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Abstract. Normal Pressure Hydrocephalus (NPH) is a brain disorder
that can present with ventriculomegaly and dementia-like symptoms,
which often can be reversed through surgery. Having accurate segmen-
tation of the ventricular system into its sub-compartments from mag-
netic resonance images (MRI) would be beneficial to better character-
ize the condition of NPH patients. Previous segmentation algorithms
need long processing time and often fail to accurately segment severely
enlarged ventricles in NPH patients. Recently, deep convolutional neu-
ral network (CNN) methods have been reported to have fast and accu-
rate performance on medical image segmentation tasks. In this paper,
we present a 3D U-net CNN-based network to segment the ventricu-
lar system in MRI. We trained three networks on different data sets
and compared their performances. The networks trained on healthy con-
trols (HC) failed in patients with NPH pathology, even in patients with
normal appearing ventricles. The network trained on images from HC
and NPH patients provided superior performance against state-of-the-
art methods when evaluated on images from both data sets.
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1 Introduction

The ventricular system of the human brain is composed of four interconnected
cavities: the left and right lateral, the third and the fourth ventricles. Each ventri-
cle contains choroid plexus, a network of ependymal cells producing cerebrospinal
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): MLCN 2018/DLF 2018/iMIMIC 2018, LNCS 11038, pp. 79–86, 2018.
https://doi.org/10.1007/978-3-030-02628-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02628-8_9&domain=pdf


80 M. Shao et al.

fluid (CSF). Normal pressure hydrocephalus (NPH) is a brain disorder usually
caused by disruption of CSF flow but with normal CSF pressure. The ventricles
expand and press against the brain tissue nearby, which can lead to the distortion
of the brain shape and eventually cause brain damage. NPH is characterized by
gait unsteadiness, urinary incontinence, and dementia [1]. However, unlike most
forms of dementia, the symptoms in NPH are potentially reversible to a certain
extent on properly selected patients. Diversion of CSF through shunt surgery has
been reported to improve the symptoms of NPH [10]. However, it remains a chal-
lenge to identify NPH patients who respond to treatment, and differentiate NPH
from other neurodegenerative disorders, such as Alzheimer’s disease [11].

Currently, NPH is diagnosed based on characteristic clinical symptoms and
brain imaging [11]. The ventricular dilation in NPH can be observed through
magnetic resonance (MR) images. Examples of T1-weighted (T1w) Magneti-
cally Prepared Rapidly Acquired Gradient Echo (MPRAGE) images of NPH
patients are shown in Fig. 3(a). Disproportionate dilation of components of the
ventricular system in NPH is relative to the specific point of CSF disruption,
which could have an impact on the diagnosis [11]. Therefore, accurate segmen-
tation of the ventricular system into its four cavities could help characterize
the pathophysiology and potentially lead to better surgical planning of NPH
patients.

Previously published segmentation methods include the popular FreeSurfer
[6] method and many multi-atlas segmentation methods [15,20]. However, these
methods require long processing times (several hours) and often fail to capture
the boundary of the greatly enlarged ventricles in NPH patients. A recently
developed segmentation algorithm, RUDOLPH [3,5], is a combined patch-
based and multi-atlas segmentation method designed for subjects with ventricu-
lomegaly. Although this method is robust in ventricular parcellation, it also has
a long runtime. In recent years, various methods based on deep convolutional
neural networks (CNN) have been proposed to tackle neuroimage segmenta-
tion [2,12]. The U-Net [16] is one of the most well-known CNN architectures in
medical image analysis. The skip connections between contracting and expand-
ing paths in the U-Net improve the network performance.

In this paper, we present a 3D U-Net method for segmenting the ven-
tricular system. We trained three networks on images from two data sets,
two comprising healthy controls (HC) and the other a mix of HC and NPH
patients, and show the difference of their performances. The first network
was trained on 13 HC and performed well when evaluated on subjects from
the same data set. However, it performed poorly on the NPH data set,
even on images with normal sized ventricles. The second network was trained
on 38 HC, including elderly subjects with enlarged ventricles, and performed
even worse than the first network when evaluated on NPH data set. The third
network was trained on a mixture of 13 HC and 25 NPH images and provided
dramatically improved results on both data sets, demonstrating the importance
of training data selection.
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2 Methods

2.1 Data and Preprocessing

We evaluated our segmentation network using 3D brain MR images from two
data sets. The first one comprised 38 T1w MR images from Neuromorphometrics
Inc (NMM)1. Each image was manually delineated by experts into 138 brain
structures. For our purposes, we converted the 139 labels (138 brain structure
labels and 1 background label) into five: left and right lateral ventricles, third
ventricle, fourth ventricle, and a catch-all background label. The inferior lateral
ventricle label was included with the corresponding lateral ventricle label. The
T1w MR images were sorted by the volume of the ventricular system and 13
images were used as training data for the first and third network, covering the
entire spectrum of ventricle sizes in the data set. All 38 images were used as
training data for the second network.

The second data set was from our NPH database comprising 95 NPH patients
with a wide range of ventriculomegaly. They were acquired on a 3T (Siemens
Corporation, Germany) scanner with T1w MPRAGE with TR = 10.3 ms, TE
= 6 ms, and 0.82 × 0.82 × 1.17 mm3 voxel size. We manually delineated the
ventricular system in all 95 NPH patients from our database into our five labels.
A total of 25 NPH images, ranging from mild to severe cases, were chosen as our
training data for the second network.

The images from the two data sets were run through a preprocessing pipeline,
including N4 bias correction [18], rigid registration to MNI 152 atlas space [7],
and skull stripping [17].
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Fig. 1. Architecture of the ventricle-segmentation network. The numbers in the con-
tracting and expanding blocks indicate the output number of features. The shape of
the tensor is denoted next to the box in each resolution scale.

1 http://www.neuromorphometrics.com/.
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Fig. 2. Architecture of the input, contracting, and expanding blocks used in the seg-
mentation network.

2.2 Ventricle Segmentation Network

A 3D U-Net [13] was modified to segment the left and right lateral ventri-
cles, and the third and fourth ventricles. In this network (Fig. 1), a series of
contracting blocks extract image features from local to global context and a
series of expanding blocks, with shortcut to contracting blocks, act as “learn-
able” upsampling interpolation to restore the feature map resolution (Fig. 2).
Using learned features, the projection convolution connected to each expanding
block (Fig. 1) along with the softmax operation further classify the voxels into
five labels including the four ventricles and the background.

The contracting block is similar to the building block for increasing dimen-
sions of the pre-activation ResNet [9], since the shortcut within a block can
make the optimization easier and increase accuracy [8]. In contrast to ResNet,
however, the identity mapping and the residue encoding paths share the first
convolution in this design to reduce overfitting. Instance normalization [19] was
used since it is invariant to mean and covariant shift of image intensities. The
negative slope of Leaky ReLUs [22] was 0.1 and the dropout rate was 0.2.

2.3 Training Procedure

We used data augmentation by applying right-left flipping, elastic deformation,
and rotation to the training images. The images were cropped to 192×256×192
and sent to the input block. The loss function was one minus the mean Dice
coefficient [4] of each label. The network was trained for 50 epochs using the
Adam optimizer [14].

3 Experiments and Results

We trained three networks, VenSeg1 using 13 T1w MR images from NMM,
VenSeg2 using 38 T1w MR images from NMM, and VenSeg3 using 38 T1w MR
images including the same 13 in VenSeg1 and 25 from our NPH cohort. The 95
MR images (25 from NMM and 70 from NPH) formed the testing data set. We
only evaluated the performance of VenSeg2 on the 70 NPH testing images.

The 25 testing images from NMM data set were processed by VenSeg1,
VenSeg3, and three state-of-the-art brain segmentation methods: FreeSurfer 6.0,
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Joint label fusion (JLF) [20] and RUDOLPH [3]. The 70 testing images from the
NPH cohort were processed by all the six segmentation methods. We provided
FreeSurfer with skull-stripped data to speed up the process and turned on the
-bigventricles switch for NPH subjects to handle the enlarged ventricles.

Visual comparisons of the five methods (excluding VenSeg2) on one NMM
image and three NPH images are shown in Fig. 3. The VenSeg1 network provided
accurate segmentation on the NMM image (Fig. 3(a), subject #1). However,
it yielded erroneous segmentations on MR images of NPH patients. A truly
surprising failure of VenSeg1 is subject #2; Subject #2 has a similar shape and
volume to subject #1 from the NMM cohort (129 ml for subject #2 and 132 ml
for subject #1) and yet VenSeg1 failed to capture the boundary of the lateral
ventricles and mislabeled portions of the right ventricle as left. Subject #3 in
Fig. 3 shows an NPH patient with mild pathology, however VenSeg1 incorrectly
labeled some cortex as the 4th ventricle (yellow arrow in Fig. 3(e), subject #3).

We computed the Dice coefficient on a cohort of subjects only from NMM
and a cohort of subjects only from NPH for the methods and report the results
in Tables 1 and 2, respectively. We note that VenSeg2 performed worse than
VenSeg1 on NPH data set despite having more training data (see Table 2). We
used a paired Wilcoxon signed-rank test [21] to compare the methods. For the
results on the NMM testing images, we found no significant differences between
VenSeg1 and VenSeg3 in terms of Dice coefficients. Both networks performed
significantly better (p < 0.001) than FreeSurfer and RUDOLPH on the lateral
ventricles and the 3rd ventricle, and better than FreeSurfer on the 4th ventricle.
For the results on the NPH image testing set, VenSeg3 performed significantly
better (p < 0.001) than all the other methods on all the ventricle labels.

Table 1. The mean Dice coefficient (and standard deviation) over 25 T1w images from
Neuromorphometrics. Ventricular system key: Merged four ventricle labels (Whole),
right lateral ventricle (RLV), left lateral ventricle (LLV), third ventricle (3rd), and
fourth ventricle (4th). The asterisks mean significantly different (p-value <0.001) to
VenSeg1 and VenSeg3.

Whole RLV LLV 3rd 4th

FreeSurfer 0.843∗(±0.04) 0.848∗(±0.04) 0.848∗(±0.04) 0.700∗(±0.12) 0.760∗(±0.04)

JLF 0.881(±0.03) 0.879(±0.03) 0.888(±0.03) 0.796(±0.04) 0.844(±0.03)

RUDOLPH 0.883∗(±0.03) 0.883∗(±0.03) 0.888∗(±0.03) 0.777∗(±0.08) 0.839(±0.04)

VenSeg1 0.902(±0.03) 0.903(±0.03) 0.907(±0.03) 0.821(±0.07) 0.844(±0.04)

VenSeg3 0.902(±0.03) 0.904(±0.03) 0.907(±0.03) 0.817(±0.07) 0.842(±0.04)
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Fig. 3. Segmentation results from three state-of-the-art methods (FreeSurfer, JLF, and
RUDOLPH) and two proposed deep networks (VenSeg1 and VenSeg3) compared with
a manual rater (column g). Subject #1: T1w image and segmentation results from
NMM data set. Subjects #2–4: T1w images and segmentation results from NPH data
set, showing moderate, mile, and severe cases. The red arrow in (e2) shows the right
lateral ventricle inaccurately labeled as the left lateral ventricle. The yellow arrow in
(e3) points to cortex mislabeled as the 4th ventricle. The white arrow in (e4) points to
the right ventricle mislabeled as the 3rd ventricle. (Color figure online)

Table 2. The mean Dice coefficient (and standard deviation) over the 70 testing images
from the NPH data set. Bold: VenSeg3 is significantly better (p-value <0.001) than the
other five methods on all the labels.

Whole RLV LLV 3rd 4th

FreeSurfer 0.937(±0.03) 0.942(±0.03) 0.939(±0.03) 0.840(±0.06) 0.730(±0.08)

JLF 0.930(±0.04) 0.931(±0.05) 0.933(±0.04) 0.865(±0.06) 0.862(±0.04)

RUDOLPH 0.942(±0.05) 0.943(±0.05) 0.944(±0.05) 0.875(±0.07) 0.838(±0.06)

VenSeg1 0.833(±0.14) 0.839(±0.15) 0.832(±0.15) 0.727(±0.21) 0.787(±0.11)

VenSeg2 0.482(±0.24) 0.484(±0.25) 0.480(±0.25) 0.275(±0.28) 0.684(±0.18)

VenSeg3 0.971(±0.02) 0.971(±0.02) 0.974(±0.02) 0.915(±0.06) 0.903(±0.04)
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4 Discussion and Conclusions

We present a 3D U-Net architecture to segment and label the ventricular system
in patients with enlarged ventricles. We trained three models on two different
data sets using manual delineations as training data. The models were evaluated
on 25 NMM subjects and 70 NPH patients and compared to FreeSurfer, JLF,
and RUDOLPH.

The model trained on 13 NMM data showed improvement over the state-of-
the-art segmentation methods in terms of overlap with expert delineations on
the same data set. However, it showed poor performance on the NPH data set,
even on images with ventricle size similar to the training data. The segmentation
results from this model on subjects #1 and #2 were inconsistent. The model
failed to identify the boundary of the lateral ventricles and mislabeled portions
of the right ventricle as left on subject #2 (see the red arrow in Fig. 3(e2)). This
failure occurred despite the fact that the size of the ventricles in subject #2 is
very similar to the ventricle size of subject #1 from NMM. In some cases with
small ventricular volume, the model mislabeled the cortex as ventricle (see the
yellow arrow in Fig. 3(e3)). In severe cases of NPH, this model cannot handle the
pathology as its training data set does not include similar examples; Furthermore
it labeled posterior portions of the right ventricle as the 3rd ventricle (see the
white arrow in Fig. 3(e4)).

The second network was trained on 38 NMM images, including elderly subjects
with enlarged ventricles, since more training data could potentially improve the
performance. However, this network provided worse segmentation results than the
first one when evaluated on NPH patients. One possible explanation is that adding
more training data made the network overfitted on the NMM data set.

The failure of these two networks on NPH patients indicates that the network
did not learn only the intensity and spatial information from the training data,
since the first network successfully segmented a subject from NMM but failed
on a subject with similar ventricle size from the NPH data set. The dominant
features learned by the network—that are driving the segmentation—remain a
mystery.

The third network was trained on 38 images from both data sets. It performed
significantly better than all of the other methods on the entire testing data set,
demonstrating both the robustness of the network to high variations of ventricle
sizes, but also the importance of careful training data selection for deep learning
methods.
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