different
probability of being the encryption tree. On the one hand, the trees in Fig. 3a
and Fig. 3c–e all have a probability of 1/8 to be the result of the encryption since
each of them requires RC to be called three times. On the other hand, the two
trees in Fig. 3b have a probability of 1/4 of being chosen each since RC has to
be called only twice.

To formally capture the probability range of different randomized orders,
we want to understand which randomized orders are most probable and which
ones are least probable. Before we start the analysis, we observe that it does

62 M. Maffei et al.

not matter whether we consider the probability or the number of calls to RC,
since every call to RC adds a factor of 1/2 to the probability that a certain
randomized order is chosen. So as we have seen in the concrete counter-example
in the previous section and the example above, a tree with linear depth represents
the least likely randomized order since it requires the most calls to RC, which
increases by one every time a new element is encrypted. Conversely, randomized
orders represented by a perfectly balanced binary tree are more likely since they
require the minimum number of calls to RC. Let H be the histogram of plaintext
occurrences in a sequence. Then, as before, the number of calls to RC can be
computed as the sum over every node’s depth in the subtree in which all duplicate
elements reside, which is at least

∑

p∈X

∑H(p)
i=1 log(i)
H(p)

=
∑

p∈X

log(H(p)!)
H(p)

≥
∑

p∈X

H(p)
2 log

(
H(p)
2

)

H(p)

= − |X|
2

+
1
2

∑

p∈X

log(H(p))

where we make use of the fact that
(

n
2

)n
2 ≤ n! ≤ nn in the first inequality. All

other randomized orders lie probability-wise somewhere in between.

Fig. 3. The trees displaying different randomized orders for the sequence 1, 1, 1.

Proof Technique. Despite our counter-example, the scheme is proven secure
in the programmable random oracle model [11]; this obviously constitutes a
contradiction. To understand the problem in depth, we have to have a closer
look at the security proof. The idea behind the proof is as follows: the challenger
selects uniformly at random a common randomized order with respect to the
two challenge sequences. This common randomized order is then given as source
of randomness to the random oracle which answers questions accordingly. More
precisely, let Γ = (γ1, . . . , γn) be the selected order. Whenever the algorithm
cannot decide where to place a plaintext xj in the search tree, i.e., xi = xj for
i < j, meaning that xi is an entry that is already encrypted in the tree, then the

On the Security of Frequency-Hiding Order-Preserving Encryption 63

challenger asks the random oracle for a decision on i and j. The oracle answers
with 1 if γi < γj and with 0 if γi > γj (notice that γi �= γj by Definition 4).
In this way, the challenger produces a search tree and corresponding ciphertexts
that are valid for both challenge sequences and which are in fact independent of
the bit. Hence, the adversary has no chance of determining which sequence has
been chosen other than guessing.

The Simulation is Incorrect. The proof strategy clearly excludes the attack
described in the previous section. The reason is that the RC function is supposed
to output uniformly random coins. As we have seen, even if RC outputs truly
random coins then not every possible randomized order of the chosen sequence
is equally likely. Hence, the choice of the random sequence is in two aspects
unfaithful: first, the challenger restricts the number of randomized orders to
those that both sequences have in common while RC does not know the two
sequences and can, hence, not choose according to this requirement. Second, the
fact that the choice is uniform does not reflect the reality. As we have seen, one
artifact of the construction is that not every randomized order is equally likely.
Consequently, forcing RC to generate output based on a common randomized
order changes the distribution from which coins are drawn and, hence, neither
all randomized orders are possible nor are their probabilities of being chosen
correctly distributed. In the extreme case described in Sect. 4.1, it even would
disallow all but one randomized order to be the result of the encryption routine.
As a consequence, the proof technique changes the behavior of RC to an extent
that makes the simulation incorrect.

4.3 Generalizing the Attack in an Ideal Setting

Since the scheme is vulnerable to an attack and it chooses the randomized order
under which a sequence is encrypted in a non-uniform way, we find it interesting
to also investigate whether the scheme is still vulnerable in an ideal setting where
the choice of the randomized order happens uniformly.

The answer to this question is unfortunately positive, as the following result
shows. Concretely, only if two sequences agree on essentially all randomized
orders, the adversary has a negligible advantage of distinguishing them.

Theorem 1. Let X0 and X1 be two plaintext sequences of length n. Further
assume that X0 has m0 and X1 has m1 randomized orders, respectively, and that
they have m randomized orders in common. Then, for the idealized construction
of [11] which encrypts plaintexts under a uniformly chosen randomized order,
there exists an adversary whose success probability in winning the IND-FA-OCPA
game is at least 1 − mm0+m1

2m0m1
.

Proof. We construct an adversary, which submits both X0 and X1 to the FA-
OCPA challenger. Since X0 has m0 randomized orders, the probability that one
of those in common with X1 is chosen by the encryption procedure is m

m0
due to

the uniformly random behavior. Likewise, for X1, the probability that a common
randomized order is chosen by the encryption procedure is m

m1
. Hence, depending

64 M. Maffei et al.

on the challenger’s bit b, the adversary sees a non-common randomized order
with probability 1 − m

mb
, which also reflects its success probability for winning

the game when the challenger picks b. Consequently,

Pr[A wins] =
∣
∣
∣Pr[ExpA

FA−OCPA(κ, 1) = 1] − Pr[ExpA
FA−OCPA(κ, 0) = 1]

∣
∣
∣

=
1
2

(

1 − m

m0

)

+
1
2

(

1 − m

m1

)

= 1 − m
m0 + m1

2m0m1

In the example from the previous section, we have parameters m0 = 1, m1 =
n!, and m = 1. Substituting those into Theorem1, we get the aforementioned
non-negligible success probability of

1 − m
m0 + m1

2m0m1
= 1 − 1 + n!

2n!
=

1
2

(

1 − 1
n!

)

.

5 Impossibility of IND-FA-OCPA

The previously presented results raise the question if IND-FA-OCPA, as pre-
sented in [11] can be achieved at all. It turns out that this is not the case: in this
section, we prove an impossibility result for frequency-hiding order-preserving
encryption as defined in Definition 5. Formally we prove the following theorem.

Theorem 2. Let X0 and X1 be two arbitrary plaintext sequences of the same
length that do not share any randomized order. Let furthermore OPE be an
order-preserving encryption scheme secure against IND-FA-OCPA. Then, the
probability of distinguishing whether X0 is encrypted or whether X1 is encrypted
with OPE is negligibly close to 1/2.

Before we prove the theorem using Definition 5, we argue why it implies the
impossibility of frequency-hiding OPE. According to the theorem, no adversary
can distinguish the encryptions of two arbitrary sequences of his choice that
are ordered in a completely different manner. This constitutes a formulation
of the IND-CPA property for multiple messages, restricted to sequences that
do not share a randomized order. The restriction, however, is not necessary
since sequences that share a randomized order are trivially indistinguishable by
IND-FA-OCPA. To exemplify, let the two sequences be X0 = 1, 2, . . . , n and
X1 = n, n − 1, . . . , 1, so X1 is the reverse of X0. According to Theorem 2, no
adversary can distinguish which one of the two is encrypted. However, due to
the correctness of OPE it must be the case that the encryption Y ∗ fulfills for all
i and j and b ∈ {0, 1}

y∗
i ≥ y∗

j =⇒ xb
i ≥ xb

j .

Consequently, if X0 is encrypted we have y∗
i < y∗

j for i < j and vice versa for
X1. Hence, an adversary could trivially distinguish which of the two sequences
is encrypted. Hence, by contraposition of Theorem2, an IND-FA-OCPA-secure
OPE scheme cannot exist.

On the Security of Frequency-Hiding Order-Preserving Encryption 65

Proof (Theorem 2). In the security game G(b), on input X0 and X1 by A, the
challenger encrypts sequence Xb, gives the ciphertexts Y ∗ to A, who replies with
a guess b′. A wins if b = b′.

We define three games. G1 = G(0). For G2, we select a sequence X∗ which
has a randomized order in common with both X0 and X1. Notice that such a
sequence always exists, e.g., take the series a, a, . . . , a (n times) for arbitrary a
in an appropriate domain. Instead of encrypting X0 as in G1, we now encrypt
X∗. Finally, G3 = G(1).

In order to show that G1 ≈ G2, assume that there exists a distinguisher A
that can distinguish between G1 and G2 with non-negligible probability. Then we
construct a reduction B that breaks IND-FA-OCPA. On A’s input, B forwards
X0 and a sequence X∗ to the IND-FA-OCPA challenger. The challenger answers
with Y ∗, which B again forwards to A. A outputs a bit b′, which B again forwards
to the challenger. The simulation is obviously efficient. If the internal bit of the
IND-FA-OCPA challenger is 0, we perfectly simulate G1, while we simulate G2

when the bit is 1. Hence, the success probability of A carries over to B since B
only forwards messages. Since we assumed that A can successfully distinguish
G1 and G2 with non-negligible probability, it must be the case that B wins the
IND-FA-OCPA game with non-negligible probability. This is a contradiction.

The proof of G2 ≈ G3 is symmetric to the one above. In conclusion, we have
that G1 ≈ G2 ≈ G3, and hence, G(0) ≈ G(1), meaning that every adversary can
distinguish between encryptions of X0 and X1 that do not share a randomized
order only with negligible probability.

6 An Achievable Definition: IND-FA-OCPA∗

Since the notion of indistinguishable ciphertexts under frequency-analyzing
ordered chosen plaintext attacks is not achievable, it is desirable to understand
the problem of the original definition and try to come up with a suitable one
that still captures the idea of frequency-hiding but is achievable.

Interestingly enough, the solution to our problem can be found by investigat-
ing again Kerschbaum’s security proof. The proof builds a random oracle that
overcomes the issues of the definition. Even though this construction of the oracle
is incorrect, as we have shown previously, it helps us identify the problem with
the definition. In the definition, the challenger has no means to tell the encryp-
tion algorithm which randomized order to choose when encrypting the chosen
challenge sequence. Hence, it could be the case that the algorithm chooses an
order that is not common to both challenge sequences. Had the challenger a way
to decide which order to encrypt with, the problem were gone.

Consequently, we tackle the problem from two angles: (1) we augment the
OPE model by one more input to the encryption function, namely, the random-
ized order that is supposed to be used and (2) we strengthen the challenger’s
capabilities during the security game: it may now, additionally to selecting which
sequence to encrypt, also choose a common randomized order as input to the

66 M. Maffei et al.

encryption algorithm. This new definition still captures the notion of frequency-
hiding in the same way, it just excludes the attacks presented in this work and
makes the definition, thus, achievable.

6.1 Augmented OPE Model

We present the augmented model in the following definition. Notice that the only
difference to Definition 1 is the additional input Γ to the encryption function.
This additional input serves the purpose of deciding from outside of the function,
which randomized order should be used to encrypt the plaintexts. In contrast,
standard OPE decides about the ordering randomly inside of the function. We
stress that augmented OPE is more general than OPE since the input Γ can be
replaced by the result of a call to a random function.

Definition 6 (Augmented OPE). An augmented order-preserving encryp-
tion scheme OPE∗ = (K,E,D) is a tuple of ppt algorithms where
S ← K(κ). The key generation algorithm takes as input a security parameter κ
and outputs a secret key (or state) S;
(S′, y) ← E(S, x, Γ). The encryption algorithm takes as input a secret key S, a
message x, and an order Γ and outputs a new key S′ and a ciphertext y;
x ← D(S, y). The decryption algorithm x ← D(S, y) takes as input a secret key
S and a ciphertext y and outputs a message x.

6.2 The New Definition IND-FA-OCPA∗

The new security game is close in spirit to Definition 5. The difference is that (1)
it is defined over an augmented OPE scheme which makes the randomized order
used for encryption explicit and (2) the challenger chooses that order uniformly
at random from the orders that both challenge sequences have in common. Since
we define the notion adaptively, we introduce some new notation with respect
to randomized orders.

In the following definition, we let Γ = γ1, . . . , γn and we use the notation
Γ ↓i to denote the order of the sequence γ1, . . . , γi. Notice that this order is
unique since Γ is already an order. For instance, take the randomized sequence
Γ = 1, 6, 4, 3, 2, 5. Then, Γ↓3= 1, 3, 2, which is the order of 1, 6, 4.

Definition 7 (IND-FA-OCPA∗). An augmented order-preserving encryption
scheme OPE∗ = (K,E,D) has indistinguishable ciphertexts under frequency-
analyzing ordered chosen plaintext attacks if for any ppt adversary A, the fol-
lowing probability is negligible in the security parameter κ:

∣
∣
∣Pr[ExpA

FA−OCPA∗(κ, 1) = 1] − Pr[ExpA
FA−OCPA∗(κ, 0) = 1]

∣
∣
∣

where ExpA
FA−OCPA∗(κ, b) is the following experiment:

On the Security of Frequency-Hiding Order-Preserving Encryption 67

Experiment ExpA
FA−OCPA∗(κ, b)

(X0, X1) ← A where |X0| = |X1| = n and X0 and X1

have at least one common randomized order
Select Γ uniformly at random from the common randomized orders of X0, X1

S0 ← K(κ)
For all 1 ≤ i ≤ n run (Si, yb,i) ← E(Si−1, xb,i, Γ↓i)
b′ ← A(yb,1, . . . , yb,n)
Output 1 if and only if b = b′.

7 Constructing Augmented OPE

We show how to construct an augmented OPE scheme. Interestingly enough,
the key observation to OPE∗ is that the scheme of [11], which we presented in
Sect. 3 can be modified so as to fit the new model.

As we introduce a third input to the encryption function, namely an order
that is as long as the currently encrypted sequence plus one, we have to show
how to cope with this new input in the construction. The key idea is quite
simple: usually, the encryption scheme draws randomness from a PRF when the
plaintext to be encrypted is already encrypted, in order to decide whether to
move left or right further in the tree. The additional input solves this decision
problem upfront, so there is no need for using randomness during the encryption.

While the setup and re-balancing algorithms are as described in [11], we
describe the new encryption algorithm in Algorithm2. Furthermore, we require
that every node in the tree stores its index in the plaintext sequence, i.e., we
add an attribute index to each node t. We further assume that the index of the
message that is currently to be encrypted is the length of the order Γ . As we
can see, the only difference between Algorithms 1 and 2 is the behavior when
the message to be inserted is equal to the message currently stored at t. Then,
the order Γ is considered so as to decide whether to traverse the tree further to
the left or right.

Algorithm 2. E(S, x, Γ) where S = t,min,max and Γ = γ1, . . . , γk

1: if t = ⊥ then
2: t.m = x
3: t.index = k
4: t.c = min + �max−min

2
�

5: if t.c = 0 then
6: rebalance the tree
7: end if
8: return t.c
9: end if

10: b ← −1

11: if x = t.m then
12: b ← γk > γt.index

13: end if
14: if b = 1 ∨ x > t.m then
15: E(t.right , t.c + 1,max , x, Γ)
16: else
17: if b = 0 ∨ x < t.m then
18: E(t.left ,min, t.c − 1, x, Γ)
19: end if
20: end if

68 M. Maffei et al.

The encryption algorithm also nicely demonstrates that it does not matter
from which domain the ordering draws its elements. The only important prop-
erty of such an ordering is the relation of the single elements to each other, i.e.,
that (1) all elements of the order are distinct and (2) whether γi < γj or the
other way around. We do, hence, not require the shrinking function Γ↓i for this
construction: when encrypting an overall sequence of plaintexts with a prede-
termined randomized order Γ , it is sufficient to just cut the Γ to size i when
encrypting the i-th element. The reason is that the relative ordering of the first
i elements is not changed after shrinking, which suffices to let the algorithm
decide about where to branch.

7.1 Formal Guarantees

We argue in this section that the tree-based scheme presented in the previous
section is IND-FA-OCPA∗ secure. The reason for that is as follows: first, the
challenger can select a randomized order that is in common to both sequences
and give that chosen order to the encryption algorithm. Second, no matter which
of the two sequences is encrypted according to the order, the resulting ciphertexts
are equivalent in both cases. Hence, the adversary cannot do better than guessing
the bit, since the ciphertexts are independent of the underlying plaintexts.

Theorem 3. The OPE∗ scheme presented in Sect. 7 is IND-FA-OCPA∗ secure.

Proof. Let A be an arbitrary adversary for the game in Definition 7. Let fur-
thermore X0 and X1 be the two plaintext sequences chosen by A. By definition,
those sequences share at least one common randomized order. Let Γ be one of
those common orders, selected uniformly at random from the universe of com-
mon randomized orders. When encrypting either X0 or X1, Algorithm 2 uses Γ
to decide where to branch. Hence, Algorithm 2’s decisions are independent of
the input plaintext sequence, and thus independent of the chosen bit b. Conse-
quently, all information that A receives from the challenger are independent of
b and he can thus, only guess what b is. This concludes the proof.

8 Conclusion

Order-preserving encryption (OPE) is an enabling technology to implement
database applications on encrypted data: the idea is that the ordering of cipher-
texts matches the one of plaintexts so that inequalities on encrypted data are effi-
ciently computable. Unfortunately, recent works showed that various attacks can
be mounted by exploiting the inherent leakage of plaintext frequency. Frequency-
hiding OPE [11] (CCS 2015) is a stronger primitive that aims at solving this
problem by hiding the frequency of plaintexts.

We contribute to this line of work with the following results. First, we present
an attack against the construction presented in [11], identifying the correspond-
ing problem in the security proof. Second, we formulate a more general impos-
sibility result, proving that the security definition introduced in [11] cannot be

On the Security of Frequency-Hiding Order-Preserving Encryption 69

achieved by any OPE scheme. Third, to complete the picture and assess which
theoretical security is achievable at all, we make the definition in [11] more pre-
cise by giving the challenger more capabilities and augmenting the OPE model
so as to receive randomized orders as inputs which are used to break ties. We
finally show that the more precise version of the definition can be achieved by a
variant of the construction introduced in [11].

Despite this seemingly positive results, in the presence of the plethora of
empirical attacks against (FH-)OPE and its variants (e.g., ORE), we suggest to
not use any of those schemes for actual deployment since the security guarantees
achieved do not reflect practical requirements. We recommend to move away
from OPE in general, more towards other alternatives, even if there are none
that solve the problem so conveniently; at the price of low to no security.

Acknowledgements. This research is based upon work supported by the German
research foundation (DFG) through the collaborative research center 1223, by the
German Federal Ministry of Education and Research (BMBF) through the Center
for IT-Security, Privacy and Accountability (CISPA), and by the state of Bavaria
at the Nuremberg Campus of Technology (NCT). NCT is a research cooperation
between the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the Tech-
nische Hochschule Nürnberg Georg Simon Ohm (THN). Dominique Schröder is sup-
ported by the German Federal Ministry of Education and Research (BMBF) through
funding for the project PROMISE. Finally, we thank the reviewers for their helpful
comments and our shepherd for the excellent and valuable feedback, which improved
the paper.

References

1. Arasu, A., Blanas, S., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R.,
Venkatesan, R.: Orthogonal security with cipherbase. In: Proceedings of the Bien-
nial Conference on Innovative Data Systems Research (CIDR 2013) (2013)

2. Bellare, M., Keelveedhi, S., Ristenpart, T.: DupLESS: server-aided encryption
for deduplicated storage. In: Proceedings of the USENIX Security Symposium
(USENIX 2013), pp. 179–194. USENIX Association (2013)

3. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric
encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9 13

4. Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revis-
ited: improved security analysis and alternative solutions. In: Rogaway, P. (ed.)
CRYPTO 2011. LNCS, vol. 6841, pp. 578–595. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-22792-9 33

5. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 19

6. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption
with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 24

https://doi.org/10.1007/978-3-642-01001-9_13
https://doi.org/10.1007/978-3-642-22792-9_33
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-52993-5_24

70 M. Maffei et al.

7. Durak, F.B., DuBuisson, T.M., Cash, D.: What else is revealed by order-revealing
encryption? In: Proceedings of the Conference on Computer and Communications
Security (CCS 2016), pp. 1155–1166. ACM Press (2016)

8. Grubbs, P., McPherson, R., Naveed, M., Ristenpart, T., Shmatikov, V.: Breaking
web applications built on top of encrypted data. In: Proceedings of the Conference
on Computer and Communications Security (CCS 2016), pp. 1353–1364. ACM
Press (2016)

9. Grubbs, P., Sekniqi, K., Bindschaedler, V., Naveed, M., Ristenpart, T.: Leakage-
abuse attacks against order-revealing encryption. In: Proceedings of the IEEE Sym-
posium on Security and Privacy (S&P 2017). IEEE Computer Society Press (2017)

10. He, W., Akhawe, D., Jain, S., Shi, E., Song, D.: ShadowCrypt: encrypted web
applications for everyone. In: Proceedings of the Conference on Computer and
Communications Security (CCS 2014), pp. 1028–1039. ACM Press (2014)

11. Kerschbaum, F.: Frequency-hiding order-preserving encryption. In: Proceedings
of the Conference on Computer and Communications Security (CCS 2015), pp.
656–667. ACM Press (2015)

12. Kerschbaum, F., Schroepfer, A.: Optimal average-complexity ideal-security order-
preserving encryption. In: Proceedings of the Conference on Computer and Com-
munications Security (CCS 2014), pp. 275–286. ACM Press (2014)

13. Lau, B., Chung, S., Song, C., Jang, Y., Lee, W., Boldyreva, A.: Mimesis aegis:
a mimicry privacy shield–a system’s approach to data privacy on public cloud.
In: Proceedings of the USENIX Security Symposium (USENIX 2014), pp. 33–48.
USENIX Association (2014)

14. Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications,
and lower bounds. In: Proceedings of the Conference on Computer and Communi-
cations Security (CCS 2016), pp. 1167–1178. ACM Press (2016)

15. Naveed, M., Kamara, S., Wright, C.V.: Inference attacks on property-preserving
encrypted databases. In: Proceedings of the Conference on Computer and Com-
munications Security (CCS 2015), pp. 644–655. ACM Press (2015)

16. Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving
encoding. In: Proceedings of the IEEE Symposium on Security and Privacy (S&P
2013), pp. 463–477. IEEE Computer Society Press (2013)

17. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP 2011), pp. 85–100. ACM Press
(2011)

18. Popa, R.A., Stark, E., Valdez, S., Helfer, J., Zeldovich, N., Balakrishnan, H.: Build-
ing web applications on top of encrypted data using Mylar. In: Proceedings of the
USENIX Symposium on Networked Systems Design and Implementation (NSDI
2014), pp. 157–172. USENIX Association (2014)

19. Roche, D.S., Apon, D., Choi, S.G., Yerukhimovich, A.: POPE: partial order pre-
serving encoding. In: Proceedings of the Conference on Computer and Communi-
cations Security (CCS 2016), pp. 1131–1142. ACM Press (2016)

20. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the IEEE Symposium on Security and Privacy (S&P 2000),
pp. 44–55. IEEE Computer Society Press (2000)

21. Teranishi, I., Yung, M., Malkin, T.: Order-preserving encryption secure beyond
one-wayness. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874,
pp. 42–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-
8 3

https://doi.org/10.1007/978-3-662-45608-8_3
https://doi.org/10.1007/978-3-662-45608-8_3

Privacy-Preserving Whole-Genome
Variant Queries

Daniel Demmler(B), Kay Hamacher, Thomas Schneider,
and Sebastian Stammler(B)

Technische Universität Darmstadt, Darmstadt, Germany
{daniel.demmler,kay.hamacher,thomas.schneider,

sebastian.stammler}@cysec.de

Abstract. Medical research and treatments rely increasingly on
genomic data. Queries on so-called variants are of high importance in,
e.g., biomarker identification and general disease association studies.
However, the human genome is a very sensitive piece of information
that is worth protecting. By observing queries and responses to classi-
cal genomic databases, medical conditions can be inferred. The Beacon
project is an example of a public genomic querying service, which under-
mines the privacy of the querier as well as individuals in the database.

By secure outsourcing via secure multi-party computation (SMPC),
we enable privacy-preserving genomic database queries that protect sen-
sitive data contained in the queries and their respective responses. At
the same time, we allow for multiple genomic databases to combine their
datasets to achieve a much larger search space, without revealing the
actual databases’ contents to third parties. SMPC is generic and allows
to apply further processing like aggregation to query results.

We measure the performance of our approach for realistic param-
eters and achieve convincingly fast runtimes that render our protocol
applicable to real-world medical data integration settings. Our proto-
type implementation can process a private query with 5 genetic variant
conditions against a person’s exome with 100,000 genomic variants in
less than 180 ms online runtime, including additional range and equality
checks for auxiliary data.

1 Introduction

Genomic data holds the key to the understanding of many diseases and medical
conditions. Some genomic variations in individuals in particular might be crucial
in the diagnosis of a disease or a treatment regime. As a first step, a doctor or
researcher might want to query the world’s pool of sequenced genomes for such
a variation in order to identify if it has been encountered and studied before.
For this purpose, the Beacon project was established by the Global Alliance for
Genomics & Health1 to evaluate the eagerness of institutions around the globe

1 http://genomicsandhealth.org/.

c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 71–92, 2018.
https://doi.org/10.1007/978-3-030-02641-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_4&domain=pdf
http://genomicsandhealth.org/
https://doi.org/10.1007/978-3-030-02641-7_4

72 D. Demmler et al.

to engage in a distributed variant query service. Participating institutions can
be queried for a variation and confirm or deny its existence in their database.

However, this open form of collaboration quickly raises privacy concerns
about, e.g., re-identification risk [34]. Thus, it would be highly desirable to secure
participants of such a variant querying service, as well as individuals in their
genome databases. Furthermore, it can be assumed that many small institutions
will not be comfortable in joining the Beacon scheme in its current form, since
re-identification risk impacts small databases even more severely.

We address these (genomic) privacy demands by developing a secured form
of a federated variant query service – eventually an extension of the Beacon
project – in which the count of matches is learned, while hiding which institution
contributed to what extent. Our solution can optionally apply a threshold t on
the count of matches so as to only release data if there are more than t matches.
This can mitigates re-identification risk when querying for rare mutations.

Here, secure multi-party computation (SMPC) gives us the powerful ability to
run arbitrary computations on sensitive data, while protecting the privacy of this
data. In this work, we use two parties, called proxies, to achieve high efficiency.
We rely on SMPC for secure outsourcing of genomic data from arbitrarily many
sources to two proxies that enable clients to run private queries on the data.
The proxies are assumed to not collude and therefore learn nothing about the
outsourced data or the client’s query and its response. We focus on the use-case
of privately querying a large, aggregated genome database.

1.1 Our Contributions

In this paper, we provide the following contributions:

– We allow private queries to multi-center genome databases. We hide the query,
which elements it accesses, and what elements match the query.

– Our protocol allows to privately aggregate data from multiple data sources.
Usually this is prohibited by patient privacy laws, which aim at protecting
sensitive medical data. We retain privacy, while at the same time providing
a larger search space that leads to more expressive query results.

– Due to the generic nature of our protocol we can perform additional multi-
property queries that add only negligible overhead to the database lookup.

– We develop a custom format (Variant Query Format – VQF) for the lossy
storage of genomic variants that also allows similar variants to match. The
widely used Variant Call Format (VCF) can easily be compressed to VQF,
providing a bridge to existing genomic variant databases.

– We present a prototypical implementation of our protocol in C++ using the
ABY framework [9] and achieve practical runtimes for real-world inputs.

1.2 Deployment Setting

We depict our setting in Fig. 1. An arbitrary number of genomic database
providers DBi privately outsource their data to two non-colluding proxies D′

Privacy-Preserving Whole-Genome Variant Queries 73

and D′′, who simply aggregate the received data as one large dataset. Pri-
vacy is achieved by using XOR-based secret sharing, as described in more detail
in Sect. 4. DBi can extend the database by simply sending new entries D′

i and
D′′

i to the proxies at any time. Updates of existing entries require sending only
the difference as bitwise XOR to one of the proxies.

A client C who wants to query entries from the aggregated databases sends
an XOR-secret-shared query to both proxies. Privacy-preserving computation is
made possible by the protocol of Goldreich, Micali and Wigderson [15], which
enables efficient computation on secret-shared data. Optionally, we allow results
to be t-threshold released, i.e., the client receives a query response only if more
than t database entries overall match the query criteria.

As a special case, our setting can also be used by a client that runs private
queries on a single genomic database held by a server without involving addi-
tional parties. For this, the client runs C and D′, and the server runs DB1 and
D′′.

Fig. 1. Deployment setting overview. The plus sign denotes the federation of genomic
databases and the lock symbol marks secret-shared data. The client only interacts with
the SMPC proxies, which hold XOR secret-shared copies of the genetic variant data.

1.3 Related Work in Genomic Privacy

There exists a long line of work in genomic privacy, starting with [19]. In the
subsequent section we provide an overview of recent work related to our solution.
We compare the key aspects of related work with our proposal in Table 1.

In [20], count queries on fixed-indexed single-nucleotide polymorphisms
(SNPs) databases are performed. They convert the database into an index tree
structure and perform an encrypted tree traversal using Paillier’s additively
homomorphic encryption scheme [32] and Yao’s garbled circuits [38] for com-
parison. The queried SNP indices are leaked and the index tree needs to be

74 D. Demmler et al.

built by a single and trusted certified institution that must know all the data in
plaintext (coming from possibly multiple data sources as in our setup).

In the field of privacy-preserving genomic testing many approaches securely
calculate the edit distance (ED) with protected genetic databases. ED is a way
of measuring the closeness of two strings by calculating the minimum number of
operations to transform between the two. Most of the time, the Levensthein dis-
tance is meant by ED and it is defined as the minimum amount of substitutions,
insertions and deletions to transmute between the strings. It is an important
measure in genomics to estimate the closeness of two genomes, and finds appli-
cations in similar patient querying (SPQ).

The authors of [1] implemented a form of secure count- and ranked similar
patient queries, running in seconds. However, their setup is quite different from
ours since the query is known in plaintext to each data center, and the output
is learned by a central server (CS). The aggregation/sorting is done on the CS
and only individual contributions are hidden from the CS and querier.

In [23], the authors developed a privacy-preserving ED algorithm leveraging
Yao’s garbled circuits. While their technique calculates the exact edit distance,
it is computationally infeasible on a whole-genome scale. Their implementation
takes several minutes to calculate the ED of just a few hundred-character long
strings. [21] improved those results by up to a factor of 29.

In the whole-genome context it is often more sensible to only approximate
the ED, taking advantage of the fact that the human genome is mostly preserved
(>99% of genomic positions) and most variations are simple substitutions. Two
important works leveraging these factors are [2,37].

The authors of [37] test their distributed query system GenSets over, the-
oretically, 250 distributed hospitals, each holding 4,000 genome sequences of
around 75 million nucleotides each. It took their system 200 minutes to search
through one million cancer patients.

In [2], the authors partition the sequences into smaller blocks and then pre-
compute the ED within the blocks. Since the human genome shows high preser-
vation, this greatly reduces the number of distinct blocks. E.g., for a realistic
data set of 10,000 genome snippets of length about 3,500 from a region of high
divergence, after partitioning them into 15-letter blocks, for each group of blocks
they observed at most 40 unique blocks, instead of the theoretic maximum of
10,000. Still, they could determine the t best matching sequences against a query
sequence with high success.

In [25], an attack by Goodrich [16] on genome matching queries was inves-
tigated. They developed a detection technique against such inference attacks
employing zero-knowledge proofs to ensure querier honesty.

The authors of [8] developed a novel method for secure genomic testing with
size- and position-hiding private substring matching (SPH-PSM). In their setup,
a testing facility holds a DNA substring (e.g., a marker) and a patient possesses
their full genome sequence. The patient sends their homomorphically encrypted
genome and public key to the facility, which computes an accumulator applying
their substring. The still encrypted accumulator is sent back to the patient, who

Privacy-Preserving Whole-Genome Variant Queries 75

decrypts it to learn the binary answer—whether the substring is included in
her genome. In the process, the facility doesn’t learn anything and the patient
doesn’t learn the substring or its position in their genome.

The work [40] presents an innovative and efficient approach to outsourced
pattern matching employing a new outsourced discrete Fourier transform proto-
col called OFFT. It solves a similar problem to the aforementioned method [8]
and scales logarithmically in the string to be matched.

In [35], a genomic cloud storage and query solution is presented. VCF data
is symmetrically encrypted and sent to cloud storage. Using a custom method
based on private information retrieval (PIR, see also Sect. 2.2), the data owner,
or an authorized entity, can query the cloud storage for a specific variant (uti-
lizing a homomorphically encrypted 0–1–array mask). This solution cannot be
generalized to multiple patients as the querier would need access to all VCFs’
symmetric keys. A generalization of this work [12] allows computations that are
similar to ours and offers strong security guarantees. However, in this case, the
runtime depends on the size of the response and thus reveals meta information
about the query, which we specifically intend to hide in our work. Padding could
solve this issue, but would increase the runtime drastically.

The protocol [4, Sect. 4.2] uses Authorized Private Set Intersection [6] to
allow for authorized queries of a list of specific SNPs (a SNP profile, e.g., of
SNPs relevant for drug selection and dosage): The querier first submits the SNP
profile to a certified institution, which sends back an authorization. The querier
can then use this authorization to query for his SNP profile in a patient’s genome,
learning the matching SNPs. The query is hidden from the patient/database. The
protocol [33] extends this idea and uses additively homomorphic Elliptic Curve
based El-Gamal [10] to calculate a weighted sum over a set of SNPs, where the
weights are authorized by a certified institution.

In conclusion, several solutions have addressed the problem of secure genome
queries (see Table 1), but most work directly on the sequence instead of called
variants and none grant the easy extensibility that our solution provides and at
the same time deliver whole-genome scale protection for all included parties.

2 Preliminaries

2.1 Secure Multi-Party Computation (SMPC)

Computation on multiple parties’ secret data was first proposed in the 1980’s
with Yao’s seminal garbled circuits protocol [38] and the work of Goldreich,
Micali, and Wigderson (GMW) [15]. More formally, for the case of two parties,
an SMPC protocol can be described as the evaluation of a function f on the two
parties’ respective private inputs x and y. The parties learn nothing but what can
be inferred from the function’s output z = f(x, y). Due to limited computation
power, SMPC protocols were at first seen as merely theoretical results. However,
a long line of research has lead to significant algorithmic improvements that,
combined with an increase in computing power in the last decades, has shown
that SMPC can indeed be used for practical purposes. Most SMPC protocols

76 D. Demmler et al.

Table 1. Comparison of features and limitations of related work to our solution.

[20] [1] [21,23] [2,37] [8,40]/[4]/[33] [35] [12] Our work

Variants (V)/

Sequences(S)/

Both(*)

S S S S S V * V

Single trusted

party eliminated

✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Query protected ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Top similar

patient query

✗ ✓ n.a. ✓ n.a. ✗ ✗ ✗

Whole-genome

scale

✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

Easy extensibility ✗ (✓) ✗ ✗ ✗ ✗ ✗ ✓

Output Count Count &

similar

patients

Exact

ED

Similar

patients

Substr.

match?

(Y/N)/

matching

SNPs/

weighted

average over

SNPs

Variant

present?

(Y/N)

Count &

suma
(Thresh.)

count/

matchesb

aOptionally differentially private
bArbitrary (aggregation) function f

rely heavily on oblivious transfer (OT) as a building block. OT extension [3,22]
is one of the key results that enables practical performance for SMPC.

In this work we consider the special case of secure two-party computa-
tion with security against semi-honest (passive) adversaries in the offline/online
model. This means that we divide the protocol into two phases: First, an offline
phase that is independent of the private inputs and requires just some upper
bound of their size. It can be pre-computed and stored before the actual com-
putation takes place. Second, a very efficient online phase that uses the pre-
computed data to compute the function on the parties’ private inputs.

While Yao’s garbled circuits protocol offers a constant number of communi-
cation rounds, it requires the evaluation of symmetric cryptographic operations
in both offline and online phase. The GMW protocol allows the preprocessing
of so called Beaver multiplication triples [5] that can be pre-computed in the
offline phase. The online phase of GMW requires one communication round per
layer of dependent AND gates (circuit depth), but involves only very efficient
bit operations (XOR) and no symmetric cryptographic operations.

Since our circuits can be optimized for low depth, we decided to implement
our protocol using the GMW protocol. There also exist extensions for security
against stronger malicious adversaries that can be applied to our protocol [31].

2.2 Related Privacy-Preserving Technologies

Aside from SMPC there are many other privacy-preserving technologies that
could potentially achieve similar results as our solution. In this section we briefly
provide an overview and motivate why we chose SMPC.

Privacy-Preserving Whole-Genome Variant Queries 77

Private information retrieval (PIR) is a technique that allows private queries
to a public database. This is not applicable in our scenario where the database
consists of sensitive genomic data by multiple providers. Furthermore, PIR does
not allow for more than the private query, i.e., additional operations like com-
parisons on the data and threshold checking are not possible.

Homomorphic encryption (HE) is a powerful tool that allows for operations
on encrypted values. While somewhat homomorphic encryption is reasonably
fast, it only supports a limited set of operations. Fully homomorphic encryption
overcomes this limitation. This is an active field of research but implementations
still lack the efficiency to be of practical use [30].

Oblivious RAM (ORAM) is another technique that could be used for our use
case and was indeed shown to be applicable for, e.g., Bayesian statistics [24]
frequently used in bio-informatics [39]. ORAM allows multiple private write
accesses to a database, which we do not require, as we need to securely store the
genome only once. Thus, our approach is simpler and we expect it to perform
better than ORAM-based solutions.

Intel’s Software Guard Extensions (SGX) is a recent instruction set extension
that allows programs to run in a protected private environment and can be
used as an alternative to SMPC [18]. While this is also specifically designed for
cloud computing, additional care must be taken to not reveal memory access
patterns and timing patterns, which especially affects our use case of privately
querying a data set. Observing such access or timing patterns could allow the
cloud provider to learn information about the data or the query itself. Learning
the query, however, might also reveal critical information about patients, e.g., if
a physician queries the database(s) to confirm a particular diagnosis.

Recently the survey [13] categorized the entire field of encrypted or protected
search, which offers several additional alternatives to our work. We can imagine
a combination of the presented techniques with our ideas as possible future work.

3 Genetic Variant Queries on Distributed Databases

We consider a federation of databases storing genomic variants in our cus-
tom Variant Query Format (VQF, see Sect. 3.2). They jointly offer a privacy-
preserving Beacon Service: individual privacy is guaranteed in the sense that it
is not learned which dataset from which data-center contributed to which extent
to the final count. Optionally, privacy can be strengthened by enforcing a thresh-
old criterion on the query: the actual count will only be returned if it is larger
than a predefined threshold parameter t.

3.1 Beacon Network and Potential Extensions

The term Beacon stems from the Beacon Network Project, which is “a
global search engine for genetic mutations”. It was instantiated by the
Global Alliance for Genomics & Health to “test the willingness of international
sites to share genetic data”. The joint service answers queries of the form “Do

https://beacon-network.org
https://genomicsandhealth.org/work-products-demonstration-projects/beacon-project-0

78 D. Demmler et al.

you have any genomes with an ‘A’ at position 100,735 on chromosome 3?” and
participants each give a simple Yes/No answer.

Privacy Concerns. It has been shown in [34] that in its original form, Beacon
queries are susceptible to re-identification attacks. The authors showed that with
5,000 queries, a person can be re-identified from a Beacon holding 1,000 genomes.
Our proposed framework lowers this risk twofold: Firstly, the querier doesn’t
learn immediately which database contributes to the count. Only in a follow-up
consultation can the databases and querier reveal a match should they mutually
agree to do so. And secondly, because of an optional t-threshold check in the
final step, it is harder for the querier to craft individual-identifying queries. hile
recent changes to the project’s architecture address some privacy concerns by
access-control checks2, those solutions cannot withstand a malicious man-in-the-
middle or potential exploits of access-control vulnerabilities. That is, the project
doesn’t offer privacy by design since queries are sent in clear to the beacons and
central web-interface, which also learns all beacons’ answers during aggregation
of the results.

3.2 Genomic Variant Representation Format

Variant Call Format (VCF). The most popular format to store genomic
variants is in the Variant Call Format (VCF) [7], as used by the 1,000 Genomes
Project and the Broad institute. It stores the results of a process called variant
calling on aligned reads (usually stored in SAM/BAM files [28] or more recently
in the CRAM format [11]). It describes in precise detail genetic mutations versus
a reference genome.

However, for the application of genetic querying, the VCF is too precise in the
sense that a lot of auxiliary data is stored per variation and exact matches are
unlikely, especially for complex structural variations. We therefore developed a
machine friendly and simplistic format for storing genetic variants in the context
of variant querying that also makes it possible for similar variations to match.

Variant Query Format (VQF). We store a genome’s set of variation against
a common reference genome in the following custom format which we will call
Variant Query Format (VQF). Variations are stored in a fixed-size dictionary
(possibly with multiple entries for the same key), where the key is a variant’s
position in the reference genome and the value encodes the variation. We set the
key size κ to 32 bit, which suffices to address every locus in any human reference
genome, which has about 3.2 billion (haploid) loci3.

For the dictionary’s value we choose a size ψ of 16 bit. Mapping any genomic
variant information into 16 bit is not straightforward and must incur some infor-
mation loss that we can bound from above (see below). Table 2 lists the proposed

2 Beacon FAQs, 2).
3 log2(3.2 · 109) ≈ 31.6 < 32.

https://genomicsandhealth.org/files/public/Beacon-FAQ.pdf

Privacy-Preserving Whole-Genome Variant Queries 79

mappings from genetic variations to a 16 bit value in our dictionary. The total
number of attainable values is 4 + 4s + 2 · 4sins + 1 = 32, 837, which fit into the
16 bit value space.

Table 2. Details of the variant compression in VQF.

Variant Stored information #Values

SNP/SNV We store the alternative nucleotide 4

Deletion/CNV/Inversion Store two entries: the up and down rounded logarithm to the base

b = 2 of deletion/CNVa/inversion length, up to log-length s. Also

store one frameshift bit for deletions

s = 16

Insertion Save up to sins = 7 inserted nucleotides and a frameshift bit 2 · 4sins=7

Other Only flag as other variation. This flag captures all other more

complex variations, like rearrangements with breakends etc.

1

aFor CNVs like tandem repeats, we record the absolute number of repeats, not the relative change

Note that the chosen logarithm base b = 2 for deletion/CNV/inversion events
is just exemplary and could be adjusted differently, even per event, without
changing the number of possible values. The maximum length logarithm s to
store could also be different per event. Storing the up and down rounded log-
arithms for those events increases the chances of a match for closely related
variations. E.g., if, at a given locus, one genome has a deletion of length 20
and another of length 60, those would be mapped to two entries each, {16, 32}
and {32, 64}, so a query for 32 would match in both genomes. For insertions
and deletions (InDels) we also store a frameshift bit, i.e., whether its length is
divisible by 3. Substitutions are just stored as combined InDels, if longer than a
SNP/SNV.

Also note that for CNVs, we do not store the motif, no matter if a short CNV
(∼ tandem repeat) or long CNV was called, possibly resulting in false positives.
For diploid variations, we create two entries with the same key (same locus) and
each value encoding one of the two variations coming from either parent.

The compression of variant information might seem strong, but the informa-
tion loss mainly concerns complex structural variations, where an exact query
match is very unlikely in the overwhelming majority of application scenarios.
We deem it sensible to rather have a small number of “false positives”, but
still closely related matches. When querying for similar patients, it is actually
desirable to match less specific conditions, as is the case for copy number vari-
ations. E.g., it doesn’t matter if a short tandem repeat gained 20 or 30 motifs
in length. Only the magnitude by which it increased or decreased is important
when searching for similar genomes.

Note that a mapping (which could also be described as a compression) from
the very detailed VCF to our VQF encoding scheme is straightforward.

Reference Genome. Since variations are indexed by a reference genome, it is
important that all genomes are called against the same reference when querying
several individuals’ variations. This is assumed for all databases in our setup.

80 D. Demmler et al.

Alternative Variant Format. Note that a different variant compression
scheme akin to the hashing method found in [35] could be used. For a single
VCF row, one could hash the ID, REF and ALT entry and some important fields
from the INFO column, and project it to the 16 bit (or larger) value space. Ignor-
ing collisions, this scheme could also serve as a variant compression method with
reasonable low probability of false positives. However, since this method doesn’t
incorporate domain specific knowledge like our VQF, similar variations wouldn’t
have a chance to match.

Typical Sizes. There are typically two ways to analyze a person’s genetic
variation. The first option is to store the full genetic variation, which leads
to around N = 3 million entries. The second, and more viable, option is to
only store variation from coding regions, i.e., a person’s exome. While a person’s
exome makes up only about 1% of their genome, this region is the most important
in the context of research and disease testing. As such, exome sequencing is a
common quicker and cheaper alternative to full-genome sequencing. A person’s
exome has about N = 100, 000 variations. In our database model, a person’s full
genetic variation is mapped to N entries of size κ + ψ = 48 bit.

Auxiliary Data. Besides information on genetic variation, the databases can
also hold auxiliary data like sex, age, weight and health data like blood pressure
or disease indicators. For those fields, our protocol allows for range or threshold
conditions in the queries, where desired.

3.3 Queries

The queries that we support are of the form

SELECT f(*) FROM Variants
WHERE ((locus1, var1), ..., (locusm, varm)) IN Genome

AND cancertype = X AND ... AND agemin ≤ age ≤ agemax ...

when expressed in SQL for illustration purposes. Here, m is the number of variant
equalities to check and the remaining auxiliary queries can be more versatile and
include ranges, besides equalities. For most of our benchmarks, we choose m = 5.

The querier specifies the values for the highlighted parts of the query. These
values are secret-shared and remain private, such that the proxies do not learn
them. The structure of f cannot be chosen by the querier and is fixed a pri-
ori. However, since we use the ABY SMPC framework [9], the function f can
generally be an arbitrary (aggregation) function on the bit string of matching
genomes, like the identity (simple output of matches) or the count (Hamming
weight).

Technically, any query prompts the two proxies to generate a secret-shared bit
string representing the matching genomes. As can later be seen in Sect. 6.1, this
task causes the bulk computation and communication cost. Next, the proxies
apply function f to this bit string and output it to the querier (or any other
predefined party).

Privacy-Preserving Whole-Genome Variant Queries 81

Query Scenario. For our experiments, we choose a scenario in which the
querier receives the count of matches, together with a random query ID. Each
database with at least one match receives the corresponding sub-bit mask of
the genomes only in their own database together with the same query ID. This
way, the database doesn’t learn the query which matched their genomes but can
contact the querier for a follow-up discussion of the matched patients.

Optionally, we can substitute the simple count by a t-threshold count,
which returns the count only if it is larger than t. This would mitigate the re-
identification risk as presented in [34]. However, since Beacon queries are often
used to query for rare mutations, this extension brings its own problems. Our
solution can easily realize both options and due to the generic nature of SMPC
it can also be adapted for additional requirements.

4 Our Protocol for Private Genome Variant Queries

Our protocol ensures the privacy of both, the query to a genomic database
and its response. At the same time, the entire database is hidden from the two
proxies. This matches closely the cloud computing paradigm where computation
and data storage is outsourced to a powerful set of machines that are maintained
by an external party. In Fig. 1 on page 3, we depict our setting where multiple
databases DB1, . . . ,DBn outsource their data to two proxies D′ and D′′ that
run the SMPC protocol and are assumed to not collude. A client C queries the
combined data from all databases for the counts of entries that (a) match the
query criteria and optionally (b) fulfill a pre-defined t-threshold level.

We achieve privacy by using XOR-based secret-sharing between the SMPC
parties. More precisely, for every plaintext bit p, we choose a random masking
bit r. We send r to D′ and s = p ⊕ r to D′′. The values r and s are called shares
of the plaintext value p. For bit strings of length � we apply this technique �
times in parallel. To further improve communication, we could send to D′ a
single seed for a pseudo-random generator instead of the values r.

We use the protocol of Goldreich, Micali and Wigderson (GMW) [15] to
privately evaluate a Boolean circuit that corresponds to our functionality, i.e.,
querying a genome database. GMW operates directly on XOR-secret-shared val-
ues. We use the GMW protocol in the offline/online computation model, i.e., an
offline phase that is preprocessed at any time before the actual private inputs
are known. The data from the offline phase is then used in the efficient online
phase to compute the function on the private data.

4.1 Protocol Description

In this section, we describe the phases of our overall protocol and depict it
graphically in Fig. 2. Optionally, before the protocol, the database providers and
proxies agree on a privacy threshold t that defines the minimum amount of
matching records that a query response must contain. If a query matches ≤ t

82 D. Demmler et al.

Fig. 2. Protocol phases. Note that all communication with the SMPC proxies happens
secret-shared, such that the proxies never gain access to any plaintext.

records, the query response will be the empty set ∅, i.e., the same as if no record
matched the query.

Phase (0) SMPC Offline Phase. At any point before phase 3, D′ and D′′

pre-compute the SMPC offline phase, which is independent of the actual inputs
from other parties.

Phase (1) Database Outsourcing. Each database provider DBi is assumed to
hold their data in the VQF format (see Sect. 3.2). The provider then generates a
random mask of the size of its database and sends the random mask to proxy D′

and the XOR of the mask and its database to D′′. The proxies concatenate the
shares they receive from all database providers and keep track of the mapping of
shares to DB providers. Note that this phase needs to be performed only once.
The secret-shared database can be queried multiple times. Databases need only
send new entries or updates to existing entries if they have changed.

Phase (2) Client Query. Client C secret-shares its query between D′ and D′′

and sends in plain text the type of auxiliary queries it wants to run. Note that
we only reveal the operation of the auxiliary queries and not the values that are
compared with the datasets.

Phase (3) SMPC Online Phase. The proxies D′ and D′′ run the SMPC
protocol on the databases and the query they received. Due to memory con-
straints, the client query is run on a single patient dataset, consisting of up to
3 million variants at a time. Multiple patients’ datasets can be evaluated in
separate SMPC instances, which can be run sequentially or in parallel. Given
enough hardware, this step can be ideally parallelized. The individual outcomes
(match/no match) are stored in a bit mask, still secret-shared and thus unknown
to the proxies.

Privacy-Preserving Whole-Genome Variant Queries 83

In our scenario, after the query was run against all patients’ datasets, the
resulting bit mask is processed by a final circuit that counts the number of
matches, i.e., the Hamming weight, optionally compared to a threshold.

Phase (4) Output reconstruction. Both proxies D′ and D′′ hold the out-
put of the computation in secret-shared form and send their output shares to
C, who computes the XOR and thereby receives the plaintext output. If the
optional threshold t privacy is enforced, C will only receive the count if there
are more than t matches. Each database also receives the two shares of its sub-
bit mask of matches, together with a random query ID for potential follow-up.
Reconstruction will reveal the matching genomes, if any, or an all-zero bit string
otherwise.

4.2 Security Considerations

We discuss the security of our scheme and the attacker model in this section.
The goal of our protocol is to ensure the privacy of the queries clients send

to the service, as well as the corresponding responses they receive. At the same
time, our protocol ensures the privacy of the genomic databases that outsource
their data to our service. We achieve these properties by directly relying on the
proven security of the GMW protocol [15], which allows to privately evaluate any
computable function that is represented as a Boolean circuit. GMW uses XOR-
based secret-sharing as underlying primitive, which protects private values. In its
original form secret sharing offers information theoretic security since plaintexts
are masked with randomness of the same length. We use a PRG to expand a
short seed to the length of the plaintext, thus reducing information theoretic
security to computational security of the PRG. In our implementation we rely
on AES as PRG.

We make the assumption that adversaries behave semi-honestly and cor-
rupt at most one of the two proxies at the same time. The latter corresponds
to a non-collusion assumption between the two proxies. Given the semi-honest
non-collusion assumptions we can proof that our protocol is secure, since the
transcript of every party can be simulated given their respective inputs and out-
puts. We consider the following cases of semi-honest corrupt parties, malicious
clients or external adversaries:

Corrupt Semi-honest Client/Corrupt Database: A corrupt client or cor-
rupt database with input query Q and response R can be simulated by a sim-
ulator playing the role of the two proxies, running the GMW protocol. This
implies that a corrupt client or database learns no additional information from
the protocol execution.

Corrupt Semi-honest Proxy: For a set of databases and a single client query
each separate proxy’s view consists of a share of the client’s query and a share
of each database. In all cases XOR-secret-sharing is used, which makes the cor-
responding strings appear uniformly distributed and leaks no information about

84 D. Demmler et al.

the content. Each proxy’s view also contains the other proxy’s inputs for the
GMW protocol. These are proven not to leak information about private inputs
in [14].

Malicious Clients: Since the proxies and the client interactively agree on the
query structure beforehand, a malicious client can only influence values within
the boundaries of the query, i.e., the client can only send an input bit string of
the pre-defined length. Malicious clients can send bogus queries with the correct
length, which will be processed by the proxies. This leads to corrupt outputs
that leak no more information than valid queries. The number of queries a client
can send can be controlled by using rate-limiting.

External Adversaries: Data in transit is protected from external adversaries
by using state-of-the-art secure channels, e.g., TLS, to ensure confidentiality,
integrity and authenticity between all communicating parties.

5 Implementation

In this section we describe our implementation decisions and the software design
of our application, as well as its limitations.

5.1 The ABY Framework

We implemented our protocols within the ABY framework for secure two-party
computation [9]. It provides efficient C++ implementations of recent secure two-
party computation protocols and includes many recent optimizations. ABY offers
abstractions of the underlying protocols and building blocks and is thus a viable
option for implementing SMPC applications. More specifically, we rely on the
included implementation of the GMW protocol, which is based on XOR secret-
sharing and thus is well-suited for our outsourcing scenario.

5.2 Boolean Circuit Design

The GMW protocol operates on Boolean circuits. Our protocol contains two
circuit designs that we optimized for a low multiplicative depth in order to
minimize the number of communication rounds between the proxies. The biggest
circuit is the query circuit that checks if a user query matches the genome of a
patient. It consists of an equality gate that compares every patient variant with
a query variant. On the circuit level, this is done in parallel on a person’s entire
variants and all query variants. From this we get 1 bit per patient variant, which
is fed into an OR tree that returns 1 if at any position the query matched with
a patient’s variant. For all query variants the results from the OR trees are fed
into an AND tree that returns 1 if all query variants are in the patient’s variants.
These gate trees are the reason for the logarithmic circuit depth. The circuit also

Privacy-Preserving Whole-Genome Variant Queries 85

checks for auxiliary patient properties, which are implemented as single equality
or comparison gates.

The circuit’s final result is a single bit that indicates if all query variants
are in the person’s variant dataset and if all auxiliary queries matched. The
circuit output for each patient record is stored (still secret-shared). As soon as
all patient queries have been run, the previously stored result shares are fed into
a smaller (threshold-)counting circuit (that optionally checks that the count is
larger than the threshold t). It consists of a Hamming weight circuit that counts
the number of 1-bits, and a comparison gate that controls if a multiplexer gate
outputs the string of matches or an all-zero bitstring. Its output is a bit string
with one bit per patient. Bits are set to one at the indices where the query
matched. If it contains more than t ones, it is output, otherwise an all-zero bit
string is output, in case threshold t counting is applied.

5.3 Limitations of Our Approach

While we only ran queries, where all conditions must be met, i.e., all conditions
are connected with AND (∧) expressions, the ABY framework would easily allow
for more complex or nested queries, such as A∨(

(B ∧C)∨D
)
. The performance

impact would be minimal and would only depend on the size of the formula.
Universal circuits [17,26,27,29,36] could be used to also hide the structure of
the formula.

The translation of variants into 16 bit strings (see Sect. 3.2) certainly is a
limitation and cannot reflect the full spectrum of possible variations. However, as
elaborated before, we used this compression as a way to match similar variations
while only using strict equality queries.

6 SMPC Benchmarks

In this section we provide benchmark results of our implementation. We per-
formed runtime benchmarks of our SMPC implementation on two identical desk-
top computers with 16 GiB RAM and a 3.6 GHz Intel Core i7-4790 CPU, con-
nected via local Gbps network. We ran a 64-bit Debian Jessie with Linux kernel
3.16 and used gcc v4.9.2 to compile our code. For all measurements we instanti-
ate the parameters to achieve a symmetric security level of 128 bits. All results
are averaged over 25 iterations. The provided communication numbers are the
sum of sent and received data of one SMPC proxy. In the following section we
use the term offline phase to refer to step (0) from Figure 2, while online phase
refers to step (3). We did not measure the time for steps (1), (2), and (4), i.e., the
conversion and transmission of databases and query/response, as these are sim-
ple and efficient plaintext operations and data transmissions that scale linearly
with size and available bandwidth.

86 D. Demmler et al.

6.1 Variant Query Performance

In this section we measure the performance of running a query with a certain
length against a person’s dataset with a given number of variants. As default
parameters we use N = 100, 000 variants, query length = 5, and κ + ψ = 48 bit,
which corresponds to a query on a person’s exome. In Figure 3 we show the
runtimes of the offline and the online phase for varying number of patient variants
with queries of length 5. In Figure 4 we fix the number of a patient’s variants
to N = 100, 000 entries and show how the runtimes scale for varying query
length. Figure 5 shows how a varying entry bitlen (κ+ψ) influences the protocol
runtimes. We provide the corresponding detailed numbers in Tables 3, 4, and 5.

Fig. 3. Offline and online runtime in ms for varying number of variants per patient and
fixed key length κ = 32 bit, value length ψ = 16 bit, and a query with 5 components.

Fig. 4. Offline and online runtime in ms for varying query length and fixed key length
κ = 32 bit, value length ψ = 16 bit, and variant count of N = 100, 000 entries.

In all cases the offline and online runtime and circuit size (number of AND
gates) increase linearly with the database size, query length, and entry bitlength.
The circuit depth, i.e., the number of communication rounds between the two
proxies, scales only with the logarithm of the input sizes.

Privacy-Preserving Whole-Genome Variant Queries 87

Fig. 5. Offline and online runtime in ms for varying total element size κ + ψ at a fixed
variant count of N = 100, 000 entries and query length of 5.

Regarding the auxiliary queries, we fixed five different equality and range
queries, which didn’t have any noticeable performance impact. They are thus
omitted in the following discussions.

For querying a patient’s exome variants (N = 100, 000), assuming a query of
length 5 and our proposed entry format with key length κ = 32 bit, and value
length ψ = 16 bit, we achieve an offline runtime of 3.4 s and an online runtime
of 178 ms. In this case we need to transfer 733 MiB in the offline phase and
the online phase requires 28 communication rounds with a total transmission
of 11 MiB. The circuit for these parameters consists of 24 million AND gates.
Using the same parameters to query a patient’s full genome (N = 3, 000, 000)
requires an offline and online runtime of 99.5 s and 4.6 s, respectively.

Our performance is comparable to the single-variant query in Sousa et al. [35],
which takes 2.4–4.3 s online runtime for 5 million variants. However, their query
is not extensible and can only answer whether a single variant is present, without
the option for further privacy-preserving aggregation.

6.2 Count Performance

The circuit (f in Sect. 3.3) that determines the total number of matches and
compares this to the privacy threshold t is very small. For processing the results
of 100,000 patient records, the t-threshold count circuit consists of 100,040 AND
gates and has a depth of 22. It requires 75 ms (55 ms) runtime and 439 KiB
(2, 124 KiB) communication in the online (offline) phase. Communication, run-
time, and circuit size scale linearly with the input size, while circuit depth grows
logarithmically. Since these numbers are negligible for the total runtime, we omit
a more detailed analysis at this point.

6.3 Conclusions from the Benchmarks

We consider our solution practical for typical private genome queries. While the
computation of responses for databases with thousands of patients still do not
answer instantaneously, we can run these private queries over night or increase

88 D. Demmler et al.

Table 3. Benchmark results and circuit properties for varying variant count at fixed
key length κ = 32 bit, value length ψ = 16 bit, and query length 5.

Variants
N

Query
length

κ + ψ
[bit]

#AND
gates

Circuit
depth

Offline phase Online phase

[ms] [MiB] [ms] [MiB]

100 5 48 2.4 · 104 18 9 1 2.4 0

1,000 5 48 2.4 · 105 21 38 7 4.5 0

10,000 5 48 2.4 · 106 25 335 73 20.2 1

100,000 5 48 2.4 · 107 28 3,420 733 177.9 11

1,000,000 5 48 2.4 · 108 31 34,297 7,325 1,756.2 114

3,000,000 5 48 7.2 · 108 33 99,507 21,975 4,567.7 343

Table 4. Benchmark results and circuit properties for varying query length at fixed
key length κ = 32 bit, value length ψ = 16 bit, and variant count N = 100, 000.

Variants
N

Query
length

κ + ψ
[bit]

#AND
gates

Circuit
depth

Offline phase Online phase

[ms] [MiB] [ms] [MiB]

100,000 1 48 4.8 · 106 27 669 146 83.2 2

100,000 2 48 9.6 · 106 27 1,327 293 111.5 5

100,000 5 48 2.4 · 107 28 3,420 733 177.9 11

100,000 25 48 1.2 · 108 29 16,629 3,662 687.5 57

100,000 125 48 6.0 · 108 32 83,141 18,312 3,096.9 286

Table 5. Benchmark results and circuit properties for varying total element size κ + ψ
at fixed query length of 5 and variant count N = 100, 000.

Variants
N

Query
length

κ + ψ
[bit]

#AND
gates

Circuit
depth

Offline phase Online phase

[ms] [MiB] [ms] [MiB]

100,000 5 24 1.2 · 107 27 1,662 366 133.2 6

100,000 5 32 1.6 · 107 27 2,241 488 147.9 8

100,000 5 48 2.4 · 107 28 3,420 733 177.9 11

100,000 5 64 3.2 · 107 28 4,409 977 205.6 15

100,000 5 96 4.8 · 107 29 6,640 1,465 269.6 23

100,000 5 128 6.4 · 107 29 8,860 1,953 321.3 31

throughput by running them in parallel on dedicated hardware and faster net-
works. As we can see from our performance evaluation, both runtime and commu-
nication complexity scale linearly with the input size. Our circuit constructions
are optimized for use with the GMW protocol and their depth grows only loga-
rithmically with increasing input size. Network traffic and memory requirements
are well within the limits of modern hardware.

Privacy-Preserving Whole-Genome Variant Queries 89

The generation of the bit string representing the matching genomes takes
the bulk computation and communication cost, while the cost for evaluating the
auxiliary conditions, aggregation, and threshold comparison is negligible. There-
fore, possibly complex and versatile post-processing functions can be applied to
the matches thanks to the use of generic SMPC techniques. This ability sets our
system apart from related works in this field.

7 Summary

In this work we have presented a new, privacy-preserving protocol to allow multi-
center variant queries on genomic databases. The achieved performance renders
this approach applicable in real-world scenarios with some dozens of centers. Full
genome studies are supported based on the state-of-the-art VCF format. Our
approach leverages the custom Variant Query Format, which can be built from
existing VCF data. Variants have to be called against a pre-defined reference
genome to be agreed upon before setting up the federated data analysis platform.
An interesting and demanding research question immediately arises: how would
one use our (and many previously developed) genomic privacy techniques on
genomic data while facing the problem of different reference genomes? The simple
answer is to regenerate the genomic data against the new reference genome via
the same pipeline. But this approach might not always be feasible or possible, if
the pipeline is not fully automated or recorded. Note that this applies to almost
all previous work where genomic data from different patients is compared, as is
the case in the Beacon project. This “transcription” to other reference genomes
is beyond the scope of the present work but will be addressed in the future.

Another open problem is how to effectively mitigate the re-identification risk
as presented in [34], while still handling queries of rare mutations in a sensible
way. We described two query types which our framework supports: a regular
count, which is susceptible to the aforementioned re-identification risk, even
though to a lesser extent, since the querier doesn’t learn in which databases the
matches occurred, and a threshold-t-count, which only outputs the count if it is
larger than t. While the latter method provides more privacy, it may render the
system unusable for very rare mutations.

Acknowledgments. We thank the anonymous reviewers and our shepherd for their
valuable feedback on our paper. This work has been supported by the German Federal
Ministry of Education and Research (BMBF) and by the Hessian State Ministry for
Higher Education, Research and the Arts (HMWK) within CRISP (www.crisp-da.de),
by the DFG as part of project E4 within the CRC 1119 CROSSING, as well as by
collaborations within the BMBF-funded HiGHmed consortium.

www.crisp-da.de

90 D. Demmler et al.

References

1. Aziz, A., Momin, M., Hasan, M.Z., Mohammed, N., Alhadidi, D.: Secure and effi-
cient multiparty computation on genomic data. In: 20th International Database
Engineering and Applications Symposium (IDEAS 2016), pp. 278–283. ACM
(2016)

2. Asharov, G., Halevi, S., Lindell, Y., Rabin, T.: Privacy-preserving search of similar
patients in genomic data. Cryptology ePrint Archive, Report 2017/144 (2017).
https://eprint.iacr.org/2017/144

3. Asharov, G., Lindell, Y., Schneider, T., Zohner, M.: More efficient oblivious trans-
fer and extensions for faster secure computation. In: 20th ACM Conference on
Computer and Communications Security (CCS 2013), pp. 535–548. ACM (2013)

4. Baldi, P., Baronio, R., De Cristofaro, E., Gasti, P., Tsudik, G.: Countering GAT-
TACA: efficient and secure testing of fully-sequenced human genomes. In: 18th
ACM Conference on Computer and Communications Security (CCS 2011), pp.
691–702. ACM (2011)

5. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

6. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3 13

7. Danecek, P., et al.: The variant call format and VCFtools. Bioinformatics 27(15),
2156–2158 (2011)

8. De Cristofaro, E., Faber, S., Tsudik, G.: Secure genomic testing with size- and
position-hiding private substring matching. In: 12th ACM Workshop on Privacy
in the Electronic Society (WPES 2013), pp. 107–118. ACM (2013)

9. Demmler, D., Schneider, T., Zohner, M.: ABY - a framework for efficient mixed-
protocol secure two-party computation. In: 22th Network and Distributed System
Security Symposium (NDSS 2015). The Internet Society (2015)

10. El Gamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

11. Fritz, M.H.Y., Leinonen, R., Cochrane, G., Birney, E.: Efficient storage of high
throughput DNA sequencing data using reference-based compression. Genome Res.
21(5), 734–740 (2011)

12. Froelicher, D., et al.: UnLynx: a decentralized system for privacy-conscious data
sharing. Proc. Priv. Enhancing Technol. 4, 152–170 (2017)

13. Fuller, B., et al.: SoK: cryptographically protected database search. In: 38th IEEE
Symposium on Security and Privacy (S&P 2017), pp. 172–191 (2017)

14. Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press, Cambridge (2004)

15. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a com-
pleteness theorem for protocols with honest majority. In: 19th ACM Conference
on Theory of Computing (STOC 1987), pp. 218–229. ACM (1987)

16. Goodrich, M.T.: The mastermind attack on genomic data. In: 30th IEEE Sympo-
sium on Security and Privacy (S&P 2009), pp. 204–218. IEEE (2009)

17. Günther, D., Kiss, Á., Schneider, T.: More efficient universal circuit construc-
tions. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp.
443–470. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9 16.
http://thomaschneider.de/papers/GKS17.pdf. Full version: http://ia.cr/2017/798

https://eprint.iacr.org/2017/144
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1007/978-3-642-14577-3_13
https://doi.org/10.1007/978-3-319-70697-9_16
http://thomaschneider.de/papers/GKS17.pdf
http://ia.cr/2017/798

Privacy-Preserving Whole-Genome Variant Queries 91

18. Gupta, D., Mood, B., Feigenbaum, J., Butler, K., Traynor, P.: Using intel software
guard extensions for efficient two-party secure function evaluation. In: Clark, J.,
Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC
2016. LNCS, vol. 9604, pp. 302–318. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-53357-4 20

19. Hamacher, K., Hubaux, J.P., Tsudik, G.: Genomic Privacy (Dagstuhl Semi-
nar 13412). Dagstuhl Rep. 3(10), 25–35 (2014). http://drops.dagstuhl.de/opus/
volltexte/2014/4426

20. Hasan, M.Z., Mahdi, M.S.R., Mohammed, N.: Secure count query on encrypted
genomic data. In: 3rd International Workshop on Genome Privacy and Security
(GenoPri 2016) (2017). https://arxiv.org/abs/1703.01534

21. Huang, Y., Evans, D., Katz, J., Malka, L.: Faster secure two-party computation
using garbled circuits. In: 20th USENIX Security Symposium (USENIX Security
2011). USENIX (2011)

22. Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers effi-
ciently. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 145–161. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4 9

23. Jha, S., Kruger, L., Shmatikov, V.: Towards practical privacy for genomic com-
putation. In: 29th IEEE Symposium on Security and Privacy (S&P 2008), pp.
216–230. IEEE (2008)

24. Karvelas, N., Peter, A., Katzenbeisser, S., Tews, E., Hamacher, K.: Privacy-
preserving whole genome sequence processing through proxy-aided ORAM. In:
13rd Workshop on Privacy in the Electronic Society (WPES 2014), pp. 1–10. ACM
(2014)

25. Kerschbaum, F., Beck, M., Schönfeld, D.: Inference control for privacy-preserving
genome matching. CoRR abs/1405.0205 (2014). https://arxiv.org/abs/1405.0205

26. Kiss, Á., Schneider, T.: Valiant’s universal circuit is practical. In: Fischlin, M.,
Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 699–728. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3 27

27. Kolesnikov, V., Schneider, T.: A practical universal circuit construction
and secure evaluation of private functions. In: Tsudik, G. (ed.) FC 2008.
LNCS, vol. 5143, pp. 83–97. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85230-8 7. http://thomaschneider.de/papers/KS08UC.pdf. Code:
http://encrypto.de/code/FairplayPF

28. Li, H., et al.: The Sequence Alignment/Map format and SAMtools. Bioinformatics
25(16), 2078–2079 (2009)

29. Lipmaa, H., Mohassel, P., Sadeghian, S.S.: Valiant’s universal circuit: improve-
ments, implementation, and applications. IACR Cryptology ePrint Archive
2016(17) (2016). http://ia.cr/2016/017

30. Naehrig, M., Lauter, K.E., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: 3rd ACM Cloud Computing Security Workshop (CCSW 2011), pp.
113–124. ACM (2011)

31. Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practi-
cal active-secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 681–700. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 40

32. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

33. Perillo, A.M., Cristofaro, E.D.: PAPEETE: private, authorized, and fast personal
genomic testing. Technical report 770 (2017). https://ia.cr/2017/770

https://doi.org/10.1007/978-3-662-53357-4_20
https://doi.org/10.1007/978-3-662-53357-4_20
http://drops.dagstuhl.de/opus/volltexte/2014/4426
http://drops.dagstuhl.de/opus/volltexte/2014/4426
https://arxiv.org/abs/1703.01534
https://doi.org/10.1007/978-3-540-45146-4_9
https://arxiv.org/abs/1405.0205
https://doi.org/10.1007/978-3-662-49890-3_27
https://doi.org/10.1007/978-3-540-85230-8_7
https://doi.org/10.1007/978-3-540-85230-8_7
http://thomaschneider.de/papers/KS08UC.pdf
http://encrypto.de/code/FairplayPF
http://ia.cr/2016/017
https://doi.org/10.1007/978-3-642-32009-5_40
https://doi.org/10.1007/3-540-48910-X_16
https://ia.cr/2017/770

92 D. Demmler et al.

34. Shringarpure, S., Bustamante, C.: Privacy risks from genomic data-sharing bea-
cons. Am. J. Hum. Genet. 97(5), 631–646 (2015)

35. Sousa, J.S., et al.: Efficient and secure outsourcing of genomic data storage. BMC
Med. Genomics 10(2), 46 (2017)

36. Valiant, L.G.: Universal circuits (preliminary report). In: 8th ACM Symposium on
Theory of Computing (STOC 1976), pp. 196–203. ACM (1976)

37. Wang, X.S., Huang, Y., Zhao, Y., Tang, H., Wang, X., Bu, D.: Efficient genome-
wide, privacy-preserving similar patient query based on private edit distance. In:
22nd ACM Conference on Computer and Communications (CCS 2015), pp. 492–
503. ACM (2015)

38. Yao, A.C.C.: How to generate and exchange secrets. In: 27th Symposium on Foun-
dations of Computer Science (FOCS 1986), pp. 162–167. IEEE (1986)

39. You, N., et al.: SNP calling using genotype model selection on high-throughput
sequencing data. Bioinformatics 28(5), 643 (2012)

40. Zhou, J., Cao, Z., Dong, X.: PPOPM: more efficient privacy preserving outsourced
pattern matching. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.)
ESORICS 2016. LNCS, vol. 9878, pp. 135–153. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-45744-4 7

https://doi.org/10.1007/978-3-319-45744-4_7
https://doi.org/10.1007/978-3-319-45744-4_7

A New Secure Matrix Multiplication
from Ring-LWE

Lihua Wang(B) , Yoshinori Aono, and Le Trieu Phong

National Institute of Information and Communications Technology, Tokyo, Japan
{wlh,aono,phong}@nict.go.jp

Abstract. Matrix multiplication is one of the most basic and useful
operations in statistical calculations and machine learning. When the
matrices contain sensitive information and the computation has to be
carried out in an insecure environment, such as a cloud server, secure
matrix multiplication computation (MMC) is required, so that the com-
putation can be outsourced without information leakage. Dung et al.
apply the Ring-LWE-based somewhat public key homomorphic encryp-
tion scheme to secure MMC [TMMP2016], whose packing method is
an extension of Yasuda et al.’s methods [SCN2015 and ACISP2015] for
secure inner product. In this study, we propose a new packing method
for secure MMC from Ring-LWE-based secure inner product and show
that ours is efficient and flexible.

Keywords: Secure matrix multiplication · Ring-LWE
Public key homomorphic encryption (PHE) · Secure inner product

1 Introduction

Motivation. Matrix multiplication is one of the most basic and useful opera-
tions in statistical calculations and machine learning. When the matrices A and
B contain sensitive information and the computation has to be carried out in
an insecure environment, such as a cloud server, secure matrix multiplication
computation (secure MMC) is required, as the data and the computation can
be outsourced without information leakage.

Several secure MMC schemes are proposed, in which there are two types
according to being based on secure inner product (e.g., [2]) or not (e.g., [3,4]).
Since matrix multiplication AB can be calculated from inner product of row vec-
tors of the left matrix A and column vectors of the right matrix B (Fig. 1), secure
matrix multiplication can be naturally constructed from secure inner product.
In detail, the (i, j)-element of the multiplication AB is 〈A(r)

i , B
(c)
j 〉, the inner

product of the i-th row vector of A and the j-th column vector of B.
In this study, we focus on constructing secure MMC based on secure inner

product from “ring learning with errors” (Ring-LWE)-based somewhat public-
key homomorphic encryption (PHE) (see, for instance, [5]) that have the poten-
tial to be safe against quantum computers.
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 93–111, 2018.
https://doi.org/10.1007/978-3-030-02641-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_5&domain=pdf
http://orcid.org/0000-0002-7553-423X
https://doi.org/10.1007/978-3-030-02641-7_5

94 L. Wang et al.

A =

A
(r)
1

...
A

(r)
i

...
A

(r)
m

, B = B
(c)
1 . . . B

(c)
j . . . B

(c)
l

, A × B =

...
...

. . . 〈A(r)
i , B

(c)
j 〉. . .

...
...

Fig. 1. Matrix multiplication from vector inner products.

Related Works for Secure Inner Product from Ring-LWE-Based PHE.
Several secure inner product protocols have been presented, such as [6,8–10].

– Two-Pack-encoding Method: Yasuda et al. proposed special packing meth-
ods for secure inner product [8–10] that can be used for somewhat PHE
schemes based on the polynomial ring R = Z[x]/(xn+1). Under their packing
method, pm(1) and pm(2) denote two different mappings. The basic idea is
packing a plaintext m ∈ Rp = Zp[x]/(xn + 1), whose coefficient vector is
(m0,m1, ...,mn−1) ∈ Z

n
p , into the following two different forms:

pm(1)(m) :=
n−1∑

i=0

mix
i, pm(2)(m) := −

n−1∑

i=0

mix
n−i. (1)

Since xn = −1, for plaintexts u =
∑n−1

i=0 uix
i and v =

∑n−1
i=0 vix

i, the product
of pm(1)(u) and pm(2)(v) is

pm(1)(u) · pm(2)(v) =
n−1∑

i=0

uivi + (inconstant terms). (2)

Therefore, by mod x, one can compute the inner product of the coefficient
vectors (u0, ..., un−1) and (v0, ..., vn−1) by Rp-multiplication.

– One-Pack-encoding Method: Recently, Wang et al. proposed a generic yet
efficient method for secure inner product [6] that can be also applied to
Ring-LWE-based somewhat PHE scheme constructed on the polynomial ring
R = Z[x]/(xn + 1) (named WHAP secure inner product in short). For each
plaintext m, this method only requires the first type packing pm(1)(m) showed
in Eq. (1), whereas pm(2)(m) is not needed for plaintext (See Sect. 2.2 for
detail). Correspondingly, using this method, computation cost on client, the
storage size on cloud server, and communication cost are reduced. Therefore,
it is more efficient than the method introduced in [8] whose key idea is the
same with that in [7] and [10].

Previous Secure MMC from Ring-LWE-Based Somewhat PHE
Scheme. Recently, Dung et al. in [2] constructed the first secure MMC based on
the Ring-LWE-based somewhat PHE scheme [5] which is a variant of [1]. Their

A New Secure Matrix Multiplication from Ring-LWE 95

packing method (DMY approach) for secure matrix multiplication is a generic
extension of Yasuda et al.’s methods for secure inner product in [7] and [10].
They proposed two packing methods: for two m × m square matrices Packing-1
encodes all row vectors of left matrix into one ring element and each column vec-
tor of ring matrix into a difference ring element, so m + 1 times encryption and
m times decryption operations are required in Packing-1. Packing-2 requires
twice encryption operations, since it pack all row vectors of a matrix into an
element, and all column vectors into another element of ring R (See Sect. 2.3
for detail). Then, according to Eq. (2), each entry of AB can be obtained from
the multiplication of the two elements. Summarily, a matrix needs two types
encoding: one is for left matrix and another is for right matrix of multiplica-
tion computation. Therefore, two encryption operations for a matrix and one
time decryption operation for a MMC are needed. Packing-2 is more efficient on
computation/communication cost, and applies to secure MMC for two square
matrices as described in [2].

Our Contribution. In this study, by combining and extending packing
approaches introduced in [2] and [6], we propose a new secure MMC from
Ring-LWE-based secure inner product. Our packing method, named one-pack-
encoding method (all row and column vectors of a matrix are embedded into
one element of ring), is more flexible and efficient in some cases (Sect. 4) than
the existing method introduced by Dung et al. [2]:

(1) Flexible for size. We describe a concrete packing method under our scheme
to show how to compute the multiplication of rectangular matrices A =
(aij)m×k and B = (bij)k×l;

(2) Flexible for left/right matrix. One-pack-encoding for each matrix implies
that it can act as either left matrix or right one of secure MMC. For matrix
A = (aij)m×k, B = (bij)k×l and C = (cij)h×m, though there only exits
one packing for A, it can be used to compute both AB and CA. Especially,
if A = (aij)m×l, B = (bij)l×m, then both AB and BA can be computed
without extra encoding.

(3) Efficiency. For the special case of both A and B are square matrices of size
β × β with β3 ≤ n/4, we compare our method and the existing one to show
the efficiency.

Since our packing method can be applied to the same Ring-LWE-based somewhat
PHE scheme with Dung et al.’s, ours provides a trade-off to realize more flexible
and efficient secure MMC in the case of β3 ≤ n/4.

Paper Outline. In Sect. 2, we recall WHAP secure inner product scheme and
DMY approach to construct secure MMC on a Ring-LWE-based PHE scheme
(the LNV-PHE scheme). Then, in Sect. 3, we propose a new secure MMC based
on WHAP secure inner product from the above Ring-LWE-based scheme. After
that, we show the flexibility and efficiency of our secure MMC in Sect. 4, and
make brief concluding remarks in Sect. 5.

96 L. Wang et al.

2 Related Works

Lauter, Naehrig, and Vaikuntanathan proposed a PHE scheme from Ring-LWE
[5], which is a variant of [1], we call the LNV-PHE scheme. The related works
of this study - WHAP secure inner product [6] and DMY secure MMC [2] - can
be constructed based on the LNV-PHE scheme.

In this section, we describe the Ring-LWE definition and the LNV-PHE
scheme as the preliminary (Sect. 2.1), then recall the WHAP secure inner prod-
uct (Sect. 2.2) and the DMY secure MMC (Sect. 2.3).

Fig. 2. The Ring-LWE-based LNV scheme [5].

2.1 Preliminary

Security of the LNV-PHE scheme is based on the Ring-LWE assumption.

The Ring-LWE Assumption. Let R := Z[x]/f(x) and Rq := Zq[x]/f(x) for
some degree n irreducible integer polynomial f(x) ∈ Z[x] and a prime integer
q ∈ Z. Addition in these rings is done component-wise in their coefficients.
Multiplication is polynomial multiplication modulo f(x) (and also q, in the case
of the ring Rq).

Given parameters (n, q, s), the Ring-LWE assumption asserts that it is infea-
sible to distinguish the following two distributions:

– one samples (ai, bi)
$← (Rq)2, i.e., uniformly from (Rq)2;

– one samples (ai, bi = ais + ei), where ai
$← Rq, and s, ei

g← R(0,s2), i.e., coef-
ficients sampled from Gaussian distribution Z

n
(0,s2).

A New Secure Matrix Multiplication from Ring-LWE 97

The LNV-PHE Scheme ([5]). We recall Lauter et al.’s Ring-LWE based
PHE scheme in Fig. 2, in which the Ring-LWE problem for specific choices of
the polynomial f(x) = xn + 1 for n a power of two.

The scheme consists of four algorithms: ParamGen (parameter generation),
KeyGen (public/secret key pair generation), Enc (encryption), and Dec (decryp-
tion). In addition, algorithms Add,DecA and Mul,DecM show that the scheme
allows addition and multiplication homomorphic computations.

Theorem 1. The ciphertexts of the scheme in Fig. 2 are indistinguishable from
random under the Ring-LWE assumption.

Proof. The proof is folklore and is given for completeness. First, we have p−1P =
r + (−p−1a)S ∈ Rq so that p−1P is uniformly random under the Ring-LWE
assumption with secret S. Therefore P is also uniformly random under the Ring-
LWE assumption. Second, p−1c1 = e1(p−1a)+ e2 ∈ Rq and p−1c2 = e1(p−1P)+
e3+p−1m ∈ Rq, so that p−1c1 and the mask e1(p−1P)+e3 are uniformly random
under the Ring-LWE assumption with secret e1. Therefore, p−1c1 and p−1c2 are
random, so is the ciphertext (c1, c2) as claimed. ��

2.2 WHAP Secure Inner Product Based on Ring-LWE-Based PHE

Wang, Hayashi, Aono, and Phong proposed a generic yet efficient method for
secure inner product [6], which can be applied to a secure inner product from
the LNV scheme - named WHAP secure inner product scheme in short. The
following list of notation should be useful.

Notation List-1.
Coefficient vector: Vec(·) denotes the coefficient vector of an element of R, e.g.,

Vec(u) = (u0, u1, ..., un−1) for u = u0 + u1x + ... + un−1x
n−1.

Transpose: u(t) := −
n−1∑

i=0

uix
n−i ∈ R, named u’s transpose, can be obain-

ed easily for any given u ∈ R.

The WHAP Secure Inner Product scheme consists of algorithms ParamGen(1λ)
→ pp, KeyGen(1λ) → (pk, sk), Enc(pk, m) → c, Dec(sk, c) → m (as in Fig. 2),
and InnerP(c, c′) → ip and DecIP(sk, ip) → 〈Vec(m),Vec(m′)〉 defined as follows:

• InnerP(c, c′): For c = Enc(pk,m) = (c1, c2) and c′ = Enc(pk,m′) = (d1, d2) ∈
R2

q, define
ip := ((W1,W2), ξ),

where W1 = c
(t)
1 d1 ∈ Rq, W2 = d

(t)
1 c2 + c

(t)
1 d2 ∈ Rq, ξ = c

(t)
2 d2 mod x ∈ Zq.

• DecIP(S, ip):

IP := (W1S
∗ + W2S

(t) mod x) + ξ mod q,

where S∗ = SS(t) ∈ Rq is precomputed. Then return the inner product of
the coefficient vectors of plaintexts m and m′

〈Vec(m),Vec(m′)〉 := IP mod p.

98 L. Wang et al.

2.3 DMY Approach for Secure MMC from Ring-LWE-Based PHE

Dung, Mishra and Yasuda proposed the first secure MMC from Ring-LWE-based
PHE [2]. We recall how to use their approaches (packing-1 and packing-2) - the
DMY approach - to construct secure MMC from the LNV scheme. Their secure
MMC constructed by packing-2 applies to multiplication of two square matrices
of size m × m. In this subsection, for any matrix M of size m × m, the following
list of notation should be useful.

Notation List-2.

Row vector: M
(r)
i ∈ Z

1×m denotes the i-th row vector of M, for i = 1, ..., m.

Column vector: M
(c)
j ∈ Z

1×m denotes transpose of the j-th column vector

(M
(c)
j)

T ∈ Z
m×1 of M, for j = 1, ..., m.

Variant vectors: X = (1, x, ..., xm−1)T and Y = (−xn, −xn−1, ..., −xn−(m−1))T .

Packing-1. For matrix M ∈ Z
m×m
p , packing all row vectors of M into one element

M̃ [rows](x) ∈ Rp and m column vectors of M into m elements M̃j [column](x) ∈
Rp (j = 1, ...,m) as follows:

M̃ [rows](x) = M
(r)
1 X + ... + x(i−1)mM

(r)
i X + ... + x(m−1)mM

(r)
m X, (3)

M̃j [column](x) = M
(c)
j Y (j = 1, ...,m).

For given two matrices A and B ∈ Z
m×m
p to compute the multiplication AB,

according to Eq. (2), it can be checked that

Ã[rows](x)B̃j [column](x)
= 〈A(r)

1 , B
(c)
j 〉 + ... + 〈A(r)

i , B
(c)
j 〉x(i−1)m + ... + 〈A(r)

m , B
(c)
j 〉x(m−1)m + ...

holds for j = 1, ...,m.
Therefore, the corresponding secure MMC for two matrices with size of m×m

under the above Packing-1 method requires: m+1 encryption operations for each
matrix and m decryption operations for each MMC.

As an enhanced DMY approach, the following Packing-2 method is also pro-
posed to reduce Encryption/Decryption operations in [2].

Packing-2. For matrix M ∈ Z
m×m
p , packing all row vectors of M into one element

M̃ [rows](x) ∈ Rp via Eq. (3) similar to that in Packing-1, and all column vectors
of M into another element M̃ [columns](x) ∈ Rp as follows:

M̃ [columns](x) = M
(c)
1 Y + ... + x(j−1)m2

M
(c)
j Y + ... + x(m−1)m2

M
(c)
m Y.(4)

For given two matrices A and B ∈ Z
m×m
p to compute the multiplication AB,

according to Eq. (2), it can be checked that

Ã[rows](x)B̃[columns](x) = 〈A(r)
1 , B

(c)
1 〉 + ... + 〈A(r)

i , B
(c)
j 〉x(i−1)m+(j−1)m2

+ ... + 〈A(r)
m , B

(c)
m 〉x(m−1)m+(m−1)m2

+ ... ∈ Rp

holds.

A New Secure Matrix Multiplication from Ring-LWE 99

Now we describe the DMY secure MMC under the Packing-2 method based
on the LNV scheme (Fig. 2) step by step below:

Step 1 (Encode-then-Encrypt). Input matrices A and B, output ciphertexts
(c1, c2) and (d1, d2) of their corresponding encoded elements Ã[rows](x) from
Eq. (3) and B̃[columns](x) from Eq. (4), respectively.

Enc(pk, Ã[rows](x)) = (c1, c2),Enc(pk, B̃[columns](x)) = (d1, d2) ∈ Rq × Rq,

where Enc is encryption algorithm defined in Fig. 2.

Step 2 (Multiplication Homomorphic Computation). Input (c1, c2) and
(d1, d2), output

Mul := (Mul1,Mul2,Mul3) = (c1d1, c2d1 + c1d2, c2d2) ∈ Rq × Rq × Rq.

Step 3 (Decrypt-then-Decode). Input Mul = (Mul1,Mul2,Mul3), output
AB =

(
〈A(r)

i , B
(c)
j 〉

)

m×m
as follows:

DecM(sk,Mul) := Mul1S
2 + Mul2S + Mul3 mod q mod p

= w0 + w1x + ... + wn−1x
n−1 ∈ Rp,

then set 〈A(r)
i , B

(c)
j 〉 = w(i−1)m+(j−1)m2 ∈ Zp, for i, j = 1, 2, ...,m.

Therefore, the DMY secure MMC under Packing-2 method requires two
encryption operations for each matrix and one decryption operation for each
MMC. In [2], Dung et al. only showed how to apply the method to compute the
multiplication of two square matrices.

3 Our Secure MMC Based on the WHAP Secure Inner
Product from a Ring-LWE-Based PHE Scheme

In this section, by combining and extending the WHAP secure inner product [6]
recalled in Sect. 2.2 and the DMY packing-2 approach [2] recalled in Sect. 2.3,
we propose a secure MMC from Ring-LWE-based secure inner product.

Here, we point out that our encoding method is not a trivial combination of
existing techniques. The shift and transpose properties of encrypted data that
we introduce and prove in Lemmas 1 and 2 (Sect. 3.1) are novel, which act as
the key to realize secure MMC under one decryption. Indeed, thanks to these
properties, our one-pack-encoding method works as described in Theorem 2 and
Corollary 1–2 (Sect. 3.2). After that, we present our secure MMC step by step
and prove the correctness (Sect. 3.3).

3.1 Shifting Under Encrypted Form and Transpose Properties on R
Our MMC is constructed on the LNV scheme from polynomial ring R =
Z[x]/(xn + 1) (recalled in Fig. 2), which supposes the shift and transpose prop-
erties under encrypted form. We summarize and prove the properties below.

100 L. Wang et al.

Lemma 1 (Shifting). Given Enc(m) = (c1, c2) ∈ Rq, a ciphertext of message
m ∈ Rp under LNV scheme (Fig. 2). Then

xαEnc(m) = Enc(xαm),

for integer α, 1 ≤ α ≤ n − 1.

Proof. Since (c1, c2) = (e1a + pe2, e1P + pe3 + m), we have

xα(c1, c2) = (xα(e1a + pe2), xα(e1P + pe3 + m))
= ((xαe1)a + p(xαe2), (xαe1)P + p(xαe3) + (xαm))
= (e′

1a + pe′
2, e

′
1P + pe′

3 + (xαm)),

where e′
i are elements in Rq with Gaussian coefficients, because they are with

coefficients shifted from that of ei
g← Z(0,s2) (i = 1, 2, 3). In details, assume

ei = eio + ei1x + ... + ei,n−1x
n−1, then for i = 1, 2, 3, we have

e′
i = xαei = eiox

α + ei1x
α+1 + ... + ei,n−1x

α+n−1

= −ei,n−α − ei,n−α+1x − ... − ei,n−1x
α−1 + eiox

α + ... + ei,n−α−1x
n−1

= e′
io + e′

i1x + ... + e′
i,α−1x

α−1 + e′
i,αxα + ... + e′

i,n−1x
n−1,

then e′
ij = −ei,j+(n−α) when j = 0, ..., α−1, and e′

ij = ei,j−α when j = α, ..., n−
1, i.e., the coefficients of e′

i are ± the coefficients of ei that are selected from
g← Z(0,s2). So, the coefficients of e′

i are also from g← Z(0,s2). Therefore,

xαEnc(m) = Enc(xαm),

ending the proof. ��
Lemma 2 (Properties of Element Transpose). For any element u, v ∈
R = Z[x]/(xn + 1), we have

(P-1) (xαu)(t) = −xn−αu(t), where 1 ≤ α ≤ n − 1.
(P-2) (uv)(t) = u(t)v(t).

Proof. Since xn = −1, we have

xαu = −un−α−un−α+1x − ... − un−1x
α−1+u0x

α+u1x
α+1 + ... + un−α−1x

n−1

over R. Then, the transpose element is

(xαu)(t) = un−αxn + un−α+1x
n−1 + ... + un−1x

n−(α−1) − u0x
n−α − u1x

n−(α+1)

− ... − un−α−1x
= −xn−αxα(−u0x

n−α − u1x
n−(α+1) − ... − un−α−1x + un−αxn

+un−α+1x
n−1 + ... + un−1x

n−(α−1))
= −xn−α(−u0x

n − u1x
n−1 − ... − un−α−1x

α+1 − un−αxα

−un−α+1x
α−1 − ... − un−1x)

= −xn−αu(t).

A New Secure Matrix Multiplication from Ring-LWE 101

Therefore, (P-1) holds. Furthermore, since

uv =

(
n−1∑

i=0

uix
i

)⎛

⎝
n−1∑

j=0

vjx
j

⎞

⎠

=
n−1∑

i,j=0

uivjx
i+j =

n−1∑

i+j=0

uivjx
i+j −

2n−2∑

i+j=n

uivjx
i+j−n,

we have

(uv)(t) =

⎛

⎝
n−1∑

i+j=0

uivjx
i+j

⎞

⎠
(t)

−
⎛

⎝
2n−2∑

i+j=n

uivjx
i+j−n

⎞

⎠
(t)

= −
n−1∑

i+j=0

uivjx
n−(i+j) +

2n−2∑

i+j=n

uivjx
2n−(i+j) =

2n−2∑

i+j=0

uivjx
n−ixn−j

=

(
n−1∑

i=0

uix
n−i

)⎛

⎝
n−1∑

j=0

vjx
n−j

⎞

⎠ = u(t)v(t),

so that (P-2) holds and the proof is complete. ��

3.2 Our New Packing Method for Secure MMC

In this subsection, we present our one-pack-encoding method for secure MMC,
and show that it is useful not only for square matrices but also for rectangular
ones. For any m × k matrix A and k × l matrix B, AB can be computed. Let
β = max{m, k, l}, and assume β3 ≤ n/4 holds in the following context.

Notation List-3.

Variant vector: X = (1, x, ..., xβ−1)T .
Coefficient vector: Vec(·) denotes the coefficient vector of an element of R, e.g.,

Vec(u) = (u0, u1, ..., un−1) for u = u0 + u1x + ... + un−1x
n−1.

For a square matrix M with dimension size of β × β, different from the DMY
approach, column vectors are also encoded by using variant vector X but not Y
as follows:

M̃ [rows](x) = (M
(r)
1 + ... + x(i−1)βM

(r)
i + ... + x(β−1)βM

(r)
β)X,

M̃ [columns](x) = (x2×β2−βM
(c)
1 + ... + x2jβ2−βM

(c)
j + ... + x2β×β2−βM

(c)
β)X.

(5)

Encode matrix M by embedding all row vectors and column vectors of matrix
M into one element that denoted by

M̂(x) := M̃ [rows](x) + M̃ [columns](x)
= (M (r)

1 + xβM
(r)
2 + ... + x(β−1)βM

(r)
β)X

+(x2×β2−βM
(c)
1 + x4×β2−βM

(c)
2 + ... + x2β×β2−βM

(c)
β)X.

(6)

102 L. Wang et al.

Theorem 2. For given two square matrices A and B with the same size of
β × β, they are encoded into elements of polynomial ring R = Z[x]/(xn + 1)
using the method shown in Eq. (6), then both AB =

(
〈A(r)

i , B
(c)
j 〉

)

β×β
and BA =

(
〈B(r)

i , A
(c)
j 〉

)

β×β
can be obtained by computing coefficient vector inner products

of shifted Â(x) and B̂(x) when 4β3 ≤ n. In detail,

〈Vec(x2jβ2−βÂ(x)),Vec(x(i−1)βB̂(x))〉 = 〈A(r)
i , B

(c)
j 〉,

〈Vec(x2jβ2−βB̂(x)),Vec(x(i−1)βÂ(x))〉 = 〈B(r)
i , A

(c)
j 〉,

for i, j = 1, ..., β.

The proof of correctness is described in Appendix A. Furthermore, we show
that this encoding method can be extended to calculate multiplication for two
rectangular matrices1 in the following Corollary 1 and 2.

Corollary 1. For given matrix A with size of m × k and matrix B with size
of k × l, let β = max{m, k, l}. When 4β3 ≤ n, they are encoded into elements
of polynomial ring R = Z[x]/(xn + 1) using the method shown in Eq. (6), then
AB =

(
〈A(r)

i , B
(c)
j 〉

)

m×l
can be obtained by computing coefficient vector inner

products of shifted Â(x) and B̂(x). In detail,

〈Vec(x2jβ2−βÂ(x)),Vec(x(i−1)βB̂(x))〉 = 〈A(r)
i , B

(c)
j 〉,

for i = 1, ...,m and j = 1, ..., l.

Example. Given 2×4 matrix A and 4×3 matrix B, to compute multiplication
matrix M = AB as follows:

A =
[

a11 a12 a13 a14

a21 a22 a23 a24

]
, B =

⎡

⎢⎢⎣

b11 b12 b13
b21 b22 b23
b31 b32 b33
b41 b42 b43

⎤

⎥⎥⎦ → AB = M :=
[

m11 m12 m13

m21 m22 m23

]
.

According to Eq. (6), where β = 4, we have

Â(x) = a11 + a12x + a13x
2 + a14x

3 + a21x
4 + a22x

5 + a23x
6 + a24x

7 + a11x
28

+a21x
29 + a12x

60 + a22x
61 + a13x

92 + a23x
93 + a14x

124 + a24x
125,

B̂(x) = b11 + b12x + b13x
2 + b21x

4 + b22x
5 + b23x

6 + b31x
8 + b32x

9 + b33x
10

+b41x
12 + b42x

13 + b43x
14 + b11x

28 + b21x
29 + b31x

30 + b41x
31 + b12x

60

+b22x
61 + b32x

62 + b42x
63 + b13x

92 + b23x
93 + b33x

94 + b43x
95.

1 When encode a rectangular matrix, add zero terms to last rows (or/and columns) if
the row (or/and column) number is smaller than β, e.g., m < k = β,

Ã[rows](x) = A
(r)
1 X + ... + x(i−1)βA

(r)
i X + ... + x(m−1)βA

(r)
m X

Ã[columns](x) = A
(c)
1 X ′ + ... + x(j−1)β2

A
(c)
j X ′ + ... + x(β−1)β2

A
(c)
β X ′,

where X ′ = (1, x, ..., xm−1)T .

A New Secure Matrix Multiplication from Ring-LWE 103

It can be easily checked that

mij = 〈Vec(x2jβ2−βÂ(x)),Vec(x(i−1)βB̂(x))〉 (i = 1, 2; j = 1, 2, 3).

For example, when i = 2, j = 1, we have

x28Â(x)
= a11x

28 + a12x
29 + a13x

30 + a14x
31 + a21x

32 + a22x
33 + a23x

34 + a24x
35

+a11x
56 + a21x

57 + a12x
88 + a22x

89 + a13x
120 + a23x

121 + a14x
152 + a24x

153,

x4B̂(x)
= b11x

4 + b12x
5 + b13x

6 + b21x
8 + b22x

8 + b23x
10 + b31x

12 + b32x
13

+b33x
14 + b41x

16 + b42x
17 + b43x

18 + b11x
32 + b21x

33 + b31x
34 + b41x

35

+b12x
64 + b22x

65 + b32x
66 + b42x

67 + b13x
96 + b23x

97 + b33x
98 + b43x

99.

Therefore,

〈Vec(x28Â(x)),Vec(x4B̂(x))〉 = 〈(a21, a22, a23, a24), (b11, b21, b31, b41)〉 = m21.

Corollary 2. For given matrix A with size of m × k and matrix B with size
of k × m, let β = max{m, k}. When 4β3 ≤ n, they are encoded into elements
of polynomial ring R = Z[x]/(xn + 1) using the method shown in Eq. (6), then
both AB =

(
〈A(r)

i , B
(c)
j 〉

)

m×m
and BA =

(
〈B(r)

i , A
(c)
j 〉

)

k×k
can be obtained

by computing coefficient vector inner products of shifted Â(x) and B̂(x) when
4β3 ≤ n. In detail,

〈Vec(x2jβ2−βÂ(x)),Vec(x(i−1)βB̂(x))〉 = 〈A(r)
i , B

(c)
j 〉,

for i, j = 1, ...,m; and

〈Vec(x2jβ2−βB̂(x)),Vec(x(i−1)βÂ(x))〉 = 〈B(r)
i , A

(c)
j 〉,

for i, j = 1, ..., k.

3.3 Our Secure MMC

Using the one-pack-encoding method proposed in Sect. 3.2 and the WHAP secure
inner product recalled in Sect. 2.2, we construct a new secure MMC scheme based
on the LNV Ring-LWE based PHE scheme (see Fig. 2) in this subsection. We
describe our secure MMC on two rectangular matrices2 step by step below:

Step 1 (Encode-then-Encrypt). Input matrices A ∈ Z
m×k
p and B ∈ Z

k×l
p ,

let β = max{m, k, l} that satisfies β3 ≤ n/4, output ciphertexts (c1, c2) and

2 We show the MMC AB of A ∈ Z
m×k
p and B ∈ Z

k×l
p for flexible m, k, l under

Corollary 1 here, for example. The MMC AB and BA under the cases of m = k = l
(Theorem 2) and m = l �= k (Corollary 2) can be similarly done.

104 L. Wang et al.

(d1, d2) of their corresponding encoded elements Â(x) and B̂(x) from Eq. (6),
respectively.

Enc(pk, Â(x)) = (c1, c2), Enc(pk, B̂(x)) = (d1, d2) ∈ Rq × Rq,

where Enc is encryption algorithm defined in Fig. 2.

Step 2 (WHAP Secure Inner Product Computation). Input (c1, c2) and
(d1, d2), run InnerP and output ip := (W1,W21,W22, ξ), where W1,W21,W22 ∈
Rq and ξ = (ξij)m×l ∈ Z

m×l
q as follows:

W1 = c1d
(t)
1 , W21 = c

(t)
1 d2, W22 = d

(t)
1 c2 mod q ∈ Rq,

ξi,j = x2jβ2−iβc2d
(t)
2 mod q mod x ∈ Zq (i = 1, ...,m; j = 1, ..., l).

Step 3 (Decrypt-then-Decode). Input ip, output AB =
(
〈A(r)

i , B
(c)
j 〉

)

m×l

as follows:

DecIP∗(sk, ip)

=
(
W1S

∗,W21S
(t),W22S

(t)
)

mod q =

(
n−1∑

k=0

wkxk,
n−1∑

k=0

ukxk,
n−1∑

k=0

vkxk

)
,

where S(t) and S∗ are the same with that defined in Sect. 2.2. Then,

〈A(r)
i , B

(c)
j 〉 = −wn−(2jβ2−iβ) + u2jβ2−iβ − vn−(2jβ2−iβ) + ξij mod q mod p,

for i = 1, 2, ...,m; j = 1, 2, ..., l.

Correctness. We prove the correctness of our secure MMC below

Proof. First, for given Enc(pk, Â(x)) = (c1, c2), Enc(pk, B̂(x)) = (d1, d2), accord-
ing to Lemma 1, we have

ci,j := (x2jβ2−βc1, x
2jβ2−βc2) = Enc(pk, x2jβ2−βÂ(x)),

c′
i,j := (x(i−1)βd1, x(i−1)βd2) = Enc(pk, x(i−1)βB̂(x)).

Second, for i = 1, 2, ...,m; j = 1, 2, ..., l, according to Corollary 1,

〈A(r)
i , B

(c)
j 〉 = 〈Vec(x2jβ2−βÂ(x)),Vec(x(i−1)βB̂(x))〉.

Next, let ip(i,j) := (W (i,j)
1 ,W

(i,j)
2 , ξ(i,j)) = InnerP(ci,j , c

′
i,j), where InnerP is

the inner product homomorphic computation algorithm defined in the WHAP
secure inner product in Sect. 2.2. According to Lemma 2, we have

A New Secure Matrix Multiplication from Ring-LWE 105

W
(i,j)
1 = (x2jβ2−βc1)(x(i−1)βd1)(t) mod q

= (x2jβ2−βc1)(−xn−(i−1)βd
(t)
1) mod q

= x2jβ2−iβW1 mod q ∈ Rq,

W
(i,j)
2 = (x2jβ2−βc1)(t)(x(i−1)βd2) + (x(i−1)βd1)(t)(x2jβ2−βc2) mod q

= −xn−(2jβ2−β)c
(t)
1 x(i−1)βd2 + (−xn−(i−1)β)d(t)1 x2jβ2−βc2 mod q

= −xn−(2jβ2−iβ)W21 + x2jβ2−iβW22 mod q ∈ Rq,

ξ(i,j) = (x(i−1)βd2)(t)(x2jβ2−βc2) mod q mod x

= (−xn−(i−1)βd
(t)
2 x2jβ2−βc2 mod q mod x

= x2jβ2−iβc2d
(t)
2 mod q mod x

= ξi,j ∈ Zq,

where W1 = c1d
(t)
1 ,W21 = c

(t)
1 d2,W22 = d

(t)
1 c2. Therefore,

〈A(r)
i , B

(c)
j 〉 = DecIP(sk, ip(i,j))

=(W (i,j)
1 S∗ + W

(i,j)
2 S(t) mod q mod x) + ξ(i,j) mod q mod p

=(x2jβ2−iβW1S
∗ − xn−(2jβ2−iβ)W21S

(t) + x2jβ2−iβW22S
(t) mod q mod x)

+ξi,j mod q mod p

=(x2jβ2−iβ

n−1∑

k=0

wkxk − xn−(2jβ2−iβ)
n−1∑

k=0

ukxk + x2jβ2−iβ
n−1∑

k=0

vkxk mod x)

+ξi,j mod q mod p
= − wn−(2jβ2−iβ) + u2jβ2−iβ − vn−(2jβ2−iβ) + ξi,j mod q mod p,

ending the proof. ��

Security Analysis. For a PHE scheme, indistinguishability under chosen plain-
text attack (IND-CPA) is the basic security requirement. The ciphertexts of the
LNV PHE scheme recalled in Fig. 2 is proved indistinguishable from random (see
Theorem 1), which implies the IND-CPA security under the Ring-LWE assump-
tion. In our proposed secure MMC, as the input of the homomorphic computa-
tion consists of only ciphertexts, the IND-CPA security will not be weakened.

4 Evaluation and Application

How to use our packing method to compute the multiplication of rectangular
matrices A = (aij)m×k and B = (bij)k×l under the condition β3 ≤ n/4 (β =
max{m, k, l}) is described in Sect. 3.2. Thanks to the one-pack-encoding method,
our scheme is more flexible than the existing packing method introduced by Dung
et al. [2] in the following cases (refer to Theorem 2, Corollary 1, 2 for detail):

– One type encoding for each matrix implies that the encoded ring element can
be used to compute secure MMC whenever the matrix acts as left or right
matrix of multiplication. I.e., for matrix A = (aij)m×k, B = (bij)k×l and
C = (cij)h×m, one packing element Â(x) can be used to compute both AB
and CA.

106 L. Wang et al.

– Especially, when m = l, i.e., A = (aij)m×k, B = (bij)k×m, then using packing
elements Â(x) and B̂(x), both AB and BA can be computed without extra
encoding.

Fig. 3. Outline of the difference between two packing methods.

Efficiency. Figure 3 shows the difference between the DMY packing-2 approach
and ours. If only computing multiplication AB of two β × β square matrices
A and B, our scheme is more efficient than the DMY approach on encryption
operations and saving storage space, but has no superior in other computation
operations. However, when both AB and BA need to be computed, our secure
MMC is more efficient than the DMY scheme not only for communication cost
but also for computation cost (refer to Table 1 for detail).

Accordingly, our work provides a trade-off to realize efficient secure MMC as
follows. For a fix parameter n,

• when β3 ≤ n/4 (β = max{m, k, l}), it is better to select our secure MMC to
save storage space and encryption operations. Especially, when both AB and
BA need to be computed.

In Table 1, we summarize the flexibilty3 and efficiency via comparing our packing
approach with the DMY approach (Packing-2) on the LNV scheme [5].

• when n/4 < m3 ≤ n, where m is dimension parameter of square matrix,
DMY secure MMC works well.

Though directly using our method is impractical when the dimension is large,
block matrices and parallel computation method can be used to improve the

3 The notation “−” in Table 1 means that no concrete packing method for rectangular
matrix multiplication was explicitly considered in [2]. However, the approach similar
to ours considering rectangular matrices may work for [2].

A New Secure Matrix Multiplication from Ring-LWE 107

Table 1. Comparison on the LNV Scheme [5].

DMY Secure MMC [2] Ours

Encoding method Two-pack method One-pack method

Appliable MMC (flexiblity): A = (aij)m×k, B = (bij)k×l

when m = k = l AB and BA AB and BA

when m = l �= k - AB and BA

when m �= l - AB

Computation cost (operations): β = max{m, k, l}
Encryption for each matrix (Step 1) 4 Rq-Mul 2 Rq-Mul

Outsourced computation (Step 2)

for AB 4 Rq-Mul 4 Rq-Mul

for AB and BA 8 Rq-Mul 4 Rq-Mul

Decryption for MMC (Step 3)

for AB 2 Rq-Mul 3 Rq-Mul

for AB and BA 4 Rq-Mul 3 Rq-Mul

Communication cost for Secure MMC (bits):

Ciphertexts for input 2 · 4n�log2 q� 4n�log2 q�
Output ciphertext

for AB 3n�log2 q� (3n + β2)�log2 q�
for AB and BA 6n�log2 q� (3n + 2β2)�log2 q�

n and q are system parameters; β = max{m, k, l} with the condition β3 ≤ n/4 holds;
In order to easily compare computation/communication costs, we assume both A and
B are β × β square matrices. Rq-Mul denotes multiplication operations over Rq.

efficiency of computation. For example, matrix U of size 10×30, V of size 30×20,
then U and V can be blocked into several 10 × 10 submatrices as follows:

U =
[
U11 U12 U13

]
, V =

⎡

⎣
V11 V12

V21 V22

V31 V32

⎤

⎦ → UV =
[∑3

j=1 U1jVj1,
∑3

j=1 U1jVj2

]

Using the parallel computational technique, six secure MMC U1jVjk for j =
1, 2, 3; k = 1, 2 can be operated efficiently with the computation cost similar to
one MMC of two 10 × 10 matrices. More details and the corresponding imple-
mentation will be included in the full version paper.

Application. Multiplication of rectangular matrices is useful on data compres-
sion. So, the secure MMC for rectangular matrices can be applied to secure data
compression as follows: Server has Enc(U), where matrix U is of size k × m
(k < m). Clients send Enc(xi) for 1 ≤ i ≤ N , where xi is of size m × 1. A data
analyst wants to securely outsource the computation yi = Uxi to the server.
Therefore, the data analyst instructs the server to compute:

CTi = Enc(U)Enc(xi)

108 L. Wang et al.

for all i and then decrypts CTi to get yi of size k × 1. For example, let m =
10, k = 2, then 10-dimension vectors can be compressed into 2-dimension vectors.
In other words, data size can be compressed from 10N → 2N (for instance,
10GB → 2GB) securely.

5 Concluding Remarks

In this study, we proposed a new secure matrix multiplication computation
scheme by combining and extending Dung et al.’s packing approaches and Wang
et al.’s secure inner product method. Similar to the existing scheme, ours is also
constructed on the Lauter et al.’s somewhat homomorphic encryption, which is
over polynomial ring R = Z[x]/(xn + 1). Our scheme is efficient and flexible in
the case that the biggest dimension of row and column vectors of two rectangu-
lar matrices is smaller than 0.63n1/3. For larger dimentions, block matrices and
parallel computation method can be used to improve the efficiency of computa-
tion.

Acknowledgement. This work was partially supported by JSPS KAKENHI Grant
Number JP15K00028 and JST CREST Number JPMJCR168A. We thank Takuya
Hayashi and Mishra Pradeep Kumar for the useful discussion. We also greatly appre-
ciate the anonymous reviewers for their thoughtful comments that helped improving
the manuscript.

A Correctness of Theorem 2

Apart from Notation list-1.∼3., the following list of notation should be useful:

Notation List-4. For a vector V = (v1, ..., vγ), pol(V) = v1x
δ1 + ... + vγxδγ , let

V [k] : = vk,
pol(V [k]) : = vkxδk ,

deg(pol(V [k])) : = δk, for k = 1, ..., γ. Moreover, let
deg(pol(V)) : = {δ1, ..., δk, ..., δγ} (δ1 < ... < δγ),

left− deg(pol(V)) : = δ1, and
right−deg(pol(V)) : = δγ .

When V is a row or column vector of a matrix of size β × β, γ = β.

Proof. According to Eqs. (6) and (5), we have

x2jβ2−βÂ(x) = x2jβ2−βÃ(x)[rows] + x2jβ2−βÃ(x)[columns]

A New Secure Matrix Multiplication from Ring-LWE 109

x2jβ2−βÃ(x)[rows]

= (a11x
2jβ2−β + ... + a1βx2jβ2−1) + ... + (ai−1,1x

2jβ2−(i−3)β

+... + ai−1,βx2jβ2+(i−2)β−1) + (ai,1x
2jβ2−(i−2)β + ... + ai,βx2jβ2+(i−1)β−1)

+(ai+1,1x
2jβ2−(i−1)β + ... + ai+1,βx2jβ2+iβ−1) + ... + (aβ,1x

2jβ2−(β−2)β

+... + aβ,βx2jβ2+β2−β−1)

= pol(A
(r)
1) + ... + pol(A

(r)
i−1) + pol(A

(r)
i) + pol(A

(r)
i+1) + ... + pol(A

(r)
β),

x2jβ2−βÃ(x)[columns]

= x2jβ2−β(x2×β2−βA
(c)
1 + ... + x2i×β2−βA

(c)
i + ... + x2β×β2−βA

(c)
β)X

= x2β2−β(a11x
2jβ2−β + ... + aβ,1x

2jβ2−1) + ... + x2iβ2−β(a1,ix
2jβ2−β

+... + aβ,ix
2jβ2−1) + ... + x2ββ2−β(a1,βx2jβ2−β + ... + aβ,βx2jβ2−1)

= pol(A
(c)
1) + ... + pol(A

(c)
i) + ... + pol(A

(c)
β);

and
x(i−1)βB̂(x) = x(i−1)βB̃(x)[rows] + x(i−1)βB̃(x)[columns]

x(i−1)βB̃(x)[rows]
= (b11x(i−1)β + ... + b1βxiβ−1) + (b21xiβ + ... + b2βx(i+1)β−1)

+... + (bβ,1x
(i−1)β+(β−1)β + ... + bβ,βx(i−1)β+β2−1)

= pol(B(r)
1) + pol(B(r)

2) + ... + pol(B(r)
β),

x(i−1)βB̃(x)[columns]
= x(i−1)β(x2×β2−βB

(c)
1 + ... + x2j×β2−βB

(c)
i + ... + x2β×β2−βB

(c)
β)X

= x2β2−β(b11x(i−1)β + ... + bβ1x
iβ−1) + x4β2−β(b12x(i−1)β + ... + bβ2x

iβ−1)
+... + x2jβ2−β(b1jx

(i−1)β + ... + bβjx
iβ−1) + x2(j+1)β2−β(b1,j+1x

(i−1)β

+... + bβ,j+1x
iβ−1) + ... + x2ββ2−β(b1βx(i−1)β + ... + bββxiβ−1)

= pol(B(c)
1) + pol(B(c)

2) + ... + pol(B(c)
j) + pol(B(c)

j+1) + ... + pol(B(c)
β).

We should prove for any i, j = 1, ..., β, pol(A(r)
i) in x2jβ2−βÂ(x) and pol(B(c)

j)
in x(i−1)βB̂(x) satisfy exactly

deg(pol(A(r)
i [k])) = deg(pol(B(c)

j [k])) (k = 1, ..., β).

Case 1: when j = 1, i.e., 〈Vec(x2β2−βÂ(x),Vec(x(i−1)βB̂(x))〉 = 〈Ai, B1〉. It can
be easily check that

left − deg(pol(A(r)
1)) < · · · < right − deg(pol(A(r)

i−1)) = 2β2 + (i − 2)β − 1 <
< 2β2 + (i − 2)β ≤

deg(pol(A(r)
i [k])) = deg(pol(B(c)

1 [k])) = 2β2 + (i − 2)β + (k − 1) for k = 1, ..., β

≤ 2β2 + (i − 1)β − 1 < 2β2 + (i − 1)β = left − deg(pol(A(r)
i+1))

< · · · < left − deg(pol(A(c)
1)) < right − deg(pol(A(c)

1)) < left − deg(pol(B(c)
2))

< · · · < deg(pol(B(c)
l)) < deg(pol(A(c)

l)) < · · · < deg(pol(B(c)
β)) < deg(pol(A(c)

β)).

110 L. Wang et al.

Case 2: when j ≥ 2, i.e., 〈Vec(x2jβ2−βÂ(x)),Vec(x(i−1)βB̂(x))〉 = 〈Ai, Bj〉. It
can be easily check that

right − deg(pol(B(c)
j−1)) < left − deg(pol(A(r)

1)) < · · · < right−deg(pol(A(r)
i−1))

= 2jβ2 + (i − 2)β − 1 < 2jβ2 + (i − 2)β ≤

deg(pol(A(r)
i [k])) = deg(pol(B(c)

j [k])) = 2jβ2 + (i − 2)β + (k − 1), for k = 1, ..., β

≤ 2jβ2 + (i − 1)β − 1 < 2jβ2 + (i − 1)β = left−deg(pol(A(r)
i+1))

< · · · < left−deg(pol(A(c)
1)) < right−deg(pol(A(c)

1)) < left−deg(pol(B(c)
j+1))

< · · · < deg(pol(B(c)
j+l−1)) < deg(pol(A(c)

l)) < · · · < deg(pol(B(c)
β))

< deg(pol(A(c)
β−j+1)) < ... < deg(pol(A(c)

β)).

Note. Since
right−deg(x2jβ2−βÂ(x)) = 4β3 − β − 1,

right−deg(x(i−1)βB̂(x)) = 2β3 + β2 − β − 1,

we have
max

i,j
{deg(x2jβ2−βÂ(x)), deg(x(i−1)βB̂(x))} < 4β3.

Therefore, our packing method works if

4β3 ≤ n.

The proof for correctness of the MMC AB is complete. Correctness of the MMC
BA can be proved similarly. ��

References

1. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE
and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 29

2. Dung, D.H., Mishra, P.K., Yasuda, M.: Efficient secure matrix multiplication over
LWE-based homomorphic encryption. Tatra Mt. Math. Publ. 67, 69–83 (2016)

3. Fu, S., Yu, Y., Xu, M.: A secure algorithm for outsourcing matrix multiplication
computation in the cloud. In: SCC 2017, pp. 27–33. ACM (2017)

4. Lei, X., Liao, X., Huang, T., Heriniaina, F.: Achieving security, robust cheating
resistance, and high-efficiency for outsourcing large matrix multiplication compu-
tation to a malicious cloud. Inf. Sci. 280, 205–217 (2014)

5. Lauter, K.E., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: CCSW 2011, pp. 113–124. ACM (2011)

6. Wang, L., Hayashi, T., Aono, Y., Phong, L.T.: A generic yet efficient method for
secure inner product. In: Yan, Z., Molva, R., Mazurczyk, W., Kantola, R. (eds.)
NSS 2017. LNCS, vol. 10394, pp. 217–232. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-64701-2 16

https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-642-22792-9_29
https://doi.org/10.1007/978-3-319-64701-2_16
https://doi.org/10.1007/978-3-319-64701-2_16

A New Secure Matrix Multiplication from Ring-LWE 111

7. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: New packing
method in somewhat homomorphic encryption and its applications. Secur. Com-
mun. Netw. 8(13), 2194–2213 (2015)

8. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practi-
cal packing method in somewhat homomorphic encryption. In: Garcia-Alfaro,
J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.)
DPM/SETOP -2013. LNCS, vol. 8247, pp. 34–50. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54568-9 3

9. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pat-
tern matching using somewhat homomorphic encryption. In: CCSW 2013, pp. 65–
76. ACM (2013)

10. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure statis-
tical analysis using RLWE-based homomorphic encryption. In: Foo, E., Stebila, D.
(eds.) ACISP 2015. LNCS, vol. 9144, pp. 471–487. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19962-7 27

https://doi.org/10.1007/978-3-642-54568-9_3
https://doi.org/10.1007/978-3-319-19962-7_27
https://doi.org/10.1007/978-3-319-19962-7_27

Predicate Encryption

Subset Predicate Encryption and Its
Applications

Jonathan Katz1, Matteo Maffei2, Giulio Malavolta3(B),
and Dominique Schröder3

1 University of Maryland, College Park, USA
2 TU Vienna, Vienna, Austria

3 Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
malavolta@cs.fau.de

Abstract. In this work we introduce the notion of Subset Predicate
Encryption, a form of attribute-based encryption (ABE) in which a mes-
sage is encrypted with respect to a set s′ and the resulting ciphertext
can be decrypted by a key that is associated with a set s if and only if
s ⊆ s′. We formally define our primitive and identify several applications.
We also propose two new constructions based on standard assumptions
in bilinear groups; the constructions have very efficient decryption algo-
rithms (consisting of one and two pairing computations, respectively) and
small keys: in both our schemes, private keys contain only two group ele-
ments. We prove selective security of our constructions without random
oracles. We demonstrate the usefulness of Subset Predicate Encryption
by describing several black-box transformations to more complex prim-
itives, such as identity-based encryption with wildcards and ciphertext-
policy ABE for DNF formulas over a small universe of attributes. All
of the resulting schemes are as efficient as the base Subset Predicate
Encryption scheme in terms of decryption and key generation.

1 Introduction

Attribute-Based Encryption (ABE), and more generically functional encryption,
introduces a new communication paradigm where the sender is allowed to spec-
ify a certain policy that the receiver must satisfy in order to read the data.
Since its introduction in [15], ABE has had a tremendous impact in the research
community and a plethora of different construction have been proposed, from
different assumption and with different security notions and functionalities. How-
ever, more effort is needed towards the adoption of ABE schemes on a large scale
as we only know a bunch of schemes that are efficient enough to be deployed
in practice. In this work we contribute to the understanding of efficiency trade-
offs in ABE (and weaker instances of functional encryption) by proposing a new
prospective for the construction of efficient schemes. With this aim in mind, we
introduce the notion of Subset Predicate Encryption (SPE). In a SPE scheme,
sets are defined over some finite universe of elements. A user with a secret key
for the set s can decrypt a ciphertext encrypted with the public key s′ if and
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 115–134, 2018.
https://doi.org/10.1007/978-3-030-02641-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_6

116 J. Katz et al.

only if s defines a subset of s′. A SPE scheme must enforce that an adversary
knowing the key for some set s cannot derive a valid key for any set different
from s (e.g., by stripping off part of s from its original key). In particular, users
must not be allowed to combine different keys in a meaningful manner (e.g.,
to decrypt any ciphertext that no user could have decrypted individually). A
perhaps more natural way to look at SPE is as a generalization of broadcast
encryption (BE): In this perspective BE can be seen as a special case of SPE
where secret keys are associated with singleton subsets, i.e., |s| = 1. SPE opens
the possibility to efficiently enforce expressive access control policies in several
interesting scenarios, as described below.

Concise Access Control. An important aspect of SPE is that it
enables access control over data in a very concise fashion. For instance,
let us consider a corporate setting, where all users of the system encrypt
all messages under the sets corresponding to the attributes of the fields
“{sender, receiver, department, current-date}”. Deriving keys in a hierarchical fash-
ion is straightforward, however our system allows us to assign keys for more
complex policies in a concise way. As an example, we can generate a key for
decrypting all messages exchanged on a certain day across multiple departments
by simply deriving a key for current-date. Furthermore, we can generate a key
to read all the messages sent from and to Alice with a single key for the set
corresponding to the element Alice.

Pattern Matching. Imagine a scenario where each email is encrypted under
the set corresponding to the words of the subject (assuming a subject of a
fixed length). We could disclose the content of all emails containing a certain
word (buy, as an example) in the subject by simply creating a key for the set
corresponding to the element buy. It is important to note that the position of
the word must not be necessarily known in advance, since the decryption is
successful if the set encoded in the key matches any subset of the set encoded
in the ciphertext.

A blackbox instantiation of SPE from Identity Based Encryption seems not
be easily achievable: One could express the same functionality by encrypting
the same message for the powerset of a given identity, but it is easy to see that
the size of the ciphertext would grow exponentially in the length of the iden-
tity. While we conjecture that SPE is strictly more expressive than IBE, it is
not hard to show that SPE is implied by any generic ABE system. However,
due to the simplicity of our primitive, there is hope to create a SPE scheme
in a more efficient manner, without resorting to generic ABE solutions. In par-
ticular, we are interested in maximizing the efficiency of the system for the
end-users, both in terms of computation and in terms of storage. An efficient
decryption algorithm is an important feature of any encryption scheme as it
allows computationally-constrained devices to be integrated in the system: Since
decryption is arguably the most recurrent operation (a user typically encrypts
once for multiple receivers), its running time is fundamental for the scalability
of the system. Additionally, small private keys are convenient as they are often
stored in tamper-resistant memory, which in general is very costly. This can be

Subset Predicate Encryption and Its Applications 117

especially critical in small devices, such as sensors, for which low cost solutions
are often required.

In this work, we focus on the improvement over these two aspects and we
present two cryptographic constructions for SPE with a very efficient decryption
algorithm and constant-size private keys. Perhaps surprisingly, our abstraction
turns out to subsume more complex primitives, such as ABE for DNF formulas
over a small universe of attributes, and we show how to generically instantiate
them from a SPE scheme. All of the resulting schemes inherit the efficiency of
our constructions.

1.1 Our Contributions

We formalize the notion of Subset Predicate Encryption and its security guar-
antees using standard game-based definitions. We provide two instantiations for
a SPE scheme from bilinear maps. Both of the schemes are proven secure in the
selective security model without random oracles. Our first construction offers an
extremely efficient decryption operation consisting of only a single pairing. More-
over, the secret keys are very compact as each key is composed of a group element
and an integer value. The security of this scheme relies on the hardness of the
Decisional q-Bilinear Diffie-Hellman Inversion assumption over bilinear groups.
Our second scheme has a slightly less efficient decryption procedure (where two
pairings are computed) but is based on the Decisional Bilinear Diffie-Hellman
assumption. In this scheme, each private key is as large as two group elements.

We describe several generic black-box transformations that turn SPE into
more expressive primitives. Our first transformation turns any SPE into an
Identity-Based Encryption scheme with wildcards (WIBE), whereas our sec-
ond transformation yields an ABE scheme for formulas in their DNF over for a
small universe of attributes. A nice feature of these transformations is that the
resulting schemes maintain the same decryption algorithm and key sizes of the
base construction. Beyond being an interesting primitive on its own right, we
believe that the conceptual simplicity of SPE might help in the future design of
efficient WIBE and ABE schemes.

We summarize a comparison of our instantiations against the most efficient
known WIBE schemes in Table 1: Our transformation yields the first scheme with
constant-size keys and the decryption of our first construction is roughly 50%
faster than the best instantiation of [1]. The performance of the ABE schemes
derived generically from our instantiations of SPE are shown in Table 2. With
respect to the best known instance of ABE in terms of key-size [11], both of our
instantiations cut the size of the keys down to 50%. Furthermore the decryption
algorithm of our first construction computes only one pairing and one modular
exponentiation (while the second computes two pairings). This is unprecedented
in the context of ABE, where in the fastest known scheme [16] the amount of
modular exponentiations is linear in the size of the universe of attributes. This
means that our schemes have an arbitrarily more efficient decryption, depending
on the size of the universe of attributes. For a fair comparison we shall men-

118 J. Katz et al.

tion that the aforementioned schemes are more expressive the ours and satisfy
stronger security notions.

Table 1. Comparison amongst the most efficient wildcard IBE schemes in the literature
in terms of size of the public parameters (|pk|), size of the decryption keys (|sk|), size
of the ciphertexts (|c|), number of operations required for decrypting (Decrypt), and
complexity assumptions. Here ω denotes the depth of the hierarchy, P denotes the
number of pairing operations and E the number of modular exponentiations.

WIBE scheme |pk| |sk| |c| Decrypt Assumption

BBG-WIBE [1] (ω + 4)G (ω + 2)G (ω + 2)G+ GT 2P ω-BDHI

Waters-WIBE [1] (n + 1)(ω + 3)G (ω + 1)G (n + 1)ωG+ GT (ω + 1)P DBDH

Construction 1 (2ω + 2)G1 + GT G2 + Zp (2ω + 1)G1 + GT 1P+1E q-BDHI

Construction 2 (2ω + 1)G1 + 2G2 G1 + G2 2ωG1 + G2 + GT 2P DBDH

Table 2. Comparison amongst the most efficient ABE schemes in the literature. Here
we additionally compare the schemes by the family of predicates supported by the
scheme (f), which can either be arbitrary Boolean formulas (Bool), zero inner-product
predicates (InnerProd), or formulas in their DNF. We denote the number of disjunctive
clauses in a DNF formula by γ.

ABE scheme |pk| |sk| |c| Decrypt Assumption f

CP-ABE [11] (2U + 3)G1 + GT (2U + 4)G2 (2U + 2)G2 + GT 4P+4UE SXDH Bool

ZIPE [11] (2U + 4)G1 + GT 4G2 (2U + 2)G2 + GT 4P+2UE SXDH InnerProd

KP-ABE [16] (U + 1)G + GT 2UG + U
2
G (U + 1)G + GT 2P+2UE U-BDHE Bool

Construction 1 (U + 2)G1 + GT G2 + Zp γ((U + 1)G1 + GT) 1P+1E q-BDHI DNF

Construction 2 (U + 1)G1 + 2G2 G1 + G2 γ(2UG1 + G2 + GT) 2P DBDH DNF

2 Related Work

Identity-Based Encryption was first proposed by Shamir [22], and the first effi-
cient realization was presented in the seminal work of Boneh and Franklin [8],
where they suggested the usage of bilinear maps for cryptographic purposes.
Canetti et al. [10] introduced the first construction that was provably secure
without random oracles: the authors defined a slightly weaker security model
(selective security) where the attacker is required to commit to the challenge
identity prior to the beginning of the experiment. In the same settings, Boneh
and Boyen [5] showed two efficient and practical schemes in the standard model.
The first scheme with full security was presented by Boneh and Boyen [6] and
later Waters [24] constructed a more efficient variant with an elegant security

Subset Predicate Encryption and Its Applications 119

proof. Several other schemes have followed, such as [9]. It is worth mention-
ing that the notion of IBE has also been extended to support a hierarchical
key-derivation structure [7,13].

Attribute-Based Encryption was envisioned by Sahai and Waters [21] as a
generalization of IBE, where keys and ciphertext are generated under sets of
attributes and it is possible to encode arbitrary access formulas. The concept
of ABE was refined by Goyal et al. in [15], where the authors proposed two
complementary notions: (i) Key-Policy ABE (KP-ABE) allows one to encode
sets of attributes in ciphertexts and embed access formulas in users’ secret keys,
whereas in (ii) Ciphertext Policy ABE (CP-ABE) formulas are attached to the
ciphertexts. Goyal et al. [15] described a selectively-secure construction of KP-
ABE that allows polices to be expressed by any monotonic formula. The first
efficient CP-ABE system was proposed by Bethencourt et al. [4] with a security
proof in the generic group model, while the first CP-ABE scheme in the standard
model is due to Waters [23]. In [14] Goyal et al. showed how to generically trans-
form a KP-ABE into a CP-ABE. Until recently, all of the known attribute-based
systems were proven secure only in the selective sense: a fully secure ABE was
first proposed by Lewko et al. [18], leveraging the dual system encryption tech-
nique. In light of this, several efficient and adaptively-secure ABE schemes were
recently proposed by Chen et al. [11] in the prime-order settings, constructed
on a novel framework based on clever predicate encodings. ABE was further
generalized as Predicate Encryption (PE) [17], where the ciphertext is required
to hide the set of attributes associated to it, in addition to the message.

An ABE scheme with an efficient decryption algorithm was introduced
by Attrapadung et al. [3], where the authors presented an ABE system with
constant-size ciphertexts. As a result, the decryption algorithm requires a con-
stant number of pairings. In this perspective, Hohenberger and Waters [16]
improved this result with a scheme that computes only two pairings in the
decryption algorithm. However, this comes at the cost of an increase in the
size of the secret keys. A revocation system with small keys was proposed by
Lewko et al. [19], along with an ABE system where the size of the secret keys
grows linearly in the number of attributes. Finally, it is worth mentioning that
Okamoto and Takashima provided an inner-product encryption scheme with
constant-size keys [20] (later improved in [11]). However, the generic transforma-
tion from inner-products to arbitrary Boolean formulas introduces an overhead
in the encoding of attributes exponential in the number of variables (see [17]),
making this primitive less appealing for practical purposes.

On a different line of research, Abdalla et al. [1] proposed the notion of
IBE with wildcards (WIBE): in this primitive, one is allowed to specify certain
positions of the identity associated to a ciphertext that are not required to match
with the secret key. A related notion was formalized and instantiated by Abdalla
et al. in [2], where one can include wildcards in the key generation phase. Both
of these works build on top of various Hierarchical IBE schemes and therefore
inherit the long size of the keys, typically linear in the depth of the hierarchy.

120 J. Katz et al.

Hence, this work improves the state-of-the-art by presenting the most efficient
constructions in terms of key size and decryption operations supporting complex
functionalities (beyond the simple IBE). We stress that in this work we consider
only the notion of selective security.

3 Preliminaries

We denote by λ ∈ N the security parameter and by poly(λ) any function that
is bounded by a polynomial in λ. We address any function that is negligible in
the security parameter with negl(λ). We say that an algorithm is ppt if it is
modelled as a probabilistic Turing machine whose running time is bounded by
some function poly(λ). Given a set S, we denote by x ← S the sampling of and
element uniformly at random in S. For an arbitrary pair of binary strings (a, b)
of the same length �, we write a ⊆ b if for all i ∈ {1, . . . , �} such that ai = 1 then
bi = 1. Given a binary string a, we say that an index i ∈ a if ai = 1.

3.1 Bilinear Maps

Let G1 and G2 be two cyclic groups of large prime order p. Let g1 ∈ G1 and
g2 ∈ G2 be respective generators of G1 and G2. Let e : G1 × G2 be a function
that maps pairs of elements ∈ (G1,G2) to elements of some cyclic group GT of
order p. Throughout the following sections we write all of the group operations
mutiplicatively, with identity elements denoted by 1. We further require that:

– The map e and all the group operations in G2, G2, and GT are efficiently
computable.

– The map e is non degenerate, i.e., e(g1, g2) �= 1.
– The map e is bilinear, i.e., ∀u ∈ G1,∀v ∈ G2,∀(a, b) ∈ Z

2
p, e(u

a, vb) =
e(u, v)ab.

3.2 Complexity Assumptions

In the following we formally define the Decisional q-Bilinear Diffie-Hellman Inver-
sion assumption and the Decisional Bilinear Diffie-Hellman assumption. Both of
the conjectures are widely used in pairing-based cryptographic constructions,
among the others we mention the work of Boneh and Boyen [5]. We must point
out that a sub-exponential attack is known for the former assumption [12], and
therefore the security parameter of any scheme based on such a conjecture must
be increased correspondingly. This, however, does not have a severe impact on
the efficiency of the constructions, as discussed in [5].

Definition 1 (q-Decision-BDHI Assumption). The q-Decision-BDHI
assumption holds in (G1,G2) if, for all ppt algorithms A, there exists a neg-
ligible function negl such that
∣
∣
∣
∣

Pr
[

1 ← A (

g1, g
x
1 , g2, g

x
2 , . . . , gxq

2 , e(g1, g2)1/x
)] −

Pr
[

1 ← A (

g1, g
x
1 , g2, g

x
2 , . . . , gxq

2 , T
)]

∣
∣
∣
∣
≤ negl(λ)

Subset Predicate Encryption and Its Applications 121

where the probability is taken over the random choice of the generators g1 ∈ G1

and g2 ∈ G2, the random choice of x ∈ Z
∗
p, the random choice of T ∈ GT , and

the random coins of A.

Definition 2 (DBDH Assumption). The DBDH assumption holds in
(G1,G2) if, for all ppt algorithms A, there exists a negligible function negl such
that

∣
∣
∣
∣

Pr
[

1 ← A (

g1, g
a
1 , gb

1, g
c
1, g2, g

a
2 , gb

2, g
c
2, e(g1, g2)

abc
)] −

Pr
[

1 ← A (

g1, g
a
1 , gb

1, g
c
1, g2, g

a
2 , gb

2, g
c
2, e(g1, g2)

z
)]

∣
∣
∣
∣
≤ negl(λ)

where the probability is taken over the random choice of the generators g1 ∈ G1

and g2 ∈ G2, the random choice of (a, b, c, z) ∈ (Z∗
p)

4, and the random coins
of A.

4 Subset Predicate Encryption

In this section, we formally introduce the concept of Subset Predicate
Encryption. Our definition is very close to the standard Identity-Based Encryp-
tion, except that we do not necessarily require the string associated with the
secret key to match the string embedded in the ciphertext. In fact, we allow
anybody who owns a key for a string that matches any subset of the string of
the ciphertext, to decrypt the latter.

Definition 3 (Subset Predicate Encryption). A Subset Predicate Encryp-
tion (SPE) scheme consists of four ppt algorithms Setup, KeyGen, Encrypt, and
Decrypt such that:

(pk,msk) ← Setup(1λ, 1n) The setup algorithm takes as input the security param-
eter 1λ and a length parameter n. It outputs public parameters pk and the master
secret key msk.

sks ← KeyGen(msk, pk, s) The key-derivation algorithm takes as input the master
secret key msk, public parameters pk, and a string s ∈ {0, 1}n. It outputs a
private key sks. We assume that s can be recovered from sks.

c ← Encrypt(pk,m, s) The encryption algorithm takes as input public parameters
pk, a message m, and a string s ∈ {0, 1}n. It outputs a ciphertext c. We assume
that s can be recovered from c.

m ← Decrypt(sks, pk, c) The decryption algorithm takes as input the private key
sks, the public parameters pk, and a ciphertext c. It outputs a message m or a
designated failure symbol ⊥.

Our notion of correctness for SPE is defined as follows:

Definition 4 (Correctness). Correctness requires that for all security param-
eters λ, all n, all (pk,msk) output by Setup(1λ, 1n), all s′ ∈ {0, 1}n, all s such
that s ⊆ s′, all sks output by KeyGen(msk, pk, s), all m, and all c output by
Encrypt(pk,m, s′), we have Decrypt(sks, pk, c) = m.

122 J. Katz et al.

Security. In the following, we define the security model for SPE schemes.
Informally, the adversary should be unable to learn anything about the content
of a ciphertext associated with some set s∗ even if it has obtained secret keys
corresponding to arbitrary sets s1, . . . , sq, so long as none of those satisfies si ⊆
s∗. Our definition corresponds to “selective” security, whereby the attacker is
required to commit to the s∗ that he wants to be challenged on before seeing the
public parameters of the scheme. Alternatively one could consider the stronger
“adaptive” notion, where the challenge set is revealed by the adversary only in
the challenge phase.
Consider the following experiment parameterized by λ:

1. The attacker specifies a universe of elements {0, 1}n (i.e., a bound n on the
size of the universe) and a challenge set s∗ ∈ {0, 1}n.

2. Setup(1λ, 1n) is run to obtain (pk,msk), and the adversary is given pk.
3. The adversary is allowed to query for private keys for arbitrary sets s1, . . . , sq

such that for all i ∈ {1, . . . q} it holds that si �⊆ s∗.
4. The adversary outputs a message pair (m0,m1) with |m0| = |m1|. A uni-

form bit b ∈ {0, 1} is chosen, and the ciphertext c ← Encrypt(pk,mb, s
∗) is

computed and given to the adversary.
5. The adversary may continue to request private keys for arbitrary sets, subject

to the same restriction as before.
6. Finally, the adversary outputs a guess b′ for b.

The advantage of the adversary in this experiment is defined as |Pr[b′ = b] − 1
2 |.

Definition 5 (Selective Security). A SPE scheme is selectively secure if the
advantage of any ppt adversary in the above experiment is negligible.

4.1 Generic Instantiations

Before presenting our schemes we first describe some potential approaches to
instantiate Subset Predicate Encryption and we show their drawbacks.

SPE from PE. One can instantiate SPE from any predicate encryption for
inner products as follows: Given a universe of n attributes, keys for a set s
are associated with the binary vector (s1, . . . , sn). A ciphertext for a set s′ is
encrypted under the vector (s′

1 ⊕ 1, . . . , s′
n ⊕ 1). The inner product of the two

vectors is 0 if and only if s ⊆ s′, therefore correctness and security follow. This
instantiation however, inherently generates ciphertexts and secret keys that grow
linearly with the size of the universe of elements.

SPE from WIBE. We observe that if we encode a set s in a ciphertext as a
string where the 1s are substituted with the wildcard symbol, then an IBE with
wildcards supports the same functionality as a SPE. Given the current state-of-
the-art for WIBE schemes, this approach suffers from the same drawbacks as
described above.

SPE from Fuzzy IBE. It is an easy exercise to instantiate SPE from the
Fuzzy Identity-Based Encryption of Sahai and Waters [21]: Setting the degree d

Subset Predicate Encryption and Its Applications 123

of the polynomial associated with the secret key to be equal to the number of
components of the key itself, one can ensure that the decryptor needs to use all of
the components of the secret key in order to decrypt a ciphertext. It follows that
a key associated with a string s can decrypt any ciphertext encrypted under any
s′ such that s ⊆ s′. However the decryption algorithm requires to interpolate the
polynomial in the exponent, which incurs in one pairing operation per element
associated with the secret key. Additionally, the size of the key grows linearly
with the number of elements associated with it, which is, in the average case,
linear in the security parameter. Our observation is that our primitive does
not require the flexibility of a Fuzzy IBE scheme, and therefore we can hope
to achieve better performance at the cost of sacrificing the malleability in the
manipulation of the secret keys.

5 Our Constructions

In this section we present our two instantiations from bilinear maps.

5.1 First Scheme

In the following we describe our first construction, inspired by second scheme
presented in [5]. The key difference is that our ciphertexts is composed by disjoint
components, each corresponding to an element of the public parameters. This
additional flexibility allows one to choose an arbitrary subset of elements in the
decryption phase.

Construction 1. Our first construction consists of the following algorithms.

Setup(1λ, 1n): To generate the SPE system given a bilinear group pair (G1,G2),
with respective generators (g1, g2), the setup algorithm selects a random gener-
ator h ∈ G2 and it computes v = e(g1, h). Then it samples a random x0 ∈ Z

∗
p

and a random vector (x1, . . . , xn) ∈ (Z∗
p)

n and sets X0 = gx0
1 and for all

i ∈ {1, . . . , n} : Xi = gxi
1 . The public parameters pk and the master secret

key are given by

pk = (g1,X0,X1, . . . , Xn, v) ∈ G
n+2
1 × GT

msk = (x0, x1, . . . , xn, h) ∈ (Z∗
p)

n+1 × G2

KeyGen(msk, pk, s): To generate the private key associated with the set s, the
key generation algorithm picks a random κ ∈ Zp such that

∑

i∈s xi + κx0 �= 0

mod p and computes K = h
1∑

i∈s xi+κx0 . The private key is defined as

sks = (κ,K) ∈ Zp × G2

c ← Encrypt(pk,m, s): The encryption of a message m ∈ GT for a given set s is
done by picking a random ρ ∈ Z

∗
p and returning the following ciphertext

c = (m · vρ,Xρ
0 ,∀i∈s : Xρ

i) ∈ GT × G
|s|+1
1

124 J. Katz et al.

m ← Decrypt(sks, pk, c): To decrypt a ciphertext c = (A,B,C1, . . . , C�), for some
positive integer � ≤ n, using the private key sks = (κ,K), return

A

e
(

Bκ
∏

i∈s Ci,K
)

To check that the system is consistent it is enough to observe that, for a valid
private key sks and a valid ciphertext encoded under a string s′ such that s ⊆ s′,
there always exists an element Ci for all i ∈ s, thus we have

A

e
(

Bκ
∏

i∈s Ci,K
) =

A

e
(

(Xρ
0)κg

ρ·∑i∈s xi

1 , h
1∑

i∈s xi+κx0

)

=
m · vρ

e
(

g
ρ·(κx0+

∑
i∈s xi)

1 , h
1∑

i∈s xi+κx0

)

=
m · e(g1, h)ρ

e(g1, h)ρ

= m

Here we elaborate the formal guarantees of our construction. The security proof
is non-trivial as our reduction is required to include in the challenge ciphertext
each group element separately (as opposed to their product), this arises subtle
issues in the generation of the secret key that we address in the following.

Theorem 1. Assume that the q-Decision-BDHI assumption holds in groups
(G1,G2) of size p. Then Construction 1 is a selectively-secure SPE scheme.

Proof. Assume towards contradiction that there exists an adversary A that has
advantage ε(λ) in attacking the SPE system, for some non negligible function
ε(λ). Then we can construct the following reduction R against the q-Decision-
BDHI assumption in (G1,G2).

The reduction R takes as input a tuple
(

g1, g
α
1 , g2, g

α
2 , . . . , gαq

2 , T
)

, where T

is either e(g1, g2)1/α or a random element of GT . The algorithm R interacts with
A in the selective-security game as follows:

Preparation: The reduction R samples a vector (w0, . . . , wq−1) ∈ (Z∗
p)

q, let

f(α) = w0

q−1
∏

j=1

(α + wj) =
q−1
∑

j=0

cjα
j

for some coefficients cj where c0 �= 0. The algorithm sets h =
∏q−1

j=1

(

gαj

2

)cj

=

g
f(α)
2 . The variable w0 ensures that h is a uniformly distributed generator of G2.

Note that we can assume that h �= 1 otherwise it must have been the case that
there exists a j ∈ {1 . . . q − 1} such that wj = −α and thus the algorithm can

Subset Predicate Encryption and Its Applications 125

efficiently output a solution to the decisional problem. We observe that for all
j ∈ {1 . . . q−1} it is easy for R to compute the tuple

(

wj , h
1

α+wj

)

by considering

f(α)
(α + wj)

=
q−2
∑

j=0

djα
j

and setting h
1

α+wj = g
f(α)

(α+wj)

2 =
∏q−2

j=0

(

gaj

2

)dj

. Additionally, the reduction R
computes

Th = T c0 ·
q−1
∏

j=1

e
(

g1, g
cjαj−1

2

)

It is easy to see that whenever T is uniformly distributed in GT then so is Th,
whereas whenever T = e(g1, g2)1/α then Th = e(g1, h)1/α.

Initialization: The experiment begins with A outputting bound n on the universe
of elements and a challenge set s∗ ∈ {0, 1}n.

Setup: To generate the public parameters, the algorithm R proceeds by uniformly
sampling for all i ∈ s∗ an element ai ∈ Z

∗
p and setting Xi = gxi

1 = g−ai·α
1 . For all

i ∈ s∗ the reduction picks a pair (ai, bi) ∈ (Z∗
p)

2 and sets Xi = gxi
1 = g

−ai·(α+bi)
1 .

The public parameters provided to the adversary are

(g1,X0 = gα
1 ,X1, . . . , Xn, v = e(g, h))

where h is defined as specified above. We remark that h is a uniformly distributed
element in GT . Since all of the other elements of the public parameters are
uniformly distributed over G1 to the view of the adversary, we can conclude that
the public parameters are correctly distributed according to our construction.

Phase 1: The adversary can issue up to q − 1 private key queries for some sets
sj under the constraint that for all j ∈ {1, . . . , q − 1} it holds that sj �⊆ s∗. The

algorithm R responds to each query j as follows: let
(

wj , h
1

α+wj

)

the j-th pair
constructed in the preparation phase, the reduction computes an r ∈ Zp that
satisfies (

r −
∑

i∈sj

ai

)

(α + wj) = −α
∑

i∈sj

ai −
∑

i∈sj∩s∗

aibi + αr

Expanding the equation we obtain

r =
∑

i∈sj

ai −
∑

i∈sj∩s∗ aibi

wj

Note that the unknown α cancels out of the equation and the algorithm can
evaluate the expression. The secret key for the set sj is set to be

sksj =
(

r, h
1

(α+wj)(r−∑

i∈sj ai)

)

.

126 J. Katz et al.

We note that the key is functional, as

h
1

(α+wj)(r−∑

i∈sj ai) = h
1

−α
∑

i∈sj ai−∑

i∈sj∩s∗ aibi+αr = h
1∑

i∈sj xi+αr

it allows the adversary to decrypt the ciphertexts that he is intended to. To argue
about the correct distribution of the key it is enough to observe that the value wj

is sampled uniformly at random from Z
∗
p, therefore whenever

∑

i∈sj∩s∗ aibi �= 0
then r is a uniformly distributed element of Zp. First we point out that the
set sj ∩ s∗ is never empty due to the non-triviality of the game, i.e., sj �⊆ s∗,
secondly we observe that the expression

∑

i∈sj∩s∗ aibi can return at most 2n

different results, due to the total number of elements’ combinations. Therefore
by choosing a large enough size of p, e.g. 22·n, we ensure that the probability
of

∑

i∈sj∩s∗ aibi returning 0 is negligible in the security parameter (recall that
for all i ∈ {1, . . . , n} it holds that ai and bi are elements uniformly distributed
in Z

∗
p). For completeness, we note that this procedure will fail to produce a

private key for an s ⊆ s∗ since in that case we obtain r =
∑

i∈sj ai and therefore

h
1

(α+wj)(r−∑

i∈sj ai) = h
1

(α+wj)·0 .

Challenge: The adversary outputs two messages (m0,m1) ∈ G
2
T . The reduction

R samples a random b ∈ {0, 1} and a random z ∈ Z
∗
p and hands over to the

attacker the challenge ciphertext

c∗ =
(

mb · T z
h , gz

1 ,∀i∈s∗ : g−aiz
1

)

Consider ρ = z/α. We shall note that whenever Th = e(g1, h)1/α then c∗ is a
valid ciphertext as

mb · T z
h = mb · e(g1, h)z/α = mb · vρ

gz
1 =

(

X
1/α
0

)z

= Xρ
0

∀i∈s∗ : g−aiz
1 =

(

X
1/α
i

)z

= Xρ
i

On the other hand, whenever Th is uniform in GT , then the message mb is hidden
from the view of the adversary in an information theoretic sense.

Phase 2: The adversary can issue additional private key queries for a total of at
most q − 1. The reduction answer as specified in Phase 1.

Guess: The adversary outputs a guess b′ and the reduction returns b = b′ to the
challenger.

As argued above, when the input tuple contains a T = (g1, g2)1/α, then the
view of the adversary perfectly resembles the inputs that he is expecting in
the standard experiment for SPE security. It follows that the advantage of the
adversary is, as assumed, greater than some non negligible ε(λ). On the other
hand, when the input tuple contains a T uniformly distributed in GT , then the
view of the adversary contains no information about the secret bit b. Thus in
this case A cannot do better than guessing. It follows that

Subset Predicate Encryption and Its Applications 127

∣
∣
∣
∣

Pr
[

1 ← R (

g1, g
x
1 , g2, g

x
2 , . . . , gxq

2 , e(g1, g2)1/x
)]−

Pr
[

1 ← R (

g1, g
x
1 , g2, g

x
2 , . . . , gxq

2 , T
)]

∣
∣
∣
∣
≥

|1/2 + ε(λ) − 1/2| = ε(λ)

This represents a contradiction to the q-Decision-BDHI assumption and it con-
cludes our proof. �

5.2 Second Scheme

Our second scheme can be seen as a descendant of the celebrated IBE of
Waters [24]. On a very high-level, our main observation is that the scheme satis-
fies our notion of security if the group elements of the ciphertext are not multi-
plied together. This change, together with our different notion of security, forces
us to develop a different proof strategy.

Construction 2. Our second construction consists of the following algorithms.

Setup(1λ, 1n): To generate the SPE system given a bilinear group pair (G1,G2)
with respective generators (g1, g2), the setup algorithm selects a random α ∈ Z

∗
p

and sets h = gα
2 . Then it samples a random vector (x1, . . . , xn) ∈ (Z∗

p)
n and sets

for all i ∈ {1, . . . , n} : Xi = gxi
1 . The public parameters pk and the master secret

key msk are given by

pk = (g1,X1, . . . , Xn, g2, h) ∈ G
n+1
1 × G

2
2

msk = gα
1 ∈ G1

KeyGen(msk, pk, s): To generate the private key associated with the set s, the
key generation algorithm picks a random r ∈ Zp and defines the private key as

sks =

(

gα
1

(
∏

i∈s

Xi

)r

, gr
2

)

∈ G1 × G2

c ← Encrypt(pk,m, s): The encryption of a message m ∈ GT for a given set s is
done by picking a random ρ ∈ Z

∗
p and returning the following ciphertext

c = (m · e(g1, h)ρ, gρ
2 ,∀i∈s : Xρ

i) ∈ GT × G2 × G
|s|
1

m ← Decrypt(sks, pk, c): To decrypt a ciphertext c = (A,B,C1, . . . , C�), for some
positive integer � ≤ n, using the private key sks = (K,R), return

A · e
(∏

i∈s Ci, R
)

e(K,B)

128 J. Katz et al.

To check that the system is correct we observe, as before, that

A · e
(∏

i∈s Ci, R
)

e(K,B)
= m · e(g1, h)ρ · e

(∏

i∈s Xρ
i , gr

2

)

e
(

gα
1

(∏

i∈s gxi
1

)r
, gρ

2

)

= m · e(g1, g2)αρ · e
(∏

i∈s Xρ
i , gr

2

)

e(gα
1 , gρ

2)e
((∏

i∈s gxi
1

)r
, gρ

2

)

= m · e(g1, g2)αρ · e
(∏

i∈s Xi, g2
)rρ

e(g1, g2)αρe
(∏

i∈s Xi, g2
)rρ

= m

The construction above is a secure SPE scheme if the DBDH assumption holds.

Theorem 2. Assume that the DBDH assumption holds in groups (G1,G2) of
size p. Then Construction 2 is a selectively-secure SPE scheme.

Proof. Assume towards contradiction that there exists an adversary A that
has advantage ε(λ) in attacking the SPE system, for some non negligible func-
tion ε(λ). Then we can construct the following reduction R against the DBDH
assumption in (G1,G2).

The reduction R takes as input a tuple (g1, A1, B1, C1, g2, A2, B2, C2, Z),
where Z is either e(g1, g2)abc or a random element of GT . The algorithm R
interacts with A in the selective-security game as follows:

Initialization: The experiment begins with A outputting bound n on the universe
of elements and a challenge set s∗ ∈ {0, 1}n.

Setup: To generate the public parameters, the algorithm R proceeds by uniformly
sampling for all i ∈ s∗ an pair of elements yi ∈ Z

∗
p and setting Xi = gyi

1 . For
all i ∈ s∗ the reduction picks a pair (yi, wi) ∈ (Z∗

p)
2 and sets Xi = Awi

1 gyi

1 =
ga·wi+yi

1 . The public parameters provided to the adversary are

(A1,X1, . . . , Xn, g2, B2)

Since all of the elements of the public parameters are uniformly distributed over
the corresponding group to the view of the adversary, we can conclude that the
public parameters are correctly distributed according to our construction.

Phase 1: The adversary can issue up to q − 1, for some polynomial bound q, pri-
vate key queries for some sets sj under the constraint that for all j ∈ {1, . . . , q−1}
it holds that sj �⊆ s∗. The algorithm R responds to each query j as follows: the
reduction samples an r ∈ Zp and sets

sksj =

⎛

⎝B

− ∑

i∈sj yi
∑

i∈sj wi

1 ·
(

∏

i∈sj

X ′
i

)r

, B

−1∑

i∈sj wi

2 · gr
2

⎞

⎠

We observe that

Subset Predicate Encryption and Its Applications 129

sksj =

⎛

⎝g
b· − ∑

i∈sj yi
∑

i∈sj wi
+r(∑

i∈sj awi+yi)
1 , g

r− b∑

i∈sj wi

2

⎞

⎠

=

⎛

⎝g
ab+b·

(− ∑

i∈sj yi
∑

i∈sj wi
−a

)

+r(∑
i∈sj awi+yi)

1 , g
r− b∑

i∈sj wi

2

⎞

⎠

=

(

g
ab− b∑

i∈sj wi
·(∑

i∈sj yi+a·∑i∈sj wi)+r(∑
i∈sj awi+yi)

1 , g
r− b∑

i∈sj wi

2

)

=

⎛

⎝g
ab+(∑

i∈sj awi+yi)
(

r− b∑

i∈sj wi

)

1 , g
r− b∑

i∈sj wi

2

⎞

⎠

=

⎛

⎜
⎝gab

1 ·
(

∏

i∈sj

Xi

)
(

r− b∑

i∈sj wi

)

, g
r− b∑

i∈sj wi

2

⎞

⎟
⎠

which gives us a functional and correctly distributed key, as r is uniformly dis-
tributed over Z

∗
p. For completeness we note that the procedure fails whenever

∑

i∈sj wi = 0, which happens only in case the queried set sj is a subset of the
challenge set s∗, except with negligible probability (for a large enough p).

Challenge: The adversary outputs two messages (m0,m1) ∈ G
2
T . The reduction

R samples a random b ∈ {0, 1} and hands over to the attacker the challenge
ciphertext

c∗ = (mb · Z,C2,∀i∈s∗ : Cyi

1)

We shall note that whenever Z = e(g1, h)abc then c∗ is a valid ciphertext as

mb · Z = mb · e(g1, g2)abc = mb · e(A1, B2)c

C2 = gc
2

∀i∈s∗ : Cyi

1 = (gyi

1)c = Xc
i

On the other hand, whenever Z is uniform in GT , then the message mb is
hidden from the view of the adversary in an information theoretic sense.

Phase 2: The adversary can issue additional private key queries for a total of at
most q − 1. The reduction answer as specified in Phase 1.

Guess: The adversary outputs a guess b′ and the reduction returns b = b′ to the
challenger.

As argued above, when the input tuple contains a Z = (g1, g2)abc, then the
view of the adversary perfectly resembles the inputs that he is expecting in
the standard experiment for SPE security. It follows that the advantage of the
adversary is, as assumed, greater than some non negligible ε(λ). On the other
hand, when the input tuple contains a Z uniformly distributed in GT , then the

130 J. Katz et al.

view of the adversary contains no information about the secret bit b. Thus in
this case A cannot do better than guessing. It follows that

∣
∣
∣
∣

Pr
[

1 ← A (

g1, g
a
1 , gb

1, g
c
1, g2, g

a
2 , gb

2, g
c
2, e(g1, g2)

abc
)] −

Pr
[

1 ← A (

g1, g
a
1 , gb

1, g
c
1, g2, g

a
2 , gb

2, g
c
2, e(g1, g2)

z
)]

∣
∣
∣
∣
≥

|1/2 + ε(λ) − 1/2| = ε(λ)

This represents a contradiction to the DBDH assumption and it concludes our
proof. �

Large Universe Construction. We note that we can extend our second
construction to support elements that were not considered in the setup phase,
assuming the existence of a random oracle. Assume that all parties have access
to the function H : {0, 1}∗ → G1, we can remove the group elements from the
public parameters and substitute them with the description of H. This extension
yields a scheme with constant-size public parameters for an exponentially-large
universe of elements.

6 Generic Transformations

In the following we describe some black-box transformations from SPE to well
known cryptographic primitives.

Identity Based Encryption. As an easy warm up we show how to deploy
SPE in order to achieve standard Identity Based Encryption (IBE). Although
not surprising, this will guide us through the subsequent transformations. We
first initialize the system by running the Setup algorithm with a length parameter
of 2 · n and the corresponding security parameter λ. The KeyGen algorithm, on
input ID ∈ {0, 1}n, generates s ∈ {0, 1}2·n by setting, for all i ∈ {1, . . . , 2 · n}:

si =

{

1 − IDi/2 if i = 0
ID(i+1)/2 if i = 1

(mod 2)

Then the standard KeyGen algorithm is executed on s and the corresponding
output is returned. The same modification is applied to the Encrypt algorithm.

To better visualize this transformation one can imagine the Setup algorithm
to return two arrays of elements (x0

1, . . . , x
0
n) and (x1

1, . . . , x
1
n). The identities ID

in the set {0, 1}n index the binary choice of each element xIDi
i between the two

arrays. It is important to note that all of the valid sets contain the same amount
of elements, i.e. n many, and that any two sets differ in at least one position.
This implies that no valid identity is a subset of any other and the security of
the IBE scheme follows from the security of the underlying SPE.

Identity Based Encryption with Wildcards. Here show how to modify
our primitive in a black-box fashion to handle wildcards in both the cipher-
texts and the keys: this allows us to specify certain positions of the identity

Subset Predicate Encryption and Its Applications 131

encoded in the ciphertext (in the key, respectively) that are not required to
match the key (the ciphertext, respectively) for the decryption to be successful.
IBE schemes that allow for wildcards in the ciphertexts are known in the lit-
erature as WIBE [1], whereas schemes that support wildcards in the keys are
called Wicked IBE [2]. We stress that, as opposed to the original proposals, our
generic transformation does not support a hierarchical structure of identities,
since it is not clear how to delegate keys in the general settings. In the following
we describe how to modify the Encrypt and the KeyGen algorithms to handle
wildcards. We denote the wildcard with the distinguished symbol ∗.

We first initialize the system by running the Setup algorithm with a param-
eter of 2 · n and the corresponding security parameter λ. The Encrypt algorithm
is modified to take as input ID ∈ {0, 1, ∗}n and generate s ∈ {0, 1}2·n as follows:

si =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

1 − IDi/2 if IDi/2 ∈ {0, 1} ∧ i = 0
ID(i+1)/2 if ID(i+1)/2 ∈ {0, 1} ∧ i = 1
1 if IDi/2 = ∗ ∧ i = 0
1 if ID(i+1)/2 = ∗ ∧ i = 1

(mod 2)

for all i ∈ {1, . . . , 2 · n}. As before, if we consider Setup to output two vectors
(x0

1, . . . , x
0
n) and (x1

1, . . . , x
1
n), then the identities ID ∈ {0, 1, ∗}n represent the

binary choice over the elements of the two vectors except when si = ∗, in which
case both x0

i and x1
i are included in the set. We observe that the decryption is

successful whenever one owns a key that encodes a subset of s, which matches
the policy enforced by the WIBE scheme. Therefore the security of the SPE
carries over.

We can encode wildcards in the decryption keys applying a similar modifica-
tion to the KeyGen algorithm, that differs in assigning si = 0, as opposed to 1,
whenever the corresponding bit of ID is ∗. We note that the two modifications
are not mutually exclusive and can coexist for a hybrid of the two approaches.

Ciphertext Policy Attribute Based Encryption. Perhaps the most
interesting feature of our primitive is that it can be used to obtain a Ciphertext-
Policy Attribute Based Encryption (CP-ABE) scheme for a small universe of
attributes. The transformation is as follows. Fix a universe of attributes U of
size n, we uniquely assign to each attribute a ∈ U an index i ∈ {1, . . . , n}. The
private key associated with a set of attributes A will be the key associated with
the set U\A. Specifically, we construct the private key for A by executing KeyGen
on input sA, where

sAi =

{

0 if ai ∈ A

1 if ai �∈ A

To encrypt a message m using a DNF formula C1 ∨ · · · ∨ Ct, where each Cj

represents a conjunction over some subset of the attributes, the sender processes
each of the t clauses independently. For the ith clause Cj , the sender encrypts
the message running Encrypt on input sCj , where

132 J. Katz et al.

s
Cj

i =

{

0 if ai ∈ Cj

1 if ai �∈ Cj

The algorithm returns the concatenation of the ciphertexts corresponding to
each clause. To decrypt, the receiver finds some clause Cj that is satisfied by his
attributes A. Note that this means Cj ⊆ A, or equivalently U\A ⊆ U\Cj . Thus,
the receiver will be able to decrypt the ciphertext corresponding to that clause
if and only if its key is associated with a set s such that s ⊆ sCj .

Acknowledgements. This research is based upon work supported by the German
research foundation (DFG) through the collaborative research center 1223, by the
German Federal Ministry of Education and Research (BMBF) through the project
PROMISE (16KIS0763), and by the state of Bavaria at the Nuremberg Campus of
Technology (NCT). NCT is a research cooperation between the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU) and the Technische Hochschule Nürnberg Georg
Simon Ohm (THN). We thank the anonymous reviewers for their valuable comments
that helped to improve our paper. We thank Vincenzo Iovino for the insightful discus-
sions on this work.

References

1. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 26

2. Abdalla, M., Kiltz, E., Neven, G.: Generalized key delegation for hierarchical
identity-based encryption. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS,
vol. 4734, pp. 139–154. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74835-9 10

3. Attrapadung, N., Libert, B., de Panafieu, E.: Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In: Catalano, D., Fazio, N., Gennaro, R.,
Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 90–108. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19379-8 6

4. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy, Oakland, CA, USA, pp.
321–334. IEEE Computer Society Press, 20–23 May 2007

5. Boneh, D., Boyen, X.: Efficient selective-ID secure identity-based encryption with-
out random oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-24676-3 14

6. Boneh, D., Boyen, X.: Secure identity based encryption without random oracles.
In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 443–459. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 27

7. Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with con-
stant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639 26

8. Boneh, D., Franklin, M.: Identity-based encryption from the Weil pairing. In: Kil-
ian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44647-8 13

https://doi.org/10.1007/11787006_26
https://doi.org/10.1007/978-3-540-74835-9_10
https://doi.org/10.1007/978-3-540-74835-9_10
https://doi.org/10.1007/978-3-642-19379-8_6
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-28628-8_27
https://doi.org/10.1007/11426639_26
https://doi.org/10.1007/3-540-44647-8_13

Subset Predicate Encryption and Its Applications 133

9. Boneh, D., Gentry, C., Hamburg, M.: Space-efficient identity based encryption
without pairings. In: 48th Annual Symposium on Foundations of Computer Sci-
ence, 20–23 October 2007, Providence, RI, USA, pp. 647–657. IEEE Computer
Society Press (2007)

10. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

11. Chen, J., Gay, R., Wee, H.: Improved dual system ABE in prime-order groups
via predicate encodings. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9057, pp. 595–624. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46803-6 20

12. Cheon, J.H.: Security analysis of the strong Diffie-Hellman problem. In: Vaude-
nay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 1–11. Springer, Heidelberg
(2006). https://doi.org/10.1007/11761679 1

13. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36178-2 34

14. Goyal, V., Jain, A., Pandey, O., Sahai, A.: Bounded ciphertext policy attribute
based encryption. In: Aceto, L., Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M.,
Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 579–591.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70583-3 47

15. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., De Capitani di
Vimercati, S. (eds.) 13th Conference on Computer and Communications Security,
ACM CCS 2006, 30 October- 3 November 2006, Alexandria, Virginia, USA, pp.
89–98. ACM Press (2006). Cryptology ePrint Archive Report 2006/309

16. Hohenberger, S., Waters, B.: Attribute-based encryption with fast decryption.
In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 162–179.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7 11

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

18. Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner prod-
uct encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp.
62–91. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5 4

19. Lewko, A.B., Sahai, A., Waters, B.: Revocation systems with very small private
keys. In: 2010 IEEE Symposium on Security and Privacy, 16–19 May 2010, Berke-
ley/Oakland, CA, USA, pp. 273–285. IEEE Computer Society Press (2010)

20. Okamoto, T., Takashima, K.: Achieving short ciphertexts or short secret-keys for
adaptively secure general inner-product encryption. In: Lin, D., Tsudik, G., Wang,
X. (eds.) CANS 2011. LNCS, vol. 7092, pp. 138–159. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25513-7 11

21. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

22. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg
(1985). https://doi.org/10.1007/3-540-39568-7 5

https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/978-3-662-46803-6_20
https://doi.org/10.1007/11761679_1
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-540-70583-3_47
https://doi.org/10.1007/978-3-642-36362-7_11
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-13190-5_4
https://doi.org/10.1007/978-3-642-25513-7_11
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/3-540-39568-7_5

134 J. Katz et al.

23. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

24. Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer,
R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg
(2005). https://doi.org/10.1007/11426639 7

https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/11426639_7

Multi-client Predicate-Only Encryption
for Conjunctive Equality Tests

Tim van de Kamp1(B), Andreas Peter1 , Maarten H. Everts1,2 ,
and Willem Jonker1

1 University of Twente, Enschede, The Netherlands
{t.r.vandekamp,a.peter,maarten.everts,w.jonker}@utwente.nl

2 TNO, Groningen, The Netherlands

Abstract. We propose the first multi-client predicate-only encryption
scheme capable of efficiently testing the equality of two encrypted vec-
tors. Our construction can be used for the privacy-preserving monitoring
of relations among multiple clients. Since both the clients’ data and the
predicates are encrypted, our system is suitable for situations in which
this information is considered sensitive. We prove our construction plain-
text and predicate private in the generic bilinear group model using ran-
dom oracles, and secure under chosen-plaintext attack with unbounded
corruptions under the symmetric external Diffie–Hellman assumption.
Additionally, we provide a proof-of-concept implementation that is capa-
ble of evaluating one thousand predicates defined over the inputs of ten
clients in less than a minute on commodity hardware.

Keywords: Multi-client functional encryption
Predicate-only encryption · Privacy-preserving multi-client monitoring

1 Introduction

Predicate encryption (pe) [17] is a special type of encryption that supports
the evaluation of functions on encrypted data. On a conceptual level, in pred-
icate encryption a ciphertext of a message m is associated with a descriptive
value x and a decryption key SKf with a predicate f . The decryption of a
ciphertext using a key SKf only succeeds if the predicate f(x) evaluates to
true. Special-purpose variants of this notion include identity-based encryp-
tion (ibe) [3], attributebased encryption (abe) [28], and hidden vector encryp-
tion (hve) [6]. Another variant of pe is predicate-only encryption [17,30]. In
predicate-only encryption, ciphertexts do not contain a message m, but merely
consist of an encryption of the descriptive value x. In this case, the decryption
algorithm returns the outcome of the predicate f evaluated on the predicate
subject x, that is, f(x).

The concept of pe can be generalized to functional encryption (fe) [5,25],
in which the decryption of a ciphertext using a key SKf for a (not neces-
sarily predicate) function f does not return the original plaintext m, but the
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 135–157, 2018.
https://doi.org/10.1007/978-3-030-02641-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_7&domain=pdf
http://orcid.org/0000-0003-2929-5001
http://orcid.org/0000-0002-5302-8985
https://doi.org/10.1007/978-3-030-02641-7_7

136 T. van de Kamp et al.

value f(m) instead. More recently, Goldwasser et al. [15] formally defined mul-
ticlient functional encryption (mc-fe). mc-fe is a type of secret key encryption
in which n distinct clients can individually encrypt a message mi using their
secret encryption key uski. Using a decryption key for an n-ary function f ,
the decryption algorithm takes as input the n ciphertexts of the clients and
returns f(m1, . . . ,mn). Although fe for generalized functionalities [14,15] is an
active field of research and of great theoretical interest, fe constructions for a
restricted family of functions (such as predicates) are often far more efficient than
fe schemes for arbitrary polynomially sized circuits. For example, most works
in the area of mc-fe for generalized functionalities rely on inefficient primitives
such as indistinguishability obfuscation or multilinear maps.

In this work, we propose the first multi-client predicate-only encryption
scheme. Our construction can evaluate an n-ary predicate f on the descrip-
tive values xi coming from n distinct clients. The type of predicates that we
can evaluate using our construction is restricted to conjunctive equality tests.
To put it simply, our multi-client predicate-only encryption (mc-poe) scheme
is capable of testing the equality of two encrypted vectors. One of these vec-
tors is determined by the decryption key, while the other vector is composed
of ciphertexts from several distinct clients. We also provide an extension to our
construction in which the decryption keys may contain wildcard components. A
wildcard component in the decryption key indicates that it does not matter what
the client corresponding to that vector component encrypts: any value matches
the wildcard. An attentive reader familiar with the concept of hve [6] will rec-
ognize the functional similarity between the two concepts. However, a crucial
difference in our construction is that the ciphertext vector is composed of the
ciphertexts from multiple clients, instead of being generated by a single party.
A further comparison of related work is discussed in Sect. 1.2.

Our multi-client predicate-only encryption construction uses pairing-based
cryptography and satisfies two distinct security notions. The first notion encom-
passes both the attribute-hiding [17] (also termed plaintext-privacy [30]) and
predicate-privacy [30] properties of predicate encryption. Informally, these prop-
erties guarantee that an adversary can neither learn the value x of a ciphertext,
nor learn the predicate from a given decryption key. Since we construct a multi-
client scheme, we choose to adapt the established mc-fe security requirement [15]
for our full security notion of multi-client predicate-only encryption. This full
security notion protects against an attacker that has oracle access to both the
key generation algorithm and the encryption algorithm. In the associated secu-
rity game, the adversary is additionally allowed to statically corrupt clients. We
prove our construction secure in the generic bilinear group model using ran-
dom oracles. We also propose the (intuitively weaker) chosen-plaintext security
notion, in which an attacker has only oracle access to the encryption algorithm,
but can instead corrupt an unbounded number of clients. We prove our construc-
tion secure under this second notion in the standard model using the symmetric
external Diffie–Hellman (sxdh) assumption.

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 137

Our construction is designed to be simple and fast. We have implemented
and analyzed our construction to evaluate whether it is efficient enough to run
in practice. In our proof-of-concept implementation, clients can encrypt their
values in about 2.6 ms, while decryption keys, depending on the number of vector
components, can be created in less than a second. The Test algorithm, used to
evaluate the predicate on the multiple inputs, scales linearly in the number of
inputs and requires only 0.10 s for the comparison of vectors of length 20.

1.1 Motivating Use Cases

Privacy-preserving monitoring over encrypted data is one of the main applica-
tions for multi-client predicate-only encryption. For example, consider the mon-
itoring of a system comprised of various independent subsystems. We want to
raise an alarm when a dangerous combination of events at the various subsys-
tems occurs. By centrally collecting status messages of the individual systems,
we can check for such situations. Such a central collection of status messages
additionally avoids the need for costly interactions between the various systems.
However, if these status messages are considered sensitive, the monitoring can-
not be done on the cleartext messages. Multi-client predicate-only encryption
overcomes this problem by allowing a monitor to evaluate an n-ary predicate
over multiple ciphertexts and raise an alarm when the predicate returns true.

A careful reader might realize that encryption of the status messages is not
a sufficient requirement. If the monitor can check arbitrary predicates, it can
as well recover the individual plaintext status messages1, making its encryption
useless. Therefore, we have to require that another party issues the decryption
keys to the monitor. Since we can consider the monitor to be a third party, it is
unlikely that it is allowed to learn the predicates, making a strong case for the
requirement of both plaintext privacy and predicate privacy.

The functionality of our construction is developed with the applications in the
critical infrastructure (ci) domain in mind. The benefits of information sharing
are widely acknowledged [27], but stakeholders still very reluctant in sharing
their information with other parties [12,23,33]. We give two concrete use cases.

– Detection of coordinated attacks. While a single failure of a system in ci may
occur occasionally, a sudden failure of multiple systems from distinct ci oper-
ators, could be an indication of a large scale cyberattack. By centrally moni-
toring the “failure”/“running” status messages of the ci operators, a warning
can be given to the national computer emergency response team whenever
a combination of systems fails, allowing further investigation of the failures.
Additionally, instead of sharing just binary messages to indicate whether a
system has failed, it is also helpful to share and monitor cyberalert levels.
These cyberalert levels from different clients are used to get an improved
situational overview [20].

1 For example, the monitor could create a decryption key for a predicate evaluation
of a single message, e.g., f(x1, . . . , xn) = true if and only if x1 = 0.

138 T. van de Kamp et al.

– Monitoring of dependencies among ci operators. There exist many depen-
dencies among various cis [21], making it possible for disruptions to easily
propagate from one infrastructure to another [11]. By timely reporting sta-
tus messages on supply, a central authority can determine whether supply
will meet demand and otherwise instruct parties to prepare their backup
resources. Similarly, the sharing of compliance status (e.g., whether they can
be met or not) can be used to take the right security measures at another
party [20].

1.2 Related Work

A multi-input functional encryption (mi-fe) [15] scheme is fe scheme that sup-
ports the computation of functions over multiple encrypted inputs. Examples of
special-purpose mi-fe include property-preserving encryption [26], such as for
ordering [4,10] or equality [35], and multi-input inner product encryption (mi-
ipe) [2]. The mi-ipe scheme by Abdalla et al. [2] is capable of computing the
inner product of two vectors, i.e.,the decryption algorithm returns a scalar. This
should not be confused with an inner-product predicate encryption scheme where
predicates (with a true/false result) can be evaluated by an inner product. A
private-key, multi-client fe (mc-fe) scheme [15,16] is a variant of mi-fe. There
are two key differences between the two notions. Firstly, mc-fe requires that the
ciphertexts for the function inputs are generated by individual distinct parties,
while in mi-fe it is allowed to have only a single encryptor for all the inputs.
Secondly, in mc-fe the ciphertexts are associated with a time-step [15] or iden-
tifier. Such an identifier is used to prevent mix-and-match attacks: decryption
only works when all ciphertexts are associated with the same identifier.

Although not recognized as such, several special-purpose mc-fe schemes have
already been proposed in literature. Shi et al. [31] propose a construction for the
privacy-preserving aggregation of time-series data. Their construction allows a
central party to compute and learn the sum over encrypted numbers, with-
out learning the individual numbers themselves. Decentralized multi-authority
attribute-based encryption (ma-abe) [19] can also be considered a form of mc-
fe. In ma-abe, several decryption keys, issued by different authorities and asso-
ciated with an identifier, need to be combined to decrypt a single ciphertext.
The similarity becomes apparent once we swap the roles of the ciphertext and
decryption keys.

Wildcards have been used in pe before by Abdalla et al. [1] in ibe and by
Boneh and Waters [6] in hve. These works differ from our work in several aspects.
Most importantly, our construction is a multi-client variant instead of single-
client. If we would apply a single-client construction in a multi-client setting, we
would leak the individual predicate results for each party. Secondly, we achieve
both plaintext privacy and predicate privacy, which is known to be impossible
to accomplish in the public-key setting [30] ([1,6] are in the public-key setting).
Finally, we look at predicate-only encryption, not at regular pe in which the
ciphertexts may also contain an encrypted payload message.

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 139

Numerous pe schemes are used for searchable encryption (se) [7]. However,
we see no great benefit in applying mc-poe as se scheme. mc-poe enables us to
compute a predicate over multiple inputs from several explicitly chosen clients. In
se, this would correspond to a search over documents where the query specifies
which keywords have to be set by which parties. This is also the reason why
existing multi-writer [7] schemes, do not consider searching over documents using
queries which, for example, specify that party p1 should have added keyword w1,
while party p2 should have added keyword w2.

2 Preliminaries

Throughout this paper, we use x
R← S to denote that x is chosen uniformly at

random from the finite set S. We denote the ith component of a vector v as vi.
For a set of indices I, we write vI for the subvector of v. Instead of consistently
using the vector notation, we use set notation when this is more convenient.

2.1 Primitives and Assumptions

Our construction uses asymmetric bilinear maps.

Definition 1 (Bilinear Map). Let G1, G2, and GT be cyclic multiplicative
groups of prime order p. The map e : G1 × G2 → GT is an asymmetric bilinear
map if the following two conditions hold.

– The map is bilinear; ∀g1 ∈ G1, g2 ∈ G2, a, b ∈ Zp : e(g a
1 , g b

2) = e(g1, g2)ab.
– The map is non-degenerate; generators g1 and g2 are chosen such that the

order of the element e(g1, g2) ∈ GT equals p, the order of group GT .

More specifically, we use a Type 3 pairing [13], where no efficiently com-
putable homomorphisms between the groups G1 and G2 can be found.

We use the function G(1κ) to generate the parameters for a Type 3 bilinear
group for the security parameter κ.

Additionally, we use a pseudorandom permutation (prp) over M ⊆ Zp.

Definition 2 (Pseudorandom Function). For key space K and message
space M define the function π : K×M → M. The function π is a pseudorandom
permutation (prp) if the output of π is indistinguishable from the output of a per-
mutation chosen uniformly at random from the set of all possible permutations
over M.

The security of our construction is based on the decisional Diffie–Hellman
(ddh) problem and the symmetric external Diffie–Hellman (sxdh) problem.

Assumption 1. The decisional Diffie–Hellman (ddh) assumption states that,
given (G, g ∈ G, ga, gb, Z) for uniformly at random chosen a and b, it is hard to
distinguish Z = gab from Z

R← G.

Assumption 2. Given the bilinear groups G1 and G2, the symmetric external
Diffie–Hellman (sxdh) assumption states that the ddh problem in both group G1

and group G2 is hard.

140 T. van de Kamp et al.

3 Multi-client Predicate-Only Encryption

A multi-client predicate-only encryption scheme is a collection of the following
four polynomial-time algorithms.

Setup(1κ, n). This algorithm defines the public parameters pp, a master secret
key msk, and the encryption keys uski for every client 1 ≤ i ≤ n. The algorithm
also defines the finite message space Mn and the predicate family F , which
predicates are efficiently computable on Mn.

Encrypt(uski, id, xi). A client i can encrypt a value xi ∈ M using its encryp-
tion key uski and an identifier id. Different clients can use the same identifier,
however, each client can only use an identifier at most once. The algorithm
returns a ciphertext ctid,i. We usually omit the index id when there is no ambi-
guity. Furthermore, we introduce the following simplification of notation for a
set of ciphertexts associated with the same id: For an ordered set S ⊆ {1, . . . , n}
of indices, we write the set of ciphertexts {Encrypt(uskj , id, xj) | j ∈ S } as
Encrypt(uskS , id,xS). If S = {1, . . . , n}, we simply write Encrypt(usk, id,x) or ctx .

GenToken(msk, f). The key generator can create a decryption key, termed token,
for predicate f ∈ F using the msk. The algorithm returns the token tkf .

Test(tkf , ctx). The Test algorithm requires a vector of ciphertexts ctx and a
token tkf as input. The algorithm outputs a Boolean value.

Definition 3 (Correctness). A multi-client predicate-only encryption scheme
is correct if Test(tkf , ctx) = f(x). Formally, we require for all n ∈ N, x ∈ Mn,
and f ∈ F ,

Pr

⎡
⎢⎣Test(ctx , tkf) �= f(x) :

(
pp,msk, {uski}

) ← Setup(1κ, n)

ctx ← Encrypt(usk, id,x)

tkf ← GenToken(msk, f)

⎤
⎥⎦

is negligible in the security parameter κ, where the probability is taken over the
coins of Setup,Encrypt, and GenToken.

Note that we do not impose any restriction on the output of Test if it operates
on messages encrypted under different identifiers.

3.1 Security

A commonly considered security game for private-key functional encryption is an
indistinguishability-based notion under which the adversary may query both the
Encrypt and the GenToken oracles [15,17,30]. Since our mc-poe is a special case
of mc-fe, we start from the security notion from Goldwasser et al. [15]. However,
they only consider the indistinguishability of plaintexts (plaintext privacy [17,
30]) and not of functions (function or predicate privacy [8,30]) in their security

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 141

definition. In the following full security notion, we combine the plaintext-privacy
and predicate-privacy notions, similarly to Shen et al. [30].

Because an evaluation of a predicate on a set of messages reveals some
information about the messages in relation to the predicate (and vice versa),
we cannot allow the adversary to query for all combinations of messages and
predicates. For example, an adversary can distinguish an encryption of mes-
sage x0 from an encryption of x1 if it has a token for a predicate f such that
f(x0) �= f(x1). Even if we require f(x0) = f(x1) for all predicates f that the
adversary queried, a similar situation can still appear. To see this, consider an
adversary corrupting client i so that it can encrypt any message mi as ith input.
This means that the adversary can also trivially distinguish the two messages if
there exists a value mi, such that if it replaces the ith input of x0 and x1 by mi

(resulting in inputs x′
0 and x′

1 respectively), the predicate has different outputs,
i.e., f(x′

0) �= f(x′
1). Likewise, we also have to require that the predicates f0

and f1 yield the same result on a queried input x, even if the adversary replaces
some of the corrupted clients’ inputs by another value.

In our security definition, we use the term static corruptions to indicate that
the adversary announces the corrupted clients at the beginning of the game and
cannot corrupt additional clients during the rest of the game. We let I be the
set of indices of the uncorrupted clients and, similarly, indicate the indices of the
corrupted clients by the set I. Recall that we use the notation xI to denote the
subvector of x containing only the components from the set I. We denote with
f(xI , ·) a predicate f with the pre-filled inputs xI .

Definition 4 (Full Security). A multi-client predicate-only encryption scheme
is adaptive full secure under static corruptions if every probabilistic polynomial
time adversary A has at most a negligible advantage in winning the following
game.

Initialization. The adversary A submits a set of indices I to the challenger. We
define the complement set I = {1, . . . , n} \ I.

Setup. The challenger runs Setup(1κ, n) to get the pp, msk, and {uski}1≤i≤n. It
gives the public parameters pp and corrupted clients’ keys { uski | i ∈ I } to the
adversary.

Query 1. The adversary A may query the challenger for ciphertexts or tokens.

– In case of a ciphertext query for (i, id, xi), the challenger returns ctid,i ←
Encrypt(uski, id, xi).

– In case of a token query for f , the challenger returns tkf ← GenToken(msk, f).

Challenge. The challenger picks a random bit b. The adversary can either request
a ciphertext challenge or a token challenge.

– In case of a ciphertext challenge, the adversary sends (id∗,x∗
0,I ,x

∗
1,I)

to the challenger. The challenger returns the challenge ChI ←
Encrypt(uskI , id

∗,x∗
b,I).

142 T. van de Kamp et al.

– In case of a token challenge, the adversary sends (f∗
0 , f∗

1) to the challenger.
The challenger returns the challenge Ch ← GenToken(msk, f∗

b).

Query 2. The adversary may query the challenger again, similar to Query 1.

Guess. The adversary outputs its guess b′ ∈ {0, 1} for the bit b.
We say that adversary A wins the game, if b′ = b and

– in case of a ciphertext challenge, A did not query for a ciphertext using iden-
tifier id∗ in any of the two query phases, nor query for a predicate f , such
that f(x∗

0,I , ·) �= f(x∗
1,I , ·);

– in case of a token challenge, A did not query for (i, id, xi), for uncorrupted
clients i ∈ I, such that it can combine these inputs xi for the same id, into a
vector xI , where f∗

0 (xI , ·) �= f∗
1 (xI , ·).

Note that in the above defined game, in case of a ciphertext challenge, the
challenger only returns challenge ciphertexts for the uncorrupted clients. The
adversary can still evaluate predicates on the received challenge by generating
the ciphertext values for the corrupted clients using their encryption keys.

It is important to realize that the challenger can decide whether the adver-
sary wins the game or not in polynomial time. This is possible because the
adversary A can only query for a polynomial number of ciphertexts and tokens.
Moreover, the challenger is able to efficiently check if f(xI , ·) = f ′(x′

I , ·) as
both n and Mn are finite and fixed by Setup(1κ, n).

Definition 5 (Selective Full Security). The definition of a selective full
secure under static corruptions multi-client predicate-only encryption scheme is
similar to the adaptive full security notion of Definition 4. The difference between
the two, is that in selective security game, the challenge request (i.e.,either
(id∗,x∗

0,I ,x
∗
1,I) or (f∗

0 , f∗
1)) is announced during Initialization.

As explained before, the full security definition actually defines two security
notions. We say that mc-poe scheme is adaptive (selective) plaintext private if no
adversary can win the adaptive (selective, respectively) full security game with
a ciphertext challenge. Similarly, poe scheme is adaptive (selective) predicate
private if no adversary can win the adaptive (selective, respectively) full security
game with a token challenge.

Chosen-Plaintext Security. The definition of full security is very strong as it
allows an adversary to query for both ciphertexts and tokens. This is similar to
the chosen-ciphertext attack (cca) security notion used in public-key cryptogra-
phy, where the adversary can query both the encryption and decryption2 oracle.
To accommodate for a different attacker model, we define a chosen-plaintext
security notion, where the adversary only has access to the encryption oracle
and is asked to distinguish between two ciphertexts. Such a notion is similar to

2 In mc-poe, an adversary can use a token and the public Test algorithm to learn more
about the encrypted plaintext.

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 143

chosenplaintext attack (cpa) security as defined in public-key cryptography and
is also related to the offline security notion of Lewi and Wu [18], in which an
attacker has only access to ciphertexts and not to decryption keys. To make our
notion stronger, we give the adversary access to all clients’ encryption keys (but
not to the internal randomness of the clients).

Definition 6 (Chosen-Plaintext Security). A multi-client predicate-only
encryption scheme is chosen-plaintext secure under unbounded corruptions if
any probabilistic polynomial time algorithm A has at most a negligible advantage
in winning the following game.

Setup. The challenger runs Setup(1κ, n) to get the pp, msk, and {uski}1≤i≤n. It
gives the public parameters pp and all clients’ keys {uski}1≤i≤n to the adversary.
Note that the adversary A can encrypt any message xi for identifier id using the
key uski by computing Encrypt(uski, id, xi).

Challenge. The adversary sends the challenge request (id∗,x∗
0,x

∗
1) to the chal-

lenger. The challenger picks a random bit b and returns Encrypt(usk, id∗,x∗
b) to

the adversary.

Guess. The adversary outputs its guess b′ ∈ {0, 1} for the bit b.
We say that adversary A wins the game if b′ = b.

Observe that in this game the adversary is given every client’s private key. This
security requirement is quite strong and corresponds to a following situation:
Even if an attacker compromises a client and steals its encryption keys, it remains
hard for the attacker to determine the plaintexts of the ciphertexts created before
and after the compromise.

4 Our Construction

We construct a multi-client predicate-only encryption scheme for the function-
ality of a conjunctive equality test. To test if n messages x1, . . . , xn, encrypted
by distinct clients, equal the values y1, . . . , yn, we evaluate the predicate

Match(x,y) =

{
true if

∧n
i=1(xi = yi),

false otherwise.

As discussed in Sect. 1.1, this functionality turns out to be surprisingly useful
in the domain of critical infrastructure protection. In this setting, a monitor
combines the ciphertexts associated with the same identifier and evaluates all
its tokens (corresponding to various predicates) on the ciphertext vector to see
if there is a match. If a match is found, the monitor may raise an alarm or take
other appropriate actions. A schematic overview of relations among all parties
of such a multi-client monitoring system is shown in Fig. 1.

We now describe our multi-client predicate-only encryption construction for
conjunctive equality tests over multiple clients.

144 T. van de Kamp et al.

Fig. 1. In this example of a multi-client monitoring system, there are n distinct clients
(with keys usk1, . . . , uskn) that determine the values x1, . . . , xn. The monitor computes
the functionality Match(x,y) using the encrypted values ct1, . . . , ctn and a token tky .
The monitor is only able to compute the functionality if all clients encrypted their
value xi using the same identifier id (not shown in the figure).

Setup(1κ, n). Let (p,G1,G2,GT , e, g1, g2) ← G(1κ) be the parameters for a bilin-
ear group. Choose a pseudorandom permutation π : K × M → M for message
space M ⊆ Zp and a cryptographic hash function H : {0, 1}∗ → G1. The bilinear
group parameters together with both functions form the public parameters. To
generate the keys, select αi, γi

R← Z
∗
p and βi

R← K for 1 ≤ i ≤ n. The master
secret key is

msk =
{
(g αi

2 , βi, g
γi

2)
}n

i=1
.

The secret encryption key for client i is

uski = (g αi
1 , βi, γi).

Encrypt(uski, id, xi). Client i can encrypt its message xi ∈ M for identifier id

using uski and ri
R← Z

∗
p,

cti =
(
H(id), g ri

1 , g
αiπ(βi,xi)ri

1 H(id)γi
)
.

GenToken(msk,y). The token generator can encrypt a vector y ∈ Mn using its
key msk. Choose ui

R← Z
∗
p for 1 ≤ i ≤ n and output

tky =

⎛
⎝{

g ui
2 , g

αiπ(βi,yi)ui

2 | 1 ≤ i ≤ n
}
,

∏
1≤i≤n

(g γi

2)ui

⎞
⎠ .

Test(tky , {cti}1≤i≤n). Output the result of the test

∏
1≤i≤n

e
(
g

αiπ(βi,xi)ri

1 H(id)γi , g ui
2

) ?=

∏
1≤i≤n

e
(
g ri
1 , g

αiπ(βi,yi)ui

2

)
e
(
H(id),

∏
1≤i≤n

(g γi

2)ui
)
.

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 145

4.1 Correctness

Correctness follows from the definition of Test. We remark that the output of
Test is completely determined by

∑
1≤i≤n

(
π(βi, xi) − π(βi, yi)

) ?= 0. Since the
function π is a prp, the probability of Test(tky , ctx) �= Match(x,y) is negligible.

4.2 Security

To get an intuition for the security of our construction, observe that the clients’
messages itself are first encrypted using the prp π. By using the output of the
prp as an exponent and randomizing it with the value r, we create a proba-
bilistic encryption of the message. The prp’s randomized output also prevents
malleability attacks. Similarly, the vector components of the vector y are indi-
vidually encrypted in a similar way. Because part of the clients’ keys (i.e., g αi

1)
and the master secret key (i.e., g αi

2) reside in different groups, it is hard for a
client to create a token and hard for the token generator to create a ciphertext.

The formal security analysis can be found in Appendix A. We prove our con-
struction selective plaintext private and adaptive predicate private. Additionally,
we prove the chosen-plaintext security property of the construction. Plaintext
and predicate privacy are proven in the generic group model using random ora-
cles. This combination of models has been successfully applied in other works
before [9,34]. Chosen-plaintext security can be proven in the standard model
and under the ddh assumption in group G1. We formulate the following two
theorems.

Theorem 1. Let A be an arbitrary probabilistic polynomial time adversary hav-
ing oracle access to the group operations and the encryption and token generation
algorithms, while it is bounded in receiving at most q distinct group elements.
The adversary A has at most an advantage of O(q2/p) in winning either the
selective plaintext-privacy (see Definition 5) or the adaptive predicate-privacy
game (see Definition 4) in the random oracle model.

Theorem 2. The construction presented above is chosen-plaintext secure with
an unbounded number of corruptions (Definition 6) under the ddh assumption
in group G1.

Both plaintext privacy and predicate privacy are proven secure through a
series of hybrid games. In every game hop, a component of the challenge vector
(either the ciphertext or token challenge vector) is replaced by a random one.
In the final game, once all components are replaced by random elements, no
adversary can gain an advantage since it is impossible to distinguish a random
vector from another random one.

However, in the selective plaintext-privacy game, not every component of the
challenge vector can be replaced by a random component. If a component x∗

b,i of
the challenge vector x∗

b is deterministic, i.e.,the challenge inputs were the same
for that component, x∗

0,i = x∗
1,i = m, the adversary may query for a token to

match this single component for the value yi = m. Note that if this component is

146 T. van de Kamp et al.

replaced by a random element, Match will, with overwhelming probability, return
false, while it should have returned true. Hence, the deterministic components
of the challenge vector have to remain untouched in every game hop. This implies
that the number of game hops depends on the challenge inputs, requiring the
challenger to know the challenge inputs a priori. This limitation does not appear
for predicate privacy, making it possible to prove adaptive security instead.

4.3 Extension Allowing Wildcards

Although a construction for the described conjunctive equality matching func-
tionality would suffice, it may be very inefficient when a predicate is defined over
a subset of the clients’ inputs. For example, suppose the token generator has a
predicate for which it actually does not care what client i sends. Now, if we have
only conjunctive equality matching, we would need to create a token for every
possible message that client i can send. Besides that this will be very inefficient
if client i could send many different messages, it would also reveal whenever
client i has sent the same values multiple times: whenever a client sends the
same value multiple times, the same token will match multiple times as well!

We can extend our construction with the ability to test for the equality of
vectors with the additional feature that the predicate vector y can now contain
wildcard components. Such a wildcard component matches against any value of
the corresponding ciphertext component. This makes the testing functionality
similar to the one used in hve [6], however our system combines the ciphertexts
from multiple clients. Formally, the clients encrypt their messages from the mes-
sage space M ⊆ Zp, where the token generator uses the space M∗ = M ∪ {�}.
The multi-client predicate-only encryption construction now evaluates the func-
tion

Match�(x,y) =

{
true if ∀i : (xi = yi) ∨ (yi = �),
false otherwise.

To achieve this additional functionality, we have to change the GenToken and
Test algorithms, the other algorithms remain unchanged.

GenToken�(msk,y). The token generator can encrypt a predicate vector y ∈
(M∗)n using the master secret key msk. Let Sy be the set of indices of the non-

wildcard components of the vector y. Choose ui
R← Z

∗
p for i ∈ Sy and output

tky =

⎛
⎝

{
g ui
2 , g

αiπ(βi,yi)ui

2 | i ∈ Sy

}
,

∏
i∈Sy

(g γi

2)ui

⎞
⎠ .

Test�(tky , {cti}i ∈ Sy). Output the result of the test

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 147

∏
i∈Sy

e
(
g

αiπ(βi,xi)ri

1 H(id)γi , g ui
2

) ?=

∏
i∈Sy

e
(
g ri
1 , g

αiπ(βi,yi)ui

2

)
e
(
H(id),

∏
i∈Sy

(g γi

2)ui
)
.

In this adapted construction, the wildcards are made possible by allowing
the token generator to specify which clients need to contribute a ciphertext
before one can evaluate the predicate over the subset of clients. This idea is
encoded in the token by the value

∏
i∈Sy

(g γi

2)ui and in the ciphertext by the
value H(id)γi . The latter also prevents the monitor to combine ciphertext for
different identifiers.

The addition of wildcards to the scheme should be mainly considered an effi-
ciency improvement, rather than a security improvement, although the cipher-
text security actually slightly improves when one uses wildcards – the wildcard
components do not leak any information about the matched ciphertext, as dis-
cussed above. However, we point out that this adapted construction is not predi-
cate private. In fact, if wildcards are used in the proposed construction, the token
would leak their positions: by looking at a token, it is possible to tell which com-
ponents encode a wildcard. But, if we accept this fact, yet still want to assure
that no other information is leaked, we can define a restricted predicate-privacy
game. In this restricted game, we restrict the adversary to only provide chal-
lenge inputs with wildcards in the same position, i.e.,we require for challenge
inputs f∗

0 = y∗
0, f∗

1 = y∗
1 that for all 1 ≤ i ≤ n, y0,i = � ⇐⇒ y1,i = �.

It is trivial to see that changing the GenToken or Test algorithm does not
influence the chosen-ciphertext security. In Appendix A we give the security
proofs for the construction with wildcards.

4.4 Efficiency

Since the Encrypt and GenToken algorithms do not use any expensive pairing
operations, they can efficiently run on less powerful hardware. For the Encrypt
algorithm it is only needed to compute the prp π and three modular exponenti-
ations. The computational complexity of GenToken� depends on the number of
non-wildcard components in the predicate. For every non-wildcard component
one evaluation of the prp π and three modular exponentiations are needed.

The Test algorithm is the only algorithm that requires pairings. To evaluate
a token with n non-wildcard components, 2n+1 pairing evaluations are needed.

In the next section we discuss a concrete implementation of the construction
and evaluate its performance.

148 T. van de Kamp et al.

5 Implementation and Evaluation

We have implemented a prototype of our construction with wildcards to get a
better understanding of its performance. The implementation3 uses the Pairing-
Based Cryptography Library4 that allows one to easily change the underlying
curve and its parameters.

Instantiating the Pseudorandom Permutation. Our construction uses a prp π to
permute an element in Zp. However, since we use the outcome of the permutation
to exponentiate a generator in G1 and G2, we can instead directly map values
in Zp to one of these groups respectively. The pseudorandom function (PRF)
proposed by Naor and Reingold [24] exactly achieves this. Their prf maps a
message x ∈ M ⊆ {0, . . . , 2m −1} ⊆ Zp using a key b =

{
bi

R← Z
∗
p | 0 ≤ i ≤ m

}

to an element in a group 〈g〉 of prime order p. The prf F is defined as

F (b, x) = gb0
∏m

i=1 b
x[i]
i ,

where x[i] ∈ {0, 1} denotes the ith bit of message x. The advantage of using this
prf over prp is that it is relatively simple to compute while it is provably secure
under the ddh assumption.

We apply the prf to both the Encrypt and the GenToken� algorithms to
obtain ciphertexts of the form

cti =
(

H(id), g ri
1 , g

αi

∏m
j=1 β

xi[j]
i,j ri

1 H(id)γi

)
,

and tokens of the form

tky =

⎛
⎝

{
g ui
2 , g

αi

∏m
j=1 β

yi[j]
i,j ui

2 | i ∈ Sy

}
,

∏
i∈Sy

(g γi

2)ui

⎞
⎠ .

Notice that we use b0 = αi and bj = βi,j . In addition, observe that it is not
necessary to know the value αi to compute a ciphertext or token, as long the
value gαi

1 , or g αi
2 respectively, is known.

Performance Measurements. We ran several performance evaluations on a note-
book containing an Intel Core i5 CPU, running on Debian GNU/Linux. We chose
to evaluate the system using an MNT curve [22] over a 159 bit base field size
with embedding degree 6.

As expected from the theoretical performance analysis in Sect. 4.4, both the
GenToken� and Test� algorithms scale linearly in the number of non-wildcard
components used. The GenToken� algorithm spends, on average, 19 ms to encrypt
a non-wildcard component. To evaluate a token that contains no wildcards using

3 https://github.com/CRIPTIM/multi-client-monitoring.
4 https://crypto.stanford.edu/pbc/.

https://github.com/CRIPTIM/multi-client-monitoring
https://crypto.stanford.edu/pbc/

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 149

n ciphertexts, takes 4.5n+10 ms on average. The Setup algorithm scales linearly
as well, spending on average 18 ms per client to create their public and private
keys. The Encrypt algorithm is the fastest, taking only 2.6 ms for an individual
client to encrypt a message xi ∈ {0, . . . , 15}.

Fig. 2. Performance measurements of the implementation using an MNT-159 curve.

In Fig. 2 the average computational time is plotted against the number of
clients involved in the computation. No wildcards were used in the GenToken�

and Test� algorithms to obtain these timing results, meaning that the algorithms
are identical to GenToken and Test, respectively.

Considering an example of the monitoring of several cis, we remark that
a typical information-sharing community (e.g., isac) consists of about 10 par-
ties. So, if every party sends 5 distinct messages for each identifier (e.g., every
party has five subsystems to be monitored), we would require a system of about
50 clients. We see that in such a realistically sized system we can evaluate about
250 predicates per minute. Optimizations such as the preprocessing of pairings
can increase the number of predicate evaluations per minute.

6 Conclusion

By designing a special-purpose multi-client functional encryption scheme, it is
possible to create a practical privacy-preserving monitoring system. To achieve
this, we defined multi-client predicate-only encryption (mc-poe) and correspond-
ing security definitions for the protection of both the messages of the individual
clients and the predicates. Our proposed construction for such poe scheme is
capable of conjunctive equality testing over vector components which can include
wildcards. The performance evaluation of our implementation shows that the
evaluation time of a predicate scales linearly in the number of clients, where a

150 T. van de Kamp et al.

predicate defined over 20 clients can be evaluated in a tenth of a second. Addi-
tionally, we see that the encryption algorithm is very lightweight, making it
suitable to run on resource-constrained devices.

Future work will include the construction of mc-poe scheme which will allow
for more expressive functionality, while remaining efficient enough to run in
practice and keeping the confidentiality of both the messages and the predicates.
Additionally, further research is needed to construct mc-poe scheme that is fully
secure in the standard model.

Acknowledgment. This work was supported by the Netherlands Organisation for
Scientific Research (nwo) in the context of the criptim project. The authors addition-
ally thank the reviewers and shepherd for their suggested improvements.

A Security Proofs

A.1 Selective Plaintext and Adaptive Predicate Security

We prove Theorem 1, stating that the construction without wildcards is secure,
by using the following lemma and by proving that the construction with wild-
cards is selective plaintext private and restricted adaptive predicate private.
Recall that the restricted predicate-private game is almost identical to our
predicate-private game. However, in the restricted game, we additionally require
y∗
0,i = � ⇐⇒ y∗

1,i = � for the challenge inputs y∗
0,y

∗
1.

Lemma 1. If the construction with wildcards is selective plaintext private and
restricted adaptive predicate private, then the construction without wildcards is
selective plaintext private and adaptive predicate private.

Proof. First, let us look at the selective plaintext privacy. Assume A is a proba-
bilistic polynomial time adversary, having a non-negligible advantage in winning
the selective plaintext-privacy game without wildcards. It is clear that A is also
an adversary that has an identical, non-negligible, advantage in winning the
selective plaintext-privacy game with wildcards (however, it chooses not to use
any). This contradicts with the given statement that no such adversary exists.

For the other part, assume that A is a probabilistic polynomial time adver-
sary, making no wildcard queries, and having a non-negligible advantage in win-
ning the predicate-privacy game. Note that A is also an adversary that has an
identical, non-negligible, advantage in winning the predicate-privacy game with
wildcards (however, it chooses not to use any). Specifically, since A chooses its
challenge inputs without wildcards, A also satisfied the extra requirement in the
restricted predicate-privacy game.

We now give a proof for both selective plaintext privacy as well as restricted
predicate privacy for the construction with wildcards.

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 151

Proof (sketch). We first define the generic group model setting and all oracle
interactions, including the oracles for encryption and token generation.

Generic Group Model. Let φ1, φ2, φT be distinct random injective mappings from
the domain Zp to {0, 1}κ, where κ > 3 log p. We write G1 for {φ1(x) | x ∈ Zp },
G2 for {φ2(x) | x ∈ Zp }, and GT for {φT (x) | x ∈ Zp }. The adversary is given
access to an oracle to compute the group actions on G1, G2, and GT . Addi-
tionally, it is given access to an oracle capable of computing a non-degenerate
bilinear map e : G1 ×G2 → GT . Lastly, we also define a random oracle to model
the hash function H : {0, 1} → G1.

Instead of writing φ1(x), we write g x
1 . Similarly, we write g x

2 for φ2(x)
and e(g1, g2)x for φT (x).

Hash Oracle H. The challenger keeps track of oracle queries it received before
by maintaining a table. If it has not received an oracle query for the value id
before, it chooses a random value tid ∈ Zp and stores this value in its table. It
returns the value g tid

1 to the querier.

Game Interactions. The adversary’s first interaction with the challenger is to
receive the group parameters and the secret keys of the corrupted clients.

Setup. The challenger chooses αi, γi
R← Z

∗
p and βi

R← K for 1 ≤ i ≤ n, just like in
the actual scheme. It also defines the secret keys uski and master secret key msk
according to the scheme.
Corruptions. The adversary submits its choices for the corrupted clients I to
the challenger. In the selective plaintext-privacy game, the adversary addition-
ally submits its challenge inputs (id∗,x∗

0,I ,x
∗
1,I). The challenger gives the secret

keys uskI of the corrupted clients to the adversary.
Queries. The adversary interacts with the challenger by asking the challenger
to encrypt a messages or to generate a token for some predicate. To be able to
refer to a specific query later on in the proof, we label every query with a query
number. Let j represent this query number.

Encrypt The challenger answers valid Encrypt queries for a message x
(j)
i for

client i and identifier id(j) similar as in the scheme. It chooses r
(j)
i

R← Z
∗
p and

returns the ciphertext ct
(j)
i,id,

(
g

t
id(j)

1 , g
r
(j)
i

1 , g
αiπ(βi,x

(j)
i)r

(j)
i

1 g
t
id(j)

γi

1

)
.

GenToken� Similarly, token queries for y(j) are answered according to the
scheme as well. The challenger chooses u

(j)
i

R← Z
∗
p for i ∈ Sy (j) and returns

the token tk(j)y ,
⎛
⎝

{
g

u
(j)
i

2 , g
αiπ(βi,y

(j)
i)u

(j)
i

2 | i ∈ Sy

}
,

∏
i∈Sy

g
u
(j)
i γi

2

⎞
⎠ ,

to the adversary.

152 T. van de Kamp et al.

Proof Structure. We prove both selective plaintext privacy and restricted adap-
tive predicate privacy through a series of hybrid games.

For selective plaintext privacy the number of games depends on the number
of differentiating components of the challenge inputs – hence the selective game
type. Let X denote the set of indices where the components of x∗

0 differ from x∗
1,

X = { i | x∗
0,i �= x∗

1,i }. Let game k be identical to the original game, except
that in the challenge phase now the first k − 1 components of X in the returned
challenge vector are chosen at random. Note that game k = 1 is identical to the
original game and that in game k = |X| not even an unbounded adversary is
able to gain an advantage in winning the game.

For restricted adaptive predicate privacy, we assume w.l.o.g. that y∗
0,I �= y∗

1,I ,
because if y∗

0,I = y∗
1,I , the adversary would not be able to gain an advantage

in the game since this implies y∗
0 = y∗

1. Note that this means that the result
of Match� with any allowed ciphertext vector will be false. We define game k
identical to the original game, except that in the challenge phase now the first k−
1 components of the returned challenge vector are chosen at random. Note that
game k = 1 is identical to the original game and that in game k = n not even
an unbounded adversary is able to gain an advantage in winning the game.

For both the selective plaintext-privacy as well as the restricted adaptive
predicate-privacy game, we show that an adversary has at most an advantage
of O(q2/p) in distinguishing between game k and game k + 1. Furthermore, we
use another hybrid game to change to a real-or-random based challenge instead
of a left-or-right based challenge. It is not difficult to see that an adversary
gaining an advantage ε in the left-or-right based game, gains an advantage of at
least ε

2 in the real-or-random based game.

Challenges. Since we changed the game to a real-or-random based game, the
challenge phase changes slightly. The challenger now chooses a bit b

R← {0, 1}
that is used to determine whether to return the encryption of the submitted value
or a random one. In case of the selective plaintext-privacy game, the adversary
submits a vector x

(c)
I together with an identifier id(c) to the challenger. In case

of the restricted predicate-privacy game, the adversary submits a vector y(c) to
the challenger. The challenger chooses values νi, ν

′
i

R← Z
∗
p for 1 ≤ i ≤ n. For a

ciphertext challenge it returns the challenge

ctCh =
{ (

g
t
id(c)

1 , g νi
1 , ct′Ch,i

) | i ∈ I
}

,

where

ct′Ch,k =

⎧
⎨
⎩

g
νkαkπ(βk,ν′

k)+t
id(c)

γk

1 if b = 0

g
νkαkπ(βk,x

(c)
k)+t

id(c)
γk

1 if b = 1.

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 153

For a token challenge, it returns the challenge

tkCh =

⎛
⎝{

(g νi
2 , tk′

Ch,i) | i ∈ Sy

}
,

∏
i∈Sy

g νiγi

2

⎞
⎠ ,

where, if k ∈ Sy ,

tk′
Ch,k =

{
g

νkαkπ(βk,ν′
k)

2 if b = 0

g
νkαkπ(βk,y

(c)
k)

2 if b = 1.

Indistinguishability. We now show that an adversary has at most a negligible
advantage of O(q2/p) in distinguishing between game k and game k + 1, i.e.,it

is unable to distinguish g
νkαkπ(βk,x

(c)
k)+t

id(c)
γk

1 from g
ν′
k

1 for ciphertext challenges

and g
νkαkπ(βk,y

(c)
k)

2 from g
ν′
k

2 for token challenges.
As is common in the generic bilinear group model [32], we consider the chal-

lenger keeping record of all group elements the adversary has. It does so by
keeping lists PG,l of linear polynomials in Zp for each of the groups G1, G2,
and GT . These polynomials use indeterminates for γi, αiπ(βi, ci), the tid(j) ’s,
αiπ(βi, x

(j)
i)’s, αiπ(βi, y

(j))’s, r
(j)
i ’s, and the u

(j)
i ’s.

To simplify our reasoning, we will only look at polynomials PGT ,l in GT . This
is justified as we can transform any polynomial in G1 or G2 to a polynomial PGT ,l

in GT through an additional query to the pairing oracle.
We can now say that the adversary wins the game if for a random assignment

to all the indeterminates, any PGT ,i �= PGT ,j evaluates to the same value. We will
show that the adversary is not able to query for distinct polynomials PGT ,i, PGT ,j

such that, if the challenger plays the ‘real’ experiment and if the indeterminates
get assigned with random values, they will evaluate to the same value, except for
negligible probability. Then, by the Schwartz lemma [29] and the extended result
of Shoup [32], we can bound this probability of PGT ,i �= PGT ,j evaluating to the
same value by O(q2/p) if at most q group elements are given to the adversary.

In the case of a ciphertext challenge, we first have to bring the challenge
response, which is an element of G1, to the target group GT . Since the adver-

sary only has (linear combinations of) the elements g2, g
u
(j)
i

2 , g
αiπ(βi,y

(j)
i)u

(j)
i

2 ,

and
∏

i∈Sy
g

u
(j)
i γi

2 in G2, it can only bring the challenge to GT by pairing with
one of these. Similarly, for token challenges, the adversary can only pair with

the elements g1, g
t
id(j)

1 , g
r
(j)
i

1 , or g
αiπ(βi,x

(j)
i)r

(j)
i +t

id(j)
γi

1 in G1.
The resulting polynomials for these challenge responses are summarized in

Table 1. Since the group elements are represented by uniformly independent
values, the adversary can only distinguish between game k and game k + 1
with more than a negligible advantage if it can construct at least one of the
polynomials in this table.

154 T. van de Kamp et al.

Table 1. Target polynomials in both indistinguishability games.

Linear Combinations. We now argue that the adversary cannot construct
any of these challenges by looking at the components it has. We summarize the
polynomials the adversary has access to, again by only looking at the elements
in the target group GT , in Table 2.

Table 2. Elements the adversary can query for in an indistinguishability game (up to
linear combinations).

We show in the full version of the paper that no linear combination of the
polynomials in Table 2 equals any of the polynomials in Table 1.

A.2 Chosen-Plaintext Security

The proposed construction is also chosen-plaintext secure as stated in Theorem
2. We remark that the proof does not rely on the use of random oracles.

Proof. We construct a challenger B capable of breaking the ddh assumption
in G1 by using an adversary A that is able to win the chosen-plaintext with
corruptions game with more than a negligible advantage.

We proof this though a series of hybrid games. Let game j be the game as
defined in Definition 6, but where the first j − 1 components of the challenge

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 155

query are replaced by random elements. Note that game 1 is identical to the
original game and that it is not possible for any adversary to gain an advantage
in game n + 1. We are left to show that an adversary has at most a negligible
advantage in distinguishing game j from game j + 1.
Setup. The challenger B receives the bilinear group parameters and the ddh
instance (A = g a

1 , B = g b
1 , Z) ∈ (G1)3. It chooses the hash function H and

the encryption keys uski. It sets encryption key uskj = (A, βj
R← K, γj

R← Z
∗
p)

and chooses the rest of the encryption keys according to the scheme. The public
parameters and the encryption keys uski are given to the adversary.
Challenge. The adversary A submits an identifier id∗ and two vectors x∗

0, x
∗
1 to

the challenger. The challenger chooses b
R← {0, 1} and sets g

rj

1 = B. Additionally,
it picks values ri

R← Z
∗
p for 1 ≤ i �= j ≤ n. It gives the challenge

cti =

⎧
⎪⎨
⎪⎩

(
H(id∗), g ri

1 , R
R← G1

)
if i < j(

H(id∗), B, Zπ(βi,x
∗
b,i)H(id∗)γj

)
if i = j(

H(id∗), g ri
1 , g

αiriπ(βi,x
∗
b,i)

1 H(id∗)γi
)

if i > j

for 1 ≤ i ≤ n to the adversary.
If the challenger is given Z = g ab

1 , then challenge ciphertext is identically
distributed as the challenge ciphertext in game j and component j is a real
encryption. If the challenger is given Z

R← G1, then challenge ciphertext is iden-
tically distributed as the challenge ciphertext in game j + 1 and component j is
a random encryption.
Guess. The challenger outputs its guess that Z = g ab

1 if the adversary guesses
that it is playing game j, and outputs its guess that Z

R← G1 if the adversary
guesses that it is playing game j + 1.

If the adversary has a non-negligible advantage in distinguishing between
game j and game j + 1, the challenger obtains a non-negligible advantage in
solving the ddh problem in group G1.

References

1. Abdalla, M., Catalano, D., Dent, A.W., Malone-Lee, J., Neven, G., Smart, N.P.:
Identity-based encryption gone wild. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 300–311. Springer, Heidelberg
(2006). https://doi.org/10.1007/11787006 26

2. Abdalla, M., Gay, R., Raykova, M., Wee, H.: Multi-input inner-product functional
encryption from pairings. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017.
LNCS, vol. 10210, pp. 601–626. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-56620-7 21

3. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

https://doi.org/10.1007/11787006_26
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/978-3-319-56620-7_21
https://doi.org/10.1007/3-540-44647-8_13

156 T. van de Kamp et al.

4. Boneh, D., Lewi, K., Raykova, M., Sahai, A., Zhandry, M., Zimmerman, J.: Seman-
tically secure order-revealing encryption: multi-input functional encryption with-
out obfuscation. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 563–594. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 19

5. Boneh, D., Sahai, A., Waters, B.: Functional encryption: definitions and challenges.
In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 253–273. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-19571-6 16

6. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535–554. Springer, Heidel-
berg (2007). https://doi.org/10.1007/978-3-540-70936-7 29

7. Bösch, C., Hartel, P., Jonker, W., Peter, A.: A survey of provably secure searchable
encryption. CSUR 47(2), 18:1–18:51 (2014)

8. Brakerski, Z., Segev, G.: Function-private functional encryption in the private-key
setting. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 306–324.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7 12

9. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification
anonymous credentials. In: CCS, pp. 1205–1216. ACM (2014)

10. Chenette, N., Lewi, K., Weis, S.A., Wu, D.J.: Practical order-revealing encryption
with limited leakage. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 474–493.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5 24

11. Conrad, S.H., LeClaire, R.J., O’Reilly, G.P., Uzunalioglu, H.: Critical national
infrastructure reliability modeling and analysis. Bell Labs Tech. J. 11(3), 57–71
(2006)

12. Dunn-Cavelty, M., Suter, M.: Public-private partnerships are no silver bullet: an
expanded governance model for critical infrastructure protection. Int. J. Crit.
Infrast. Prot. 2(4), 179–187 (2009)

13. Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete
Appl. Math. 156(16), 3113–3121 (2008). Applications of Algebra to Cryptography

14. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In:
FOCS, pp. 40–49 (2013)

15. Goldwasser, S., et al.: Multi-input functional encryption. In: Nguyen, P.Q., Oswald,
E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 578–602. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-55220-5 32

16. Gordon, S.D., Katz, J., Liu, F.H., Shi, E., Zhou, H.S.: Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/774 (2013)

17. Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, poly-
nomial equations, and inner products. In: Smart, N. (ed.) EUROCRYPT 2008.
LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78967-3 9

18. Lewi, K., Wu, D.J.: Order-revealing encryption: new constructions, applications,
and lower bounds. In: CCS. ACM (2016)

19. Lewko, A., Waters, B.: Decentralizing attribute-based encryption. In: Paterson,
K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 568–588. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-20465-4 31

20. Luiijf, E., Klaver, M.: On the sharing of cyber security information. In: Rice, M.,
Shenoi, S. (eds.) ICCIP 2015. IAICT, vol. 466, pp. 29–46. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-26567-4 3

https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-662-46803-6_19
https://doi.org/10.1007/978-3-642-19571-6_16
https://doi.org/10.1007/978-3-540-70936-7_29
https://doi.org/10.1007/978-3-662-46497-7_12
https://doi.org/10.1007/978-3-662-52993-5_24
https://doi.org/10.1007/978-3-642-55220-5_32
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-540-78967-3_9
https://doi.org/10.1007/978-3-642-20465-4_31
https://doi.org/10.1007/978-3-319-26567-4_3

Multi-client Predicate-Only Encryption for Conjunctive Equality Tests 157

21. Luiijf, E., Nieuwenhuijs, A., Klaver, M., van Eeten, M., Cruz, E.: Empirical findings
on critical infrastructure dependencies in Europe. In: Setola, R., Geretshuber, S.
(eds.) CRITIS 2008. LNCS, vol. 5508, pp. 302–310. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03552-4 28

22. Miyaji, A., Nakabayashi, M., Takano, S.: Characterization of elliptic curve traces
under FR-reduction. In: Won, D. (ed.) ICISC 2000. LNCS, vol. 2015, pp. 90–108.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45247-8 8

23. Moteff, J.D., Stevens, G.M.: Critical infrastructure information disclosure and
homeland security (2002). http://www.dtic.mil/docs/citations/ADA467310

24. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. ACM 51(2), 231–262 (2004)

25. O’Neill, A.: Definitional issues in functional encryption. Cryptology ePrint Archive,
Report 2010/556 (2010)

26. Pandey, O., Rouselakis, Y.: Property preserving symmetric encryption. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
375–391. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4 23

27. President’s Commission on Critical Infrastructure Protection: Critical foundations:
Protecting America’s infrastructures (1997). https://www.fas.org/sgp/library/
pccip.pdf

28. Sahai, A., Waters, B.: Fuzzy Identity-based encryption. In: Cramer, R. (ed.)
EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005).
https://doi.org/10.1007/11426639 27

29. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. ACM 27(4), 701–717 (1980)

30. Shen, E., Shi, E., Waters, B.: Predicate privacy in encryption systems. In: Reingold,
O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 457–473. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00457-5 27

31. Shi, E., Chan, T.H., Rieffel, E.G., Chow, R., Song, D.: Privacypreserving aggrega-
tion of time-series data. In: NDSS. The Internet Society (2011). https://www.ndss-
symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data/

32. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy,
W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-69053-0 18

33. Skopik, F., Settanni, G., Fiedler, R.: A problem shared is a problem halved: a
survey on the dimensions of collective cyber defense through security information
sharing. Comput. Secur. 60, 154–176 (2016)

34. Smart, N.P.: The exact security of ECIES in the generic group model. In: Honary,
B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 73–84. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-45325-3 8

35. Yang, G., Tan, C.H., Huang, Q., Wong, D.S.: Probabilistic public key encryption
with equality test. In: Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 119–
131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11925-5 9

https://doi.org/10.1007/978-3-642-03552-4_28
https://doi.org/10.1007/3-540-45247-8_8
http://www.dtic.mil/docs/citations/ADA467310
https://doi.org/10.1007/978-3-642-29011-4_23
https://doi.org/10.1007/978-3-642-29011-4_23
https://www.fas.org/sgp/library/pccip.pdf
https://www.fas.org/sgp/library/pccip.pdf
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-00457-5_27
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data/
https://www.ndss-symposium.org/ndss2011/privacy-preserving-aggregation-of-time-series-data/
https://doi.org/10.1007/3-540-69053-0_18
https://doi.org/10.1007/3-540-45325-3_8
https://doi.org/10.1007/978-3-642-11925-5_9

Credentials and Authentication

Revisiting Yasuda et al.’s Biometric
Authentication Protocol: Are You Private

Enough?

Elena Pagnin(B), Jing Liu, and Aikaterini Mitrokotsa

Chalmers University of Technology, Gothenburg, Sweden
elenap@chalmers.se

Abstract. Biometric Authentication Protocols (BAPs) have increas-
ingly been employed to guarantee reliable access control to places and
services. However, it is well-known that biometric traits contain sensi-
tive information of individuals and if compromised could lead to serious
security and privacy breaches. Yasuda et al. [23] proposed a distributed
privacy-preserving BAP which Abidin et al. [1] have shown to be vul-
nerable to biometric template recovery attacks under the presence of a
malicious computational server. In this paper, we fix the weaknesses of
Yasuda et al.’s BAP and present a detailed instantiation of a distributed
privacy-preserving BAP which is resilient against the attack presented
in [1]. Our solution employs Backes et al.’s [4] verifiable computation
scheme to limit the possible misbehaviours of a malicious computational
server.

Keywords: Biometric authentication · Verifiable delegation
Privacy-preserving authentication

1 Introduction

Biometric authentication has become increasingly popular as a fast and conve-
nient method of authentication that does not require to remember and manage
long and cumbersome passwords. However, the main advantage of biometrics,
i.e., their direct and inherent link with the identity of individuals, also rises
serious security and privacy concerns. Since biometric characteristics can not be
changed or revoked, unauthorised leakage of this information leads to irrepara-
ble security and privacy breaches such as identity fraud and individual profiling
or tracking [18]. Thus, there is an urgent need for efficient and reliable privacy-
preserving biometric authentication protocols (BAPs).

The design of privacy-preserving BAPs is by itself a very delicate procedure.
It becomes even more challenging when one considers the distributed setting
in which a resource-constrained client outsources the computationally heavy
authentication process to more powerful external entities. In this paper, we focus
on Yasuda et al.’s protocol for privacy-preserving BAPs in the distributed set-
ting [23] and show how to mitigate the privacy attacks presented by Abidin
et al. [1] by employing Backes et al.’s verifiable computation scheme [4].
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 161–178, 2018.
https://doi.org/10.1007/978-3-030-02641-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_8

162 E. Pagnin et al.

1.1 Background and Related Work

Distributed privacy-preserving BAPs usually involve the following entities: (i) a
client/user C, (ii) a database DB, (iii) a computational server CS, and (iv) an
authentication server AS. The granularity of roles and entities in the biometric
authentication process facilitates the privacy-preservation of the sensitive infor-
mation. This distributed setting, indeed guarantees that no single entity has
access to both the biometric templates (fresh and stored ones) and the identity
of the querying user.

Several existing proposals of privacy-preserving BAPs use the distributed set-
ting, e.g., [5,21–23], and make leverage on advanced cryptographic techniques
such as homomorphic encryption [7,23], oblivious transfer [8] and garbled cir-
cuits [14]. In particular, Yasuda et al.’s protocol [23] was claimed to be privacy-
preserving since it is based on the distributed setting and relies on a novel
somewhat homomorphic encryption scheme based on ideal lattices. Abildin et
al. [1] showed that Yasuda et al.’s BAP is privacy-preserving only in the honest-
but-curious model and described an algorithm that enables a malicious CS to
recover a user’s biometric template. Intuitively, Abidin et al.’s attack succeeds
because AS does not detect that the malicious CS returns a value different from
the one corresponding to the output of the (honest) outsourced computation,
leaving space for hill-climbing strategies [20] that may lead to the disclosure of
the stored reference biometric template.

Verifiable delegation of computation (VC) is a cryptographic primitive that
enables a client to securely and efficiently offload computations to an untrusted
server [11]. Verification of arbitrary complex computations was initially achieved
via interactive proofs [2,13] and then moved towards more flexible and efficient
schemes such as [3,9,10,19]. The setting of VC schemes is by nature distributed
and thus perfectly fits the basic requirement of privacy-preserving BAPs. For
this reason, Bringer et al. [6] suggested to use VC techniques to detect malicious
behaviours in BAP.

In this paper, we provide the first explicit instantiation of a distributed
privacy-preserving BAP which achieves security against malicious CS thanks
to the verifiability of the delegated computation.

1.2 Our Contributions

In this paper, we mitigate Abidin et al.’s attack [1] against Yasuda et al.’s
privacy-preserving biometric authentication protocol [23] by the means of the
verifiable computation scheme by Backes et al. [4]. We combine the two schemes
in an efficient and secure way, and obtain a modification of Yasuda et al.’s pro-
tocol with strong privacy guarantees. As a result, we obtain a new BAP which
builds on top of Yasuda et al.’s and is truly privacy-preserving in the distributed
setting.

From a general point of view, this paper offers a strategy to transform
privacy-preserving BAPs that are secure in the honest-but-curious model into

Revisiting Yasuda et al.’s Biometric Authentication Protocol 163

schemes that can tolerate a malicious CS by addressing the most significant chal-
lenges in privacy-preserving BAPs: to guarantee integrity and privacy of both the
data and the computation. Despite the idea of combining VC and BAP is quite
natural and intuitive [6], the actual combination needs to be done carefully in
order to avoid flawed approaches.

Organisation. The paper is organized as follows. Section 2 describes the back-
ground notions used in the rest of the paper. Section 3 contains our modifi-
cation of Backes et al.’s VC scheme to combine it with the somewhat homo-
morphic encryption scheme used in [23]. Section 4 presents an improved version
of Yasuda et al.’s BAP together with a security and efficiency analysis. The
proposed privacy-preserving BAP incorporates the new construction of VC on
encrypted data of Sect. 3. Section 5 is an important side-note to our contribu-
tions, as it demonstrates how näıve and straight-forward compositions of VC and
homomorphic encryption may lead to leakage of private information. Section 6
concludes the paper.

2 Preliminaries

Notations. We denote by Z and Zp = Z/pZ the ring of integers and the integers
modulo p, respectively. For two integers x, d ∈ Z, [x]d denotes the reduction of
x modulo d in the range of [−d/2, d/2]. We write vectors with capital letters,
e.g., A, and refer to the i-th component of A as Ai. The symbol x ←$ X denotes
selecting x uniformly at random from the set X .

We denote the Hadamard product for binary vectors as � : Zn
2 � Z

n
2 → Z

n
2 ,

with A � B = C, Ci = Ai · Bi ∈ Z2 for i = 1, 2, . . . , n. The Hadamard product is
similar to the inner product of vectors except that the output is a vector rather
than an integer.

Bilinear Maps. A symmetric bilinear group is a tuple (p,G,GT , g, gT , e), where
G and GT are groups of prime order p. The elements g ∈ G and gT ∈ GT are
generators of the group they belong to, and e : G × G −→ GT is a bilinear
map, i.e., ∀A,B ∈ G and x, y ∈ Zp it holds that e(xA, yB) = e(A,B)xy and
e(g, g) �= 1GT

. In the setting of VC, the map e is cryptographically secure, i.e., it
should be defined over groups where the discrete logarithm problem is assumed
to be hard or it should be hard to find inverses. In bilinear groups there exists
a natural isomorphism between G and (Zp,+) given by φg(x) = gx; similarly
for GT . Since φg and φgT

are isomorphisms, there exist inverses φ−1
g : G →

Zp and φ−1
gT

: GT → Zp, that can be used to homomorphically evaluate any
arithmetic circuit f : Zn

p → Zp, from G to GT . More precisely, there exists a
map GroupEval (as defined in [4]):

GroupEval(f,X1, . . . , Xn) = φgT
(f(φ−1

g (X1), . . . , φ−1
g (Xn))).

For security, we assume φg and φgT
are not efficiently computable.

164 E. Pagnin et al.

Homomorphic MAC Authenticators. In this paper, we make use of Backes, Fiore
and Reischuk’s verifiable computation scheme based on homomorphic MAC
authenticators [4], which we refer to as BFR. The BFR scheme targets func-
tions f that are quadratic polynomials over a large number of variables. Figure 1
contains a succinct description of the BFR scheme.

Fig. 1. The BFR verifiable delegation of computation scheme.

For further details we refer the reader to the main paper [4].

Homomorphic Encryption. Let M denote the space of plaintexts that support an
operation �, and C be the space of ciphertexts with � as operation. An encryp-
tion scheme is said to be homomorphic if for any key, the encryption function
Enc satisfies: Enc(m1�m2) ← Enc(m1)�Enc(m2), for all m1,m2 ∈ M, where
← means computed without decryption. In this paper, we only use Somewhat
Homomorphic Encryption schemes (SHE). As the name suggests these schemes
only support a limited number of homomorphic operations, e.g., indefinite num-
ber of homomorphic additions and finite number of multiplications. The choice
to use SHE instead of Fully Homomorphic Encryption [12] is due to efficiency:
SHE, if used appropriately, can be much faster and more compact [15].

The Yasuda et al. Protocol. Yasuda et al. [23] proposed a privacy-preserving
biometric authentication protocol that targets one-to-one authentication and

Revisiting Yasuda et al.’s Biometric Authentication Protocol 165

relies on somewhat homomorphic encryption based on ideal lattices. Two packing
methods facilitate efficient calculations of the secure Hamming distance, which
is a common metric used for comparing biometric templates. The protocol uses a
distributed setting with three parties: a client C, a computation server CS (which
contains the database DB) and an authentication server AS. The protocol is
divided into three phrases.

Setup Phase: AS generates the public key pk and the secret key sk of the SHE
scheme in [23]. AS gives pk to C and CS and keeps sk.

Enrollment phase: C provides a feature vector A from the client’s bio-
metric data (e.g., fingerprints), runs the type-1 packing method and out-
puts the encrypted feature vector vEnc1(A). The computation server stores
(ID, vEnc1(A)) in DB as the reference template for the client ID.

Authentication phase: upon an authentication request, C provides a fresh bio-
metric feature vector B encrypted with the type-2 packing method and sends
(ID, vEnc2(B)) to the computational server. CS extracts from the database the
tuple (ID, vEnc1(A)) using ID as the search key. CS calculates the encrypted
Hamming distance ctHD and sends it to the authentication server. CS decrypts
ctHD and retrieves the actual Hamming distance HD(A,B) = Dec(sk, ctHD).
AS returns yes if HD(A,B) ≤ κ or no if HD(A,B) > κ, where κ is the
predefined accuracy threshold of the authentication system.

Figure 2 depicts the authentication phase of Yasuda et al.’s BAP.
For additional details on biometric authentication protocols and systems we

refer the reader to [16].

Fig. 2. Authentication phase in the Yasuda et al.’s BAP [23].

3 Combining the BFR and the SHE Schemes

In this section, we describe how to efficiently combine the verifiable computation
scheme BFR by Backes et al. [4] with the somewhat homomorphic scheme SHE
by Yasuda et al. [23]. We call the resulting scheme BFR+SHE. Our motivation
for defining this new scheme is to build a tailored version of BFR that we insert
in Yasuda et al.’s biometric authentication protocol to mitigate the template
recovery attack of [1].

166 E. Pagnin et al.

As a preliminary step, we explain the most challenging point of the combi-
nation of the two schemes: the ring range problem. This problem rises because
the elements and operations in BFR and SHE are defined over two different
rings. This passage is quite mathematical, but it is necessary to guarantee the
correctness of our composition BFR+SHE, presented later on in this section.

3.1 The Ring Range Problem

The most significant challenge in combining the Backes et al. VC scheme with
the Yasuda et al. SHE scheme is the different range of the base rings. While
BFR handles all operations in Zp, where p is a prime, the operations in the
SHE scheme [23] are handled in Zd, where d is the resultant of two polynomials.
Therefore, in our BFR+SHE scheme, we need to tweak the input data if there
is a mismatch in the ranges. In the calculation of the secure Hamming distance,
there is a constant term equal to −2, which lives in [−d/2, d/2) but not in [0, p).
In order to verify and generate proper tags, we can write −2 as D = (d − 2)
mod p. Furthermore, we need to check the impact of the range difference to the
verification carried out by the client. The first equation in the Ver algorithm of
BFR is:

ctHD = y
(HD)
0 , (1)

where ctHD ∈ Zd and y
(HD)
0 ∈ Zp. In our instantiation, the term ctHD corre-

sponds to the encrypted Hamming distance between the fresh and the reference
templates, while y

(HD)
0 is a component of the final authentication tag. As long as

d �= p, Eq. (1) is not satisfied even when the computation is carried out correctly.
We present a general solution to this problem. For simplicity, we assume p < d

(as the tag size should be ideally small), although the reasoning also applies when
p > d by swapping the place of p and d. Our solution relies on keeping track
of the dividend. Given a stored template α ∈ Zd and a fresh template β ∈ Zd,
both encrypted, we have that: α = α′ + mp,α′ = α mod p ∈ Zp, β = β′ + kp
and β′ = β mod p ∈ Zp.

Let SWHD(x, y) be the arithmetic circuit for calculating the encrypted
Hamming distance without the final modulo d. Let c = SWHD(α, β) and
c′ = SWHD(α′, β′), we can derive: SWHD(α, β) mod p = SWHD(α′, β′) mod p;
and c = � · p + c′. The value � is the dividend. In our case of study, we want
to perform the comparison between the Hamming distance (of the biometric
templates) and the threshold κ which determines if the templates match, i.e.,
the client is authenticated, or not. To this end, we would track � mod d instead
of � directly. The reason is that � contains more information and would lead to
a privacy leak. Relating back to Eq. (1) we have: ctHD = c mod d ∈ Zq and
y
(HD)
0 = c′ ∈ Zp. Given c = � · p + c′, it holds that:

ctHD = c mod d = (� ∗ p + c′) mod d

= c′ mod d + (� mod d) · (p mod d)

= (y(HD)
0 mod d) + (� mod d) · (p mod d)

(2)

Revisiting Yasuda et al.’s Biometric Authentication Protocol 167

Thus, if we define �d := (� mod d) · (p mod d), the verification equation
in (1) becomes ctHD = y

(HD)
0 (mod d + �d), which is satisfied whenever ctHD is

computed correctly (as we show in Sect. 3.3).

3.2 Our BFR+SHE Scheme

To facilitate the intuition of how we incorporate BFR+SHE in Yasuda et al.’s
BAP we describe the algorithms of BFR+SHE directly in the case the encrypted
vectors are biometric templates:

BFR+SHE.KeyGen(λ): The key generation algorithm of BFR+SHE runs
SHE.KeyGen(λ) → (pk, sk) and BFR.KeyGen(λ) → (ek, vk). The output
is the four-tuple (ek, pk, sk, vk).

BFR+SHE.Enc(pk,A, phase): The encryption algorithm takes as input the
(encryption) public key pk, a plaintext biometric template A ∈ {0, 1}2048
and a phase ∈ {1, 2} to select the appropriate packing method. It outputs
the ciphertext ct computed as ct = vEncphase(A), using the type-phase pack-
ing method of the SHE scheme.

BFR+SHE.Auth(vk, L, ct): on input the verification key vk, a ciphertext ct and
a multi-label L = (Δ, τ), with Δ the data set identifier (e.g., the client’s
ID) and τ the input identifier (e.g., “stored biometric template” or “fresh
biometric template”); this algorithm outputs σ ← BFR.Auth(vk, L, ct), with
σ = (y0, Yi, 1) = (ct, FK(Δ, τ) · g−ct)1/θ), where the value θ and the function
FK are defined in vk.

BFR+SHE.Comp(pk, ct1, ct2): The compute algorithm takes as input the
encryption public key pk, and two ciphertexts ct1, ct2, which intuitively cor-
respond to the encryptions vEnc1(A) and vEnc2(B) respectively. The output
is the encrypted Hamming distance HD calculated as: ctHD = C2 · vEnc1(A)+

C1 · vEnc2(B) + (−2 · vEnc1(A) · vEnc2(B)) ∈ Zd, where C1 :=
[

n−1∑
i=0

ri

]
d

and

C2 := [−C1 + 2]d and r, d are extracted from pk. To solve the ring range
problem described in Sect. 3.1 we compute �d as follows. Let c be the result
of the (encrypted) Hamming distance computation without the final mod-
ulo d. Then c′ = c mod p and c = �p + c′, where c′ is a component in the
authentication tag and � is a dividend. We compute �d = � mod d = (c − [c
mod p])/p mod d. The output is (ctHD, �d).

BFR+SHE.Eval(ek, pk, σ1, σ2): The evaluation algorithm takes as input the
evaluation key ek, the ecryption public key pk, and two tags, which intu-
itively correspond to the authenticators for the two biometric templates,
A,B. In our case of study, the function to be evaluated is fixed to be
f = HD the Hamming distance. This algorithm outputs σHD = (y0, Y1, Ŷ2) ←
BFR.Eval(ek,HD, (σ1, σ2)).
In details, every input gate accepts either two tags σA, σB ∈ (Zp ×G×GT)2,
or one tag and a constant σ, c ∈ ((Zp × G × GT) × Zp). The output of a
gate is a new tag σ′ ∈ (Zp × G × GT), which will be fed into the next gate
in the circuit as one of the two inputs. The operation stops when the final

168 E. Pagnin et al.

gate of f is reached and the resulting tag σHD is returned. A tag has the
format σ(i) = (y(i)

0 , Y
(i)
1 , Ŷ

(i)
2) ∈ Zp × G × GT for i = 1, 2 (indicating the two

input tags), which corresponds respectively to the coefficients of (x0, x1, x2)
in a polynomial. If Ŷ

(i)
2 is not defined, it is assumed that it has value 1 ∈ GT .

Next we define the specific operations for different types of gates:
• Addition. The output tag σ′ = (y0, Y1, Ŷ2) is calculated as:

y0 = y
(1)
0 + y

(2)
0 , Y1 = Y

(1)
1 · Y

(2)
1 , Ŷ2 = Ŷ

(1)
2 · Ŷ

(2)
2 .

• Multiplication. The output tag σ′ = (y0, Y1, Ŷ2) is calculated as:

y0 = y
(1)
0 · y

(2)
0 , Y1 = Y

(1)
1 · Y

(2)
1 , Ŷ2 = e(Ŷ (1)

1 , Ŷ
(2)
1).

Since the circuit f has maximum degree 2, the input tags to a multipli-
cation gate can only have maximum degree 1 each.

• Multiplication with constant. The two inputs are one tag σ and one
constant c ∈ Zp. The output tag σ′ = (y0, Y1, Ŷ2) is calculated as: y0 =
c · y

(1)
0 , Y1 = (Y (1)

1)c, Ŷ2 = (Ŷ (1)
2)c.

BFR+SHE.Ver(vk,PΔ, ctHD, σHD, �d): The verification algorithm computes b ←
BFR.Ver(vk, sk,PΔ, ctHD, σHD, κ) to verify the correctness of the outsourced
computation. In our case of study, PΔ is a multi-labeled program [4] for the
arithmetic circuit for calculating the encrypted HD. The BFR.Ver algorithm
essentially performs two integrity-checks:

ctHD = y0 mod (d + �d) (3)

W = e(g, g)y0 · e(Y1, g)θ · (Ŷ2)θ2
(4)

If the verification output is b = 0 the algorithm returns

(accVC, accHD) = (0, 0).

Otherwise, if b = 1, it proceeds with the biometric authentication check: it
computes w ← SHE.Dec(ct) to retrieve the actual Hamming distance w =
HD(A,B). If HD(A,B) ≤ κ, here κ corresponds to the accuracy of the BAP,
the algorithm returns

(accVC, accHD) = (1, 1).

If HD(A,B) > κ, the output is

(accVC, accHD) = (1, 0).

3.3 Correctness Analysis

In our BFR+SHE scheme the outsourced function is the Hamming distance HD,
that can be represented by a bi-variate deterministic quadratic function. Thus,
we can avoid using gate-by-gate induction proofs, as done in [4], and demonstrate

Revisiting Yasuda et al.’s Biometric Authentication Protocol 169

the correctness in a direct way. In what follows, we adopt the notation in [4],
and we prove the correctness of BFR+SHE by walking through the arithmetic
circuit of HD step by step.

Figure 3 depicts the arithmetic circuit for calculating the encrypted Ham-
ming distance. A and B denote the encrypted stored and fresh biometric tem-
plates respectively. C1 and C2 are the constants in the function as defined in
the BFR+SHE.Comp algorithm. The D letter indicates the −2 in the func-
tion, but since −2 is not in the valid range Zp required by the original BFR
scheme, we need to have an intermediate transformation of D = d − 2. All
A,B,C1 and C2 are in Zd. Finally, the σs are the outcome tags of the form
σ(i) = (y(i)

0 , Y
(i)
1 , Ŷ

(i)
2) ∈ Zp × G × GT after each gate operation, and the Rs

are values in either G or GT, which are used for homomorphic evaluation over
bilinear groups (i.e., GroupEval in [4]).

Fig. 3. The arithmetic circuit
for calculating the encrypted
Hamming distance.

We let α and β be vEnc1(A) and vEnc2(B)
and each of them has a tag: σα = (y(A)

0 , Y
(A)
1 , 1)

and σβ = (y(B)
0 , Y

(B)
1 , 1). These two tags are

generated by the BFR.Auth algorithm, which
specifies that y

(A)
0 = α and Y

(A)
1 = (Rα ·

g−α)1/θ. Similarly, we have y
(B)
0 = β and

Y
(B)
1 = (Rβ · g−β)1/θ. To verify the correct-

ness of our BFR+SHE scheme, we need to check
that the two equations specified in the BFR.Ver
algorithm are satisfied if the computation is
performed correctly. To this end, let σHD =
(y(HD)

0 , Y
(HD)
1 , Ŷ

(HD)
2) be the final tag (which is

equivalent to σ6 in the arithmetic circuit depicted in Fig. 3).
The first step is to derive the tags for the intermediate calculation and even-

tually the final tag. If we run the SHE.Eval algorithm homomorphically through
the circuit, we will get the outcome tags σ1, . . . , σ6 (for details see AppendixA).
We thus derive σHD (equivalent to σ6):

σHD = (y(HD)
0 , Y

(HD)
1 , Ŷ

(HD)
2)

= (C2 · y
(A)
0 + C1 · y

(B)
0 + D · y

(A)
0 · y

(B)
0 ,

(Y (A)
1)y

(B)
0 ·D+C2 · (Y (B)

1)y
(A)
0 ·D+C1 , e(Y (A)

1 , Y
(B)
1)D).

Now we show the proofs for the two verification equations. First we need to
prove Eq. (3), i.e., ctHD = y0 mod (d + �d). The equality holds as for Eq. (2).
The end result is: ctHD = y

(HD)
0 mod d + (� mod d) · (p mod d). As we define

�d = (� mod d) · (p mod d), we can derive Eq. (3). Secondly, we need to prove
that Eq. (4) holds, i.e., W = e(RC2

α · RC1
β , g) · e(Rα, Rβ)D. To this end, we run

GroupEval(f,Rα, Rβ) and execute the bilinear gate operations. Recall that
Rα and Rβ correspond to RA and RB in the notation used in the construction,
Denote by R6 the final result of running GroupEval over the circuit of HD. It

170 E. Pagnin et al.

holds that:

R6 = GroupEval(f,Rα, Rβ) = e(RC2
α · RC1

β , g) · e(Rα, Rβ)D

= GroupEval(f,Rα, Rβ) = e(g, g)yHD
0 · e(Y HD

1 , g)θ · (Ŷ (HD)
2)θ2

By expanding the last expression the desired result (see Appendix A for details).
Thus, we have proved the correctness of the BFR+SHE scheme. which are the
results of the pseudo-random function FK in the BFR.Ver algorithm.

4 Improving the Yasuda et al. Protocol

In this section, we describe a modified version of the Yasuda et al. [23] proto-
col that is secure against the recently identified hill-climbing attack that can be
performed by a malicious computation server CS. It is composed of four dis-
tributed parties: a client C (holding the keys pk, ek and vk), a computation
server/database CS (holding the keys pk and ek), an authentication server AS
(holding the keys pk, sk and vk). In the proposed protocol, we preserve the
assumption that AS is a trusted party and furthermore assume the client C
and the database DB are also trusted parties. C is responsible to manage the
secret key vk for the verifiable computation scheme and DB stores the encrypted
reference biometric templates with the identities of the corresponding clients.
However, CS can be malicious and cheat with flawed computations. We describe
the three main phases of our proposed improvement of Yasuda et al.’s privacy-
preserving biometric authentication protocol:

Setup Phase: In this phase the authentication server AS runs SHE.KeyGen(λ)
to generate the public key pk and the secret key sk of the somewhat homo-
morphic encryption (SHE) scheme. AS keeps sk and distributes pk to both
the client C and the computation server CS.

Enrollment Phase: Upon client registration, the client C runs BFR.
KeyGen(λ) to generate the public evaluation key ek and the secret veri-
fication key vk. C distributes ek to CS and vk to AS. The client C gen-
erates a 2048-bit feature vector A from the client’s biometric data, runs
BFR+SHE.Enc(pk,A, 0) to obtain the ciphertext ctA. C authenticates ctA by
running BFR+SHE.Auth(vk, LA, ctA) and outputs a tag σA. Then C sends
the three-tuple (ID, ctA, σA) to the database. This three-tuple serves as the
reference biometric template for the specific client with identity ID.

Authentication Phase: The client provides fresh biometric data as a feature
vector B ∈ {0, 1}2048. C runs BFR+SHE.Enc(pk,B, 1) to obtain the cipher-
text ctB and authenticates it by running σB ← BFR+SHE.Auth(vk, LB , ctB).
C sends (ID, ctB , σB) to CS, who extracts the tuple (ID, ctA, σA) corresponding
to the client to be authenticated (using the ID as the search key). CS calculates
the encrypted Hamming distance ctHD ← BFR+SHE.Comp(pk, ctA, ctB) and
generates a corresponding tag σHD ← BFR+SHE.Eval(ek, pk, σA, σB). Then,
CS sends (ID, ctHD, σHD) to the authentication server. AS runs (accVC, accHD)

Revisiting Yasuda et al.’s Biometric Authentication Protocol 171

← BFR + SHE.Ver(vk, sk,PΔ, ctHD, σHD, κ), where κ is the desired accuracy
level of the BAP. If either accVC or accHD is 0 AS outputs a no, for authen-
tication rejection. Otherwise, (accVC, accHD) = (1, 1) and AS outputs yes, for
authentication success.

4.1 Security Analysis of the Proposed BAP

Our primary aim is to demonstrate that our privacy-preserving biometric authen-
tication protocol is not vulnerable to Abidin et al.’s template recovery attack
[1]. To this end, we sketch the attack setting in Fig. 4.

Fig. 4. Setting for Abidin et al.’s template recovery attack in [1].

We recall that for this attack, the adversary is a malicious computational
server who tries to recover the stored reference biometric template of a client with
identity ID. All the other parties of the BAP, are trusted and behave honestly.

In what follows, we show that the malicious CS cannot forge a tag σHD′ that
passes the verification checks performed in BFR. It is possible for the adversary to
cheat on the first equality (Eq. (3)) as it only tests that the returned computation
result (ctHD or ctP) aligns with the arithmetic circuit used to generate the tag
(σHD or σHD′). In [1], CS succeeds by computing the arithmetic circuit for the
inner product instead of HD. In this case, it is not possible for the malicious
computational server to fool the second integrity check (Eq. (4)). In details, AS
calculates W = GroupEval(f,Rα, Rβ), and since AS is honest, f = HD is the
arithmetic circuit for the Hamming distance. If CS returns incorrect results, with
overwhelming probability the second verification equation does not hold, thus
the attack is mitigated.

Other Threats. In what follows, we consider attack scenarios in which one of
the participating entities in the BAP is malicious.

Malicious Client. C is responsible to capture the reference template and the
fresh template as well as to perform the encryption. If the client is malicious,
the knowledge of the encryption secret key and of the identity ID enables C to
initiate a center search attack and recover the stored template A as explained

172 E. Pagnin et al.

in [17]. Unfortunately, Pagnin et al. [17] show that this class of attacks cannot
be detected using verifiable computation techniques, since the attacker is not
cheating with the computation.

A new concern with the modified Yasuda et al. protocol is the key genera-
tion for BFR. In the protocol, we let the client C generate the private key vk,
the evaluation key ek and the authentication tags because we assume C is a
trusted party. If C turns malicious, it could give a fake vk to the authentication
server AS and initiate the template recovery attack with the inner product by
simulating CS. Since the adversary (C) controls vk, the computation verification
step becomes meaningless.

Malicious Computation Server. The main motivation to integrate VC in BAPs
is indeed to prevent CS from behaving dishonestly. Unlike the client C, CS only
has access to the encrypted templates vEnc1(A) and vEnc2(B) and the user
pseudonyms. CS cannot modify the secret key of the BFR scheme. We have
analysed how the template recovery attack conducted by CS can be countered
and hence we shorten the discussion here.

In contrast to the original protocol, CS needs to calculate an extra value
�d to solve the range issue after integrating BFR. However, �d is still operated
on the ciphertext level and is not involved in the second verification equation.
Thus learning �d does not provide any significant advantage in recovering the
templates.

Malicious Authentication Server. A malicious AS will completely break down
the privacy of the BAP since it controls the secret key sk used by the SHE
scheme. If AS successfully eavesdrops and obtains the ciphertext vEnc1(A) or
vEnc2(B), it can recover the plaintext biometric templates.

4.2 Efficiency Analysis

The original BFR scheme in [4] allows alternative algorithms to improve the
efficiency of the verifier. Although in our instantiation we did not use these
algorithms, the current definition of the multi-labels in BFR+SHE is extensible.
Given also that the function to be computed is f = HD and has a very simple
description as arithmetic circuit, running the BFR+SHE.Ver algorithm requires
O(|f |) computational time. In addition, if the amortized closed-form efficiency
functionality is adopted, the verification function will run in time O(1). Nonethe-
less, the arithmetic circuit of HD has 6 gates only and the saved computation
overhead would be relatively small.

5 A Flawed Approach

Privacy and integrity are the two significant properties desired in a privacy-
preserving BAP. There are two possible ways to combine VC and homomorphic

Revisiting Yasuda et al.’s Biometric Authentication Protocol 173

encryption (HE): running VC on top of HE, and viceversa, running HE on top of
VC.

In the first case, the data (biometric template) is first encrypted and then
encoded to generate an authentication proof. Our construction of BFR+SHE
follows this principle. In this approach, AS can make the judgement whether
the output of CS is from a correct computation of HD before decrypting the
ciphertext.

In the second case, the data is first encoded for verifiable computation and
then the encoded data is encrypted. This combination is not really straightfor-
ward and is prune to security breaches.

In this section, we demonstrate an attack strategy that may lead to informa-
tion leakage in case the homomorphic encryption scheme (henceforth FHE)1 is
applied on top of a VC scheme. For the sake of generality, we define FHE =
(KeyGenFHE , Enc,Dec,Eval). For verifiable computation scheme we adopt
the notation of Gennaro et al. [11] and define VC = (KeyGenV C , P robGen,
Compute, V er), where KeyGenV C outputs the private key skvc and public key
pkvc; ProbGen takes skvc and the plaintext x as input and outputs the encoded
value σx; Compute takes the circuit f , the encrypted encoded input and outputs
the encoded version of the output; V er is performed to verify the correctness
of the computation given the secret key skvc and the encoded output σy. The
main idea of the flawed approach is to first encode the data in plaintext and
then encrypt the encoded data. It can be represented by x̂ = Enc(ProbGen(x)),
where x̂ is what the malicious server gets access to.

5.1 The Attack

We describe now a successful attack strategy to break the privacy-preservation
property of a BAP built with the second composition method: HE on top of VC
(or HE after VC). The adversary’s goal is to recover σy, i.e., the encoded value
of the computation result. The attack runs in different phases. We show that the
privacy-preserving property is broken if q ≥ n, where q is the number of queries
in the learning phase and n is the length of the encoded result σy. For simplicity
we collect the two entities C and AS into a single trusted party V that we refer
to as the Verifier.

The attack is depicted in Fig. 5, a more detailed description follows.

Setup phase: V generates the keys of the protocol and gives pkvc, pkFHE to A.
Challenge phase: V generates the encoded version σx for the input x. V

encrypts the encoded input and sends Enc(σx) to A.
Learning phase: A uses V as a decryption oracle by sending verification queries,

which can be further divided into the following steps:
1. A performs honest computations and derives the Enc(σy).
2. A constructs a vector A′ ∈ Z

n
2 equal in length to σy. A′ is initialized with

the last bit set to 0 and the rest of the bits set to 1. For the ith trial, we

1 The same leakage of information could happen if a SHE scheme is used.

174 E. Pagnin et al.

Fig. 5. An attack strategy against the näıve the integration of FHE on top of VC.

set A′ = (11, . . . , 0i, 1i+1, . . . , 1n−1, 1n), i.e., set the ith bit to 0 and the
rest bits to 1.

3. A encrypts the tailored vector A′ and reuses the honest result Enc(σy)
from step 1. Then she computes: Enc(σy′) = Enc(A′)�Enc(σy), where �
represents the Hadamard product for binary vectors and sends the result
to V for verification.

4. V decrypts Enc(σ′
y). Thanks to the homomorphic property of FHE, V can

derive σy′ = A′�σy. V checks the computation based on the encoded result
σy′ and returns either accept if V er(sk, σy′) = 1 or reject, otherwise.

5. The attacker A′ acts as a “mask”: it copies all the bit values of σy into
σy′ except for the ith bit, which is always set to zero. Consequently, if
the output of the verification is accept, A will learn that σy = σy′ as well
as Enc(σy) = Enc(σy′), which reveals that the ith bit of σy equals to 0.
Similarly, if the output of the verification is reject, A learns that the ith

bit of σy is 1. In both cases, one bit of σy is leaked.
Output phase: After q ≥ n verification queries, where n equals the length of

σy, A outputs σy′ .

It is trivial to check that that σy′ = σy and thus V er(sk, σ′
y) = V er(sk, σ′

y) = 1
and attacker’s goal is achieved.

The attack demonstrates that the order of combining a VC and a (F)HE is
very crucial: the verifier must decrypt the ciphertext before it can determine
whether it is the result of the correct outsourced computation. Adopting such
a scheme in a BAP would make AS a decryption oracle. Leaking information
on the Hamming distance may be exploited to perform further attacks that

Revisiting Yasuda et al.’s Biometric Authentication Protocol 175

might lead to the full recovery of biometric templates as it has been recently
shown [17]. Formally speaking, we can say that the HE on top of VC is not a
chosen-ciphertext attack (CCA) secure scheme.

6 Conclusions

Biometric authentication protocols have gained considerable popularity for
access control services. Preserving the privacy of the biometric templates is
highly critical due to their irrevocable nature. Yasuda et al. proposed a biomet-
ric authentication protocol [23] using a SHE scheme. However, a hill-climbing
attack [1] has been presented against this protocol that relies on a malicious
internal computation server CS that performs erroneous computations and leads
to the disclosure of the biometric reference template. We counter the aforemen-
tioned attack by constructing a new scheme named BFR+SHE which adds a veri-
fiable computation layer to the SHE scheme. We then describe a modified version
of the Yasuda et al. protocol that utilizes our BFR+SHE scheme, and demon-
strate that the improved BAP provides higher privacy guarantees. Although
employing VC to mitigate hill-climbing attack techniques seems a quite straight-
forward step, we demonstrate that not all combinations of a VC scheme with a
HE one are secure, and show how a näıve combination leads to a drastic private
information leakage in BAP.

Acknowledgements. This work was partially supported by the People Programme
(Marie Curie Actions) of the European Union’s Seventh Framework Programme
(FP7/2007-2013) under REA grant agreement no 608743; the VR grant PRECIS no
621-2014-4845 and the STINT grant “Secure, Private & Efficient Healthcare with wear-
able computing” no IB2015-6001.

A Details in the Correctness Analysis

In this section, we show the intermediate steps of the calculation.
The derived tags are:

σ1 = (C2 · y
(A)
0 , (Y (A)

1)C2 , 1); σ2 = (C1 · y
(B)
0 , (Y (B)

1)C1 , 1);
σ3 = (y(A)

0 · y
(B)
0 , (Y (A)

1)y
(B)
0 · (Y (B)

1)y
(A)
0 , e(Y (A)

1 , Y
(B)
1));

σ4 = (D · y
(A)
0 · y

(B)
0 , (Y (A)

1)y
(B)
0 ·D · (Y (B)

1)y
(A)
0 ·D, e(Y (A)

1 , Y
(B)
1))D;

σ5 = (C2 · y
(A)
0 + C1 · y

(B)
0 , (Y (A)

1)C2 · (Y (B)
1)C1 , 1);

σ6 =

⎛
⎜⎝

C2 · y
(A)
0 + C1 · y

(B)
0 + D · y

(A)
0 · y

(B)
0

(Y (A)
1)y

(B)
0 ·D+C2 · (Y (B)

1)y
(A)
0 ·D+C1

e(Y (A)
1 , Y

(B)
1)D

⎞
⎟⎠

The homomorphic bilinear map calculation results are:

R1 = RC2
α ; R2 = RC1

β ; R3 = e(Rα, Rβ); R4 = e(Rα, Rβ)D;
R5 = RC2

α · RC1
β ; R6 = e(RC2

α · RC1
β , g) · e(Rα, Rβ)D.

176 E. Pagnin et al.

To prove that W = GroupEval(f,Rα, Rβ) satisfies Eq. (4), we start by
analysing the three factors that made up the righthand of the equation, namely:
e(g, g)yHD

0 · e(Y HD
1 , g)θ · (Ŷ (HD)

2)θ2
.We in turn expand each one of the factors and

finally compute the product of the results, evaluating it against W .
The first factor can be expanded as:

e(g, g)yHD
0 = e(g, g)C2·y(A)

0 +C1·y(B)
0 +D·y(A)

0 ·y(B)
0 = e(g, g)C2α+C1β+αβD.

The second factor is expanded as:

e(Y HD
1 , g)θ = e((Y (A)

1)y
(B)
0 ·D+C2 · (Y (B)

1)y
(A)
0 ·D+C1 , g)θ

= e((Rα · g−α)(βD+C2)/θ · (Rβ · g−β)(αD+C1)/θ, g)θ

= e(RβD+C2
α · RαD+C1

β · g−2αβD−αC2−βC1 , g)

= e(Rα, g)βD+C2 · e(Rβ , g)αD+C1 · e(g, g)−2αβD−αC2−βC1 .

The third factor is expanded as:

(Ŷ (HD)
2)θ2

= e(Y (A)
1 , Y

(B)
1)Dθ2

= e((Rα · g−α)1/θ, (Rβ · g−β)1/θ)Dθ2

= e(Rα · g−α, Rβ · g−β)D = e(Rα, Rβ · g−β)D · e(g−α, Rβ · g−β)D

= e(Rα, Rβ)D · e(Rα, g)−βD · e(RB , g)−αD · e(g, g)αβD.

Here we need to prove the right hand side is equal to W . We use a temporary
variable P = e(g, g)yHD

0 · e(Y HD
1 , g)θ · (Ŷ (HD)

2)θ2
to denote the expansion result of

the righthand-side. The expression below proves the correctness of the second
verification Eq. (4).

P = e(g, g)C2·α+C1·β+D·α·β · e(Rα, g)
βD+C2 · e(Rβ , g)

αD+C1 · e(g, g)−2αβD−αC2−βC1 ·
· e(Rα, Rβ)D · e(Rα, g)

−βD · e(RB , g)−αD · e(g, g)αβD

= e(g, g)0 · e(Rα, g)
C2 · e(Rβ , g)

C1 · e(Ra, Rb)
D

= e(RC2
α , g) · e(RC1

β , g) · e(Ra, Rb)
D

= e(RC2
α ·RC1

β , g) · e(Ra, Rb)
D = W.

References

1. Abidin, A., Mitrokotsa, A.: Security aspects of privacy-preserving biometric
authentication based on ideal lattices and ring-LWE. In: Proceedings of the IEEE
Workshop on Information Forensics and Security 2014 (WIFS 2014) (2014)

2. Babai, L.: Trading group theory for randomness. In: Proceedings of STOC 1985,
pp. 421–429. ACM, New York (1985)

3. Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical
and privacy-preserving proofs on authenticated data. In: Proceedings of the 36th
IEEE Symposium on Security and Privacy (Oakland) (2015)

Revisiting Yasuda et al.’s Biometric Authentication Protocol 177

4. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on out-
sourced data. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer
and Communications Security, pp. 863–874. ACM (2013)

5. Barbosa, M., Brouard, T., Cauchie, S., de Sousa, S.M.: Secure biometric authen-
tication with improved accuracy. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP
2008. LNCS, vol. 5107, pp. 21–36. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-70500-0 3

6. Bringer, J., Chabanne, H., Kräıem, F., Lescuyer, R., Soria-Vázquez, E.: Some appli-
cations of verifiable computation to biometric verification. In: 2015 IEEE Interna-
tional Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE
(2015)

7. Bringer, J., Chabanne, H., Patey, A.: Privacy-preserving biometric identification
using secure multiparty computation: an overview and recent trends. IEEE Sig.
Process. Mag. 30(2), 42–52 (2013)

8. Bringer, J., Chabanne, H., Patey, A.: SHADE: Secure HAmming DistancE com-
putation from oblivious transfer. In: Adams, A.A., Brenner, M., Smith, M. (eds.)
FC 2013. LNCS, vol. 7862, pp. 164–176. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-41320-9 11

9. Costello, C., et al.: Geppetto: versatile verifiable computation. In: 2015 IEEE Sym-
posium on Security and Privacy, pp. 253–270. IEEE (2015)

10. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pp. 844–855. ACM (2014)

11. Gennaro, R., Gentry, C., Parno, B.: Non-interactive verifiable computing: outsourc-
ing computation to untrusted workers. In: Rabin, T. (ed.) CRYPTO 2010. LNCS,
vol. 6223, pp. 465–482. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14623-7 25

12. Gentry, C.: A fully homomorphic encryption scheme. Ph.D. thesis, Stanford Uni-
versity (2009)

13. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

14. Kolesnikov, V., Sadeghi, A.-R., Schneider, T.: Improved garbled circuit building
blocks and applications to auctions and computing minima. In: Garay, J.A., Miyaji,
A., Otsuka, A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 1–20. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-10433-6 1

15. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security
Workshop, pp. 113–124. ACM (2011)

16. Pagnin, E.: Authentication under Constraints. Licentiate dissertation, Chalmers
University of Technology (2016)

17. Pagnin, E., Dimitrakakis, C., Abidin, A., Mitrokotsa, A.: On the leakage of infor-
mation in biometric authentication. In: Meier, W., Mukhopadhyay, D. (eds.)
INDOCRYPT 2014. LNCS, vol. 8885, pp. 265–280. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-13039-2 16

18. Pagnin, E., Mitrokotsa, A.: Privacy-preserving biometric authentication: challenges
and directions. IACR Cryptology ePrint Archive 2017:450 (2017)

19. Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifi-
able computation. In: Proceedings of the 2013 IEEE Symposium on Security and
Privacy, pages 238–252. IEEE Computer Society, Washington (2013)

https://doi.org/10.1007/978-3-540-70500-0_3
https://doi.org/10.1007/978-3-540-70500-0_3
https://doi.org/10.1007/978-3-642-41320-9_11
https://doi.org/10.1007/978-3-642-41320-9_11
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-14623-7_25
https://doi.org/10.1007/978-3-642-10433-6_1
https://doi.org/10.1007/978-3-319-13039-2_16

178 E. Pagnin et al.

20. Simoens, K., Bringer, J., Chabanne, H., Seys, S.: A framework for analyzing tem-
plate security and privacy in biometric authentication systems. IEEE Trans. Inf.
Forensics Secur. 7(2), 833–841 (2012)

21. Simoens, K.: A framework for analyzing template security and privacy in biometric
authentication systems. IEEE Trans. Inf. Forensics Secur. 7(2), 833–841 (2012)

22. Stoianov, A.: Cryptographically secure biometrics. In: SPIE 7667, Biometric Tech-
nology for Human Identification VII, p. 76670C–12 (2010)

23. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Practi-
cal packing method in somewhat homomorphic encryption. In: Garcia-Alfaro,
J., Lioudakis, G., Cuppens-Boulahia, N., Foley, S., Fitzgerald, W.M. (eds.)
DPM/SETOP -2013. LNCS, vol. 8247, pp. 34–50. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54568-9 3

https://doi.org/10.1007/978-3-642-54568-9_3

Towards Attribute-Based Credentials
in the Cloud

Stephan Krenn(B), Thomas Lorünser, Anja Salzer, and Christoph Striecks

AIT Austrian Institute of Technology GmbH, Vienna, Austria
{stephan.krenn,thomas.loruenser,christoph.striecks}@ait.ac.at,

anjasalzer3@gmail.com

Abstract. Attribute-based credentials (ABCs, sometimes also anony-
mous credentials) are a core cryptographic building block of privacy-
friendly authentication systems, allowing users to obtain credentials on
attributes and prove possession of these credentials in an unlinkable fash-
ion. Thereby, users have full control over which attributes the user wants
to reveal to a third party while offering high authenticity guarantees to
the receiver. Unfortunately, up to date, all known ABC systems require
access to all attributes in the clear at the time of proving possession of a
credential to a third party. This makes it hard to offer privacy-preserving
identity management systems “as a service,” as the user still needs spe-
cific key material and/or dedicated software locally, e.g., on his device.

We address this gap by proposing a new cloud-based ABC system
where a dedicated cloud service (“wallet”) can present the users’ creden-
tials to a third-party without accessing the attributes in the clear. This
enables new privacy-preserving applications of ABCs “in the cloud.”

This is achieved by carefully integrating proxy re-encryption with
structure-preserving signatures and zero-knowledge proofs of knowledge.
The user obtains credentials on his attributes (encrypted under his
public key) and uploads them to the wallet, together with a specific re-
encryption key. To prove a possession, the wallet re-encrypts the cipher-
texts to the public key of the receiving third party and proves, in zero-
knowledge, that all computations were done honestly. Thereby, the wallet
never sees any user attribute in the clear.

We show the practical efficiency of our scheme by giving concrete
benchmarks of a prototype implementation.

Keywords: Attribute-based credentials
Privacy-preserving authentication · Proxy re-encryption
Implementation

The project leading to this publication has received funding from the European Unions
Horizon 2020 research and innovation programme under grant agreement No 653454
(CREDENTIAL).

c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 179–202, 2018.
https://doi.org/10.1007/978-3-030-02641-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_9

180 S. Krenn et al.

1 Introduction

Privacy-enhancing attribute-based credential systems—originally envisioned by
Chaum [15,16] and, among others, refined by Brands et al. [7,24] and Camenisch
and Lysyanskaya et al. [8,9,11–13]—are a cryptographic primitive enabling user-
centric identity management. They allow for strong user authentication while
still respecting the user’s privacy and giving him full control over the data that
is revealed. In a basic ABC system, a user receives a credential from an issuer,
certifying certain information such as name or date of birth. Later, when the user
wants to authenticate towards a service provider, he can decide which informa-
tion to reveal or to keep private. This can be done in a way that guarantees to
the user that no two actions can be linked to each other even by colluding service
providers and issuers. The importance of such data minimization efforts has been
recognized by the European Commission [17,18] and the US government [26].

In recent years, services have been experiencing a massive trend towards
cloudification. That is, services should be available ubiquitously, preferably with-
out requiring any dedicated software on the end user’s side. However, in all
existing ABC schemes such as [5,7–9,11–13,20,24], presentation of a credential
requires access to the plaintext attributes that have been certified by the issuer.
Thus, a full cloudification would directly subvert the initial motivation of such
systems which aim at protecting the users’ privacy. One would therefore need
key material on the user’s side and perform (parts of) the computation locally1

in order to not leak the attribute values to the cloud provider.
However, this may not be a satisfying solution in different scenarios. From a

computational point of view, just consider a low-cost embedded device such as a
smart card or a sensor that shall be used to authenticate a user or a device to a
service. In this case, it might not be possible to perform expensive computations
(such as pairings or full-length exponentiations, potentially in RSA groups) on
the device with acceptably low delay. Furthermore, from a trust point of view,
it may also not desirable to store key material on the end device that is needed
for authentication, because the device is not fully under the user’s control and
therefore not fully trustworthy. For instance, employees may not wish to store
sensitive key material on a company phone which they are also allowed to use
privately. Or as another example, consider restricted access areas which only
residents are allowed to enter: in this case, users might not wish to store their
secret credentials on a rental car.

In all these cases, a fully cloud-based authentication process still maintaining
the user’s privacy would be preferable due to usability and trust reasons.

Contribution. In this paper, we propose a solution to the problem sketched
before. That is, we consider a setting where the user obtains credentials from
an issuer, and stores those credentials—potentially together with some auxiliary
data—at some central wallet. Authenticating towards a service provider is then

1 Confer, e.g., the experimental service of identity mixer, https://console.ng.bluemix.
net/docs/services/identitymixer/index.html.

https://console.ng.bluemix.net/docs/services/identitymixer/index.html
https://console.ng.bluemix.net/docs/services/identitymixer/index.html

Towards Attribute-Based Credentials in the Cloud 181

done through this central wallet in a way that does not allow the wallet to learn
any information about the attributes that are stored and potentially revealed to
the service provider.

This seemingly contradictory goal is realized by usage of proxy re-encryption,
which allows a semi-trusted party (the proxy) to convert a ciphertext encrypted
under public key pkA of party A to a ciphertext encrypted under pkB of party B
without learning any information about the plaintext data whenever A handed
a re-encryption key rkA→B to the proxy. This re-encryption key is used by the
wallet to compute presentations without requiring sensitive information on the
user’s side for this step.

Our construction allows for re-using credentials, i.e., credentials can be used
for arbitrarily many presentations without becoming linkable, similar to, e.g.,
identity mixer [9,11–13]. The proposed scheme is based on Blaze et al.’s [6]
proxy re-encryption scheme and Abe et al.’s [1] structure-preserving signature
scheme. For the security analysis, we assume a semi-trusted wallet, i.e., we
assume that the wallet does not collude with service providers or issuers.2 We
provide formal security definitions inspired by Camenisch et al. [10] with rigorous
computational-security proofs.

To enrich our basic scheme with advanced functionalities, we explain how it
can be used to support also features such as inspection (i.e., anonymity revoca-
tion in case of abuse), revocation (by the issuer, user, or service provider), or
multi-credential presentations (e.g., for proving possession of an eID and a valid
service subscription by the same user). Furthermore, our scheme guarantees that
any outsider (including issuers or service providers) cannot profile users, as from
their point of view all actions are unlinkable. However, the wallet learns when a
user is authenticating to which service provider, which may leak sensitive meta-
data even though the wallet does not learn the revealed attributes. We therefore
present a straightforward yet practical solution which disables the wallet from
learning which service provider is currently accessed, but only leaks that the
user is authenticating to some service, thereby significantly reducing the level of
leaked information.

Finally, we give concrete benchmarks showing the practical efficiency of our
main construction.

Related Work. Anonymous credential systems were first envisioned by Chaum
[15,16]. Over the last two decades, a large body of protocols and instantiations
have been developed, with the two most prominent being Microsoft’s U-Prove
based on Brands’ signatures [7,24] and IBM’s identity mixer based on CL-
signatures [9,11–13]; other work includes Hanser and Slamanig [20], Camenisch
et al. [8], or Belenkiy et al. [5]. All this work has in common that presenting a
credential requires access to the plaintext attributes of a user. The most com-

2 Note that is a natural and unavoidable assumption as issuers and service providers are
intended to learn (parts of) the attributes, opening a trivial way for the wallet to learn
attributes in the case of collusion.

182 S. Krenn et al.

prehensive definitional framework for ABCs has been presented by Camenisch
et al. [10].

Proxy re-encryption has been introduced by Blaze et al. [6] and has been a
vivid area of research since then, resulting in schemes with different features,
security properties, and underlying complexity assumptions, e.g., [3,4,21,23].

Recently, Sabouri [25] suggested a mobile and install-free architecture based
proxy re-encryption, without providing a formal security analysis of the construc-
tion. Also, this architecture requires the usage of smart cards, which impede the
real-world adoption of the system.

Outline. This document is structured as follows. In Sect. 2, we recap the cryp-
tographic background needed for the rest of the paper. Section 3 contains the
formal syntax and security model. A generic high-level construction is presented
in Sect. 4 and instantiated in Sect. 5. We provide benchmarks of a prototype
implementation in Sect. 7, and then briefly conclude in Sect. 8.

2 Preliminaries

Notation. We declare λ ∈ N to be the security parameter and for n ∈ N, let
[n] := {1, . . . , n}. We denote algorithms by sans-serif letters (A,B, . . .) and sets
by calligraphic letters (R,S, . . .). For a finite set S, s

$← S denotes the process
of sampling s uniformly from S. For an algorithm A, y ← A(λ, x) denotes the
process of running A, on input λ and x, with access to uniformly random coins
and assigning the result to y. We assume that all used algorithms take λ as input
and we will sometimes not make this explicit. An algorithm A is probabilistic
polynomial time (PPT) if its running time is polynomially bounded in λ. A
function f is negligible if ∀c∃λ0∀λ ≥ λ0 : |f(λ)| ≤ 1/λc.

Pairings, DDH Assumption, Commitments, and ElGamal Encryption.
We provide definitions of these well-known preliminaries in the full version.

Proxy Re-encryption (With Additional Properties). A bidirectional
Proxy Re-Encryption (PRE) scheme PRE with message space M consists of the
PPT algorithms (Par,Gen,Enc,ReKey,ReEnc,Dec). Par(λ), on input the secu-
rity parameter λ, outputs system parameter pp. Gen(pp), on input pp, outputs
a public and secret key pair (pk , sk). Enc(pk ,M), on input pk and a message
M ∈ M, outputs a ciphertext C. ReKey(pk , sk , pk ′, sk ′), on input the public-
secret-key pairs (pk , sk , pk ′, sk ′), outputs a re-encryption key rk. ReEnc(rk, C),
on input rk and C, outputs a re-encrypted ciphertext C ′ or ⊥. Dec(sk , C), on
input sk and C, outputs M ∈ M ∪ {⊥}.

For correctness, we require that for all λ ∈ N, for all (pk , sk) ← Gen(λ), for
all M ∈ M, for all C ← Enc(pk ,M), for all (pk ′, sk ′) ← Gen(λ), for all rk ←
ReKey(pk , sk , pk ′, sk ′), for all C ′ ← ReEnc(rk, C), we have that Dec(sk , C) = M
and Dec(sk ′, C ′) = M .

Towards Attribute-Based Credentials in the Cloud 183

Definition 2.1 (PRE-IND-CPA). We say a PRE scheme PRE is PRE-IND-
CPA-secure if for any PPT adversary A, the advantage function

Advpre−ind−cpa
PRE,A (λ) :=

∣
∣
∣
∣
Pr

[

Exppre−ind−cpa
PRE,A (λ) = 1

]

− 1
2

∣
∣
∣
∣

is negligible in λ, where Exppre−ind−cpa
PRE,A is defined as:

Experiment Exppre−ind−cpa
PRE,A (λ)

pp ← Par(λ), (pk , sk) ← Gen(pp)
(�, st) ← A(pp), (pk ′

i, sk
′
i) ← Gen(pp), for all i ∈ [�]

rk′
i ← ReKey(pk , sk , pk ′

i, sk
′
i), for all i ∈ [�]

(M0,M1, st) ← A(st, pk , (pk ′
i, rk

′
i)i∈[�])

b
$← {0, 1}, b∗ ← A(st,Enc(pk ,Mb))

if b = b∗ and |M0| = |M1| then return 1, else return 0

Definition 2.2 (Anonymous PRE). We say a PRE scheme PRE is anony-
mous if for any PPT adversary A, the advantage function Advpre−anon

PRE,A (λ) :=
∣
∣
∣Pr

[

Exppre−anon
PRE,A (λ) = 1

]

− 1
2

∣
∣
∣ is negligible in λ, where Exppre−anon

PRE,A is given as:

Experiment Exppre−anon
PRE,A (λ)

pp ← Par(λ), (pk0, sk1) ← Gen(pp), (pk1, sk1) ← Gen(pp)
(M, st) ← A(pk0, pk1)
b

$← {0, 1}, b∗ ← A(st,Enc(pk b,M))
if b = b∗ then return 1, else return 0

Definition 2.3 (Re-randomization of PRE ciphertexts). A PRE scheme
PRE has the ciphertext re-randomization property if there exists a PPT algorithm
ReRand(pk , C) which, on input of a PRE public key pk and ciphertext C under
pk, outputs a consistent re-randomized ciphertext Ĉ under pk such that Ĉ is
computationally indistinguishable from a uniformly distributed ciphertext in the
image of Enc. More formally, we require Dist[C]

c≈ Dist[Ĉ], for any honestly
generated pk, any M ∈ M, any C ← Enc(pk ,M), and any Ĉ ← ReRand(pk , C).

Definition 2.4 (Re-encryption key verification). A PRE scheme PRE
has the re-encryption-key verifiability property if there is a PPT algorithm
RKVerify(pk , pk ′, sk ′, rk), on input public keys (pk , pk ′), secret key sk ′, and a
re-encryption key rk, outputs a verdict (indicating whether rk is a valid re-
encryption key from pk to pk ′). We require that for all honestly generated
pk , sk , pk ′, sk ′ and rk ← ReKey(pk , sk , pk ′, sk ′), RKVerify(pk , pk ′, sk ′, rk) = 1.

Definition 2.5 (Verify honestly generated PRE public keys). A PRE
scheme PRE has the property of verifying honestly generated public keys if there
exists a PPT algorithm KVerify(pk , sk), on input public and secret keys (pk , sk),

184 S. Krenn et al.

outputs a verdict (indicating whether pk and sk are honestly generated). We
require that for all λ ∈ N, all pp ← Par(λ), all (pk , sk) ← Gen(pp) it holds that
KVerify(pk , sk) = 1.

The above Definition 2.5 is a standard assumption to avoid rogue-key attacks
and can be realized by appending a zero-knowledge proof (see below) to pk ,
showing that the keys are indeed a valid output of the key generation Gen.

The BBS PRE Scheme. In the following, we recap the PRE scheme of Blaze,
Bleumer, and Strauss (BBS) [6], which we will use within our construction and
can be seen as an extension of the ElGamal scheme to the PRE setting. We
formally argue that their scheme is correct, PRE-IND-CPA secure, and exhibits
the anonymous and re-randomization properties. (We only give claims here and
prove them in the full version of the paper due to space constraints.) Further,
the BBS scheme naturally satisfies Definition 2.5 as shown below.

Let PREBBS := (Par,Gen,Enc,ReKey,ReEnc,Dec) be a PRE scheme as fol-
lows. Par(λ) outputs system parameter pp = (g, q) and sets M = G1. (We
assume that (G1, g, q) ← G(λ) are output by some group generator as defined
in the full version of the paper.) Gen(pp) outputs a public and secret key pair
(pk , sk) := ((pp, gx), x), for x

$← Zq. Enc(pk ,M), for (pp, gx) := pk , outputs
a ciphertext C := ((gx)y, gy · M), for y

$← Zq. ReKey(pk , sk , pk ′, sk ′) outputs
a re-encryption key rk = sk ′/sk . ReEnc(rk, C), for (C1, C2) := C, outputs a
re-encrypted ciphertext C ′ := (Crk

1 , C2). Dec(sk , C), for (C1, C2) := C, outputs
M := C2/C

1/sk
1 .

Correctness follows as Dec(sk , C) = M = C2/C
1/sk
1 = gy · M/(gyx)1/x. Note

that this also holds for re-encrypted ciphertexts C ′ since re-encryption implicitly
“changes” the public key (and only the first part) of the ciphertext, i.e., C ′ =
((gx)x′/x, gy · M) which can be decrypted using the corresponding secret key x′.

Claim (PRE-IND-CPA security of PREBBS). Under the DDH assumption,
PREBBS is PRE-IND-CPA-secure for any PPT adversaries A and B with
Advpre−ind−cpa

PREBBS,A
(λ) = AdvddhG,A′(λ).

Claim (Anonymity of PREBBS). Under the DDH assumption, PREBBS is anony-
mous for any PPT adversaries A and B with Advpre−anon

PREBBS,A
(λ) = AdvddhG,A′(λ).

Claim (Re-randomizable ciphertext of PREBBS). The ciphertexts in PREBBS are
re-randomizable.

Regarding RKVerify, it is easy to see that the requested guarantees in Defi-
nition 2.5 can be obtained by checking whether pkrk = pk ′.

Definition 2.6 (Structure-preserving signatures). A signature scheme SIG
with message space M consists of the four PPT algorithms (Par,Gen,Sig,Ver)
as follows. Par(λ), on input the security parameter λ, outputs public parameter
pp. Gen(pp), on input pp, outputs a signing and verification key pair (sk , vk).

Towards Attribute-Based Credentials in the Cloud 185

Sig(sk ,M), on input sk and a message M ∈ M, outputs a signature σ on M .
Ver(vk,M, σ), on input vk, M , and σ, outputs a verdict b ∈ {0, 1} (i.e., it outputs
1 if the signature σ is valid on M , and 0 otherwise).

For correctness, we require for all λ ∈ N, for all pp ← Par(λ), for all
(sk , vk) ← Gen(pp), for M ∈ M, for all σ ← Sig(sk ,M), that Ver(vk,M, σ) = 1
holds. We say, a signature scheme SIG is structure-preserving if the message
space, the verification key, and the signatures are group elements, and the verifi-
cation equations use pairing-product equations in the sense of [1]. We prove the
security (i.e., strong EUF-CMA security) in the full version of the paper.

The AGHO SPS Scheme. The structure-preserving signatures (SPS) scheme
of Abe, Groth, Haralambiev, and Ohkubo (AGHO) is defined (and restricted
to our needs) as follows. Let SIGAGHO = (Par,Gen,Sig,Ver) be a SPS scheme.
The message space M and the public parameter pp (as output by Par) are
given by Gl

1 and (G1,G2,GT, e, g, h, q, l), for q-prime-order groups G1,G2,GT, pair-
ing e : G1 × G2 → GT, generators g ∈ G1, h ∈ G2, and l ∈ N, respectively.
Gen(λ) samples w1, . . . , wl, v, z

$← Zq and outputs vk := (hw1 , . . . , hwl , hv, hz)
and sk := (w1, . . . , wl, v, z). Sig(sk ,M1, . . . ,Ml) samples r

$← Z
∗
q and outputs

σ := (R,S, T) := (gr, gz−rv
∏l

i M−wi
i , h1/r). Ver(vk,M1, . . . ,Ml, σ), for vk =

(W1, . . . ,Wl, V, Z) and σ = (R,S, T), outputs 1 if e(R, V) e(S, h)
∏l

i e(Mi,Wi) =
e(g, Z) and e(R, T) = e(g, h) is satisfied, otherwise 0.

The correctness is easy is verify when one considers the exponent equations,
i.e., rv + (z − rv) − (w1 + · · · + wl) + (w1 + · · · + wl) = z and r/r = 1. Abe et
al. proved (strong) EUF-CMA-security in the generic group model [1]:

Corollary 2.7 ([1]). SIGAGHO is strongly EUF-CMA-secure in the generic
group model. (We give the strong EUF-CMA security model in the full version
of the paper.)

Zero-Knowledge Proofs of Knowledge. Zero-knowledge proofs of knowl-
edge allow one party (the prover) to convince another party (the verifier) that
he knows some secret piece of information without revealing anything about the
secret except for what has already been revealed by the claim itself.

Definition 2.8 (ZKP). A zero-knowledge proof (ZKP) system ZKP for a lan-
guage L (with PPT witness relation R) consists of PPT algorithms (Gen,Prove,
Verify). Gen(λ), on input security parameter λ, outputs a common reference
string (CRS) crs. Prove(crs, x, w), on input crs, a word x ∈ L, and a witness w
for x, outputs a proof P . Verify(crs, x, P), on input crs, x ∈ L, and P , outputs
a verdict b ∈ {0, 1} (i.e., it outputs 1 if the proof P is valid on x under crs, and
0 otherwise).

For correctness, we require that for all λ ∈ N, all crs ← Gen(λ), all x ∈ L,
all P ← Prove(crs, x, w), it holds that Verify(crs, x, P) = 1. We give the zero-
knowledge and (simulation-)soundness properties in the full version.

186 S. Krenn et al.

In this paper, we use the standard notation introduced by Camenisch and
Stadler [14] to specify proof goals. In particular, an expression like ZKP

[

(α, β, γ) :
y1 = gαhβ ∧ y2 = yγ

1hβ
]

specifies a zero-knowledge proof of knowledge proving
knowledge of values α, β, γ such that the expression on the right-hand side is
satisfied. We follow the convention that knowledge of variables denoted by Greek
letters is to be proven, while all other values are supposed to be publicly known.
(For more details on zero-knowledge proofs, we refer to the full version of the
paper.)

3 Encrypted Attribute-Based Credentials

In this section, we introduce and give formal definitions for Encrypted Attribute-
Based Credentials (EABCs).

Participants and Attack Model of EABCs. Within EABCs, we con-
sider four (types of) participants: users, issuers, a (central) wallet, and ser-
vice providers. Each participant except the wallet is in possession of its own
public and secret key material, i.e., (pkU, skU), (pkI, skI), (pkS, skS), respectively,
which are the output of the EABC key generation algorithm. The user possesses
attributes (ai)i (e.g., name or date of birth) and engages in an issuance pro-
tocol with an issuer (e.g., to certify the name or date of birth). At the end of
each invocation of the issuance protocol, the user outputs a credential C on the
attributes (ai)i. The intention of the user (associated to pkU) is to share some
of the attributes with a service provider (associated to pkS) via the wallet in a
selectively disclosed and authenticated manner. Therefore, the wallet holds the
user-provided credential C on the attributes (ai)i and specific transformation
information tU→S. (We stress that the wallet is not able to learn any attributes
in the plain at any time.) The wallet and the service provider engage in a pre-
sentation protocol to disclose specific user attributes (a′

i)i (which are a subset
of (ai)i) from a user’s credential C to the service provider.

We need that the wallet and the service providers or issuers are not allowed
to collude, i.e., both do not share any (secret) material which is only intended
to be received by only one of them. Furthermore, we assume that the wallet is
semi-trusted in the sense that it follows the protocol specifications. Otherwise,
the adversary may behave arbitrarily malicious.

Syntax of EABCs. An EABC system EABC with attribute space A con-
sists of the PPT algorithms (Par,GenI,GenU,GenS,Trans) and (User, Issuer,
Wallet,Service) specified in the following.

Parameter, key, and transformation generation. Par(λ), on input secu-
rity parameter λ, outputs system-wide parameter sp. GenI(sp),GenU(sp),
and GenS(sp), on input sp, outputs public and secret key pairs
(pkI, skI), (pkU, skU), and (pkS, skS), respectively. Trans(pkU, skU,pkS, skS), on
input public and secret key pairs (pkU, skU,pkS, skS), outputs a transforma-
tion information tU→S.

Towards Attribute-Based Credentials in the Cloud 187

Issuance protocol. The issuance protocol
〈

User[pkU, skU,pkI, (ai)i∈[�],D], Issuer[pkI, skI, (ai)i∈D,D]
〉

,

for inputs the public and secret keys (pkI, skI,pkU, skU), a list of attributes
(ai)i∈[�], with � ≤ |A|, and index set D, outputs a credential C.

Presentation protocol. The presentation protocol

〈Wallet[C,pkU,pkS,pkI, tU→S, R],Service[pkS, skS,pkI, R]〉 ,

for inputs credential C as well as public and secret keys pkU, skU,pkS, skS,pkI,
transformation information tU→S, and index set R, outputs a list of attributes
(a)i∈R or ⊥.

We follow the correctness and security definitions from Camenisch et al. [10]
aligned to our features and setting. For correctness, we require for all λ ∈ N,
all sp ← Par(λ), all (pkI, skI) ← GenI(sp), all (pkU, skU) ← GenU(sp), all
(pkS, skS) ← GenS(sp), all tU→S ← Trans(pkU, skU,pkS, skS), all 〈C,⊥〉 ←
〈

User[pkU, skU,pkI, (ai)i∈[�],D], Issuer[pkI, skI, (ai)i∈D,D]
〉

, that 〈⊥, (a′
i)i∈R〉 =

〈Wallet[C,pkU,pkS,pkI, tU→S, R],Service[pkS, skS,pkI, R]〉 for (a′
i)i∈R = (ai)i∈D

holds.

Unforgeability for EABC. A EABC scheme EABC is unforgeable if any PPT
adversary A succeeds in the following experiment only with negligible probability.
The experiment generates key material for an honest issuer (pk∗

I , sk
∗
I) and an

honest service provider id∗
S as (pkS

∗, skS
∗) and hands the public keys to the

adversary A, who is then given access to the following oracles:

Issuer oracle. The oracle Issuer′((ai)�
i=1,D,pkU, skU), on input � attributes

(ai)�
i=1, index set D, and user public and secret key (pkU, skU), outputs a

credential C (and, hence, simulates an issuance protocol for honest issuer
associated with pk∗

I and user associated with pkU). Before sending its last
message in a successful issuance protocol, the oracle adds (ai)i∈D to the ini-
tially empty list L managed by the experiment.

User-credential oracle. User′(idU, (ai)i∈[�],D), on input of user id idU,
attributes (ai)i∈[�], and index list D, will output a handle hC,idU

on user
credential C for user idU. If idU is entered the first time, the oracle generates
a new key pair (pkU, skU) for the user which it uses in the following, otherwise
it reuses the already existing key pair for idU (where ids and keys are main-
tained by the oracle). Internally, User′ obtains a credential from the honest
issuer (with public key pk∗

I) for idU.
User-transformation information oracle. Trans′(idU, idS), on input user

and service-provider ids idU and idS, respectively, outputs a transformation
information tU→S. (Internally, required public and secret keys (pkU, skU) or
(pkS, skS) are generated and maintained.)

User-presentation oracle. User′′(hC,idU
, idS, R), on input a handle hC,idU

on
credential C for user idU, a service provider id idS, and an index set R, outputs
a presentation pC,idU

. If the service provider associated with idS is first used

188 S. Krenn et al.

for the given user idU, Trans′(idU, idS) is queried internally to obtain the
required transformation information tU→S. (Again, required keys for service
providers and users are maintained by the oracle).

Service-provider oracle. Service′(pC,idU
,pkI∗, idS), on input pC,idU

, outputs 1
if pC,idU

is a valid presentation under pk∗
I for idS (i.e., for all (ai)i∈D ∈ L

there exists an index j ∈ D ∩ R∗ such that aj �= a∗
j), else output 0.

The experiment ends when the adversary presents a specially labeled pre-
sentation p∗ for honest issuer associated with pk∗

I with index set R∗ of revealed
attributes (a∗

i)i∈R∗ to the service-provider oracle Service′. We now require that
no PPT adversary can, with more than negligible probability, come up with a
valid presentation p∗ under pk∗

I and pkS
∗.

Note that in this definition the adversary canonically takes the role of mali-
cious users as well as the functionality of the wallet for those, and it is thus not
necessary to consider the wallet as a separate entity in the game. More formally:

Definition 3.1 (Unforgeability). We say a EABC scheme EABC is unforge-
able if for any PPT adversary A, the advantage function

AdvunforgeEABC,A(λ) :=
∣
∣
∣Pr

[

ExpunforgeEABC,A(λ) = 1
]∣
∣
∣

is negligible in λ, where ExpunforgeEABC,A is given below:

Experiment ExpunforgeEABC,A(λ)
sp ← Par(λ), (pk∗

I , sk
∗
I) ← GenI(sp), (pkS

∗, skS
∗) ← GenS(sp)

associate id∗
S with (pkS

∗, skS
∗)

p∗ ← AIssuer′,User′,Trans′,User′′,Service′
(pk∗

I ,pkS
∗)

if Service′(p∗,pk∗
I , id

∗
S) = 1 then return 1, else return 0

Unlinkability. An EABC scheme EABC is unlinkable if any PPT adversary
A succeeds in the following experiment only with probability negligibly larger
than 1/2. The experiment samples key material for two target users (pk (0), sk (0))
and (pk (1), sk (1)), and passes the public keys (pk (0), pk (1)) to A. During the
experiment, A has access to target-user credential and a presentation oracles as
follows:

Credential oracle. Cred(id({0,1})
U , (ai)�

i=1,D,pkI), on input user id id
(0)
U or id

(1)
U

associated to the target public keys, attributes (ai)�
i=1, index-set D, and issuer

ID idI, outputs a credential C; while the oracle stores (idU, (ai)�
i=1) in an

initially empty list L. (If there are no key material associated with the ids,
the oracle internally creates it using the key generation algorithm GenI.)

Presentation oracle. Present(C
id

({0,1})
U

, idI, idS, R), on input credential CidU

for target-user id id
({0,1})
U , issuer and service provider IDs (idI, idS), and index

set R, outputs a presentation p
C,id

({0,1})
U

. (Again, if key material for idS or
transformation information tU→S is needed, the oracle generates it.)

Towards Attribute-Based Credentials in the Cloud 189

Eventually, the adversary outputs credentials C0 under pk (0) and C1 under
pk (1), issuer and service-provider ids (idI, idS), and index set R such that
(a∗

0,i)i∈R = (a∗
1,i)i∈R where (pk∗

0, (a
∗
0,i)

�
i=1) and (pk∗

1, (a
∗
0,i)

�
i=1) are in L. The

experiment tosses a coin b ∈ {0, 1} and queries the presentation oracle with
(Cb, id

∗
I , id

∗
S, R

∗). Eventually, the adversary outputs a guess on b. We require
that every PPT adversary guesses b∗ with probability at most negligibly larger
than 1/2. Note again that in this definition it is not necessary to consider the wal-
let as a separate entity, but it would be internally simulated in the presentation
oracle. More formally:

Definition 3.2 (Unlinkability). We say a EABC scheme EABC is unlinkable
if for any PPT adversary A, the advantage function

AdvunlinkEABC,A(λ) :=
∣
∣
∣Pr

[

ExpunlinkEABC,A(λ) = 1
]∣
∣
∣

is negligible in λ, where ExpunlinkEABC,A is given below:

Experiment ExpunlinkEABC,A(λ)
sp ← Par(λ), (pk (0), sk (0)) ← GenU(sp), (pk (1), sk (1)) ← GenU(sp)
associate id

(0)
U and id

(1)
U to pk (0) and pk (1), respectively

(C0, C1, idI, idS, R), st) ← ACred,Present(pk (0), pk (1))
b

$← {0, 1}, p∗ ← Present(C
id

(b)
U

, idI, idS, R)

b∗ ← ACred,Present(st, p∗)
if b = b∗ then return 1, else return 0

Wallet-Privacy. An EABC scheme EABC is private towards the wallet if any
PPT adversary A succeeds in the following experiment only with probability
negligibly larger than 1/2. The experiment samples target-user key material
(pk∗, sk∗) ← GenU(sp) and provides the adversary A with the pkU

∗. During the
experiment, A has access to a credential oracle:

Credential Oracle. Cred((ai)�
i=1,D, idI), on input attributes (ai)�

i=1, index set
D, and issuer id idI, outputs a credential C under pk∗. (Implicitly, needed
key material will be created.)

Further, A sends attribute-lists (a(0)
i)�

i=1, (a
(1)
i)�

i=1 with (a(0)
i)i∈D = (a(1)

i)i∈D,
an index set D, and an issuer public key id∗

I to the experiment. The experiment
tosses a coin b

$← {0, 1} and sends a credential C∗ on (a(b)
i)�

i=1, D, and id∗
I to A.

(Implicitly, the experiment engages in an issuance protocol with A.) Eventually,
A outputs a guess on b. We require that every PPT adversary guesses b with
probability at most negligibly larger than 1/2. More formally:

Definition 3.3 (Wallet-privacy). We say a EABC scheme EABC is private
with regard to the wallet if for any PPT adversary A, the advantage function

Advwallet−privacy
EABC,A (λ) :=

∣
∣
∣Pr

[

Expwallet−privacy
EABC,A (λ) = 1

]∣
∣
∣

190 S. Krenn et al.

is negligible in λ, where Expwallet−privacy
EABC,A is given below:

Experiment Expwallet−privacy
EABC,A (λ)

sp ← Par(λ), (pk∗, sk∗) ← GenU(sp)
(a(0)

i)�
i=1, (a

(1)
i)�

i=1,D,pk∗
I , st) ← ACred(pk∗) with (a(0)

i)i∈D = (a(1)
i)i∈D

b
$← {0, 1}, C∗ ←

〈

User[pk∗, sk∗,pk∗
I , ((a

(b)
i)�

i=1,D],A[st,pk∗
I , (a

(b)
i)i∈D,D]

〉

b∗ ← ACred(st, C∗)
if b = b∗ then return 1, else return 0

4 A Generic Construction

We now define our generic EABC system EABC with PPT algorithms
Par,GenI,GenU,GenS,Trans as well as protocol participants User, Issuer,Wallet,
and Service. The system uses a proxy re-encryption scheme PRE =
(ParPRE,GenPRE,ReKeyPRE,EncPRE,ReEncPRE,DecPRE), a commitment scheme
COM = (ParCOM,ComCOM,OpenCOM), and a signature scheme SIG =
(ParSIG,GenSIG,SigSIG,VerSIG), all defined as in Sect. 2 and in the full version.
Concerning the message spaces, we assume that PRE’s message space MPRE is
set to the attribute space A, COM’s message space MCOM includes all possible
public keys of PRE, and SIG’s message space MSIG includes all possible �-length
PRE ciphertexts (for � ≤ |A|) and all possible COM commitments, respectively.

Parameter and Key Generation. First, a trusted third party generates the
system parameters sp ← Par(λ) and the attribute space A as well as length
parameter � ≤ |A| (depending on λ), obtains ppPRE ← ParPRE(λ), ppCOM ←
ParCOM(λ), and ppSIG ← ParSIG(λ), and outputs sp := (sp, ppPRE, ppCOM, ppSIG);
which in practice can be realized using multi-party techniques. (We assume that
sp determines A and is implicitly available to each protocol participant.) Further,
each participant generates its key material using the appropriate key generation
algorithm of EABC as follows. Each user U samples (pkU, skU) ← GenU(sp),
where GenU internally obtains (pkU,PRE, skU,PRE) ← GenPRE(ppPRE) and outputs
(pkU, skU) := ((pkU,PRE, ppCOM), skU,PRE). Each issuer I generates (pkI, skI) ←
GenI(sp), where internally GenI samples (skSIG, vkSIG) ← GenSIG(ppSIG) and out-
puts (pkI, skI) := (vkSIG, skSIG). Each service provider S computes (pkS, skS) ←
GenS(sp), where GenS internally obtains (pkS,PRE, skS,PRE) ← GenPRE(ppPRE) and
outputs (pkS, skS) := (pkS,PRE, skS,PRE).

Issuance. The user U encrypts its the attributes (ai)�
i=1, for integer � ≤ |A|,

under its PRE public key pkPRE using EncPRE to obtain a ciphertext ci and
ri, where ri are the random coins used in Enc. (Note that the output of the
random encryption coins is slightly different to the encryption syntax of PRE,
but straightforward to achieve.) Further, U computes a commitment and an

Towards Attribute-Based Credentials in the Cloud 191

opening to pkU,PRE as (com,w) ← Com(ppCOM, pkU,PRE). The ciphertexts (ci)�
i=1

and com are sent to the issuer I. U and Iengage in a ZKP sub-protocol where
U shows that he is in possession of honestly generated PRE public and secret
keys (πU, ξ) (via KVerify(πU, ξ) = 1), consistent user attributes (αi)i/∈D in A,
consistent random coins used during encryption (ρci)

�
i=1, and a valid opening o

for com (and, thus, to πU) via Ver(com, πU, o) = 1. Further, Icomputes a signature
σ ← SigSIG(skI, (ci)�

i=1, com) under the issuer’s public key pkI on the ciphertexts
(ci)�

i=1 and on the commitment com, and sends σ to U. Then, U outputs the
credential (ci)�

i=1, σ, com,w, and auxiliary data aux.

User[pkU, skU, (ai)
�
i=1, pkI, D] Issuer[pkI, skI, (ai)i∈D]

(pkU,PRE, ppCOM) := pkU
(ci, rci) ← EncPRE(pkU,PRE, ai) ∀i ∈ [�]
(com, w) ← ComCOM(ppCOM, pkU,PRE)

(ci)
�
i=1,com �

ZKP

[

(πU,ξ,(αi)i�∈D,(ρci
)�
i=1,o):KVerify(πU,ξ)=1∧VerCOM(com,πU,o)=1

∧

i∈D ci=EncPRE(πU,ai;ρci
)∧∧

i�∈D(ci=EncPRE(πU,αi;ρci
)∧αi∈A)

]

�

(skSIG, vkSIG) := skI
σ ← SigSIG(skSIG, ((ci)

�
i=1, com))

σ�
Output: C = ((ci)

�
i=1, σ, com, w), aux

Protocol 4.1: Issuance for the generic construction: an honest user would use the
following witnesses in the ZKP: (pkU,PRE, skU, (ai)i/∈D, (rci)

�
i=1, w)

Presentation. The presentation phase of EABC is given in Protocol 4.2. The
wallet receives as input the credential C, auxiliary input aux, the user and service
provider public keys pkU and pks, transformation information tU→S, issuer public
key pkI, and index set R. The wallet re-randomizes and afterwards re-encrypts
the ciphertexts (ci)i∈R using ReRand and ReEncPRE with tU→S = rkU→S, respec-
tively, to obtain (di)i∈R. (Again, note the output the random coins is slightly
different to the encryption syntax of PRE, but straightforward to achieve.) Fur-
ther, the wallet sends those ciphertexts to the service provider S. Both, the
wallet and I agree on an index set R beforehand and the valid re-encryption
key is received as the result of a joint re-encryption-key computation by user
U and S with tU→S := rkU→S ← ReKey(pkU,PRE, skU,PRE, pkS,PRE, skS,PRE). The
wallet further engages in a ZKP protocol to show that it is in possession of
a signature σ on the original ciphertexts (γi)�

i=1 and on a ψ-commitment, a
public key πU, re-randomized ciphertexts (ĉi)i∈R for random coins (ρĉi)i∈R, re-
encryption coins (ρdi

)i∈R used in ReEncPRE, a consistent re-encryption key ξ
(via RKVerify(πU,pkS, skS, ξ) = 1), and a commitment-opening pair (ψ, o) via
VerCOM(ψ, πU, o) = 1. The service provider decrypts the received ciphertexts
(di)i∈R and outputs the attributes (ai)i∈R for (ai := Dec(skSIG, di))i∈R.

192 S. Krenn et al.

Wallet[C, aux, pkU, pkS, tU→S, pkI, R] Service[pkS, skS, pkI, R]

(pkU,PRE, ppCOM) := pkU
rkU→S := tU→S
(ĉi, rĉi

) ← ReRand(pkU,PRE, ci) ∀i ∈ R
(di, rdi

) ← ReEnc(rkU→S, ĉi) ∀i ∈ R
(di)i∈R �

ZKP

[

(σ,πU,(γi)
�
i=1,(γ̂i,ρĉi

,ρdi
)i∈R,ξ,ψ,o):VerSIG(pkI,((γi)

�
i=1,ψ),σ)=1∧VerCOM(πU,o)=1∧

∧

i∈R

(

γ̂i=ReRand(πU,γi;ρci
)∧di=ReEncPRE(γ̂i,ξ;ρdi

)
)

∧RKVerify(πU,pkS,ξ)=1

]

�

skSIG := skS
ai := DecPRE(skSIG, di) ∀i ∈ R

Output: (ai)i∈R

Protocol 4.2: Presentation for the generic construction. An honest wallet would use
the following witnesses in the ZKP: (σ, pkU,PRE, (ci)�i=1, (ĉi, rĉi , rdi)i∈R, rkU→S, com, w)

Theorem 4.3. Let PRE be an anonymous and re-randomizable PRE scheme,
COM a commitment scheme, SIG a signature scheme, and ZKP a ZKP scheme
in the sense of Sect. 2, then EABC is an EABC scheme in the sense of Sect. 3
against semi-trusted wallets.

The proof can be found in AppendixA.

Semi-generic Constructions. In the full version, we give a semi-generic con-
struction that uses the BBS PRE scheme [6] and a commitment scheme explicitly.

5 A Concrete Instantiation

In this section, we describe a concrete EABC instantiation EABCBBS,AGHO based
on the BBS proxy re-encryption scheme [6] and the structure-preserving sig-
nature scheme by Abe et al. [1]. The resulting EABC scheme with multi-show
credentials is secure in the generic group model against semi-trusted wallets.

The system parameter are chosen as sp = (G1,G2,GT, q, e, g, y, z, λ, �), for
pairing groups G1,G2,GT with sufficiently large prime order q, pairing e, genera-
tors g, y, z

$← G1 such that DDH holds in G1 (all depending on λ), and number of
attributes �. Implicitly, one can see y, z as a parameter of the underlying commit-
ment scheme (where the discrete logarithm logy(z) is only known with negligible
probability), and g as a parameter for the underlying PRE scheme. Further, the
user and the service provider invoke the Gen-algorithm of PRE with the system
parameter sp to obtain (pkU, skU) and (pkS, skS), respectively. In the BBS proxy
re-encryption scheme, public keys are group elements pkU = (g, gskU), for a secret
key skU ∈ Zq.) The issuer runs GenSIG of Abe et al.’s signature scheme to obtain
pkI = (V,Z, (Wi)2�+2

i=1) and skI = (v, z, (wi)2�+2
i=1).

Towards Attribute-Based Credentials in the Cloud 193

Issuance. The issuance phase is depicted in Protocol 5.1. The user computes an
BBS-encryption of the neutral element in G1 as c0 = (c01, c02) = (ge,pkU

e), for
e

$← Zq. Further, the user creates ciphertexts by computing ci := (cri
01, aic

ri
02), for

all attributes (ai)�
i=1 and random coins ri

$← Zq, and sends (ci)i/∈D, c0, (ri)i∈D

and a ZKP of knowing the secret key skU to the issuer. The issuer can check for
all disclosed attributes (ai)i∈D that the ciphertexts are consistent (since it knows
the encryption randomness). Further, the issuer computes an Abe et al.-signature
σ on the list of ciphertexts ((ci)�

i=1, c0) and sends σ to the user. Eventually, the
user outputs the credential ((ci)�

i=1, σ, c0, e, ε).

User[pkU, skU, (ai)
�
i=1, pkI, D] Issuer[pkI, skI, (ai)i∈D]

c0 = (ge, pkU
e) for e

$← Zq

ci = (c
ri
01, aic

ri
02) for ri

$← Zq , ∀i ∈ [�]
(ci)i/∈D,c0,(ri)i∈D �

ZKP
[

(ξ):c02=c
ξ
01

]

�

ci = (c
ri
01, aic

ri
02) ∀i ∈ D

r
$← Zq \ {0}, R = Gr, T = H(r−1)

S = Gz−rv
∏�

i=1(c
−w2i−1
i1 c

−w2i
i2)c

−w2�+1
01 c

−w2�+2
02

σ = (R, S, T)
σ�

Output: C = ((ci)
�
i=1, σ, c0, e), ε

Protocol 5.1: Multi-show credentials from the BBS proxy re-encryption and Abe et
al.’s signature schemes: Issuance. An honest user would set ξ = e.

Presentation. The presentation phase is depicted in Protocol 5.2. We assume
that the user and the service provider have jointly computed a re-encryption key
rkU→S (via ReKey) in the sense of BBS beforehand. The wallet re-randomizes
the ciphertexts consistently for the attributes going to be revealed (i.e., speci-
fied by R) and inconsistently for all others. Then, rkU→S is used to re-encrypt
all consistent ciphertexts to obtain (di)i∈R. Further, commitments to rkU→S,
rkU→Se, and (rkU→Sfi)i∈R are computed as k = yrkU→Szb, k′ = yrkU→Sezb′

, and
(ki = yrkU→Sfizbi)i∈R, for exponents b, b′, (bi)i∈R

$← Zq, respectively. Finally,
T̂ = T−x, for exponentx $← Zq, is computed. All re-randomizations (ĉi)�

i=1,
all re-encryptions (di)i∈D, k, k′, (ki)i∈R, and T̂ as well as the ZKP are sent to
the service provider. The service provider decrypts the ciphertexts (di)i∈R and
outputs the revealed attributes (ai)i∈R.

Lemma 5.3. EABCBBS,AGHO above is an EABC scheme in the sense of Sect. 3
in the generic group model for semi-trusted wallets.

194 S. Krenn et al.

Wallet[C, ε, pkU, pkS, tU→S, pkI, R] Service[pkS, skS, pkI, R]

ĉi = (ci1gfi , ci2pkU
fi) for fi

$← Zq , ∀i ∈ R

ĉi = (ci1gvi , ci2gwi) for vi, wi
$← Zq , ∀i /∈ R

di = (ĉ
rkU→S
i1 , ĉi2), ∀i ∈ R

b
$← Zq , k = yrkU→Szb

b′ $← Zq , k′ = yrkU→Sezb′

bi
$← Zq , ki = yrkU→Sfizbi , ∀i ∈ R

T̂ = T −x for x
$← Zq

(ĉi)
�
i=1,(di)i∈R,k,k′,(ki)i∈R,T̂ �

ZKP

[

((σ1,σ2,χ),(φi,βi,γi,θi)i∈R,(νi,ωi)i/∈R,α,β,β′,θ′,ξ,η):

e(σ1,V) e(σ2,H)
∏

i∈R

(

e(g,W2i−1)
−φi e(pkS,W2i)

−γi
)

∏

i/∈R(e(g,W2i−1)
−νi e(g,W2i)

−ωi)·
e(g,W2l+1)

η e(pkS,W2l+2)
α=e(G,Z)

∏�
i=1(e(ĉi1,W2i−1) e(ĉi2,W2i))

−1∧

e(σ1,T̂) e(G,H)χ=1∧k′=yαzβ′ ∧k′=kηzθ′ ∧k=yξzβ∧∧

i∈R

(

ki=yγi zβi ∧ki=kφi zθi ∧di1=ĉ
ξ
i1

)
]

�

skS,PRE := skI
ai = Dec(skS,PRE, di) ∀i ∈ R

Output: (ai)i∈R

Protocol 5.2: Multi-show credentials from Blaze’s proxy re-encryption and Abe et
al.’s signature schemes: Presentation. An honest user would use the following

witnesses in the ZKP:
((R, S, x), (fi, bi, rkU→Sfi, bi − bfi)i∈R, (vi, wi)i�∈R, rkU→Se, b, b

′, b′ − be, rkU→S, e)

Proof. This lemma readily follows from the properties of the BBS and AGHO
schemes from Sect. 3 and Theorem 4.3.

We want to stress that the used re-encryption scheme by Blaze et al. is
sufficient for our purposes, and no more advanced schemes (e.g., by Ateniese et
al. [4]) are needed here. Namely, the used scheme would become insecure if wallet
and service providers colluded, as they could jointly recover the user’s secret key
skU from rkU→S and skS. However, this collusion is excluded by definition, as the
two parties could also completely break the users privacy without recovering the
key but by simply re-encrypting and decrypting the attributes, independent of
the scheme being used.

6 Extensions

Our construction can easily be extended to cover most features that are also
supported by existing schemes like idemix and U-Prove. In the following, we
sketch how some of the more important features can be realized.

Revocation. A core functionality that is needed in almost every practical cre-
dential system is revocation. That is, the owner of a credential (and potentially
the issuer) should have the possibility to invalidate a credential, e.g., in case of

Towards Attribute-Based Credentials in the Cloud 195

identity theft or abuse. Our scheme can easily be extended to support revoca-
tion as follows: during issuance, the user and the issuer agree on a revocation
handle h ∈ Zq, and the user computes a Pedersen commitment comh = yhzr for
some r

$← Zq, which it gets signed by the issuer together with all the cipher-
texts and its public key. The user then hands comh, h, and r to the wallet; note
that this does not cause a privacy problem towards the wallet, as the revocation
handle does not contain any sensitive information. For presentation, the wallet
then gives a re-randomization of comh to the service provider. Similar to the
re-randomization of ciphertexts, it then proves that this computation was done
honestly, and that the unrevealed revocation handle contained in the commit-
ment has not been revoked before. The latter can be done very efficiently using
existing schemes found in the literature, e.g., Nakanishi et al. [22], where also
the algebraic setting would be directly compatible with our construction.

Multi-credential Presentations and Attribute Equality. Sometimes it is
necessary to prove possession of multiple credentials in one presentation. For
instance, a service provider might request that a user possesses a valid subscrip-
tion to its service and an electronic identity card proving a certain age. Again,
this can directly be achieved by our scheme by simply merging the respective
zero-knowledge proofs and proving that the two credentials were issued to the
same pkU. This can be achieved by showing that the same values have been used
for ξ and η in the zero-knowledge proof. As during issuance, a user must prove to
the issuer knowledge of the secret key corresponding to pkU, the service provider
is then assured that both credentials have indeed be issued to the same user.

Inspection. Anonymity might often lead to abuse by malicious users. It is
therefore often required that a dedicated party or judge has the possibility to
reveal the identity of an owner of a credential. Similar to related work, this
can be done by letting the issuer sign a unique identity of the user, and then
extending the zero-knowledge proof for presentations by an encryption of this
identity under the judge’s public key. This can be realized by letting the user
deposit the re-encryption key from his public key to the judge’s public key in
the wallet. In analogy to the proofs for revealed attributes, the wallet then re-
encrypts the identity for the judge and proves that this was done correctly.

6.1 Metadata Privacy

All constructions presented so far prevent the wallet from learning the plain text
attributes certified in a credential, and give high unlinkability guarantees to a
user. However, they do not hide usage patterns of specific credentials from the
wallet. This in turn can be potentially valuable metadata, as information like
frequency may reveal sensitive information (e.g., frequent access to an eHealth
service may leak other information than frequent access to a video streaming
service).

196 S. Krenn et al.

In the following we sketch a solution how to reduce the metadata leaked to
the wallet by hiding to which service one is authenticating. The solution works
for non-interactive presentations as our concrete instantiation specified above.
On a high level, the user lets the wallet compute presentation tokens for defined
policies (i.e., set D, etc.) for a set of service providers, and the service provider
obtains the correct token running a private information retrieval protocol with
the wallet. More precisely, the protocol looks as follows:

1. The user defines presentation policies pp1, . . . , ppn for all service providers
among which the presentation should be undistinguishable, where for some
j, ppj is the policy requested by the target service provider. The user sends
those policies, as well as a seed s for a pseudo random function PRF to the
wallet. Note that for most service providers, the ppi will be quite stable (many
providers always require access to the same attributes), and thus the user can
simply use predefined default policies.

2. The wallet computes the non-interactive presentation tokens pt1, . . . , ptn for
the defined service providers and policies. For all i, it sends pt′i = pti⊕PRFs(i)
to the service provider, where ⊕ denotes bitwise XOR.

3. The user sends to the service provider u = PRFs(j).
4. The service provider recovers ptj as ptj = pt′j ⊕ u, and then continues the

verification of ptj as specified in the presentation protocol.

It is easy to see that the service provider can only access the correct presenta-
tion token and does not learn any information about the other service providers
or presentations as long as the used pseudo random function is secure (note that
perfect security could here be achieved by replacing the PRF by a real random
string chosen by the user, only at the costs of slightly increasing the commu-
nication complexity by a few kilo-bytes on the user’s side). From the wallet’s
perspective, the identity of the target service provider remains perfectly hidden
in either case.

We stress that even though the above is natural and straightforward, it
still yields practically efficient protocols. Based on the benchmarks presented
in the following for single presentations, hiding a presentation among ten service
providers can be done in less than two seconds using our prototype implemen-
tation, assuming ten attributes per credential.

7 Benchmarks

Figure 1 illustrates the practical efficiency of our main scheme presented in
Sect. 5, where all zero-knowledge proofs have been made non-interactive using
the Fiat-Shamir heuristic [19]. For two different security parameters (80 and
112, respectively), and two different numbers of attributes (10 and 25, respec-
tively), we show the running times of the issuance and presentation phases for
each of the involved parties, where the issuer and service provider learned half
of the certified attributes, i.e., the sets D and R in the protocols had cardinal-
ity 5 and 12, respectively. For the benchmarks, we pre-computed all pairings

Towards Attribute-Based Credentials in the Cloud 197

with constant inputs on the service provider’s and the wallet’s sides, which only
need to be computed once and can be used for all users. The complexity of this
pre-computation is comparable to the service provider’s computational efforts.

Fig. 1. Execution times for our main scheme for different security parameters and
different numbers of attributes of which (around) half of them were opened during pre-
sentation. The complexity is roughly linear in the number of attributes, and increases
with an increasing fraction of revealed attributes.

The scheme was implemented in Python 2.7 using the Charm cryptographic
framework [2] using the concrete PairingGroups MNT159 and MNT224. The
benchmarks were performed on an Intel(R) Core(TM) i7-5600 with 2.60 MHz and
16 GB of memory, running Ubuntu 16.04.

8 Conclusion

We presented the first attribute-based credential (ABC) system which can be
fully cloudified in a privacy-preserving manner, as presenting credentials does not
require access to the plaintext attributes. The basic scheme supports selective
disclosure at issuance and presentation, and gives high unlinkability guarantees
similar to previous (non-cloudified) ABC systems. We then described various
extensions like inspection or revocation, and explained how to protect the user
from being profiled by the wallet provider. Furthermore, we showed the prac-
tical efficiency of our scheme by means of concrete benchmarks of a prototype
implementation.

Future work may further increase metadata privacy, e.g., by also hiding the
service providers a user is subscribed to, potentially by splitting the wallet into
two non-colluding components.

A Proof of Theorem4.3

Proof. We prove the correctness, unforgeability, unlinkability, and wallet-privacy
properties of EABC in a sequence of claims:

Correctness is easy to verify. By the correctness of PRE, the re-randomization
property of PRE ciphertexts, the correctness of SIG, and correctness of ZKP,
correctness of EABC readily follows.

198 S. Krenn et al.

Claim. Under the binding property of COM, the strong EUF-CMA-security of
SIG, and the soundness of ZKP, EABC is unforgeable. More concretely, for any
PPT adversaries A,A′,A′′,A′′′, we have

AdvunforgeEABC,A(λ) ≤ q·AdvhidingCOM,A′(λ)+Advs−euf−cma
SIG,A′′ (λ)+AdvsoundnessZKP,A′′′ (λ)+negl(λ), (1)

for any λ ∈ N and polynomial q = q(λ).

Proof. We proceed by a sequence of reduction games and argue that subverting
the unforgeability of EABC implies either that binding of COM, the strong EUF-
CMA-security of SIG, or the soundness of ZKP does not hold. Therefore, let Si

be the event that A wins (i.e., the associated experiment outputs 1) in Game i.

Game 1. Game 1 is the EABC unforgeability experiment with A and, hence,
we have Pr [S1] = AdvunforgeEABC,A(λ).

Game 2. Game 2 is identical to Game 1, except that the event F occurs where we
have Open(pkU,PRE, com,w0) = Open(pk ′

U,PRE, com,w1) with pkU,PRE �= pk ′
U,PRE,

for some (com,w0) = Com(ppCOM, pkU,PRE), (com,w1) = Com(ppCOM, pk ′
U,PRE),

i.e., as computation within the issuer or user-credential oracle on input of A.
We argue that Pr [F] ≤ qO · AdvhidingCOM,A(λ) as the occurring of F directly yields
a successful PPT adversary on the binding property of COM, where q is the
total number of A-queries to the oracles. Essentially, in a reduction between
the binding experiment of COM and unforgeability of EABC, once F occurs
with A, the experiment (which has received pp from the binding experiment at
the beginning and forwarded pp as part of the public system parameter to A),
forwards (com, pkU,PRE, w0, pk ′

U,PRE, w1) to the binding experiment which yields
a successful PPT adversary A′. Hence, we have |Pr [S2] − Pr [S1] | ≤ Pr [F] ≤
q · AdvhidingCOM,A′(λ).

Game 3. Game 3 is identical to Game 2, except that the event F ′ occurs where
we have Ver(pkI, ((ci)i, com), σ∗) = 1, for ((ci)i, com) not previously occurred
for some potentially already occurred σ∗, i.e., as extracted signature from the
A-presentation p∗ at the end of the experiment. We argue that Pr [F ′] ≤ qO ·
Advs−euf−cma

SIG,A (λ) as the occurring of F ′ directly yields a successful PPT adversary
on the strong EUF-CMA property of SIG. Essentially, in a reduction between
strong EUF-CMA of SIG and unforgeability of EABC, once F ′ occurs with A, the
experiment (which has received pkI from the strong EUF-CMA experiment at the
beginning and is able to query signatures under pkI), forwards (((ci)i, com), σ∗),
extracted from the presentation p∗ to the strong EUF-CMA experiment which
yields a successful PPT adversary A′′. Hence, we have |Pr [S3] − Pr [S2] | ≤
Pr [F ′] ≤ Advs−euf−cma

SIG,A′′ (λ).

Game 4. Game 4 is identical to Game 3, except that the event F ′′ occurs
where we have a valid A-presentation p∗ at the end of the experiment, but
the p∗ contains values that are not in the language used in the ZKP system.
We argue that Pr [F ′′] ≤ AdvsoundnessZKP,A (λ) as the occurring of the event directly
yields a successful adversary on the soundness property of ZKP. Essentially, in

Towards Attribute-Based Credentials in the Cloud 199

a reduction between the soundness property of ZKP and strong EUF-CMA-
security of EABC, once F ′′ occurs with A, the experiment forwards the values
not in the language together with the proof from p∗ to the soundness experiment
of ZKP which yields a successful PPT adversary A′′′. Hence, we have |Pr [S4] −
Pr [S3] | ≤ Pr [F ′′] ≤ AdvsoundnessSIG,A′′′ (λ).

Game 5. Game 5 is identical to Game 4 and we argue that now the adversary
has at most negligible advantage (by the perfect correctness of the underlying
primitives). Hence, Pr [S4] = Pr [S5] ≤ negl(λ).

Hence, we conclude that Eq. (1) holds. ��
Claim. Assuming the anonymous property of PRE, EABC is unlinkable. More
concretely, for any PPT adversaries A,A′,A′′, we have

AdvunlinkEABC,A(λ) ≤ q · Advpre−anon
PRE,A′ (λ) + negl(λ), (2)

for any λ ∈ N and polynomial q = q(λ).

Proof. We proceed by a sequence of reduction games and argue that subverting
the unlinkability of EABC implies either that the anonymity property of PRE
or the soundness property of ZKP does not hold. Therefore, let Si be the event
that A wins (i.e., the associated experiment outputs 1) in Game i.

Game 1. Game 1 is the EABC unlinkability experiment with A and, hence, we
have Pr [S1] = AdvunlinkEABC,A(λ).

Game 2. Game 2 is identical to Game 1, except that change the way credentials
are generated for A. In this game, we do not need the ZKP witness (and, hence,
the target-user secret keys) anymore and rely on the zero-knowledge property
of ZKP. (That is that we can use a simulator in the sense of ZKP to generate
proofs.) This change is purely syntactical. Hence, we have Pr [S2] = Pr [S1] .

Game 3. Game 3 is identical to Game 2, except that we change that the cipher-
text in the issuance are generated under an independent and an honestly sampled
user public key different to the target-user ciphertext. Hence, A only receives cre-
dentials under a different user public key compared to the target public keys.
We argue that if A can distinguish under which public keys the ciphertexts are
generated, we can directly use A to break the anonymity of the underlying PRE.
Essentially, in a reduction between anonymity of PRE and unlinkability of EABC,
the experiment (which has received pk0, pk1 from the anonymous experiment at
the beginning, forwards A’s guess to its own challenger which yields a successful
PPT adversary A′ with probability 1/q, for q A-queries to Cred. Hence, we have
|Pr [S3] − Pr [S2] | ≤ q · Advpre−anon

PRE,A′ (λ).

Game 4. Game 4 is identical to Game 3 and we argue that now the adversary has
at most negligible advantage in guessing b. Hence, Pr [S4] = Pr [S3] ≤ negl(λ).

Hence, we conclude that Eq. (2) holds. ��

200 S. Krenn et al.

Claim. Under the IND-CPA security of PRE, EABC is wallet-private. More con-
cretely, for any PPT adversaries A,A′, we have

Advwallet−privacy
EABC,A (λ) ≤ � · Advpre−ind−cpa

PRE,A′ (λ) + negl(λ), (3)

for any λ ∈ N and polynomial � = �(λ).

Proof. We proceed by a sequence of reduction games and argue that subverting
the unlinkability of EABC implies that the IND-CPA property of PRE does not
hold. Therefore, let Si be the event that A wins (i.e., the associated experiment
outputs 1) in Game i.

Game 1. Game 1 is the EABC unforgeability experiment with A and, hence,
we have Pr [S1] = Advwallet−privacy

EABC,A (λ).

Game 2. Game 2 is identical to Game 1, except that we now do not know the
target secret key sk∗. However, sk∗ is solely used for the ZKP system within the
issuance and, hence, we can use the ZKP zero-knowledge property to provide
valid proofs without the witness (where sk∗ is part of) using a simulator. This
change is purely syntactical. Hence, we have Pr [S3] = Pr [S2] .

Game 3. Game 3 is identical to Game 2, except that we now exchange all cipher-
texts with ciphertexts of “0”s. In a reduction between the IND-CPA-security
property of PRE and wallet-privacy of EABC, the experiment forwards the answer
from A as its own guess to the PRE IND-CPA-security experiment (given the
public key from the IND-CPA experiment as target public key for the wallet-
privacy adversary). Hence, we have |Pr [S3] − Pr [S2] | ≤ � · Advpre−ind−cpa

PRE,A′ (λ).

Game 4. Game 4 is identical to Game 3 and we argue that now the adversary
has at most negligible advantage (by the perfect correctness of the underlying
primitives), otherwise, some event occurred which would yield another game.
Hence, Pr [S3] = Pr [S4] ≤ negl(λ).

Hence, we conclude that Eq. (3) holds. ��
Taken all claims together, this yields the proof. ��

References

1. Abe, M., Groth, J., Haralambiev, K., Ohkubo, M.: Optimal structure-preserving
signatures in asymmetric bilinear groups. In: Rogaway, P. (ed.) CRYPTO 2011.
LNCS, vol. 6841, pp. 649–666. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22792-9 37

2. Akinyele, J.A., Green, M., Rubin, A.D.: Charm: a framework for rapidly prototyp-
ing cryptosystems. In: NDSS (2012)

3. Aono, Y., Boyen, X., Phong, L.T., Wang, L.: Key-private proxy re-encryption under
LWE. In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp.
1–18. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03515-4 1

4. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: NDSS (2005)

https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-642-22792-9_37
https://doi.org/10.1007/978-3-319-03515-4_1

Towards Attribute-Based Credentials in the Cloud 201

5. Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 108–125. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03356-8 7

6. Blaze, M., Bleumer, G., Strauss, M.: Divertible protocols and atomic proxy cryp-
tography. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 127–144.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054122

7. Brands, S.: Rethinking public key infrastructure and digital certificates - building
in privacy. Ph.D. thesis, Eindhoven Institute of Technology (1999)

8. Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: definitions and practical constructions. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9453, pp. 262–288.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48800-3 11

9. Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: ACM CCS (2002)

10. Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.Ø.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman,
O., Keliher, L. (eds.) SAC 2015. LNCS, vol. 9566, pp. 3–24. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31301-6 1

11. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44987-6 7

12. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Persiano, G., Galdi, C. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36413-7 20

13. Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp.
56–72. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28628-8 4

14. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups.
In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997). https://doi.org/10.1007/BFb0052252

15. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24, 84–88 (1981)

16. Chaum, D.: Security without identification: transaction systems to make big
brother obsolete. Commun. ACM 28, 1030–1044 (1985)

17. European Parliament and Council of the European Union: Regulation (EC) No
45/2001. Official Journal of the European Union (2001)

18. European Parliament and Council of the European Union: Directive 2009/136/EC.
Official Journal of the European Union (2009)

19. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

20. Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes
and their application to anonymous credentials. In: Sarkar, P., Iwata, T. (eds.)
ASIACRYPT 2014. LNCS, vol. 8873, pp. 491–511. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45611-8 26

21. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 360–379.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78440-1 21

https://doi.org/10.1007/978-3-642-03356-8_7
https://doi.org/10.1007/BFb0054122
https://doi.org/10.1007/978-3-662-48800-3_11
https://doi.org/10.1007/978-3-319-31301-6_1
https://doi.org/10.1007/3-540-44987-6_7
https://doi.org/10.1007/3-540-36413-7_20
https://doi.org/10.1007/978-3-540-28628-8_4
https://doi.org/10.1007/BFb0052252
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-45611-8_26
https://doi.org/10.1007/978-3-540-78440-1_21

202 S. Krenn et al.

22. Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.) PKC
2009. LNCS, vol. 5443, pp. 463–480. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-00468-1 26

23. Nuñez, D., Agudo, I., Lopez, J.: NTRUReEncrypt: an efficient proxy re-encryption
scheme based on NTRU. In: ASIA CCS (2015)

24. Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1.1 (revision 2).
Technical report, Microsoft Corporation, April 2013

25. Sabouri, A.: A cloud-based model to facilitate mobility of privacy-preserving
attribute-based credential users. In: TrustCom/BigDataSE/ISPA (2015)

26. Schmidt, H.A.: National strategy for trusted identities in cyberspace. Cyberwar
Resources Guide, Item 163 (2010)

https://doi.org/10.1007/978-3-642-00468-1_26
https://doi.org/10.1007/978-3-642-00468-1_26

Unlinkable and Strongly Accountable
Sanitizable Signatures from Verifiable

Ring Signatures

Xavier Bultel1,2 and Pascal Lafourcade1,2(B)

1 CNRS, UMR 6158, LIMOS, 63173 Aubière, France
2 Université Clermont Auvergne, BP 10448, 63000 Clermont-Ferrand, France

pascal.lafoucade@uca.fr

Abstract. An Unlinkable Sanitizable Signature scheme (USS) allows a
sanitizer to modify some parts of a signed message in such away that
nobody can link the modified signature to the original one. A Verifiable
Ring Signature scheme (VRS) allows the users to sign messages anony-
mously within a group where a user can prove a posteriori to a verifier
that it is the author of a given signature. In this paper, we first revisit
the notion of VRS: we improve the proof capabilities of the users, we give
a complete security model for VRS and we give an efficient and secure
scheme called EVeR. Our main contribution is GUSS, a Generic USS
based on a VRS scheme and an unforgeable signature scheme. We show
that GUSS instantiated with EVeR and Schnorr’s signature is twice as
efficient as the best USS scheme of the literature. Moreover, we propose
a stronger definition of accountability : an USS is accountable when the
signer can prove whether a signature is sanitized. We formally define
the notion of strong accountability where the sanitizer can also prove the
origin of a signature. We show that the notion of strong accountabil-
ity is important in practice. Finally, we prove the security properties of
GUSS (including strong accountability) and EVeR under the Decisional
Diffie-Hellman (DDH) assumption in the random oracle model.

1 Introduction

Sanitizable Signatures (SS) were introduced by Ateniese et al. [1], but similar
primitives were independently proposed in [31]. In this primitive, a signer allows
a proxy (called the sanitizer) to modify some parts of a signed message. For
example, a magistrate wishes to delegate the power to summon someone to the
court to his secretary. He signs the message “Franz is summoned to court for
an interrogation on Monday” and gives the signature to his secretary, where
“Franz” and “Monday” are sanitizable and the other parts are fixed. Thus, in
order to summon Joseph K. on Saturday in the name of the magistrate, the

This research was conducted with the support of the “Digital Trust” Chair from the
University of Auvergne Foundation.

c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 203–226, 2018.
https://doi.org/10.1007/978-3-030-02641-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_10

204 X. Bultel and P. Lafourcade

secretary can change the signed message into “Joseph K. is summoned to the
court for an interrogation on Saturday”.

Ateniese et al. in [1] proposed some applications of this primitive in privacy
of health data, authenticated media streams and reliable routing information.
They also introduced five security properties formalized by Brzuska et al. in [8]:

Unforgeability: no unauthorized user can generate a valid signature.
Immutability: the sanitizer cannot transform a signature from an unautho-

rized message.
Privacy: no information about the original message is leaked by a sanitized

signature.
Transparency: nobody can say if a signature is sanitized or not.
Accountability: the signer can prove whether a signature is sanitized.

Finally, in [9] the authors point out a non-studied but relevant property
called unlinkability : a scheme is unlinkable when it is not possible to link a
sanitized signature to the original one. The authors give a generic unlinkable
scheme based on group signatures. In 2016, Fleischhacker et al. [21] give a more
efficient construction based on signatures with re-randomizable keys.

On the other hand, ring signature is a well-studied cryptographic primitive
introduced by Rivest et al. in [29], where some users can sign anonymously within
a group of users. Such a scheme is verifiable [28] when any user can prove that he
is the signer of a given message. In this paper, we improve the properties of VRS
by increasing the proof capabilities of the users. We also give an efficient VRS
scheme called EVeR and a generic unlinkable sanitizable signature scheme called
GUSS that uses a verifiable ring signature. We also show that the definition of
accountability is too weak for practical use and we propose a stronger definition.

Contributions: Existing VRS schemes allow any user to prove that he is the
signer of a given message. We extend the definition of VRS to allow a user to
prove that he is not the signer of a given message. We give a formal security
model for VRS that takes into account this property. We first extend the clas-
sical security properties of ring signatures to verifiable ring signatures, namely
the unforgeability (no unauthorized user can forge a valid signature) and the
anonymity (nobody can distinguish who is the signer in the group). In addition
we define the accountability (if a user signs a message then he cannot prove that
he is not the signer) and the non-seizability (a user cannot prove that he is the
signer of a message if it is not true, and a user cannot forge a message such that
the other users cannot prove that they are not the signers). To the best of our
knowledge, it is the first time that formal security models are proposed for VRS.
We also design an efficient secure VRS scheme under the DDH assumption in
the random oracle model.

The definition of accountability for SS given in [8,9,21] considers that the
signer can prove the origin of a signature (signer or sanitizer) by using a proof
algorithm such that:

1. The signer cannot forge a signature and a proof that the signature has been
forged by the sanitizer.

Unlinkable and Strongly Accountable Sanitizable Signatures 205

2. The sanitizer cannot forge a signature such that the proof algorithm blames
the signer.

The proof algorithm requires the secret key of the signer. To show that this
definition is too weak, we consider a signer who cannot prove the origin of a
litigious signature. The signer claims that he lost his secret key because of prob-
lems with his hard drive. There is no way to verify whether the signer is lying.
Unfortunately, without his secret key, the signer cannot generate the proof for
the litigious signature, hence nobody can judge whether the signature is sani-
tized or not. Depending on whether the signer is lying, there is a risk of accusing
the signer or the sanitizer wrongly. To solve this problem, we add a second proof
algorithm that allows the sanitizer to prove the origin of a signature. To achieve
strong accountability, the two following additional properties are required:

1. The sanitizer cannot sanitize a signature σ and prove that σ is not sanitized.
2. The signer cannot forge a signature such that the sanitizer proof algorithm

accuses the sanitizer.

The main contribution of this paper is to propose an efficient and generic
unlinkable SS scheme called GUSS. This scheme is instantiated by a VRS and
an unforgeable signature scheme. It is the first SS scheme that achieves strong
accountability. We compare GUSS with the other schemes of the literature:

Brzuska et al. [9]. This scheme is based on group signatures. Our scheme is built
on the same model, but it uses ring signatures instead of group signatures.
The main advantage of group signatures is that the size of the signature is
not proportional to the size of the group. However, for small groups, ring
signatures are much more efficient than group signatures. Since the scheme
of Brzuska et al. and GUSS uses group/ring signatures for groups of two
users, GUSS is much more practical for an equivalent level of genericity.

Fleischhacker et al. [21] This scheme is based on signatures with re-
randomizable keys. It is generic, however it uses different tools that must
have special properties to be compatible with each other. To the best of our
knowledge, it is the most efficient scheme of the literature. GUSS instantiated
with EVeR and Schnorr’s signature is twice as efficient as the best instantia-
tion of this scheme. In Fig. 1, we compare the efficiency of each algorithm of
our scheme and the scheme of Fleischhacker et al.

Lai et al. [26] Recently, Lai et al. proposed a USS that is secure in the standard
model. This scheme uses pairings and is much less efficient than the scheme
of Fleischhacker et al., so this scheme is much less efficient than our scheme.
In their paper [26], Lai et al. give a comparison of the efficiency of the three
schemes of the literature.

Related Works: Sanitizable Signatures (SS) was first introduced by Ateniese
et al. [1]. Later, Brzuska et al. gave formal security definitions [8] for unforge-
ability, immutability, privacy, transparency and accountability. Unlinkability was
introduced and formally defined by Brzuska et al. in [9]. In [10], Brzuska et al.

206 X. Bultel and P. Lafourcade

SiGen SaGen Sig San Ver SiProof SiJudge Total pk spk sk ssk σ π Total
[21] 7 1 15 14 17 23 6 83 7 1 14 1 14 4 41

GUSS 2 1 8 7 10 3 4 35 2 1 2 1 12 5 23

Fig. 1. Comparison of GUSS and the scheme of Fleischhacker et al.: The first six
columns give the number of exponentiations of each algorithms of both schemes, namely
the key generation algorithm of the signer (SiGen) and the sanitizer (SaGen), the sig-
nature algorithm (Sig), the verification algorithm (Ver), the sanitize algorithm (San),
the proof algorithm (SiProof) and the judge algorithm (SiJudge). The last six columns
give respectively the size of the public key of the signer (pk) and the sanitizer (spk),
the size of the secret key of the signer (sk) and the sanitizer (ssk), the size of a sig-
nature (σ) and the size of a proof (π) outputted by SiProof. This size is measured in
elements of a group G of prime order. As in [21], for the sake of clarity, we do not dis-
tinguish between elements of G and elements of Z∗

p. We consider the best instantiation
of the scheme of Fleischhacker et al. given in [21]. In Appendix A, we give a detailed
complexity evaluation of our schemes.

introduce an alternative definition of accountability called non-interactive public
accountability where the capability to prove the origin of a signature is given to
a third party. One year later, the same authors propose a stronger definition
of unlinkability [11] and design a scheme that is both strongly unlinkable and
non-interactively public accountable. However, non-interactive public account-
ability is not compatible with transparency. In this paper, we focus on schemes
that are unlinkable, transparent and interactively accountable. To the best of
our knowledge, there are only 3 schemes with these 3 properties, i.e. [9,21,26].

Some works focus on other properties of SS that we do not consider here,
such as SS with multiple sanitizers [15], or SS where the power of the sanitizer
is limited [14]. Finally, there exist other primitives that solve related but differ-
ent problems such as homomorphic signatures [25], redactable signatures [7] or
proxy signatures [22]. The differences between these primitives and sanitizable
signatures are detailed in [21].

On the other hand, Ring Signatures (RS) [29] were introduced by Rivest
et al. in 2003. Security models of this primitive were defined in [4]. Verifiable
Ring Signatures (VRS) [28] were introduced in 2003 by Lv. RS allow the users
to sign anonymously within a group, and VRS allow a user to prove that it is the
signer of a given message. The authors of [28] give a VRS construction that is
based on the discrete logarithm problem. Two other VRS schemes were proposed
by Wand et al. [32] and by Changlung et al. [16]. The first one is based on the
Nyberg-Rueppel signature scheme and the second one is a generic construction
based on multivariate public key cryptosystems. In these three schemes, a user
can prove that he is the signer of a given signature, however, he has no way to
prove that he is not the signer, and it seems to be non-trivial to add this property
to these schemes. Convertible ring signatures [27] are very close to verifiable ring
signatures: they allow the signer of an anonymous (ring) signature to transform
it into a standard signature (i.e. a deanonymized signature). It can be used as a
verifiable ring signature because the deanonymized signature can be viewed as

Unlinkable and Strongly Accountable Sanitizable Signatures 207

a proof that the user is the signer of a given message. However, in this paper we
propose a stronger definition of VRS where a user also can prove that he is not
the signer of a message, and this property cannot be achieved using convertible
signatures.

A Revocable-iff-Linked Ring Signature (RLRS) [2] (also called List Signa-
ture [13]) is a kind of RS that has the following property: if a user signs two
messages for the same event-id, then it is possible to link these signatures and
the user’s identity is publicly revealed. It can be used to design a VRS in our
model: to prove whether he is the signer of a given message, the user signs a
second message using the same event-id. If the two signatures are linked, then
the judge is convinced that the user is the signer, else he is convinced that the
user is not the signer. However, RLRS requires security properties that are too
strong for VRS (linkability and traceability) and it would result in less efficient
schemes.

Outline: In Sect. 2, we recall the standard cryptographic tools used in this
paper. In Sect. 3 and Sect. 4, we present the formal definition and the security
models for verifiable ring signatures and unlinkable sanitizable signatures. In
Sect. 5, we present our scheme EvER. Finally, in Sect. 6, we present our scheme
GUSS, before concluding in Sect. 7.

2 Cryptographic Tools

We present the cryptographic tools used throughout this paper. We first recall
the DDH assumption.

Definition 1 (DDH [5]). Let G be a multiplicative group of prime order p
and g ∈ G be a generator. Given an instance h = (ga, gb, gz) for unknown
a, b, z

$← Z
∗
p, the Decisional Diffie-Hellman (DDH) problem is to decide whether

z = a · b or not. The DDH assumption states that there exists no polynomial
time algorithm that solves the DDH problem with a non-negligible advantage.

In the following, we recall some notions about digital signatures.

Definition 2 ((Deterministic) Digital Signature (DS)). A Digital Signa-
ture scheme S = (D.Init,D.Gen,D.Sig,D.Ver) is a tuple of four algorithms defined
as follows:

D.Init(1k): It returns a setup value set.
D.Gen(set): It returns a pair of signer public/private keys (pk, sk).
D.Sig(m, sk): It returns a signature σ of m using the key sk.
D.Ver(pk,m, σ): It returns a bit b.

S is said to be deterministic when the algorithm D.Sig is deterministic. S
is said to be correct when for any security parameter k ∈ N, any mes-
sage m ∈ {0, 1}∗, any set ← D.Init(1k) and any (pk, sk) ← D.Gen(set),
D.Ver(pk,m,D.Sig(m, sk)) = 1. Moreover, such a scheme is unforgeable when

208 X. Bultel and P. Lafourcade

no polynomial adversary wins the following experiment with non-negligible prob-
ability where D.Sig(·, sk) is a signature oracle, qS is the number of queries to this
oracle and σi is the ith signature computed by the signature oracle:

ExpunfS,A(k):
set ← D.Init(1k)
(pk, sk) ← D.Gen(set)
(m∗, σ∗) ← AD.Sig(·,sk)(pk)
if (D.Ver(pk,m∗, σ∗) = 1) and (∀ i ∈ [[1, qS]], σi �= σ∗)
then return 1, else return 0

As it is mentioned in [21], any DS scheme can be changed into a deterministic
scheme without loss of security using a pseudo random function, that can be
simulated by a hash function in the random oracle model. The following scheme
is the deterministic version of the well-known Schnorr’s Signature scheme [30].

Scheme 1 (Deterministic Schnorr’s Signature [30]). This signature is
defined by the following algorithms:

D.Init(1k): It returns a setup value set = (G, p, g,H) where G is a group of prime
order p, g ∈ G and H : {0, 1}∗ → Z

∗
p is a hash function.

D.Gen(set): It picks sk
$← Z

∗
p, computes pk = gsk and returns (pk, sk).

D.Sig(m, sk): It computes the r = H(m||sk), R = gr, z = r + sk · H(R||m) and
returns σ = (R, z).

D.Ver(pk,m, σ): It parses σ = (R, z), if gz = R · pkH(R||m) then it returns 1, else
0.

This DS scheme is deterministic and unforgeable under the DL assumption in
the random oracle model.

A Zero-Knowledge Proof (ZKP) [23] allows a prover knowing a witness w to
convince a verifier that a statement s is in a given language without leaking any
information. Such a proof is a Proof of Knowledge (PoK) [3] when the verifier is
also convinced that the prover knows the witness w. We recall the definition of
a non-interactive zero-knowledge proof of knowledge.

Definition 3 (NIZKP). Let R be a binary relation and let L be a language
such that s ∈ L ⇔ (∃w, (s, w) ∈ R). A non-interactive ZKP (NIZKP) for the
language L is a couple of algorithms (Prove,Verify) such that:

Prove(s, w). This algorithm outputs a proof π.
Verify(s, π). This algorithm outputs a bit b.

A NIZKP proof has the following properties:

Completeness. For any statement s ∈ L and the corresponding witness w, we
have that Verify(s,Prove(s, w)) = 1.

Soundness. There is no polynomial time adversary A such that A(L) outputs
(s, π) such that Verify(s, π) = 1 and s �∈ L with non-negligible probability.

Unlinkable and Strongly Accountable Sanitizable Signatures 209

Zero-knowledge. A proof π leaks no information, i.e. there exists a polynomial
time algorithm Sim (called the simulator) such that Prove(s, w) and Sim(s)
follow the same probability distribution.

Moreover, such a proof is a proof of knowledge when for any s ∈ L and any
algorithm A, there exists a polynomial time knowledge extractor E such that the
probability that EA(s)(s) outputs a witness w such that (s, w) ∈ R given access
to A(s) as an oracle is as high as the probability that A(s) outputs a proof π
such that Verify(s, π) = 1.

3 Formal Model of Verifiable Ring Signatures

We formally define the Verifiable Ring Signatures (VRS) and the corresponding
security notions. A VRS is a ring signature scheme where a user can prove to a
judge whether he is the signer of a message or not. It is composed of six algo-
rithms. V.Init, V.Gen, V.Sig and V.Ver are defined as in the usual ring signature
definitions. V.Gen generates public and private keys. V.Sig anonymously signs
a message according to a set of public keys. V.Ver verifies the soundness of a
signature. A VRS has two additional algorithms: V.Proof allows a user to prove
whether he is the signer of a message or not, and V.Judge allows anybody to
verify the proofs outputted by V.Proof.

Definition 4 (Verifiable Ring Signature (VRS)). A Verifiable Ring Signa-
ture scheme is a tuple of six algorithms defined by:

V.Init(1k): It returns a setup value set.
V.Gen(set): It returns a pair of signer public/private keys (pk, sk).
V.Sig(L,m, sk): This algorithm computes a signature σ using the key sk for the

message m according to the set of public keys L.
V.Ver(L,m, σ): It returns a bit b: if the signature σ of m is valid according to

the set of public key L then b = 1, else b = 0.
V.Proof(L,m, σ, pk, sk): It returns a proof π for the signature σ of m according

to the set of public key L.
V.Judge(L,m, σ, pk, π): It returns a bit b or the bottom symbol ⊥: if b = 1 (resp.

0) then π proves that σ was (resp. was not) generated by the signer corre-
sponding to the public key pk. It outputs ⊥ when the proof is not well formed.

Unforgeability: We first adapt the unforgeability property of ring signatures [4]
to VRS. Informally, a VRS is unforgeable when no adversary is able to forge
a signature for a ring of public keys without any corresponding secret key. In
this model, the adversary has access to a signature oracle V.Sig(·, ·, ·) (that out-
puts signatures of chosen messages for chosen users in the ring) and a proof
oracle V.Proof(·, ·, ·, ·, ·) (that outputs proofs as the algorithm V.Proof for chosen
signatures and chosen users). The adversary succeeds when it outputs a valid
signature that was not already generated by the signature oracle.

210 X. Bultel and P. Lafourcade

Definition 5 (Unforgeability). Let P be a VRS and n be an integer. Let the
two following oracles be:

V.Sig(·, ·, ·): On input (L, l,m), if 1 ≤ l ≤ n then it runs σ ← V.Sig(L, skl,m)
and returns σ, else it returns ⊥.

V.Proof(·, ·, ·, ·, ·): On input (L,m, σ, l), if 1 ≤ l ≤ n then this proof oracle runs
π ← V.Proof(L,m, σ, pkl, skl) and returns π, else it returns ⊥.

P is n-unf secure when for any polynomial time adversary A, the probability
that A wins the following experiment is negligible, where qS is the number of
calls to the oracle V.Sig(·, ·, ·) and σi is the ith signature outputted by the oracle
V.Sig(·, ·, ·):

Expn-unf
P,A (k):

set ← V.Init(1k)
∀1 ≤ i ≤ n, (pki, ski) ← V.Gen(set)
(L∗, σ∗, m∗) ← AV.Sig(·,·,·),V.Proof(·,·,·,·,·)({pki}1≤i≤n)
if V.Ver(L∗, σ∗, m∗) = 1 and L∗ ⊆ {pki}1≤i≤n and ∀ i ∈ [[1, qS]], σi �= σ∗
then return 1, else return 0

P is unforgeable when it is t(k)-unf secure for any polynomial t.

Annonymity: We adapt the anonymity property of ring signatures [4] to VRS.
Informally, a VRS is anonymous when no adversary is able to link a signature
to the corresponding user. The adversary has access to the signature oracle and
the proof oracle. During a first phase, it chooses two honest users in the ring,
and in the second phase, it has access to a challenge oracle LRSOb(d0, d1, ·, ·)
that outputs signatures of chosen messages using the secret key of one of the
two chosen users. The adversary succeeds if he guesses which user is chosen by
the challenge oracle. Note that if the adversary uses the proof oracle on the
signatures generated by the challenge oracle then he loses the experiment.

Definition 6 (Anonymity). Let P be a VRS and let n be an integer. Let the
following oracle be:

LRSOb(d0, d1, ·, ·): On input (m,L), if {pkd0
, pkd1

} ⊆ L then this oracle runs
σ ← V.Sig(L, skdb

,m) and returns σ, else it returns ⊥.

P is n-ano secure when for any polynomial time adversary A = (A1,A2),
the probability that A wins the following experiment is negligibly close to
1/2, where V.Sig(·, ·, ·) and V.Proof(·, ·, ·, ·, ·) are defined as in Definition 5 and
where qS (resp. qP) is the number of calls to the oracle V.Sig(·, ·, ·) (resp.
V.Proof(·, ·, ·, ·, ·)), (Li,mi, σi, li) is the ith query sent to oracle V.Proof(·, ·, ·, ·, ·)
and σ′

j is the jth signature outputted by the oracle LRSOb(d0, d1, ·, ·):

Unlinkable and Strongly Accountable Sanitizable Signatures 211

Expn-ano
P,A (k):

set ← V.Init(1k)
∀1 ≤ i ≤ n, (pki, ski) ← V.Gen(set)

(d0, d1) ← AV.Sig(·,·,·),V.Proof(·,·,·,·,·)
1 ({pki}1≤i≤n)

b
$← {0, 1}

b∗ ← AV.Sig(·,·,·),V.Proof(·,·,·,·,·),LRSOb(d0,d1,·,·)
2 ({pki}1≤i≤n)

if (b = b∗) and (∀ i, j ∈ [[1, max(qS , qP)]], (σi �= σ′
j) or (li �= d0 and li �= d1))

then return 1, else return 0

P is anonymous when it is t(k)-ano secure for any polynomial t.

Accountability: We consider an adversary that has access to a proof oracle and
a signature oracle. A VRS is accountable when no adversary is able to forge a
signature σ (that was not outputted by the signature oracle) together with a
proof that it is not the signer of σ. Note that the ring of σ must contain at
most one public key that does not come from an honest user, thus the adversary
knows at most one secret key that corresponds to a public key in the ring.

Definition 7 (Accountability). Let P be a VRS and let n be an integer.
P is n-acc secure when for any polynomial time adversary A, the probabil-
ity that A wins the following experiment is negligible, where V.Sig(·, ·, ·) and
V.Proof(·, ·, ·, ·, ·) are defined as in Definition 5 and where qS is the number of
calls to the oracle V.Sig(·, ·, ·) and σi is the ith signature outputted by the oracle
V.Sig(·, ·, ·):

Expn-acc
P,A (k):

set ← V.Init(1k)
∀1 ≤ i ≤ n, (pki, ski) ← V.Gen(set)
(L∗, m∗, σ∗, pk∗, π∗) ← AV.Sig(·,·,·),V.Proof(·,·,·,·,·)({pki}1≤i≤n)
if (L ⊆ {pki}1≤i≤n ∪ {pk∗}) and (V.Ver(L∗, σ∗, m∗) = 1) and

(V.Judge(L∗, m∗, σ∗, pk∗, π∗) = 0) and (∀ i ∈ [[1, qS]], σi �= σ∗)
then return 1, else return 0

P is accountable when it is t(k)-acc secure for any polynomial t.

Non-seizability: We distinguish two experiments for this property: the first
experiment, denoted non-sei-1, considers an adversary that has access to a proof
oracle and a signature oracle. Its goal is to forge a valid signature with a proof
that the signer is another user in the ring.

Definition 8 (n-non-sei-1 experiment). Let P be a SS. P is n-non-sei-1
secure when for any polynomial time adversary A, the probability that A wins
the following experiment is negligible, where V.Sig(·, ·, ·) and V.Proof(·, ·, ·, ·, ·)
and where qS is the number of calls to the oracle V.Sig(·, ·, ·) and (Li, li,mi)
(resp. σi) is the ith query to the oracle V.Sig(·, ·, ·) (resp. signature outputted by
this oracle):

212 X. Bultel and P. Lafourcade

Expn-non-sei-1
P,A (k):

set ← V.Init(1k)
∀1 ≤ i ≤ n, (pki, ski) ← V.Gen(set)
(L∗,m∗, σ∗, l∗, π∗) ← AV.Sig(·,·,·),V.Proof(·,·,·,·,·)({pki}1≤i≤n)
π ← V.Proof(L∗,m∗, σ∗, pk, sk)
if (V.Ver(L∗, σ∗,m∗) = 1) and

(V.Judge(L∗,m∗, σ∗, pkl∗ , π∗) = 1) and
(∀ i ∈ [[1, qS]], (Li, li,mi, σi) = (L∗, l∗,m∗, σ∗))

then return 1, else return 0

The second experiment, denoted non-sei-2, considers an adversary that has
access to a proof oracle and a signature oracle and that receives the public key
of a honest user as input. The goal of the adversary is to forge a signature σ
such that the proof algorithm ran by the honest user returns a proof that σ was
computed by the honest user (i.e. the judge algorithm returns 1) or a non-valid
proof (i.e. the judge algorithm returns ⊥). Moreover, the signature σ must not
come from the signature orale.

Definition 9 (Non-seizability). Let P be a VRS and n be an integer. P
is n-non-sei-2 secure when for any polynomial time adversary A, the probabil-
ity that A wins the following experiment is negligible, where V.Sig(·, ·, ·) and
V.Proof(·, ·, ·, ·, ·) are defined as in Definition 5 and where qS is the number of
calls to the oracle V.Sig(·, ·, ·) and σi is the ith signature outputted by the oracle
V.Sig(·, ·, ·):

Expn-non-sei-2
P,A (k):

set ← V.Init(1k)
(pk, sk) ← V.Gen(set)
(L∗, m∗, σ∗) ← AV.Sig(·,·,·),V.Proof(·,·,·,·,·)(pk)
π ← V.Proof(L∗, m∗, σ∗, pk, sk)
if (V.Ver(L∗, σ∗, m∗) = 1) and

(V.Judge(L∗, m∗, σ∗, pk∗, π∗) �= 0) and (∀ i ∈ [[1, qS]], σi �= σ∗)
then return 1, else return 0

P is non-seizable when it is both t(k)-non-sei-1 and t(k)-non-sei-2 secure for any
polynomial t.

4 Formal Model of Sanitizable Signature

We give the formal definition and security properties of the sanitizable signature
primitive. Compared to the previous definitions where only the signer can prove
the origin of a signature, our definition introduces algorithms that allow the
sanitizer to prove the origin of a signature. Moreover, in addition to the usual
security models of [8], we present two new security experiments that improve
the accountability definition.

A SS scheme contains 10 algorithms. Init outputs the setup values. SiGen and
SaGen generate respectively the signer and the sanitizer public/private keys. As

Unlinkable and Strongly Accountable Sanitizable Signatures 213

in classical signature schemes, the algorithms Sig and Ver allow the users to
sign a message and to verify a signature. However, the signatures are computed
using a sanitizer public key and an admissible function Adm. The algorithm
San allows the sanitizer to transform a signature of a message m according to
a modification function Mod: if Mod is admissible according to the admissible
function (i.e. Mod(Adm) = 1) this algorithm returns a signature of the message
m′ = Mod(m).

SiProof allows the signer to prove whether a signature is sanitized or not.
Proofs outpoutted by this algorithm can be verified by anybody using the algo-
rithm SiJudge. Finally, algorithms SaProof and SaJudge have the same func-
tionalities as SiProof and SiJudge, but the proofs are computed from the secret
parameters of the sanitizer instead of the signer.

Definition 10 (Sanitizable Signature (SS)). A Sanitizable Signature
scheme is a tuple of 10 algorithms defined as follows:

Init(1k): It returns a setup value set.
SiGen(set): It returns a pair of signer public/private keys (pk, sk).
SaGen(set): It returns a pair of sanitizer public/private keys (spk, ssk).
Sig(m, sk, spk,Adm): This algorithm computes a signature σ from the message

m using the secret key sk, the sanitizer public key spk and the admissible
function Adm. Note that we assume that Adm can be efficiently recovered
from any signature as in the definition of Fleischhacker et al. [21].

San(m,Mod, σ, pk, ssk): Let the admissible function Adm according to the sig-
nature σ. If Adm(Mod) = 1 then this algorithm returns a signature σ′ of
the message m′ = Mod(m) using the signature σ, the signer public key pk
and the sanitizer secret key ssk. Else it returns ⊥.

Ver(m,σ, pk, spk): It returns a bit b: if the signature σ of m is valid for the two
public keys pk and spk then b = 1, else b = 0.

SiProof(sk,m, σ, spk): It returns a signer proof πsi for the signature σ of m using
the signer secret key sk and the sanitizer public key spk.

SaProof(ssk,m, σ, pk): It returns a sanitizer proof πsa for the signature σ of m
using the sanitizer secret key ssk and the signer public key pk.

SiJudge(m,σ, pk, spk, πsi): It returns a bit d or the bottom symbol ⊥: if πsi proves
that σ comes from the signer corresponding to the public key pk then d = 1,
else if πsi proves that σ comes from the sanitizer corresponding to the public
key spk then d = 0, else the algorithm outputs ⊥.

SaJudge(m,σ, pk, spk, πsa): It returns a bit d or the bottom symbol ⊥: if πsa proves
that σ comes from the signer corresponding to the public key pk then d = 1,
else if πsa proves that σ comes from the sanitizer corresponding to the public
key spk then d = 0, else the algorithm outputs ⊥.

As it is mentioned in Introduction, SS schemes have the following security
properties: unforgeability, immutability, privacy, transparency and accountability.
In [8] authors show that if a scheme has the immutability, the transparency
and the accountability properties, then it has the unforgeability and the privacy
properties. Hence we do not need to prove these two properties, so we do not
recall their formal definitions.

214 X. Bultel and P. Lafourcade

Immutability: A SS is immutable when no adversary is able to sanitize a sig-
nature without the corresponding sanitizer secret key or to sanitize a signature
using a modification function that is not admissible (i.e. Adm(Mod) = 0). To
help him, the adversary has access to a signature oracle Sig(., sk, ., .) and a proof
oracle SiProof(sk, ., ., .).

Definition 11 (Immutability [8]). Let the following oracles be:

Sig(., sk, ., .): On input (m,Adm, spk), this oracle returns Sig(m, sk,Adm, spk).
SiProof(sk, ., ., .): On input (m,σ, spk), this oracle returns SiProof(sk,m, σ, spk).

Let P be a SS. P is Immut secure (or immutable) when for any polynomial time
adversary A, the probability that A wins the following experiment is negligible,
where qSig is the number of calls to the oracle Sig(., sk, ., .), (mi,Admi, spki) is the
ith query asked to the oracle Sig(., sk, ., .) and σi is the corresponding response:

ExpImmut
P,A (k):

set ← Init(1k)
(pk, sk) ← SiGen(set)
(spk∗, m∗, σ∗) ← ASig(.,sk,.,.),SiProof(sk,.,.,.)(pk)
if (Ver(m∗, σ∗, pk, spk∗) = 1) and (∀ i ∈ [[1, qSig]], (spk∗ �= spki) or

(∀ Mod such that Admi(Mod) = 1, m∗ �= Mod(mi)))
then return 1, else return 0

Transparency: The transparency property guarantees that no adversary is able
to distinguish whether a signature is sanitized or not. In addition to the signa-
ture oracle and the signer proof oracle, the adversary has access to a sanitize
oracle San(., ., ., ., ssk) that sanitizes chosen signatures and a sanitizer proof ora-
cle SaProof(ssk, ., ., .) that computes sanitizer proofs for given signatures. More-
over the adversary has access to a challenge oracle Sa/Si(b, pk, spk, sk, ssk, ., ., .)
that depends on a randomly chosen bit b: this oracle signs a given message and
sanitizes it, if b = 0 then it outputs the original signature, otherwise it out-
puts the sanitized signature. The adversary cannot use the proof oracles on the
signatures outputted by the challenge oracle. To succeed the experiment, the
adversary must guess b.

Definition 12 (Transparency [8]). Let the following oracles be:

San(., ., ., ., ssk): On input (m,Mod, σ, pk), it returns San(m,Mod, σ, pk, ssk).
SaProof(ssk, ., ., .): On input (m,σ, pk), this oracle returns SaProof(ssk,m, σ, pk).
Sa/Si(b, pk, spk, sk, ssk, ., ., .): On input (m,Adm,Mod), if Adm(Mod) = 0, this

oracle returns ⊥. Else if b = 0, this oracle returns Sig(Mod(m), sk, spk,Adm),
else if b = 1, this oracle returns San(m,Mod,Sig(m, sk, spk,Adm), pk, ssk).

Let P be a SS. P is Trans secure (or transparent) when for any polynomial time
adversary A, the probability that A wins the following experiment is negligible,
where Sig(., sk, ., .) and SiProof(sk, ., ., .) are defined as in Definition 11, and where
SSa/Si (resp. SSiProof and SSaProof) corresponds to the set of all signatures outputted
by the oracle Sa/Si (resp. sent to the oracles SiProof and SaProof):

Unlinkable and Strongly Accountable Sanitizable Signatures 215

ExpTrans
P,A (k):

set ← Init(1k)
(pk, sk) ← SiGen(set)
(spk, ssk) ← SaGen(set)

b
$← {0, 1}

b′ ← A
Sig(.,sk,.,.),San(.,.,.,.,ssk),SiProof(sk,.,.,.)

SaProof(ssk,.,.,.),Sa/Si(b,pk,spk,sk,ssk,.,.,.) (pk, spk)
if (b = b′) and (SSa/Si ∩ (SSiProof ∪ SSaProof) = ∅)
then return 1, else return 0

Unlinkablility: The unlinkablility property ensures that a sanitized signature
cannot be linked with the original one. We consider an adversary that has access
to the signature oracle, the sanitize oracle, and both the signer and the san-
itizer proof oracles. Moreover, the adversary has access to a challenge oracle
LRSan(b, pk, ssk, ., .) that depends to a bit b: this oracle takes as input two signa-
tures σ0 and σ1, the two corresponding messages m0 and m1 and two modifica-
tion functions Mod0 and Mod1 chosen by the adversary. If the two signatures
have the same admissible function Adm, if Mod0 and Mod1 are admissible
according to Adm and if Mod0(m0) = Mod1(m1) then the challenge oracle
sanitizes σb using Modb and returns it. The goal of the adversary is to guess the
bit b.

Definition 13 (Unlinkability [8]). Let the following oracles be:

LRSan(b, pk, ssk, ., .): On input ((m0,Mod0, σ0)(m1,Mod1, σ1)), if for i ∈ {0, 1},
Ver(mi, σi, pk, spk) = 1 and Adm0 = Adm1 and Adm0(Mod0) = 1 and
Adm1(Mod1) = 1 and Mod0(m0) = Mod1(m1), then this oracle returns
San(mb,Modb, σb, pk, ssk), else it returns 0.

Let P be a SS of security parameter k. P is Unlink secure (or unlinkable) when
for any polynomial time adversary A, the probability that A wins the following
experiment is negligibly close to 1/2, where Sig(., sk, ., .) and SiProof(sk, ., ., .) are
defined as in Definition 11 and San(., ., ., ., ssk) and SaProof(ssk, ., ., .) are defined
as in Definition 12:

ExpUnlink
P,A (k):

set ← Init(1k)
(pk, sk) ← SiGen(set)
(spk, ssk) ← SaGen(set)

b
$← {0, 1}

b′ ← A
Sig(.,sk,.,.),San(.,.,.,.,ssk)

SiProof(sk,.,.,.),SaProof(ssk,.,.,.),LRSan(b,pk,spk,.,.) (pk, spk)
if (b = b′) then return 1, else return 0

Accountability: Standard defintion of accountability is shared into two security
experiments: the sanitizer accountability and the signer accountability. In the
sanitizer accountability experiment, the adversary has access to the signature
oracle and the signer proof oracle. Its goal is to forge a signature such that the

216 X. Bultel and P. Lafourcade

signer proof algorithm returns a proof that this signature is not sanitized. To
succeed the experiment, this signature must not come from the signature oracle.

Definition 14 (Sanitizer Accountability [8]). Let P be a SS. P is SaAcc-1
secure (or sanitizer accountable) when for any polynomial time adversary A,
the probability that A wins the following experiment is negligible, where the ora-
cles Sig(., sk, ., .) and SiProof(sk, ., ., .) are defined as in Definition 11, qSig is the
number of calls to the oracle Sig(., sk, ., .), the tuple (mi,Admi, spki) is the ith

query asked to the oracle Sig(., sk, ., .) and σi is the corresponding response:

ExpSaAcc-1
P,A (k):

set ← Init(1k)
(pk, sk) ← SiGen(set)
(spk∗, m∗, σ∗) ← ASig(.,sk,.,.),SiProof(sk,.,.,.)(pk)
π∗
si ← SiProof(sk, m∗, σ∗, spk∗)

if ∀ i ∈ [[1, qSig]], (σ∗ �= σi)
and (Ver(m∗, σ∗, pk, spk∗) = 1)
and (SiJudge(m∗, σ∗, pk, spk∗, π∗

si) �= 0)
then return 1, else return 0

In the signer accountability experiment, the adversary knows the public key
of the sanitizer and has access to the sanitize oracle and the sanitizer proof
oracle. Its goal is to forge a signature together with a proof that this signature
is sanitized. To succeed the experiment, this signature must not come from the
sanitize oracle.

Definition 15 (Signer Accountability [8]). Let P be a SS. P is SiAcc-1
secure (or signer accountable) when for any polynomial time adversary A, the
probability that A wins the following experiment is negligible, where the oracle
San(., ., ., ., ssk) and SaProof(ssk, ., ., .) are defined as in Definition 12 and where
qSan is the number of calls to the oracle San(., ., ., ., ssk), (mi,Modi, σi, pki) is the
ith query asked to the oracle San(., ., ., ., ssk) and σ′

i is the corresponding response:

ExpSiAcc-1
P,A (k):

set ← Init(1k)
(spk, ssk) ← SaGen(set)
(pk∗, m∗, σ∗, π∗

si) ← ASan(.,.,.,.,ssk),SaProof(ssk,.,.,.)(spk)
if ∀ i ∈ [[1, qSan]], (σ∗ �= σ′

i)
and (Ver(m∗, σ∗, pk∗, spk) = 1)
and (SiJudge(m∗, σ∗, pk∗, spk, π∗

si) = 0)
then return 1, else return 0

Strong Accountability: Since our definition of sanitizable signature provides a
second proof algorithm for the sanitizer, we define two additional security exper-
iments (for signer and sanitizer accountability) to ensure the soundness of the
proofs computed by this algorithm. We say that a scheme is strongly accountable
when it is signer and sanitizer accountable for both the signer and the sanitizer
proof algorithms.

Unlinkable and Strongly Accountable Sanitizable Signatures 217

Thus, in our second signer accountability experiment, we consider an adver-
sary that has access to the sanitize oracle and the sanitizer proof oracle. Its goal
is to forge a signature such that the sanitizer proof algorithm returns a proof
that this signature is sanitized. To win the experiment, this signature must not
come from the sanitize oracle.

Definition 16 (Strong Signer Accountability). Let P be a SS. P is SiAcc-2
secure when for any polynomial time adversary A, the probability that A wins
the following experiment is negligible, where qSan is the number of calls to the
oracle San(., ., ., ., ssk), (mi,Modi, σi, pki) is the ith query asked to the oracle
San(., ., ., ., ssk) and σ′

i is the corresponding response:

ExpSiAcc-2
P,A (k):

set ← Init(1k)
(spk, ssk) ← SaGen(set)
(pk∗, m∗, σ∗) ← ASan(.,.,.,.,ssk),SaProof(ssk,.,.,.)(spk)
π∗
sa ← SaProof(ssk, m∗, σ∗, pk∗)

if ∀ i ∈ [[1, qSan]], (σ∗ �= σ′
i)

and (Ver(m∗, σ∗, pk∗, spk) = 1)
and (SaJudge(m∗, σ∗, pk∗, spk, π∗

sa) �= 1)
then return 1, else return 0

P is strong signer accountable when it is both SiAcc-1 and SiAcc-2 secure.

Finally, in our second sanitizer accountability experiment, we consider an adver-
sary that knows the public key of the signer and has access to the signer oracle
and the signer proof oracle. Its goal is to sanitize a signature with a proof that
this signature is not sanitized. To win the experiment, this signature must not
come from the signer oracle.

Definition 17 (Strong Sanitizer Accountability). Let P be a SS. P is
SaAcc-2 secure when for any polynomial time adversary A, the probability that A
wins the following experiment is negligible, Sig(., sk, ., .) and SiProof(sk, ., ., .) are
defined as in Definition 11, qSig is the number of calls to the oracle Sig(., sk, ., .),
(mi,Admi, spki) is the ith query asked to the oracle Sig(., sk, ., .) and σi is the
corresponding response:

ExpSaAcc-2
P,A (k):

set ← Init(1k)
(pk, sk) ← SaGen(set)
(spk∗, m∗, σ∗, π∗

sa) ← ASig(.,sk,.,.),SiProof(sk,.,.,.)(spk)
if ∀ i ∈ [[1, qSig]], (σ∗ �= σi)

and (Ver(m∗, σ∗, pk, spk∗) = 1)
and (SaJudge(m∗, σ∗, pk, spk∗, π∗

sa) = 1)
then return 1, else return 0

P is strong sanitizer accountable when it is both SaAcc-1 and SaAcc-2 secure.

218 X. Bultel and P. Lafourcade

5 An Efficient Verifiable Ring Signature: EVeR

We present our VRS scheme called EVeR (for Efficient VErifiable Ring signa-
ture). EVeR works as follows: the signer produces an anonymous commitment
from his secret key and the message (i.e. a commitment that leaks no informa-
tion about the secret key), then he proves that this commitment was produced
with a secret key corresponding to one of the public keys of the group members
using a zero-knowledge proof system. Note that the same methodology was used
to design several ring signature schemes of the literature [2,13,17,24]. Moreover,
to prove that he is (resp. he is not) the signer of a message, the user proves
that the commitment was (resp. was not) produced from the secret key that
corresponds to his public key using a zero-knowledge proof system. Our scheme
is based on the DDH assumption and uses a NIZKP of equality of two discrete
logarithms out of n elements. We show how to build this NIZKP: Let G be a
group of prime order p, n be an integer and let the following binary relation be:

Rn =

⎧
⎨

⎩
(s, w) :

s = {(hi, zi, gi, yi)}1≤ i ≤ n;
∃i ∈ [[1, n]], (((hi, zi, gi, yi) ∈ G

4)
∧(w = loggi

(yi) = loghi
(zi)));

⎫
⎬

⎭
.

We denote by Ln the language {s : ∃w, (s, w) ∈ Rn}. Consider the case n = 1.
In [18], authors present an interactive zero-knowledge proof of knowledge system
for the relation R1. It proves the equality of two discrete logarithms. For example
using (h, z, g, y) ∈ L1, a prover convinces a verifier that logg(y) = logh(z).
The witness used by the prover is w = logg(y). This proof system is a sigma
protocol in the sense that there are only three interactions: the prover sends a
commitment, the verifier sends a challenge, and the prover returns a response.

To transform the proof system of R1 into a generic proof system of any
Rn, we use the generic transformation given in [19]. For any integer n and
any relation R, the authors show how to transform a zero-knowledge proof of
knowledge of a witness w such that (s, w) ∈ R for a given statement s into a
zero-knowledge proof of knowledge of a witness w such that there exists s ∈ S
such that (s, w) ∈ R for a given set of n statements S, under the condition that
the proof is a sigma protocol. Note that the resulting proof system is also a
sigma protocol.

The final step is to transform it into a non-interactive proof system. We use
the well-known Fiat-Shamir transformation [20]. This transformation changes
any interactive proof system that is a sigma protocol into a non interactive one.
The resulting proof system is complete, sound and zero-knowledge in the random
oracle model. Finally, we obtain the following scheme.

Scheme 2 (LogEqn). Let G be a group of prime order p, H : {0, 1} → Z
∗
p

be a hash function and n be an integer. We define the NIZKP LogEqn =
(LEproven, LEverifn) for Rn by:

LEproven({(hi, zi, gi, yi)}1≤i≤n, x). Let x = loggj
(yj) = loghj

(zj), this algorithm
picks rj

$← Z
∗
p, computes Rj = g

rj

j and Sj = h
rj

j . For all i ∈ [[1, n]] and i �= j, it

Unlinkable and Strongly Accountable Sanitizable Signatures 219

picks ci
$← Z

∗
p and γi

$← Z
∗
p, and computes Ri = gγi

i /yci
i and Si = hγi

i /zci
i . It

computes c = H(R1||S1|| . . . ||Rn||Sn). It then computes cj = c/(
∏n

i=1;i�=j ci)
and γj = rj + cj · x. It outputs π = {(Ri, Si, ci, γi)}1≤i≤n.

LEverifn({(hi, zi, gi, yi)}1≤i≤n, π). It parses π = {(Ri, Si, ci, γi)}1≤i≤n. If H(R1||
S1|| . . . ||Rn||Sn) �= ∏n

i=1;i�=j ci then it returns 0. Else if there exists i ∈ [[1, n]]
such that gγi

i �= Ri · yci
i or hγi

i �= Si · zci
i then it returns 0, else 1.

Theorem 1. The NIZKP LogEqn is a proof of knowledge, moreover it is com-
plete, sound, and zero-knowledge in the random oracle model.

The proof of this theorem is a direct implication of [18,19] and [20]. Using this
proof system, we build our VRS scheme called EVeR:

Scheme 3 (Efficient Verifiable Ring Signature (EVeR)). EVeR is a VRS
defined by:

V.Init(1k): It generates a prime order group setup (G, p, g) and a hash function
H : {0, 1}∗ → G. It returns the setup set = (G, p, g,H).

V.Gen(set): It picks sk
$← Z

∗
p, computes pk = gsk and returns a pair of signer

public/private keys (pk, sk).
V.Sig(L,m, sk): It picks r

$← Z
∗
p, it computes h = H(m||r) and z = hsk, it runs

P ← LEprove|L|({(h, z, g, pkl)}pkl∈L, sk) and returns σ = (r, z, P).
V.Ver(L,m, σ): It parses σ = (r, z, P), computes h = H(m||r) and returns b ←

LEverif|L|({(h, z, g, pkl)}pkl∈L, P).
V.Proof(L,m, σ, pk, sk): It parses σ = (r, z, P), computes h = H(m||r) and z̄ =

hsk, runs P̄ ← LEprove1({(h, z̄, g, pk)}, sk) and returns π = (z̄, P̄).
V.Judge(L,m, σ, pk, π): It parses σ = (r, z, P) and π = (z̄, P̄), computes h =

H(m||r) and runs b ← LEverif1({(h, z̄, g, pk)}, π). If b �= 1 then it returns ⊥.
Else, if z = z̄ then it returns 1, else it returns 0.

All users have an ElGamal key pair (pk, sk) such that pk = gsk, where g is a
generator of a prime order group. To sign a message m according to a set of
public key L using her key pair (pk, sk), Alice chooses a random r and computes
h = H(m||r) and z = hsk where H is an hash function. Alice produces a proof
π that there exists pkl ∈ L such that logg(pkl) = logh(z) using the NIZKP
LogEq|L|, where |L| denotes the cardinal of L. The signature is the triplet (r, z, π).
To verify a signature, it suffices to verify the proof π according to L, m and the
other parts of the signature. To prove that she is the signer of the message
m, Alice generates a proof that logg(pk) = logh(z) using the NIZKP LogEq1.
By verifying this proof, a judge is convinced that z = hsk. Let (r′, z′, π′) be
a second signature of a message m′ produced from another key pair (pk′, sk′).
We set h′ = H(m′||r′), and we recall that z′ = (h′)sk

′
. To prove that she is

not the signer of m′, Alice computes z̄′ = (h′)sk and she generates a proof that
logg(pk) = logh′(z̄′). Since z̄′ �= z′, Alice proves that logg(pk) �= logh′(z′), then
she is not the signer of (r′, z′, π′).

Theorem 2. EVeR is unforgeable, anonymous, accountable and non-seizable
under the DDH assumption in the random oracle model.

220 X. Bultel and P. Lafourcade

We give the intuition of these properties, the proof of the theorem is given
in the full version of this paper [12]:

Unforgeability: The scheme is unforgeable since nobody can prove that
logg(pkl) = logh(z) without the knowledge of sk = logh(z).

Anonymity: Breaking the anonymity of such a signature is equivalent to breaking
the DDH assumption. Indeed, to link a signature z = hsk with the correspond-
ing public key of Alice pk = gsk, an attacker must solve the DDH problem
on the instance (pk, h, z). Moreover, note that since the value r randomizes
the signature, it is not possible to link two signatures of the same message
produced by Alice.

Accountability: To break the accountability, an adversary must forge a valid
signature (i.e. to prove that there exists pkl in the group such that logg(pkl) �=
logh(z)) and to prove that he is not the signer (i.e. logg(pk) �= logh(z) where
pk is the public key chosen by the adversary). However, since the adversary
does not know the secret keys of the other members of the group, he would
have to break the soundness of LogEq to win the experiment, which is not
possible.

Non-seizable: (non-sei-1) no adversary is able to forge a proof that it is the signer
of a signature produced by another user since it is equivalent to proving a
false statement using a sound NIZKP. (non-sei-2) the proof algorithm run by
a honest user with the public key pk returns a proof that this user is the
signer of a given signature only if logg(pk) = logh(z). Since no adversary is
able to compute z such that logg(pk) = logh(z) without the corresponding
secret key, no adversary is able to break the non-seizability of EvER.

6 Our Unlinkable Sanitizable Signature Scheme: GUSS

We present our USS instantiated by a digital signature (DS) scheme and a VRS.

Scheme 4. (Generic Unlinkable Sanitizable Signature (GUSS)). Let
D be a deterministic digital signature scheme such that D = (D.Init, D.Gen,
D.Sig, D.Ver) and V be a verifiable ring signature scheme such that V =
(V.Init,V.Gen,V.Sig, V.Ver,V.Proof, V.Judge). GUSS instantiated with (D,V) is
a sanitizable signature scheme defined by the following algorithms:

Init(1k): It runs setd ← D.Init(1k) and setv ← V.Init(1k). Then it returns the
setup set = (setd, setv).

SiGen(set): It parses set = (setd, setv), runs (pkd, skd) ← D.Gen(setd) and (pkv,
skv) ← V.Gen(setv). Then it returns (pk, sk) where pk = (pkd, pkv) and sk =
(skd, skv).

SaGen(set): It parses set = (setd, setv) and runs (spk, ssk) ← V.Gen(setv). It
returns (spk, ssk).

Sig(m, sk, spk,Adm): It parses sk = (skd, skv). It first computes the fixed message
part M ← FixAdm(m) and runs σ1 ← D.Sig(skd, (M ||Adm||pk||spk)) and
σ2 ← V.Sig({pkv, spk}, skv, (σ1||m))). It returns σ = (σ1, σ2,Adm).

Unlinkable and Strongly Accountable Sanitizable Signatures 221

San(m,Mod, σ, pk, ssk): It parses σ = (σ1, σ2,Adm) and pk = (pkd, pkv). This
algorithm first computes the modified message m′ ← Mod(m) and it runs
σ′
2 ← V.Sig({pkv, spk}, ssk, (σ1||m′)). It returns σ′ = (σ1, σ

′
2,Adm).

Ver(m,σ, pk, spk): It parses σ = (σ1, σ2,Adm) and it computes the fixed message
part M ← FixAdm(m). Then it runs b1 ← D.Ver(pkd, (M ||Adm||pk||spk), σ1)
and b2 ← V.Ver({pkd, spk}, (σ1||m), σ2). It returns b = (b1 ∧ b2).

SiProof(sk,m, σ, spk): It parses σ = (σ1, σ2,Adm) and the key sk = (skd, skv). It
runs πsi ← V.Proof({pkv, spk}, (m||σ1), σ2, pkv, skv) and returns it.

SaProof(ssk,m, σ, pk): It parses the signature σ = (σ1, σ2,Adm). It runs πsa ←
V.Proof({pkv, spk}, (m||σ1), σ2, spk, ssk) and returns it.

SiJudge(m,σ, pk, spk, πsi): It parses σ = (σ1, σ2,Adm) and pk = (pkd, pkv). It
runs b ← V.Judge({pkv, spk}, (m||σ1), σ2, pkv, πsi) and returns it.

SaJudge(m,σ, pk, spk, πsa): It parses σ = (σ1, σ2,Adm) and pk = (pkd, pkv). It
runs b ← V.Judge({pkv, spk}, (m||σ1), σ2, spk, πsa) and returns (1 − b).

The signer secret key sk = (skd, skv) contains a secret key skd compatible
with the DS scheme and a secret key skv compatible with the VRS scheme.
The signer public key pk = (pkd, pkv) contains the two corresponding public
keys. The sanitizer public/secret key pair (spk, ssk) is generated as in the VRS
scheme.

Let m be a message and M be the fixed part chosen by the signer according
to the admissible function Adm. To sign m, the signer first signs M together
with the public key of the sanitizer spk and the admissible function Adm using
the DS scheme. We denote this signature by σ1. The signer then signs in σ2 the
full message m together with σ1 using the VRS scheme for the set of public keys
L = {pkv, spk}. Informally, he anonymously signs (σ1||m) within a group of two
users: the signer and the sanitizer. The final sanitizable signature is σ = (σ1, σ2).
The verification algorithm works in two steps: it verifies the signature σ1 and it
verifies the anonymous signature σ2.

To sanitize this signature σ = (σ1, σ2), the sanitizer chooses an admissible
message m′ according to Adm (i.e. m and m′ have the same fixed part). Then
he anonymously signs m′ together with σ1 using the VRS for the group L =
{pkv, spk} using the secret key ssk. We denote by σ′

2 this signature. The final
sanitized signature is σ′ = (σ1, σ

′
2).

Theorem 3. For any deterministic and unforgeable DS scheme D and any
unforgeable, anonymous, accountable and non-seizable VRS scheme V , GUSS
instantiated with (D,V) is immutable, transparent, strongly accountable and
unlinkable.

We give the intuition of these properties, the proof of the theorem is given
in the full version of this paper [12]:

Transparency: According to the anonymity of σ2 and σ′
2, nobody can guess if a

signature comes from the signer or the sanitizer, and since both signatures
have the same structure, nobody can guess whether a signature is sanitized
or not.

222 X. Bultel and P. Lafourcade

Immutability: Since it is produced by a unforgeable DS scheme, nobody can forge
the signature σ1 of the fixed part M without the signer secret key. Thus the
sanitizer cannot change the fixed part of the signatures. Moreover, since σ1

signs the public key of the sanitizer in addition to M , the other users cannot
forge a signature of an admissible message using σ1.

Unlinkability: An adversary knows (i) two signatures σ0 and σ1 that have the
same fixed part M according to the same function Adm for the same sanitizer
and (ii) the sanitized signature σ′ = (σ′

1, σ
′
2) computed from σb for a given

admissible message m′ and an unknown bit b. To achieve unlinkability, it must
be hard to guess b. Since the DS scheme is deterministic, the two signatures
σ0 = (σ0

1 , σ
0
2) and σ1 = (σ1

1 , σ
1
2) have the same first part (i.e. σ0

1 = σ1
1). As

it was shown before, the σ′ has the same first part σ′
1 as the original one,

thus σ′
1 = σ0

1 = σ1
1 and σ′

1 leaks no information about b. On the other hand,
the second part of the sanitized signature σ′

2 is computed from the modified
message m′ and the first part of the original signature. Since σ0

1 = σ1
1 , we

deduce that σ′
2 leaks no information about b. Finally, the best strategy of the

adversary is to randomly guess b.
(Strong) Accountability: the signer must be able to prove the provenance of a

signature. It is equivalent to breaking the anonymity of the second parts
σ2 of this signature: if it was created by the signer then it is the original
signature, else it was created by the sanitizer and it is a sanitized signature.
By definition, the VRS scheme used to generate σ2 provides a way to prove
whether a user is the author of a signature or not. GUSS uses it in its proof
algorithm to achieve accountability. Note that since the sanitizer uses the
same VRS scheme to sanitize a signature, he also can prove the origin of a
given signature to achieve the strong accountability.

7 Conclusion

In this paper, we revisit the notion of verifiable ring signatures. We improve
its properties of verifiability, we give a security model for this primitive and
we design a simple, efficient and secure scheme named EvER. We extend the
security model of sanitizable signatures in order to allow the sanitizer to prove
the origin of a signature. Finally, we design a generic unlinkable sanitizable
signature scheme named GUSS based on verifiable ring signatures. This scheme
is twice as efficient as the best scheme of the literature. In the future, we aim
at finding other applications for the verifiable ring signatures that require our
security properties.

Acknowledgement. We acknowledge Dominique Schröder for his helpful comments
and feedback on our paper.

A Algorithms Complexity

In this section, we detail the complexity of the algorithms of our schemes. More
precisely, we give the number of exponentiations in a prime order group for

Unlinkable and Strongly Accountable Sanitizable Signatures 223

each algorithm. Since our schemes are pairing free, this is the main operation.
Moreover, we give the size of some values outputted by these algorithms (keys,
signatures and proofs). This size is given in the number of elements of a group
of prime order p. For the sake of clarity, we do not distinguish between elements
of a group G of prime order p where the DDH assumption is hard and elements
of Z∗

p.
In Fig. 2, we give the number of exponentiations of each algorithm of

Schnorr’s signature, and we give the size of the secret/public keys skSh and
pkSh and the size of a signature σSh.

Schnorr D.Gen D.Sig D.Ver skSh pkSh σSh

exp/size 1 1 2 1 1 2

Fig. 2. Complexity analysis of Schnorr (Scheme 1).

In Fig. 3, we give the number of exponentiations of each algorithm of the
LogEqn proof system and the size of a proof πLE

n depending to the number n.
The first line corresponds to the general case, the two other lines correspond to
the case where n = 1 and n = 2.

LogEqn LEproven LEverifn πLE
n

n 2 + 4 · (n − 1) 4 · n 4 · n
n = 1 2 4 4
n = 2 6 8 8

Fig. 3. Complexity analysis of LogEq (Scheme 2).

In Fig. 4, we give the number of exponentiations of each algorithm of the
EVeR verifiable ring signature scheme (first table) and the size the secret/public
keys skEV and pkEV, the size of a signature σEV

n and the size of a proof πEV
n

(second table). These values depend on the size of the ring n. The first line
corresponds to the generic case, where the values depend on the chosen proof
system. The second line corresponds to the case where n = 2 and where the
proof system is LogEq2.

In Fig. 5, we give the number of exponentiations of each algorithm of
the GUSS verifiable ring signature scheme (first table) and the size of the
secret/public keys of the signer and the sanitize sk, pk, ssk and spk, the size
of a signature σ and the size of a proof π (second table). We ommit the com-
plexity of the algorithms SaProof and SaJudge since these algorithms are similar
to SiProof and SiJudge. The first line corresponds to the generic case, where
the values depend on the chosen signature scheme and the chosen verifiable
ring signature scheme. The second line corresponds to the case where GUSS is
instantiated with Schnorr and EVeR.

224 X. Bultel and P. Lafourcade

EVeR V.Gen V.Sign V.Vern V.Proof V.Judge
n (generic) 1 1 + LEproven LEverifn 1 + LEprove1 LEverif1

n = 2 (with LogEqn) 1 7 8 3 4

EVeR skEV pkEV σEV
n πEV

n

n (generic) 1 1 2 + πLE
n 1 + πLE

1

n = 2 (with LogEqn) 1 1 10 5

Fig. 4. Complexity analysis of EVeR (Scheme 3).

GUSS SiGen SaGen Sig San Ver SiProof
generic D.Gen + V.Gen V.Gen D.Sig + V.Sig2 V.Sig2 D.Ver + V.Ver2 V.Proof

EvER and Schnorr 2 1 8 7 10 3

GUSS SiJudge sk pk ssk spk σ π

generic V.Judge skEV + skSh pkEV + pkSh skEV pkEV σEV
2 + σSc πEV

2

EvER and Schnorr 4 2 2 1 1 12 5

Fig. 5. Complexity analysis of GUSS (Scheme 4).

References

1. Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures.
In: di Vimercati, S.C., Syverson, P., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 159–177. Springer, Heidelberg (2005). https://doi.org/10.1007/
11555827 10

2. Au, M.H., Susilo, W., Yiu, S.-M.: Event-oriented k -times revocable-iff-linked group
signatures. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058,
pp. 223–234. Springer, Heidelberg (2006). https://doi.org/10.1007/11780656 19

3. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell [6], pp.
390–420

4. Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and con-
structions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006.
LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006). https://doi.org/10.1007/
11681878 4

5. Boneh, D.: The decision Diffie-Hellman problem (Invited paper). In: Buhler, J.P.
(ed.) ANTS 1998. LNCS, vol. 1423, pp. 48–63. Springer, Heidelberg (1998). https://
doi.org/10.1007/BFb0054851

6. Brickell, E.F. (ed.): CRYPTO 1992. LNCS, vol. 740. Springer, Heidelberg (1993)
7. Brzuska, C., et al.: Redactable signatures for tree-structured data: definitions and

constructions. In: Zhou, J., Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 87–
104. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13708-2 6

8. Brzuska, C., et al.: Security of sanitizable signatures revisited. In: Jarecki, S.,
Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 317–336. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00468-1 18

9. Brzuska, C., Fischlin, M., Lehmann, A., Schröder, D.: Unlinkability of sanitizable
signatures. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
444–461. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-
7 26

https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/11555827_10
https://doi.org/10.1007/11780656_19
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/11681878_4
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/BFb0054851
https://doi.org/10.1007/978-3-642-13708-2_6
https://doi.org/10.1007/978-3-642-00468-1_18
https://doi.org/10.1007/978-3-642-13013-7_26
https://doi.org/10.1007/978-3-642-13013-7_26

Unlinkable and Strongly Accountable Sanitizable Signatures 225

10. Brzuska, C., Pöhls, H.C., Samelin, K.: Non-interactive public accountability for
sanitizable signatures. In: De Capitani di Vimercati, S., Mitchell, C. (eds.) EuroPKI
2012. LNCS, vol. 7868, pp. 178–193. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40012-4 12

11. Brzuska, C., Pöhls, H.C., Samelin, K.: Efficient and perfectly unlinkable sanitizable
signatures without group signatures. In: Katsikas, S., Agudo, I. (eds.) EuroPKI
2013. LNCS, vol. 8341, pp. 12–30. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-642-53997-8 2

12. Bultel, X., Lafourcade, P.: Unlinkable and strongly accountable sanitizable signa-
tures from verifiable ring signatures. Cryptology ePrint Archive, Report 2017/605
(2017). http://eprint.iacr.org/2017/605

13. Canard, S., Schoenmakers, B., Stam, M., Traor, J.: List signature schemes. Discret.
Appl. Math. 154(2), 189–201 (2006)

14. Canard, S., Jambert, A.: On extended sanitizable signature schemes. In: Pieprzyk,
J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 179–194. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-11925-5 13

15. Canard, S., Jambert, A., Lescuyer, R.: Sanitizable signatures with several sign-
ers and Sanitizers. In: Mitrokotsa, A., Vaudenay, S. (eds.) AFRICACRYPT 2012.
LNCS, vol. 7374, pp. 35–52. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31410-0 3

16. Changlun, Z., Yun, L., Dequan, H.: A new verifiable ring signature scheme based
on Nyberg-Rueppel scheme. In: 2006 8th International Conference on Signal Pro-
cessing, vol. 4 (2006)

17. Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. LNCS, vol. 4117, pp. 78–96. Springer, Heidelberg (2006). https://
doi.org/10.1007/11818175 5

18. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell [6], pp.
89–105

19. Cramer, R., Damg̊ard, I., Schoenmakers, B.: Proofs of partial knowledge and sim-
plified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994.
LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/
3-540-48658-5 19

20. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

21. Fleischhacker, N., Krupp, J., Malavolta, G., Schneider, J., Schröder, D.,
Simkin, M.: Efficient unlinkable sanitizable signatures from signatures with re-
randomizable keys. In: Cheng, C.-M., Chung, K.-M., Persiano, G., Yang, B.-Y.
(eds.) PKC 2016. LNCS, vol. 9614, pp. 301–330. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49384-7 12

22. Fuchsbauer, G., Pointcheval, D.: Anonymous proxy signatures. In: Ostrovsky, R.,
De Prisco, R., Visconti, I. (eds.) SCN 2008. LNCS, vol. 5229, pp. 201–217. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-85855-3 14

23. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

24. Hoshino, F., Kobayashi, T., Suzuki, K.: Anonymizable signature and its construc-
tion from pairings. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS,
vol. 6487, pp. 62–77. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17455-1 5

https://doi.org/10.1007/978-3-642-40012-4_12
https://doi.org/10.1007/978-3-642-40012-4_12
https://doi.org/10.1007/978-3-642-53997-8_2
https://doi.org/10.1007/978-3-642-53997-8_2
http://eprint.iacr.org/2017/605
https://doi.org/10.1007/978-3-642-11925-5_13
https://doi.org/10.1007/978-3-642-31410-0_3
https://doi.org/10.1007/978-3-642-31410-0_3
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/11818175_5
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-48658-5_19
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-662-49384-7_12
https://doi.org/10.1007/978-3-540-85855-3_14
https://doi.org/10.1007/978-3-642-17455-1_5
https://doi.org/10.1007/978-3-642-17455-1_5

226 X. Bultel and P. Lafourcade

25. Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic signature schemes.
In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Hei-
delberg (2002). https://doi.org/10.1007/3-540-45760-7 17

26. Lai, R.W.F., Zhang, T., Chow, S.S.M., Schröder, D.: Efficient sanitizable signatures
without random oracles. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows,
C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 363–380. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-45744-4 18

27. Lee, K.C., Wen, H.A., Hwang, T.: Convertible ring signature. IEE Proc. - Commun.
152(4), 411–414 (2005)

28. Lv, J., Wang, X.: Verifiable ring signature. In: DMS Proceedings, pp. 663–665
(2003)

29. Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.)
ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45682-1 32

30. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

31. Steinfeld, R., Bull, L., Zheng, Y.: Content extraction signatures. In: Kim, K. (ed.)
ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45861-1 22

32. Wang, S., Ma, R., Zhang, Y., Wang, X.: Ring signature scheme based on multi-
variate public key cryptosystems. Comput. Math. Appl. 62(10), 3973–3979 (2011)

https://doi.org/10.1007/3-540-45760-7_17
https://doi.org/10.1007/978-3-319-45744-4_18
https://doi.org/10.1007/3-540-45682-1_32
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-45861-1_22
https://doi.org/10.1007/3-540-45861-1_22

Web Security

Out of the Dark: UI Redressing
and Trustworthy Events

Marcus Niemietz(B) and Jörg Schwenk

Chair for Network and Data Security, Horst Görtz Institute for IT Security,
Ruhr-University Bochum, Bochum, Germany
{marcus.niemietz,joerg.schwenk}@rub.de

Abstract. Web applications use trustworthy events consciously trig-
gered by a human user (e.g., a left mouse click) to authorize security-
critical changes. Clickjacking and UI redressing (UIR) attacks trick the
user into triggering a trustworthy event unconsciously. A formal model
of Clickjacking was described by Huang et al. and was later adopted by
the W3C UI safety specification. This formalization did not cover the
target of these attacks, the trustworthy events.

We provide the first extensive investigation on this topic and show that
the concept is not completely understood in current browser implemen-
tations. We show major differences between widely-used browser fam-
ilies, even to the extent that the concept of trustworthy events itself
becomes unrecognizable. We also show that the concept of trusted events
as defined by the W3C is somehow orthogonal to trustworthy events, and
may lead to confusion in understanding the security implications of both
concepts. Based on these investigations, we were able to circumvent the
concept of trusted events, introduce three new UIR attack variants, and
minimize their visibility.

1 Introduction

UI Redressing attacks are powerful attacks which can be used to circumvent
browser security mechanisms like sandboxing and the Same-Origin Policy (SOP).
They are far less intrusive than, for example, Phishing mails because the user
thinks he performs a legal action on an innocent-looking web page. In 2008
Grossmann et al. had to cancel their OWASP talk about a new attack technique
called Clickjacking [10]: it turned out that they were able to bypass a major
protection mechanism of Adobe’s Flash – Clickjacking allowed the attacker’s
website to automatically get access to the camera and microphone of the vic-
tim without any explicit permission. According to Adobe, Clickjacking had the
“highest level of damage potential that any exploit can have” [26].

In contrast to Clickjacking that is usually associated with left-click mouse
events only, the broader term UIR also covers events from the keyboard and even
touch gestures [12,30]. In the past years, many attacks and defense mechanisms
were published by the industry as well as the academic community (e.g., [3,4,
28,33], and [18]).
© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 229–249, 2018.
https://doi.org/10.1007/978-3-030-02641-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_11

230 M. Niemietz and Schwenk

Formal Definition of UIR. Huang et al. [12] defined Clickjacking to be an
attack that violates the integrity of either the visual context or the temporary
context of a trustworthy user action on a sensitive element of the web application.
Visual context integrity may either be violated by making the sensitive element
invisible (e.g., by placing it in fully transparent mode above some other element),
or by hiding the fact that the user is actually clicking on such an element (e.g., by
modifying the image of the mouse pointer, also referred to as Cursorjacking [15]).
Temporal context integrity can be violated by replacing a non-sensitive element,
just before the user clicks on it, by the sensitive element.

The definitions from Huang et al. [12] can easily be extended to the broader
class or UIR attacks. However, the treatment of trustworthy events becomes
more complex because in addition to left-click events, also right-click-and-select,
keyboard and inter alia touch events must be taken into account.

Events in Web Applications. Events can be triggered by humans (e.g., by
clicking on a button or moving the mouse pointer), by network operations, or
automatically with the help of scripts. From the network, events like load or the
status change events in XMLHttpRequest queries can be triggered. Purely script
based are, for example, those triggered by the setTimeout() or setIntervall()
method. For human interaction, a distinction must be made between events that
the user consciously starts (e.g., click or keydown), and events that he may not
notice (e.g., mouseover). Event-handlers are procedures with an on-prefix; they
are called when the corresponding event occurs. For example, the onclick event-
handler is called whenever a click event occurs.

Events are managed in the event system of the browser and there exist
many differences across browsers. For example, the event wheel will only be
executed on the event system of Internet Explorer (IE) when the method
addEventListener() is used. The event system of Google Chrome (GC) will
recognize this event with the same conditions when the event-handler onwheel
is used. To foster interoperability, there exists a working draft of an UI event
specification designed by the World Wide Web Consortium (W3C) [13]. The
specification describes event systems and subsets of different event types.

Trusted vs. Trustworthy Events. Trusted events are defined by the W3C
as follows: “Events that are generated by the user agent, either as a result of
user interaction, or as a direct result of changes to the DOM, are trusted by the
user agent with privileges that are not afforded to events generated by script
through the createEvent() method, modified using the initEvent() method,
or dispatched via the dispatchEvent() method. The isTrusted attribute of
trusted events has a value of true, while untrusted events have a isTrusted
attribute value of false.” ([40], Sect. 3.4).

This definition is very broad and therefore not suitable for a distinction
between events that may be allowed to cause security critical changes, and those
that may not. For example, the mouseover and click events are both “trusted”
according to the W3C definition when caused by a human user; however, dis-

Out of the Dark: UI Redressing and Trustworthy Events 231

playing a pop-up window or sending the contents of an HTML form simply
because the mouse pointer crossed over a certain area of the browser window
(mouseover) seems far too permissive. Our definition is more specific: a trust-
worthy event is an event that is triggered by a conscious user action (e.g., by
left-click, right-click, or keystroke).

Unreliability of isTrusted. To mark trusted actions, the DOM Level 3 spec-
ification of the W3C mentions a read-only property called isTrusted, which
returns a boolean value depending on the dispatched state [39]. In Sect. 4 we
show that this property cannot be used to distinguish trustworthy events from
other events, since pop-ups are blocked even if isTrusted=true, and are allowed
even if isTrusted=false.

Trustworthy Event Scenarios. Trustworthy events are used in different secu-
rity critical scenarios. User consent in activating potentially dangerous browser
features (e.g., activating the webcam via Adobe’s Flash) was the main target in
previously described UIR attacks. Pop-up windows are usually blocked when
there was no former click with the mouse pointing device. One reason is that
pop-up windows are used by the advertisement industry and thus they might
disturb the user or they may even trick him to install malware. The clipboard
should only be accessible by user initiated keyboard or mouse pointing events.
If the clipboard would be accessible by JavaScript code only, an attacker’s web-
site could steal saved data like passwords stored in a password manager (paste
action). Drag-and-drop is a scenario where a user is able to move data cross-
origin. Again, if this feature was accessible by JavaScript code only, the SOP
could be circumvented. Additional scenarios: in Firefox (FF), the deprecated
XML User Interface Language (XUL) handlers and commands can only be trig-
gered by trustworthy events like click and touch [23]. In modern browsers such
as GC, forms can be filled out automatically by using the autofill feature that
could be activated by trustworthy events like keystrokes and left-clicks [34,42].

Investigation of Trustworthy Events. We study (1) all mouse events includ-
ing (a) different left-clicks (click, dblclick, mousedown, mouseup), (b) right-
click, (c) mouse movements (mouseover), (d) drag (drag, dragstart) and (e)
wheel; (2) the keyboard events keydown, keyup, keypress, and (3) combina-
tions of mouse and keyboard events. We show that many of these user-triggered
actions have different interpretations as trustworthy or non-trustworthy events
in the different browser families.

We investigate the three lesser-researched application areas of trustworthy
events: pop-up windows bypassing pop-up blockers, escaping the browser sand-
box via copy-and-paste to and from the clipboard, and bypassing the SOP via
drag-and-drop.

232 M. Niemietz and Schwenk

Research questions. In this work we investigate the following questions:
Which events are recognized as trustworthy by a modern web browser?
How is trustworthy event handling implemented in modern web browsers?
Could the knowledge of these implementations lead to new UIR variants?

Contribution. The contributions of this paper are as follows:

– We systematically evaluate trustworthy events in web applications originating
in a mouse device, the keyboard, or a combination thereof, and describe
differences in modern browsers implementations.

– We thoroughly analyze three security critical trustworthy event scenarios
(pop-up windows, drag-and-drop, and clipboard), both same and cross-origin.

– We introduce and discuss three new UIR attack variants by making use of
particularities of trustworthy event implementations in modern browsers.

2 UI Redressing

The initial Clickjacking attack of Grossman et al. raised a lot of attention due the
hijacking possibilities of the webcam and microphone, but they also discovered a
general security problem. As listed by Niemietz et al. [28], UIR is a set of attacks
that include Clickjacking as a subset. Next to Classic Clickjacking there are
other attacks like Sharejacking and Likejacking (e.g., to attack Facebook [35]),
and inter alia Cursorjacking [7,15]. UIR does not only cover clicks, it also covers
drag operations (drag-and-drop attacks [38]), keystrokes (Strokejacking [43]) and
even maskings (SVG-based attacks [27]).

In a classic Clickjacking attack illustrated in Fig. 1, the victim has opened the
attacker’s website, which consists of two Iframes. The first Iframe (“Funny Kit-
tens”) is loading a visible HTML document to lure the victim into clicking on the
More button. The second Iframe loads the target “Account Setting” website, but
this frame is rendered invisibly (e.g., with the help of the property opacity=0)
on top of the visible frame. Because of invisible Iframe’s position above the Funny
Kittens Iframe, the victim will actually click on Delete instead on More.

UIR Contexts. According to Huang et al., the definition of UIR is that “an
attacker application presents a sensitive UI element of a target application out
of context to a user and hence the user gets tricked to act out of context” [12].
This definition describes the root cause of UIR.

Visual Context. This context defines what the user sees. It does not include
actions (e.g., clicking) on sensitive elements (e.g., buttons). To ensure target
display integrity, sensitive elements must be fully visible to the user. In contrast,
pointer integrity requires that input mechanisms and their resulting actions are
fully visible to the user.

Temporal Context. The timing of a user’s action is known as the temporal
context. To ensure temporal integrity, the user’s action is actually intended by
the user. To compromise temporal integrity, a visible button could be replaced

Out of the Dark: UI Redressing and Trustworthy Events 233

Fig. 1. Illustration for a classic Clickjacking attack.

by the attacker right before the victim is clicking on it (e.g., with a Facebook
Like button).

These context definitions provide an important insight on how UIR attacks
work in the important case that the user does simple events such as a single
left-click. However, in reality there exists a much broader set of user events (e.g.,
keystroke, right-click, and a chain of left-clicks). This could lead to new attack
variants and therefore different events must be considered (shown in Sect. 6).

3 Events in Web Applications

Browser events can be divided into different event types according to the W3C
working drafts for handling browser events [13,14]. In the following, we map com-
mon event types into different event type groups. To the best of our knowledge,
we completely cover all commonly used user interactions.

All event types can be either triggered by user or script actions. To name
one example, a user can consciously trigger a click event by explicitly click-
ing on a button with the event-handler onclick. In addition, a script can also
trigger this event automatically by using the DOM’s click() method (e.g.,
document.getElementById ("button").click()).

Resource Events. These are frame or object events that are triggered by HTTP
events. Examples for resource events are error (failed to load), load (finished
loading), and unload (unloading of a document or depending resource).

Mouse Events. Consciously created mouse events are usually left and right
clicks. In addition, mouse events can also be generated unconsciously when the
pointer is moved or when drag-and-drop actions are done. The most deeply
nested element is always the target of a mouse event. Except for user interac-
tions on a virtual keyboard, touch events act similar to mouse events and are thus

234 M. Niemietz and Schwenk

included in the mouse event set. Examples for mouse events are click (button
has been pressed and released), mousemove (moved pointing device), and drag
(dragged element or text).

Keyboard Events. This event type is for example triggered when a user is
pressing (keydown) or releasing a key (keyup). Virtual keyboards, from input
devices like touch screens, trigger keyboard events and are therefore also in this
even type group.

Multiple Events. Some events cannot be assigned to only the mouse or key-
board; they can also be triggered by both variants. As an example, a user can
select text in an input element by using the mouse cursor (click and mark) and
also the keyboard (shift and arrow keys).

Based on these event types, we provide a definition for trustworthy events:

Definition 1. An event is called trustworthy when it was triggered by a
conscious user action.

4 DOM Property IsTrusted

The W3C specification ([40], Sect. 3.4) describes a boolean attribute isTrusted:
“The isTrusted attribute of trusted events has a value of true, while untrusted
events have a isTrusted attribute value of false.” We investigate this attribute
in detail and show that it is not related to trustworthy events.

Different isTrusted Implementations. According to the W3C, the DOM
property event.isTrusted only returns true when an event was dispatched by
the user agent [39]. According to the Mozilla Developer Network (MDN), the
property is defined as true “when the event was generated by a user action,
and false when the event was created or modified by a script or dispatched via
dispatchEvent” [24]. IE is an exception because all events are true except they
are created with createEvent(). This JavaScript feature can be used to create
an event object and simulate an event type such as a mouse event (e.g., an auto-
matically fired click on a button for testing web applications).

isTrusted=false, but Pop-Ups are Allowed. Listing 1.1 contains a button
and a hyperlink. If the button is clicked by the user, the onclick event-handler

Out of the Dark: UI Redressing and Trustworthy Events 235

calls document.getElementByID("test").click(), and this JavaScript func-
tion selects the hyperlink (which has id="test"), and performs a script-
generated click event on it. Consequently, the value of isTrusted, which is shown
in the alert() window, is false, as described in the W3C specification. Never-
theless, window.open() is executed, and a pop-up window is displayed.

1 <button onclick="document.getElementByID ("test").click ()">

</button>

2 <a href="#" id="test" onclick="alert('isTrusted: '+
event.isTrusted); window.open('http: // example.org ', 'rub
','height=200 ,width=200 ');">Trusted Click

Listing 1.1. Pop-ups are not blocked although isTrused is false.

isTrusted=true, but Pop-Ups are Blocked. Listing 1.2 provides an example
with the <video> element introduced with HTML5. It contains an onloadstart
event-handler, which executes code when the browser starts looking for the video
file given in line 2. Thus, JavaScript code will be directly executed without any
real user interaction. Due to this reason, the JavaScript code generated pop-up
will be blocked. The alert-window with event.isTrusted displays true on all
browsers although the only user interaction was an initial opening of the page
(e.g., FF, GC, and Edge).

1 <video onloadstart="window.open('http: // example.org ',
null , 'height=200 ,width=400 ,status=yes ,toolbar=no ,

menubar=no ,location=no ');alert(event.isTrusted);">
2 <source src="movie.mp4" type="video/mp4">

3 </video>

Listing 1.2. Pop-ups are blocked although isTrusted is true.

Inheritance of Trustworthiness. Our evaluation of the behavior of
isTrusted and the displaying of pop-up windows shows an interesting result;
events occurring within a delay of one second after an initial trustworthy event
are also treated as trustworthy events, although they may be triggered purely
by JavaScript.

More formally: let Pt = true denote the fact that the pop-up window opened
at time t was not blocked by the pop-up-blocker. Let iT = t0 denote the fact
that a trustworthy event was initiated by the user at time t0. Then we have:

Pt :=
{
true, if (iT = t0) ∧ (|t − t0| ≤ 1 sec)
false, else

The interesting discovery is that a pop-up window will not be blocked in
the event that there was once a (real) user’s click in the chain of events. This
behavior was observed for the tested versions of FF and Safari (SA).

236 M. Niemietz and Schwenk

5 Trustworthy Scenarios

The W3C UI Events specification [40] does not recommend actions that are
allowed after a trustworthy event. As shown by Huang et al. [12], a missing
formal definition could lead to different browser implementations and thus to
browser bugs and vulnerabilities.

Next to our trustworthy event definition, we address this issue by providing a
description of three different trustworthy scenarios. We believe that the scientific
community and browser vendors will get a valuable overview about this currently
not examined area and thus derive new attack variants and countermeasures (cf.
Sect. 6).

5.1 Pop-Up Scenario

Need of Trustworthy Events. In the past, JavaScript code was able to auto-
matically open pop-up windows when the user simply opened a website. The
advertising industry used this feature to show unwanted ads to the user and thus
modern browsers distinguish between wanted and unwanted pop-up windows: a
pop-up window should only be shown when a trustworthy event (e.g., click)
was used to call the required JavaScript pop-up-code (e.g., window.open).

Evaluation. Table 1 lists four different types of events with each event type
containing different events. Each event type includes different events. The test
cases for these events were executed in four different browsers: IE 11, FF 47,
GC 54, Opera (OP) 41, and SA 10. Our test function for pop-ups is given in
Listing 1.3. It tries to create up to five pop-up windows in case that the code is
indeed called. If this is the case, all five pop-ups are displayed in FF and SA; in
contrast, only one pop-up with a warning window in IE, GC, and OP.

1 <script>

2 function createPopups (){

3 for (i=1;i<6;i ++) {

4 window.open('// evil.org ', i, 'width=50 ,height=50 ');
5 }

6 }

7 </script>

Listing 1.3. Our test function for pop-ups.

In the first event type group, resource events are given. These events are inter
alia triggered by loading the browser’s window or by simply reloading it. The
user does not use an input device like a mouse or a keyboard and thus pop-up
windows are not displayed.

Mouse events are the second type of events. Our test cases cover left-clicks,
right-clicks, mouse movements, dragging actions, and the usage of the mouse
wheel. In the event of a left-click, pop-ups will be shown. A right-click only leads
to pop-up windows in IE. Mouse movements and dragging actions do not let

Out of the Dark: UI Redressing and Trustworthy Events 237

the tested browser open pop-up windows. The event wheel is triggered when
the wheel rolls up or down over an HTML element; it does not lead to the
displaying of pop-up windows in FF, GC, and OP. Furthermore, this event is
not supported in IE.

With the third defined type called keyboard events, only GC and OP act in
a pop-up scenario. IE and FF behave differently, pop-ups will be blocked.

The fourth type called multiple events consists of events that can be triggered
in different ways like keyboard actions and left-clicks. It shows that there are
events which act different across browsers; only some browsers allow access to
the pop-up scenario and IE only in case of a left-click in combination with the
event select. In IE 11 and FF 47, a left-click in combination with focus or blur
does not lead to a pop-up execution. As another example, FF grants access when
an input event in combination with a right-click for copy-and-paste is used. This
is not the case when this event is used in combination with a keyboard action.
GC and OP act exactly in the opposite way.

5.2 Clipboard Scenario

Need of Trustworthy Events. Clipboard data may contain sensitive informa-
tion that should not be shared with an arbitrary website. For example, password
managers usually save stored passwords into the clipboard such that they could
be inserted into login forms (e.g., for banking or shopping). Therefore, JavaScript
code that is able to automatically read clipboard data could copy the password

Table 1. Events and their triggered pop-up windows. ✓ indicates that the pop-up was
shown, ✗ that it was blocked. For the category of multiple events, “keyboard” denotes
all events of type “Keyboard”, and (✓, ✗) means that a keyboard event did result in a
pop-up, whereas the mentioned click event did not.

Events Type IE 11 FF 47 GC 54 OP 41

Load, error, unload Resource ✗

Click, dblclick, mousedown, mouseup

(left-click)

Mouse ✓

Contextmenu (right-click) ✓ ✗

Mouseenter, mouseleave, mousemove,

mouseout, mouseover (movement)

✗

Drag, dragstart (dragging) ✗

Wheel ✗

Keydown, keyup, keypress Keyboard ✗ ✓

Search (keyboard, left-click) Multiple – (✗, ✓)

Select (keyboard, left-click) (✗, ✓) ✓

Input (keyboard, right-click paste) ✗ (✗, ✓) (✓, ✗)

Focus (keyboard, left-click) ✗ ✓

Focusin, focusout (keyboard, left-click) ✗ – ✓

Blur (keyboard, left-click) ✗ ✓ (✗, ✓)

Scroll (keyboard, wheel) ✗

238 M. Niemietz and Schwenk

from the clipboard and send it to the attacker. For this reason, browsers should
only allow access to clipboard data after a conscious user action, i.e. after a
trustworthy event. A moderate security problem arises in the event of copy and
cut operations to the clipboard; a website should not overwrite clipboard data
without an explicit permission of the user.

Evaluation. As shown in Table 2, the clipboard always allows copy, cut, and
paste operations with the help of a keyboard or mouse pointing device (no script
execution). In the event of automatically executed scripts, it is usually not pos-
sible to access the user’s clipboard. IE is an exception as it allows access to copy,
cut, and paste operations (see Listing 1.4) by showing the user a confirmation
window which only gives access when the user explicitly clicks on Allow access.

1 //read data of type ``Text '' from clipboard

2 window.clipboardData.getData("Text");

3 //write data of type ``Text '' to the clipboard

4 var input = "This text is written to the clipboard";

5 window.clipboardData.setData("Text",input);

Listing 1.4. JavaScript functions to access the clipboard.

By looking at the results from the pop-up scenario (cf. Table 1), JavaScript
code can act on a higher privileged authorization level in case that the script
was triggered by a trustworthy event. We found that the clipboard copy and
cut capabilities are also enabled when a trustworthy event calls JavaScript
code. To name an example, a listener on the event click can be used to copy
data into the clipboard via clipboardData.setData. Except IE, event handlers

Table 2. Clipboard handling. ✓ denotes that the text is copied, ✗ that it is not copied.
(✓) denotes that the text is copied, but a warning is displayed. The reference to Table 1
means that any trustworthy event that could be used to trigger a pop-up in FF 47, GC
54, or OP 41 can be used, in combination with the JavaScript code given in Listing 1.4
write text to the clipboard.

Action via IE 11 FF 47 GC 54 OP 41

Copy/cut

Right mouse-click then copy/cut ✓

Keyboard: Ctrl+C ✓

Script (✓) ✗

Trustworthy event and then script cf. Table 1

Paste

Right mouse-click then paste ✓

Keyboard: Ctrl+V ✓

Script (✓) ✗

Trustworthy event and then script (✗)

Out of the Dark: UI Redressing and Trustworthy Events 239

which are able to open pop-up windows are also able to access the clipboard
API with copy and cut capabilities within a delay of one second (e.g., via the
EventTarget.addEventListener() method) [25]. Thus, our pop-up definition
with Pt (cf. Sect. 4) also applies to these kinds of clipboard API access.

Paste operations can only be accessed with the help of JavaScript code when
the user triggers a trustworthy paste event via Ctrl+V and Edit->Paste. This
clipboard API [37] paste event behavior is important from the security perspec-
tive (discussed in Sect. 6.3).

5.3 Drag-and-Drop Scenario

Need of Trustworthy Events. Drag-and-drop operations can be done same-
origin or cross-origin. Thus, the usual access limitations of the SOP in the HTML
context does not apply in this scenario. Modern browsers like GC even allow the
user to drag content from the desktop into the browser’s website (e.g., for file
uploads). Without trustworthy events, arbitrary data from another window and
environment could be stolen automatically with the help of JavaScript code.

JavaScript DOM Access. An example for transferring data via drag-and-drop
is given in Table 3. In this table, the host document (HD) shown in Listing 1.5
includes the embedded document (ED) displayed in Listing 1.6.

The first part of Table 3 illustrates that the code of Listing 1.5 can be used,
in the same-origin case, to copy the word Test into the input field of Listing 1.6.
This is possible because we select this word by using the ID HDt and afterwards
we copy it into the input field with the ID EDi. To do this, one must select the
embedding element with the ID EDf. In the cross-origin case, the browser does
not allow the copy-action.

Table 3. A HD wants to transfer data to the Iframe’s web page (✓ access, ✗ no access).

Iframe access IE 11 FF 47 GC 54 OP 41

JavaScript

Same-Origin (SO) ✓

Cross-Origin (CO) ✗

Mouse Events

Click calls function (SO) ✓

Click calls function (CO) ✗

Drag & Drop (SO, CO) ✓ ✗

From an attacker’s perspective, it is interesting to know whether it is possible
to do actions which are restricted by the SOP [5,31]:

240 M. Niemietz and Schwenk

1. We trigger the JavaScript function of Listing 1.5 by dragging the content
of <div> to trigger the JavaScript function copy() with the help of the
ondragstart event-handler. In this case, only same-origin access from the
HD to the ED is allowed.

2. Cross-origin drag-and-drop operations are allowed in two browsers: IE 11
and FF 47. Trustworthy events like selecting the text test with the mouse,
dragging it into the Iframe’s input field and dropping the selected text into
this field allows to do actions that are (cross-origin) restricted with JavaScript
code. GC and OP also allowed these actions in former versions (cf. Sect. 6).

1 <i id="HDt">Test </i>

2 <iframe id="EDf" src="http: // example.org/form.html">

</i frame>

3 <div draggable="true" ondragstart="copy()">Drag me

</div>

4 <script> function copy() {

5 document.getElementById ("EDf").

contentDocument.getElementById ("EDi").value =

document.getElementById ("HDt").innerHTML;

6 } </script>

Listing 1.5. The HD executes JavaScript code when a dragstart event occurs.

1 <form action="action.php">

2 <input type="text" id="EDi">

3 </form>

Listing 1.6. HTML code of the ED.

6 New UIR Attack Variants

Based on the described trustworthy scenarios, we demonstrate that known UI
redressing techniques in combination with trustworthy events can be used to
derive attacks with a higher attack surface. We construct three new attack vari-
ants and evaluate their practicability on modern browsers.

6.1 Optimized Drag-and-Drop Attack

In 2010 Stone published a Clickjacking attack that makes use of the HTML5
drag-and-drop API [38]. In a proof of concept, he showed a website with a frog
and a blender. By using social engineering, he lured the victim intro dragging
the frog into the blender. What the victim actually does is a cross-origin-drag of
attacker defined content into another website. This bypasses protection mecha-
nisms against Cross-Site Request Forgery and could be used in webmail appli-
cation, document editors, or even to set passwords as shown by Niemietz et al.
[21,29].

Out of the Dark: UI Redressing and Trustworthy Events 241

Drag-and-drop across windows was supported between browsers and there-
fore an attractive feature which could be abused by attackers. Nowadays, this
feature is disabled in modern browsers like GC, SA, and OP; it still works in IE,
Edge, and FF. In the following, we derive an attack variant which highlights the
importance of different UIR contexts. It points out that trustworthy events play
an indispensable role in browser security.

In Stone’s initial attack of dragging a frog into a blender, the victim had
to clearly visible move the mouse cursor a certain distance (frog to blender)
such that the victim might know that it initialized a drag action. The following
described attack shrinks the cursor distance to a minimum (e.g., two pixels).
Thus, the victim might not notice that any drag actions occurred.

Attack Summary. By looking on the left-hand side of Fig. 2, the attacker’s
website without any user action is displayed (cf. Listing 1.8). This website could
be opened by the user due to a click on a link in a phishing mail. What the
victim does is that it slightly moves the button causing a cross-origin drag-and-
drop injection to occur (cf. Listings 1 .7 and 1.9). For demonstration purposes,
an alert-window generated by JavaScript code appears with the injected content
(cf. Listing 1.9).

Fig. 2. Attacker defined content can be cross-origin injected.

Attack Structure. With the help of Listing 1.8, there is a web page shown,
making use of social engineering techniques. By showing an image with a button
that should be moved, attacker defined content will be dragged but not the
selected image. By dragging the image, the function hover of Listing 1.7 will
also be called. This function places an invisible Iframe directly under the mouse
cursor such that an drop action attempts to put the attacker defined content
into the Iframe’s document.

1 function hover(e){

2 var x=document.getElementsByTagName ("iframe")[0]. style;

242 M. Niemietz and Schwenk

3 x.left=(e.clientX-60)+"px";

4 x.top=(e.clientY-10)+"px";

5 x.display= 'inline ';
6 x.opacity= '0.0';
7 }

Listing 1.7. JavaScript code of the HD (scenario: drag-and-drop attack).

1 <h3>Show picture </h3>

2 <iframe src="a.html" style="position:fixed;

display:none"></i frame>

3 <div id="d" style="background-image:url('evil.png ');
height:1px; width:127px; opacity:0"></div>

4 <img src="s.png" draggable="true" ondragstart="

this.src= ''; event.dataTransfer.setData('text/
plain ','malicious code '); hover(event); var

d=document.getElementById('d ').style; d.height= '57
px '; d.opacity= '1'">

Listing 1.8. HTML code of the HD (scenario: drag-and-drop attack).

The Iframe’s content is shown in Listing 1.9. It only consists of an input
area and JavaScript code which shows an alert-window on the condition that
the attacker defined content is dropped. Thus, the alert-window only appears in
case that the proof-of-concept functions as expected. In a real world application,
there could be a search engine in the background which automatically looks up
the dropped user input by pulling XMLHttpRequest leading to a code injection,
and thus to Cross-Site Scripting.

1 <script>

2 var t = setInterval(function () {

3 if (document.getElementsByTagName ("input")[0]. value) {

4 alert('Cross-origin injection succesful! Value: '+
document.getElementsByTagName("input")[0]. value);

5 clearInterval(t);

6 }

7 }, 500);

8 </script>

9 <input type="text" style="position:absolute; top:0px;

left:0px">

Listing 1.9. HTML and JavaScript code of the ED (scenario: drag-and-drop attack).

6.2 Multiple Pop-Up Attack

As shown in Table 1, a pop-up window can be generated with a trustworthy
event like a click within a delay which is shorter than one second. For FF and
SA, we evaluated that more than one pop-up window will not be blocked once a
single pop-up is generated. In contrast, GC, OP, IE, and Edge show one pop-up
window and an additional warning window as an information about the blocking
of the other pop-up windows.

Out of the Dark: UI Redressing and Trustworthy Events 243

1 <script>

2 function makePopups (){

3 for (i=1;i<1000;i ++) {

4 window.open('x.html ',i,'width=500 ,height=500 ');
5 }

6 }

7 </script>

8 Spam

Listing 1.10. HTML and JavaScript code of the ED (scenario: multiple pop-up
attack).

An example is given in Listing 1.10. After a click on Spam the trustworthy
event click is triggered and thus the function makePopups() is called. The
function includes a for-loop which generates 1,000 windows that could be either
pop-ups (this example) or new tabs (by removing the third parameter with width
and height). In FF and SA, all of these windows are shown to the user. This
behavior leads to a heavy memory consumption and thus heavily slows down
the underlying system’s speed. It is likely that a victim will close all browser
windows simultaneously and for this reason, it may also lose existing browser
sessions (e.g., in other tabs). Another use case is click-fraud by creating multiple
pop-ups with advertisements; an attempt to close these unwanted windows could
lead to an unintended click and thus a successfully clicked advertisement.

The behavior of FF unexpected due to browser settings that are reach-
able via about:config. Firstly, the property dom.popup_maximum (maximum
number of pop-up windows) has a default value of 20. We are clearly able
to generate more windows with trustworthy events. Secondly, the property
dom.popup_allowed_events (events that spawn pop-ups) has the value change
click dblclick mouseup notificationclick reset submit touchend.

As shown in Table 1, we could also use other events like a left-click triggered
select (not listed within dom.popup_allowed_events). Therefore, there is a
lack of handling pop-up windows properly. We have reported these problems to
Mozilla.

6.3 Hijacking Clipboard Data

In contrast to browsers like FF, GC, and even Edge, IE allows full access to the
clipboard after a confirmation on a warning window (cf. Table 2). Clickjacking
can be used to attack an IE user and thus to get access to the saved clipboard
data that may contain sensitive data like a password.

We introduce two new attack sub-variants to steal clipboard data. Firstly
by stealing the second click from a double-click scenario which was described
by Huang et al. [12]. Secondly by just using a single click; this highlights the
importance to look on different trustworthy events.

The first variant is displayed in Listing 1.11. With the help of social engineer-
ing, the attackers lures a user to make a double click on the displayed button.
The first click of the double click triggers the onclick event-handler, which

244 M. Niemietz and Schwenk

shows the accessed clipboard data in an alert window (as a proof-of-concept).
For the clickjacking attack, the second click of the double-click actually occurs
on the Allow access button of the confirmation window. To ensure that a user
always hits the Allow access button, the Double Click button will always be
positioned in the middle of the screen (with slide adjustments).

The second variant is targeting an impatient user. It consists nearly of the
same code and displayed Figure, except for two changes. The Double Click
button is named DL in X where X is a counter with a number in seconds
which decreases until zero. An impatient user will wait until the button’s counter
reaches zero to download a file, and thus the click will be correctly timed. The
attacker will therefore show the confirmation dialog 300ms before the button’s
counter reaches zero, such that the click will be successfully hijacked.

The limitation of both attack variants is that the confirmation window must
be visible for at least 300 milliseconds; this is the lower bound we measured.
The Human Benchmark Project1 recorded over 51 million clicks and measured
that the average reaction time of a human is 282 milliseconds (where the user
was aware of being timed). Therefore, it is very likely that a user is not able to
cancel the hijacked click on the confirmation window.

1 <style> button {position: fixed; top: 50%; left: 50%;

2 margin-top: 15px; margin-left: -20px;} </style>

3 <button onclick="if (window.clipboardData.getData('Text ').
length > 0) {alert('Hijacked Clipboard data: '+
window.clipboardData.getData('Text '));}">

4 Double Click </button>

Listing 1.11. HTML and JavaScript code of the ED (scenario: clipboard attack).

7 Defenses Discussion

We have evaluated that trustworthy events are implemented differently across
browsers. Our formal definition of trustworthy events and the thereby derived
descriptions of three different scenarios might help browser vendors to minimize
the high number of event handling differences.

An approach to help browser vendors to avoid bugs and features that may
lead to security vulnerabilities is to compare their browser result with the result
of the majority of other modern browsers. For example, it may be suspicious if
just one out of seven tested browsers allows access (or a particular interaction)
after a trustworthy event; for clarification reasons, the set of browsers could be
extended (e.g., by considering more browsers like Brave and Chromium).

Drag-and-Drop Attack. Drag-and-drop actions are known since the intro-
duction of web browsers, which still allow restricted draggings of for example
text elements (selected text), images (image URL), and anchor-elements (anchor
URL). Moreover, HTML5 has introduced a drag-and-drop API [41] that is nowa-
days integrated in all modern web browsers.
1 http://www.humanbenchmark.com/tests/reactiontime/statistics.

http://www.humanbenchmark.com/tests/reactiontime/statistics

Out of the Dark: UI Redressing and Trustworthy Events 245

We constructed a drag-and-drop attack variant that can be executed in three
(IE 11, Edge 20, and FF 47) tested browsers. A simple but effective countermea-
sure is to prohibit drag-and-drop frame attacks by disallowing drag operations
with data across frames with different origins. Browser vendors like Google and
Opera allowed cross-frame drag-and-drop operations in the past; nowadays, this
is not anymore possible due to security reasons (cf. Sect. 6.1)

Pop-Up Attack. FF is the only tested browser which allows creating hundreds
of pop-ups after a trustworthy event like a left-click within the measured delay of
one second. All other tested browsers disallow the execution of multiple pop-ups
and therefore the user will not be annoyed when, for example, they appear unin-
tentionally. The majority of our tested browser behavior results can therefore
be used to derive a countermeasure for FF; this browser should only show one
pop-up window after a trustworthy event.

Clipboard Data. Our clipboard data attack variant on IE showed that a user
should not get an unlimited control over the whole clipboard data by just exe-
cuting JavaScript code. For this reason, there are different access types (copy,
cut, paste) that are implemented in modern browsers due to the W3C clipboard
API [37]. However, the behavior of IE underlined that read access should only
be allowed with a trustworthy event like a keystroke combination (e.g., STRG+V).

The countermeasure of disallowing clipboard read access is very strict and
it might be more convenient to get only read access if the user explicitly gives
the permission by showing a clipboard permission window for a time that is
significantly higher than the human response time; this should be longer than
the short display time of the IE permission window (cf. Sect. 6.3).

According to the Human benchmark project, only a negligible amount of the
measurements (<0.1%) have a longer human response time than 500 ms. As a
consequence, a browser implementation should only activate the Allow access
button of the permission window after a trustworthy event and a delay of at
least half a second. This ensures with a high probability that the second click
will not be hijacked by an attacker.

8 Related Work

Definitions and Specifications. Huang et al. [12] discussed UIR attacks and
defenses with a definition of UIR. They developed a defense called in InContext
to mitigate UIR attacks. The W3C created a UI safety specification [20] that is
based on the ideas of InContext. Similar UI contexts are mentioned in the W3C
UI security and visibility API [14]. These foundations of describing trusted events
do not consider conscious user actions, which we define as trustworthy events.
Without these events, UIR attacks could not be executed.

246 M. Niemietz and Schwenk

By looking at the concept of zones and scenarios, IE includes predefined zones
like Internet, Local Intranet, and Trusted Sites [22]. This concept is partially
adopted between browsers by explicitly white-listing trusted sites [11]. Trusted
site lists can be used to manage whether certain actions should be automatically
executed (e.g., generate cryptographic keys, play Flash files, and show pop-ups).

Attacks and Countermeasures. Grossman et al. [10] introduced Clickjack-
ing as an attack which is nowadays considered as a class of attacks which relies
on the broader set of UIR attacks. Although the attack on Flash received high
media attention and several bugfixes since 2008 [2], it was successfully attacked
years later (e.g., in 2011 [1]). Next to JavaScript-based frame busters [33],
the HTTP Header X-Frame-Options [8,16], and nowadays even the Content-
Security-Policy [36] can be used to defend against many types of UI redressing.
In an evaluation about different JavaScript-based UIR protection mechanisms,
Rydstedt et al. [33] pointed out that there exist attacks which can be used to
attack protection mechanism and thus disable them. Balduzzi et al. [4] designed
and implemented an automated system to analyze Clickjacking attacks. Niemietz
et al. [29] evaluated the security of home routers and found that none of them
are protected against UIR. Rydstedt et al. [32] published a paper about UIR on
mobile sites and also on home routers.

Lekies et al. [17] presented bypasses for Clickjacking defense tools like
NoScript’s ClearClick. Furthermore, they introduced a new attack technique
called nested Clickjacking. By showing that UI time delays as defense mecha-
nisms are not sufficient to protect the user, Akhawe et al. [3] created examples
which bypass the W3C UI safety specification [20].

Mobile Devices. Lin et al. [19] published Screenmilker, which analyzes the user
interface of an Android device. By using the Android debug bride (ADB), they
showed that Screenmilker is able to make screenshots during user interactions
and they were able to steal secrets like passwords. Bianchi et al. [6] published a
study on Android-based graphical user interface confusion attacks [128]. These
attacks concentrate on phishing and privacy violations. Niemietz et al. enumer-
ated different UIR attacks [27] and their countermeasures. Furthermore, they
provide a Tapjacking attack to compromise Android devices [28]. Based on this
work, Fratantonio et al. [9] created malicious apps that completely control the
UI feedback loop. They furthermore showed with a user study that none of the
created attacks could be detected by a user.

9 Conclusions

In this paper, we provide a definition of trustworthy events, which are the target
of UI Redressing attacks. We show that this concept is significantly different
from the concept of trusted events as defined by the W3C. Interpretations of
events as being trustworthy differ significantly between browser families, and by

Out of the Dark: UI Redressing and Trustworthy Events 247

a non-documented inheritance mechanism trustworthiness may be transferred,
within the time frame of one second, from a trustworthy event to a sequence of
events triggered by JavaScript. This, for example, allowed us to circumvent the
FF pop-up blocker.

We investigated three scenarios where trustworthy events play a major role in
protecting the security of web applications: pop-ups, drag-and-drop, and copy-
and-paste. In all three scenarios, differences in the interpretation of trustworthy
events could be shown. We refined one new example attack variant in each
scenario, based on a more detailed investigation of these scenarios. Finally, we
discuss defense mechanisms by analyzing the causes of our trustworthy event
attacks. With the definition and description of trustworthy events, we hope that
this paper will contribute to a better understanding of UIR attacks, and thus
improved web application security.

References

1. Aboukhadijeh, F.: Spy on the webcams of your website visitors, October 2011.
http://feross.org/webcam-spy/

2. Aharonovsky, G.: Malicious camera spying using clickjacking, October 2008.
http://blog.guya.net/2008/10/07/malicious-camera-spying-using-clickjacking/

3. Akhawe, D., He, W., Li, Z., Moazzezi, R., Song, D.: Clickjacking revisited: a per-
ceptual view of UI security. In: 8th USENIX Workshop on Offensive Technolo-
gies (WOOT 2014). USENIX Association, San Diego, August 2014. https://www.
usenix.org/conference/woot14/workshop-program/presentation/akhawe

4. Balduzzi, M., Egele, M., Kirda, E., Balzarotti, D., Kruegel, C.: A solution for the
automated detection of clickjacking attacks. In: Proceedings of the 5th ACM Sym-
posium on Information, Computer and Communications Security, ASIACCS 2010,
pp. 135–144. ACM, New York (2010). https://doi.org/10.1145/1755688.1755706

5. Barth, A.: The Web Origin Concept. IETF, RFC 6454, December 2011. http://
tools.ietf.org/html/rfc6454, http://tools.ietf.org/html/rfc6454

6. Bianchi, A., Corbetta, J., Invernizzi, L., Fratantonio, Y., Kruegel, C., Vigna, G.:
What the app is that? Deception and countermeasures in the android user interface.
In: IEEE Symposium on Security and Privacy. Department of Computer Science,
University of California, Santa Barbara (2015)

7. Bordi, E.: Cursorjacking proof of concept. http://static.vulnerability.fr/noscript-
cursorjacking.html (August 2010)

8. Braun, F., Heiderich, M.: X-Frame-Options: All about Clickjacking? (2013)
https://cure53.de/xfo-clickjacking.pdf

9. Fratantonio, Y., Qian, C., Chung, S., Lee, W.: Cloak and dagger: from two per-
missions to complete control of the UI feedback loop. In: Proceedings of the IEEE
Symposium on Security and Privacy (Oakland), San Jose, CA, May 2017

10. Hansen, R., Grossman, J.: Clickjacking attack, December 2008. http://www.
sectheory.com/clickjacking.htm

11. Help, G.C.: Allow or block content settings for certain sites, March 2017. https://
support.google.com/chrome/answer/3123708?hl=en

http://feross.org/webcam-spy/
http://blog.guya.net/2008/10/07/malicious-camera-spying-using-clickjacking/
https://www.usenix.org/conference/woot14/workshop-program/presentation/akhawe
https://www.usenix.org/conference/woot14/workshop-program/presentation/akhawe
https://doi.org/10.1145/1755688.1755706
http://tools.ietf.org/html/rfc6454
http://tools.ietf.org/html/rfc6454
http://tools.ietf.org/html/rfc6454
http://static.vulnerability.fr/noscript-cursorjacking.html
http://static.vulnerability.fr/noscript-cursorjacking.html
https://cure53.de/xfo-clickjacking.pdf
http://www.sectheory.com/clickjacking.htm
http://www.sectheory.com/clickjacking.htm
https://support.google.com/chrome/answer/3123708?hl=en
https://support.google.com/chrome/answer/3123708?hl=en

248 M. Niemietz and Schwenk

12. Huang, L.S., Moshchuk, A., Wang, H.J., Schecter, S., Jackson, C.: Clickjack-
ing: attacks and defenses. In: Presented as part of the 21st USENIX Secu-
rity Symposium (USENIX Security 2012), pp. 413–428. USENIX, Bellevue
(2012). https://www.usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/huang

13. Kacmarcik, G., Leithead, T.: UI events - W3C working draft, August 2016. https://
www.w3.org/TR/uievents/

14. Kaminsky, D., Huang, D.L.S., Maone, G.: W3C - user interface security and the
visibility API, June 2016. https://www.w3.org/TR/UISecurity/

15. Kotowicz, K.: Cursorjacking again, January 2012. http://blog.kotowicz.net/2012/
01/cursorjacking-again.html

16. Lawrence, E.: Combating clickjacking with x-frame-options, March 2010. http://
blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-
x-frame-options.aspx

17. Lekies, S., Heiderich, M., Appelt, D., Holz, T.: On the fragility and limita-
tions of current browser-provided clickjacking protection schemes. In: Presented
as Part of the 6th USENIX Workshop on Offensive Technologies. USENIX,
Berkeley (2012). https://www.usenix.org/conference/woot12/workshop-program/
presentation/Lekies

18. Lekies, S., Heiderich, M., Appelt, D., Holz, T., Johns, M.: On the fragility and lim-
itations of current browser-provided clickjacking protection schemes. In: USENIX
Workshop on Offensive Technologies (WOOT 2012) (2012)

19. Lin, C.C., Li, H., Zhou, X., Wang, X.: Screenmilker: how to milk your android
screen for secrets. In: Network and Distributed System Security (NDSS) Sympo-
sium 2014 (2014)

20. Maone, G., Huang, D.L.S., Gondrom, T., Hill, B.: W3C - user interface secu-
rity directives for content security policy, June 2014. https://dvcs.w3.org/hg/user-
interface-safety/raw-file/tip/user-interface-safety.html

21. Mayer, A., Niemietz, M., Mladenov, V., Schwenk, J.: Guardians of the clouds:
when identity providers fail. In: The ACM Cloud Computing Security Workshop,
CCSW 2014 (2014)

22. Microsoft: How to use security zones in internet explorer, June 2012. https://
support.microsoft.com/en-us/help/174360/how-to-use-security-zones-in-internet-
explorer

23. Needham, K.: The future of developing firefox add-ons, August 2015. https://blog.
mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/

24. Network, M.D.: Event.istrusted, February 2017. https://developer.mozilla.org/en-
US/docs/Web/API/Event/isTrusted

25. Network, M.D.: Web apis - document.execcommand(), January 2017. https://
developer.mozilla.org/de/docs/Web/API/Document/execCommand

26. Niemietz, M.: Clickjacking und UI-Redressing - Vom Klick-Betrug zum Datenklau:
Ein Leitfaden für Sicherheitsexperten und Webentwickler. dpunkt-Verlag (2012)

27. Niemietz, M.: UI Redressing: Attacks and Countermeasures Revisited. In: CON-
Fidence, May 2011

28. Niemietz, M., Schwenk, J.: UI Redressing Attacks on Android Devices, Decem-
ber 2012. https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus
niemietz-WP.pdf

29. Niemietz, M., Schwenk, J.: Owning your home network: router security revisited.
In: Web 2.0 Security & Privacy 2015, San Jose (2015). http://ieee-security.org/
TC/SPW2015/W2SP/papers/W2SP 2015 submission 9.pdf

https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/huang
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/huang
https://www.w3.org/TR/uievents/
https://www.w3.org/TR/uievents/
https://www.w3.org/TR/UISecurity/
http://blog.kotowicz.net/2012/01/cursorjacking-again.html
http://blog.kotowicz.net/2012/01/cursorjacking-again.html
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx
http://blogs.msdn.com/b/ieinternals/archive/2010/03/30/combating-clickjacking-with-x-frame-options.aspx
https://www.usenix.org/conference/woot12/workshop-program/presentation/Lekies
https://www.usenix.org/conference/woot12/workshop-program/presentation/Lekies
https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
https://dvcs.w3.org/hg/user-interface-safety/raw-file/tip/user-interface-safety.html
https://support.microsoft.com/en-us/help/174360/how-to-use-security-zones-in-internet-explorer
https://support.microsoft.com/en-us/help/174360/how-to-use-security-zones-in-internet-explorer
https://support.microsoft.com/en-us/help/174360/how-to-use-security-zones-in-internet-explorer
https://blog.mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/
https://blog.mozilla.org/addons/2015/08/21/the-future-of-developing-firefox-add-ons/
https://developer.mozilla.org/en-US/docs/Web/API/Event/isTrusted
https://developer.mozilla.org/en-US/docs/Web/API/Event/isTrusted
https://developer.mozilla.org/de/docs/Web/API/Document/execCommand
https://developer.mozilla.org/de/docs/Web/API/Document/execCommand
https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf
https://media.blackhat.com/ad-12/Niemietz/bh-ad-12-androidmarcus_niemietz-WP.pdf
http://ieee-security.org/TC/SPW2015/W2SP/papers/W2SP_2015_submission_9.pdf
http://ieee-security.org/TC/SPW2015/W2SP/papers/W2SP_2015_submission_9.pdf

Out of the Dark: UI Redressing and Trustworthy Events 249

30. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H., Cowan, C.: User-
driven access control: Rethinking permission granting in modern operating systems.
In: 2012 IEEE Symposium on Security and Privacy (SP), pp. 224–238, May 2012

31. Ruderman, J.: The same origin policy (2008). http://www-archive.mozilla.org/
projects/security/components/same-origin.html

32. Rydstedt, G., Bursztein, E., Boneh, D.: Framing attacks on smart phones and
dumb routers: tap-jacking and geo-localization. In: in USENIX Workshop on
Offensive Technologies (wOOt 2010) (2010). http://seclab.stanford.edu/websec/
framebusting/tapjacking.pdf

33. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a
study of clickjacking vulnerabilities at popular sites. In: IEEE Oakland Web 2.0
Security and Privacy (W2SP 2010) (2010). http://seclab.stanford.edu/websec/
framebusting/framebust.pdf

34. Sherman, I.: Making form-filling faster, easier and smarter, January 2012. https://
webmasters.googleblog.com/2012/01/making-form-filling-faster-easier-and.html

35. Sophos: Facebook worm - “likejacking”, May 2010. http://nakedsecurity.sophos.
com/2010/05/31/facebook-likejacking-worm/

36. Stamm, S., Sterne, B., Markham, G.: Reining in the web with content secu-
rity policy. In: Proceedings of the 19th International Conference on World Wide
Web, WWW 2010, pp. 921–930. ACM, New York (2010). https://doi.org/10.1145/
1772690.1772784

37. Steen, H.R.M.: W3C - clipboard API and events, December 2016. https://www.
w3.org/TR/clipboard-apis/

38. Stone, P.: Next generation clickjacking - new attacks against framed web pages,
April 2010. https://www.contextis.com/documents/5/Context-Clickjacking
white paper.pdf

39. W3C: W3C DOM4: Dom event istrusted, November 2015. https://www.w3.org/
TR/dom/

40. W3C: UI events, January 2016. https://w3c.github.io/uievents/
41. WHATWG: Html, living standard - drag and drop, November 2013. http://www.

whatwg.org/specs/web-apps/current-work/multipage/dnd.html#dnd
42. WHATWG: form control infrastructure, July 2017. https://html.spec.whatwg.org/

multipage/form-control-infrastructure.html
43. Zalewski, M.: Strokejacking, June 2010. http://lcamtuf.blogspot.de/2010/06/

curse-of-inverse-strokejacking.html

http://www-archive.mozilla.org/projects/security/components/same-origin.html
http://www-archive.mozilla.org/projects/security/components/same-origin.html
http://seclab.stanford.edu/websec/framebusting/tapjacking.pdf
http://seclab.stanford.edu/websec/framebusting/tapjacking.pdf
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
http://seclab.stanford.edu/websec/framebusting/framebust.pdf
https://webmasters.googleblog.com/2012/01/making-form-filling-faster-easier-and.html
https://webmasters.googleblog.com/2012/01/making-form-filling-faster-easier-and.html
http://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/
http://nakedsecurity.sophos.com/2010/05/31/facebook-likejacking-worm/
https://doi.org/10.1145/1772690.1772784
https://doi.org/10.1145/1772690.1772784
https://www.w3.org/TR/clipboard-apis/
https://www.w3.org/TR/clipboard-apis/
https://www.contextis.com/documents/5/Context-Clickjacking_white_paper.pdf
https://www.contextis.com/documents/5/Context-Clickjacking_white_paper.pdf
https://www.w3.org/TR/dom/
https://www.w3.org/TR/dom/
https://w3c.github.io/uievents/
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html#dnd
http://www.whatwg.org/specs/web-apps/current-work/multipage/dnd.html#dnd
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html
https://html.spec.whatwg.org/multipage/form-control-infrastructure.html
http://lcamtuf.blogspot.de/2010/06/curse-of-inverse-strokejacking.html
http://lcamtuf.blogspot.de/2010/06/curse-of-inverse-strokejacking.html

A Paged Domain Name System
for Query Privacy

Daniele E. Asoni(B), Samuel Hitz, and Adrian Perrig

Network Security Group, Department of Computer Science, ETH Zürich,
Zurich, Switzerland

{daniele.asoni,samuel.hitz,adrian.perrig}@inf.ethz.ch

Abstract. The lack of privacy in DNS and DNSSEC is a problem that
has only recently begun to see widespread attention by the Internet and
research communities, and the solutions proposed so far only look at a
narrow slice of the design space. In this paper we investigate a new app-
roach for a privacy-preserving DNS mechanism that hides query infor-
mation from root name servers and TLD registries. Our architecture lets
TLD registries group the DNS records in their zones together into pages.
Resolvers cache all pages locally, and retrieve only small incremental
updates to optimize performance. We show that this strategy is particu-
larly effective given the relatively static nature of TLD zone records. We
analyze the privacy guarantees to assess the potential and limitations of
our approach; we also evaluate the memory overhead for a resolver, and
obtain feasibility guarantees through a prototype implementation of the
new functionalities for resolvers and registries.

1 Introduction

The Domain Name System (DNS) [29,30] is a fundamental building block of
the Internet, providing host name to IP address translation. Its design has been
sufficiently scalable to cope with the Internet’s growth, but among its deficiencies
is the lack of privacy protection. The DNS security extensions (DNSSEC), which
are still far from widespread adoption, have addressed some of DNS’s flaws, but
privacy has explicitly remained a non-goal in the design of DNSSEC [5]. While
the Internet Engineering Task Force (IETF) has recently started considering
privacy concerns for DNS more seriously [8], so far only minor improvements
have been proposed [9].

Users with very high privacy requirements will resort to an anonymous com-
munication system (ACS) such as Tor [16], which will anonymize not only the
DNS lookups, but also the subsequent communications with the hosts whose
addresses are obtained through the lookup. This is necessary, for instance, if a
user wishes to hide from its own Internet service provider (ISP) what hosts it
communicates with. However, communication over Tor comes with harsh per-
formance penalties, so for clients which have some degree of trust in their ISP,
a more lightweight solution is desirable. In particular, we identify the main pri-
vacy threat in this scenario to be large-scale information collection at the highest
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 250–273, 2018.
https://doi.org/10.1007/978-3-030-02641-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_12

A Paged Domain Name System for Query Privacy 251

levels of the DNS hierarchy: the name servers of the root and of the top-level
domain (TLD) registries. These are centralized observation points that are ide-
ally suited for surveillance by a nation state actor. While a recent proposal [9]
would, if accepted, hide query information from the root name servers, there
seems to be no possibility in current DNS to hide sensitive information from
TLD registries.

Although users gain some privacy by relying on the recursive resolver pro-
vided by their ISP, this method is not secure against an adversary who is able
to correlate multiple queries through timing. For instance, the adversary may
observe that a certain set of domains is always queried together in a short time
interval, and thus infer that the same user is responsible: if one of the domains
identifies the user (e.g., because it is the user’s own website, which is other-
wise scarcely visited), then the adversary is able to deanonymize all the other
queries as well. Furthermore, users may wish to conceal the fact that a certain
domain is being queried at all, a property akin to private information retrieval
(PIR) [11,31], which, incidentally, cannot be achieved even if DNS lookups are
performed over an ACS.

In this paper we propose a system whose goal is to prevent information
leakage to the DNS root and TLD registries, including the information of what
domains are actually queried. Our system requires changes to the TLD registries
and to the recursive resolvers, but is transparent to clients and to second level
domain (SLD) authoritative name servers, which continue to use the traditional
DNS protocol. The core idea of the system is to group records in the TLD zones
into fixed sets we call pages, which are created and maintained jointly by the TLD
registries. Recursive resolvers query for entire pages, rather than single records,
which provides a basic amount of privacy (see Fig. 1 for a high-level overview).
We improve the performance of this basic mechanism with optimizations such
as full page caching on the recursive resolvers, and we improve its privacy with
enhancements such as cover page queries from the recursive resolver to the TLD
registries.

Fig. 1. High-level overview of the PageDNS architecture. Steps 2–5 are specific to
PageDNS, while the others are as in DNS. In the example shown, the entire page a379

is retrieved from the TLD registries, but in practice the page would be cached at the
resolver, and at most a (much smaller) incremental update would be retrieved.

252 D. E. Asoni et al.

1.1 Overview

Our Paged Domain Name System (PageDNS) introduces a new way in which
recursive resolvers can obtain records from TLD registries in a privacy-preserving
manner. The TLD registries collaborate to group the records of all their zones
into 2l (�105) sets of records which we call pages. Each page contains n records,
with n � 104, assuming a total number of records of around one billion (see
Sect. 4.1). The overwhelming majority of these records are name server records of
second level domains (SLDs), i.e., records providing the IP addresses of the name
servers authoritative for various SLDs (e.g., example.com). To spread the records
uniformly across the pages in a way that allows resolvers to easily determine
which page stores which record, each page is given a unique l-bit identifier, and
each record is assigned to the page whose identifier matches the first l bits of
the hash value of the record’s domain name.

A recursive resolver with PageDNS support should, for performance reasons,
cache all pages locally, de facto mirroring all TLD zones. These cached copies are
kept indefinitely, in particular beyond their expiration time. When queried for a
domain name (say www.example.com), the recursive resolver proceeds as follows.
First, it determines which page should store the corresponding SLD record (the
NS record for example.com). Second, it checks whether it has an up-to-date
copy of that page in its cache. If not, the resolver sends a page query to one
of the TLD registries, specifying the version number of the locally cached copy.
The registry then replies with a list of records that have been changed, added,
or removed since the specified version. Because the name servers for SLDs are
relatively static, as we show in Sect. 4.1, the size of these incremental updates
will typically be small. Finally, once the recursive resolver has obtained the NS
record for the SLD, it completes the iterative lookup as in DNS, and returns the
response to the client.

Replication of Popular Records. Requesting a page instead of a single domain
protects query privacy, because an adversary observing a page request cannot
directly determine which domain among the ∼104 domains in the requested page
is accessed by a client. However, domains have very different popularity, meaning
that the probability that a certain page is requested because it contains, e.g., the
record for twitter.com is much higher than the probability that the page was
accessed due to some obscure domain that has its record on the same page. To
counter this problem and provide privacy protection even for popular domains we
replicate records of popular domains across multiple pages: the higher the pop-
ularity of a domain, the higher the replication degree of its record. In Sect. 3.1,
we show in particular that an optimal solution is to replicate the ∼0.01% most
popular domains, with the most popular one being replicated on all pages.

2 Design

In this section we describe the details of our Paged Domain Name System
(PageDNS). We begin by describing our threat model and privacy goals, and then
define the structure of pages, name resolution process, and other protocol aspects.

A Paged Domain Name System for Query Privacy 253

2.1 Threat Model

We want to prevent (government-level) monitoring which targets DNS query
information. In particular, we want to prevent linkability between clients and
the queries they make, and, to the extent possible, we also try to hide the
fact that a certain name is being queried, i.e., that there is interest by some
client for a certain name. We exclude the case of a compromised client ISP,
which would be able to observe not only the DNS queries of its clients, but also
the communications after that, requiring the use an anonymous communication
system (ACS) to achieve anonymity. For analogous reasons, we do not consider
other types of in-network adversaries. Instead, we aim to provide privacy with
respect to the DNS root and TLD registries, which constitute a centralized point
which is ideal for mass surveillance.

Fig. 2. Structure of a PageDNS page. The highlighted detail on the right shows the
structure of a single record for the SLD example.com.

2.2 Page Structure

PageDNS pages consist of a sequence of records, plus information such as the
page’s length, expiration time, and version number. Each page is identified by
an l-bit hash prefix, and all records whose domains’ hash values match the prefix
are contained in the page. Additionally, each page has a small separate section
which contains the records of replicated domains (whose hashes will typically
not match the prefix, see below). Besides the hash of the domain name, each
record contains a set of addresses of the domain’s name servers, and additional
information such as the type of the addresses (e.g., IPv6 or IPv4). The reasons
for indexing records by hash instead of including the domain name are twofold:
first, it fixes the length of the identifier; second, it provides a degree of protection
against zone enumeration [26]. In Fig. 2 the high-level structure is depicted for
one sample page, and the details for the record of domain example.com are
shown. This sample record contains four IPv6 addresses, which in terms of size
we consider to be a reasonable upper bound.

254 D. E. Asoni et al.

Since one IPv6 address is 16 bytes long, and assuming a hash size of 32 bytes1,
we obtain 96 bytes, excluding the additional information, so overall we round the
size of a record to 100 bytes for the scope of this discussion. Considering a limit
of 1 MB on page size and a total of 109 domain names (see Sect. 4), this implies a
total of 105 pages, each containing around 104 records. We estimate the variance
of the size of pages in AppendixB, and we find that the probability of a deviation
of the size of over 10% is negligible.

Record Replication. We observe that the popularity of domains has the potential
to heavily affect the privacy of page queries. For instance, a query for a page
which contains the record of a very popular domain is likely to be due to an
access to that domain. To mitigate this problem we adopt record replication
for popular domains. In AppendixA, we show analytically that the optimal
replication is proportional to the popularity of the domain, assuming that the
popularity of domains follows a Zipf distribution.2 In particular this means that
approximately only the top 200,000 domains need to be replicated, with the most
popular domain being replicated on all pages (the effects of replication become
clearer in our analysis in Sect. 3.1, and are depicted in Fig. 3). This replication
has an overall size overhead of 0.23% (with a median of 25 replicated records
per page), but it allows to hide accesses even to the most popular domains.
Furthermore, our analysis shows that the probability of accessing a certain page
because of interest in a domain with low popularity (any non-replicated domain)
is lower than the probability that that page is being accessed because of interest
in the most popular domain (which is replicated on that page). This means that
replication provides effective and relatively uniform privacy protection for less
popular domains. These replicas are placed separately on a page (e.g., at the
end, see Fig. 2) and are identified by their hash value.

Assigning Records to Pages. Mapping records to the m = 2l pages is not entirely
trivial. For non-replicated domains, we use the first l bits of the hash value of the
domain name to determine the page identifier to which the domain is assigned.
However, for replicated records another scheme is needed. We propose a scheme
based on a pseudo-random permutation (PRP), keyed with the hash value of
the domain name: this PRP has as domain the set of all page identifiers (i.e., all
integers from 1 to m).3 For a replicated domain d, the PRP maps all integers

1 We consider SHA-256 as a reasonable choice for the hash function. While the size
could be reduced to 16 bytes while still retaining a negligible collision probability in
a non-adversarial setting, a larger size is necessary if we want to have a negligible
probability even in a scenario where the adversary actively tries to find a domain
name which will result in a collision.

2 In practice, popularity will vary on a regional basis. We envision that replication
may be made region-specific (the non-replicated part of each page would remain the
same). We leave a more detailed analysis of these aspects to future work.

3 PRPs of small domain size can be implemented using format-preserving encryption
(FPE) schemes, there exist suitable encryption modes that use standard AES block
ciphers as a primitive and achieve FPEs of arbitrary domain size.

A Paged Domain Name System for Query Privacy 255

between 1 and the replication degree of d, r(d), to the page identifiers on which
the replicas should be stored. Since the PRP is keyed with the hash of d, the
mapping will be independent from the mapping of replicas for other domains.

Note that this method ensures minimal modifications to the pages as the
replication of a domain changes: assuming a domain previously replicated rold
times increases its popularity and has to be replicated rnew times (rnew > rold),
the first rold replicas will remain the same, and only rnew −rold additional pages
have to be changed to include the replica. Similarly, if rnew < rold , the first rnew
replicas will remain the same, and only rold − rnew pages have to be changed to
remove the extra replicas.

We point out that for this mechanism to work, the resolvers need to be
aware of the replication degree of the domains they look up. To that end, the
TLD registries create a special meta-page for replication, which lists all the most
popular domains (by their hash value), and for each of them it provides the
replication degree. This meta-page has a size of about 7 normal pages (7 MB),
and is updated less frequently. We show how the TLD registries determine the
popularity of domains in Sect. 2.4. In the next section, we show how clients can
resolve a name, including more details about how the case of replicated domains
is handled.

2.3 Resolving a Name

Algorithm 1 shows the steps a recursive resolver performs when resolving a fully
qualified domain name (FQDN), e.g., www.example.com. First, the algorithm
splits the FQDN into the SLD (example.com) and the remaining part (typically
the host name, www). On a high-level, the algorithm then retrieves the address
of an authoritative name server for example.com using PageDNS (Lines 3–30)
before completing the lookup for www.example.com using traditional DNS. The
resolver starts by identifying the replication degree of the SLD. To obtain this
information, it retrieves the meta page from the registries which contains all the
replicated domains together with their replication degree. As for ordinary pages,
the resolvers also keeps the meta page in its cache, and will therefore usually
only need to retrieve an incremental update of the meta page. If a domain is not
replicated it has a replication degree of 1.

Then the algorithm checks whether it already has a cached copy of a page
that contains the record for the domain. To that end, the algorithm computes the
possible page identifiers that could contain the record by calling CalcIdentifier
(Algorithm 2) for all i ∈ {1..ReplDeg} and checks if the cache contains any of
these pages. A possible optimization for this step would be to keep track, for
the more highly replicated records that are requested, of the cached pages that
contain them, in order to avoid the computation of tens of thousands of hashes.
This step can also be optimized when all pages are cached by the resolver.

The page identifier calculation depends on the chosen replica ID (k): if k is 1,
the original record for the domain is chosen, and the page identifier determined
as the l-bit prefix of the hash of the domain name (Algorithm2, line 3). If k > 1,

256 D. E. Asoni et al.

Algorithm 1. FQDN resolution on the recursive resolver.
1: procedure ResolveFQDN(FQDN, MetaPage, Cache, Registry)
2: Host, Domain ← DomainSplit(FQDN)
3: if Domain ∈ MetaPage then
4: ReplDeg ← MetaPage[Domain].ReplDeg
5: else
6: ReplDeg ← 1
7: end if
8: for all i ∈ RandomShuffle({1..ReplDeg}) do
9: PageId ← CalcIdentifier(Domain, i)

10: if PageId ∈ Cache then
11: Page ← Cache[PageId]
12: break
13: end if
14: end for
15: if not Page or HasExpired(Page) then
16: if not Page then
17: k ← RandomChoice({1..ReplDeg})
18: PageId ← CalcIdentifier(Domain, k)
19: Page ← Query(Registry, PageId)
20: Page.Registry ← Registry
21: else
22: Page ← Query(Page.Registry, PageId, Page.Version)
23: end if
24: Key ← PubKey(Registry)
25: if not Verify(Page.MerkleRoot.Sig, Key) then
26: abort()

27: end if
28: Cache[PageId] ← Page
29: end if
30: NS ← BinSearch(Page, SHA256(Domain))
31: IP ← CompleteLookup(NS, Host)
32: return IP
33: end procedure

then the page is determined by applying a PRP with domain {1, . . . , 2l} keyed
with the hash of the domain name to k (line 5).

If the cached page containing the domain has expired, or if no page containing
the domain is cached by the resolver, a page query has to be send out. In case a
cached page is available but outdated, the resolver can perform an incremental
query by attaching the version number of the cached page to the request. Note
that we avoid querying multiple registries for the same page (line 22). If, on the
other hand, no page is cached, the algorithm needs to download an entire page.
First, a replica ID is chosen uniformly at random from the set {1..ReplDeg}.
Then, a page containing the chosen replica is determined using CalcIdentifier,
and the registry is queried for that page.

A Paged Domain Name System for Query Privacy 257

Algorithm 2. Calculating the page identifier for a (possibly replicated) domain.
1: procedure CalcIdentifier(Domain, k)
2: if k == 1 then
3: PageId ← SHA256(Domain)[0:l]
4: else
5: PageId ← PRP2l(SHA256(Domain); k)
6: end if
7: return PageId
8: end procedure

Once the page is obtained, the algorithm verifies the page’s integrity. For
this, the resolver obtains a signed root of a Merkle hash tree (not show in the
algorithm). This hash tree is computed by the registries, for every version num-
ber, over all the pages. The resolver verifies the signature of the root (using
the standard Web PKI), and verifies that the obtained page is in the tree. This
mechanism allows resolvers to use gossiping protocols to ensure that the same
hash tree root provided by the queried registry for a specific version is seen by
all resolver, and across all registries.

If the verification is successful the page is accepted and updated in/added
to the cache. The lookup for the record of interest on the page can be done
efficiently by a binary search over the domain name hashes. Communication has
to be done over TCP or another reliable transport protocol, given the size of the
data returned by the registry (similar to what is done today in DNS for large
responses [15]); this has the advantage of preventing reflection and amplification
attacks [34]. To complete the lookup and obtain the address of the actual host
(Algorithm 1, line 31), the resolver sends an ordinary DNS query directly to the
name server whose address was obtained through PageDNS.

2.4 Keeping Pages Updated

Popularity Estimation for Replication. As explained in Sect. 2.2, popular
domains are replicated on multiple pages, according to their popularity. TLD
registries have to determine the approximate popularity for all these domains,
and replicate the records across the pages accordingly. To determine the popular-
ity, we assume that a large fraction of the resolvers can authenticate themselves
to the registries (possibly through some out-of-band mechanism), and then pro-
vide, at regular time intervals, the approximate number of requests received for
the most popular domains (using some randomization to hide the exact num-
bers). Based on the reports by the resolvers, the registries can then assess the
overall popularity of the most popular records and update the pages and meta
page accordingly. We point out that strong fluctuation in the popularity are pos-
sible (the so-called slashdot effect) and would require updating a high number
of pages, which is expensive for the registries. For efficiency we therefore allow
registries to consider an averaged popularity, computed for example as a mov-
ing average, which obviates the need for rapid and expensive updates of a large

258 D. E. Asoni et al.

number of pages. It is important to note that this comes with some privacy cost
for accesses to domains whose popularity has recently increased, which become
more identifiable. Similarly, regional differences in popularity can also impact
the identifiability of queries.

Page Updates and Authentication. At regular intervals, TLD registries will issue
new versions of the pages which need to change as a consequence of updates,
insertions, and removals. To authenticate the updated pages (the new versions),
each registry constructs a Merkle tree over all the updated pages, and signs the
root. When resolvers query for a page, the registries will also provide the signed
root of the tree, as well as a proof (which consists of a list of hashes) that the page
is part of the tree. We use a binary tree with the pages sorted according to their
identifier (every level determines one additional bit): this makes it impossible
for a registry to include two pages with the same identifier.

3 Privacy and Security Analysis

In this section we analytically model the privacy guarantees of PageDNS. We
start by identifying the ideal replication degree of every domain across pages,
depending on their popularity. We then derive the analytic expression of the
probability that an adversary is able to correctly guess the target domain (i.e.,
the domain the client is accessing) depending on the domain’s popularity, given
that the adversary is able to observe the page requests made by the recursive
resolver queried by the client. We use this probability distribution as the main
metric for the efficacy of PageDNS, and we analyze the impact of replication,
page fingerprints (one website access causing multiple PageDNS page requests)
and of cover page queries (retrieving additional pages to provide extra privacy).
Cover page queries also model the fact that the DNS queries by other clients
of the same resolver cause additional page requests, as well as the fact that the
resolver can autonomously update expired pages when idle.

3.1 Replication

Our goal in PageDNS is to hide a client’s target domain, and ideally we would like
to hide it independently of its popularity. As discussed in Sect. 2.2, to hide target
domains with high popularity we have to replicate their records across multiple
pages. To determine how much each record should be replicated depending on
its popularity, we try to optimize for two goals. First, we want to keep the total
number of replicas to a minimum. Second, denoting with Ix the identifiability
of a domain x, i.e., how easily x can be guessed based on a page request (we
provide a formal definition in Sect. 3.2), we want to minimize the maximum
ratio Ix/Iy for any two domains x and y. We solve this problem analytically
in Appendix A under the assumption that domain popularity follows a Zipf
distribution with parameter s (Jung et al. [23] show that this is the case, and

A Paged Domain Name System for Query Privacy 259

that s = 0.91). We obtain the following replication function that maps a domain’s
rank k ∈ {1, . . . , N} to the replication degree of that domain:

r(k) = max{1, Rk−s} (1)

where R is the maximum replication degree. Note that r(k) = 1 means that only
one record exists for the domain of rank k. Evidently R ≤ m, where m denotes
the total number of pages; the optimal choice in terms of privacy is R = m.

3.2 Identifiability

When accessing a certain domain for web browsing, it is likely that a number of
additional domains have to be looked up by the client: web pages contain external
content from CDNs, from advertisement providers, or from user tracking sites
(e.g., google-analytics.com [1]). While some of these might be safely blocked
by the browser, others are necessary for correctly displaying a page.

For simplicity in our analysis we consider the case where each domain corre-
sponds to a single website (e.g., this can be the index www webpage). We define
the page fingerprint of a domain as the set of pages which are requested due to
an access to the website corresponding to that domain. Different domains may
have the same page fingerprint; we also note that, owing to replication, the same
target domain may have many different possible fingerprints. Intuitively, the size
of a fingerprint and the replication degree of the domains in the fingerprint deter-
mine its uniqueness: a relatively unique fingerprint can undermine the protection
provided by PageDNS. In this section we investigate how identifiable queries are
according to the popularity of the domain, depending on the replication degree,
on page fingerprinting, and the amount of cover page queries.

To measure the privacy risk of domain queries, we analytically determine the
probability of an adversary correctly guessing a target domain with a certain
rank, given that the adversary is able to observe the page fingerprint resulting
from the client’s access to the target domain. We assume that domains are
distributed according to a perfect Zipf distribution with parameter s = 0.91 [23].
This implies that every domain has a unique rank, and we will therefore often
use the rank of a domain to refer to the domain itself. For instance, we use
(lowercase) k to indicate a specific domain of rank k, where the set of possible
values of k is K = {1, . . . , N}.

We define a random variable K indicating the rank of a domain chosen
according to the Zipf distribution. We also define a stochastic process F that
maps each domain k to its possible fingerprints. More precisely, F maps each
domain k to a random variable that has as possible values all the sets of pages
that can be k’s fingerprint—we assume that for any replicated domain the
resolver chooses one of the possible pages uniformly at random. We will also, as
a slight abuse of notation, consider the application of F to the random variable
K, F (K): this represents another stochastic process, the possible outcomes of
which are determined by first drawing a domain k from K, and then applying F
to k. Finally, we also consider a random variable T = T (k), which represents the

260 D. E. Asoni et al.

choice of the cover page queries when querying for domain k.4 For ease of nota-
tion we will often write the argument of the stochastic processes as subscript,
e.g., FK for F (K) or Tk for T (k).

We can now provide the definition of the identifiability of domain k, which
denotes the probability of the adversary correctly guessing k having observed
one of k’s fingerprints.

Definition 1 (Identifiability). We define the identifiability of a domain k as
follows:

Ik = Pr(K = k | FK ∪ TK = Fk ∪ Tk) (2)

Intuitively, this models a rational adversary that has no prior information about
the preferences of the client. The adversary observes a set of page requests coming
from a resolver, and assumes that they are due to an access to an unknown
domain K chosen by the client according to the Zipf distribution. The adversary
then determines, for all k′ ∈ K, the probability that K = k′ given the observed
set of pages. This probability for k′ = k (where k is the domain actually accessed
by the client) is the identifiability of k.

We now show how the identifiability can be expressed in a form that allows
us to compute it. For the definition of the basic notation see Sect. 3.2. First, we
apply Bayes theorem.

Ik = Pr(K = k | FK ∪ TK = Fk ∪ Tk)

=
Pr(FK ∪ TK = Fk ∪ Tk | K = k) Pr(K = k)

∑
k′∈K Pr(FK ∪ TK = Fk ∪ Tk | K = k′) Pr(K = k′)

(3)

From AppendixA, Pr(K = k) = f(k) (Zipf distribution). We can rewrite Eq. 3
as follows, where for a random variable X we use notation X ′ to indicate another
random variable with the same distribution.

Ik =
Pr(Fk ∪ Tk = F ′

k ∪ T ′
k)f(k)

∑
k′∈K Pr(Fk′ ∪ Tk′ = Fk ∪ Tk)f(k′)

(4)

Denoting with A the event Fk ∪ Tk = F ′
k ∪ T ′

k and with B the event Fk′ ∪ Tk′ =
Fk ∪ Tk (for k′ �= k), we rewrite the equation as follows.

Ik =
Pr(A)f(k)

Pr(A)f(k) +
∑

k′∈K\{k} Pr(B)f(k′)
(5)

If we consider random variable Lk = Fk ∪ Tk, it can be seen that the values
it assumes (sets of pages) are all equiprobable, since all pages in Fk are chosen
uniformly at random among the possible replications of each domain, and the
cover pages in Tk are chosen uniformly at random among the remaining pages.
4 The pages in T are chosen uniformly at random; the only dependency that T has

from k is for its size. For instance, |T | may be chosen such that the total number of
page requests is higher than or equal to a given minimum.

A Paged Domain Name System for Query Privacy 261

Therefore, denoting with d(X) the possible values (range) of a random variable
X, we have that Pr(A) = 1/d(Lk). With the assumption that the size of the
fingerprint is equal to constant q for all domains, and assuming also a constant
number of cover pages t, we can rewrite the probability as follows.5

Pr(A) =
1

d(Lk)
=

1
r(k)qmt

(6)

Note that r(k) is the replication degree of k (Eq. 1). There is an important
assumption behind this equation, which is that all pages in the fingerprint of a
domain have the same popularity as the domain itself. We call this popularity
inheritance, and the rationale behind it is that if a domain is very popular and
requires access to another domain, then the other domain will be requested
at least as often. However, this means that for non-popular domains we might
be overestimating the identifiability, since non-popular domains may very well
include contents from popular domains. We leave it to future work to make the
calculation of the identifiability with fingerprints for unpopular domains more
realistic.

To compute probability Pr(B), we note that it is actually independent of the
value of k′, as long as k′ �= k. It can be shown6 that Pr(B) is simply equal to
the probability of guessing a randomly chosen set of pages of size q + t (lottery-
winning probability). We rewrite the probability as follows.

Pr(B) =
1

(
m
q+t

) � 1
mq+t/(q + t)!

=
(q + t)!
mq+t

(7)

Finally we rewrite Eq. 5 as follows:

Ik �
1

r(k)qmt f(k)
1

r(k)qmt f(k) + (1 − f(k)) (q+t)!
mq+t

(8)

Limitations of the Identifiability Metric. Because of how the identifiability is
defined, our results are in a sense averaged over all possible assignments of records
to pages (i.e., over all possible hash functions). This means that in a concrete
instantiation, there might be pages which are worse for privacy. In AppendixB
we determine the distribution of the number of ordinary records and of the num-
ber of replicas per page. Our results show that the number of ordinary records
will in the worst case be less than 10% below the average, which would not sig-
nificantly impact the identifiability. However, the number of replicas will be 7 at
the minimum with high probability, the median being 25, so this could have an

5 We are slightly approximating the exact value in Eq. 6, ignoring the fact that the
pages in T are chosen from the set of all m pages excluding those that are already
part of the fingerprint.

6 To formally show this step, one needs to average out the probability over all possible
replica sets that could be assumed by all domains, i.e., over all possible hash functions
(or all possible sets of domain names of size N).

262 D. E. Asoni et al.

Fig. 3. Identifiability of domains
according to their rank, depending on
the maximum replication allowed. The
figure also shows the Zipf distribution,
which is equal to the identifiability
prior to any observation of pages by
the adversary. We point out that the
sawtooth pattern is due to rounding in
the replication function.

Fig. 4. Identifiability of domains
according to their rank, depending
on the size of the fingerprint q and
on the number of cover queries t. As
can be seen, fingerprints can be highly
effective for identifying a website
access. However, with a number of
cover queries between twice and three
times the size of the fingerprint, strong
privacy can still be guaranteed.

impact: in particular, a page with few replicas would cause higher identifiability
for the popular records on it (closer to the cases with little or no replication in
Fig. 3). For the non-replicated records, the worst case happens for a somewhat
popular record to be on a page with few replicas and few other records of similar
or higher popularity. Even in such an (unlikely) case, the replicas alone will still
provide privacy protection.

3.3 Results

We use identifiability (Definition 1) as a metric to measure the effectiveness of
PageDNS, showing in particular how the identifiability curve (obtained from all
possible values of k) varies depending on the replication degree, on the use of
cover page queries, and on page fingerprinting.

Identifiability and Replication. Considering the basic scenario without finger-
printing or cover queries, we study the effectiveness of the basic mechanism of
PageDNS. Figure 3 shows the identifiability curves for two maximum replication
degrees, R = 104 and R = m = 105, the latter being the highest possible repli-
cation degree where the most popular record is replicated on all m pages. The
figure also shows for comparison the case where no replication is used, and it can
be seen how replication is indeed able to achieve its goal of hiding requests to
popular domains. We have plotted also the prior knowledge of the adversary, i.e.,
the identifiability of domains when the adversary does not observe the requested
pages (this is simply the Zipf distribution).

A Paged Domain Name System for Query Privacy 263

Fingerprinting and Cover Queries. In Fig. 4 we show the impact on identifiability
of page fingerprinting and of cover queries, considering small fingerprint sizes.
We consider a fingerprint size of q, including the page of the main domain, and
an amount of cover queries t. As can be seen, without cover queries the use of
page fingerprinting by an adversary can be very effective, leading to complete
privacy loss in many cases. Fortunately, we find that cover queries are sufficient
to compensate for this loss. In particular, an amount of cover queries of three
times the size of the fingerprint appears to be enough to provide a privacy level
lower than the basic one obtained for q = t = 0 (even for q > 3, which is not
shown in the figure).

We have also analyzed the size of fingerprints in practice: we have logged all
SLDs that appear in HTTP GET/POST requests for 10,9717 out of the 20,000
most popular domains (according to Alexa [35]) by automatically loading all
these pages in a browser and relaying all requests made by the browser through
a custom proxy. This gave us a list of unique SLDs for each domain loaded by
the browser.

The results, reported in Table 1, show that indeed many websites require
external content from a large number of domains, but also that many of these
domains are common across different websites. Indeed, if we discard the most
popular 100 SLDs, the median number of additional DNS queries performed is
4, and it drops to only 2 when discarding the top 1,000. Still, there appear to be
certain websites which require an exceptionally large number of SLD lookups.
While we expect that in most cases these accesses could be hidden due to the
large number of queries being constantly performed by the resolver of a medium-
large ISP, and due to the fact that a number of page requests can be avoided as
fresh page copies are still in the resolver’s cache, we cannot in general provide
strong guarantees for such websites. To be secure, clients would need to be made
privacy-aware, and restrict the number of SLD queries per page (or perhaps
space them over a longer period of time). We leave a more detailed investigation
of these possibilities to future work.

Table 1. Distribution of the fingerprint size q as observed loading 10,971 web-pages.
The total number of SLDs seen over all page loadings is 20,777. The table shows how
most domains in the fingerprints are common (e.g., advertisement, analytics, social
media) by showing how the fingerprint size is reduced when we exclude the most
common 100 or 1,000 SLDs.

Min Median 95th Max

Considering all SLDs 1 12 47 238

Without top 100 1 4 24 211

Without top 1,000 1 2 8 172

7 The number of accessed domains is almost half of the 20,000 we consider: this is
because many of them did not have a www host, and also due to some restrictions we
imposed on the loading time.

264 D. E. Asoni et al.

3.4 Security Against Active Attacks

In previous sections we have analyzed the privacy guarantees of PageDNS with
the assumption that the adversary is able to see the page queries made by
recursive resolvers, but does not perform any active attack (i.e., deviating from
the protocol). However, it is possible that an adversary may try to improve its
ability to identify the domains accessed by a client by the use of active attacks. In
particular, the adversary could modify the records for some domains he wishes to
monitor to point to a honeypot server under his control: he could use a different
server for every connecting resolver, and would therefore be able to link accesses
to one of honeypot servers to a resolver, revealing that one of the resolver’s
clients has an interest in the monitored domain (this type of attack is sometimes
called split world attack).

In PageDNS this attack is prevented by requiring registries to authenticate
every new set of page versions they create through a Merkle hash tree, and
by having resolvers gossip about the roots of the trees obtained from all the
registries that they contact. Additionally, domain owners can monitor the pages
distributed by PageDNS to ensure that the information contained in them is cor-
rect. This public auditability property also provides significantly higher integrity
guarantees than those achieved in plain DNS. Since we assume that the adver-
sary wishes to avoid detection, this scheme ensures that active attacks of this
kind are prevented.

4 Evaluation

In this section we present an evaluation of the computational overhead for
maintaining the PageDNS, as well as the memory overhead for registries using
PageDNS.

4.1 Cost of Maintaining the PageDNS

Frequency of Authoritative NS Changes. Records in PageDNS pages only contain
name servers of SLDs (Sect. 2.2) to limit the total number of records in PageDNS,
but also to ensure that pages will not change too frequently. The frequency of
page changes affects both TLD registries (cost of creating the updated pages)
and resolvers (cost of downloading incremental updates in order to keep the local
cache updated).

Table 2. Number of changes of authoritative name servers for the 3000 domains that
had at least one change over the monitored 25 days.

Total Min Max Mean Median 95th

16205 1 32 5.40 4 30

A Paged Domain Name System for Query Privacy 265

To evaluate how frequently authoritative name servers of SLDs change, we
monitored the authoritative name servers of the 100,000 most popular domains
(according to the Alexa Top 1M domains list [35]) over 25 days in July 2017. Out
of the 100,000 monitored domains, we could resolve the authoritative name server
for 75,622 domains8. 72,622 of these, or 96%, did not change their authoritative
name servers over the 25 days. For the remaining 3,000 (4%) domains, Table 2
shows statistics about the number of name server changes. From these results
we can calculate the expected number of changes C to the name servers for each
domain per day:

E[C] =
16205
75622

· 1
25

≈ 0.0086 (9)

Thus, there are expected 10,000 ·0.0086/24 � 3.6 updates per page per hour.
If new page versions are created, e.g., every 4 h, less than 15 records would need
to be changed per page on average between two versions. Out of our monitored
domains which where updated, only around 5% had, right before the change, a
TTL lower than 4 h, so only a small number of domains might suffer from higher
inconsistencies than with DNS’s caching. Furthermore, for all planned updates,
domain owners could schedule an update with their registrar, ensuring that the
update will be included by the registry at a specified version, at a specified time.

Update Costs per Registry. According to Verisign’s Domain Name Industry
Brief [37] (cf. also ICANN’s monthly report for .com [22]), the DNS has reached
a size of 335M domain names across all TLDs with an increase of about 15 mil-
lion per year over the last few years (∼5%). This is considering only the higher
level domains to which TLDs delegate, e.g., example.org or example.co.uk,
excluding subdomains like cs.example.com. We therefore set, for our analyses
in this paper, the number of SLDs N = 109.9

Given the total number of SLDs and the update frequency we calculated
above (Eq. 9), we find that the TLD registries need to perform, overall, around
100 page updates per second, assuming as above that each page is updated every
4 h. We expect this to be well within the capacity of TLD registries; furthermore,
we note that if PageDNS were widely used, the root name servers would see a
significantly reduced query load, meaning that their space resources could also
be spent to assist the registries (this would be particularly easy in cases where
the same company manages both some root name servers and TLDs, which is
the case for instance for Verisign). Still, we assess the feasibility of these update
with our prototype implementation in Sect. 4.3, and find that even with low-end
hardware this update frequency can be sustained.

8 The reason almost 25% of domains were not resolved is that for our monitoring we
kept low timeouts, and excluded the domains which frequently resulted in time-outs.

9 With a growth rate of ∼5% the number of domains and thus the number of pages
doubles approximately every 14 years. We expect that the available bandwidth and
computing power can easily keep up with the growth of PageDNS.

266 D. E. Asoni et al.

4.2 Memory Overhead for Resolvers

We assume that resolvers will locally cache the set of all pages, corresponding
to all records in the TLD zones. Given our assumptions (Sect. 4.1) of 109 SLD
records, distributed across 105 pages of about 1 MB of size each, we have that
the total storage requirement for a resolver is 100 GB (excluding optimizations
such as compression). While this could entail non-negligible upgrading costs for
the ISPs managing the resolvers, in particular for ISPs of small size, we believe
that by the time PageDNS would reach widespread deployment, the cost of this
memory upgrade would be bearable even for smaller ISPs. Initially, ISPs will
still have an incentive for adoption as PageDNS would allow them to provide a
privacy-preserving lookup service to their clients, and it would in all likelihood
also be a faster lookup service than in todays DNS, since a significant fraction
of queries made by clients would be for up-to-date pages, and thus the resolver
can directly query the SLD name server.

4.3 Prototype Implementation

We have implemented a prototype of PageDNS in Python to obtain some pre-
liminary performance results and assess the feasibility of our system. Our code
defines both a TLD registry and a resolver, for a total of almost 6K LOCs.
Our evaluation of this prototype was made running a registry instance and a
resolver instance on two Amazon AWS instances (in Ireland and in Germany,
respectively), each with an Intel Xeon CPU with 2.53 GHz and 2 GB of RAM.

The registry is implemented as a server providing pages over HTTP using
a RESTful API. The pages are represented as plain text for human readability,
and for our evaluation we have not implemented optimizations to compress the
size of pages. In our implementation, the registry lazily computes incremental
updates between the cached version of the resolver, specified in the query, and
the last available version. These incremental updates are cached by the registry
until the new page versions are generated.

We use this setting to evaluate the latency of a page query, both in the case
of cold cache, in which the entire page has to be downloaded (this should happen
only in exceptional cases), and in the case of the download of an incremental
update. The results are averaged over 1000 queries. The time to download an
entire page consisting of 10,000 records is 789 ms on average, while for an incre-
mental update of one version the required time was 41 ms. This last value is in
the same order of magnitude as a request to Google Public DNS for NS records.

We have also implemented and evaluated the page-updating functionality
of registries, offering a RESTful API for domain owners to communicate their
updates to the registry. The time needed for one page update was on average
68ms, meaning that a registry can perform around 14 page updates per second
using one low-end AWS instance. In practice, we expect registries to deploy
significantly more powerful machines. We leave a more comprehensive evaluation
of the registries’ performance using PageDNS to future work.

A Paged Domain Name System for Query Privacy 267

5 Related Work

In response to the revelations about the NSA’s mass surveillance programs [2],
the IETF took a stance considering such surveillance practices as an attack [17],
and began analyzing the problem of how to defend against it [6]. One of the
identified threat vectors is DNS [8], but the countermeasures proposed so far are
relatively weak. The simplest (but also weakest) of these proposals calls for query
minimization [9], which would only hide some information from root and TLD
servers.10 Another proposal (a now expired IETF draft) aims to extend DNS
with the option to encrypt queries between the recursive resolver and the author-
ities [39]. Recently also an academic proposal by Zhu et al. called T-DNS [41]
was submitted as an RFC [21]: their suggestion is to use TLS between clients and
recursive resolvers (and possibly between recursive resolvers and authorities) to
protect against network eavesdroppers.

Outside the IETF other solutions have been devised which are similar in
scope. DNSCurve [7] allows clients or recursive resolvers to establish secure chan-
nels to the authoritative resolvers using efficient cryptography. A related system
is DNSCrypt [13], which offers similar guarantees. Both of these systems have
seen some adoption, e.g., they are supported by OpenDNS [3]. These systems,
as well as the RFCs currently under examination at the IETF, are easily deploy-
able, and could be used complementarily to PageDNS, since their threat model
is orthogonal to ours.

Other researchers aimed to protect against stronger adversaries. Zhao
et al. [40] suggest a simple approach called range queries, which consists in the
client sending extra “dummy” queries to the resolver, in order to hide the real
query. Federrath et al. [18], however, show that range queries are vulnerable to
semantic intersection attacks. In this same paper, the authors propose another
system, based on a combination of broadcasting and sending the queries over an
anonymous communication system (ACS): popular records are broadcast to all
clients, while in order to retrieve less popular entries the clients have to query
a resolver through a mixnet or an onion routing system. It is unclear however
how these systems can effectively guarantee privacy against a malicious ISP,
which will inevitably see the communications following the lookup, thus appar-
ently nullifying the efforts to anonymize the queries. We believe that, to protect
against a malicious ISP, an ACS necessarily has to be used.

Our goal in PageDNS of hiding the information of what records are being
queried is analogous to that of private information retrieval (PIR) [10,25], which
leverages either multiple non-colluding servers or computationally expensive
cryptography to significantly reduce communication costs. Unfortunately, even
with recent improvements [4,14], PIR has remained too costly in terms of com-
putation to be used for a critical application like DNS. In PageDNS we do not
try to trade off lower communication costs for additional computation: instead,
we show how domain-specific aspects, such as the low variability of TLD zones,

10 It appears that Verisign, Inc. was able to obtain a patent [28] on this technology,
and it is unclear what this will mean for its adoption.

268 D. E. Asoni et al.

paired with extensive caching, allow us to achieve privacy properties close to
those of PIR, but without its prohibitive performance penalties. Another related
direction regarding weak PIR was taken by Toledo et al. [36], who shown how pri-
vacy guarantees can be increased through the use of anonymous communication
systems, or by leveraging multiple servers.

Other related projects aim to push DNS entries to multiple entities, such
as recursive resolvers, across the Internet. For instance, Cohen and Kaplan [12]
propose proactive caching of records, and similarly Handley and Greenhalgh [20]
also advocate for pushing records to thousands of name servers for higher robust-
ness. Kangasharju and Ross [24] take an even more radical stance, proposing a
new design for DNS involving distributed servers storing the complete DNS
database. This is perhaps the closest to PageDNS, although without the goal of
privacy. However, in our system we put a much stronger emphasis on efficiency
and deployability: in particular, PageDNS pages only contain TLD zones, not
the entire DNS database, which would be orders of magnitude larger, and change
more frequently.

Researchers have also investigated new approaches to name resolution that
are fundamentally different from DNS, based on distributed architectures that
are not structured hierarchically, which can provide privacy. One such approach
by Lu and Tsudik [27], called PPDNS, adds privacy on top of CoDoNS [33],
an alternative naming system based on distributed hash tables (DHTs). The
scheme also uses computational PIR to reduce communication overhead, but
the ensuing computational costs strongly limit the size of the range and thus
also the privacy guarantees, and leave the system vulnerable to denial of service
attacks. The GNU Name System (GNS) [19,38] is another scheme based on
DHTs, but because it uses a fully peer-to-peer approach it does not provide
global naming consistency, and is thus quite different from today’s DNS. Pappas
et al. [32] have analyzed more generally DHT-based designs for DNS, and arrived
at the conclusion that compared to the current DNS they are inferior in terms of
performance and availability, except in terms of protection against some specific
denial-of-service attacks.

6 Conclusions

We explore the design space of the solutions to the scarcely studied problem of
privacy-preserving DNS lookups, and we identify a yet unexplored but promis-
ing direction. We propose an architecture, PageDNS, which aims to hide query
information from root name servers and TLD registries. PageDNS lets TLD reg-
istries group together the name server records in their zones into pages; recursive
resolvers retrieve entire pages rather than single records, which provides a first
level of privacy protection. Additionally, we design a number of optimizations
and enhancements to make the architecture more efficient, such as full caching
of pages at the resolver, and incremental updates, which reduce the overhead.
PageDNS requires significant changes to resolvers and TLD registries, and a cer-
tain memory overhead for resolvers, but it provides privacy properties close to

A Paged Domain Name System for Query Privacy 269

those of PIR, and it may even speed up the average DNS query, since effectively
the resolvers will be caching all TLD zones. Furthermore, name is incrementally
deployable by TLD registries, and does not need to be adopted by all resolvers.
Since PageDNS is orthogonal to other privacy solutions, it can be combined with
other approaches to achieve different tradeoffs in efficiency and privacy. These
are interesting directions for future work.

Acknowledgments. We thank Jinank Jain for his help with the prototype imple-
mentation.

A Replication Function

Let P be a page of PageDNS containing n records, and let k′ be the rank of a
record in P. For ease of notation, we write k′ ∈ P, and in general we will often
use a domain’s rank to refer to the domain. We assume a total of N domains,
thus k′ ∈ {1, . . . , N}, where k′ = 1 is the highest rank. We consider a random
variable K indicating the rank of a domain chosen at random (by a generic
client) according to a Zipf distribution with parameter s = 0.91, i.e., such that:

Pr(K = k) = f(k; s,N) =
1

ksHN,s
with HN,s =

N∑

k=1

1
ks

(10)

To simplify the notation, we will write f(k) to mean f(k; s,N) and H for HN,s.
Now we try to analytically express the probability that an adversary would

assign to k′ being the target domain having observed a request to P, which is
equal to the probability that K = k′ given that K is restricted to P. By applying
Bayes theorem, we obtain the following equation:

Pr(K = k′ | K ∈ P) =
Pr(K ∈ P | K = k′) Pr(K = k′)

∑
k∈P Pr(K ∈ P | K = k) Pr(K = k)

(11)

Probability Pr(K ∈ P | K = k) is equal to 1 if k is not replicated, since we are
assuming that k ∈ P. More generally, if k has a replication degree of r(k) (i.e.,
the record for domain k exists on r(k) pages), then the probability of choosing
the replica in P is 1/r(k). We can therefore rewrite Eq. 11 as follows:

Pr(K = k′ | K ∈ P) =
f(k′)/r(k′)

∑
k∈P f(k)/r(k)

(12)

Now let k′′ be another domain on the same page, i.e., k′′ ∈ P. Ideally, we
would like the replication function to be such that Pr(K = k′ | K ∈ P) =
Pr(K = k′′ | K ∈ P) for all possible choices of k′ and k′′. Unfortunately, it is
possible to see that the only scenario where this could theoretically be achieved
is one where the number of pages is equal to the number of domains, and the
cost of replication would be excessive (the total size of all PageDNS pages would
increase by almost a hundredfold). Instead, we try to get the ratio of those

270 D. E. Asoni et al.

probabilities as close to 1 as possible. Since we also want to minimize the cost
of replication, we do not replicate the least popular domain (i.e., r(N) = 1):
replication should only help to reduce the probability in Eq. 11 for high-rank
domains, to get it closer to the probability of the more unpopular domains. It
is reasonable therefore for the ratio to be at its maximum when k′ = 1 and
k′′ = N .

ρMAX =
Pr(K = 1 | K ∈ P)
Pr(K = N | K ∈ P)

=
f(1)/r(1)

f(N)/r(N)
(13)

Denoting with R the replication degree of the most popular domain (r(1) = R),
and since r(N) = 1, Eq. 13 becomes the following:

ρMAX =
f(1)/R

f(N)
=

H−1/R

N−sH−1
=

Ns

R
(14)

All other domains should be replicated in order not to increase this ratio further.
From this requirement, we obtain the following bound ∀k.

Pr(K = k | K ∈ P)
Pr(K = N | K ∈ P)

≤ ρMAX (15)

=⇒ f(k)/r(k)
f(N)/r(N)

=
k−sH−1/r(k)

N−sH−1
=

Ns

ksr(k)
≤ Ns

R
(16)

=⇒ r(k) ≥ R

ks
(17)

We derived the bound in Eq. 17 for the worst case of the page containing both
the most and the least popular domains, so by applying it generally to the repli-
cation for all k-s we ensure that on no page there will be two domains for which
the ratio of their identification probabilities (Eq. 11) exceeds ρMAX . Further-
more, with the approximation that the denominator in Eq. 12,

∑
k∈P f(k)/r(k),

has the same value for all pages, the bound in Eq. 17 actually guarantees the
following for any two pages P, P ′:

∀k ∈ P,∀k′ ∈ P ′ Pr(K = k | K ∈ P)
Pr(K = k′ | K ∈ P ′)

≤ ρMAX (18)

Since we desire to minimize the cost of replication, we try to match the
bound of Eq. 17 as closely as possible (rounding it to the nearest integer), with
the additional constraint that replication of any domain be at least 1. Thus the
replication function we use is the following:

r(k) = max{1, round(Rk−s)} (19)

In Fig. 5 we plot the function. Note how only the most popular domains with
rank from 1 to k∗ are replicated: these will all have approximately (because of
rounding) the same identification probability, while for less popular domains the
probability will be lower. We also point out that in our scenario R ≤ m, where
m is the number of pages, and that the best (lowest) probabilities are obtained
for the equality: in this case, we have the most popular domain replicated on all
pages. For realistic values (m = 10, 000 and s = 0.91), we obtain k∗ � 200, 000.

A Paged Domain Name System for Query Privacy 271

Fig. 5. Replication degree of domain names according to their rank.

B Page-Size Variance

We can think of the size of a page P as the sum of N random variables Xk, each
assuming value 1 if the k-th domain is assigned by the hash function to page
P , and value 0 otherwise. The size of page P is thus X =

∑N
k=1 Xk. Assuming

that the hash function behaves as a random function, and considering a set of m
pages, we can easily compute the expected value of the size of the generic page
P as follows:

μ = E [X] =
N∑

k=1

E [Xk] =
N∑

k=1

1
m

=
N

m
(20)

Since X is the sum of independent random variables with values in the set
{0, 1}, we can apply the multiplicative Chernoff bound to estimate the prob-
ability that the size of a specific page will deviate from the expected value μ
by a certain factor (1 − δ) (we aim to find a lower bound). The bound has the
following form.

Pr(X ≤ (1 − δ)μ) ≤ e− δ2μ
2 (21)

Considering for the parameters the values N = 109 and m = 105, as we have
done throughout the paper, we obtain from Eq. 20 that μ = 104. Setting δ = 0.1
for a deviation of at least 10% from the mean, Eq. 21 yields the following bound:

Pr(X ≤ 0.9μ) ≤ e− 10−2104
2 = e−50 � 2 · 10−22 (22)

We see from these numbers that the probability of having pages significantly
smaller than the average is clearly negligible. Another Chernoff bound can be
used to find similar limitations for the probability of pages to be 10% larger than
the average.

272 D. E. Asoni et al.

Replicas Distribution. To determine the distribution of the number of replicas
per page, we find that Chernoff bounds are not effective, as they do not allow
us to rule out extreme cases such as having only 2 or 3 replicas on some page.
Instead, we use a simulation over 106 pages, and find that the median is 25
records per page, though it can be as low as 7 in exceptional cases.

References

1. Google Analytics Solutions. https://www.google.com/analytics. Accessed 22 Sept
2017

2. NSA Spying on Americans. https://www.eff.org/nsa-spying. Accessed 22 Sept 2017
3. OpenDNS. https://www.opendns.com/. Accessed 22 Sept 2017
4. Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.-O.: XPIR: private infor-

mation retrieval for everyone. In: PETS (2016)
5. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS security introduc-

tion and requirements. RFC 4033 (2005)
6. Barnes, R., et al.: Confidentiality in the face of pervasive surveillance: a threat

model and problem statement. RFC 7624 (2015)
7. Bernstein, D.J.: DNSCurve: usable security for DNS. https://dnscurve.org/.

Accessed 22 Sept 2017
8. Bortzmeyer, S.: DNS privacy considerations. RFC 7626 (2015)
9. Bortzmeyer, S.: DNS query name minimisation to improve privacy. RFC 7816

(2016)
10. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.

In: IEEE FOCS (1995)
11. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.

J. ACM 45(6) (1998)
12. Cohen, E., Kaplan, H.: Proactive caching of DNS records: addressing a perfor-

mance bottleneck. In: IEEE/IPSJ International Symposium on Applications and
the Internet (SAINT) (2001)

13. Denis, F., Fu, Y.: DNSCrypt (2011). https://dnscrypt.org/. Accessed 22 Sept 2017
14. Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information

retrieval. In: USENIX Security (2012)
15. Dickinson, J., Dickinson, S., Bellis, R., Mankin, A., Wessels, D.: DNS transport

over TCP - implementation requirements. RFC 7766 (2016)
16. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion

router. In: USENIX Security (2004)
17. Farrell, S., Tschofenig, H.: Pervasive monitoring is an attack. RFC 7258 (2014)
18. Federrath, H., Fuchs, K.-P., Herrmann, D., Piosecny, C.: Privacy-preserving

DNS: analysis of broadcast, range queries and mix-based protection methods. In:
ESORICS (2011)

19. Grothoff, C., Wachs, M., Emert, M., Appelbaum, J.: NSA’s MORECOWBELL:
knell for DNS. Technical report, GNUnet e.V. (2015)

20. Handley, M., Greenhalgh, A.: The case for pushing DNS. In: HotNets (2005)
21. Hu, S., Zhu, L., Heidemann, J., Mankin, A., Wessels, D., Hoffman, P.: Specification

for DNS over Transport Layer Security (TLS). RFC 7858 (2016)
22. ICANN: .com Monthly Registry Reports. https://www.icann.org/resources/pages/

com-2014-03-04-en. Accessed 22 Sept 2017

https://www.google.com/analytics
https://www.eff.org/nsa-spying
https://www.opendns.com/
https://dnscurve.org/
https://dnscrypt.org/
https://www.icann.org/resources/pages/com-2014-03-04-en
https://www.icann.org/resources/pages/com-2014-03-04-en

A Paged Domain Name System for Query Privacy 273

23. Jung, J., Sit, E., Balakrishnan, H., Morris, R.: DNS performance and the effective-
ness of caching. IEEE/ACM TON 10(5), 589–603 (2002)

24. Kangasharju, J., Ross, K.W.: A replicated architecture for the domain name sys-
tem. In: IEEE INFOCOM (2000)

25. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: IEEE FOCS (1997)

26. Laurie, B., Sisson, G., Arends, R., Blacka, D.: DNS security (DNSSEC) hashed
authenticated denial of existence. RFC 5155 (2008)

27. Lu, Y., Tsudik, G.: Towards plugging privacy leaks in the domain name system.
In: IEEE P2P (2010)

28. McPherson, D., Osterweil, E.: Providing privacy enhanced resolution system in the
domain name system. US Patent 8,880,686 B2 (2014)

29. Mockapetris, P.: Domain names - concepts and facilities. RFC 1034 (1987)
30. Mockapetris, P.: Domain names - implementation and specification. RFC 1035

(1987)
31. Ostrovsky, R., Skeith III, W.E.: A survey of single-database PIR: techniques and

applications. In: PKC (2007)
32. Pappas, V., Massey, D., Terzis, A., Zhang, L.: A comparative study of the DNS

design with DHT-based alternatives. In: IEEE INFOCOM (2006)
33. Ramasubramanian, V., Sirer, E.G.: The design and implementation of a next gen-

eration name service for the Internet. In: ACM SIGCOMM (2004)
34. Rossow, C.: Amplification hell: revisiting network protocols for DDoS abuse. In:

NDSS (2014)
35. Alexa the Web Information Company. Alexa Top 500 Global Sites (2016). http://

www.alexa.com/topsites
36. Toledo, R.R., Danezis, G., Goldberg, I.: Lower-cost ε-private information retrieval.

PoPETS 2016(4), 184–201 (2016)
37. Verisign, Inc.: The domain name industry brief, vol. 14, no. 2 (2017). https://www.

verisign.com/assets/domain-name-report-Q12017.pdf. Accessed 22 Sept 2017
38. Wachs, M., Schanzenbach, M., Grothoff, C.: A censorship-resistant, privacy-

enhancing and fully decentralized name system. In: International Conference on
Cryptology and Network Security (CANS) (2014)

39. Wijngaards, W., Wiley, G.: Confidential DNS. Internet Draft draft-wijngaards-
dnsop-confidentialdns-03 (2015)

40. Zhao, F., Hori, Y., Sakurai, K.: Analysis of privacy disclosure in DNS query.
In: International Conference on Multimedia and Ubiquitous Engineering (MUE)
(2007)

41. Zhu, L., Hu, Z., Heidemann, J., Wessels, D., Mankin, A., Somaiya, N.: Connection-
oriented DNS to improve privacy and security. In: IEEE Symposium on Security
and Privacy (2015)

http://www.alexa.com/topsites
http://www.alexa.com/topsites
https://www.verisign.com/assets/domain-name-report-Q12017.pdf
https://www.verisign.com/assets/domain-name-report-Q12017.pdf

Bitcoin and Blockchain

A New Approach to Deanonymization
of Unreachable Bitcoin Nodes

Indra Deep Mastan1(B) and Souradyuti Paul2

1 Indian Institute of Technology Gandhinagar, Gandhinagar, India
immastan@gmail.com

2 Indian Institute of Technology Bhilai, Raipur, India
souradyuti.paul@gmail.com

Abstract. Mounting deanonymization attacks on the unreachable Bit-
coin nodes – these nodes do not accept incoming connections – residing
behind the NAT is a challenging task. Such an attack was first given by
Biryukov, Khovratovich and Pustogarov based on their observation that
a node can be uniquely identified in a single session by their directly-
connected neighbouring nodes (ACM CCS’15). However, the BKP15
attack is less effective across multiple sessions. To address this issue,
Biryukov and Pustogarov later on devised a new strategy exploiting cer-
tain properties of address-cookies (IEEE S&P’15). Unfortunately, the
BP15 attack is also rendered ineffective by the present modification to
the Bitcoin client.

In this paper, we devise an efficient method to link the sessions of
unreachable nodes, even if they connect to the Bitcoin network over the
Tor. We achieve this using a new approach based on organizing the block-
requests made by the nodes in a Bitcoin session graph. This attack also
works against the modified Bitcoin client. We performed experiments on
the Bitcoin main network, and were able to link consecutive sessions with
a precision of 0.90 and a recall of 0.71. We also provide counter-measures
to mitigate the attacks.

1 Introduction

Bitcoin works in a peer-to-peer network over which users create transactions that
are stored in a distributed ledger known as the Blockchain [9]. All transactions
in the Bitcoin network can be publicly viewed and analyzed. One of the most
important properties of Bitcoin is its anonymity. If an adversary is able to link
the transactions to its owner, then she has broken the anonymity property; this
event is known as deanonymization.

Let U = {U1, U2, . . . , Un} be the set of addresses of the user u (note that
Bitcoin allows a user to have multiple addresses). If an adversary is able to
find U , then she will be able to get the full transaction history of u from the
Blockchain (publicly available distributed ledger). In this setting, there are two
main problems associated to deanonymization. First, how to link the bitcoin
addresses (or transactions) to determine U? Next, how to link U to the real
identity u? Our work is in the direction of the first problem.
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 277–298, 2018.
https://doi.org/10.1007/978-3-030-02641-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_13

278 I. D. Mastan and S. Paul

Motivation. Deanonymization attack is performed mainly in two ways: trans-
action graph analysis and Bitcoin network analysis. Several papers show how
to perform transaction graph analysis to link the transactions (and thus Bit-
coin addresses) of users [8,11]. Some papers even link real world entities such
as mtgox, silkroad with their Bitcoin addresses [8,10]. Biryukov, Khovratovich
and Pustogarov observed that deanonymization using transaction graph analysis
is less effective when a user makes multiple transactions using distinct bitcoin
addresses, since such transactions might not have any relations in the graph [4].

Now we concretely discuss the main challenges in deanonymization with
respect to Bitcoin network analysis. Suppose, a victim node v having the public
IP address IP creates a transactions tx. Even if the adversary discovers that tx
is related to IP , he is still not sure about the owner of tx, because there could
be multiple Bitcoin nodes (or users) having the same public IP IP behind the
NAT. Therefore, an adversary first needs to distinguish the nodes behind the
NAT, before linking the transactions. Another challenge in the deanonymization
is when a user connects to Bitcoin over Tor: the user can change its onion address
in a new session, making it difficult for the attacker to trace his activities.1

Many of the deanonymization problems in Bitcoin network have already been
solved in [4,5,7]. These attacks have the following limitations: attacks given in [7]
do not apply to unreachable Bitcoin nodes; attacks given in [4] are not performed
on the Bitcoin main network, and can not deanonymize nodes across the sessions;
the address-cookies method given in [5] is ineffective in the updated version of the
Bitcoin client. In short, it is not satisfactorily solved as to how to deanonymize
Bitcoin nodes, when the victim nodes behind the NAT are unreachable or are
using Bitcoin over Tor.

In this paper we solve this issue using a novel technique based on analysing
the sequence of block-header hashes (block-ids) requested across multiple ses-
sions by the unreachable nodes.

Related Work. Following are various attempts at deanonymization attacks
and their limitations, in chronological order.
2014: Koshy et al. have shown how to perform deanonymization by analyzing the
relay patterns of transactions [7]. They collected data over 5 months, and used
statistical analysis to determine the source IP addresses of the transactions. They
were able to deanonymize 1162 bitcoin addresses of reachable Bitcoin nodes.
However, in [4], it was pointed out that their attack applied to only reachable
nodes that constituted only 10% of all nodes.
2014: Biryukov, Khovratovich and Pustogarov gave the first attack to
deanonymize transactions of nodes that are unreachable and hidden behind the
NAT [4]. They performed experiments on the Bitcoin Testnet. Their attack was
based on the observation that a node can be uniquely identified by its direct
connections (or entry-nodes). They gave a strategy to learn the entry-nodes;

1 Tor is a circuit-based communication service which provides anonymity by relaying
traffic through routers as proxies (see Sect. 2).

A New Approach to Deanonymization of Unreachable Bitcoin Nodes 279

however, their solution has an inherent limitation that the entry-nodes change
in a new Bitcoin session. Thus, their attack can not relate the transactions cre-
ated in the multiple sessions. This shows that the ability to identify a node across
the sessions is an essential step of any deanonymization attack.
2015: Biryukov and Pustogarov gave a fingerprinting technique for identifica-
tion of the nodes across the sessions [5]. The technique is as follows: adversary
sends unique address-cookies to his peers in ADDR messages, the peers store IP
addresses contained in address-cookies into their IP address tables (address-
cookies are created into peers IP address tables); after some time, adversary
sends GETADDR to query IP addresses in the peers IP address tables; the peers
respond using ADDR; now the adversary can analyse the responses received, and
check if it matches some address-cookies. The present modification to Bitcoin’s
inbuilt fingerprinting protection2 makes unreachable nodes ignore the GETADDR;
thus, the fingerprinting attack is prevented for unreachable nodes.

Our Contribution. Our main contribution is launching a deanonymization
attack on unreachable Bitcoin nodes, even if they are behind the NAT, in both
direct connection and proxy connection settings (running Bitcoin over Tor). Most
importantly, unlike the previous attacks, our technique works against the new
version of Bitcoin client [3]. Our attack is fairly generic, and does not seem
to exploit any rectifiable mistake in the Bitcoin implementation. The crux of
the attack is an observation that a Bitcoin node requests for blocks following a
specific pattern, in particular, in the increasing order of Blockchain height. This
pattern is observable even in the following scenarios: when the node is connected
via Tor; and when the node is connected in multiple sessions with or without Tor.
Using this observation we linked the consecutive sessions (sessions that follow
each other continuously) of an unreachable node, which could then be used to
link majority of the sessions. Linked sessions help in linking the transactions
created in the different sessions.

The above attack has been experimentally verified in the Bitcoin main net-
work. We have performed experiments by running Bitcoin nodes on Amazon
EC2.

The main objective of the first experiment is to give a concrete measure of the
quality of the attack when the victim nodes are connected to Bitcoin network
directly. We ran eight sessions with the four unreachable nodes (therefore, a
total of 32 sessions). In this experiment, we link the consecutive sessions with a
precision of 0.90 and a recall of 0.71.

The objective of the second experiment is to show the performance of the
attack when victim nodes connect to Bitcoin network with Tor and without Tor
in different sessions. We ran six sessions with four nodes (therefore, a total of 24
sessions), where, in the first three sessions, nodes are connected to Bitcoin net-
work over Tor, and, in the next three sessions the nodes are connected directly to

2 The modification that are done to provide inherent fingerprinting protection to Bit-
coin network.

280 I. D. Mastan and S. Paul

Bitcoin network. In the experiment, we link consecutive sessions with a precision
of 1.0 and a recall of 0.75. To thwart this attack, we propose a counter-measure,
where the blocks are requested in a random fashion.

2 Background

Here we first give necessary background of Bitcoin network, nodes and Bitcoin
protocol messages. Next, we describe the Tor network.

2.1 Bitcoin Network

Bitcoin network is a peer-to-peer network. A node in the Bitcoin network can
have at most 8 outgoing and 117 incoming connections. The nodes get connected
to each other by establishing a TCP connection.

Nodes. There are mainly two classes of Bitcoin nodes: (1) first one is based on
the reachability criterion, and (2) the second one is based on the existence of
proxy nodes in the connection. The first class of nodes is further divided into
two types: (1a) nodes that accept incoming connections, we call them reachable
nodes, and (1b) nodes that do not accept incoming connections, we call them
unreachable nodes. Both reachable and unreachable nodes can make outgoing
connections. The second class of nodes is also subdivided into three categories:
(2a) nodes that connect to Bitcoin network directly, (2b) nodes that connect to
Bitcoin network using Tor anonymity system, and (2c) nodes that connect to
Bitcoin network sometimes with Tor and sometimes without Tor.

Bitcoin Protocol Messages. Bitcoin protocol uses a large number of applica-
tion layer messages that are exchanged between the nodes for various purposes.
Below we describe the important messages.

– VERSION & VERACK: In the beginning of a connection, two nodes exchange
VERSION and VERACK messages. The VERSION message contains information
of the Bitcoin version, best-height3 of the sender, a random nonce, network
addresses of the sender and receiver, etc. The VERACK message sent from the
receiver denotes acknowledgement of VERSION message.

– GETADDR & ADDR: Every node normally holds a list of IP addresses that are
working as active nodes in the network in the recent past. Using GETADDR mes-
sage, a node X can request another node Y for the list of those IP addresses.
This is done to help X find the potential active nodes in the network. In
response, Y returns the requested list of IP addresses using ADDR message.

– PING & PONG: The PING is sent to check the status of the connection is alive.
The PONG is sent in response to a PING message.

3 The best-height of a node is the height of the Blockchain of the node.

A New Approach to Deanonymization of Unreachable Bitcoin Nodes 281

– INV: A node advertises suitably chosen transactions and blocks it possesses
to its peers using INV messages. It is a tuple (count, inventory), where count
is the size of inventory and inventory is a list of inventory vectors. Each
inventory vector is a tuple (type, hash), where type identifies the object type;
i.e. transaction or block, and hash denote transaction-id or block-id (block
header hash). The INV message can be issued by a node unsolicited.

– GETDATA: The GETDATA message is sent in the response to an INV message.
It is a request to retrieve the full content of specific transactions or blocks4.
Similar to INV, the GETDATA is also a tuple (count, inventory).

– TX: It describes a bitcoin transaction. When a Bitcoin user create a new trans-
action, it broadcasts the transaction-id in INV message. The peers connected
to the user receive the INV messages and get the transaction-id of new trans-
action, next, they request the transaction by sending the GETDATA message
for it. Then user sends transaction in TX message.

– BLOCK: It describes a block. The BLOCK message sent for two different rea-
sons: (1) sent as response to the GETDATA message, and (2) sent by miners to
broadcast newly-mined blocks.

– GETBLOCKS: A GETBLOCKS message is exchanged between peers to tell each
other the block-ids of the top block on their Blockchain, this helps in updat-
ing their Blockchain. For example, suppose node X and Y have exchanged
GETBLOCKS message, and Blockchain height of node X is more than Y. Since
GETBLOCKS sent from Y contains the block-id of the block at the top of
Blockchain of Y, X will determine the set of blocks that Y needs in-order
to update his Blockchain. Next, X sends INV message containing upto 500
block-ids to Y, and then Y can request the desired blocks using GETDATA
message. This way of synchronizing Blockchain is called Blocks-First Sync.

– GETHEADERS & HEADERS: These messages are exchanged between peers to
update the block headers5. The GETHEADERS message contains the block-
id from where the sender wants to receive the headers. When a peer sends
GETHEADERS message, it gets a HEADERS message as a response. The HEADERS
message contains up to 2000 block headers. Note that similar to GETBLOCKS,
the peer with higher Blockchain height sends HEADERS message. This way
of synchronizing Blockchain is called Headers-First Sync. After updating the
block headers a node can request the GETDATA message for the blocks.

2.2 The Onion Router (Tor)

Tor is a circuit-based communication service which provides anonymity by relay-
ing traffic through routers in the Tor network as proxies [6]. Tor network is a
4 Node X advertises blocks and transactions to node Y using INV, where INV contains

block header hashes (block-ids) or transaction-ids. Then Y requests specific trans-
actions or blocks from X using GETDATA; such a communication is called pull-based
communication.

5 Each block has a 80-byte block header, which contains important information such
as the hash value of the previous block, the time of creation of the block, a nonce,
number of transactions etc.

282 I. D. Mastan and S. Paul

distributed overlay network, which consists of approximately 7,000 volunteer-
operated routers or onion routers (ORs) or relays.

When a user runs Tor client, it creates a Tor circuit to route the traffic
through the Tor network by choosing three relays – namely entry, middle and
exit – and establishes a session key with each relay. Suppose, Alice is using a
Tor client to connect to Bob. When Alice starts the Tor client in her machine,
it creates the following three-hop circuit.

Alice ↔ entry relay ↔ middle relay ↔ exit relay.

Next, the Tor client sends data to Bob by encapsulating it in three layers of
encryption, using the session keys established with the relays. Each relay in the
circuit removes its layer by performing decryption, and finally Bob receives data
in the unencrypted form.

Each relay in the circuit knows the IP addresses of its predecessor and suc-
cessor. The entry relay knows the IP address of Alice, but does not know the
data Alice is sending. Exit relay knows the data sent by Alice, but does not know
the IP address of Alice. Therefore, none of the relays (as well as Bob) can relate
the data with the IP address of Alice.

The three-hop Tor circuit does not provide anonymity to Bob, because the IP
address of Bob is known to Alice; however, using Tor Hidden Service (THS) Bob
can hide its IP address from Alice while offering a TCP service, e.g. a Bitcoin
server.

The THS is accessed through its onion address rather than IP address, which
is of the form “x.onion”, where x is the base-32 encoded THS identifier.6 The
onion address – as opposed to IP address – does not reveal geographical infor-
mation. The Tor client routes data to and from THS using the onion address.
For example, suppose Bob is running a THS, and suppose Alice wants to use it.
They construct the following circuit to exchange data, where RP is a Tor relay,
also known as Rendezvous Point [6].

Alice ↔ Relay ↔ Relay ↔ RP ↔ Relay ↔ Relay ↔ Relay ↔ Bob

RP connects Alice’s circuit to Bob’s circuit; it does not know the IP address of
Alice and Bob and the data they exchange.

3 Peer-Representations and Sessions

Here we give important definitions required to formalise our deanonymization
attack. Our main focus is to give a strategy to link the sessions of an identical
node. Linking sessions of a node enables the attackers to trace the activities of
the user and monitor its transactions.

In our attack model, victim nodes are assumed to be inside the NAT, whereas
the adversarial nodes are outside of it. Nodes inside the NAT connect to Bitcoin
6 Base-32 encoding is done using 32-character: twenty-six letters A to Z and six digits

2 to 7.

A New Approach to Deanonymization of Unreachable Bitcoin Nodes 283

network mainly in two ways: Direct connection and Proxied connection (Bitcoin
over Tor). The directly connected nodes share the same public IP, making dis-
tinguishing difficult outside the NAT. The Bitcoin nodes over Tor may not share
the same onion address; however, they could change their onion addresses (e.g.
opening new Bitcoin sessions), making tracing difficult.

Let A = {ai}i∈[n] and V = {vi}i∈[m] denote the sets of adversarial and victim
nodes. Two nodes are called peers of each other, if they are connected. In the
Bitcoin network, an attacker node aj identifies a peer victim node vi by assigning
it a peer-id pij . Note that a victim node may be assigned different peer-ids by
different attacker nodes, making it harder for the attacker to determine whether
the peer-ids actually are of a single node or of multiple nodes behind the NAT.

To represent the victim by a single representation outside the NAT in one
session, we provide a peer-representation based on the time at which a victim
is disconnected. Let Tv denote the set of all disconnect times of the victim v
from the Bitcoin network (Suppose, v comes online k times; therefore, Tv =
{t1v, t

2
v, . . . , t

k
v}). Also, let addr(v) be the set of public addresses by which v is

identified outside the NAT. (Suppose, IP is the public IP address of the victim
node v. Also, suppose that o1v, o

2
v . . . okv are the onion addresses of v. Therefore,

addr(v) = {IP, o1v, o
2
v . . . okv}.)

The set of all peer-representations of all victim nodes is defined as follows.

A.peers = {(a, t) : v ∈ V, t ∈ Tv, a ∈ addr(v), a disconnects at t}.

Note that A.peers contains the peer-representations different from peer-ids; how-
ever, to compute A.peers, adversary needs peer-ids. The technical details of how
A.peers is computed is provided in AppendixA. In the Fig. 1 a pictorial repre-
sentation of relation between A.peers and V is given.

A session (or Bitcoin session) is the collection of the Bitcoin protocol mes-
sages exchanged between the times a node connects to Bitcoin network and
disconnect from it. Suppose, a victim represented by x ∈ A.peers comes online
and exchanges various Bitcoin protocol messages, let Sx be the set of messages
exchanged with x; therefore, Sx is a session. We define A.data as follows:

A.data = {Sx : x ∈ A.peers}.

The set A.data contains all the sessions of the victims. For example, the set
S(IP,t1v1)

contains Bitcoin protocol messages exchanged with victim v1; thus,
S(IP,t1v1)

is a session of v1. It is easy to establish a bijection S : A.peers →
A.data, which shows that for a victim x ∈ A.peers, its session S(x) is contained
in A.data. We shall use S(x) and Sx synonymously. The technical details of how
Sx is computed is provided in AppendixA.

4 A New Form of Deanonymization: Linking the Sessions

Here we give the necessary background for our deanonymization attack using the
definitions of the peer-representation and session as described in Sect. 3. First
we describe why linking the sessions is a deanonymization attack, and then we
outline the major steps.

284 I. D. Mastan and S. Paul

(IP, t1v1
)

(IP, t2v2
)

(o1v1
, tiv1

)

(IP, tjv1
)

(IP, tkv2
)

(o1vr
, tlvr

)

v1

v2

vr

vm

A.peers
(Outside the NAT)

V
(Behind the NAT)

Fig. 1. Representations of victim nodes behind and outside the NAT. For example,
the node v1 is identified as (IP, t1v1) in one session (direct connection) and (o1v1 , t

j
v1) in

another session (a Bitcoin over Tor connection), here IP and o1v1 denote the public IP
address and onion address of v1; t

1
v1 and tjv1 denote the disconnect times.

Why Linking Sessions is a Deanonymization Attack. The first
deanonymization attack of nodes behind the NAT was given in [4], where the
adversary logs the first 10 nodes broadcasting the transaction-ids in INV mes-
sages, and then assigns the transactions to a node behind the NAT; however,
their attack fails to link transactions created in different sessions.

We now give an example of how linking of sessions helps in deanonymizing
transactions. Suppose, a user creates transactions T1 and T2 in sessions s1 and
s2. After creating the transactions, he broadcasts them to his peers. Suppose,
the user is connected to adversarial nodes; therefore, they receive T1 and T2. The
adversary determines that T1 was first broadcast in s1, and T2 in s2. Next, the
adversary checks if s1 and s2 are of identical victim. If so, she then concludes that
T1 and T2 were created by the same user; this way he is able to link transactions
created in different sessions.

Let γi ⊆ A.data contains the sessions (sets of Bitcoin protocol messages) of
a victim vi. If adversary is able to link sessions of vi and compute γi, then he
will be able to link transactions of vi.

Linking of sessions also gives an additional interesting result. If adversary is
able to compute γi, then he can also get the set of peer-representations αi of the
victim vi outside the NAT. For example, in Fig. 1, the node v1 is represented by
the set of peer-representations α1 = {(IP, t1v1

), (o1v1
, tiv1

), (IP, tjv1
)}. Suppose, the

adversary is able to link the sessions of v1, and to compute γ1, where

γ1 = {S(IP, t1v1
), S(o1v1

, tiv1
), S(IP, tjv1

)}.

A New Approach to Deanonymization of Unreachable Bitcoin Nodes 285

Each session S(x) ∈ γ1 is a set of Bitcoin protocol messages, that contains
information on IP address or onion address of the victim, and also the time of
disconnect (see Sect. 2); thus, the adversary can determine peer-representations x
from the Bitcoin protocol messages in S(x). The adversary can compute α1 using
γ1. Hence, by linking sessions of v1, it is also possible to achieved identification
of v1 when it is connected to Bitcoin network directly, and when it is connected
to Bitcoin network over Tor.

Major Steps. In our attack, we analyse the GETDATA messages sent by the
victims. Below are the major steps of the attack.

1. Extracting the Block-ids: We compute the block-ids requested by the victims
in each session using the GETDATA messages sent by them.

2. Linking consecutive sessions: We take two sequences of block-ids, and deter-
mine if they are requested in the consecutive sessions of a node (linking con-
secutive sessions).

3. Linking all the sessions: To link all the sessions of a victim, we define a Bitcoin
session graph, where each vertex represents a sequence of block-ids requested
by the victim in a session; and two vertices have an edge if they are related to
the consecutive sessions. The vertices of the maximally connected component
of the graph gave the sequences of block-ids requested by the victim; which
in turn gives all the sessions of the victim node.

In what follows, we describe above steps in detail.

4.1 Step 1: Extracting the Block-ids

Here we describe the first step of our attack. We focus on the analysing the block-
ids (block header hashes) requested by the victims. We first give the motivation
for extracting block-ids, and then show how to extract them.

Motivation. The Bitcoin protocol messages sent by a victim contain GETDATA
messages. A GETDATA message contains the list of block-ids the victim does not
have at a specific time (see Sect. 2). Each block-id is associated with a unique
block, and each block has a unique height in the Blockchain. By analysing the
block-ids in GETDATA messages issued by the victim, adversary can get two pieces
of important information: First, estimate of the Blockchain height of victim at
a specific time; second, the block-ids of the blocks that the victim has updated
into its Blockchain. Below we describe how they are useful for adversary.

The estimate of Blockchain height of a node can help in linking the consecu-
tive sessions of the node: if adversary gets the Blockchain height of the victim vi
when it disconnects, then, in the new session, vi starts requesting blocks from the
height achieved in previous session; the height achieved in previous session and
starting height of new session of vi are equal. Therefore, the height of the blocks
requested by vi in the beginning of a new session will be close to the height of

286 I. D. Mastan and S. Paul

requested blocks, when vi disconnected in previous session; thus, adversary can
compare the block-requests, and identify victim vi in the new session.

The block-ids requested by the victims can help in distinguishing their ses-
sions: a node does not request blocks after they are updated into its Blockchain;
however, two nodes can request same blocks; thus, by comparing the block-ids
requested in the two sessions, adversary can determine if sessions correspond to
a single (or two different) victim node(s).

Extracting Block-ids. The set Sx contains the GETDATA messages issued by a
victim whose peer-representation is x. When a victim sends GETDATA message to
retrieve a block, the adversary sends BLOCK message in the response. A GETDATA
message may contain a maximum of 50,000 entries for blocks or transaction ids
[1]. Let E denote the algorithm that, given the element S ∈ A.data, outputs the
multiset E(S) containing the block-ids of the blocks requested in S. We define
the set A.SessionBid as follows:

A.SessionBid = {E(S) : S ∈ A.data}. (1)

Another way of formalization is:

A.SessionBid = {E(Sx) : x ∈ A.peers}
= {E(Sx) : x ∈

⋃

i∈[m]

αi}.

Here, α1|α2| . . . |αm is a disjoint partition of A.peers, where αi is the set of peer-
representations of victim vi. Let E(Sx) be denoted by βx. One should observe,
if there are multiple GETDATA messages for an identical block, then there are
multiple entries of one block-id in βx (therefore, βx is a multiset!). A node sends
multiple GETDATA messages for an identical block, if the response of GETDATA is
not received.

The set A.SessionBid can be computed inside the NAT (from the nodes
in V) because the GETDATA messages are known to both victims (nodes in V)
and the adversary (who is the set A). For example, suppose αi is the set of
peer-representations of a victim vi outside the NAT, when a GETDATA message
sent by vi comes out of NAT, it appears that it is sent by a peer-representation
contained in αi; therefore, the block-ids requested by node vi is same as those
requested by the set of peers in αi. Let β̂vi

contain the sets of block-ids requested
in various sessions by victim vi. We define β̂vi

as follows:

β̂vi
= {βx : x ∈ αi}.

Putting the βvi
in the definition of A.SessionBid we get

A.SessionBid =
⋃

vi∈V
β̂vi

. (2)

A New Approach to Deanonymization of Unreachable Bitcoin Nodes 287

We have computed the set A.SessionBid from the files contained in the Bitcoin’s
application data folder of victim nodes.7

4.2 Step 2: Linking Consecutive Sessions

After extracting the block-ids, our next step is to link the consecutive sessions.
The consecutive sessions of a node follow each other continuously. The phrase
“consecutive sessions” is only meaningful for a single node.

Let us take two sequences of block-ids βx and βy in A.SessionBid. If the
adversary determines that they are requested in the consecutive sessions of a
victim node; then using the inverse of extract operation, she can determine that
Sx and Sy are consecutive sessions, where E−1(βx) = Sx and E−1(βy) = Sy.8

Since Sx and Sy contain information of IP address or onion address of the victim,
and also the time of disconnect, the adversary can determine peer-representations
x and y of the victim in two consecutive sessions.

We run the Algorithm1 (also called consecutive), which returns True iff
the inputs βx and βy are requested in consecutive sessions. The algorithm uses
a fixed parameter th, which is a threshold of the number of common block-
requests sent in the consecutive sessions. The correctness of the algorithm and
the parameter threshold th are described in Appendices B and C. The function
H(b) used in consecutive returns the Blockchain height of the input block-id b.

4.3 Step 3: Linking All Sessions

In Sect. 4.2, we already described how to link the consecutive sessions. In this
section, we describe how to link all the sessions – not necessarily consecutive –
of a victim. We achieve it by constructing a Bitcoin session graph, and, finally,
extracting the connected components in it. First, we define the Bitcoin session
graph, and then we show how it will help in linking all the sessions of nodes.

Bitcoin Session Graph. A Bitcoin session graph G(S, E) is defined as follows:
(1) S = {E(S) : S ∈ A.data}, where E is an algorithm, which, given a session
S, outputs certain data; (2) for all (a, b) ∈ S × S, there is an undirected edge
between a and b, iff a and b are data contained in the consecutive sessions of an
identical node.

In our setting, E(S) is a sequence of block-ids requested in GETDATA con-
tained in the session S ∈ A.data; therefore, S = A.SessionBid; two vertices a

7 Bitcoin’s application data folder: A set of data files containing the following informa-
tion of the Bitcoin client: Private keys, Peer IP addresses, and various information
related to the current Blockchain.

8 E is a bijection from A.data to A.SessionBid. It shows that the sequence of block-
ids requested in a session is unique, which we found to be true in our experiments
(see Sect. 5).

288 I. D. Mastan and S. Paul

1 consecutive(βx, βy)

2 hs
x = min{H(b) : b ∈ βx}

3 he
x = max{H(b) : b ∈ βx}

4 hs
y = min{H(b) : b ∈ βy}

5 he
y = max{H(b) : b ∈ βy}

6 if |βx

⋂
βy| < th then

7 if max{|he
y − hs

x|, |he
x − hs

y|} < |βx| + |βy| then

8 return True

9 return False

Algorithm 1: consecutive(βx, βy) determines, if block-ids in βx and βy

are requested in consecutive sessions.

and b have an edge, if consecutive(a,b) = True, where consecutive is the
Algorithm 1.

Linking All Sessions of Victim Nodes. Here we describe a procedure that
links all the sessions of the victim nodes and finally gives the set of peer-
representations of a victim. Since the set A.SessionBid contains the sequences
of block-ids extracted from all the sessions of all the victim nodes, therefore,
there exists a subset of vertices in S corresponding to the sequences of block-ids
requested by a victim in all its sessions.

A path in Bitcoin session graph is a sequence of edges, where each edge gives
information of two vertices related to a victim; therefore, if two vertices have
path between them, then they correspond to an identical victim. To determine
the vertices related to a victim, adversary can compute the set of vertices of
a maximally connected component of the Bitcoin session graph.9 The graph
G(S, E) can have more than one maximally connected component, where each
of them gives the set of vertices related to a victim node.

Let M contain the sets of vertices of the maximally connected components in
the Bitcoin session graph G(S, E). The details of the constructions of the sets
γi and αi for i ∈ [|M|] are as follows:

The following are the sessions and peer-representations of a victim node.

γi = {E−1(βx) : βx ∈ ci; ci ∈ M}, (3)

αi = {S−1(E−1(βx)) : βx ∈ ci; ci ∈ M}. (4)

9 A maximally connected component of a graph G = (V,E) is a subgraph C = (V ′, E′)
such that: C is connected, and, for all vertices u ∈ V \ V ′, there is no vertex v ∈ V ′

such that (u, v) ∈ E.

A New Approach to Deanonymization of Unreachable Bitcoin Nodes 289

5 Experiments

Precision and Recall. We ran experiments to evaluate the performance of
Algorithm 1 (a.k.a consecutive). In particular, we compute two parameters,
namely, precision and recall, whose definitions are given below. Suppose, G =
(S, E) is a Bitcoin session graph (see Sect. 4.3 for definition). Let G∗ = (S∗, E∗)
denote the Bitcoin session graph obtained from our experiment.

1. precision: This captures a measure of correct linking of the vertices.

precision =
|E ⋂ E∗|

|E∗|
(The precision of 1 menas that the edges we have guessed are all correctly
linked.)

2. recall: It captures a measure of how much the result is close to the best case
of linking all the vertices related to consecutive sessions.

recall =
|E ⋂ E∗|

|E|
(The recall of 1 means that, for each victim node, we have linked all its
consecutive sessions. Note that, unlike precision, recall does not capture the
scenario of linking sessions of two different nodes.)

Details of the Experimental Set-Up. We have done two sets of experiments
to measure the performance of consecutive procedure. Experiment 1 had 4 vic-
tim bitcoin nodes, and each node had 8 sessions (this implies that the experiment
included a total of 4× 8 = 32 sessions); Experiment 2 had 4 victim nodes and
each node had 6 sessions, implying that we experimented with a total of 4× 6
= 24 sessions. In Experiment 1, the victims are directly connected to Bitcoin
network, and in the Experiment 2, victims connect to Bitcoin network with (and
without) Tor in different sessions. We believe that 32 and 24 sessions are good
enough to demonstrate the proof of concept, which is the main purpose of this
paper. Also, we would like to point out that, in order to obtain more realistic
results, our experiments were performed on the Bitcoin main network, rather
than on the Bitcoin Testnet (unlike the attack in [4]). We constructed Bitcoin
session graph G∗

1 = (S∗
1 , E∗

1) in Experiment 1, and G∗
2 = (S∗

2 , E∗
2) in Experiment

2. Before giving our experimental results, below we provide the technical details
of the experimental set-up.

In our experiment, we have used the following components: (a) Amazon
Elastic Compute Cloud (a.k.a Amazon EC2), (b) a software container platform
Docker [2], (c) a Bitcoin client Bitcoind, and (d) Tor client. See Fig. 2 for the
layers in which the components reside. Amazon EC2 is a web service that pro-
vides a cloud server on which Ubuntu runs. In the cloud server, we ran Docker
to create multiple instances of the container, and each container had Bitcoind
and Tor client in it. We used Docker because it allowed us to run instances of

290 I. D. Mastan and S. Paul

Bitcoind in the same EC2 machine, so that we had the same connection speed for
all the Bitcoin nodes. The nodes running at the same speed are less vulnerable
to fingerprinting attack (more on that later). The Tor client is used to connect
to Bitcoin network over Tor.

Docker

Ubuntu

EC 2 Instance

Fig. 2. Setup for Experiment 1 and 2

After we ran Bitcoin nodes, they connect to the Bitcoin network and started
requesting blocks from other running peers to update their Blockchain. The ses-
sion timings vary from 5 min to 160 min. Figure 3 shows the height of Blockchain
at the start of each session we ran, we can see that the height of the nodes are
close to each other. The nodes were running in the same EC2 instance for approx-
imately the same time in each experiment, making their Blockchain growth very
close to each other. This way of running Bitcoin nodes is a challenging scenario
for deanonymization. After checking the block-ids requested in the sessions, we
found that each victim requests a unique sequence of block-ids in its sessions.

Experiment 1. The main objective of the first experiment is to measure the
performance when victim nodes are connected to Bitcoin network directly. We
ran eight sessions for each victim in V1 = {v1, v2, v3, v4} (total 32 sessions), then
constructed the Bitcoin session graph to see if block-ids requested by a victim
in different sessions can be linked. The major steps are as follows:

1. We extract sequence of block-ids of the blocks requested in each session to
compute A.SessionBid = {β1, β2, . . . , β32}. (see Sect. 4.1).

2. We ran consecutive(βi, βj) for each βi, βj ∈ A.SessionBid. If it returns
True, then the inputs βi and βj are related to the consecutive sessions of a
victim node. (see Sect. 4.2).

3. We construct a Bitcoin session graph G∗
1 = (S∗

1 , E∗
1) using the output we got

by running consecutive procedure, see Fig. 4.
(a) For each βi in A.SessionBid, we have a vertex in S∗

1 ; thus, S∗
1 =

{β1, β2, . . . , β32}. (see Sect. 4.3).
(b) The edges {βi, βj} ∈ E∗

1 , if consecutive(βi, βj) = True.

A New Approach to Deanonymization of Unreachable Bitcoin Nodes 291

Fig. 3. This graph shows how the blockchain (best) height of a victim node (y-axis)
varies with session number (x-axis). We ran nodes {v1, v2, v3, v4} in Experiment 1 and
nodes {v5, v6, v7, v8} in Experiment 2.

Fig. 4. This figure shows the Bitcoin session graph G∗
1 = (S∗

1 , E∗
1). There are 32 vertices

representing 32 sessions we ran. The vertices related to an identical victim node have
the same color. (Color figure online)

292 I. D. Mastan and S. Paul

We got a precision of 0.90 and recall of 0.71. The high precision value shows
that if an edge is present in the Bitcoin session graph, then it has a good chance
of being a correct edge; however, the recall value shows that we have missed
some edges.

Experiment 2. The main objective of the second experiment is to measure the
performance when victim nodes connect to Bitcoin network, with and without
Tor, in different sessions.

We ran six sessions for each victim in V2 = {v5, v6, v7, v8} (total 24 sessions);
in the first three sessions they are connected to Bitcoin netowrk over Tor, and, in
the next three sessions, they are connected directly to the Bitcoin network. We
have executed all the steps mentioned in Experiment 1 to compute the Bitcoin
session graph G∗

2 = (S∗
2 , E∗

2), see Fig. 5. We found that the consecutive links
the sessions with a precision of 1.0 and recall of 0.75.

Fig. 5. This figure shows the Bitcoin session graph G∗
2 = (S∗

2 , E∗
2). There are 24 vertices

representing 24 sessions we ran. The vertices related to an identical victim node have the
same color. (The set of vertices is partitioned into subsets g1|g2| . . . |g6, see Experiment
2 for more details.) (Color figure online)

To get more insight of the graph G∗
2 = (S∗

2 , E∗
2), we have partitioned S∗

2

according to the six sessions of each victim, S∗
2 = g1|g2| . . . |g6 (shown by dotted

regions in the figure), where gi contains the sequence of block-ids requested by
the victims in ith session. For example, g1 contains the sequences of block-ids
requested by victims in their first session.

The edges between the vertices contained in g1
⋃

g2
⋃

g3 show that we could
link the Bitcoin over Tor sessions, and the edges between the vertices contained

A New Approach to Deanonymization of Unreachable Bitcoin Nodes 293

in g4
⋃

g5
⋃

g6 show that we could link the sessions when victims connect to
Bitcoin network directly.

An edge between a vertex from g3 to a vertex in g4 is important, because g3
contains the sequences of block-ids requested when the victims connect to the
Bitcoin network over Tor, and g4 contains the sequences of block-ids requested
when they connect to Bitcoin network directly. An edge between a vertex from
g3 and a vertex from g4 confirms that we can link the sessions of victims when
they ran Bitcoin over Tor and Bitcoin without Tor (direct connection).

Discussion. We got a high precision, because initially the nodes request blocks
at a faster rate; thus, in a short period of time, the differences of best-heights
of the nodes become significant, allowing the attacker to distinguish between
the sessions of different nodes. The recall value is also high because the heights
of the consecutive sessions achieved at the end of the first session and at the
beginning of the other session are close.

Another interesting observation is that when nodes are running Bitcoin over
Tor then Algorithm 1 performed better. We found the rate of blockchain update
is comparatively slower for proxied connections than for direct connections, it
is because of the additional number of proxy nodes (onion routers) between the
sender and the receiver. We believe that a slower rate of blockchain update could
be one of the reasons why nodes did not catch up heights close to each other.

One might ask how precision and recall change when we increase the num-
bers of nodes and sessions. Theoretically, increasing the numbers of victim nodes
and sessions could result in the following situation: suppose s1 and s2 are the ses-
sions of two distinct nodes, such that the blockchain height at the end of session
s1 is close (i.e., the height difference is less than the threshold th described in
AppendixC) to the starting blockchain height of the session s2. In this scenario,
our algorithm will incorrectly link s1 and s2, thereby, will decrease the exper-
imentally obtained precision. However, we emphasize that such events will be
infrequent, even in large-scale experiments. For concreteness, such event occurred
only once in our 56 sessions conducted across two experiments. Moreover, it is
worth noting that a node requests for blocks from his peers in the increasing
order of blockchain height, and such a pattern does not change even in large-
scale experiments. Therefore, our algorithm that crucially relies on the afore-
mentioned pattern will still be able to correctly link them; as a result, the recall
is unlikely to be significantly affected. We leave it as a future work as to how to
appropriately design a large-scale experimental set-up to test Algorithm 1 that
also takes into consideration the ethical issues.

6 Countermeasure

If the victim nodes request blocks in an unordered fashion, then it will not be
possible for an adversary to estimate their Blockchain height, and, therefore, he
cannot link sessions. Below we describe it in more detail.

294 I. D. Mastan and S. Paul

Nodes exchange information on their Blockchains using VERSION, GETBLOCKS,
and GETHEADERS messages (see Sect. 2). Using this information, the peers com-
pare their Blockchain heights. A peer with higher height sends INV or HEADERS
to the one with lower height.10 Instead of sending the actual information of
Blockchain, if a node sends height-values chosen uniformly from 1 to best-height,
and if the block-id is chosen uniformly, then the other peers will not be able
to deduce the Blockchain height. Similarly, if a node chooses a point uniformly
from the entire Blockchain, and starts requesting the GETDATA from there in
every session, then it will result in requesting blocks which are already updated
into the Blockchain. Therefore, the number of common block-requests of con-
secutive sessions might not be bonded by a threshold th. As a result, adversary
would not be able to get a fixed value th to determine the consecutive sessions,
ruling out the attack. However, due to requesting blocks already updated into
the Blockchain, the node’s Blockchain growth will become slow.

7 Conclusion

In this paper, we have shown that, in the Bitcoin main network, linking of
the consecutive sessions is possible by analysing the block-requests the victim
makes. Our approach relies on the observation that a node requests blocks in the
increasing order of height; this observation leads to linking consecutive sessions
of the node. Once consecutive sessions are linked, all others could be linked as
well. We were able to link (consecutive) sessions with a high success rate in
three settings: (1) when nodes connect directly; (2) when nodes connect using
the Tor; and (3) when nodes connect with Tor and then without Tor. We have
also suggested countermeasures against our attacks.

Acknowledgments. The authors are grateful to the reviewers of CANS 2017 for
their constructive comments. We also thank Sherman Chow for his insightful remarks
regarding the experimental setup used in our work; the paper has benefitted immensely
from them.

A Peer Representation and Session

Suppose a victim node vi is connected to adversarial nodes {aj}j∈[k]. The node
vi gets assigned multiple peer-ids pij outside the NAT making it difficult for aj ’s
to determine if they are connected to a single or multiple victim(s). The attacker
nodes can check the time of disconnect of vi to relate all the peer-ids assigned
to vi, and get a single representation (a, t), where a is the public address of vi
and t is the time of disconnect.11

10 The Blocks-First Sync and Headers-First Sync methods are two ways to update the
Blockchain as described in Sect. 2.

11 The public address can be either public IP address or the onion address.

A New Approach to Deanonymization of Unreachable Bitcoin Nodes 295

The representation (a, t) is achieved as follows: the ping and pong protocol
messages are exchanged periodically between peers to get the status of the con-
nection; after node vi goes offline at time t, it is not able to respond to the ping
messages sent by aj ’s; as a result, all the aj ’s will detect at the same time t that
pong messages are not coming from peer pij (aj continues to identify vi by pij
even when it is disconnected); therefore, they conclude a victim is disconnected
at time t enabling them to associate pi1, pi2, . . . , pik with a victim node, and
get the peer-representation (a, t). Note that (a, t) is a peer-representation of the
victim vi outside the NAT.

After getting a single peer-representation (a, t) of vi, the adversary can com-
bine the Bitcoin protocol messages exchanged with the peers in {pi1, pi2, . . . , pik}
to compute the session S(a, t).

B Correctness of Algorithm1

B.1 Background

Let βx, βy ∈ A.SessionBid. The pair βx and βy can be related to three types:
(1) consecutive sessions of an identical node, (2) non-consecutive sessions of an
identical node, and (3) two different nodes. Below we describe the three cases in
detail.

Related to Consecutive Sessions of an Identical Node. A Bitcoin node
continuously sends GETDATA messages to update its Blockchain. When the node
disconnects, it misses response (BLOCK messages) of some GETDATA messages.
Then in the new session, the node starts from the Blockchain height achieved at
the end of the previous session, and again sends the GETDATA for the blocks it has
missed in the previous session. Thus, there are repeated block-requests in the
consecutive sessions of an identical node. This is an important observation for our
attack, because it helps in defining a threshold th, below which if two sessions
have the common block-requests, then they could correspond to consecutive
sessions of an identical node.12 More formally, if |βx

⋂
βy| ≤ th, then they may

correspond to an identical node.

Related to Non-consecutive Sessions of an Identical Node. A node
requests and receives blocks in each session; thus, the sessions between the two
non-consecutive sessions update blocks into the Blockchain. Therefore, if we
combine the block-ids requested in two non-consecutive sessions, the output will
not have ids of blocks that lie between the heights achieved at the end of first
session and at the start of the other session; these are the blocks updated between
the two non-consecutive sessions. Since a node does not request the blocks after
it is updated into the Blockchain, it requests disjoint sets of blocks in the non-
consecutive sessions. More formally, if |βx

⋂
βy| = 0, then they may correspond

to non-consecutive sessions.
12 In our experiments, we take the maximum number of repeated block-requests in the

consecutive sessions to be the threshold th (see Appendix C for more details).

296 I. D. Mastan and S. Paul

Related to Two Different Nodes. Two nodes can request common blocks
or disjoint sets of blocks depending upon their Blockchain height. Therefore, if
βx and βy are from two different nodes, then we could get the following cases:

1. |βx

⋂
βy| = 0. This happens when the sessions related to βx and βy contain

block-requests for disjoint sets of blocks.
2. 0 < |βx

⋂
βy| ≤ th. When the sessions related to βx and βy have Blockchain

heights similar to consecutive sessions, then the numbers of common block-
requests contained in them could be bounded by the threshold th.

3. |βx

⋂
βy| > th. The sessions related to βx and βy can contain the numbers of

common block-requests greater than the threshold th. It happens when the
first node achieves the height of the other in some session and then requests
common blocks greater than th.

To determine if two sessions are of identical node or two different nodes, the case 3
as described above could be useful. This is explained using the following example.
Suppose, two nodes vi and vj , where height of vj is significantly large (greater
than th) before they start the session. In the new session, the node vi will make
block requests for the blocks which are already requested and received by vj ,
whereas vj will not make repeated block requests for the blocks it has. Therefore,
the previous session of vj and the current session of vi could have common
block-requests much greater than th, whereas two sessions of vj have common
block-requests bounded by a threshold th. This shows that, if two sessions have
common block-requests more than th then they are of different nodes, otherwise
of an identical node. More formally, if |βx

⋂
βy| ≥ th, then βx and βy are of two

different nodes.

B.2 On the Correctness of Algorithm 1

We note that Algorithm consecutive requires two checks (two if conditions)
to conclude whether the inputs are of consecutive sessions of an identical node.
Below we describe the two conditions.

1. We compare the intersection of βx and βy with a value th, where th is the
threshold of the number of common block-ids a node requests in the consecutive
sessions (see Appendix B.1). If we have number of common block-ids in βx and
βy greater than than the threshold th, then they are related to different nodes
and the algorithm return False (see Appendix B.1).
2. Let us denote the sessions related to βx and βy by Sx and Sy. As we can
see, the second if condition makes use of parameters hs

x, he
x, hs

y, and he
y. Since

the blocks are requested in the increasing order of height, hs
x is close to the

Blockchain height at the start of the session Sx and he
x is close to the height at

end of Sx, same holds for hs
y and he

y. Following are the reasons why the condition
is true for consecutive sessions.
• Without loss of generality, assume that session Sx happens before Sy. If Sx

and Sy are consecutive, then we have |he
y − hs

x| as the output of max. Since
the consecutive sessions have common block-requests from the same blocks (see

A New Approach to Deanonymization of Unreachable Bitcoin Nodes 297

AppendixB.1), we get |βx| + |βy| greater than |he
y − hs

x|. Thus, the algorithm
returns True.
• Without loss of generality, assume that session Sx happens before Sy. If Sx and
Sy are non-consecutive, then we have |he

y−hs
x| as the output of max. The sessions

between Sx and Sy update blocks into Blockchain (see AppendixB.1); thus,
there are blocks between heights he

x and hs
y whose block-ids are not contained in

βx

⋃
βy. Thus, |he

y − hs
x| is greater then the value |βx| + |βy| and the algorithm

returns False.
• The third case is when Sx and Sy are of different nodes but have common block-
requests less than th. This could be further divided into two cases |βx

⋂
βy| = 0

and 0 < |βx

⋂
βy| ≤ th (see Appendix B.1). When intersection is empty then

correctness is proved as follows: without loss of generality assume that the output
of max is |he

y−hs
x|; the output of max is greater than |βx|+|βy| because of missing

requests for the blocks between the heights he
y and hs

x; thus, the algorithm returns
False. (When intersection is non-empty and less than th, the correctness holds
because it is unlikely that two different nodes have heights similar to consecutive
sessions.)

C Determining Threshold th

The value th is the threshold for the number of common block-requests sent in
the consecutive sessions. It is used in the Algorithm 1, namely, consecutive, to
determine: if two sets of block-ids correspond to consecutive sessions.

We have set th at 200 in our experiments, because we found the value 200
to be close to the number of common block-ids exchanged in the consecutive
sessions. We now describe how the th is related to consecutive procedure.

Difficulty in Setting th Very High. Let us define a random variable Xij =
|βi

⋂
βj | (that denote the number of common block-requests). Note that Xij is

uniformly distributed over all integers between zero and the current best-height of
Blockchain, because we assume that the block-requests issued by a node inside
the NAT is independent of the block-requests made by others. Using Markov
inequality we get.

Pr(Xij ≥ th) ≤ E(Xij)
th

. (5)

Let us define a random variable consecutive(βi, βj) as follows:

consecutive(βi, βj) =
{

1 if Xij < th.
0 if Xij ≥ th.

From the definition above, we get

Pr
(
consecutive(βi, βj) = 0

)
= Pr(Xij ≥ th).

By putting values from Eq. 5, we get

Pr(consecutive(βi, βj) = 0) ≤ E(Xij)
th

.

298 I. D. Mastan and S. Paul

Let p be the probability that consecutive(βi, βj) returns “1”, we get

p = 1 − Pr(consecutive(βi, βj) = 0)

≥ 1 − E(Xij)
th

The expected number of common block requests E(Xij) is a constant. Therefore,
if the value of th is set to be high, then the probability that consecutive(βi, βj)
returns “1” increases; thus, the attack might end up linking the sessions which
correspond to different nodes (wrong linking).

References

1. Bitcoin Wiki (2017). https://en.bitcoin.it/wiki/
2. Docker Project Code (2017). https://github.com/docker/docker
3. v0.13.2, Bitcoin Code Project (2017). https://github.com/bitcoin/bitcoin
4. Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in Bit-

coin P2P network. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security. ACM (2014)

5. Biryukov, A., Pustogarov, I.: Bitcoin over tor isn’t a good idea. In: 2015 IEEE
Symposium on Security and Privacy, pp. 122–134. IEEE (2015)

6. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. Technical report, DTIC Document (2004)

7. Koshy, P., Koshy, D., McDaniel, P.: An analysis of anonymity in bitcoin using
P2P network traffic. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol.
8437, pp. 469–485. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-45472-5 30

8. Meiklejohn, S., et al.: A fistful of Bitcoins: characterizing payments among men
with no names. In: Proceedings of the 2013 Conference on Internet Measurement
Conference, pp. 127–140. ACM (2013)

9. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)
10. Reid, F., Harrigan, M.: An analysis of anonymity in the Bitcoin system. In: Alt-

shuler, Y., Elovici, Y., Cremers, A., Aharony, N., Pentland, A. (eds.) Security and
Privacy in Social Networks, pp. 197–223. Springer, New York (2013). https://doi.
org/10.1007/978-1-4614-4139-7 10

11. Ron, D., Shamir, A.: Quantitative analysis of the full Bitcoin transaction graph.
In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39884-1 2

https://en.bitcoin.it/wiki/
https://github.com/docker/docker
https://github.com/bitcoin/bitcoin
https://doi.org/10.1007/978-3-662-45472-5_30
https://doi.org/10.1007/978-3-662-45472-5_30
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-1-4614-4139-7_10
https://doi.org/10.1007/978-3-642-39884-1_2

Towards a Smart Contract-Based,
Decentralized, Public-Key Infrastructure

Christos Patsonakis1(B), Katerina Samari1, Mema Roussopoulos1,
and Aggelos Kiayias2

1 Department of Informatics and Telecommunications, National and Kapodistrian
University of Athens, University Campus, 15784 Ilisia, Athens, Greece

{c.patswnakis,ksamari,mema}@di.uoa.gr
2 University of Edinburgh, 10 Crichton St., Edinburgh EH8 9AB, UK

Aggelos.Kiayias@ed.ac.uk

Abstract. Public-key infrastructures (PKIs) are an integral part of the
security foundations of digital communications. Their widespread deploy-
ment has allowed the growth of important applications, such as, internet
banking and e-commerce. Centralized PKIs (CPKIs) rely on a hierarchy
of trusted Certification Authorities (CAs) for issuing, distributing and
managing the status of digital certificates, i.e., unforgeable data struc-
tures that attest to the authenticity of an entity’s public key. Unfor-
tunately, CPKI’s have many downsides in terms of security and fault
tolerance and there have been numerous security incidents throughout
the years. Decentralized PKIs (DPKIs) were proposed to deal with these
issues as they rely on multiple, independent nodes. Nevertheless, decen-
tralization raises other concerns such as what are the incentives for the
participating nodes to ensure the service’s availability.

In our work, we leverage the scalability, as well as, the built-in incen-
tive mechanism of blockchain systems and propose a smart contract-
based DPKI. The main barrier in realizing a smart contract-based DPKI
is the size of the contract’s state which, being its most expensive resource
to access, should be minimized for a construction to be viable. We resolve
this problem by proposing and using in our DPKI a public-state crypto-
graphic accumulator with constant size, a cryptographic tool which may
be of independent interest in the context of blockchain protocols. We
also are the first to formalize the DPKI design problem in the Universal
Composability (UC) framework and formally prove the security of our
construction under the strong RSA assumption in the Random Oracle
model and the existence of an ideal smart contract functionality.

1 Introduction

Public key, or asymmetric, cryptography is a critical building block for securing
important communications across the Internet, such as e-commerce and inter-
net banking. To enable such applications, public-key infrastructures (PKIs) are
essential because they provide a verifiable mapping from an entity’s name to its

c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 299–321, 2018.
https://doi.org/10.1007/978-3-030-02641-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_14

300 C. Patsonakis et al.

corresponding public key. In essence, a PKI is a system that allows the creation,
revocation, storage, and distribution of digital certificates, i.e., unforgeable data
structures that attest to the authenticity of an entity’s public key.

In a centralized PKI (CPKI), a Certification Authority (CA), is responsible
for issuing, distributing and managing the status of digital certificates. Two
assumptions must be made when deploying a CPKI. These are: (1) everyone
knows the CA’s (correct) public key and, (2) statements signed by the CA’s
private key are valid, i.e., everyone trusts the CA. In a CPKI, registration is
handled in two phases. In the first phase, the user proves her claim on an identity
to a Registration Authority (RA). Assuming the RA validates the claim, it
forwards the user’s request to the CA. In the second phase, the user receives
her digital certificate, which is signed by the CA’s private key, thus, attesting
its validity. CAs periodically publish signed data structures that contain revoked
certificates, e.g., a certificate revocation list (CRL). Distribution of certificate-
related information is handled either by the CA (online CA), or, it is delegated
to online, publicly accessible directories (offline CA).

While predominant in use, CPKIs have several shortcomings. A CA consti-
tutes a single point of failure, both in terms of security and availability. There
have been several incidents where CAs have been hacked that led to the issuance
of false certificates for domains of high-profile corporations, such as Google [3].
Other prominent examples are the Symantec [4] and TrustWave [8] incidents, as
well as the growing concern of governments and private organizations being able
to issue false certificates for surveillance, thus, violating the privacy of end-users
[38]. In practice, there exist multiple CAs, which are linked with well-defined,
parent-child relationships, based on trust and other policies. The most notable
example of this architecture is the SSL/TLS certificate chain. This hierarchical,
tree-like, certification model is designed to increase the system’s scalability and
fault-tolerance. However, root, or even, subordinate CA compromises are still
catastrophic [20].

In a decentralized PKI (DPKI), multiple, independent nodes cooperate and
deliver the same set of services, without relying on one, or more, trusted third
parties (TTPs). DPKIs have been proposed because, as distributed systems,
they have the potential to offer a number of desirable properties that CPKIs
cannot offer, such as scalability, fault-tolerance, load balancing and availabil-
ity. Researchers have proposed DPKIs based on various distributed primitives,
such as distributed hash tables (DHTs) (e.g., [9]). To account for malicious nodes
and provide increased security, they employ secret sharing, threshold and byzan-
tine agreement protocols (e.g., [10,18]). These techniques, while more complex
to design and implement correctly, lead to systems that do not exhibit single
points of failure. Unfortunately, prior DPKIs do not provide incentives for the
participating nodes to ensure that the offered service remains available in the
long term, e.g., they fail to address the free-riding problem [27].

Blockchain protocols (e.g., Bitcoin [31]), feature a reward mechanism that
incentivizes parties to engage in the protocol. The rewards come in the form of

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 301

a digital currency that compensates its participants, thus, creating a counter-
incentive to free-riding, while still retaining a highly scalable, free-entry system.

In this work, we present the design of a DPKI on top of a smart contract plat-
form, a new generation of blockchains that allow the development of smart con-
tracts, i.e., stateful agents that “live” in the blockchain and can execute arbitrary
state transition functions. The main barrier in realizing a smart contract-based
DPKI is the size of the smart contract’s state which, being its most expen-
sive resource to access, should be minimized for a construction to be considered
viable. Previous blockchain-based solutions, such as Namecoin [6] and Emercoin
[2], fall short on this part as their state is linear to the number of registered
entities. Fromknecht et al. [21] improve on this by harnessing the power of cryp-
tographic accumulators, i.e., space-efficient data structures that allow for (non)
membership queries. However, we believe that they do not exploit, sufficiently,
their potential for the following reasons: (1) their system’s state is still of log-
arithmic complexity, due to the use of a Merkle tree-based accumulator and,
(2) their construction recomputes accumulator values to handle deletions of ele-
ments, i.e., each deletion (revocation) has a linear computational complexity.
We resolve these inefficiencies by presenting a construction whose state is con-
stant and avoids recomputing accumulator values. Our main building block is a
public-state, additive, universal accumulator, based on the strong RSA assump-
tion in the Random Oracle model, which, among others, has the following nice
properties: (1) the accumulator and the structures for proving (non) membership
(referred to as witnesses) have constant size and, (2) all of its operations can be
performed efficiently by having access only to the accumulator’s public key.

In short, the contributions of this paper are as follows:

– We propose the design of a DPKI on top of a smart contract platform. Due to
the interoperability of smart contracts, our system provides a generic mech-
anism for on-blockchain authentication that, up to this point, was handled
in an ad-hoc manner. Furthermore, the programmable nature of these plat-
forms allows us to evolve our system with more efficient primitives, when such
become available, without the need for a fork in the blockchain, which is the
case for specialized PKI blockchains.

– We resolve the main barrier of realizing a viable smart contract-based DPKI
by providing a construction that has the “constant-ness” property, i.e., both
the smart contract’s state, as well as, the structures for proving (non) mem-
bership, have constant size. We stress the importance of this property as it
guarantees, in addition to efficiency, uniform digital currency costs for any
given operation across all users, i.e., fairness in terms of costs.

– Our construction is based on a public-state, additive, universal accumulator,
a cryptographic tool which may be of independent interest for protocols that
employ blockchains for verifying, efficiently, the validity of information.

– We are the first to formalize the DPKI design problem in the Universal Com-
posability (UC) framework [16] and we formally prove the security of our
construction under the strong RSA assumption in the Random Oracle model

302 C. Patsonakis et al.

and the existence of an ideal smart contract functionality. Due to space lim-
itations, we provide a part of the proof in AppendixA.

– Even though our envisioned application is a PKI, we specifically model our
service as a generic “Naming Service”. Thus, our design can be ported to
implement, efficiently, other services that reside in this paradigm, e.g., a dis-
tributed domain name system (DDNS).

2 Related Work

Several previously proposed systems utilize the same underlying primitive, each
in its own unique way, to decentralize the services of a PKI. In the interest
of space, we focus on full-fledged DPKIs, i.e., systems that implement registra-
tion, revocation, certificate storage and retrieval. Thus, we will not be concerned
with certification systems (e.g., [28]), which do not offer revocation, hybrid
approaches, e.g., coupling CAs with structured overlays (e.g., [37]), or, even PGP
[40], whose operation relies on centralized servers. We also review related work
regarding cryptographic accumulators, which form the basis of our construction.

Researchers have proposed DPKIs based on the replicated state machine
(RSM) paradigm [34,39] to enforce a global, consistent view of the system’s
state. This is achieved by having nodes participate in an authenticated agreement
protocol and typically assume: (1) a threshold t of faulty nodes, (2) join() and
leave() protocols for nodes wishing to enter, or leave, a replica group, to adjust
the system’s threshold parameter and, (3) nodes are able to authenticate any
(potential) participant. In RSM-based PKIs, registration requires one to perform
an “out-of-band” negotiation with multiple administrative domains, which is
cumbersome for the user. In addition, non-determinism, e.g., time-stamping, is a
key difficulty of consistent replication since it can lead to replica state-divergence,
thus, compromising fault-tolerance. However, time-stamping is essential in a
PKI for tracking certificate lifetime. Blockchain-based systems, on the other
hand, do not suffer from this issue and they have already been used for the
implementation of time-stamping services (e.g., [25]). Furthermore, they employ
a different form of agreement which is based on computation. This, alternative,
agreement algorithm has the nice property of being adaptable as nodes freely join
and leave the system. Experience has illustrated, that the blockchain approach
has been highly favored by both the research community, as well as, the industry,
due to its highly scalable, adaptive and non-restrictive nature [1,5,7].

Structured overlays have also been proposed to distribute the services of a
PKI [10,18]. These are, by design, scalable, load-balanced and provide for effi-
cient storage and retrieval of data. Unfortunately, these systems do not defend
against Sybil attacks. Douceur [19] has proved that to defend against the Sybil
attack, distributed systems must employ either authentication, or, computa-
tional power. However, the aforementioned DHT-based systems do not employ
either, thus, they are insecure. Blockchains, on the contrary, are resilient to the
Sybil attack since their operation inherently depends on computational power.

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 303

In all of the above systems, nodes are expected to participate in resource-
intensive protocols. Unfortunately, these systems do not incentivize node partic-
ipation, nor, enforce correct behavior of participating nodes.

The initial approach of constructing a blockchain-based PKI is based on the
observation that there is an inherent similarity between the services of a DNS
and a PKI, respectively. Both essentially map identity names to some value (be
it an IP address, or, a public key). One of the biggest altcoins, Namecoin [6],
provides a distributed DNS as its main function. In Namecoin, the blockchain
is used both for storing, as well as, verifying/querying DNS records. Several
DPKIs follow this approach, the most notable example of which is Emercoin
[2]. Unfortunately, this approach is inefficient as it forces each user to store an
entire copy of the blockchain and traverse its contents every time she needs
to validate a mapping. This limits the system’s applicability significantly; for
example, storing the entire blockchain on a smartphone is prohibitive. Moreover,
validating mappings, which is the most frequent operation, requires an increasing
amount of computation as more blocks are appended to the blockchain.

A modern, more involved approach, is to employ cryptographic accumulators,
which were first introduced in the work of Benaloh et al. [14] as a decentralized
alternative to digital signatures. These are space-efficient data structures that
allow for membership queries. Their initial construction was refined in the work
of Barić et al. [13] by strengthening the original security notion to that of collision
freeness. Camenisch et al. [15] extended previous works and presented the first
accumulator scheme that allowed for elements to be dynamically added/deleted.
In this scheme, membership witnesses can be updated by utilizing only the accu-
mulator’s public key, i.e., no trapdoor information is required. Following this
work, Li et al. [29] introduced universal accumulators, i.e., accumulators that
support non-membership witnesses as well. All of the aforementioned accumula-
tor schemes are RSA-based. Other proposed accumulator schemes are based on
Merkle trees (e.g., [33]), bilinear pairings (e.g., [32]) and lattices (e.g., [26]).

Cryptographic accumulators provide a number of benefits. First, their com-
pact (or even constant) size makes them suitable candidates for storage-limited
devices (e.g., smartphones). Second, (non) membership verifications have con-
stant computational cost, regardless of the number of accumulated values (accu-
mulation is the addition of an element to the accumulator). Third, their security
properties are based on standard hardness assumptions, thus, making them suit-
able for critical security infrastructures. An additional benefit of accumulator-
based constructions is that they do not employ the blockchain for enforcing
consensus on the entire set of (identity, public-key) mappings, as is the case
for Namecoin and Emercoin. Instead, the consensus object is the accumulator
value(s), which has the following benefits. First, users are not required to per-
form a complete retrieval and verification of the entire transaction history, i.e.,
downloading and validating the entire blockchain. Instead, an outdated, or, new
client, can download and validate only block headers to update her state, which
is far more efficient both in terms of communication and computation. Second,
it allows the introduction of an unreliable component that users can query to

304 C. Patsonakis et al.

efficiently obtain, among others, a more compact version of the entire history of
operations, compared to the full transaction history. Due to the verifiable nature
of cryptographic accumulators, this increased efficiency comes at no cost.

Certcoin [21] is a blockchain-based PKI which deals with the aforementioned
inefficiencies of Namecoin and Emercoin by decoupling information storage from
its verification. It employs an authenticated DHT for storing digital certificates,
based on Kademlia [30]. These networks facilitate storage and retrieval queries
in logarithmic complexity, i.e., they are very efficient. Furthermore, its authen-
ticated nature makes it secure against the Sybil attack [19]. To facilitate the
verification of (identity, public-key) mappings, Certcoin maintains two crypto-
graphic accumulators in the blockchain. Certcoin’s first accumulator is based on
the strong RSA assumption and accumulates identity names. Thus, users can
infer if an identity has been registered in the system. The second accumulator
is based on Merkle trees (formally presented in [35]) and accumulates (identity,
public-key) mappings. This allows clients to validate the authenticity of any
mapping retrieved from the DHT network by downloading and validating the
latest block and by performing the appropriate membership queries.

In the following, we highlight the differences of our design compared to Cert-
coin. We open the discussion with issues regarding accumulators. First, our
design employs two RSA-based accumulators, which have constant size and small
public-keys. On the contrary, Certcoin employs one RSA and one Merkle-based
accumulator. The size of Merkle-based accumulators increases as more elements
are accumulated, i.e., it is not constant. This is an issue in the blockchain world
as miners prefer small blocks which can be hashed faster and with reduced opera-
tional costs to increase their profits. Therefore, it would be difficult to incentivize
miners to support Certcoin’s blockchain whose blocks are of variable size. More-
over, in blockchain-based systems, transaction execution costs are a function of
their size. Thus, Certcoin does not guarantee fairness in terms of transaction
costs. Our construction does not face these issues due to its constant state. Sec-
ond, while Merkle-based accumulators have the nice property that elements can
be deleted without the knowledge of trapdoor information, the same does not
hold for RSA-based accumulators. Consequently, when an (identity, public-key)
mapping is revoked, thus making the identity available again, Certcoin recom-
putes its RSA accumulator from scratch, which is, inefficient. To deal with the
fact that deletions in RSA accumulators require access to their secret key, which,
if publicly known, can break their security, we employ a trick that is presented
in the work of Baldimtsi et al. [12]. Essentially, we use tags to mark elements
as “added” (during registration) or “deleted” (during revocation). Thus, in con-
trast to Certcoin, we do not recompute any accumulator. Third, Certcoin tightly
couples the process of mining with the blockchain’s actual application, which is
to deliver the services of a DPKI. These two issues are orthogonal to each other,
in terms of the system’s architecture and, we believe, should be addressed at dif-
ferent layers. Instead, we are the first to propose a DPKI that is based on a smart
contract platform, i.e., programmable blockchains that decouple the blockchain’s
consensus protocol from the applications’ functionalities that run on top of it.

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 305

This key difference allows us to evolve our system with more efficient primitives,
when such become available, without the need for a hard fork in the blockchain,
which is not the case for application-specific blockchains, such as Certcoin. Addi-
tionally, in these platforms, contracts can interact with each other, thus, creating
an ecosystem of applications that can interoperate. By leveraging this feature,
our system can provide a generic mechanism for on-blockchain authentication
that, up to this point, was handled in an ad-hoc manner. Fourth, Certcoin has no
security model for the PKI it implements nor a proof that it provides the claimed
service. In contrast, we are the first to formalize the DPKI design problem in
the UC framework [16] and we formally prove the security of our construction
under the strong RSA assumption in the Random Oracle model.

3 Public-State Accumulator

In this section, we present the main building block of our naming service. Specif-
ically, in Sect. 3.1, we provide the definition of a public-state, additive, universal
accumulator and, in Sect. 3.2, we present a construction for such an accumulator
under the strong RSA assumption in the Random Oracle model.

3.1 Definition of a Public-State, Additive, Universal Accumulator

Informally, we consider an accumulator as public-state, if one can perform all of
its operations by only having access to its public-key, i.e., no trapdoor knowledge
is required. According to the terminology presented in [12], an accumulator is
additive, if it only allows for addition of elements, and universal, if it allows for
both membership and non-membership witnesses. In the following, we present
the definition of a public-state, additive, universal accumulator. Our definition
employs two trusted parties. The first one, T , runs the key-generation algorithm
(KeyGen(1λ)) and publishes the accumulator’s public-key. The second one, the
“accumulator manager” Tacc, is responsible for maintaining the accumulator.

Definition 1 (public-state, additive, universal accumulator). Let D be
the domain of the accumulator’s elements, and X, the current accumulated set. A
public-state, additive, universal accumulator consists of the following algorithms:

– KeyGen: On input a security parameter λ, it generates a key pair (pk, sk) and
outputs pk. This algorithm is run by T .

– InitAcc: On input pk and the empty accumulated set X = ∅, it outputs an
accumulator value c0. This algorithm is run by Tacc.

– Add: On input pk, an element x ∈ D to be added and an accumulator value
c, it outputs (c′,W), where c′, is the new value of the accumulator, and W ,
is a membership witness for x.

– MemWitGen: On input pk,X, c and x ∈ X, it outputs a membership witness
W for x.

– NonMemWitGen : On input pk,X, c, x, where, x ∈ D and x /∈ X, it outputs a
non-membership witness W for x.

306 C. Patsonakis et al.

– UpdMemWit: On input pk, x, y,W , where, W is a membership witness for x,
it outputs an updated membership witness W ′ for x. This algorithm is run
after (c′,Wy) ← Add(pk, y, c), where Wy is a membership witness for y.

– UpdNonMemWit : On input pk, x, y,W , where, x, y ∈ D, x �= y and W is a
non-membership witness for x, it outputs an updated non-membership wit-
ness W ′ for x. This algorithm is run after (c′,Wy) ← Add(pk, y, c).

– VerifyMem : On input pk, x ∈ D,W and c, it outputs 1 or 0.
– VerifyNonMem : On input pk, x ∈ D,W and c, it outputs 1 or 0.

The correctness and security properties for a cryptographic accumulator can
be defined with the aid of a security game between a challenger C and an adver-
sary A. Informally, an accumulator is correct if, for any honestly produced mem-
bership witness, the membership verification algorithm outputs 1, and, for any
honestly produced non-membership witness, the non-membership verification
algorithm outputs 1. Furthermore, we consider a universal accumulator as secure
if no p.p.t. adversary can produce a valid non-membership witness for a member
of the accumulated set, nor, a valid membership witness for an element which is
not a member of the accumulated set. The security property for an accumulator
can be met as collision-freeness, or, soundness in the literature. A formal defini-
tion for security is given below (Definition 2). Due to lack of space, we omit the
formal definition of correctness.

Definition 2. We say that an accumulator is secure if, for any p.p.t. adversary
A interacting with a challenger C, as illustrated in the security game of Fig. 1,
it holds that Pr[G(1λ) = 1] ≤ ε, where ε is a negligible function of λ.

Fig. 1. The security game between the adversary A and a challenger C, where C plays
the roles of both T and Tacc.

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 307

3.2 Construction

In Fig. 2, we present a construction of a public-state, additive, universal accu-
mulator. We aim to accumulate identities, or, (identity, public-key) pairs, i.e.,
arbitrary strings, thus, the accumulator’s domain is D = {0, 1}∗. This con-
struction is a combination of the RSA-based universal accumulator of Li et
al. [29], accompanied with a procedure which maps arbitrary strings to prime
numbers, as suggested in [24]. Namely, for any algorithm run on input an element
z ∈ {0, 1}∗, the party who runs the algorithm, first, executes a procedure Map
which maps z to a prime number, e.g., zp, and then, proceeds by running the
same algorithm as in the accumulator of Li et al. [29] for the prime number zp.

Mapping Arbitrary Strings to Primes. Gennaro et al. [24] describe a procedure
that utilizes a universal hash function family U of functions [17] which map
strings of 3k bits to strings of k bits, with the additional property that, for any
y ∈ {0, 1}k and given f ∈ U , one can efficiently sample uniformly from the set
{x ∈ {0, 1}3k : f(x) = y}. On input z ∈ {0, 1}∗, it first computes h(z), where
h : {0, 1}∗ → {0, 1}k is a collision-resistant hash function. It then samples from
the set {x ∈ {0, 1}3k : f(x) = h(z)} for a prime number. This procedure is
collision-resistant if h is collision resistant. The authors illustrate that, for all
but a (1/2k)-fraction of functions f ∈ U and for any y ∈ {0, 1}k, at least 1/ck
elements in the set {x ∈ {0, 1}3k : f(x) = y} are primes, for a small constant c.
Thus, an algorithm which samples from the set {x ∈ {0, 1}3k : f(x) = h(z)} at
least ck log2 k times will find a prime number, except with negligible probability.

In our construction (Fig. 2), we employ a deterministic version of the
aforementioned Map procedure. Specifically, we utilize a labeled hash func-
tion h : {0, 1}∗ × {0, 1}∗ → {0, 1}k, which we model as a Random Ora-
cle, and pick two labels, i.e., label0, label1 ∈ {0, 1}∗. Then, Map, on input
z ∈ {0, 1}∗, computes h(label0, z) and fixes the coins for sampling from the
set {x ∈ {0, 1}3k : f(x) = h(label0, z)} to depend on z. This is accomplished
by computing G(h(label1, z)), where G : {0, 1}k → {0, 1}p(k) is a pseudorandom
generator and p(k) is some polynomial in k. Then, Map samples a prime from
the set {x ∈ {0, 1}3k : f(x) = h(label0, z)} using the bits of G(h(label1, z)) as
randomness.

We stress that Map is collision-resistant in the Random Oracle model. Infor-
mally, if Map is not collision-resistant, then, there is a p.p.t. adversary which
finds z1, z2 ∈ {0, 1}∗, such that, Map(z1) = Map(z2). If this holds, then there are
two possible cases: (i) the adversary breaks the collision-resistance of the hash
function h, which is a contradiction, or, (ii) the adversary breaks the security of
the pseudorandom generator G. Namely, given that h is collision-resistant and
sampling with a truly random function gives us collisions only with negligible
probability, then, by the security of G, a p.p.t. adversary finds collisions in the
Map procedure only with negligible probability.

We elaborate by giving a simple example as to why the Map procedure has to
be deterministic in our construction. First, assume that we used the procedure
of [24] without the suggested modification and that an element x ∈ {0, 1}∗

308 C. Patsonakis et al.

Fig. 2. Construction of a public-state, additive, universal accumulator.

was added in our accumulator. This means that Tacc first produces a prime xp

and then adds xp in the underlying RSA accumulator. Then, an adversary can
produce a non-membership witness W for x simply by producing a different
prime x′

p �= xp for the element x and then running the non-membership witness
generation algorithm for x′

p. Therefore, the security property of the accumulator,
as defined in the security game of Fig. 1, would not hold, since the adversary can
output (x,W), such that, x ∈ X and VerifyNonMem(pk, x,W, c) = 1.

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 309

The security of our accumulator is derived by the security of the accumulator
of Li et al. [29], which is proven secure under the strong RSA assumption, and
the collision-resistance of Map in the Random Oracle model. The strong RSA
assumption [13] states that, given an RSA modulus n and a random element
x ∈ Z

∗
n, no p.p.t. adversary can find (y, e), such that, ye = x mod n, except

with negligible probability.

Theorem 1. The accumulator of Fig. 2 is secure according to Definition 1 under
the strong RSA assumption and the collision-resistance of Map in the Random
Oracle model.

Proof sketch. Assume that there is a p.p.t. adversary A which breaks the secu-
rity of the accumulator of Fig. 2. Then, according to Definition 1, A can output
(x∗,W ∗), such that: (1) x∗ /∈ X and VerifyMem(pk, x∗,W ∗, c) = 1, or, (2) x∗ ∈ X
and VerifyNonMem(pk, x∗,W ∗, c) = 1. Suppose that (1) holds. Then, there are
two possible cases: (a) A comes up with x, x∗, such that, Map(x) = Map(x∗) and
x ∈ X, thus, breaking the collision-resistance of the Map procedure, or, (b) A
computes a valid membership witness W ∗ for a prime x∗

p, where Map(x∗) = x∗
p

and x∗ /∈ X. In the latter case, we can construct a p.p.t adversary B which
breaks the strong RSA assumption. We refer for further details to the proof of
Li et al. [29]. We follow a similar argument for the case where (2) holds.

Constructing a Universal Accumulator from an Additive, Universal Accumu-
lator [12]. Assume that ACCadd

U is an additive, universal accumulator, which
accumulates elements of the form (x, i, op), where, x is the element to be added,
i, is an index, and op, is either a or d. We construct a universal accumulator
ACCU , from ACCadd

U , as follows. When an element x is added to ACCU for the
first time, Tacc adds the value (x, 1, a) to ACCadd

U . Otherwise, it adds (x, i, a),
where the index i indicates that this is the i-th time that x is added to ACCadd

U .
When an element x is deleted from ACCU , Tacc adds (x, i, d) to ACCadd

U . In
order to prove membership of x in ACCU , one should find an index i, such that,(
(x, i, a) ∈ ACCadd

U

) ∧ (
(x, i, d) /∈ ACCadd

U)
)
. Accordingly, to prove that x /∈ X,

one should either prove that (x, 1, a) /∈ ACCadd
U , or, find an index i, such that,(

(x, i − 1, d) ∈ ACCadd
U

) ∧ (
(x, i, a) /∈ ACCadd

U)
)
.

4 Defining a Naming Service Functionality

In this section, we describe the security of a naming service in the UC framework
[16] by defining it as an ideal functionality Fns (Fig. 3). Fns interacts with n
clients, m servers, a party T , which is responsible for setup, and an adversary
S. It stores (identity, public-key) pairs and supports a number of operations.
During setup, the trusted party T , specifies a relation R, which defines under
which condition a public key can be revoked. In practice, this relation might
be a verification algorithm for a NIZK, or, a signature on a randomly selected
message. After the setup phase, a client can register an (identity, public-key) pair,
assuming the identity is available, and, can revoke an (identity, public-key) pair,

310 C. Patsonakis et al.

Fig. 3. The naming service functionality Fns interacts with a set of n clients, a set of
m servers, a trusted party T and the simulator S. It allows clients to register, revoke,
retrieve and verify (id, pk) mappings.

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 311

assuming her public key satisfies relation R. Furthermore, she is able to retrieve
the public key of a registered identity and check, whether an identity, or, an
(identity, public-key) pair, is registered or not. Our model considers only static
corruptions, thus, we assume that the simulator specifies the set of corrupted
clients, Ccor, before setup.

5 Naming Service Implementation

At a high-level, the service must allow the storage, retrieval and deletion of
(identity, public-key) pairs. The main barrier in realizing a smart contract-based
DPKI is the size of its state, which, being its most expensive resource to access,
must be minimized. We resolve this issue in a twofold manner. First, we separate
storage from the process of verifying the validity of mappings by maintaining
two public-state, universal accumulators (as presented in Sect. 3) as our smart
contract’s state. Second, our accumulators are RSA-based and have constant size.
The public-state property is required as the contract’s state is publicly accessible.
To circumvent the issue that deletions require access to an accumulator’s private
key, we employ the methodology that we presented at the end of Sect. 3.

Fig. 4. The functionality FTP captures the role of the smart contract. It interacts with
a trusted party T , a set of n clients, a set of t servers and the adversary A.

In Fig. 4, we define the functionality FTP , which captures the role of the
smart contract in our protocol. This functionality interacts with a party T , a
set of n clients and a set of m servers, some of which may be corrupted by the
adversary prior to the initialization phase. FTP is initialized by a trusted party
T by receiving as input a program P . The state of FTP is updated after a call
to the program P and the output is received by the calling party. Note that the
implementation of FTP requires an honest majority of servers, along the lines
of [11,22,23]. The adversary has always full knowledge of all the computations

312 C. Patsonakis et al.

Fig. 5. The program P which is input to FTP , during initialization, in our construction.

performed, and may still interfere by either aborting, or, allowing, an execution
of P at will, however, it is restricted from modifying the output. Implementing
FTP using a blockchain protocol has the servers acting as “miners” and T and
the clients interacting with the blockchain by posting transactions. Installing
a program P is a special transaction that includes P in the blockchain, and
subsequently executing P requires running P by all miners and recording the
state update in the blockchain as well. The security properties of the underly-
ing blockchain, specifically related to persistence of transactions, cf. [11,22,23],
would imply the security of FTP ’s realization.

Furthermore, we assume that all operations are completed in a synchronous,
atomic fashion. In practice, some time is required for an operation (transaction)
to be validated, i.e., to be recorded in the blockchain. Nevertheless, blockchains
enforce a total ordering of transactions and execute them serially, which has the
same net result. In our protocol, FTP is input the program P of Fig. 5, thus, FTP

essentially maintains the aforementioned accumulators as its state, i.e., it acts as
the accumulator manager Tacc. To simplify the description and security analysis
of our design, we assume a trusted setup phase that establishes the relation R and
generates the accumulators’ keys. This assumption does not introduce a single
point of failure in our design as it can be replaced, in a practical implementation,
with distributed protocols for generating parameters (e.g., [36]).

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 313

Fig. 6. The functionality FUDB models an unreliable database and interacts with a
set of n clients, a set of � servers and the adversary A.

In Fig. 6, we introduce the functionality FUDB , which handles the storage of
information that are relevant to our protocol, e.g., (identity, public-key) pairs.
FUDB interacts with n clients and a set of � servers and the adversary. This
functionality models an “unreliable database”, i.e., the adversary may tamper
with its contents. Its involvement in our protocol is twofold. First, a client queries
this functionality to retrieve all the necessary information that will allow her
to, subsequently, interact with FTP . Second, following the completion of an
interaction with FTP , the client stores in FUDB , among others, information that
were output by the smart contract and reflect the new state of the system. We
elaborate more on the information that clients query/store from/to FUDB later
on in this section where we provide a high-level description of each operation.
A practical realization of FUDB is out of the scope of this paper. However, an
authenticated DHT network comprised of nodes that have registered in our PKI
would be a suitable candidate, both in terms of security (i.e., it is Sybil resilient),
as well as efficiency, due to its logarithmic message complexity.

In our scheme, we accumulate (id, pk, i, op) tuples in c1, where, op = a or op =
d mark an element as “added” or “deleted”, respectively. This allows clients to
infer if an (identity, public-key) mapping is valid. In c2, we accumulate (id, i, op)
tuples, which allows clients to infer if an identity is registered in the system. In
the following, and due to space limitations, we present a high-level description
of the Register, Revoke, Retrieve, VerifyID, and VerifyMapping operations.

Informally, a client that is interested in registering an (identity, public-key)
mapping must prove to the smart contract that the identity is, currently, avail-
able. To achieve this, she generates two witnesses. First, a membership witness
of the tuple (id, i, d) for c2, which proves that the i-th instance of this identity
has been marked as deleted. Second, a non-membership witness of the tuple
(id, i + 1, a) for c2, which proves that the (i + 1)-th instance of this identity, i.e.,
the one she is interested in registering, has not been marked as added. If both

314 C. Patsonakis et al.

of the aforementioned conditions hold, she can convince the smart contract to
accumulate her mapping in c1. These witnesses are constructed by, first, query-
ing FUDB for the history of operations and, second, locating records regarding
id, in an attempt to find the proper value for index i. Following a successful
registration, the client posts a (Register, id, pk, i,W1,W2,W3) record to FUDB .
The witnesses W1,W2,W3 facilitate queries from future clients regarding, e.g.,
the validity of the (i + 1)-th instance of her (identity, public-key) mapping.

To revoke an (identity, public-key) mapping, a client generates the following
proofs. First, a proof of ownership of the corresponding secret key, which is
captured by the relation R. Second, a membership witness of the tuple (id, i, a)
for c2, which proves that this identity has been marked as added for index i.
Third, a non-membership witness of the tuple (id, i, d) for c2, which proves that
this identity has not been marked as deleted for index i. Fourth, a membership
witness of the tuple (id, pk, i, a) for c1, which proves that the identity is indeed
mapped to the same public-key that satisfies the relation R. Assuming that
witnesses are generated honestly, the client convinces the contract to revoke her
mapping and, then, she proceeds on posting (Revoke, id, pk, i) to FUDB .

To retrieve an identity’s public-key, the client queries FUDB to check whether
the last record related to this identity is a registration record. If so, the client
updates the witnesses W1,W2,W3 stored in the retrieved registration record
and, subsequently, invokes the smart contract to validate the (identity, public-
key) mapping. VerifyID and VerifyMapping follow the same procedure as Retrieve
to verify if an identity, or, an (identity, public-key) mapping, is registered.

In Fig. 7, we present the formal description of protocol π, which realizes the
functionality Fns. Recall that the entities that participate in the protocol are: (1)
a trusted party T , which is used for setup purposes, (2) a functionality FTP , (3)
n clients C1, . . . , Cn and, (4) a functionality FUDB . We denote with X1 and X2

the sets of accumulated elements of c1 and c2, respectively. These sets are con-
structed by the client as follows. For any record of the form (Register, id, pk, i, ·),
a client adds (id, pk, i, a) to X1 and (id, i, a) to X2. For any record of the form
(Revoke, id, pk, i), a client adds (id, pk, i, d) to X1 and (id, i, d) to X2.

For ease of presentation, we have described our protocol using two accumula-
tors. We can achieve the same net result using only one accumulator since both
c1 and c2 accumulate arbitrary strings. Thus, we are able to accumulate both
types of tuples, i.e., (id, i, op) and (id, pk, i, op), in one accumulator, while still
being able to generate the (non) membership witnesses required in our protocol.
To achieve this, we modify the Register and Revoke operations of program P as
follows. First, the second call to Add, in either operation, receives as parameter
the accumulator value that is returned from the first call to Add. Second, we
invoke UpdMemWit after the second call to Add, to update the membership wit-
ness that was returned by the first call to Add. This approach, cuts down in half
the contract’s state, but, increases the computation of both Register and Revoke
by one exponentiation and one invocation of the Map procedure.

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 315

Fig. 7. Description of the protocol π built upon the program P of Fig. 5.

316 C. Patsonakis et al.

Lastly, we show that our construction is secure by proving Theorem2. Due to
space limitations, we provide a part of the proof for this theorem in AppendixA.

Theorem 2. The protocol π of Fig. 7 securely realizes the functionality Fns of
Fig. 3 in the (FTP ,FUDB)-hybrid world under the strong RSA assumption in the
Random Oracle model.

A Proof of Theorem2

We construct a simulator S (Fig. 8) which emulates an execution of the protocol
π in the hybrid world, in the presence of an adversary A. S plays the role of
T , FTP , FUDB and acts on behalf of a number of honest clients and on behalf
of servers in the emulation of π. We show that an environment can distinguish
between the executions in the hybrid and the ideal world only by influencing the
way the membership or non-membership tests take place in the hybrid world,
i.e., it is reduced to the security of the accumulators utilized in protocol π. Note
that relation R(pk, aux) does not provide an opportunity for distinguishing since
it is the same in both worlds. Furthermore, our proof would also work if the
functionalities FTP and FUDB were global, however, for simplicity, we have the
simulator S playing their role in the simulation. Assuming that all servers have
sent a (sid, Init) message, we consider the case where an environment Z sends a
(sid,Register, id, pk) message to a client C. We examine the output of C in the
hybrid and the ideal world, by examining the following cases:

1. A has not sent (sid,ChangeDBstate,DBstate′) until (sid,Register, id, pk) is
sent to the client C. We consider two different sub-cases:
(i) The identity id is not registered: In the hybrid world, an honest client

C sends (sid,RetrieveDB) to FUDB and, if A returns allow, then C receives
DBstate and computes the witnesses W1,W2 according to Steps 2a, 2b
of Fig. 7. Then, C sends (sid, (Register, id, pk, i + 1,W1,W2)) to FTP . If
A returns allow to FTP , FTP returns ((c′

1,W
′
1), (c

′
2,W

′
2), state) and C

computes the witness W ′
3. Then, C sends (sid,Post, (Register, id, pk, i +

1,W ′
1,W

′
2,W

′
3)) to FUDB and, if A returns allow, C outputs success in

the hybrid world. In the ideal world, C also outputs success because S,
who acts as C and FTP , returns allow to Fns (Step 3, Fig. 8). Finally,
Fns verifies that id is not registered and sends success to C.

(ii) The identity id is currently registered: In the hybrid world, an honest
client C sends (sid,RetrieveDB) to FUDB and, when C receives DBstate,
checks that id is registered and returns fail. In the ideal world, S simulates
C and FUDB and, since id is registered, S returns fail to Fns. Next, Fns

returns fail to C. A malicious client C (on behalf A) in the hybrid world
may try to convince FTP that id is not registered. Then, C should either
provide a non-membership witness W1 for (id, j, a), for some j ≥ 2, such
that VerifyNonMem(pk2, (id, j, a),W1, c2) = 1 and a membership witness
for W2 for (id, j−1, d), such that VerifyMem(pk2, (id, j−1, d),W2, c2) = 1,

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 317

Fig. 8. The simulator S that emulates the execution of protocol π in the hybrid world.

318 C. Patsonakis et al.

or, C should provide a valid non-membership witness W1 for (id, 1, a).
We show that, by the security of the c2, such an attack takes place only
with negligible probability. Recall that since id is currently registered,
it holds that either: (1) there is � ≥ 2 such that, (id, �, a) ∈ X2 and
(id, �, d) /∈ X2, where X2 is the accumulated set of c2, or, (2) (id, 1, a) ∈
X2. Starting with (1), we consider the cases where 1 < j ≤ �, and j >
�. If 1 < j ≤ �, then (id, j, a) ∈ X2 and (id, j − 1, d) ∈ X2. By the
security of the c2, C can produce a valid non-membership witness W1

for (id, j, a) only with negligible probability. If j > �, then (id, j, a) /∈ X2

and (id, j − 1, d) /∈ X2. By the security of the accumulator c2, C cannot
produce a valid membership witness W2 for (id, j − 1, d). Regarding (2),
similarly, C can produce a valid non-membership witness W1 for (id, 1, a)
only with negligible probability. Therefore, C returns fail in the hybrid
world. In the ideal world, C would also return fail, because S sends fail
to Fns, which sends fail to C.

2. A has sent (sid,ChangeDBstate,DBstate′) until Z sends (sid,Register, id, pk),
such that DBstate′ �= DBstate and the set X ′

2 derived by DBstate′ is differ-
ent from the set X2 accumulated in c2

1. We consider the following sub-cases:
(i) The identity id is not registered but the last record including

id in DBstate′ is of the form (Register, id, pk, j,W1,W2,W3): In the
hybrid world, an honest C sends (sid,RetrieveDB) to FUDB and when
C receives DBstate′, checks that id is registered and returns fail. In the
ideal world, S, simulating C and FUDB , sends fail to Fns, which returns
fail to C. If a malicious C sends (sid,Register, id′, pk′, j′,W ′

1,W
′
2) to FTP

and FTP returns (fail, state), then in the ideal world, S sends fail to Fns.
Even if FTP returns ((c′

1,W
′
1), (c

′
2,W

′
2), state) and FUDB returns success

to C after receiving a message of the form (sid,Post, ·), this means that
in the ideal world, S returns allow to Fns. Then, Fns, verifying that id
is not registered,sends success to C. In both cases, C returns consistent
outputs in the hybrid and ideal world.

(ii) The identity id is not registered and the last record including
id in DBstate′ is of the form (Revoke, id, pk, j), or there is no record
for id : The analysis for this case is similar to the same with 2(i) except
that an honest client interacts with FTP after receiving DBstate′ from
FUDB .

(iii) The identity id is registered and the last record including id in
DBstate′ is of the form (Revoke, id, pk, j), or there is no record for
id: In the hybrid world, an honest C sends (sid,RetrieveDB) to FUDB

and when C receives DBstate′, computes the witnesses W1,W2 according
to Steps 2a, 2b and sends (sid,Register, id, pk′, j + 1,W1,W2) to FTP .
Following the same reasoning with the case 1(ii), FTP returns (fail, state)
except with negligible probability. If an honest C, given the accumulated

1 As we explained in Sect. 5, a set X ′
2 is derived by DBstate′ in the following way:

For any record of the form (Register, id, pk, i, W1, W2, W3), (id, i, a) is added to X2

and for any record of the form (Revoke, id, pk, i), (id, i, d) is added to X2.

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 319

set X ′
2 could produce a valid non-membership witness W1 for (id, j +

1, a) and a valid membership witness W2 for (id, j, d), with non-negligible
probability then the security of c2 would break. As a result, C returns
fail, both in the hybrid and ideal world. A malicious C, in the hybrid
world may send (sid,Register, id, pk∗, �,W ∗

1 ,W ∗
2) to convince FTP that

id is not registered. The analysis for this case is also the same as 1(ii).
(iv) The identity id is registered but the last record including id in

DBstate′ is of the form (Register, id, pk, i+1,W1,W2,W3): The analysis
for this case is the same with 2(iii) except that an honest client returns
fail after receiving DBstate′ from FUDB .

3. A has sent (sid,ChangeDBstate,DBstate′) until (Register, id, pk) sent by Z,
such that DBstate′ �= DBstate but the set X ′

2 derived by DBstate′ is the
same as the set X2 accumulated in c2. In this case, our reasoning is similar
to case 1, where the adversary has not sent such a message, since an honest
client is able to compute the witnesses W1,W2 utilizing a correct accumulated
set.

We proved that when an environment Z sends a message (Register, id, pk) to a
client C, Z can distinguish between the executions in the hybrid and ideal world
only with negligible probability, relying on the security of the accumulator c2.
We argue that, following similar arguments, the same holds for the cases where
Z sends (Revoke, id, pk, aux), (Retrieve, id), (VerifyID, id), (VerifyMapping, id, pk).
However, due to lack of space, a complete proof, including the above cases, will
be provided in the full version of the paper.
�

References

1. ASCAP, PRS and SACEM join forces for blockchain copyright system. https://
tinyurl.com/y7aruwlw. Accessed 06 July 2017

2. Emercoin - distributed blockchain services for business and personal use. http://
www.emercoin.com. Accessed 30 Sept 2010

3. Final report on diginotar hack shows total compromise of ca servers. https://
tinyurl.com/hnmuahc. Accessed 07 Apr 2017

4. Google takes symantec to the woodshed for mis-issuing 30,000 HTTPS certs.
https://tinyurl.com/kwkvfur. Accessed 07 Apr 2017

5. IBM pushes blockchain into the supply chain. https://tinyurl.com/yazgt9pk.
Accessed 06 July 2017

6. Namecoin. https://namecoin.org/. Accessed 07 Apr 2017
7. Swiss industry consortium to use Ethereum’s blockchain. https://tinyurl.com/

zlbfmnt. Accessed 06 July 2017
8. Trustwave admits it issued a certificate to allow company to run man-in-the-middle

attacks. https://tinyurl.com/ycfv6kfs. Accessed 07 Apr 2017
9. Aberer, K.: P-grid: a self-organizing access structure for P2P information systems.

In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS,
vol. 2172, pp. 179–194. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44751-2 15

https://tinyurl.com/y7aruwlw
https://tinyurl.com/y7aruwlw
http://www.emercoin.com
http://www.emercoin.com
https://tinyurl.com/hnmuahc
https://tinyurl.com/hnmuahc
https://tinyurl.com/kwkvfur
https://tinyurl.com/yazgt9pk
https://namecoin.org/
https://tinyurl.com/zlbfmnt
https://tinyurl.com/zlbfmnt
https://tinyurl.com/ycfv6kfs
https://doi.org/10.1007/3-540-44751-2_15
https://doi.org/10.1007/3-540-44751-2_15

320 C. Patsonakis et al.

10. Avramidis, A., Kotzanikolaou, P., Douligeris, C., Burmester, M.: Chord-PKI: a
distributed trust infrastructure based on P2P networks. Comput. Netw. 56, 378–
398 (2012)

11. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger:
a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS,
vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63688-7 11

12. Baldimtsi, F., et al.: Accumulators with applications to anonymity-preserving revo-
cation. In: EuroS&P (2017)

13. Barić, N., Pfitzmann, B.: Collision-free accumulators and fail-stop signature
schemes without trees. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233,
pp. 480–494. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-
0 33

14. Benaloh, J., de Mare, M.: One-way accumulators: a decentralized alternative to
digital signatures. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp.
274–285. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48285-7 24

15. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45708-9 5

16. Canetti, R.: Universally composable security: a new paradigm for cryptographic
protocols. IACR Cryptology ePrint Archive 2000:67 (2000)

17. Carter, L., Wegman, M.N.: Universal classes of hash functions. J. Comput. Syst.
Sci. 18(2), 143–154 (1979)

18. Datta, A., Hauswirth, M., Aberer, K.: Beyond “web of trust”: enabling P2P e-
commerce. In: CEC 2003, pp. 303–312 (2003)

19. Douceur, J.R.: The sybil attack. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.)
IPTPS 2002. LNCS, vol. 2429, pp. 251–260. Springer, Heidelberg (2002). https://
doi.org/10.1007/3-540-45748-8 24

20. Ellison, C., Schneier, B.: Ten risks of PKI: what you’re not being told about public
key infrastructure (2000)

21. Fromknecht, C., Velicanu, D., Yakoubov, S.: A decentralized public key infrastruc-
ture with identity retention. IACR (2014)

22. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

23. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains
of variable diculty. IACR Cryptology ePrint Archive (2016)

24. Gennaro, R., Halevi, S., Rabin, T.: Secure hash-and-sign signatures without the
random oracle. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 123–
139. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 9

25. Gipp, B., Meuschke, N., Gernandt, A.: Decentralized trusted timestamping using
the crypto currency bitcoin. CoRR, abs/1502.04015 (2015)

26. Jhanwar, M.P., Safavi-Naini, R.: Compact accumulator using lattices. In:
Chakraborty, R.S., Schwabe, P., Solworth, J. (eds.) SPACE 2015. LNCS, vol. 9354,
pp. 347–358. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24126-
5 20

27. Karakaya, M., Korpeoglu, I., Ulusoy, Ö.: Free riding in peer-to-peer networks. IEEE
Internet Comput. 13(2), 92–98 (2009)

https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/978-3-319-63688-7_11
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-69053-0_33
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45708-9_5
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/3-540-48910-X_9
https://doi.org/10.1007/978-3-319-24126-5_20
https://doi.org/10.1007/978-3-319-24126-5_20

Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure 321

28. Lesueur, F., Me, L., Tong, V.V.T.: An efficient distributed PKI for structured P2P
networks. In IEEE P2PC (2009)

29. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-72738-5 17

30. Maymounkov, P., Mazières, D.: Kademlia: a peer-to-peer information system based
on the XOR metric. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS
2002. LNCS, vol. 2429, pp. 53–65. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45748-8 5

31. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. http://bitcoin.org/
bitcoin.pdf. Accessed 07 Apr 2017

32. Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A.
(ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-30574-3 19

33. Nyberg, K.: Fast accumulated hashing. In: Gollmann, D. (ed.) FSE 1996. LNCS,
vol. 1039, pp. 83–87. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
60865-6 45

34. Reiter, M.K.: Franklin, M.K., Lacy, J.B., Wright, R.N.: The ω key management
service. In: CCS 1996 (1996)

35. Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI.
In: Zikas, V., De Prisco, R. (eds.) SCN 2016. LNCS, vol. 9841, pp. 292–309.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44618-9 16

36. Sander, T.: Efficient accumulators without trapdoor extended abstract. In: Varad-
harajan, V., Mu, Y. (eds.) ICICS 1999. LNCS, vol. 1726, pp. 252–262. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-540-47942-0 21

37. Wouhaybi, R.H., Campbell, A.T.: Keypeer: a scalable, resilient distributed public-
key system using chord (2008)

38. Yüce, E., Selçuk, A.A.: Server notaries: a complementary approach to the web PKI
trust model. IACR Cryptology ePrint Archive 2016:126 (2016)

39. Zhou, L., Schneider, F.B., Van Renesse, R.: COCA: a secure distributed online
certification authority. ACM Trans. Comput. Syst. 20, 329–368 (2002)

40. Zimmermann, P.: Pretty good privacy. https://philzimmermann.com

https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.1007/3-540-45748-8_5
https://doi.org/10.1007/3-540-45748-8_5
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-540-30574-3_19
https://doi.org/10.1007/3-540-60865-6_45
https://doi.org/10.1007/3-540-60865-6_45
https://doi.org/10.1007/978-3-319-44618-9_16
https://doi.org/10.1007/978-3-540-47942-0_21
https://philzimmermann.com

Embedded System Security

Secure Code Updates for Smart
Embedded Devices Based on PUFs

Wei Feng1(B), Yu Qin1(B), Shijun Zhao1, Ziwen Liu2(B), Xiaobo Chu1,
and Dengguo Feng1

1 Trusted Computing and Information Assurance Laboratory, Institute of Software
Chinese Academy of Sciences, Beijing, China

vonwaist@gmail.com
2 School of Software Engineering, South China University of Technology,

Guangzhou, China
ziwenliu@scut.edu.cn

Abstract. Code update is a very useful tool commonly used in low-end
embedded devices to improve the existing functionalities or patch discov-
ered bugs or vulnerabilities. If the update protocol itself is not secure, it
will only bring new threats to embedded systems. Thus, a secure code
update mechanism is required. However, existing solutions either rely on
strong security assumptions, or result in considerable storage and com-
putation consumption, which are not practical for resource-constrained
embedded devices (e.g., in the context of Internet of Things). In this
work, we first propose to use intrinsic device characteristics (i.e., Physi-
cally Unclonable Functions or PUF) to design a practical and lightweight
secure code update scheme. Our scheme can not only ensure the fresh-
ness, integrity, confidentiality and authenticity of code update, but also
verify that the update is installed correctly on a specific device without
any malicious software. Cloned or counterfeit devices can be excluded
as the code update is bound to the unpredictable physical properties
of underlying hardware. Legitimate devices in an untrustworthy soft-
ware state can be restored by filling suspect memory with PUF-derived
random numbers. After update installation, the initiator of the code
update is able to obtain the verifiable software state from device, and the
device can maintain a sustainable post-update secure check by enforcing
a secure call sequence. To demonstrate the practicality and feasibility,
we also implement the proposed scheme on a low-end MCU platform (TI
MSP430) by using onboard SRAM and Flash resources.

Keywords: Firmware update · Secure code update
Physically Unclonable Function (PUF) · Remote attestation
Embedded security

1 Introduction

With the rise of new trends like the Internet of Things (IoT), Industry 4.0, or
Industrial Internet, smart embedded devices are being increasingly used in var-
ious scenarios, such as industrial control, smart home, wireless sensor networks,
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 325–346, 2018.
https://doi.org/10.1007/978-3-030-02641-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_15

326 W. Feng et al.

etc. Firmware or code update is an important mechanism for these scenarios as it
offers many benefits [31,35]: fix bugs or vulnerabilities that have been disclosed
in the deployed devices; add new features or functionalities to system; enable or
disable product functionality in the field; reduce the number of product returns
to be handled. For example, as recently reported, Dyn DNS DDoS attack1 is
caused by a large number of IoT botnet nodes infected with the Mirai malware.
Code update mechanisms may be used to repair these embedded nodes without
having to recall or destroy these devices. However, if the update process itself
is vulnerable, it can be exploited by attackers to compromise the security of
embedded systems. As low-end embedded devices are resource-constrained and
often lack the security capabilities of general purpose computing platforms, it’s
difficult and challenging to design a secure code update mechanism for them.

A secure code update scheme for embedded systems should not only consider
a protocol for secure downloading, but also ensure that the newly downloaded
code is installed properly and its memory can be verified with the confidence that
no attacker or malicious code is involved. Ideally, a secure code update should
provide the following security attributes [31,35]: (1) Freshness, the downloaded
code is newest, not a simple replay or downgrading; (2) Integrity, the update
code installed on device is expected and unmodified; (3) Authenticity, the
update code comes from an authorized source and is loaded onto an authorized
device (cloning can also be detected), i.e., mutual authentication is needed; (4)
Confidentiality, the code may be an important intellectual property, which
should not be revealed to other parties; (5) Feasibility, the scheme is applicable
to existing commodity low-end embedded devices based on existing resources;
(6) Verifiability, after update installation, the software state of the updated
device should be verified and the verification result should be eventually fed back
to the source who issues the update; (7) Restorability, secure code update is
able to restore the software state of a compromised device; and (8) Secure Call,
only trustworthy code can be called and executed on the device after the update
process is complete, which aims to alleviate TOCTOU attack [14].

Currently, there are few solutions that can satisfy all these attributes. By
pointing out the inadequacies of existing techniques (hardware and software-
based attestation), Perito and Tsudik [42] introduced a new notion called Proofs
of Secure Erasure (PoSE) for secure code update, in which new code is down-
loaded onto an embedded device after secure erasure of all its prior state. PoSE
meets the integrity, feasibility and restorability attributes. However, other secu-
rity attributes are not supported. Furthermore, PoSE relies on strong security
assumptions [42], e.g., the adversary maintains complete communication silence
during attestation, and it also results in considerable energy and time overhead.
The follow-up researches [16,32] of PoSE all focus on reducing the communi-
cation and computation overhead, and rarely consider to improve the assump-
tions or strengthen security guarantees. Recently, Kohnhauser et al. [35] pro-
posed a novel secure code update scheme for mesh networked embedded devices,
which achieves much stronger security guarantees and satisfies most of the secu-

1 https://en.wikipedia.org/wiki/2016 Dyn cyberattack.

https://en.wikipedia.org/wiki/2016_Dyn_cyberattack

Secure Update for IoT Devices 327

rity attributes. Their method relies on three hardware security requirements:
immutable code, secure storage and uninterruptible execution. Nevertheless,
their method has the following flaws: (1) it uses the traditional secure storage
technology (like EEPROM, BBRAM or eFuse) for device secret or private keys,
which is expensive, inflexible and unsafe [39,53]; (2) it uses public-key cryptog-
raphy, which results in apparent storage consumption (66KB for signature) and
increased running time; and (3) it is vulnerable to device cloning attack and
TOCTOU attack.

Contributions. In this paper, we propose the first secure code update scheme
for current commodity low-end embedded devices by using Physically Unclon-
able Functions (PUFs). Firstly, our scheme reserves the design of secure era-
sure from PoSE; however, the prover does not need to download random data
as large as its own memory from the verifier. As an improvement, we fill the
prover’s memory with high entropy data derived from PUF. Additionally, we
don’t rely on the strong security assumption like communication silence. Sec-
ondly, as opposed to the latest method in ESORICS 2016 [35], we use PUF-based
secure key generation to replace traditional secure key storage, and use symmet-
ric cryptography and message authentication code (MAC) instead of public-key
cryptography to achieve confidentiality and authenticity. Thirdly, we design a
secure code update protocol based on reverse fuzzy extractor, which satisfies all
the security attributes mentioned above. To illustrate this, we conclude eight
possible security threats that may break these security attributes and show how
our scheme can be used to address them. Finally, we implement and evaluate our
protocol building blocks in a low-cost and general-purpose MSP430 MCU. The
evaluation results demonstrate the feasibility and validity of PUF-based secure
code update in low-end embedded devices.

Outline. In Sect. 2, we conclude the security threats and present some back-
ground knowledge about PoSE and PUF. In Sect. 3, we first give the system
requirements and adversary model, and then introduce our new proposal for
secure code update by using PUF. In Sect. 4, we implement and evaluate the
building blocks of our novel scheme using a MSP430 device. In Sect. 5, we
overview the related work, and we conclude the paper in Sect. 6.

2 Background and Preliminaries

2.1 Security Threats of Code Update

Code update involves a verifier V and a prover P . P is a generic embedded
device with constrained resources, e.g. a medical instrument, a wearable device
or an industrial control device. V is a more powerful computing device, e.g. a
smartphone, a laptop or a cloud platform. Secure code update can be viewed as
a means to ensure that a code update issued by a trusted V has been securely
distributed and correctly installed on P . Specifically, for secure code update, we
aim to provide measures to solve the following security threats [21,31,35]:

328 W. Feng et al.

Threat-1 Code Alteration. The binary code (or firmware image) distributed
by V is modified by attackers during the update process.

Threat-2 Code Reverse Engineering. Attackers intercept the binary image
code, and use the reverse engineering technique to analyze the func-
tionality and contents of the update image code.

Threat-3 Loading Unauthorized Code. The update binary code may be
created by an unauthorized party, and P is cheated to install the
unauthorized or malicious code.

Threat-4 Loading Code onto an Unauthorized Device. The code intended
for one device is installed on another, or the code generated by the
product manufacturer is loaded onto an unauthorized device.

Threat-5 Code Downgrading. An attacker in possession of an old code pack-
age may resend it to the device reverting it to a previous, possibly
vulnerable, state in order to exploit it.

Threat-6 Incomplete Update. A compromised device may simply deny the
execution of code update or execute it inappropriately without restor-
ing software integrity. And at the same time, V is cheated with a
response indicating a successful update.

Threat-7 TOCTOU (Time Of Check to Time Of Use). After a complete
update, the update code stored in the device may have been tampered
with when it’s called to run a specific embedded task.

Threat-8 Device Cloning. Attackers may simply copy the memory contents
(including code, data, secrets or keys, and other intellectual property)
and create a cloned device to replace the original one.

2.2 Proofs of Secure Erasure (PoSE)

While hardware-based attestation [8,41] is not practical for low-cost embedded
systems and software-based attestation [47] offers unclear security guarantees,
Perito and Tsudik [42] proposed a new technique called Proofs of Secure Erasure
(PoSE) for low-end embedded devices.

Fig. 1. Secure code update protocol based on PoSE

According to [42], PoSE can be used to implement a secure code update pro-
tocol, which we conclude in Fig. 1. Suppose the size of P ’s memory (all writable

Secure Update for IoT Devices 329

storage on the embedded device) is n, the verifier V first encrypts the update
code using a random key K ′. Upon receiving the ciphertext blocks {R1, ..., Rn},
P uses the last k-blocks of randomness as the key to compute a MAC (Message
Authentication Code) and sends the MAC to V . V verifies the MAC to ensure
that P ’s memory is reliably erased with the high entropy data (ciphertext) sent
by V . If MAC verified correctly, V sends the encryption key K ′ to P in order for
P to decrypt the ciphertext into the new code {C1, ..., Cn−k}. Both the perfor-
mance and security of the PoSE mechanism are not optimistic, and a detailed
analysis is given in the full version [18]. Our approach attempts to improve per-
formance and security without relying on any hardware modification.

2.3 Physically Unclonable Function and Reverse Fuzzy Extractor

A physically unclonable function (PUF) is an entity that uses manufacturing
variation to generate a device-specific output, which can be seen as the fin-
gerprint of a device [11]. Specifically [44], when queried with a challenge Ci, a
PUF generates a response Ri = PUF (Ci) that depends on both, Ci and the
unique IC intrinsic physical properties of the device containing PUF. The tuples
(Ci, Ri) are thereby termed the challenge-response pairs (CRPs) of the PUF.
PUFs are inherently noisy and their responses are not uniformly random, thus
some mechanisms are needed to correct noise and extract randomness from the
PUF responses. Depending on the computing power of the prover device, there
are two different mechanisms [10,23]: fuzzy extractor (FE) and reverse fuzzy
extractor (RFE). In the full version of the paper [18], we provide a detailed
description about FE and RFE. In our update protocol, we adopt RFE to
extract reconstructible random keys from PUF, in which FE.Gen (the gener-
ation procedure of FE) and FE.Rep (the reproduction procedure of FE) are
represented as follows:

(K,h) ← FE.Gen(R′) :

{r ← RNG(), CW ← Encode(r), h ← R′ ⊕ CW,K ← Ext(R′)}
K ← FE.Rep(R, h) :

{CW ′ ← R ⊕ h, r ← Decode(CW ′), CW ← Encode(r),K ← Ext(CW ⊕ h)}

Encode and Decode are two procedures included in the error correction. The ran-
dom extractor (Ext) is used to obtain a full-entropy key K from PUF response.
A random number generator RNG is used to choose a random codeword (CW),
and CW only serves for error correction.

3 Secure Code Update Based on PUF

3.1 System Requirements and Adversary Model

Our system consists of (at least) two players: a verifier V and a resource-
constrained prover P . We denote the adversary with A. The main goal is to

330 W. Feng et al.

allow V to update the application code of P , while providing effective measures
to mitigate all kinds of security threats mentioned above.

Verifier V. We assume V to be trusted. Further, V initializes and deploys P in
a secure environment, extracts adequate (at least two) challenge-response pairs
(CRPs) from the PUF of P and stores them securely. V also keeps a copy of the
update’s binary code generated by the product manufacturer of P .

Prover P. We assume P to be equipped with a root of trust (RoT), which
contains a robust and unpredictable PUF, a reverse fuzzy extractor, a random
number generator, a symmetric cryptographic algorithm, a secure one-way hash
function and a message authentication code. We also assume P has a static non-
volatile write-protected memory region R, which can be implemented based on
Flash memory with dedicated lock bits as described in [35]. We assume the RoT
code is stored in the protected region R isolated from the application code, and
once the RoT code in R gets executed, it cannot be interrupted until the control
flow intentionally leaves R. The difference from [35] is that R here doesn’t rely on
a traditional secure storage, which is replaced by PUF-based key generation. We
also assume the protection on R can be temporarily removed by RoT during
the update and is restored immediately after the update, which can also be
implemented on existing commercial embedded devices as described in [30]. It is
worth noting that the update of RoT code itself (infrequently) should be offline
in a secure environment.

Adversary A. We assume that A has complete control over the communication
channel between V and P . This means that A can eavesdrop, manipulate and
reroute all messages sent between V and P . We assume A cannot clone or tam-
per the PUF feature of P . Following the typical assumptions on PUF-based key
generation (like [10,23]), we assume that A cannot access the challenge-response
interface of PUF and cannot obtain temporary data (such as PUF-derived key
information) stored in registers or on-device RAM during the update protocol.
The temporary data can be erased by RoT immediately after the update pro-
tocol. In addition, we assume that A can be physically present and introduce
additional (cloned) prover device. Finally, we assume A cannot bypass any of
the hardware protections and cryptographic algorithms used in P . Data rema-
nence attacks and physical attacks are not considered in our mechanism. We
assume RoT code is immune from vulnerabilities, but the application code may
be vulnerable. The device debug interfaces are disabled after deployment.

3.2 Update Protocol

Our new code update protocol is described in Fig. 2, and the memory lay-
out of P during the protocol execution is illustrated in Fig. 3. V prepares a
code update package cupkg, which includes (at least) the binary update code
(cupkg.code), the current package version number (cupkg.ver), and the hash val-
ues over the expected memory contents for a successful update (cupkg.hash). P
stores the RoT code and the expected integrity data (consisting of cupkg.ver

Secure Update for IoT Devices 331

Fig. 2. Secure code update protocol based on PUF

and cupkg.hash) in the protected region R, and the integrity data can also be
updated securely by RoT during the protocol. Two PUF CRPs are used in the
protocol, one for encryption and the other for mutual authentication.

Before each update protocol, we assume a temporary session key (tsk) is
established between V and P by using a key exchange protocol (e.g., Diffie-
Hellman or ECDH). Liu et al [37] have presented an efficient implementation of
ECDH key exchange for MSP430 devices. tsk is mainly used to build a secure
channel, and {M}tsk denotes that a message M is encrypted with tsk. All the
exchanged messages are encrypted with tsk by using a symmetric encryption
algorithm. Specifically, the key features of the protocol can be summarized as
follows:

Fig. 3. Illustration of prover’s memory layout during protocol execution

332 W. Feng et al.

(1) Key Generation based on PUF and Reverse Fuzzy Extrac-
tor without Relying on Secure Storage. V randomly chooses two CRPs
(C1, R1) and (C2, R2), and sends the challenges to P . After receiving C1 and C2,
P reads the physical PUF responses R′

1 ← PUF (C1) and R′
2 ← PUF (C2),

and generates the secret key and helper data as (K1, h1) ← FE.Gen(R′
1),

(K2, h2) ← FE.Gen(R′
2). The helper data h1 and h2 are sent to V , and V

uses them to recover K1 ← FE.Rep(R1, h1) and K2 ← FE.Rep(R2, h2). In this
way, P doesn’t need to store keys with the help of NVM-based secure storage,
and can generate random keys on demand every time the protocol is started.

(2) Mutual Authentication based on K2 and MAC. Based on the
reproducibility property of PUF, V and P share the same keys K1 and K2 now.
We use K2 and MAC to achieve authentication. As the correct CRPs are only
known to the trusted V and the physical PUF embedded in P is unclonable and
unpredictable, no other party (e.g., A) can forge a valid key. Thus, the authen-
tication can be mutual. In detail, P generates a random nonce NP and sends
it to V . Once V receives NP , it uses K2 to create an authenticated message
δV ← MAC(K2,M1) where M1 contains the nonce NP and other exchanged
messages between V and P . δV serves as a signature, and prevents any modifica-
tions to the exchanged messages since P checks MAC(K2,M

′
1)? = δV . Similarly,

δP is an authenticated message created by P , and verified by V .
(3) Encryption Transmission and Secure Code Erasure based on

PUF. The code update package cupkg is encrypted by using K1 and symmet-
ric cryptography. Only P with a valid K1 can decrypt the encrypted package.
After P receives epkg, it first checks the authenticated message. If δV passes
the verification, P believes that the messages come from an authorized V . Then
P performs a secure code erasure (Algorithm 1): the encrypted package epkg is
used to overwrite the memory occupied by the old code, and the extra memory
space is filled with PUF-derived pseudorandom noises. The parameters K2 and
NV assure that the secure code erasure is device-specific and protocol-specific,
and no attackers can predict a valid memory layout. The use of cnt (inspired
by [51]) is convenient for V to reconstruct the prover’s memory layout and com-
pute expected integrity values in advance. Secure code erasure can also eliminate
possible malicious codes and restore P to a clean environment.

Algorithm 1: SecureErasure(epkg,K2,NV).
Variables:

The counter value, cnt;
The extra memory range, [MemStart : MemEnd].

1 Mem(OldCode, size) ← epkg ;
2 cnt = 0;
3 for i = MemStart; i < MemEnd; i + + do
4 prandom ← Hash(K2, NV , cnt);
5 Mem[i] ← prandom;
6 cnt + +;

7 end

Secure Update for IoT Devices 333

(4) Local Code Integrity Attestation. After a secure code erasure, P
can decrypt epkg and finish the installation of the update binary code. In order
to attest an untampered and up-to-date software state, the RoT code in the
protected region R triggers a local attestation routine. As illustrated in Algo-
rithm2, the attestation routine uses cupkg to perform three checks: (1) check
whether the version number contained in cupkg is higher than the version num-
ber stored in R, (2) check whether the hash values in cupkg are different from
the values stored in R, and (3) check whether the hash values over all memory
regions match the expected integrity reference values specified in cupkg.hash
(denoted by CheckCodeIntegrity()). If all checks pass, the verification of code
update and software integrity is successful. Upon a successful verification, RoT
disables the protection on R and writes the newest integrity reference values
(cupkg.ver and cupkg.hash) into R. As the prover device has just performed
secure code erasure and integrity attestation, no malicious values can be written
into R at this moment. Once R is updated, RoT enables the write protection
immediately.

Algorithm 2: LocalAttestation(cupkg).
if (cupkg.ver ≤ R.ver) ∨ (cupkg.hash == R.hash) ∨ ¬CheckCodeIntegrity(cupkg.hash)
then

return False ;
else

Disable protection on R ;
UpdateR(cupkg.ver, cupkg.hash) ;
Enable protection on R ;
return True ;

end

(5) Verification Result Feedback and Secure Call. The result of local
integrity attestation is included in the computation of δP to ensure integrity,
and it is sent back to V along with δP . If δP is verified successfully, V can ensure
that the result comes from the correct P as no attackers can forge K2. According
to the feedback result, V knows whether P is in an up-to-date and unmodified
software state. After a successful update, RoT code in P will enforce a strict
white list policy to ensure a secure code call: the entry point of the update binary
application code is hardcoded in R, and each time the control flow is passed to
the application code only when CheckCodeIntegrity() returns True.

Since SRAM is used for PUF in implementation (Sect. 4), a reboot is needed
for each update protocol. In the experiment, we turn off the power manually
to implement a full power cycle to collect SRAM PUF data. The initial SRAM
values are used as R1 and R2 for each reboot, and RoT uses these values to
generate K1 and K2. RoT is always executed after device reset, and the whole
update process is handled by RoT. After the update, the keys are immediately
erased by RoT. RoT also decides if the application code can be executed. Thus,
we define a standard secure call sequence for P in Fig. 4.

334 W. Feng et al.

Fig. 4. Secure call sequence of P

Memory Integrity Check. If P ’s memory space is relatively large, we can
divide it into multiple small sections and use hash tree (or Merkle tree) [19] to
implement memory integrity check (CheckCodeIntegrity()). Figure 5 illustrates
an example of a binary hash tree, in a setting where the memory is divided into
four sections, denoted by S1, S2, S3 and S4. The hash values of these sections
are the leaves, and a parent is the hash of the concatenation of its children.
Only hroot (the root of the tree) is stored in the protected region R. Before each
update, V must decide the size of each section, and prepare a bran-new hash
tree as the integrity reference value. During the update, all the sections should
be checked, i.e., RoT should compute:

Hash(Hash(Hash(S1),Hash(S2)),Hash(Hash(S3),Hash(S4))).

Fig. 5. A binary hash tree. Hash values of each memory section are aggregated to the
root of the tree.

All intermediate values during the computation should match the hash values
in the tree (including all nodes). After a succssful check, the root value hroot is
written into R, and other hash values are stored in the mutable memory along
with the code. As the check of the entire memory is time-consuming, the hash
tree method also supports to check the integrity of a specific memory section
(e.g., the memory section containing the application code). For example, to check
the integrity of S1, RoT only needs to read S1, h2 and h6, and the resultant
aggregation value Hash(Hash(Hash(S1), h2), h6) is compared to hroot.

3.3 Analysis

The security of reverse fuzzy extractor is described in [23]. In this section, we
mainly focus on the analysis of security threats (Sect. 2). We also give some
comparisons and discussions about our method.

Secure Update for IoT Devices 335

Our mechanism can defend against all mentioned security threats, and the
specific analysis is as follows:

(1) Code Alteration. For each update, a local attestation is used to check
the code integrity and any changes to the update binary code will be found.

(2) Code Reverse Engineering. It is almost impossible to absolutely guar-
antee the code confidentiality. Our main goal is to prevent code extraction
during the network transmission and increase the difficulty of breaking the
prover device P . As shown in Fig. 2, the communication channel only dis-
closes epkg, which is encrypted with PUF-based key K1. As we assume
PUF is secure, A cannot decrypt epkg. Moreover, secure code erasure can
remove any malicious code in P during the update, and at other times,
RoT maintains a secure code call by enforcing a strict white list policy.
Thus, it’s difficult for A to break P and extract the update code.

(3) Loading Unauthorized Code. The update binary code is included in
epkg, which is sent to P along with δV . epkg is created based on K1 and δV
is generated based on K2. Since K1 and K2 originate from the PUF of the
same prover device P , it can be inferred that epkg is from an authorized V if
δV is verified successfully by P . If an unauthorized epkg (created randomly
or using a malicious key) arrives at P , its decryption is meaningless and
cannot pass the verification of a local integrity attestation.

(4) Loading Code onto an Unauthorized Device. Due to the uniqueness
and unpredictability of PUF, an unauthorized device cannot derive a cor-
rect decryption key K1 and thus cannot install a update code intended for
another device.

(5) Code Downgrading. An ascending version number cupkg.ver is included
in each code update package cupkg, the attestation routine will check the
version number.

(6) Incomplete Update. Firstly, the result of LocalAttestation is included in
δP , and thus V can ensure the integrity and authenticity of the feedback
result. Secondly, RoT resides in the protected region R which is write-
protected and execution-uninterruptible, the only entry to RoT is reset,
and the only chance to write R is after a secure code erasure and an
integrity check CheckCodeIntegrity(). Since the feedback result and δP
are created by RoT, the result True indeed indicates a complete update
and the result False illustrates the other situations.

(7) Alleviating TOCTOU. It’s difficult to completely prevent TOCTOU,
e.g., runtime attacks may break our system easily, which are not dis-
cussed here. Our mechanism uses the post-update defense to alleviate the
TOCTOU attack, which is not considered in previous update mechanisms.
During each update, the code is checked in the local integrity attestation
routine and the newest reference values are written to R. After update
(post-update defense), RoT checks the integrity of application code by
using the newest reference values to run CheckCodeIntegrity() each time
the application code is called. If the code has been tampered with, RoT
will never give the system control to the code. In this case, RoT could
trigger a new update protocol.

336 W. Feng et al.

(8) Device Cloning. Even if A obtains all the memory contents (including
RoT code) of an authorized prover device, it cannot copy or clone a similar
device to pretend to be a legitimate P because A cannot clone a physical
PUF or predict the responses of a particular PUF.

(9) Control-flow Attack. Our system provides no control flow integrity, and
we assume RoT code is immune from vulnerabilities. But the application
code may be compromised, we need to prevent application code from jump-
ing to the RoT code arbitrarily. We can achieve this by enforcing a single
well-defined entry point to RoT code in the ARMv8-M architecture [52].
Or in other devices, we can use software fault isolation [45] to sandbox the
application code.

(10) Physical Adversary. Due to the unclonability and unpredictability of
PUF, a physical clone or replacement of a valid prover device will be found.
However, we cannot defend against other physical attacks, such as repro-
gramming the whole flash memory, data remanence of SRAM, or invasive
attacks with micro-probing. Possible solutions to mitigate physical adver-
sary contain the heartbeat protocol in DARPA [27].

Comparison with PoSE [42] and [35]. Our comparison with recently proposed
update mechanisms mainly covers five aspects: the dependent assumptions, the
supported security attributes, the ability to resist all mentioned security threats,
the main communication and computation costs. As shown in Table 1, our mech-
anism has the following advantages: (1) Don’t rely on a traditional secure stor-
age; (2) Resist all 8 security threats by providing security attributes like mutual
authentication, confidentiality (or secrecy), integrity, unclonability and secure
call; (3) The message transmitted from V to P is the size of the update binary
code, and the extra memory of P is filled with PUF-derived pseudorandom
numbers; and (4) Use symmetric cryptography and MAC instead of public-key
cryptography and signature, which is more suitable for low-end embedded sys-
tems.

Comparison with Remote Attestation. Remote attestation mechanisms are
mainly used for verifying the software integrity of a remote device. Our update
mechanism not only verifies the integrity of a remote device after an update
installation, but also needs to ensure the correctness, freshness, confidentiality
and authenticity of code update. Schulz et al. [44] gave a lightweight remote
attestation by combing software-based attestation and PUF. PUFatt [36] imple-
mented Schulz’s idea by presenting a novel PUF design (called ALU PUF) based
on the delay difference in two different arithmetic and logic units (ALUs). These
works mainly focused on remote attestation, and did not consider secure code
update. Furthermore, ALU PUF needs to change the microprocessor of device
and is not available in current embedded devices. Researches (like SMART [17],
Sancus [40], TyTAN [13], etc.) all tried to propose lightweight secure architecture
for embedded devices, which can be used to implement remote attestation (also
called hybrid attestation by [1]). In our opinion, these architecture can be eas-
ily extended to implement secure code update although none of them mentioned

Secure Update for IoT Devices 337

Table 1. Comparison.

Our mechanism [42] (ESORICS 10) [35] (ESORICS 16)

Assumptions Immutable Code,
uninterruptible
execution and a
robust and
unpredictable PUF

Immutable code
and secure
communication (P
only communicates
with V and no
other party)

Immutable code,
secure storage and
uninterruptible
execution

Security Attributes
Supported

Freshness,
Integrity,
Authenticity,
Confidentiality,
Feasibility,
Verifiability,
Restorability and
Secure Call

Integrity,
Feasibility and
Restorability

Freshness,
Integrity,
Authenticity,
Feasibility,
Verifiability, and
Restorability

Resisting Security
Threats

Threat-1, 2, 3, 4, 5,
6, 7, 8

Only Threat-1 Threat-1, 3, 5, 6

Communication
costs

The size of cupkg The size of P ’s
writable memory

The size of cupkg

Computation costs Symmetric
cryptography,
MAC, Hash, RFE

Symmetric
cryptography,
MAC, Hash

Symmetric and
Asymmetric
cryptography,
Signature and
verification, Hash

this. However, all hybrid attestation schemes need some hardware modifications,
which are not available commercially. Our secure code update mechanism can
be applicable using existed resources in current commodity embedded devices.

Limitation. Firstly, our method requires that the prover device must have
enough SRAM space, meeting the memory requirements for PUF and program
variables at the same time. For low-end embedded devices, we may consider
increasing the size of SRAM memory or exploring new PUF primitives (like
Flash-based PUF [50]). Secondly, the scalability of our scheme is not good. To
update multiple devices in a large network, V has to establish an update protocol
for each individual device. Even if all devices have the same configuration (that
is, the same cupkg), V must prepare different hash reference values and different
encryption package epkg for different devices. Our future work will be focused on
the design and implementation of a scalable and lightweight secure code update
mechanism based on PUF. A preliminary idea is to combine PUF physical prop-
erties with attribute-based encryption (ABE) [2], where PUF responses can be
viewed as specific attributes associated with a decryption key.

Discussion. Helfmeier et al. [22] used a Focused Ion Beam (FIB) circuit edit
(CE) to successfully produce a physical clone of a SRAM PUF. Although we

338 W. Feng et al.

assume a ‘good’ PUF in the adversary model, it’s better to strengthen SRAM
PUF with synthesized logic as recommended in [22] or adopt other PUF instances
(like Flash-based PUF [50]) for high-security applications. Recently, data rema-
nence attack [4] brought a new threat to SRAM PUF, but the attack needs a
harsh condition (low-temperature between −110 ◦C and −40 ◦C). Verifying the
temperature using the sensors within embedded devices before each update may
mitigate this attack. Note that, our work is not to design an ideal PUF, but to
use PUF to design a secure code update mechanism. Actually, any PUF instances
can be used in our update protocol. In addition, we adopt SRAM PUF because
SRAM is ubiquitous in various computing devices and there are no modeling
attacks currently found against weak PUFs. But we have to assume A cannot
access the challenge-response interface of the PUF and cannot obtain temporary
data stored in volatile memory during the update protocol. Although this is a
strong assumption (the assumption is also used in other literatures like [10,23]),
it is necessary because no secure execution environment (like TEE) exists in
current embedded devices. However, this assumption can be improved by forc-
ing memory access control based on a Memory Protection Unit (MPU) [13,34]
or using other techniques such as obfuscation and white-box cryptography. We
adopt reverse FE due to less performance overhead, actually any FEs (like a
computationally secure FE [15]) can be used if they are more effective. Finally,
our work mainly focuses on providing security without changing hardware for
legacy devices. However, in many embedded scenes, modifying hardware is nec-
essary to provide strong security, and we think ARM TrustZone technology in
ARMv8-M architecture will be a good choice.

4 Implementation and Performance Considerations

Setup. We implement and evaluate our proposed secure code update scheme
on a MSP-EXP430G2 LaunchPad Development Board. The board is a com-
plete USB-based development and experimenter tool from Texas Instrument
with a MSP430G2553 MCU by default. The key features of the MSP430G2553
MCU include [29]: ultralow-power, von-Neumann architecture; 16-bit RISC CPU
(up to 16 MHz); 16 KB of programmable Flash; 512 bytes of SRAM.

We use the on-board SRAM as the source of entropy to implement the PUF
and random number generator (RNG). For reverse fuzzy extractor (RFE), we
adopt the BCH error correction code to eliminate noises and use a hash func-
tion as an entropy accumulator to generate unpredictable random keys. We
implement the hash function using SHA256, while the symmetric algorithm uses
128-bit AES. The MAC computation is implemented by using the construct of
HMAC-SHA256. As no hardware acceleration is supported in MSP430G2553,
all of the cryptographic algorithms are implemented in software based on [28].
As 512B SRAM is relatively small, our implementation is based on the follow-
ing guidelines: (1) Use more constants and Flash space; (2) Use fewer variables
and RAM space; (3) Initial SRAM values are written to Flash used for PUF and
RNG, and the actual SRAM space is reserved for global and local variables (.bss,

Secure Update for IoT Devices 339

.data and .stack). Our time performance is measured in clock cycles. As we set
the clock frequency to 1MHz, m cycles are equal to m/1, 000, 000 seconds. Our
evaluation code (in python) and data for PUF are uploaded to the Github2.

SRAM PUF and SRAM RNG. We collect the startup SRAM values from
two different MSP430G2553 devices, each measured over 50 power cycles. Based
on these data, we first evaluate the robustness, uniqueness and randomness of
SRAM PUF by analyzing the min-entropy and Hamming distance. For robust-
ness, we compute the intra-chip Hamming distance (HDIntra) between repeated
measurements of SRAM cells from the same chip. The resulting HDIntra is 260
(260/4096 = 6.3%) at average, and 743 (743/4096 = 18%) at worst. For unique-
ness, we compute the inter-chip Hamming distance (HDInter) and min-entropy
over the measurements from different chips. The average ratio for HDInter is
42.3%, and the min-entropy rate is 87% which means the average min-entropy
per bit is 0.87. For randomness, we compute the min-entropy over 50 repeatedly
measured SRAM values from the same chip, which gives an average min-entropy
rate of 7.76%. This means that we need at least 1/7.76% = 12.88 SRAM cells to
obtain one random bit. These evaluated results show a well-featured PUF.

4096-bit (=512B) SRAM space is allocated as follows: 2628 bits are used to
generate two PUF CRPs, and the remaining 1468 bits are used to derive random
numbers. The address spaces are separated to avoid direct correlation between
PUF and RNG. As only two CRPs can be used in each device, C1 and C2 needs
not to be transmitted over the network. Using multiple CRPs corresponds to
storing multiple session keys. It means that we have two default session keys.
Additionally, we use 256 bits SRAM to derive a 16-bit random nonce, which
is achieved by XORing adjacent bytes 16 times. Thus, 5 (1468/256) random
numbers can be used for each power cycle. Aysu et al. [10] showed that the
SRAM data can pass all experiments in the NIST statistical Test Suite after 8-
fold XORing, thus our 16-fold XORing is random enough. RNG is implemented
in assembly by using only two registers (one for the start address of SRAM RNG
and the other for the xor result). The code size of RNG is 56 bytes and it takes
44 clock cycles to output one random number. Theoretically, a random extractor
should be used instead to generate RNG, we choose XOR due to low overhead
and Aysu’s experience in [10].

Reverse Fuzzy Extractor. A BCH(n, k, d = 2t+1) [39] code allows to correct
errors up to t-bit within a n-bit block. We customize a BCH(127,15,53) based
on the open source code3, which can correct up to 20.5% noisy bits (greater
than the worst SRAM noise level of 18%). As the average min-entropy rate for
uniqueness is 87%, 1314 (2628/2) bits SRAM data contains 1143 (1314×0.87)
bits entropy. We use 1143 bits PUF entropy in 9 blocks of a BCH(127,15,53)
code, and 1008(=(127−15)×9) bits are leaked in the helper data. The remaining
entropy is 135 (=1143−1008) bits, which are enough for a 128-bit key. We use
SHA256 to hash the PUF response, and the 256-bit result is 2-XORed to obtain

2 https://github.com/vonwaist/PUFRNG.
3 http://www.eccpage.com/.

https://github.com/vonwaist/PUFRNG
http://www.eccpage.com/

340 W. Feng et al.

a 128-bit key. We assume that a single bit flips with a probability of Perror = 7%
(greater than the average HDIntra), then the probability that 27 bits or more
will flip in a 127-bit block is Pblock =

∑n=127
i=27

(
127
i

)
P i
error(1 − Perror)(127−i) ≈

1.87 × 10−7, and thus the error cannot be corrected in this case. For 9 blocks of
a BCH(127,15,53) code, the probability that a key can be fully reconstructed is
Pcorrect = (1 − Pblock)9 > 1 − 1.69 × 10−6.

The PUF and RFE.Gen are implemented in C with a code size of 3274 bytes,
and it also uses 768 bytes constant space and 426 bytes variable space. To save
RAM, we pre-compute the coefficients of the generator polynomial, log table
and antilog table of the Galois field GF(2m), and store these parameters as the
constants in the flash memory. The implementation contains four steps: read
SRAM values to generate a 1314-bit PUF response (it takes 1471 cycles); use
SHA256 and 2-XORing to generate a 128-bit key (it takes 290,951 clock cycles);
BCH Encoder for 9 blocks (it takes 585,504 clock cycles); write the result to
Flash (132,982 cycles).

Symmetric Algorithm, Hash and MAC. There is a decryption operation for
each update protocol, and we adopt 128-bit AES algorithm. The code size of Dec
is 910 bytes, and the memory requirements for its constants and variables are
522 bytes and 119 bytes, respectively. To decrypt a 128-bit cipher text, Dec takes
about 23,487 CPU cycles. The hash function is SHA256, and its implementation
costs 1530 bytes of code size, 288 bytes of constant space and 271 bytes of variable
space. The performance of SHA256 depends on the specific input size, e.g., 96,617
cycles for 50-byte input, 291,040 cycles for 150-byte. HMAC is implemented
based on SHA256, and its code size is 2348 bytes. For a 16-byte message, HMAC-
SHA256 takes about 392,174 clock cycles. As many MCUs support cryptographic
hardware security4, the performance can be improved further.

Secure Erasure and Local Attestation. Two algorithms SecureErasure()
and LocalAttestation() are both implemented based on SHA256. The code size of
SecureErasure() is 2,568 bytes, and the number of clock cycles it takes to erase a
512B flash section is 1,615,880. The main time consumption of SecureErasure()
is caused by SHA256 computation and Flash write operation. The primary role
of LocalAttestation is CheckCodeIntegrity(), which is also the most time-
consuming part. CheckCodeIntegrity() computes the hash value of a given
memory block and compares it with the reference value, and it takes about
292,422 clock cycles for a 128-byte application program code.

Protected Memory. In our method, write-protection is needed for storing the
version, reference hashes and RoT code, and we use existing hardware resources
in embedded devices to implement a static non-volatile write-protected region R.
In MSP430G2553, the hardware resources are Flash memory. According to [29],
the Flash memory of MSP430G2553 is partitioned into main and information
memory sections. The information memory has four 64-byte segments, and the
main memory has multiple 512-byte segments. The information memory can be
locked separately from the main memory with a LOCKA bit. When LOCKA is
4 http://www.ti.com/ww/en/embedded/security/index.shtml.

http://www.ti.com/ww/en/embedded/security/index.shtml

Secure Update for IoT Devices 341

set, the information memory is protected and cannot be written or erased. Thus,
RoT code can be stored in the information memory. As the size (256-byte) of
information memory in MSP430G2553 is smaller than the size of our RoT code,
our evaluation described above uses the main memory. However, this does not
affect the evaluation results because there are no other differences between the
information and main memory except for the lock bit.

In MSP430FR family [30], the protected hardware resources are FRAMs
similar for MPU. An FRAM is a non-volatile memory that can be read and
written like a standard SRAM. An MPU can be used to divide the device’s
main memory into three variable-sized segments with configurable read, write
and execute access. Furthermore, the protection of the second segment can be
temporarily removed when necessary by the bootloader, which can be used to
store and update the integrity reference hash values. Bootloader (similar to our
RoT) locks the MPU settings before jumping to the application, preventing the
application from corrupting or overwriting the protected area. For the security
of PUF, we propose to allow only the RoT code to access the start-up values at
boot time, and after that the SRAM space is erased by RoT.

For uninterruptible execution, we suggest to disable the interrupt during the
execution of RoT code. Before the control is handed over to the applicaton
code, RoT enables the interrupt and at the same time checks the integrity of
application code and all interrupt handlers.

Comparison with Public-Key Cryptography. As the MSP430G2553 device
does not have enough resources to implement and run a ECC/RSA algorithm,
we compare our PUF-based AES encryption (with 128-bits key) with a RSA
encryption (with 2048-bits key) in a host environment. RSA is implemented
based on the open-source mbed TLS library5. For a 100-bytes plain message,
we test the two encryption operations 1000 times respectively. The min, max
and average runtime for PUF-based AES encryption are 0.023 ms, 1.927 ms,
and 0.0549 ms; and the runtime for RSA are 1.076 ms, 16.07 ms, and 1.37 ms.
Obviously, our method is more lightweight and more suitable for tiny embedded
devices. In the future, we plan to purchase a more rich embedded development
board (e.g., MSP430FR family) to make a more comprehensive comparison.

5 Related Work

Remote Attestation. Remote attestation can be categorized in three main
branches: hardware-based attestation, software-based attestation and hardware-
software co-design with minimum hardware requirements. Hardware-based attes-
tation relies on strong hardware features, such as TCG’s TPM [8,41], ARM
TrustZone [6] and Intel SGX [5], which are not supported on low-cost commod-
ity embedded devices. Software-based attestation [7,26,46,48] does not require
secure hardware and thus is well suitable for constrained embedded systems.

5 https://tls.mbed.org/.

https://tls.mbed.org/

342 W. Feng et al.

However, its security guarantee is weak. Between the two mechanisms, hardware-
software co-design [13,17,34,36,40] aims to build a dynamic trust anchor in a
low-end embedded device with minimal changes to existing MCUs. The trust
anchor established can be further used to design a scalable collective attestation
protocol (SEDA [9] and SANA [3]), meeting the global security requirements of
large groups of interconnected smart devices. In our opinion, all remote attes-
tation mechanisms can be used to strengthen secure updates, e.g., to verify the
code integrity after update. But a complete secure code update is more than a
remote attestation mechanism.

Secure Code Updates For Embedded Devices. SCUBA [47] is a secure
code update mechanism by using software-based attestation to ensure indis-
putable code execution (ICE) on a remote sensor node. PoSE [42] is a different
approach that can enable a prover device to convince a verifier that it has erased
all its memory. As the overhead of PoSE is relatively high, some researchers try
to explore effective skills to reduce the overhead including uncomputable hash
function [16], invert-hash PoSE and graph-based PoSE [33], and All or Nothing
Transforms [32]. Recently, Kohnhauser and Katzenbeisser [35] presented a novel
code update scheme which verifies and enforces the correct installation of code
updates on all commodity low-end embedded devices in a mesh network. To
address the security threats involved with the in-field firmware updates process,
Texas Instruments [21,30,31] proposes to integrate cryptographic algorithms and
security mechanisms into the bootloader of its ultra-low-energy MCUs.

SRAM PUF. The SRAM PUF was first introduced in 2007 by Holcomb et
al. [24,25] and Guajardo et al. [20] concurrently and independently. Holcomb
et al. [24,25] proposed to use SRAM physical fingerprints for identification and
generation of true random numbers in RFID tag circuits, while Guajardo et
al. [20] used initial SRAM values to design new protocols for IP protection on
FPGAs. To provide a viable alternative to costly protected non-volatile mem-
ory (NVM), Maes et al. [38] presented a low-overhead implementation of helper
data algorithm for SRAM PUFs using soft decision information. The SRAM
PUF was implemented and evaluated on a microcontroller in [12]. Researchers
from intrinsic-ID showed the construction of a FIPS 140-3 compliant random bit
generator based on SRAM PUF in [49], and presented a comparative analysis of
several types of SRAM memories from different technology nodes and demon-
strated the reliability and uniqueness of all the tested SRAMs when used as PUFs
in [43]. Aysu et al. showed in [10] that SRAM PUF can be used to design and
implement a provably secure protocol that supports privacy-preserving mutual
authentication.

6 Conclusion

In this paper, we presented a novel secure code update scheme for commod-
ity low-end embedded devices by combing the advantages of secure erasure and
physically unclonable function. We concluded eight security threats that may

Secure Update for IoT Devices 343

happen in secure code updates from the existing literature, and showed how our
scheme can be used to prevent or mitigate these threats. Our scheme doesn’t rely
on secure storage or secure communication. By using the symmetric cryptogra-
phy and lightweight construction of a reverse fuzzy extractor, our approach offers
acceptable communication and computation overhead. Finally, we also eliminate
the gap from the world of protocol theory to concrete realization through evalu-
ating all protocol components in a single TI MSP430 device. Our implementation
uses only on-board SRAM and the protected memory resources without requir-
ing any hardware modifications, which is applicable to a broad range of popular
low-end embedded systems.

Acknowledgments. The work has been supported by the National Natural Science
Foundation of China (No. 61602455 and No. 61402455). We thank anonymous reviewers
for their helpful comments. We specially thank Aurlien Francillon for his suggestions
on improving the paper.

References

1. Abera, T., et al.: Invited: things, trouble, trust: on building trust in IoT systems. In:
53nd ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6 (2016)

2. Ambrosin, M., Anzanpour, A., Conti, M., Dargahi, T., Moosavi, S.R., Rahmani,
A.M., Liljeberg, P.: On the feasibility of attribute-based encryption on internet of
things devices. IEEE Micro 36(6), 25–35 (2016)

3. Ambrosin, M., Conti, M., Ibrahim, A., Neven, G., Sadeghi, A.-R., Schunter, M.:
SANA: secure and scalable aggregate network attestation. In: Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security, CCS
2016, pp. 731–742. ACM, New York (2016)

4. Anagnostopoulos, N.A., Katzenbeisser, S., Rosenstihl, M., Schaller, A., Gabmeyer,
S., Arul, T.: Low-temperature data remanence attacks against intrinsic SRAM
PUFs. Cryptology ePrint Archive, Report 2016/769 (2016). http://eprint.iacr.org/
2016/769

5. Anati, I., Gueron, S., Johnson, S.P., Scarlata, V.R.: Innovative technology for CPU
based attestation and sealing. In: Proceedings of the 2nd International Workshop
on Hardware and Architectural Support for Security and Privacy, vol. 13 (2013)

6. ARM. Arm security technology: Building a secure system using trustzone technol-
ogy. Technical report, ARM Technical White Paper (2009)

7. Armknecht, F., Sadeghi, A.-R., Schulz, S., Wachsmann, C.: A security framework
for the analysis and design of software attestation. In: Proceedings of the 2013 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2013, pp.
1–12. ACM, New York (2013)

8. Arthur, W., Challener, D.: A Practical Guide to TPM 2.0: Using the Trusted
Platform Module in the New Age of Security. Apress, Berkely (2015)

9. Asokan, N., et al.: SEDA: scalable embedded device attestation. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security,
CCS 2015, NY, USA, pp. 964–975 (2015)

10. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end design
of a PUF-based privacy preserving authentication protocol. In: Güneysu, T., Hand-
schuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 556–576. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 28

http://eprint.iacr.org/2016/769
http://eprint.iacr.org/2016/769
https://doi.org/10.1007/978-3-662-48324-4_28

344 W. Feng et al.

11. Bhm, C., Hofer, M.: Physical Unclonable Functions in Theory and Practice.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4614-5040-5

12. Bohm, C., Hofer, M., Pribyl, W.: A microcontroller SRAM-PUF. In: 5th Interna-
tional Conference on Network and System Security (NSS), pp. 269–273, September
2011

13. Brasser, F., El Mahjoub, B., Sadeghi, A.-R., Wachsmann, C., Koeberl, P.: TyTAN:
tiny trust anchor for tiny devices. In: Proceedings of the 52nd Annual Design
Automation Conference, DAC 2015, pp. 34:1–34:6. ACM, New York (2015)

14. Bratus, S., D’Cunha, N., Sparks, E., Smith, S.W.: TOCTOU, traps, and trusted
computing. In: Lipp, P., Sadeghi, A.-R., Koch, K.-M. (eds.) Trust 2008. LNCS,
vol. 4968, pp. 14–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-68979-9 2

15. Canetti, R., Fuller, B., Paneth, O., Reyzin, L., Smith, A.: Reusable fuzzy extractors
for low-entropy distributions. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT
2016. LNCS, vol. 9665, pp. 117–146. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49890-3 5

16. Dziembowski, S., Kazana, T., Wichs, D.: One-time computable self-erasing func-
tions. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 125–143. Springer, Hei-
delberg (2011). https://doi.org/10.1007/978-3-642-19571-6 9

17. Eldefrawy, K., Francillon, A., Perito, D., Tsudik, G.: SMART: secure and minimal
architecture for (establishing a dynamic) root of trust. In: 19th Annual Network
and Distributed System Security Symposium, NDSS 2012, San Diego, USA, 5–8
February (2012)

18. Feng, W., Qin, Y., Zhao, S., Feng, D.: Secure code updates for smart embed-
ded devices based on PUFs. Cryptology ePrint Archive, Report 2017/991 (2017).
http://eprint.iacr.org/2017/991

19. Gassend, B., Edward Suh, G., Clarke, D., van Dijk, M., Devadas, S.: Caches and
hash trees for efficient memory integrity verification. In: Proceedings of the 9th
International Symposium on High-Performance Computer Architecture, HPCA
2003, Washington, DC, USA, p. 295 (2003)

20. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74735-2 5

21. Guillen, O., Nisarga, B., Reynoso, L., Brederlow, R.: Crypto-bootloader secure in-
field firmware updates for ultra-low power MCUs. Texas Instruments Incorporated
(2015)

22. Helfmeier, C., Boit, C., Nedospasov, D., Seifert, J.P.: Cloning physically unclonable
functions. In: 2013 IEEE International Symposium on Hardware-Oriented Security
and Trust (HOST), pp. 1–6, June 2013

23. Van Herrewege, A.: Reverse fuzzy extractors: enabling lightweight mutual authen-
tication for PUF-enabled RFIDs. In: Keromytis, A.D. (ed.) FC 2012. LNCS, vol.
7397, pp. 374–389. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32946-3 27

24. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and
source of true random numbers for RFID tags. In: Proceedings of the Conference
on RFID Security, vol. 7 (2007)

25. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying
fingerprint and source of true random numbers. IEEE Trans. Comput. 58(9), 1198–
1210 (2009)

https://doi.org/10.1007/978-1-4614-5040-5
https://doi.org/10.1007/978-3-540-68979-9_2
https://doi.org/10.1007/978-3-540-68979-9_2
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-662-49890-3_5
https://doi.org/10.1007/978-3-642-19571-6_9
http://eprint.iacr.org/2017/991
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-642-32946-3_27
https://doi.org/10.1007/978-3-642-32946-3_27

Secure Update for IoT Devices 345

26. Horsch, J., Wessel, S., Stumpf, F., Eckert, C.: SobTra: a software-based trust anchor
for ARM cortex application processors. In: Proceedings of the 4th ACM Conference
on Data and Application Security and Privacy, pp. 273–280. ACM (2014)

27. Ibrahim, A., Sadeghi, A.-R., Tsudik, G., Zeitouni, S.: DARPA: device attestation
resilient to physical attacks. In: Proceedings of the 9th ACM Conference on Secu-
rity and Privacy in Wireless and Mobile Networks, WiSec 2016, pp. 171–182. ACM,
New York (2016)

28. Texas Instruments Incorporated. C implementation of cryptographic algorithms,
SLAA547A-July 2013 (2013)

29. Texas Instruments Incorporated. MSP430x2xx family user’s guide, SLAU144J-
December 2004, Revised July 2013

30. Texas Instruments Incorporated. Crypto-bootloader (CryptoBSL) for MSP430FR
59xx and MSP430FR69xx MCUs, user’s guide, SLAU657-November 2015 (2015)

31. Texas Instruments Incorporated. Secure in-field firmware updates for MSP MCUs,
application report, SLAA682-November 2015 (2015)

32. Karame, G.O., Li, W.: Secure erasure and code update in legacy sensors. In: Conti,
M., Schunter, M., Askoxylakis, I. (eds.) Trust 2015. LNCS, vol. 9229, pp. 283–299.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22846-4 17

33. Karvelas, N.P., Kiayias, A.: Efficient proofs of secure erasure. In: Abdalla, M., De
Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 520–537. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-10879-7 30

34. Koeberl, P., Schulz, S., Sadeghi, A.-R., Varadharajan, V.: TrustLite: a security
architecture for tiny embedded devices. In: Proceedings of the Ninth European
Conference on Computer Systems, EuroSys 2014, pp. 10:1–10:14. ACM, New York
(2014)

35. Kohnhäuser, F., Katzenbeisser, S.: Secure code updates for mesh networked com-
modity low-end embedded devices. In: Askoxylakis, I., Ioannidis, S., Katsikas, S.,
Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9879, pp. 320–338. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45741-3 17

36. Kong, J., Koushanfar, F., Pendyala, P.K., Sadeghi, A.-R., Wachsmann, C.: PUFatt:
embedded platform attestation based on novel processor-based PUFs. In: Proceed-
ings of the 51st Annual Design Automation Conference, DAC 2014, pp. 109:1–
109:6. ACM, New York (2014)

37. Liu, Z., Seo, H., Hu, Z., Hunag, X., Grosschadl, J.: Efficient implementation of
ECDH key exchange for MSP430-based wireless sensor networks. In: Proceedings
of the 10th ACM Symposium on Information, Computer and Communications
Security, ASIACCS 2015, pp. 145–153. ACM, New York (2015)

38. Maes, R., Tuyls, P., Verbauwhede, I.: Low-overhead implementation of a soft deci-
sion helper data algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES
2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-04138-9 24

39. Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: a fully functional PUF-
based cryptographic key generator. In: Prouff, E., Schaumont, P. (eds.) CHES
2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-33027-8 18

40. Noorman, J., et al.: Sancus: low-cost trustworthy extensible networked devices
with a zero-software trusted computing base. In: Proceedings of the 22nd USENIX
Conference on Security, SEC 2013, Berkeley, CA, USA, pp. 479–494 (2013)

41. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping trust in commodity computers.
In: 2010 IEEE Symposium on Security and Privacy, SP 2010, pp. 414–429. IEEE
Computer Society, May 2010

https://doi.org/10.1007/978-3-319-22846-4_17
https://doi.org/10.1007/978-3-319-10879-7_30
https://doi.org/10.1007/978-3-319-45741-3_17
https://doi.org/10.1007/978-3-642-04138-9_24
https://doi.org/10.1007/978-3-642-04138-9_24
https://doi.org/10.1007/978-3-642-33027-8_18
https://doi.org/10.1007/978-3-642-33027-8_18

346 W. Feng et al.

42. Perito, D., Tsudik, G.: Secure code update for embedded devices via proofs of
secure erasure. In: Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS
2010. LNCS, vol. 6345, pp. 643–662. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-15497-3 39

43. Schrijen, G.-J., van der Leest, V.: Comparative analysis of SRAM memories used
as PUF primitives. In: Proceedings of the Conference on Design, Automation and
Test in Europe, DATE 2012, pp. 1319–1324. EDA Consortium, San Jose (2012)

44. Schulz, S., Sadeghi, A.-R., Wachsmann, C.: Short paper: lightweight remote attes-
tation using physical functions. In: Proceedings of the Fourth ACM Conference on
Wireless Network Security, WiSec 2011, pp. 109–114. ACM, New York (2011)

45. Sehr, D., et al.: Adapting software fault isolation to contemporary CPU archi-
tectures. In: Proceedings of the 19th USENIX Conference on Security, USENIX
Security 2010, p. 1. USENIX Association, Berkeley (2010)

46. Seshadri, A., Perrig, A., van Doorn, L., Khosla, P.: SWATT: software-based attes-
tation for embedded devices. In: Proceedings of 2004 IEEE Symposium on Security
and Privacy, pp. 272–282, May 2004

47. Seshadri, A., Luk, M., Perrig, A., van Doorn, L., Khosla, P.: SCUBA: secure code
update by attestation in sensor networks. In: Proceedings of the 5th ACM Work-
shop on Wireless Security, WiSe 2006, pp. 85–94. ACM, New York (2006)

48. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer:
verifying code integrity and enforcing untampered code execution on legacy sys-
tems. In: Proceedings of the Twentieth ACM Symposium on Operating Systems
Principles, SOSP 2005, pp. 1–16. ACM, New York (2005)

49. van der Leest, V., van der Sluis, E., Schrijen, G.-J., Tuyls, P., Handschuh, H.:
Efficient implementation of true random number generator based on SRAM PUFs.
In: Naccache, D. (ed.) Cryptography and Security: From Theory to Applications.
LNCS, vol. 6805, pp. 300–318. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-28368-0 20

50. Wang, Y., Yu, W., Wu, S., Malysa, G., Edward Suh, G., Kan, E.C.: Flash memory
for ubiquitous hardware security functions: true random number generation and
device fingerprints. In: Proceedings of the 2012 IEEE Symposium on Security and
Privacy, SP 2012, pp. 33–47. IEEE Computer Society, Washington (2012)

51. Yang, Y., Wang, X., Zhu, S., Cao, G.: Distributed software-based attestation for
node compromise detection in sensor networks. In: 26th IEEE International Sym-
posium on Reliable Distributed Systems, SRDS 2007, pp. 219–230, October 2007

52. Yiu, J.: White paper: ARMv8-M architecture technical overview (2015)
53. Zhao, S., Zhang, Q., Hu, G., Qin, Y., Feng, D.: Providing root of trust for arm

trustzone using on-chip SRAM. In: Proceedings of the 4th International Workshop
on Trustworthy Embedded Devices, TrustED 2014, pp. 25–36. ACM, New York
(2014)

https://doi.org/10.1007/978-3-642-15497-3_39
https://doi.org/10.1007/978-3-642-15497-3_39
https://doi.org/10.1007/978-3-642-28368-0_20
https://doi.org/10.1007/978-3-642-28368-0_20

A Privacy-Preserving Device Tracking
System Using a Low-Power

Wide-Area Network

Tomer Ashur1, Jeroen Delvaux1, Sanghan Lee2, Pieter Maene1(B),
Eduard Marin1, Svetla Nikova1, Oscar Reparaz1, Vladimir Rožić1,

Dave Singelée1, Bohan Yang1, and Bart Preneel1

1 imec-COSIC KU Leuven, Leuven, Belgium
{tomer.ashur,jeroen.delvaux,pieter.maene,eduard.marin,

svetla.nikova,oscar.reparaz,vladimir.rozic,dave.singelee,bohan.yang,

bart.preneel}@esat.kuleuven.be
2 The Attached Institute of ETRI, 1559, Yuseong-daero, Yuseong-gu,

Daejeon 34044, South Korea
freewill71@nsr.re.kr

Abstract. This paper presents the design and implementation of a low-
power privacy-preserving device tracking system based on Internet of
Things (IOT) technology. The system consists of low-power nodes and
a set of dedicated beacons. Each tracking node broadcasts pseudonyms
and encrypted versions of observed beacon identifiers over a Low-Power
Wide-Area Network (LPWAN). Unlike most commercial systems, our
solution ensures that the device owners are the only ones who can locate
their devices. We present a detailed design and validate the result with
a prototype implementation that considers power and energy consump-
tion as well as side-channel attacks. Our implementation uses Physically
Unclonable Function (PUF) technology for secure key-storage in an inno-
vative way. We build and evaluate a complete demonstrator with off-the-
shelf IoT nodes, Bluetooth Low Energy (BLE) beacons, and LoRa long
distance communication (LPWAN). We validate the setup for a bicycle
tracking application and also estimate the requirements for a low-cost
ASIC node.

1 Introduction

The Internet of Things (IOT) will transform our society. Predictions about the
scale and speed of this transformation vary – Gartner claims that there will be
26 billion IOT devices by 2020, Cisco predicts 50 billion, Intel 200 billion and
IDC 212 billion – but there is no doubt that this development will have a major
impact on our lives.

One of the main benefits of the IoT is that it links the physical world to the
online world. A key application is the localization and tracking of objects. The
simplest way to track objects is by adding a barcode. However, those are limited
to the line of sight of the reader and store little information. Radio-Frequency
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 347–369, 2018.
https://doi.org/10.1007/978-3-030-02641-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_16

348 T. Ashur et al.

IDentification (RFID) tags overcome these limitations; they were mostly con-
sidered for deployment in warehouses or shops, but with the appropriate back-
office infrastructure, they could be used for tracking during the complete supply
chain. Unfortunately, RFID tags require external power, have only limited com-
putational capabilities, and can only be used for short-range communications.
Another development is the tracking of more sophisticated mobile devices such
as smartphones, tablets, and laptops. The first two typically have Global Posi-
tioning System (GPS) receivers and all of them can detect nearby WiFi networks.
Using an Internet connection, it is rather straightforward to make them ‘phone
home’ so that legitimate owners can recover them. A similar feature is being
added to cars, in order to assist users to find their car in large parking lots,
or to help track lost or stolen cars. Multiple location services allow users to
locate their friends or spouses using smartphones. Another fascinating develop-
ment created by modern technologies is participatory sensing: while the original
goal was to crowdsource data on weather or mobility patterns, they could also
be used to track objects or users. Dedicated IOT trackers are also arriving on
the market: low-cost nodes broadcast information that helps owners locate their
keys, wallets, or bicycles. Some of these devices such as Tile [6] and TrackR [7]
use a combination of Bluetooth Low Energy (BLE) with crowdsourcing (GPS
location on smartphones); others such as SemTech exploit the fact that – unlike
RFID tags – modern IOT nodes can communicate over long distances with a
Low-Power Wide-Area Network (LPWAN) such as LoRa. For several devices,
vulnerabilities have been reported, e.g., in [4].

With the deployment of these applications, there has been an increased inter-
est in the privacy aspects of tracking, and in a broader sense, in the privacy of
location-based services. At first sight, it seems to be impossible to reconcile
these properties: devices should be tracked by their legitimate owners, yet one
wants to offer privacy against third parties and service providers. Cryptographic
techniques can overcome this paradox. In particular in the area of RFID, sev-
eral solutions have been proposed that offer a broad range of tradeoffs between
security, privacy, and scalability. However, low-cost IoT devices have capabilities
that go well beyond those of RFID tags. While one can repurpose some of the
ideas, long distance communications bring new threats but also new opportu-
nities to enhance security and privacy. For devices that are connected to the
Internet, more sophisticated solutions have been developed that offer advanced
privacy features (e.g., the Adeona and Eddystone systems described in Sect. 2).
We show how similar goals can be achieved with low-energy and low-cost nodes
and for devices that are not inherently connectable.

Contributions. We present a system that allows users to track the location of
their devices such that the intermediate entities learn neither the device’s loca-
tion nor to whom it belongs. Our privacy-preserving tracking system is based
on a small, low-cost tracking device, also known as a tag, that is attached to
any user’s personal belongings (e.g., a bicycle), and a set of dedicated beacons.
A schematic overview of the system is depicted in Fig. 1. Our protocol provides

A Privacy-Preserving Device Tracking System Using a LPWAN 349

message confidentiality and integrity as well as entity authentication, unlinkabil-
ity, and forward privacy. Furthermore, it has built-in resistance to side-channel
attacks. Our prototype uses commercial components and offers secure key stor-
age based on a PUF. The latency of our prototype, as well as its power and
energy consumption, is evaluated, and we also outline an ASIC design for the
tag.

Tag

Beacon Beacon

Beacon

BLEID
1

BL
E

ID
2

BLE

ID
3

LoRa
LoRaWAN
EK(IDs)

Internet
Application Server

Tor

User Terminal

Fig. 1. The proposed tracking system showing all components and communication
channels involved.

Notation. Binary vectors are denoted by a bold-faced, lowercase character,
e.g., x = (x1 x2). All vectors are row vectors. The all-zeros vector is denoted
by 0. Binary matrices are denoted by a bold-faced, uppercase character, e.g.,
X. A random variable is denoted by a regular uppercase character, e.g., X. The
set of all n-bit vectors is denoted by {0, 1}n. Procedure names are printed in a
sans-serif font, e.g., Func(·). The operator ‖ denotes concatenation.

Organization. The remainder of this paper is organized as follows. Section 2
gives an overview of the related work. Section 3 details the threat model and
assumptions about the building blocks. Section 4 describes the design require-
ments and the proposed protocol, whereas the practical aspects and the imple-
mentation of our system are discussed in Sect. 5. The security and privacy are
analyzed in Sect. 6. An evaluation of our prototype implementation is given in
Sect. 7. Finally, Sect. 8 presents concluding remarks.

2 Related Work

Over the last years, the problem of providing privacy in tracking systems has
been extensively studied in RFID systems. See for instance the series of papers by
Avoine et al. [14,15,17–20], Juels et al. [37,38], Weis et al. [54], Molnar et al. [47],
Henrici et al. [33–35], Saito et al. [50], Alomair et al. [12,22] and Spiekermann
et al. [52].

350 T. Ashur et al.

Variants of this problem arise in other technologies such as electronic pass-
ports [16] or Bluetooth-based localization services. Google’s Eddystone [32] is
a modern example of a BLE-based tracking system featuring some privacy
enhancements. Eddystone allows “ephemeral identifiers” that rotate periodically
to enhance privacy. Only trusted parties can resolve the ephemeral identifier to
the actual identity by performing an expensive, yet feasible, computation. Other
parties that attempt to deanonymize ephemeral identifiers are faced with a com-
putational problem of prohibitive cost. Apple’s iBeacon is a BLE-based tracking
system but it does not support any equivalent of ephemeral identifiers [9].

In addition to BLE, key technologies for location tracking are GPS and
RFID. The former is a satellite-based positioning system providing 3D coor-
dinates with up to five-meter-precision anywhere on Earth. This high accuracy,
however, comes at a cost in terms of power, with modern GPS receivers drawing
up to tens of mA when tracking objects [8]. RFID tags are passively powered
circuits that are typically used to identify objects. Due to their passive nature,
the power consumption of these tags is extremely low, with read-outs requir-
ing only around 10µW of input power from the reader [11]. However, this also
implies that tags can only be read out from a limited distance, therefore offer-
ing a shorter range and a lower accuracy than GPS. In our system, the tag
determines its position using BLE, which has a current draw on the order of
hundreds of µA when scanning for beacons [10]. Our solution can therefore be
positioned between GPS and RFID in terms of range, accuracy, and power.

Several systems have been proposed that allow tracking of objects such as
bicycles, while using existing IOT technologies and preserving the user’s privacy.
Bochem et al. [25] presented a privacy-preserving tracking system that relies on
GPS-enabled devices and base stations distributed over the tracking area. When
a device is reported as stolen by its legitimate user, base stations broadcast its ID
in order to activate its tracking module. This solution, however, presents several
limitations. First, broadcasting the unique ID of a stolen device can pose signif-
icant privacy risks. Second, GPS may not be suitable for resource-constrained
tracking modules since it incurs high energy costs. Third, this solution requires
the service provider to be trusted. A rogue service provider could, for example,
pretend that a given device has been reported as stolen and start broadcasting
its ID. Fourth, the device needs to support downlink communication with the
base stations. This process can be expensive in terms of energy since the device
needs to periodically scan for messages sent by base stations. We address all
four limitations: tags encrypt beacon IDs and use pseudonyms, localization is
achieved using BLE, the service provider is trusted only for availability reasons,
and tags only use uplink communication.

The Adeona system by Ristenpart et al. [49] presents an efficient solution that
can be used to track Internet-connected devices. However, Adeona has several
limitations. Firstly, it only supports the tracking of devices that are connected
to the Internet. Secondly, the location is determined using IP geolocation ser-
vices. Thirdly, it requires devices and users to have a synchronized clock. Our
solution addresses all these shortcomings. By using BLE and LoRa technologies,

A Privacy-Preserving Device Tracking System Using a LPWAN 351

objects that are isolated from the Internet can be tracked without the need for
a synchronized clock.

3 Threat Model and Assumptions

Threat Model. Our privacy-preserving tracking system considers the presence
of both passive adversaries, who can eavesdrop on any given communication
channel in Fig. 1, and active adversaries, who can additionally jam, replay, mod-
ify, inject, delay, and forge messages. We do not consider fingerprinting attacks
that uniquely identify a device based on its physical characteristics [28]. Adver-
saries can obtain physical access to a tag and perform simple side-channel attacks
such as Simple Power Analysis (SPA) and Differential Power Analysis (DPA).
More sophisticated side-channel attacks such as template attacks require exten-
sive profiling of the device and are not considered. We do not claim any resistance
to adversaries who can perform physically invasive attacks on a tag. This implies
that data stored in volatile memory, e.g., registers, and Non-Volatile Memory
(NVM), e.g., flash, can be neither read nor modified. In Sect. 4.4, we extend our
design such that the assumption of secure NVM can be relaxed. Debugging and
programming interfaces are irreversibly disabled, i.e., internal components can-
not be accessed through software tools. Adversaries can detach tags from their
assets; for a bicycle, this could be made more difficult by hiding tags inside the
frame. Finally, note that an adversary could always track an object in a limited
region with relatively modest means, e.g., a set of cameras.

Assumptions. While some of the beacons can act maliciously, e.g., by broad-
casting the ID of another beacon, we assume that the majority of the beacons is
legitimate. This enables the user terminal to detect inconsistencies in the received
location data. The LoRa infrastructure is trusted only for availability reasons;
LoRa provides built-in device authentication which allows to protect against
Denial-of-Service (DOS) attacks such as flooding. However, the current LoRa
protocol does not provide any location privacy since all messages contain the
unique Media Access Control (MAC) address of the sender. Our solution targets
a future, privacy-preserving version of LoRaWAN that would support privacy
features such as MAC randomization. Furthermore, while we choose LoRa to
build our prototype, any similar networking technology could be used.

The application server is trusted for availability reasons and is assumed to
be honest-but-curious. In other words, it follows the protocol specifications but
may try to learn information about the users and the tags. The application
server communicates with both the LoRa infrastructure and the user terminal
over a secure channel, e.g., using Transport Layer Security (TLS). To preserve
anonymity, users can establish a connection over the Internet with, e.g., Tor [30].
Moreover, users should regularly delete their tag’s location history from their
terminal, thereby limiting forward privacy loss if the terminal were to be com-
promised.

352 T. Ashur et al.

4 Design

Section 4.1 describes the main entities and communication channels of our pro-
posed system. The requirements of the corresponding protocol are listed in
Sect. 4.2, and followed by its specification in Sect. 4.3. To allow for more cost-
effective NVM technologies with relaxed assumptions on physical security, we
extend our design with a PUF-based key generator in Sect. 4.4.

4.1 System Model

Our privacy-preserving tracking system is shown in Fig. 1 and can be summarized
as follows: a tag scans the BLE channel at fixed time intervals and stores the
IDs of all beacons it sees. In addition, the tag periodically sends an encrypted
list of observed beacon IDs to the application server via LoRa. LoRa is currently
one of the most promising wireless technologies, because it allows for long-range,
low-power, and low-cost communication. This makes LoRa suitable for tracking
devices that need to transmit small amounts of data a few times per day over
long distances. It is important to note, however, that other LPWAN technologies
could be used as well.

To prevent unauthorized parties from linking LoRa messages to tags, the use
of a public and static tag ID should be avoided. In our proposal, tags reveal their
identity through a one-time pseudonym that is refreshed with every message and
that can only be regenerated by the user terminal. By querying the application
server with a valid pseudonym, the user terminal can retrieve the location of its
tracking device.

Below, we describe the five main entities of our system in more detail. This
includes tags, BLE beacons, the LoRa infrastructure, the application server, and
the user terminal.

Tags. Tags are small, inexpensive, low-energy, and self-powered devices that
are attached to an object, e.g., a bicycle, for tracking purposes. They consist
of a low-end microcontroller and the following two network interfaces: BLE
and LoRaWAN. The former is used to collect the unique ID of all beacons
that are in close proximity to the tag, whereas the latter is used to regularly
send the encrypted version of the beacon IDs to the application server.
Beacons. Battery-powered beacons are provisioned in tracking-enabled
areas. Each beacon continuously transmits its unique ID over BLE.
LoRa Infrastructure. The LoRa infrastructure includes gateways and
servers that are managed by a network provider. The main function of the
LoRa infrastructure is to act as a channel between the tags and the applica-
tion server. More specifically, the LoRa infrastructure uses gateways to gather
the messages sent by tags over LoRa, stores them on internal servers, and then
forwards them to the corresponding application server.
Application Server. The application server collects the encrypted versions
of beacon IDs, which are sent by the tags through the LoRa infrastructure,
and provides them upon request to the authorized users.

A Privacy-Preserving Device Tracking System Using a LPWAN 353

User Terminal. Users download the location history of their tags from the
application server. The user terminal can be a smartphone or a laptop.

Beacons communicate with tags wirelessly using a unidirectional BLE chan-
nel, whereas the communication between tags and the LoRa infrastructure takes
place over a LoRa uplink. The application server communicates with the LoRa
infrastructure and the user terminal over the Internet, respectively using a secure
channel (e.g. TLS) and through an anonymous network (e.g. Tor).

4.2 Design Requirements

Our privacy-preserving tracking system should satisfy the following functional
(F), security (S) and privacy (P) requirements.

(F1) Energy Usage: A tag’s energy usage for both transmissions and com-
putations should be as low as possible.

(F2) Cost: The cost of tags after adding the security and privacy mecha-
nisms should remain as low as possible.

(F3) Efficiency: Users should be able to retrieve the location data from the
application server in an efficient manner.

(S1) Confidentiality of Location Data: Only authorized users should be
able to access the location history of their tags.

(S2) Message Integrity: Users should be assured that the received mes-
sages are fresh and have not been altered during transit.

(S3) Tag Authentication: Users should be assured that the received mes-
sages are sent by the tags attached to their personal belongings.

(P1) Tag Identity Privacy: No unauthorized entity should be able to learn
the identity of a tag from its transmissions.

(P2) Message Unlinkability: No entity should be able to link a transmis-
sion to a tag, or even associate two transmissions to the same source.

(P3) Forward Privacy: Adversaries who compromise a tag or its corre-
sponding user terminal should not be able to learn the tag’s past locations.

4.3 Protocol

We now specify a protocol that allows users to track their belongings in a privacy-
preserving manner. At constant time intervals, a tag wakes up from sleep mode
and stores all beacon IDs it can receive over BLE. The geographical coordinates
of each beacon are known and hence allow users to estimate the location of their
tags. For this purpose, each tag periodically transmits an encrypted version of
the collected beacon IDs to the application server over LoRa, using a key that
is shared with the legitimate user only. Each message also contains an ID of the
tag and can hence be retrieved by the user. Given that adversaries, including
the application server, would be able to link messages if tag IDs are static, this
comprises a dynamic, one-time pseudonym that can be reconstructed by the user
terminal only. To prevent linkage through predicable transmission times, each
message is sent at a random time within a pre-determined interval.

354 T. Ashur et al.

Following the manufacturing of a tag, a state stored in physically secure NVM
is initialized with a tag-specific, symmetric master key kTag. The programming
interface is irreversibly disabled afterwards. The value of kTag is also printed in
the form of a machine-readable barcode, i.e., a Quick Response (QR) code [36],
and given to the user when the tag is bought. To prevent the key kTag from
leaking through the supply chain, the QR code is stored inside the tracker’s
tamper-evident packaging. The user terminal is initialized by scanning the QR
code and hence shares kTag with the tag. After the initialization, the QR code
should be either destroyed or stored in, e.g., the user’s home safe. To facilitate
an implementation resistant to side-channel attacks (cf. Sect. 6.2), a tag updates
the value of its key after every transmission. The first session key k0 is obtained
by feeding kTag into a cryptographic hash function H, thereby overwriting the
state stored in NVM. As depicted in Fig. 2, the same update mechanism applies
to all subsequent session keys ki.

kTag k0 k1 ki · · ·H H H

K
D
F p

kAEd K
D
F p

kAEd K
D
F p

kAEd

Fig. 2. A one-time session key ki is obtained by hashing the previous session key ki−1,
with k0 = H(kTag). Next, the pseudonym p and encryption key kAE are derived from
ki. Here H is a cryptographic hash function and KDF(d,k) a Key Derivation Function
with key domain separator d.

To protect a user’s privacy, we designed our system such that tags only
transmit a single LoRa message per hour and the LoRa network provider does
not learn to whom a tag belongs. For this purpose, a tag generates a unique
pseudonym p and a one-time encryption key kAE for every transmission. Both
are derived from the session key ki using a key derivation function KDF(d,k),
where d denotes the key separation domain and k denotes the key. To be precise,
p = KDF(0,ki) and kAE = KDF(1,ki).

Messages consist of a pseudonym p and an encrypted payload. The latter, in
turn, consists of a ciphertext c and a message authentication tag t, i.e., (c, t) =
AEkAE(n = 0,a = p,m = b). Here, AEKAE denotes authenticated encryption
with associated data using key kAE, where the first argument is the nonce n,
the second argument the associated data a (which is authenticated but not
encrypted) and the third argument is the plaintext m. Note that the nonce n
can be set to zero as a unique key is used for every encryption. The list of
beacon IDs discovered during a scan interval is denoted by b; it always contains
q entries, where q is a constant that is constrained by the bandwidth of the LoRa
connection. If less than q beacons were detected during the scan interval, the list

A Privacy-Preserving Device Tracking System Using a LPWAN 355

is padded with zeroes. If more than q beacons are discovered, the oldest ones are
discarded.

When users download the location history data from the application server
through their user terminal, the following procedure applies. First, they regen-
erate the current pseudonym p from the previous session key ki by hashing it,
where k0 = H(kTag). Subsequently, they send a request to the application server
for data (c, t) corresponding to pseudonym p, issuing an individual request for
each pseudonym. Finally, the user terminal decrypts the ciphertext c, verifies
the message authentication tag t, and processes the data items.

Since the networking service may not always be guaranteed, it is possible
that messages sent by the tag are not received by the application server. In this
event, the session keys ki at the user terminal and tag would be out of sync.
Furthermore, when the user terminal has not been used for some period of time,
its hash chain would also become desynchronized. In order to resynchronize,
the user terminal advances the hash chain and queries the application server
for the pseudonym derived from it, until the server again replies with a valid
message. The tag’s transmission interval determines an upper bound on the
number of attempted requests. On initialization, the user terminal performs a
similar exhaustive search to recover the session key of the first message stored
on the server. However, in order to prevent timing attacks where the application
server would link requests for different pseudonyms to the same user terminal,
and consequently the same tag, the user terminal should issue these requests
with random delays between them. As we assume the user terminal features
powerful processing and high-bandwidth network connectivity, the time required
for such searches is on the order of seconds, when the randomization delays are
not considered.

4.4 PUF-Based Key Generation

For tags to remain functional after an occasional reboot, the value of the last
session key ki previously had to be stored in physically secure NVM. We now
extend our design with a PUF-based key generator such that this assumption is
partially mitigated. To be precise, the attacker is allowed to have read-access, and
for the most part also write-access, to the NVM contents. Volatile memory, how-
ever, is still assumed to be inaccessible to the attacker. Moreover, the extended
design only requires the NVM to be one-time programmable, thereby eliminating
the higher manufacturing cost of multiple-time programmable NVM. Flash, for
example, requires floating-gate transistors and hence additional photomasks and
processing steps with respect to Complementary Metal–Oxide–Semiconductor
(CMOS)-compatible fuses.

Each tag implements an oversize PUF such that u > 1 independent keys kTag

can be extracted from its long response x [21]. For this purpose, the response
x is subdivided into u equally-sized partitions. A fuzzy extractor [31] ensures
that each kTag can be reproduced in a reliable manner despite the inherently
noisy evaluation of the PUF. This requires the storage of public helper data h
in NVM. Each kTag is used for the derivation of at most v session keys ki, as

356 T. Ashur et al.

previously depicted in Fig. 2. After v iterations, or whenever a device reboots, we
move to the next partition of response x. A monotonic counter c ∈ {1, 2, · · · , u},
which can be implemented with u fuses, points to the currently active partition.
The physical protection of this counter should primarily prohibit write-access:
a rollback of c would breach forward privacy. Read-access is of limited impor-
tance, given that for large-scale systems with numerous tags, c is only a weak
identifier. Moreover, the need for repeated physical access defeats the purpose of
this attack: mostly, a user’s belongings are inherently identifiable with the naked
eye, and if not, it is would be easier to add a low-tech, nearly-invisible marking.

The use of u > 1 partitions not only enables storing the session key hash
chain in volatile memory, as a new chain is started when the device reboots, it
also prevents side-channel attacks where a tag is repeatedly rebooted. We sug-
gest using u = 100 keys kTag ∈ {0, 1}128, given that 12.8 kbit still fits the storage
offered by a single QR code [36]. To support a device lifetime of, for example, 5
years, v = 438 session keys ki hence would have to derived from each kTag. An
occasional reboot therefore shortens the lifetime with at most 18.25 days. The
ESP32 microcontroller has plenty of Static Random-Access Memory (SRAM),
i.e., the core component of our PUF, and NVM available, and hence induces no
extra cost for the extraction of multiple keys kTag. On an ASIC, however, addi-
tional resources would have to allocated. Finally, we note that if the keys kTag

are recovered by the bootloader, the boot process should be protected, e.g., by
placing it in ROM.

5 Implementation

In Sect. 4, we proposed a system consisting of five entities. We now present
its prototype on commercial hardware, thereby implementing a tag (Sect. 5.1),
the application server (Sect. 5.2), and the user terminal (Sect. 5.3). Since the
beacons do not require any custom functionality, we used commercial Proximity
Beacons by Estimote [2]. They were configured to broadcast iBeacon packets,
which contain a Universally Unique Identifier (UUID) [9]. The beacons have
a configurable range of up to 70 m. To increase their battery life, the range is
set to approximately 50 m. The use of the crowd-sourced LoRa infrastructure,
managed by The Things Network [5], is not discussed in detail.

5.1 Tag

We selected the Pycom LoPy development board [48] to build a prototype imple-
mentation of the tag. This board features an Espressif ESP32 chipset which inter-
faces with Bluetooth, LoRa, and Wi-Fi radios. This chipset includes a dual-core
microcontroller running at 240 MHz, and has 512 KB of Dynamic Random-
Access Memory (DRAM) and 4 MB of flash memory. It also has hardware accel-
erators for the Advanced Encryption Standard (AES) and the Secure Hash Algo-
rithm (SHA) family. The board runs MicroPython, which is an implementation

A Privacy-Preserving Device Tracking System Using a LPWAN 357

of the Python 3 language for microcontrollers, offering high-level APIs for a lot
of its functionality (e.g., the wireless radios and crypto accelerators).

When a device boots, it connects to the LoRa network and configures two
internal timers. At the firing of the first clock with period tsci, the Bluetooth
radio is enabled and the tag starts scanning during a time tscd for iBeacon
advertisement frames. When a beacon is discovered, the upper m = 4 bytes of
its UUID are stored. This enables the deployment of up to 232 ≈ 4.3 billion
beacons in a given area. As the beacons broadcast continuously, advertisements
are received multiple times during each scan interval. Discovered identifiers are
therefore only added to the transmission buffer once during each scan interval.
After the scan has finished, the Bluetooth radio is turned off again. At most
q1 = 3 IDs are stored during each scan. In our current prototype, the scan
interval tsci is set to five minutes, and the scan duration tscd to one minute.

At the rate of the second, slower clock with period ttxi = q2 · tsci, where q2
is a positive integer, an encrypted version c of the collected IDs is transmitted
in addition to a pseudonym p and its tag t. The latter quantities are computed
from the current session key ki stored in flash memory. Afterwards, ki+1 is
computed and overwrites the previous session key. To prevent an attacker from
linking transmissions from the same tag if they were all sent at the end of their
corresponding transmission intervals, each message (p, c, t) is sent at a random
time within its transmission interval. An alternative solution requires all tags to
be perfectly synchronized in order to transmit at the exact same global time,
regardless of whether reboots occur. In our current prototype, the transmission
interval ttxi to one hour, which implies q2 = 12. Thus, at most q = q1 · q2 = 36
IDs need to be stored by a tag.

The size of pseudonym p is determined by the probability that a collision
occurs between pseudonyms that belong to either the same or different users.
Since the user terminal only has access to the master key kTag associated with its
own tag, it cannot generate session keys ki other than its own. Therefore, only
messages belonging to the associated tags can be decrypted; as a consequence,
collisions between pseudonyms do not leak information but increase the amount
of data transmitted to and processed by the terminal. Our prototype uses eight-
byte pseudonyms. Consequently, the MACs t should be at least 64 bits (eight
bytes) to protect the messages’ integrity against online attacks and to filter out
such dummy traffic relating to other users. These choices result in messages of
160 bytes: (p → 8 bytes) + (c → q · m = 144 bytes) + (t → 8 bytes).

Since the LoPy board features AES acceleration, we selected AES-COLM [13]
as the authenticated encryption scheme. This algorithm is a candidate in the
CAESAR competition and supersedes the COPA and ELmD proposals. Aside
from the AES algorithm, its building blocks consist of XORs, multiplications with
constants in GF (2128), and a linear mixing function. This makes it suited for
both software and hardware implementations. Furthermore, the availability of
hardware support for the SHA family of hash functions determined our choice of
a hash-based key derivation function, i.e., KDF(d,k) = SHA256(d‖k). Note that

358 T. Ashur et al.

our protocol depends in no way on the algorithms selected for the prototype,
and that they can all be replaced with functionally identical alternatives.

The tag connects to a nearby LoRa gateway registered with The Things
Network [5]. This is a global community which is building a LoRaWAN network
by crowdsourcing gateways. Anyone with a compatible device can add their node
as a gateway, while the organization provides all other backend infrastructure
(e.g., servers to handle the messages received by the LoRa gateways).

SRAM PUF. The extended version of our protocol requires the implementa-
tion of a PUF. As pointed out by Layman et al. [43], a Static Random-Access
Memory (SRAM) can be adopted as a PUF. Its initial state x ∈ {0, 1}n after
power-up provides a device-unique fingerprint. For our proof-of-concept imple-
mentation on an ESP32 microcontroller, an internal SRAM is readily available.
The state x is read-out by listing addresses in counter mode and concatenating
the corresponding 32-bit words.

Secure Sketch. A secure sketch [31] provides an information-theoretically secure
mechanism to transform the noisy state X into a stable secret Y . During the
enrollment, public helper data h is generated for a reference response x and
is subsequently stored in flash memory. In the field, the helper data h allows
the reference response x, or a related variable y, to be recovered from a newly
generated response x̃ that is sufficiently close to x.

Instances of a secure sketch are most frequently based on a binary [n, k, d]
block code, where n is the codeword length, k is the message length, and d is the
minimum distance. Seven code-based constructions are known to be equivalent
in terms of min-entropy loss [29]. For a uniformly distributed reference input X,
i.e., H∞(X) = n, it holds that H̃∞(Y |H) = k. More generally, for potentially
non-uniformly distributed inputs X, it holds that H̃∞(Y |H) ≥ H∞(X) − (n −
k). Unfortunately, the latter bound is not very tight if the non-uniformities
are major. For our prototype, we simply assume that the state X is uniformly
distributed, given that neither the distribution of X nor the min-entropy H∞(X)
can precisely be determined from experimental data.

Out of seven constructions, we opt for the proposal of Kang et al. [39] because
of three reasons: the size of the helper data is (n − k) bits rather than n bits,
the size of y is k bits rather than n bits, and the enrollment does not require a
random number. The generator matrix is required to be in standard form, i.e.,
G = (Ik P), where Ik is the k × k identity matrix. During the enrollment, the
helper data is computed as follows: h ← (x1 x2 · · · xk)P ⊕ (xk+1 xk+2 · · · xn).
In the field, the reference output y = (x1 x2 · · · xk) is recovered as follows:
ŷ ← Decode(x̃ ⊕ (0‖h)).

We instantiate the binary code with the proposal of Van der Leest et al. [53].
To be precise, the response x is subdivided into z partitions and the concate-
nation of an [n1 = 24, k1 = 12, d1 = 8] Golay code and an [n2, k2 = 1, d2 = n2]
repetition code is applied to each partition. Globally, this can be understood
as an [n = z n1 n2, k = z k1, d = d1 d2] linear code. We choose z = 11 so that

A Privacy-Preserving Device Tracking System Using a LPWAN 359

H̃∞(Y |H) = 132 exceeds the key size 128. The only remaining degree of freedom,
n2, is chosen in conformity with the error rate of the PUF. The repetition decoder
outputs, in addition to a presumed message ŷ1 = x1, a level of confidence that
decreases with the number of errors ∈ {0, 1, · · · , (n2 − 1)/2} that has presum-
ably been corrected. Subsequently, we iterate over all 212 Golay codewords and
retain the one that achieves maximum likelihood. For a bit error rate of 15% and
n2 = 3, i.e., a total of n = 792 response bits, a Monte Carlo experiment shows
that the failure rate for reconstructing the key kTag is approximately 10−5.

Robust Fuzzy Extractor. To detect helper data manipulation, which might other-
wise allow an attacker to recover the master key through failure statistics [24,29],
and to ensure that the key has been recovered correctly, we apply an integrity
scheme [27]. First, we check whether the Hamming distance between the regener-
ated response x̃ and the recovered response x̂ does not exceed a certain threshold.
Subsequently, it is checked whether a precomputed hash value h� = H1(y,h),
which is stored in either fuses or flash, can be reproduced. Only if the latter two
checks succeed, the master key is computed as kTag = H2(y,h).

ASIC. Finally, in addition to the LoPy-based design, we also propose a system-
level architecture mapping our design to ASIC. Since tags are high-volume, low-
cost, battery-powered devices, the primary design objectives are low area and low
energy consumption. In the presented application scenario, a tag spends most
of its lifetime in sleep mode and only occasionally performs computations or
transmits messages. Therefore, the power consumption of the System-on-Chip
(SOC) without communication blocks is dominated by the stand-by currents
and hence not by dynamic switching behavior. Typically, in standard-cell-based
designs, high area results in high static power consumption.

To avoid the high area and energy costs associated with a SHA-256 imple-
mentation, we recommend using AES-COLM for all cryptographic operations.
The key kTag and the integrity data h� are computed as the tag output t
of the authenticated encryption module, using the helper data h and the ref-
erence output y of the secure sketch as associated data a. To be precise,
(−,kTag) = AEk=0(n = 0,a = y‖h,m = 0) and (−,h�) = AEk=0(n = 1,a =
y‖h,m = 0). Ciphertexts c are not used and hence do not have to be com-
puted. The values of nonce n can be chosen arbitrarily, but should differ for both
instances. Similarly, the session key ki+1, the pseudonym p, and the encryption
key kAE are derived using three different values of the nonce n. To be precise,
(−,ki+1) = AEki

(n = 1,a = 0,m = 0), (−,p) = AEki
(n = 2,a = 0,m = 0),

and (−,kAE) = AEki
(n = 3,a = 0,m = 0).

Figure 3 shows the architecture of a tag. The system contains an embed-
ded SRAM to store the beacon identifiers and the encrypted message before
the transmission. Its power-up state serves as the PUF response x. Each PUF
response is generated using 132 bytes of raw SRAM data. A 128 kb SRAM
block is sufficient for generating 100 PUF responses. In addition, the tag uses a
one-time programmable NVM to store the helper data and the integrity data.

360 T. Ashur et al.

Helper Data

Integrity Data

NVM

PUF a

c t

SRAM

p kAE

kTag

Registers

Bus Manager and Access Control

BLE LoRa

AES

5 128-bit
Registers

AE Core Encoder

Decoder

Comparator

1x

Fig. 3. System-level design of a prospective ASIC.

The required capacity of this memory is 10.6 kB. A AES-COLM core consists
of the round-based AES-128 module, data paths for linear operations and five
128-bit registers for storing intermediate results. Flip-flop-based registers are
used for storing the session key, the pseudonym and the encryption key. Dedi-
cated data paths are used for encoding and decoding the PUF responses and for
the integrity check. The bus manager controls bus access and communication
between the cores and networking blocks. A Finite State Machine (FSM) is used
to execute the protocol. In order to reduce the leakage power, the system should
also contain power management logic for switching off the cores during sleep
mode.

5.2 Application Server

After receiving a message from the tag through one of its gateways, the LoRa
infrastructure provider forwards the payload to the application server over
HTTP. The application server therefore runs a simple web service that accepts
the messages and stores them in a database. It also provides an endpoint
where the user terminal can retrieve the message corresponding to a specific
pseudonym p. In addition, the application server stores the geographical coor-
dinates of each beacon, which can be requested from a second endpoint.

The application server was built as a REST-based web service, which can
be queried through a JSON API. The service was implemented in Go, with all
data being stored in Bolt [1], a high-performance key/value store. Since both the
messages and beacon coordinates are always accessed through their keys, i.e.,
the pseudonym and beacon identifier respectively, this database was preferred
over more traditional relational databases. In order to reduce storage cost, the
server periodically removes messages from its database (e.g., every month).

5.3 User Terminal

We implemented a prototype of the terminal as an iOS app written in Swift.
Both AES-COLM and our KDF based on SHA-256 could be easily implemented
for this platform. The performance of these operations is of lesser concern here,

A Privacy-Preserving Device Tracking System Using a LPWAN 361

as our messages are relatively short and smartphones have significantly more
processing power than tags. When the app is started for the first time, access
is requested to the phone’s camera to scan a QR code containing the tag key
kTag, after which it is stored in iOS’ keychain. Recall that this process links the
terminal to the tag, allowing it to reconstruct the sequence of pseudonyms which
can be used to retrieve messages from the server. The app will then synchronize
its session key ki by repeatedly querying the server until no new message is found.
In order to preserve forward privacy, the terminal will always update the iOS
keychain with the last synchronized session key, as this prevents an attacker from
reconstructing the hash chain if they manage to breach the app. As mentioned
in Sect. 3, protecting forward privacy if the terminal is compromised, requires
that the user sets limits on the history kept by the user terminal. Configuring
the user terminal to remove data immediately after displaying it would fully
guarantee forward privacy, at the cost of not having access to location history.

When launched, the app retrieves all messages from the application server
since its previous run: it repeatedly advances the session key hash chain and
calculates the corresponding pseudonym p until the server responds that no
data is available. The app will also retrieve the public list of beacons and their
geographical location from the server. After decrypting each message, the beacon
identifiers it contains are matched to the coordinate list and the tag’s position
during the scan interval is calculated through interpolation. Its location during
the last 24 h is then shown on a map. In addition, the user can view the tag’s
calculated location during each scan interval.

6 Analysis

We first present a security and privacy analysis of our design, referencing the
requirements identified in Sect. 4.2. Next, we discuss how our design intrinsically
protects against side-channel attacks (Sect. 6.2).

6.1 Security and Privacy

Confidentiality and Authenticity of Location Data (Satisfies S1, S2,
and S3). A tag’s location data is always sent in encrypted form using a secret
key kAE that is known only to the tag and an authorized user terminal. This
offers end-to-end confidentiality, as it prevents intermediate entities from learn-
ing anything about the tag’s location. Due to the use of an authenticated encryp-
tion scheme, unauthorized modifications are detected with extremely high prob-
ability.

Tag Identity Privacy (Satisfies P1). To hide its identity, a tag appends
a pseudonym p and hence not a public identifier to each message. This
pseudonym p is generated using a KDF and a session key ki that is known only
to the tag and the authorized user terminal. Since p is relatively short, an occa-
sional collision could imply that user A inadvertently downloads the encrypted

362 T. Ashur et al.

location data of user B. Note, however, that user A cannot successfully decrypt
user B’s data.

Message Unlinkability (Satisfies P2): Due to the freshness of the
pseudonyms p, an unauthorized entity cannot link two or more messages that
have been sent by the same tag. Furthermore, all LoRa messages have the same
size and are sent at random intervals to prevent meta-data and traffic analy-
sis attacks. An anonymous channel, e.g., Tor, between each user terminal and
the application server prevents the latter from linking pseudonyms p of which a
single terminal requests the location data.

Forward privacy (Satisfies P3): Since only the last session key ki is
stored in the secure NVM, if adversaries compromise a tag or a user terminal,
they cannot compute old session keys to learn the tag’s past locations.

6.2 Side-Channel Security

An adversary who obtains physical access to a tag could mount a side-channel
attack in an attempt to recover its cryptographic keys. This involves measur-
ing the tag’s instantaneous power consumption (or any related magnitude such
as electromagnetic field intensity) while it performs a cryptographic operation.
We focus on two common side-channel attacks: SPA and DPA. The protocol
described in Sect. 4.3 features an intrinsic countermeasure. By construction, the
protocol limits the number of cryptographic executions that an adversary may
ask the device to perform under the same key. This limits the information leaked
by each key, so that if the key is changed often enough, it becomes unfeasible for
an adversary to reconstruct the whole key. This is the main working principle
of “fresh re-keying” systems, initiated independently in the seminal patent of
Kocher [41] and [26, § 6.6], and continued in [44,45].

More concretely, fresh re-keying guarantees resistance to SPA and DPA based
on the following two assumptions [45]. Firstly, the key update mechanism must
be resistant to DPA and SPA. In our case, the key update mechanism is ki+1 =
H(ki). This makes DPA impossible, since each value of the hash chain is handled
only once. Given that session key ki is stored in NVM, a reboot does not allow
an attacker to remeasure traces. The resistance to SPA must be guaranteed by
constant-time, constant-flow code and a noisy enough hardware platform.

Secondly, the pseudonym and encryption key generation G(ki) must be resis-
tant to SPA. This is again guaranteed by constant-time, constant-flow code and
a noisy enough hardware platform. Note that this makes the protocol “somewhat
stateful”, since the receiving end must keep a minimal state as the last seen key
from the hash chain. Nevertheless, we believe that this is an attractive property
of the protocol since it protects forward privacy: key breaches do not allow to
retroactively de-anonymize previous messages (and thus learn the past locations
of the device). Thus, we fulfill design requirement P3 from Sect. 4.2.

For the extended version of our protocol, it is expected that the fuzzy extrac-
tor is resistant to first-order DPA attacks as well. Not only is the SRAM partition
regularly updated, the monotonic counter prevents traces from being remeasured

A Privacy-Preserving Device Tracking System Using a LPWAN 363

after a reboot. The masking-based countermeasure of Merli et al. [46], which pre-
cludes DPA attacks on a secure sketch, is therefore omitted. More sophisticated
attacks such as template attacks [40] are ruled out since they require a charac-
terization of the device leaking behaviour.

7 Evaluation

We evaluate our prototype on Pycom’s LoPy board (Sect. 5) in terms of latency
in Sect. 7.1. Subsequently, we quantify its power/energy usage in Sect. 7.2
through a custom-designed measurement board for Universal Serial Bus (USB)-
powered devices. In Sect. 7.3, we quantify the randomness and stability of its
SRAM PUF. Finally, we estimate the energy usage of our ASIC design in
Sect. 7.4.

7.1 Latency

The energy usage, which is the dominant constraint in our application, scales to
some extent proportionally with the latency of the cryptographic operations on
our microcontroller. First, we benchmarked the derivation of the pseudonym p
and the encryption key kAE: this operation takes on average 855.21µs. Next,
our COLM implementation averages 96.13 ms when encrypting a single 144-byte
list b of beacon IDs (Sect. 5.1).

7.2 Power and Energy

In addition to the tag’s performance, we evaluated its power and energy usage.
To this end, we designed a USB pass-through board, powering the LoPy through
this board, rather than directly from the power source. A 1Ω resistor was placed
between the source’s ground line and the Lopy’s ground, allowing us to measure
the current drawn by the board by sampling the voltage over this resistor. The
measurement points were connected to an MSP430F5529 development board,
which features a 12-bit Analog-to-Digital Converter (ADC) (cf. Fig. 4). As the
LoPy is rated to draw at most 400 mA, the microcontroller’s REF module was
used to generate a 1.5 V reference voltage, yielding a measurement resolution
of 3.66 mA, as the measured voltage is equal to current due to the use of a 1Ω
resistor. Since a USB port is used as the source, the board is powered at 5 V.

Before measuring the energy usage of our overall application, we looked at
the board’s power usage in four different instances. First, we measured that the
device draws 39.25 mA when idling with all radios asleep. Placing the board in
deep sleep mode reduced the average current to 19.87 mA, which is still much
higher than expected due to a silicon bug in our version of the LoPy.1 Next,
we programmed the board to perform one million AES encryptions of a single
block in ECB mode and to hash 16 bytes one million times, measuring respective
average energy usages of 35.58µJ per encryption and 44.17µJ per hash.
1 https://forum.pycom.io/topic/1022/root-causes-of-high-deep-sleep-current.

https://forum.pycom.io/topic/1022/root-causes-of-high-deep-sleep-current

364 T. Ashur et al.

Fig. 4. Measurement setup for the power usage of our prototype implementation. In
addition to the USB pass-through board connected to an MSP430F5529 (bottom left)
and LoPy (bottom right), two Estimote beacons are shown.

Lastly, we investigated the current usage when our protocol implementation
is running on the board. During a one-hour interval with a single LoRa transmis-
sion, 874.29 J is consumed on average. As can be seen from Fig. 5, this is mainly
caused by the Bluetooth scanning, with the board drawing 88.16 mA during
the scan interval, because the current ESP32 SDK only supports enabling both
the BLE and Classic modes of the Bluetooth radio. Note that our implemen-
tation does not place the board in deep sleep, resulting in high average power
usage. However, it can be seen from the graph that the device is only active
for short bursts, and the required energy to run our protocol would therefore
drop significantly when less current is drawn in between. Extending the pro-
totype implementation to make use of deep sleep functionality is left as future
work. Due to the high Bluetooth current usage caused by the ESP32 SDK, our
prototype implementation runs for about 103 h when used with a 5000 mA h
battery. However, note that the battery life of our application can be improved
by tweaking the scan duration and scan interval. For example, the energy usage
over the one-hour interval drops to 718.55 J when tsci and tscd are configured to
15 min and 15 s respectively. Finally, the development of an ASIC, rather than a
general-purpose chip, greatly reduces current consumption, enabling the use of
coin-sized batteries (Sect. 7.4).

The listed issues with the current prototype complicate direct energy com-
parison with GPS and RFID (Sect. 2). Furthermore, the evaluated prototype is
a SOC featuring several components in addition to the BLE receiver. Addition-
ally, as shown by our analysis, the energy usage very much depends on the exact
implementation and the activity of each component. However, while we did not
evaluate the tracking accuracy and range of our design, it performs better than
RFID in these areas through its use of BLE, but is outperformed by GPS.

7.3 SRAM PUF

Additionally, we have evaluated whether the LoPy’s SRAM could be used for
PUF-based key generation. The nominal environment, during which the enroll-
ment takes place, is defined as T = 25 ◦C. The error rate between two read-outs,
and averaged over n = 106 response bits, is 6.1%. In the field, however, differ-
ent temperatures might apply, thereby deteriorating the reproducibility of the
state x. Using an ESPEC SH-662 temperature chamber, we evaluated the PUF

A Privacy-Preserving Device Tracking System Using a LPWAN 365

0 1 2 3 4 5 6 7
Time [Samples] 10 7

0

50

100

150

C
ur

re
nt

 [m
A]

Fig. 5. The LoPy’s current usage (20-140 mA) when running the prototype of the
protocol implementation during two hours of operation, with the graph starting halfway
through the scan interval.

of a single device under an extremely cold, i.e., T = −40 ◦C, and an extremely
hot, i.e., T = 85 ◦C, environment. The error rates with respect to the nominal
environment are 16.8% and 11.2% respectively. Although the latter two error
rates are higher than for the 65 nm CMOS ASIC of Koeberl et al. [42], we
emphasize that the ESP32 is only a prototype device. A temporal majority vote,
which could have lowered the error rates at the cost of multiple read-outs, was
not implemented.

Given that an SRAM consists of ideally autonomous cells, the distribution
of X has the potential to be fairly uniform over {0, 1}n. For a set of 10 devices
and n = 106, we apply statistical tests that can detect non-uniformities. To be
precise, we estimate several probabilities through a 95% confidence interval and
check whether their ideal value 50% is enclosed. The interval for the probability
that a given response bit of a given device equals 1 is [50.01%, 50.07%]. The
interval for the probability that two neighboring response bits in a given word of
a given device are equal is [50.44%, 50.50%]. The interval for the probability that
a given bit in two consecutive words of a given device is equal is [49.71%, 49.77%].
The interval for the probability that two devices produce the same value for a
given response bit is [50.24%, 50.27%]. We conclude that minor non-uniformities
are likely to exist.

7.4 ASIC

In order to estimate the battery lifespan for the future ASIC implementation we
look into the energy consumption of the cryptographic core and communication
blocks. The energy cost of a round-based AES-128 implementation is 350.7pJ
per encryption using the STM 90 nm CMOS technology [23]. Every hour, 35
AES encryptions are required for preparing the message and updating the key,
which costs 12.3 nJ. According to a study presented in [51], the energy cost of a
128 kb SRAM using 32-bit words and manufactured in 90nm CMOS technology
is less than 10 pJ per access.

For SRAM using 32-bit word lengths, the presented protocol requires approx-
imately 760 memory accesses per hour, which consumes less than 7.6 nJ. The

366 T. Ashur et al.

transmission of each LoRa message takes 2µs. Based on the experiments using
the LoPy, the driving current during message transmission is 55.2 mA. This
results in a LoRa communication cost of 55.2µJ per hour. For BLE commu-
nication, we estimate the energy consumption based on a Texas Instruments
Bluetooth controller [10]. From the number of scanning intervals we approxi-
mate that BLE consumes 2.8 mJ every hour. The energy consumption of the
chip will be dominated by the BLE communication energy and static leakage.
In order to estimate battery lifetime, we use the Energizer CR1620 coin-sized
battery [3]. Approximating the energy consumption by the BLE leakage power
in shutdown mode and the transmission power, we end up with a rough battery
lifetime approximation of 74 months.

8 Conclusion

This paper presented the design and a prototype implementation of a privacy-
friendly tracking system that builds upon the following IOT technologies: inex-
pensive tags, Bluetooth Low Energy (BLE), and LoRa communications. Only
legitimate tag owners can track their devices, while no information is leaked to
network operators or service providers. The system was evaluated through a pro-
totype based on an off-the-shelf IOT node. We have also produced estimates for
the energy and power consumption of a possible ASIC taking the role of the tag.
We have demonstrated that secure key storage using an SRAM PUF and side-
channel resistance is achievable within realistic area and energy budgets. Future
work should focus on a detailed ASIC design and a prototype for a privacy-
friendly variant of the LoRa protocol with changing MAC addresses. The auto-
mated detection of compromised beacons could be added to the demonstrator.
A large-scale field test would be helpful to obtain a more thorough experimental
validation of the resistance against traffic analysis.

Acknowledgements. We would like to thank the anonymous reviewers for their feed-
back, as well as Patrick Tague for acting as our shepherd. This work is the result of
collaborative research partially funded by the Attached Institute of ETRI. It was also
supported in part by the KU Leuven Research Council through C16/15/058, the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant agreements
No 644052 HECTOR and No 644371 WITDOM, ERC Advanced Grant 695305. Pieter
Maene is an SB PhD fellow at Research Foundation - Flanders (FWO).

References

1. Bolt. https://github.com/boltdb/bolt
2. Estimote. https://estimote.com
3. Product Datasheet Energizer CR1620. http://data.energizer.com/pdfs/cr1620.

pdf. Accessed 01 July 2017
4. RAPID7. https://community.rapid7.com/community/infosec/blog/2016/10/25/

multiple-bluetooth-low-energy-ble-tracker-vulnerabilities
5. The Things Network. https://thethingsnetwork.org

https://github.com/boltdb/bolt
https://estimote.com
http://data.energizer.com/pdfs/cr1620.pdf
http://data.energizer.com/pdfs/cr1620.pdf
https://community.rapid7.com/community/infosec/blog/2016/10/25/multiple-bluetooth-low-energy-ble-tracker-vulnerabilities
https://community.rapid7.com/community/infosec/blog/2016/10/25/multiple-bluetooth-low-energy-ble-tracker-vulnerabilities
https://thethingsnetwork.org

A Privacy-Preserving Device Tracking System Using a LPWAN 367

6. Tile. https://www.thetileapp.com
7. TrackR. https://thetrackr.com/bravo
8. A2235-H Stack-up Antenna SiRFstarIV Integrated Solution. Datasheet, Maestro

(2012)
9. Proximity Beacon Specification. Specification, Apple (2015)

10. CC256x Dual-Mode Bluetooth Controller (Rev. E). Datasheet (2016)
11. SL3S1214 UCODE 7m Rev. 3.3. Datasheet, NXP Semiconductors (2016)
12. Alomair, B., Clark, A., Cuellar, J., Poovendran, R.: Scalable RFID systems: a

privacy-preserving protocol with constant-time identification. IEEE Trans. Parallel
Distrib. Syst. 23(8), 1536–1550 (2012)

13. Andreeva, E., et al.: COLM v1 (2016). https://competitions.cr.yp.to/round3/
colmv1.pdf

14. Avoine, G.: Privacy Issues in RFID Banknote Protection Schemes. In: Quisquater,
J.J., Paradinas, P., Deswarte, Y., El Kalam, A.A. (eds.) 6th International Con-
ference on Smart Card Research and Advanced Applications. IFIP International
Federation for Information Processing, vol. 153, pp. 33–48. Springer, Boston (2004).
https://doi.org/10.1007/1-4020-8147-2 3

15. Avoine, G.: Privacy challenges in RFID. In: Garcia-Alfaro, J., Navarro-Arribas, G.,
Cuppens-Boulahia, N., de Capitani di Vimercati, S. (eds.) DPM/SETOP -2011.
LNCS, vol. 7122, pp. 1–8. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-28879-1 1

16. Avoine, G., Beaujeant, A., Hernandez-Castro, J., Demay, L., Teuwen, P.: A survey
of security and privacy issues in ePassport protocols. ACM Comput. Surv. 48(3),
47:1–47:37 (2016)

17. Avoine, G., Bingöl, M.A., Carpent, X., Yalcin, S.B.O.: Privacy-friendly authenti-
cation in RFID systems: on sublinear protocols based on symmetric-key cryptog-
raphy. IEEE Trans. Mob. Comput. 12(10), 2037–2049 (2013)

18. Avoine, G., Coisel, I., Martin, T.: Untraceability model for RFID. IEEE Trans.
Mob. Comput. 13(10), 2397–2405 (2014)

19. Avoine, G., Oechslin, P.: A scalable and provably secure hash-based RFID pro-
tocol. In: 3rd IEEE Conference on Pervasive Computing and Communications
Workshops, pp. 110–114 (2005)

20. Avoine, G., Oechslin, P.: RFID traceability: a multilayer problem. In: Patrick,
A.S., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 125–140. Springer, Heidelberg
(2005). https://doi.org/10.1007/11507840 14

21. Aysu, A., Gulcan, E., Moriyama, D., Schaumont, P., Yung, M.: End-to-end design
of a PUF-based privacy preserving authentication protocol. In: Güneysu, T., Hand-
schuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 556–576. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-48324-4 28

22. Lazos, L., Alomair, B., Poovendran, R.: Securing low-cost RFID systems: an uncon-
ditionally secure approach (2010)

23. Banik, S., et al.: Midori: a block cipher for low energy. In: 21st International Con-
ference on Advances in Cryptology, pp. 411–436 (2015)

24. Becker, G.T.: Robust fuzzy extractors and helper data manipulation attacks revis-
ited: theory vs practice. Cryptology ePrint Archive, Report 2017/493 (2017).
http://eprint.iacr.org/2017/493

25. Bochem, A., Freeman, K., Schwarzmaier, M., Alfandi, O., Hogrefe, D.: A privacy-
preserving and power-efficient bicycle tracking scheme for theft mitigation. In: 2nd
IEEE International Conference on Smart Cities, pp. 1–4 (2016)

https://www.thetileapp.com
https://thetrackr.com/bravo
https://competitions.cr.yp.to/round3/colmv1.pdf
https://competitions.cr.yp.to/round3/colmv1.pdf
https://doi.org/10.1007/1-4020-8147-2_3
https://doi.org/10.1007/978-3-642-28879-1_1
https://doi.org/10.1007/978-3-642-28879-1_1
https://doi.org/10.1007/11507840_14
https://doi.org/10.1007/978-3-662-48324-4_28
http://eprint.iacr.org/2017/493

368 T. Ashur et al.

26. Borst, J.: Block Ciphers: Design, Analysis and Side-Channel Analysis. Ph.D. thesis,
Katholieke Universiteit Leuven (2001). Bart Preneel and Joos Vandewalle (promo-
tors)

27. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 147–163. Springer, Heidelberg (2005). https://doi.org/10.1007/
11426639 9

28. Danev, B., Zanetti, D., Capkun, S.: On physical-layer identification of wireless
devices. ACM Comput. Surv. 45(1), 6:1–6:29 (2012)

29. Delvaux, J.: Security Analysis of PUF-Based Key Generation and Entity Authen-
tication. Ph.D. thesis, KU Leuven, June 2017

30. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: 13th USENIX Security Symposium, pp. 303–320 (2004)

31. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

32. Hassidim, A., Matias, Y., Yung, M., Ziv, A.: Ephemeral identifiers: mitigating
tracking & spoofing threats BLE beacons (2016)

33. Henrici, D., Götze, J., Müller, P.: A hash-based pseudonymization infrastructure
for RFID systems. In: 2nd International Workshop on Security, Privacy and Trust
in Pervasive and Ubiquitous Computing, pp. 22–27 (2006)

34. Henrici, D., Müller, P.: Hash-based enhancement of location privacy for radio-
frequency identification devices using varying identifiers. In: 2nd IEEE Conference
on Pervasive Computing and Communications Workshops, pp. 149–153 (2004)

35. Henrici, D., Müller, P.: Providing security and privacy in RFID systems using
triggered hash chains. In: 6th Annual IEEE International Conference on Pervasive
Computing and Communications, pp. 50–59 (2008)

36. Information - Automatic identification and data capture techniques - QR Code
barcode symbology specification. Standard, International Organization for Stan-
dardization, vol. 2 (2015)

37. Juels, A., Pappu, R.: Squealing euros: privacy protection in RFID-enabled ban-
knotes. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 103–121. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-45126-6 8

38. Juels, A., Rivest, R.L., Szydlo, M.: The blocker tag: selective blocking of RFID tags
for consumer privacy. In: 10th ACM Conference on Computer and Communications
Security, pp. 103–111 (2003)

39. Kang, H., Hori, Y., Katashita, T., Hagiwara, M., Iwamura, K.: Cryptographic key
generation from PUF data using efficient fuzzy extractors. In: 16th International
Conference on Advanced Communication Technology, pp. 23–26. IEEE, February
2014

40. Karakoyunlu, D., Sunar, B.: Differential template attacks on PUF enabled crypto-
graphic devices. In: 2nd Workshop on Information Forensics and Security (WIFS
2010), pp. 1–6. IEEE, December 2010

41. Kocher, P.: Leak-resistant Cryptographic Indexed Key Update (2003). US Patent
6,539,092

42. Koeberl, P., Maes, R., Rožić, V., van der Leest, V., Van der Sluis, E., Verbauwhede,
I.: Experimental evaluation of physically unclonable functions in 65 nm CMOS. In:
38th European Conference on Solid-State Circuits, pp. 486–489, September 2012

43. Layman, P.A., Chaudhry, S., Norman, J.G., Thomson, J.R.: Electronic fingerprint-
ing of semiconductor integrated circuits, May 2004. US Patent 6738294

https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/11426639_9
https://doi.org/10.1007/978-3-540-45126-6_8

A Privacy-Preserving Device Tracking System Using a LPWAN 369

44. Medwed, M., Petit, C., Regazzoni, F., Renauld, M., Standaert, F.-X.: Fresh Re-
keying II: securing multiple parties against side-channel and fault attacks. In:
Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 115–132. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-27257-8 8

45. Medwed, M., Standaert, F.-X., Großschädl, J., Regazzoni, F.: Fresh Re-keying:
security against side-channel and fault attacks for low-cost devices. In: Bern-
stein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS, vol. 6055, pp. 279–296.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12678-9 17

46. Merli, D., Stumpf, F., Sigl, G.: Protecting PUF error correction by codeword mask-
ing. Cryptology ePrint Archive, Report 2013/334 (2013). http://eprint.iacr.org/
2013/334

47. Molnar, D., Wagner, D.A.: Privacy and security in library RFID: issues, practices,
and architectures. In: 11th ACM Conference on Computer and Communications
Security, pp. 210–219 (2004)

48. Pycom. LoPy. https://www.pycom.io/product/lopy/
49. Ristenpart, T., Maganis, G., Krishnamurthy, A., Kohno, T.: Privacy-preserving

location tracking of lost or stolen devices: cryptographic techniques and replacing
trusted third parties with DHTs. In: 17th USENIX Security Symposium, pp. 275–
290 (2008)

50. Saito, J., Ryou, J.-C., Sakurai, K.: Enhancing privacy of universal re-encryption
scheme for RFID tags. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.) EUC
2004. LNCS, vol. 3207, pp. 879–890. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30121-9 84

51. Sharma, V., Cosemans, S., Ashouie, M., Huisken, J., Catthoor, F., Dehaene, W.:
Ultra low-energy SRAM design for smart ubiquitous sensors. IEEE Micro 32(5),
10–24 (2012)

52. Spiekermann, S., Berthold, O.: Maintaining privacy in RFID-enabled environ-
ments. In: Robinson, P., Vogt, H., Wagealla, W. (eds.) Privacy, Security and Trust
within the Context of Pervasive Computing. The International Series in Engineer-
ing and Computer Science, vol. 380, pp. 137–146. Springer, Boston (2005). https://
doi.org/10.1007/0-387-23462-4 15

53. van der Leest, V., Preneel, B., van der Sluis, E.: Soft decision error correction for
compact memory-based PUFs using a single enrollment. In: Prouff, E., Schaumont,
P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 268–282. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-33027-8 16

54. Weis, S.A., Sarma, S.E., Rivest, R.L., Engels, D.W.: Security and privacy aspects of
low-cost radio frequency identification systems. In: Hutter, D., Müller, G., Stephan,
W., Ullmann, M. (eds.) Security in Pervasive Computing. LNCS, vol. 2802, pp.
201–212. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39881-
3 18

https://doi.org/10.1007/978-3-642-27257-8_8
https://doi.org/10.1007/978-3-642-12678-9_17
http://eprint.iacr.org/2013/334
http://eprint.iacr.org/2013/334
https://www.pycom.io/product/lopy/
https://doi.org/10.1007/978-3-540-30121-9_84
https://doi.org/10.1007/978-3-540-30121-9_84
https://doi.org/10.1007/0-387-23462-4_15
https://doi.org/10.1007/0-387-23462-4_15
https://doi.org/10.1007/978-3-642-33027-8_16
https://doi.org/10.1007/978-3-540-39881-3_18
https://doi.org/10.1007/978-3-540-39881-3_18

Anonymous and Virtual Private
Networks

Oh-Pwn-VPN! Security Analysis
of OpenVPN-Based Android Apps

Qi Zhang, Juanru Li, Yuanyuan Zhang(B), Hui Wang, and Dawu Gu

Shanghai Jiao Tong University, Shanghai, China
yyjess@sjtu.edu.cn

Abstract. Free VPN apps have gained popularity among millions of
users due to their convenience, and have been massively used for access-
ing blocked sites and preventing network eavesdropping. As a popular
open-source VPN solution, OpenVPN is widely used by developers to
implement their own VPN services. Despite the prevalence of Open-
VPN, it can be insecurely customized and deployed by developers in
lack of security guide.

In this paper, we perform a systematic security analysis of 84 pop-
ular OpenVPN-based apps on the Google Play store. We analyze the
deployment security of OpenVPN on Android from the aspects of client
profile, code implementation, and permission management. Our experi-
ment reveals three types of misconfigurations that exist in several apps:
insecure customized protocols, weak authentication at the client side,
and incorrect file permissions on Android. The misconfigurations found
by us can lead to some serious attacks, such as VPN traffic decryption
and Man-in-the-Middle attacks, endangering millions of users’ privacy.
Our work shows that, although OpenVPN protocol itself has withstood
security analysis, insecure custom modification and configuration can
still compromise the security of VPN apps. We then discuss potential
causes of these misconfigurations and make practical recommendations
for developers to securely deploy OpenVPN services.

Keywords: OpenVPN · Android apps · Security assessment

1 Introduction

Security concerns about network communications of Android apps have been
raised in recent years. A straightforward protection approach is to use a virtual
private network (VPN) as a secure connection between the device and VPN
server over the Internet. VPN services are useful for securely accessing sensitive
content in a public network and are commonly used to circumvent censorship.

This work was partially supported by the Key Program of National Natural Science
Foundation of China (Grants No. U1636217), the Major Project of the National Key
Research Project (Grants No. 2016YFB0801200), and the Technology Project of Shang-
hai Science and Technology Commission under Grants No. 15511103002.

c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 373–389, 2018.
https://doi.org/10.1007/978-3-030-02641-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_17

374 Q. Zhang et al.

On Android, mobile app developers can use native support to create VPN clients
through the Android VPN Service class [2]. Thus many apps legitimately use
the VPN permission to offer online anonymity by intercepting and taking full
control of the network traffic on device.

However, the use of VPN within an Android app is a new scenario for most
developers. Previous researches [22,25,26] have revealed several privacy issues
and security flaws in implementations of these VPN services and applications.
The most serious security flaw found is the usage of insecure VPN tunneling
protocols. Various VPN tunneling protocols are used among different Android
VPN-based apps. Despite promising online anonymity and security to their
users, many VPN apps still implement unencrypted tunneling protocols. Since
implementing a secure VPN tunneling protocol from scratch is sophisticated, a
group of VPN apps utilize OpenVPN, the most popular open-source VPN solu-
tion [4,17], to build their own VPN services. Because OpenVPN is open-source
and has been tested by security analysts over a long period of time, it is generally
considered as a secure VPN solution and is widely used on both desktop and
mobile platforms.

Although OpenVPN-based apps (in short, OpenVPN apps) are believed to
guarantee better security and anonymity compared to those apps with home-
brewed tunneling protocols, unfortunately, real world OpenVPN apps are not
always secure. On Android platform, how OpenVPN should be incorporated and
deployed in these VPN apps is not regulated. Android developers may misuse
OpenVPN or modify the original execution flow of it and thus lead to an insecure
VPN service.

In this paper, we conduct an in-depth misuse analysis on widely used Android
OpenVPN apps. To unveil those misuses, we focus on the variation of OpenVPN
apps’ tunnel implementations and deployment policies. Our analysis finds that
due to three kinds of misuses, the security of the VPN tunnel is weakened or even
completely broken. The first one is misuse of modified OpenVPN protocol. Devel-
opers add custom operation to the standard OpenVPN protocol implementation,
as we called custom obfuscation, for the purpose of obfuscating the VPN traffic.
The VPN connection is configured to replace the standard OpenVPN encryp-
tion with custom obfuscation, and finally leads to an insecure VPN tunnel. The
second one is weak authentication at the client side, which leaves the identity of
server insecurely validated and finally induces a Man-in-the-Middle attack. The
third one is incorrect usage of native library, which assigns an improper privilege
to the management interface and finally causes a Denial-of-Service threat. More
seriously, the implementation and deployment of these apps cannot be modified
by users. Users are generally unaware of relevant security flaws, and can be easily
attacked if using such apps to protect their network communications.

We analyzed 84 popular free OpenVPN apps in Android market and found
that such misuses widely exist. Among them, 11 apps replace the standard
encryption of OpenVPN with custom obfuscation. Due to vulnerable key agree-
ment of the custom obfuscation, VPN traffic can be completely decrypted by
attackers. Seven of the apps are susceptible to Man-in-the-Middle (MITM)

Oh-Pwn-VPN! Security Analysis of OpenVPN-Based Android Apps 375

attacks as a result of weak authentication at the client side. Four of the apps
suffer from Denial-of-Service attacks by reason of unprotected management inter-
face. Our study indicates that even if the VPN apps adopt an robust VPN library,
situations of insecure deployment are still common and severely threaten users’
security and privacy.

The main contributions of our work are summarized as follows:

– We summarize how OpenVPN is incorporated and utilized by Android VPN
apps. We conclude the typical usage of OpenVPN on Android and spot devel-
opers’ customizations by analyzing popular OpenVPN apps and auditing
source code of forked OpenVPN projects.

– We conduct an in-depth analysis of OpenVPN misuses. Our assessment
methodology is able to find misconfigurations of OpenVPN apps in the aspects
of client profile, code implementation, and permission management.

– We uncover a typical previously unknown security issue in OpenVPN apps.
Specifically, we find that some apps add a new tunnel protocol into OpenVPN
following the security-by-obscurity policy: these implementations of tunnel
modify the original protocol to hide the feature and evade network censor-
ship technologies such as deep packet inspection (DPI). However, our study
demonstrates that the modified protocols often adopt vulnerable key agree-
ment that leads to complete insecure communications.

2 Background

2.1 OpenVPN Security Mechanisms

The goal of a VPN system is to provide private communications. To secure the
network traffic, OpenVPN has implemented many features for authentication,
encryption and management. OpenVPN utilizes SSL as the underlying cryp-
tographic layer for authentication and encryption. There are two channels in
OpenVPN: the control channel for authentication and key exchange, and the
data channel for traffic encryption. Moreover, OpenVPN also provides an inter-
face for managing the VPN process.

Authentication. In the control channel, OpenVPN has two modes of authenti-
cation [16]: (a) Static key mode static keys are pre-shared by client and server.
All traffic are encrypted by the same static key, thus this mode cannot provide
perfect forward security. (b) SSL/TLS mode A mutual authentication is estab-
lished inside an SSL session. Most security related features are implemented in
this mode.

In SSL/TLS mode, the identity of server is validated by its certificate the
same way as in HTTPS. Meanwhile, multiple ways of client authentication are
provided by OpenVPN. The client can be authenticated by the traditional user-
name/password mechanism, by client certificate, or by the combination of these
two types. To mitigate possible vulnerabilities in the TLS handshake, e.g., the
famous Heartbleed bug [7], additional HMAC of TLS control channel packets can

376 Q. Zhang et al.

be required by enabling tls-auth option. After the authentication, session keys
are generated by Diffie-Hellman key exchange and updated periodically.

Encryption. After authentication and session key generation, OpenVPN uses
data channel to tunnel the actual network traffic. Encrypt-then-Mac scheme is
used to protect data channel packets. Specifically, the encryption and HMAC
algorithm are determined by option cipher and auth in the configuration file.
The cipher algorithm used for data encryption must be specified at both the
client and the server side.

Management. OpenVPN provides a management interface [11] that allows
itself to be administratively controlled from an external program via a TCP
or UNIX domain socket. Control commands such as setting proxy address, pro-
viding passwords or suspending VPN service can be transmitted through the
management interface.

2.2 OpenVPN on Android

Since Android version 4.0, the VpnService API [2] is provided for developers to
build their own VPN solutions. This API returns a descriptor of a virtual network
interface (the tun interface) for apps to read and modify all the network traffic
on device. While the VpnService API makes it convenient for developers to build
VPN services, malicious apps may use this API to eavesdrop network activity of
other apps. Android system takes several actions to prevent the abuse of VPN
Service API. To obtain the VPN interface by using this API, apps have to request
the BIND VPN SERVICE permission, and the first time a VPN connection is
created, Android alerts users by displaying system dialog and notification.

Typically, OpenVPN is ported to Android platform as a shared library. For
instance, ics-openvpn [10], a popular open-source OpenVPN app, implements
OpenVPN as an ELF shared library libopenvpn.so. The shared library is invoked
by a native process on Android (the native layer). Other functions of the app
are usually implemented at the Java layer. To handle the Inter-Process Commu-
nication (IPC) between the Java layer (i.e., the UI thread) and the native layer
(i.e., the OpenVPN process), UNIX domain socket is adopted to implement the
management interface.

The execution flow of an OpenVPN app is depicted in Fig. 1 and divided
into four steps: profile assembly, VPN initiation, management interaction and
VPN connection. The client profile for the OpenVPN app is retrieved in various
ways (step 1). Based on the configuration file, OpenVPN process is initiated at
the native layer (step 2), then the Java layer controls the OpenVPN process via
the management interface (step 3) and the VPN tunnel is established by the
OpenVPN process (step 4). Details of these steps are described as follows:

Step 1: The VPN client assembles a configuration profile for connecting to
a remote VPN server. Note that this step can be implemented differently
by VPN providers. The client can directly obtain the configuration from the
APK file, or the client retrieves VPN server address from a server (the profile

Oh-Pwn-VPN! Security Analysis of OpenVPN-Based Android Apps 377

Fig. 1. A typical workflow of android OpenVPN apps

server), and then assembles a complete configuration at the client side, or
the configuration is fully downloaded from the profile server. Other options
such as file location of the management interface and protocol used (TCP or
UDP) are also included in the configuration profile. An example of Android
OpenVPN client profile is shown in Fig. 2.
Step 2: The OpenVPN library is loaded and invoked by a native process.
Based on the client profile, the OpenVPN process is initiated. Network param-
eters of the tun interface such as IP address, DNS server are pushed from the
VPN server. As shown in Fig. 2, the management-client option is enabled,
thus OpenVPN process acts as the client and the management interface is
created by the Java layer. The management interface is created in the app’s
private directory (e.g., /data/data/pkg.name/cache/) and is waiting for con-
nection.
Step 3: The OpenVPN process connects to the management interface and
then it is controlled by the UI thread. To utilize the Android VpnService API,
the Java layer sends several commands to the OpenVPN process to gather
network parameters of the tun interface. After the call of VpnService, the
descriptor of the tun interface is sent from the Java layer to the native layer
and the descriptor of the link to VPN server is sent in the reverse direction.
Step 4: The OpenVPN process has obtained two descriptors for controlling
the traffic between the device and the remote server. After that, network
traffic on device is tunneled inside the VPN connection.

3 Attacking OpenVPN Apps

3.1 Adversary Model

Our adversary model consists of two types of attackers:

378 Q. Zhang et al.

management /data/data/pkg.name/cache/mgmtsocket unix

management-client

client

remote vpn.server.address

cipher BF-CBC

ca ca.crt

cert client.crt

key client.key

Fig. 2. An example of android OpenVPN client profile

1. A network attacker can passively monitor the traffic, or can actively
intercept and modify network connections between the client and OpenVPN
server. Mobile devices are commonly used under different network environ-
ments. Users may connect to a free public Wi-Fi for convenient Internet
access, and then protect network activity by using a VPN app. The public
Wi-Fi could be controlled by a network attacker, thus the VPN traffic can be
observed and manipulated by the attacker.

2. A malicious app that attempts to attack OpenVPN apps is installed on the
user device. Apps installed on the user device cannot be all trusted. Users may
install apps from third-party app markets, where the attacker can repackage
malicious payload into popular apps and distribute them.

3.2 Vulnerabilities and Attacks

From the attacker’s perspective, the profile distribution (step 1) is the critical
step for discovering vulnerabilities in the execution flow of OpenVPN apps. Most
security related information can be found from the VPN client profile, which
can be obtained after step 1. The client profile provides all the prerequisites for
attacking the management interaction and the VPN connection procedure, such
as the address of VPN server, cipher algorithm, authentication types and file
location of the management interface. Without these critical information, it is
impossible for attackers to find vulnerabilities in other steps of the OpenVPN
workflow.

Free VPN apps indeed expose VPN client profiles to attackers, which makes
conducting a certain attack feasible. Most free VPN apps do not require user
registration, or some even provide same private key for different users [29]. Any
user can obtain a valid client profile, by just connecting to the VPN servers in
these apps. The attacker can utilize the profile distribution step of these apps
on his own device to collecting the configuration profiles of VPN clients. Except
client credentials like certificates and private keys which may be user-unique,
the attacker can obtain the same configuration as other normal users due to
the same client implementation and server logic. After that, the attacker can
explore configuration profiles and client implementations to find vulnerabilities
and attack specific VPN apps.

Oh-Pwn-VPN! Security Analysis of OpenVPN-Based Android Apps 379

Based on our adversary model and the leakage of client profile, we present
three types of attacks against OpenVPN apps, which compromise the confiden-
tiality, authenticity and availability of the OpenVPN service. These attacks are
caused by insecure customization and deployment of OpenVPN apps, not by
OpenVPN protocol itself.

1. Traffic Decryption. Some VPN service providers claim that they use some
proprietary VPN protocols or Anti-DPI [9,21] technology to prevent VPN
traffic from being identified or blocked. Also, a few custom OpenVPN patches
intended to obfuscate the OpenVPN traffic and bypass firewalls have been
proposed in the OpenVPN community [19] and GitHub [20]. We identify a
typical misuse that developers disable the encryption of OpenVPN and use
custom obfuscation to replace the standard encryption. These custom obfus-
cations are commonly implemented by scramble operations such as XOR, and
adopt vulnerable key agreements (e.g., hard-coded keys). Thus the miscon-
figuration of replacing standard encryption with custom obfuscation will lead
any passive network attacker to completely decrypt the VPN traffic. Details
of custom obfuscation and its misconfiguration are discussed in Sect. 5.1.

2. Man-in-the-Middle Attack. The publicly available client profiles of these
free VPN apps may lead to possible MITM attacks. This MITM attack hap-
pens when the client certificate is signed by the same CA of server certificate
and the usage of server’s certificate is not verified at the client side. A valid
client certificate and private key are sufficient to conduct this MITM attack
if the OpenVPN app is misconfigured. An active network attacker can trun-
cate the connection request from the client, then claim to be the server by
using a valid client certificate. OpenVPN provides several ways to defend
this attack [13], however, developers may not enable these security features,
leaving their apps vulnerable to this attack.

3. Denial of Service. Besides network attackers, threats can also come from
a malicious app at the client side. Since Android is a multi-app platform,
improper permission of the management interface may allow other apps on the
same device to control the OpenVPN process, prevent the normal connection
and cause a Denial-of-Service attack.

4 Methodology

This section describes our approach of analyzing the deployment security of
Android OpenVPN apps in consideration of the three attacks we proposed.
Figure 3 illustrates the procedure of our analysis. In detail, our approach consists
of three phases: OpenVPN identification, profile collection, and security assess-
ment. Most prior studies on security and privacy of VPN services focus on the
network traffic. However, security flaws in code implementation and permission
management can also break the security of OpenVPN. We propose a comprehen-
sive assessment methodology that evaluates OpenVPN apps from three aspects:
client profile, code implementation and permission management.

380 Q. Zhang et al.

Fig. 3. An overview of how we analyze the security of OpenVPN apps

4.1 OpenVPN Identification

Given a set of Android VPN permission-enabled apps, we need to determine the
tunneling protocols used by them. We propose two general methods to identify
the usage of OpenVPN among these VPN apps: native code filter and network
traffic identification.

1. Native Code Filter. This method filters OpenVPN apps by inspecting
the symbol table of native libraries. Since cryptographic operations inside
VPN service are CPU-intensive, VPN protocols on Android are commonly
implemented in native code. If the OpenVPN library is incorporated in the
native libraries of the app, function names and other symbol information
from OpenVPN source code are preserved in the binary code. By searching
meaningful strings like function name openvpn encrypt in the symbol table
of shared library files, we can quickly determine whether OpenVPN is used
in the native code. This static method is efficient, and is fully automatic. If
symbols in the library are stripped, or developers intentionally obfuscate the
binary code, this method cannot detect the usage of OpenVPN, thus we need
runtime traffic identification.

2. Network Traffic Identification. This method focuses on investigating net-
work activity of apps and treats APK files as a black box. After capturing
the network traffic of VPN apps, the tunneling protocol can be identified by
using protocol parsers such as Bro [3]. The accuracy of this method depends
on the precision of the protocol parser. As reported in the work by Ikram et
al. [25], a large portion of the tunneling protocols used by VPN apps cannot
be recognized by protocol parsers. If a VPN app has obfuscated its traffic by
modifying the protocol implementation, common protocol analysis tools are
incapable of identifying its network traffic. While this method cannot detect
custom obfuscations and needs manual interference to establish VPN connec-
tion in apps, it helps us to find the usage of typical OpenVPN implementation
regardless of the binary code information.

Oh-Pwn-VPN! Security Analysis of OpenVPN-Based Android Apps 381

In this step our goal is to identify OpenVPN apps as many as possible,
therefore we combine these two methods. We adopt native code filter as the
main detection method, which narrows the assessment scope automatically, and
is capable of detecting custom OpenVPN implementations. Then we utilize net-
work analysis tools for those apps that are not identified by our native code
filter.

4.2 Profile Collection

As discussed before, the profile distribution of different apps can vary from each
other, therefore it is complicated to collect client profiles from profile servers.
Instead, for each OpenVPN app, we gather the runtime arguments of the Open-
VPN process to figure out the client profile.

OpenVPN allows options to be provided either by the command line argu-
ments or by a configuration file. Actually the configuration file is used as a com-
mand line option –config. Therefore, by inspecting the app’s native process and
its command line arguments (i.e. /proc/PID/cmdline), we are able to extract
the client connection configuration of VPN apps.

We build a semi-automatic tool for collecting client profiles of OpenVPN
apps. While the VPN service is running, this tool automatically parses the argu-
ments of OpenVPN process belong to each VPN app, then it records all the
configurations or directly extracts the configuration file on device. The neces-
sary manual part is that for each app we need to actively connect to the VPN
server and approve the VPN connection in the Android system dialog.

(a) Same CA for client and server (b) Different CAs for client and server

Fig. 4. Two types of CA trust model

4.3 Security Assessment

1. Client profile. We implement a parser of OpenVPN profile to extract all the
options from configuration files which we collect from different apps. Then,
we perform a statistical survey of the usage of security related options. Par-
ticularly, we inspect the cipher algorithm used in OpenVPN apps (cipher),

382 Q. Zhang et al.

whether the client is authenticated by passwords (auth-user-pass), by certifi-
cates (cert), or additional TLS authentication is used (tls-auth). When client
and server are authenticated by certificates, there are two types of CA trust
model, as shown in Fig. 4. The certificate of client and server can be signed
by the same CA (Fig. 4a), or by different CAs (Fig. 4b). Under the CA model
in Fig. 4a, if the usage of certificate is not checked at the client side, an active
network attacker can impersonate a valid server by using another client cer-
tificate retrieved from the OpenVPN app. By checking whether the client
certificate (cert) is signed by the CA (ca), we determine the CA model of
authentication in the OpenVPN app. If the certificate of client and server is
signed by the same CA, we then examine whether options for MITM preven-
tion (remote-cert-tls, ns-cert-type) are applied.

2. Code implementation. We focus on evaluating the implementation of cus-
tom features added for the purpose of obfuscating OpenVPN traffic. By
selecting options that exist in these configuration profiles but not in the
official manual page of OpenVPN [12], we are able to filter the custom fea-
tures. In order to understand these custom obfuscation behaviors, we perform
reverse engineering on the modified OpenVPN library. To target the obfusca-
tion operations, we concentrate on the code implementation located after the
original cryptographic procedure in OpenVPN, and before the actual network
send/receive logic, e.g., process outgoing link or read incoming link functions
in OpenVPN source code [17]. Utilizing the source code of OpenVPN and
comparing it with the decompiled code generated by IDA Pro [8], we identify
custom obfuscations added in these OpenVPN apps. After that, the obfusca-
tion key is examined in the client profile.

3. Permission management. File location of the management interface can
be obtained from the client profile. While the OpenVPN service is running,
We use a script to automatically examine the permission of its management
interface. The permission management is vulnerable if the management inter-
face is world-accessible.

5 Result and Security Analysis

We analyzed top 200 VPN apps collected from Google Play in May 2017. We
utilize google-play-scraper [6] and gplaycli [5] to select and download VPN apps.
Google-play-scraper provides the feature of searching popular apps matching a
certain term, and gplaycli is able to automatically download a list of APK files
from the Google Play store. Among the top 200 VPN apps on Google Play, 111
apps using OpenVPN were identified by our methods. We successfully analyzed
the client deployment status of 84 OpenVPN-based apps. The remaining 27 apps
were not evaluated due to the need of in-app purchase or the failure of server
connection. All the apps were tested on a rooted Moto G with Android 7.1.

The main vulnerabilities we found are summarized in Table 1. 11 of the ana-
lyzed apps replace the standard OpenVPN encryption with custom obfuscation,
thus the VPN traffic can be decrypted by network attackers. There are seven

Oh-Pwn-VPN! Security Analysis of OpenVPN-Based Android Apps 383

apps vulnerable to MITM attacks due to their lack of certificates usage validation
or using the static key mode. Four of the OpenVPN apps leave the management
interface unprotected, which may lead to Denial-of-Service attacks. The maxi-
mum number of installs among the apps belong to each misconfiguration type is
also listed in Table 1.

Table 1. Main vulnerabilities we found in OpenVPN apps

Category Vulnerability type # of apps Max installs

Cipher Replacing encryption with obfuscation 11 1M

Encryption disabled 2 1M

Auth Lacking cert usage validation 6 1M

Static key mode 1 100K

Management Unprotected interface 4 1M

5.1 Insecure Encryption

Insecure Cipher Algorithm. We found that 30 OpenVPN apps use the default
cipher algorithm BF-CBC. As a 64-bit block cipher, Blowfish is vulnerable to the
SWEET32 attack [23], thus it is no longer recommended. Despite the publication
of this attack, Blowfish is still the default cipher algorithm of OpenVPN [12].
This insecure-by-default setting may influence the security of OpenVPN deploy-
ment.

Meanwhile, two of the analyzed apps explicitly set cipher to none, which
disables encryption and transfers all traffic in plain text. When using option
cipher none, OpenVPN has a warning in its standard output. However, since
Android users cannot notice this warning, they will be unaware of this insecure
setting.

Replace Encryption with Obfuscation. The usage of custom obfuscation
patches in the 84 OpenVPN apps is described in Table 2. Obfuscation is realized
by adding extra encryptions of the OpenVPN packet data, and the key for
obfuscation needs to be configured the same at both client and server side. We
notice that 13 apps use RC4 to obfuscate the OpenVPN traffic, and the key of
RC4 is set to the IP address of VPN server. Obfuscation itself does not weaken
the security of OpenVPN. However, 11 of them use custom obfuscation to
replace standard encryption by setting cipher to none , which completely
breaks the security of OpenVPN. Besides, nine apps use XOR-based obfuscation
while four of them choose the same obfuscation key. There is only one app that
uses two’s complement to obfuscate the traffic.

Furthermore, we perform a thorough analysis of the most commonly used cus-
tom obfuscation option antidpi. Before OpenVPN’s network send/receive logic,

384 Q. Zhang et al.

Table 2. The usage of custom obfuscation patches

Obfuscation type Option name Obfuscation key # of apps

RC4 antidpi, antidpi remote Server’s IP address 13

XOR obsecure key, scramble, link-key Random string 9

Two’s complement ob-key - 1

a custom RC4 encryption/decryption of the whole OpenVPN packet is added.
The key of RC4 is determined by the argument of antidpi remote. The crux
deployment security problem is that 11 apps disable the standard encryption of
OpenVPN and set a poor key for the RC4 encryption. OpenVPN’s own encryp-
tion is disabled by setting cipher none and the key of RC4 is set to server’s IP
address by setting antidpi remote. In this case, users and developers who believe
network data is protected will be in fact fully exposed to threats. Any passive
attacker that obtains network traffic of these apps can completely decrypt the
data and recover users’ online activity, e.g., the attacker can learn all the HTTP
traffic.

We investigated several forked OpenVPN projects to analyze potential causes
of the misconfiguration of custom obfuscation. A custom obfuscation patch called
xorpatch in OpenVPN community forum claims that encryption of the scramble
patch is secure thus ‘it is OK to use cipher none’ [19]. Due to neglecting the
importance of encryption, the patch author gives an insecure demonstration of
configuration, which may mislead other developers to make the same mistake. In
addition, we audited some OpenVPN patches on GitHub [14,15,20]. All of them
are in lack of guide about how to set the key for obfuscation. Users may not
know how to set the correct patched options with OpenVPN’s original features,
thus weak arguments like using IP address as the key may occur.

5.2 Weak Authentication

Table 3 presents the usage of different client authentication methods of Open-
VPN apps. Different security levels are provided by these authentication meth-
ods. Password+Certificate+TLS-auth is the most secure method, which is

Table 3. The usage of client authentication methods

Password Certificate TLS-auth # of apps
√ √ √

18

×
√ √

4√
×

√
8√ √

× 29

×
√

× 10√
× × 14

Oh-Pwn-VPN! Security Analysis of OpenVPN-Based Android Apps 385

adopted by 18 apps, while 14 apps use less secure Password only authentica-
tion. Besides, one app is found to use static key mode. In this mode OpenVPN
connection can be decrypted and MITM-ed as the key is shared by different
users.

We observe that Password+Certificate is the most used type. In our results,
61 apps use certificate-based authentication and 39 of them use the same CA
trust model. It is convenient to use the CA trust model in Fig. 4a since the
CAs deployed at client and server side are the same. However, six apps lack the
validation of server certificate usage, which means a rogue client can conduct
MITM attacks on other clients.

The trust model in Fig. 4b is immune to this attack due to different CAs
are used. To prevent this attack against the same CA model, extra validation of
server’s certificate usage (i.e., certificate for server only) is needed. OpenVPN
has provided several options like remote-cert-tls to require an explicit key usage
of peer certificates. These security protections are not enabled by default since
in most case private keys are not leaked. While for most free OpenVPN apps,
client certificates and private keys are publicly available, thus developers must
apply these options to prevent MITM attacks.

Due to lack of security awareness, developers of these free VPN apps usually
make their VPN client profiles public, or even provide the same client credential
for different users. While providing convenient VPN services, these VPN apps
leak the client profiles at the same time.

The insecure-by-default policy in OpenVPN may also cause this misconfigu-
ration. OpenVPN provides various of options, some are required for enabling the
basic VPN function, some are for security hardening purpose. Developers may
omit these complicated security protection options, leaving their OpenVPN ser-
vice insecure by default.

5.3 Unprotected Management Interface

In the circumstance of OpenVPN on Android, the management interface handles
the communication between native and Java layer. The problem is that, the
management interface itself does not have any authentication mechanism, thus
the file permission of the interface must be correctly set. Otherwise it can can
be exploited by other apps on the same device.

In our experiment, four of the analyzed apps set the permission of man-
agement interface world-accessible, i.e., srwxrwxrwx. Because the file location of
management interface can be inferred from the client profile, a malicious app
on the same device can exploit the insecure permission of the interface, and
access to it before the normal connection. The implementation of OpenVPN
management interface does not support multiplex, thus the first connection will
block others from accessing the interface. After the malicious app connects to
the management interface, the normal connection is blocked and this eventually
leads to a Denial-of-Service attack.

The misuse of Android UNIX domain socket has been analyzed by [28], here
we focus on OpenVPN and explore the causes of unprotected file permission. We

386 Q. Zhang et al.

observe that management-client option is not used by the four apps, while all
other apps enable this option. The typical execution flow of OpenVPN is mod-
ified by disabling this option. When management-client is disabled, the native
process, not the Java process, acts as the server of UNIX domain socket. The
management interface is created at the native layer and the OpenVPN process
listens on the UNIX domain socket. We find that the default file permission of the
UNIX domain socket in OpenVPN is world-accessible because umask(0) is used
by OpenVPN [17]. To protect the UNIX domain socket and only allow specific
user to access the interface, developers need to enable the management-client-
user option, which specifies the file permission of the management interface.

On the other side, if management-client is enabled, the Java layer is respon-
sible for creating the management interface. At Java layer the security model is
supplied by Android Java VM and file is created with correctly protected default
permission. In a word, the different default file permissions of native layer and
Java layer result in this vulnerability.

6 Recommendations

Don’t Use Custom Obfuscation to Replace Encryption. Custom obfus-
cation is commonly implemented by simple scramble operations thus it is not
secure enough to replace the standard encryption of OpenVPN. The purpose of
obfuscation is to hide protocol metadata, not to protect the payload. For bypass-
ing network censorship, the OpenVPN team disapproves of custom patches and
suggests to use obfsproxy [18]. Another approach is to tunnel the VPN traffic in
common secure protocols like TLS or SSH.

Deploy Countermeasures Against MITM. OpenVPN provides different
ways to avoid the Man-in-the-Middle attack from an authorized client. Certifi-
cates can be assigned with specific key usage and extended key usage. Options
like remote-cert-tls server or ns-cert-type server make OpenVPN clients accept
server-only certificates. Signing certificates for server and client with different
CAs can also prevent this MITM attack.

Set Secure File Permissions on Android. Since Android is a multi-app
platform, developers should protect their own files from being tempered by other
apps on the same device. File permission at Java layer is correctly protected by
default. However, at the native layer, developers should take their own respon-
sibility and use umask and chmod to securely protect their files.

Securely Distribute Client Profiles. Developers should harden the client
configuration, protect the distribution of client profiles (e.g., transmit them via
email) and securely store them at the client side. Unique client credentials should
be generated for different users to prevent the abuse of public client profiles.
To achieve a better security level, VPN profiles can be encrypted or stored in
Android Keystore [1].

Oh-Pwn-VPN! Security Analysis of OpenVPN-Based Android Apps 387

7 Related Work

Several studies have been working on the privacy and security of VPN services.
Appelbaum et al. [22] are the first to uncover the VPN traffic leakage problem
caused by misconfiguration of route tables. Perta et al. [26] extend their work and
analyze popular commercial VPN services. Their results reveal that the majority
of VPN services suffer from IPv6 leakage and DNS hijack attacks. Ikram et
al. [25] conduct a comprehensive privacy and security analysis of Android VPN
permission-enabled apps. Their study mainly focuses on investigating VPN apps’
manipulation of TLS traffic and behavior of tracking user privacy. Instead of
concentrating on network analysis, our work evaluates the security of VPN apps
from the aspects of security related configuration and code implementation at
the client side. Recently OpenVPN 2.4.0 has been audited and several security
issues have been found [27]. Our work reveals that, in addition to the flaws in
official implementations, developers’ custom modification and configuration in
VPN applications can also lead to severe security vulnerabilities.

There are some studies about the security of custom VPN protocols and
misuses of UNIX domain sockets on Android. Peter [24] gives a classic crypto-
graphic audience of the weakness of some custom VPN protocols. He suggests
to use standard-protocol-based VPN, such as OpenVPN and IPsec, while we
demonstrate that misuses of OpenVPN can still threaten the VPN communi-
cation. Shao et al. [28] conduct a systematic study of the misuses of Android
UNIX domain sockets. We analyze the causes of insecure permission of Open-
VPN management interface based on their work.

8 Conclusion

In this work, we focus on the client side deployment security of Android Open-
VPN apps. After summarizing the procedure of client deployment and VPN
connection, we present a security assessment methodology by evaluating the
security of client profile, code implementation and permission management. The
configuration status of 84 popular OpenVPN-based apps on Google Play are
analyzed. To our best knowledge, we are the first to identify a typical misuse
of insecure custom obfuscation in several OpenVPN apps. Our experiment also
shows that MITM vulnerability and Denial-of-Service problem due to miscon-
figurations still exists in these apps. The misconfigurations are either due to
patch authors’ wrong advices and lacking of document, the ‘insecure-by-default’
OpenVPN configuration, or due to developers’ incorrect file permission setting
on Android. Finally we develop some practical recommendations for securing
the OpenVPN deployment.

388 Q. Zhang et al.

References

1. Android keystore system. https://developer.android.com/reference/java/security/
KeyStore.html

2. Android vpn service documentation. https://developer.android.com/reference/
android/net/VpnService.html

3. Bro network security monitor. https://www.bro.org
4. Detailed vpn comparison chart. https://thatoneprivacysite.net/vpn-comparison-

chart/
5. Google play downloader via command line. https://github.com/matlink/gplaycli
6. Google-play-scraper. https://github.com/facundoolano/google-play-scraper
7. The heartbleed bug. http://heartbleed.com/
8. Ida pro. https://www.hex-rays.com/products/ida/
9. Nvpn antidpi. http://www.nvpn.net/. Accessed 21 July 2017

10. Openvpn for android source code. https://github.com/schwabe/ics-openvpn
11. Openvpn management interface. https://openvpn.net/index.php/open-source/

documentation/miscellaneous/79-management-interface.html
12. Openvpn manual page. https://community.openvpn.net/openvpn/wiki/Openvpn

24ManPage
13. Openvpn mitm protection. https://openvpn.net/index.php/open-source/documen

tation/howto.html#mitm
14. Openvpn obfuscation patch. https://github.com/siren1117/openvpn-obfuscation-

release/
15. Openvpn patch from tunnelblick. https://github.com/Tunnelblick/Tunnelblick/

tree/master/third party/sources/openvpn/openvpn-2.4.3/patches
16. Openvpn security overview. https://openvpn.net/index.php/open-source/documen

tation/security-overview.html
17. Openvpn source code. https://github.com/OpenVPN/openvpn
18. Openvpn traffic obfuscation guide. https://community.openvpn.net/openvpn/

wiki/TrafficObfuscation
19. Xorpatch in openvpn forum. https://forums.openvpn.net/viewtopic.php?f=15&

t=12605&hilit=openvpn xorpatch
20. Xorpatch source code. https://github.com/clayface/openvpn xorpatch
21. Zpn antidpi. https://zpn.im/blog/total-anonymity-connectivity-antidpi. Accessed

21 July 2017
22. Appelbaum, J., Ray, M., Koscher, K., Finder, I.: vpwns: virtual Pwned networks.

In: 2nd USENIX Workshop on Free and Open Communications on the Internet.
USENIX Association (2012)

23. Bhargavan, K., Leurent, G.: On the practical (in-) security of 64-bit block ciphers:
collision attacks on HTTP over TLS and OpenVPN. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pp. 456–
467. ACM (2016)

24. Peter, G.: Linux’s answer to MS-PPTP. https://www.cs.auckland.ac.nz/∼pgut001/
pubs/linux vpn.txt

25. Ikram, M., Vallina-Rodriguez, N., Seneviratne, S., Kaafar, M.A., Paxson, V.: An
analysis of the privacy and security risks of android VPN permission-enabled apps.
In: Proceedings of the 2016 ACM on Internet Measurement Conference, pp. 349–
364. ACM (2016)

26. Perta, V.C., Barbera, M.V., Tyson, G., Haddadi, H., Mei, A.: A glance through the
VPN looking glass: IPv6 leakage and DNS hijacking in commercial VPN clients.
Proc. Priv. Enhanc. Technol. 2015(1), 77–91 (2015)

https://developer.android.com/reference/java/security/KeyStore.html
https://developer.android.com/reference/java/security/KeyStore.html
https://developer.android.com/reference/android/net/VpnService.html
https://developer.android.com/reference/android/net/VpnService.html
https://www.bro.org
https://thatoneprivacysite.net/vpn-comparison-chart/
https://thatoneprivacysite.net/vpn-comparison-chart/
https://github.com/matlink/gplaycli
https://github.com/facundoolano/google-play-scraper
http://heartbleed.com/
https://www.hex-rays.com/products/ida/
http://www.nvpn.net/
https://github.com/schwabe/ics-openvpn
https://openvpn.net/index.php/open-source/documentation/miscellaneous/79-management-interface.html
https://openvpn.net/index.php/open-source/documentation/miscellaneous/79-management-interface.html
https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage
https://community.openvpn.net/openvpn/wiki/Openvpn24ManPage
https://openvpn.net/index.php/open-source/documentation/howto.html#mitm
https://openvpn.net/index.php/open-source/documentation/howto.html#mitm
https://github.com/siren1117/openvpn-obfuscation-release/
https://github.com/siren1117/openvpn-obfuscation-release/
https://github.com/Tunnelblick/Tunnelblick/tree/master/third_party/sources/openvpn/openvpn-2.4.3/patches
https://github.com/Tunnelblick/Tunnelblick/tree/master/third_party/sources/openvpn/openvpn-2.4.3/patches
https://openvpn.net/index.php/open-source/documentation/security-overview.html
https://openvpn.net/index.php/open-source/documentation/security-overview.html
https://github.com/OpenVPN/openvpn
https://community.openvpn.net/openvpn/wiki/TrafficObfuscation
https://community.openvpn.net/openvpn/wiki/TrafficObfuscation
https://forums.openvpn.net/viewtopic.php?f=15&t=12605&hilit=openvpn_xorpatch
https://forums.openvpn.net/viewtopic.php?f=15&t=12605&hilit=openvpn_xorpatch
https://github.com/clayface/openvpn_xorpatch
https://zpn.im/blog/total-anonymity-connectivity-antidpi
https://www.cs.auckland.ac.nz/~pgut001/pubs/linux_vpn.txt
https://www.cs.auckland.ac.nz/~pgut001/pubs/linux_vpn.txt

Oh-Pwn-VPN! Security Analysis of OpenVPN-Based Android Apps 389

27. Quarkslab: Security assessment of openvpn. https://blog.quarkslab.com/security-
assessment-of-openvpn.html. Accessed 21 July 2017

28. Shao, Y., Ott, J., Jia, Y.J., Qian, Z., Mao, Z.M.: The misuse of android unix domain
sockets and security implications. In: Proceedings of the 2016 ACM SIGSAC Con-
ference on Computer and Communications Security, pp. 80–91. ACM (2016)

29. White, K.: Most VPN services are terrible. https://gist.github.com/kennwhite/
1f3bc4d889b02b35d8aa. Accessed 21 July 2017

https://blog.quarkslab.com/security-assessment-of-openvpn.html
https://blog.quarkslab.com/security-assessment-of-openvpn.html
https://gist.github.com/kennwhite/1f3bc4d889b02b35d8aa
https://gist.github.com/kennwhite/1f3bc4d889b02b35d8aa

Two Cents for Strong Anonymity: The
Anonymous Post-office Protocol

Nethanel Gelernter1, Amir Herzberg3,2, and Hemi Leibowitz2(B)

1 Department of Computer Science, College of Management Academic Studies,
Rishon LeZion, Israel

2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
Leibo.hemi@gmail.com

3 Department of Computer Science, University of Connecticut, Mansfield, CT, USA

Abstract. We introduce the Anonymous Post-Office Protocol (Anon-
PoP), a practical strongly-anonymous messaging system. Its design effec-
tively combines known techniques such as (synchronous) mix-cascade
and constant sending rate, with several new techniques including request-
pool, bad-server isolation and per-epoch mailboxes. AnonPoP offers strong
anonymity against strong, globally-eavesdropping adversaries, that may
also control multiple servers, including all-but-one servers in a mix-
cascade. Significantly, AnonPoP’s anonymity holds even when clients
may occasionally disconnect, which is essential for supporting mobile
clients.

AnonPoP is affordable, with monthly costs of 2 cents per client. It is
also efficient with respect to latency, communication, and energy, mak-
ing it suitable for mobile clients. We developed an API that allows other
applications to use AnonPoP for adding strong anonymity. We evaluated
AnonPoP in several experiments, including a ‘double-blinded’ usability
study, a cloud-based deployment, and simulations.

1 Introduction

The growing awareness for the importance of anonymous communication, has
resulted in many efforts to develop, analyze, and deploy anonymous communica-
tion protocols and systems. Specifically, the Tor anonymous network [1] is widely
used. That said, the road to strongly-secured anonymous communication is still
paved with many challenges.

For instance, Tor is designed for low-latency services, which leaves it vulnera-
ble to globally-eavesdropping adversaries. Several works showed that Tor is also
vulnerable to other (weaker) attackers, e.g., off-path attackers [2] and malicious
servers/clients [3,4].

Tor provides a popular communication channel but is lacking a complete
messaging system. A complete messaging system should also provide ‘mailbox’
facilities to keep messages until users pick them up; this is also needed to pre-
vent detection of a pair of users that frequently communicate with each other

c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 390–412, 2018.
https://doi.org/10.1007/978-3-030-02641-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_18

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 391

and may get disconnected. A naive mailbox solution, where Tor is used to com-
municate with a mailbox server, would allow the server to de-anonymize users.
This can be done by exploiting Tor’s design, e.g., eavesdropping on a particular
(suspect) user, and then correlating between messages sent/received by this user
and messages received to this mailbox or sent from this mailbox.

Clearly, Tor’s popularity indicates that it provides a valuable service to many
users. Nevertheless, there are many scenarios that require stronger anonymity
properties, even at the cost of somewhat higher latency and overhead.

Several works proposed protocols for stronger guarantees of anonymity, as
compared to those of Tor. However, existing research is mostly impractical.
Many seem to believe that it is infeasible to ensure strong anonymity prop-
erties in a practical system for many users, especially with acceptable overhead
and efficiency. Disappointingly, neither Tor nor any other practical (existing
or proposed) system allows strongly-anonymous messaging. Messaging is used
more and more for business and personal communication, and anonymity is
often required - for reasons ranging from whistle-blowing to consulting on sex-
ual harassment. Strongly-anonymous messaging is feasible, since the volume of
(text) messages is not very large, and reasonable delays are acceptable. This
makes it all the more frustrating that such a system is not yet operative.

In this paper, we present the Anonymous Post-Office Protocol (AnonPoP),
a practical anonymous messaging system, designed to ensure strong anonymity,
even against strong attackers. AnonPoP is designed with the scalability required
to support millions of users, because anonymity loves company [5]. AnonPoP
uses efficient cryptographic primitives and has acceptable energy consumption,
making it appropriate for use on mobile devices. Furthermore, to the best of
our knowledge, AnonPoP is the only proposed anonymous messaging protocol
to support client disconnections, a feature that is essential for mobile clients.

To measure and confirm AnonPoP’s low operating costs, we implemented and
installed AnonPoP’s servers in the cloud, and tested it on hundreds of thousands
of clients, communicating anonymously with each other using AnonPoP. We
found that the cost of supporting such a large number of clients is less than 25
cents per user, per year, or 2 cents per month.

We provide an API for messaging applications, making it possible to easily
add an option for strong anonymity using AnonPoP. With this API, clients of
different applications can form one large anonymity set.

Due to the complexity of providing strong anonymity, we acknowledge that
we cannot completely address all of the challenges in this paper. Therefore, in
this paper, we focus on explaining the challenges, rationale, and system design
of AnonPoP, and present a variety of analyses of AnonPoP. We also provide an
extended technical report [6] which contains elaborated discussions on selected
topics.

Our Contributions. This work makes the following contributions:

1. Design, development, and evaluation of a practical strongly-anonymous mes-
saging protocol, secure against strong adversaries.

2. Support for mobile environments, including energy-saving considerations.

392 N. Gelernter et al.

3. Features such as the request-pool mechanism and per-epoch mailboxes, to han-
dle clients’ disconnections and to limit exposure due to disconnections or
active tagging attacks.

4. A bad-server isolation mechanism, allowing the isolation of a corrupt server
that is involved in aggressive (non-stealthy) tagging attacks.

5. An open-source prototype of AnonPoP, including API for applications, and
an Android messaging application that uses this API.

Paper Layout and Organization. We start by explaining the model of the
system in Sect. 2, and then present a high-level overview of AnonPoP in Sect. 3.
After that, we delve into AnonPoP’s mechanisms in detail, in Sects. 4 and 5. We
then analyze AnonPoP in Sect. 6, and evaluate it on mobile devices and in the
cloud in Sects. 7 and 8. We conclude by surveying related work in Sect. 9.

2 Model and Preliminaries

2.1 System Model

In AnonPoP, clients relay messages using two types of servers: Post-Office (PO)
servers and timed mixes (see Fig. 1). These servers are expected to operate con-
tinuously, while clients may disconnect from time to time. AnonPoP supports
multiple PO servers, where each client can select a PO server; it also supports an
arbitrary number of mix servers. For simplicity, our discussion and figures refer
to a single PO. As we describe later, AnonPoP allows the detection of tagging
attacks by corrupt servers, in which case we expect clients to move to different
available servers.

Mixes operate in synchronized slots of τ seconds. Each mix collects all the
packets received in a slot, shuffles them, decrypts or encrypts them, and forwards
them to their next hop so they are all received in the subsequent slot.

Mix Selection. For simplicity, we assume that AnonPoP clients and servers
use a trusted, reliable directory server for path selection. This is merely a sim-
plification, as it is straightforward to implement such a directory service in a
distributed manner, avoiding a single point of failure. The directory maintains
a list of all AnonPoP servers, with their public keys and addresses. Clients pick
a cascade of mixes uniformly among all paths consisting of pairs of connected
mixes, ending in the desired PO.

Mailbox Setup. AnonPoP automatically assigns clients to random mailboxes
and generates proper keys. In this paper, we assume that clients have a secure
communication channel on which to perform the initial key exchange. Anony-
mous key-exchange (e.g., in [7]) is a further challenge, beyond the scope of this
paper.

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 393

2.2 Adversary Model

As in previous works, we focus on probabilistic polynomial time attackers. This is
essential, since our design uses cryptographic mechanisms, which are only secure
assuming probabilistic polynomial time attackers (e.g., encryption schemes [8]).

The AnonPoP design assumes the attacker has global eavesdropping abilities.
In other words, it can instantly observe all communication sent between any
of the parties in the system. We also consider additional attacker capabilities,
mainly, control of the PO and/or some of the mixes, thereby allowing com-
plex powerful attacks. We make the reasonable assumptions that the number of
adversarial servers is limited. First, we assume a known upper bound f for the
number of malicious (faulty) mix servers. In addition, we assume that honest
mixes behave as expected and that the adversary can neither drop messages nor
delay a message to more than a slot between honest mixes. We also consider
communication to be between trusting peers (sender and recipient). In fact, we
are already working on advanced extensions that will offer defense against mali-
cious peers, misbehaving honest mixes, and adversaries who can drop messages
between honest mixes. However, these extensions are beyond the scope of this
paper.

Fig. 1. System architecture of AnonPoP. The PO maintains anonymous mailboxes;
clients send/receive messages to/from the mailbox anonymously via mix-cascades. All
communication channels (represented by arrows) use fixed rates.

3 High-Level Overview

When Alice wishes to send an anonymous message to Bob, her AnonPoP client
pads and packs the message into a fixed-sized packet with Bob’s (pseudo)random
mailbox address. Her packet is then relayed through a cascade of mixes, until it
reaches the PO. The PO then looks at the destination of the packet and delivers
it to Bob’s mailbox. We call this packet a push request, and the cascade it travels
a push channel.

When Bob wishes to retrieve messages from his mailbox, his client crafts a
designated packet with proof of ownership over the specific mailbox, and sends
the packet through a cascade of mixes to the PO. The PO verifies Bob’s owner-
ship and sends Bob a message from the mailbox. This message is called a pull
request and the cascade used is called a pull channel.

394 N. Gelernter et al.

All packets of the same type are padded to the same size1. Long mes-
sages are fragmented and re-assembled by the clients. The packets are onion-
encrypted [9,10]. They are encrypted using the public key of the PO, and then
consecutively, using the public keys of the mixes. Additionally, messages are
encrypted for the destination. When the PO decrypts the final onion layer, it
finds only a mailbox identifier and an encrypted message. Furthermore, all the
communication between every pair of adjacent entities (adjacent mixes, last mix
and PO, or client and first mix) is authenticated and encrypted.

The request packets that travel from clients to the PO are layer decrypted in
each mix in the cascade. The response packets traveling from the PO back to the
clients are encrypted at each mix; this is done through the same cascade as the
requests, but in reverse order. We use authenticated-encryption [11], allowing
the client to validate that the response was sent by the PO, over the specified
sequence of mixes. The PO sends the response upon receiving the corresponding
request from the client. To facilitate the authenticated-encryption of responses,
clients include the authenticated-encryption key to be applied to the response
in each onion-encryption layer. For a detailed illustration, see Fig. 2.

AnonPoP clients maintain a fixed rate of transmission for the packets, inde-
pendent of the actual pattern of users. This is accomplished by queuing outgoing
messages if their rate exceeds the fixed rate, and sending dummy packets [12],
if no outgoing messages are queued. Namely, clients send one push and one pull
request in every round. If a client does not have a real message to push, she
sends a dummy request, which is indistinguishable from a real push request.
The PO responds to dummy requests as it does for real requests, but using
dummy responses. Similarly, if a client does not have a message to pull2, the PO
sends back a dummy response. All dummy packets are indistinguishable from
real packets.

In the following sections, we dive deeper into AnonPoP, presenting and dis-
cussing the complex challenges and how AnonPoP faces them.

4 Anti-tagging Defenses

Onion-encryption and padding cannot fully protect anonymity against a rogue
PO. There are a few ways in which a rogue PO, possibly colluding with some
mixes, can ‘tag’ a request and/or the corresponding response, allowing it to link
between a client and a mailbox. In this section, we present AnonPoP’s defenses
against such tagging attacks. For an illustration of the possible attacks and how
AnonPoP deals with them, see Fig. 3.

1 To further increase the anonymity set, at the small price of extra bandwidth, it is
possible to pad all types to be of the same size.

2 Checking if a mailbox is not empty could be done anonymously and efficiently via
[13].

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 395

Fig. 2. Onion-encryption with cascades of mixes, as used by both push and pull chan-
nels. The circles above the straight lines mark the route of the request from the client to
the PO. The response route is illustrated by squares below dashed curves. The senders
encode in each onion layer a key (keyi) that Mixi uses to authenticate and encrypt the
response, and timestamps T req

i , T res
i specifying when the request and the response are

expected to arrive (see Sect. 4.1). The sender and mixes each select a random identifier
ID (for sender) or IDi (for ith mix), and store the relevant parameters (keyi, T

res
i and

received ID) in table Map indexed by the chosen ID.

(a) Delaying the response ar-
rival. Only the first pull mix is
honest.

(b) Defense by returning an
error report indistinguishable
from a real response at the ex-
pected response time.

(c) Sending a duplicated re-
quest in a subsequent slot.
Only one non-first pull mix is
honest.

(d) Defense by dropping the
duplicated request that ar-
rived in the wrong slot.

(e) Sending a duplicated re-
sponse in the same slot. Only
one non-first pull mix is hon-
est.

(f) Defense by dropping the
second response received.

Fig. 3. Attacks to correlate recipients and their mailboxes, and their defenses

396 N. Gelernter et al.

4.1 Timestamps, Anti-duplication, and Anti-tampering

The basic anti-tagging mechanism in AnonPoP is to include timestamps in every
layer of the onion; the request (and respectively, response) timestamp for the
ith mix is denoted T req

i (T res
i). Non-corrupt mixes always return an encrypted

response at exactly the time specified in the timestamp field. If the expected
response is not received on time, the mix returns an appropriate error report. A
response received too late (or too early) is dropped. Note that error reports are
indistinguishable from the ‘real’ responses. The adversary cannot learn whether
an encrypted response is hiding a ‘real’ response or an ‘error report’.

To further detect duplicate requests and responses that are received at the
same (correct) time slot, each AnonPoP mix uses the key it receives keyi, as a
unique identifier. If a mix receives multiple requests with the same key (for the
same slot), then it discards all but one of them. It sends back an error-report
containing the plaintext and randomness, allowing the previous mix to validate
the collision of keys. Similarly, a mix discards all but one response for each
forwarded request. (Random collisions occur with negligible probability.)

To prevent tagging via tweaked packet values or other packet tampering, any
corruption of the packet’s authentication in any layer is immediately detected
and the tampered packet is discarded.

4.2 Bad Server Isolation

An attacker who controls both the first mix and the PO can drop, delay, or
corrupt requests and/or responses to correlate between clients and mailboxes.
The first mix knows the originators of every request, and the PO knows how
many messages reach each mailbox. Even when clients do not disconnect, the
PO and the first mix may try to match clients to mailboxes by dropping or
delaying requests and/or responses; this may allow an intersection attack.

The bad-server isolation mechanism, allows AnonPoP to efficiently deter
active attacks involving a rogue first mix and the PO. Previous works (e.g.,
[14]) discussed the complexity of achieving such a goal. Suppose mix M detects
that it did not receive the expected response at its specified time from the ‘next
server’ (mix or PO), denoted X. Next, M encrypts and sends back a signed and
time-stamped problem report, stating the relevant identities (M,X); the (signed)
problem report is also deposited in the AnonPoP directory.

As a result, all clients and servers will avoid the pair (M,X) as part of the
AnonPoP routes. Namely, a rogue, active server, ‘loses’ one of its edges to other
servers, for each slot in which it uses such an ‘aggressive, detectable’ tagging
attack. Note, the link between a misbehaving/malicious mix and an honest mix
is dropped, as opposed to a specific mix. Furthermore, because the adversary
controls up to f servers, it cannot single handedly cause the exclusion of an
honest mix. We emphasize that if a malicious server deliberately sends a fake
error report in an attempt to incriminate an honest mix, they in fact achieve the
opposite effect: the honest mix is no longer connected to a malicious mix - and
that is actually the goal of the mechanism.

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 397

An attacker might attempt to abuse the mechanism by intentionally issuing
false error reports in order to disconnect as many links as possible between
honest mixes and malicious mixes. Since paths are chosen uniformly among all
the reliable paths, this would exclude many paths where at least one mix is
honest. This increases the probability of choosing a path where all the mixes
are malicious. Nevertheless, as long as the fraction of malicious mixes is low, the
advantage gained by the attacker is not significant; see AppendixA. Moreover,
by doing so, the attacker also increases the probability of choosing paths where
all mixes are honest.

Because the attacker loses links on every attack and there are many available
paths which do not contain malicious mixes, launching a DoS attack is limited
and could be mitigated through known techniques, e.g., forward error correction.
Attempting to overload honest mixes to cause congestion can be mitigated by
limiting the amount of work each mix processes.

5 Handling Disconnections

Mobile clients often disconnect from the network. Such disconnections may be
observable or sometimes even controlled by the attacker. This can allow an
attacking PO to correlate between clients and the mailboxes they pull from,
using intersection and correlation attacks [15–18]. In particular, if a pull request
reaches some mailbox, an eavesdropping PO can learn that all the clients who
were offline when the request arrived are not the owners of that mailbox. By
repeating this procedure over time, the adversary can correlate a single recipient
with his mailbox.

We focus on pull-requests, where the defense works better, and exploit the
fact that pull requests do not depend on the mailbox status. We can prepare
pull-requests in advance, with each request pulling the ‘next’ message from a
mailbox. Specifically, each client prepares and sends to the first pull-mix a ‘pool’
of pull requests to be used in future rounds, even in rounds where the client is
disconnected. Unlike pull requests that are sent by each client to her own mail-
box at a fixed rate and can be prepared in advance, push requests are sent to
specific mailboxes according to the current needs of the user. Therefore, Anon-
PoP cannot precisely predict push requests in advance. Consequently, we do
not use a request-pool for push requests. When clients disconnect, the mecha-
nisms described so far do not protect sender-anonymity against intersection and
correlation attacks. For these cases, we suggest Per-Epoch Mailboxes (PEM).

We first explain the request-pool, a technique that allows AnonPoP to extend
its recipient-anonymity defenses to the case of (reasonably-limited) client dis-
connections. Then, we present PEM for sender anonymity.

5.1 Request-Pool

When a client is connected, the first pull-mix maintains a ‘pool’ of μ pull requests,
prepared in advance, for the μ next rounds. As long as the client remains con-
nected, in every round, one pull request is used to retrieve a message; the client

398 N. Gelernter et al.

provides a new pull request, thereby maintaining μ requests in the ‘pool’. Namely,
the client sends the pull request that will be used μ rounds after the current
round. This ‘pool’ allows the first pull-mix to send a pull request for the client,
even in rounds in which the client is disconnected (up to μ consecutive rounds).
The mix also holds all the encrypted responses received from the PO; the mix
does not know whether the responses are real or dummy.

When a client reconnects after being disconnected for x ≤ μ rounds, it con-
tacts the first pull-mix to retrieve the messages kept by the mix from the pre-
vious x rounds. The client also sends to the mix x + 1 new pull requests, to be
used in future rounds; this replenishes the ‘pool’ of μ requests. A small μ value
would mean that users who disconnect for more than μ rounds would lose the
anonymity guarantees, where a large μ value would require appropriate resources
(e.g., storage).

5.2 Anonymity of Disconnecting Senders

In practice, when there are many clients, it can take a considerable amount
of time to learn information about the sender; however, this is still feasible,
hence AnonPoP does not ensure sender anonymity. For example, the adversary
can choose two sender-permuted scenarios in which only a single client receives
requests. In the first scenario, only client a sends the messages, and in the second
scenario, only client b sends. Obviously, if one of the scenarios is simulated, and
the adversary observes that only a or only b are online, she can detect the identity
of the sender. This is done by simply checking whether any message reached some
mailbox or not (the adversary controls the PO). In this extreme case of a single
sender, the adversary can simply correlate the incoming messages with the single
sender because she knows that no other messages were sent by other clients. In
reality, when there are always many clients online, and when messages are sent
by many of them, it is significantly harder to detect the sender.

AnonPoP implements per-epoch mailboxes (PEM) to heuristically defend
sender-anonymity, even in the case of disconnections. Namely, clients change
their mailboxes every fixed number δ of rounds, referred to as an epoch. PEM
does not completely ensure sender-anonymity, but it decreases the amount of
data learned by the PO. Furthermore, it ensures the anonymity guarantees of
AnonPoP in an epoch, among all the clients that stay online within that time.
PEM improves the resistance to sender-mailbox intersection attacks.

We simulated AnonPoP with and without PEM, and empirically found that
PEM strengthens the resistance to intersection and correlation attacks. Figure 4
shows that without PEM, even with 25,000 clients, the adversary succeeded in
completing the attack for a significant fraction of senders; this was done in a
significant but not prohibitive amount of time. Figure 5 depicts the distribution
of the anonymity set after 250, 500, 1000, and 1500 slots. It is possible to see
that the size of the anonymity set decreases quickly. After 1000 slots, the size
of the anonymity set is about a tenth of the number of clients. With PEM, the
adversary was unable to complete the attack in a single epoch. For a detailed
explanation about our simulations and results, see [6].

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 399

Fig. 4. Percentage of the attacks that
were completed over time (x axis) for
different numbers of AnonPoP clients.

Fig. 5. The anonymity set distribution
after different slots for AnonPoP with-
out PEM. The anonymity set is pre-
sented as a fraction of the number of
AnonPoP clients.

6 Analysis

Before analyzing AnonPoP’s anonymity properties, it is imperative to explain
why anonymity analysis is not trivial, and in-fact, imposes a significant chal-
lenge. Intuitively, anonymous communication means the inability to identify
specific communicating entities among the set of potentially communicating enti-
ties. Multiple variants were considered by researchers and practitioners, such as
unobservability and sender and/or recipient anonymity. One widely-used inter-
pretation [19] is that sender (recipient) anonymity refers to the inability of an
attacker to identify the sender (recipient) of a message among a set of potential
senders (recipients). Unobservability refers to inability of an attacker to know
whether there was any communication at all. These are useful, intuitive notions;
however, they are not sufficiently formal to allow rigorous proofs of security.

Transforming such informal, intuitive notions into precise, well-defined, for-
mal definitions, is a non-trivial challenge. There have been multiple attempts to
present appropriate formal definitions, including [20–30]. These definitions differ
in multiple aspects, for example in the capabilities of the adversary and what
constitutes a successful attack.

Unfortunately, these definitions are not suitable for analyzing AnonPoP, as
they fail to satisfy or comprehend all of AnonPoP’s goals. None of the existing
formal definitions capture AnonPoP’s abilities to target active, adaptive adver-
saries, support limited-duration client disconnections, and detect attacks or iso-
lates attackers when complete prevention is not possible.

Since our focus in this work is on system design, we decided to follow ‘the
spirit’ of the existing definitions of anonymity, and to use intuitive notions of
anonymity instead of formal definitions. Future work should extend the existing
definitions to provide a well-defined notion of practical anonymity. That said,
we do provide elaborated definitions and arguments in [6].

400 N. Gelernter et al.

6.1 Informal Anonymity Notions

Our notions follow [30], which addressed the challenge of defining anonymity
properties in the presence of active, adaptive adversaries, who may control some
of the protocol participants. We begin by presenting the notion of unobservabil-
ity.

Notion 1 (Unobservability). A protocol achieves unobservability against a glob-
ally eavesdropping attacker that controls a set S of the servers, if the adversary
cannot (with significant advantage and in efficient time) distinguish between any
pair of communication scenarios.

To present the (slightly weaker) notions of sender and recipient anonymity,
we first present sender/recipient permuted pairs. Consider two scenarios σ0, σ1,
where all the recipients receive the same messages in σ0 and in σ1, but the senders
in σ0 are a constant permutation (chosen by the attacker) of the senders in σ1.
Namely, given a permutation π chosen by the attacker, when an honest client i
needs to send a message to recipient r in σ0, the honest client π(i) needs to do
the same in σ1. We say that σ1 and σ0 are a sender-permuted pair. Similarly,
the term recipient-permuted pair refers to two scenarios where the recipients in
one scenario are a permutation of the recipients in the second scenario, and the
senders are identical.

Notion 2 (Anonymity). A protocol achieves sender (recipient) anonymity
against a globally eavesdropping attacker that controls a set S of AnonPoP’s
servers, if the adversary cannot (with significant advantage and in efficient time)
distinguish between any sender (recipient) permuted pair of scenarios.

These notions pose great challenges because they also consider extreme sce-
narios that may not occur in reality. For example, for unobservability, the adver-
sary must be unable to distinguish between any two scenarios; this includes a
scenario where all parties send messages versus a scenario where nobody sends
any message. These are strong anonymity requirements. Surely they do not hold
for a low-latency solution such as Tor, since the adversary can easily distinguish
between the scenarios. Furthermore, we also allow the corruption of different
subsets including most of the servers, as described below.

Detection/Isolation. Existing formal definitions of anonymity (e.g., [29,30])
require the complete prevention of attacks. However, sometimes prevention is
infeasible, hard, or expensive. In this cases, a detection/isolation approach may
be sufficient to deter attackers and hence to ensure anonymity. For example, in
AnonPoP and possibly in other efficient strong-anonymity solutions, the PO may
‘signal’ the use of a particular mailbox, by intentionally dropping its responses or
ignoring requests; such a ‘signal’ seems almost unavoidable for the model where
the PO keeps mailboxes. We show that every such abuse is detected and isolated
as a specific rogue entity (e.g., the PO).

Our goal is to ensure that every ‘bit’ of information collected by the adversary
has a ‘high price’. We present an intuitive notion, which is somewhat tailored to
the AnonPoP model.

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 401

Notion 3. Let X(f), Y (f) be two functions (in the number of corrupt servers
f), and let xc be the number of bits that the adversary can learn on (honest) user
c communicating only with honest peers, and yc = max{0, xc−X(f)}. A protocol
achieves (X,Y)-attacker-isolation if, with a high probability,

∑
c yc ≤ Y (f).

Intuitively, the attacker can learn up to X(f) bits ‘per client’, plus up to Y (f)
bits additional (for all clients); in AnonPoP, X(f) = f and Y (f) = f(f + 1), as
we show below.

6.2 Anonymity Properties

We first consider the anonymity properties of AnonPoP, as a function of the
malicious servers along the paths between the senders and recipients. This is
summarized in Table 1.

Table 1. Anonymity properties achieved by AnonPoP against a globally-eavesdropping
attacker, who controls all servers along the path, except as indicated in the ‘honest
server’ column.

Honest server Anonymity property Attack: Defense

Without disconnections With disconnections

Only first

pushmix
Sender anonymity

Passive : Prevent

Active : Prevent
Heuristic defense, see Sect. 5.2

Only non-first

pushmix

Passive : Prevent

Active : Detect

Only first

pullmix
Recipient anonymity

Passive : Prevent

Active : Prevent

Passive : Prevent

Active : Detect

Only non-first

pullmix

Passive : Prevent

Active : Detect

Only PO Unobservability Passive and Active: Prevent

Claim. AnonPoP ensures unobservability against a global-eavesdropping adver-
sary that further controls any subset of mixes and users, and has the ability to
disconnect users, as long as the PO is not corrupted.

Argument: This follows by reduction to the indistinguishability property of (1)
the public key encryption scheme EPK, used to encrypt requests to the PO, and of
(2) the shared-key encryption scheme ESK, used by the PO to encrypt responses.
Namely, assume some (efficient) adversary A is able to distinguish between two
scenarios of message sending S0 and S1. We first check if A also distinguishes
between scenarios S′

0 and S′
1, which are the same as the corresponding S0 and S1

except that responses from the PO are all (encryptions of) some fixed message
m. If A succeeds, we use it as oracle to distinguish EPK; otherwise, we use A
to create an oracle to distinguish ESK (using the fact that A fails to distinguish
between S′

0 and S′
1, yet succeeds in distinguishing between S0 and S1). The

reduction works because the pattern of transmissions is fixed and independent
of input messages. ��

402 N. Gelernter et al.

Claim. When clients are always connected and some push (pull) mix is non-
corrupted, AnonPoP ensures sender (recipient) anonymity against passive
attackers.

Argument: We present the argument only for sender anonymity; the argument
for recipient anonymity follows the same logic. The argument is by reduction to
the indistinguishability of the public key encryption scheme EPK, used to encrypt
requests to the mixes, and in particular, to the non-corrupt mix. Assume some
efficient adversary A is able to distinguish between two scenarios of message
sending S0, S1, where the number and length of messages sent to each mailbox
(recipient) are identical (sender anonymity). Due to AnonPoP’s padding mech-
anisms, the pattern of transmissions is fixed and independent of input messages.
Moreover, due to the operation of the (non-corrupt) mix, the order of requests
arriving at the PO is random. Hence, A provides an oracle that allows an efficient
distinguisher for EPK. ��
Claim. AnonPoP ensures sender (recipient) anonymity against active attackers,
provided that the first push (pull) mix is honest and that clients are always
connected.

Argument: Due to the padding mechanism, requests are sent exactly once a
round, with a fixed size. The (honest) first mix shuffles these requests, hence,
the subsequent mixes and the PO cannot link between the client and a specific
request from the first mix. The traffic from the first mix back to the client is also
fixed, since the mix returns a response at exactly the time specified in the time-
stamp field; due to the anti-duplication mechanisms, only a single such response
is sent and only in that slot.

The encryption applied to messages ensures that eavesdroppers and other
mixes cannot link between the sender and the (encrypted) requests. Additionally,
in every two scenarios that are different only in the senders (recipients), the same
number of messages is pushed (pulled) to (from) mailboxes that differ only by
their pseudonym, so the PO cannot distinguish between the two scenarios. In
this case, delaying or blocking an encrypted message can be done only when
all the messages are already shuffled by the honest first mix; hence, such active
attacks are not helpful and Notion 2 holds. ��
Claim. When clients are always connected, AnonPoP achieves (f, f · (f + 1))-
attacker isolation.

Argument: A server reported by f + 1 servers, where f is a bound on the
number of malicious servers, is definitely malicious and not used in any channel.
Note, the attacker cannot frame an honest server. Also, since we assume that
at least one mix along the path is honest, it follows that the PO and first mix
can only signal each other in the absence of a request/response, i.e., one bit
per round; they cannot, for example, use content-based signaling. For each such
learned bit, a disconnection occurs between one malicious mix and another mix,

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 403

either due to false report by the attacker or due to a real report by the honest
mix. Beyond that, each of the mixes can operate as a first mix for each of the
clients; they can drop the message to tag the user without blaming the next
mix. In this case, the first mix will not be disconnected from another mix, but
the client knows for sure that the first mix is malicious and disconnects from
it. Theoretically, this allows each of the f mixes to tag each of the users once.
The number of bits can be learned according to each of the cases and therefore
satisfies Notion 3. ��
Claim. AnonPoP ensures recipient anonymity against passive attackers when
some pull mix is honest, even when clients may disconnect, provided clients do
not go offline for more than μ consecutive rounds.

Argument: Since the adversary is passive, the traffic from/to the first pull mix
to/from the PO is fixed, as though there were no disconnections. There might be
a peak in traffic between the first pull mix and the client immediately after the
client reconnects; in this case, the rate of traffic between the client and first mix is
not completely fixed. However, traffic is still independent of the actual number
of messages sent and received, and depends only on the clients’ connectivity.
Since the connectivity is known to the eavesdropping attacker, this mechanism
exposes no additional information. Hence, there is no information leakage.

Since clients are not offline for more than μ rounds, recipient anonymity is
achieved against passive attackers according to Notion 2, provided that (at least)
one pull mix is honest. This is because all the pull requests and the responses for
the requests arrive at an honest mix that forwards them shuffled. Consequently,
the adversary cannot correlate incoming messages to outgoing mixed messages.

��
Claim. AnonPoP achieves (f, f · (f + 1))-attacker isolation, even when clients
may disconnect, provided f << n and clients do not go offline for more than μ
consecutive rounds.

Argument: As stated by the previous claim, while clients do not disconnect
for more than μ consecutive rounds, and the traffic reaches the servers intact on
time, recipient anonymity is ensured. Additionally, the mechanism described in
Subsect. 4.2 allows the detection of active attacks. Under the same conditions,
while the rate of pull requests remains fixed, Notion 3 is satisfied with regard to
recipient anonymity against active adversaries. ��

Finally, we note that AnonPoP can also ensure forward secrecy and proactive
security by using existing schemes and methods, e.g., [31] and [32].

7 Mobile Environments

Support for mobile clients is critical for the success of anonymous messaging, but
also involves serious challenges. In particular, users of mobile devices are reluc-
tant to use energy-hungry applications. We briefly describe one of our energy-
optimizations and our experimental evaluation of energy requirements.

404 N. Gelernter et al.

7.1 Saving Energy with Lazy Pulling

In a naive implementation, clients would maintain an open TCP connection to
the first mix until the response arrives back at the first mix. However, the open
connection prevents the device from moving to energy-saving ‘sleep’ mode. To
reduce energy consumption, AnonPoP uses lazy pulling, where clients use only
short connections. In lazy pulling, the first mix in every channel acts as a proxy
for the PO’s responses. The client sends requests to the first mixes in each of the
push/pull channels, and immediately retrieves the responses for the requests of
the previous round. Although it may not be obvious, lazy pulling results in the
same average latency as with immediate pulling (for a detailed explanation, see
[6]).

7.2 Evaluating Energy Consumption

We briefly describe a user study we conducted to test the impact of AnonPoP on
the user-experience of Android phone users. The topology of the network in the
experiment included three mixes in each channel and one PO. The user study was
conducted with the participation of 20 smartphone users. We wanted to test how
the different implementations (using asymmetric or symmetric cryptography)
affect the user experience. We created an Android application that runs one
of three states: (1) using asymmetric cryptography (‘real’ AnonPoP), (2) using
symmetric cryptography, and (3) with cryptography disabled.

During every installation, the application randomly chose one of the three
states. The experiment participants reinstalled the application every week for
eight weeks, to change the state randomly. At the end of every week, the partic-
ipants were asked to rate their user experience with a focus on the battery life,
compared to the previous week. The experiment was conducted double-blindly;
both the authors and the participants did not know which states were assigned
to each of them during the course of the experiment. At the end of the experi-
ment, we compared the real changes in the states and the feedback by the users.
The experimental results serve to strengthen our hypothesis: AnonPoP overhead
does not create a significant degradation in usability for smart-phone users. For
more information about the experiment and its results, see [6].

8 Implementation and Evaluation

In this section, we first describe our implementation, focusing on AnonPoP
servers and the cryptographic primitives we used. We then show that the Anon-
PoP implementation is practical, by evaluating it under real-world conditions,
including a cost analysis of the system using commercial cloud services.

8.1 Implementation

We implemented AnonPoP in Java, because of its portability to different
platforms. Our implementation for the push and pull channels uses a sim-
ple four-layer onion for each request, using a hybrid encryption scheme. For

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 405

shared-key encryption, we used a simple authenticated encryption scheme with
AES/CBC/PKCS5 padding. The key size was 48 bytes, consisting of 128-bit
AES key and 256-bit HMAC-SHA key. For the public key encryption scheme,
we used RSA with a 1024-bit key. For the push and pull request onions, the cryp-
tographic overhead was slightly more than 1KB. The overhead for the push and
the pull response onions was 256 bytes. We used 128-bit tokens as unique iden-
tifiers for messages and mailboxes. We expect further improvements in perfor-
mance by moving to elliptic-curve cryptography, using the efficient and compact
Sphinx [33] design.

To decouple any dependency in AnonPoP we developed an API that
relieves any direct interaction with AnonPoP. The API autonomously main-
tains the connectivity, sends dummy messages when needed, handles the encryp-
tion/decryption, and generally acts as a friendly intermediary between the appli-
cation and AnonPoP’s infrastructure. The bottom line is that any application or
service can use AnonPoP’s API as a “carrier” to deliver the data anonymously.

Moreover, a crucial obstacle towards adoption of anonymous communica-
tion systems is the fact that users need to migrate to a dedicated application,
and cannot continue to use their preferred messaging service. Our energy con-
sumption results, cloud evaluations, and API, suggest that AnonPoP could be
integrated as a layer of anonymity for any service, while users continue to use
their preferred applications.

8.2 Evaluation in the Cloud

We used Amazon’s cloud services c4.8xlarge Linux machines with 36 virtual
CPUs and 60 GB of memory. Our evaluation was done on the simple topology of
three mixes in each channel and a single PO, with extra machines that simulated
the clients. We configured the instances such that every pair of communicating
machines will be located on different continents, to emulate worst-case scenarios.

We experimented with slots of τ = 30 s, rounds of λ = 10 slots, and epochs
of 3 h. We began to run the protocol against 100, 000 concurrent clients. We
repeated the experiment, gradually increasing the number of clients until the
failure rate was higher than 0.001%. Our implementation was able to support
up to 500, 000 concurrent users with only sporadic failures due to clients who
were unable to open a connection with the first mix.

Our AnonPoP implementation uses a 1 KB message size and round length of
5 min. The 1 KB size is suitable for most textual messaging services, especially
regarding mobile communication. The round length was selected to trade-off
latency with energy consumption, which is critical for mobile devices (short
rounds could significantly increase energy consumption and bandwidth). Figure 6
demonstrates the effect of payload size and round length in terms of costs, which
shows that our choices were sensible.

406 N. Gelernter et al.

8.3 Costs Evaluation

Running AnonPoP servers in the cloud is not expensive. The cost for each Ama-
zon instances depends on several variables: location, type of payment, and band-
width usage. Significant discounts are received for reserving instances for long
periods. Reserving c4.8xlarge instances for the first and third mixes in the US
and for the second mixes and the PO in Europe has a yearly cost of 60K$.

In addition to machine costs, there is a payment for the traffic generated by
the machines. There is no need to pay for traffic coming from the Internet, but
there is a changing cost for outgoing traffic. The cost starts at 0.09$ per 1 GB
and goes down as the amount of outgoing traffic increases.

When a client sends push and pull requests to the first mixes, there is no cost
for the system. However, each of these messages travels through the mixes and
PO, generating outbound traffic of around 14.7 KB per client per round. The
maximal communication volume in the system for a client is 1.47 GB.

Calculating the yearly cost of the system involves two factors: (1) the yearly
cost of the instances, and (2) the yearly cost of the traffic for all the clients
together. While the first factor does not directly depend on the number of clients
and can be referred to as a constant, the second factor depends on the number of
clients because the cost per GB decreases as the total amount of traffic increases.
Both of the components reflect the yearly cost of running AnonPoP’s servers.
We divided the yearly cost for the machines and the traffic by the number of
clients to get the yearly cost per client.

Using the instances we chose, the yearly cost starts at 1.4$ per client for
50K clients, and decreases rapidly to less than 25 cents per client for 500K
clients. Figure 7 depicts the yearly cost per client as a function of the number of
clients. Note, the calculation was based on using strong and relatively expensive
instances even for a low number of clients. In practice, for fewer clients, weaker
and cheaper machines can be used to further decrease the cost.

Fig. 6. Yearly cost ($) per client as a
function of the payload size and round
length, using c4.8xlarge machines with
100,000 concurrent users.

Fig. 7. Yearly cost ($) per client as a
function of the number of clients using
AnonPoP.

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 407

9 Related Work

This section briefly discuss other works dealing with anonymous communication.
We focus on works whose goal, like AnonPoP, is to provide anonymity against
adversaries with eavesdropping capabilities. Like AnonPoP, most of these works
focus on applications with potential to suffer from significant latency, such as
messaging. This excludes the many works like Tor and other low-latency systems,
which, unlike AnonPoP, are vulnerable to eavesdropping adversaries.

AnonPoP continues the line of mix-based mechanisms whose goal is to pro-
vide strong anonymity for messaging or email, with relatively high latency. Other
examples include Mixminion [34] and previous proposals, e.g., Babel [35], Mix-
Master and Reliable [36]. Mixminion introduced new ideas such as single-use
reply blocks, which allows anonymity for recipients, and techniques to deal with
tagging and replay attacks; some of these techniques are used by AnonPoP.
However, Mixminion is vulnerable to long-term intersection, does not provide
unobservability, and has latency that can be excessive for messaging applica-
tions.

Other proposals for strong anonymous messaging were not really designed
for practical deployment, as they are neither efficient nor appropriate for many
users. The Busses protocol [37] ensures strong anonymity - even unobservability -
by having each message sent through all possible destinations. The Drunk Motor-
cyclist (DM) design achieves similar properties, e.g., strong recipient anonymity,
by sending each message randomly through the network, making it highly likely
to reach the destination. These are elegant designs that ensure strong anonymity,
but result in excessive overhead, which is inappropriate for real-life applications.

Verdict [38] and Dissent [39] follow the DC-net [40] design, to ensure sender
anonymity. The computational overhead for both clients and servers is relatively
high, although it was shown to be practical for up to thousands of users.

Riposte [41] is a recent DC-net proposal, which achieves sender anonymity
against globally-eavesdropping adversaries for large anonymity sets; however,
only a small proportion of the users send messages. In Riposte, many clients
write into a shared database, maintained by a small set of servers. To reduce the
bandwidth overhead for n clients from O(n) to O(

√
n), Riposte uses private infor-

mation retrieval (PIR) [42]. However, PIR schemes, even optimized (e.g., [43]),
have significant latency and bandwidth overheads. These overheads increase as
a function of the number of clients using the system, making them impractical
for large-scale messaging. Pynchon Gate [44] is another design using PIR, in this
case, to retrieve pseudonymous mail. Again, due to the use of PIR, it suffers
from high communication and computation overhead, making it impractical for
use in mobile devices and for systems with many users.

Nipane et al. presented Mix-In-Place [45], an architecture based on Secure
Function Evaluation (SFE), supporting messaging with a single proxy. SFE is
more computationally-intensive than PIR, thus, the system is not practical when
considering many users and mobile devices.

Aqua [46] is another related system; although it has a higher overhead (cf. to
AnonPoP), it is much more efficient than the systems discussed above. However,

408 N. Gelernter et al.

the goal of Aqua is file-sharing applications such as BitTorrent. Aqua ensures
k-anonymity [47], using onion routing [10] with dummy traffic via multiple paths
to resist traffic analysis. It does not provide anonymity against corrupt servers
and does not support disconnecting clients.

Vuvuzela [48] is a scalable mix-based anonymous messaging system, with
quite similar goals to AnonPoP. Vuvuzela shares several design decisions, but
differs considerably as outlined in AppendixB. AnonPoP and Vuvuzela were
designed concurrently [49,50] yet independently.

Resisting Intersection Attacks. Buddies [51] offers a mechanism to keep
the publisher of a message on a shared board. The publisher remains anony-
mous within a set of k participants [47] for a long time, to avoid intersection
attacks [15–18] by a global eavesdropper. However, Buddies does not mask the
communication; instead, it prevents its clients from publishing messages when
this might cause an exposure of their identity. By requiring many cooperating
clients (‘buddies’) online to create a large anonymity set, Buddies uses significant
overhead and latency. Hence, Buddies is unable to efficiently achieve long-term
resistance to intersection attacks (see Sect. 5.6 in [51]).

10 Conclusions and Future Work

AnonPoP demonstrates practical anonymous messaging service with defenses
against powerful attackers, including those with global eavesdropping capabili-
ties and the ability to control some of the servers. AnonPoP achieves this with
low overhead and operational costs and in a scalable manner, practical for mobile
clients due to its low energy requirements and support for temporary disconnec-
tions. We evaluated AnonPoP using a user study and experiments, including
commercial cloud services and mobile devices.

Future work should address significant remaining challenges. One significant
challenge is secure, usable and anonymous key management; note that even with-
out anonymity, this issue is a long outstanding challenge of usable security, even
in popular messaging applications claiming end-to-end security [52].

One of AnonPoP’s major contributions is the idea of bad server isolation.
However, this design has not been fully analyzed. Completing and refining this
mechanism is a significant challenge for future work. Initial steps toward this
goal are taken in [53].

Solutions are also required to additional system issues, in particular, control-
ling traffic to prevent overload of honest servers, clock synchronization, resource
reservation or allocation etc.

Acknowledgments. We are grateful to George Danezis, Yossi Gilad, Hezi Moriel,
Roee Shlomo, Bogdan Carbunar and the anonymous reviewers for their helpful and
constructive feedback. This work was supported by the Israeli Ministry of Science and
Technology.

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 409

Appendix

A Probability of Compromised Channel

When the PO is corrupt, AnonPoP’s sender (recipient) anonymity may fail, if
all mixes in the push (resp., pull) channel are malicious (1). We now show that,
under the reasonable assumption that f << n, the probability of such ‘all bad’
channel is small.

To increase the probability of ‘all bad’ channel, the attacker may decrease the
number of possible channels where at least one mix is honest, by disconnecting
up to f honest servers from each malicious mix, abusing the ‘bad server isola-
tion’ mechanism. However, as we show, this abuse does not significantly improve
the probability of ‘all bad’ channel. Assume, for simplicity, that the attacker
can cancel every connection between malicious and honest mixes; for simplicity,
assume three mixes in a channel. Hence, there are 3! · (f3

)
‘all bad’ channels, and

3! · (n−f
3

)
‘all honest’ channels. The probability of choosing an ‘all bad’ channel

is therefore only: (f3)
(f3)+(n−f

3) .

B AnonPoP and Vuvuzela

In this appendix, we briefly discuss some of the differences between AnonPoP
and Vuvuzela.

Vuvuzela allows communication only between connected (online) users, where
AnonPoP aims to provide defense to users who may disconnect. AnonPoP’s
motivation for this decision is to provide protection for its users from attacks
that takes advantage of disconnections to infer information about the users.
Furthermore, AnonPoP also aims to have a built-in support for mobile users,
and mobile users sometimes disconnect.

AnonPoP’s goal to provide support for mobile users is also exhibited in its
attempt to minimize the communication overhead requirements to be suitable for
the low energy and low bandwidth requirements of usable mobile environments.
In Vuvuzela, at each ‘dial round’ (currently set at 10 min), every Vuvuzela user
downloads and decrypts all ‘invitations’ sent to her invitation dead drop, shared
with many other users and determined as the hash of the user’s public key. Even
with only three servers, this is 7MB per (10-min) dialing round.

AnonPoP presents the bad-server isolation mechanism, which actively takes
measures against misbehaving servers, to deter rogue servers from performing
active attacks against AnonPoP users.

References

1. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: USENIX Security Symposium, USENIX, pp. 303–320 (2004)

410 N. Gelernter et al.

2. Gilad, Y., Herzberg, A.: Spying in the dark: TCP and tor traffic analysis. In:
Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS, vol. 7384, pp. 100–119.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31680-7 6

3. Bauer, K., McCoy, D., Grunwald, D., Kohno, T., Sicker, D.: Low-resource routing
attacks against tor. In: Proceedings of the 2007 ACM Workshop on Privacy in
Electronic Society, pp. 11–20. ACM (2007)

4. Borisov, N., Danezis, G., Mittal, P., Tabriz, P.: Denial of service or denial of secu-
rity? In: Proceedings of the 14th ACM Conference on Computer and Communica-
tions Security, pp. 92–102. ACM (2007)

5. Dingledine, R., Mathewson, N.: Anonymity loves company: usability and the net-
work effect. In: WEIS (2006)

6. Gelernter, N., Herzberg, A., Leibowitz, H.: Two cents for strong anonymity:
the anonymous post-office protocol. Cryptology ePrint Archive, Report 2016/489
(2016) http://eprint.iacr.org/2016/489

7. Farb, M., Burman, M., Chandok, G., McCune, J., Perrig, A.: SafeSlinger: an easy-
to-use and secure approach for human trust establishment. Technical report, Tech-
nical Report CMU-CyLab-11-021, Carnegie Mellon University (2011)

8. Bellare, M., Rogaway, P.: Asymmetric encryption. http://cseweb.ucsd.edu/
∼mihir/cse207/w-asym.pdf

9. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84–90 (1981)

10. Goldschlag, D., Reed, M., Syverson, P.: Onion routing. Commun. ACM 42(2),
39–41 (1999)

11. Bellare, M., Namprempre, C.: Authenticated encryption: relations among notions
and analysis of the generic composition paradigm. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 531–545. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-44448-3 41

12. Pfitzmann, A., Pfitzmann, B., Waidner, M.: ISDN-MIXes: untraceable communi-
cation with very small bandwidth overhead. GI/ITG Conf. Commun. Distrib. Syst.
267, 451–463 (1991)

13. Piotrowska, A., Hayes, J., Gelernter, N., Danezis, G., Herzberg, A.: AnNotify: a
private notification service. In: Workshop on Privacy in the Electronic Society
(WPES 2017) (2017)

14. Dingledine, R., Syverson, P.: Reliable MIX cascade networks through reputation.
In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 253–268. Springer, Heidelberg
(2003). https://doi.org/10.1007/3-540-36504-4 18

15. Berthold, O., Federrath, H., Köhntopp, M.: Project “anonymity and unobserv-
ability in the internet”. In: Proceedings of the Tenth Conference on Computers,
Freedom and Privacy: Challenging the Assumptions, pp. 57–65. ACM (2000)

16. Berthold, O., Langos, H.: Dummy traffic against long term intersection attacks.
In: Dingledine, R., Syverson, P. (eds.) PET 2002. LNCS, vol. 2482, pp. 110–128.
Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36467-6 9

17. Mathewson, N., Dingledine, R.: Practical traffic analysis: extending and resisting
statistical disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol.
3424, pp. 17–34. Springer, Heidelberg (2005). https://doi.org/10.1007/11423409 2

18. Wright, M.K., Adler, M., Levine, B.N., Shields, C.: Passive-logging attacks against
anonymous communications systems. ACM Trans. Inf. Syst. Secur. (TISSEC)
11(2), 3 (2008)

https://doi.org/10.1007/978-3-642-31680-7_6
http://eprint.iacr.org/2016/489
http://cseweb.ucsd.edu/~mihir/cse207/w-asym.pdf
http://cseweb.ucsd.edu/~mihir/cse207/w-asym.pdf
https://doi.org/10.1007/3-540-44448-3_41
https://doi.org/10.1007/3-540-36504-4_18
https://doi.org/10.1007/3-540-36467-6_9
https://doi.org/10.1007/11423409_2

Two Cents for Strong Anonymity: The Anonymous Post-office Protocol 411

19. Pfitzmann, A., Hansen, M.: A terminology for talking about privacy by data mini-
mization: anonymity, unlinkability, undetectability, unobservability, pseudonymity,
and identity management, 34 (2010). http://dud.inf.tu-dresden.de/literatur/
Anon Terminology v0

20. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular
approach. J. Comput. Secur. 12(1), 3–36 (2004)

21. Halpern, J., O’Neill, K.: Anonymity and information hiding in multiagent systems.
J. Comput. Secur. 13(3), 483–514 (2005)

22. Pashalidis, A.: Measuring the effectiveness and the fairness of relation hiding sys-
tems. In: IEEE Asia-Pacific Services Computing Conference, APSCC 2008, pp.
1387–1394. IEEE (2008)

23. Tsukada, Y., Mano, K., Sakurada, H., Kawabe, Y.: Anonymity, privacy, onymity,
and identity: a modal logic approach. In: International Conference on Computa-
tional Science and Engineering, CSE 2009, vol. 3, pp. 42–51. IEEE (2009)

24. Bohli, J., Pashalidis, A.: Relations among privacy notions. ACM Trans. Inf. Syst.
Secur. (TISSEC) 14(1), 4 (2011)

25. Goriac, I.: An epistemic logic based framework for reasoning about information
hiding. In: 2011 Sixth International Conference on Availability, Reliability and
Security (ARES), pp. 286–293. IEEE (2011)

26. Veeningen, M., de Weger, B., Zannone, N.: Modeling identity-related properties
and their privacy strength. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST
2010. LNCS, vol. 6561, pp. 126–140. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19751-2 9

27. Backes, M., Goldberg, I., Kate, A., Mohammadi, E.: Provably secure and practical
onion routing. In: 2012 IEEE 25th Computer Security Foundations Symposium
(CSF), pp. 369–385. IEEE (2012)

28. Feigenbaum, J., Johnson, A., Syverson, P.: Probabilistic analysis of onion routing
in a black-box model. ACM Trans. Inf. Syst. Secur. 15(3), 14:1–14:28 (2012)

29. Hevia, A., Micciancio, D.: An indistinguishability-based characterization of anony-
mous channels. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134,
pp. 24–43. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-70630-
4 3

30. Gelernter, N., Herzberg, A.: On the limits of provable anonymity. In: Proceedings
of the 12th Annual ACM Workshop on Privacy in the Electronic Society, WPES
2013 (2013)

31. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 16

32. Canetti, R., Halevi, S., Herzberg, A.: Maintaining authenticated communication
in the presence of break-ins. J. Cryptol. 13(1), 61–105 (2000)

33. Danezis, G., Goldberg, I.: Sphinx: a compact and provably secure mix format. In:
2009 30th IEEE Symposium on Security and Privacy, pp. 269–282. IEEE (2009)

34. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: design of a type iii anony-
mous remailer protocol. In: Proceedings of 2003 Symposium on Security and Pri-
vacy, pp. 2–15. IEEE (2003)

35. Gülcü, C., Tsudik, G.: Mixing email with Babel. In: Ellis, J.T., Neuman, B.C.,
Balenson, D.M. (eds.) NDSS, pp. 2–16. IEEE Computer Society (1996)

36. Dı́az, C., Sassaman, L., Dewitte, E.: Comparison between two practical mix
designs. In: Samarati, P., Ryan, P., Gollmann, D., Molva, R. (eds.) ESORICS
2004. LNCS, vol. 3193, pp. 141–159. Springer, Heidelberg (2004). https://doi.org/
10.1007/978-3-540-30108-0 9

http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0
http://dud.inf.tu-dresden.de/literatur/Anon_Terminology_v0
https://doi.org/10.1007/978-3-642-19751-2_9
https://doi.org/10.1007/978-3-642-19751-2_9
https://doi.org/10.1007/978-3-540-70630-4_3
https://doi.org/10.1007/978-3-540-70630-4_3
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-540-30108-0_9
https://doi.org/10.1007/978-3-540-30108-0_9

412 N. Gelernter et al.

37. Beimel, A., Dolev, S.: Buses for anonymous message delivery. J. Cryptol. 16(1),
25–39 (2003)

38. Corrigan-Gibbs, H., Wolinsky, D.I., Ford, B.: Proactively accountable anonymous
messaging in Verdict. In: Proceedings of the 22nd USENIX Conference on Security,
pp. 147–162. USENIX Association (2013)

39. Wolinsky, D.I., Corrigan-Gibbs, H., Ford, B., Johnson, A.: Dissent in numbers:
making strong anonymity scale. In: 10th OSDI (2012)

40. Chaum, D.: The dining cryptographers problem: unconditional sender and recipient
untraceability. J. Cryptol. 1(1), 65–75 (1988)

41. Corrigan-Gibbs, H., Boneh, D., Mazires, D.: Riposte: an anonymous messaging
system handling millions of users. In: IEEE Symposium on Security and Privacy,
pp. 321–338. IEEE Computer Society (2015)

42. Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM (JACM) 45(6), 965–981 (1998)

43. Demmler, D., Herzberg, A., Schneider, T.: RAID-PIR: practical multi-server PIR.
In: Proceedings of the 6th edition of the ACM Workshop on Cloud Computing
Security, pp. 45–56. ACM (2014)

44. Sassaman, L., Cohen, B., Mathewson, N.: The Pynchon gate: a secure method
of pseudonymous mail retrieval. In: Proceedings of the 2005 ACM Workshop on
Privacy in the Electronic Society, pp. 1–9. ACM (2005)

45. Nipane, N., Dacosta, I., Traynor, P.: “mix-in-place” anonymous networking using
secure function evaluation. In: Zakon, R.H., McDermott, J.P., Locasto, M.E. (eds.)
ACSAC, pp. 63–72. ACM (2011)

46. Le Blond, S., Choffnes, D., Zhou, W., Druschel, P., Ballani, H., Francis, P.: Towards
efficient traffic-analysis resistant anonymity networks. In: Proceedings of the ACM
SIGCOMM 2013 Conference on SIGCOMM, pp. 303–314. ACM (2013)

47. von Ahn, L., Bortz, A., Hopper, N.J.: K-anonymous message transmission. In: Pro-
ceedings of the 10th ACM Conference on Computer and Communications Security,
pp. 122–130. ACM (2003)

48. van den Hooff, J., Lazar, D., Zaharia, M., Zeldovich, N.: Vuvuzela: scalable private
messaging resistant to traffic analysis. In: SOSP, pp. 137–152. ACM (2015)

49. Gelernter, N., Herzberg, A.: AnonPoP old anonymous technical report (before the
system implementation). Anonymised Technical report, August 2014. https://sites.
google.com/site/anonymoustechreports/home

50. Gelernter, N., Herzberg, A.: Hide from the NSA: achieving strong anonymity
against strong adversaries. In: 2014 IEEE International Conference on Software
Science, Technology and Engineering (SWSTE), Doctoral Symposium (2014)

51. Wolinsky, D.I., Syta, E., Ford, B.: Hang with your buddies to resist intersection
attacks. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS 2013, pp. 1153–1166. ACM, New York (2013)

52. Herzberg, A., Leibowitz, H.: Can Johnny finally encrypt? Evaluating E2E encryp-
tion in popular IM applications. In: ACM Workshop on Socio-Technical Aspects
in Security and Trust (STAST) (2016)

53. Leibowitz, H., Piotrowska, A., Danezis, G., Herzberg, A.: No right to remain silent:
isolating malicious mixes. Cryptology ePrint Archive, Report 2017/1000 (2017).
http://eprint.iacr.org/2017/1000

https://sites.google.com/site/anonymoustechreports/home
https://sites.google.com/site/anonymoustechreports/home
http://eprint.iacr.org/2017/1000

Wireless and Physical Layer Security

Practical Evaluation of Passive COTS
Eavesdropping in 802.11b/n/ac WLAN

Daniele Antonioli1(B) , Sandra Siby2 , and Nils Ole Tippenhauer1

1 Singapore University of Technology and Design (SUTD), Singapore, Singapore
{daniele antonioli,nils tippenhauer}@sutd.edu.sg

2 Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne, Switzerland
sandra.siby@epfl.ch

Abstract. In this work, we compare the performance of a passive eaves-
dropper in 802.11b/n/ac WLAN networks. In particular, we investi-
gate the downlink of 802.11 networks in infrastructure mode (e. g. from
an access point to a terminal) using Commercial-Of-The-Shelf (COTS)
devices. Recent 802.11n/ac amendments introduced several physical and
link layer features, such as MIMO, spatial diversity, and frame aggrega-
tion, to increase the throughput and the capacity of the channel. Several
information theoretical studies state that some of those 802.11n/ac fea-
tures (e. g. beamforming) should provide a degradation of performance
for a passive eavesdropper. However, the real impact of those features
has not yet been analyzed in a practical context and experimentally
evaluated. We present a theoretical discussion and a statistical analysis
(using path loss models) to estimate the effects of such features on a
passive eavesdropper in 802.11n/ac, using 802.11b as a baseline. We use
Signal-to-Noise-Ratio (SNR) and Packet-Error-Rate (PER) as our main
metrics. We compute lower and upper bounds for the expected SNR dif-
ference between 802.11b and 802.11n/ac using high-level wireless channel
characteristics. We show that the PER in 802.11n/ac increases up to 98%
(compared to 802.11b) at a distance of 20 m between the sender and the
eavesdropper. To obtain a PER of 0.5 in 802.11n/ac, the attacker’s max-
imal distance is reduced by up to 129.5 m compared to 802.11b. We per-
form an extensive set of experiments, using COTS devices in an indoor
office environment, to verify our theoretical estimations. The experimen-
tal results validate our predicted effects and show that every amendment
add extra resiliency against passive COTS eavesdropping.

Keywords: WLAN · 802.11 · Eavesdropping · MIMO · Beamforming

1 Introduction

In the last decade, wireless network communication has grown tremendously
mainly due to standards such as UMTS (3G) and LTE (4G) for cellular networks
and IEEE 802.11 (WLAN) for wireless networks. Cisco estimated that in 2017,
68% of all Internet traffic will be generated by wireless devices [5]. As a result,
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 415–435, 2018.
https://doi.org/10.1007/978-3-030-02641-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_19&domain=pdf
http://orcid.org/0000-0002-9342-3920
http://orcid.org/0000-0002-9481-0826
http://orcid.org/0000-0001-8424-2602
https://doi.org/10.1007/978-3-030-02641-7_19

416 D. Antonioli et al.

it can be expected that a majority of sensitive communication services, such as
mobile banking and online payments will involve wireless networks. Indeed, it
is paramount to secure the broadcast wireless channel against eavesdroppers to
protect the confidentiality and integrity of the information.

In this work, we present a theoretical discussion, a numerical analysis (using
path loss models), and a practical evaluation of passive eavesdropping attacks
targeting several 802.11 (WLAN) networks. Recent 802.11n/ac amendments
introduced interesting physical layer and link layer features such as Multiple-
Input-Multiple-Output (MIMO), spatial diversity (e. g. CSD, TxBF, STBC) ,
spatial multiplexing (e. g. MU-TxBF), dual-band antennas1 and frame aggrega-
tion [14]. It is believed that some of those features, that were developed mainly
to increase the robustness and throughput of the channel might also degrade the
performance of a passive eavesdropper. We would like to investigate this claim
and experimentally measure whether this degradation happens or not in practice
in a simple but yet realistic scenario (e. g. eavesdropping WLAN networks with
COTS devices).

Several theoretical discussions have already been presented about passive and
active eavesdropping in the wireless channel. The seminal work by Wyner [31]
started the wiretap channel research track that has been extended to Gaus-
sian [16], fading [10], and MIMO [20] channels. This set of papers studies asymp-
totic conditions that very rarely happen in practice. Recently, special attention
was given to MIMO and beamforming as a defense mechanism against passive
eavesdropping [22,25,32]. However, those works do not focus on 802.11 and they
consider only a subset of the 802.11 features. There are also some alternative
techniques already proposed against passive eavesdropping including multi-user
cooperative diversity and the use of artificial noise [8,19,33]. However, those
techniques are neither listed in any 802.11 standards nor implemented in any
COTS device.

In this paper, we investigate the disadvantages that a passive eavesdropper
has to face when attacking the downlink of an 802.11n/ac (MIMO) network
versus an 802.11b (SISO) network. We focus on 802.11 networks in infrastructure
mode (e. g. an access point connecting several laptops to the Internet) that use
Commercial-Of-The-Shelf (COTS) devices. In particular, we compare three of
the most widely used 802.11 amendments: b, n, and ac. We look at the downlink
(e. g. traffic from the access point to the terminals) because it is the link that
supports most of the advanced features of 802.11n/ac (e. g. spatial diversity and
spatial multiplexing). We use 802.11b as a baseline. Our attacker model choice is
explained in detail in Sect. 3.1, and a brief discussion about a stronger attacker
model is presented in Sect. 4.5.

In our theoretical discussion, we estimate lower and upper bounds for
the expected Signal-to-Noise-Ratio (SNR) disadvantage of an eavesdropper in
802.11n and ac compared to 802.11b. We numerically derive the expected Packet-
Error-Rate (PER) of the intended receiver and the eavesdropper with respect
to their distances to the sender. Finally, we present an 802.11b/n/ac downlink

1 In this work we always use the word antennas rather than antennae.

Practical Evaluation of Passive COTS Eavesdropping 417

empirical evaluation using COTS devices. After the experiments, we are able
to confirm that in 802.11n/ac networks, the PER of the eavesdropper increases
with respect to her distance to the sender, given a minimum distance between
the attacker and the intended receiver.

We summarize our contributions as follows:

– We derive the theoretically expected eavesdropper’s SNR disadvantage (in
dB), for attacks using COTS radios, in 802.11b/n/ac downlinks.

– We discuss how the theoretical SNR disadvantage translates to practical con-
straints (e. g. reduced range, higher PER) for the attacker.

– We perform a series of experiments to validate that the expected disadvantage
is experienced in practice and that its effects were correctly predicted.

The structure of this work is as follows: in Sect. 2 we provide the required
wireless communications background. In Sect. 3, we present the system and
attacker models, we compare passive eavesdropping 802.11b and 802.11n/ac
downlinks, and we estimate the SNR and PER disadvantages for a passive eaves-
dropper in 802.11n/ac. In Sect. 4, we present our results from a series of eaves-
dropping experiments that validate our predicted impediments. We summarize
related work in Sect. 5, and conclude our paper in Sect. 6.

2 Background

We now provide a summary of the important concepts used in this work: the
fading wireless channel, the 802.11b/n/ac amendments, and three wireless com-
munication metrics (SNR, BER, and PER). For additional details, we refer to
influential books such as [9,23].

2.1 The Fading Wireless Channel

The progression of wireless communication systems evolved around two main
metrics: robustness and throughput. Those metrics are severely influenced by
channel fading. Fading can be described as a random process affecting the quality
of the transmitted wireless signal, by means of attenuation and distortion over
time and frequency. There are three additive phenomena contributing to fading:
path loss, shadowing, and multipath.

Path loss is a large-scale fading event due to the propagation nature of the
electromagnetic waves (that are carrying the useful signal). There are different
path loss models according to the system parameters and the channel environ-
ment. For example, in the Free Space Path Loss (FSPL) model the transmit-
ted power decays quadratically with the distance from the transmitter to the
receiver. Shadowing is another large-scale fading event due to the presence of
obstacles between the transmitter and the receiver. There are different ways
to model shadowing such as using a log-normal random variable. Multipath is

418 D. Antonioli et al.

a small-scale fading phenomenon that takes into account constrictive and/or
destructive interference at the receiver between direct, reflected and scattered
electromagnetic waves.

There are two well-known fading models that take into account all three
fading aspects: Rayleigh fading for non-line-of-sight (NLOS) environments, and
Rician fading for line-of-sight (LOS) environments. In both cases, each channel
coefficient h is modeled with a complex random number. Each channel coefficient
is providing random attenuation (change in amplitude) and distortion (change
in phase). In the Rayleigh fading model, the real and imaginary parts of h
are modeled with independent identically-distributed (IID) Gaussian random
variables with 0 mean and equal variances and the amplitude of h is Rayleigh
distributed. In the (more generic) Rician fading model, the amplitude of h is
Rice distributed.

2.2 IEEE 802.11 Standard (WLAN)

802.11 is a family of IEEE standards that regulates wireless local area networks
(WLAN) [7]. The standards define the physical layer (PHY), and the link layer
specifications. An example of physical layer specification is the modulation and
coding scheme (MCS) table that lists the supported modulation types, spatial
streams, coding rates, bandwidths and data rates of a given PHY. An example
of link layer specification is the medium access control (MAC) protocol that
governs how the nodes share the wireless medium.

Table 1. Relevant 802.11b/n/ac physical layer specifications. fc is the carrier fre-
quency, λ is the wavelength, sdr is the theoretical maximum throughput of the channel,
nS is the number of maximum independent data streams, TxBF indicates support for
single-user (SU) or multi-user (MU) transmit-beamforming, di and do are the expected
ranges for indoor and outdoor communications.

Technology Modulation fc [GHz] λ [cm] sdr [Mbit/s] nS TxBF di do

b SISO DSSS 2.4 12.5 11 N/A N/A 35 140

n SU-MIMO OFDM 2.4, 5 12.5, 6 135 4 SU 70 250

ac MU-MIMO OFDM 5 6 780 8 MU 35 N/A

Table 1 lists some relevant physical layer specifications for 802.11b, n, and
ac [14]. 802.11b uses Single-Input-Single-Output (SISO) scheme with direct-
sequence spread spectrum (DSSS) modulation techniques. In contrast, 802.11n
and 802.11ac are Multiple-Input-Multiple-Output (MIMO) schemes, based on
orthogonal frequency division multiplexing (OFDM) modulation techniques. Sin-
gle user MIMO is supported by 802.11n, while 802.11ac supports multi-user
MIMO. The major advantage in terms of throughput and robustness of the channel
from b to n/ac is given by the usage of multiple radios and antennas that allows
transmitting different independent symbol at the same time (spatial multiplex-
ing) or the same symbol on multiple antennas at the same time (spatial diversity).

Practical Evaluation of Passive COTS Eavesdropping 419

In particular, 802.11n/ac support transmit-beamforming (TxBF) at the downlink
for single user (n) and multiple users (ac). By using TxBF, an access point can
optimize the transmission of the symbols to a device located in a particular region
of space, given an estimate of the condition of the downlink channel. For a more
detailed comparison among the three 802.11 amendments please refer to [13,21].

2.3 Wireless Communications Metrics

Here we present the three wireless communication metrics used in our paper:

– The Signal-to-Noise-Ratio (SNR) is the ratio between the power of the use-
ful signal denoted with P , and the noise power σ2. It is typically expressed
in decibel dB, and it convertible from logarithmic to linear scale using:
10 log10 SNR = SNRdB.

– The Bit-Error-Rate (BER) is the expected probability of error while decoding
1-bit at the receiver. The BER is not an exact quantity. It can be modeled
and estimated according to different factors such as the modulation/coding
schemes, the fading model and the number of antennas. Typically, 10−6 is
considered a reasonable BER value, i. e. 1-bit error per Mbit.

– The Packet-Error-Rate (PER) is directly proportional to the BER, and it is
computed as: PER = 1 − (1 − BER)N , where N is the average packet size
in bits. In this work, we assume that one or more bit errors in a packet will
lead to an incorrect link layer checksum. Packets with an incorrect checksum
are not acknowledged by the (legitimate) receiver, and retransmitted by the
sender.

3 Passive 802.11 Downlink Eavesdropping

We start this section introducing the system and attacker models. Then we
present a theoretical discussion and a numerical analysis (based on 802.11 path
loss models) to estimate the SNR and PER disadvantages of a passive eaves-
dropper in an 802.11n/ac (MISO) downlink, compared to an 802.11b (SISO)
downlink.

3.1 System and Attacker Model

Our system model focuses on the downlink of indoor 802.11b/n/ac networks in
infrastructure mode (e. g. access point that communicates with several wireless
terminals), using Commercial-Of-The-Shelf (COTS) devices. The access point
is equipped with multiple antennas. The intended receiver and the attacker are
equipped either with a single or multiple antennas according to the scenario. We
are looking at the ratio of packets that the attacker successfully eavesdrop on
the physical layer and we are agnostic to any encryption scheme used at the link
layer or above. Attacks on those schemes are possible, but out of the scope of
this work [3,26]).

420 D. Antonioli et al.

The attacker is assumed to be equipotent to the intended receiver in terms of
hardware and software capabilities. In particular, both use COTS devices, with
a similar chipset, driver, feature set, and maximum throughput. With COTS
devices we refer to wireless radios either built into laptops, smartphones, access
point or USB dongles. We do not consider an attacker equipped with a software-
defined-radio (SDR) or similar devices. We focus on a passive eavesdropper who
wants to capture the downlink packets in real-time using her wireless card in
monitor mode. We are not considering an attacker who is recording and post-
processing the traffic offline. We assume an attacker that is static and we eval-
uate her eavesdropping performance at different distances from the sender. If
the sender is using beamforming, we assume that the attacker is outside the
beamforming region.

The effectiveness of the attacker is assessed from the Signal-to-Noise-Ratio
(SNR) and the Packet-Error-Rate (PER) at her receiver. We chose PER as met-
ric because we are mainly interested in the relative performance of eavesdropping
on 802.11b vs. 802.11n/ac. As our passive attacker is unable to request retrans-
missions, the only chance to recover from bit errors would be to find the offending
bit(s) and correct it using a checksum (possibly by brute force). We note that
such corrections are expected to have significant cost for increasing number of
flipped bits, and that the number of flipped bits is expected to quickly increase
with distance. We plan to further investigate this in future work.

Without loss of generality and to simplify our discussion, we are consider-
ing an attacker focused on eavesdropping the downlink channel of one pair of
transmitter and intended receiver. We understand that our attacker model is rel-
atively weak (e. g. a single attacker, no SDR), however, given the lack of related
experimental work and the number of involved moving parts, we decided to start
with a simple scenario that is easy to evaluate (e. g. worst-case scenario for the
passive eavesdropper). We look forward to investigate more complex attacker
models in future work.

Finally, we present the notation used in our paper. The access point is referred
as Alice (the transmitter), the victim as Bob (the intended receiver), and the
attacker as Eve (passive eavesdropper). We will use A, B, and E subscripts
to identify quantities related to Alice, Bob, and Eve respectively. We use x to
denote Alice’s transmitted symbol, h for complex channel coefficients, and n for
the noise at a specific receiver. The relative distances between Alice, Bob, and
Eve are written as: dAB , dBE , dAE . Alice is equipped with L antennas and L
radios.

3.2 SISO and MISO Channels Eavesdropping

In this section, we analyze and compare two different eavesdropping scenario:
(i) 802.11b SISO downlink, (ii) 802.11n/ac MISO downlink. and we derive two
essential conclusions about passive eavesdropping in SISO vs. MIMO 802.11
downlinks.

Practical Evaluation of Passive COTS Eavesdropping 421

(a) Omnidirectional radiation (L = 1).
Eve’s success depends on dAE.

(b) Transmit-beamforming (L > 1). Eve’s
success depends also on dBE and L.

Fig. 1. 802.11b SISO (left) vs. 802.11 n/ac MISO (right) passive eavesdropping. Bob
and Eve have one antenna. Dashed lines represent distances. Black circles and lobes rep-
resent omnidirectional and directional transmission ranges. Circles and lobes decreas-
ing thickness represent the transmission power decay with respect to distance from the
transmitter. Both channels are affected by random noise and fading.

802.11b SISO Downlink. Figure 1a shows Eve trying to intercept the com-
munication from Alice to Bob in an 802.11b SISO network. We can represent
the signals received by Eve and Bob as:

yE = x · hE + nE (1)
yB = x · hB + nB (2)

Intuitively, it is possible to represent Alice’s two-dimensional transmission
coverage with concentric circles. In free space, the greater is the distance from
the transmitter the higher is the transmitted power decay. While one might
assume that every receiver inside these circles will be “in range” and receive all
transmissions by Alice, this is not the case in practice. If circles are shown around
transmitters, their radius commonly refers to a distance in which the average
received signal strength is above a certain threshold. However, due to random
deep fading (mostly due to multipath), the instantaneous received power will
constantly vary. In other words, it is possible to “miss transmissions” while being
in the outer circle, or even receive transmissions just outside the outer circle. In
this case, Eve’s success rate depends on her distance to Alice (dAE) regardless
of her distance to Bob (dBE), and random channel characteristics. The SISO
wireless channel is providing some sort of resiliency against eavesdropping that
an attacker can compensate with other means (e.g.: increase receiver sensitivity,
use directional antenna).

802.11n/ac MISO Downlink. Figure 1b shows Eve attempting to intercept
the communication from Alice to Bob in an 802.11n/ac MISO network. Alice
is equipped with L antennas and uses transmit-beamforming. In this scenario,
beamforming has been theoretically proven to provide resiliency against passive
eavesdropping [12]. The received signals by Eve and Bob are as follows:

422 D. Antonioli et al.

yE = x · gE + nE (3)
yB = x · gB + nB (4)

We can derive two benefits in terms of eavesdropping resiliency, one from gB ,
and one from gE .‖gB‖2 is defined as the beamforming gain and it is modeled by a
Chi-squared random variable, with parameter 2L (being the sum of squared IID
standard Gaussian random variables). Indeed, if L = 2 (Alice is using two anten-
nas), then Bob’s received signal will be the sum of two signals with independent
fading paths. The correspondent beamforming gain is computed as:

‖gB‖2 =‖hB1‖2 +‖hB2‖2 (5)

and this quantity is certainly greater (or equal) to ‖hB1‖2 and ‖hB2‖2. The net
result is a better SNR at Bob’s receiver with respect to the SISO case.

The second benefit arising from transmit-beamforming is encapsulated by
gE . Eve’s ability to eavesdrop depends on two more factors with respect to the
SISO case. Firstly, her distance from Bob (dBE), and secondly the number of
antennas used by Alice (L). This is a consequence of transmit-beamforming
employed by Alice (the beamformer) towards Bob (the beamformee). Figure 1b
shows Alice beamforming in the direction of Bob (e. g. inside the main lobe)
while Eve is outside the main and the side lobes. This results in a smaller SNR
at her receiver compared to the one of Fig. 1a (given the same relative distances).
Even if we decrease the distance between Eve and Alice, the disadvantage will
still hold until Eve is outside the beamforming region. Furthermore, Eve’s SNR
will be inversely proportional to L because the more antennas are used by Alice
to beamform, the more Alice can focus the beam towards a narrower but longer
region in space [29].

3.3 Eavesdropper’s Theoretical SNR Disadvantage in 802.11n/ac

In the previous section we argued that MISO beamforming from Alice to Bob
will degrade Eve’s eavesdropping performance according to dAE , dBE , and L. In
this section, we will quantify the expected disadvantage of Eve in an 802.11n/ac
network compared to an 802.11b network. We will estimate upper and lower
bounds for the SNR at Eve’s receiver with respect to L. We will provide numer-
ical results for L = 4 to match the experimental setup of Sect. 4.1. We note
that the bounds we are providing are not supposed to be strict—the actual
SNR disadvantage will depend on many factors. Nevertheless, we compute the
bounds based on the modeling assumptions to provide an intuition about the
theoretically expected disadvantage.

Upper Bound. We start comparing high-level wireless channel characteristics
of SISO and MISO channels. Table 2 lists the closed-form expressions for the SNR
and the BER of SISO and MISO networks using BPSK modulation scheme. In
general, we note that the number of antennas deployed by Alice (L) is playing
a central role. If we fix the expected BER to 10−6, then we can compute the

Practical Evaluation of Passive COTS Eavesdropping 423

Table 2. SNR and BER of 802.11b (SISO) and 802.11n/ac (MISO transmit-
beamforming with L antenna) using BPSK modulation scheme.

Metric SISO MISO beamforming

SNR ‖h‖2 P
σ2 ‖g‖2 P

σ2

BER 1
2

(1 − λ)
(

1−λ
2

)L ∑L−1
i=0

(
L+i−1

i

) (
1+λ
2

)i
λ =

√
SNR

2+SNR

DO 1 L

minimum SNR for the SISO (57 dB) and the MISO case with L = 4 (16 dB).
There is a notable difference in SNR of 41 dB between the SISO and the MISO
cases. We use 41 dB as an upper bound for the SNR disadvantage of Eve with
respect to Bob.

Lower Bound. For the lower bound of Eve’s SNR disadvantage, we use a stan-
dard formula to compute the beamforming gain in a MISO channel where Alice
is using Cyclic Delay Diversity (CDD) with L antennas [17]. In this case, the
beamforming gain in dB can be computed as follows:

‖g‖2 = 10 log10(L) dB (6)

Assuming a COTS access point with 4 antennas and a single receiving
antenna, Bob’s beamforming gain is 6 dB. As Eve’s COTS radio will not benefit
from the beamforming gain (being outside the main lobe) Eve’s SNR disadvan-
tage lower bound is thus 6 dB with respect to Bob.

Summary. We estimate that an 802.11n/ac downlink that is using transmit-
beamforming with four antennas provides an reduction in the SNR of a passive
eavesdropper (outside the main lobe, using a COTS receiver) that is bounded
between 6 dB and 41 dB. The reduction in SNR at Eve’s receiver depends on a
deterministic and measurable factors: dAE (distance between Alice and Eve) and
L (number of antennas used by the Alice). We note that Eve’s SNR variation
depends also on channel (Rayleigh) fading, however this factor is not consid-
ered in our discussion because it randomly affects both Bob and Eve, providing
no deterministic disadvantage to Eve. Given this theoretically expected disad-
vantage, the question now is: “How does the eavesdropper SNR disadvantage
translate to practical constraints on 802.11 passive eavesdroppers?”

3.4 Numerical Path Loss Analysis

In this section, we present a numerical analysis using three indoor path loss
models for 802.11 networks. The models includes both the 2.4 and 5 GHz bands
and they are taken from [23]. We now describe their relevant parameters. In
particular, dBP is defined as the breakpoint distance between the transmitter and
the receiver and it determines the cutoff span between LOS and NLOS channel
condition. σSF represents the standard deviation in dB of the log-normal random

424 D. Antonioli et al.

variable that models the shadowing term of the path loss. sPL represents the
path loss slope before and after dBP . Comma-separated values in the following
list indicate values before and after the breakpoint distance:

– Model B: Residen-
tial (e. g. intra-room,
room-to-room).

• dBP = 5 m
• σSF = 3, 4 dB
• sPL = 2, 3.5

– Model D: Office
(e. g. large conference
room, sea of cubes).

• dBP = 10 m
• σSF = 3, 5 dB
• sPL = 2, 3.5

– Model E: Large office
(e. g. multi-storey
building).

• dBP = 20 m
• σSF = 3, 6 dB
• sPL = 2, 3.5

Figure 2 shows the setup used for our numerical analysis and for the exper-
iments. Bob is placed at a fixed distance away from Alice, Eve is placed at
different (stationary) distances di from Alice, and Alice is constantly sending
traffic to Bob. In a two-dimensional plane, Bob and Eve distance vectors are
perpendicular to avoid Eve being in the main lobe when Alice is using transmit-
beamforming. We note that in an indoor environment multipath is playing a
major role than visual of RF line-of-sight conditions that is why we decided to
keep altitude and angle constant and vary only the distance between Alice and
Eve [6].

Fig. 2. Setup used for our numerical analysis and for the experiments: Bob is at a
fixed distance away from Alice, Alice is sending 802.11 traffic and Eve is passively
eavesdropping from different (stationary) distances on a line perpendicular to Bob.

The path loss model function LP is constructed considering the sum of a free-
space loss component (LFS), a shadowing log-normal component due to obstacles
(SF), and a post breakpoint distance component. All terms vary according to
the distance d between the transmitter and the receiver. We used the following
equations from [23]:

LP (d) =

⎧
⎪⎨

⎪⎩

LFS(d) + SF (d) if d ≤ dBP

LFS(dBP) + SF (d) + 35 log10

(
d

dBP

)

otherwise
(7)

LFS(d) = 20 log10(d) + 20 log10(f) − 147.5 (8)

SF (d) =
1√

2πσSF

exp

(

− d2

2σ2
SF

)

(9)

Practical Evaluation of Passive COTS Eavesdropping 425

Figures 3 and 4 shows the predicted BER and PER for model B (Residential)
vs. distance between the transmitter and the receiver. Solid lines represent results
for 2.4 GHz and dash-dotted lines represent results for 5.0 GHz. Red lines rep-
resent Eve’s expected BER and PER. The other lines represent Bob’s expected
BER and PER when Alice is using transmit beamforming with two (green lines)
and four (blue lines) antennas. If we focus on the solid lines of Fig. 4, then we
note that a distance between Alice and Eve dAE of 12.5 m is sufficient to drop
Eve’s expected PER from 0 to 0.5 (50% chance of decoding). Furthermore a dAE

of 20 m is sufficient to increase Eve’s PER to 0.98 (0.2% chance of decoding).
On the other hand, a dAB of 142 m is required to experience a PER of 0.5 at
Bob’s receiver when Alice is using four antennas (L = 4).

0 20 40 60 80 100 120 140

Distance d [m]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

E
xp

ec
te
d
B
E
R

dBP

L=1 @ 5.0 GHz
L=1 @ 2.4 GHz
L=2 @ 5.0 GHz
L=2 @ 2.4 GHz
L=4 @ 5.0 GHz
L=4 @ 2.4 GHz

Fig. 3. 802.11n Model B (Residential) expected BER estimation using BPSK. Red
lines represent Eve. Green and Blue lines represent Bob when L = 2 and L = 4. (Color
figure online)

3.5 Eavesdropping Analysis Summary

In this section, we argued that in 802.11n/ac downlink a passive eavesdropper
(Eve) using a COTS radio will have a disadvantage in terms of SNR compared
to an eavesdropper in an 802.11b downlink. This disadvantage is due to different
features provided by recent 802.11n/ac such as MIMO, and spatial diversity.
This disadvantage can be expressed in an SNR decrease at the eavesdropper
receiver of 6–41 dB (depending on the chosen scenario). We also express this
disadvantage in terms of the distance that the eavesdropper has to be closer to
the sender to achieve the same PER as a legitimate receiver, which can reach
up to 129.5 m. In contrast, there is no such distance disadvantage for the eaves-
dropper in 802.11b. Furthermore, we can express the disadvantage in terms of
PER at the eavesdropper receiver compared to her distance from the transmitter
(dAE). For example, if dAE is 12.5 m, then the PER of Eve is increased to 50%,
and if dAE is 20 m, then the PER of Eve is increased to 98%.

426 D. Antonioli et al.

0 20 40 60 80 100 120 140

Distance d [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te
d
P
E
R

12.5 m: Eve’s PER = 0.5

20 m: Eve’s PER = 0.98, Bob’s PER = 0

129.5 m from Eve: Bob’s PER 0.5

dBP

L=1 @ 5.0 GHz
L=1 @ 2.4 GHz
L=2 @ 5.0 GHz
L=2 @ 2.4 GHz
L=4 @ 5.0 GHz
L=4 @ 2.4 GHz

Fig. 4. 802.11n Model B (Residential) expected PER estimation using BPSK. Red
lines represent Eve. Green and Blue lines represent Bob when L = 2 and L= 4. (Color
figure online)

4 Experimental Validation

In this section, we present an experimental evaluation of COTS passive eaves-
dropping in 802.11b/n/ac downlink networks. The presented results are in line
with the theoretical estimations from Sect. 3.

4.1 Experimental Methodology

We focus our experiments on SNR and PER measurements at Eve’s receiver
using the setup presented in Fig. 2. We keep a ninety-degree angle between Bob
and Eve to ensure that when beamforming is used Eve is outside the beam-
forming region. We vary the distance from Bob to Eve (dBE) while keeping the
distance from Alice to Bob (dAB) constant. Table 3 lists the parameters that we
fix for our experiments with a short description. As stated in Sect. 3.1 we are
not using link-layer encryption (which does not influence our measurements).
Figure 5 shows the layout of the indoor office environment where we conducted
the experiments.

Our setup consists of an open access point (Alice) and a laptop (Bob) associ-
ated to it. The access point is a Linksys WRT3200 ACM device, equipped with
four antennas and supporting 802.11a/b/g/n/ac. We installed the OpenWrt [28]
operating system on the access point to have more configuration options at our
disposal. For the 802.11b/n experiments (at 2.4 GHz), Bob’s laptop runs Ubuntu
16.04 and has a TP-Link TL-WN722N wireless adapter. The adapter has a single
antenna and supports 802.11b/g/n. Eve’s laptop runs Ubuntu 16.04, and it uses
the same TP-Link TL-WN722N wireless adapter. Eve’s adapter is not associated
with the access point and it tries to record the traffic from Alice and Bob, in

Practical Evaluation of Passive COTS Eavesdropping 427

Table 3. Parameters used for the experiments.

Parameter Value Description

PA [dBm] 23 Alice’s transmitted power

N0 [dBm] −91 Mean noise power at the receivers

Chb/n/ac 11, 11, 36 Channels used for 802.11 b/n/ac

dAB [m] 2 Fixed distance from Alice to Bob

dAE [m] [2.5, 5.0, . . . , 20] Eight distances from Alice to Eve

Fig. 5. The layout of the indoor office environment where we conducted the experi-
ments. The green and blue dots indicate the location of Alice and Bob. The red dots
indicate the positions of Eve. (Color figure online)

monitor mode using tcpdump. Eve listens to the same channel used by Alice and
Bob (channel 11 for b and n, channel 36 for ac).

For the 802.11ac experiments (at 5 GHz), Bob’s laptop runs Ubuntu 16.04 and
uses an Asus USB-AC68 wireless adapter. The adapter has a 3x4:3 antenna con-
figuration and supports 802.11a/b/g/n/ac. Eve’s laptop is a MacBook Pro with
an inbuilt adapter with 3x3:3 configuration compatible with 802.11a/b/g/n/ac.
We use a different adapter for Eve because the Asus adapter could not be put
into monitor mode due to some issues with its driver. The other parameters
remain the same as in the 802.11b/n experiments.

For all the experiments, we vary Eve’s distance from Bob and we obtain pcap
traces of the packets transferred from Alice to Bob. The distance between Alice
and Bob (dAB) is fixed at 2 m. We used iperf to generate UDP downlink traffic.
We decided to use UDP to avoid retransmissions at the transport layer. The
PER is computed based on the number of received UDP packets with a valid
UDP checksums. We acknowledge that this approach slightly underestimates
the actual PER, as packets with a valid UDP checksum but incorrect link-layer
checksum (FCS) might be included in this calculation. The transmission power
of Alice is set to 23 dBm. From the experiments, we are able to obtain the
traces from Eve at dAE between 2.5 m and 20 m, using increments of 2.5 m.
We do not change the orientation of Eve with respect to Alice in our tests to
better compare the results. All the devices have the same fixed elevation, without
a visual line-of-sight path between them. The information about the recorded

428 D. Antonioli et al.

traffic is obtained from the 802.11 PHY radiotap headers. In the subsequent
section we will compare the experimental results with our estimations from the
path loss model D (Office). Figure 9 shows the predicted BER and PER curves at
Eve’s receiver (red curves), and at Bob’s receiver when Alice is using transmit-
beamforming with two (green curves) and four antennas (blue curves).

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

dAE [m]

0

20

40

60

80

100

E
ve
’s
P
E
R

%

Model D prediction 802.11b
Model D prediction 802.11n
Model D prediction 802.11ac
Measured values 802.11b
Measured values 802.11n
Measured values 802.11ac

Fig. 6. Eve’s measured PER (bars) vs. Model D predicted PER (dashed lines). (Color
figure online)

4.2 Comparison Between 802.11b/n/ac Networks

For the comparison between 802.11b/n/ac networks, we set a 2.4 GHz band for
802.11b/n and a 5 GHz band for 802.11ac. To extract the results we capture
packets both from Eve and Alice. We measured two parameters—the PER of
the passive eavesdropper, and her SNR. We compute Eve’s PER by comparing
her pcap traces with the ones from Alice. We compute the SNR by dividing the
extracted signal strength values by the average channel noise. We computed the
average channel noise using noise measurements from the access point, and it
resulted in −91 dBm. We repeat the same experiments with the same distances
30 times and we average the results to obtain mean SNR and PER values, and
related errors (standard deviations).

Figure 6 shows Eve’s PER measurements and estimated values for dAE vary-
ing from 0 m to 20 m. The red/blue/green bars indicate the experimental results
for 802.11b/n/ac, respectively. The dotted lines indicate the predicted estimates
(from model D). It can be observed that Eve’s PER is almost always increas-
ing from b to n and from n to ac. In particular, the PER starts to increase
significantly when dAE is greater than 15 m. While such (relatively small-scale)
experiments will hardly produce the exact same results as our theoretical anal-
ysis, we observe that the increase in PER that was predicted by us, for even

Practical Evaluation of Passive COTS Eavesdropping 429

Table 4. Results from 802.11n and 802.11ac experiments. dAE is the distance from
Alice to Eve in meters. nr is the total number of runs. μp is the average number of UDP
packets sent by Alice per run. μPER and σPER are the Eve’s PER means and standard
deviations measured in our experiments for 802.11n (n subscript) and 802.11ac (ac
subscript).

dAE [m] nr μp μPERn σPERn μPERac σPERac

2.5 30 894.00 11.13 8.56 45.07 28.25

5.0 30 894.00 6.02 5.06 28.94 35.13

7.5 30 894.00 21.39 15.57 29.64 40.86

10.0 30 894.00 18.52 8.63 32.33 43.88

12.5 30 894.00 27.79 19.97 51.52 30.55

15.0 30 894.00 36.08 18.16 45.23 33.07

17.5 30 894.00 54.33 27.79 50.20 36.80

20.0 30 894.00 70.32 23.46 77.01 28.80

relatively short distances of around 20 m, can be observed in practice. In partic-
ular, our D model predicted a PER for Eve in an 802.11n downlink of around
78% when dAE = 20 m, and in our experiments the average PER was around
70%. For convenience, we tabulate in Table 4 the numerical results of Fig. 6.

Figure 7 shows Eve’s mean SNR varying her distance (dAE) from Alice for
802.11b (red bars), 802.11n (blue bars) and 802.11ac (green bars). It can be
observed that Eve’s SNR in 802.11n/ac is always smaller than in 802.11b—an
effect that we assumed to be caused by advanced 802.11n/ac physical and link
layer features (such as TxBF).

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

dAE [m]

0

10

20

30

40

50

60

E
ve
’s
SN

R
[d
B
]

802.11b
802.11n
802.11ac

Fig. 7. Eve’s measured SNR with respect to dAE . (Color figure online)

430 D. Antonioli et al.

4.3 Bob vs. Eve in 802.11n/ac

We conducted a second set of experiments targeting Bob in order to compare his
SNR and PER with respect to Eve’s SNR and PER in 802.11n/ac networks. In
this case, we increased Bob’s distance from Alice. As in the previous experiments,
we start from 2.5 m and we end at 20 m, with increments of 2.5 m. Bob is
placed at the same location that Eve was placed in the previous case. In this
scenario, we are expecting that Bob would benefit from 802.11n/ac features. We
are not showing the plot for Bob’s PER compared to the one Eve experienced
in Fig. 6. This is because we observed that Bob’s PER is very low (less than
1%), and yet not comparable with Eve’s PER. This confirms our assumption
that the intended receiver experiences significantly lower PER than a passive
eavesdropper in 802.11n/ac networks.

Interestingly, as we can see from Fig. 8a, the mean SNR of Bob and Eve
at various distances are relatively close. In particular, Bob’s SNR in 802.11n is
always higher than Eve’s SNR (as expected). However in the 802.11ac case, we
measure a higher SNR for Eve than Bob. We assume that this is an artifact
resulting from the fact that Eve’s SNR is reported only for successfully received
packets.

4.4 Eve’s PER and PER Thresholds

We note that even a small decrease in PER could affect a passive eavesdropper
depending on the type of exchanged traffic. That is why we decided to analyze
Eve’s PER compared to different PER thresholds and distances dAE . Table 5
shows the results of our analysis for 802.11b/n/ac. For example, if we fix the
threshold to 15%, then Eve’s PER in 802.11ac is above the threshold in at least
33% of all cases. The same holds for 802.11n except for the 5 m measurement.
With regards to 802.11b, fixing the same 15% threshold, we note that Eve’s PER
does not exceed the threshold in more than 16% of all cases. This is another way
to confirm our predictions about 802.11n/ac passive eavesdropping.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Distance from Alice [m]

0

10

20

30

40

50

60

SN
R

[d
B
]

Bob - 802.11n
Eve - 802.11n
Bob - 802.11ac
Eve - 802.11ac

(a) 802.11n and 802.11ac SNR compari-
son between Bob and Eve at different dis-
tances from Alice.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

dAE [m]

0

20

40

60

80

100

P
E
R

%

Eve1
Eve2
Combined

(b) 802.11n PER of Eve using two COTS
radios. The green bars represent combined
PER.

Fig. 8. Experimental results from Sect. 4.3 (a) and Sect. 4.5 (b). (Color figure online)

Practical Evaluation of Passive COTS Eavesdropping 431

4.5 Eve with Two COTS Radios in 802.11n

We argued earlier that attackers with COTS radios will not be able to benefit
from advanced 802.11n/ac physical layer and link layer features, and discussed
an attacker with a single COTS radio. We now discuss a passive eavesdropper
with multiple COTS radios in an 802.11n downlink. The attacker aggregates the
eavesdropped packets to reduce the number of packets lost (e. g. due to deep
fading). In Fig. 8b, we show the PER for an attacker with two COTS radios.
The radios are placed at a distance of 50 cm from each other (to avoid mutual
coupling). Note that we used a different data set from the previous experimental
section, and we repeated this experiment 30 times. It can be observed that such
a scheme reduces the number of lost packets for the attacker (as expected).
However, the PER in the aggregated case is still higher than the 802.11b one,
especially at distances greater than 5 m. For a threshold PER of 15%, the PER
for the aggregated case is higher than the threshold in about 23% of the runs,
compared to 6% for 802.11b.

4.6 Summary of 802.11b/n/ac Experiments

Overall, we were able to experimentally confirm our main findings: (a) there is a
significant increase of the PER of a passive eavesdropper attacking 802.11n/ac
networks compared to 802.11b ones. In our experiments, the difference was
approximately 60% increased PER for 802.11n and 70% increased PER for
802.11ac at 20 m distance. In addition, the PER rises from around 12.5 m onward,
similar to our predictions based on the theoretical analysis. We also confirmed
that the PER experienced by the attacker is related to the non-cooperating Alice.
In particular, legitimate receivers at the same locations were able to receive traf-
fic with close to zero PER.

5 Related Work

There are several empirical studies for 802.11 networks. Most of them focus
on specific link layer [18] or physical layer [27] features. There are also more
generic empirical studies, for example about enterprise WLAN [4], intrusion
detection [15], denial of service [2] co-existence [11] and signal manipulation [24]
Anyway, those studies neither focuses on wireless security nor compares end
experimentally evaluate eavesdropping in various 802.11 networks.

An interesting aspect of eavesdropping is to study how to optimally place a set
of antennas in a multiple users scenario to obtain the maximum amount of private
information. In [30] Wang et al. compare co-located vs. distributed eavesdropping
schemes performance with respect to Eve’s number of antennas and the presence
of a guard zone. The de-facto standard countermeasure against eavesdropping
(complementary to physical layer security) is cryptography. Several studies were
done to secure [1] and break [3,26] cryptographic systems used by 802.11 such
as WEP and WPA.

432 D. Antonioli et al.

6 Conclusions

In this work, we investigated the impact of novel 802.11n/ac features over a
passive eavesdropper using COTS devices. We focused on downlink networks in
infrastructure mode. We performed a theoretical discussion, a numerical simula-
tion and several experiments comparing the Signal-to-Noise-Ratio and Packet-
Error-Rates of the eavesdroppers in 802.11b/n/ac. We showed that theoretically
the eavesdropper’s effective SNR is decreased by 6–41 dB in 802.11n/ac networks
with four antennas (L = 4), which translates to a Packet-Error-Rate increase of
up to 98% at a distance of 20 m between sender and eavesdropper. To obtain
same Packet-Error-Rates as in a legitimate receiver, the attacker’s maximal dis-
tance has to be reduced by 129.5 m in the case of 802.11n. In our practical
experiments, we showed that the predicted effects occur in practice (although
we were not able to exactly reproduce the theoretic predictions). Eve’s PER for
n was at least 20% higher than for b, and more than 30% for ac (with increasing
impact over distances greater than 10 m).

We conclude that the evolution of the 802.11 standard actually introduced
several physical and link layer features, such as MIMO and spatial diversity, that
might degrade the performance of a passive eavesdropper. If properly exploited
those features could be used as a part of a defense-in-depth strategy as a
complement to well-known eavesdropping defense mechanism. Nevertheless, we
understand that further investigations are necessary to characterize the benefits
against stronger attacker models and in more complex scenarios. We leave those
discussions to future work.

A Appendix

Figure 9 shows the result of our BER and PER analysis using model D. Figure 10
shows the result of our BER and PER analysis using model E. Figure 11 shows
expected BER and PER for a free-space path-loss model.

0 20 40 60 80 100 120 140

Distance d [m]

0.00

0.05

0.10

0.15

0.20

E
xp

ec
te
d
B
E
R

dBP

L=1 @ 5.0 GHz
L=1 @ 2.4 GHz
L=2 @ 5.0 GHz
L=2 @ 2.4 GHz
L=4 @ 5.0 GHz
L=4 @ 2.4 GHz

(a) Expected BER vs. Distance.

0 20 40 60 80 100 120 140

Distance d [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te
d
P
E
R

dBP

L=1 @ 5.0 GHz
L=1 @ 2.4 GHz
L=2 @ 5.0 GHz
L=2 @ 2.4 GHz
L=4 @ 5.0 GHz
L=4 @ 2.4 GHz

(b) Expected PER vs. Distance.

Fig. 9. 802.11n Model D (office) BER/PER using BPSK. Red lines represent Eve.
Green and Blue lines represent Bob when L = 2 and L= 4. (Color figure online)

Practical Evaluation of Passive COTS Eavesdropping 433

0 20 40 60 80 100 120 140

Distance d [m]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
E
xp

ec
te
d
B
E
R

dBP

L=1 @ 5.0 GHz
L=1 @ 2.4 GHz
L=2 @ 5.0 GHz
L=2 @ 2.4 GHz
L=4 @ 5.0 GHz
L=4 @ 2.4 GHz

(a) Expected BER vs. Distance.

0 20 40 60 80 100 120 140

Distance d [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te
d
P
E
R

dBP

L=1 @ 5.0 GHz
L=1 @ 2.4 GHz
L=2 @ 5.0 GHz
L=2 @ 2.4 GHz
L=4 @ 5.0 GHz
L=4 @ 2.4 GHz

(b) Expected PER vs. Distance.

Fig. 10. 802.11n Model E (Large office) BER/PER using BPSK. Red lines represent
Eve. Green and Blue lines represent Bob when L= 2 and L= 4. (Color figure online)

0 20 40 60 80 100 120 140

Distance d [m]

0.000

0.002

0.004

0.006

0.008

0.010

E
xp

ec
te
d
B
E
R

L=1 @ 5.0 GHz
L=1 @ 2.4 GHz
L=2 @ 5.0 GHz
L=2 @ 2.4 GHz
L=4 @ 5.0 GHz
L=4 @ 2.4 GHz

(a) Expected BER vs. Distance.

0 20 40 60 80 100 120 140

Distance d [m]

0.0

0.2

0.4

0.6

0.8

1.0

E
xp

ec
te
d
P
E
R

L=1 @ 5.0 GHz
L=1 @ 2.4 GHz
L=2 @ 5.0 GHz
L=2 @ 2.4 GHz
L=4 @ 5.0 GHz
L=4 @ 2.4 GHz

(b) Expected PER vs. Distance.

Fig. 11. Free Space Path Loss (LOS) BER/PER using BPSK. Red lines represent Eve.
Green and Blue lines represent Bob when L= 2 and L= 4. (Color figure online)

Table 5. Eve’s PER vs. PER thresholds vs. distances. Columns represent different
distances from Eve to Alice (dAE). Rows represent different PER thresholds. Comma-
separated values represent the rounded-down percentage of experimental runs where
Eve’s PER was above the threshold for 802.11b, n, and ac.

5.0 [m] 7.5 [m] 10.0 [m] 12.5 [m] 15.0 [m] 17.5 [m]

5% 33, 36, 50 10, 100, 33 20, 100, 33 36, 100, 90 43, 100, 80 60, 100, 96

10% 0, 26, 40 0, 73, 33 6, 83, 33 30, 90, 83 16, 96, 70 30, 100, 70

15% 0, 3, 36 0, 56, 33 6, 53, 33 16, 66, 76 0, 90, 63 13, 100, 60

20% 0, 0, 33 0, 43, 33 3, 36, 33 13, 53, 56 0, 76, 56 6, 96, 53

25% 0, 0, 33 0, 30, 33 3, 26, 33 10, 40, 53 0, 66, 56 0, 83, 53

30% 0, 0, 33 0, 20, 33 0, 13, 33 6, 30, 50 0, 60, 43 0, 73, 53

35% 0, 0, 30 0, 13, 30 0, 3, 33 3, 30, 43 0, 56, 43 0, 63, 50

40% 0, 0, 30 0, 10, 30 0, 0, 33 0, 23, 43 0, 40, 43 0, 53, 46

45% 0, 0, 26 0, 10, 30 0, 0, 33 0, 16, 43 0, 26, 43 0, 46, 46

50% 0, 0, 23 0, 6, 26 0, 0, 33 0, 16, 33 0, 16, 36 0, 43, 46

434 D. Antonioli et al.

References

1. Arbaugh, W.A., et al.: Real 802.11 Security: Wi-Fi Protected Access and 802.11 i.
Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

2. Bernaschi, M., Ferreri, F., Valcamonici, L.: Access points vulnerabilities to dos
attacks in 802.11 networks. Wirel. Netw. (2008)

3. Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications: the
insecurity of 802.11. In: Proceedings of the 7th Annual International Conference
on Mobile Computing and Networking. ACM (2001)

4. Cheng, Y.-C., Bellardo, J., Benkö, P., Snoeren, A.C., Voelker, G.M., Savage, S.:
Jigsaw: solving the puzzle of enterprise 802.11 analysis. In: Proceedings of Con-
ference on Applications, Technologies, Architectures, and Protocols for Computer
Communications (SIGCOMM) (2006)

5. Cisco: Cisco’s visual networking index forecast projects nearly half the world’s
population will be connected to the internet by 2017 (2013). https://newsroom.
cisco.com/press-release-content?articleId=1197391

6. Coleman, D.D., Westcott, D.A.: CWNA: Certified Wireless Network Administrator
Official Study Guide: Exam CWNA-106. Sybex (2014)

7. Crow, B.P., Widjaja, I., Kim, L.G., Sakai, P.T.: IEEE 802.11 wireless local area
networks. IEEE Commun. Mag. (1997)

8. Dong, L., Han, Z., Petropulu, A.P., Poor, H.V.: Improving wireless physical layer
security via cooperating relays. IEEE Trans. Sig. Process. 58, 185–1888 (2010)

9. Goldsmith, A.: Wireless Communications. Cambridge University Press, Cambridge
(2005)

10. Gopala, P.K., Lai, L., El Gamal, H.: On the secrecy capacity of fading channels.
IEEE Trans. Inf. Theory 54, 4687–4698 (2008)

11. Gummadi, R., Wetherall, D., Greenstein, B., Seshan, S.: Understanding and miti-
gating the impact of RF interference on 802.11 networks. ACM SIGCOMM Com-
put. Commun. Rev. 37, 385–396 (2007)

12. Hero, A.: Secure space-time communication. IEEE Trans. Inf. Theory 49, 3235–
3249 (2003)

13. Hiertz, G.R., Denteneer, D., Stibor, L., Zang, Y., Costa, X.P., Walke, B.: The
IEEE 802.11 universe. IEEE Commun. Mag. 48, 62–70 (2010)

14. IEEE: IEEE standard for information technology-telecommunications and infor-
mation exchange between systems local and metropolitan area networks-specific
requirements - part 11: Wireless LAN medium access control (MAC) and
physical layer (PHY) specifications (2016). http://standards.ieee.org/getieee802/
download/802.11-2016.pdf

15. Kolias, C., Kambourakis, G., Stavrou, A., Gritzalis, S.: Intrusion detection in
802.11 networks: empirical evaluation of threats and a public dataset. IEEE Com-
mun. Surv. Tutor. 18, 184–208 (2016)

16. Leung-Yan-Cheong, S.K., Hellman, M.E.: The Gaussian wire-tap channel. IEEE
Trans. Inf. Theory 24, 451–456 (1978)

17. Martin, S.: Directional Gain of IEEE 802.11 MIMO Devices Employing Cyclic
Delay Diversity (2013)

18. Mishra, A., Shin, M., Arbaugh, W.: An empirical analysis of the IEEE 802.11 MAC
layer handoff process. ACM SIGCOMM Comput. Commun. Rev. 33, 93–102 (2003)

19. Mukherjee, A., Swindlehurst, A.L.: Robust beamforming for security in MIMO
wiretap channels with imperfect CSI. IEEE Trans. Sig. Process. 59, 351–361 (2013)

https://newsroom.cisco.com/press-release-content?articleId=1197391
https://newsroom.cisco.com/press-release-content?articleId=1197391
http://standards.ieee.org/getieee802/download/802.11-2016.pdf
http://standards.ieee.org/getieee802/download/802.11-2016.pdf

Practical Evaluation of Passive COTS Eavesdropping 435

20. Oggier, F., Hassibi, B.: The secrecy capacity of the MIMO wiretap channel. In:
IEEE Transactions on Information Theory (2011)

21. Ong, E.H., Kneckt, J., Alanen, O., Chang, Z., Huovinen, T., Nihtilä, T.: IEEE
802.11 ac: enhancements for very high throughput WLANs. In: 2011 IEEE 22nd
International Symposium on Personal Indoor and Mobile Radio Communications
(PIMRC). IEEE (2011)

22. Peppas, K.P., Sagias, N.C., Maras, A.: Physical layer security for multiple-antenna
systems: a unified approach. IEEE Trans. Commun. 64, 314–328 (2016)

23. Perahia, E., Stacey, R.: Next Generation Wireless LANs: 802.11 n and 802.11 ac.
Cambridge University Press, Cambridge (2013)

24. Pöpper, C., Tippenhauer, N.O., Danev, B., Capkun, S.: Investigation of signal
and message manipulations on the wireless channel. In: Atluri, V., Diaz, C. (eds.)
ESORICS 2011. LNCS, vol. 6879, pp. 40–59. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-23822-2 3

25. Prabhu, V.U., Rodrigues, M.R.: On wireless channels with M -antenna eavesdrop-
pers: characterization of the outage probability and-outage secrecy capacity. IEEE
Trans. Inf. Forensics Secur. 6, 853–860 (2011)

26. Robyns, P., Bonné, B., Quax, P., Lamotte, W.: Exploiting WPA2-enterprise vendor
implementation weaknesses through challenge response oracles. In: WiSec. ACM
(2014)

27. Sheth, A., Doerr, C., Grunwald, D., Han, R., Sicker, D.: MOJO: a distributed
physical layer anomaly detection system for 802.11 WLANs. In: Proceedings of
the 4th International Conference on Mobile Systems, Applications and Services.
ACM (2006)

28. OD Team: OpenWRT wireless freedom. https://openwrt.org/
29. Van Veen, B., Buckley, K.: Beamforming: a versatile approach to spatial filtering.

IEEE ASSP Mag. 5, 4–24 (1988)
30. Wang, J., Lee, J., Quek, T.Q.S.: Best antenna placement for eavesdroppers: dis-

tributed or co-located? IEEE Commun. Lett. 20, 1820–1823 (2016)
31. Wyner, A.D.: The wiretap channel. Bell Syst. Tech. J. 54, 1355–1387 (1975)
32. Yang, N., Yeoh, P.L., Elkashlan, M., Schober, R., Collings, I.B.: Transmit antenna

selection for security enhancement in MIMO wiretap channels. IEEE Trans. Com-
mun. 64, 144–154 (2013)

33. Zou, Y., Zhu, J., Wang, X., Leung, V.C.M.: Improving physical-layer security in
wireless communications using diversity techniques. IEEE Netw. 29, 42–48 (2015)

https://doi.org/10.1007/978-3-642-23822-2_3
https://doi.org/10.1007/978-3-642-23822-2_3
https://openwrt.org/

A Novel Algorithm for Secret Key
Generation in Passive Backscatter

Communication Systems

Mohammad Hossein Chinaei1(B), Diethelm Ostry2, and Vijay Sivaraman1

1 University of New South Wales, Sydney, Australia
{m.chinaei,vijay}@unsw.edu.au

2 Data61, CSIRO, Sydney, Australia
diet.ostry@data61.csiro.au

Abstract. The extreme asymmetry of passive backscatter communica-
tions systems such as passive Wi-Fi, while allowing significant reduction
of node power consumption for communications, imposes severe resource
limitations on implementing secure communications. Target applications
for this technology are typically driven by the promise of low power con-
sumption, up to four orders of magnitude lower than commercial Wi-Fi
chipsets. Industry standard security approaches using encryption tech-
nology are problematic in this power regime, particularly as the poten-
tial low complexity and size of passive nodes will encourage application
to high-density networks of very small, energy-poor devices. Generation
of shared symmetric keys through reciprocal channel measurements, for
example of received signal strength (RSS), is a natural approach in this
situation. However previous work in this area has focused on the sym-
metric case where base station and nodes communicate at the same radio
frequency. Backscatter communications uses two frequencies, typically a
pilot beacon transmitted by a base station on one frequency, and response
on a shifted frequency. This paper describes a protocol for RSS-based
shared key generation for this architecture and reports the results of an
experimental implementation using software radio emulation of backscat-
ter communication.

Keywords: Physical layer security · Secret key generation
Passive sensors · Backscatter communication

1 Introduction

Power consumption remains a key limiting constraint in achieving long-lived net-
works of wireless sensor nodes, and communications is typically a major compo-
nent of their power budget. The appearance of many applications requiring small
low-power sensors in areas such as the Internet of Things (IoT), wearable devices,
and implantable medical sensors, has attracted a great deal of research interest
in techniques able to achieve low-power communications. The most extreme
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 436–455, 2018.
https://doi.org/10.1007/978-3-030-02641-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_20

A Novel Algorithm for Secret Key Generation 437

approaches to date employ backscatter technologies which can reduce power
consumption by orders of magnitude through transfering as much as possible of
the power-consuming transmitter functionality of the wireless communications
system out of the nodes and into the base station. Instead of implementing an
active wireless transmitter, with correspondingly large power consumption, a
node or “tag” employing backscatter communications uses relatively simple RF
circuitry to receive, modulate, and reflect either ambient wireless transmissions
or beacon signals provided by a base station or “reader”.

For example, the authors in [1] presented a “Wi-Fi backscatter” approach as
a practical technology for wireless communication for passive sensors. A Wi-Fi
backscatter tag is able to send data at a rate of a few kbps to a commodity
receiver over a range of 2 meters by modulating ambient Wi-Fi communications
packets and thereby influencing the channel state visible to the reader. In [2]
the authors propose a similar technique to modulate ambient Bluetooth low
power packets and extended the range to over 9 meters. In [3–6] the authors
extend the idea of backscatter communication using Wi-Fi signals using dif-
ferent approaches. Interference cancellation is proposed in [3] so that the same
frequency can be used by both beacon signal from reader to tag and the reflected
signal from tag to reader. In [4–6] the authors use dual frequencies to achieve
compatibility with current commercial Wi-Fi devices.

In “passive Wi-Fi” [5], the reader (which can employ standard Bluetooth
and Wi-Fi chipsets) sends out a continuous wave (CW) beacon on a Bluetooth
frequency. The passive tag modulates its information on the received beacon,
shifts its frequency and reflects a normal Wi-Fi (802.11b) packet back to the
reader. This technology can provide in principle up to 11 Mbps at 10−4 times
lower power than current active Wi-Fi chipsets. All these reported technologies
have been implemented and tested under real world conditions and for some of
them IC implementations have also been designed. It appears likely that many
novel applications will become feasible with these new ultra-low-power passive
technologies based on backscatter communication.

One of the attractive new application areas is wearable devices, for example
for physiological and medical monitoring purposes. Such devices are ideally small
and lightweight which restricts their battery capacity and so makes them ideal
candidates for using the ultra-low-power backscatter communications technolo-
gies. However the communications system in this and other applications may
carry sensitive information, e.g. commercial, personal and medical data and so
a security capability is often mandatory. In view of the limited computational
capabilities of the devices, their deployment in perhaps not-easily-accessible loca-
tions, and potentially in large numbers, it is challenging to devise practical secu-
rity mechanisms to protect their data. Cryptographic means of implementing
data confidentiality require the secure distribution of keys between the commu-
nicating devices and this is a power-intensive task in a wireless system, making
it problematic for ultra-low-power devices.

The use of the wireless channel itself (often termed the physical (PHY) layer
for convenience) as a source of shared key material has been studied extensively

438 M. H. Chinaei et al.

in recent years [7,8]. From physical principles, the channel is intrinsically recip-
rocal, i.e. both parties in a wireless communication see the same propagation
parameters to within a constant factor, and an eavesdropper in a sufficiently
removed location cannot determine those shared parameters. What makes this
appealing in the low-power regime is that measurements of the channel param-
eters can often be made as part of the usual communications protocol without
incurring the power overhead of a cryptographic key-exchange protocol. Regu-
lar re-keying is generally required in practice for maintaining security and so
the secret key generation rate is also a matter of concern in some applications.
Researchers have explored high rate key bit extraction in [9–11]. However, in
[12], it is shown that for IoT and wearable sensors where high bit rate is not a
critical issue, low-complexity algorithms provide benefits in overall device energy
consumption.

All the previous work on using the wireless channel to generate shared keys
has addressed active symmetric communications where the two communicating
parties alternately transmit to each other and make independent measurements
of channel properties at the same frequency. However, the inherent asymmetry
of passive backscatter communication makes this approach inapplicable. In the
“passive WiFi” scenario for example, the reader emits a beacon at one frequency
and the tag reflects a WiFi signal at a different frequency. A new approach is
needed to generate shared keys from wireless channel properties at two frequen-
cies and in a way which is secure from eavesdropping.

In the remainder of this paper we describe such an approach. Our specific
contributions are:

1. We describe a straightforward secret key generation scheme modified for use
by passive sensors which implement asymmetric backscatter communication.
We develop a three-step protocol to measure received signal strength (RSS)
at dual frequencies, allowing a reader and tag to establish a secret shared
key with high agreement in principle. We use the universal software radio
peripheral (USRP) platform to test the approach experimentally.

2. We identify a specific problem with key generation based on wireless channel
parameters caused by the dual frequency operation inherent in many practical
backscatter schemes like “passive WiFi”.

3. We propose an enhanced of the basic algorithm and device design to allow
secure shared key generation in the backscatter communications system.

The rest of the paper is organised as follows: in Sect. 2, the basic system
architecture is outlined and the protocol for secret key generation is developed.
In Sect. 3, an experimental evaluation of the protocol is presented. A theoretical
and practical analysis is carried out to establish the security risks of the proposed
protocol. In Sect. 4, an enhancement of the protocol and device is described and
evaluated. The paper is concluded in Sect. 5 with directions to future work.

A Novel Algorithm for Secret Key Generation 439

2 Basic System Architecture

2.1 System Model

A data communications transmitter typically comprises a digital baseband pro-
cessor which constructs an analog signal at a convenient low (baseband) fre-
quency and an RF section which shifts the signal to the final frequency and
amplifies it to the required power level. To achieve adequate transmit power, the
RF section usually uses an architecture which consumes far more power than
the baseband processor. Backscatter communication eliminates the power con-
suming analog RF part of the transmitter and effectively offloads its function to
the reader device (which could be a smart phone in practice). Passive tags do
not have the usual active transmitter function but instead essentially piggyback
information on ambient communications signals or a reader–generated beacon.
Their RF circuitry is far less complex and requires far less power than an active
transmitter. Of course also it generates far less RF signal power and so there is
a corresponding cost in range reduction. It is convenient to shift the frequency
of the tag’s reflected signal so that the reader’s beacon signal can be at a placed
at a non-interfering frequency (e.g. in the Bluetooth band for a backscattered
signal in the WiFi band).

PHY layer secret key generation relies on reciprocity of electromagnetic prop-
agation, i.e. two communicating parties under general conditions will indepen-
dently see identical channel properties. In other words, if two parties, reader
and tag, consecutively exchange signals with each other (in less than channel
coherence time, i.e. the time during which the channel is effectively constant) so
that each can estimate the channel they see, their estimates would match. How-
ever, there are two major differences in the backscatter scenario. First, the tag is
not able to make an independent transmission but can only reflect the reader’s
beacon signal. Second, the tag and reader receive signals at different frequen-
cies which may be sufficiently separated to have different channel propagation
properties (for example in passive Wi-Fi they are 11 MHz apart).

2.2 Asymmetric Channel Measurements

There are a number of channel characteristics on which key generation can be
based, for example the spectrum of multipath components, complex (magnitude
and phase) link gain, and received signal strength (RSS). RSS is by far the easiest
to implement and measure, particularly by resource constrained devices and so is
best suited to backscatter nodes. Our basic system model includes a reader, a tag
and an eavesdropper (Eve). The tag is assumed to have two different operation
modes, reflecting and listening. In reflecting mode, the tag can only retransmit
the modified beacon signal back to the reader. However, in the listening mode,
the tag can listen to the reader and measure the RSS of its beacon signals.

The channel characteristics (e.g. RSS) between the legitimate parties, reader
and tag, are assumed to fluctuate sufficiently for key generation. The fluctuation

440 M. H. Chinaei et al.

Fig. 1. Asymmetric channel measurement steps

may be due to tag motion for example or the motion of other nearby enti-
ties which change the multipath environment. Eve is presumed to be a passive
attacker who is able to measure the RSS of different signals transmitted from
the reader or reflected from the tag but does not transmit any signals.

The reader transmits a beacon signal at f1 and receives the tag’s reflection at
f2 which causes the RSS at the reader to be influenced by the channel gains at
both f1 and f2. The reader uses this composite RSS to generate its key. Accord-
ingly, the tag also needs to be provided with the same channel gain information
at the same two frequencies. To achieve this, our basic protocol [13] uses the
following three-step scheme (see Fig. 1):

1. The reader transmits a CW beacon signal at f1 to the tag (which is in the
reflection mode at this step). The tag reflects the received signal at the second
frequency, f2. The reader measures the RSS of the reflected signal which is
the product of channel gains at the two frequencies, i.e. GRT

f1
GTR

f2
.

2. The tag listens at frequency f1. The reader transmits a CW beacon at f1.
The tag measures the RSS giving it an estimate of channel gain at f1, i.e.
GRT

f1
.

3. The tag listens at frequency f2. The reader transmits a beacon at f2. The tag
measures the RSS to estimate the channel gain at f2, i.e. GRT

f2
.

A Novel Algorithm for Secret Key Generation 441

The three steps take place consecutively and one set of three steps forms
a single round of the key generation protocol. At the end of each round, the
tag and reader have independent estimates of the same channel properties. The
tag multiplies the gains it measured at steps 2 and 3 to form an estimate of
GRT

f1
GRT

f2
. The reader measures its estimate of GRT

f1
GTR

f2
in step 1. If the channel

has remained essentially constant over the duration of a protocol round the
tag’s and reader’s estimates of the gain product would be expected to be in
high agreement because of channel reciprocity and so can be used as a source of
shared entropy for key generation.

The gain product GRT
f1

GRT
f2

is used by the reader and tag to generate their
keys. The eavesdropper Eve is able to make two different estimates of this prod-
uct after every round of the protocol. The first estimate is available at step 1,
where she receives the reflection signal from the tag, the product of two channel
gains: reader-tag link at frequency f1, (GRT

f1
) and tag-Eve link at frequency f2,

(GTE
f2

). This estimate will be termed Eve’s reflection estimate: GRT
f1

GTE
f2

. Eve’s
second estimate, termed the product estimate, is generated by multiplying the
RSS values she sees at steps 2 and 3 (channel gains of reader-Eve link at f1 and
f2), i.e. GRE

f1
GRE

f2
.

2.3 Quantisation Process

After a sequence of protocol rounds in which consecutive channel measurements
are made, both reader and tag apply a quantisation process to convert the raw
channel measurements into a key bit string. We use the level crossing quantisa-
tion technique first proposed in [14]. In this method, an adaptive sliding window
of length WQ is defined to select a block of consecutive raw measurements. In
each block upper and lower levels are defined as follows:

0 2 4 6 8 10 12 14 16 18 20
Round index

-88

-86

-84

-82

-80

-78

-76

-74

R
S

S
I(

dB
)

q+

q-

Mean

Bitstring = 110011101

Fig. 2. Level crossing quantisation technique.

442 M. H. Chinaei et al.

q+ = μ + ασ

q− = μ − ασ

where μ is the measurement mean, σ is the standard deviation, and 0 ≤ α ≤ 1
is a parameter which can be adjusted to trade off key bit rate against key bit
agreement. Each of the RSS measurements inside the window produces a key
bit value of 1 if it is greater than the upper quantisation level (q+) and 0 if it is
smaller than the lower level (q−). Measurements which fall between two levels
of quantisation are discarded (see Fig. 2). The quantisation parameters are the
same for both legitimate sides of the communication and we assume Eve knows
the quantisation algorithm.

When the parameter α is small, most of the RSS measurements contribute
key bits, leading to a higher key bit generation rate although the key bit agree-
ment is likely to decrease drastically due to deriving key bits from uncorrelated
noise. On the other hand, for α near 1 and higher, many usable RSS mea-
surements are discarded, thereby reducing the key bit generation rate, but also
reducing key discrepancies due to noise. In our target application, higher key
agreement is desirable in order to minimise the cost of any subsequent key rec-
onciliation process [12].

2.4 Security Considerations

Threat Model: In this work we are concerned with the threat posed by an eaves-
dropper who is able to detect all key-generation communications. An eavesdrop-
per is assumed to have full knowledge of the system protocols and is not limited
substantially in computational power or receiver capability (e.g. she can receive
at multiple frequencies simultaneously). However we restrict an eavesdropper to
be passive, i.e. is unable to generate spoofing signals.

Secrecy: A crucial assumption is that any eavesdropper is sufficiently far from
the legitimate parties that her radio channel characteristics are uncorrelated
with those of the legitimate parties. A half-wavelength separation is theoretically
adequate in a multipath–saturated environment, but in practice considerably
greater distances may be required [8] and in general the extent of eavesdropper–
exclusion zones must be established through measurement or propagation mod-
eling. Backscatter systems have relatively short range due to their passive nature
reducing the tag’s signal power and this may make an eavesdropper who is close
enough to detect the backscattered signal more physically evident.

Although two frequencies are used in backscatter systems, we do not rely on
their being uncorrelated. In fact the enhanced algorithms we introduce in Sect. 4
attempt to remove the effect of propagation variations at one of the frequencies.
Under our system assumptions, the channel variation at the second frequency
can be assumed to be adequate for key generation.

We note that in our protocols, the reader drives the protocol sequence and
can therefore in principle monitor the radio environment and detect some spoof-
ing attacks, e.g. by listening for false beacon signals or signal collisions which

A Novel Algorithm for Secret Key Generation 443

would indicate attempts to inject counterfeit backscatter signals over the legit-
imate backscatter signals. The true backscatter signal is returned essentially
instantaneously apart from propagation delays, making it more difficult for an
active attacker with powerful transmitter (to operate at a standoff for example)
to impersonate a legitimate backscatter node. It would also be difficult for an
active attacker to ensure that her signal levels at the reader were such that they
did not reveal she could not be a backscatter device.

3 Evaluation and Analysis

3.1 Evaluation

System Model and Channel Measurements. We implemented and evalu-
ated the performance of our proposed protocol on USRP software–defined radios.
The three nodes in our scenario are represented by three different USRPs, each
connected to a PC running LabView software as the control interface. The dual
frequencies chosen were f1 = 2.171 GHz and f2 = 2.182 GHz, different from stan-
dard Wi-Fi and Bluetooth frequencies because of equipment limitations, but
11 MHz apart as in passive Wi-Fi. The corresponding wavelength is about 14 cm.

Since we are extracting keys from wireless channel characteristics, the channel
is required to fluctuate sufficiently to provide key generation at an adequate
rate [12,14] and this is achieved in our experiments by moving the tag through
a sequence of positions. In the configuration shown in Fig. 3, the reader and
eavesdropper Eve are stationary and the tag moves randomly about 5 cm after
each 5 rounds of the protocol. The distance between the two legitimate parties
(reader and tag) is varied between 150 cm to 190 cm. In each experiment, Eve
is located at a different distance from the reader. We chose the configuration
where Eve is close to the reader as the worst case since her channels are then
most geometrically similar to the tag–reader channels used for key generation.

Fig. 3. System model

444 M. H. Chinaei et al.

In the first experiment (Fig. 4), Eve is located 42 cm, about 3λ, from the
reader. In subsequent experiments, this distance is increased to 52 cm (4λ) and
84 cm (6λ), shown in Figs. 5 and 6, respectively. In each figure, we have four
different curves corresponding to reader’s RSS measurement of the backscattered
signal, the tag’s estimation, which is the product of its RSS measurements at
steps 2 and 3, Eve’s reflection estimation, based on what she measures at step 1,
and Eve’s product estimation, based on the product of her RSS measurements
at steps 2 and 3. Each experiment comprises 250 protocol rounds lasting about
12 min. The Pearson correlation coefficients between measurements at different
nodes are shown in Table 1. The correlation coefficient always lies in the range
[−1, 1], where 1, 0, and −1 represents perfect correlation, no correlation and
anti-correlation respectively.

0 50 100 150 200 250
Round index

-160

-140

-120

-100

-80

-60

-40

R
SS

I(d
B)

Reader
Tag
Eve reflection estimation
Eve product estimation

Fig. 4. RSS measurements when the distance between reader and Eve is 42 cm ≈ 3λ.

Table 1. Correlation coefficient between different node signals

Distance between

reader and Eve

Correlation

between reader

and tag

Correlation

between reader

and Eve reflection

estimation

Correlation

between reader

and Eve product

estimation

42 cm ≈ 3λ 0.99 0.90 0.16

56 cm ≈ 4λ 0.99 0.90 0.02

84 cm ≈ 6λ 0.99 0.80 0.16

Secret Key Generation: As outlined in Sect. 1, we use a level crossing quan-
tiser to generate key bits from the RSS measurements of reader and tag. All of
the nodes in the experimental scenario record the round index of a successful

A Novel Algorithm for Secret Key Generation 445

0 50 100 150 200 250
Round index

-140

-120

-100

-80

-60

-40

-20

R
S

S
I(

dB
)

Reader
Tag
Eve reflection estimation
Eve product estimation

Fig. 5. RSS measurements when the distance between reader and Eve is 56 cm ≈ 4λ.

0 50 100 150 200 250
Round index

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

R
S

S
I(

dB
)

Reader
Tag
Eve reflection estimation
Eve product estimation

Fig. 6. RSS measurements when the distance between reader and Eve is 84 cm ≈ 6λ.

measurement, i.e. one which produced a key bit. The actual shared key bit string
is established through subsequent communication between reader and tag over
a public channel. The reader and tag agree on a key bit sequence by exchanging
their successful round indices. They discard any bits which do not correspond
to a successful round index for both. In this way the reader and tag only keep
the key bits formed from successful round indices at both sides. Since a public
channel is used by the legitimate parties to exchange successful round indexes,

446 M. H. Chinaei et al.

Eve also knows the exact round indices used for secret key generation. However,
if the RSS measurements at Eve are uncorrelated with the shared measurements
at the tag and reader, the successful round indices alone are not be helpful to her.
Table 2 shows the key bit agreement between three parties for different window
sizes (WQ) of the quantiser with α = 1.

Table 2. Key agreement between different nodes

Distance between

reader and Eve

Key agreement

between reader

and tag

Key agreement

between reader

and Eve reflection

estimation

Key agreement

between reader

and Eve product

estimation

42 cm ≈ 3λ,

WQ = 5

96.96% 81.31% 46.96%

42 cm ≈ 3λ,

WQ = 10

100% 83.64% 51.40%

42 cm ≈ 3λ,

WQ = 20

100% 83.96% 52.35%

56 cm ≈ 4λ,

WQ = 5

92% 74.71% 49.41%

56 cm ≈ 4λ,

WQ = 10

100% 81.73% 49.13%

56 cm ≈ 4λ,

WQ = 20

100% 88.43% 49.25%

84 cm ≈ 6λ,

WQ = 5

93.87% 75.50% 45.91%

84 cm ≈ 6λ,

WQ = 10

100% 77.81% 47.57%

84 cm ≈ 6λ,

WQ = 20

100% 76% 47.27%

3.2 Analysis

Table 1 shows that when the three measurement steps in a round were completed
in less than channel coherence time, the correlation between RSS measurements
at the legitimate parties was 0.99, giving a very high key agreement (see Table 2).
The actual agreement level depends on the size of the sliding window used in
quantisation process. Greater window size leads to a higher agreement level at
the cost of larger memory size and more complexity in the hardware, but requires
channels with only slowly changing means. For our experimental implementation,
100% key agreement was reached with a sliding window size of 10 samples.

The product estimation Eve generates by multiplying the measured RSS at
steps 2 and 3 is almost constant for all of the experiments (Figs. 4, 5, and 6) with
the reader and Eve fixed in position during each experiment. When Eve uses this
estimate she has only around a 50% chance of deriving the legitimate key (i.e. no
better than a coin toss), and the agreement level does not change significantly
with sliding window size. On the other hand, Eve’s reflection estimate is in close
agreement with the measurements at the reader and this results a near 80%
agreement between Eve’s key based on the reflection estimate and the legitimate

A Novel Algorithm for Secret Key Generation 447

key. This level of agreement is a serious problem which jeopardises the security
of our first proposed protocol.

Problem Statement: In active channel measurement scenarios where the
nodes communicate symmetrically and alternately, an eavesdropper Eve located
more than a half-wavelength away from the legitimate nodes could not in prin-
ciple form a valid measurement of the legitimate channel (the channel between
the reader and tag). However, in the passive backscatter case, Eve’s estimate of
the RSS gain product based on the reflected signal is strongly correlated to the
reader’s measurements. Our experiments show that even when Eve is 6λ away
from the reader the correlation coefficient between the reader’s measurements
and Eve’s measurements is 0.80, which leads to near 75% key agreement. Here
we analyse the reflection behaviour of the tag in detail to identify the underlying
problem which causes the unacceptably high key agreement for an eavesdropper
situated at even relatively large ranges from tag and reader.

Referring to Sect. 2.2, in the first step of protocol the reader transmits a
beacon at f1, the tag shifts its received signal to f2 and reflects it back to the
reader. The reflected signal is measured by both the reader and Eve. As a result,
measurements of the reflected gains at the reader and Eve are:

Reader reflection measurement = GRT
f1

GTR
f2

(1)

Eve reflection measurement = GRT
f1

GTE
f2

(2)

where GRT
f1

, GTR
f2

, and GTE
f2

are channel gains for reader to tag link at frequency
f1, tag to reader link at frequency f2, and tag to eve link at frequency f2, respec-
tively. All of the gain terms in Eqs. (1) and (2) are positive random variables as
they represent an attenuation factor. But as shown below, even when the three
gain terms are statistically independent, the RSS measurements of the reflected
signal by Eve and the reader are not necessarily uncorrelated.

Assume X, Y , and Z are statistically independent random variables with
means μX , μY , and μZ and variances σ2

X , σ2
X , and σ2

X respectively. (In our case,
X and Y will represent the RSS values from tag to reader and tag to Eve, and Z
the RSS from reader to tag.) Here we are interested in the correlation coefficient
between products such as ZX and ZY under the assumption of statistical inde-
pendence. The correlation coefficient ρXY of the processes X and Y is defined
as

ρXY =
σXY

σXσY
=

E[(X − μX)(Y − μY)]
σXσY

If X and Y are independent, ρXY = 0, and if they are linearly dependent,
|ρXY | = 1. Now consider the product random variables ZX and ZY . Their
correlation coefficient is:

ρZX,ZY =
E[(Z2XY − μ2

ZμXμY]
√

var(ZX)var(ZY)

448 M. H. Chinaei et al.

Now for independent Z,X, and Y :

var(ZX) = E[(ZX − μZX)2] = E[Z2X2] − μ2
ZX

= σ2
Zσ2

X + μ2
Zσ2

X + μ2
Xσ2

Z

and var(ZY) = σ2
Zσ2

Y + μ2
Zσ2

Y + μ2
Y σ2

Z

So

ρZX,ZY =
μXμY (E[Z2] − μ2

Z)
√

(σ2
Zσ2

X + μ2
Zσ2

X + μ2
Xσ2

Z)(σ2
Zσ2

Y + μ2
Zσ2

Y + μ2
Y σ2

Z)

=
μXμY√

(μ2
X + σ2

X(1 + (μX

σZ
)2))(μ2

Y + σ2
Y (1 + (μY

σZ
)2))

.
(3)

This shows that when X and Y have non-zero means and Z is not a constant
(σ2

Z �= 0), the correlation of the products ZX and ZY is in general non-zero,
even though X, Y , and Z are statistically independent.

Returning to our passive tag scenario with RSS given in Eqs. (1) and (2),
this result shows that because the reader and Eve reflection signals both contain
the common randomly varying factor GRT

f1
, their correlation is unlikely to be

zero and so their derived key strings will likely have an unacceptable agreement,
borne out by the experimental measurements in Tables 1 and 2.

Correlation Analysis: From the experimental measurements we can derive the
gains of the individual signal paths comprising the reflected signals measured by
the reader and Eve. Since we have used USRPs for our experiments (rather than
actual passive tags), the tag is able to measure the gain GRT

f1
at the first step of

a protocol round. We can derive the RSS corresponding to GTR
f2

and GTE
f2

from
the reflection signal at the reader and Eve and the RSS measurements at the
tag in the first step.

GTR
f2

=
Reader backscatter measurement

Tag measurement at f1

GTE
f2

=
Eve backscatter measurement

Tag measurement atf1
Using this approach we are able to derive the correlation between the different

links and the corresponding RSS measurements at Eve and reader for various
Eve locations (see Table 3). Our results show that the channel gains of tag to Eve
and tag to reader at f2 become less correlated with greater separation. However,
this does not lead to lower correlation in Eve and reader measurements, as none
of them are zero-mean random variables (see Eq. 3).

The theoretical (Eq. 3) and experimental (Table 3) analysis in this section
shows that in contrast to secret key generation using bidirectional active com-
munications where a separation of more than half a wavelength between Eve and

A Novel Algorithm for Secret Key Generation 449

Table 3. Correlation coefficient between RSS measurements at different links

Distance between

Reader and Eve

Correlation

between RSS at

GRT
f1

and GTR
f2

Correlation

between RSS at

GTR
f2

and GTE
f2

Correlation

between reader

and Eve reflection

estimation

42 cm ≈ 3λ 0.80 0.41 0.90

56 cm ≈ 4λ 0.80 0.43 0.90

70 cm ≈ 5λ 0.81 0.34 0.93

84 cm ≈ 6λ 0.77 0.24 0.80

98 cm ≈ 7λ 0.75 0.16 0.90

legitimate nodes theoretically results in uncorrelated channel measurements, the
common beacon signal in the passive backscatter case causes high correlation
between measurements at Eve and reader.

4 Enhanced Algorithm for Secret Key Generation

The evident agreement between the RSS of the tag reflected signal as measured
by the reader and eavesdropper makes it unsuitable for generating a secret key.
As discussed in the previous section, the tag reflects the beacon back to the reader
and eavesdropper (with frequency translation). Although the reflected signal
subsequently goes through uncorrelated channels to the reader and eavesdropper,
the first channel traversed by the beacon, from reader to tag, is common to
both reader and eavesdropper and causes a correlation between the reader and
eavesdropper’s measurements of RSS.

One approach to removing this correlation and blinding the eavesdropper to
the reader–tag channel is to modify the effect of this common channel. In this
section, we will discuss two algorithms to achieve this, one at the reader side
and one at the tag side. We show that the enhanced algorithm at the reader side
can be easily attacked by Eve. On the other hand, an enhanced algorithm at
the tag side can remove the common random factor (GRT

f1
) from the reflection

signal and result in nearly uncorrelated RSS measurements at the reader and
eavesdropper.

4.1 Reader–Side Enhanced Algorithm

One capability an enhanced reader might use is to modify the key generation
process by controlling the power level of the beacon signals used in different steps
of the key–generation protocol. Note that Eve’s best estimate of the secret key is
based on her measurement at the first step of the protocol. Beacons sent by the
reader at step 2 and 3 are used by the tag for key generation but Eve’s estimation
based on her calculation of their product is uncorrelated to the tag’s and reader’s
measurements. Hence the reader can best prevent Eve from measuring the actual
channel gains by interfering with her estimate made in step 1 of the protocol.

450 M. H. Chinaei et al.

In the reader–side enhanced algorithm, the reader sends out the beacon in
step 1 at a random power level to falsify Eve’s estimate of the reflected RSS.
Since the random power level is chosen by reader itself, it can easily extract
the true channel gain from the reflection signal RSS. On the other hand, this
does not affect the step 2 and 3 RSS measurements at the tag and the high
correlation between measurements at the reader and tag can be expected to
remain unchanged. Table 4 shows the key agreement between the reader and
tag, and Eve when the beacon power is randomised in this way at the reader
side.

Table 4. Key agreement between different nodes for reader–side enhanced algorithm

Distance
between reader
and Eve

Key agreement
between reader
and tag

Key agreement
between reader
and Eve
reflection
estimation

Key agreement
between reader
and Eve
product
estimation

42 cm ≈ 3λ,
WQ = 5

96.96% 47.47% 46.96%

42 cm ≈ 3λ,
WQ = 10

100% 48.59% 51.40%

42 cm ≈ 3λ,
WQ = 20

100% 46.22% 52.35%

56 cm ≈ 4λ,
WQ = 5

92% 52.87% 49.41%

56 cm ≈ 4λ,
WQ = 10

100% 46.52% 49.13%

56 cm ≈ 4λ,
WQ = 20

100% 57.08% 49.25%

84 cm ≈ 6λ,
WQ = 5

93.87% 50.51% 45.91%

84 cm ≈ 6λ,
WQ = 10

100% 42.23% 47.57%

84 cm ≈ 6λ,
WQ = 20

100% 46.93% 47.27%

Potential Attack: The reader transmits the beacon signal at f1 with a random
sequence of amplitudes, say α0, α1, α2,... If the reader and Eve are both sta-
tionary so that GRE

f1
is constant for a time, Eve will receive these beacon signals

with amplitudes s0 = α0G
RE
f1

, s1 = α1G
RE
f1

, s2 = α2G
RE
f1

and so on. If she takes
ratios of the signals, e.g. s1

s0
= α1

α0
, s2

s0
= α2

α0
... she can estimate the αi to within a

scale factor (α0 in this case). This estimate would then allow her to correct her
reflected estimation of αiG

RT
f1

GTE
f2

signal and find GRT
f1

GTE
f2

to within a constant
scale factor, which does not affect key bit quantisation, and so she can discover
the key bits.

A Novel Algorithm for Secret Key Generation 451

4.2 Tag–Side Enhanced Algorithm

In this section, we propose an algorithm at the tag side instead to eliminate the
effect of the common reader–to–tag channel. We assume an ideal tag which can
accurately control the strength of its reflection signal. However a passive tag is
not able to amplify the received beacon but only reduce the amplitude of its
reflection. As explained in [4], the tag is in principle able to change its reflection
characteristics by altering the impedance load on its antenna and so control the
power level of the reflection signal. The power level of the reflection signal can
stated in the form:

PReflection = PBeacon
| Γ ∗

1 − Γ ∗
2 |2

4
(4)

where Γ ∗
1 and Γ ∗

2 are the complex conjugates of the reflection coefficients corre-
sponding to the two impedance states. The backscattered signal can be reflected
at different power levels corresponding to the range [0, PBeacon]. If the tag can
keep the reflected power at some constant level in step 2 of successive rounds
of the key generation process, the damaging effects of the common random fac-
tor (GRT

f1
) can be eliminated. The reader and eavesdropper now see just the

single channel gains GTR
f2

and GTE
f2

respectively, and these channel gains are
uncorrelated given our assumptions.

0 50 100 150 200 250
Round index

-160

-140

-120

-100

-80

-60

R
S

S
I(

dB
)

Reader
Tag
Eve

Fig. 7. RSS for tag–side enhanced algorithm, reader and Eve are 42 cm ≈ 3λ apart.

To implement the tag–side power management algorithm, we need to swap
the order of step 1 and step 2 in each protocol round so that the tag can estimate
the reader-tag channel gain as a first step. So in the new sequence, the tag is in the

452 M. H. Chinaei et al.

0 50 100 150 200 250
Round index

-160

-140

-120

-100

-80

-60
R

S
S

I(
dB

)

Reader
Tag
Eve

Fig. 8. RSS for tag–side enhanced algorithm, reader and Eve are 56 cm ≈ 4λ apart.

0 50 100 150 200 250
Round index

-140

-120

-100

-80

-60

-40

R
S

S
I(

dB
)

Reader
Tag
Eve

Fig. 9. RSS for tag–side enhanced algorithm, reader and Eve are 84 cm ≈ 6λ apart.

listening mode in step 1 and measures GRT
f1

. In step 2 the tag is in the reflection
mode and controls the reflected power to remove the effects of GRT

f1
from the

reflection signals GRT
f1

GTR
f2

and GRT
f1

GTE
f2

seen by the reader and eavesdropper
respectively.

For a simple proof-of-concept demonstration of the approach, we consider
time epochs in which the tag adjusts its reflection according to the factor k(i)
(with i the protocol round index within an epoch):

A Novel Algorithm for Secret Key Generation 453

Table 5. Key agreement between different nodes for tag–side enhanced algorithm

Distance between

reader and Eve

Key agreement

between reader

and tag

Key agreement

between reader

and Eve

42 cm ≈ 3λ,

WQ=5

82% 51.28%

42 cm ≈ 3λ,

WQ=10

89% 50%

42 cm ≈ 3λ,

WQ=20

97% 51%

56 cm ≈ 4λ,

WQ=5

83.33% 51.19%

56 cm ≈ 4λ,

WQ=10

94.11% 55.39%

56 cm ≈ 4λ,

WQ=20

98.34% 60%

84 cm ≈ 6λ,

WQ=5

86% 54%

84 cm ≈ 6λ,

WQ=10

100% 55.51%

84 cm ≈ 6λ,

WQ=20

100% 59.48%

k(i) =

⎧
⎨

⎩

1 i = 1,
min(GRT

f1
(1),...,GRT

f1
(i))

GRT
f1

(i)
i > 1,

(5)

where GRT
f1

(i) is the RSS at f1 in round i. Eve’s and the reader’s reflection
measurements in round i are then:

Reader reflection measurement = k(i)GRT
f1

(i)GTR
f2

(i)

Eve reflection measurement = k(i)GRT
f1

(i)GTE
f2

(i)

In step 3 of a protocol round, the reader sends a beacon at f2 to the tag (which
operates in the listening mode) and the tag measures GRT

f2
. In the enhanced tag–

side key generation algorithm, the reader and Eve generate a key based on their
measurements at step 2, while the tag multiplies its measurements at step 1 and
3 to compute its product term (from which its key is derived) as:

Tag product measurement = k(i)GRT
f1

(i)GRT
f2

(i)

The effect of the factor k(i) is to reduce the variability of the reader–tag chan-
nel at f1 to a piecewise constant since k(i)GRT

f1
(i) = min(GRT

f1
(1), . . . , GRT

f1
(i)).

Even though in the ideal case the effect of the common reader–tag channel at
f1 has been largely removed and so does not contribute to key generation, the
remaining component at f2, i.e. GRT

f2
(i) is sufficient for random key generation

under our system assumptions (as in symmetric non-backscatter systems).
In order to emulate an ideal tag, we have applied the tag–side enhanced

algorithm to the channel gain measurements made in the experiments described

454 M. H. Chinaei et al.

in Sect. 3 above. The results are shown in Figs. 7, 8 and 9 and Table 5 and
demonstrate that the correlation effects due to the common reader–tag channel
have been considerably reduced, with key agreement rates between Eve and the
legitimate parties now approaching the desired 50% levels. An investigation of
improved forms for the factor k(i) in Equation (5) is left for future work.

5 Conclusion

In this paper, we proposed a novel algorithm for generating shared secret keys
in passive backscatter communications systems by measuring wireless channel
characteristics at dual frequencies. Restricted capabilities and severe power lim-
itations are typical of passive backscatter sensors and make shared secret key
generation based on reciprocal channel characteristics an attractive approach.
Previous work on physical–layer secret key generation has focused on the sym-
metric case where both parties use comparable active transceivers to exploit
the symmetric channel characteristics at a single frequency. However, passive
backscatter systems operate at dual frequencies, and are asymmetric, with only
the reader device being able to transmit arbitrary signals.

A simple RSS–based key generation approach modified for dual frequency
operation has been implemented on USRP software–defined radios acting as an
emulation of the reader–tag backscatter system and shows good key agreement
between the legitimate parties. However the reflection signal from the passive
backscatter tag contains a beacon component common to both the tag and an
eavesdropper and this compromises the secrecy of the shared key. To overcome
the effect of the common beacon component we have described an enhanced
algorithm based on giving the tag the additional capability of being able to con-
trol its reflected power. The enhanced algorithm was demonstrated using USRP
emulation and showed significant improvement in restricting an eavesdropper’s
ability to derive the secret key by intercepting the communications of the legit-
imate parties.

Acknowledgements. The authors would like to thank Prof. Sherman Chow and the
anonymous reviewers, whose valuable suggestions greatly improved the manuscript.
We also would like to express our very great appreciation to Ms Samira Saadatpour
for her valuable technical assistance in experimental implementations.

References

1. Kellogg, B., Parks, A., Gollakota, S., Smith, J.R., Wetherall, D.: Wi-fi backscatter:
internet connectivity for RF-powered devices. ACM SIGCOMM Comput. Com-
mun. Rev. 44(4), 607–618 (2015)

2. Ensworth, J.F., Reynolds, M.S.: Every smart phone is a backscatter reader: modu-
lated backscatter compatibility with Bluetooth 4.0 Low Energy (BLE) devices. In:
2015 IEEE International Conference on RFID (RFID), pp. 78–85. IEEE (2015)

3. Bharadia, D., Joshi, K.R., Kotaru, M., Katti, S.: BackFi: high throughput WiFi
backscatter. ACM SIGCOMM Comput. Commun. Rev. 45(4), 283–296 (2015)

A Novel Algorithm for Secret Key Generation 455

4. Kellogg, B., Talla, V., Gollakota, S., Smith, J.R.: Passive Wi-Fi: bringing low
power to Wi-Fi transmissions. In: 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 2016), pp. 151–164 (2016)

5. Iyer, V., Talla, V., Kellogg, B., Gollakota, S., Smith, J.: Inter-technology backscat-
ter: towards internet connectivity for implanted devices. In: Proceedings of the
2016 Conference on ACM SIGCOMM 2016 Conference, pp. 356–369. ACM (2016)

6. Zhang, P., Bharadia, D., Joshi, K.R., Katti, S.: HitchHike: practical backscatter
using commodity WiFi. In: SenSys, pp. 259–271 (2016)

7. Wang, T., Liu, Y., Vasilakos, A.V.: Survey on channel reciprocity based key estab-
lishment techniques for wireless systems. Wirel. Netw. 21(6), 1835–1846 (2015)

8. Zou, Y., Zhu, J., Wang, X., Hanzo, L.: A survey on wireless security: technical chal-
lenges, recent advances, and future trends. Proc. IEEE 104(9), 1727–1765 (2016)

9. Premnath, S.N., et al.: Secret key extraction from wireless signal strength in real
environments. IEEE Trans. Mob. Comput. 12(5), 917–930 (2013)

10. Jana, S., Premnath, S.N., Clark, M., Kasera, S.K., Patwari, N., Krishnamurthy,
S.V.: On the effectiveness of secret key extraction from wireless signal strength in
real environments. In: Proceedings of the 15th Annual International Conference on
Mobile Computing and Networking, pp. 321–332. ACM (2009)

11. Patwari, N., Croft, J., Jana, S., Kasera, S.K.: High-rate uncorrelated bit extraction
for shared secret key generation from channel measurements. IEEE Trans. Mob.
Comput. 9(1), 17–30 (2010)

12. Ali, S.T., Sivaraman, V., Ostry, D.: Eliminating reconciliation cost in secret key
generation for body-worn health monitoring devices. IEEE Trans. Mob. Comput.
13(12), 2763–2776 (2014)

13. Chinaei, M.H., Sivaraman, V., Ostry, D.: An experimental study of secret key gen-
eration for passive wi-fi wearable devices. In: IEEE 18th International Symposium
on a World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–9.
IEEE (2017)

14. Mathur, S., Trappe, W., Mandayam, N., Ye, C., Reznik, A.: Radio-telepathy:
extracting a secret key from an unauthenticated wireless channel. In: Proceedings
of the 14th ACM International Conference on Mobile Computing and Networking,
pp. 128–139. ACM (2008)

Short Papers

A Provably-Secure Unidirectional Proxy
Re-encryption Scheme Without Pairing

in the Random Oracle Model

S. Sharmila Deva Selvi, Arinjita Paul(B), and Chandrasekaran Pandurangan

Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras, Chennai, India
{sharmila,arinjita,prangan}@cse.iitm.ac.in

Abstract. Proxy re-encryption (PRE) enables delegation of decryption
rights by entrusting a proxy server with special information, that allows
it to transform a ciphertext under one public key into a ciphertext of
the same message under a different public key, without learning any-
thing about the underlying plaintext. In Africacrypt 2010, the first PKI-
based collusion resistant CCA secure PRE scheme without pairing was
proposed in the random oracle model. In this paper, we point out an
important weakness in the security proof of the scheme. We also present
a collusion-resistant pairing-free unidirectional PRE scheme which meets
CCA security under a variant of the computational Diffie-Hellman hard-
ness assumption in the random oracle model.

Keywords: Proxy re-encryption · Random oracle model
Chosen ciphertext security · Provably secure · Unidirectional

1 Introduction

Proxy re-encryption is an important cryptographic primitive that allows a third
party termed as proxy server, to transform the ciphertext of a user into a cipher-
text of another user without learning anything about the underlying message. As
pointed out by Mambo and Okamoto in [7], this is a common situation in prac-
tice where a data encrypted under PKAlice is required to be encrypted under
PKBob, such as applications like encrypted email forwarding, distributed file sys-
tems and outsourced filtering of encrypted spam. Here, Alice provides a secret
information to the proxy called Re-Encryption Key (but not her private key

S. Sharmila Deva Selvi—Postdoctoral researcher supported by Project No. CCE/CEP/
22/VK&CP/CSE/14-15 on Information Security & Awareness(ISEA) Phase-II by Min-
istry of Electronics & Information Technology, Government of India.
A. Paul and C. Pandurangan—Work partially supported by Project No. CCE/CEP/
22/VK&CP/CSE/14-15 on ISEA-Phase II.

c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 459–469, 2018.
https://doi.org/10.1007/978-3-030-02641-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_21

460 S. Sharmila Deva Selvi et al.

SKAlice) allowing it to transform EPKAlice
(m) to EPKBob

(m) without learning
anything about m or SKAlice.

Most of the proxy re-encryption schemes in the literature are based on costly
bilinear pairing operation [1,3,6]. Despite recent advances in implementation
techniques, bilinear pairing takes more than twice the time taken by modular
exponentiation computation and is an expensive operation. As stated by Chow
et al. [4], removing pairing operations from PRE constructions is one of the open
problems left by [3]. Weng et al. [5] proposed the first CCA secure pairing-free
PRE scheme, which was however shown to be vulnerable to collusion attack [10].
Collusion resistance, also termed as delegator secret security is a desirable prop-
erty in many practical scenarios such as secure cloud services, which prevents a
colluding proxy and malicious delegatees from recovering the private key of the
delegator. In 2010, Chow et al. [4] proposed the first construction of a collusion-
resistant CCA secure pairing-free PRE scheme. However, in our work, we point
out a major weakness in the security proof of the scheme by Chow et al. We also
provide a construction of a CCA-secure collusion-resistant pairing-free unidirec-
tional single-hop proxy re-encryption scheme under the Computational Diffie-
Hellman (CDH) and the Divisible Computational Diffie-Hellman (DCDH) hard-
ness assumptions in the random oracle model. Prior to our work, Canard et
al. [2] exposed a similar flaw in the security proof of the scheme due to Chow et
al. [4], and provided a fix to the scheme using NIZKOE (Non-interactive Zero-
Knowledge proofs with Online Extractors). We show that our scheme is more
efficient than the modified scheme due to Canard et al., providing an efficient
pairing-free unidirectional collusion-resistant PRE scheme.

Complexity Assumptions

We define the complexity assumptions used in the security proof of our scheme.
Let G be a cyclic multiplicative group of prime order q.

Definition 1. Computational Diffie Hellman Assumption (CDH): The
CDH problem in G is, given (g, ga, gb) ∈ G

3, compute gab, where a, b ← Z
∗
q .

Definition 2. Divisible Computational Diffie Hellman Assumption
(DCDH): The DCDH problem in G is, given (g, ga, gb) ∈ G

3, compute gb/a,
where a, b ← Z

∗
q .

Definition 3. Discrete Logarithm Assumption (DL): The DL problem in
G is, given (g, ga) ∈ G

2, compute a, where a ← Z
∗
q .

2 Analysis of a PRE Scheme by Chow et al. [4]

We review the scheme due to Chow et al. [4] and point out the weakness in the
security proof of the scheme in this section.

A Provably-Secure Unidirectional Proxy Re-encryption Scheme 461

2.1 Review of the Scheme

– Setup(λ): Choose two primes p and q such that q|p − 1 and the security
parameter λ defines the bit-length of q. Let G be a subgroup of Z

∗
q with

order q and let g be a generator of the group G. Choose four hash functions:
H1 : {0, 1}l0 × {0, 1}l1 → Z

∗
q ,H2 : G → {0, 1}l0+l1 ,H3 : {0, 1}∗ → Z

∗
q ,H4 :

G → Z
∗
q . The hash functions H1,H2,H3 are modelled as random oracles in the

security proof reduction. Here l0 and l1 are security parameters determined
by λ, and the message space M is {0, 1}l0 . Return the public parameters
PARAM = (q,G, g,H1,H2,H3,H4, l0, l1).

– KeyGen(Ui, PARAMS): To generate the private key (SKi) and the corre-
sponding public key (PKi) of user Ui:

• Pick xi,1, xi,2 ∈R Z
∗
q and set SKi = (xi,1, xi,2).

• Compute PKi = (PKi,1, PKi,2) = (gxi,1 , gxi,2).
– ReKeyGen(SKi, PKi, PKj , PARAMS): On input of the private key SKi

and public key PKi of user Ui and user j’s public key PKj , generate the
re-encryption key RKi→j as shown:

• Pick h ∈R {0, 1}l0 , π ∈R {0, 1}l1 .
• Compute v = H1(h, π), V = PKv

j,2 and W = H2(gv) ⊕ (h||π).

• Define RK
〈1〉
i→j = h

xi,1H4(PKi,2)+xi,2
.

• Return RKi→j = (RK
〈1〉
i→j , V,W).

– Encrypt(m,PKi, PARAMS): To encrypt a message m ∈ M under PKi:
• Pick u ∈R Z

∗
q , ω ∈R {0, 1}l1 .

• Compute D =
(
PK

H4(PKi,2)
i,1 PKi,2

)u
.

• Compute r = H1(m,ω).
• Compute E =

(
PK

H4(PKi,2)
i,1 PKi,2

)r and F = H2(gr) ⊕ (m||ω).
• Compute s = u + r · H3(D,E, F) mod q.
• Output the ciphertext σi = (D,E, F, s).

– ReEncrypt(σi, PKi, PKj , RKi→j , PARAMS): On input of an original
ciphertext σi = (D,E, F, s) encrypted under the public key of the delega-
tor PKi, the public key of the delegatee PKj , the re-encryption key RKi→j ,
re-encrypt σi into a ciphertext σ̂j under PKj as follows:

• Check if the following condition holds to satisfy the well-formedness of
ciphertexts, otherwise return ⊥:

(
PK

H4(PKi,2)
i,1 PKi,2

)s ?= D · EH3(D,E,F) (1)

• If the condition holds, compute Ê = ERK
〈1〉
i→j = grh.

• Output σ̂j = (Ê, F, V,W).
– Encrypt1(m,PKi, PARAMS): To generate a non-transformable ciphertext

under public key PKi of a message m ∈ M:
• Pick h ∈R {0, 1}l0 and π ∈R {0, 1}l1 .
• Compute v = H1(h, π), V = PKv

j,2 and W = H2(gv) ⊕ (h||π).

462 S. Sharmila Deva Selvi et al.

• Pick ω ∈R {0, 1}l1 and compute r = H1(m,ω).
• Compute Ê = (gr)h and F = H2(gr) ⊕ (m||ω).
• Output the non-transformable ciphertext σ̂j = (Ê, F, V,W).

– Decrypt(σi, PKi, SKi, PARAMS): On input of a ciphertext σi, public key
PKi and private key SKi = (xi,1, xi,2), decrypt according to two cases:

• Original Ciphertext σi = (D,E, F, s):
∗ If Eq. (1) does not hold, return ⊥.

∗ Otherwise, compute (m||ω) = F ⊕ H2(E
1

xi,1H4(PKi,2)+xi,2).
∗ Return m if E

?=
(
PK

H4(PKi,2)
i,1 PKi,2

)H1(m,ω) holds; else return ⊥.
• Transformed /Non-transformable Ciphertext σ̂i = (Ê, F, V,W):

∗ Compute (h||π) = W ⊕ H2(V 1/SKi,2) and (m||ω) = F ⊕ H2(Ê1/h).
∗ Return m if V

?= PK
H1(h,π)
i,2 , Ê

?= gH1(m,ω)·h holds; else return ⊥.

2.2 Weakness in the Security Proof of Chow et al.

In this section, we point out the weakness of the security proof for the PRE
scheme by Chow et al. [4]. We show that the simulation of the oracles defined in
the security proof of the scheme is not consistent with the real algorithm. This
allows the adversary to distinguish the simulation run by the challenger from
the real system. We demonstrate this flaw by considering the validity of the
ciphertexts with respect to the ReEncrypt and Decrypt algorithm in the real
system and the simulation (re-encryption oracle OReE and decryption oracles
ODec respectively). To make it simple, we consider PKT as the public key of
the target user in the challenge phase and the attack is posed in Phase-II after
the challenge phase is over. We re-encrypt a ciphertext σT under PKT into
a ciphertext σ̂j under PKj (PKj is corrupt) and further decrypt σ̂j . All the
computations hereafter are done using PKT and PKj .

First, we encrypt a message m under PKT . Let us consider two forms of
ciphertext σReal = 〈DReal, EReal, FReal, sReal〉 and σFake = 〈DFake, EFake,
FRand, sFake〉. σReal is the ciphertext obtained from the encryption algo-
rithm Encrypt (i.e., encryption of m under PKT by executing the
Encrypt(m,PKT , PARAMS)). σFake is a cooked-up ciphertext that can pass
the verification tests of ReEncrypt algorithm but not the Decrypt algorithm. We
denote the algorithm for the construction of σFake as EncryptFake(m,PKT),
which is as follows:

– Pick uFake ∈R Z
∗
q .

– Compute DFake =
(
(PKT,1)H4(PKT,2)PKT,2

)uFake

.
– Pick rRand ∈R Z

∗
q . Here it should be noted that rRand does not follow the

actual algorithm, instead it is picked at random from Z
∗
q .

– Pick ωFake ∈R {0, 1}l1 and compute rFake = H1(m,ωFake). Note that in the
Encrypt algorithm, rFake is the output of H1 oracle on giving a message
and a random string (ωFake) of size {0, 1}l1 as input.

– Compute EFake =
(
(PKT,1)H4(PKT,2)PKT,2

)rRand

.

A Provably-Secure Unidirectional Proxy Re-encryption Scheme 463

– Choose FRand ∈R {0, 1}l0+l1 . In the Encrypt algorithm, F is the encryption
of the message along with a random string ωFake of length {0, 1}l1 . But in
the construction of σFake, we note that FRand is chosen at random.

– Compute sFake = uFake + rRandH3(DFake, EFake, FRand) mod q.
– Output the ciphertext σFake = (DFake, EFake, FRand, sFake). Note that,

σFake passes the ciphertext validation test of Eq. (1).

The important properties possessed by σReal and σFake are:

1. Output of Decrypt(σReal, PKT , SKT , PARAMS) is m and the output of
ODec(PKT , σReal) is m. This is because σReal is a legitimate ciphertext of
m produced by Encrypt algorithm.

2. Output of Decrypt(σFake, PKT , SKT , PARAMS) and ODec(PKT , σFake)
is ⊥ as σFake fails to satisfy the validity check for the obtained message.

3. σReal is a valid ciphertext and σFake is an invalid ciphertext with respect to
both Decrypt algorithm and ODec oracle. Therefore, the simulation of the
decryption algorithm is perfect.

4. Both σReal and σFake are valid ciphertexts corresponding to the ReEncrypt
algorithm. This is because σReal is a legitimate ciphertext of m produced by
the Encrypt algorithm. Again, σFake passes the ciphertext verification test
of Eq. (1) and the algorithm computes the re-encrypted ciphertext σ̂Fake =
(Ê, F, V,W) as per the protocol where ÊFake = grFakeh.

Next, we re-encrypt both σReal and σFake under the public key PKj of a
corrupt user. Let us consider the following notations.

– σ̂
(Scheme)
Real ← ReEncrypt(σReal, PKT , PKj , RKT→j , PARAMS).

– σ̂
(Oracle)
Real ← OReE(PKT , PKj , σReal).

– σ̂
(Scheme)
Fake ←ReEncrypt(σFake, PKT , PKj , RKT→j , PARAMS).

– σ̂
(Oracle)
Fake ← OReE(PKT , PKj , σFake).

Observations on σ̂
(Scheme)
Real and σ̂

(Oracle)
Real :

1. σ̂
(Scheme)
Real = σ̂

(Oracle)
Real .

2. σ̂
(Scheme)
Fake
= σ̂

(Oracle)
Fake .

The reason for observation 1 follows directly from the fact that σReal is a valid
ciphertext. The reason for the violation in observation 2 is that the ReEncrypt
algorithm is only a function of the re-encryption key but OReE oracle makes
use of the knowledge of rFake to generate σ̂

(Oracle)
Fake . However, in the construction

of σFake, rRand is used in the generation of σ̂
(Oracle)
Fake . The question here is, how

will the adversary find this difference, that is σ̂
(Scheme)
Fake
= σ̂

(Oracle)
Fake . Let us now

demonstrate how the adversary captures this difference shown by the OReE
oracle simulation and the ReEncrypt algorithm.

464 S. Sharmila Deva Selvi et al.

Distinguishing the Oracle from the Real Algorithm:

1. C provides the system parameters PARAMS to A.
2. After getting training in Phase-I, A provides two messages m0 and m1 of

equal length and a target public key PKT to C.
3. C generates the challenge ciphertext σT and gives as challenge to A.
4. A now does the following:

(a) Generate σFake =EncryptFake(m0, PKT) = (DFake, EFake, FRand,
sFake). Here A knows rRand and uFake.

(b) A queries OReE(σFake, PKT , PKj , RKT→j , PARAMS). It should noted
that v, V, h, π,W are fixed for T → j delegation.

(c) Test: If ⊥ ← OReE((σFake, PKT , PKj , RKT→j , PARAMS)), then
ReEncrypt
= OReE and A knows that it is not the real system and
will abort. Else, A learns no clue about the simulation.

2.3 Fixing the Flaw

Note that modifying the re-encryption algorithm to fix the flaw is not possible
since re-encryption of a valid ciphertext σT will always require the knowledge of
r = H1(m,ω) as no other trapdoor exists to obtain a re-encrypted ciphertext σ̂j .
Again, the knowledge of the private key of the delegator is necessary to generate
the re-encryption keys and re-encrypted ciphertexts. Consequently, we cannot
provide a trivial fix to the scheme in order to address the problem. As a solution,
we propose a new collusion-resistant unidirectional proxy re-encryption scheme
without any pairing operation. We have incorporated additional information to
the existing Encrypt algorithm along with ciphertext validity checks in both the
Re-Encrypt and the Decrypt algorithm.

3 A Unidirectional Proxy Re-encryption Scheme

– Setup(λ): Choose two primes p and q such that q|p − 1 and the bit-
length of q is the security parameter λ. Let G be a subgroup of Z

∗
q with

order q. g is a generator of the group G. Choose five hash functions H1 :
{0, 1}l0 × {0, 1}l1 → Z

∗
q ,H2 : G → {0, 1}l0+l1 ,H3 : {0, 1}∗ → Z

∗
q ,H4 : G →

Z
∗
q ,H5 : G4 × {0, 1}l0+l1 → G. The hash functions are modelled as random

oracles in the security proof reduction. Here l0 and l1 are security parameters
determined by λ, and the message space M is {0, 1}l0 . Return the public
parameters PARAM = (q,G, g,H1,H2,H3,H4,H5, l0, l1).

– KeyGen(Ui, PARAMS): To generate the private key (SKi) and the corre-
sponding public key (PKi) of user Ui:

• Pick xi,1, xi,2 ∈R Z
∗
q and set SKi = (xi,1, xi,2).

• Compute PKi = (PKi,1, PKi,2) = (gxi,1 , gxi,2).
– ReKeyGen(SKi, PKi, PKj , PARAMS): On input of a user i’s private key

SKi = (xi,1, xi,2) and public key PKi = (PKi,1, PKi,2) and user j’s public
key PKj = (PKj,1, PKj,2), generate the re-encryption key RKi→j as shown:

A Provably-Secure Unidirectional Proxy Re-encryption Scheme 465

• Pick h ∈R {0, 1}l0 , π ∈R {0, 1}l1 .
• Compute v = H1(h, π), V = PKv

j,2 and W = H2(gv) ⊕ (h||π).

• Define RK
〈1〉
i→j = h

xi,1H4(PKi,2)+xi,2
.

• Return RKi→j = (RK
〈1〉
i→j , V,W).

– Encrypt(m,PKi, PARAMS): To encrypt a message m ∈ M:
• Pick u ∈R Z

∗
q , ω ∈R {0, 1}l1 .

• Compute D =
(
PK

H4(PKi,2)
i,1 PKi,2

)u.
• Compute D̄ = H5(PKi,1, PKi,2,D,E, F)u.
• Compute r = H1(m,ω).
• Compute E =

(
PK

H4(PKi,2)
i,1 PKi,2

)r.
• Compute Ē = H5(PKi,1, PKi,2,D,E, F)r.
• Compute F = H2(gr) ⊕ (m||ω).
• Compute s = u + r · H3(D, Ē, F) mod q.
• Output the ciphertext σi = (D, Ē, F, s).

– ReEncrypt(σi, PKi, PKj , RKi→j , PARAMS): On input of an original
ciphertext σi = (E, Ē, F, s) encrypted under public key PKi = (PKi,1,
PKi,2), the public keys PKi and PKj , a re-encryption key RKi→j =
(RK

〈1〉
i→j , V,W), re-encrypt σi into a ciphertext σ̂j under the public key

PKj = (PKj,1, PKj,2) as follows:
• Compute D and D̄ as follows:

D =
(
PK

H4(PKi,2)
i,1 PKi,2

)s · (EH3(E,Ē,F))−1

=
(
PK

H4(PKi,2)
i,1 PKi,2

)u
.

D̄ = H5(PKi,1, PKi,2,D,E, F)s · (Ē(E,Ē,F))−1

= H5(PKi,1, PKi,2,D,E, F)u.

• Check the well-formedness of the ciphertext by verifying:

(
PK

H4(PKi,2)
i,1 PKi,2

)s ?= D · EH3(E,Ē,F) (2)

(
H5(PKi,1, PKi,2,D,E, F)

)s ?= D̄ · ĒH3(E,Ē,F) (3)

• If the above checks fail, return ⊥. Else, compute Ē = ERK
〈1〉
i→j = grh.

• Output σ̂j = (Ē, F, V,W).
– Encrypt1(m,PKi, PARAMS): To generate a non-transformable ciphertext

under public key PKi of a message m ∈ M:
• Pick h ∈R {0, 1}l0 and π ∈R {0, 1}l1 .
• Compute v = H1(h, π), V = PKv

j,2 and W = H2(gv) ⊕ (h||π).
• Pick ω ∈R {0, 1}l1 and compute r = H1(m,ω).
• Compute Ê = (gr)h and F = H2(gr) ⊕ (m||ω).
• Output the non-transformable ciphertext σ̂j = (Ê, F, V,W).

466 S. Sharmila Deva Selvi et al.

– Decrypt(σi, PKi, SKi, PARAMS): On input a ciphertext σi, public key
PKi and private key SKi = (xi,1, xi,2), decrypt according to two cases:

• Original ciphertext of the form σi = (E, Ē, F, s):
∗ Check if the ciphertext is well-formed by computing the values of D

and D̄ and checking if Eqs. (2) and (3) holds.

∗ If the conditions hold, extract (m||ω) = F ⊕ H2(E
1

xi,1H4(PKi,2)+xi,2),
else return ⊥.

∗ Return m if the following checks hold, else return ⊥.

E
?=

(
PK

H4(PKi,2)
i,1 PKi,2

)H1(m,ω)

Ē
?= H5(PKi,1, PKi,2,D,E, F)H1(m,ω)

• Transformed or non-transformable ciphertext of the form σi =
(Ê, F, V,W):

∗ Compute (h||π) = W ⊕H2(V 1/SKi,2), extract (m||ω) = F ⊕H2(Ê1/h).
∗ Return m if V

?= PK
H1(h,π)
i,2 , Ê

?= gH1(m,ω)·h holds; else return ⊥.

3.1 Correctness

Due to space constraints, the correctness of our scheme is given in the full version
of the paper [9].

3.2 Security Proof

Original Ciphertext Security:

Theorem 1. The proposed scheme is CCA-secure for the original ciphertext
under the DCDH assumption and the EUF −CMA security of Schnorr signature
scheme [8]. If a (t, ε)IND-PRE-CCA A with an advantage ε breaks the IND-
PRE-CCA security of the given scheme in time t, C can solve the DCDH problem
with advantage ε′ within time t′ where:

ε′ ≥ 1
qH2

(
ε

e(qRK + 1)
− qH1

2l1
− qH3 + qH5

2l0+l1
− qd

(qH1 + qH2

2l0+l1
+

2
q

)
− ε1 − ε2

)
,

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + nh + nc + qRK + qRE + qd)O(1)
+ (2nh + 2nc + 2qRK + 5qRE + 2qd + qH1qRE + (2qH2 + 2qH1)qd)te,

We note that e is the base of natural logarithm, ε1 denotes the advantage in break-
ing the CCA security of the hashed Elgamal encryption scheme and ε2 denotes the
advantage in breaking the EUF-CMA security of the Schnorr Signature scheme
and te denotes the time taken for exponentiation in group G.

Proof. Due to space constraints, the proof of the theorem is shown in the full
version of the paper [9].

A Provably-Secure Unidirectional Proxy Re-encryption Scheme 467

Transformed Ciphertext Security:

Theorem 2. The proposed scheme is CCA-secure for the transformed ciphertext
under the CDH assumption and the EUF −CMA security of Schnorr signature
scheme [8]. If a (t, ε)IND-PRE-CCA A with an advantage ε breaks the IND-
CPRE-CCA security of the given scheme, C can solve the DCDH problem with
advantage ε′ within time t′ where:

ε′ ≥ 1
qH2

(
2ε

e(2 + qRK)2
− qH1

2l1
− qd

(qH1 + qH2

2l0+l1
+

2
q

)
− ε2

)
,

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + nh + nc + qRK + qRE + qd)O(1)
+ (2nh + 2nc + 2qRK + 3qRE + 2qd + (2qH2 + 2qH1)qd)te,

Proof. The proof of the theorem is shown in the full version of the paper [9]. �

Non-transformable Ciphertext Security:

Theorem 3. The proposed scheme is CCA-secure for the non-transformable
ciphertext under the CDH assumption. If a (t, ε − ε2)IND-PRE-CCA A with
an advantage ε − ε2 breaks the IND-PRE-CCA security of the given scheme, C
can solve the CDH problem with advantage ε′ within time t′ where:

ε′ ≥ 1
qH2

(
ε − ε2 − qH1

2l1
− qd

(qH1 + qH2

2l0+l1
+

2
q

))
,

t′ ≤ t + (qH1 + qH2 + qH3 + qH4 + qH5 + nh + nc + qRK + qd)O(1)
+ (2nh + 2nc + 2qRK + 2qd + (2qH2 + 2qH1)qd)te,

Proof. The proof of the theorem is shown in the full version of the paper [9].

Delegator Secret Security:

Theorem 4. The proposed scheme is DSK-secure under the DL assumption. If
a (t, ε)DSK A with an advantage ε breaks the DSK security of the given scheme
in time t, C can solve the DL problem with advantage ε within time t′ where:

t′ ≤ t + O(2qRK + 2nh + 2nc)te,

Proof. The proof of the theorem is shown in the full version of the paper [9]. �

4 Efficiency Comparison

We give a comparison of our scheme with the modified scheme of Chow et al. by
Canard et al. [2] in Table 1. We show the computational efficiency of our PRE
scheme, and use te to denote the time for exponentiation operation. Note that
l = O(log λ) denotes the number of commitments generated by the signer in
the NIZK proof in the encryption protocol in [2]. The comparison shows that
our proposed design is more efficient than the existing fix to the pairing-free
unidirectional PRE scheme of Chow et al. constructed by Canard et al. [2].

468 S. Sharmila Deva Selvi et al.

Table 1. Comparative analysis of the modified pairing-free PRE scheme due to Canard
et al. and our scheme. Note that l = O(log λ).

Algorithm [2] Our scheme

KeyGen 2te 2te

ReKeyGen 2te 2te

Encrypt1 7te 4te

Encrypt (3 + l)te 5te

ReEncrypt 4te 6te

Decrypt (original) 7te 4te

Decrypt (transformed) 3te 8te

5 Conclusion

Although pairing is an expensive operation, only one scheme due to Chow et
al. [4] reported the pairing-free unidirectional property with collusion-resistance.
In this paper, we point out that the security proof in the scheme is flawed,
where the adversary is able to determine that the simulation provided by chal-
lenger is not consistent with real system. Also, we present a construction of uni-
directional proxy re-encryption scheme without bilinear pairing that provides
collusion-resistance, and show that our scheme is more efficient than the mod-
ified scheme of Chow et al. constructed by Canard et al. Our scheme is proven
CCA-secure under a variant of the computational Diffie-Hellman assumption in
the random oracle model.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. In: Proceedings of the
Network and Distributed System Security Symposium, NDSS 2005, San Diego,
California, USA (2005)

2. Canard, S., Devigne, J., Laguillaumie, F.: Improving the security of an efficient
unidirectional proxy re-encryption scheme. J. Internet Serv. Inf. Secur. 1(2/3),
140–160 (2011)

3. Canetti, R., Hohenberger, S.: Chosen-ciphertext secure proxy re-encryption. In:
Proceedings of the 2007 ACM Conference on Computer and Communications Secu-
rity, CCS 2007, Alexandria, Virginia, USA, 28–31 October 2007, pp. 185–194 (2007)

4. Chow, S.S.M., Weng, J., Yang, Y., Deng, R.H.: Efficient unidirectional proxy re-
encryption. In: Bernstein, D.J., Lange, T. (eds.) AFRICACRYPT 2010. LNCS,
vol. 6055, pp. 316–332. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12678-9 19

5. Deng, R.H., Weng, J., Liu, S., Chen, K.: Chosen-ciphertext secure proxy re-
encryption without pairings. In: Franklin, M.K., Hui, L.C.K., Wong, D.S. (eds.)
CANS 2008. LNCS, vol. 5339, pp. 1–17. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-89641-8 1

https://doi.org/10.1007/978-3-642-12678-9_19
https://doi.org/10.1007/978-3-642-12678-9_19
https://doi.org/10.1007/978-3-540-89641-8_1
https://doi.org/10.1007/978-3-540-89641-8_1

A Provably-Secure Unidirectional Proxy Re-encryption Scheme 469

6. Libert, B., Vergnaud, D.: Unidirectional chosen-ciphertext secure proxy re-
encryption. IEEE Trans. Inf. Theory 57(3), 1786–1802 (2011)

7. Mambo, M., Okamoto, E.: Proxy cryptosystems: Delegation of the power to decrypt
ciphertexts. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 80(1), 54–63
(1997)

8. Schnorr, C.-P.: Efficient signature generation by smart cards. J. Cryptol. 4(3),
161–174 (1991)

9. Sharmila Deva Selvi, S., Paul, A., Rangan, C.P.: A provably-secure unidirectional
proxy re-encryption scheme without pairing in the random oracle model (full ver-
sion). Cryptology ePrint Archive, October 2017

10. Weng, J., Deng, R.H., Liu, S., Chen, K.: Chosen-ciphertext secure bidirectional
proxy re-encryption schemes without pairings. Inf. Sci. 180(24), 5077–5089 (2010)

Computational Aspects of Ideal
(t, n)-Threshold Scheme

of Chen, Laing, and Martin

Mayur Punekar1(B), Qutaibah Malluhi1, Yvo Desmedt2, and Yongee Wang3

1 Department of Computer Science and Engineering, Qatar University, Doha, Qatar
mayur.punekar@ieee.org, qmalluhi@qu.edu.qa

2 The University of Texas at Dallas, Richardson, TX, USA
yvo.desmedt@utdallas.edu

3 Department of SIS, UNC Charlotte, Charlotte, NC, USA
yongge.wang@uncc.edu

Abstract. In CANS 2016, Chen, Laing, and Martin proposed an ideal
(t, n)-threshold secret sharing scheme (the CLM scheme) based on ran-
dom linear code. However, in this paper we show that this scheme is
essentially same as the one proposed by Karnin, Greene, and Hellman in
1983 (the KGH scheme) from privacy perspective. Further, the authors
did not analyzed memory or XOR operations required to either store
or calculate an inverse matrix needed for recovering the secret. In this
paper, we analyze computational aspects of the CLM scheme and dis-
cuss various methods through which the inverse matrix required dur-
ing the secret recovery can be obtained. Our analysis shows that for
n ≤ 30 all the required inverse matrices can be stored in memory whereas
for 30 ≤ n < 9000 calculating the inverse as and when required is
more appropriate. However, the CLM scheme becomes impractical for
n > 9000. Another method which we discuss to recover the secret in
KGH scheme is to obtain only the first column of the inverse matrix
using Lagrange’s interpolation however, as we show, this method can
not be used with the CLM scheme. Some potential application of the
secret sharing schemes are also discussed. From our analysis we con-
clude that the CLM scheme is neither novel nor as practical as has been
suggested by Chen et al. whereas the KGH scheme is better suited for
practical applications with large n.

1 Introduction

Secret sharing refers to procedures in which a secret is distributed among a group
of participants or players such that individual shares gives no information about
the secret. In order to reconstruct the secret a sufficient number of participates
must combine their shares together. A type of secret sharing scheme, known
as (t, n)-threshold secret sharing scheme can be used to distribute secret k to n
participants in such a way that any t participants can uniquely recover the secret
and at the same time any set of t − 1 participants get no information about the
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 470–481, 2018.
https://doi.org/10.1007/978-3-030-02641-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_22

Computational Aspects of Ideal (t, n)-Threshold Scheme 471

secret. A secret sharing scheme for which the ratio of the size of the secret to the
size of the largest share is 1 is called ideal. Shamir and Blakley independently
introduced (t, n)-threshold schemes in 1979 [1,2]. Blakley’s method is based on
linear projective geometry where each share specifies a hyperplane and the secret
k is the unique point of intersection of the n hyperplanes. Shamir’s scheme relies
on a polynomial of degree t − 1 to generate n shares and use Lagrange’s inter-
polation method to recover the secret from t participants. However, Lagrange’s
interpolation is computationally intensive due to which efforts have been made
to obtain schemes that have same properties as Shamir’s scheme but can be
implemented using XOR operations only. First such XOR based (t, n)-threshold
scheme was proposed by Kurihara et al. in [3] which was a generalization of their
earlier work on (3, n)-threshold scheme [4]. Some other XOR based scheme were
also proposed by Lv et al. [5,6], Wang et al. [7], and Chen et al. [8].

In CANS 2016, Chen, Laing, and Martin [9] proposed a (t, n)-threshold secret
sharing scheme which is based on a patent application by HP [8]. The scheme
is defined over GF (2λ) which can be generalized to any Galois field. It uses
random linear code and requires only XOR and shift operations for distribution
and recovery of the secret. The proof for security of the scheme is also given and
it has been proven that the scheme is ideal. However, we observe that the scheme
by Chen et al. (the CLM scheme) is same as the one proposed earlier by Karnin,
Grenne, and Hellman [10] in 1983 (the KGH scheme) from privacy perspective.
Further, the CLM scheme relies on decoding a random linear code to recover
the secret. The decoding method proposed by the authors inverts a t × t matrix
G′ which is derived by selecting t columns of the t × n generator matrix G used
during distribution. Hence, the decoder either needs to calculate this inverse on
the fly or has to store all possible such inverse matrices in memory. However, this
important computational aspect of the CLM scheme has not been discussed by
the authors in [9]. Their complexity analysis and comparison with other secret
sharing schemes in [9] neither discuss the memory required to store all inverse
matrices nor the number of XOR operations needed to obtain such an inverse.

In this paper, we analyze the CLM scheme and focus on the computational
aspects of it. First, four issues related to the CLM scheme are discussed, namely,
similarity of the CLM with the KGH scheme, computational aspects related to
the inverse of G′, XOR operations required for vector and matrix multiplication
and inability of the CLM scheme to detect and correct erroneous shares due to
lack of efficient decoding algorithm. Further, we suggest and discuss three ways
in which a inverse matrix can be obtained which is required in the CLM scheme:
(1) store all possible inverse matrices, (2) calculate the inverse on the fly, (3)
calculate only the first column of the inverse matrix. We also give estimate of
the memory required to store all inverse matrices and the runtime required to
invert a matrix for different n.

The rest of the paper is structured as follows. In Sect. 2 we discuss Shamir’s,
the CLM and the KGH schemes. The CLM scheme is analyzed in detail in Sect. 3.
Different approaches for inverse of G′ are proposed and discussed in Sect. 4.

472 M. Punekar et al.

Section 5 discuss some potential applications of the CLM and KGH schemes. We
conclude the paper in Sect. 6.

2 Background

2.1 Shamir’s Scheme

In Sharmir’s (t, n)-threshold secret sharing scheme the secrets and shares are the
elements of finite field GF (q) for some prime-power q > n. n distinct non-zero
elements α1, α2, . . . , αn ∈ GF (q) are selected which are known to all parties.
Suppose a secret k ∈ GF (q) needs to be shared among n parties. Then, t − 1
random elements a1, . . . , at−1 ∈ GF (q) are chosen independently with uniform
distribution. The secret along with the random numbers define a polynomial
P (x) = k +

∑t
i=1 aix

i. The share of party vj = P (αj) where P (x) is evaluated
using the arithmetic of GF (q).

The secret k can be recovered from t shares vi1 , . . . , vit
using the following

Q(x) =
t∑

l=1

vil

∏

1≤j≤t,j≤l

αij
− x

αij
− αil

(1)

where the secret is given by k = P (0) = Q(0).

2.2 Karnin, Greene, and Hellman Scheme

Karnin, Greene, and Hellman proposed ideal secret sharing scheme (KGH
scheme) in [10]. The KGH scheme uses a vector u of length t whose first element
is same as the secret k ∈ GF (qλ) and rest of the t − 1 entries are generated ran-
domly from GF (qλ) where q is a prime. A t×n+1 systematic generator matrix
G for some linear code whose entries are from GF (qλ) is used for encoding the
vector u. The selected linear code must be MDS, i.e., any t×t submatrix derived
from G by selecting any t columns must be invertible. The following relationship
exit between the vector u and shares v [10],

v = uG (2)

such that v0 = u1 = k which is secret to be protected and v1, . . . , vn are the n
shares to be distributed. It has been shown by the authors that the Shamir’s
scheme [1] is a special case of the proposed method. The secret can be recovered
when t shares are available for which the t linear equation over GF (2λ) with t
unknown have to be solved.

2.3 Chen, Laing, and Martin Scheme

We now describe ideal (t, n)-threshold the CLM scheme proposed in [9]. This
scheme uses two algorithms referred to as Share and Recover.

Computational Aspects of Ideal (t, n)-Threshold Scheme 473

The Share(k) algorithm [9] takes a secret k ∈ {0, 1}λ and parse it into t words
where each word consists of �λ

t � bits. If λ is not divisible by t, then k is padded
with (−λ) mod t elements so that each word is an element in F = GF (2� λ

t �)
and k ∈ F t. Then, r1, . . . , rt−1 ∈ GF (2λ) dummy keys are randomly generated
and again parsed into t words of �λ

t � bits. These dummy keys are XORed with
secret k to produce k′. All dummy keys r1, . . . , rt−1 and modified secret k′ are
dispersed using ShareIDA algorithm [9, Sect. 2.3]. This algorithm multiplies the
input vector with a systematic generator matrix G of an MDS linear code. The
vector K ′ is obtained by applying ShareIDA to K ′. Similarly, R1, . . . ,Rt−1 are
obtained from r1, . . . , rt−1 using ShareIDA. A new t × n matrix M is created
by using vectors K ′ and R1, . . . ,Rt−1 as its rows. Then the elements of row
i, 0 ≤ i ≤ t are shifted to the left by i places to obtain a new matrix M ′. The
elements in column i are then concatenated and are used as shares.

The Recover algorithm [9] is used to recover the secret when at least t out
of n shares are available. The algorithm retrieves the secret k using RecoverIDA

algorithm which is essentially an algorithm to decode the MDS linear code.
However, before RecoverIDA is used, the i-th share is shifted to the right by
i places. RecoverIDA algorithm creates a t-vector C ′ by using t pooled shares.
Then, a t × t matrix G′ is formed which consists of the t rows of generator
matrix G corresponding to the t shares pooled. The matrix G′ is then inverted
and multiplied by the vector C ′ to obtain k′ and r1, . . . , rk−1 from which the
secret k can be obtained using k = k′ ⊕ r1 ⊕ · · · ⊕ rt−1.

3 Analysis of CLM Scheme

In this section we explain four issues which we observed with CLM scheme.
First, we would like to point out that the CLM scheme is same as the

KGH scheme explained in Sect. 2.2 from privacy perspective. The only difference
between these two schemes lies in the fact that, Chen et al. [9] add randomly
generated words r1, . . . rk−1 to the secret k before encoding it with ShareIDA

whereas this step is not used by Karnin et al. [10]. Also, it is not clear as to
what advantage this additional step provides in terms of security or efficiency.

The second problem we observed is related to the decoder used in RecoverIDA

algorithm. The decoder needs to either compute the inverse of G′ on the fly
or store all possible t × t G′ matrices in memory. In the first case, the XOR
operations required to compute the inverse needs to be considered. For the second
case, the memory required to store all possible matrices needs to be analyzed.
The comparison of the CLM scheme to other schemes as given in [9] neither
includes memory required to store all inverse matrices nor the number of XOR
operations required to invert a matrix on the fly.

The third issue is with vector and matrix multiplication used in RecoverIDA

algorithm. The number of XOR required for this multiplication has not been
included in the comparison of CLM scheme with other schemes in [9].

The fourth problem is related to the connections between the CLM and
Shamir’s scheme. It has been shown by Karnin et al. in [10] that if genera-
tor matrix G is chosen appropriately then KGH scheme is equivalent to the

474 M. Punekar et al.

Shamir’s scheme. However, in the CLM scheme the secret k is XORed with ran-
dom words r1, . . . , rk−1 to generate first word k′ before encoding. This process
though reduce the number of random words required in the CLM scheme has a
downside that regardless of which generator matrix is chosen, the scheme does
not have any relation to Shamir’s scheme anymore. As shown by McEliece et al.
in [12], Shamir’s scheme corresponds to Reed-Solomon codes and hence Shamir’s
scheme has error detection and correction capability when more than t shares
are available and Reed-Solomon decoding algorithm [13] is used to retrieve the
secret. If one or more shares are modified by adversary or due to storage error
then such error detection and correction capability can be used to retrieve the
secret using the KGH scheme. In particular, for the (t, n)-threshold KGH scheme,
more than �(n−t)/2� shares must be tampered with or in error so that the legit-
imate user is unable to retrieve the secret [12]. On the other hand, CLM scheme
does not have any relation to Shamir’s scheme and consequently Reed-Solomon
decoding can not be used to detect and correct erroneous shares.

The CLM scheme like KGH scheme also uses a linear code and due to that
some decoding algorithm can be used to detect and correct erroneous shares
to retrieve the secret. However, it has been shown by Berlekamp et al. in [14]
that, the decoding of an arbitrary code, e.g., codes with a random generator
matrix, is NP-complete. The CLM scheme uses random generator matrix and
the authors in [9] also did not present any efficient decoding algorithm for the
linear code. Hence, even if more than t shares are available in the CLM scheme,
it is impossible to detect and correct erroneous shares to recover the secret.

4 Computational Approaches for Inverse of G′ in CLM
Scheme

We now discuss various approaches that can be used to obtain inverse of G′

matrix which is required by RecoverIDA algorithm. There are mainly three meth-
ods: first, the algorithm can store precomputed inverse of all possible G′ matrices.
Second, inverse of G′ can be calculated on the fly and third, only the first column
of the inverse of G′ can be calculated using a algorithm which do not invert the
whole matrix. These approaches are discussed in detail in the following.

4.1 Precompute Inverse

The CLM (t, n)-threshold scheme can recover secret k from any t pooled shares.
The decoder used in RecoverIDA algorithm needs a t × t matrix G′ which con-
sists of the t columns of generator matrix G corresponding to the available t
shares. In this approach, inverse of all possible G′ are precomputed and stored
so that RecoverIDA algorithm can use them as and when needed. For example, if
n = 6, t = 3 then the decoder needs to store inverse of

(
6
3

)
= 20 3 × 3 G′ matri-

ces. Since all the required inverse of matrices are available to the algorithm, this
approach is the fastest among the three discussed here. However, the number of

Computational Aspects of Ideal (t, n)-Threshold Scheme 475

G′ matrices increases exponentially as the maximum value of
(

n
t

)
grows expo-

nentially with n. The worst case occurs for t = n/2 when
(

n
t

)
reach its maximum

value. Even for moderate values of n, e.g., for n = 30, t = 15 the decoder requires
inverse of

(
n
t

)
= 155, 117, 520 G′matrices ! Clearly, it would be very difficult to

store all matrices in this case. Hence, this scheme becomes impractical even for
moderate values of k and t. On a positive side, for n = 6, t = 3 the algorithm
needs to store 20 matrices. Since each such matrix is of size 3×3, it has 9 entries
in total. Let us assume that each entry from a matrix is stored with 4 Bytes.
Then, storage of an inverse would require only 36 Bytes and in total 720 Bytes of
RAM is required to store 20 matrices. This memory requirement is quite low and
hence this approach is preferred when n is small enough. The memory required
to store inverse of all possible G′ for (t, n) threshold scheme where t = �n/2�. is
shown in Fig. 1. As can be observed, for n = 26, t = 13 the memory requirement
is already 13 GB which makes this approach impractical for n ≥ 26, t = �n/2�.

Fig. 1. Memory required in Bytes to store inverse of all possible G′ for different n, here
t = �n/2�.

Other possibility is to store inverse matrices in hard disk drive (HDD) and
read them as and when necessary from HDD. HDDs are in general much slower
than RAM and hence the read time would increase. However, since large HDDs
are relative cheap, e.g., 1TB HDD cost around $ 40 US, it would be possible
to store all inverse matrices for n > 26 using HDD. To estimate the memory
required to store inverse matrices for higher n value, we use following approxi-
mation of

(
n
t

)
[15],

476 M. Punekar et al.

(
n
n
2

)

∼
√

2
m

1√
n

2n, (3)

where f(n) ∼ g(n) if and only if limn→∞
f(n)
g(n) = 1. The results of our calculation

using (3) is shown in Fig. 2. As can be observed, the memory requirement con-
tinues to grow exponentially for higher n values. For n = 36, our estimate shows
that the required memory is around 48 Terabyte. Hence, even when HDD is used
to store all inverse matrices, it is difficult to build a practical CLM scheme for
n > 36.

Fig. 2. Estimate of the Memory required in Bytes to store inverse of all possible G′

for different n, here t = �n/2�.

4.2 Computing Inverse on the Fly

The other possibility to obtain inverse of G′ is to calculate it on the fly in
RecoverIDA algorithm. Matrix inversion methods, e.g., Gaussian elimination,
can be used for this purpose. Gaussian elimination is known to have complexity
of O(n3). Other possibility is to use LU decomposition to obtain lower and upper
triangular matrices through which the inverse can be obtained. The complexity
of LU decomposition is given by O(M(n)) [16] where M(n) is the time required
to multiply two matrices of order n and M(n) ≥ na for some a > 2. Hence, if
a faster matrix multiplication algorithm is used then the complexity of the LU
decomposition can be reduced. For example, when a matrix multiplication is per-
formed using the Coppersmith-Winograd algorithm [17] then the complexity of
LU decomposition is given by O(n2.376). However, we remark that Coppersmith-
Winograd algorithm achieves this improvements asymptotically and hence useful

Computational Aspects of Ideal (t, n)-Threshold Scheme 477

for theoretical analysis only. A more practical algorithm for matrix inversion is
from Strassen [18] which has complexity of O(n2.81).

To get an idea of time required to compute the inverse of G′, we computed the
inverse of t× t matrices over GF (24) for different t values using NTL library [19]
with a C++ program. We carry out calculations on a PC with Intel Xeon E5-2640
CPU clocked at 2.5 GHz and 8 GB of RAM. As per the private correspondence
with the author of the NTL library, the matrix inversion functions for matrices
over GF (2E) in NTL use a variant of Gaussian elimination method. The time
required to compute the inverse for different values of t is given in Fig. 3. It
can be observed that as the value of t increases, the runtime required to invert
the t × t matrix increases rapidly. E.g, for t = 6000 the runtime required to
invert matrix is already close to 4 hours and should be more than 24 hours for
t = 9000. Though much higher values of n can be achieved through this method
compared to storing of all inverse matrices, due to its high runtime requirement
this method is also impractical for larger n. Further, the inversion algorithm also
requires significant memory, e.g., for n = 6000 the NTL required about 2 GB of
RAM, which would also restrict the use of this method in practice.

Fig. 3. Runtime in seconds to calculate inverse of t × t G′ over GF (24) for different t.

4.3 Computing only the First Column of the Inverse

As mentioned before, the KGH scheme can be converted to Shamir’s scheme by
using appropriate generator matrix. Shamir’s scheme has an advantage that the
values of αij

− αil
required in (1) can be precomputed and stored to accelerate

the recovery process. We show in the following that, the same values can be used
to calculate the first column of the inverse of the submatrix G′. We remark that

478 M. Punekar et al.

a method to find elements of the inverse matrix using Monte Carlo method was
proposed by Forsythe and Leibler [20]. However, it does not exploit the special
structure of the matrix used in the KGH scheme and hence not as efficient as
the one discussed below.

Let us assume that a secret k has been protected using KGH scheme. When
only t shares, i.e., vi1 , . . . , vit

are available then we get following from (2), u =
(vi1 , . . . , vit

)G′−1. As can be observed from this equation the secret k = u1 can
be obtained from u1 = (vi1 , . . . , vit

)G′
·,1

−1 where G′
·,1

−1 is the first column of
G′−1. Hence, in order to retrieve the secret k = v0 = u1 in KGH scheme, all
the columns of the G′−1 are not required and instead only first column of the
of G′−1 is enough. As discussed in Sect. 3, if G is chosen properly then KGH
scheme is equivalent to the Sharmir’s secret sharing scheme. The structure of G
has to be selected as follows,

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 . . . 1
0 α α2 . . . αqλ−1

0 α2 α4 . . . α(qλ−1)2

...
...

...
...

...
0 αk−1 α2k−1 . . . α(qλ−1)(k−1)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4)

Then the components of v in v = uG can also be evalued as vi = D(αi), i =
1, 2, . . . , n, where D(x) = u1 + u2x + u3x

2 + · · · + uk−1
x and v0 = u1 = k. It can

be observed from equation for D(x) that KGH scheme using G from (4) is same
as Shamir’s scheme.

If t out of n shares are available then (1) can be used to retrieve the secret k.
However, with some modifications a more efficient method can be derived which
is given below [11].

k =
t∑

l=1

vil
· βl (5)

where vi1 , . . . , vit
are the t shares and

βl =
∏

1≤j≤t,j 	=l

αij

αij − αil
(6)

Similarly, when t shares available in KGH scheme following equation can be
used to retrieve the secret, u = v′·G̃ where v′ = (vi1 , . . . , vit

) is the vector derived
from available t shares and G̃ = G′−1 is derived as per Sect. 2.3. However, we are
interested in u0 only and hence it is sufficient to use following equation instead,

u0 = v′ · G̃·,1 (7)

where G̃·,1 is the first column of G̃. The similarities between (5) and (7) are easy
to observe. The vector β = (β1, . . . , βt) is same as the column G̃·,1. Hence, the
first column of G̃ can be calculated using (6). Further, the computations in (6)

Computational Aspects of Ideal (t, n)-Threshold Scheme 479

can be accelerated by precomputing and storing αij

αij −αil
in memory. With such

improvements, computation of the secret k can be accelerated substantially.
However, we remark that since the above mentioned improvement is based

on Shamir’s scheme, this improved method can be used with KGH scheme only.

5 Applications

Since Snowden revelations, secret sharing is now used in storage environments,
such as backup. The typical operating system is such that people authorized
to make a backup have full read access to all data. If 2-out-of-2 secret sharing
is used, then two persons are responsible for the backup and one person alone
is unable to understand the data being stored. A disadvantage of the use of 2-
out-of-2 secret sharing is that it is vulnerable to destruction. When one of the
2 shares is destroyed the data is lost forever. For this reason 2-out-of-3 or in
general t-out-of-n (where t < n) is recommended.

The paper of Shamir on secret sharing has more than 11,000 citations (Google
Scholar). So, there are many other applications for secret sharing than just for
backup. A major topic of research is to make secure multiparty computation
practical. A major approach to achieve this, is the use of secret sharing. Another
application of secret sharing is threshold cryptography. In this setting, no single
party is able to use the secret key of a cryptosystem. Another application is the
use of secret sharing to make communications robust against both eavesdrop-
ping and against an adversary on the network that can modify the data. This
topic is usually called Private and Secure Message Transmission, although the
word Secure might be better replaced by Reliable to reflect its full power. More
recently, secret sharing has been proposed as a technology to achieve e-voting
when computers used by voters could be hacked.

Finally note that secret sharing predates the internet. The idea of the use of
combinatorics to require that no single party can open a mechanical saves was
already mentioned by Liu in his 1968 book (pages 8 and 9) [21].

One important aspect of the secret sharing schemes is the practical values of
n and t that may be required for the real world applications. Cramer et al. in [22]
discussed threshold RSA, which is a type of threshold cryptosystem1 and similar
to threshold secret sharing scheme, with large n. They defined “reasonable values
of n” as these “for n up to 4096.” While in 2005, this bound on n may have been
reasonable, nowadays in the age of social networks, we find Facebook groups of
close to 6 million users [23] (roughly 223). Obviously, with Facebook having over
1 billion users, the size of the largest group will likely continue to grow. Note
that since many real world systems use the same platform (operating system,
hardware, etc.), a large value of t is also reasonable. Hence some applications,
such as the one mentioned above, may have n in millions and similarly a very

1 A cryptosystem is called a “threshold cryptosystem”, if in order to decrypt an
encrypted message, several parties (more than some threshold number) must coop-
erate in the decryption protocol [24].

480 M. Punekar et al.

large value of t. However, the CLM scheme can not be used for such state of the
art applications as it can not support n > 9000.

6 Conclusion

In this paper, we analyzed the (t, n)-threshold secret sharing scheme proposed
by Chen et al. in CANS 2016. First, we showed that this scheme is same as the
one proposed earlier by Karnin et al. in 1983 from privacy perspective. Then,
we made three more observations: (1) the authors in [9] did not consider the
memory and XOR operations needed for obtaining an inverse matrix required
during recovery of the secret, (2) XOR operations needed to compute matrix
and vector multiplication for the secret recovery are also not considered in their
analysis, (3) since the CLM scheme lack efficient decoding algorithm, it can not
detect or correct erroneous shares whereas the KGH scheme can be designed
for the same. From these observations we conclude that the authors did not
provide detailed computational analysis of the CLM scheme in [9] and it is
not as efficient in practice as has been suggested by the authors. Further, we
proposed and discussed three methods to obtain inverse matrix required during
secret recovery. We conclude that the CLM scheme is practical for n ≤ 30 when
all possible inverse matrices are stored in memory whereas up to n = 9000 can
be obtained if the inverse matrix is calculated on the fly. The third method
of obtaining only the first column of the inverse matrix through Lagrange’s
interpolation can be used only with the KGH scheme. The CLM scheme becomes
impractical if n > 9000.

Acknowledgment. This publication was made possible by the NPRP award NPRP8-
2158-1-423 from the Qatar National Research Fund (a member of The Qatar Founda-
tion). The statements made herein are solely the responsibility of the authors.

References

1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
2. Blakely, G.: Safeguarding cryptographic keys. In: Proceedings of the National Com-

puter Conference, vol. 48, pp. 313–317 (1979)
3. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A new (k, n)-threshold

secret sharing scheme and its extension. In: Wu, T.-C., Lei, C.-L., Rijmen, V., Lee,
D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 455–470. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-85886-7 31

4. Kurihara, J., Kiyomoto, S., Fukushima, K., Tanaka, T.: A fast (3, n)-threshold
secret sharing scheme using exclusive-or operations. IEICE Trans. Fundam. Elec-
tron. Commun. Comput. Sci. 91(1), 127–138 (2008)

5. Lv, C., Jia, X., Tian, L., Jing, J., Sun, M.: Efficient ideal threshold secret sharing
schemes based on exclusive-or operations. In: Proceedings of 4th International
Conference on Network and System Security (NSS), pp. 136–143 (2010)

https://doi.org/10.1007/978-3-540-85886-7_31

Computational Aspects of Ideal (t, n)-Threshold Scheme 481

6. Lv, C., Jia, X., Lin, J., Jing, J., Tian, L., Sun, M.: Efficient secret sharing schemes.
In: Park, J.J., Lopez, J., Yeo, S.-S., Shon, T., Taniar, D. (eds.) STA 2011. CCIS,
vol. 186, pp. 114–121. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22339-6 14

7. Wang, Y., Desmedt, Y.: Efficient secret sharing schemes achieving optimal infor-
mation rate. In: Proceedings of IEEE Information Theory Workshop (ITW) 2014,
Tasmania, Australia, pp. 516–520, November 2014

8. Chen, L., Camble, P.T., Watkins, M.R., Henry, I.J.: Utilizing error correction
(ECC) for secure secret sharing. Hewlett Packard Enterprise Development LP,
World Intellectual Property Organisation. Patent Number WO2016048297 (2016).
https://www.google.com/patents/WO2016048297A1?cl=en

9. Chen, L., Laing, T.M., Martin, K.M.: Efficient, XOR-based, ideal (t, n)- threshold
schemes. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp.
467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0 28

10. Karnin, E., Greene, J., Hellman, M.: On secret sharing systems. IEEE Trans. Inf.
Theory 29(1), 35–41 (1983)

11. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y.M., et al. (eds.) IWCC
2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20901-7 2

12. McEliece, R.J., Sarwate, D.V.: On sharing secrets and Reed-Solomon codes. Com-
mun. ACM 24(9), 583–584 (1981)

13. Berlekamp, E.R.: Algebraic Coding Theory, Revised edn. Aegean Park Press,
Laguna Hills (1984). Previous publisher. McGraw-Hill, New York [1968]. ISBN
0-89412-063-8

14. Berlekamp, E., McEliece, R., van Tilborg, H.: On the inherent intractability of
certain coding problems. IEEE Trans. Inf. Theory 24(3), 384–386 (1978)

15. Worsch, T.: Lower and Upper Bounds for (Sums of) Binomial Coefficients. http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.9677

16. Bunch, J.R., Hopcroft, J.E.: Triangular factorization and inversion by fast matrix
multiplication. Math. Comput. 28(125), 231–236 (1974)

17. Coppersmith, D., Winograd, S.: Matrix multiplication via arithmetic progressions.
J. Symb. Comput. 9(3), 251–280 (1990)

18. Strassen, V.: Gaussian elimination is not optimal. Numerische Mathematik 13(4),
354–356 (1969)

19. NTL: A Library for doing Number Theory. http://www.shoup.net/ntl/
20. Forsythe, G.E., Leibler, R.A.: Matrix inversion by a Monte Carlo method. Math.

Tables Other Aids Comput. 4(31), 127–129 (1950)
21. Liu, C.L.: Introduction to Combinatorial Mathematics. McGraw-Hill, New York

(1968)
22. Cramer, R., Fehr, S., Stam, M.: Black-box secret sharing from primitive sets in

algebraic number fields. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp.
344–360. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218 21

23. http://www.adweek.com/digital/the-25-facebok-groups-with-over-1-million-
members/

24. https://en.wikipedia.org/wiki/Threshold cryptosystem

https://doi.org/10.1007/978-3-642-22339-6_14
https://doi.org/10.1007/978-3-642-22339-6_14
https://www.google.com/patents/WO2016048297A1?cl=en
https://doi.org/10.1007/978-3-319-48965-0_28
https://doi.org/10.1007/978-3-642-20901-7_2
https://doi.org/10.1007/978-3-642-20901-7_2
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.9677
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.44.9677
http://www.shoup.net/ntl/
https://doi.org/10.1007/11535218_21
http://www.adweek.com/digital/the-25-facebok-groups-with-over-1-million-members/
http://www.adweek.com/digital/the-25-facebok-groups-with-over-1-million-members/
https://en.wikipedia.org/wiki/Threshold_cryptosystem

(Finite) Field Work: Choosing the Best
Encoding of Numbers for FHE

Computation

Angela Jäschke(B) and Frederik Armknecht

University of Mannheim, Mannheim, Germany
{jaeschke,armknecht}@uni-mannheim.de

Abstract. Fully Homomorphic Encryption (FHE) schemes operate over
finite fields while many use cases call for real numbers, requiring appro-
priate encoding of the data into the scheme’s plaintext space. However,
the choice of encoding can tremendously impact the computational effort
on the encrypted data. In this work, we investigate this question for
applications that operate over integers and rational numbers using p-
adic encoding and the extensions p’s Complement and Sign-Magnitude,
based on three natural metrics: the number of finite field additions, mul-
tiplications, and multiplicative depth. Our results are partly constructive
and partly negative: For the first two metrics, an optimal choice exists
and we state it explicitly. However, for multiplicative depth the optimum
does not exist globally, but we do show how to choose this best encoding
depending on the use-case.

Keywords: Fully Homomorphic Encryption · Encoding · Efficiency

1 Introduction

Fully Homomorphic Encryption (FHE) schemes allow arbitrary computations on
encrypted data. Though many works have focused on improving the efficiency
of FHE schemes themselves, an often overlooked aspect that strongly impacts
performance is how an FHE scheme is applied. For instance, most FHE schemes
operate over finite fields GF (pk) for an arbitrary prime p and k ≥ 1, while
many use cases call for natural, integer, rational or even real numbers, requiring
appropriate encoding of the data into the scheme’s plaintext space.

Thus, a naturally arising question is how to best encode the plaintext
data so that later, operations on the encrypted data incur an overhead
as small as possible. In this work, we analyze the effort for FHE computation
subject to different p-adic encoding choices like the size of p and the embedding
into Q. We base our analysis on the following three natural cost metrics that
arise when embedding the plaintext data into the GF (pk) structure:

Multiplicative Depth: All current FHE schemes are noise-based with each
multiplication doubling the amount of noise, and when a noise threshold is
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 482–492, 2018.
https://doi.org/10.1007/978-3-030-02641-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_23&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_23

(Finite) Field Work: Choosing the Best Encoding of Numbers 483

passed, ciphertexts cannot be decrypted correctly anymore. Bootstrapping can
remove some of the noise before it exceeds this threshold, but this is a very costly
operation. Thus, the goal is often to minimize the number of bootstrappings
that are necessary by minimizing the number of consecutive multiplications,
also referred to as multiplicative depth. For this reason, multiplicative depth has
been the standard cost metric and is naturally part of our analysis.

Number of Field Multiplications: FHE multiplications are much more
expensive than additions for all current schemes, so keeping track of this num-
ber is an obvious choice. In addition, the multiplicative depth in p-adic encoding
quickly becomes so large that bootstrapping is unavoidable, so that minimizing
the total number of multiplications can speed up performance significantly.

Number of Field Additions: For all schemes today, field additions cost almost
nothing compared to field multiplications. However, there is no theoretical reason
why this must be the case, so we include this metric because it might be valuable
in the future for a different kind of scheme.
Our contributions are:

• We derive a generic formula that allows to express each digit when adding
two numbers in pk-adic encoding1.

• Based on the generic formula, we analyze the costs for adding two encrypted
natural numbers in pk-adic encoding with the following results:
1. For the required number of field additions or field multiplications when

k = 1, the efforts for additions and multiplications of encrypted integers
strictly increase with p, making p = 2 by far the best choice.

2. For the depth metric when k = 1, the optimal p depends heavily on the
use case and our formulas show how to compute it.

3. For pk-adic encoding with k > 1, we show that performance is always
worse compared to p-adic encoding, so setting k = 1 is the best choice.

• We then extended our analysis to negative and rational numbers.

2 Related Work

This section presents only the most relevant publications, a more comprehensive
version can be found in the extended paper [10]. The recent increase in papers
regarding encoding for FHE shows its importance: [5] encodes rational num-
bers through continued fractions (only positive rationals and evaluating linear
multivariate polynomials), whereas [6] focuses on efficiently embedding the com-
putation into a single large plaintext space. A work that explores similar ideas
as [6] and offers an implementation is [8]. [1] allows floating point numbers, and
[3] gives a high-level overview of arithmetic methods for FHE, but restricted to
positive numbers. In [9], arithmetic operations and different binary encodings for

1 The term pk-adic encoding denotes the natural extension of p-adic encoding to the
field GF (pk) for k ≥ 1 and is explained in Sect. 6.

484 A. Jäschke and F. Armknecht

rational numbers are examined and compared in their effort. [2] explores a non-
integral base encoding, and [13] presents different arithmetic algorithms includ-
ing a costly division, though apparently limited to positive numbers. Lastly, [4]
allows approximate operations by utilizing noise from the encryption itself. To
our knowledge, there are no papers concerned with the costs of encoding in a
base other than p = 2 except [11], which exclusively analyzes [12] and uses differ-
ent cost metrics. The latter also presents a formula for the carry of a half adder,
but merely considers GF (pk) for k = 1 in the context of homomorphically com-
puting the decryption step (needed for bootstrapping) of their variation of [7],
and does not include an effort analysis.

3 Formula for Computing Carry Values over Zp

In this section and the following Sect. 4, we lay the foundation for the effort
analysis starting from Sect. 5. We derive in this section the formulas for the
digits of the sum of two numbers in p-adic encoding. We will see that the carry
is particularly important, so we investigate it more closely in Sect. 4.

Let A = anan−1 . . . a1a0 and B = bnbn−1 . . . b1b0 be two p-adically encoded
natural numbers. If we wish to add these numbers in this encoding, we can write

an an−1 . . . a2 a1 a0

+ bn bn−1 . . . b2 b1 b0
= cn+1 cn cn−1 . . . c2 c1 c0

(1)

To homomorphically evaluate a function on encrypted data, we need to express
the result as a polynomial in the inputs – we need to be able to write

ci = ci(an, bn, an−1, bn−1, ..., a1, b1, a0, b0) (2)

for any i, where ci(. . .) refers to some polynomial. Clearly, it holds that ci =
ai + bi + ri, where r0 = 0, and for i > 0, ri is the carry from position i − 1.
Our goal in this section is to express ri(ai−1, bi−1, ri−1) as a polynomial, which
will constitute Theorem 1. Addition is defined mod p, and we will often write ri

instead of ri(ai−1, bi−1, ri−1) for simplicity.

Theorem 1. The formula for computing the carry ri(ai−1, bi−1, ri−1) is

ri(a, b, r) =
p−1∑

k=1

(
lk(b) ·

k∑

j=1

lp−j(a)
)

+r ·(p−1) · lp−1(a+b) := f1(a, b)+r ·f2(a, b)

where li(x) =
p−1∏

j=0,j �=i

(x − j). This polynomial is unique in that there is no other

polynomial of smaller or equal degree which also takes on the correct values for
ri at all points (ai−1, bi−1, ri−1) with ai−1, bi−1 ∈ {0, . . . , p − 1}, ri−1 ∈ {0, 1}.
The proof is given in the extended version of this paper [10].

(Finite) Field Work: Choosing the Best Encoding of Numbers 485

4 The Effort of Computing the Carry

In this section, we present the effort required to compute each digit ci when
adding two natural numbers encoded p-adically. Due to space constraints, the
detailed derivations of these numbers can be found in the extended version of
this paper [10]. Recall that ci = ai + bi + ri, and ri can be computed as ri =
f1(ai−1, bi−1) + ri−1 · f2(ai−1, bi−1). Note that there cannot be any cancellation
between the terms of f1(ai−1, bi−1) and ri−1 · f2(ai−1, bi−1) due to the variable
ri−1. Thus, to compute ci, we must compute f1 and f2, and additionally perform
3 field additions and 1 multiplication. Regarding depth, note that r0 = 0 and
r1 = f1(a0, b0) (thus having the depth of f1), and subsequent ri have a depth of
max{D(f1),max{D(ri−1), D(f2)} + 1}. Using this formula for r2, we get

D(r2) = max{�log2(p)�, �log2(p − 1)�} + 1 = �log2(p)� + 1

From here on, it is clear that D(ri) > D(f1) ≥ D(f2), so the depth will increase
by 1 with each i, leaving us with a total depth of D(ri) = �log2(p)� + i − 1.
The effort required to compute each digit ci can be found in Table 1.

Table 1. Effort for computing ci.

Effort Field additions Field multiplications Depth

f1 4p − 6 2p · log2(p) + p − 2 · log2(p) − 3 �log2(p)�
f2 p − 1 p − 2 �log2(p − 1)�
Additional 3 1 +1

Total ci 5p − 4 2p log2(p) +2p − 2 log2(p) − 4 �log2(p)�+i − 1

Special Cases: The effort for c0 = a0 + b0 is only 1 field addition, and that
for c1 = a1 + b1 + r1 = a1 + b1 + f1(a0), b0) is 4p + 4 additions, 2p · log2(p) +
p − 2 · log2(p) + 1 multiplications, and �log2(p)� depth. Another special case is
cn+1 = rn+1, which has 2 field additions less than the other ci, i > 1.

5 Cost Analysis for Encrypted Natural Numbers

5.1 The Cost of Adding Two Natural Numbers

Suppose we have some natural number x > p (in decimal representation). Thus,
x will be encoded with 2 ≤ � := �logp(x)� + 1 digits p-adically and the result
will have �+1 digits. We have c0 = a0 + b0 with an effort of 1 addition. Next, we
have c1 = a1 + b1 + r1 = a1 + b1 + f1(a0, b0) with an effort of 4p − 4 additions,
2p · log2(p) + p − 2 · log2(p) − 3 multiplications and a depth of �log2(p)�. The
last digit c� = r� has a cost of 5p − 6 additions, 2p · log2(p) + 2p − 2 · log2(p) − 4
multiplications, and a depth of �log2(p)� + 1. The remaining � − 2 middle digits
ci have the normal effort of 5p − 4 additions, 2p · log2(p) + 2p − 2 · log2(p) − 4
multiplications and a depth of �log2(p)� + i − 1.
In total, the cost of adding two �-digit numbers, � > 2, is:

486 A. Jäschke and F. Armknecht

• 9p − 9 + (� − 2) · (5p − 4) = (5� − 1) · p − (3� + 2) field additions
• 4p · log2(p) + 3p − 4 · log2(p) − 7 + (� − 2) · (2p · log2(p) + 2p − 2 · log2(p) − 4)

= 2� · p · log2(p) + (2� − 1) · p − 2� · log2(p) − 4 · � + 1 field multiplications
• A multiplicative depth of �log2(p)� + � − 1.

Note that for 0 ≤ x ≤ p − 1, we only require one digit, which incurs a lower
effort: In total, the cost of adding two 1-digit numbers is 4p−5 additions,
2p · log2(p) + p − 2 · log2(p) − 3 multiplications and a depth of �log2(p)�.

Recalling � := �logp(x)� + 1, we can now state the main result of this paper:

Theorem 2. Using total number of additions or multiplications (or a balance
between total number of multiplications and depth) as the cost metric, p = 2 is
the most efficient encoding for adding two natural numbers in p-adic encoding.

Proof. We can see that while the required encoding length � = �logp(x)� + 1 =
� log2(x)
log2(p)

� + 1 only decreases logarithmically, the effort grows with p as O(� · p) =

O((� log2(x)
log2(p)

� + 1) · p) ≈ O(p + p
log2(p)

) (for additions) and as O(� · p · log2(p)) =

O((� log2(x)
log2(p)

�+1) ·p · log2(p)) ≈ O(p · log2(p)+p) (for multiplications). The depth

�log2(p)� + � − 1 = �log2(p)� + � log2(x)
log2(p)

� also increases logarithmically.

We again point out that if the function being evaluated is known beforehand,
choosing p so large that computations do not wrap around mod p is likely to be
faster – however, this is not Fully Homomorphic Encryption but rather Somewhat
Homomorphic Encryption. Theorem2 holds for p-adic encoding with true FHE.

0 200 400 600 800 10000
2

4
6

8
10

12
14

p

Ad
di

tio
ns

 (1
0^

3)

x=10^7
x=7000
x=20

(a) Additions

0 200 400 600 800 10000
10

20
30

40
50

60

p

M
ul

tip
lic

at
io

ns
 (1

0^
3)

x=10^7
x=7000
x=20

(b) Multiplications

0 200 400 600 800 10000
5

10
15

20
25

p

D
ep

th

x=10^7
x=7000
x=20

(c) Depth

Fig. 1. Number of field additions, multiplications and depth for adding x =
20/7000/107 to a number of same size. The x-axis is the encoding base p, the y-axis is
number of operations/depth, and the plots correspond to the three numbers.

We illustrate this Theorem through Fig. 1, which shows the effort as p grows
for selected values of x. We see that the number of additions, multiplications
and the depth increase significantly as the encoding base p increases. Note that
the jags in the first two diagrams occur when the base prime becomes so large
that one digit less is required for encoding than under the previous prime, so

(Finite) Field Work: Choosing the Best Encoding of Numbers 487

the effort drops briefly before increasing again. The diagram for depth shows us
an interesting phenomenon that is hidden in the asymptotic analysis: For low
primes, the required number of digits dominates the total depth cost. This prob-
lem becomes more pronounced the larger the encoded number is, and vanishes
after the first few primes as the expected asymptotic cost takes over. This means
that if depth is the only cost metric that is being considered, choosing a slightly
larger prime than 2 yields better results at the cost of significantly increased
multiplications. Also, the optimal choice of p depends heavily on the numbers
that are being encoded. For example, in Fig. 1c, the depth-optimal choices for
adding x would be p = 3 for x = 20, p = 7 for x = 7000, and p = 29 for x = 107.

5.2 The Cost of Multiplying Two Natural Numbers

We now analyze the cost of multiplying two natural numbers in p-adic encoding
with the standard multiplication algorithm. In performing this multiplication,
there are two main steps: First, we perform a one digit multiplication of each bi

with all of a�−1a�−2 . . . a1a0, shifting one space to the left with each increasing
i. In the second step, we add the rows we obtained using the addition from the
previous subsection as a building block. For the first step, except in the case
of p = 2 (where bi ∈ {0, 1}, so the rows are (a�−1 · bi) . . . (a1 · bi)(a0 · bi)), this
actually requires some computational effort because we have a carry ri into the
next digit. Similarly to Theorem1, we can obtain the formula for this carry digit
through a 3-fold Lagrange approximation over the variables ai, bi and ri.

The second step consists of adding all the rows that we computed in the first
step. We apply the improvement from [9] where we copy the digits of the upper
row over the blank spaces on the right to the result, and apply a depth-optimal
ordering in adding the rows. The exact formula can be found in the extended
version [10], we instead illustrate our results here through Fig. 2.

0 200 400 600 800 10000
20

40
60

80
10

0
12

0

p

Ad
di

tio
ns

 (1
0^

3)

x=10^7
x=7000
x=20

(a) Additions

0 200 400 600 800 10000
10

0
20

0
30

0
40

0
50

0

p

M
ul

tip
lic

at
io

ns
 (1

0^
3)

x=10^7
x=7000
x=20

(b) Multiplications

0 200 400 600 800 10000
50

10
0

15
0

20
0

p

D
ep

th

x=10^7
x=7000
x=20

(c) Depth

Fig. 2. Number of field additions, field multiplications and multiplicative depth for
multiplying x = 20/7000/107 to a number of same size.

We can see that for additions and multiplications, the effort is lowest at p = 2
and increases with p, though there are again some sharp drops when the required

488 A. Jäschke and F. Armknecht

number of digits decreases. As expectes, the depth issue has propagated from
addition, which we used as a building block in multiplication: The best depth
for x = 20 would be p = 23, the best depth for x = 7000 would be p = 89, and
the best depth for x = 107 would be p = 59. We would like to point out that
these values are not the same values that were optimal for addition (e.g., p = 89
is far from optimal for adding x = 7000) - thus, if one were to use depth as the
sole metric, the optimal choice of p not only depends on the size of the numbers
one is working with, but also on the number of additions vs. multiplications one
wants to perform on these inputs. In the context of outsourced information, it
is also important to note that optimizing the choice of p in this way could leak
unwanted information, depending on the specific outsourcing scenario.

6 Using GF (pk) as Encoding Base

We now generalize our analysis to arbitrary finite fields as encoding bases.
Much in the same way as in Sects. 4 and 5, we have also analyzed the effort
incurred when using GF (pk) for a prime p and a k > 1 as an encoding base.
First, recall that GF (pk) ∼= Zp[X]/(f(x)) with f(x) irreducible of degree k.
We embed a decimal number between 0 and pk − 1 into GF (pk), whose ele-
ments are polynomials over Zp, through the insertion homomorphism: The
element a =

∑k−1
i=0 αiX

i ∈ GF (pk) (with αi ∈ Zp) encodes the number
ã =

∑k−1
i=0 αip

i ∈ N. Generalizing this to numbers larger than pk − 1 is straight-
forward: We will represent a number ã =

∑n
j=0 ãj(pk)j ∈ N as anan−1 . . . a1a0

where aj ∈ GF (pk).
We now analyze the effort of adding two natural numbers in this encoding.

Intuitively, we do not expect this to perform better than the encoding through
Zp: The carry bit should roughly have the same effort as for Zp′ with p′ of
size comparable to pk, but the addition is now more complicated. Concretely,
the native addition of GF (pk) is that of (Zp)k, i.e., it is done component-wise
with no carry-over into other components, whereas we would need the addition
of Zpk to natively support our encoding. Thus, we must emulate the addition
ci = ai + bi + ri in the same way as we compute the carry bit, so we expect a
similar effort here and at least double the effort compared to Zp′ in total.

The results of this analysis are presented below – the detailed computation
can be found in the extended version of this paper [10]. To add two natural
numbers of lenght � ≥ 2, we have the following effort:

• Field additions: = (3� − 1) · p2k + (6� − 4) · pk − 6�
• Multiplications: = (6�−2) ·pk · log2(pk)+(4�−2) ·pk −2� · log2(pk)−11�+3
• Constant multiplications: = (2� − 1) · p2k + � − 1
• Multiplicative depth: �log2(pk − 1)� + �

The case where the inputs are have only one digit is again slightly less expensive
and has been omitted for brevity. We now compare the calculated effort to:

(Finite) Field Work: Choosing the Best Encoding of Numbers 489

1. Encoding the number in base p instead of pk and performing the addition.
2. Encoding the number in base p′ with p′ close to pk.

Figure 3 shows the effort of adding two numbers of same size (x = 20/7000/107)
in pk-adic encoding for pk up to 1000. Blue crosses are Zp, pink circles p2, yellow
triangles p3, and the black square groups all bases pk with k ≥ 4, since the
primes p with pk ≤ 1000 for increasing k become very few. We see that the
pk-encoding performs poorly regarding all metrics, and using Zp as an encoding
base is the better choice. Recall from Sect. 5.1 that the smaller the encoding base
p for a plaintext space of Zp, the smaller the cost in terms of ciphertext additions
and multiplications, and that the optimal base in terms of multiplicative depth
varies. However, the factor that induces this variation is the required encoding
length, and since we can choose a prime p′ close to pk (thus requiring roughly
the same length) which requires much less effort as shown in Fig. 3, there is no
case where choosing pk as an encoding base with k > 1 brings any benefit, so
we do not continue with its analysis.

0 200 400 600 800 1000

0
20

00
40

00
60

00

x=20: # Additions

p^k

Ad
di

tio
ns

 (1
0^

3)

k=1
k=2
k=3
k>3

0 200 400 600 800 1000

0
20

00
40

00
60

00

x=7000: # Additions

p^k

Ad
di

tio
ns

 (1
0^

3)

k=1
k=2
k=3
k>3

0 200 400 600 800 1000

0
20

00
40

00
60

00

x=10^7: # Additions

p^k

Ad
di

tio
ns

 (1
0^

3)

k=1
k=2
k=3
k>3

0 200 400 600 800 10000
50

10
0

15
0

x=20: # Multiplications

p^k

M
ul

tip
lic

at
io

ns
 (1

0^
3)

k=1
k=2
k=3
k>3

0 200 400 600 800 10000
50

10
0

15
0

x=7000: # Multiplications

p^k

M
ul

tip
lic

at
io

ns
 (1

0^
3)

k=1
k=2
k=3
k>3

0 200 400 600 800 10000
50

10
0

15
0

x=10^7: # Multiplications

p^k

M
ul

tip
lic

at
io

ns
 (1

0^
3)

k=1
k=2
k=3
k>3

0 200 400 600 800 10000
5

10
15

20
25

x=20: # Depth

p^k

D
ep

th

k=1
k=2
k=3
k>3

0 200 400 600 800 10000
5

10
15

20
25

x=7000: Depth

p^k

D
ep

th

k=1
k=2
k=3
k>3

0 200 400 600 800 10000
5

10
15

20
25

x=10^7: Depth

p^k

D
ep

th

k=1
k=2
k=3
k>3

Fig. 3. Number of field additions, field multiplications and multiplicative depth for
multiplying x = 20 (first column)/x = 7000 (second column)/x = 107 (right column)
to a number of same size for encoding base GF (pk).

490 A. Jäschke and F. Armknecht

7 Rational Numbers and Integers

7.1 Representing Rational Numbers by Scaling

Let the encoding base p be an arbitrary prime. Given a rational number that
we wish to encode (and assuming for the moment that negative numbers are
no problem), we need to transform this rational into an integer, which we can
then encode p-adically in the next step. The most straightforward approach
is to introduce a scaling factor by picking a precision (i.e., there are σ p-adic
digits after the point) σ with which we want to work with in the following and
multiplying the rational with pσ, rounding to obtain an integer to encode.

The importance of choosing the scaling factor as a power of p rather than any
other number is as follows: Suppose that we have two rational numbers A and
B which we scale and round to Ã = A · pσ and B̃ = B · pσ. After encoding and
encrypting the individual digits, multiplying yields Ã ·B̃ = A ·B ·p2σ. Thus, after
decrypting, the data owner needs to know what number to divide the result by,
leaking unwanted information about the function that was applied, which might
be the computing party’s secret. Also the required number of digits increases
to accommodate the extra precision digits, making all future computations less
efficient. However, if we have a number in p-adic encoding, deleting the last σ
digits corresponds to dividing by pσ and truncating the result. This way, using
pσ as the scaling factor, the computing party can delete the σ least significant
digits after each multiplication and thus keep the precision at a constant σ bits,
increasing efficiency (by using less digits) and privacy (because the data owner
now divides the result by pσ regardless of the function that was applied).

7.2 Encoding Integers

Having seen how to transform rationals into integers, we need to incorporate neg-
ative numbers into our p-adic encoding. Generalizing from p = 2, for which these
encodings are well known, we investigate two main approaches: p’s Complement
and Sign-Magnitude. Note that this question has been extensively studied in [9]
but for the case p = 2 only. We state shortly how the results extend to the case
p > 2, with a more detailed analysis in the extended version [10].

p’s Complement: In this encoding, elements have the form an . . . a0 with ai ∈
{0, 1, . . . , p − 1} for i = 0, . . . , n − 1, and an ∈ {0, 1}, where x = −an · pn +∑n−1

i=0 ai · pi. This means that the first digit encodes either 0 or −pn and the
following digits correspond to the “normal” p-adic encoding.

Addition: The effort of adding two numbers in p’s Complement encoding is com-
parable to twice the effort for adding two natural numbers derived in Sect. 5.1,
except that the depth is twice as large. For p = 2, it is almost exactly the same
effort as adding two natural numbers in binary encoding.

Multiplication: Multiplication p’s Complement roughly requires the same effort
as a natural number with twice as many digits, i.e., multiplying a natural number

(Finite) Field Work: Choosing the Best Encoding of Numbers 491

x with � digits in p’s Complement encoding requires roughly the same effort as
multiplying x2 (which has 2� digits) in “regular” p-adic encoding.

Sign-Magnitude: For the second encoding that we consider, Sign-Magnitude,
the absolute value of the number is encoded p-adically as a natural number, and
there is an extra digit (the MSB) which determines the sign. Concretely, elements
in this encoding have the form anan−1 . . . a1a0 with ai ∈ {0, 1, . . . , p − 1} for
i = 0, . . . , n − 1, and an ∈ {0, 1}, where x = (−1)an · ∑n−1

i=0 ai · pi. It is easy to
see that for positive numbers, this encoding is the same as p’s complement. This
encoding suffers from having two representations of 0: 00 . . . 0 and 100 . . . 0.

Addition: Adding two numbers in Sign-Magnitude encoding costs roughly one
p-adic addition, 2 comparisons (each costing about three additions) and 4 sub-
tractions (about the same cost as addition). This yields 11 additions in “regular”
p-adic encoding and is significantly more costly than p′s Complement encoding.

Multiplication: The effort of multiplying two numbers in Sign-Magnitude encod-
ing is roughly the same as multiplying them with “regular” p-adic encoding.

Hybrid Encoding: We see that the choice of encoding can make a big differ-
ence in performance. As p’s Complement addition is more efficient than Sign-
Magnitude, but the latter is more efficient for multiplication, a hybrid approach
like in [9] would be the best choice: One does all additions in p’s Complement,
and for multiplication switches the encoding to Sign-Magnitude. Using this, one
can have roughly the same operation cost as for natural numbers in p-adic encod-
ing (slightly more for additions), plus the cost of switching between encodings,
which is roughly that of one p-adic addition. Of course, since this already holds
true for natural numbers in p-adic encoding, the choice p = 2 by far incurs the
least amount of field additions and multiplications in these two encodings and
the hybrid encoding also, while the optimal depth choice remains variable.

References

1. Arita, S., Nakasato, S.: Fully homomorphic encryption for point numbers. IACR
Cryptology ePrint Archive 2016/402 (2016)

2. Bonte, C., Bootland, C., Bos, J.W., Castryck, W., Iliashenko, I., Vercauteren, F.:
Faster homomorphic function evaluation using non-integral base encoding. IACR
Cryptology ePrint Archive 2017/333 (2017)

3. Chen, Y., Gong, G.: Integer arithmetic over ciphertext and homomorphic data
aggregation. In: CNS (2015)

4. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic
of approximate numbers. IACR Cryptology ePrint Archive 2016/421 (2016)

5. Chung, H., Kim, M.: Encoding rational numbers for FHE-based applications. IACR
Cryptology ePrint Archive 2016/344(2016)

6. Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE
scheme. IACR Cryptology ePrint Archive 2016/250 (2016)

7. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 24–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 2

https://doi.org/10.1007/978-3-642-13190-5_2
https://doi.org/10.1007/978-3-642-13190-5_2

492 A. Jäschke and F. Armknecht

8. Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.:
Manual for using homomorphic encryption for bioinformatics. Technical report.
MSR-TR-2015-87, Microsoft Research (2015)

9. Jäschke, A., Armknecht, F.: Accelerating homomorphic computations on rational
numbers. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS,
vol. 9696, pp. 405–423. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
39555-5 22

10. Jäschke, A., Armknecht, F.: (Finite) field work: choosing the best encoding of
numbers for FHE Computation. IACR Cryptology ePrint Archive 2017/582 (2017)

11. Kim, E., Tibouchi, M.: FHE over the integers and modular arithmetic circuits. In:
CANS, pp. 435–450 (2016)

12. Nuida, K., Kurosawa, K.: (Batch) fully homomorphic encryption over integers for
non-binary message spaces. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015.
LNCS, vol. 9056, pp. 537–555. Springer, Heidelberg (2015). https://doi.org/10.
1007/978-3-662-46800-5 21

13. Xu, C., Chen, J., Wu, W., Feng, Y.: Homomorphically encrypted arithmetic oper-
ations over the integer ring. In: Bao, F., Chen, L., Deng, R.H., Wang, G. (eds.)
ISPEC 2016. LNCS, vol. 10060, pp. 167–181. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-49151-6 12

https://doi.org/10.1007/978-3-319-39555-5_22
https://doi.org/10.1007/978-3-319-39555-5_22
https://doi.org/10.1007/978-3-662-46800-5_21
https://doi.org/10.1007/978-3-662-46800-5_21
https://doi.org/10.1007/978-3-319-49151-6_12
https://doi.org/10.1007/978-3-319-49151-6_12

An Efficient Attribute-Based
Authenticated Key Exchange Protocol

Suvradip Chakraborty1(B), Y. Sreenivasa Rao2,
and Chandrasekaran Pandu Rangan1

1 Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai, India

{suvradip,rangan}@cse.iitm.ac.in
2 Indian Institute of Information Technology Design and Manufacturing Kurnool,

Kurnool, India
sreenivasarao@iiitk.ac.in

Abstract. In this paper, we present a new and efficient construction
of an Attribute-Based Authenticated Key Exchange (ABAKE) proto-
col, providing fine-grained access control over data. The state-of-the-art
constructions of ABAKE protocols rely on extensive pairing and expo-
nentiation operations (both polynomial in the size of the access poli-
cies) over appropriate groups equipped with bilinear maps. Our new
construction of ABAKE protocol reduces the number of pairing opera-
tions to be constant (to be precise only 7) and the number of exponen-
tiations to be linear in the number of clauses in the disjunctive normal
form representing the general access policies. The main workhorse of
our ABAKE construction is an Attribute-Based Signcryption (ABSC)
scheme with constant number of pairings (only 7), which we construct.
This also gives the first construction of ABSC schemes with constant
number of pairings for general purpose access policies in the standard
model. Our ABAKE protocol is also round-optimal, i.e., it is a single
round protocol consisting of only a single message flow among the par-
ties involved, and is asynchronous in nature, i.e., the message sent by one
party does not depend on the incoming message from the other party.
The security of our ABAKE protocol is proved under a variant of the
Bilinear Diffie-Hellman Exponent assumption, in the Attribute-Based
extended Canetti-Krawzyck (ABeCK) model, which is an extension of
the extended Canetti-Krawzyck (eCK) model for attribute-based frame-
work.

Keywords: Attribute-based signcryption
Authenticated key exchange · Bilinear pairing
Attribute-Based extended Canetti-Krawzyck (ABeCK) model

1 Introduction

Attribute-Based Encryption (ABE), introduced by Sahai and Waters [12] pro-
vides fine grained access control over encrypted data. Existing ABE construc-
tions falls under two broad categories: (i) key-policy attribute-based systems
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 493–503, 2018.
https://doi.org/10.1007/978-3-030-02641-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_24&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_24

494 S. Chakraborty et al.

[5,9], in which users’ secret keys are associated with access policy (a.k.a. access
structure) over an universe of attributes and the ciphertexts are associated with
sets of attributes and (ii) ciphertext-policy attribute-based systems [1,11,14], in
which users’ private keys are associated with the attributes and the ciphertexts
are associated with access policies. In this work, we consider ciphertext-policy
attribute-based systems.

Attribute-Based Authenticated Key Exchange (ABAKE) is a new variant
of the AKE protocols that allows users to establish a shared key and achieve
mutual authentication over an insecure channel by using their attributes (unlike
in the PKI settings where the users authenticate each other using their pub-
lic keys), thereby providing fine-grained access control over transmitted data.
Attribute-based key exchange finds its application in distributed collaborative
systems where it is more convenient for users to communicate with other users
using their roles or responsibilities which can be described by attributes. It is
also applicable in scenarios like interactive chat rooms, online forums where a
user can have read/write access to threads only if they have desired attributes.
Hence an authenticated key exchange protocol that critically uses attributes can
be employed in these settings. Despite its tremendous potential real-world appli-
cability, the existing solutions for ABAKE protocols do not cater to its need.
Most of the ABAKE protocols directly use an ABE as their underlying building
block, and hence are computationally very expensive. In particular, for all the
existing ABAKE solutions the pairing and exponentiation operations are poly-
nomial in the size of the share generating matrix representing the access policy of
users. This presents a major block for real-world deployment of these protocols.
Hence, our initial quest was to construct an ABAKE protocol where the number
of pairings is constant or even sub-linear in the size of the access policy.

To this end, we show how to construct an ABAKE protocol where the number
of pairing operations is independent of the size of the access policy. In particular,
our ABAKE construction uses only a constant number of pairings, and the
number of exponentiations is linear in the number of clauses of the Disjunctive
Normal Form (DNF) access formula representing the access policies of users.

1.1 Our Contribution

The main contributions of our paper are outlined as below:

1. We propose a new ABAKE protocol that employs only constant number of
pairings (to be precise only 7 per user). The exponentiation operations are
linear in (m + n), where m denotes the number of clauses of the DNF access
formula representing the access policies of users, and n denotes the size of the
signing attribute set. The proposed ABAKE protocol is also round-optimal,
i.e., it only needs two-pass interaction in a session. Our ABAKE protocol is
proven secure in the ABeCK model [15], which is a natural extension of the
eCK model [6] for attribute-based settings, assuming the intractability of the
Gap modified Bilinear Diffie-Hellman Exponent (GmBDHE) problem. A com-
parison of our protocol with the existing attribute-based two-party and group

An Efficient Attribute-Based Authenticated Key Exchange Protocol 495

key exchange protocols are shown in Table 1. We leave open the problem of
constructing an ABAKE protocol in the ABeCK model in the standard model
achieving the same or comparable level of efficiency/ computational complex-
ity as our construction. The related works relevant to ABAKE protocols is
presented in the full version of our paper.

2. We propose a new construction of a ciphertext-policy ABSC (CP-ABSC)
scheme with constant number of pairings. To the best of our knowledge,
our CP-ABSC construction is the first such construction employing only
a constant number of pairings. We use the ABSC scheme for our ABAKE
construction, since one of the crucial requirement of an ABAKE protocol is
mutual authentication of parties involved in a session. In Table 2, we compare
our proposed CP-ABSC scheme with the state-of-the-art CP-ABSC schemes.
The related works regarding CP-ABSC schemes is given in the full version of
our paper.

Table 1. Comparison with existing ABAKE protocols

Scheme Type of ABAKE No. of

rounds

No. of pairings

(each party)

Basic building

blocks

Security

model

Assumptions

[4] ABGKE 1 2(�M × nM) + 3 IND-CCA secure

ABE [1]

BR GGM, RO

[13] ABGKE 2 �M + 5 ABSC ABCK CDH, RO

[15] 2-party ABAKE 1 �2M × nM Waters ABE [14] ABeCK GBDH, RO

[16] 2-party ABAKE 1 4�M + 2 Waters ABE [14],

PRF, Ext., OTS

ABCK DPBDHE,

Std

Proposed

ABAKE

2-party ABAKE 1 7 proposed ABSC ABeCK GmBDHE,

RO

BR: Bellare Rogaway, GGM: Generic Group Model, RO: Random Oracle, Std: Standard model, PRF: Pseudo-

random Function, Ext.: Randomness extractor, GBDH: Gap Bilinear Diffie-Hellman Assumption, DPBDHE:

Decisional Parallel Bilinear Diffie-Hellman Exponent Assumption, GmBDHE: Gap Modified Bilinear Diffie-

Hellman Exponent Assumption, OTS: One-time signature, ABGKE: Attribute-based Group Key Exchange,

�M (nM): maximum number of rows (columns) of M .

Table 2. Comparison with existing CP-ABSC schemes

Scheme Ciphertext size Signcryption cost Unsigncryption cost

Exp Exp Pairings

[2] (ue + �s + vk + 2)BG + sot + vk + msgue + 4�s + vk + 3 0 ue + �s + vk + 3

[7] (�s + ws + �e + 3)BG + msg 2�sws + 3�s + 2�e + 42�sws + ws + φe�sws + ws + 2φe + 4

[11] (�s + �e + 4)BG + Btt + msg 4�s + 2�e + 7 �s + 2φe + 2 �s + 5

[10] (2�s + 2�e + 4)BG + msg 4�s + 3�e + 12 �s + φe + 11 2�s + 2φe + 6

Proposed

ABSC

(m + 3)BG + BZ + msg m + �s + 6 �s + 4 7

�s(�e) : number of attributes in a signing (encryption) access policy, ue : size of encryption attribute universe,

vk : bit length of verification key of one-time signature scheme, φe : number of encryption attributes required

in unsigncryption process, ws : number of columns in signing linear secret-sharing matrix, BG(BZ): bit length

of an element of the group G (Zp), Btt: bit length of time stamp, msg: bit length of a message or plaintext, sot:

bit length of the signature generated by one-time signature scheme, m: number of clauses in the encryption

DNF access policy.

496 S. Chakraborty et al.

2 Background

Notation: Throughout this work, we denote the security parameter by κ. We
denote by x

R←− X that x is randomly chosen from the finite set X according
to uniform distribution. We use [k] to denote the set {1, 2, . . . , k}. We assume
familiarity with the definitions of lagrange interpolation, bilinear pairings over
elliptic curve groups. We refer the readers to the full version of our paper for
these definitions.

Access Policy: Let U be the universe of attributes. Let 2U be the collection of
all non-empty subsets of U.

– Each nonempty subset of 2U is called an access policy.
– An access policy Γ ⊂ 2U is called a monotone access policy if it satisfies the

following property: for any A ∈ 2U , A ⊇ B for some B ∈ Γ implies A ∈ Γ.
That is, A ∈ Γ ⇐⇒ A ⊇ B for some B ∈ Γ .
Note: From now on, by an access policy, we mean monotone access policy.

– For an attribute set A ⊂ U, if A ∈ Γ, we say that A satisfies the access policy
Γ which is denoted by Γ (A) = true. (If Γ (A) = false, we say that A does
not satisfy Γ .) Hence, Γ (A) = true ⇐⇒ A ∈ Γ ⇐⇒ A ⊇ B for some B ∈ Γ .

Every access policy can be represented in disjunctive normal form (DNF) as
follows. If Γ := {B1, B2, . . . , Bk}, one can equivalently represent Γ as Γ := B1 ∨
B2∨· · ·∨Bm. In this case, Γ (A) = true ⇐⇒ A ⊇ Bk for some k ∈ {1, 2, . . . ,m}.

Complexity Assumption: The complexity assumption required for our paper
is the Gap Modified q-BDHE (Gmq-BDHE) assumption, which is the gap version
of the Decision Modified q-BDHE Assumption introduced in [8].

3 Attribute-Based Signcryption

An Attribute-Based Signcryption (ABSC) scheme comprises the following five
algorithms Setup, DecKeyGen, SignKeyGen, Signcrypt, Unsigncrypt.
The essential security notions for an ABSC scheme are message confidentiality
and ciphertext unforgeability. We refer to the full version of our paper for the
detailed definition of the above algorithms and the security models.

3.1 Proposed ABSC Scheme

This section describes our new ABSC scheme which utilizes only a constant num-
ber of pairings. In this construction, we logically combine the CP-ABE [8] and
the (n, n)-threshold ABS [3] schemes to realize decryption efficient signcryption
scheme in the attribute-based setting. The construction uses general monotone
access policies represented in DNF to encrypt a message and (n, n)-threshold
policies to sign a message. As in the underlying CP-ABE [8], we assume all the

An Efficient Attribute-Based Authenticated Key Exchange Protocol 497

attributes in encryption policy are distinct. In security analysis, the challenge
access policy submitted by the adversary is converted to Linear Secret-Sharing
Scheme (LSSS) matrix in order to properly answer the adversary’s queries. In
our construction, each attribute is allowed both as an encryption attribute and a
signature attribute. We generate two public keys h

(e)
i and h

(s)
i for every attribute

i, where {h
(e)
i } are used to encrypt messages whereas {h

(s)
i } are used to sign a

message. The proposed ABSC scheme is detailed in the following algorithms.

Setup(1κ, U) This algorithm takes as input the security parameter κ and an
attribute universe description U , and creates the system public and secret
parameters as follows.

– Select secure bilinear pairing parameters Σ := [p,G,GT , e] such that
G = 〈g〉, where g is a generator of the group G.

– Sample θ, b
R←− Z

∗
p and set g1 := gθ, g2 := gb and Y := e(g1, g2).

– Choose zi, δ̆i
R←− Z

∗
p and set h

(e)
i := gzi , h

(s)
i := gδ̆i for each i ∈ U.

– Pick h0, ω1, ω2, ω3, u0, u1, . . . , u�
R←− G.

– Choose H1 : {0, 1}∗ → {0, 1}� and H2 : {0, 1}∗ → Z
∗
p from appropriate

families of collision-resistant hash functions.
– Define a function H : {0, 1}� → G by H(x) := u0

∏�
i=1 uxi

i , where x :=
(x1, . . . , x�) ∈ {0, 1}�.

– Let ΠSE := (SE-Enc,SE-Dec) be a one-time symmetric-key encryption
scheme with key space K := {0, 1}τ and message space M := {0, 1}∗.
Let KDF be the key derivation function with the output length τ.

The system public parameters PP are set as PP := [Σ, g, g2, Y,

{h
(e)
i , h

(s)
i }i∈U , h0, ω1, ω2, ω3, u0, {ui}�

i=1,H1,H2,H,ΠSE,KDF,M, U] The
system master secret key MK is set as MK := g1 = gθ.

DecKeyGen(PP,MK, Ad) This algorithm takes as input PP,MK and a
set Ad ⊂ U of attributes, and computes the decryption key DKAd

:=
[D,D′,Di, i ∈ Ad] as follows: Pick r

R←− Z
∗
p and set D := gθ

2h
r
0,D

′ :=

gr,Di := (h(e)
i)r, i ∈ Ad. Note that we compute gθ

2 without the knowledge of
θ as gθ

2 = gb
1.

SignKeyGen(PP,MK, As) This algorithm takes as input PP,MK and a set
As ⊂ U of attributes, and computes the signing key SKAs

:= [Si, i ∈ As]
as follows: Let f be a random polynomial of degree n − 1 such that f(0) =

θ. Compute Si := g
f(i)+δ̆i
2 h−δ̆i

0 for each i ∈ As. Note that we treat every
attribute used in signature primitive as an element of Z∗

p.
Signcrypt(PP, Γe,SKAs

,Ws,msg) This algorithm takes as input PP, an
encryption access policy Γe := B1 ∨ B2 ∨ · · · ∨ Bm, a signing attribute set
Ws ⊂ As with |Ws| = n, the signing key SKAs

and a message msg ∈ M.
Then it caries out the following steps.

– Sample α, γ
R←− Z

∗
p and set

• c := SE-Enc
(
KDF(Y α||Γe||Ws),msg

)

• C := gα, C1 :=
(
h0

∏
i∈B1

h
(e)
i

)α
, C2 :=

(
h0

∏
i∈B2

h
(e)
i

)α
, . . . , Cm :=

(
h0

∏
i∈Bm

h
(e)
i

)α

498 S. Chakraborty et al.

• ct := [c, C,C1, C2, . . . , Cm]
• σ := H(x)α

∏
i∈Ws

S
Δi,Ws (0)
i , where x = H1(c||Γe||Ws)

• Ce := (ωβ
1 ωγ

2ω3)α, where β = H2(ct||σ||Γe||Ws)
The ciphertext is CT := [Γe, ct, σ, Ce, γ].

Unsigncrypt(PP, CT ,Wv,DKAd
) Given PP, CT , a verification attribute set

Wv of size n and DKAd
, this algorithm proceeds as follows.

– Compute β = H2(ct||σ||Γe||Wv), x = H1(c||Γe||Wv) and check whether
e(g, Ce)

??= e(C,ωβ
1 ωγ

2ω3) and e(g, σ) · e
(
h0g

−1,
∏

i∈Wv
(h(s)

i)Δi,Wv (0)
) ??=

Y · e
(
H(x), C

)
. If any one of these two equations does not hold, output

⊥. Otherwise, execute the subsequent steps. Now, Wv = Ws.
– If Γe(Ad) = false, output ⊥.
– Otherwise, find Bk from Γe := B1 ∨B2 ∨· · ·∨Bm such that Bk ⊆ Ad and

then compute e
(
C,D

∏
i∈Bk

Di

)
· e(D′, Ck)−1 = Y α.

– Recover the correct message msg = SE-Dec
(
KDF(Y α||Γe||Wv), c

)
.

It can be verified the correctness of the ABSC scheme in a manner similar to
the underlying CP-ABE and ABS primitives [3,8].
The security analysis of the proposed ABSC scheme is given in the full version
of our paper.

4 Attribute-Based Authenticated Key Exchange

4.1 Security Model for Attribute-Based Authenticated Key
Exchange

In this section, we present a strong security model for Attribute-Based Authenti-
cated Key Exchange (in short, ABAKE) protocols, namely the Attribute-Based
extended Canetti-Krawzyck (ABeCK) model. The ABeCK model can be seen
as a natural extension of the extended Canetti-Krawzyck (eCK) model for the
conventional public-key setting. The ABeCK is different from the eCK model
in the following ways: (i) In the ABeCK model, there are no user public-keys
(as in eCK model); instead each party P has a set of attributes SP , which also
defines the session identifiers, (ii) The freshness condition for revealing the long-
term/static secret keys of parties are different. Before giving the ABeCK security
model, we explain the syntax of a ABAKE protocol following [15].
An ABAKE protocol comprises of three PPT algorithms – Setup, KeyGen and
KeyExchange. These algorithms are discussed below.

1. Setup(1κ): The setup algorithm takes as input the implicit security parameter
κ and the attribute universe U and outputs the master public key MPK and
master secret key MSK.

2. KeyGen(MSK,MPK,SP): The key generation algorithm takes in the master
secret key MSK, the master public key MPK, and a set of attributes SP of
a party P , and outputs a static secret key SKSP corresponding to SP .

An Efficient Attribute-Based Authenticated Key Exchange Protocol 499

3. KeyExchange: This algorithm is run between two or more users or parties in
the system (in our case the number of users is two as it is two-party setting).
Let us assume the two parties party A and party B share a session key by
performing the following n-pass protocol. Party A (resp. B) selects a policy
AA (resp. AB) as an access structure.

For i = 1, 2, . . . , n, upon receiving the (i−1)th message mi−1, the party P (P
is either A or B) computes the ith message by algorithm Message. Message
takes as input MPK, the set of attributes SP of party P , static secret key
SKSP , the access policy AP , all the sent and received messages so far, i.e.,
m1, · · · ,mi−1, and outputs the ith message mi. The party P then sends mi

to the other party P . Upon receiving the final message mn, party P computes
the session key by algorithm SessionKey. SessionKey takes as input MPK, the
set of attributes SP , the static secret key SKSP , the policy AP , the transcript
m1, · · · ,mn, and outputs a session key K. Both parties P and P compute
the same session key K if and only if SA ∈ AB and SB ∈ AA. Note that by
SA ∈ AB and SB ∈ AA, we mean that AB(SA) = true and AA(SB) = true,
respectively.

The ABeCK model can be seen as an attribute-based variant of the original
eCK model [6]. It allows the adversary to completely control the communication
channel, apart from passive eavesdropping. It allows him to register arbitrary
parties (set of attributes) into the system, obtain the session keys of (completed)
sessions, secret keys corresponding to attribute of parties, the master secret key
of the system, and also the session-specific or ephemeral randomness of parties.
A notion of freshness of a session is also defined, that disallows the adversary to
trivially compute the session key corresponding to that session. The goal of the
adversary is then to distinguish the session key of a fresh session from a random
key. We refer the reader to the full version of our paper for the detailed ABeCK
model.

4.2 Proposed ABAKE Protocol

We now give the details of our ABAKE protocol.

Design Rationale: In our construction of the ABAKE protocol, we use the
ABSC scheme proposed in Sect. 3.1 as the main building block. We construct
our ABAKE protocol by suitably combining the ABSC scheme and the NAXOS
technique [6]. In the ABeCK model the adversary can get the attribute secret
key of a user involved in the test session or the ephemeral secret key of the test
session, but not both. Hence, we use the NAXOS technique to bind together the
static secret key and the ephemeral secret key of parties using a hash function
modeled as a random oracle. Since, the adversary will not know any one of these
secret values, the extracted value is uniformly random. Specifically, we convert
the ephemeral secret keys ᾰA and ᾰB of parties A and B respectively to the
pseudo-ephemeral values αA and αB respectively, using the hash function H3.

500 S. Chakraborty et al.

In the KeyExchange algorithm party A (resp. B) chooses an access policy AA

(resp. AB) and a signing attribute set WA (resp. WB) and run the underlying
Signcrypt algorithm to produce ephemeral public keys EPKA (resp. EPKB).
If the attributes of party B (resp. A) satisfy the access policy AA contained in
EPKA (resp. AB contained in EPKB) and the signatures σA and σB are valid,
then party B (resp. A) can extract the encapsulated key Y αA (resp. Y αB) by
running the decryption algorithm of the underlying ABSC scheme. Our ABSC
scheme satisfies the additional property of public verifiability of ciphertext, which
guarantees the ciphertext integrity of both the parties A and B. The authenticity
of the sender is ensured by the signatures σA and σB respectively. In our ABAKE
protocol, we use Υ1 = Y αA , Υ2 = Y αB , where αA and αB are derived from the
ephemeral secret keys of A and B respectively. However, only Υ1 and Υ2 are
not enough to achieve the security in the ABeCK model. The ABeCK model
allows the adversary also to reveal the master secret key of the system. We
cannot prove the security in such a case because the simulator cannot embed
the BDHE instance to the master secret key and cannot extract information to
obtain the answer of the Gmq-BDHE problem only from Y αA and Y αB . Thus,
we add the seed Υ3 = gαAαB to the seed of the session key in order to simulate
such a case.

Construction: We now give the detailed description of our one-round (two-
pass) ABAKE protocol. Let U be the universe of attributes used in the system,
and let (Setup, DecKeyGen, SignKeyGen, Signcrypt, Unsigncrypt) be the ABSC
scheme described in Sect. 3.1. The Setup, KeyGen and KeyExchange algorithms of
our ABAKE protocol are detailed below. For the KeyExchange algorithm please
refer to Table 3.

1. Setup(1κ): Run Setup(1κ, U) of the underlying ABSC scheme to generate the
system public and secret parameters PP and MK, respectively. Here, PP :=
[Σ, g, g2, Y, {h

(e)
i , h

(s)
i }i∈U , h0, ω1, ω2, ω3, u0, {ui}�

i=1,H1,H2,H,ΠSE,KDF,
M, U] and MK := gθ. Choose two collision-resistant hash functions H3 :
{0, 1}∗ → Z

∗
p and H4 : {0, 1}∗ → {0, 1}κ. Note that H2 and H3 are inde-

pendent. The system public parameters MPK are set as MPK := [Σ =
(p,G,GT , e), g, g2, Y, {h

(e)
i , h

(s)
i }i∈U , h0, ω1, ω2, ω3, u0, {ui}�

i=1,H1,H2,H3,H4,
H, U], and the master secret key MSK is set as MSK = MK := gθ.

2. KeyGen(MSK,MPK,SP): Here P ∈ {A,B}. Run DecKeyGen(MPK,
MSK,SP) and SignKeyGen(MPK,MSK,SP), where SP is the set of
attributes of party P . Note that for each party P, |SP | ≥ n. The
secret key SKSP of party P is set as SKSP = {DKSP ,SKSP } :=
{[DP ,D′

P , {DPi
}i∈SP], {SPi

}i∈SP }. Here, DP = gθ
2h

r
0,D

′
P = gr,DPi

=

(h(e)
i)r, SPi

= g
f(i)+δ̆i
2 h−δ̆i

0 , where r
R←− Z

∗
p and f is a random polynomial

of degree n − 1 such that f(0) = θ.
Similarly, party B also decides an access structure AB and he hopes that the
set of attributes SA of party A satisfies AB . It also chooses a signing attribute
set WB ⊂ SB . The shared session key obtained by both the parties A and

An Efficient Attribute-Based Authenticated Key Exchange Protocol 501

Table 3. Proposed ABAKE protocol

B after successful completion of the protocol is denoted by K. The shared
secrets that both parties compute are

Υ2 = e
(
gαB , gθ

2h
r
0

∏

i∈Bk

(h(e)
i)r

)
· e

(
gr,

(
h0

∏

i∈Bk

(h(e)
i)

)αB
)−1

= e(gθ, g2)αB · e
(
gr,

(
h0

∏

i∈Bk

(h(e)
i)

)αB
)

· e
(
gr,

(
h0

∏

i∈Bk

(h(e)
i)

)αB
)−1

= Y αB = Y H3(ᾰB ||SKSB
)

Similarly, Υ1 = e
(
CA,DB

∏
i∈Ak

DBi

)
· e(D′

B , CAk
)−1 = Y αA = Y H3(ᾰA||SKSA

),

Υ3 = C
H3(ᾰA||SKSA

)

B = (gαB)αA = gαAαB = (gαA)αB = C
H3(ᾰB ||SKSB

)

A .

502 S. Chakraborty et al.

Hence they can compute the same session key K = H4(Υ1||Υ2||Υ3||
EPKA||EPKB).

4.3 Security Analysis of Proposed ABAKE Protocol

We now show that our ABAKE scheme (see Sect. 4.2) is secure in ABeCK model.

Theorem 1. Assume H1 and H2 are collision-resistant hash functions and the
hash functions H3 and H4 are random oracles. Suppose the Gmq-BDHE assump-
tion holds. Assume the number of rows and columns in the challenge LSSS matrix
are at most q. Then our ABAKE scheme is selectively secure in the ABeCK
model.

Due to space constraints, we refer to the full version of our paper for the detailed
proof.

5 Conclusion

In this paper, we proposed a one-round Attribute-Based Authenticated Key
Exchange (ABAKE) protocol. Our ABAKE protocol employs only constant
number of pairing operations and the exponentiation operations are linear in
the number of clauses in the DNF access formula. This is in contrast to the
other ABAKE protocols, where both of these operations are polynomial in the
size of the access policy. To this end, we also presented the first construction
of an Attribute-Based Signcryption (ABSC) scheme with constant number of
pairings in the ciphertext-policy setting for general access control policies. Our
ABAKE protocol is proven secure in the ABeCK model under the random oracle
assumption. We leave open the problem of constructing an ABAKE protocol in
the ABeCK model in the standard model achieving the same or comparable level
of efficiency/ computational complexity as our construction.

References

1. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: 2007 IEEE Symposium on Security and Privacy. SP 2007, pp. 321–334.
IEEE (2007)

2. Emura, K., Miyaji, A., Rahman, M.S.: Dynamic attribute-based signcryption with-
out random oracles. Int. J. Appl. Cryptol. 2(3), 199–211 (2012)

3. Gagné, M., Narayan, S., Safavi-Naini, R.: Short pairing-efficient threshold-
attribute-based signature. In: Abdalla, M., Lange, T. (eds.) Pairing 2012. LNCS,
vol. 7708, pp. 295–313. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36334-4 19

4. Gorantla, M.C., Boyd, C., González Nieto, J.M.: Attribute-based authenticated key
exchange. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp.
300–317. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14081-
5 19

https://doi.org/10.1007/978-3-642-36334-4_19
https://doi.org/10.1007/978-3-642-36334-4_19
https://doi.org/10.1007/978-3-642-14081-5_19
https://doi.org/10.1007/978-3-642-14081-5_19

An Efficient Attribute-Based Authenticated Key Exchange Protocol 503

5. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, pp. 89–98. ACM (2006)

6. LaMacchia, B., Lauter, K., Mityagin, A.: Stronger security of authenticated key
exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) ProvSec 2007. LNCS, vol. 4784,
pp. 1–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75670-
5 1

7. Liu, J., Huang, X., Liu, J.K.: Secure sharing of personal health records in cloud
computing: ciphertext-policy attribute-based signcryption. Futur. Gener. Comput.
Syst. 52, 67–76 (2015). Special Section: Cloud Computing: Security, Privacy and
Practice

8. Malluhi, Q.M., Shikfa, A., Trinh, V.C.: A ciphertext-policy attribute-based encryp-
tion scheme with optimized ciphertext size and fast decryption. In: Proceedings of
the 2017 ACM on Asia Conference on Computer and Communications Security,
pp. 230–240. ACM (2017)

9. Ostrovsky, R., Sahai, A., Waters, B.: Attribute-based encryption with non-
monotonic access structures. In: Proceedings of the 14th ACM Conference on
Computer and Communications Security, pp. 195–203. ACM (2007)

10. Pandit, T., Pandey, S.K., Barua, R.: Attribute-based signcryption : signer pri-
vacy, strong unforgeability and IND-CCA2 security in adaptive-predicates attack.
In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS,
vol. 8782, pp. 274–290. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
12475-9 19

11. Rao, Y.S.: A secure and efficient ciphertext-policy attribute-based signcryption for
personal health records sharing in cloud computing. Futur. Gener. Comput. Syst.
67, 133–151 (2017)

12. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

13. Steinwandt, R., Corona, A.S.: Attribute-based group key establishment. IACR
Cryptology ePrint Archive, vol. 2010, p. 235 (2010)

14. Waters, B.: Ciphertext-policy attribute-based encryption: an expressive, efficient,
and provably secure realization. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi,
A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 53–70. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-19379-8 4

15. Yoneyama, K.: Strongly secure two-pass attribute-based authenticated key
exchange. In: Joye, M., Miyaji, A., Otsuka, A. (eds.) Pairing 2010. LNCS, vol.
6487, pp. 147–166. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-17455-1 10

16. Yoneyama, K.: Two-party round-optimal session-policy attribute-based authenti-
cated key exchange without random oracles. In: Kim, H. (ed.) ICISC 2011. LNCS,
vol. 7259, pp. 467–489. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31912-9 31

https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-540-75670-5_1
https://doi.org/10.1007/978-3-319-12475-9_19
https://doi.org/10.1007/978-3-319-12475-9_19
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-19379-8_4
https://doi.org/10.1007/978-3-642-17455-1_10
https://doi.org/10.1007/978-3-642-17455-1_10
https://doi.org/10.1007/978-3-642-31912-9_31
https://doi.org/10.1007/978-3-642-31912-9_31

Server-Aided Revocable Attribute-Based
Encryption Resilient to Decryption Key

Exposure

Baodong Qin1,2, Qinglan Zhao3, Dong Zheng1,4(B), and Hui Cui5

1 National Engineering Laboratory for Wireless Security,
Xi’an University of Posts and Telecommunications,

Xi’an 710121, People’s Republic of China
qinbaodong@foxmail.com, zhengdong@xupt.edu.cn

2 State Key Laboratory of Cryptology,
P.O. Box 5159, Beijing 100878, People’s Republic of China

3 Shanghai Jiao Tong University,
Shanghai 200240, People’s Republic of China

zhaoqinglan@foxmail.com
4 Westone Cryptologic Research Center, Beijing 100070, People’s Republic of China

5 School of Science, RMIT University, Melbourne, Australia
hui.cui@rmit.edu.au

Abstract. Attribute-based encryption (ABE) is a promising approach
that enables scalable access control on encrypted data. However, one of
the main efficiency drawbacks of ABE is the lack of practical user revoca-
tion mechanisms. In CCS 2008, Boldyreva, Goyal and Kumar put forward
an efficient way to revoke users. But, it requires each data user storing a
(non-constant) number of long-term private keys and periodically com-
municating with the key generation center to update his/her decryption
keys. In ESORICS 2016, Cui et al. proposed the first server-aided revoca-
ble ABE scheme to address the above two issues. It involves an untrusted
server to transform any non-revoked user’s ABE ciphertexts into short
ciphertexts using user’s short-term transformation keys. The data user
can fully decrypt the transformed ciphertexts using his/her local decryp-
tion keys. Cui et al. also introduced the decryption key exposure (DKE)
attacks on transformation keys. However, if the untrusted server colludes
with an adversary, the scheme may be insecure against DKE attacks on
user’s local decryption keys. In this paper, we first revisit Cui et al. secu-
rity model, and enhance it by capturing the DKE attacks on user’s local
decryption keys and allowing the adversary to fully corrupt the server
simultaneously. We then construct a server-aided revocable ABE based
on Rouselakis-Waters ciphertext-policy ABE (CCS 2013). We show that
our scheme is secure against local decryption key exposure attacks, and
maintains the outstanding properties of efficient user revocation, short
local ciphertext size and fast local decryption.

Keywords: Attribute-based encryption · Revocation
Decryption key exposure · Server-aided

c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 504–514, 2018.
https://doi.org/10.1007/978-3-030-02641-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_25

Server-Aided Revocable ABE Resilient to Decryption Key Exposure 505

1 Introduction

Attribute-based encryption (ABE) [15] is a promising solution to enable scalable
access control on encrypted data. In an ABE, a trusted key generation center
(KGC) issues a secret key for each user according to that user’s attributes. A
data owner can encrypt data and embed an access policy into the ciphertext. The
data owner then uploads the ciphertext into the cloud. A data user can decrypt a
ciphertext if his/her attributes satisfy the embedded access policy. Usually, such
an ABE system is called ciphertext-policy attribute-based encryption (CP-ABE)
system. The opposite of CP-ABE is the key-policy attribute-based encryption
(KP-ABE) [8]. In this paper, we focus on ciphertext-policy ABE.

Today, ABE has become a powerful and promising tool for secure cloud data
sharing. However, there exist two main drawbacks in current ABE schemes. One
is the efficiency issue as the size of ciphertext and the decryption time grows
with the complexity of the access structure. The other is the user revocation
issue. In USENIX 2011, Green et al. [9] suggested to address efficiency problem
by involving a cloud. In particular, a data owner can store ABE ciphertexts in
the cloud and a data user can provide the cloud with a single transformation
key for translating any ABE ciphertext satisfied by that user’s attributes into a
short ciphertext, without leaking any part of the user’s message to the cloud.

Revocation is very important for ABE as well as PKI-based cryptosystems.
Although there are numerous studies on efficient revocation mechanisms in the
traditional PKI setting [1,6,7,11], there are only a few studies on ABE setting.
In ACM CCS 2008, Boldyreva, Goyal and Kumar [3] put forward an efficient
way to revoke users by combining the fuzzy identity-based encryption (IBE) [15]
and the binary-tree data structure (shorted as BGK scheme). In this method,
the KGC first issues a long-term secret key for each user and then publishes the
common key update information during each time period. Consequently, only
non-revoked users can generate decryption keys from their long-term secret keys
and the key updates. Compared with the naive revocation way proposed by
Boneh and Franklin [4], the size of the key update information in [3] is signifi-
cantly reduced from O(N −R) to O(R log N/R) on average. Here, N is the total
number of system users and R is the number of revoked users. Nevertheless,
it also introduces other issues: (1) The BGK scheme as well as the follow-up
work [10] is vulnerable to decryption key exposure (DKE); and (2) The size of
a user’s long-term secret key increases from O(1) to O(log N), which depends
on the number of system users. In PKC 2013, Seo and Emura [16] proposed a
simple revocable IBE scheme with DKE resistance. Later, Qin et al. [12] pro-
posed the notion of server-aided revocable IBE (SR-IBE). Like in [9], it involves
an untrusted server to partially decrypt a user’s ciphertext using a time-based
short-term transformation key. But, the short-term transformation keys are gen-
erated by the server in a similar way as that of user’s decryption keys in [16],
i.e., the server in advance stores some long-term transformation keys, and then
periodically receives key update information from the KGC to generate the corre-
sponding short-term transformation keys of non-revoked users. A local user just
holds a long-term secret key, and can use it to generate time-based short-term

506 B. Qin et al.

decryption keys by himself/herself. If short-term decryption keys for some time
periods are leaked, they do not affect the security of other periods decryption
keys. Fortunately, the SR-IBE scheme can delegate almost all workloads on data
users to the untrusted server and withstand DKE attacks on user’s local short-
term decryption keys. Moreover, the data user keeps just one long-term secret
key of constant-size. Recently, Cui et al. [5] extended SR-IBE to the notion of
server-aided revocable ABE (SR-ABE) for supporting both decryption outsourc-
ing and efficient user revocation. Interestingly, their SR-ABE scheme does not
require any secure channels for key distribution, as data users generated their
secret keys by themselves.

It should be noted that Cui et al. have already considered the decryption key
exposure attacks in their security model. But the DKE attack is in fact defined
for user’s short-term transformation keys, as the decryption key generated by a
data user in a normal ABE scheme is now created by the server and renamed
as transformation key in their SR-ABE scheme. However, the untrusted server
could be operated by anyone, including the adversary, and hence all short-term
transformation keys could be exposed to the adversary. In addition, a user’s local
short-term decryption keys in [5] are always the same as his/her long-term secret
key. So, their scheme cannot allow a user’s local decryption keys being exposed
if the user is not revoked. Seo and Emura [16] showed that decryption key expo-
sure is a very realistic threat on many revocable cryptosystems. Therefore, it is
necessary to design an server-aided revocable ABE scheme with DKE resistance
on user’s local decryption keys.

1.1 Our Contribution

Our contribution consists of three parts. First, we revisit Cui et al. system frame-
work for SR-ABE and make a modification to their decryption key generation
algorithm for capturing DKE attacks on user’s local decryption keys. The new
system framework is given in Fig. 1. As in [5], a user’s ABE ciphertext should
be first transformed by an untrusted server using a corresponding short-term
transformation key. If the user is revoked, the server can not assist him/her in
transforming ciphertexts any more. But, we separate a user’s local decryption
capacity into two parts: one is a long-term secret key that can decrypt any
time period transformed ciphertexts, and the other is a time-based short-term
decryption key that can just decrypt a single time period ciphertexts, trans-
formed by the untrusted server. A user can use his/her long-term secret key to
generate a short-term decryption key for any specified time-period. We present
a formal security model for such an SR-ABE framework in Subsect. 2.2. Clearly,
an SR-ABE scheme with DKE resistance allows a data user to delegate his/her
decryption capacity to others, such as a laptop, for a specified time period.

Second, we construct a server-aided revocable CP-ABE scheme based on
(non-revocable) Rouselakis-Waters CP-ABE scheme [13]. To achieve server-aided
revocation, it is possible to adopt the idea of Qin et al. SR-IBE scheme [12]. In
Qin et al. SR-IBE, a master secret key is actually split into two keys: one serves
as a master key of a normal revocable IBE between the KGC and the server, and

Server-Aided Revocable ABE Resilient to Decryption Key Exposure 507

Fig. 1. System framework of our SR-ABE

the other serves as a master key of a two-level hierarchical IBE scheme between
the KGC and the data users. This method can shrink the size of user’s long-term
secret key, but it does not achieve the advantage of decryption outsourcing. To
conquer this challenge, we introduce the random splitting technique. Specifically,
a master ABE key is also split into two parts. But, in contrast to [12], this
decomposition is random and independent for different users. The first key serves
as a master key of a revocable ABE between the KGC and that user, and will be
used to generate user’s short-term transformation keys. Due to such a random
splitting technique, the second key just serves as a master key of an IBE scheme.
The IBE master key will be used to generate that user’s short-term decryption
keys. Applying a transformation key to an ABE ciphertext, the result is actually
an IBE ciphertext under that user’s master (public) key and a time as identity.
Thus, that user’s local decryption only requires one IBE decryption, which only
contains two pairing computations in our concrete construction. The key splitting
approach is similar to that used in Cui et al.’s construction. But, the second key
is used in a different way.

Third, we show that the security of our SR-ABE scheme can be efficiently
reduced to the original Rouselakis-Waters CP-ABE scheme in a one-user setting.
The details are given in Subsect. 3.2.

Notes. Due to space limitation, some related work is introduced in the full
version of this paper. Some basic cryptographic notions used in this paper are
also omitted, including bilinear groups, access structures, linear secret-sharing
schemes (LSSS), binary tree and the node selection algorithm KUNodes. They
can be found in [5] or the full version of this paper.

508 B. Qin et al.

2 Framework and Security Model

2.1 Framework

We extend the framework of SR-IBE to the ABE setting. An SR-ABE scheme
consists of the following nine PPT algorithms.

– Setup(1κ) → (pp,msk, rl, st): The KGC takes as input the security parameter
1κ and outputs the public parameter pp, a master secret key msk, an initially
empty revocation list rl and a state st. Hereafter, S is a set of attributes, id
is a user’s identity, t is a time period, A is an access structure and M is a
message.

– UserKG(pp,msk, id, S, st) → (pkid, skid): The KGC runs the user key gener-
ation algorithm and outputs a long-term transformation key pkid for server
and a long-term secret key skid for user.

– TKeyUp(pp,msk, t, rl, st) → (kut, st): The KGC runs the transformation key
update algorithm and outputs a key update kut for server and an updated
state st.

– TranKG(pp, id, pkid, kut) → tkid,t: The server runs the transformation key
generation algorithm and outputs a short-term transformation key tkid,t.

– DecKG(pp, id, skid, t) → dkid,t: The data user runs the decryption key gener-
ation algorithm and outputs a short-term decryption key dkid,t.

– Encrypt(pp, A, t,M) → CT : The data owner runs the encryption algorithm
and outputs a ciphertext CT .

– Transform(pp, id, S, tkid,t, CT) → CT ′/⊥: The server runs the ciphertext
transformation algorithm and outputs either a partially decrypted ciphertext
CT ′ for data user or ⊥ indicating the failure of the transformation.

– Decrypt(pp, id, dkid,t, CT ′) → M/⊥: The data user runs the decryption algo-
rithm and outputs the message M or a failure symbol ⊥.

– Revoke(id, t, rl, st) → rl: The KGC runs the revocation algorithm and outputs
an updated revocation list rl.

2.2 Security Model

We describe an IND-CPA security model for SR-ABE that captures both user
revocation and local decryption key exposure. The following game is played
between an adversary A and the challenger C.

– Setup. The challenger runs the setup algorithm and gives pp to the adversary.
The challenger keeps msk, rl and st.

– Phase 1. A can adaptively issues any of the following queries to C.
• Create(id, S): C runs UserKG on (id, S) to obtain the pair (pk, sk), and

stores in table T the entry (id, S, pk, sk). It returns pk to A.
• Corrupt(id): If there exists an entry indexed by id in table T , then C

obtains the entry (id, S, pk, sk) and sets D = D ∪ {(id, S)}. It returns sk
to A. If no such entry exists, then it returns ⊥.

• TKeyUp(t): C runs TKeyUp(pp,msk, t, rl, st) and gives kut to A.

Server-Aided Revocable ABE Resilient to Decryption Key Exposure 509

• DecKG(id, t): If A issues a decryption key query on (id, t) and there exists
an entry indexed by id in table T , then C obtains the entry (id, S, pk, sk).
It then runs DecKG(pp, id, sk, t) and gives the decryption key dkid,t to A.
If no such entry exists, then it returns ⊥.

• Revocation(id, t): When A issues a revocation query on (id, t), C runs
Revoke(id, t, rl, st) and outputs an updated revocation list rl.

– Challenge. The adversary submits two equal length message M0, M1, an
access structure A

∗ and a time period t∗ satisfying the following constraints
(Suppose that the attribute set associated with id∗ is S∗).
1. If there exists a tuple (id∗, S∗) ∈ D and S∗ ∈ A

∗, then the adversary
must query the revocation oracle on (id∗, t) at or before time period t∗.

2. If there exists a tuple (id∗, S∗, pk∗, sk∗) ∈ T , S∗ ∈ A
∗ and id∗ is not

revoked at or before time period t∗, then the adversary cannot query the
decryption oracle on (id∗, t∗).

The challenger picks a random bit b ∈ {0, 1} and sends the challenge cipher-
text CT ∗ ← Encrypt(pp, A∗, t∗,Mb) to the adversary.

– Phase 2. The adversary continues issuing queries to the challenger as in
Phase 1, with the same restrictions defined in the Challenge phase.

– Guess. The adversary makes a guess b′ for b and wins the game if b′ = b.
The advantage of A in this game is defined as |Pr[b′ = b] − 1/2|.

Definition 1 (IND-CPA Secure SR-ABE). An SR-ABE scheme is IND-
CPA secure if for all polynomial-time adversaries have at most a negligible
advantage in the IND-CPA game defined above.

Selective Security. We say an SR-ABE scheme is selectively IND-CPA secure
if we add an Init stage before the Setup phase where the adversary A commits
to the challenge access structure A

∗ and the challenge time period t∗.

3 Server-Aided Revocable CP-ABE with DKE Resistance

3.1 The Construction

Our scheme consists of the following nine algorithms:

– Setup(1κ) → (pp,msk, rl, st): It first generates the descriptions of groups and
the bilinear map D = (p,G,GT , e), where p is the prime order of groups G
and GT . Both the attribute space and the time space are Zp.
Then, it randomly chooses g, u, h, u0, h0, w, v ∈ G and α ∈ Zp. Let rl be an
empty list storing revoked users and BT be a binary tree with at least N
leaf nodes. N is the maximal number of system users. Define two functions
F1(y) = uyh and F2(y) = uy

0h0 to map any element y in Zp to an element
in G. Finally, it outputs pp = (D, g, w, v, u, h, u0, h0, e(g, g)α) and msk = α,
along with the revocation list rl and the initial state st = BT.

510 B. Qin et al.

– UserKG(pp,msk, id, S = {A1, A2, . . . , Ak},BT) → (pkid, skid): Initially, it
picks a random exponent βid ∈ Zp and sets skid = gβid . Then, it chooses
an undefined leaf node θ from the binary tree BT, and stores id in this node.
Next, for each node x ∈ Path(θ), it runs as follows.
1. It fetches gx from the node x. If x has not been defined, it randomly

chooses gx ∈ G, computes g′
x = gα−βid/gx, and store gx in the node x.

2. It picks k +1 random exponents rx, rx,1, rx,2, . . . , rx,k ∈ Zp. Then it com-
putes Px,0 = g′

xwrx , Px,1 = grx , and for every i ∈ [k], P i
x,2 = grx,i and

P i
x,3 = F1(Ai)rx,iv−rx .

3. It outputs the following long-term transformation key and secret key
pkid = {x, Px,0, Px,1, P

i
x,2, P

i
x,3}x∈Path(θ),i∈[k] and skid = gβid .

– TKeyUp(pp,msk, t, rl, st) → (kut, st): Firstly, it fetches gx from each node
x ∈ KUNodes(BT, rl, t). Then, it picks a random exponent sx ∈ Zp and
computes Qx,0 = gxF2(t)sx , Qx,1 = gsx . The transformation key update
information is kut = {x,Qx,0, Qx,1}x∈KUNodes(BT,rl,t).

– TranKG(pp, id, pkid, kut) → tkid,t: Suppose that θ is the leaf node storing the
identity id. Let I = {x : x ∈ Path(θ)} and J = {x : x ∈ KUNodes(BT, rl, t)}.
If I∩J = ∅, it returns ⊥. Otherwise, there must be exactly one node x ∈ I∩J .
Then, it computes tk0 = Px,0 ·Qx,0, tk1 = Px,1, tk2,i = P i

x,2, tk3,i = P i
x,3, and

tk4 = Qx,1. The algorithm returns tkid,t = (tk0, tk1, {tk2,i, tk3,i}i∈[k], tk4).
– DecKG(pp, id, skid, t) → dkid,t: It picks a random exponent rt and computes

the short-term decryption key dkid,t = (D0,D1) = (gβidF2(t)rt , grt).
– Encrypt(pp, (M, ρ), t,M) → CT : Given an LSSS access structure (M, ρ) ∈

(Z�×n
p ,F([�] → Zp)), it randomly chooses a vector v = (γ, y2, . . . , yn)⊥ ∈ Zn

p

and computes the shares λ = (λ1, . . . , λ�)⊥ = M · v. It picks � random expo-
nents μ1, . . . , μ� ∈ Zp and computes CT = (C,C0, {Ci,1, Ci,2, Ci,3}i∈[�], C4),
where C = M ·e(g, g)αγ , C0 = gγ , C4 = F2(t)γ and for i ∈ [�], Ci,1 = wλi ·vμi ,
Ci,2 = F1(ρ(i))−μi and Ci,3 = gμi .

– Transform(pp, id, S, tkid,t, CT) → CT ′/⊥: If the user is revoked at time period
t or the attribute set S does not satisfy the access policy (M, ρ) associated
with the ciphertext CT , the algorithm returns ⊥. Otherwise, it computes the
set I = {i : ρ(i) ∈ S} and the constants {ωi ∈ Zp}i∈I such that

∑
i∈I ωiMi =

(1, 0, . . . , 0), where Mi is the i-th row of M. Next, the algorithm computes
B = e(C0,tk0)·e(C4,tk4)

−1
∏

i∈I(e(Ci,1,tk1)·e(Ci,2,tk2,τ)·e(Ci,3,tk3,τ))ωi
, where τ is the index of attribute

ρ(i) in S, i.e., Aτ = ρ(i). Finally, the algorithm returns the transformed
ciphertext CT ′ = (C ′, C ′

0, C
′
4), where C ′ = C/B, C ′

0 = C0 and C ′
4 = C4.

– Decrypt(pp, id, dkid,t, CT ′) → M/⊥: Given a transformed ciphertext CT ′ =
(C ′, C ′

0, C
′
4) and a decryption key dkid,t = (D0,D1), the algorithm computes

and returns M = C ′ · e(C ′
4,D1)/e(C ′

0,D0).
– Revoke(id, t, rl, st) → rl: If a user id is revoked at time period t, the algorithm

adds (x, t) to rl for all nodes x associated with identity id.

3.2 Security Analysis

We prove the security in the so-called one-user setting. In such setting, only
one “target user” has the capacity to access to the challenge ciphertext and the

Server-Aided Revocable ABE Resilient to Decryption Key Exposure 511

adversary can corrupt either his/her long-term secret key or his/her short-term
decryption keys. So, the adversary falls into the following two distinct classes.

– Type-1: The target user is revoked at or before the challenge time period t∗

and thus A is allowed to corrupt the target user’s long-term secret key.
– Type-2: The target user is not revoked, so A is not allowed to corrupt the

target user’s long-term secret key. But A may obtain the target user’s short-
term decryption keys for time periods except the challenge time period t∗.

Clearly, the above two cases do not cross with each other in the one-user setting.
So, we can randomly guess which type of attacks the target user is suffered from
with (non-negligible) probability 1/2. More importantly, we can efficiently sim-
ulate the security game for these two kinds of adversaries separately. The proof
can be extended to the setting with many target users if these two types of adver-
saries do not cross with each other, i.e., the adversary either corrupts all target
users’ long-term secret keys or corrupts all target users’ short-term decryption
keys. Generally, there two different adversaries may exist simultaneously even
for two target users. It is not clear how to prove the security of our scheme in
the general multi-user setting. We leave it as our future work. Alternatively, we
can design a new SR-ABE scheme secure in the multi-user setting.

Theorem 1 (Selectively IND-CPA Security). If the Rouselakis-Waters
CP-ABE scheme is selectively IND-CPA secure, then our server-aided revocable
CP-ABE scheme is also selectively IND-CPA secure in one-user setting.

The proof of Theorem 1 is given in the full version of the paper.

3.3 Comparison

In recent years, numerous work [2,3,5,14,17] develop new cryptographic tech-
niques to construct revocable ABE schemes in prime-order bilinear groups.
Table 1 summarizes the properties of these revocable ABE schemes and ours.
Firstly, with the exception of [17], all ABE schemes support indirect revocation.
This removes the requirement of holding an authenticated revocation list by the
data owner or the server. Secondly, among those ABE schemes that involve a
third server during revocation, ours and [5] do not need a trusted server while [17]
needs. That is, in our scheme, any user can collude with the third server, while
in [17] revoked users cannot. Thirdly, with the exception of ours, all these ABE
schemes are vulnerable to local decryption key exposure. Though our security
is only proved in one-user setting, it does not imply that the other ciphertexts
cannot be shared by multiple users. In addition, if all target users suffer from
other Type-1 attacks or Type-2 attacks separately, our scheme is also secure in
the multi-user setting.

To show that our scheme indeed achieves outsourcing functionality, we com-
pare it with the original (non-revocable) Rouselakis-Waters CP-ABE scheme in
terms of basic performance such as ciphertext size in Table 2. We also make a

512 B. Qin et al.

Table 1. Property comparison among existing revocable ABE schemes. Let N and
R denote the number of all system users and the revoked users, respectively. Let �
denote the number of attributes presented in an access structure, k denote the size of
an attribute set associated with a user and “-” denote not-applicable. “One/Multi-User
Setting” means a challenge ciphertext allows a single user or many users to access to.

Properties BGK08 [3] AI09 [2] SSW12 [14] YDL+13 [17] CDL+16 [5] Section 3

Revocation mode Indirect Indirect &

Direct

Indirect Direct Indirect Indirect

Type of ABE KP-ABE KP-ABE KP/CP-ABE CP-ABE CP-ABE CP-ABE

Third server - - - Semi-trust Untrust Untrust

Security Selective Selective Selective Selective Selective Selective

Key update size O(R log N
R) O(R log N

R) O(R log N
R) - O(R log N

R) O(R log N
R)

Secret key size O(� log N) O(� log N) O(l log N) &

O(k log N)

O(1) O(1) O(1)

Secure channel Yes Yes Yes Yes No Yes/no

DKE resistance No No No No No Yes

User setting Multi-user Multi-user Multi-user Multi-user Multi-user One-user

Table 2. Efficiency Comparison Among RW-Type ABE Schemes. Only the dominant
operations of exponentations and pairings are listed. The parameters �, k and m denote
the number of rows of the matrix policy, the size of the attribute set, and the rows uti-
lized during decryption or transformation, respectively. Let “-” denote not-applicable.
Let #Zp, #G, #GT denote the number of elements in groups Zp, G and GT respec-
tively. Let #EG (resp. #EGT) denote the number of operations of exponentations in
group G (resp. GT), and let #P denote the number of operations of pairings.

RW13 [13] CDL+16 [5] Section 3

ABE ciphertext size [#G, #GT] [3� + 1, 1] [3� + 2, 1] [3� + 2, 1]

Transformed ciphertext size [#G, #GT] - [1, 1] [2, 1]

User’s secret-key size [#Zp, #G] [0, 2k + 2] [1, 0] [0, 1]

Encryption [#EG, #EGT] [5� + 1, 1] [5� + 3, 1] [5� + 3, 1]

ABE transform [#EGT , #P] - [m, 3m + 2] [m, 3m + 2]

Final ABE decryption [#EGT , #P] [m, 3m + 1] [1, 0] [0, 2]

comparison with Cui et al. SR-CP-ABE scheme, as their scheme is also real-
ized from the Rouselakis-Waters CP-ABE scheme. It is showed that both of the
server-aided ABE schemes outsource most ABE ciphertext and user’s secret key
into the cloud or the server, leaving only constant-size ciphertext and secret key
to the local user. The heavy operations during decryption are also outsourced
to the server, and the local user needs just two pairing operations. To achieve
local DKE resistance, our scheme increases the partially-decrypted ciphertext
size and the operation time of final ABE decryption in comparison with Cui et
al. SR-ABE scheme. Nevertheless, the increments are only constant and very
few, e.g., the transformed ciphertext increases only one group element.

Server-Aided Revocable ABE Resilient to Decryption Key Exposure 513

4 Conclusion

This paper proposed a new security model for server-aided revocable ABE
scheme to capture a realistic threat, namely local decryption key exposure, intro-
duced by Seo and Emura in PKC 2013. Based on a standard (non-revocable)
Rouselakis-Waters CP-ABE scheme, we presented an SR-CP-ABE scheme sup-
porting both decryption outsourcing and local DKE resistance. As our scheme
is proved to be selective IND-CPA secure in just one-user setting, a nature ques-
tion is how to construct an SR-ABE scheme with DKE resistance in a multi-user
setting.

Acknowledgments. This work was supported by the National Natural Science Foun-
dation of China (Grant No. 61502400 and Grant No. 61602378), and the Science Foun-
dation of Sichuan Educational Committee (Grant No. 16ZB0140).

References

1. Aiello, W., Lodha, S., Ostrovsky, R.: Fast digital identity revocation. In: Krawczyk,
H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 137–152. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0055725

2. Attrapadung, N., Imai, H.: Attribute-based encryption supporting direct/indirect
revocation modes. In: Parker, M.G. (ed.) IMACC 2009. LNCS, vol. 5921, pp. 278–
300. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10868-6 17

3. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient revo-
cation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) CCS 2008, pp. 417–426. ACM,
New York (2008)

4. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-44647-8 13

5. Cui, H., Deng, R.H., Li, Y., Qin, B.: Server-aided revocable attribute-based encryp-
tion. In: Askoxylakis, I., Ioannidis, S., Katsikas, S., Meadows, C. (eds.) ESORICS
2016. LNCS, vol. 9879, pp. 570–587. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-45741-3 29

6. Gentry, C.: Certificate-based encryption and the certificate revocation problem.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 272–293. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9 17

7. Goyal, V.: Certificate revocation using fine grained certificate space partition-
ing. In: Dietrich, S., Dhamija, R. (eds.) FC 2007. LNCS, vol. 4886, pp. 247–259.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77366-5 24

8. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Juels, A., Wright, R.N., di Vimercati,
S.D.C. (eds.) CCS 2006, pp. 89–98. ACM, New York (2006)

9. Green, M., Hohenberger, S., Waters, B.: Outsourcing the decryption of ABE cipher-
texts. In: 2011 20th USENIX Security Symposium. USENIX Association (2011)

10. Libert, B., Vergnaud, D.: Adaptive-ID secure revocable identity-based encryption.
In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer, Heidel-
berg (2009). https://doi.org/10.1007/978-3-642-00862-7 1

11. Micali, S.: Efficient certificate revocation. Technical report, Cambridge, MA, USA
(1996)

https://doi.org/10.1007/BFb0055725
https://doi.org/10.1007/978-3-642-10868-6_17
https://doi.org/10.1007/3-540-44647-8_13
https://doi.org/10.1007/978-3-319-45741-3_29
https://doi.org/10.1007/978-3-319-45741-3_29
https://doi.org/10.1007/3-540-39200-9_17
https://doi.org/10.1007/978-3-540-77366-5_24
https://doi.org/10.1007/978-3-642-00862-7_1

514 B. Qin et al.

12. Qin, B., Deng, R.H., Li, Y., Liu, S.: Server-aided revocable identity-based encryp-
tion. In: Pernul, G., Ryan, P.Y.A., Weippl, E. (eds.) ESORICS 2015. LNCS, vol.
9326, pp. 286–304. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
24174-6 15

13. Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for
large universe attribute-based encryption. In: Sadeghi, A., Gligor, V.D., Yung, M.
(eds.) CCS 2013, pp. 463–474. ACM, New York (2013)

14. Sahai, A., Seyalioglu, H., Waters, B.: Dynamic credentials and ciphertext del-
egation for attribute-based encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 199–217. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 13

15. Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EURO-
CRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005). https://
doi.org/10.1007/11426639 27

16. Seo, J.H., Emura, K.: Revocable identity-based encryption revisited: security model
and construction. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol.
7778, pp. 216–234. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-36362-7 14

17. Yang, Y., Ding, X., Lu, H., Wan, Z., Zhou, J.: Achieving revocable fine-grained
cryptographic access control over cloud data. In: Desmedt, Y. (ed.) ISC 2013.
LNCS, vol. 7807, pp. 293–308. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-27659-5 21

https://doi.org/10.1007/978-3-319-24174-6_15
https://doi.org/10.1007/978-3-319-24174-6_15
https://doi.org/10.1007/978-3-642-32009-5_13
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/11426639_27
https://doi.org/10.1007/978-3-642-36362-7_14
https://doi.org/10.1007/978-3-642-36362-7_14
https://doi.org/10.1007/978-3-319-27659-5_21
https://doi.org/10.1007/978-3-319-27659-5_21

A New Direction for Research on Data
Origin Authentication in Group

Communication

Robert Annessi(B) , Tanja Zseby(B) , and Joachim Fabini(B)

Institute of Telecommunications, TU Wien, Vienna, Austria
{robert.annessi,tanja.zseby,joachim.fabini}@tuwien.ac.at

Abstract. Group communication facilitates efficient data transmission
to numerous receivers by reducing data replication efforts both at the
sender and in the network. Group communication is used in today’s
communication networks in many ways, such as broadcasting in cellu-
lar networks, IP multicast on the network layer, or as application layer
multicast. Despite many efforts in providing data origin authentication
for specific application areas in group communication, no efficient and
secure all-purpose solution has been proposed so far.

In this paper, we analyze data origin authentication schemes from 25
years of research. We distinguish three general approaches to address
the challenge and assign six conceptually different classes to these three
approaches. We show that each class comprises trade-offs from a spe-
cific point of view that prevent the class from being generally applica-
ble to group communication. We then propose to add a new class of
schemes based on recent high-performance digital signatures. We argue
that the high-speed signing approach is secure, resource efficient, and
can be applied with acceptable communication overhead. This new class
therefore provides a solution that is generally applicable and should be
the foundation of future research on data origin authentication for group
communication.

1 Introduction

Group communication is ubiquitous in today’s communication networks. It facil-
itates transparent and efficient data transmission to numerous receivers by min-
imizing data replication efforts both at the sender and in the network. In this
paper, we use the term group communication for any one-to-many communica-
tion such as multicast, broadcast, or point-to-multipoint communication. Group
communication is a generic concept and can be implemented on different layers:
data link (Ethernet, Asynchronous Transfer Mode (ATM), or Infiniband), net-
work (IPv4, IPv6) and application layer using overlay networks). It is used in con-
tent broadcasting, video conferencing, information distribution (stock-market,
software updates, etc.) and Massively Multiplayer Online Games (MMOGs). It
is applied in Content Delivery Networks (CDNs), Peer to Peer (P2P), cellular
and wireless sensor networks. In this way, the high-speed signing class proposed
c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 515–525, 2018.
https://doi.org/10.1007/978-3-030-02641-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_26&domain=pdf
http://orcid.org/0000-0002-4501-3951
http://orcid.org/0000-0002-5391-467X
https://doi.org/10.1007/978-3-030-02641-7_26

516 R. Annessi et al.

in this paper is applicable to a huge number of use cases as it is not tied to spe-
cific communication networks technologies, network topologies, or applications.
While this work focuses on one-to-many communication, the high-speed signing
class may be also applied to many-to-many communication settings as long as
each sender uses its own signature or the signing key is shared among senders.

Group communication comprises various challenges, many of which stem
from its unidirectional nature and dynamic group membership. Some challenges
can be solved easier on higher layers, such as guaranteeing reliable delivery of
packets. Other issues tend to reoccur, such as efficient and secure authentica-
tion of the sender, no matter on which layer group communication functionality
is implemented. This reoccurring, fundamental problem in group communica-
tion – the authentication of the sender – is called data origin authentication1.
Despite more than 25 years of research on data origin authentication for group
communication, during which various ideas have been proposed, no sufficiently
efficient and secure scheme as yet exists that could be deployed generally on a
large scale. For this reason, application-specific solutions are developed that may
employ sub-optimal or even insecure data origin authentication schemes.

In this position paper, we argue that the most promising research path for
securing group communication is to design faster authentication schemes. Fur-
thermore, we show that high-performance signature schemes significantly elevate
the solution space and provide a general solution to the authentication challenge
in group communication. We are especially concerned that unsuitable data ori-
gin authentication schemes may be deployed in future protocols, e.g., in time
synchronization protocols [2] or Smart Grid communication [3,4] and hope that
this paper provides valuable details to future protocol designers to guide their
decisions and encourages them to use high-speed signatures to solve the authen-
tication challenge in their group communication scenarios.

2 Background

Since most communication networks lack strict access control and network nodes
may be compromised, cryptographic methods are needed to assure receivers
that packets have been indeed sent by a legitimate sender and data has not
been modified by unauthorized entities. For group communication, two types of
authentication have to be distinguished [5]: group authentication and data origin
authentication.

Group Authentication assures that data originates from a legitimate but
unidentified group member and has not been modified by entities outside the
group. Message Authentication Codes (MACs) with a key shared by all group
members are a well understood and efficient method for achieving group authen-
tication. However, receivers cannot distinguish between the individual group
members because they are all sharing the same key and can therefore gener-
ate valid MACs. This is of particular importance in group communication since
there are usually many receivers involved, and a single dishonest or compromised
1 Sometimes still referred to as source authentication, a term considered deprecated [1].

A New Direction for Research on Data Origin Authentication 517

receiver is sufficient to impersonate the sender. Besides this security issue, MACs
are also rather inefficient in group communication as the shared key needs to be
renewed and redistributed every time a receiver leaves or joins the group.

Data origin authentication allows receivers to verify that data was indeed sent
by a specific sender (non-repudiation). This can be achieved by digital signatures
using asymmetric cryptographic, because only the sender is in possession of
the secret key required to generate signatures. Table 1 summarizes the security
properties provided by group authentication and data origin authentication. The
main downside of today’s digital signature schemes such as RSA [6], DSA [7],
and ECDSA [8] is, however, that they come at high computational cost and
therefore introduce substantial penalty in terms of delay, both in the sender and
in the receiver. Consequently, it is widely believed that digital signatures are
roughly 2 to 3 magnitudes slower than MACs [9] so that signing each packet is
not a practical solution. We will revise this assumption as we show the potential
of recently proposed high-performance digital signature schemes as foundation
for data origin authentication in group communication.

Table 1. Group authentication vs. data origin authentication

Security property Group authentication Data origin authentication

Integrity ✓ ✓

Non-repudiation ✗ ✓

Authenticity Group Sender

3 Data Origin Authentication Schemes

Data origin authentication schemes for group communication have matured over
more than 25 years, and many ideas were proposed to solve this challenging
problem. None of the proposed schemes, however, satisfies all constraints and
requirements of applications so that naming a single superior scheme seems non-
trivial [10]. Challal, Bettahar, and Bouabdallah identified six distinct classes [11]
in the sheer number of data origin authentication schemes: deferred signing2,
signature propagation, signature dispersal, secret-information asymmetry, time-
based asymmetry, and hybrid asymmetry. In addition to these six classes, we
wish to suggest a new class – high-speed signing – where recently proposed
high-speed signature schemes are employed.

We identify three conceptional distinct approaches among the proposed data
origin authentication schemes. The first approach aims to extend symmetric

2 Challal, Bettahar, and Bouabdallah originally used the term “differed signing” but
we think that they actually meant “deferred signing” as it makes more sense in this
context.

518 R. Annessi et al.

schemes to data origin authentication. The other two approaches aim to over-
come the computational intensive nature of public-key based authentication
schemes: reducing the cost of conventional signatures schemes and designing
fast authentication schemes. Table 2 shows the six previously proposed classes
as well as our new high-speed signing class assigned to the three approaches we
identified.

In this section, we briefly introduce all six classes of data origin authentication
schemes and show that each of them comprises a trade-off from a specific point
of view. We then argue in Sect. 4 that our high-speed signing class does not
require any of those trade-offs.

Table 2. Approaches to Data Origin Authentication and Classes of Schemes

Approach Class

Extend symmetric schemes to data origin authentication Secret-information asymmetry

Reduce the cost of conventional signature schemes Deferred Signing

Signature propagation

Signature dispersal

Design fast authentication schemes Time-based asymmetry

Hybrid asymmetry

High-speed signing

3.1 Extending Symmetric Schemes for Data Origin Authentication

Secret-Information Asymmetry. With secret-information asymmetry
schemes, such as k-MAC [12], the sender shares a set of keys with receivers
(instead of only one key). The sender knows the entire set of keys and therefore
can generate valid authentication information but each receiver’s partial view
allows just to verify (but not to generate) authentication information. The k-
MAC scheme uses distinct keys to calculate receiver-specific MACs. Then, all
MACs are appended to a packet. Upon reception of this packet, each receiver
can verify one MAC it has the key for but cannot create valid authentication
information on behalf of the sender as all the other keys are unknown.

The class of secret-information asymmetry schemes entails information-
theoretically secure schemes, which means that they do not provide enough infor-
mation to enable attacks. In this way, these schemes protect against adversaries
with potentially unlimited computational power. However, secret-information
asymmetry schemes are prone to collusion of receivers, where fraudulent receivers
collaborate in order to reconstruct the sender’s entire set of keys [11]. Further-
more, secret-information asymmetry schemes require substantial computational
resources for signing (and for verification) and also need to distribute new keys
individually to each receiver frequently.

A New Direction for Research on Data Origin Authentication 519

3.2 Reducing the Cost of Conventional Signature Schemes

Deferred Signing. With deferred signing, such as offline/online signing [13],
the signing process is split into two steps: a slow offline and a fast online step. In
the online step, each packet is signed using a one-time signature scheme, which is
computationally very efficient. The one-time keys need to be certified to ensure
that they originate from the claimed sender. For this purpose, a conventional
signature scheme with a certified public key is used in the offline step to sign each
one-time key. The generation and signing of the one-time keys is independent
of the actual packet to be signed and, therefore, can be conducted offline in
advance.

High performance in the online signing part can be achieved because packets
are signed with a computationally very efficient one-time signature scheme. The
computationally expensive part, precomputing the one-time keys and signing
each of them with a conventional signature scheme, is conducted offline. The
computational effort required in the offline part, however, is substantial and the
communication overhead is large because of the size of the one-time signatures.

Signature Propagation. Another approach to reduce the cost of conventional
signatures is followed by signature propagation schemes, such as Receiver driven
Layered Hash-chaining (RLH) [14]. Instead of signing each packet individually, a
signature from a conventional signature scheme is appended to one packet only,
the signature packet. Hashes of non-signature packets are included in preced-
ing packets such that a chain of packets is built in which each packet carries
the hash of the subsequent packet. In this way, the digital signature propa-
gates through all packets so that the computational cost of its generation is
amortized as hash operations are computationally inexpensive. Signature prop-
agation schemes, however, require packets to be buffered at the sender or at the
receiver before they can be signed and their signature be verified, respectively.
Such buffering introduces additional delay that may be intolerable to specific
applications, such as real-time applications. Receiver-side buffering additionally
increases the risk for Denial of Service (DoS) attacks as buffers may be filled with
bogus packets by an attacker with access to the network. Furthermore, signature
propagation schemes rely on the successful reception of signature packets and
are, therefore, hardly resistant to packet loss.

Signature Dispersal. The basic idea behind signature dispersal schemes, such
as [15], is that packets are divided into fixed-size blocks, and each block is signed
independently with a digital signature. The signature of a block is split, and
each part of the signature is appended to one packet (from the same block).
Also, additional information is appended to each packet, which helps receivers
to reconstruct the signature even if some packets were lost. In this way, sig-
nature dispersal schemes improve packet loss resistance compared to signature
propagation schemes that entirely rely on the reception of signature packets.
Computational efficiency is reduced, however, and receivers need to wait for the
whole block before they can verify its authenticity.

520 R. Annessi et al.

3.3 Designing Faster Authentication Schemes

Compared to reducing the computational cost of digital signature schemes, a con-
ceptional distinct approach is designing fast authentication schemes. We distin-
guish three different classes that follow the approach of designing faster authen-
tication schemes: time-based asymmetry, hybrid asymmetry, and the high-speed
signing class we wish to suggest.

Time-Based Asymmetry. In time-based asymmetry schemes, such as Timed
Efficient Stream Loss-tolerant Authentication (TESLA) [16,17], key asymmetry
is achieved through a common notion of time. In TESLA, the secret and the
public key are identical - they are only separated through time. While the key
is secret, it is used to sign messages. Meanwhile, clients buffer messages and can
verify their authenticity after the (secret) key has been disclosed and therefore
becomes public. Once the key is disclosed, the sender has to switch to another
key to sign new messages. A common notion of time guarantees that a key is
known by clients only after it is not used anymore for signing messages. The
keys are associated by a one-way chain such that only the initial key needs to
be signed with a (certified) key from a conventional signature scheme.

Computational efficiency is achieved by basically employing symmetric keys
(and introducing asymmetry through time). Also, packet loss resistance is pro-
vided as packets are signed independently from each other and receivers can
recover from having lost keys due to the one-way chain. However, at some point
the last key from the chain is used, and new keys need to be generated and
distributed securely. Such secure out-of-band channel for key distribution may
not be available to all applications. Furthermore, the clocks of the sender and of
receivers are assumed to be strictly synchronized such that the accuracy of time
synchronization becomes a security requirement. In case the assumed time syn-
chronization accuracy does not hold, the security of the authentication scheme
breaks entirely, which is a severe drawback for those applications that cannot
guarantee accurately synchronized clocks.

Hybrid Asymmetry. The aim of schemes in the hybrid asymmetry class, such
as Time Valid Hash to Obtain Random Subsets (TV-HORS) [18], is to com-
bine the strengths of secret-information asymmetry schemes (immediate signing
and verification) and time-based asymmetry schemes (computational efficiency)
while mitigating their limitations (no resistance to collusion attacks and strict
dependency on time synchronization). Hybrid asymmetry schemes are compu-
tationally efficient, but they introduce additional communication overhead and
still depend on loose time synchronization between sender and receivers. Like in
time-based asymmetry schemes, the keys used in hybrid asymmetry schemes can
only sign a fixed number of packets. Once this limit is reached, a new key has
to be generated and distributed securely in order to sign more packets. Again,
such secure out-of-band channel may not be available to all applications.

A New Direction for Research on Data Origin Authentication 521

4 High-Speed Signing

Two classes of data origin authentication schemes, time-based asymmetry and
hybrid asymmetry, already go into – what we consider to be – the right direc-
tion as they do not aim to reduce the computational cost of conventional sig-
nature schemes but aim to design fast authentication schemes in the first place.
An implicit assumption from schemes in those classes is that digital signature
schemes are computationally too expensive by nature. This assumption, how-
ever, only holds for conventional but not for novel high-performance signature
schemes. For this reason, we argue to sign every single packet independently
despite the common assumption that such approach is impractical due to the
computationally expensive nature of (conventional) signature schemes. Employ-
ing high-performance signature schemes can mitigate the negative performance
impact of conventional schemes.

For this purpose, signature schemes that offer previously unrivaled perfor-
mance are needed such as Ed25519 [19], an elliptic-curve signature scheme “care-
fully engineered at several levels of design and implementation to achieve very
high speed without compromising security” [19], or MQQ-SIG [20] a signature
scheme based on multivariate-quadratic (MQ) quasigroups. Both schemes are
designed to provide extremely fast signing and verification operations. Since
many MQ signature schemes have been broken (including MQQ-SIG [21]) and
some of them have been fixed and broken again, it is safe to say that MQ schemes
involve serious security challenges. For this reason, we do not recommend to use
MQQ-SIG specifically in practice. Nevertheless, we include MQQ-SIG in our
evaluation since MQ schemes have very attractive properties (specifically post-
quantum security and high-performance), and MQQ-SIG is one of the fastest of
MQ signature schemes. Furthermore, we hope that highlighting group commu-
nication use-cases spurs future research on MQ schemes even more.

Performance Measurement. In a small experiment, we measured the speed of
these high-performance signature schemes on Commercial Off-The-Shelf (COTS)
hardware, an Intel Celeron CPU clocked at 2.26 GHz running Debian Linux 8
32-bit. We disabled Intel’s Hyper-threading and Turbo Boost, CPU-frequency
scaling, and CPU-sleep states to not interfere with the measurement. Ed25519
signed and verified about 13k packets per second and has a communication
overhead of 64 B per packet. MQQ-SIG signed and verified over 36k packets per
second with a communication overhead of 32 B per packet. In this way, high-
speed signing outperforms3 TV-HORS from the hybrid asymmetry class, which
can sign and verify only 5k packets per second with a communication overhead of
106 B per packet according to [4]. Table 3 summarizes the measurement results.

Because of this high computational efficiency and low communication over-
head, there is no need to trade-off other properties like in all the other classes
of data origin authentication schemes. High-speed signing provides immediate
signing and verification as neither the sender nor the receivers need to buffer
3 Admittedly, the measurements were not conducted under the exact same conditions.

522 R. Annessi et al.

Table 3. Measurement Results

Scheme Signing and verification Overhead

Ed25519 13k packets/s 64 B/packet

MQQ-SIG 36k packets/s 32 B/packet

TV-HORS [4] 5k packets/s 106 B/packet

packets. It provides collusion resistance since every receiver has identical infor-
mation, the sender’s public key. Authentication schemes can obviously not be
completely independent of time synchronization since the validity of the sender’s
public key needs to be verified. However, while the other classes that follow
the same approach (of designing fast authentication schemes) depend on the
time synchronization’s accuracy in the order of seconds to minutes, the high-
speed signing class’ dependency is in the order of months to years and therefore
practically as independent as possible. Furthermore, high-speed signing provides
resistance to packet loss as each packet carries independent authentication infor-
mation. Table 4 provides a summary of the classes of data origin authentication
schemes.

Table 4. Summary of data origin authentication classes

A New Direction for Research on Data Origin Authentication 523

5 Discussion

As highlighted in this paper, each previously existing class of data origin authen-
tication schemes comprises a trade-off from a specific point of view. Secret-
asymmetry schemes trade-off information-theoretical security against collusion
resistance, which means that they protect against adversaries with unlimited
computational resources but are prone to fraudulent receivers who collaborate in
order to impersonate the sender. Deferred signing schemes trade-off online com-
putational resources against communication overhead and offline computational
resources. Signature propagation schemes trade-off computational efficiency and
communication overhead against packet loss resistance as they rely on the suc-
cessful reception of signature packets - from the moment a signature packet is
missing the receiver cannot authenticate any more packets. Signature disper-
sal schemes trade-off packet loss resistance against computational efficiency and
immediate signing and verification such that the sender and the receivers need to
wait before they can sign and verify packets, respectively, which is a drawback to
applications with real-time requirements. Time-based asymmetry schemes trade-
off computational efficiency and communication overhead against independency
of time synchronization and require a secure out-of-band channel for key distri-
bution. Hybrid asymmetry schemes trade-off computational efficiency against a
secure out-of-band channel for key distribution as well (and, by a smaller degree,
also against independency of time synchronization). The high-speed signing class,
on the other hand, provides all desired properties (except information-theoretical
security) without having to trade-off one against the other.

6 Conclusion

In this position paper, we tackled a fundamental challenge in secure group com-
munication – data origin authentication. We identified three basic approaches to
data origin authentication: extending symmetric schemes to data origin authenti-
cation, reducing the cost of conventional digital signature schemes, and designing
fast authentication schemes. For every approach, we investigated the associated
classes of data origin authentication schemes and showed that schemes from each
class comprise a trade-off from a specific point of view.

We introduced a new class of data origin authentication schemes, high-speed
signing, that follows the approach of designing fast authentication schemes.
This high-speed signing class employs a simple yet new approach to data ori-
gin authentication for group communication – signing every packet indepen-
dently with a high-performance digital signature scheme. Signing every packet
is commonly assumed to be impractical due to the high computational cost
of conventional digital signature schemes. We revised this assumption, how-
ever, as we showed that recently proposed high-performance digital signature
schemes are perfectly suitable as foundation to data origin authentication as
they achieve computational efficiency, low communication overhead, as well as
all other desired properties (besides information-theoretical security).

524 R. Annessi et al.

We hope that this position paper helps to avoid employing unsuitable data
origin authentication schemes in various fields in the future such as in time syn-
chronization [2], where a time-based asymmetry scheme is currently proposed in
standardization, or in Smart Grids [3,4], where a hybrid-asymmetry scheme and
reducing the computational cost of a conventional digital signature scheme have
been proposed just recently. Concluding, we argue that designing fast authen-
tication schemes for group communication is generally the right direction but
research should focus on high-speed digital signature schemes instead of other
classes in order to solve the problem of data origin authentication for secure
group communication.

References

1. Shirey, R.: Internet Security Glossary, Version 2. RFC 4949 (Informational). Inter-
net Engineering Task Force, August 2007. http://www.ietf.org/rfc/rfc4949.txt

2. Sibold, D., Roettger, S., Teichel, K.: Network Time Security. Internet-Draft draft-
IETF-NTP-network-time-security-15. IETF Secretariat, September 2016. https://
tools.ietf.org/html/draft-ietf-ntp-network-time-security-15. Accessed 08 Mar 2017

3. Law, Y.W., et al.: Comparative study of multicast authentication schemes with
application to wide-area measurement system. In: ACM SIGSAC Symposium on
Information, Computer and Communications Security, ASIACCS 2013, pp. 287–
298. ACM, NY (2013). https://doi.org/10.1145/2484313.2484349, ISBN 978-1-
4503-1767-2

4. Tesfay, T., Le Boudec, J.-Y.: Experimental comparison of multicast authentication
for wide area monitoring systems. IEEE Trans. Smart Grid 9, 4394–4404 (2017).
https://doi.org/10.1109/TSG.2017.2656067. ISSN 1949–3053, 1949–3061

5. Hardjono, T., Tsudik, G.: IP multicast security: issues and directions. Annales des
télécommunications 55(7–8), 324–340 (2000)

6. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

7. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196,
pp. 10–18. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-39568-7 2

8. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-
rithm (ECDSA). Int. J. Inf. Secur. 1(1), 36–63 (2001)

9. Katz, J.: Digital Signatures. Springer, Boston (2010). https://doi.org/10.1007/978-
0-387-27712-7. ISBN 978-0-387-27711-0, 978-0-387-27712-7

10. Steinwandt, R., Villányi, V.I.: A one-time signature using run-length encoding. Inf.
Process. Lett. 108(4), 179–185 (2008). https://doi.org/10.1016/j.ipl.2008.05.004.
ISSN 0020–0190

11. Challal, Y., Bettahar, H., Bouabdallah, A.: A taxonomy of multicast data ori-
gin authentication: issues and solutions. IEEE Commun. Surv. Tutor. 6(3), 34–57
(2004). https://doi.org/10.1109/COMST.2004.5342292. ISSN 1553–877X

12. Canetti, R., et al.: Multicast security: a taxonomy and some efficient constructions.
In: Eighteenth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, INFOCOM 1999, Vol. 2, pp. 708–716, March 1999. https://doi.org/
10.1109/INFCOM.1999.751457

13. Even, S., Goldreich, O., Micali, S.: On-line/off-line digital signatures. J. Cryptol.
9(1), 35–67 (1996)

http://www.ietf.org/rfc/rfc4949.txt
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-15
https://tools.ietf.org/html/draft-ietf-ntp-network-time-security-15
https://doi.org/10.1145/2484313.2484349
https://doi.org/10.1109/TSG.2017.2656067
https://doi.org/10.1007/3-540-39568-7_2
https://doi.org/10.1007/978-0-387-27712-7
https://doi.org/10.1007/978-0-387-27712-7
https://doi.org/10.1016/j.ipl.2008.05.004
https://doi.org/10.1109/COMST.2004.5342292
https://doi.org/10.1109/INFCOM.1999.751457
https://doi.org/10.1109/INFCOM.1999.751457

A New Direction for Research on Data Origin Authentication 525

14. Challal, Y., Bouabdallah, A., Hinard, Y.: RLH: receiver driven layered hash-
chaining for multicast data origin authentication. Comput. Commun. 28(7), 726–
740 (2005)

15. Tartary, C., Wang, H., Ling, S.: Authentication of digital streams. IEEE Trans.
Inf. Theory 57(9), 6285–6303 (2011). https://doi.org/10.1109/TIT.2011.2161960.
ISSN 0018–9448

16. Perrig, A., et al.: Efficient authentication and signing of multicast streams over
lossy channels. In: IEEE Symposium on Security and Privacy (S&P), pp. 56–73
(2000)

17. Perrig, A., et al.: Timed Efficient Stream Loss-Tolerant Authentication (TESLA):
Multicast Source Authentication Transform Introduction. RFC 4082 (Informa-
tional). Internet Engineering Task Force, June 2005. http://www.ietf.org/rfc/
rfc4082.txt

18. Wang, Q., et al.: Time valid one-time signature for time-critical multicast data
authentication. In: IEEE INFOCOM 2009, pp. 1233–1241, April 2009. https://
doi.org/10.1109/INFCOM.2009.5062037

19. Bernstein, D.J., et al.: High-speed high-security signatures. J. Cryptogr. Eng. 2(2),
77–89 (2012)

20. Gligoroski, D., et al.: MQQ-SIG. In: Chen, L., Yung, M., Zhu, L. (eds.) INTRUST
2011. LNCS, vol. 7222, pp. 184–203. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-32298-3 13

21. Faugère, J.-C., Gligoroski, D., Perret, L., Samardjiska, S., Thomae, E.: A
polynomial-time key-recovery attack on MQQ cryptosystems. In: Katz, J. (ed.)
PKC 2015. LNCS, vol. 9020, pp. 150–174. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-46447-2 7

https://doi.org/10.1109/TIT.2011.2161960
http://www.ietf.org/rfc/rfc4082.txt
http://www.ietf.org/rfc/rfc4082.txt
https://doi.org/10.1109/INFCOM.2009.5062037
https://doi.org/10.1109/INFCOM.2009.5062037
https://doi.org/10.1007/978-3-642-32298-3_13
https://doi.org/10.1007/978-3-642-32298-3_13
https://doi.org/10.1007/978-3-662-46447-2_7
https://doi.org/10.1007/978-3-662-46447-2_7

Modelling Traffic Analysis in Home
Automation Systems

Frederik Möllers1(B), Stephanie Vogelgesang2, Jochen Krüger1, Isao Echizen3,
and Christoph Sorge1

1 CISPA, Saarland Informatics Campus, Saarbrücken, Germany
frederik.moellers@uni-saarland.de

2 Ministry of Justice, Saarbrücken, Saarland, Germany
3 National Institute of Informatics, Tokyo, Japan

Abstract. The threat of attacks on Home Automation Systems (HASs)
is increasing. Research has shown that passive adversaries can detect user
habits and interactions. Despite encryption and other measures becoming
a standard, traffic analysis remains an unsolved problem. In this paper,
we show that existing solutions from different research areas cannot be
applied to this scenario. We establish a model for traffic analysis in Home
Automation Systems which allows the analysis and comparison of attacks
and countermeasures. We also take a look at legal aspects, highlighting
problem areas and recent developments.

1 Introduction

HASs are an emerging trend in consumer electronics. The benefits are promis-
ing: an increased comfort of living; savings on energy and resource consumption;
increased safety and security. However, HASs have been developed with a focus
on usability, energy efficiency and low cost. In addition to active attacks, adver-
saries can passively intercept communication using cheap, available hardware.
Smart homes can thus actually facilitate privacy breaches.

Encryption and other methods do not completely solve this problem. Traffic
analysis attacks disclose habits as well as presence or absence of users. In order to
counter this, dummy traffic can be generated by the system. However, generating
too much dummy traffic negatively affects the lifetime of battery-powered devices
and can exceed regulatory thresholds.

Our contributions in this paper are as follows:

– We establish system and attacker models for traffic analysis attacks in Home
Automation Systems. They allow modelling realistic attack scenarios such as
those shown in previous works and are extensible to account for new findings.

– We formulate privacy goals for Home Automation Systems using ideas from
the field of Private Information Retrieval. By building on established defini-
tions, we can leverage research that has been conducted in related fields.

– We illustrate the application of our definitions of privacy goals by examining
two approaches to dummy traffic.

c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 526–536, 2018.
https://doi.org/10.1007/978-3-030-02641-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-02641-7_27

Modelling Traffic Analysis in Home Automation Systems 527

– We sketch issues and current developments in the interaction between tech-
nology and legal frameworks (especially criminal law). We briefly describe
how technology and international law are intertwined and can work together
as a comprehensive concept for data protection.

2 Related Work

Research so far has tackled related problems in different scenarios. For HASs,
problems have been identified but no solutions have been proposed so far.

2.1 Wireless Sensor Networks

In both Wireless Sensor Networks (WSNs) and HASs, devices have little com-
putational power and communication is costly in terms of power consumption.
However, research on privacy in WSNs mainly focuses on location privacy [1–3]
instead of hiding the existence of communication.

Yang et al. have proposed a scheme employing constant-rate dummy traffic
generation which could be applied to systems not using multi-hop routing [4].
We examine such a scheme in Sect. 5.2. The authors also propose a scheme for
random dummy traffic generation requiring much less overall traffic [5], but this
introduces delays which are to be avoided in HASs. Furthermore, the behaviour
of the inhabitants might not conform to the distribution assumed in their work.

2.2 MIX Networks

Early approaches of dummy traffic generation [6] use constant-rate traffic, which
we examine in Sect. 5.2. More recently, there has been significant research on
traffic analysis in low-latency MIX networks [7]. Shmatikov and Wang [8] have
developed an approach which aims to find a balance between the amount of
dummy traffic and the success rate of traffic analysis attacks. Their approach
may be applicable to HAS networks with modifications, though their evaluation
is based on HTTP traffic samples. It is unclear how much of the approach can
be applied to HASs and whether the same goals can be achieved.

2.3 Differential Privacy

Definitions of Differential Privacy are used to develop techniques which provide
unobservability of events or user data. However, ε-Differential Privacy is a prop-
erty of a specific function [9]. In our scenario we do not know the informational
value of specific data points and we do not know which computations an attacker
will perform on captured traffic.

Dwork et al. have developed an approach to continuously monitor an event
source and count its events with the counter guaranteeing ε-Differential Privacy
even if its internal state is visible to the attacker at some point in time [10],
However, the guarantees do not necessarily apply to other functions.

528 F. Möllers et al.

2.4 Steganography and Covert Channels

Steganography can hide communication without generating any dummy traffic.
However, since there is no cover data available in HAS communication, many
steganography approaches cannot be applied to this setting. Hiding the traffic
among noise of a wireless channel has been investigated by Bash et al. [11]. It
is unclear whether approaches on higher layers of the network stack can either
exceed some fundamental limitations or achieve the same results at lower (man-
ufacturing or communication) costs. Furthermore, the approach was developed
for wireless networks and might not be applicable to wired systems.

2.5 Home Automation Systems

Möllers et al. have shown that unencrypted, wireless HAS communication leaks
automation rules and user habits to passive observers [12]. Mundt et al. have
shown that wired systems are also susceptible to the same eavesdropping attacks
[13]. Encryption and padding do not protect against statistical disclosure attacks,
as was shown by Möllers et al. [14]. Other authors have focused on other aspects
of security, for example confidentiality of information and access controls [15].

3 System and Attacker Model

In this section, we first list our assumptions and then describe the model.

3.1 Assumptions

System: Network Topology and Routing. We assume that the network
graph is a clique with respect to intended communication, i.e. no routing is
necessary. The reason behind this assumption is that routing introduces a set of
problems, but also opportunities which are already well understood.

System: Encryption. We assume that the HAS uses padding and encryption
for both message payloads and addressing information. The attacker cannot
break the encryption in reasonable time and is unable to learn information about
the sender, receiver or contents of a message. If state-of-the-art approaches are
applied correctly, this assumption is reasonable. Even though we do not know of
any system actually using both full packet encryption and padding, we consider
this to be an engineering problem rather than a research one.

Attacker: Mode of Operation. The attacker in our scenario is passive. No
active attacks such as traffic injection, node compromise or DoS are launched.

Traffic injection does not lead to a reaction by the system if encryption and
authentication are correctly implemented. Node compromise requires either the
presence of vulnerabilities in the nodes’ software or physical intervention by the
attacker. Denial of service attacks offer no benefit for the attacker (messages are
resent after the attack ends) and are detectable.

Modelling Traffic Analysis in Home Automation Systems 529

Attacker: Reception. The attacker has perfect reception as well as an accurate
clock. They are able to capture all traffic, do not suffer from reception errors
and can save the time at which a message was captured. Both experiments on
real-world installations of HASs [12,13] have proven this to be realistic.

Attacker: Limits. The attacker does not launch triangulation or device finger-
printing attacks [16]. These attacks require a considerable amount of effort from
the attacker and countermeasures are a separate area of research.

Attacker: Awareness and Knowledge. The attacker is aware of the underly-
ing algorithms of countermeasures, but does not know runtime information (e.g.
the internal state of PRNGs). We model privacy goals with respect to a given
set of tasks that the user might perform. These may differ vastly depending on
the setting, so any assumption reduces the utility of the model.

3.2 System Model

Communication packets from the HAS are observed by the adversary. According
to the assumptions, the only information available to the attacker is a set of
message timestamps (or fingerprints) F .

F = R ∪ E ∪ D (1)

where

– R is a set of regular messages. These can be from automation rules or reactions
to environmental events (e.g. temperature changes) and are of no particular
interest to the attacker.

– E is a set of interesting events such as direct user interaction (e.g. pressing a
light switch) or anything that is of particular interest to the attacker.

– D is a set of dummy messages carrying no information.

Messages from other use cases can be put into either group, depending on
the scenario. Events from remote user interaction (using an internet gateway)
can e.g. be put into R as they leak no information about user presence.

Any of the subsets can be empty. If the HAS consists of a single actuator with
a remote control (i.e. no automation rules), then R = ∅. If it consists of a single
temperature sensor periodically sending data to a base station, then E = ∅.

We assume that R ∩ E ∩ D = ∅. If the system supports multiple concurrent
channels and the channel does not leak information about a message’s contents,
the timestamps can be annotated with the channel ID.

3.3 Attacker Model

For a given capture interval [x, y] (x and y are timestamps), the attacker observes
the HAS’s output fx,y ⊆ F . If t(m) denotes the timestamp of message m,

fx,y = {m ∈ F |t(m) ≥ x ∧ t(m) ≤ y} (2)

530 F. Möllers et al.

We define all possible subsets f ⊆ F satisfying this condition as the Subsequence
Set S(F). Note that when modelling HASs, message timestamps follow a random
distribution, so S(F) is a set of random distributions (one for every possible
capture interval) rather than a set of sequences (or sets of concrete timestamps).

4 Privacy Goals

Toledo et al. have presented a model for information leakage in Private Infor-
mation Retrieval settings [17]. We formulate our definitions similar to theirs in
order to facilitate the development and analysis of countermeasures.

The majority of [17] is not applicable to our setting. In particular, we do
not have equivalents for (corrupted) databases/servers. We instead focus on the
user (Ut in [17]) and the adversary (A). Furthermore, our Subsequence Set S(F)
relates to the adversarial observation space (Ω): For a given time frame [x, y],
the observation space Ωx,y is the distribution fx,y ∈ S(F). An observation (O) is
a sample from this random distribution. Corresponding to the queries (Qi, Qj),
the attacker in the HAS scenario provides the user with two tasks Ti, Tj (e.g.
“Interact with the system during the time [x, y].”) of which the user randomly
chooses one to execute. The attacker then captures the HAS’s traffic (obtaining
a sample from the random distribution fx,y) and tries to identify the task.

We can thus formulate a notion of privacy in Home Automation Systems.

Definition 1. A Home Automation System provides (ε-δ)-private communica-
tion if there are constants ε ≥ 0 and 0 ≤ δ < 1, such that for any possible
adversary-provided tasks Ti, Tj and for all possible adversarial observations O
(being a particular random sample of the distribution fx,y ∈ S(F)) we have that

Pr(O|Ti) ≤ eε · Pr(O|Tj) + δ

We assume that timestamps are discrete. If they are continuous and fx,y ∈
S(F) is a density function, the same definition can be used by substituting the
probability for the value of the density function.

As in [17], if δ = 0 we call the stronger property ε-private communication.
Note that we require δ < 1. This only affects some cases where a particular
observation is certain for one task and impossible for another and prevents the
definition from being overly broad.

4.1 Indistinguishability and Unobservability

In practice, if the tasks can be arbitrary, the attacker may choose them to be
e.g. “Press the light switch for 10 times in 2 s.” and “Do not interact with the
system for 10 min”, producing distinguishable patterns. In order to account for
this, we define a slightly weaker property.

Definition 2. A Home Automation System provides (ε-δ)-indistinguishability
for a set of tasks T if there are constants ε ≥ 0 and 0 ≤ δ < 1, such that

Modelling Traffic Analysis in Home Automation Systems 531

for all tasks Ti, Tj ∈ T and for all possible adversarial observations O (being a
particular random sample of the distribution fx,y ∈ S(F)) we have that

Pr(O|Ti) ≤ eε · Pr(O|Tj) + δ

Probability density functions can also be used here for continuous times-
tamps. If δ = 0, we call the stronger property ε-indistinguishability.

(ε-δ)-indistinguishability is only defined for a limited set of tasks T. Some
tasks are theoretically possible, but unlikely to be encountered in practice. For
example, a system might be able to provide unobservability of the user pressing
a light switch twice within 10 min by making sure that there are always at least
two messages in every 10-min interval. While this does not fulfil the goal of (ε-
δ)-private communication, it covers much of the everyday activity and might be
more energy efficient than a system offering full (ε-δ)-private communication.

When considering real-world attack scenarios like the detection of user pres-
ence [14], the tasks provided by the attacker follow a particular pattern. Instead
of choosing two unrelated tasks, the attacker wants to extract a certain piece
of binary information from the captured data (such as “Did the user interact
with the system?”). In this case, the tasks Ti and Tj from the definition are
complementary: Tj = T̄i (i.e. if Ti is “Interact with the system.”, then Tj = T̄i

is “Do not interact with the system.”). Due to this being an important special
case of (ε-δ)-indistinguishability, we define a separate property:

Definition 3. A HAS provides (ε-δ)-unobservability of a set of tasks T if

∀T ∈ T : T̄ ∈ T

and the system provides (ε-δ)-indistinguishability for T.

If δ = 0 we call the stronger property ε-unobservability.
These definitions capture our models as well as real attacks [12–14]. Using

existing models of user behaviour, one can prove privacy guarantees of a dummy
traffic generation scheme.

5 Examples

For trivial approaches it is easy to see whether or not they fulfil the privacy
goals.

5.1 No Dummy Traffic

Möllers et al. have analysed a system which does not produce dummy traffic at
all [14]. They have shown that the system does not offer ε-unobservability for the
tasks “Interact with the system during a one-hour period.” and “Do not interact
with the system for one hour.” if the attacker knows certain thresholds.

532 F. Möllers et al.

In their experiment, the attacker was able to determine conditions which, if
met by the adversarial observation O, would reliably indicate user activity or
inactivity. If the predicates P (O) and A(O) denote these conditions, then

∀O : P (O) ⇒
Pr(O|“Interact with the system”) > 0 ∧ Pr(O|“Do not interact”) = 0
∀O : A(O) ⇒
Pr(O|“Interact with the system”) = 0 ∧ Pr(O|“Do not interact”) > 0

As �ε : eε · 0 > 0, the system does not offer ε-unobservability, ε-
indistinguishability or ε-private communication in general.

In their experiment, the probability of obtaining an adversarial observation
meeting the condition if the user performed the given task was less than 1. Thus,
the system may offer (ε-δ)-unobservability.

5.2 Constant-Rate (Dummy) Traffic

Next, we analyse the concept of Constant Rate (Dummy) Traffic. We assume
that the system is generating dummy traffic if (and only if) there are no genuine
messages to send. Time is divided into slots of fixed length. At the end of every
timeslot, either one genuine or one dummy message is transmitted.

Formally, if M is the set containing the ending time of each timeslot and
messages in R and E are delayed so that they only occur at the end of a timeslot
(R ⊆ M , E ⊆ M), then dummy traffic is generated by the system so that
D = M \ (R ∪ E).

By construction, the output of the system F = R ∪ E ∪ D = M is exactly
the same, no matter how the timestamps of genuine messages in R and E are
distributed. Thus, for any interval [x, y] the adversarial observation will be O =
M ∩[x, y], which is stochastically independent from the distributions of R and E.
Consequently, for any task T to be executed by the user, it holds that Pr(O|T) =
Pr(O) = 1. In conclusion, a system using constant-rate traffic provides (ε-δ)-
private communication with ε = δ = 0 (or (0-0)-private communication).

In practice, using Constant Rate Traffic poses a problem. In order to keep
the delay for user interaction reasonably low, the overall traffic rate must be
very high (i.e. ≥1 message per second). However, this can lead to the system
violating regulatory thresholds or draining the battery of connected devices.
In wired systems, this is generally not an issue. In a wireless setting, other
approaches which minimise the generated amount of traffic have to be evaluated.
The development of such a system is left for future work.

6 The Legal Framework

As with most topics in the field of security and privacy, technical protective
measures and the legal framework for prosecution of offenders are intertwined.
On the one hand, technical countermeasures make attacks more difficult. On the

Modelling Traffic Analysis in Home Automation Systems 533

other hand, an effective legal framework can even act as a deterrent to potential
offenders. In this context, we highlight problematic areas in legal frameworks
using the German Criminal Code as an example. We then present an interna-
tional effort aiming to improve the legal situation in over 50 countries.

6.1 Legal Challenges

The interception of traffic from HASs (or any other private network, for that
matter) can be considered “data theft”. However, the definition of theft in the
German Criminal Code (Sect. 242) only applies to chattels and not to incorporeal
data [18]. Even if the adversary actively intrudes and asserts control of the HAS,
the attack does not qualify as trespassing according to Sect. 123 of the German
Criminal Code. The law requires physical entry into a spatially delimited area
[19, Sect. 123, Recital 15].

These two cases show a fundamental problem with many legal frameworks:
Criminal law has been developed in times of limited technical prevalence.

6.2 Legal Reforms

In order to update the law and to keep up with new technical developments,
legislators have passed reforms. For the German Criminal Code, these are e.g.
Sect. 202a (Data espionage) and 202b (Data Interception). In our scenario,
Sect. 202b is to be applied. It punishes the illegal interception of data from a
non-public data processing facility or from the electromagnetic broadcast of a
data processing facility. While it can be argued that air is a broadcast medium
and that wireless transmissions are public by nature, the German Criminal Code
bases the definition on the intention of the sender.

As criminal law only applies to the respective country, a detailed examination
of the Section’s contents is outside the scope of this paper. However, Sects. 202a
and 202b are mere examples of a global development: By changing Sect. 202a
and introducing Sect. 202b in 2007, the German legislator has implemented the
Convention of Cybercrime of the Council of Europe. This guideline, also known
as the Budapest Convention, has been opened for signature in 2001 and has since
been ratified by over 50—European and non-European—countries.

The Budapest Convention is of dogmatic importance for cybercrime and has
ramifications on a global scale, especially in the following two areas.

Prosecution. Attacks involving computers (“Cyber Attacks”) often reach
across borders. National solo efforts to combat these are rarely promising.
Instead, a coordinated concept supported by as many countries as possible is
necessary.

Technical and Legal Terms. One part of this coordinated concept is a col-
lection of common terms. In this paper, we assume that the attacker can only

534 F. Möllers et al.

access traffic (meta-)data. The distinction between content and traffic (or meta-
) data is important for the legal framework and can be explicitly found in the
Budapest Convention. In Article 2 d), the convention states that

“traffic data” means any computer data relating to a communication by
means of a computer system, generated by a computer system that formed
a part in the chain of communication, indicating the communication’s
origin, destination, route, time, date, size, duration, or type of underlying
service.

Establishing common terms and ensuring consistent usage is not a trivial
task. For example, the German Telecommunications Act considers location data
for mobile devices to be traffic data, but this classification cannot be found in
the Budapest Convention.

It remains an open question whether the term data as used in Article 3 of the
Budapest Convention refers to both traffic and content data or only to content
data. Answering this question as well as problems resulting from this are beyond
the scope of this paper.1

6.3 Summary of the Legal Situation

The Budapest Convention contains regulations about criminal law. Certain
actions such as the illegal interception of data are to be penalised. This reveals
a central idea: Criminal law can be considered part of a comprehensive data
protection concept which aims to optimise both technical and legal aspects.

This understanding does not only hold for the German Criminal Code we
used as an example here. Instead, it holds for all countries which have signed
or ratified the treaty—implementing it in national law. The list of signatures2

does not only include major European countries such as France, the UK and
Italy. It also features many others such as Australia, Canada, Japan or the
USA. The questions sketched here regarding the relationship of technology (in
this context, especially Home Automation Technology) and criminal law are
therefore of international importance.

7 Conclusion

We have established a model for traffic analysis attacks in Home Automation
Systems, keeping assumptions general and adapting existing definitions. The
model is suitable for developing dummy traffic generation schemes not only for
Home Automation Systems, but for networks with similar properties as well.
The definitions ensure that privacy guarantees can be mathematically proven.

We have also shown how technology and attacks using it have forced legal
reforms and new laws that surpass national borders. The Budapest Convention
1 This especially holds for questions regarding data retention.
2 https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/185/

signatures, last accessed 10 July 2017.

https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/185/signatures
https://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/185/signatures

Modelling Traffic Analysis in Home Automation Systems 535

serves as an important step towards an internationally agreed understanding
of terms and necessary actions. While discrepancies between technology and the
laws governing it are unavoidable, we have shown that the two can work together
towards the goal of protecting people’s privacy.

References

1. Chan, H., Perrig, A.: Security and privacy in sensor networks. Computer 36(10),
103–105 (2003)

2. Conti, M., Willemsen, J., Crispo, B.: Providing source location privacy in wireless
sensor networks: a survey. IEEE Commun. Surv. Tutorials 15(3), 1238–1280 (2013)

3. Matos, A., Aguiar, R.L., Girao, J., Armknecht, F.: Toward dependable networking:
secure location and privacy at the link layer. IEEE Wirel. Commun. 15(5), 30–36
(2008)

4. Yang, Y., Shao, M., Zhu, S., Urgaonkar, B., Cao, G.: Towards event source unob-
servability with minimum network traffic in sensor networks. In: Proceedings of
WiSec 2008, pp. 77–88. ACM (2008)

5. Shao, M., Yang, Y., Zhu, S., Cao, G.: Towards statistically strong source anonymity
for sensor networks. ACM TOSN 9(3), 34:1–34:23 (2008)

6. Pfitzmann, A., Pfitzmann, B., Waidner, M.: ISDN-mixes: untraceable communica-
tion with very small bandwidth overhead. In: Effelsberg, W., Meuer, H.W., Müller,
G. (eds.) Kommunikation in verteilten Systemen. Informatik-Fachberichte, vol.
267, pp. 451–463. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-642-
76462-2 32

7. Levine, B.N., Reiter, M.K., Wang, C., Wright, M.: Timing attacks in low-latency
mix systems. In: Juels, A. (ed.) FC 2004. LNCS, vol. 3110, pp. 251–265. Springer,
Heidelberg (2004). https://doi.org/10.1007/978-3-540-27809-2 25

8. Shmatikov, V., Wang, M.-H.: Timing analysis in low-latency mix networks: attacks
and defenses. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006.
LNCS, vol. 4189, pp. 18–33. Springer, Heidelberg (2006). https://doi.org/10.1007/
11863908 2

9. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener,
I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006).
https://doi.org/10.1007/11787006 1

10. Dwork, C., Naor, M., Pitassi, T., Rothblum, G.N.: Differential privacy under con-
tinual observation. In: Proceedings of ACM STOC 2010, pp. 715–724. ACM (2010)

11. Bash, B.A., Goeckel, D., Guha, S., Towsley, D.: Hiding information in noise: fun-
damental limits of covert wireless communication. IEEE Commun. Mag. 53(12),
26–31 (2015)

12. Möllers, F., Seitz, S., Hellmann, A., Sorge, C.: Extrapolation and prediction of
user behaviour from wireless home automation communication. In: Proceedings of
WiSec 2014, pp. 195–200. ACM (2014)

13. Mundt, T., Dähn, A., Glock, H.W.: Forensic analysis of home automation systems.
In: HotPETs (2014)

14. Möllers, F., Sorge, C.: Deducing user presence from inter-message intervals in
home automation systems. In: Hoepman, J.-H., Katzenbeisser, S. (eds.) SEC 2016.
IAICT, vol. 471, pp. 369–383. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-33630-5 25

https://doi.org/10.1007/978-3-642-76462-2_32
https://doi.org/10.1007/978-3-642-76462-2_32
https://doi.org/10.1007/978-3-540-27809-2_25
https://doi.org/10.1007/11863908_2
https://doi.org/10.1007/11863908_2
https://doi.org/10.1007/11787006_1
https://doi.org/10.1007/978-3-319-33630-5_25
https://doi.org/10.1007/978-3-319-33630-5_25

536 F. Möllers et al.

15. Bergstrom, P., Driscoll, K., Kimball, J.: Making home automation communications
secure. Computer 34(10), 50–56 (2001)

16. Bratus, S., Cornelius, C., Kotz, D., Peebles, D.: Active behavioral fingerprinting
of wireless devices. In: Proceedings of WiSec 2008, pp. 56–61. ACM (2008)

17. Toledo, R.R., Danezis, G., Goldberg, I.: Lower-cost ε-private information retrieval.
Proc. Priv. Enhancing Technol. 4, 184–201 (2016)

18. Vogelgesang, S.: Datenspeicherung in modernen Fahrzeugen - wem “gehören” die
im Fahrzeug gespeicherten Daten? juris - Die Monatszeitschrift 3(1), 2–8 (2016)

19. Fischer, T.: Strafgesetzbuch: StGB. 64 edn. C.H.BECK (2017)

VisAuth: Authentication over a Visual
Channel Using an Embedded Image

Jack Sturgess(B) and Ivan Martinovic

Department of Computer Science, University of Oxford, Oxford, UK
{jack.sturgess,ivan.martinovic}@cs.ox.ac.uk

Abstract. Mobile payment systems are pervasive; their design is driven
by convenience and security. In this paper, we identify five common prob-
lems in existing systems: (i) specialist hardware requirements, (ii) no
reader-to-user authentication, (iii) use of invisible channels, (iv) depen-
dence on a client-server connection, and (v) no inherent fraud detection.
We then propose a novel system which overcomes these problems, so as
to mutually authenticate a user, a point-of-sale reader, and a verifier over
a visual channel, using an embedded image token to transport informa-
tion, while providing inherent unauthorised usage detection. We show
our system to be resilient against replay and tampering attacks.

1 Introduction

The popularity of cashless payments has risen sharply in recent years, surpass-
ing cash payments in some places [1]. Consumers moved from cash to cashless
payment cards primarily for convenience, not security—the first generation of
magnetic strip payment cards were authenticated with an easily-forged, hand-
written signature. These systems were widely replaced with Europay, Master-
Card, and Visa (EMV)1 payment card systems, protected by a chip and secret
personal identification number (PIN). The payment card is inserted into a spe-
cialist reader and the PIN is entered and verified by the chip to authenticate the
user and authorise the payment; more recent cards support contactless payments
using near field communication (NFC) between card and reader.

Attacks (e.g., [2,3]) on payment card systems and incidences of fraud con-
tinue to occur, so consumers move to new cashless systems with the promise of
greater security and convenience. Furthermore, carrying a dedicated payment
card is increasingly regarded as inconvenient [4], so newer systems integrate
directly with a device which the user would already be carrying, such as a
smartphone. Strong reasons for the widespread adoption of tap-and-pay sys-
tems include usability and security [5]. Tap-and-pay systems require the user to
install an app on a device and provision a payment card to a virtual wallet. In
Apple Pay2, a token is created for each card and stored in the device’s secure

1 www.emvco.com/about emvco.aspx (last accessed: June 2017).
2 www.apple.com/business/docs/iOS Security Guide.pdf (last accessed: June 2017).

c© Springer Nature Switzerland AG 2018
S. Capkun and S. S. M. Chow (Eds.): CANS 2017, LNCS 11261, pp. 537–546, 2018.
https://doi.org/10.1007/978-3-030-02641-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02641-7_28&domain=pdf
www.emvco.com/about_emvco.aspx
www.apple.com/business/docs/iOS_Security_Guide.pdf
https://doi.org/10.1007/978-3-030-02641-7_28

538 J. Sturgess and I. Martinovic

element; payments are made between the client and a compatible reader over
NFC, with the user authenticating to the app using TouchID (fingerprint) or a
passcode to authorise the payment. Android Pay3 and Samsung Pay4 are similar,
but all card data processing and tokenisation is handled on a cloud server (due
to the greater range of supported devices and their differing levels of security),
so the client must connect to the server regularly to acquire new tokens; this has
a negative impact on usability in areas where WiFi availability is poor.

It is difficult to prevent eavesdropping over invisible channels (e.g., [6,7]) and
limiting the range to reduce the risk is not reliable (e.g., [8,9]). Some systems
communicate over a visual channel between the client and reader, giving the user
more control over the broadcast, potentially making it difficult for an adversary
to intercept without being noticed. In Yoyo Wallet5, a virtual wallet is hosted on
a cloud server; the user authenticates to the app using a PIN, then a QR token
is passed between the client and a specialist reader to authorise a payment. Each
QR token may be used up to three times before the client needs to reconnect to
the server, meaning it is more connection-dependent than tap-and-pay systems.
Two similar systems, WeChat6 and AliPay7, both currently very popular in
China, support QR codes and barcodes to transfer information.

There is little compatibility between newer payment systems, and exclusion-
ary business models often mandate the use of specialist or dedicated point-of-sale
readers. Merchants struggle to accept them all, so brand loyalty and local trends
may factor into consumer decisions, detracting focus from security. Furthermore,
the physical presence of a specialist reader may give a false perception of trust
to a user that the reader is legitimate (a rogue reader could easily be dressed
to look genuine). Anti-phishing systems exist in other forms [10,11] and some
banking interfaces (e.g., DoubleSafe8) use a personalised greeting message to
authenticate to the user before requesting a PIN or password, but we are yet
to see this feature in point-of-sale readers—instead, we see measures such as
payment limits, which mitigate damage at the expense of usability. Purnomo et
al. [12] present a system where mutual authentication is achieved via a trusted
third party, however it requires a connection throughout.

None of the systems offer an inherent mechanism whereby unauthorised usage
is easily detected by the user, aside from manually checking the account balance.
Yoyo Wallet comes close: if an adversary were to expend the three uses of a stolen
QR token, it would become useless and so indicate a problem when the user next
tries to use it (unless the user is online, in which case the token will automatically
refresh before use).

3 support.google.com/androidpay (last accessed: June 2017).
4 www.samsung.com/us/support/answer/ANS00043790 (last accessed: June 2017).
5 www.yoyowallet.com/support.html (last accessed: June 2017).
6 pay.weixin.qq.com/index.php/public/wechatpay (last accessed: June 2017).
7 global.alipay.com/products/spot (last accessed: June 2017).
8 www.tangerine.ca/en/security (last accessed: Oct. 2017).

www.support.google.com/androidpay
www.samsung.com/us/support/answer/ANS00043790
www.yoyowallet.com/support.html
https://pay.weixin.qq.com/index.php/public/wechatpay
https://global.alipay.com/products/spot
www.tangerine.ca/en/security

VisAuth: Authentication over a Visual Channel Using an Embedded Image 539

In this paper, due to space limitations, we focus on popular, real world sys-
tems. We identify five common drawbacks in these systems and propose a new
mobile payment scheme with the goal of overcoming those drawbacks.

2 Objectives and Assumptions

Design Objectives. The purpose of our system is to authenticate a user to
a verifier using a client and via a point-of-sale reader to authorise a payment;
the system should also provide the following features to overcome the common
drawbacks identified in existing systems:

– No specialist hardware requirement.
– Mutual authentication: the system should authenticate the user to the verifier

via the reader; it should also authenticate the verifier and the reader to the
user before he authenticates to it, so as not to reveal secrets to a rogue reader.

– Visual channel: the system should operate over a visual channel between the
client and the reader.

– No client-to-verifier connection requirement.
– Unauthorised usage detection: the user should be told if an unauthorised user

has impersonated him, in a way that the intruder cannot avoid or erase.

System Model. The system consists of four components: a user (prover);
a client—i.e., a user device, such as a smartphone, with a camera, a screen,
and our app installed on it; a verifier, such as an authentication server, which
maintains a database of users’ cryptographic materials (see Sect. 3); and a point-
of-sale reader with a camera, a screen, and a means to enter a PIN (such as a
touchscreen).

During enrollment, we assume that there is a secure channel between the
client and the verifier over which they exchange cryptographic materials. The
user will choose a PIN and a personalised message; we assume the former can
be reset only by connecting with the verifier, whereas the latter can be changed
for freshness on the client at any time without connecting to the verifier.

During authentication, we assume that there is a visual channel between the
client and the reader, and a secure channel between the reader and the verifier.
The client captures the payment amount and embeds data into an image to
transfer it over the visual channel. For any given user, we assume that only one
authentication attempt may be active at a time; simultaneous attempts should
be rejected by the verifier. A visualisation of the system is shown in Fig. 1.

The system verifies three factors to authenticate the user: possession of the
client (something he has), verified by the data it embeds into the image, and
knowledge of the image and PIN (something he knows). It is recommended,
but not assumed, that the client require the user to authenticate to it using a
biometric, such as a fingerprint, to add a fourth factor (something he is).

540 J. Sturgess and I. Martinovic

Fig. 1. The system model. The client reads the payment amount (1), embeds the
amount, a message, and some authentication data into an image, and displays the
image to the reader (2), which sends it to the verifier (3). The verifier returns the
message (4), which authenticates it to the user (5), who then enters his PIN (6), which
authenticates him to the verifier (7).

Threat Model. We assume that the adversary can watch and modify commu-
nications between the user and the verifier, such as by deploying a rogue reader.
We assume that he knows everything about the user and may have access to any
of the images used—e.g., the user may have shared them on social media, with
or without embedded data.

The goal of the adversary is to impersonate a legitimate user and either
authorise or modify a payment without that user’s knowledge. In the first case,
the adversary is a rogue user who may attempt to perform a replay attack, by
re-using a previous image token to authorise a new payment. In the second case,
the adversary is a rogue merchant who may attempt to perform a tampering
attack, by using a rogue reader to authorise a payment for an amount different
to what is displayed by modifying the image token.

In this paper, we will not consider attacks on the client, such as physical
theft, cloning, or malware—these are all to be covered in future work. We also
do not consider attacks that take place during the enrollment phase, attacks on
the verifier, or denial-of-service attacks.

3 System Architecture

Cryptographic Materials. During enrollment, the verifier exchanges some
cryptographic materials with the client. It shares its public key, Ie, and its public
symmetric transposition key, M , used for embedding. It generates the user a
unique identifier, ID, and two secret block cipher keys9, K, L: K is used by the
client to encrypt data while embedding it into the cover-image; L is not shared
with the client. It also generates the user two blocks of secret binary data, p, u: p
is used to authenticate the client to the verifier and its size should be sufficiently

9 An authenticated encryption algorithm should be chosen, such as AES-EAX.

VisAuth: Authentication over a Visual Channel Using an Embedded Image 541

large to authenticate with confidence (e.g., 1,000 bits); u is used to update K
and p after each authentication and its size should be large enough to cover both.

The user chooses a secret PIN of memorable size (e.g., 4 digits); PIN is
stored on the verifier and {PIN}L is returned and stored on the client. The user
also chooses a personalised greeting message, m, used to authenticate the reader
and the verifier to the user; it need not be remembered, only recognised, but its
size should be bounded to fit on a reader’s screen (e.g., up to 40 characters).

A summary of the materials used in the system is shown in Table 1.

Table 1. A summary of the materials used in the system.

Stored on verifier Stored on client Purpose

ID � � Identifies user

Ie � � Verifier’s public key

Id � × Verifier’s private key

M � � Verifier’s public transposition key

K � � Secret key; used to encrypt a,m, p

L � × Secret key; used to encrypt PIN

p � � Authenticates client to verifier

u � � Updates K, p

H � � Hash function; modifies u

PIN � × Authenticates user to verifier

m × � Authenticates verifier and reader to user

a × × payment amount

Embedding Data. In this paper, we will restrict our attention to embedding
data in the spatial domain with a simple LSB-embedding algorithm. To embed
some data d into an image using a transposition cipher M , we apply M to the
image to rearrange its pixels, then we embed d into them sequentially; we denote
this by [d]M . After embedding, we recreate the image by inverting the rearrange-
ment. To extract d from the embedded image, we reapply the rearrangement.

To protect the confidentiality of the data as it passes over the visual channel,
we encrypt it before embedding it using some key k; we denote this by [{d}k]M .

To protect the integrity of the embedded data as it passes over the visual
channel, we strengthen the algorithm with repeat embedding. To do so, we choose
an odd number n > 1 and then embed {d}k into the image n times sequentially;
we denote this by [{d}nk]M . When extracting, we treat any discrepant bit as
having whichever value was extracted for it most frequently.

Image and Storage. To use the client, the user must authenticate to it by
selecting the correct cover-image from a set containing decoy images (benefi-
cially, this is more human-usable than recalling a password [13]). To prevent an

542 J. Sturgess and I. Martinovic

adversary from identifying the cover-image by metadata examination, we embed
junk data into the decoys whenever the cover-image is updated.

We will store ID and {PIN}L embedded in the cover-image, such that an
adversary with access to the client would need to identify it to find them. For
this embedding, we can either use M or define a local key. Other cryptographic
materials are stored securely within the client, using a secure element if available.

Unauthorised Usage Detection. After authentication, we update K and p
for freshness; this provides resistance to replay attacks by making each embedded
image good for only one use. To do so, we modify u using a hash function, H,
which (i) preserves the size of u and (ii) ensures that its future values are not
predictable; we use a to achieve the latter, since a is known to both the client
and the verifier at the time of hashing,

u = H(u‖a).

We then apply our new u as a stream cipher to update K and p,

{K, p} = u ⊕ {K, p}.

We do this on both the client and the verifier to keep the values synchronised.
By updating K and p after each authentication, we achieve inherent unau-

thorised usage detection. If an adversary were to successfully impersonate the
user, the K and p values on his client and the verifier would update, unavoid-
ably de-synchronising the user’s client’s K and p values from the verifier’s. The
system can be reset by exchanging new cryptographic materials with the verifier
over a secure channel. In the case of unauthorised usage, the verifier can identify
the last legitimate transaction by using the client’s value of u and recreating the
verifier’s current value of u, since the latter is the result of deterministic hashes
of the former with ordered payment values known to the verifier.

Enrollment Protocol. A secure channel is established between the client and
the verifier to register an account and exchange cryptographic materials, such
that the user can later authenticate. The protocol is shown in Fig. 2.

Steps 1–5. When the user registers an account, the verifier generates him a
new ID, K, L, p, and u and stores them. The verifier knows M , Ie, and Id and
has values set for n and H. The verifier sends Ie, M , ID, K, p, and u to the
client, which stores them.

Steps 6–12. The client prompts the user to choose PIN and m; it stores m,
sends PIN to the verifier, and gets {PIN}L back, which it stores.

Authentication Protocol. A visual channel between the client and the reader
and a secure channel between the reader and the verifier are required for the
system to achieve mutual authentication. For any given user, only one authen-
tication attempt may be active at a time. The protocol is shown in Fig. 3.

VisAuth: Authentication over a Visual Channel Using an Embedded Image 543

Fig. 2. The enrollment protocol.

Steps 1–6: User Authenticates to Client. The user authenticates to the client
by selecting the cover-image; the client extracts ID and {PIN}L. The reader
sends a to the verifier to initiate the transaction and displays a. The client
captures a using its camera and embeds [{ID}nIe , {PIN}nL, {a,m, p}nK]M into
the image to create the image token. The user may change m before embedding
the data, since the required keys are stored on the client.

Steps 7–11: Client Authenticates to Verifier. In a commitment scheme [14],
the user displays the image token to the reader, which sends it to the verifier.
Firstly, the verifier knows M and so extracts {ID}Ie , {PIN}L, and {a,m, p}K .
Secondly, it uses ID to look up K to decrypt a, m, and p. Thirdly, it verifies
that a and p match its expectations; this authenticates the client to the verifier.

Steps 12–14: Reader and Verifier Authenticate to User. The reader and ver-
ifier authenticate to the user (and confirm a) by displaying m on the reader.

Steps 15–18: User Authenticates to Verifier. The user enters PIN to the
reader, which sends it to the verifier. The verifier compares the entered PIN ,
the {PIN}L extracted from the image token, and its own stored version to
ensure that all three of them match; this authenticates the user to the verifier.

Steps 19–20: Client and Verifier Modify u and Update K and p. The verifier
modifies u using a hash function H(u‖a) and uses u to update its K and p values.
The client does likewise such that their respective values remain the same.

4 Discussion

The system provides real-time authentication and achieves its design objectives.
Firstly, it requires no specialist hardware: the reader needs only a camera, a

544 J. Sturgess and I. Martinovic

Fig. 3. The authentication protocol.

screen, and a touchscreen, which can be satisfied by any modern smartphone or
tablet, making it easily deployable. Secondly, the authentication protocol pro-
vides resistance to phishing attacks in the form of mutual authentication by
ensuring that the user authenticates to the client, the client to the verifier, the
reader and verifier to the user (before PIN needs to be revealed), and the user
to the verifier. The system authenticates the user to the verifier by transferring
information, embedded in an image token, over a visual channel, meaning that
it does not require a client-to-verifier connection nor the use of invisible chan-
nels, such as NFC, which risk interception. The user is informed of unauthorised
usage as an inherent part of the protocol. Furthermore, since the image token
contains the payment amount, the system does not only authenticate the user
(which might be misused), but also binds the amount to be authorised.

The system relies on the user in two ways. Firstly, it is conceivable that a poor
choice of cover-image weakens user-to-client authentication [15]; this reliance is
alleviated if a biometric is used to authenticate the user to the client. Secondly,
one benefit of using a visual channel over an invisible channel is that the user,
with reasonable care, has greater control over who or what can see the image
token; however, such care cannot be reasonably expected of all users.

VisAuth: Authentication over a Visual Channel Using an Embedded Image 545

For the replay attack, the adversary attempts to impersonate a legitimate user
to authorise a payment by replaying a captured image token that was previously
sent to the verifier. At the end of the transaction from which it was captured,
the data embedded in the image token became out-of-date. In order to update
it, the adversary would need to know K, p, u, and a. While the adversary may
know a, and then be able to determine K and p by brute force, u is not stored
in the image at all. To glean any useful knowledge of u by observing its effects
over time would require an impractical number of transactions. Therefore, the
system is resistant to replay attacks.

For the tampering attack, the adversary attempts to have a legitimate user
authorise a payment for a different amount a′ �= a by using a rogue reader to
modify the embedded data in the image token before sending it to the verifier.
At step 2 of the authentication protocol, the adversary sends a′ to the verifier
while displaying a to the user at step 3. At step 8, the adversary can extract
{a,m, p}K from the image since M is public; however, he would need to com-
promise the secret key, K, to change a or the attack will fail at step 11 when the
verifier decrypts and compares it with a′ from step 2. Assuming K is a strong,
authenticated encryption key, then it is unlikely that the adversary will be able
to compromise it in the short time available before the user becomes suspicious.
Therefore, the system is resistant to tampering attacks.

5 Conclusion and Future Work

Our system meets its design objectives by providing a novel means to mutually
authenticate a user, reader, and verifier over a visual channel without any spe-
cialist hardware nor a connection between client and verifier; it is resistant to
replay and tampering attacks and offers inherent and unavoidable unauthorised
usage detection. It makes use of three factors in a convenient manner: a device
which would be carried anyway, a chosen image familiar to the user, and a PIN.

In future work, we intend to investigate attacks on the client, including phys-
ical theft, cloning, and malware. We note that PIN is not stored on the client,
meaning that the system provides some resistance to indiscriminate malware
infections; the adversary would need to observe the user entering PIN sepa-
rately in each case, increasing the work required in such an attack. We also plan
to run user studies to better understand user requirements, such as acceptable
transaction durations and system intuitiveness, and to study in greater detail
the technical constraints of using an embedded image, such as allowable noise
and the use of gridlines to handle rotation.

References

1. British Retail Consortium: Debit Cards Overtake Cash to Become Number One
Payment Method in the UK (2017)

2. Bond, M., Choudary, O., Murdoch, S.J., Skorobogatov, S., Anderson, R.: Chip
and skim: cloning EMV cards with the pre-play attack. In: IEEE Symposium on
Security and Privacy (SP) (2014)

546 J. Sturgess and I. Martinovic

3. Emms, M., Arief, B., Freitas, L., Hannon, J., van Moorsel, A.: Harvesting high
value foreign currency transactions from EMV contactless credit cards without
the PIN. In: ACM Conference on Computer and Communications Security (CCS)
(2014)

4. Jupiter Research. Integrated Handsets: Balancing Device Functionality with Con-
sumer Desires (2005)

5. Huh, J.H., Verma, S., Rayala, S.S.V., Bobba, R.B., Beznosov, K., Kim, H.: I Don’t
Use Apple Pay because it’s less secure...: perception of security and usability in
mobile tap-and-pay. In: Proceedings of the Workshop on Usable Security (USEC)
(2017)

6. Murdoch, S.J., Drimer, S., Anderson, R., Bond, M.: Chip and PIN is broken. In:
IEEE Symposium on Security and Privacy (SP) (2010)

7. Francis, L., Hancke, G., Mayes, K., Markantonakis, K.: On the security issues of
NFC enabled mobile phones. Int. J. Internet Technol. Secur. Trans. 2, 336–356
(2010)

8. Kortvedt, H., Mjolsnes, S.: Eavesdropping near field communication. In: The Nor-
wegian Information Security Conference (NISK) (2009)

9. Diakos, T.P., Briffa, J.A., Brown, T.W.C., Wesemeyer, S.: Eavesdropping near-field
contactless payments: a quantitative analysis. J. Eng. 2013, 48–54 (2013)

10. Schechter, S.E., Dhamija, R., Ozment, A., Fischer, I.: The Emperor’s new security
indicators. In: IEEE Symposium on Security and Privacy (2007)

11. Marforio, C., Masti, R.J, Soriente, C., Kostiainen, K., Čapkun, S.: Evaluation of
personalized security indicators as an anti-phishing mechanism for smartphone
applications. In: CHI Conference on Human Factors in Computing Systems, pp.
540–551 (2016)

12. Purnomo, A.T., Gondokaryono, Y.S., Kim, C.-S.: Mutual authentication in secur-
ing mobile payment system using encrypted QR code based on public key infras-
tructure. In: IEEE 6th International Conference on System Engineering and Tech-
nology (ICSET) (2016)

13. Biddle, R., Chiasson, S., Oorschot, P.C.: Graphical passwords: learning from the
first twelve years. ACM Comput. Surv. (CSULR) 44, 19 (2012)

14. Brassard, G., Chaum, D., Crepeau, C.: Minimum disclosure proofs of knowledge.
J. Comput. Syst. Sci. 37, 156–189 (1988)

15. Davis, D., Monrose, F., Reiter, M.K.: On user choice in graphical password
schemes. In: USENIX Security Symposium 13, p. 11 (2004)

Author Index

Annessi, Robert 515
Antonioli, Daniele 415
Aono, Yoshinori 93
Armknecht, Frederik 482
Ashur, Tomer 347
Asoni, Daniele E. 250

Becerra, José 27
Bellare, Mihir 3
Bultel, Xavier 203

Chakraborty, Suvradip 493
Chinaei, Mohammad Hossein 436
Chu, Xiaobo 325
Cui, Hui 504

Delvaux, Jeroen 347
Demmler, Daniel 71
Desmedt, Yvo 470

Echizen, Isao 526
Everts, Maarten H. 135

Fabini, Joachim 515
Feng, Dengguo 325
Feng, Wei 325

Gelernter, Nethanel 390
Gu, Dawu 373

Hamacher, Kay 71
Herzberg, Amir 390
Hitz, Samuel 250

Iovino, Vincenzo 27

Jäschke, Angela 482
Jonker, Willem 135

Katz, Jonathan 115
Kiayias, Aggelos 299
Krenn, Stephan 179
Krüger, Jochen 526

Lafourcade, Pascal 203
Lee, Sanghan 347
Leibowitz, Hemi 390
Li, Juanru 373
Liu, Jing 161
Liu, Ziwen 325
Lorünser, Thomas 179

Maene, Pieter 347
Maffei, Matteo 51, 115
Malavolta, Giulio 115
Malluhi, Qutaibah 470
Marin, Eduard 347
Martinovic, Ivan 537
Mastan, Indra Deep 277
Mitrokotsa, Aikaterini 161
Möllers, Frederik 526

Niemietz, Marcus 229
Nikova, Svetla 347

O’Neill, Adam 3
Ostrev, Dimiter 27
Ostry, Diethelm 436

Pagnin, Elena 161
Pandurangan, Chandrasekaran 459
Patsonakis, Christos 299
Paul, Arinjita 459
Paul, Souradyuti 277
Perrig, Adrian 250
Peter, Andreas 135
Phong, Le Trieu 93
Preneel, Bart 347
Punekar, Mayur 470

Qin, Baodong 504
Qin, Yu 325

Rangan, Chandrasekaran Pandu 493
Rao, Y. Sreenivasa 493
Reinert, Manuel 51
Reparaz, Oscar 347

Roussopoulos, Mema 299
Rožić, Vladimir 347

Šala, Petra 27
Salzer, Anja 179
Samari, Katerina 299
Schneider, Thomas 71
Schröder, Dominique 51, 115
Schwenk, Jörg 229
Sharmila Deva Selvi, S. 459
Siby, Sandra 415
Singelée, Dave 347
Sivaraman, Vijay 436
Škrobot, Marjan 27
Sorge, Christoph 526
Stammler, Sebastian 71
Stepanovs, Igors 3
Striecks, Christoph 179
Sturgess, Jack 537

Tippenhauer, Nils Ole 415

van de Kamp, Tim 135
Vogelgesang, Stephanie 526

Wang, Hui 373
Wang, Lihua 93
Wang, Yongee 470

Yang, Bohan 347

Zhang, Qi 373
Zhang, Yuanyuan 373
Zhao, Qinglan 504
Zhao, Shijun 325
Zheng, Dong 504
Zseby, Tanja 515

548 Author Index

	Preface
	Organization
	Invited Talks (Abstracts)
	Hardware-Assisted Security: From PUF to SGX
	Identity-Based Encryption from Standard Assumptions (or the Unexpected Virtue of Garbled Circuits)
	Contents
	Foundation of Applied Cryptography
	Forward-Security Under Continual Leakage
	1 Introduction
	2 Preliminaries
	3 Forward Security Under Continual Leakage
	4 FUFCL signatures from UFCL signatures
	5 A Unified Paradigm for Constructing FS+CL Schemes
	References

	Tightly-Secure PAK(E)
	1 Introduction
	1.1 PAKE Protocols
	1.2 Security Models and Reductions for PAKE
	1.3 Online Dictionary Attacks
	1.4 The PAK Protocol
	1.5 Our Contribution
	1.6 Organization of the Paper

	2 Preliminaries
	2.1 Notation
	2.2 Cryptographic Building Blocks
	2.3 Cryptographic Hardness Assumptions

	3 The PAK Protocol
	3.1 Protocol Description
	3.2 Instantiating the Protocol over Gap Diffie-Hellman Groups

	4 Model
	5 Proof of Security
	6 Conclusion
	A Terminology from the Original Proof of PAK
	B Hash Function Simulation
	References

	Processing Encrypted Data
	On the Security of Frequency-Hiding Order-Preserving Encryption
	1 Introduction
	2 Order-Preserving Encryption
	2.1 Security Definitions

	3 Kerschbaum's Construction
	4 An Attack on Kerschbaum's FH-OPE Scheme
	4.1 A Simple Attack
	4.2 Understanding the Problem
	4.3 Generalizing the Attack in an Ideal Setting

	5 Impossibility of IND-FA-OCPA
	6 An Achievable Definition: IND-FA-OCPA*
	6.1 Augmented OPE Model
	6.2 The New Definition IND-FA-OCPA*

	7 Constructing Augmented OPE
	7.1 Formal Guarantees

	8 Conclusion
	References

	Privacy-Preserving Whole-Genome Variant Queries
	1 Introduction
	1.1 Our Contributions
	1.2 Deployment Setting
	1.3 Related Work in Genomic Privacy

	2 Preliminaries
	2.1 Secure Multi-Party Computation (SMPC)
	2.2 Related Privacy-Preserving Technologies

	3 Genetic Variant Queries on Distributed Databases
	3.1 Beacon Network and Potential Extensions
	3.2 Genomic Variant Representation Format
	3.3 Queries

	4 Our Protocol for Private Genome Variant Queries
	4.1 Protocol Description
	4.2 Security Considerations

	5 Implementation
	5.1 The ABY Framework
	5.2 Boolean Circuit Design
	5.3 Limitations of Our Approach

	6 SMPC Benchmarks
	6.1 Variant Query Performance
	6.2 Count Performance
	6.3 Conclusions from the Benchmarks

	7 Summary
	References

	A New Secure Matrix Multiplication from Ring-LWE
	1 Introduction
	2 Related Works
	2.1 Preliminary
	2.2 WHAP Secure Inner Product Based on Ring-LWE-Based PHE
	2.3 DMY Approach for Secure MMC from Ring-LWE-Based PHE

	3 Our Secure MMC Based on the WHAP Secure Inner Product from a Ring-LWE-Based PHE Scheme
	3.1 Shifting Under Encrypted Form and Transpose Properties on R
	3.2 Our New Packing Method for Secure MMC
	3.3 Our Secure MMC

	4 Evaluation and Application
	5 Concluding Remarks
	A Correctness of Theorem 2
	References

	Predicate Encryption
	Subset Predicate Encryption and Its Applications
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Preliminaries
	3.1 Bilinear Maps
	3.2 Complexity Assumptions

	4 SubsetPredicateEncryption
	4.1 Generic Instantiations

	5 Our Constructions
	5.1 First Scheme
	5.2 Second Scheme

	6 Generic Transformations
	References

	Multi-client Predicate-Only Encryption for Conjunctive Equality Tests
	1 Introduction
	1.1 Motivating Use Cases
	1.2 Related Work

	2 Preliminaries
	2.1 Primitives and Assumptions

	3 Multi-client Predicate-Only Encryption
	3.1 Security

	4 Our Construction
	4.1 Correctness
	4.2 Security
	4.3 Extension Allowing Wildcards
	4.4 Efficiency

	5 Implementation and Evaluation
	6 Conclusion
	A Security Proofs
	A.1 Selective Plaintext and Adaptive Predicate Security
	A.2 Chosen-Plaintext Security

	References

	Credentials and Authentication
	Revisiting Yasuda et al.'s Biometric Authentication Protocol: Are You Private Enough?
	1 Introduction
	1.1 Background and Related Work
	1.2 Our Contributions

	2 Preliminaries
	3 Combining the BFR and the SHE Schemes
	3.1 The Ring Range Problem
	3.2 Our BFR +SHE Scheme
	3.3 Correctness Analysis

	4 Improving the Yasuda et al. Protocol
	4.1 Security Analysis of the Proposed BAP
	4.2 Efficiency Analysis

	5 A Flawed Approach
	5.1 The Attack

	6 Conclusions
	A Details in the Correctness Analysis
	References

	Towards Attribute-Based Credentials in the Cloud
	1 Introduction
	2 Preliminaries
	3 Encrypted Attribute-Based Credentials
	4 A Generic Construction
	5 A Concrete Instantiation
	6 Extensions
	6.1 Metadata Privacy

	7 Benchmarks
	8 Conclusion
	A Proof of Theorem4.3
	References

	Unlinkable and Strongly Accountable Sanitizable Signatures from Verifiable Ring Signatures
	1 Introduction
	2 Cryptographic Tools
	3 Formal Model of Verifiable Ring Signatures
	4 Formal Model of Sanitizable Signature
	5 An Efficient Verifiable Ring Signature: EVeR
	6 Our Unlinkable Sanitizable Signature Scheme: GUSS
	7 Conclusion
	A Algorithms Complexity
	References

	Web Security
	Out of the Dark: UI Redressing and Trustworthy Events
	1 Introduction
	2 UI Redressing
	3 Events in Web Applications
	4 DOM Property IsTrusted
	5 Trustworthy Scenarios
	5.1 Pop-Up Scenario
	5.2 Clipboard Scenario
	5.3 Drag-and-Drop Scenario

	6 New UIR Attack Variants
	6.1 Optimized Drag-and-Drop Attack
	6.2 Multiple Pop-Up Attack
	6.3 Hijacking Clipboard Data

	7 Defenses Discussion
	8 Related Work
	9 Conclusions
	References

	A Paged Domain Name System for Query Privacy
	1 Introduction
	1.1 Overview

	2 Design
	2.1 Threat Model
	2.2 Page Structure
	2.3 Resolving a Name
	2.4 Keeping Pages Updated

	3 Privacy and Security Analysis
	3.1 Replication
	3.2 Identifiability
	3.3 Results
	3.4 Security Against Active Attacks

	4 Evaluation
	4.1 Cost of Maintaining the PageDNS
	4.2 Memory Overhead for Resolvers
	4.3 Prototype Implementation

	5 Related Work
	6 Conclusions
	A Replication Function
	B Page-Size Variance
	References

	Bitcoin and Blockchain
	A New Approach to Deanonymization of Unreachable Bitcoin Nodes
	1 Introduction
	2 Background
	2.1 Bitcoin Network
	2.2 The Onion Router (Tor)

	3 Peer-Representations and Sessions
	4 A New Form of Deanonymization: Linking the Sessions
	4.1 Step 1: Extracting the Block-ids
	4.2 Step 2: Linking Consecutive Sessions
	4.3 Step 3: Linking All Sessions

	5 Experiments
	6 Countermeasure
	7 Conclusion
	A Peer Representation and Session
	B Correctness of Algorithm1
	B.1 Background
	B.2 On the Correctness of Algorithm1

	C Determining Threshold th
	References

	Towards a Smart Contract-Based, Decentralized, Public-Key Infrastructure
	1 Introduction
	2 Related Work
	3 Public-State Accumulator
	3.1 Definition of a Public-State, Additive, Universal Accumulator
	3.2 Construction

	4 Defining a Naming Service Functionality
	5 Naming Service Implementation
	A Proof of Theorem2
	References

	Embedded System Security
	Secure Code Updates for Smart Embedded Devices Based on PUFs
	1 Introduction
	2 Background and Preliminaries
	2.1 Security Threats of Code Update
	2.2 Proofs of Secure Erasure (PoSE)
	2.3 Physically Unclonable Function and Reverse Fuzzy Extractor

	3 Secure Code Update Based on PUF
	3.1 System Requirements and Adversary Model
	3.2 Update Protocol
	3.3 Analysis

	4 Implementation and Performance Considerations
	5 Related Work
	6 Conclusion
	References

	A Privacy-Preserving Device Tracking System Using a Low-Power Wide-Area Network
	1 Introduction
	2 Related Work
	3 Threat Model and Assumptions
	4 Design
	4.1 System Model
	4.2 Design Requirements
	4.3 Protocol
	4.4 PUF-Based Key Generation

	5 Implementation
	5.1 Tag
	5.2 Application Server
	5.3 User Terminal

	6 Analysis
	6.1 Security and Privacy
	6.2 Side-Channel Security

	7 Evaluation
	7.1 Latency
	7.2 Power and Energy
	7.3 SRAM PUF
	7.4 ASIC

	8 Conclusion
	References

	Anonymous and Virtual Private Networks
	Oh-Pwn-VPN! Security Analysis of OpenVPN-Based Android Apps
	1 Introduction
	2 Background
	2.1 OpenVPN Security Mechanisms
	2.2 OpenVPN on Android

	3 Attacking OpenVPN Apps
	3.1 Adversary Model
	3.2 Vulnerabilities and Attacks

	4 Methodology
	4.1 OpenVPN Identification
	4.2 Profile Collection
	4.3 Security Assessment

	5 Result and Security Analysis
	5.1 Insecure Encryption
	5.2 Weak Authentication
	5.3 Unprotected Management Interface

	6 Recommendations
	7 Related Work
	8 Conclusion
	References

	Two Cents for Strong Anonymity: The Anonymous Post-office Protocol
	1 Introduction
	2 Model and Preliminaries
	2.1 System Model
	2.2 Adversary Model

	3 High-Level Overview
	4 Anti-tagging Defenses
	4.1 Timestamps, Anti-duplication, and Anti-tampering
	4.2 Bad Server Isolation

	5 Handling Disconnections
	5.1 Request-Pool
	5.2 Anonymity of Disconnecting Senders

	6 Analysis
	6.1 Informal Anonymity Notions
	6.2 Anonymity Properties

	7 Mobile Environments
	7.1 Saving Energy with Lazy Pulling
	7.2 Evaluating Energy Consumption

	8 Implementation and Evaluation
	8.1 Implementation
	8.2 Evaluation in the Cloud
	8.3 Costs Evaluation

	9 Related Work
	10 Conclusions and Future Work
	A Probability of Compromised Channel
	B AnonPoP and Vuvuzela
	References

	Wireless and Physical Layer Security
	Practical Evaluation of Passive COTS Eavesdropping in 802.11b/n/ac WLAN
	1 Introduction
	2 Background
	2.1 The Fading Wireless Channel
	2.2 IEEE 802.11 Standard (WLAN)
	2.3 Wireless Communications Metrics

	3 Passive 802.11 Downlink Eavesdropping
	3.1 System and Attacker Model
	3.2 SISO and MISO Channels Eavesdropping
	3.3 Eavesdropper's Theoretical SNR Disadvantage in 802.11n/ac
	3.4 Numerical Path Loss Analysis
	3.5 Eavesdropping Analysis Summary

	4 Experimental Validation
	4.1 Experimental Methodology
	4.2 Comparison Between 802.11b/n/ac Networks
	4.3 Bob vs. Eve in 802.11n/ac
	4.4 Eve's PER and PER Thresholds
	4.5 Eve with Two COTS Radios in 802.11n
	4.6 Summary of 802.11b/n/ac Experiments

	5 Related Work
	6 Conclusions
	A Appendix
	References

	A Novel Algorithm for Secret Key Generation in Passive Backscatter Communication Systems
	1 Introduction
	2 Basic System Architecture
	2.1 System Model
	2.2 Asymmetric Channel Measurements
	2.3 Quantisation Process
	2.4 Security Considerations

	3 Evaluation and Analysis
	3.1 Evaluation
	3.2 Analysis

	4 Enhanced Algorithm for Secret Key Generation
	4.1 Reader–Side Enhanced Algorithm
	4.2 Tag–Side Enhanced Algorithm

	5 Conclusion
	References

	Short Papers
	A Provably-Secure Unidirectional Proxy Re-encryption Scheme Without Pairing in the Random Oracle Model
	1 Introduction
	2 Analysis of a PRE Scheme by Chow et al. chow
	2.1 Review of the Scheme
	2.2 Weakness in the Security Proof of Chow et al.
	2.3 Fixing the Flaw

	3 A Unidirectional Proxy Re-encryption Scheme
	3.1 Correctness
	3.2 Security Proof

	4 Efficiency Comparison
	5 Conclusion
	References

	Computational Aspects of Ideal (t, n)-Threshold Scheme of Chen, Laing, and Martin
	1 Introduction
	2 Background
	2.1 Shamir's Scheme
	2.2 Karnin, Greene, and Hellman Scheme
	2.3 Chen, Laing, and Martin Scheme

	3 Analysis of CLM Scheme
	4 Computational Approaches for Inverse of G in CLM Scheme
	4.1 Precompute Inverse
	4.2 Computing Inverse on the Fly
	4.3 Computing only the First Column of the Inverse

	5 Applications
	6 Conclusion
	References

	(Finite) Field Work: Choosing the Best Encoding of Numbers for FHE Computation
	1 Introduction
	2 Related Work
	3 Formula for Computing Carry Values over Zp
	4 The Effort of Computing the Carry
	5 Cost Analysis for Encrypted Natural Numbers
	5.1 The Cost of Adding Two Natural Numbers
	5.2 The Cost of Multiplying Two Natural Numbers

	6 Using GF(pk) as Encoding Base
	7 Rational Numbers and Integers
	7.1 Representing Rational Numbers by Scaling
	7.2 Encoding Integers

	References

	An Efficient Attribute-Based Authenticated Key Exchange Protocol
	1 Introduction
	1.1 Our Contribution

	2 Background
	3 Attribute-Based Signcryption
	3.1 Proposed ABSC Scheme

	4 Attribute-Based Authenticated Key Exchange
	4.1 Security Model for Attribute-Based Authenticated Key Exchange
	4.2 Proposed ABAKE Protocol
	4.3 Security Analysis of Proposed ABAKE Protocol

	5 Conclusion
	References

	Server-Aided Revocable Attribute-Based Encryption Resilient to Decryption Key Exposure
	1 Introduction
	1.1 Our Contribution

	2 Framework and Security Model
	2.1 Framework
	2.2 Security Model

	3 Server-Aided Revocable CP-ABE with DKE Resistance
	3.1 The Construction
	3.2 Security Analysis
	3.3 Comparison

	4 Conclusion
	References

	A New Direction for Research on Data Origin Authentication in Group Communication
	1 Introduction
	2 Background
	3 Data Origin Authentication Schemes
	3.1 Extending Symmetric Schemes for Data Origin Authentication
	3.2 Reducing the Cost of Conventional Signature Schemes
	3.3 Designing Faster Authentication Schemes

	4 High-Speed Signing
	5 Discussion
	6 Conclusion
	References

	Modelling Traffic Analysis in Home Automation Systems
	1 Introduction
	2 Related Work
	2.1 Wireless Sensor Networks
	2.2 MIX Networks
	2.3 Differential Privacy
	2.4 Steganography and Covert Channels
	2.5 Home Automation Systems

	3 System and Attacker Model
	3.1 Assumptions
	3.2 System Model
	3.3 Attacker Model

	4 Privacy Goals
	4.1 Indistinguishability and Unobservability

	5 Examples
	5.1 No Dummy Traffic
	5.2 Constant-Rate (Dummy) Traffic

	6 The Legal Framework
	6.1 Legal Challenges
	6.2 Legal Reforms
	6.3 Summary of the Legal Situation

	7 Conclusion
	References

	VisAuth: Authentication over a Visual Channel Using an Embedded Image
	1 Introduction
	2 Objectives and Assumptions
	3 System Architecture
	4 Discussion
	5 Conclusion and Future Work
	References

	Author Index

