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12.1  �Introduction to Biological Networks

The biology of organisms is complex and driven by the interplay of genes, proteins, 
small molecules, metabolites, and nucleic acids. To understand the biological sys-
tem, it is important to interpret these interactions. As the genetic code suggests, 
DNA is transcribed to RNA, and then RNA is translated to proteins (Fig. 12.1), 
depending on the coding potential of mRNAs. The fundamental objective of sys-
tems biology is to comprehend the complete biological system by elucidating the 
behavior of all components and their interactions.

Over the years, the huge volume of data has been generated by various high-
throughput techniques like next-generation sequencing, microarrays, and mass 
spectrometry to understand the molecular mechanism behind specific diseased 
state. These techniques provide the expression profiles of proteins and other genomic 
information for a biological system in one or the other format. However, interpreta-
tion of this complex and multidimensional data is a great challenge. In this chapter, 
we tried to elaborate on the data types from such high-throughput technologies, 
giving details about the methodologies and software to extract valuable and legible 
information from such complex data. Network analysis can be one of the promising 
approaches to address this issue and understand the biology behind the myriad of 
mechanisms and biological processes.

Fig. 12.1  The central dogma of biology. DNA is transcribed to RNA, and RNA is translated to 
proteins, which are the protagonist in biological systems
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12.2  �Types of Biological Networks

Biological networks are the mathematical representation of interactions between 
different types of molecules in a biological system. There are different types of 
biological networks as described below.

12.2.1  �Protein-Protein Interaction Networks (PPIN)

The most important biochemical molecule in the organism is DNA, which stores the 
genetic information. The central dogma quotes that information from DNA is trans-
ferred to RNA and then from RNA to proteins (Fig.  12.1). However, the theory 
quoted by Beadle and Tatum (Beadle and Tatum 1941) about one gene-one enzyme-
one function theory has come a long way. Now the biological processes are more 
complex, where proteins serve as the major molecule guiding a specific biological 
pathway. Proteins are long chains of amino acids, which are folded in a particular 
configuration. It is this specific configuration that enables a protein to physically 
interact with other proteins to form protein complexes and serve in downstream 
processes. Since proteins play a principal role in determining the molecular mecha-
nisms and cellular responses, understanding the protein interaction networks is 
becoming a salient subject in research. Compiling the dense omics data from high-
throughput techniques into meaningful biological networks is important to under-
stand the cellular functions in a normal and diseased condition of the organism. This 
knowledge can further be translated into effective diagnostic strategies.

The reason behind the formation of protein complexes is still enigmatic. Proteins 
are folded in a specific configuration, which allows them to interact with other pro-
teins via domains. Protein domains are the small conserved sequence of amino 
acids. These domains can function independently of the chain of protein and inter-
act with other proteins to trigger biochemical processes like posttranslational modi-
fication, e.g., phosphorylation, glycosylation, etc. In one way, functional domains 
bind to other domains via protein interfaces to initiate a cellular response, e.g., 
interaction between Ras and its GTPase activating protein Ras-GAP, leading to a 
signaling process (Bader et  al. 2008). Such type of interaction has high binding 
affinity and stability in lower volumes. In another way, domains bind to a stretch of 
amino acid sequence (3–10 in length) called motifs, present in the disordered region 
of a protein. For example, PDZ domain binds to C-terminus motifs of interacting 
proteins. The folds in the protein tertiary structure create active sites or catalytic 
domains, which interact with other proteins having similar conformations to initiate 
an enzymatic reaction (an induced-fit model). This model was proposed to be a 
lock-and-key model (Alberts et al. 2002), where the enzyme and substrate physi-
cally interact with each other to stimulate a biochemical reaction. Further, protein 
interactions in cell signaling pathways help in understanding cellular transports and 
interconnected modules in a biological process, e.g., p53 pathway.

12  Biological Networks: Tools, Methods, and Analysis
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12.2.1.1  �Structure of Protein-Protein Interaction (PPI) Networks

PPI network is an organization of functional modules that comprises of a set of 
proteins having similar functions. The biological process can be interpreted as a 
modular network where proteins in a module are densely connected with each other 
sharing a similar function. Proteins are represented as “nodes” in the PPIN. Some 
proteins in the network have more interactions than other proteins, and these are 
called hubs. These nodes have very few interactions outside the module (Yook et al. 
2004). PPIN are scale-free networks (Albert 2005). Hubs play a centralized role in 
scale-free networks and are classified as “party hubs” and “date hubs” (Han et al. 
2004). Party hubs function inside the module and bind to interacting partners simul-
taneously, while date hubs bridge different modules and bind to interacting partners 
in different time and locations.

Network topology includes modularity and hub-oriented structure. There are 
four elements which define network topologies: (i) average degree (K) which can be 
calculated as degree distribution P(k), (ii) clustering coefficient (C) calculated as 
degree distribution of cluster coefficients C(k), (iii) average path length (L) calcu-
lated as shortest path distribution SP(i), and (iv) diameter (D) calculated as topologi-
cal coefficient distribution TC(k). This concept is further explained in the chapter.

To understand the biochemical networks in a particular species, condition, or 
biological state, scientists are trying to merge the expression data from the myriad 
of experimental and computational techniques with the existing networks. For 
example, when expression data of each phase of yeast cell cycle was merged with 
PPIN in yeast cell cycle, most proteins were expressed continuously and found in 
the PPIN in each cell cycle, but there were some proteins which are expressed in a 
specific cell cycle phase and thus present in a PPIN of that phase (Batada et  al. 
2006). This is how computational algorithms are making the understanding of bio-
logical systems in different conditions (species, diseases, drug treatments) much 
easier than in earlier times. We can translate these results into therapeutic advance-
ments in biomedical science.

12.2.2  �Disease-Gene Interaction Networks

A disease is caused by the malfunctioning of any crucial biomolecule of an organ-
ism which can be a gene, protein, metabolite, or some unwanted genetic interac-
tions, leading to the structural and functional aberration in the organisms. The 
genes, proteins, and other cellular components carry out their biological function in 
a complex network. With the advent of genomic sequencing and large-scale pro-
teomics techniques, abundant genetic information is now available to build interac-
tomes (biological networks). These biological networks help in understanding the 
pathophysiology of a specific disease and lead to a better understanding of the dis-
ease pharmacokinetics. Also, new disease-specific genes are identified which play 
an important role in disease prognosis.

B. A. Bhat et al.
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12.2.2.1  �Structure of Disease-Gene Interaction Networks

The important property of molecular networks is that they are dynamic. These net-
works change with space and time to adapt to different biological conditions. Hence 
this property of networks can be used to identify disease progression and also prog-
nostic pathways specific for that disease.

Infection or disease progression occurs mainly due to molecular interactions. 
During host-pathogen interactions, host proteins interact with pathogen’s proteins 
to initiate aberrated pathways. Such networks help researchers in understanding the 
mechanisms by which pathogens can attack the hosts. These networks are scale-free 
following the power law.

Recently, a research on human disease network (Goh et  al. 2007) has given 
insight on how diseases are connected to each other through genes associated with 
them. The diseases are connected to their genes in which the associated mutation 
was found. This network is called “diseasome.” One genetic mutation can be associ-
ated with several diseases. This resulted in a bipartite graph.

Diseases are also connected to each other if they have a common linked gene 
with a mutation, thus leading to human disease network (HDN). Genes are also con-
nected to each other if they are found in the same disorder, thus resulting in disease-
gene network (DGN) (Fig. 12.2).

12.2.3  �Metabolic Networks

Metabolism is a complex association of metabolic reactions involving substrate, prod-
ucts, molecules, compounds, and cofactors. In general, metabolic reactions are revers-
ible reactions, and they interact with each other, i.e., a product of one reaction can be the 
reactant of other reaction. The network of these metabolic reactions is called a meta-
bolic network. An example of the metabolic network is the glycolysis process in humans.

12.2.3.1  �Structure of Metabolic Networks

Metabolic pathways consist of enzymes, main substances, and co-substances. Main 
substances are metabolites, and co-substances are molecules like ATP, NADPH, etc., 
which help in transferring electrons. Metabolic networks have unique properties dif-
ferent from other networks because of (a) conservation constraints at each node and 
(b) the representation where nodes are metabolites and links are reactions catalyzed 
by specific gene products. This representation is very different from PPIN, where 
nodes are gene products and links are interactions. Also, a node in the metabolic 
network cannot be deleted by genetic techniques but links. A node in PPIN can be 
deleted using different molecular techniques, but it can result in a lethal phenotype. 
Metabolic networks have flux distribution with average path length longer, and their 
functional state does not have scale-free characteristics (Arita 2004).

12  Biological Networks: Tools, Methods, and Analysis
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The metabolic networks can be of three types:

	(a)	 Simplified metabolic network: A network of enzymes, reactions, and main sub-
stances but not co-substances (Fig. 12.3).

	(b)	 Simplified metabolite network: A network of metabolites only. This kind of net-
work is not always directed, and the metabolites are not directly connected to 
each other, but such type of interaction can be obtained from correlation analy-
sis (Fig. 12.4).

	(c)	 Enzyme network: A network of enzymes only. This kind of network can be 
obtained from PPIN (Fig. 12.5).

Fig. 12.2  (a) Human disease network (HDN): Different types of disease nodes are connected to 
each other if they share a common mutated gene. (b) The diseasome: The set of diseases are con-
nected to the associated mutation in a gene. Genes are green in color while disease nodes are in 
orange color. (c) The disease gene network (DGN): The genes are connected to each other if they 
are associated with the same disorder
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Fig. 12.3  Simplified 
metabolic network. The 
circles represent 
metabolites and the 
triangles are enzymes

Fig. 12.4  Simplified 
metabolite network. The 
circles represent the 
metabolites

Fig. 12.5  Enzyme 
network. The triangles 
represent the enzymes
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12.2.4  �Gene Regulatory Networks

Gene regulation is the control of gene expression and thus the synthesis of proteins 
at transcription as well as translational level. The biological system is hardwired by 
the explicitly defined gene regulatory codes that control transcription as well as 
translation of the gene in a spatial and temporal manner. These control systems con-
sist of transcription factors (TFs), signaling molecules, microRNAs, long noncoding 
RNAs, and epigenetic modulators. The molecules like TFs are cis-regulatory mod-
ules, which control the expression of the neighboring gene. Small RNAs like miR-
NAs control protein synthesis at the translation levels. Epigenetic modulators control 
the protein activity. Such kind of association of genes with its regulatory elements 
forms a gene regulatory network (GRN). GRNs include feedback, feed-forward, and 
cross-regulatory loops which define the regulation of gene at various levels.

12.2.4.1  �Structure of Gene Regulatory Network

GRNs consist of many sub-circuits like signal transduction sub-circuit, metabolic 
reaction sub-circuit, and protein-protein interaction sub-circuits. Also, there can be 
a sub-circuit where TFs can regulate the expression of regulatory molecules like 
miRNAs. These sub-circuits connect to each other along with gene regulatory mol-
ecules to design a GRN.

GRNs are used to study the rationale behind the differential expressed genes in 
various diseased states and also help drug designing. An example of GRN is depicted 
in Fig.  12.6 where TFs are regulating the genes, which are in turn regulated by 
miRNAs.

12.2.5  �Gene Co-expression Networks

A gene co-expression network is a kind of undirected graph where nodes (genes) 
are linked to each other on the basis of similarity in expression patterns (co-
expression) under various experimental conditions. Gene co-expression network 

gene

miRNA

TF

Fig. 12.6  Gene regulatory 
network
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analysis helps in the simultaneous identification and grouping of genes with similar 
expression profiles. This analysis is of biological importance because co-expressed 
genes are regulated by the same transcription factors, functionally related or 
involved in same biological pathway(s). This kind of networks is built using expres-
sion data generated from high-throughput techniques such as microarray and 
RNA-Seq.

The co-expression network construction involves two steps:

	1.	 Co-expression/expression relatedness measure calculation
	2.	 Significant threshold selection

12.2.5.1  �Co-expression Measure Calculation

The expression values of a gene for different samples are generally log2 transformed 
before co-expression measure calculation in order to scale the values to the same 
dynamic range. The following are four measures used for co-expression measure 
(Weirauch 2011) calculation between genes:

•	 Pearson’s correlation coefficient: This measure is widely used for calculating 
expression similarity among genes for gene co-expression network construction. 
It gauges the inclination of two vectors to increment or abatement together, ren-
dering a measure of their general relationship. Its value varies from −1 to 1 
where absolute values near to 1 represent strong correlation. The positive values 
represent positive correlation, i.e., activation mechanism where a gene expres-
sion value is directly proportional to the expression value of other co-expressed 
gene and vice versa. When the relation between expression values of co-
expressed genes is inverse, it represents the inhibition mechanism, and they will 
have negative correlation value. Assuming linear correlation, normally distrib-
uted values and being sensitive to outliers are some of the drawbacks of the 
Pearson correlation measure.

•	 Mutual Information: It describes nonlinear relations between genes, which mea-
sure the similarity between two genes based on their relations with other genes.

•	 Spearman’s rank correlation coefficient: It is the nonparametric version of 
Pearson’s correlation which is calculated for the ranks of gene expression values 
in a gene expression matrix.

•	 Euclidean distance: To calculate the geometric distance between gene pairs, both 
positive and negative expression values are considered. It is not suitable when the 
absolute expression values of related genes are highly varying.

12.2.5.2  �Threshold Selection

After calculating co-expression measures between all pairs of genes, a cutoff is 
imposed for selecting the gene pairs that should be connected in the network. 
Several methods can be used for selecting a threshold for gene co-expression 
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network construction, for example, weighted gene co-expression network analy-
sis (WGCNA) package which follows a power-law distribution approach for 
threshold selection.

12.2.5.3  �WGCNA (Weighted Gene Co-expression Network Analysis)

It is a systems biology approach, which illustrates the correlation gene patterns 
across a series of microarray samples. It has been widely used in the genomic appli-
cations. It can be used to define modules of highly correlated genes, for summariz-
ing such modules based on intra-modular hub genes and for calculating module 
membership for network nodes, i.e., genes, to study the relationships between co-
expressed genes and external sample traits. It can also be used to compare the net-
work topology of different networks. WGCNA (Langfelder and Horvath 2008) can 
be used as:

	1.	 Data reduction technique
	2.	 Clustering method
	3.	 Feature selection method
	4.	 Framework for integrating genomic data based on expression value.

The WGCNA pipeline is shown in Fig. 12.7.

Fig. 12.7  WGCNA pipeline

B. A. Bhat et al.
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12.3  �Network Measures

A complex biological system can be considered as networks wherein components 
within a complex system can be represented as nodes and are connected through 
their interactions, also known as edges. It enables analysis of the network’s topol-
ogy, which gives insight into molecular mechanism operating within a cell under 
given condition. Network topology considers knowledge about the global and local 
properties of the network. Graph-theoretic network analysis can be used to measure 
the topological properties quantitatively (Ma’ayan 2011). Centrality indices are one 
of the measures which tell about the important nodes or edges, for the connectivity 
or the information flow within the network. The following are some of the centrality 
measures which can be calculated to define local properties of a network:

	1.	 Degree centrality: It tells about the number of links for each node. The nodes 
with the highest degree may act as a hub, regulating multiple other nodes in the 
network.

	2.	 Node betweenness centrality: It tells about the number of shortest paths between 
all possible pairs of nodes. The nodes with high betweenness centrality lie on 
communication paths and can control information flow.

	3.	 Closeness centrality: It is the average shortest path from one node to all other 
nodes. It estimates how fast the flow of information would be through a given 
node to other nodes.

	4.	 Eigenvector centrality: It accesses the closeness to highly connected nodes.
	5.	 Edge betweenness centrality: It is the number of shortest paths that go through 

an edge among all possible shortest paths between all the pairs of nodes.

The following are some of the global properties of a network:

	1.	 Degree distribution: It is the probability distribution of degrees over the whole 
network. For most of the biological networks, this distribution follows power-
law, giving scale-free architecture to the network. It makes network stable and 
robust to random failures.

	2.	 Characteristic path length: It represents the average shortest path between all 
pairs of nodes.

	3.	 Clustering coefficient: It is the local density of interactions by measuring the 
connectivity of neighbors for each node averaged over the entire network. It 
demonstrates the tendency of the nodes to cluster together. High clustering coef-
ficient means the presence of communities in a network. The communities are 
very important in the biological network as they represent functional modules or 
protein complexes working together to achieve a biological process.

12  Biological Networks: Tools, Methods, and Analysis
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12.4  �Gene Ontology

The gene ontology is a cooperative attempt to bring together a consolidated descrip-
tion of gene and gene product for all organisms. It can be a promising approach to 
decipher key components from complex biological networks and helps in organiz-
ing the biological networks in a meaningful way to improve performance and bio-
logical interpretability.

Comparative genomics has apparently shown that a vast portion of the genes 
specifying the major biological functions are common to all organisms. Information 
of the biological role of such common proteins in one organism can often be 
exchanged with other organisms. The objective of the Gene Ontology Consortium 
is to deliver a dynamic, controlled vocabulary that can be connected to all organisms 
even as information of gene and protein roles in cells is gathering and evolving. The 
undertaking started in 1998 as a coordinated effort between three model organism 
databases, the FlyBase (Drosophila), the Saccharomyces Genome Database (SGD), 
and the Mouse Genome Database (MGD). The GO Consortium (GOC) has since 
developed to join numerous databases, including a few of the world’s significant 
vaults for the plant, animals, and microbial genomes (Reference Genome Group of 
the Gene Ontology Consortium 2009).

There are three separate aspects to this effort:

	1.	 The development and maintenance of the ontologies themselves
	2.	 The annotation of gene products, which entails making associations between the 

ontologies and the genes and gene products in the collaborating databases
	3.	 The development of tools that facilitate the creation, maintenance and use of 

ontologies

The GO project has created three organized ontologies that associate gene prod-
ucts with their biological processes, cellular components, and molecular functions 
in a species-independent manner (Botstein et al. 2000).

•	 Cellular component: The location in the cell where a gene product is functional. 
In most of the situation, annotations connecting gene product with cellular com-
ponent types are made on the basis of a direct observation of an instance of the 
cellular component in a microscope. Cellular component incorporates terms like 
“ribosome” or “proteasome,” specifying where different gene products would be 
found.

•	 Molecular function: A molecular function term is an enduring potential of a gene 
product to act in a certain way or in other words the biochemical activity (includ-
ing specific binding to ligands or structures) of a gene product. This definition 
likewise applies to the ability that a gene product conveys as a potential. It por-
trays just what is done without indicating where or when the occasion really 
happens. For example, glucose transport, regulation of cell death, etc.

B. A. Bhat et al.
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•	 Biological process: It defines what the gene or gene product contributes. A pro-
cess is defined by means of at least one requested gathering of molecular func-
tions for example, “cell growth and maintenance”, “signal transduction”, “cAMP 
biosynthesis”, etc.

Gene ontology (GO) has a graph-like structure where GO terms are nodes and 
relationships among them are links between nodes. The structure is loosely hierar-
chical having a parent-child relationship between nodes. Child node terms are more 
specialized than their parent node terms, but a child may have more than one parent 
term. For example, “integral component of external side of plasma membrane” is a 
child of the “integral component of plasma membrane” and “intrinsic component of 
external side of plasma membrane” (Fig. 12.8).

GO terms are designed with a unique identifier and term name, for example, 
GO:0015758~ glucose transport. The unique identifier is a zero-padded seven-digit 
identifier prefixed by “GO:”. The link between two nodes represents the relation-
ship between them. For example, in Fig. 12.9, GO term “GO:1900117” has two 
types of relationship with parent nodes, i.e., “is a” and “regulates” which means 
GO:1900117 is a kind of regulation of apoptotic process (GO:0042981) and it regu-
lates execution phase of apoptosis (GO:0097194).

The ontologies are dynamic, as in they exist as a network that is changed as more 
data gathers yet have adequate uniqueness and accuracy with the goal that databases 
in light of the ontologies can consequently be refreshed as the ontologies develop. 
The ontologies are adaptable in another way, so they can reflect the numerous 
distinctions in the biology of the assorted life forms, such as the breakdown of the 
nucleus during mitosis. The GO vocabulary is intended to be species-impartial and 
incorporates terms relevant to prokaryotes and eukaryotes and single and multicel-
lular organisms.

Fig. 12.8  Relationship between GO terms

12  Biological Networks: Tools, Methods, and Analysis
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12.4.1  �Applications of Gene Ontology

The gene ontology annotation is most widely utilized for deciphering large-scale 
“omics” data. Gene ontology enrichment analysis is one of the uses of GO annota-
tion which helps in finding the significant clusters of genes associated with biologi-
cal processes and thus reduce the bulk amount of data to the much smaller number 
of biological function getting altered under different experimental conditions.

12.5  �GO Annotation

GO annotation is a link between the gene product and what that gene product can 
do, which molecular and biological processes it adds to, and where in the cell it is 
functioning. The GO annotation focuses on the identification of functional activities 
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of a gene or a protein. GO annotation is principally divided into two parts: first, a 
link between the gene product and a representative GO term and second is an evi-
dence to establish that link (Weirauch 2011). The annotation data in the GO data-
base is contributed by members of the GO Consortium (GOC); more than 15 major 
contributing groups are actively working for GOC (Blake 2013). GOC is a dynamic 
ontology-based resource that contains the most updated and exhaustive set of anno-
tations available in the literature. Keen utilization of GO annotation assures the best 
result in advancing biological research. GO annotation process follows a basic 
three-step paradigm in which:

	1.	 Relevant experimental data is being identified from the biomedical literature.
	2.	 Correlation of gene product with GO terms.
	3.	 Finally, annotation quality control and refinement process are employed to 

ensure that the annotation has a correct formal structure.

GO annotation data file provided to GOC consists of 15 columns (Fig. 12.10). To 
fully comprehend the GO annotation file, a few important terms are worth to 
discuss:

Fig. 12.10  Annotation format provided by the GO consortium
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An annotation is a process of assigning GO terms to the gene product. These 
assignments are made based on the conclusion drawn from experiments.

A gene product is an output generated from RNA or protein molecule that has 
some defined role in the biology of an organism.

A molecular function encompasses activities of a gene product such as catalytic 
or binding activities, influencing at the molecular level.

A biological process is a recognized sequence of molecular events performed by 
one or more ordered assemblies of molecular functions. For example, the progres-
sion of the brain development over time would be an instance of the biological func-
tion brain development.

A cellular component is a part of a cell where a gene product is active.
Curation is the formulation of annotation on the basis of the gene and gene prod-

uct information from experimental observations.
An evidence code is a three-letter code that specifies the type of evidence identified 

from literature to support the association between gene and gene product. There are 
21 (Hill et al. 2008) evidence (Table 12.1) codes classified broadly into five groups.

Table 12.1  Evidence codes classification

Category Evidence codes

Experimental Evidence codes: 
literature cited indicates that there is 
evidence from an experiment directly 
supporting an association between 
gene and gene product

Inferred from Experiment (EXP)
Inferred from Direct Assay (IDA)
Inferred from Physical Interaction (IPI)
Inferred from Mutant Phenotype (IMP)
Inferred from Genetic Interaction (IGI)
Inferred from Expression Pattern (IEP)

Computational Analysis evidence 
codes: literature cited contains 
observations from in silico analysis

Inferred from Sequence or structural Similarity (ISS)
Inferred from Sequence Orthology (ISO)
Inferred from Sequence Alignment (ISA)
Inferred from Sequence Model (ISM)
Inferred from Genomic Context (IGC)
Inferred from Biological aspect of Ancestor (IBA)
Inferred from Biological aspect of Descendant (IBD)
Inferred from Key Residues (IKR)
Inferred from Rapid Divergence(IRD)
Inferred from Reviewed Computational Analysis 
(RCA)

Author statement evidence codes: 
annotation was made on the basis of 
declarations made by the author(s) in 
the literature

Traceable Author Statement (TAS)
Non-traceable Author Statement (NAS)

Curator statement evidence codes: 
when annotation does not support any 
direct evidence

Inferred by Curator (IC)
No biological Data available (ND) evidence code

Electronic Annotation evidence code: 
specifies that annotation was assigned 
by automated methods, without curator

Inferred from Electronic Annotation (IEA)

B. A. Bhat et al.



271

12.5.1  �Utilities for GO Annotation

The gene ontology (GO) provides core biological knowledge representation for 
modern biologists, whether computationally or experimentally based. It has become 
an extremely useful tool for the analysis of OMICS data and structuring of biologi-
cal knowledge. With the aim of high-quality annotation and easy access to GO 
annotation database, a number of online tools are available, such as QuickGO (Binns 
et  al. 2009), which have been developed at the EBI, and AmiGO (Carbon et  al. 
2008), which is developed by the GO Consortium.

12.5.1.1  �Viewing GO Terms Using QuickGO

A responsive web-based tool that allows easy access to GO annotation. QuickGO 
can be queried online at https://www.ebi.ac.uk/QuickGO/ or can be downloaded 
freely from http://www.ebi.ac.uk/QuickGO/installation.html.

The QuickGO home page (Fig. 12.11) provides a query box (Fig. 12.11 (A)) to 
start searching for GO annotation. QuickGO takes a wide range of gene identifiers 
and symbol for annotation retrieval, for example, NCBI Gene IDs, RefSeq acces-
sions, Ensembl Ids, UniProtKB accessions, InterPro IDs, Enzyme Commission 
(EC) numbers, and GO IDs.

A search for the keyword “apoptosis” retrieves all terms where “apoptosis” is 
present in the term name and gene product (Fig. 12.12). Here search term “apopto-
sis” is underlined in red color, and matched terms are shown in green color.

Fig. 12.11  QuickGO home page
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Fig. 12.12  QuickGO: search for keyword “apoptosis”

Clicking on the GO term (e.g., GO:0097194) redirect user to Term Information 
Page (Fig. 12.13), providing complete information for the selected GO term.

12.5.1.2  �Viewing GO Terms Using AmiGO

AmiGO is another web-based application provided by the Gene Ontology 
Consortium for identification and visualization of GO terms related to genes. 
AmiGO can be accessed from GOC (http://amigo.geneontology.org) or can be 
downloaded (http://sourceforge.net/projects/geneontology/) to use as the stand-
alone application.
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The AmiGO home page (Fig. 12.14a) provides a search box (Fig. 12.14a (A)) to 
start searching for GO annotation. AmiGO takes a wide range of gene identifiers and 
symbol for GO annotation retrieval. Search keyword “apoptosis” is used to retrieve 
all terms where “apoptosis” is present in the GO terms, GO annotation, and gene 
products (Fig. 12.14b).

Clicking on “Ontology” will return all GO IDs containing “apoptosis” keyword 
in gene ontology term, synonym, or GO definition (Fig. 12.15).

Fig. 12.13  QuickGO: GO term information page view
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12.5.1.3  �The Database for Annotation, Visualization, and Integrated 
Discovery (DAVID)

DAVID (Huang et al. 2008) provides a comprehensive set of functional annotation 
tools for investigators to comprehend the biological meaning behind large list of 
gene/protein lists generated from a variety of high-throughput genomic experi-
ments. In this tutorial, given a list of differentially expressed genes, we will use 
DAVID to identify the enriched GO terms, such that we can have a clue on the role 
of genes played in the underlying biological processes.

Fig. 12.14  AmiGO home page and “apoptosis” keyword search page
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Fig. 12.15  AmiGO: Ontology term information page

Perform Function Annotation Test

	(a)	 Open the server DAVID 6.8 (https://david.ncifcrf.gov/).
	(b)	 Click “Start Analysis” tab (A) as shown in Fig. 12.16.
	(c)	 Submit a gene list to DAVID using input interface (Fig.  12.17). Paste the 

Affymetrix_geneID list from (A) to the text box (B), or load a text file contain-
ing gene IDs using browse option (C). Select the appropriate gene identifier 
type for input gene IDs using (D). User can also convert gene IDs to other for-
mats using DAVID “Gene ID conversion” tool (E). Specify input IDs as gene 
list (i.e., genes to be analyzed) or as background genes (i.e., gene population 
background) at (F). Finally, click “Submit” (G).

	(d)	 After job submission, the progress bar at the top shows job progress. If >20% of 
gene_identifiers are ambiguous or unrecognized, user will be redirected auto-
matically to “DAVID Gene ID Conversion Tool” Fig. 12.18 (D). Implicitly, the 
background is set up to the species that contain majority of genes in the user’s 
input list (Fig. 12.18 (B)). User can change background using “Background” 
section as in Fig. 12.18 (A). Run “Functional Annotation chart” (Fig. 12.18 (C)) 
for functional enrichment analysis and biological knowledge base selection.

	(e)	 Now user needs to input what type of functional annotations are required. For 
this purpose, the user needs to deselect the “Check Defaults” tab in Fig. 12.19 
(A). Then select the GOTERM_BP_FAT (Fig. 12.19 (C)), which is the sum-
marized version of Biological Processes in the GO, by clicking (+) sign as in 
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Fig. 12.17  Gene list submission page to DAVID

Fig. 12.16  The DAVID 6.8 home page
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Fig. 12.18  Webpage to access various analytic tools/modules available in DAVID

Fig. 12.19  Layout of DAVID “Functional Annotation Chart”
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Fig. 12.19 (B). User can try other annotation categories, for example, classify-
ing genes based on pathways using KEGG database, gene-gene interactions 
identification using BIOGRID database, domain identification, etc.

	(f)	 Click on “Functional annotation chart” button (Fig. 12.19 (D)); a window will 
be prompted to show the results of functional enrichment test. This statistical 
test identifies the significantly enriched terms in GOTERM_BP_FAT 
knowledgebase (Fig. 12.20 (B)). Each row represents an enriched functional 
term (Fig. 12.20 (C)) and is ordered by their significance level; the smaller the 
score (Fig. 12.20 (D)), the better is the result. User can download the complete 
annotation file from Fig. 12.20 (A).

When to and Why Use DAVID?

High-throughput techniques like next-generation sequencing and mass spectrome-
try generate a huge amount of data, which finally yield gene identifiers.

The gene identifier table can be of various types:

•	 If data is generated from RNA sequencing or MS experiments, these gene identi-
fiers are linked to respective expression values in a particular condition. These 
expression values can be as FPKM or RPKM units.

Fig. 12.20  DAVID: Functional annotation chart
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•	 These genes need to be classified according to their molecular functions, biologi-
cal processes, and cellular locations to identify the major pathways operating in 
a particular biological condition (e.g., diseased state in which sequencing was 
performed). Such classification or grouping of genes is called gene enrichment. 
Genes are also clustered based on their functional annotation. Such functional 
clustering is essential to identify genes having similar functions. Such kind of 
functional annotation and clustering can be performed using DAVID.

•	 Data generated from exome sequencing have gene identifiers linked to respective 
variant information (e.g., in a diseased state).

•	 This gene set has to functionally annotate to predict the role of respective vari-
ants associated. Also, clustering of genes will recognize the genes with polymor-
phisms, belonging to similar molecular functions. This will give new leads 
toward building hypothesis on disease pathogenesis.

12.5.1.4  �STRING

STRING (Szklarczyk et al. 2016) is a web-based tool for making protein-protein 
interaction networks.

Create a PPIN Using STRING

The tutorial is for the set of proteins you have.

Step 1: You can search interaction network by clicking on “Multiple proteins” 
(Fig. 12.21 (A)) and paste a list of gene IDs into text box provided (Fig. 12.21 
(B)) or load a text file containing gene IDs using “Browse” option (Fig. 12.21 
(C)). In the organism field, you can specify organism name explicitly (e.g., Homo 
sapiens) or leave it to default as “auto-detect” (Fig. 12.21 (D)). Then click the 
search button (Fig. 12.21).

Step 2: You will be redirected to the page listing the gene symbols you have entered 
with their alias and function (Fig. 12.22). The user needs to ensure that specific 
protein of interest being queried. Then click on “Continue” button (Fig. 12.22 
(A)).

Step 3: You will be redirected to a network page (Fig. 12.23). In the protein-protein 
interaction network (Fig. 12.23 (A)), the circles represent the nodes or proteins. 
The edges represent the associations between nodes. The legend (Fig. 12.23 (B)) 
section gives information about nodes and interacting partners or edges.

Step 4: User can change the research parameters from “Setting” section (Fig. 12.24 
(A–D)).

Step 5: Visualize the Analysis section (Fig. 12.25). The Analysis section provides 
network statistics (Fig.  12.25 (A)). The functional enrichment analysis of the 
input gene set is provided in Fig. 12.25 (B). The information about the statistical 
background used for functional enrichment is also given in Fig. 12.25 (C).
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Fig. 12.22  STRING: Ensuring the correct protein identifiers are being used for PPIN 
construction

Fig. 12.21  STRING: Use multiple protein identifiers input for PPIN construction
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Step 6: Finally you can export the network files (Fig. 12.26 (A)) in different formats 
(Fig. 12.26 (B)) to analyze it further using Cytoscape or any other network visu-
alization tool(s).

12.5.1.5  �Cytoscape

Cytoscape (Shannon et al. 2003) is an open source tool for visualizing biomolecular 
interaction networks, integrating functional annotations and high-throughput gene 
expression profiles into a unified conceptual framework, and identifying their 

Fig. 12.23  STRING: Network visualization
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Fig. 12.24  STRING: Change research parameters for PPIN construction

Fig. 12.25  STRING: Analysis section providing network statistics and functional enrichment 
analysis of input protein identifiers
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properties. Additional utilities are available in the form of plugins. Plugins are avail-
able for network properties and molecular profiling analyses, various layouts for 
better visualization, additional file format support, and connection with databases 
and searching in large networks. Cytoscape additionally has a JavaScript-driven 
sister venture named Cytoscape.js that can be utilized to dissect and visualize net-
works in JavaScript environments through a web browser.

Examples of Uses

Gene function prediction – examining genes (proteins) in a network context shows 
connections to sets of genes/proteins involved in the same biological process that is 
likely to function in that process (plugin for analysis: jActiveModules, PiNGO, etc.).

Detection of protein complexes/other modular structures  – protein complexes 
are groups of associated polypeptide chains whose malfunctions play a vital role in 
disease development. Complexes can perform various functions in the cell, includ-
ing dynamic signaling, and can serve as cellular machines, rigid structures, and 
posttranslational modification systems. Many disorders are consequences of 
changes in a single protein and, thus, in its set of associated partners and functional-
ity (plugin for analysis: Motif Discovery, Mclique, MCODE, PEWCC, etc.).

Fig. 12.26  STRING: Export required network files
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Identification of disease sub-networks and potential biomarkers – identification 
of disease network sub-networks that are transcriptionally active in the disease and 
also provide a rich source of biomarkers for disease classification. These suggest 
key pathway components in disease progression and provide leads for further study 
and potential therapeutic targets (plugin for analysis: PhenomeScape, PSFC, etc.).

Dynamics of a biological network – the molecular interactions in a cell vary with 
time and surrounding environmental conditions. The construction and analysis of 
dynamic molecular networks can elucidate dynamic cellular mechanisms of differ-
ent biological functions and provide a chance to understand complex diseases at the 
system level (plugin for analysis: DyNetViewer, DynNetwork, DynNet, etc.).

INPUT Type

Cytoscape can read network/pathway files written in the following formats:

•	 Simple interaction file (SIF or .sif format)
•	 Nested network format (NNF or .nnf format)
•	 Graph Markup Language (GML or .gml format)
•	 XGMML (eXtensible Graph Markup and Modeling Language)
•	 SBML
•	 BioPAX
•	 PSI-MI Level 1 and 2.5
•	 GraphML
•	 Delimited text
•	 Excel Workbook (.xls, .xlsx)
•	 Cytoscape.js JSON
•	 Cytoscape CX

The SIF format specifies nodes and interactions only, while other formats store 
additional information about network layout and allow network data exchange with 
a variety of other network programs and data sources.

Visualization

Substantial progress has been made in the field of “omics” research (e.g., genomics, 
transcriptomics, proteomics, and metabolomics), leading to a vast amount of bio-
logical data generation. In order to represent large biological data sets in an easily 
interpretable manner, this information is frequently visualized as graphs, i.e., a set 
of nodes and edges. Cytoscape assists in visual exploration and analysis of biologi-
cal network in several ways:

•	 Provides customize network data display using powerful visual styles.
•	 Helps in integrating gene expression values with the network. This can be done 

by mapping expression values to network nodes which represent the gene as 
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color, label, border thickness, etc. according to the user-defined mapping file and 
provide several layout options in two as well as three dimensions for network 
visualization, for example, edge-weighted spring-embedded layout, attribute 
circle layout, etc.

•	 The network manager can be utilized to manage multiple networks in a single 
session file. Easily navigate large networks through an efficient rendering engine.

Analysis

•	 Filter the network to select subsets of nodes and/or interactions based on the cur-
rent data. For instance, users may select nodes involved in a threshold number of 
interactions, nodes that share a particular GO annotation, or nodes whose gene 
expression levels change significantly in one or more conditions according to 
p-values loaded with the gene expression data.

•	 Find active sub-networks/pathway modules. The network is screened against 
gene expression data to identify connected sets of interactions, i.e., interaction 
sub-networks, whose genes show particularly high levels of differential expres-
sion. The interactions contained in each sub-network provide hypotheses for the 
regulatory and signaling interactions in control of the observed expression 
changes.

•	 Find clusters (highly interconnected regions) in any network loaded into 
Cytoscape. Depending on the type of network, clusters may mean different 
things. For instance, clusters in a protein-protein interaction network have been 
shown to be protein complexes and parts of pathways. Clusters in a protein simi-
larity network represent protein families.

•	 Plugins available for network and molecular profile analysis.

12.6  �Conclusion

Complex biological networks are the reservoir for the plethora of biological infor-
mation about pathways and cellular mechanisms. This chapter summarized differ-
ent types of biological networks, methodologies to analyze such networks and 
biological relevance. These networks can provide researchers with critical informa-
tion about the pathogenesis of diseases (disease-gene networks), identification of 
drug targets (protein-protein networks, protein-ligand interaction), and biological 
pathways. Functional and pathway analysis of genes (gene ontology) determine sig-
nificant gene clusters associated with a specific biological process, molecular func-
tion or pathway. This chapter succinctly provides relevant information about the 
applications of biological networks in the molecular biology field. Our hope is that 
the tutorials provided in this chapter will guide researchers to annotate genes on 
gene products and enrich GO annotation both qualitatively and quantitatively on the 
available tools.
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