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Abstract. Interpretability is a fundamental property for the acceptance
ofmachine learningmodels in highly regulated areas. Recently, deep neural
networks gained the attention of the scientific community due to their high
accuracy in vast classification problems. However, they are still seen as
black-box models where it is hard to understand the reasons for the labels
that they generate. This paper proposes a deepmodel withmonotonic con-
straints that generates complementary explanations for its decisions both
in terms of style and depth. Furthermore, an objective framework for the
evaluation of the explanations is presented. Our method is tested on two
biomedical datasets and demonstrates an improvement in relation to tra-
ditional models in terms of quality of the explanations generated.
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1 Introduction

In the most recent years many machine learning models are replacing or helping
humans in decision-making scenarios. The recent success of deep neural networks
(DNN) in the most diverse applications led to a widespread use of this technique.
Nonetheless, their high accuracy is not accompanied by high interpretability. On
the contrary, they remain mostly as black-box models. In this way and despite
the success of DNN, in areas such as medicine and finance, which have legal and
safety constraints, their use is somehow restricted. Therefore, and in order to
take advantage of the DNN potential, it is critical to develop robust strategies
to explain the behavior of the model. In the literature it is possible to find sev-
eral different strategies to generate reasonable and perceptible explanations for
machine learning model’s behavior. However, those strategies can be grouped in
three clusters of interpretable methods: pre-model, in-model and post-model [6].

One of the options is to consider the relevance of example-based explanations
in human reasoning to try to make sense about the data we are dealing with. The
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main idea here is that a complex data distribution might be easily interpretable
considering prototypical examples. Considering that the goal is to understand
the data before building any machine learning model, one can consider this
strategy as interpretability before the model, i.e. pre-model.

An alternative is to build interpretability in the model itself. Inside this
group, models can be based in rules, cases, sparsity and/or monotonicity. Rule-
based models are characterized by a set of rules which describe the classes and
define predictions. One problem typically related with this strategy is the size
of the interpretable model. In order to solve this issue, Wang et al. [9] proposed
a Bayesian framework to control the size and shape of the model. Nevertheless,
a rule-based model is as interpretable as its original features are. Leveraging
once more the power of examples in human understanding but now with the
aim of building a machine learning model, case-based methods appear as serious
competitors in the explainability challenge. In [5], the authors present a model
that generates its explanations based on cluster divisions. Each cluster is char-
acterized by a prototype and a set of defining features. From this, it is possible
to deduce that the model’s explanations are limited by the quality of the pro-
totype. Sparsity is also an important property to achieve interpretability. With
a limited number of activations it is easier to determine what were the events
that determined the model’s decision. However, if the decision can not be made
with just a few activations, sparsity can decisively affect the accuracy of the
model. Another way of facilitating the model interpretability is to guarantee the
monotonicity of the learnt function in relation to some of the inputs [4].

Finally, interpretability can be performed after building a model. One of the
options is sensitivity analysis, which consists on disturbing the input of the model
and observing what happens to its output. In a computer vision context this
could mean occlusions of some parts of the image [3]. One issue with sensitivity
analysis is that a change in the input may not represent a realistic scenario in the
data distribution. Other possibility is to create a new model capable of imitating
the one which is giving the classification predictions. For instance, one can mimic
a DNN with a more shallow [1] and, consequently, more interpretable network.
However, it is not always the case that a simpler model exists. Lastly, we have
interpretability given by investigation on hidden layers of deep convolutional
neural networks [10].

1.1 Satisfying the Curiosity of Decision Makers

Human beings have different ways of thinking and learning [8]. There are people
for whom a visual explanation is more easily apprehended and, on the contrary,
there are people who prefer a verbal explanation. In order to satisfy all the
decision makers, an interpretable model should be able to provide different styles
of explanations and with different levels of granularity. Furthermore, it should
present as many explanations as the decision maker needs to be confident about
his/her decisions. It is also important to mention that some observations require
more complex explanations than others, which reinforces the idea of different
depth in the explanations.
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2 Complementary Explanations Using Deep Neural
Networks

In addition to their high accuracy in various classification problems, DNN have
the ability to jointly integrate different strategies of interpretability, such as, the
previously mentioned, case-based, monotonicity and sensitivity analysis. Thus,
it is a model that presents itself at the forefront to satisfy the decision makers
in their search for valuable and diverse explanations.
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Fig. 1. Proposed DNN architecture.
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Fig. 2. Feature impact analysis.

We will focus on binary classification settings with a known subset of mono-
tonic features. Without loss of generality, we will assume that monotonic fea-
tures increase with the probability of observing the positive class. The proposed
architecture consists on two independent streams of densely connected layers
that process the monotonic and non-monotonic features respectively. We impose
constraints on the weights of the monotonic stream to be positive to facilitate
interpretability. Then, both streams are merged and processed by a sequence of
densely connected layers with positive constraints. Thus, we are promoting that
the non-monotonic stream maps its feature space into a latent monotonic space.
It is expected that the non-monotonic features will require additional expressive-
ness to transform a non-monotonic space into a monotonic one. In this sense,
we validate topologies where the non-monotonic stream has at least as many
–and possibly more– layers than the monotonic stream. Figure 1 illustrates the
proposed architecture.

Explanation by Local Contribution. To measure the contribution, Cft, of a
feature ft on the prediction y, we can find the assignment Xopt that approximates
X to an adversarial example (see (1)):

(ȳ − f(X))2 (1)

where ȳ = 1 − y is the opponent class, y ∈ {0, 1}, and f(X) is the estimated
probability. We can use backpropagation with respect to ft to find the value Xopt

(see Fig. 2) that minimizes (1). It is relevant to note that for monotonic features,
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such value is known a priori. Since some features may have a generalized higher
contribution than others, resulting in repetitive explanations, we balanced the
contribution on the target variable with the range of the feature domain traversed
from the initial value to the local minimum Xopt. Namely:

Cft = |f(X) − f(X ′)| · Xft − Xopt

Xmax − Xmin
(2)

where X ′ is the input vector after assigning Xopt to the feature ft. Thus, the
contribution can be measured by approximating X to the adversarial space. On
the other hand, the inductive rule constructed for ft covers the space between
Xft and the value Xthrs where the probability of the predicted class is maximum.

Explanation by Similar Examples. DNN are able to learn intermediate
semantic representations adapted to the predictive task. Thus, we can use the
nearest neighbors in the semantic space as an explanation for the decision. While
the latent space is not fully interpretable, we can evaluate which features (and
at which degree) impact the distance between two observations using sensitivity
analysis. In this sense, two types of explanations can be extracted:

– Similar: the nearest neighbor in the latent space and what features make
them similar.

– Opponent: the nearest neighbor from the opponent class in the latent space
and what features make them different.

3 The Three Cs of Interpretability

Interpretability and explainability are tied concepts often used interchangeably.
In this work, we will focus on local explanations of the predicted class, where indi-
vidual explanations are provided for each observation. Despite the vast amount
of effort that has been invested around interpretable models, the concept itself
is still vaguely defined and lacks of a unified formal framework to assess it. The
efficacy of an explanation depends on its ability to convince the target audience.
Thus, it is surrounded by external intangible factors such as the background of
the audience and its willingness to accept the explanation as a truth. While it is
hard to fully assess the quality of an explanation, some proxy functions can be
used to summarize the quality of a prediction under certain assumptions. Let us
define an explanation as a simple model that can be applied to a local context
of the data. A good explanation should maximize the following properties:

– Completeness: It should be susceptible of being applied in other cases where
the audience can verify the validity of that explanation. e.g., the blue rows in
Fig. 3 where the decision rule precondition holds and the observations within
the same distance of the neighbor explanation (Fig. 3).

– Correctness: It should generate trust (i.e., be accurate). e.g., the label agree-
ment between the blue rows and between the points inside the n-sphere.

– Compactness: It should be succinct. e.g., the number of conditions in the
decision rule and the feature dimensionality of a neighbor-based explanation.
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A B Y
0 4 1
2 3 1
4 2 0
3 6 1
3 3 1

If A ≥ 1∧B ≤ 5∧B ≥ 2
then y = 1

Compl: 3/5
Corr: 2/3
Compt: 3

Compl: 4/14
Corr: 3/4
Compt: 2

Fig. 3. Illustration of explanation quality for decision rules and KNN (where the black
dot is the new observation and the blue dot is the nearest-neighbor).

4 Experimental Assessment

We validate the performance of the proposed methodology on two applications.
First, we consider the post-surgical aesthetic evaluation (i.e., poor, fair, good,
and excellent) of breast cancer patients [2]. The dataset has 143 images with
23 high-level features describing breast asymmetry in terms of shape, global
and local color (i.e., scars). The second application consists on the classifica-
tion of dermoscopy images in three classes: common nevus, atypical nevus and
melanoma. The dataset [7] has 14 features from 200 patients describing the pres-
ence of certain colors on the nevus and abnormal patterns such as asymmetry,
dots, streaks, among others. In both cases, we consider binary discretizations of
the problem (see Table 1). In this work, we assume features are already extracted
in a previous stage of the pipeline. However, the entire pipeline covering feature
extraction and model fitting could be learned end-to-end using intermediate
supervision on the feature representation.

We compare the performance of the proposed DNN against classical inter-
pretable models: a decision tree (DT) with bounded depth learned with the
CART algorithm, and a Nearest Neighbor classifier (KNN with K = 1). We used
stratified 10-fold cross-validation to choose the best hyper-parameter configura-
tion and to generate the explanations. We explore DNN topologies with depth
between 1 and 3 per block (see Fig. 1). We show in Table 1 the model perfor-
mance of the three models. DNN achieved better performance than the remaining
classifiers in most cases.

To measure the quality of the explanations we used accuracy for correctness,
the fraction of the training set covered by the explanation as completeness, and
the size in bytes of the explanation (the lower the better) after compression
using the standard Deflate algorithm. Despite this compactness metric doesn’t
reflect the actual complexity of the explanations, it is a proxy function to define
it under the assumption that the time to understand an explanation is pro-
portional to its length. We generate explanations that account for 95% of the
feature impact and embedding distance. This value can be adapted to produce
more general/global or customized/local explanations. As can be seen in the
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Table 1. Quality of the predictions in terms of area under the ROC and Precision-
Recall curves. Quality of the explanations in terms of correctness (Corr), completeness
(Compl), and compactness (Compt).

Binarization Model Predictions Explanations

ROC PR Type Corr Compl Compt

BCCT [2]: Breast aesthetics

Excellent vs.

Good, Fair,

Poor

DT 71.96 92.19 Rule 75.52 3.82 31.97

1-NN 67.37 90.74 Similar 89.27 3.25 95.94

Opponent 72.96 80.84 96.00

DNN 80.61 96.55 Similar 85.69 95.20 124.94

Opponent 92.04 46.87 149.68

Rule 99.91 3.69 62.59

Excellent,

Good vs. Fair,

Poor

DT 85.18 75.20 Rule 51.75 3.16 30.00

1-NN 52.81 39.49 Similar 85.69 2.98 95.94

Opponent 54.76 91.26 95.97

DNN 86.78 82.82 Similar 72.52 17.34 80.36

Opponent 81.16 31.28 138.00

Rule 98.89 2.33 48.59

Excellent,

Good Fair vs.

Poor

DT 94.20 74.92 Rule 76.92 6.71 17.0769

1-NN 54.42 20.63 Similar 94.45 3.01 95.94

Opponent 84.42 85.33 96.00

DNN 91.03 73.00 Similar 87.25 1.46 79.79

Opponent 92.82 67.86 157.81

Rule 99.88 5.48 58.44

PH2 [7]: Dermoscopy images

Common vs.

Atypical,

Melanoma

DT 97.60 97.90 Rule 43.00 5.03 13.10

1-NN 94.37 94.29 Similar 94.97 5.56 15.29

Opponent 59.42 81.38 15.94

DNN 99.74 99.83 Similar 97.11 39.00 19.32

Opponent 74.59 70.61 37.69

Rule 98.86 38.83 16.27

Common,

Atypical vs.

Melanoma

DT 95.55 81.63 Rule 82.00 5.82 19.00

1-NN 80.94 63.67 Similar 94.81 5.70 15.23

Opponent 69.75 86.98 21.25

DNN 96.02 89.30 Similar 91.49 8.15 33.27

Opponent 84.02 62.12 46.24

Rule 97.89 44.84 23.65

results, the proposed model is able to achieve the best performance in correct-
ness results for rule explanations. For case-based explanation, the 1-NN approach
with similar prototype achieves better performance in some cases at the expense
of completeness. Therefore, we validate that besides having a good predictive
performance in terms of classification, we can use DNN to produce explanations
with high quality. Figure 4 shows some explanations produced by the DNN for
both datasets.
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Input image

Prediction:
{Poor, Fair}

Rule: High visibility of the scar (sX2a > 0.98), low inter-breast

overlap (pBOD ≤ 0.9), low inter-breast compliance (pBCE ≤
0.43) and high upward nipple retraction (pUNR > 0.71)

Similar case

Why?: Similar scar (sEMDL),

inter-breast overlap (pBOD),

color (cEMDb), contour differ-

ence (pBCD) and upward nipple

retraction (pUNR).

Opponent case

Why?: Strong difference on the

scar visibility (sX2a), breast over-

lap (pBOD), upward nipple retrac-

tion (pUNR), compliance evaluation

(pBCE) and lower contour (pLBC)

Input image

Prediction:
{Common, Atypical}

Rule: It is symmetric, doesn’t have black color, blue whitish

veil, atypical pigmented network or streaks.

Similar case

Why?: Both images have light and

dark brown color and atypical pres-

ence of dots/globules.

Opponent case

Why?: It doesn’t have light brown

color or atypical dots/globules. It

has blue whitish veil and pigmented

network.

Fig. 4. Visualization of the explanations. In the BCCT dataset we are considering
the binary classification problem: {Poor, Fair} vs. {Good, Excellent}. Regarding the
PH2, the classification problem comes down to {Common, Atypical} vs. {Melanoma}.
pBOD and pBCE represent the negation of the original features, pBOD and pBCE,
and are presented to make the explanation more intuitive.

5 Conclusion

In order for a machine learning model to be adopted in highly regulated areas
such as medicine and finance, it needs to be interpretable. However, interpretabil-
ity is a vague concept and lacks an objective framework for evaluation.

In this work, we proposed a DNN model able to generate complementary
explanations both in terms of type and granularity. Moreover, there can be as
many explanations as the ones the decision maker considers necessary to satisfy
his/her doubts. We also define some proxy functions that summarize relevant



140 W. Silva et al.

aspects of interpretability, namely, completeness, correctness and compactness.
This way we get an objective framework to evaluate the explanations generated.

The model is evaluated in two biomedical applications: post-surgical aesthetic
evaluation of breast cancer patients and classification of dermoscopy images.
Both the quantitative and qualitative results of our model show an improvement
in the quality of the explanations generated compared to other interpretable
models. Future work will focus on extending this model to ordinal and multiclass
classification.
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