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Abstract. Alzheimer’s disease (AD) is characterized by complex and
largely unknown progression dynamics affecting the brain’s morphology.
Although the disease evolution spans decades, to date we cannot rely
on long-term data to model the pathological progression, since most of
the available measures are on a short-term scale. It is therefore difficult
to understand and quantify the temporal progression patterns affecting
the brain regions across the AD evolution. In this work, we present a
generative model based on probabilistic matrix factorization across tem-
poral and spatial sources. The proposed method addresses the problem
of disease progression modelling by introducing clinically-inspired statis-
tical priors. To promote smoothness in time and model plausible patho-
logical evolutions, the temporal sources are defined as monotonic and
independent Gaussian Processes. We also estimate an individual time-
shift parameter for each patient to automatically position him/her along
the sources time-axis. To encode the spatial continuity of the brain sub-
structures, the spatial sources are modeled as Gaussian random fields.
We test our algorithm on grey matter maps extracted from brain struc-
tural images. The experiments highlight differential temporal progression
patterns mapping brain regions key to the AD pathology, and reveal
a disease-specific time scale associated with the decline of volumetric
biomarkers across clinical stages.

Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investiga-
tors within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/how to apply/ADNI Acknowledgement List.pdf.
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1 Introduction

Neurodegenerative disorders such as Alzheimer’s disease (AD) are characterized
by morphological and molecular changes of the brain, and ultimately lead to
cognitive and behavioral decline [8]. To date there is no clear understanding of
the dynamics regulating the disease progression. Consequently several attempts
have been made to model the disease evolution in a data-driven way, using sets
of biomarkers extracted from different imaging acquisition techniques, such as
Magnetic Resonance Imaging (MRI) [12]. However available data are mostly
represented by cross-sectional measures or time-series acquired on a short-term
time span, while the ultimate goal is to unveil the “long-term” disease evolution
spreading over decades. Therefore there is a critical need to define the AD evo-
lution in a data-driven manner with respect to an absolute time scale associated
to the natural history of the pathology.

To this end, in [9] the authors introduce a disease progression score for each
patient in order to identify a data-driven disease scale. This score is based on a
set of biomarkers and was shown to correlate with the decline of brain cognitive
abilities. A similar approach was proposed by [12] and [6] with scalar biomark-
ers. In [3], a disease progression score was estimated using higher-dimensional
biomarkers from molecular imaging. However these methods don’t provide infor-
mation about the brain structures involved in AD, and how the disease affects
them along time. To overcome these limitations, [13] proposes a spatio-temporal
model of disease progression explicitly accounting for different temporal dynam-
ics across the brain. This is done by decomposing cortical thickness measure-
ments as a mixture of spatio-temporal processes, by associating each vertex to
a temporal progression modeled by a sigmoid function. They also estimate a
disease progression score for each subject as a linear transformation of time.
However since the proposed formulation does not account for spatial correlation
between vertices, it may be potentially sensitive to spatial variation and noise,
thus leading to poor interpretability.

The challenge of spatio-temporal modelling in brain images is a classical
problem widely addressed via Independent Component Analysis (ICA [7]), espe-
cially on functional MRI (fMRI) data [4]. ICA aims at decomposing the data
via matrix factorization, looking for a reduced number of spatio-temporal latent
sources. Although successful in fMRI analysis, ICA cannot find straightforward
applications to the modelling of AD progression. First, ICA retrieves maximally
independent latent sources best explaining the data. However, although brain
regions can exhibit different atrophy rates, this doesn’t necessarily imply statisti-
cal independence between them. Second, differently from fMRI data, the absolute
time axis of AD spatio-temporal observations is unknown. Thus estimating the
pathology timing is a key step in order to model the disease progression, and
cannot be performed with standard dimensionality reduction methods such as
ICA. Finally, fMRI time series are defined over hundreds of time points, while we
work essentially in a cross-sectional setting with one or a few images per-subject.

In this work we present a novel spatio-temporal generative model of disease
progression aimed at quantifying the independent dynamics of changes in the
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brain. We model the observed data through matrix factorization across tempo-
ral and spatial sources, with a plausibility constraint introduced by clinically-
inspired statistical priors. To promote smoothness in time and model steady evo-
lution from normal to pathological stages, the temporal sources are defined as
monotonic independent Gaussian Processes (GPs). We also estimate an individ-
ual time-shift parameter for each patient to automatically position him along the
sources time-axis. To encode the spatial continuity of the brain sub-structures,
the spatial sources are modeled as Gaussian random fields. The framework is
efficiently optimized through stochastic variational inference. In the next sec-
tions we detail the method formulation and show its application on synthetic
and real data composed by a large dataset of MRIs from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI). Further information can be found in the
Appendix.1

2 Method

We assume that the spatio-temporal data Y (x, t) = [Y1(x, t1), Y2(x, t2), ..,
YP (x, tp)] is stored in a matrix with dimensions P × F , where P is the number
of patients, F the number of image features, and Yi(x, ti) is the image of an
individual i observed at position x and at time ti. We postulate a generative
model in order to decompose the data in Ns spatio-temporal sources such that:

Yp(x, tp) = S(θ, t + tp)A(ψ, x) + E (1)

where S is a P ×Ns matrix where each column represents a temporal trajectory,
tp the individual time-shift parameter, and θ the set of parameters related to the
temporal sources. A is a Ns ×F matrix where each row represents a spatial map,
and ψ is a set of spatial parameters. E is a N (0, σ2I) Gaussian noise. According
to the generative model the likelihood is:

p(Y |A,S, σ) =
P∏

p=1

1

(2πσ2)
F
2

exp(− 1
2σ2

||Yp − S(θ, t + tp)A(ψ, x)||2) (2)

For each row An of A we specify a N (0, I) prior, while each column Sn of S is
a GP modeled as in [5]. This setting leverages on kernel approximation through
sampling of basis functions in the spectral domain [14]. For specific choices of
the covariance, such as the Radial Basis Function used in our work, the GPs
can be approximated as a Bayesian neural network with form: S(t) = φ(Ωt)W .
Where Ω is the projection in the spectral domain, φ the non-linear basis function
activation, and W the regression parameter. The GPs inference problem thus
amounts at estimating approximated distributions for Ω and W .

To account for the steady increase of the sources from normal to pathological
stages we introduce a monotonicity prior over the GPs. To do so, we constrain the
space of the temporal sources to the set C = {S(t) | S′(t) ≤ 0 ∀t}, following
1 Appendix: https://hal.archives-ouvertes.fr/hal-01849180/document.

https://hal.archives-ouvertes.fr/hal-01849180/document
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[11]. This leads to a second likelihood term constraining the dynamics of the
temporal sources:

p(C|S′, λ) = (1 + exp(−λS′(t)))−1 (3)

We jointly optimize (2) according to priors and constraints, by maximizing the
data evidence:

log(p(Y, C|σ, λ)) = log[
∫

A

∫

S

∫

S′
p(Y |A,S, σ)p(C|S′, λ)p(A)p(S, S′|λ)dAdSdS′]

(4)
Since this integral is intractable, we tackle the optimization of (4) via stochastic
variational inference. Following [10] and [5] we introduce approximations q1(A)
and q2(Ω,W ) to derive the lower bound:

log(p(Y, C|σ, λ)) � EA∼q1,(Ω,W )∼q2 [log(p(Y |A, Ω, W, σ))] + E(Ω,W )∼q2 [log(p(C|Ω, W, λ))]

−D[q1(A)||p(A)]−D[q2(Ω, W )||p(Ω, W )]

(5)

where D refers to the Kullback-Leibler divergence.
We specify the approximated distribution of the spatial activation maps q1

such that q1(A) =
∏Ns

n=1 N (μn, Σ(α, β)). To introduce spatial correlations in the
maps we choose Σi,j(α, β) = α exp(−||ui − uj ||2/2β) to model a smooth decay
across voxels with coordinates (ui, uj). We follow [5] and [11] to also define
a variational lower bound on the constrained GPs parameterizing the temporal
processes. Thanks to the proposed framework, (4) can be efficiently optimized by
stochastic variational inference through backpropagation. We chose to alternate
the optimization between the spatio-temporal parameters and the time-shift. We
set λ to the minimum value that gives monotonic sources, while σ was arbitrarily
determined from the data. A detailed derivation of the model and lower-bound
can be found in the Appendix.

3 Results

3.1 Benchmark on Synthetic Data

We tested the algorithm on synthetic data to assess its ability to separate spatio-
temporal sources from mixed data, and to provide a model selection via the
variational lower bound. We generated three monotonically increasing functions
Si(t) such that Si(t) = 1/(1 + exp(−t + αi)), and three synthetic Gausian acti-
vation maps A1, A2, A3 with a 30 × 30 resolution, to mimick grey matter brain
areas (Figs. 1a and b). The data was generated as Yp,j = S(tp)A + Ej over 40
time points tp, where tp is uniformly distributed in [0,1]. We sampled 50 images
at instants tp and applied our method. To simulate a pure cross-sectional setting
the time associated to each input image was set to zero. Figures 1c and d show
the estimated spatio-temporal processes when fitting the model with three latent
sources. In Fig. 2, we see that the individual time-shift parameter estimated for
each subject correlates with the original time used to generate the data. This
means that the algorithm correctly positions each subject on the temporal tra-
jectories.
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(a)
(b)

(c)
(d)

(a)
(b)

(c)
(d)

Fig. 1. (a)–(b) Ground truth temporal and spatial sources. (c) Red: raw temporal
sources against the original time axis. Blue: recovered temporal sources against the
estimated time scale. (d) Estimated spatial maps. (Color figure online)

Fig. 2. The red points represent the
values of the estimated subjects’ time-
shift against their associated ground truth
value. (Color figure online)

To test the model selection, we gen-
erated the data as described above
using respectively one, two, or three
sources over ten folds. For each fold we
ran the algorithm looking for one to
four sources. Figure 3 shows mean and
standard deviation of the lower bound.
We observe that when the number of
sources is under-estimated the lower
bound is higher. When the number
of sources is over-estimated, although
the lower bound for model selection
is more uncertain, by looking at the
extracted spatial maps we observe that
the additional sources are mainly set
to zero or have low weights (see the
map of Fig. 3). These experimental
results indicate that the optimal number of sources should be selected by inspec-
tion of both the lower bound and the extracted spatial sources.

The method was also compared to ICA in a simplified setting by assign-
ing the ground truth parameter tp beforehand. This simplification is necessary
since standard ICA can’t be applied when the time associated to each image is
unknown. We observed that ICA recovered the spatio-temporal sources, by pro-
viding however more noisy estimations than the ones we obtained. This result
highlights the importance of the priors and constraints introduced in our method
(see Appendix).
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(a) (b) (c) (d)

Fig. 3. (a)–(b)–(c): Distribution of the lower bound against the number of fitted
sources. (d): 4th extracted spatial map with data generated by 3 latent sources.

3.2 Application on Real Data

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. For up-to-date information, see
www.adni-info.org.

In this section we present an application of the algorithm on real data,
using grey matter maps extracted from structural MRI. We selected a cohort of
555 subjects from ADNI composed by 94 healthy controls, 343 MCI, and 118
AD patients. We processed the baseline MRI of each subject to obtain high-
dimensional grey matter density maps in a standard space [1]. We extracted
the 90 × 100 middle coronal slice for each patient, to obtain a data matrix Y
with dimensions 555 × 9000, and applied our algorithm looking for three spatio-
temporal sources (see Fig. 4). The middle spatial map shows a strong activation
of the hippocampus, while the left and right plots show an activation on the
temporal lobes, with two similar temporal behaviours, characterized by a less
pronounced grey matter loss compared to the hippocampus. More specifically,
we observe that the hippocampal trajectory has a strong acceleration in oppo-
sition to the other brain areas. This pattern quantified by our model in a pure
data-driven manner is compatible with empirical evidence from clinical studies
[2]. In Fig. 5 we observe the estimated time of each patient against standard

(a)

(b)

Fig. 4. (a)–(b) Temporal and spatial sources extracted from the data.

http://adni.loni.usc.edu/
http://www.adni-info.org/
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volumetric and clinical biomarkers. We see a strong correlation between brain
volumetric measures and the estimated time, as well as a non-linear relation in
the evolution of ADAS11. The latter result indicates an acceleration of clinical
symptoms along the estimated time course.

(a) (b) (c) (d)

Fig. 5. Evolution of volumetric and clinical biomarkers along the estimated time.

4 Conclusion

We presented a method for analyzing spatio-temporal data, which provides both
independent spatio-temporal processes at stake in AD, and a disease progression
scale. Applied on grey matter maps, the model highlights different brain regions
affected by the disease, such as the hippocampus and the temporal lobes, along
with their differential temporal trajectory. We also show a strong correlation
between the estimated disease progression scale and different clinical and vol-
umetric biomarkers. We are currently extending the approach to scale to 3D
volumetric images by parallelization on multiple GPUs. The lower bound prop-
erties will be also further investigated to better assess its reliability, in order to
improve the model comparison. Moreover the method will be extended beyond
the cross-sectional application of Sect. 3.2, to account for time-series of brain
images, as well as for multimodal imaging biomarkers. Finally we will investi-
gate the use of the approach for prognosis purposes, to provide a data-driven
assessment of disease severity in testing patients.

Acknowledgements. This work has been supported by the French government,
through the UCAJEDI Investments in the Future project managed by the National
Research Agency (ref.n ANR-15-IDEX-01), the grant AAP Santé 06 2017-260 DGA-
DSH, and by the Inria Sophia Antipolis - Méditerranée, “NEF” computation cluster.

Appendix

A. Lower bound derivation

In this section we detail the derivation of the lower bound:

log(p(Y, C|σ, λ)) = log[

∫
A

∫
S

∫
S′

p(Y |A, S, σ)p(C|S′, λ)p(A)p(S, S′|λ)dAdSdS′]

= log[

∫
A

∫
S

∫
S′

p(Y |A, S, σ)p(C|S′, λ)p(A)p(S′|S, λ)p(S)dAdSdS′]

(1)
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If we know S this completely determines S′, thus we have
∫

p(S′|S, λ)dS′ = 1
which gives us:

log(p(Y, C|σ, λ)) = log[
∫

A

∫

S

p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)dAdS]

= log[
∫

A

∫

S

p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)
q1(A)q2(S)
q1(A)q2(S)

dAdS]

= log[EA∼q1,S∼q2 [
p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)

q1(A)q2(S)
]]

� EA∼q1,S∼q2 [log[
p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)

q1(A)q2(S)
]]

(2)

This is obtained thanks to Jensen’s inequality. Finally this leads us to:

EA∼q1,S∼q2 [log[
p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)

q1(A)q2(S)
]] = EA∼q1,S∼q2 [log[p(Y |A,S, σ)]]

+ ES∼q2 [log(P (C|S′, λ))]
− D[q1(A|Y )||p(A)]
− D[q2(S|Y )||p(S)]

(3)

In the Method section we introduced the approximation q1(A) =
Ns∏

n=1

N (μn, Σ(α, β)). The covariance matrix is shared by all the spatial processes

which gives us the set of spatial parameters:

ψ = {μn, n ∈ [1, Ns], α, β} (4)

Following [5] we introduce for each GP two vectors, Ωn with a prior p(Ωn) =
N (0, 1

ln
I) for each element and Wn with a prior p(Wn) = N (0, I), such that

Sn(t) = Φ(tΩn)Wn. Where Φ is chosen to obtain a RBF kernel as explained in
[5]. We define the approximated distributions q3(Wn) =

∏
j N (mn,j , s

2
n,j) and

q4(Ωn) =
∏

j N (αn,j , β
2
n,j) of p(Wn) and p(Ωn). Using these approximations and

following [5], we can derive a lower bound for S with the same technique than
above. We have the set of temporal parameters:

θ = {mn, sn, αn, βn, ln, n ∈ [1, Ns]} (5)

Now we can obtain every term of (3). The Kullback-Leibler of a multivariate
Gaussian has a closed-from:

D[q1(A|X)||p(A)] =
1
2

Ns∑

n=1

Tr(Σ) + μT
nμn − F − log[det(Σ)] (6)
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Using the factorized form of q2 and the fact that the different Gaussian processes
are independent from each other we can write:

D[q2(S|X)||p(S)] =
Ns∑

n=1

D[q3(Wn)|p(Wn)] + D[q4(Ωn)|p(Ωn)] (7)

Since the approximations q3 and q4 and their respective priors are normally
distributed we have an analytic formula for both Kullback-Leibler divergences.

D[q3(Wn)|p(Wn)] =
1
2

∑

j

s2n,j + μ2
n,j − 1 − log(s2n,j) (8)

D[q4(Ωn)|p(Ωn)] =
1
2

∑

j

β2
n,j ln + α2

n,j ln − 1 − log(β2
n,j ln) (9)

As in [10] we employ the reparameterization trick to have an efficient way of
sampling the expectations of (3). Thus we have:

– Wn,j = mn,j + sn,j ∗ εn,j

– Ωn,j = αn,j + βn,j ∗ ζn,j

– An = μn + Σ
1
2
n ∗ κn

Which gives us:

EA∼q1,S∼q2 [log(p(Y |A,S, σ))] = Eε,ζ,κ[log(p(Y |m, s, α, β, μ,Σ, σ))] (10)
ES∼q2 [log(p(C|S′, λ))] = Eε,ζ [log(p(C|m, s, α, β, λ))] (11)

Where εn,j ∼ N (0, 1), ζn,j ∼ N (0, 1) and κn ∼ N (0, I).

B. Kronecker factorization

Here we detail how to split the covariance matrix in a Kronecker product of
three matrices along each spatial dimensions. We have:

Σi,j(α, β) = α exp(−||ui − uj ||2
2β

) (12)

We can use the separability properties of the exponential to decompose the
covariance between two locations ui = (xi, yi, zi) and uj = (xj , yj , zj):

Σi,j(α, β) = α exp(− (xi − xj)2

2β
) exp(− (yi − yj)2

2β
) exp(− (zi − zj)2

2β
) (13)

So Σ can be decomposed into the Kronecker product of 1D processes:

Σ = Σx ⊗ Σy ⊗ Σz (14)

Allowing us to deal with large-size matrices.
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C. Comparison with ICA

We performed a comparison of our algorithm with ICA on a similar example
than in Sect. 3.1. However the data was generated in a simplifed setting since
ICA can’t be applied when the time associated to each image is unknown. To
do so we assigned the ground truth parameter tp beforehand. The goal was
to compare the separation performances of both our algorithm and ICA, on
data generated with three latent spatio-temporal processes. In Fig. 6 we observe
that the sources estimated by ICA are more noisy and uncertain than the ones
estimated by our method, highlighting the performances of our algorithm in
terms of sources separation.

(a)
(b)

(c)
(d)

(e)
(f)

Fig. 6. First row: raw sources. Second row: sources estimated by our method. Third
row: sources estimated by ICA.
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Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir,
Inc.; Cogstate;Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;
EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech,
Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy
Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research
& Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diag-
nostics, LLC.; NeuroRx Research; Neurotrack Technologies;Novartis Pharmaceu-
ticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceuti-
cal Company; and Transition Therapeutics. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical sites in Canada. Private
sector contributions are facilitated by the Foundation for the National Institutes
of Health (www.fnih.org). The grantee organization is the Northern Califor-
nia Institute for Research and Education, and the study is coordinated by the
Alzheimer’s Therapeutic Research Institute at the University of Southern Cal-
ifornia. ADNI data are disseminated by the Laboratory for Neuro Imaging at
the University of Southern California.
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