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Abstract. Because of their state-of-the-art performance in computer
vision, CNNs are becoming increasingly popular in a variety of fields,
including medicine. However, as neural networks are black box function
approximators, it is difficult, if not impossible, for a medical expert to
reason about their output. This could potentially result in the expert
distrusting the network when he or she does not agree with its output.
In such a case, explaining why the CNN makes a certain decision becomes
valuable information. In this paper, we try to open the black box of the
CNN by inspecting and visualizing the learned feature maps, in the field
of dermatology. We show that, to some extent, CNNs focus on features
similar to those used by dermatologists to make a diagnosis. However,
more research is required for fully explaining their output.

Keywords: Deep learning · Visualization · Dermatology
Skin lesions

1 Introduction

Over the past few years, deep neural network architectures—convolutional archi-
tectures in particular—have time and again beaten state-of-the-art on large-scale
image recognition tasks [6,9,14,16]. As a result, the application of convolutional
neural networks (CNN) has become increasingly popular in a variety of fields. In
medicine, deep learning is used as a tool to assist professionals of various subfields
in their diagnoses, such as histopathology [11], oncology [1,4,17], pulmonology
[7,15], etc1. In the subfield of dermatology, CNNs have been applied to the prob-
lem of skin lesion classification, based on dermoscopy images, where they set a
new state-of-the-art benchmark, matching—or even surpassing—medical expert
performance [2,3,5].

1 We refer the reader to [10] for an in-depth survey on deep learning in medical analysis.
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The challenge remains, however, to understand the reasoning behind the
decisions made by these networks, since they are essentially black box function
approximators. This poses a problem when a neural network outputs a diagnosis,
different from the diagnosis made by the medical expert, as there is no human
interpretable reasoning behind the neural networks’ diagnosis. In such a case,
visualizations of the network could serve as a reasoning tool to the expert.

In this paper, we train a CNN for binary classification on a skin lesion dataset,
and inspect the features learned by the network, by visualizing its feature maps.
In the next section, we first give an overview of the different visualization strate-
gies for inspecting CNNs. Section 3 describes our CNN architecture and training
procedure. In Sect. 4 we present and discuss the learned CNN features and we
conclude the paper in Sect. 5.

2 Related Work

In [18], the authors propose a visualization technique to give some insight into
the function of the intermediate feature maps of a trained CNN, by attaching a
deconvolutional network to each of its convolutional layers. While a CNN maps
the input from the image space to a feature space, a deconvolutional network
does the opposite (mapping from a feature space back to the image space), by
reversing its operations. This is done by a series of unpooling, rectifying and
filtering operations. The authors use a deconvolutional network to visualize the
features that result in the highest activations in a given feature map. Further-
more, they evaluate the sensitivity of a feature map, to the occlusion of a certain
part of the input image, and the effect it has on the class score for the correct
class.

Two other visualization techniques are presented in [13] that are based on
optimization. The first technique iteratively generates a canonical image repre-
senting a class of interest. To generate this image, the authors start from a zero
image and pass it through a trained CNN. Optimization is done by means of the
back-propagation algorithm, by calculating the derivative of the class score, with
respect to the image, while keeping the parameters of the network fixed. The
second technique aims to visualize the image-specific class saliency. For a given
input image and a class of interest, they calculate the derivative of the class score,
with respect to the input image. The per-pixel derivatives of the input image
give an estimate of the importance of these pixels regarding the class score. More
specifically, the magnitude of the derivate indicates which pixels affect the class
score the most when they are changed.

Concluding, typical visualization techniques either generate a single output
image, in case of the feature visualization and the generation of the class repre-
sentative, or function at the pixel level of the input image, in case of the region
occlusion and the image-specific class saliency visualization. However, dermatol-
ogists typically scan a lesion for the presence of different individual features, such
as asymmetry, border, color and structures, i.e. the so-called ABCD-score [12].
Therefore, we inspect and visualize the intermediary feature maps of the CNN
on a per-image basis, aiming to provide more familiar insights to dermatologists.
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3 Architecture and Training

A common approach is to use a CNN pre-trained on a large image database such
as ImageNet and then fine-tune this on the target dataset [5]. The drawback is
that this CNN will also contain a lot of uninformative filters (e.g. for classifying
cats and dogs) for the domain at hand. Therefore we chose to train a basic CNN
from scratch, but in principle our visualization approach can work for any CNN.

Our CNN consists of 4 convolutional blocks, each formed by 2 convolutional
layers followed by a max pooling operation. The convolutional layers in each
block have a kernel size of 3 × 3, and have respectively 8, 16, 32 and 64 filters.
This is followed by 3 fully connected layers with 2056, 1024 and 64 hidden units.
All layers have rectified linear units (ReLU) as non-linearity.

We use data from the publicly available ISIC Archive2, to compose a training
set of 12,838 dermoscopy images, spread over two classes (11,910 benign lesions,
928 malignant lesions). In a preprocessing step, the images are downscaled to a
resolution of 300 × 300 pixels, and RGB values are normalized between 0 and
1. We augment our training set by taking random crops of 224 × 224 pixels,
and further augment each crop by rotating (angle sampled uniformly between 0
and 2π), randomly flipping horizontally and/or vertically, adjusting brightness
(factor sampled uniformly between −0.5 and 0.5), contrast (factor sampled uni-
formly between −0.7 and 0.7), hue (factor sampled uniformly between −0.02
and 0.02) and saturation (factor sampled uniformly between 0.7 and 1.5).

We have trained the network for 192 epochs, with mini-batches of size 96
and used the Adam algorithm [8] to update the parameters of the network,
with an initial learning rate of 10−4 and an exponential decay rate for the first
and second order momentum of respectively 0.9 and 0.999. We have evaluated
the performance of the resulting CNN on a hold-out test set, comprised of 600
dermoscopy images (483 benign lesions, 117 malignant lesions), achieving an
AUC score of 0.75.

4 Feature Map Visualization

For each feature map of the CNN, we created a visualization by rescaling the fea-
ture map to the input size and overlaying the activations mapped to a transpar-
ent green color (darker green= higher activation). We identify each visualization
by the convolutional layer number (0. . . 7) and filter number. Next we inspected
all visualizations and tried to relate these to typical features dermatologists scan
for. Especially the last two convolutional layers of the CNN (6, 7) give us some
insights into which image regions grasp the attention of the CNN.

2 https://isic-archive.com/.

https://isic-archive.com/
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(a) 7, 28 (b) 7, 32

Fig. 1. Feature maps with high activations on lesion borders, specializing on the border
location. For example, filter (a) activates on the bottom border, while filter (b) activates
on the left border.

(a) 6, 17 (b) 6, 58

Fig. 2. Feature maps with high activations on darker regions within the lesion, indi-
cating a non-uniformity in the color of the lesion.

Borders. Irregularities in the border of a skin lesion could indicate a malignant
lesion. The feature maps shown in Fig. 1 both have high activations on the border
of a skin lesion, but on different parts of the border. The first one (a) detects
the bottom border of a lesion, while the second one (b) detects the left border.
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(a) 6, 44 (b) 7, 33

Fig. 3. Feature maps with high activations on skin types. For example, filter (a) acti-
vates on pale skin, while filter (b) activates on pink skin texture.

Fig. 4. A feature map (7, 8) with high activations on hair-like structures.

Color. The same reasoning tends to apply to the colors inside the lesion. A
lesion that has a uniform color is usually benign, while major irregularities in
color could be a sign of a malignant lesion. The feature maps shown in Fig. 2
have a high activation when a darker region is present in the lesion, implying a
non-uniform color.
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Skin Type. People with a lighter skin are more prone to sunburns, which can
increase the development of malignant lesions on their skin. Therefore, a der-
matologist takes a patient’s skin type into account when examining his or her
lesions. The same goes for the feature maps shown in Fig. 3. The first feature
map (a) has high activations on white-pale skin. The second one (b) has high
activations on a more pinkish skin with vessel-like structures.

Hair. The CNN also learns feature maps that, from a dermatologist viewpoint,
have no impact on the diagnosis. For example, the feature map in Fig. 4 has high
activations on hair-like structures.

Artifacts. We also noticed that some of the feature maps have high activations
on various artifacts in the images. For example, as shown in Fig. 5, some feature
maps have high activations on specular reflections, gel application, or rulers.
This highlights some of the risks when using machine learning techniques, as
this could impose a potential bias to the output of the network, when such
artifacts are prominently present in the training images of a specific class.

A more elaborate overview of the activations of different feature maps on
different images is shown in Fig. 6.

Fig. 5. Feature maps with high activations on various image artifacts. Examples are,
from left to right, specular reflection, gel treatment and rulers. These artifacts could
potentially impose a bias on the output of the CNN.
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Fig. 6. An overview of the feature maps.

5 Conclusion

In this paper, we analyzed the features learned by a CNN, trained for skin lesion
classification, in the field of dermatology. By visualizing the feature maps of
the CNN, we see that, indeed, the high-level convolutional layers activate on
similar concepts as used by dermatologists, such as lesion border, darker regions
inside the lesion, surrounding skin, etc. We also found that some feature maps
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activate on various image artifacts, such as specular reflections, gel application,
and rulers. This flags that one should be cautious when constructing a dataset
for training, that such artifacts do not lead to a bias in the machine learning
model.

Although this paper gives some insight in the features learned by the CNN,
this does not yet explain any causal relation between the detected features of the
CNN and its output. Furthermore, going through the feature maps, we did not
find any that precisely highlight many of the other structures that dermatologists
scan for, such as globules, dots, blood vessel structures, etc. We believe more
research is required in this area in order to make CNNs a better decision support
tool for dermatologists.
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