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MLCN 2018 Preface

The first international workshop on Machine Learning in Clinical Neuroimaging
(MLCN) was held in conjunction with MICCAI 2018, with a special focus on spatially
structured data analysis. The workshop aimed to bring together top-notch researchers in
machine learning and clinical neuroscience to discuss and hopefully bridge the existing
gap in applied machine learning in clinical neuroscience. The main objective was to
shed light on the opportunities and challenges in the structure-aware modeling in
neuroimaging data in both encoding and decoding settings. For the keynote talks,
leading researchers in the domain of spatial statistics, pattern recognition in neu-
roimaging, and predictive clinical neuroscience, Prof. Christos Davatzikos (University
of Pennsylvania), Dr. Gael Varoquaux (Inria), and Dr. George Langs (Medical
University of Vienna), were invited in order to provide a comprehensive overview from
theory to application in the field.

The call for papers for the MLCN 2018 workshop was released on April 1, 2018,
with the paper deadline set to July 25, 2018. The seven manuscripts received went
through a double-blind review process by the MLCN scientific committee (Ehsan
Adeli, Andre Altman, Luca Ambrogioni, Richard Dinga, Koen Haak, Christina Isa-
koglou, Emanuele Olivetti, Pradeep Reddy Raamana, Kerstin Ritter, Sourena Soheili
Nezhad, Thomas Wolfers, and Maryam Zabihi), and the top four papers with the best
reviews were accepted for publication in the proceedings. The accepted contributions
develop state-of-the-art machine learning methods such as spatio-temporal Gaussian
process analysis, stochastic variational inference, and deep learning for applications in
Alzheimer’s disease diagnosis and multi-site neuroimaging data analysis.

September 2018 Seyed Mostafa Kia
Andre Marquand

Edouard Duchesnay
Tommy Löfstedt



DLF 2018 Preface

Deep learning methods have rapidly become omnipresent within the medical image
computing and computer assisted intervention (MICCAI) community in recent years,
thanks to their many attractive properties including state-of-the-art accuracy in many
tasks in areas such as segmentation and classification. However, now that the initial
excitement about these new techniques has led to many successful applications within
the MICCAI domain, we need to begin developing a better understanding to demystify
deep learning.

To this end, we hosted a new workshop in conjunction with MICCAI 2018
(September 16–20, 2018, Granada, Spain) dedicated to understanding the “edges” of
deep learning: What are its current limitations? What are some MICCAI problems that
are not well-suited for existing DL methods? What are some failures the community
has encountered in DL? How can we better understand the “mysteries” we encounter,
whether an algorithm works unexpectedly well or unexpectedly poorly? Where is the
field going? etc. The workshop was held on September 16, 2018, in the Granada
Exhibition and Conference Center.

Submissions were solicited via a call for papers that was widely circulated. Some
example ideas for possible contributions were suggested, but more importantly, we
invited the MICCAI community to brainstorm about deep learning in the context of
MICCAI-related fields. We were pleased to observe the community responded well to
this invitation and the submissions covered a wide range of topics. Each submission
underwent a single-blind review by at least two members of the Program Committee,
which consisted of researchers who actively contribute in the area. At the conclusion
of the review process, six papers were accepted. The program was further enriched by
two invited speakers, Dr. Scott Acton and Dr. Leo Grady.

We chose the (provocative on purpose) title of “Deep Learning Fails” for this
workshop, tongue-in-cheek. To be clear, the goal of this workshop was not to disparage
deep learning methods. As such, we did not allow papers that indiscriminately trivialize
deep learning, such as a paper showing negative results using a generic network model
that has not been adapted or fine-tuned to address a specific problem. Rather, we
encouraged submissions that are in the spirit of constructive criticism, with the aim of
evaluating the strengths and weaknesses of deep learning, as well as identifying the
main challenges in the current state-of-the-art and future directions.

We would like to thank everyone who helped make this workshop happen: the
authors who contributed their work, the Program Committee for their careful and
thoughtful review, the invited speakers for sharing their expertise and insights, the
attendees for their contribution to the discussion, and the MICCAI society for general
support.

September 2018 Ipek Oguz
Bennett Landman
Jorge M. Cardoso



iMIMIC 2018 Preface

The first edition of the workshop on Interpretability of Machine Intelligence in Medical
Image Computing (iMIMIC)1 was held on September 16, 2018, as a half-day satellite
event of the 21st International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), in Granada, Spain. With its first edition,
this workshop aimed at introducing the challenges and opportunities of interpretability
of machine learning systems in the context of MICCAI, as well as understanding the
current state of the art in the topic and promoting it as a crucial area for further research.
The workshop program comprised of oral presentations of the accepted works and two
keynotes provided by experts in the field.

Machine learning systems are achieving remarkable performances at the cost of
increased complexity. Hence, they have become less interpretable, which may cause
distrust. As these systems are pervasively being introduced to critical domains, such as
medical image computing and computer-assisted intervention, it becomes imperative to
develop methodologies to explain their predictions. Such methodologies would help
physicians to decide whether they should follow/trust a prediction. Additionally, it
could facilitate the deployment of such systems, from a legal perspective. Ultimately,
interpretability is closely related to AI safety in health care. Besides increasing trust and
acceptance by physicians, interpretability of machine learning systems can be helpful
for other purposes, such as during method development, for revealing biases in the
training data, or studying and identifying the most relevant data (e.g., specific MRI
sequences in multi-sequence acquisitions).

The iMIMIC proceedings include six 8-page papers carefully selected from a larger
pool of submitted manuscripts, following a rigorous single-blinded peer-review pro-
cess. Each paper was reviewed by at least two expert reviewers. All the accepted papers
were presented as oral presentations during the workshop, with time for questions and
discussion.

We thank all the authors for their participation and the Program Committee mem-
bers for contributing to this workshop. We are also very grateful to our sponsors H2O.
ai, the Competence Center for Medical Technology (CCMT), Olea Medical, and the
support of the promotion fund for young researchers at the University of Bern.

September 2018 Mauricio Reyes
Carlos A. Silva
Sérgio Pereira
Raphael Meier

1 https://imimic.bibbucket.io/.

https://imimic.bibbucket.io/
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Alzheimer’s Disease Modelling
and Staging Through Independent

Gaussian Process Analysis
of Spatio-Temporal Brain Changes

Clement Abi Nader1(B), Nicholas Ayache1, Philippe Robert2,3,
Marco Lorenzi1, and for the Alzheimer’s Disease Neuroimaging Initiative

1 UCA, Inria Sophia Antipolis, Epione Research Project, Sophia Antipolis, France
{clement.abi-nader,nicholas.ayache,marco.lorenzi}@inria.fr

2 UCA, CoBTeK, Nice, France
3 Centre Memoire, CHU de Nice, Nice, France

probert@unice.fr

Abstract. Alzheimer’s disease (AD) is characterized by complex and
largely unknown progression dynamics affecting the brain’s morphology.
Although the disease evolution spans decades, to date we cannot rely
on long-term data to model the pathological progression, since most of
the available measures are on a short-term scale. It is therefore difficult
to understand and quantify the temporal progression patterns affecting
the brain regions across the AD evolution. In this work, we present a
generative model based on probabilistic matrix factorization across tem-
poral and spatial sources. The proposed method addresses the problem
of disease progression modelling by introducing clinically-inspired statis-
tical priors. To promote smoothness in time and model plausible patho-
logical evolutions, the temporal sources are defined as monotonic and
independent Gaussian Processes. We also estimate an individual time-
shift parameter for each patient to automatically position him/her along
the sources time-axis. To encode the spatial continuity of the brain sub-
structures, the spatial sources are modeled as Gaussian random fields.
We test our algorithm on grey matter maps extracted from brain struc-
tural images. The experiments highlight differential temporal progression
patterns mapping brain regions key to the AD pathology, and reveal
a disease-specific time scale associated with the decline of volumetric
biomarkers across clinical stages.

Data used in preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investiga-
tors within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete
listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/
uploads/how to apply/ADNI Acknowledgement List.pdf.

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): MLCN 2018/DLF 2018/iMIMIC 2018, LNCS 11038, pp. 3–14, 2018.
https://doi.org/10.1007/978-3-030-02628-8_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02628-8_1&domain=pdf
http://adni.loni.usc.edu/
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf


4 C. Abi Nader et al.

1 Introduction

Neurodegenerative disorders such as Alzheimer’s disease (AD) are characterized
by morphological and molecular changes of the brain, and ultimately lead to
cognitive and behavioral decline [8]. To date there is no clear understanding of
the dynamics regulating the disease progression. Consequently several attempts
have been made to model the disease evolution in a data-driven way, using sets
of biomarkers extracted from different imaging acquisition techniques, such as
Magnetic Resonance Imaging (MRI) [12]. However available data are mostly
represented by cross-sectional measures or time-series acquired on a short-term
time span, while the ultimate goal is to unveil the “long-term” disease evolution
spreading over decades. Therefore there is a critical need to define the AD evo-
lution in a data-driven manner with respect to an absolute time scale associated
to the natural history of the pathology.

To this end, in [9] the authors introduce a disease progression score for each
patient in order to identify a data-driven disease scale. This score is based on a
set of biomarkers and was shown to correlate with the decline of brain cognitive
abilities. A similar approach was proposed by [12] and [6] with scalar biomark-
ers. In [3], a disease progression score was estimated using higher-dimensional
biomarkers from molecular imaging. However these methods don’t provide infor-
mation about the brain structures involved in AD, and how the disease affects
them along time. To overcome these limitations, [13] proposes a spatio-temporal
model of disease progression explicitly accounting for different temporal dynam-
ics across the brain. This is done by decomposing cortical thickness measure-
ments as a mixture of spatio-temporal processes, by associating each vertex to
a temporal progression modeled by a sigmoid function. They also estimate a
disease progression score for each subject as a linear transformation of time.
However since the proposed formulation does not account for spatial correlation
between vertices, it may be potentially sensitive to spatial variation and noise,
thus leading to poor interpretability.

The challenge of spatio-temporal modelling in brain images is a classical
problem widely addressed via Independent Component Analysis (ICA [7]), espe-
cially on functional MRI (fMRI) data [4]. ICA aims at decomposing the data
via matrix factorization, looking for a reduced number of spatio-temporal latent
sources. Although successful in fMRI analysis, ICA cannot find straightforward
applications to the modelling of AD progression. First, ICA retrieves maximally
independent latent sources best explaining the data. However, although brain
regions can exhibit different atrophy rates, this doesn’t necessarily imply statisti-
cal independence between them. Second, differently from fMRI data, the absolute
time axis of AD spatio-temporal observations is unknown. Thus estimating the
pathology timing is a key step in order to model the disease progression, and
cannot be performed with standard dimensionality reduction methods such as
ICA. Finally, fMRI time series are defined over hundreds of time points, while we
work essentially in a cross-sectional setting with one or a few images per-subject.

In this work we present a novel spatio-temporal generative model of disease
progression aimed at quantifying the independent dynamics of changes in the
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brain. We model the observed data through matrix factorization across tempo-
ral and spatial sources, with a plausibility constraint introduced by clinically-
inspired statistical priors. To promote smoothness in time and model steady evo-
lution from normal to pathological stages, the temporal sources are defined as
monotonic independent Gaussian Processes (GPs). We also estimate an individ-
ual time-shift parameter for each patient to automatically position him along the
sources time-axis. To encode the spatial continuity of the brain sub-structures,
the spatial sources are modeled as Gaussian random fields. The framework is
efficiently optimized through stochastic variational inference. In the next sec-
tions we detail the method formulation and show its application on synthetic
and real data composed by a large dataset of MRIs from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI). Further information can be found in the
Appendix.1

2 Method

We assume that the spatio-temporal data Y (x, t) = [Y1(x, t1), Y2(x, t2), ..,
YP (x, tp)] is stored in a matrix with dimensions P × F , where P is the number
of patients, F the number of image features, and Yi(x, ti) is the image of an
individual i observed at position x and at time ti. We postulate a generative
model in order to decompose the data in Ns spatio-temporal sources such that:

Yp(x, tp) = S(θ, t + tp)A(ψ, x) + E (1)

where S is a P ×Ns matrix where each column represents a temporal trajectory,
tp the individual time-shift parameter, and θ the set of parameters related to the
temporal sources. A is a Ns ×F matrix where each row represents a spatial map,
and ψ is a set of spatial parameters. E is a N (0, σ2I) Gaussian noise. According
to the generative model the likelihood is:

p(Y |A,S, σ) =
P∏

p=1

1

(2πσ2)
F
2

exp(− 1
2σ2

||Yp − S(θ, t + tp)A(ψ, x)||2) (2)

For each row An of A we specify a N (0, I) prior, while each column Sn of S is
a GP modeled as in [5]. This setting leverages on kernel approximation through
sampling of basis functions in the spectral domain [14]. For specific choices of
the covariance, such as the Radial Basis Function used in our work, the GPs
can be approximated as a Bayesian neural network with form: S(t) = φ(Ωt)W .
Where Ω is the projection in the spectral domain, φ the non-linear basis function
activation, and W the regression parameter. The GPs inference problem thus
amounts at estimating approximated distributions for Ω and W .

To account for the steady increase of the sources from normal to pathological
stages we introduce a monotonicity prior over the GPs. To do so, we constrain the
space of the temporal sources to the set C = {S(t) | S′(t) ≤ 0 ∀t}, following
1 Appendix: https://hal.archives-ouvertes.fr/hal-01849180/document.

https://hal.archives-ouvertes.fr/hal-01849180/document
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[11]. This leads to a second likelihood term constraining the dynamics of the
temporal sources:

p(C|S′, λ) = (1 + exp(−λS′(t)))−1 (3)

We jointly optimize (2) according to priors and constraints, by maximizing the
data evidence:

log(p(Y, C|σ, λ)) = log[
∫

A

∫

S

∫

S′
p(Y |A,S, σ)p(C|S′, λ)p(A)p(S, S′|λ)dAdSdS′]

(4)
Since this integral is intractable, we tackle the optimization of (4) via stochastic
variational inference. Following [10] and [5] we introduce approximations q1(A)
and q2(Ω,W ) to derive the lower bound:

log(p(Y, C|σ, λ)) � EA∼q1,(Ω,W )∼q2 [log(p(Y |A, Ω, W, σ))] + E(Ω,W )∼q2 [log(p(C|Ω, W, λ))]

−D[q1(A)||p(A)]−D[q2(Ω, W )||p(Ω, W )]

(5)

where D refers to the Kullback-Leibler divergence.
We specify the approximated distribution of the spatial activation maps q1

such that q1(A) =
∏Ns

n=1 N (μn, Σ(α, β)). To introduce spatial correlations in the
maps we choose Σi,j(α, β) = α exp(−||ui − uj ||2/2β) to model a smooth decay
across voxels with coordinates (ui, uj). We follow [5] and [11] to also define
a variational lower bound on the constrained GPs parameterizing the temporal
processes. Thanks to the proposed framework, (4) can be efficiently optimized by
stochastic variational inference through backpropagation. We chose to alternate
the optimization between the spatio-temporal parameters and the time-shift. We
set λ to the minimum value that gives monotonic sources, while σ was arbitrarily
determined from the data. A detailed derivation of the model and lower-bound
can be found in the Appendix.

3 Results

3.1 Benchmark on Synthetic Data

We tested the algorithm on synthetic data to assess its ability to separate spatio-
temporal sources from mixed data, and to provide a model selection via the
variational lower bound. We generated three monotonically increasing functions
Si(t) such that Si(t) = 1/(1 + exp(−t + αi)), and three synthetic Gausian acti-
vation maps A1, A2, A3 with a 30 × 30 resolution, to mimick grey matter brain
areas (Figs. 1a and b). The data was generated as Yp,j = S(tp)A + Ej over 40
time points tp, where tp is uniformly distributed in [0,1]. We sampled 50 images
at instants tp and applied our method. To simulate a pure cross-sectional setting
the time associated to each input image was set to zero. Figures 1c and d show
the estimated spatio-temporal processes when fitting the model with three latent
sources. In Fig. 2, we see that the individual time-shift parameter estimated for
each subject correlates with the original time used to generate the data. This
means that the algorithm correctly positions each subject on the temporal tra-
jectories.
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(a)
(b)

(c)
(d)

(a)
(b)

(c)
(d)

Fig. 1. (a)–(b) Ground truth temporal and spatial sources. (c) Red: raw temporal
sources against the original time axis. Blue: recovered temporal sources against the
estimated time scale. (d) Estimated spatial maps. (Color figure online)

Fig. 2. The red points represent the
values of the estimated subjects’ time-
shift against their associated ground truth
value. (Color figure online)

To test the model selection, we gen-
erated the data as described above
using respectively one, two, or three
sources over ten folds. For each fold we
ran the algorithm looking for one to
four sources. Figure 3 shows mean and
standard deviation of the lower bound.
We observe that when the number of
sources is under-estimated the lower
bound is higher. When the number
of sources is over-estimated, although
the lower bound for model selection
is more uncertain, by looking at the
extracted spatial maps we observe that
the additional sources are mainly set
to zero or have low weights (see the
map of Fig. 3). These experimental
results indicate that the optimal number of sources should be selected by inspec-
tion of both the lower bound and the extracted spatial sources.

The method was also compared to ICA in a simplified setting by assign-
ing the ground truth parameter tp beforehand. This simplification is necessary
since standard ICA can’t be applied when the time associated to each image is
unknown. We observed that ICA recovered the spatio-temporal sources, by pro-
viding however more noisy estimations than the ones we obtained. This result
highlights the importance of the priors and constraints introduced in our method
(see Appendix).
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(a) (b) (c) (d)

Fig. 3. (a)–(b)–(c): Distribution of the lower bound against the number of fitted
sources. (d): 4th extracted spatial map with data generated by 3 latent sources.

3.2 Application on Real Data

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The
ADNI was launched in 2003 as a public-private partnership, led by Prin-
cipal Investigator Michael W. Weiner, MD. For up-to-date information, see
www.adni-info.org.

In this section we present an application of the algorithm on real data,
using grey matter maps extracted from structural MRI. We selected a cohort of
555 subjects from ADNI composed by 94 healthy controls, 343 MCI, and 118
AD patients. We processed the baseline MRI of each subject to obtain high-
dimensional grey matter density maps in a standard space [1]. We extracted
the 90 × 100 middle coronal slice for each patient, to obtain a data matrix Y
with dimensions 555 × 9000, and applied our algorithm looking for three spatio-
temporal sources (see Fig. 4). The middle spatial map shows a strong activation
of the hippocampus, while the left and right plots show an activation on the
temporal lobes, with two similar temporal behaviours, characterized by a less
pronounced grey matter loss compared to the hippocampus. More specifically,
we observe that the hippocampal trajectory has a strong acceleration in oppo-
sition to the other brain areas. This pattern quantified by our model in a pure
data-driven manner is compatible with empirical evidence from clinical studies
[2]. In Fig. 5 we observe the estimated time of each patient against standard

(a)

(b)

Fig. 4. (a)–(b) Temporal and spatial sources extracted from the data.

http://adni.loni.usc.edu/
http://www.adni-info.org/
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volumetric and clinical biomarkers. We see a strong correlation between brain
volumetric measures and the estimated time, as well as a non-linear relation in
the evolution of ADAS11. The latter result indicates an acceleration of clinical
symptoms along the estimated time course.

(a) (b) (c) (d)

Fig. 5. Evolution of volumetric and clinical biomarkers along the estimated time.

4 Conclusion

We presented a method for analyzing spatio-temporal data, which provides both
independent spatio-temporal processes at stake in AD, and a disease progression
scale. Applied on grey matter maps, the model highlights different brain regions
affected by the disease, such as the hippocampus and the temporal lobes, along
with their differential temporal trajectory. We also show a strong correlation
between the estimated disease progression scale and different clinical and vol-
umetric biomarkers. We are currently extending the approach to scale to 3D
volumetric images by parallelization on multiple GPUs. The lower bound prop-
erties will be also further investigated to better assess its reliability, in order to
improve the model comparison. Moreover the method will be extended beyond
the cross-sectional application of Sect. 3.2, to account for time-series of brain
images, as well as for multimodal imaging biomarkers. Finally we will investi-
gate the use of the approach for prognosis purposes, to provide a data-driven
assessment of disease severity in testing patients.

Acknowledgements. This work has been supported by the French government,
through the UCAJEDI Investments in the Future project managed by the National
Research Agency (ref.n ANR-15-IDEX-01), the grant AAP Santé 06 2017-260 DGA-
DSH, and by the Inria Sophia Antipolis - Méditerranée, “NEF” computation cluster.

Appendix

A. Lower bound derivation

In this section we detail the derivation of the lower bound:

log(p(Y, C|σ, λ)) = log[

∫
A

∫
S

∫
S′

p(Y |A, S, σ)p(C|S′, λ)p(A)p(S, S′|λ)dAdSdS′]

= log[

∫
A

∫
S

∫
S′

p(Y |A, S, σ)p(C|S′, λ)p(A)p(S′|S, λ)p(S)dAdSdS′]

(1)
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If we know S this completely determines S′, thus we have
∫

p(S′|S, λ)dS′ = 1
which gives us:

log(p(Y, C|σ, λ)) = log[
∫

A

∫

S

p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)dAdS]

= log[
∫

A

∫

S

p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)
q1(A)q2(S)
q1(A)q2(S)

dAdS]

= log[EA∼q1,S∼q2 [
p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)

q1(A)q2(S)
]]

� EA∼q1,S∼q2 [log[
p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)

q1(A)q2(S)
]]

(2)

This is obtained thanks to Jensen’s inequality. Finally this leads us to:

EA∼q1,S∼q2 [log[
p(Y |A,S, σ)p(C|S′, λ)p(A)p(S)

q1(A)q2(S)
]] = EA∼q1,S∼q2 [log[p(Y |A,S, σ)]]

+ ES∼q2 [log(P (C|S′, λ))]
− D[q1(A|Y )||p(A)]
− D[q2(S|Y )||p(S)]

(3)

In the Method section we introduced the approximation q1(A) =
Ns∏

n=1

N (μn, Σ(α, β)). The covariance matrix is shared by all the spatial processes

which gives us the set of spatial parameters:

ψ = {μn, n ∈ [1, Ns], α, β} (4)

Following [5] we introduce for each GP two vectors, Ωn with a prior p(Ωn) =
N (0, 1

ln
I) for each element and Wn with a prior p(Wn) = N (0, I), such that

Sn(t) = Φ(tΩn)Wn. Where Φ is chosen to obtain a RBF kernel as explained in
[5]. We define the approximated distributions q3(Wn) =

∏
j N (mn,j , s

2
n,j) and

q4(Ωn) =
∏

j N (αn,j , β
2
n,j) of p(Wn) and p(Ωn). Using these approximations and

following [5], we can derive a lower bound for S with the same technique than
above. We have the set of temporal parameters:

θ = {mn, sn, αn, βn, ln, n ∈ [1, Ns]} (5)

Now we can obtain every term of (3). The Kullback-Leibler of a multivariate
Gaussian has a closed-from:

D[q1(A|X)||p(A)] =
1
2

Ns∑

n=1

Tr(Σ) + μT
nμn − F − log[det(Σ)] (6)
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Using the factorized form of q2 and the fact that the different Gaussian processes
are independent from each other we can write:

D[q2(S|X)||p(S)] =
Ns∑

n=1

D[q3(Wn)|p(Wn)] + D[q4(Ωn)|p(Ωn)] (7)

Since the approximations q3 and q4 and their respective priors are normally
distributed we have an analytic formula for both Kullback-Leibler divergences.

D[q3(Wn)|p(Wn)] =
1
2

∑

j

s2n,j + μ2
n,j − 1 − log(s2n,j) (8)

D[q4(Ωn)|p(Ωn)] =
1
2

∑

j

β2
n,j ln + α2

n,j ln − 1 − log(β2
n,j ln) (9)

As in [10] we employ the reparameterization trick to have an efficient way of
sampling the expectations of (3). Thus we have:

– Wn,j = mn,j + sn,j ∗ εn,j

– Ωn,j = αn,j + βn,j ∗ ζn,j

– An = μn + Σ
1
2
n ∗ κn

Which gives us:

EA∼q1,S∼q2 [log(p(Y |A,S, σ))] = Eε,ζ,κ[log(p(Y |m, s, α, β, μ,Σ, σ))] (10)
ES∼q2 [log(p(C|S′, λ))] = Eε,ζ [log(p(C|m, s, α, β, λ))] (11)

Where εn,j ∼ N (0, 1), ζn,j ∼ N (0, 1) and κn ∼ N (0, I).

B. Kronecker factorization

Here we detail how to split the covariance matrix in a Kronecker product of
three matrices along each spatial dimensions. We have:

Σi,j(α, β) = α exp(−||ui − uj ||2
2β

) (12)

We can use the separability properties of the exponential to decompose the
covariance between two locations ui = (xi, yi, zi) and uj = (xj , yj , zj):

Σi,j(α, β) = α exp(− (xi − xj)2

2β
) exp(− (yi − yj)2

2β
) exp(− (zi − zj)2

2β
) (13)

So Σ can be decomposed into the Kronecker product of 1D processes:

Σ = Σx ⊗ Σy ⊗ Σz (14)

Allowing us to deal with large-size matrices.
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C. Comparison with ICA

We performed a comparison of our algorithm with ICA on a similar example
than in Sect. 3.1. However the data was generated in a simplifed setting since
ICA can’t be applied when the time associated to each image is unknown. To
do so we assigned the ground truth parameter tp beforehand. The goal was
to compare the separation performances of both our algorithm and ICA, on
data generated with three latent spatio-temporal processes. In Fig. 6 we observe
that the sources estimated by ICA are more noisy and uncertain than the ones
estimated by our method, highlighting the performances of our algorithm in
terms of sources separation.

(a)
(b)

(c)
(d)

(e)
(f)

Fig. 6. First row: raw sources. Second row: sources estimated by our method. Third
row: sources estimated by ICA.

D. ADNI

Data collection and sharing for this project was funded by the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) and DOD ADNI. ADNI is funded by the
National Institute on Aging, the National Institute of Biomedical Imaging and
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Bioengineering, and through generous contributions from the following: Abb-
Vie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon
Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir,
Inc.; Cogstate;Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company;
EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech,
Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy
Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research
& Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diag-
nostics, LLC.; NeuroRx Research; Neurotrack Technologies;Novartis Pharmaceu-
ticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceuti-
cal Company; and Transition Therapeutics. The Canadian Institutes of Health
Research is providing funds to support ADNI clinical sites in Canada. Private
sector contributions are facilitated by the Foundation for the National Institutes
of Health (www.fnih.org). The grantee organization is the Northern Califor-
nia Institute for Research and Education, and the study is coordinated by the
Alzheimer’s Therapeutic Research Institute at the University of Southern Cal-
ifornia. ADNI data are disseminated by the Laboratory for Neuro Imaging at
the University of Southern California.
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Abstract. The joint analysis of biomedical data in Alzheimer’s Disease
(AD) is important for better clinical diagnosis and to understand the
relationship between biomarkers. However, jointly accounting for het-
erogeneous measures poses important challenges related to the modeling
of heterogeneity and to the interpretability of the results. These issues
are here addressed by proposing a novel multi-channel stochastic genera-
tive model. We assume that a latent variable generates the data observed
through different channels (e.g., clinical scores, imaging) and we describe
an efficient way to estimate jointly the distribution of the latent variable
and the data generative process. Experiments on synthetic data show
that the multi-channel formulation allows superior data reconstruction
as opposed to the single channel one. Moreover, the derived lower bound
of the model evidence represents a promising model selection criterion.
Experiments on AD data show that the model parameters can be used for
unsupervised patient stratification and for the joint interpretation of the
heterogeneous observations. Because of its general and flexible formula-
tion, we believe that the proposed method can find various applications
as a general data fusion technique.
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1 Introduction

Physicians investigate their patients’ status through various sources of infor-
mation that in this work we call channels. For Alzheimer’s Disease (AD), for
example, the anamnestic questionnaire, genetic tests and various imaging modal-
ities are channels providing specific, complementary, and sometimes overlapping
views on the patient’s state [3,7].

Tackling a complex disease like AD requires to establish a link between
heterogeneous data channels. However, simple univariate correlation analyses
are limited in modeling power, and are prone to false positives when the data
dimension is high. To overcome the limitations of mass-univariate analysis, more
advanced methods, such as Partial Least Squares (PLS), Reduced Rank Regres-
sion (RRR), or Canonical correlation analysis (CCA) [5] have successfully been
applied in biomedical research [12], along with multi-channel [8,13] and non-
linear [1,6] variants.

A common drawback of standard multivariate methods is that they are not
generative. Indeed, their formulation consists in projecting the observations in
a latent lower dimensional space in which they exhibit certain desired charac-
teristics like maximum correlation (CCA), maximum covariance (PLS), mini-
mum regression error (RRR); however these methods are limited in providing
information on how this latent representation is expressed in the observations
[4]. Moreover, techniques for model comparison should be applied to select the
best number of dimensions for the latent representation and avoid overfitting.
While cross-validation is the standard model validation procedure, this requires
holding-out data from the original dataset, and thus leading to data loss at the
training stage.

We need generative models that can actually describe the direct influence of
the latent space on the observations, and model selection techniques leveraging
solely on training data. Bayesian-CCA [11] actually goes in this direction: it is
a generative formulation of the CCA defined on a latent variable that captures
the shared variation between data channels. Moreover, the Bayesian formulation
allows the use of probabilistic model comparison, without recurring to cross-
validation. However, Bayesian-CCA may not scale well to large dimensions and
several channels.

In this work we aim at addressing the current methodological limitations in
multi-channel analysis. By leveraging on the recent developments on performing
efficient approximate Variational Inference in Bayesian modeling in an efficient
way, we propose a novel multi-channel stochastic generative model for the joint
analysis of multi-channel heterogeneous data. Our hypothesis is that a latent
variable z generates the heterogeneous data x1, . . . ,xC observed through dif-
ferent channels C. In this work we propose an efficient way to estimate jointly
the latent variable distribution and the data likelihood p (x1, . . . ,xC |z), and we
also investigate a mean for Bayesian model selection. Our work generalizes the
Variational Autoencoder [10] and the Bayesian-CCA, making possible to jointly
model multiple channels simultaneously and efficiently.

The next sections of this paper are organized as follows. In Sect. 2 we present
the derivation of the multi-channel variational model and we describe a possible
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implementation with Gaussian distributions parametrized by linear functions.
In Sect. 3 we apply our method on a synthetic dataset, as well as on a real
multi-channel Alzheimer’s disease dataset, to test the descriptive and predictive
properties of the model. In the last section we provide our discussions and conclu-
sions. Further experimental tests are provided in the Supplementary Material1.

2 Method

2.1 Multi-channel Variational Inference

Let x = {xc}C
c=1 be a single observation of a set of C channels, where each

xc ∈ R
dc is a dc-dimensional vector. Also, let z ∈ R

l denote the l-dimensional
latent variable commonly shared by each xc. We propose the following generative
process:

z ∼ p (z)
xc ∼ p (xc|z,θc) for c in 1 . . . C

(1)

where p (() z) is a prior distribution for the latent variable and p (xc|z,θc) is
a likelihood distribution for the observations conditioned on the latent vari-
able. We assume that the likelihood functions belong to a distribution family
P parametrized by θc. When the distributions are Gaussians parametrized by
linear transformations, the model is equivalent to the Bayesian-CCA (cf. [11],
Eq. 3). In the scenario depicted so far, solving the inference problem allows the
discovery of the common latent space from which the observed data in each chan-
nel is generated. The solution to the inference problem is given by deriving the
posterior p (z|x1, . . . ,xC ,θ1, . . . ,θC), that is not always computable analytically.
In this case, Variational Inference [2] can be applied to compute an approximate
posterior. In our setting, variational inference is carried out by introducing prob-
ability density functions q (z|xc,φc) that are on average as close as possible to
the true posterior in terms of Kullback-Leibler divergence:

argmin
q∈Q

Ec

[DKL

(
q (z|xc,φc) || p (z|x1, . . . ,xC ,θ1, . . . ,θC)

)]
(2)

where the approximate posteriors q (z|xc,φc) belong to a distribution family
Q parametrized by φc, and represent the view on the latent space that can be
inferred from each channel xc. Practically, solving the objective in Eq. 2 allows to
use on average every q (z|xc,φc) to approximate the true posterior distribution.
It can be shown that the maximization of the model evidence p (x1, . . . ,xC) is
equivalent to the optimization of the evidence lower bound L (θ,φ,x):

L (θ,φ,x) =
1
C

C∑

c=1

Eq(z|xc,φc)

[∑C
i=1 ln p (xi|z,θc)

]

︸ ︷︷ ︸
cross-reconstruction of all xi from xc

−DKL

(
q (z|xc,φc) || p (z)

)

= ln p (x1, . . . ,xC)
︸ ︷︷ ︸

Evidence

−Ec

[DKL

(
q (z|xc,φc) || p (z|x1, . . . ,xC ,θ1, . . . ,θC)

)]

︸ ︷︷ ︸
≥0

(3)
1 https://hal.inria.fr/hal-01844733.

https://hal.inria.fr/hal-01844733
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It can be shown that maximizing L (θ,φ,x) is equivalent to solving the objective
in Eq. 2 (cf. Sup. Mat.). Moreover, being the lower bound linked to the data
evidence up to a positive constant, Eq. 3 allows to test L (θ,φ,x) as a surrogate
measure of p (x1, . . . ,xC) for Bayesian model selection. This formulation is valid
for any distribution family P and Q, and the complete derivation of Eq. 3 is in
the Sup. Mat.

Comparison with Variational Autoencoder (VAE). Our model extends
the VAE [10]: the novelty is in the cross-reconstruction term labeled in Eq. 3. In
case C = 1 the model collapses to a VAE. In the case C > 1 the cross-term forces
each channel to the joint decoding of the other channels. For this reason, our
model is different from a stack of VAEs. The dependence between encoding and
decoding across channels stems from the joint approximation of the posteriors
(Formula (2)).

Optimization of the Lower Bound. The optimization starts with a random
initialization of the generative parameters θ and the variational parameters φ.
The expectation in the first row of Eq. 3 can be computed by sampling from
the variational distributions q (z|xc,φc) and, when the prior and the variational
distributions are Gaussians, the Kullback-Leibler term can be computed analyt-
ically (cf. [10], Appendix 2.A). The maximization of L (θ,φ,x) with respect to
θ and φ is efficiently carried out through minibatch stochastic gradient descent
implemented with the backpropagation algorithm. For each parameter, adaptive
learning rates are computed with Adam [9].

2.2 Gaussian Linear Case

Model (1) is completely general and can account for complex non-linear rela-
tionships modeled, for example, through deep neural networks. However, for
simplicity of interpretation, and validation purposes, in the next experimental
section we will restrict our multi-channel variational framework to the Gaus-
sian Linear Model. This is a special case, analogous to Bayesian-CCA, where
the members of the generative family P and variational family Q are Gaussians
parametrized by linear transformations. The parameters of these transformations
are thus optimized by maximizing lower bound. We define the members of the
generative family P as Gaussians whose first moments are linear transformations
of the latent variable z, and the second moments are parametrized by a diago-
nal covariance matrix, such that p (xc|z,θc) = N

(
xc|G(μ)

c z, diag(g(σ)
c )

)
, where

G(μ)
c ∈ R

dc×l and g(σ)
c ∈ R

dc . The elements of θc = {G(μ)
c ,g(σ)

c } are the genera-
tive parameters to be optimized for every channel. We also define the members
of variational family Q to be Gaussians whose moments are linear transforma-
tion of the observations, such that q (z|xc,φc) = N

(
xc|V(μ)

c xc, diag(V
(σ)
c xc)

)

where V(μ)
c ∈ R

l×dc and V(σ)
c ∈ R

l×dc . The elements of φc = {V(μ)
c ,V(σ)

c } are
the variational parameters to be optimized for every channel.
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3 Experiments

In this section we illustrate the performance of the method extensively tested
on a large scale synthetic dataset, and we provide a real case example by jointly
analyzing multimodal brain imaging and clinical scores in AD data. Further
experimental tests are provided in Sup. Mat.

3.1 Experiments on Linearly Generated Synthetic Datasets

Data Generation Procedure. Datasets x = {xc} with c = 1 . . . C channels
where created as xc = Gcz + snr−1/2ε, where z ∼ N (0; Il) and ε ∼ N (0; Idc

).
snr is the signal-to-noise ratio and Gc is the linear generative law initialized as
Gc = diag

(
RcRT

c

)−1/2
Rc where, for every channel c, Rc ∈ R

dc×l is a random
matrix with l orthonormal columns (i.e., RT

c Rc = Il). It’s easy to demonstrate
that the diagonal elements of the covariance matrix of xc are inversely propor-
tional to snr, i.e., diag

(
E

[
xcxT

c

])
= (1 + snr−1)Idc

. Scenarios where generated
by varying one-at-a-time the dataset attributes (e.g., noise level, number of
observations, . . . ), as listed in Sup. Mat. We fitted several instances of the model
specified in Sect. 2.2, changing each time the number of fitted latent dimensions,
for a total of 40 000 experiments.

Results. At convergence, the loss function (negative lower bound) has a mini-
mum when the number of fitted latent dimension corresponds to the number of
the latent dimensions used to generate the data, as depicted in Fig. 1a. When
increasing the number of fitted latent dimensions, a sudden decrease of the loss
(elbow effect) is indicative that the true number of latent dimensions has been
found. In the Sup. Mat. we show also that the elbow effect becomes more pro-
nounced with increasing the number of data channels. Ambiguity in identifying
the elbow, instead, may rise for high-dimensional data channels. In these cases,
increasing the sample size or the data quality in terms of snr can make the elbow
point more noticeable.

Concerning the estimation of the ground truth parameters and data recon-
struction, we observed that the performance of the model increases with higher
snr, sample size, and number of channels (Sup. Mat.; moreover we notice that the
error made in ground truth data recovery with multi-channel information is sys-
tematically lower than the one obtained with a single-channel decoder (Fig. 1b).

3.2 Application to Clinical and Medical Imaging Data in AD

Data Preparation. Data used in the preparation of this article were
obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private part-
nership, led by Principal Investigator Michael W. Weiner, MD. For up-to-date
information, see www.adni-info.org.

http://adni.loni.usc.edu
www.adni-info.org
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Fig. 1. (a) Negative lower bound (NLB) on the synthetic training set computed at
convergence for all the scenarios. Each bar shows mean ± s.e. of N = 80 total exper-
iments as a function of the number of fitted latent dimensions. Red bars represents
experiments where the number of true and fitted latent dimensions coincide. (b) Ratio
between Multi- vs Single-Channel reconstruction error computed as mean squared error
from the ground truth test data. (Color figure online)

We fit our model with linear parameters to clinical imaging channels acquired
on 504 subjects. The clinical channel is composed of six continuous variables gen-
erally recorded in memory clinics (age, mini-mental state examination, adas-cog,
cdr, faq, scholarity); the three imaging channels are structural MRI (gray matter
only), functional FDG-PET, and Amyloid-PET, each of them composed by con-
tinuous measures averaged over 90 brain regions mapped in the AAL atlas [14].
Raw data from the imaging channels where coregistered in a common geomet-
ric space, and visual quality check was performed to exclude registration errors.
Data was centered and standardized across dimensions. Model selection was car-
ried out by comparing the lower bound for several fitted latent dimensions.

Results. As depicted in Fig. 2a, we found that model selection through the
lower bound identifies in a range around 16 the number of latent dimensions that
optimally describe the observations. When fixing 16 latent dimensions, in one of
them (Fig. 2c) subjects appear stratified by disease status, an information that
was not directly introduced ahead. For each model, the classification accuracy
in predicting the disease status was assessed through split-half cross-validation
linear discriminant analysis on the latent variables (Fig. 2b). Maximum accuracy
for disease classification occurs at 16 and 32 latent dimensions, an optimum
location also identified through the lower bound. Figure 3 shows the generative
parameters φc of the four channels associated to the latent dimension shown in
Fig. 2c. The generative parameters describe a plausible relationship between this
latent dimension and the heterogeneous observations in the data channels.
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Fig. 2. Modeling results on ADNI data. (a) The negative lower bound has a minimum
when fitting 16 latent dimensions. (b) Classification performance of the models: maxi-
mum accuracy for classes identification occurs with 16 and 32 lat. dims., in agreement
with (a). (c) Pairwise representations of one latent dimension (out of 16) inferred from
each of the four data channel. Although the optimization is not supervised to enforce
clustering, subjects appear stratified by disease classes.

Fig. 3. Generative parameters φ(µ)
c of the four channels associated to the latent

dimension in Fig. 2c. The clinical parameters are age, mini-mental state examination
(mmse), adas-cog (adas11), cdr-sb, faq, scholarity (pteducat); The generative param-
eters describe a plausible relationship between the latent variable and the heteroge-
neous observations in the ADNI dataset, coherently with the research literature on
Alzheimer’s Disease (e.g. low amyloid deposition, high mmse, high scholarity, low cdr,
etc.).

4 Discussion and Conclusion

We presented a multi-channel stochastic framework based on a probabilistic gen-
erative formulation. The performance of our multi-channel model was shown in
the case of Gaussian distributions with moments parametrized by linear func-
tions. In the real case scenario of AD modeling, the model allowed the unsuper-
vised stratification of the latent variable by disease status, providing evidence
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for a physiological interpretation of the latent space. The generative parame-
ters can therefore encode clinically meaningful relationships across multi-channel
observations. Although the use of the lower bound for model selection presents
theoretical limitations [2], we found that it leads to good approximation of the
marginal likelihood, thus providing a basis for model selection.

Future extension of this work will concern model with non-linear parameter-
ization of the distributions, easily implementable through deep neural networks.
The use of non-Gaussian distributions can also be tested. Given the scalabil-
ity of our variational model, application to high resolution images may be also
easily implemented. To increase the model classification performance, super-
vised clustering of the latent space will be introduced, for example, by adding
an appropriate cost function to the lower bound. Also, introducing sparsity to
remove redundancies may ease the identification and interpretation of the most
informative parameters. Lastly, due to the general formulation, the proposed
method can find various applications as a general data fusion technique, not
limited to the biomedical research area.
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Abstract. Visualizing and interpreting convolutional neural networks
(CNNs) is an important task to increase trust in automatic medical
decision making systems. In this study, we train a 3D CNN to detect
Alzheimer’s disease based on structural MRI scans of the brain. Then,
we apply four different gradient-based and occlusion-based visualization
methods that explain the network’s classification decisions by highlight-
ing relevant areas in the input image. We compare the methods qualita-
tively and quantitatively. We find that all four methods focus on brain
regions known to be involved in Alzheimer’s disease, such as inferior and
middle temporal gyrus. While the occlusion-based methods focus more
on specific regions, the gradient-based methods pick up distributed rel-
evance patterns. Additionally, we find that the distribution of relevance
varies across patients, with some having a stronger focus on the temporal
lobe, whereas for others more cortical areas are relevant. In summary,
we show that applying different visualization methods is important to
understand the decisions of a CNN, a step that is crucial to increase
clinical impact and trust in computer-based decision support systems.

Keywords: Alzheimer · Visualization · MRI · Deep learning · CNN
3D · Brain

1 Introduction

Alzheimer’s disease (AD) is the main cause of dementia in the elderly. It is
symptomatically characterized by loss of memory and other intellectual abili-
ties to such an extent that it affects daily life. Long before memory problems
occur, microscopic changes related to cell death take place and slowly progress
over time. Radiologically, neurodegeneration is the hallmark of AD, starting
in the temporal lobe and then spreading all over the brain. However, since all
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): MLCN 2018/DLF 2018/iMIMIC 2018, LNCS 11038, pp. 24–31, 2018.
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brains from elderly people are affected by atrophy, it is a difficult task (even
for experienced radiologists) to discriminate normal age-related atrophy from
AD-mediated atrophy.

In this context, machine learning models provide great potential to capture
even slight tissue alterations. State-of-the-art models for image classification
are convolutional neural networks (CNNs), which have recently been applied
to medical imaging data for various use cases [5], including AD detection. The
key idea behind CNNs is inspired by the mechanism of receptive fields in the
primate visual cortex: Local convolutional filters and pooling operations are
applied successively to extract regional information. In contrast to traditional
machine learning-based approaches, CNNs do not rely on hand-crafted features
but find meaningful representations of the input data during training.

Although CNNs deliver good classification results, they are difficult to visual-
ize and interpret. In medical decision making, however, it is critical to explain the
behavior of a machine learning model and let medical experts verify the diag-
nosis. A number of visualization methods have been suggested that highlight
regions in an input image with strong influence on the classification decision
[9–12]. Such heatmaps constitute the basis for understanding and interpreting
machine learning models, optimally together with clinicians.

In this work, we compare four visualization methods (sensitivity analysis,
guided backpropagation, occlusion and brain area occlusion) on a 3D CNN,
which was trained to classify structural MRI scans of the brain into AD patients
and normal elderly controls (NCs).

2 Related Work

2.1 Alzheimer Classification

A number of machine learning models have been applied to Alzheimer detection.
Some use traditional approaches with hand-crafted features, while most recent
papers employ deep convolutional networks. For an overview, we refer the reader
to Table 1 in Khvostikov et al. [3]. We identified three studies that use a model
and training procedure similar to ours (i.e. 3D CNN, full-brain structural MRI
scans, AD/NC classification) [2,4,8]: In contrast to our study, Payan et al. [8]
and Hosseini-Asl et al. [2] pretrain their convolutional layers with an unsuper-
vised autoencoder. Korolev et al. [4] train from scratch, but use more complex
networks. The CNN architecture in our study is partly inspired by a model in
Khvostikov et al. [3], even though they only train on images of the hippocampus.

2.2 Visualization Methods

A range of visualization methods for CNNs have recently been developed. While
some methods aim to find prototypes for classes, we only use methods that
explain the CNN decision for a specific sample [9,10,12] (see methodological
details below). We found two studies that apply visualization methods to AD
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classification in a similar way as we do: Korolev et al. [4] employ the occlu-
sion method on a deep CNN. While they show similar results like ours (focus
on hippocampus and ventricles), they do not compare different visualization
methods or analyze the relevance distribution in detail. Yang et al. [11] use
a segmentation-based occlusion (similar to our brain area occlusion), but reach
inconclusive results. To the best of our knowledge, this is the first study that com-
prehensively compares different visualization methods on CNNs for AD detec-
tion.

3 Methods

3.1 Data

For this study we used structural MRI data of patients with Alzheimer’s disease
(AD) and normal controls (NC) from phase 1 of the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI, http://adni.loni.usc.edu/) who were included in the
“MRI collection - Standardized 1.5T List - Annual 2 year”. For each subject,
this data collection offers structural MRI scans of the full brain for up to three
time points (screening, 12 and 24 months; sometimes multiple scans per visit).
We excluded scans with mild cognitive disorder (MCI) and two scans for which
our preprocessing pipeline failed. In total, our dataset comprises 969 individual
scans (475 AD, 494 NC) from 344 subjects (193 AD, 151 NC).

All scans were acquired with 1.5 T scanners at various sites and had under-
gone gradient non-linearity, intensity inhomogeneity and phantom-based distor-
tion correction. We downloaded T1-weighted MPRAGE scans and non-linearly
registered all images to a 1 mm isotropic ICBM template using ANTs (http://
stnava.github.io/ANTs/), resulting in volumes of 193 × 229 × 193.

For training, we split this dataset using 5-fold cross validation. The split is
performed on the level of patients to prevent the network from seeing images of
the same patient during training and testing. For the visualization methods, we
used a fixed split with 30 AD and 30 NC patients in the test set.

3.2 Model

Our model consists of four convolutional layers (with filter size 3 × 3 × 3 and
8/16/32/64 feature maps) and two fully-connected layers (128/64 neurons; this
architecture is inspired by a model in Khvostikov et al. [3]). We apply batch
normalization and pooling after each convolution and dropout of 0.8 before the
first fully-connected layer. The network has two output neurons with softmax
activation. We train with cross-entropy loss and the Adam optimizer (learning
rate 0.0001, batch size 5) for 20 epochs. Before feeding the brain scans to the
network, we remove the skull and normalize each voxel to have mean 0 and
standard deviation 1 across the training set.

http://adni.loni.usc.edu/
http://stnava.github.io/ANTs/
http://stnava.github.io/ANTs/
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3.3 Visualization Methods

In this section, we briefly review the four visualization methods we used in this
study (see also the review by Montavon et al. [6]). All of these methods produce
a heatmap over the input image, which indicates the relevance of image pixels for
the classification decision. PyTorch implementations of all visualization methods
will be made available at http://github.com/jrieke/cnn-interpretability.

Sensitivity Analysis (Backpropagation) [9]. The gradient of the network’s
output probability w.r.t. the input image is calculated. For a given image pixel,
this gradient describes how much the output probability changes when the pixel
value changes. In neural networks, the gradient can be easily computed via the
backpropagation algorithm, which is used for training. As relevance score, we
take the absolute value of the gradient.

Guided Backpropagation [10]. This method is a modified version of sen-
sitivity analysis, in which the negative gradients are set to 0 at ReLU layers
during the backward pass. This is equivalent to a combination of Backpropaga-
tion and Deconvolution and leads to more focused heatmaps. As above, we take
the absolute value of the gradient as the relevance score.

Occlusion [12]. A part of the image is occluded with a black or gray patch
and the network output is recalculated. If the probability for the target class
decreases compared to the original image, this image region is considered to be
relevant. To get a relevance heatmap, we slide the patch across the image and
plot the difference between unoccluded and occluded probability (for AD or NC).
We use a patch of size 40 × 40 × 40 with value 0.

Brain Area Occlusion. This method is a modification of occlusion, in which we
occlude an entire brain area based on the Automated Anatomical Labeling atlas
(AAL, http://www.gin.cnrs.fr/en/tools/aal-aal2/). This method was inspired by
a segmentation-based visualization in Yang et al. [11]. As for occlusion, we report
the difference between unoccluded and occluded probability (for AD or NC).

4 Results

4.1 Classification

Using 5-fold cross-validation, our network achieves a classification accuracy of
0.77 ± 0.06 and ROC AUC of 0.78 ± 0.04 (both mean ± standard deviation).
This is comparable to recent studies for other convolutional networks [2,4,8].
For example, Korolev et al. [4], who use a similar model and training procedure,
achieve a similar accuracy of 0.79 ± 0.08, but with a better ROC AUC of 0.88±
0.08. Please note that our focus was on the different visualization methods and
not on optimizing the network.

http://github.com/jrieke/cnn-interpretability
http://www.gin.cnrs.fr/en/tools/aal-aal2/
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Fig. 1. Relevance heatmaps for all visualization methods, averaged over AD (top) and
NC (bottom) samples in the test set. Red indicates relevance, i.e. a red area was
important for the network’s classification decision. Numbers indicate slice positions
(out of 229 coronal slices). (Color figure online)
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Table 1. Most relevant brain areas per visualization method, averaged over AD (top)
and NC (bottom) samples in the test set. Values in brackets give fraction of summed
relevance in this brain area, divided by the summed relevance in the whole brain.

Sensitivity analysis

(Backpropagation)

Guided backpropagation Occlusion Brain area occlusion

AD TemporalMid (6.1%)

TemporalInf (5.9%)

Fusiform (4.6%)

CerebelumCrus1 (3.8%)

TemporalMid (7.0%)

TemporalInf (5.7%)

FrontalMid (4.2%)

Fusiform (3.9%)

TemporalMid (12.1%)

TemporalInf (9.2%)

Fusiform (6.2%)

ParaHippocampal

(5.4%)

TemporalMid (29.7%)

TemporalInf (14.8%)

TemporalSup (4.4%)

Hippocampus (4.1%)

NC TemporalMid (6.1%)

TemporalInf (5.8%)

Fusiform (4.5%)

CerebelumCrus1 (3.8%)

CerebelumCrus1 (4.6%)

TemporalMid (4.5%)

TemporalInf (4.5%)

FrontalMid (4.1%)

TemporalMid (6.2%)

TemporalSup (4.9%)

CerebelumCrus1 (4.9%)

Insula (4.7%)

TemporalMid (20.4%)

TemporalInf (12.8%)

Fusiform (7.2%)

TemporalSup (6.2%)

4.2 Relevant Brain Areas

Figure 1 shows relevance heatmaps for all visualizations methods, averaged over
AD and NC samples in the test set. Since there is no ground truth available
for such heatmaps, we validate our results by focusing on specific brain areas
that were associated with AD in the medical literature. We identified the most
relevant brain areas for each visualization method by summing the relevance in
each area (according to the AAL atlas). Table 1 lists the four most relevant brain
areas for each method, again averaged over AD and NC samples.

For both AD and NC patients, we can see that the main focus of the network
is on the temporal lobe, especially its medial part. This brain area, containing
the hippocampus and other structures associated with memory, has been empir-
ically linked to AD [1]. The hippocampus itself is usually one of the earliest
areas affected by AD [7]. In our experiments, we observe some relevance on
the hippocampus, but usually the whole area around it is crucial for the net-
work’s decision. This may be explained by the fact that our samples contain only
advanced forms of the disease.

In addition to temporal regions, we observe some relevance attributed to
other areas across the brain (especially in the gradient-based visualization meth-
ods). We find that the distribution of relevance varies between patients: Some
brains have strong relevance in the temporal lobe, while in others, the cortex
plays a crucial role.

Lastly, we note that the heatmaps for AD and NC samples are quite similar.
This makes sense, given that the network should focus on the same regions to
detect presence or absence of the disease. Some differences between AD and
NC can be found for the occlusion method. We speculate that this might be an
artifact of our specific setting (the network might confuse the occlusion patch
with brain atrophy, increasing the probability for AD in some brain areas).

4.3 Differences Between Visualization Methods

Although all visualization methods focus on similar brain areas, we can spot
some differences: Occlusion and brain area occlusion are more focused on specific
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regions, while relevance in the gradient-based methods seems more distributed.
Obviously, the occlusion-based approaches cannot deal with large areas of dis-
tributed relevance (e.g. in the cortex), because these areas will never be cov-
ered up completely by the occlusion patch. Therefore, we recommend to apply
gradient-based instead of occlusion-based visualization methods for use cases
where the relevance is presumably distributed across the input image. Moreover,
we find that brain area occlusion is indeed a very natural approach for our con-
text, but it suffers from the fact that only one brain region is covered up at a
time. In our case, this leads to very high relevance for the temporal lobe, but
hardly any relevance for other brain structures.

To compare the visualization methods quantitatively, we computed Euclidean
distances between the average heatmaps (

√∑
i (Ai −Bi)2 for heatmaps A, B

and voxels i), as shown in Table 2. In accordance with the visual impression,
we find that the gradient-based methods are relatively similar to each other
(i.e. low Euclidean distance). The only method that deviates strongly from all
other methods is brain area occlusion, which (as stated above) only attributes
relevance to a few image regions.

Table 2. Euclidean distance between relevance heatmaps (averaged over all AD/NC
samples in the test set) in 10−4.

Sensitivity analysis
(Backpropagation)

Guided
backpropagation

Occlusion Brain area
occlusion

Sensitivity analysis
(Backpropagation)

0.00/0.00 4.09/4.36 5.15/4.09 11.48/9.04

Guided
backpropagation

4.09/4.36 0.00/0.00 6.47/5.83 11.36/9.80

Occlusion 5.15/4.09 6.47/5.83 0.00/0.00 11.16/9.66

Brain area
occlusion

11.48/9.04 11.36/9.80 11.16/9.66 0.00/0.00

5 Conclusion

In this study, we trained a 3D CNN for Alzheimer classification and applied
various visualization methods. We show that our CNN indeed focuses on brain
regions associated with AD, in particular the medial temporal lobe. This is
consistent across all four visualization methods. Interestingly, the distribution of
relevance varies between patients, with some having a stronger focus on the tem-
poral lobe, whereas for others more cortical areas were involved. We hope that
explaining classifier decisions in this way can pave the way for machine learning
models in critical areas like medicine and will increase trust in computer-based
decision support systems. Our results also show that the visualization methods



Visualizing CNNs for MRI-Based Diagnosis of Alzheimer’s Disease 31

differ in their explanations. Therefore, we strongly recommend to compare avail-
able visualization methods for a specific application area and not “blindly” trust
the results of one method.

For future research, we identified three main areas: First, other visualization
methods [6] could be implemented and compared to our results. Second, future
studies might apply our workflow to preconditions of Alzheimer’s disease, i.e.
mild cognitive impairment, and measures of clinical disability. Third, it would
be interesting to produce some form of ground truth for the relevance heatmaps,
e.g. by implementing simulation models that control for the level of separability
or location of differences.
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Abstract. Machine learning techniques often require many training
instances to find useful patterns, especially when the signal is subtle
in high-dimensional data. This is especially true when seeking classi-
fiers of psychiatric disorders, from fMRI (functional magnetic resonance
imaging) data. Given the relatively small number of instances available
at any single site, many projects try to use data from multiple sites.
However, forming a dataset by simply concatenating the data from the
various sites, often fails, due to batch effects – that is, the accuracy of
a classifier learned from such a multi-site datasets, is often worse than
of a classifier learned from a single site. We show why several simple,
commonly used, techniques – such as including the site as a covariate,
z-score normalization, or whitening – are useful only in very restrictive
cases. Additionally, we propose an evaluation methodology to measure
the impact of batch effects in classification studies and propose a tech-
nique for solving batch effects under the assumption that they are caused
by a linear transformation. We empirically show that this approach con-
sistently improve the performance of classifiers in multi-site scenarios,
and presents more stability than the other approaches analyzed.

Keywords: Multi-site fMRI · Batch effects · Machine learning

1 Introduction

Over the last years, many researchers have been seeking tools that can help with
the diagnosis and prognosis of mental health problems. Research groups have
used machine learning approaches in the analysis of fMRI data in order to build
predictors that can diagnose, for example, attention deficit and hyperactivity
disorders, mild cognitive impairment and Alzheimer’s disease, schizophrenia, or
autism [2]. The reported accuracy of the different tasks varies from chance level
to >85%, depending on the task, dataset, features, and learning algorithm used
for creating the classifier.
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One of the main obstacles that limits the usability and generalization capa-
bilities (to new instances) of machine learning approaches is the usually small
number of instances (n) of the datasets used to train the models [2]. This is espe-
cially problematic when there are a large number of features (p), which might
range from a few hundreds to millions depending on the approach, known as
“small n, large p” [8]. This situation is undesirable because machine learning
approaches assume that the training sample is a good approximation of the real
distribution of the data, which might not be the case with only a few instances
in a high dimensional space.

1.1 Multi-site Data and Batch Effects

In order to mitigate this problem, many researchers use a larger datasets, formed
by aggregating fMRI scans obtained at different locations into a single dataset.
Unfortunately, inter-scanner variability, possibly caused by field strength of the
magnet, manufacturer and parameters of the MRI scanner or radio-frequency
noise environments [7], creates a second problem known as batch effects [12],
which is technical noise that might confound the real biological signal. The
main consequence of batch effects in prediction studies is that researchers have
observed a decrease in classification accuracy on multi-site studies compared
with that obtained using a single site [3,12,16].

An underlying assumption of machine learning is that the training set and
test set are sampled from the same probability distribution. Because of batch
effects, data coming from different sites follow different probability distribu-
tions, which might cause the predictors to have a decrease in performance.
These discrepancies between the training and test sets are known as dataset
shift [14]. This paper focuses on a specific subcase: Let PA(X,Y ) be the joint
distribution of the covariates X (the features extracted from the fMRI data)
and the label Y (e.g., healthy control or schizophrenia) of scanning site A, and
PB(X,Y ) be the corresponding probability distribution for a scanning site B,
then PA(Y |X ) �= PB(Y |X ), and PA(X ) �= PB(X ), but there is a function
g(X) such that PA(Y |X ) = PB(Y | g(X) ), and PA(X ) = PB( g(X) ). This
concept is exemplified in Fig. 1.

Fig. 1. (a) The dataset sampled from the scanning site 1 follows a different probability
distribution than data scanned on site 2. (b) After applying g(X) to the data of site 1
both sites follow the same probability distribution.
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The problem of removing batch effects is closely related to that of domain
adaptation in the computer vision community [5]. Although some of these
approaches have been tested on fMRI data, the performance of classifiers learned
from multi-site datasets is in many cases lower than using a single site [16]. The
objective of this paper is to analyze some techniques for removing batch effects
and the situations where they can be effectively used.

2 Machine Learning and Functional Connectivity Graphs

The standard approach for applying machine learning to fMRI data begins by
parcellating the (properly preprocessed) brain volumes into m regions of interest.
It then forms a symmetric m×m pairwise connectivity matrix, whose (i, j) entry
each correspond to some measure of statistical dependence between regions i and
j, whose upper-triangle is vectorized into a vector of length p = 1

2m(m − 1).
The vectors corresponding to each of the n subjects in the training set are

arranged into a matrix X of dimensions n × p. Similarly, a vector Y of length
n, contains the labels of X. Finally, this labeled training data (X, Y ) is given to
a learning algorithm, that produces the final classifier. A detailed description of
this procedure can be found elsewhere [15,16].

A critical aspect in assessing the impact of batch effects in classification
studies, as well as the effectiveness of the techniques applied to removed them,
is the methodology used to measure the performance of the classifiers. Some
studies pool together the data from the different sites and then randomly split
the data into a training and test set, while others use the data from (r − 1) sites
for training and the rth site for testing [1,6,11,12]. The first approach might
mask the influence of batch effects because it artificially makes the distribution
of the training set and test set more similar. This is an unrealistic scenario. In a
real application, a clinician cares about the performance of the classifier on the
patients that s/he is evaluating. The second approach is more realistic, but also
more complicated. If there is indeed a function g(X) that makes P1(Y |X ) =
P2(Y | g(X) ) then we need information from both scanning sites to learn it.

We propose a third evaluation scenario: Fix the test set to be a specific
subset of the data from site A. Then consider two training sets: just the remain-
ing instances from site-A versus those remaining site-A instances and also the
instances from site B. This approach, illustrated in Fig. 2, has the advantage of
identifying if there is a benefit of mixing data from different sites, or if it is better
to train one classifier independently for every site. Note that this methodology
requires having a labeled dataset from both scanning sites.

3 Batch Effects Correction Techniques

3.1 Adding Site as Covariate

This technique involves augmenting each instance with its site information –
encoded as a 1-hot-encoding. (That is, using r additional bit features, where the
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Fig. 2. Evaluating a classifier in single site (a) and multi-site (b) scenarios.

jth feature is 1 if that instance comes from the jth site, and the other features
here are 0.)

When using a linear classifier, this method assumes that the only difference
between sites is in the threshold that we use to classify an instance as belonging
to one class, or another. If we assume that the decision function for one site
is given by wT x = 0, where the x vector represent the features and w is the
vector of the coefficients (or weights) of the features, then the decision function
for a second site is given by wT x + c = 0. This method is effective when the
batch effect is caused by a translation (adding a constant) to each instance of the
dataset, but it will be ineffective otherwise. Figure 3(a) shows an illustration of
this case. Note how the learned decision boundary is appropriate for one of the
sites (red), but suboptimal for the other (blue). Note that this technique forces
both decision boundaries to have the same slope, and only the bias changes.

3.2 Z-Score Normalization

This approach modifies the probability distribution of the features extracted
from both sites, A and B, by making the values of each individual feature, for
each site, zero-mean with unit variance – i.e., for each site, for the ith feature,
subject its mean (for that site), and divide by its empirical standard deviation
(for that site). Using this technique, only the marginals are the same in both sites,
but the covariance structure is not. Applying this “Z-score normalization” to the
data from every scanning site independently, will effectively remove batch effects
caused by translation and scaling of features (see Appendix A.1). However it fails
with more complex transformations, such as rotations or linear transformations
in general; see Fig. 3(b). Note that this scaling and translation is in the feature
space, and so it is different to the affine transformations that are corrected during
the preprocessing stage (which are applied in the coordinate space).

3.3 Whitening

Whitening is a linear transformation that can be viewed as a generalization
of the z-score normalization. Besides making the mean of every feature equal
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Fig. 3. Examples of linear transformation where the methods fail. (a) Including site as
covariate, (b) z-score normalization, (c) whitening. (Color figure online)

to zero and its variance equal to one, it also removes the correlation between
features by making the overall covariance matrix the identity matrix. One of
the most common procedures to perform this process is PCA Whitening [10].
This transformation first rotates the data, in each site, by projecting it into its
principal components, and then it scales the rotated data by the square root of
its eigenvalues (which represent the variance of each new variable in the PCA
space). Applying this whitening transformation to every dataset independently
will remove the batch effects caused by a rotation and translation of the datasets,
since in this cases the principal components of the different sites will be aligned;
see Appendix A.2 for the mathematical derivation. However, since there is no
guarantee that the principal components will be aligned in general, it might not
work with other linear transformations; see Fig. 3(c).

3.4 Solving Linear Transformations

Note that z-score normalization and whitening solve specific cases of

XB = αXA + β α ∈ R
p×p, β ∈ R

p (1)

(corresponding to Eq. 5 in Appendix A.2.) Z-score solves batch effects when
the associated matrix α is diagonal, while whitening solves them when α is
orthogonal with determinant 1. Nevertheless, both methods fail to solve batch
effects for a general matrix α. Note also that the previous approaches did not
explicitly compute α and β, but instead, applied a transformation that removed
their effects under the specified circumstances. Of course, if we could compute
α and β, or even a good approximation α̂ and β̂, we could then solve for any
batch effect corresponding to an arbitrary linear transformation.

For any two random vectors XA and XB , such that XB = αXA + β:

μB = E[XB ] = E[αXA + β] = αE[XA] + β = αμA + β

ΣB = COV [XB ] = COV [αXA + β] = αCOV [XA]αT = αΣAαT
(2)
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Although we can obtain empirical estimates of μA, μB , ΣA, ΣB from the
dataset, the problem is in general ill-defined – i.e., there is an infinite number of
solutions. Now note that every site includes (at least) two different subpopula-
tions – e.g., healthy controls versus cases (perhaps people with schizophrenia).
Each subpopulation has its own mean vector and covariance matrix (μHC

A , μSCZ
A ,

μHC
B , μSCZ

B , and ΣHC
A , ΣSCZ

A , ΣHC
B , ΣSCZ

B ). A reasonable assumption is that the
batch effects affect both populations in the same way, but by computing the mean
and covariance matrix of every population and site independently we are effec-
tively increasing the number of equations available. We can then get an estimate
for α and β as follows:

α̂, β̂ = arg min
α,β

∑

j∈{HC,SCZ}

√
p||μj

B − (αμj
A +β)||2 + ||Σj

B − (αΣj
AαT )||F (3)

where p is the dimensionality of the feature set, and || · ||F is the Frobenius
norm of a matrix. Note that it is possible to combine data from more than two
datasets by finding a linear transformation for every pair of sites.

4 Experiments and Results

4.1 Dataset

We applied the four aforementioned methods to the task of classifying healthy
controls and people with schizophrenia using the data corresponding to the Audi-
tory Oddball task to the FBIRN phase II dataset, which is a multisite study
developed by the Function Biomedical Informatics Research Network (FBIRN).
Keator et al. provides a complete description of the study [9].

After preprocessing the data, we eliminated the subjects who presented head
movement greater than the size of one voxel at any point in time in any of the
axis, a rotation displacement greater than 0.06 radians, or that did not pass
a visual quality control assessment. The original released data contains scans
extracted from 6 different scanning sites; however, we only used 4 of them. One
of the sites was discarded because it lacked T1-weighted images, which were
required as part of our preprocessing pipeline. The second discarded site con-
tained only 6 subjects (5 with schizophrenia) after the quality control assessment,
so it was not suitable for our analysis. In summary, we have 21 participants from
Site 1, 22 from Site 2, 23 from Site 3 and 23 from Site 4. In all cases, the pro-
portion of healthy controls vs people with schizophrenia is ∼50%.

4.2 Experiments and Results

To obtain the feature vector of every fMRI scan, we used the subset correspond-
ing to the Fronto-Parietal Network for a total of k = 25 out of the 264 regions
of interest defined by Power et al. [13]. The time series corresponding to every
region was simply the average time series of all the voxels inside the region. In
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Table 1. Average accuracy after correcting batch effects. The number in entry (i, j) is
the accuracy, over instances from the target site i, of the classifier learned by adding
all of site j to the training subset of site i. The colored cells indicate results whose
difference improves (green) or decrease (red) relative to the single site classification.

S 1 S 2 S 3 S 4
S 1 62.8 72.3 65.7 67.3
S 2 67.8 66.4 70.0 59.5
S 3 55.0 60.9 58.3 56.9
S 4 62.3 57.8 76.4 71.4

(a) No correction

S 1 S 2 S 3 S 4
S 1 62.8 70.7 64.7 68
S 2 67.1 66.4 68.1 57.6
S 3 55.7 57.6 58.3 56.9
S 4 67.1 57.6 75.7 71.4

(b) Site as covariate

S 1 S 2 S 3 S 4
S 1 62.8 64.7 57.6 65.7
S 2 68.5 66.4 67.6 62.3
S 3 48.0 54.0 58.3 58.0
S 4 63.5 56.0 74.0 71.4

(c) Z-score normalization

S 1 S 2 S 3 S 4
S 1 62.8 55.7 52.8 49.5
S 2 51.6 66.4 52.1 50.4
S 3 54.2 54.2 58.3 53.8
S 4 50.7 47.3 52.6 71.4

(d) Whitening

S 1 S 2 S 3 S 4
S 1 62.8 65.9 66.4 66.2
S 2 66.6 66.4 67.8 67.8
S 3 49.5 50.2 58.3 51.4
S 4 73.5 72.8 73.5 71.4

(e) Linear transformation

order to obtain the functional connectivity matrix, we computed the Pearson’s
correlation between the time series of all

(
k
2

)
pairs of regions.

We produced classifiers using a support vector machine (SVM) with linear
kernel using the SVMLIB library [4]. The parameters of the SVM were set using
cross validation. We applied the batch effect correction techniques previous to
merging the datasets into a single training set, and repeated the experiment 15
times with different train/test splits. All the parameters required for the batch
effects correction techniques were obtained using only the training sets. Table 1
reports the average accuracy over the 15 rounds.

5 Discussion

In each of the sub-tables in Table 1, the (i, j) entry represent the average accuracy
when the training set has instances from the ith and j th site, and the test set
has instances only from the ith site. Ideally, all the off-diagonal values should
be higher than the diagonal ones; however, this is not the case. In most of the
cases we have mixed and inconsistent results. The only method that consistently
improves the performance of the classifiers is the one that solves for arbitrary
linear transformations (Table 1e). Note that site S3 is an exception, where we do
not see any improvement; however, this particular site has a low performance
even in the single site scenario. It is likely that the signal in this particular site
is too low and cannot be properly detected by the used methods.

These results reinforce the idea that batch effects play predominant role in
classification studies, and motivate the need to develop techniques that address
them in order to be able to effectively combine multi-site datasets. We can
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additionally conclude that whitening, z-score normalization and adding the site
as covariate are insufficient to solve batch effects in fMRI data. Our method for
solving linear transformations is the one who consistently improves the results
in a multi-site scenario, indicating that it is a step in the right direction.
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Abstract. Multi-modal registration, especially CT/MR to ultrasound
(US), is still a challenge, as conventional similarity metrics such as
mutual information do not match the imaging characteristics of ultra-
sound. The main motivation for this work is to investigate whether a
deep learning network can be used to directly estimate the displacement
between a pair of multi-modal image patches, without explicitly perform-
ing similarity metric and optimizer, the two main components in a regis-
tration framework. The proposed DVNet is a fully convolutional neural
network and is trained using a large set of artificially generated displace-
ment vectors (DVs). The DVNet was evaluated on mono- and simulated
multi-modal data, as well as real CT and US liver slices (selected from
3D volumes). The results show that the DVNet is quite robust on the
single- and multi-modal (simulated) data, but does not work yet on the
real CT and US images.

Keywords: CT · Ultrasound · Liver · Registration · CNN

1 Introduction

Ultrasound (US) is the preferred imaging modality for image guidance in min-
imally invasive interventions such as liver tumor ablations, as it is real-time,
portable, safe and cheap. However, tumors are not always clearly visible in US
images. In contrast, they are generally visible in preoperative diagnostic CT
images. Fusion of the diagnostic CT and US volumes thus has great potential to
improve US-guided interventions.

Registration of CT and US is the prerequisite of such image fusion, where
the choice of similarity metric is critical. Mutual Information (MI) is a generic
similarity metric used in multi-modal registration where statistical dependency
between the modalities is exploited [1]. However, the nature of US images, such
as the speckled nature and the dependence of the image on the transducer orien-
tation, does not match well with such a standard metric. A local self-similarity
based metric for multi-modal registration was proposed in [2], which uses the
c© Springer Nature Switzerland AG 2018
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similarity of small patches in one modality to estimate a local representation
of image structure. This metric may work for CT and US registration, but is
computationally quite expensive and thus not really applicable for our use case.
Wein et al. proposed LC2, a Correlation Ratio [3] based metric, incorporating
both intensity and gradient magnitude information from CT images to simulate
US in local patches using linear regression [4]. It can handle CT and US bet-
ter than other metrics, but there is still room for improvement in its accuracy,
capture range and speed.

Since recently, deep learning approaches are used in medical image registra-
tion. Wu et al. [5] propose to learn features from fixed and moving images with
a convolutional stacked auto-encoder (CAE) and then use these learned features
to replace hand-crafted features in conventional deformable image registration
algorithms. Simonovsky et al. [6] use a convolutional neural network to learn a
general multi-modal similarity metric which is then used in conventional iter-
ative optimization procedures. Most recently, an unsupervised learning-based
deformable registration technique was proposed in [7], which uses a conventional
similarity metric as the loss function to train the network. Sokooti et al. [8] use
multi-scale 3D convolutional neural networks for nonrigid registration between
3D CT data. We were inspired by this work as it does not explicitly perform a
similarity metric, which is still an open question for real-time CT-US registra-
tion.

In this work, we investigated a deep learning network (DVNet) that directly
estimates the displacement between a pair of image patches, without explicitly
implementing similarity metric and optimizer, the two main components in the
conventional methods. Such an approach could be used as a component in patch-
based registration approaches, for example [9].

2 Methods

The proposed DVNet is a fully convolutional neural network, which takes a pair
of image patches as input. The output of the DVNet is a displacement vector,
specifying the displacement between the centres of the pair of patches.

The DVNet is based on the work of [8], but different from its multi-scale, 4-
channel architecture, the DVNet starts with two branches with three convolution
layers in each one, in order to extract features in a modality-specific manner.
Then, the two branches are concatenated to one branch, followed by 9 more
convolution layers. These layers are meant to determine the displacement vector,
by combining the features from both input patches. Batch normalization and
ReLu activation are used in all layers except the final layer. See Fig. 1 for specific
parameters.

The DVNet is trained by optimizing the Mean Absolute Errors (MAE)
between the predicted displacement vectors (DVs) and the ground truth, using
mini-batch stochastic gradient descent Adam [10]. The MAE is the mean of errors
of all the n elements (both x and y) of one prediction: MAE = 1

n

∑n
i=1 |p̂i − p|,

where p̂i defines an element of the output patch and p is the target displacement
in x or y.
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Fig. 1. Network architecture of the DVNet.

3 Data

3.1 Clinical Data

The data we used in the experiments were 30 pairs of CT and US volumes
acquired from 18 subjects. Informed consent was obtained from all subjects
before image acquisition. The US volume size is 512 × 378 × 222 with voxel size
of 0.420 × 0.387 × 0.629 mm3 (acquired using Philips iU22 US system with an
X6-1 probe, with the transducer in intercostal and sub-xiphoidal position). The
CT slice spacing was 2 mm (except for one case where slicing spacing was 3 mm),
with the pixel size ranging from 0.39 mm2 to 0.75 mm2. Each pair of CT and US
volumes was annotated by experts with 4 or 5 corresponding landmarks, which
served as our reference standard for the rigid alignment of the CT and US.

3.2 Training Data

In this work, the DVs were synthetic, and the training data (fixed patch and
moving patch) were generated with these DVs. First, CT and US volumes were
rigidly aligned in a same space, using landmarks annotated by clinical experts.
Then three or four slice pairs were selected from each pair of the CT and US
volumes. To increase the amount and the diversity of the data, 9 more pairs were
augmented from each pair of CT and US slices. Specifically, we applied affine
transformation (rotation in the range [−5, 5] degrees, shear in [−15, 15] degrees,
scale in [0.9, 1.1]) and Gaussian noise (with a standard deviation of 5) on the
pixel intensities. Subsequently, points were sampled on these slices inside of the
liver region, and fixed patches were generated by centering around these points.
Then, randomly generated DVs (between −15 and 15 pixels in both x-axis and
y-axis) were added to these points to generate the centers of moving patches.

For the single-modality (CT or US) experiments, moving images are the
fixed images with Gaussian noise (σ = 5, scale = 2). For the simulated multi-
modal experiments, fixed patches were from the CT images and moving patches
(patch mov) were created by a linear combination of CT patches and their mag-
nitude gradients, with Gaussian noise (σ = 5, scale = 2), as follows:
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Fig. 2. Examples of simulated multi-modality data. The first and third column are CT
patches (fixed) and the other two columns are the simulated data (moving).

patch mov = αCT + (1 − α)|∇CT |, (1)

where α was randomly selected within 0 and 1. The data was simulated before
training. Figure 2 is an example of the simulated images. The simulation was
based on the work of [4], which simulated US from CT, as mentioned in section
1. For CT-US experiments, fixed patches were generated within the fan’s region
of US and moving patches were within the CT frames.

All the data was divided into a training set of 10 patients, a validation set of
2 patients and a test set of 6 patients. There were about 13,000 patch pairs for
training and 2,300 patch pairs for validation. The patch size was 73 × 73 pixels
for all the experiments.

4 Experiments

MeVisLab, Python and PyTorch were used for software development. Experi-
ments were performed on a NVIDIA GeForce GTX 1080 GPU.

Data augmentation was used during the training of DVNet (different for
each epoch), with two or three stages. First, the data was randomly flipped
both horizontally and vertically. Second, the data was deformed using affine
transformation with shearing between −15 and 15◦ and rotation between −5
and 5◦. Third, only for the CT and US experiments, Gaussian noise (σ = 5,
scale = 2) was applied and to the CT patches on the pixel intensities. For all
experiments, the data was normalized ((x-mean)/std) before training.

In the first experiment, we assessed whether the DVNet can be used to deter-
mine displacements. We also used this experiment to determine appropriate set-
tings for some of the hyper-parameters, such as the learning rate and batch size.
Subsequently, we investigated the effect of two factors that may hamper conver-
gence of the DVNet on real CT-US image pairs. First, we investigated whether
registration of (simulated) multi-modal images is working, and second we inves-
tigated the effect of inaccurate ground truth (as the clinical images do not have
a perfect ground truth). In the final experiment, we applied the DVNet on the
real CT and US, and further investigated factors that may cause the inability of
the network to compute displacements for the real imaging data.
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4.1 Mono-Modal

The first experiment was performed to assess whether the DVNet approach could
be used to estimate the displacements between a pair of image patches. We exper-
imented with different learning rate and batch size, and then set the leaning rate
at 0.001 and batch size at 64 for all the subsequent experiments. After 8k itera-
tions, the MAE was around 1 pixel on the test dataset, from which we conclude
that the DVNet concept can be used to perform mono-modal registration.

4.2 Multi-modal (Simulated)

Next, in order to investigate if the method is feasible to address multi-modal
registration, we simulated multi-modal images as described in Sect. 3.2, with the
intension to simulate US from CT. The MAE of the test data was around 1 pixel
after 10k iterations. This indicated that the DVNet can deal with the simulated
multi-modal data and has the potential to work on the real data.

Fig. 3. Loss plots of CT-CT with inaccurate and accurate ground truth.

4.3 Inaccurate Ground Truth

Then, we investigated the influence of inaccurate ground truth, as we do not
have an exact ground truth for the real data. We added a random vector (both
and in the range [−d, d]) to the target displacement vectors (without chang-
ing the images), and used these inaccurate reference displacement vectors for
training, while keeping accurate the ground truth in the test set. This experi-
ment was run both for the mono-modal case (CT-CT) and for the (simulated)
multi-modal case. Figure 3 contains the loss plots. From the loss plots, it is clear
that inaccurate ground truth affects the training loss (increased with the average
value of d), but that the testing loss (on uncorrupted data) is only slightly larger
than when training with accurate ground truth. From this, we conclude that the
DVNet is robust to inaccuracies in the ground truth.
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4.4 CT-US

The previous experiments showed that DVNet can be used to get displacement
vectors, that it works on the simulated multi-modal images, and that inaccu-
rate ground truth only slightly affects the final results, therefore it still has the
potential to work on the real data. However, when we started to train on the
real CT-US image pairs, the network failed to converge on the test data (see
Fig. 4), which we interpreted as over-fitting.

To address this issue, we experimented with dropout, weight decay and L1/L2
regularization, but it was found that these only delayed the over-fitting and did
not actually solve the problem. Initializing the DVNet with pre-trained param-
eters from the mono- and simulated multi-modal experiment was also investi-
gated, but this did not solve the problem either. We furthermore experimented
with first training the DVNet on CT-CT and US-US simultaneously, in order
to make the network able to learn features from both modalities. Then, when
training on CT-US, the two branches of the DVNet were freezed with parameters
from the previous step, as a constant feature extractor. This did not work either,
may be because the learned features for CT and US were modality-dependent.

Next, we considered reducing the complexity of the DVNet. To decrease the
number of parameters, we could use smaller kernel size, less kernel numbers
and less convolution layers, but this may affect the registration capability of the
network. To keep the capacity of the DVNet, effective receptive field (ERF) is an
important factor that needs to be considered as displacements outside the ERF
may not be detected by the network. We experimented with different small ERF
to investigate if the DVNet could estimate small DVs while failed at large DVs.
Results for a DVNet with ERF at 25 and 39 are presented as joint-histograms
of predictions and targets. As we can see from Fig. 5, the measurements gather
near the diagonal at small DVs while they are being dispersed at large DVs.
This confirms that the size of the ERF is closely related to the capture range
of the DVNet. Finally, the DVNet was simplified to the one shown in Fig. 6,
at the trade-off between the complexity and the capability. ReLu activation
was also replaced by RReLu as it could reduce the risk of over-fitting due to
its randomized nature [11]. The new architecture has much less parameters,
reduced from several millions to 101,026, with the ERF at 71, almost the size
of the input patch. With this new architecture, the MAE of the test data was
around 1 mm after 27k and 55k iterations, respectively, for the mono- and the
multi-modal images (simulated). The simplified DVNet is also robust to errors
on the training reference standard. However, this simplified network can still not
converge on the test clinical CT and US data.

Finally, to prevent the over-fitting, we used all the slices from the CT and US
volumes and with four more augmentation for each pair of slices to increase the
amount of the data. There were about 78,421 patch pairs for training and 14,919
patch pairs for validation. The MAE of the test data in the previous few epochs
reduced to a smaller value than before, but then did not go down anymore.
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Fig. 4. The loss plot of DVNet on CT and US.

Fig. 5. Joint histograms of predictions and the targets. The ERF is 25 and 39 for the
left two and the right two figures, respectively. The first and the third figures are of
x-axis displacement and the others are of y-axis. For each figure, both x- and y-axis
are in the range of [−18, 18].

5 Discussion and Conclusion

We have presented a patch-based CNN approach for displacement estimation,
intended to be used for clinical CT-US registration for image guidance in min-
imally invasive interventions, called DVNet. We investigated several aspects of
the training and application of such a network. Using both the mono-modal and
simulated multi-modal images, we demonstrated that the DVNet is capable of
accurately computing displacements. We also demonstrated that this learning
process is not very sensitive to errors in the training reference standard.

Still, when learning such a network on clinical data, we were not able to get
a stable result: after a few iterations over-fitting occurred. Several strategies,
such as dropout, weight decay and regularization were employed to address this
problem, where we assured that the EFR was sufficiently large such that the
displacement vectors can be captured. However, these did not solve the problem.

Our current hypothesis of the failure of training the network is that the
relationship between the clinical CT and clinical US images is too difficult to
learn with this network. Although it can work on the simulated multi-model
data, some effects of US images, such as shadowing caused by high-intensity
structures and decreased intensity for deeper structures, are not represented in
the simulation. Another reason may be the limited amount of training data.
However, we implemented an extensive data augmentation, which generally is
very effective in training of CNNs.

In the future, we intend to investigate (deep learning) approaches to simulate
CT from US images and vice versa. Such simulated data may be closer to our
current multi-modal data, and would serve two purposes. First, it will allow us
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Fig. 6. The simplified DVNet.

to further investigate the multi-modal DVNet approach. Second, such a network
may convert the multi-modal registration approach into a mono-modal problem,
for which we have shown that DVNet is an effective solution.

In conclusion, the DVNet is a promising method to estimate the local dis-
placement on mono- and multi-modal (simulated) data, and robust to the dis-
turbances in the training reference standard. However, it does not work yet on
the clinical CT and US data.
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Abstract. Feature-based registration has been popular with a variety of
features ranging from voxel intensity to Self-Similarity Context (SSC). In
this paper, we examine the question of how features learnt using various
Deep Learning (DL) frameworks can be used for deformable registration
and whether this feature learning is necessary or not. We investigate the
use of features learned by different DL methods in the current state-of-
the-art discrete registration framework and analyze its performance on
2 publicly available datasets. We draw insights about the type of DL
framework useful for feature learning. We consider the impact, if any, of
the complexity of different DL models and brain parcellation methods
on the performance of discrete registration. Our results indicate that the
registration performance with DL features and SSC are comparable and
stable across datasets whereas this does not hold for low level features.
This shows that when handcrafted features are designed based on good
insights into the problem at hand, they perform better or are comparable
to features learnt using deep learning framework.

Keywords: Deep learning · Deformable image registration
Brain MRI

1 Introduction

Deformable image registration is critical to tasks such as surgical planning, image
fusion, disease monitoring etc. [1]. We focus on application to neuro images where
tasks such as Multi-atlas segmentation [2] and atlas construction [3], require
registration to handle variations in the shape and size of brain across subjects.
Registration entails minimizing a cost function through iterative optimization.
Since the cost function quantifies the similarity between the two images to be
registered, it plays a crucial role in determining the accuracy of results. Tradi-
tional image intensity-based approaches define cost functions based on mutual
information, sum of squared difference etc., [4] and use continuous optimization
to find the required deformation field. Continuous optimization based methods
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require cost functions to be differentiable. With a discrete optimization (DO)
formulation, registration has been shown [5,8] to be more efficient with a 40 to
50-fold reduction in computational time, no loss in accuracy and no requirement
of differentiability for cost function. This allows them to use simple cost function
like Sum of Absolute Difference (SAD).

Feature based registration was proposed [11] as an improvement over the
intensity-based approach. Features that have been explored range from normal-
ized intensity values, edges, geometric moments [11], 3D Gabor attributes [12]
and a Modality Independent Neighborhood Descriptor [9]. The natural question
to ask is if it is better to learn the features, instead of using hand-crafted ones,
since the experience of learning features (using deep networks) for another impor-
tant problem, namely, segmentation, has been positive [17]. Deep features learnt
using unsupervised method [14], has been shown to perform better than tradi-
tional features like intensity and edges. A Co-Registration and Co-Segmentation
framework [13] has also been proposed using learnt priors on 8 sub-cortical struc-
tures and those learnt using a Convolutional Neural Network (CNN) is reported
to outperform those learnt with Random-Forrest based classifiers. While these
few reports indicate the potential benefit of deep feature learning for registra-
tion, it is of interest to gain deeper insights into this specific approach, given the
well-established high cost, particularly training overhead, of deep learning which
may deter clinical applications with this approach.

In this paper, we seek to gain insights by delving deeper into the issue of fea-
ture learning for registration. We attempt to answer the following six questions
regarding deep feature learning through extensive experiments on two publicly
available datasets. (i) Does complexity of learning architecture matter? (ii) What
kind of learning strategy is useful? Supervised or Unsupervised? (iii) What fea-
tures are better in supervised feature learning? (iv) Does registration accuracy
vary with the number of labeled structures in the training data? (v) Does differ-
ence in parcellation during training matter? and finally the main question: (vi)
To learn or not to learn features for deformable image registration?

To obtain answers to the above questions, a testbed was created for regis-
tration using the discrete optimisation framework described in [7] and different
Deep Neural Networks (DNNs) were considered for learning the features. The
suitability of these features for registration was assessed in terms of the Jaccard
Coefficient. At the end, comparison was done against standard low level and
high level features like intensity and Self-Similarity Context [6] to assess the
requirement of feature learning using deep learning methods.

2 Method

This is a brief overview of the two frameworks which we adopted to setup our
testbed and experiments: Discrete Optimization (DO) based registration and
Deep Learning based Feature Learning.
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Fig. 1. Three DNNs used for feature learning

2.1 Discrete Optimization

Given a fixed image If and moving image Im the deformation field u required
to align Im to If is found via optimizing a cost function E(u). The DO method
presented in [7] determines u by minimizing E(u):

E(u) =
∑

Ω

S(If , Im, u) + α|∇u|2 (1)

where Ω is the image patch. The first term S denotes the similarity function
between the fixed and warped images while the second term is the regularization
term. In our experiments, SAD was chosen as S for the ease of computation.

In DO, the deformation field is only allowed to take values from a quantized
set of 3-D displacement for each voxel x. d ∈ {0,±q, ±2q, ...,±lmax} Here, q is
the quantization step and lmax is the maximum range of displacement.

A six-dimensional displacement space volume is created whose each entry is
the point-wise similarity cost of translating a voxel x with a displacement d:

DSV (x, d) = S(If (x), Im(x + d)) (2)

Here, If (x) can be simply the voxel intensity or a feature representing the voxel.
The displacement field is obtained by winner-takes-all method by selecting the
field with the lowest cost for each voxel: u = arg mind(DSV (d)). For further,
detail into this framework, we refer readers to [7].

2.2 Deep Learning Framework

DNNs are inspired by the biological networks akin to the multilayer percep-
tron. Basic blocks of DNNs are convolutional layer (2D/3D), maxpooling layer
(2D/3D), fully connected layer, dropout layer, activation functions like Recti-
fied Linear Unit (ReLU), tanh, softmax, and batch normalization layer. For a
detailed description of these blocks readers are referred to [18].
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Fig. 2. Coronal slices of brain images (top row) and their manual segmentation (bottom
row) of DL training (MICCAI-2012, IBSR18 and LPBA40) and registration testing
(CUMC12 and MGH10) datasets.

A Deep Learning framework can be broadly of two types: (i) Supervised and
(ii) Unsupervised. The main difference between these two types is that in the
former, for any input X, the network tries to predict output Y , which is a class
label, while in the latter, the network tries to predict X using the same X as
input and in this way network learns something intrinsic about the data without
the help of labels generally created by humans.

A CNN [18] is a widely used DNN for supervised learning. CNNs have been
used for various tasks such as segmentation and classification. Similarly, Con-
volutional AutoEncoder (CAE) [19] is a popular framework for unsupervised
learning. They are used for varied type of tasks such as learning hidden (or
lower dimensional) representation of data, denoising etc.

In our experiments, two CNN architectures, namely U-net [20] and M-net
[22] were used for supervised learning. The M-net is an improvement on U-net
with added residual and supervision connections. A stack of slices (51) as 3D
input is passed through 3D-to-2D converted and then processed by both the
architectures to produce segmentation for center slice, as shown in Fig. 1A and
C. For more details about these architectures we refer readers to [20] and [22].

CAE is also a DNN which learns useful lower dimensional representation
of input from which original input can be generated back with minimal loss of
information. The CAE architecture used in our experiment is shown in Fig. 1(B).

3 Experiments and Results

3.1 Datasets Description

In order to ensure thorough evaluation, different datasets were employed for
training (the DNNs) versus testing (the registration module). Sample slices of
all these datasets are shown in Fig. 2.

Deep Learning Training Datasets: Datasets used for training were chosen accord-
ing to the diversity in total number of labeled structures and the structure par-
cellation methods. Details of the chosen datasets are given in Table 1.
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Table 1. Deep learning training dataset description

Dataset # Training volumes # Validation volumes # labels Parcellation type

MICCAI-2012 15 20 135 Whole brain (cortical and non-cortical)

IBSR18 15 3 32 Whole brain (cortical and non-cortical)

LPBA40 30 10 57 Partial brain (mainly cortical)

Registration Testing Datasets: The datasets for testing the registration accu-
racy were chosen based on their popularity for evaluating registration [10] and
variation in structure parcellation methods. (i) CUMC12: This dataset has 12
MRI volumes, which are manually labeled into 130 structures. (ii) MGH10: This
dataset has 10 volumes, segmented into 106 structures. It should be noted that
unlike CUMC12 dataset, only cortical structures are marked for this dataset.

3.2 Evaluation Metric

Registration performance was evaluated using mean Jaccard Coefficient (JC).
This is the standard evaluation metric employed for comparison of 14 Registra-
tion methods in [10]. JC between two binary segmentation A and B is defined
as: JC(A,B) = |A∩B|

|A∪B| ∗ 100. Throughout this paper, we compare registration
performance with mean JC which is computed as follows: JC is averaged first
across N individual structures for a single volume; then it is averaged across M
pairwise registration output. Thus, to evaluate registration performance on the
CUMC12 dataset, average JC is found over N = 130 structures in a volume and
then the average JC is computed for M = 144 pairwise registration outputs.

3.3 Implementation Detail

All the DNNs were trained on a NVIDIA K40 GPU, with 12 GB of RAM for
30 epochs. Approximate training time was 3 days. The CNN was trained using
Adam Optimizer with following hyper parameters: LR=0.001, β1=0.9, β2=0.99,
and ε = 10 ∗ e¬8. LR was reduced by a factor of 10 after 20 epochs. Code was
written in Keras Library using Python. The C++ code for DO-based registration
made publicly available by the authors of [7] was used. The python code for Deep
Learning was integrated in C++ for a seamless implementation.

The effect of intensity variation among training and testing datasets was
handled by matching the intensity of all the volumes of testing datasets to that
of training dataset volume using Intensity Standardization (IS) [21].

3.4 Feature Learning Experiments and Results

A set of experiments were performed to gain insights into the following six issues
in the context of feature-based deformable registration. Registration performance
of all these experiments in terms of mean JC is given in Fig. 3.

Role of Complexity of Learning Architecture: Both the U-net and M-net
were trained on the MICCAI-2012 dataset and the Segmentation Priors (SP)
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(a) (b)

Fig. 3. Registration performance comparison, in terms of JC, for various deep features
on (a) CUMC12 dataset and (b) MGH10 dataset. Here, SP denotes segmentation priors
and PLF denotes penultimate layer features.

features were extracted from U-net (USP135) and M-net (SP135) for registra-
tion. The mean JC obtained for USP135 and SP135 on the MGH10 dataset were
35.59 and 37.90 respectively, while they were 31.73 and 35.05 for the CUMC12
dataset. These results indicate that the complexity of architecture does play an
important role in feature extraction as registration performance is better for
features extracted from a more complex network (M-net).

Supervised or Unsupervised Learning of Features? : The M-net and CAE
were trained on the MICCAI-2012 dataset. The SP features were extracted from
the M-net (SP135) and the Penultimate Layer Features (PLF) from CAE. The
mean JC obtained for SP135 and CAE were 37.90 and 34.77, respectively for
the MGH10 dataset while they were 35.05 and 32.37 for the CUMC12 dataset.
Thus, the supervised feature learning appears to be more effective.

Choice of Learnt Features: Registration was done with SP and PLF (hidden
layer representation) features separately, after training M-net on the MICCAI-
2012 dataset. The obtained mean JC, as shown in Fig. 3, indicates that SP and
PLF give comparable performance across both datasets (CUMC12: SP135 =
35.05 and PLF135 = 35.19; MGH10: SP135= 37.91 and PLF135 = 37.34).

Role of the Number of Labeled Structures in Training Data: Avail-
able training datasets vary in terms of the number of labeled structures. We can
expect the feature learnt on dataset with more structure to differentiate between
its neighbouring structures in a better way. In order to understand how this can
impact registration, the M-net was trained on two different datasets, namely,
MICCAI-2012 (labels: 135) and IBSR18 (labels: 32). The SP and PLF features
were extracted from the CNN (M-net) and used in registration. The obtained
mean JC for both SP and PLF on both CUMC12 and MGH10 were compara-
ble. (CUMC12: SP135 = 35.05, SP32 = 35.03, PLF135 = 35.19 and PLF32 =
34.9; MGH10: SP135 = 37.9, SP32 = 37.73, PLF135 = 37.34 and PLF32 = 36.63)
Thus, the features learnt with different number of labeled structures appear
to be equally effective for registration. A possible reason for this can be that
MICCAI-2012 and IBSR18 datasets have equal number of labels for sub-cortical
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structures and white matter. However, the former set has a finer level parcella-
tion for cortical structures which essentially encodes spatial position and local
information and this may not give added advantage over coarser level parcella-
tion for registration, as registration inherently encodes this information.

Parcellation of Training Dataset: Figure 2 shows that while the whole brain
is marked in MICCAI-2012 and IBSR18 datasets, only cortical structures are
marked in LPBA40. In order to assess the effect of various parcellation meth-
ods, the M-net was trained on the LPBA40 and MICCAI-2012 datasets. SP
(SP57, SP135) and PLF (PLF57, PLF135) features were extracted from both.
The registration accuracy for both CUMC12 and MGH10 datasets are shown in
Fig. 3. It can be seen that there is a drop in JC of approximately 3.33 (9.5%)
and 1.33 (3.8%) for SP and PLF respectively, on CUMC12 dataset, relative
to the value obtained with features from M-net trained on the MICCAI-2012
dataset (SP135 = 35.05, SP57 = 31.72 and PLF135 = 35.19, PLF57 = 33.86);
whereas on MGH10 dataset, there is only marginal drop in JC of 0.89 (2.3%)
and 0.18 (0.4%) for SP and PLF, respectively (SP135 = 37.90, SP57 = 37.01 and
PLF135 = 37.34, PLF57 = 37.16). This can be attributed to the fact that both
LPBA40 and MGH10 have only cortical structures marked, while CUMC12 has
both cortical and non-cortical structures. Overall, the above results suggest that
parcellation method of training dataset should be an important consideration in
feature-based registration. Further, it is advisable to train a CNN on a dataset
with parcellation for both cortical and sub-cortical structures.

To Learn or Not to Learn Features for Deformable Image Registra-
tion? Finally, we turn to the main question of interest: the necessity of feature
learning. The registration accuracy of features learnt using M-net was compared
against low level features such as intensity, edges as well as a higher level fea-
ture, namely, Self-Similarity Context (SSC). The JC values obtained are shown
in Fig. 3. Raw intensity feature with SAD as similarity metric has the best perfor-
mance on MGH10 dataset (39.05) but not on the CUMC12 (29.13) dataset. This
is most likely to be due to the persistent voxel intensity variation between the
datasets (MGH10 has 32 and CUMC12 has 512 distinct values) despite IS. Inter-
estingly, while both learnt (SP) and high level (SSC) features yield more robust
performance across datasets, the latter performs marginally better (CUMC12:
SSC = 35.93 and SP135 = 35.05; MGH12: SSC = 38.1 and SP135 = 37.9). Tak-
ing the mean JC difference between CUMC12 and MGH10 as a quantifier of
robustness, the obtained results (2.84(SP135), 2.17 (SSC), 4.72 (edge) and 9.93
(intensity)), indicate that learning may not give results superior to hand-crafting
of features. SSC is a feature explicitly derived for registration whereas learnt fea-
tures such as SP are optimised for good segmentation as they are trained on a
segmentation dataset.

4 Conclusions

In this paper, the issue of employing learnt (with DNN) features for deformable
registration was explored in considerable detail with a set of experiments. Some
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of the experimental findings such as superiority of supervised features over unsu-
pervised features in terms of robustness is intuitive while others such as accu-
racy being insensitive to change in the total number of labeled structures dur-
ing supervised training are counter-intuitive. Our methodology for learning fea-
tures from a segmentation network was motivated by the widespread practice of
assessing registration accuracy indirectly via segmentation as the latter has well
defined evaluation metrics. This approach is attractive when both problems need
to be solved. Learning features (which leads to robust, yet marginally lower per-
formance than SSC) requires considerable computational resources, as one pair-
wise registration takes 2 mins of CPU + 8 mins of GPU time for feature learnt
with DNNs, while it only takes 2–3 mins on CPU for SSC. Recent papers [15,16]
have tried to directly learn deformation field for registration instead of features
and [15] appears to have slightly better performance than SSC. Taking our find-
ings and based on recent reports, SSC may be a better option in low-resource
settings and limited annotated data scenario, especially, if only registration is of
interest.
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16. Rohé, M.-M., Datar, M., Heimann, T., Sermesant, M., Pennec, X.: SVF-net:
learning deformable image registration using shape matching. In: Descoteaux, M.,
Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI
2017. LNCS, vol. 10433, pp. 266–274. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-66182-7 31

17. De Brebisson, A., Montana, G.: Deep neural networks for anatomical brain seg-
mentation. In: Proceedings of the IEEE CVPR Workshops, pp. 20–28 (2015)

18. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural net-
works. In: NIPS, pp. 1097–1105 (2012)
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Abstract. Image quality in abdominal PET is degraded by respiratory
motion. In this paper we compare existing data-driven gating methods for
motion correction which are based on manifold learning, with a proposed
method in which a convolutional neural network learns estimated motion
fields in an end-to-end manner, and then uses those estimated motion
fields to motion correct the PET frames. We find that this proposed
network approach is unable to outperform manifold learning methods
in the literature, in terms of the image quality of the motion corrected
volumes. We investigate possible explanations for this negative result
and discuss the benefits of these unsupervised approaches which remain
the state of the art.

Keywords: Motion estimation · Positron emission tomography
Convolutional neural network · Principal component analysis

1 Introduction

Positron emission tomography (PET) imaging is widely used for cancer man-
agement and provides information which is vital for diagnosis and monitoring of
treatment. In the clinical setting PET is limited by a low signal-to-noise ratio
(SNR) because high tracer doses, which increase SNR, also cause radiation expo-
sure and cancer risk to the patient and so the dose is deliberately kept low.

Bodily motion is a further complicating factor which degrades image quality
by causing blurring and image artefacts. In particular, respiratory motion is hard
to avoid as it is involuntary and many minutes are required to perform a typical
PET scan making breath-holding impossible for patients. One way of accounting
for organ motion is to simultaneously acquire another imaging modality, such
as magnetic resonance (MR) imaging, which can be used to motion correct the
PET data. Simultaneous PET-MR scanners [7,12], in which MR can be used to
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motion correct the PET (eg. [2]), are beginning to be used clinically but make
up only a small minority of existing PET scanners. Where simultaneous scans
are not possible motion modelling using sequential scans can be used for motion
correction (eg. [1]). However, motion modelling with sequential scans is limited
in its accuracy by the assumption that the breathing patterns during the two
scans do not significantly differ.

In principle an attractive solution is to estimate a respiratory signal and
to use it to perform motion correction by gating acquired data based on the
amplitude of that signal. This signal can be derived from the PET data or from
a secondary device measuring, for example, chest position. Data driven signals
are promising in that they require no secondary hardware and are directly related
to the organ motion of interest, but face the challenge of extracting an accurate
signal from low SNR data. A comparison of several data-driven approaches was
presented in [14] which found that manifold learning methods such as PCA and
Laplacian Eigenmaps performed well as methods of extracting the respiratory
signal, with PCA identified as perhaps more stable in noisy conditions.

Recently, convolutional neural networks (CNN) have been shown to be capa-
ble of de-noising images taken under low-light conditions or with very short
exposure times [4,10]. Such images suffer from Poisson noise, as does PET. The
use of CNNs to de-noise, or map low-dose into high-dose images in PET has
also been developed recently. In [16] a residual U-net [11] architecture was used
to predict full-dose images from 0.5% dose images. In [3] PET-like images were
generated from CT data. It may even be possible to de-noise PET data by
training a network to perform the inverse-Radon transform and output a high-
quality reconstruction from raw sinogram data as is claimed in [17] although the
scalability of such an approach remains a significant challenge.

CNNs have also been shown to be capable of performing non-rigid image
registration [15]. Such methods can potentially be orders of magnitude faster
in their run-time than traditional iterative approaches. Although training the
network (i.e. learning the function required to deform each image) is slow, one
forward pass (i.e. evaluating that function once to perform the registration) is
fast. This approach has proved successful in cases of 2D cardiac MR [15], 3D
brain MR [8] and on X-ray images [9]. Notably though, as far as we are aware,
such approaches have not been applied to PET imaging, presumably because of
the difficulty of dealing with low SNR and non-Gaussian noise. One might then
expect that combining these two approaches could allow an appropriate CNN
architecture to de-noise a PET frame and estimate the deformation required to
transform it to a reference position, which would allow motion correction of a
sequence of such frames.

In this paper we attempt to estimate the motion states of PET frames, by
training on motion fields acquired from simultaneously acquired MR volumes.
We compare a CNN-based approach with a state of the art approach based
on manifold learning. We find that, despite our experimentation with various
network architectures the CNN approach is unable to outperform the much
simpler manifold learning approach.
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2 Methods

2.1 Network Architecture

To estimate motion fields directly from time-resolved PET frames we propose a
CNN which is illustrated in Fig. 1. The network receives two PET frames (see
Fig. 2 for examples) as its input - the 3D volume from a reference respiratory
position R, which is a fully exhaled position, and the 3D volume in question,
Vt. In our experiments these volumes are both of size 48 × 176 × 256 in the
anterior-posterior × head-foot × left-right directions. The desired output is the
set of three-dimensional motion fields, Mt which represent the deformation of
the underlying anatomy from the position in Vt to the position in R, which can
then be used to transform Vt into the reference motion state. The ground truth
motion fields are such that Mt(Vt) ≈ R, where Mt(Vt) denotes the result of
applying the transformation Mt to the volume Vt.

The output of the network is a 48 × 176 × 256 × 3 tensor, representing the
required voxelwise deformation in the x, y, z directions. As a loss function we
use the mean square difference between the three components of the predicted
motion field vectors and the ground truth components which simply corresponds
to the mean square displacement between the predicted and ground truth vec-
tors.

2.2 Training Details

Our method was implemented in Keras1. The network was trained with the
Adam optimiser, with a learning rate of 0.001, and with Dropout regularisation
in the two convolutional layers in the lowest resolution layer of the U-net. We
used a batch size of 4, the maximum allowed by our GPU memory. In all cases,
the results for one subject are acquired by training the network on all PET
frames from all other subjects.

3 Experiments

3.1 Synthetic Dataset

We conducted our experiments on a highly-realistic synthetic dataset. The data
consist of real MR acquisitions which are then used to create synthetic PET
data, giving us a paired PET-MR dataset. The PET simulations were intended
to mimic a typical 18F-fluorodeoxyglucose (FDG) scan. Cardiac-gated abdominal
MR scans were performed on 10 healthy volunteers, with both a high-resolution
exhale breath-hold volume, and sequences of 35 low-resolution dynamic volumes
acquired for each of three breathing modes, ‘deep breathing’, ‘normal breathing’
and ‘fast breathing’ making 105 acquired low-resolution dynamic MR volumes
for each volunteer.

1 https://keras.io/.

https://keras.io/
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(a) Overall network architecture

(b) Residual network architecture

(c) U-net network architecture

Fig. 1. Diagram of the neural network architecture used in these experiments. Both of
the input volumes are first passed through a shared residual de-noising layer, before
being concatenated and passed into a U-net like architecture to incorporate both local
and global information into the final motion estimation.

The high-resolution volumes were segmented into anatomical regions relevant
to PET emission and attenuation to create attenuation maps and FDG emission
maps for each volunteer. These FDG maps were then augmented by adding
artificial lesions (either one or two spherical lesions in the lungs and/or liver, of
sizes between 10 mm and 20 mm in diameter) such that each volunteer had ten
emission maps (one unmodified, four with one added lesion, and five with two
added lesions).
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Fig. 2. Examples of typical simulated PET frames from four volunteers. The images
shown are coronal sections chosen to make the lesions easily visible.

Motion fields were extracted by performing a non-rigid registration from the
high-resolution breath-hold to the low-resolution dynamic volumes. The simu-
lated PET was then created by using the calculated motion fields to warp these
attenuation and emission maps, from which PET sinograms were simulated and
then time-resolved frames reconstructed using the ordered-subsets expectation
maximisation (OSEM) reconstruction algorithm [6]. The simulations include ran-
dom coincidences and scatter, with each simulated scan having a total of 50
million simulated counts and an additional 25 million random coincidences.

In total this gave us 10 volunteers each with 10 artificial lesion placements,
and motion states from 3 breathing modes each with 35 acquired volumes giving
a total of 10 × 10 × 35 × 3 = 10500 simulated PET frames.

Finally, we also simulate PET acquisitions using no motion fields, producing a
simulation of a theoretical acquisition in which there was no respiratory motion.
This provides us with a best achievable performance for motion correction.

3.2 Comparison Method: Data-Driven Gating

To evaluate the CNN-based motion correction approach we compare it to the
unsupervised PCA-based method introduced in [13]. As implemented here, this
method involves taking the Freeman-Tukey [5] transformation of the PET frames
and then taking the first component of the PCA of this data (which we find
always corresponds to respiratory motion) as a gating signal. The 35 PET frames
for each sequence are then grouped into 5 gates using this gating signal, the data
in each group aggregated, and the resulting volumes then registered to a target
gate. The data from these groups are then aggregated to create the final motion
corrected volume.

3.3 Assessment of Corrected Volume Quality

We quantitatively assessed the quality of the motion corrected volumes using
the peak standardised uptake value (SUV) in the region of interest (ROI) of the
lesion(s). The SUV for a voxel was found by taking a small region of interest
(the voxel in question and its 6 adjacent voxels) and taking the mean intensity
value across this group. The voxel within the ROI of the lesions with the highest
such mean value determines the peak SUV value in that region. The lesion’s
ROI was defined by the lesion’s position in the original segmentations used to
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(a) Uncorrected PET volumes

(b) Motionless volumes

(c) CNN motion corrected volumes

(d) PCA motion corrected volumes

Fig. 3. Example of uncorrected volumes (top row), motionless volumes (second row),
and motion corrected volumes with the CNN method (third row) and with the PCA
method (fourth row), from four of the volunteers in our dataset.

create the simulated PET, which effectively represents a ground-truth position
for the lesion. We use the peak SUV calculated in this way to compute our final
evaluation metric which is a percentage SUV recovery. The peak SUV values
for the motion correction methods assessed here are expressed as a percentage
of the motionless peak SUV value. For the CNN motion correction method, we
used a cross-validation scheme in which the CNN was trained on the other nine
volunteers and then tested on the left-out volunteer. As is clear from Table 1,
while both methods of motion correction improve upon the raw, uncorrected
volumes, the PCA method outperforms the CNN method on all ten volunteers.
Examples of motion corrected volumes are shown in Fig. 3.
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Table 1. Percentage of peak SUV recovered using motion correction, with the gold-
standard motionless volumes SUV values set to be 100% for each volunteer. Shown here
are the mean and standard deviation of the peak SUV fraction over the nine artificial
lesion placements, excluding the tenth case where no lesion was present.

Volunteer Uncorrected PCA corrected CNN corrected

1 45.5% ± 11.0 68.6% ± 3.3 57.5% ± 7.4

2 43.4% ± 11.3 71.1% ± 2.5 57.9% ± 4.0

3 30.8% ± 3.6 60.4% ± 4.0 37.4% ± 6.3

4 32.1% ± 1.4 62.0% ± 7.7 38.1% ± 4.2

5 32.0% ± 5.9 71.9% ± 14.2 43.4% ± 5.8

6 31.3% ± 6.4 70.8% ± 7.4 39.4% ± 5.0

7 61.1% ± 8.9 77.9% ± 6.2 69.3% ± 5.1

8 58.6% ± 11.7 76.1% ± 5.6 65.0% ± 7.7

9 66.9% ± 4.4 75.3% ± 4.9 66.7% ± 5.6

10 62.5% ± 8.7 79.0% ± 4.7 70.9% ± 8.1

4 Discussion and Conclusions

Why might unsupervised methods be more powerful or more appropriate solu-
tions for motion correction in PET than deep CNNs? Although breathing pat-
terns between patients vary significantly, the breathing pattern for one patient
over a short amount of time is often well modelled by a low-dimensional manifold
[2]. This is especially true when the relevant signal in the image is highly concen-
trated in space, as is the case here where small lesions with high levels of FDG
emission are the most important structures for motion correction. If the lesion
repetitively traces out a path during respiration, and it is significantly brighter
than the rest of the volume, then this signal is likely to be easily picked up by
manifold learning techniques, as has been demonstrated here. More complicated
organ motion which cannot be inferred from the lesion motion will not be picked
up by manifold learning approaches, but importantly this kind of motion outside
of the lesions will not affect the clinically relevant measurement of image quality
such as the peak SUV as used here, or alternative measures such as lesion size
or position.

Simple manifold learning methods may be more restrictive than CNN-based
methods but in cases where the training data are very noisy, and the signal
being estimated is low-dimensional, these restrictions seem to be beneficial. We
note that as well as the CNN architecture described here we attempted to use
several modifications which proved not to help the final image quality, including
changing the sizes of the convolution kernels, numbers of layers and feature
maps, and estimating joint motion fields from temporally neighbouring frames
to make use of temporal correlations. We also found that, with sufficiently long
training times, the CNN was able to accurately fit the training set motion fields
suggesting that the problem on the test set is one of generalising to unseen
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subject’s anatomies and breathing patterns, although further work is required
to understand exactly to what extent these differences limit the final motion-
corrected image quality.

While our experiments cannot demonstrate that all CNN-based methods for
motion correcting PET data will struggle, they do suggest that at the very
least, when the training set is relatively small, it is very challenging to construct
a CNN motion correction method for PET which approaches the performance
of the state-of-the-art manifold learning methods.

Acknowledgments. We would like to thank nVidia for kindly donating the Quadro
P6000 GPU used in this research.
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Abstract. Failure cases of black-box deep learning, e.g. adversarial
examples, might have severe consequences in healthcare. Yet such failures
are mostly studied in the context of real-world images with calibrated
attacks. To demystify the adversarial examples, rigorous studies need
to be designed. Unfortunately, complexity of the medical images hinders
such study design directly from the medical images. We hypothesize that
adversarial examples might result from the incorrect mapping of image
space to the low dimensional generation manifold by deep networks. To
test the hypothesis, we simplify a complex medical problem namely pose
estimation of surgical tools into its barest form. An analytical decision
boundary and exhaustive search of the one-pixel attack across multi-
ple image dimensions let us localize the regions of frequent successful
one-pixel attacks at the image space.

Keywords: CNN · Adversarial examples · One-pixel attack
Deep Learning Fails

1 Introduction

End-to-end Deep Learning pipelines (image in, classification out) have achieved
significant success in Medical Image Computing (MIC) across multiple scenar-
ios, even stretching to Computer-Aided Interventions (CAI) [6]. This success in
comparison to traditional methods (including based on learning) has hurried an
AI-summer in Healthcare seen in the prevalence of Deep Learning-publications in
the MICCAI community. Political authorities have recognized this shift towards
Deep Learning-based methods and are taking action. In the United States, the
FDA has embraced this change by approving AI devices for diabetic retinopathy
detection [1] and is currently in the discussion towards easing the approval pro-
cess for AI-based medical software [7]. The European Union, on the other hand,
has introduced the General Data Protection Regulation, which necessitates the
right to explanation of any decisions taken by a computerized system.

Since researchers struggle to explain decisions by Deep Learning models, the
underlying function is yet a Black Box in practice. Its analysis is hindered by the
c© Springer Nature Switzerland AG 2018
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difficulty of deriving and understanding the decision boundary. In fact, recent
studies [2,5,8,9,11] have shown that these Deep Learning models are vulnerable
to adversarial examples – these are images which cause incorrect classifications
despite either models predicting with high certainty or being clear classifica-
tions to humans. Adversarial examples are not understood as a consequence of
the black-box-characteristic. They can even be as simple as only changing a sin-
gle pixel leading to different classification results (one-pixel-attacks). For medical
applications, the exploitation of this vulnerability is thoroughly analyzed by Fin-
layson et al. [3]. However, this vulnerability is largely ignored across evaluations
of Deep Learning in MIC and CAI.

Though impressive, the general example attacks shown by Finlayson et al.
[3] address the traditional image-in-diagnosis-out setting. However, real medical
images and annotations are complex further obscuring the situation and adding
to the mystery – for example complex image structure, confounding situations
(device vendors, acquisition parameters), non-conformity between radiologists,
multi-class and multi-label decisions. Without disentangling these factors it is
impossible to understand adversarial examples, which stem from Deep Learning
only. Simplifications of MIC scenarios are needed to draw systematic conclusions
regarding adversarial examples. For example: to consider segmentation masks
rather than the real-world images (binary instead of continuous pixel values) or
to define decision boundaries in a closed form (which is not available in MIC).

In this paper, we provide the first systematic analysis of one-pixel-attacks
on convolutional neural networks (CNNs) in a simplified CAI application and
provide a first intuition of patterns. With inherent limits on the knowledge and
processable size of both the likely image space and a complete description of
the decision boundary, it will be impossible to analyze adversarial attacks due
to the complexity of CNNs – even here simplifications are needed. To break the
problem down to its core, we (a) simplify the range of images (image space),
(b) train multiple classifiers and (c) search exhaustively for one-pixel adversarial
examples. We consider the problem of instrument pose estimation studied by
Kügler et al. [6], who have ignored adversarial attacks, where the orientation of
instruments is to be determined. To gain control over the image and annotation
complexity, we define a continuous generation manifold with a perfectly defined
binary decision boundary. From individual manifold coordinates, we generate
binary images at various dimensions with the instrument being simplified to
a line for different levels of discretization. We define all images that can be
generated through this pipeline as “possible images” and train multiple simple
classifiers based on convolutional neural networks with “ALL” these uniquely
possible images. Finally, we exhaustively search the space of all single pixel-
flip adversarial candidates, identify successful attacks and localize the regions of
frequent successful one-pixel-attacks. The most surprisingly, the overwhelming
majority of attacks are localized at a distance of the instrument, which implies
the one-pixel-flip did not change the information of the image.
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2 Related Work

Goodfellow et al. [5] demonstrate that standard image models exhibit a strange
phenomenom: most randomly chosen images from a data distribution are cor-
rectly classified and yet are close to visually similar images that are incor-
rectly classified. By adding some certain kind of perturbation to an image this
behaviour can be reproduced on most CNNs. A hypothesis on that behaviour
is that neural network classifiers are too linear in various regions of the input
space (Fig. 1).

Fig. 1. Conceptual summary of the image classification problem.

Su et al. [10] specialize on so called ‘one pixel attacks’. They show that even
by adding a perturbation with the size a single pixel to an image, the output of
deep learning networks can easily be altered.

Gilmer et al. [4] try to get an insight on adversarial examples by training
different neural networks on a synthetic dataset of two concentric spheres with
different radii. The idea is to classify whether a point belongs to one or the other
sphere. Even though the data manifold as well as the theoretical max margin
boundary are clearly defined and enough input is provided for networks to train
on, adversarials can still be found near correctly classified points.

3 Methods

We generate a custom dataset to study adversarial examples for image classifi-
cation. Using a exhaustive search, all one-pixel-flip candidate images are tested
for misclassification.

Analyzing the space I of images, we differentiate between images belonging
to an application (I∗

�
⊂ I, often termed “natural images”) and images holding
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Fig. 2. Generated images from a subset. The bar below
indicates the decision boundary. For the green range y =
1, y = 0 otherwise. Generated images are colorized for
better contrast. (Color figure online)

Table 1. Number of
unique images for differ-
ent combinations of image
dimensions and rotation
stepsizes

Dimensions 0.5◦ 1.0◦ 2.0◦

16 × 16 394 280 170

32 × 32 2524 1394 716

48 × 48 5244 2790 1436

64 × 64 8116 4228 2158

80 × 80 10998 5676 2880

no information on the application. By introducing a generation manifold M – a
higher-level parameter space describing all images possible for our application –
we are able to describe all features of the image relevant to our application.

For a systematic analysis of adversarial examples, we need a closed-form rep-
resentation of the decision boundary. Defining the decision boundary dependent
on the generation manifold allows us to determine the distance of an image to the
decision boundary in terms of the manifolds coordinates. The generation function
f : M → I

∗
�

maps from the generation manifold to the image space I
∗
�

restricted
to images that can be generated by f . Since all generations from a region around
mi ∈ M lead to identical images in I, those cases are in-differentiable, i.e. f is
non-injective. In addition, since not all images from I can be created by this
function, some images x ∈ I do not have a corresponding coordinate m in M.
For images that cannot be directly generated through the generation function,
but that are largely similar to images directly generated (e.g. one-pixel attacks
x′

i of image xi), the association to the corresponding mi is implicit (dotted line).
Some images x̃ will have the property of being equally similar to two different m
even belonging to different classes. For these ambiguous images, no association
to a m or even a class can be found.

3.1 Dataset

With our chosen generation manifold M as (L,α), our generation function maps
to images of lines of varying length L and rotation α (see Fig. 2). Lines are
centered on the image center, leading to a scenario where images always differ
in at least 2 pixels because of symmetry. A line-like structure is being used, to
keep the generation manifold as simple as possible. Finally, we define a simple
decision boundary classifying images into 2 categories, where y = 1 for α in the
range from 0◦ to 40◦, and y = 0 for all other cases. The chosen range for α is
arbitrary.

We generate 15 complete sets of all unique binary images X = I
∗
�

for 15 dif-
ferent generation functions f by different manifold discretization (only allowing
α in steps of 0.5◦, 1.0◦ and 2.0◦) and image dimensions D ×D (16× 16, 32× 32,
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Fig. 3. Left to right: image from dataset for 0◦; 2 confirmed exemplary adversarial
candidates.

48 × 48, 64 × 64 and 80 × 80). The length L is varied between 12 Pixel and
D − 2, where D is the width and the height of the image. This procedure leads
to varying numbers of unique images (|X|) as described in ţ.

3.2 Training

We train 5 models for each of the 15 synthetic combinations (Table 1), resulting
in a total of 75 trained networks. Training repititions were performed to average
out the stochastic properties of the training process.

Since we are looking at off-manifold images rather than the generalization
error of the networks, there is no need for a testing set. Moreover, since we use
every single image in a subset (i.e. every possible image) for training, our models
are not restricted by the choice of training data. All models feature the same
architecture only differing in the dimensions of the input images. We design a
simple network architecture with three layers: First, two 2D convolutional layers
of size 3×3 with 32 channels and ReLU activation each followed by max pooling
(stride 2) process the input. On this, a fully connected layer with 128 units
and ReLU activation is applied, followed by an output layer with 2 units and
a Sigmoid activation. We regulize by dropout (p = 0.25) just before the fully
connected layer.

For optimization, we use the Adam optimizer with recommended parameters
(β1 = 0.9 and β2 = 0.999) and a learning rate of 0.001. Finally, binary crossen-
tropy is used as the loss function. We achieved an accuracy of 1.0 with all models
indicating perfect convergence on the training dataset.

3.3 Adversarial Data Creation

The goal of creating adversarial data is to identify whether our trained networks
can be fooled into predicting the wrong output y for a given image x. By flipping
one pixel at a time, we perform an exhaustive search of all combinations of all
images in X (see Fig. 3 for examples). The total number of adversarial candidates
Nadv = ND2, where N = |X| and D being the width and length of the image.
Unlike Su et al. [10], we brute-force our way to a complete list of all possible
adversarial examples instead of finding single instances by optimization, which
did not work for binary images.
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4 Results

By testing the classification of all adversarial candidates, we found all networks
to be vulnerable to one-pixel-adversarial attacks. All experiments were performed
on 5 networks, so all values are averages over 5 networks.

Fig. 4. Comparison of average adversarial likelihood depending on the distance to
decision boundary. Plots show the areas around α = 0◦ and α = 40◦.

We evaluated the relative number of adversarial examples w.r.t. the adversar-
ial candidates. We also determined this ratio ADVcnt/(ND2) of actual adver-
sarial examples to adversarial candidates dependent on the angle rotation α
(Advcnt/(nαD2), see Fig. 4) and on the pixel-position in the image (see Fig. 5).
These ratios can also be interpreted as experimentally determined average like-
lihood of an image being adversarial given the specific conditions.

Figure 4 shows the distribution of the relationship of misclassifications at
a particular angle. Adversarial examples were only found around the decision
boundary (α ≈ 0◦ or α ≈ 40◦. With an increase of the image dimension D the
likelihood to find adversarial examples decreases.
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Fig. 5. Heatmaps display the spatial likelihood for a flip to cause a misclassification,
i.e. leading to an adversarial example; the “X” represent edges of two images on the
decision boundary, i.e. α = 0◦ and α = 40◦; interestingly, high probabilities are often
found in regions removed from the edges

Fig. 6. Information or compression analysis
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We created heatmaps, shown in Fig. 5, to display the spatial likelihoods for
a flip to cause a missclassification. The “X” represented the edges of lines from
two images, which belonged to the values of α on the decision boundary, i.e.
α = 0◦ and α = 40◦. Surprisingly, the highest likelihoods to cause an image to be
confirmed as adversarial were not situated at positions, where the discrimination
between classes got harder from an information perspective, but were removed
from the edges, i.e. the overwhelming majority of images was not ambiguous.
Increasing the image dimension led to more pronounced patterns and better
overall robustness. This can also be seen in Fig. 6.

Finally, we analyzed whether the relationship between the relative number
of adversarial examples and the “possible redundancy” of the reconstructable
manifold information in image space exits. The latter is the ratio of information
contained in the reconstructable manifold and the image. Higher “redundancy”
seems to indicated a strong relationship to increased robustness to adversarial
attacks.

Unlike other studies, these results were obtained for networks trained on
“ALL” possible images that can be generated from the generation manifold and
achieved an accuracy of 1.0.

5 Discussion and Conclusion

This paper provides a systematic evaluation of one pixel adversarial attacks on
convolutional neural networks. By leveraging a simple toy CAI scenario against
a simple yet perfect (accuracy 1.0) convolutional neural network, we find one-
pixel-adversarial-candidates with an astonishing regularity. These candidates are
deliberately placed close to but off the manifold training images are drawn from.
In particular, we identify the vulnerable regions to be close to the decision bound-
ary and not explainable by loss of informations caused by the introduction of
the “attacking pixel”.

In Future Work, we will generalize these observations to toy examples derived
from other scenarios, increase the depth of the neural network and investigate
causes for adversarial examples.

The systematic analysis of adversarial examples presented in this paper ini-
tiates a much needed process of understanding adversarial examples in medical
images.
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Abstract. Normal Pressure Hydrocephalus (NPH) is a brain disorder
that can present with ventriculomegaly and dementia-like symptoms,
which often can be reversed through surgery. Having accurate segmen-
tation of the ventricular system into its sub-compartments from mag-
netic resonance images (MRI) would be beneficial to better character-
ize the condition of NPH patients. Previous segmentation algorithms
need long processing time and often fail to accurately segment severely
enlarged ventricles in NPH patients. Recently, deep convolutional neu-
ral network (CNN) methods have been reported to have fast and accu-
rate performance on medical image segmentation tasks. In this paper,
we present a 3D U-net CNN-based network to segment the ventricu-
lar system in MRI. We trained three networks on different data sets
and compared their performances. The networks trained on healthy con-
trols (HC) failed in patients with NPH pathology, even in patients with
normal appearing ventricles. The network trained on images from HC
and NPH patients provided superior performance against state-of-the-
art methods when evaluated on images from both data sets.

Keywords: MRI · Hydrocephalus · Segmentation · CNN

1 Introduction

The ventricular system of the human brain is composed of four interconnected
cavities: the left and right lateral, the third and the fourth ventricles. Each ventri-
cle contains choroid plexus, a network of ependymal cells producing cerebrospinal
c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): MLCN 2018/DLF 2018/iMIMIC 2018, LNCS 11038, pp. 79–86, 2018.
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fluid (CSF). Normal pressure hydrocephalus (NPH) is a brain disorder usually
caused by disruption of CSF flow but with normal CSF pressure. The ventricles
expand and press against the brain tissue nearby, which can lead to the distortion
of the brain shape and eventually cause brain damage. NPH is characterized by
gait unsteadiness, urinary incontinence, and dementia [1]. However, unlike most
forms of dementia, the symptoms in NPH are potentially reversible to a certain
extent on properly selected patients. Diversion of CSF through shunt surgery has
been reported to improve the symptoms of NPH [10]. However, it remains a chal-
lenge to identify NPH patients who respond to treatment, and differentiate NPH
from other neurodegenerative disorders, such as Alzheimer’s disease [11].

Currently, NPH is diagnosed based on characteristic clinical symptoms and
brain imaging [11]. The ventricular dilation in NPH can be observed through
magnetic resonance (MR) images. Examples of T1-weighted (T1w) Magneti-
cally Prepared Rapidly Acquired Gradient Echo (MPRAGE) images of NPH
patients are shown in Fig. 3(a). Disproportionate dilation of components of the
ventricular system in NPH is relative to the specific point of CSF disruption,
which could have an impact on the diagnosis [11]. Therefore, accurate segmen-
tation of the ventricular system into its four cavities could help characterize
the pathophysiology and potentially lead to better surgical planning of NPH
patients.

Previously published segmentation methods include the popular FreeSurfer
[6] method and many multi-atlas segmentation methods [15,20]. However, these
methods require long processing times (several hours) and often fail to capture
the boundary of the greatly enlarged ventricles in NPH patients. A recently
developed segmentation algorithm, RUDOLPH [3,5], is a combined patch-
based and multi-atlas segmentation method designed for subjects with ventricu-
lomegaly. Although this method is robust in ventricular parcellation, it also has
a long runtime. In recent years, various methods based on deep convolutional
neural networks (CNN) have been proposed to tackle neuroimage segmenta-
tion [2,12]. The U-Net [16] is one of the most well-known CNN architectures in
medical image analysis. The skip connections between contracting and expand-
ing paths in the U-Net improve the network performance.

In this paper, we present a 3D U-Net method for segmenting the ven-
tricular system. We trained three networks on images from two data sets,
two comprising healthy controls (HC) and the other a mix of HC and NPH
patients, and show the difference of their performances. The first network
was trained on 13 HC and performed well when evaluated on subjects from
the same data set. However, it performed poorly on the NPH data set,
even on images with normal sized ventricles. The second network was trained
on 38 HC, including elderly subjects with enlarged ventricles, and performed
even worse than the first network when evaluated on NPH data set. The third
network was trained on a mixture of 13 HC and 25 NPH images and provided
dramatically improved results on both data sets, demonstrating the importance
of training data selection.
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2 Methods

2.1 Data and Preprocessing

We evaluated our segmentation network using 3D brain MR images from two
data sets. The first one comprised 38 T1w MR images from Neuromorphometrics
Inc (NMM)1. Each image was manually delineated by experts into 138 brain
structures. For our purposes, we converted the 139 labels (138 brain structure
labels and 1 background label) into five: left and right lateral ventricles, third
ventricle, fourth ventricle, and a catch-all background label. The inferior lateral
ventricle label was included with the corresponding lateral ventricle label. The
T1w MR images were sorted by the volume of the ventricular system and 13
images were used as training data for the first and third network, covering the
entire spectrum of ventricle sizes in the data set. All 38 images were used as
training data for the second network.

The second data set was from our NPH database comprising 95 NPH patients
with a wide range of ventriculomegaly. They were acquired on a 3T (Siemens
Corporation, Germany) scanner with T1w MPRAGE with TR = 10.3 ms, TE
= 6 ms, and 0.82 × 0.82 × 1.17 mm3 voxel size. We manually delineated the
ventricular system in all 95 NPH patients from our database into our five labels.
A total of 25 NPH images, ranging from mild to severe cases, were chosen as our
training data for the second network.

The images from the two data sets were run through a preprocessing pipeline,
including N4 bias correction [18], rigid registration to MNI 152 atlas space [7],
and skull stripping [17].
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Fig. 1. Architecture of the ventricle-segmentation network. The numbers in the con-
tracting and expanding blocks indicate the output number of features. The shape of
the tensor is denoted next to the box in each resolution scale.

1 http://www.neuromorphometrics.com/.

http://www.neuromorphometrics.com/
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Fig. 2. Architecture of the input, contracting, and expanding blocks used in the seg-
mentation network.

2.2 Ventricle Segmentation Network

A 3D U-Net [13] was modified to segment the left and right lateral ventri-
cles, and the third and fourth ventricles. In this network (Fig. 1), a series of
contracting blocks extract image features from local to global context and a
series of expanding blocks, with shortcut to contracting blocks, act as “learn-
able” upsampling interpolation to restore the feature map resolution (Fig. 2).
Using learned features, the projection convolution connected to each expanding
block (Fig. 1) along with the softmax operation further classify the voxels into
five labels including the four ventricles and the background.

The contracting block is similar to the building block for increasing dimen-
sions of the pre-activation ResNet [9], since the shortcut within a block can
make the optimization easier and increase accuracy [8]. In contrast to ResNet,
however, the identity mapping and the residue encoding paths share the first
convolution in this design to reduce overfitting. Instance normalization [19] was
used since it is invariant to mean and covariant shift of image intensities. The
negative slope of Leaky ReLUs [22] was 0.1 and the dropout rate was 0.2.

2.3 Training Procedure

We used data augmentation by applying right-left flipping, elastic deformation,
and rotation to the training images. The images were cropped to 192×256×192
and sent to the input block. The loss function was one minus the mean Dice
coefficient [4] of each label. The network was trained for 50 epochs using the
Adam optimizer [14].

3 Experiments and Results

We trained three networks, VenSeg1 using 13 T1w MR images from NMM,
VenSeg2 using 38 T1w MR images from NMM, and VenSeg3 using 38 T1w MR
images including the same 13 in VenSeg1 and 25 from our NPH cohort. The 95
MR images (25 from NMM and 70 from NPH) formed the testing data set. We
only evaluated the performance of VenSeg2 on the 70 NPH testing images.

The 25 testing images from NMM data set were processed by VenSeg1,
VenSeg3, and three state-of-the-art brain segmentation methods: FreeSurfer 6.0,
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Joint label fusion (JLF) [20] and RUDOLPH [3]. The 70 testing images from the
NPH cohort were processed by all the six segmentation methods. We provided
FreeSurfer with skull-stripped data to speed up the process and turned on the
-bigventricles switch for NPH subjects to handle the enlarged ventricles.

Visual comparisons of the five methods (excluding VenSeg2) on one NMM
image and three NPH images are shown in Fig. 3. The VenSeg1 network provided
accurate segmentation on the NMM image (Fig. 3(a), subject #1). However,
it yielded erroneous segmentations on MR images of NPH patients. A truly
surprising failure of VenSeg1 is subject #2; Subject #2 has a similar shape and
volume to subject #1 from the NMM cohort (129 ml for subject #2 and 132 ml
for subject #1) and yet VenSeg1 failed to capture the boundary of the lateral
ventricles and mislabeled portions of the right ventricle as left. Subject #3 in
Fig. 3 shows an NPH patient with mild pathology, however VenSeg1 incorrectly
labeled some cortex as the 4th ventricle (yellow arrow in Fig. 3(e), subject #3).

We computed the Dice coefficient on a cohort of subjects only from NMM
and a cohort of subjects only from NPH for the methods and report the results
in Tables 1 and 2, respectively. We note that VenSeg2 performed worse than
VenSeg1 on NPH data set despite having more training data (see Table 2). We
used a paired Wilcoxon signed-rank test [21] to compare the methods. For the
results on the NMM testing images, we found no significant differences between
VenSeg1 and VenSeg3 in terms of Dice coefficients. Both networks performed
significantly better (p < 0.001) than FreeSurfer and RUDOLPH on the lateral
ventricles and the 3rd ventricle, and better than FreeSurfer on the 4th ventricle.
For the results on the NPH image testing set, VenSeg3 performed significantly
better (p < 0.001) than all the other methods on all the ventricle labels.

Table 1. The mean Dice coefficient (and standard deviation) over 25 T1w images from
Neuromorphometrics. Ventricular system key: Merged four ventricle labels (Whole),
right lateral ventricle (RLV), left lateral ventricle (LLV), third ventricle (3rd), and
fourth ventricle (4th). The asterisks mean significantly different (p-value <0.001) to
VenSeg1 and VenSeg3.

Whole RLV LLV 3rd 4th

FreeSurfer 0.843∗(±0.04) 0.848∗(±0.04) 0.848∗(±0.04) 0.700∗(±0.12) 0.760∗(±0.04)

JLF 0.881(±0.03) 0.879(±0.03) 0.888(±0.03) 0.796(±0.04) 0.844(±0.03)

RUDOLPH 0.883∗(±0.03) 0.883∗(±0.03) 0.888∗(±0.03) 0.777∗(±0.08) 0.839(±0.04)

VenSeg1 0.902(±0.03) 0.903(±0.03) 0.907(±0.03) 0.821(±0.07) 0.844(±0.04)

VenSeg3 0.902(±0.03) 0.904(±0.03) 0.907(±0.03) 0.817(±0.07) 0.842(±0.04)



84 M. Shao et al.

(a) T1-w MRI (b) FreeSurfer (c) JLF (d) RUDOLPH (e) VenSeg1 (f) VenSeg3 (g) Manual

1
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Fig. 3. Segmentation results from three state-of-the-art methods (FreeSurfer, JLF, and
RUDOLPH) and two proposed deep networks (VenSeg1 and VenSeg3) compared with
a manual rater (column g). Subject #1: T1w image and segmentation results from
NMM data set. Subjects #2–4: T1w images and segmentation results from NPH data
set, showing moderate, mile, and severe cases. The red arrow in (e2) shows the right
lateral ventricle inaccurately labeled as the left lateral ventricle. The yellow arrow in
(e3) points to cortex mislabeled as the 4th ventricle. The white arrow in (e4) points to
the right ventricle mislabeled as the 3rd ventricle. (Color figure online)

Table 2. The mean Dice coefficient (and standard deviation) over the 70 testing images
from the NPH data set. Bold: VenSeg3 is significantly better (p-value <0.001) than the
other five methods on all the labels.

Whole RLV LLV 3rd 4th

FreeSurfer 0.937(±0.03) 0.942(±0.03) 0.939(±0.03) 0.840(±0.06) 0.730(±0.08)

JLF 0.930(±0.04) 0.931(±0.05) 0.933(±0.04) 0.865(±0.06) 0.862(±0.04)

RUDOLPH 0.942(±0.05) 0.943(±0.05) 0.944(±0.05) 0.875(±0.07) 0.838(±0.06)

VenSeg1 0.833(±0.14) 0.839(±0.15) 0.832(±0.15) 0.727(±0.21) 0.787(±0.11)

VenSeg2 0.482(±0.24) 0.484(±0.25) 0.480(±0.25) 0.275(±0.28) 0.684(±0.18)

VenSeg3 0.971(±0.02) 0.971(±0.02) 0.974(±0.02) 0.915(±0.06) 0.903(±0.04)
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4 Discussion and Conclusions

We present a 3D U-Net architecture to segment and label the ventricular system
in patients with enlarged ventricles. We trained three models on two different
data sets using manual delineations as training data. The models were evaluated
on 25 NMM subjects and 70 NPH patients and compared to FreeSurfer, JLF,
and RUDOLPH.

The model trained on 13 NMM data showed improvement over the state-of-
the-art segmentation methods in terms of overlap with expert delineations on
the same data set. However, it showed poor performance on the NPH data set,
even on images with ventricle size similar to the training data. The segmentation
results from this model on subjects #1 and #2 were inconsistent. The model
failed to identify the boundary of the lateral ventricles and mislabeled portions
of the right ventricle as left on subject #2 (see the red arrow in Fig. 3(e2)). This
failure occurred despite the fact that the size of the ventricles in subject #2 is
very similar to the ventricle size of subject #1 from NMM. In some cases with
small ventricular volume, the model mislabeled the cortex as ventricle (see the
yellow arrow in Fig. 3(e3)). In severe cases of NPH, this model cannot handle the
pathology as its training data set does not include similar examples; Furthermore
it labeled posterior portions of the right ventricle as the 3rd ventricle (see the
white arrow in Fig. 3(e4)).

The second network was trained on 38 NMM images, including elderly subjects
with enlarged ventricles, since more training data could potentially improve the
performance. However, this network provided worse segmentation results than the
first one when evaluated on NPH patients. One possible explanation is that adding
more training data made the network overfitted on the NMM data set.

The failure of these two networks on NPH patients indicates that the network
did not learn only the intensity and spatial information from the training data,
since the first network successfully segmented a subject from NMM but failed
on a subject with similar ventricle size from the NPH data set. The dominant
features learned by the network—that are driving the segmentation—remain a
mystery.

The third network was trained on 38 images from both data sets. It performed
significantly better than all of the other methods on the entire testing data set,
demonstrating both the robustness of the network to high variations of ventricle
sizes, but also the importance of careful training data selection for deep learning
methods.
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Abstract. Recently, there have been several successful deep learning
approaches for automatically classifying chest X-ray images into differ-
ent disease categories. However, there is not yet a comprehensive vul-
nerability analysis of these models against the so-called adversarial per-
turbations/attacks, which makes deep models more trustful in clinical
practices. In this paper, we extensively analyzed the performance of two
state-of-the-art classification deep networks on chest X-ray images. These
two networks were attacked by three different categories (ten methods
in total) of adversarial methods (both white- and black-box), namely
gradient-based, score-based, and decision-based attacks. Furthermore,
we modified the pooling operations in the two classification networks
to measure their sensitivities against different attacks, on the specific
task of chest X-ray classification.

Keywords: Adversarial perturbation · Chest X-ray classification
Deep learning

1 Introduction

The chest X-ray is among the top most commonly accessible medical imaging
examinations used for affordable screening and diagnosis of numerous lung ail-
ments including pneumothorax, mass, cardiomegaly, effusion, and pneumonia.
Owing to huge numbers of patients and increasing burden of lung ailments, the
workload of radiologists has significantly multiplied. Hence, with an intention to
accelerate/support the predictions of radiologists, many machine (deep) learning
classification frameworks have emerged over the past few years.

The availability of a new large scale chest X-ray dataset namely “ChestX-
ray14” [20], which comprises 30,805 patients and 112,120 chest X-ray images,
makes it feasible to apply deep learning without a need for data augmen-
tation or synthetic data. Recently, different standard classification deep net-
works (AlexNet [7], VGGNet [14] and ResNet [5]) have been applied to this
dataset. Wang et al. [20] applied pre-trained AlexNet, GoogLeNet [17], VGG,
and ResNet-50 architectures to classify 8 disease categories. They showed that
c© Springer Nature Switzerland AG 2018
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ResNet-50 achieves superior performance compared to the other applied models.
Guendel et al. [4] proposed a local aware dense network for classification of 14
pathology classes in the ChestX-ray14 dataset. Rajpurkar et al. [12] proposed
CheXNet, a 121-layer convolutional neural network trained on ChestX-ray14 for
the pneumonia disease detection task, which exceeds average radiologist perfor-
mance on the F1 metric. Baltruschat et al. [1] proposed a fine-tuned ResNet-50
network which achieved high accuracy on 4 out of the 14 disease classes in the
chest X-ray dataset. Yao et al. [21] presented a partial solution to constraints in
using LSTMs to leverage inter-dependencies among target labels in predicting
14 pathological classes from chest X-rays.

The generalizability of the deep learning methods, i.e. how they perform
on unseen chest X-ray test images, have been explored in the above mentioned
works to some extent. However, discovery of “adversarial examples” has exposed
serious vulnerabilities in even state-of-the-art deep learning systems [8]. As of
writing there is no comprehensive study on the vulnerability analysis of the state-
of-the art classification networks against adversarial perturbations for chest X-
rays. Finlayson et al. [3] considered a single attack, namely projected gradient
descent [6,9] on chest X-ray images.

Adversarial images are crafted by adding perturbations, imperceptible to the
naked eye, to the clean images to fool machine learning models. Different cate-
gories [22] of adversarial attacks on images have been recently developed which
have been highly successful in fooling deep neural networks. In the medical image
analysis domain, attacks may originate during data-transfer through the Inter-
net or local networks [3]. Even in the case of complete protection from adversar-
ial attacks, training existing deep models with adversarial examples or design-
ing defense mechanisms [23] can improve model generalizability and resilience.
In this paper, we present a comprehensive analysis of ten different adversarial
attacks on classification of chest X-ray images and investigate how two differ-
ent standard deep neural networks perform against adversarial perturbations.
We perform both white (i.e. producing perturbed images using network A and
classifying them by the same network) and black-box (i.e. producing perturbed
images using network A and classifying them by network B) attacks.

2 Methods

2.1 Applied Deep Networks

We use two state-of-the-art deep models i.e. Inception-ResNet-v2 [16] and
Nasnet-Large [24] to evaluate their performance on classification of both clean
and perturbed chest X-ray images. Next, we modify the networks by replacing
max-pooling operations with average-pooling to analyze whether the modified
networks, especially the ones that are based on single/few pixel perturbation,
are less sensitive to attacks. We hypothesize that average-pooling may be more
resilient to attacks as it captures more global contextual information from the
field of view, instead of selecting a single pixel candidate as max-pooling does.
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2.2 Applied Adversarial Attacks

We applied three different categories of attacks namely gradient-based, score-
based, and decision-based:

– Gradient-based attacks linearize the loss (in our case binary cross-entropy)
around an input to which the model predictions for a particular class are most
sensitive to. These attacks perturb the image with the gradient of the loss
w.r.t. the clean image, gradually and efficiently increasing the magnitude until
the model predicts a different label for the perturbed image. In our exper-
iments, we have selected five different gradient-based attacks namely, Fast
Gradient Sign Method (G1) [8], Projected Gradient Descent (G2) [9], Deep-
Fool (G3) [10], Linfinity Basic Iterative Method (G4) [8],Limited-memory
Broyden–Fletcher–Goldfarb–Shanno Method (L-BFGS) (G5) [18] and we
demonstrate how the models trained on clean images perform against the
crafted adversarial examples.

– Score-based attacks rely on confidence scores e.g. softmax class probabilities
or logits to numerically estimate the gradient. From this group, we apply Local
Search (S1) [11] (a black box attack based on the greedy local search algorithm
to find pixels for which the model is the most sensitive and perturbing them
to misclassify the input) and the Single Pixel (S2) [15] attacks.

– Decision-based attacks [2] solely rely on the predicted class or label of
the model without requiring gradients or logits. From this group, we applied
Gaussian Blur (D1), Contrast Reduction (D2) and Additive Gaussian Noise
(D3) in our experiments. In all of the aforementioned attacks, a line-search
is performed internally to find minimal perturbations required by the image
to turn it into an adversarial example.

We trained both the networks from scratch with a batch size of 32 and 8
for training the Inception-ResNet-v2 and Nasnet-Large, respectively. RMSProp
optimizer [19] with a decay of 0.9 and ε = 1 and an initial learning rate of 0.045,
decayed every 4 epochs using an exponential rate of 0.94 were used for all of our
experiments as described in [16,24]. We set all attack parameters as proposed
by their authors and utilized Foolbox [13], to craft adversarial examples.

3 Dataset

We use ChestX-ray14 dataset [20] which comprises 112,120 gray-scale images
with 14 disease labels and 1 no-finding label. We treat all the disease classes as
positive and formulate a binary classification task of “disease” vs. “non-disease”.
We randomly selected 95,128 images for training and 16,792 for validation. We
randomly picked 200 unseen images as the test set, with 93 images with chest
disease labels and 107 having “no finding” labels. These clean images are used
for carrying out different adversarial attacks and the models trained on clean
images are evaluated against them.
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4 Results and Discussion

Figure 1 shows the perturbed images produced by the ten different applied
attacks. In Fig. 2, we visualize a few samples where the perturbations are per-
ceptible by human. We observed that most of the produced images by D1 (i.e
Gaussian blur), D2 (i.e. contrast reduction), D3 (i.e additive Gaussian noise),
S1 (i.e. local search) attack can be easily detected by the naked eye. We also
found that S1 requires relatively more time compared to other methods to find
an adversarial image.

G1 G2 G3 G4 G5 D1 D2 D3 S1

Clean

Perturbation

Perturbed

Fig. 1. Perturbed images produced by 10 (3 categories) different attacks.

In Tables 1 and 2, we report accuracy and area under ROC for two networks
with/without modification for clean and ten different adversarial attacks (white-
and black-box). Note that the single pixel attack [15] i.e. S2 (from the score based
attacks category) failed to fool the networks for the entire test set which shows
the single pixel attack works well on RGB (colored images) but not on gray-scale
X-ray images as it is not simple to fool a deep model by changing only a single
“gray-scale” pixel.

Table 1. Performance of original/modified Inception-ResNet-v2 (IR2) and Nasnet-
Large (NL) against ten different white-box attacks. In the Table, MP, AP, Acc., AU
refer to max-pooling, average-pooling, accuracy, and area under ROC, respectively.

Model Metrics Clean Gradient Decision Score

G1 G2 G3 G4 G5 D1 D2 D3 S1 S2

MP IR2 Acc. 0.70 0.00 0.00 0.00 0.00 0.00 0.04 0.10 0.32 0.65 0.70

AU 0.75 0.00 0.00 0.00 0.00 0.00 0.06 0.19 0.52 0.74 0.75

NL Acc. 0.73 0.00 0.00 0.01 0.00 0.00 0.06 0.41 0.30 0.32 0.73

AU 0.77 0.00 0.00 0.10 0.00 0.00 0.10 0.66 0.58 0.55 0.77

AP IR2 Acc. 0.71 0.00 0.00 0.00 0.00 0.00 0.04 0.24 0.14 0.62 0.71

AU 0.74 0.00 0.00 0.00 0.00 0.00 0.06 0.39 0.26 0.72 0.74

NL Acc. 0.72 0.00 0.00 0.00 0.00 0.00 0.03 0.41 0.48 0.72 0.72

AU 0.74 0.00 0.00 0.00 0.00 0.00 0.04 0.64 0.64 0.74 0.74
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D1 D2 D3 S1

Clean 

Perturbation

Perturbed

Fig. 2. Human perceptible adversarial perturbations

Table 2. Performance of original/modified Inception-ResNet-v2 (IR2) and Nasnet-
Large (NL) against ten different black-box attacks. In the Table, MP, AP, Acc., AU
refer to max-pooling, average-pooling, accuracy, and area under ROC, respectively.

Model Metrics Clean Gradient Decision Score

G1 G2 G3 G4 G5 D1 D2 D3 S1 S2

MP IR2 Acc. 0.70 0.46 0.43 0.43 0.43 0.43 0.53 0.81 0.36 0.45 0.70

AU 0.75 0.44 0.41 0.40 0.41 0.41 0.43 0.84 0.24 0.40 0.75

NL Acc. 0.73 0.53 0.51 0.51 0.51 0.51 0.57 0.58 0.74 0.56 0.73

AU 0.77 0.52 0.49 0.49 0.49 0.49 0.51 0.55 0.82 0.55 0.77

AP IR2 Acc. 0.71 0.51 0.52 0.52 0.52 0.51 0.53 0.29 0.40 0.53 0.71

AU 0.74 0.49 0.49 0.49 0.47 0.50 0.47 0.24 0.40 0.52 0.74

NL Acc. 0.72 0.59 0.58 0.58 0.58 0.58 0.49 0.53 0.51 0.38 0.72

AU 0.74 0.59 0.58 0.58 0.58 0.58 0.46 0.52 0.46 0.39 0.74

As reported in Table 1, the gradient based attacks were almost completely
successful in fooling both networks (with/without modification) when the vic-
tim model for attack was the same reference model, i.e. in a white-box attack
scenario. The decision and score based attacks were almost unsuccessful in fool-
ing the models. We observed that Nasnet-Large with average pooling was 18%
stronger in comparison to Nasnet-Large with max pooling. Note that the local
search attack (S1) completely failed against Nasnet-Large with average-pooling.

In Table 2, we show the performance of both the networks against the black-
box attacks i.e. we craft adversarial images with Inception-ResNet-v2, but test
them with Nasnet-Large and vice versa. As reported in the table, almost all the
methods were partially successful but not as high as white-box attacks. For gra-
dient based black-box attacks, average pooling shows more resiliency against the
attacks. We observed that for 23% ± 9% and 27% ± 8% of the test samples both
the networks failed on the same cases for average and max pooling, respectively.
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Fig. 3. Probability values of the original and modified networks after attack

In Fig. 3, we show the probability values of the two networks (with/without
modification) only after successful attacks on the disease class. Higher
ranges/values indicate a stronger attack or a more vulnerable network. As shown
in the figure, D3 (i.e. Additive Gaussian Noise), S1 (i.e. Local search) and G5
(i.e. L-BFGS) attacks are highly sensitive to the choice of pooling (max/average)
operation. The range of the attack’s confidence varies from ∼0.50 to ∼0.55. Note
that absence of a box in the figure means there was no successful attack for a
disease class in that experiment. In Fig. 4, we visualize the accuracy of Inception-
ResNet-v2 for different groups of attacks and, in the same plot, we show the
perceptibility of each group of the attacks (i.e. the difficulty level for a human
to detect a perturbed image). Note that lower accuracy and harder detection
(lower right of the plot) implies a more successful attack. As shown in the figure,
gradient based attacks are the most successful ones in terms of fooling both
human (i.e. perception) and machine (i.e. accuracy).
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Fig. 4. Distribution of adversarial images crafted based on Inception-ResNet-v2 net-
work w.r.t. human perception. The dots and stars in the figure refer to max and average
pooling, respectively. The words Obvious, Mixed, and Hard refer to the level of diffi-
culty for a human to perceive the attacks.
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5 Conclusion

In this paper, we extensively tested the vulnerability of the two state-of-the-art
deep classification networks against ten different adversarial attacks on chest
X-ray images. We found that the single pixel attack completely failed for gray-
level X-ray chest images. We also showed that the pooling operation can make
a considerable difference for some attacks, even leading to a complete failure of
the attack for a particular class. We also demonstrated that the crafted adver-
sarial images with some of the attacks, e.g. Gaussian blur and contrast reduction
methods, can be simply detected with the naked eye. Finally, we showed that
the gradient based attacks applied to the chest X-ray images are the most suc-
cessful in terms of fulling both machine and human. Although both networks,
Inception-ResNet-v2 and Nasnet-Large, failed against gradient-based attacks, in
general, the latter (with average pooling) was more resilient to decision and score
based attacks.

Acknowledgments. We thank NVIDIA Corporation for GPU donation and MITACS
Globalink for funding.
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Abstract. Automated dermoscopic image analysis has witnessed rapid
growth in diagnostic performance. Yet adoption faces resistance, in part,
because no evidence is provided to support decisions. In this work, an
approach for evidence-based classification is presented. A feature embed-
ding is learned with CNNs, triplet-loss, and global average pooling, and
used to classify via kNN search. Evidence is provided as both the discov-
ered neighbors, as well as localized image regions most relevant to mea-
suring distance between query and neighbors. To ensure that results are
relevant in terms of both label accuracy and human visual similarity for
any skill level, a novel hierarchical triplet logic is implemented to jointly
learn an embedding according to disease labels and non-expert similarity.
Results are improved over baselines trained on disease labels alone, as
well as standard multiclass loss. Quantitative relevance of results, accord-
ing to non-expert similarity, as well as localized image regions, are also
significantly improved.

Keywords: Deep learning · Evidence · Explainable · Interpretable
Triplet-loss · Global average pooling · Weighted activation maps
Dermoscopy · Melanoma

1 Introduction

In the past decade, advancement in computer vision techniques has been facili-
tated by both large-scale datasets and deep learning approaches. Now this trend
is influencing dermoscopic image analysis, where the International Skin Imag-
ing Collaboration (ISIC) has organized a large public repository of high qual-
ity annotated images, referred to as the ISIC Archive (http://isic-archive.com).
From this repository, snapshots of the dataset have been used to host two con-
secutive years of benchmark challenges [1,2], which have increased interest in the
computer vision community [2–6], and supported the development of methods
that surpassed the diagnostic performance of expert clinicians [2–4]. However,
c© Springer Nature Switzerland AG 2018
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despite these advancements, deployment to clinical practice remains problem-
atic, in part, because most systems lack evidence for predictions that can be
interpreted by users of varying skill.

Recent works have attempted to provide various forms of evidence for deci-
sions. Methods to visualize feature maps in neural networks were introduced
in 2015 [7], facilitating better understanding of the behavior of networks, but
not justifying predictions made on specific image inputs. Global average pooling
approaches have been proposed [8], which get closer to justifying decisions on
specific image inputs by indicating importance of image regions to those deci-
sions, but fail to provide specific evidence behind the classifications.

An extensive body of prior work around content-based image retrieval
(CBIR) is perhaps the most relevant toward providing classification decisions
with evidence [9–13]. Early approaches relied on low-level features and bag-of-
visual words, [9–11], but suffered from the “semantic gap”: feature similarity did
not necessarily correlate to label similarity. Later approaches have used deep neu-
ral networks to learn an embedding for search, reducing semantic gap issues [13].
However, such methods have still suffered from a “user-gap”: what an embed-
ding learns to consider as similar from disease point-of-view does not necessarily
correlate with human measures of similarity. In addition, users cannot determine
what spatial regions of images contributed most to distance measures.

Specific to the domain of dermoscopic image analysis, one work proposed to
learn and localize clinically discriminative patterns in images [5]; however, this
output can only be verified by experts who know how to identify the patterns.
In addition, classifier decision localization has been proposed for multimodal
systems [14]; however, localization information alone isn’t sufficient as evidence
for classification decisions.

In this work, a solution for a Collaborative Human-AI (CHAI) dermoscopic
image analysis system is presented. In order to facilitate interpretability of evi-
dence by clinical staff of any skill level, this approach (1) introduces a novel
hierarchical triplet loss to learn an embedding for k-nearest neighbor search,
optimized jointly from disease labels as well as non-expert human similarity,
and (2) provides localization information in the form of query-result activation
map pairs, which designate regions in query and result images used to measure
distance between the two. Experiments demonstrate that the proposed approach
improves classification performance in comparison to models trained on disease
labels alone, as well as models trained with classification loss. The relevancy of
results, according to non-expert similarity, are also significantly improved.

2 Methods

2.1 Triplet-Loss with Global Average Pooling

The proposed embedding framework is displayed in Fig. 1a. A triplet loss struc-
ture [15] is combined with penultimate global average pooling layers [8] to learn a
discriminative feature embedding that supports activation localization. AlexNet,
including up to the “conv5” layer, is used as the CNN.
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Fig. 1. (a) Proposed triplet loss framework with global average pooling (GAP) archi-
tecture. (b) Top: Visual example of proposed hierarchical annotation groups. The first
level grouping is by disease label (D1-2), and the second level by human visual similarity
(G1-4). Bottom: Example triplet logic is shown as pairing between groups.

In order to train, 3 deep neural networks with shared weights across 3 input
images (xa, xb, xc) produce feature embeddings (f(xa), f(xb), f(xc)). The fol-
lowing objective function over those embeddings provides the gradient for back-
propagation:

L = max

[
0, l + D(f(xa), f(xb)) − 1

2
(D(f(xa), f(xc)) + D(f(xb), f(xc)))

]
(1)

where D() is a distance metric (squared Euclidean distance), l is a constant
representing the margin (set to 1), xa and xb are considered similar inputs, and
xc is a dissimilar input.

The feature embedding is comprised of a global average pooling (GAP) layer
to support generation of a query-result activation map pair, which highlights
regions of pairs of images that contributed most toward the distance measure
between them. This is done by combining the feature layer activation maps prior
to global average pooling into a single grayscale image, weighted by the squared
differences between two image feature embeddings:

Aq(i, j) =
d∑

z=0

gz(xq, i, j)) · (fz(xq) − fz(xr))2 (2)

where Aq(i, j) is the query activation map (QAM), gz(x, i, j) is the zth filter
bank before global average pooling, d is the dimensionality of the filter bank, xq

is the query image, xr is a search result image, and:

fz(x) =
1
n2

n∑
i=0

n∑
j=0

gz(x, i, j) (3)
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Fig. 2. Example groups by disease category from the ISIC database (left), by non-
expert similarity disregarding disease diagnosis (center), and by non-expert similarity
constrained within disease groups (right).

is the zth feature embedding element. The result activation map (RAM) Ar

in the query-result pair is likewise computed as in Eq. 2, where gz(xq, i, j) is
replaced with gz(xr, i, j).

2.2 Hierarchical Triplet Selection Logic

An example of the hierarchical triplet selection logic is shown in Fig. 1b. Given
visually similar groups annotated under disease labels, a hierarchical selection
process pairs images as similar if they are siblings within the same group under
a disease parent. Dissimilar images include images from other disease states, but
exclude cousin images (images within the same disease, but different similarity
group). A non-hierarchical selection process takes dissimilar images from any
other group, including cousins.

2.3 Experimental Design

The 2017 International Skin Imaging Collaboration (ISIC) challenge on Skin
Lesion Analysis Toward Melanoma Detection [1] dataset is used for experimen-
tation. This is a public dataset consisting of 2000 training dermoscopic images
and 600 test images. Experiments on this data compare between the following 6
feature embeddings for kNN classification:

Baseline: The first is the 4096 dimensional fc6 feature embedding layer of the
AlexNet architecture trained on the CASIA-WebFace dataset, described in prior
work [15]. This is used as the baseline as it is one of the only human-skin focused
pre-trained networks currently available.

BaselineFT: Baseline 4096 is fine-tuned for disease labels using standard multi-
class accuracy loss. This method represents one of the most common approaches
for generating embeddings for KNN classification in practice.

Disease: This is a 1024 dimensional CHAI feature embedding, learned from
disease labels on the training data partition of the ISIC dataset, fine-tuned from
the baseline.
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Fig. 3. Example search results across systems, displayed according to similarity rank,
with rank 1 being the most similar image in the training dataset. Red borders signify
instances of melanoma. (Color figure online)

Joint: This is a CHAI feature embedding jointly fine-tuned from baseline using
disease labels, as well as non-expert human similarity groupings, consisting of
1700 images pulled from the ISIC Archive (excluding test images), annotated
into 37 distinct groups. The annotator was not given disease labels, and thus
may mix diseases within groups. Example groups are shown in Fig. 2.

Hierarchical: This is a CHAI feature embedding fine-tuned from the disease
model using human similarity groups that are dependent on disease labels. All
2000 images and 600 test images were annotated from the 2017 ISIC challenge
dataset, partitioned into 20 groups of similar images under melanoma, 12 groups
under seborrheic keratosis, and 15 groups under benign nevus, according to a
non-expert human user. Because this type of data is difficult to annotate, only
1000 training images were used for fine-tuning. The remainder of the data was
used for evaluation. Examples of these groups are shown in Fig. 2. Triplets were
selected based on hierarchical logic.

Non-hierarchical: To isolate the effects of hierarchical logic, and disease labels
being provided to the annotator, the hierarchical groups are used to create
triplets using non-hierarchical logic: dissimilar images are selected from any other
group, including cousins.

Most learning parameters are kept consistent with prior art [15], including
the activation map feature dimensionality of 1024 [8], batch size 128, momentum
of 0.9, “step” learning rate policy, learning rate for transferred weights (0.00001),
and learning rate for randomly initialized GAP layer (0.01). For BaselineFT, a
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Table 1. Melanoma Classification AUC for each method and number of neighbors
(k), followed by number of results matching human similarity relevancy (REL), and
Jaccard (JA) of QAM against segmentation ground truth.

Baseline BaselineFT Disease Joint Non-hierarchical Hierarchical

AUC k3 0.663 0.700 0.734 0.704 0.713 0.729

AUC k5 0.675 0.714 0.744 0.738 0.743 0.756

AUC k10 0.681 0.709 0.757 0.754 0.749 0.774

AUC k20 0.712 0.745 0.775 0.752 0.769 0.783

AUC k40 0.691 0.742 0.776 0.760 0.776 0.786

REL k3 0.942 1.005 0.865 1.048 1.212 1.125

REL k5 1.505 1.608 1.412 1.678 1.958 1.872

REL k10 2.875 3.027 2.632 3.147 3.793 3.658

REL k20 5.470 5.772 4.903 6.067 7.300 6.968

REL k40 10.283 10.703 9.125 11.507 13.958 13.333

JA NA NA 0.176 0.201 0.193 0.208

learning rate of 0.01 was used for fc8, 0.001 for fc7 and fc6, and 0.00001 for earlier
layers. For all triplet experiments, 150,000 triplets were randomly generated for
training, and 50,000 triplets for validation.

The area under receiver operating characteristic (ROC) curve (AUC) is used
to measure melanoma classification performance on the dataset, according to
average vote among returned nearest neighbors. The hierarchical similarity anno-
tations were used to measure the average number of results matching non-expert
human relevancy (REL) across all experiments. Finally, the quality of query acti-
vation maps are quantitatively measured by comparing the maps against ground
truth segmentation according to Jaccard (JA).

3 Results

Table 1 shows the measured AUC for each model type and variable number
of neighbors (k), the number of results matching non-expert human similarity
relevance (REL), and the Jaccard of the query activation maps as judged against
ground truth segmentations. For comparison, standard classification output from
multi-class loss used to train BaselineFT produces an AUC of 0.772. The top
AUC measured for the challenge was 0.874 [5].

For k = 3, Disease achieved the highest AUC. Surprisingly, at k = 20, 40,
Disease outperforms the classification output of BaselineFT (0.772 AUC). For
all other values of k, the Hierarchical triplet loss embedding achieved the highest
performance. At k = 40, these performance numbers were comparable with pre-
dictive systems submitted to the challenge (rank 11 out of 23 submissions). The
Hierarchical triplet loss also achieved the second highest number of human simi-
larity relevant results. While the Non-Hierarchical method achieved the highest
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Fig. 4. Example query-result activation pairs for search results. In each group of 4
images: Top-Left: query image. Top-Right: query activation map. Bottom-Left: search
result. Bottom-Right: search result activation map.

degree of human similarity relevant results, this came at the marginal cost of
some classification performance in comparison to Hierarchical triplets. However,
Non-Hierarchical has still matched the classification performance of Disease,
and outperformed the standard multiclass loss of BaselineFT. Joint also showed
improvements to relevance of human similarity in comparison to Disease, but
suffered a more harsh penalty to classification performance in comparison to
Hierarchical and Non-Hierarchical.

Representative search results can be inspected in Fig. 3. One can observe here
how Disease, trained directly on triplets from disease labels, does not translate
into the most “relevant” results by human measure: clearly, rank 3 has returned
a hypo-pigmented lesion for a pigmented lesion query. In contrast, Joint, while
maintaining a robust improvement in AUC measures over Baseline and Base-
lineFT, has additionally learned to balance disease similarity with a more human
measure of similarity. Hierarchical has both managed to improve classification
performance and human similarity.

Finally, example query-result activation map pairs are shown in Fig. 4. Inter-
estingly, Disease learned to examine a broad image extent during comparisons
(even potentially irrelevant areas of images), whereas for the models trained
with human measures of similarity, the systems have learned to focus more to
the localized lesion area. This is confirmed in the over 10% quantitative improve-
ment in Jaccard index comparing to ground truth lesion segmentations, as shown
in Table 1.

4 Conclusion

In conclusion, “CHAI”, a Collaborative Human-AI system to perform compre-
hensive evidence-based melanoma classification in dermoscopic images has been
presented. Evidence is provided as both the nearest neighbors used for classifi-
cation, as well as query-result activation map pairs that visualize regions of the
images contributing most toward a distance computation. Using a novel hier-
archical triplet loss, non-expert human similarity is used to tailor the feature
embedding to more closely approximate human judgments of relevance, while
simultaneously improving classification performance and the quality of the acti-
vation maps. Future work must be carried-out to determine (1) whether the
method has the potential to improve adoption, (2) how to improve classification
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performance to better compete with other black-box systems, and (3) whether
passive user interaction with a deployed system can be used for training (for
example, from a user clicking on a specific evidence result) to improve classifi-
cation performance and relevance over time with continued use.
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Abstract. Glioblastoma Multiforme is a high grade, very aggressive,
brain tumor, with patients having a poor prognosis. Lower grade gliomas
are less aggressive, but they can evolve into higher grade tumors over
time. Patient management and treatment can vary considerably with
tumor grade, ranging from tumor resection followed by a combined radio-
and chemotherapy to a “wait and see” approach. Hence, tumor grad-
ing is important for adequate treatment planning and monitoring. The
gold standard for tumor grading relies on histopathological diagnosis
of biopsy specimens. However, this procedure is invasive, time consum-
ing, and prone to sampling error. Given these disadvantages, automatic
tumor grading from widely used MRI protocols would be clinically impor-
tant, as a way to expedite treatment planning and assessment of tumor
evolution. In this paper, we propose to use Convolutional Neural Net-
works for predicting tumor grade directly from imaging data. In this way,
we overcome the need for expert annotations of regions of interest. We
evaluate two prediction approaches: from the whole brain, and from an
automatically defined tumor region. Finally, we employ interpretability
methodologies as a quality assurance stage to check if the method is
using image regions indicative of tumor grade for classification.

1 Introduction

Gliomas are the most common primary brain tumors, being graded according to
their malignancy. The most aggressive one is Glioblastoma Multiforme (GBM).
These high grade gliomas (HGG) proliferate and infiltrate the surrounding tis-
sues at a very fast pace. In fact, patients have a very short life expectancy, even
if under treatment [16]. Lower grade gliomas (LGG) are less aggressive, and
patients have a better prognosis. Nevertheless, LGG can evolve into HGG, hence,
c© Springer Nature Switzerland AG 2018
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follow-up is required [4]. Glioma grading is crucial when deciding the treatment
procedure, which can range from surgery followed by chemo- and radiotherapy,
to a “wait and see” approach. The latter avoids invasive procedures and is more
common with LGG [4,8].

Histopathological diagnosis of biopsy specimens is the gold standard for
glioma grading. However, it is time consuming, invasive, and prone to sampling
error [17]. MRI is the standard imaging technique for brain tumor diagnosis
in clinical practice. In general, attributes of HGG in MRI include the contrast
enhancing tumor tissue, necrotic core, edema, non-enhancing tumor, and mass
effect. LGG are usually more diffuse, non-enhancing, smaller, and cause less mass
effect. Nonetheless, some HGG may have some attributes of LGG, and vice-versa
[4,13,16]. Tumor grading from imaging data would be useful in clinical practice,
since it would avoid the sampling error, and expedite treatment planning by
anticipating the histopathological results [17]. Additionally, it would avoid the
invasive biopsy procedures during follow-up. Studies suggest that perfusion MRI
is more informative for glioma grading than structural MRI sequences [17]. Still,
perfusion MRI is not widely acquired in clinical practice [3]; in fact, perfusion
MRI is seen as a plus, while structural MRI is part of the current consensus rec-
ommendations for standardized brain tumor imaging [2]. Computer-based tumor
grading from MRI is relatively unexplored. Zacharaki et al. [17] predict the grade
of gliomas from MRI images using a Support Vector Machine classifier. The
method requires radiologists to manually define four regions of interest (ROI)
in the tumor. Khawaldeh et al. [6] use convolutional neural networks (CNN) in
a semi-automated approach where the tumor grade is predicted from 2D slices
selected by radiologists, which may result in multiple and possibly ambiguous
predictions for the same patient.

CNNs offer the potential for learning tumor grading directly from imaging
data without human-defined ROIs. However, these methods may fall into over-
fitting, and learn spurious patterns in the data. Hence, a quality assurance stage
before deployment of these methods is desirable. As shown by Pereira et al. [9],
interpretability of machine learning methods, through explanations of their pre-
dictions, allows one to assess which parts of the MRI image are more important
for a prediction. In this way, one can evaluate if a model is trustworthy. More-
over, explanations may provide hints on undesirable behaviors, and allow one to
devise improving strategies. The contributions in this paper are the following.
(i) We propose to use 3D CNN for automatic glioma grading from conventional
multisequence MRI, either from the whole brain, or an automatically defined
tumor ROI. (ii) We assess the predictions by means of visual explanations. In
this way, we were able to assess the predictions’ trustworthiness and, as shown
in the experiments, detect a problem in pre-processing. Finally, (iii) we validate
our approach on a publicly available database, making it more easily comparable
with future proposals.
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2 Methods

The proposed grading system has two main stages: ROI extraction, and glioma
grade prediction. Additionally, we have an interpretation of predictions stage
that serves as prediction quality assessment, and we use it for two purposes.
First, to evaluate if regions indicative of tumor grade are the most relevant ones
for classification. Second, to identify possible problems with the method (e.g.
focus on spurious patterns) and devise strategies to obtain better classifiers.

2.1 Extraction of the Region of Interest

We consider and evaluate glioma grading from two ROI: the whole brain, and
the tumor region. First, we automatically identify these regions in the image,
and define a bounding box around them. Second, these volumes are extracted,
resized to a fixed size, and fed into the tumor grade classification CNN. We note
that an independent CNN is trained for each of the ROI. Regarding the whole
brain region, in a skull-stripped image a bounding box can be easily defined from
the brain mask.

For the tumor ROI, a bounding box is defined after segmenting the whole
tumor. In order to account for segmentation mistakes, we give a margin of 10
voxels in each side of the bounding box, while maintaining the aspect ratio of the
tumor. Segmentation of the whole tumor from multisequence MRI is achieved
with a 3D U-net-inspired [10] fully convolutional network; the network architec-
ture is depicted in Fig. 1 (top). A 3D patch is extracted from each MRI sequence,
stacked as channels, and fed into the network. The encoder path is responsible
for learning the higher order features. Max-pooling layers increase the field of
view, but downsample the feature maps. Features computed by higher (deeper)
convolutional layers are more abstract. However, these features lack fine details
that are important for segmentation. Since the feature maps are downsampled,
we need to map the lower resolution feature maps back to the input patch res-
olution. This is done by upsampling. As we upsample feature maps, we sum
them with the feature maps of equivalent size of lower layers of the encoder
path. Further convolutional layers fuse the lower and higher level features. We
also employ residual blocks with pre-activations [5] that make training of deep
networks easier. The last layer is a 1 × 1 × 1 convolutional layer, with sofmax
activation.

2.2 Glioma Grading CNN

We train a glioma grading CNN with similar architecture for each ROI (Fig. 1,
middle). The ROI is extracted from each MRI sequence and resized to 963, before
feeding it to the CNN. In these architectures, we also employ residual convolu-
tional blocks with pre-activations [5], which contribute for better learning. After
the convolutional feature computation layers, we use Global Average Pooling to
summarize each feature map. Then, a cascade of 1×1×1 convolutional layers act
as fully-connected layers. Finally, the last layer outputs a probabilistic prediction
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Fig. 1. Architectures of the CNNs used for glioma segmentation (top), and tumor
grade classification (middle). Description of each block can be found in the bottom.
BN stands for batch normalization, SD for spatial dropout [14], and Drop. for dropout.

of the tumor grade. Given the amount of available data, we use aggressive on-
the-fly data augmentation during training. The data augmentation procedures
were: sagittal flipping, rotation of [−20◦, 20◦], 90◦ rotation, and exponential
intensity transformation with random γ ∈ [0.85, 1.15].

2.3 Grade Prediction Interpretability

To perform quality assessment of tumor grade prediction, we use the inter-
pretability methods Guided Backpropagation (GBP) [12] and Gradient-weighted
Class Activation Mapping (GradCAM) [11], after extending them to 3D. This
is done at prediction time.

Guided Backpropagation [12] is based on the idea that the gradient with
respect to the input image, visualized in the image space, is informative of which
parts of the image are more discriminative for the neurons activation. It starts
by computing a forward pass through the network layers. During backpropa-
gation, the true gradient is not calculated. Instead, a variation that results in
better explanations of ReLU activations is used. This is performed by zeroing
both the gradients in the units with 0 value after ReLU activation, and the neg-
ative gradients. In this way, the backward signals of neurons that contribute for
decreased activation are discarded. Although visually discriminative, GBP has
the disadvantage of not being discriminative in relation to the predicted class
(i.e. it can highlight areas of interest to the network but not to which class).

In contrast to GBP, GradCAM is class discriminative, but the explanation
maps may have lower resolution. GradCAM tries to explain how the feature
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maps F of a layer l support the class prediction yc. To that end, the gradient
of the unit predicting the class with respect to the feature maps of the layer
of interest ∂yc

∂F l is backpropagated. Then, the weight αl of each feature map for
the class prediction is computed as the global average pooling of the gradients.
Being i, j, k the indices of each of the N elements of the gradient, the weights are
given by αl

c = 1
N

∑
i

∑
j

∑
k

∂yc

∂F l
ijk

. Finally, the explanation map Ec for the class

is generated by the sum of F l weighted by αl
c, as Ec = max

(∑
l αl

cF l, 0
)
. The

max (·, 0) function discards information contributing for decreased activation for
the class. The explanation map has the same resolution as the feature maps of
interest, thus, interpolation is typically needed to map results to the original
image space.

3 Experimental Setup

The proposed methods were evaluated using BRATS 2017 Training set [1,8],
which has the particularity that subjects are organized according to the tumor
grade into HGG (GBM) and LGG. There are 285 pre-operative acquisitions:
210 HGG, and 75 LGG. For each subject there are 4 MRI sequences available
with 1 mm isotropic resolution: T1, post-contrast T1 (T1c), T2, and FLAIR.
All sequences are already aligned, and skull stripped. We randomly divided the
285 subjects into 60% training, 20% validation, and 20% testing1. The manual
segmentations of the different tumor compartments were merged into a single
label to train the whole tumor segmentation network.

Two pre-processing steps are applied: bias field correction [15], and stan-
dardization of the image intensities inside the brain mask to zero mean and unit
variance. All networks were trained with the Adam optimizer and crossentropy
loss. For the whole tumor segmentation, learning rate (LR) was set to 5 × 10−5,
spatial dropout probability to 0.05, and weight decay to 1×10−6. Regarding the
CNNs for tumor grade prediction, the hyperparameters of the network were: LR
– 1×10−4, dropout probability –0.4, and weight decay –1×10−4. We used convo-
lutional operations without padding, therefore, in skip connections, we cropped
the feature maps to the same size of the smaller ones, before summing. During
training, the bounding box of tumor ROI was defined using the manual segmen-
tations. The grading CNNs were implemented with PyTorch and experiments
were conducted using a NVIDIA GeForce Titan Black GPU.

For evaluation of tumor grading, we computed precision, recall, and f1-score.
Since these metrics are influenced by class imbalance, we provide them for both
LGG and HGG. Additionally, we compute the accuracy (acc) and the area under
the receiver operating characteristic curve (ROC-AUC), which provide insights
on the general ability of the classifier to distinguish between the classes.

1 Grades’ proportions were maintained in each set. The subjects id in each set are
available online: https://github.com/sergiormpereira/brain tumor grading.

https://github.com/sergiormpereira/brain_tumor_grading
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4 Results and Discussion

Table 1 shows quantitative results for tumor grade prediction from each of the
ROI (whole brain, and tumor). We note that it is expected to achieve lower f1-
score, precision, and recall for LGG, since it is the minority class. Before feeding
the images to the CNNs, we standardize the image intensities with zero mean
and unit variance. Common approaches in the computer vision domain compute
these statistics from the whole image. However, in MRI images, the background
region is usually filled with 0 intensity values after skull stripping. When we
standardize the intensities in the whole image, we achieve acc. of 0.895 (whole
brain) and 0.877 (tumor ROI). However, from the GBP maps (Fig. 2), we observe
that the CNN considers the border of brain as discriminative, which for our data
should not be a predictor of tumor grade. This is probably due to high gradients,
since background has negative values, after standardization. Hence, we changed
our pre-processing strategy by standardizing the image intensities inside the
brain mask, only. After this approach, we observed that, mostly, the CNN does
not consider the brain border as relevant for tumor grading. More interestingly,
this simple change considerably boosted the metrics of tumor grade prediction
from the tumor ROI (Table 1). For instance, acc. and ROC-AUC improved from
0.877 and 0.8841 to 0.9298 and 0.9841, respectively. This shows an advantage of
the interpretability stage, since it allowed us to identify a systematic problem
and correct it; we note that the border problem would otherwise gone unnoticed,
as results were already competitive.

Focusing on the variant with the standardization in the brain mask, we
observe in Table 1 that grade prediction from the tumor ROI (acc – 0.9298,
ROC-AUC – 0.9841) achieves better scores than grade prediction from the whole
image (acc. – 0.895, ROC-AUC – 0.8913). Despite this, we note that tumor grade
prediction from the whole brain achieves an acc. of 0.895, and f1-score of 0.9286,
precision of 0.9286, and recall of 0.9286 for HGG. Figure 3 shows interpretability
maps for some examples. We note that GradCAM provides maps with the same
resolution as the feature maps of the layer of interest. We compute GradCAM
maps with the output of the third (Res3) and fourth (Res4) residual blocks
(Fig. 1). Figure 3(a) shows interpretability maps for grade predictions from the
whole brain. In the first row, the CNN was able to correctly grade it as HGG.
From the two GradCAM maps we observe that the region of tumor was consid-
ered the most discriminative. The GBP shows focus on the ventricles, but, more
interestingly, on both tumor lesions. In the second row, a HGG was mistakenly
classified as LGG. The GradCAM maps are dispersed across the brain, instead
of focusing in the tumor. We note that GradCAM is class discriminative, so,
we show maps for LGG class. The GBP map concentrates in the ventricles. We
observe that the CNN for tumor grading from the whole image focus on the
ventricles frequently. We know that mass effect is a feature of HGG, and the
ventricles are largely affected by it [13]. Hence, the CNN may have learned that
it is a predictor of malignancy. Actually, the subventricular zone is thought to
be the origin of glioma cells, and nearby brain tumors are associated with worse
prognosis [7]. The focus on ventricles may explain why the example in the second
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Table 1. Tumor grade results for LGG and HGG in the two ROI: whole brain, and
tumor. We show results for each variant of the image intensities standardization pro-
cedure.

Region Standardization Grade F1-score Precision Recall Acc ROC-AUC

Whole brain Whole image LGG 0.8000 0.8000 0.8000 0.8950 0.8857

HGG 0.929 0.929 0.929

Brain mask LGG 0.8000 0.8000 0.8000 0.8950 0.8913

HGG 0.9286 0.9286 0.9286

Tumor ROI Whole image LGG 0.7879 0.7222 0.8667 0.8770 0.8841

HGG 0.9136 0.9487 0.881

Brain mask LGG 0.8667 0.8667 0.8667 0.9298 0.9841

HGG 0.9524 0.9524 0.9524

Fig. 2. Example of the effect of intensity standardization on the GBP maps. Warmer
colors represent stronger responses. From left to right: T1c, T2, GBP map on image
standardized over the whole image, and GBP map on image standardized in the brain
region only.

row is misclassified as LGG, since its effect on ventricles is smaller than the first
row example. Figure 3(b) shows examples of tumor prediction from the tumor
ROI. In the first row, a HGG is correctly classified. From the GradCAM maps,
we observe that the CNN correctly locates the tumor. Additionally, the Res3
and GBP maps appear to focus on the transition from necrosis to enhancing
tumor and edema. This is in accordance with domain knowledge, as such an
enhancing rim is characteristic for HGG. The second row of Fig. 3(b) is a LGG
misclassified as HGG. In this case, it is a LGG with enhancing tumor. For this
reason, the GradCAM maps for HGG and the GBP map seem to indicate that
the enhancing tissues were responsible for the prediction, as it is a feature of
HGG. It is possible that this is an evolving LGG that requires monitoring.

From the previous discussion, we see that GradCAM and GBP maps pro-
vide insights into the factors that contribute for a classification. So, we can see
this interpretability stage as a quality assurance that enables us to check if the
generated explanations are according to clinical knowledge. For instance, in the
first row of Fig. 3(a) the explanations are focused on the tumor region. However,
in the second row, the interpretability maps have high responses in regions that
do not contain tumor. Thus, it may be a sign of an unreliable prediction, since
it was based on regions of the image that are probably irrelevant. Additionally,
the border effect problem, detected from the GBP maps, was a spurious pattern
learned by the CNN.
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T1c T2 GBP GradCAM – Res3 GradCAM – Res4

(a)

T1c T2 GBP GradCAM – Res3 GradCAM – Res4

(b)

Fig. 3. Interpretability maps for grade predictions from (a) whole brain, and (b) tumor
ROI. Warmer colors represent larger responses. In (a) the arrows indicate the tumor
lesions; on top is a correctly classified as HGG, while example in the bottom is a HGG
misclassified as LGG. In (b), the top example is a correctly classified HGG, while in
the bottom a LGG is misclassified as HGG.

5 Conclusion

Tumor grading from imaging data offers a fast and non-invasive approach for
anticipating tumor grading, compared with histopathological diagnosis of biopsy
specimens. We propose CNN for automatic brain tumor grading from MRI
images, without the need of expert ROI definition. When we predict the grade
from the whole brain, we achieve acc. of 0.895, while the prediction from the
tumor ROI reaches an acc. of 0.9298. Therefore, our results show that grading is
possible from both ROIs, although the latter achieves substantially better scores.
Additionally, we employed interpretability approaches for prediction assessment,
which allowed us to improve the pre-processing stage. Moreover, it may help in
assessing if a a decision is trustworthy by observing if it was actually based on
the tumor region, or regions that are coherent with clinical knowledge.
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Abstract. Because of their state-of-the-art performance in computer
vision, CNNs are becoming increasingly popular in a variety of fields,
including medicine. However, as neural networks are black box function
approximators, it is difficult, if not impossible, for a medical expert to
reason about their output. This could potentially result in the expert
distrusting the network when he or she does not agree with its output.
In such a case, explaining why the CNN makes a certain decision becomes
valuable information. In this paper, we try to open the black box of the
CNN by inspecting and visualizing the learned feature maps, in the field
of dermatology. We show that, to some extent, CNNs focus on features
similar to those used by dermatologists to make a diagnosis. However,
more research is required for fully explaining their output.

Keywords: Deep learning · Visualization · Dermatology
Skin lesions

1 Introduction

Over the past few years, deep neural network architectures—convolutional archi-
tectures in particular—have time and again beaten state-of-the-art on large-scale
image recognition tasks [6,9,14,16]. As a result, the application of convolutional
neural networks (CNN) has become increasingly popular in a variety of fields. In
medicine, deep learning is used as a tool to assist professionals of various subfields
in their diagnoses, such as histopathology [11], oncology [1,4,17], pulmonology
[7,15], etc1. In the subfield of dermatology, CNNs have been applied to the prob-
lem of skin lesion classification, based on dermoscopy images, where they set a
new state-of-the-art benchmark, matching—or even surpassing—medical expert
performance [2,3,5].

1 We refer the reader to [10] for an in-depth survey on deep learning in medical analysis.

c© Springer Nature Switzerland AG 2018
D. Stoyanov et al. (Eds.): MLCN 2018/DLF 2018/iMIMIC 2018, LNCS 11038, pp. 115–123, 2018.
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The challenge remains, however, to understand the reasoning behind the
decisions made by these networks, since they are essentially black box function
approximators. This poses a problem when a neural network outputs a diagnosis,
different from the diagnosis made by the medical expert, as there is no human
interpretable reasoning behind the neural networks’ diagnosis. In such a case,
visualizations of the network could serve as a reasoning tool to the expert.

In this paper, we train a CNN for binary classification on a skin lesion dataset,
and inspect the features learned by the network, by visualizing its feature maps.
In the next section, we first give an overview of the different visualization strate-
gies for inspecting CNNs. Section 3 describes our CNN architecture and training
procedure. In Sect. 4 we present and discuss the learned CNN features and we
conclude the paper in Sect. 5.

2 Related Work

In [18], the authors propose a visualization technique to give some insight into
the function of the intermediate feature maps of a trained CNN, by attaching a
deconvolutional network to each of its convolutional layers. While a CNN maps
the input from the image space to a feature space, a deconvolutional network
does the opposite (mapping from a feature space back to the image space), by
reversing its operations. This is done by a series of unpooling, rectifying and
filtering operations. The authors use a deconvolutional network to visualize the
features that result in the highest activations in a given feature map. Further-
more, they evaluate the sensitivity of a feature map, to the occlusion of a certain
part of the input image, and the effect it has on the class score for the correct
class.

Two other visualization techniques are presented in [13] that are based on
optimization. The first technique iteratively generates a canonical image repre-
senting a class of interest. To generate this image, the authors start from a zero
image and pass it through a trained CNN. Optimization is done by means of the
back-propagation algorithm, by calculating the derivative of the class score, with
respect to the image, while keeping the parameters of the network fixed. The
second technique aims to visualize the image-specific class saliency. For a given
input image and a class of interest, they calculate the derivative of the class score,
with respect to the input image. The per-pixel derivatives of the input image
give an estimate of the importance of these pixels regarding the class score. More
specifically, the magnitude of the derivate indicates which pixels affect the class
score the most when they are changed.

Concluding, typical visualization techniques either generate a single output
image, in case of the feature visualization and the generation of the class repre-
sentative, or function at the pixel level of the input image, in case of the region
occlusion and the image-specific class saliency visualization. However, dermatol-
ogists typically scan a lesion for the presence of different individual features, such
as asymmetry, border, color and structures, i.e. the so-called ABCD-score [12].
Therefore, we inspect and visualize the intermediary feature maps of the CNN
on a per-image basis, aiming to provide more familiar insights to dermatologists.
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3 Architecture and Training

A common approach is to use a CNN pre-trained on a large image database such
as ImageNet and then fine-tune this on the target dataset [5]. The drawback is
that this CNN will also contain a lot of uninformative filters (e.g. for classifying
cats and dogs) for the domain at hand. Therefore we chose to train a basic CNN
from scratch, but in principle our visualization approach can work for any CNN.

Our CNN consists of 4 convolutional blocks, each formed by 2 convolutional
layers followed by a max pooling operation. The convolutional layers in each
block have a kernel size of 3 × 3, and have respectively 8, 16, 32 and 64 filters.
This is followed by 3 fully connected layers with 2056, 1024 and 64 hidden units.
All layers have rectified linear units (ReLU) as non-linearity.

We use data from the publicly available ISIC Archive2, to compose a training
set of 12,838 dermoscopy images, spread over two classes (11,910 benign lesions,
928 malignant lesions). In a preprocessing step, the images are downscaled to a
resolution of 300 × 300 pixels, and RGB values are normalized between 0 and
1. We augment our training set by taking random crops of 224 × 224 pixels,
and further augment each crop by rotating (angle sampled uniformly between 0
and 2π), randomly flipping horizontally and/or vertically, adjusting brightness
(factor sampled uniformly between −0.5 and 0.5), contrast (factor sampled uni-
formly between −0.7 and 0.7), hue (factor sampled uniformly between −0.02
and 0.02) and saturation (factor sampled uniformly between 0.7 and 1.5).

We have trained the network for 192 epochs, with mini-batches of size 96
and used the Adam algorithm [8] to update the parameters of the network,
with an initial learning rate of 10−4 and an exponential decay rate for the first
and second order momentum of respectively 0.9 and 0.999. We have evaluated
the performance of the resulting CNN on a hold-out test set, comprised of 600
dermoscopy images (483 benign lesions, 117 malignant lesions), achieving an
AUC score of 0.75.

4 Feature Map Visualization

For each feature map of the CNN, we created a visualization by rescaling the fea-
ture map to the input size and overlaying the activations mapped to a transpar-
ent green color (darker green = higher activation). We identify each visualization
by the convolutional layer number (0. . . 7) and filter number. Next we inspected
all visualizations and tried to relate these to typical features dermatologists scan
for. Especially the last two convolutional layers of the CNN (6, 7) give us some
insights into which image regions grasp the attention of the CNN.

2 https://isic-archive.com/.

https://isic-archive.com/
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(a) 7, 28 (b) 7, 32

Fig. 1. Feature maps with high activations on lesion borders, specializing on the border
location. For example, filter (a) activates on the bottom border, while filter (b) activates
on the left border.

(a) 6, 17 (b) 6, 58

Fig. 2. Feature maps with high activations on darker regions within the lesion, indi-
cating a non-uniformity in the color of the lesion.

Borders. Irregularities in the border of a skin lesion could indicate a malignant
lesion. The feature maps shown in Fig. 1 both have high activations on the border
of a skin lesion, but on different parts of the border. The first one (a) detects
the bottom border of a lesion, while the second one (b) detects the left border.



Visualizing Convolutional Neural Networks 119

(a) 6, 44 (b) 7, 33

Fig. 3. Feature maps with high activations on skin types. For example, filter (a) acti-
vates on pale skin, while filter (b) activates on pink skin texture.

Fig. 4. A feature map (7, 8) with high activations on hair-like structures.

Color. The same reasoning tends to apply to the colors inside the lesion. A
lesion that has a uniform color is usually benign, while major irregularities in
color could be a sign of a malignant lesion. The feature maps shown in Fig. 2
have a high activation when a darker region is present in the lesion, implying a
non-uniform color.
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Skin Type. People with a lighter skin are more prone to sunburns, which can
increase the development of malignant lesions on their skin. Therefore, a der-
matologist takes a patient’s skin type into account when examining his or her
lesions. The same goes for the feature maps shown in Fig. 3. The first feature
map (a) has high activations on white-pale skin. The second one (b) has high
activations on a more pinkish skin with vessel-like structures.

Hair. The CNN also learns feature maps that, from a dermatologist viewpoint,
have no impact on the diagnosis. For example, the feature map in Fig. 4 has high
activations on hair-like structures.

Artifacts. We also noticed that some of the feature maps have high activations
on various artifacts in the images. For example, as shown in Fig. 5, some feature
maps have high activations on specular reflections, gel application, or rulers.
This highlights some of the risks when using machine learning techniques, as
this could impose a potential bias to the output of the network, when such
artifacts are prominently present in the training images of a specific class.

A more elaborate overview of the activations of different feature maps on
different images is shown in Fig. 6.

Fig. 5. Feature maps with high activations on various image artifacts. Examples are,
from left to right, specular reflection, gel treatment and rulers. These artifacts could
potentially impose a bias on the output of the CNN.
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malignant benign

original

6, 17

6, 27

6, 38

6, 44

6, 48

6, 58

7, 8

7, 33

7, 28

7, 32

7, 36

7, 44

Fig. 6. An overview of the feature maps.

5 Conclusion

In this paper, we analyzed the features learned by a CNN, trained for skin lesion
classification, in the field of dermatology. By visualizing the feature maps of
the CNN, we see that, indeed, the high-level convolutional layers activate on
similar concepts as used by dermatologists, such as lesion border, darker regions
inside the lesion, surrounding skin, etc. We also found that some feature maps
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activate on various image artifacts, such as specular reflections, gel application,
and rulers. This flags that one should be cautious when constructing a dataset
for training, that such artifacts do not lead to a bias in the machine learning
model.

Although this paper gives some insight in the features learned by the CNN,
this does not yet explain any causal relation between the detected features of the
CNN and its output. Furthermore, going through the feature maps, we did not
find any that precisely highlight many of the other structures that dermatologists
scan for, such as globules, dots, blood vessel structures, etc. We believe more
research is required in this area in order to make CNNs a better decision support
tool for dermatologists.
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Abstract. Explanations for deep neural network predictions in terms of
domain-related concepts can be valuable in medical applications, where
justifications are important for confidence in the decision-making. In this
work, we propose a methodology to exploit continuous concept measures
as Regression Concept Vectors (RCVs) in the activation space of a layer.
The directional derivative of the decision function along the RCVs rep-
resents the network sensitivity to increasing values of a given concept
measure. When applied to breast cancer grading, nuclei texture emerges
as a relevant concept in the detection of tumor tissue in breast lymph
node samples. We evaluate score robustness and consistency by statisti-
cal analysis.

Keywords: Interpretability · Concept vector · Histopathology

1 Introduction

Understanding representations learned by deep neural networks is a main chal-
lenge in medical imaging. Recent work on Testing with Concept Activation
Vectors (TCAV) proposed directional derivatives to quantify the influence of
user-defined concepts on the network output. As a real application example, the
presence of diagnostic concepts such as microaneurysms and aneurysms was used
to explain network predictions for diabetic retinopathy levels [6]. However, diag-
nostic concepts are often continuous measures that might be counter intuitive
to describe by their presence or absence.

Intense research on network interpretability defined the distinction between
global and local interpretability and proposed a taxonomy of desiderata, methods
and evaluation criteria [1,10,12]. The relevance, or saliency, of input factors to
the network decision was proposed in several gradient-based methods [12,14–16].
Outputs of these methods are typically local explanations that are gathered in
attribution maps and overlayed to the original input image. The interpretability
of these approaches, however, was shown to be limited and often inconsistent [7,
13]. Research in the linearity of the latent space showed that linear classifiers
c© Springer Nature Switzerland AG 2018
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can learn meaningful directions. These directions were mapped to semantic word
embeddings in [11] or human-friendly visual concepts in [6]. TCAV computes
the direction representative of a concept as the normal to the hyperplane which
separates a set of concept images from a set of random images. The TCAV score
estimates the influence of the user-defined concept on network decisions [6].

In this paper, we extend TCAV from a classification problem to a regression
problem by computing Regression Concept Vectors (RCVs). Instead of seeking
a discriminator between two concepts (or one concept and random inputs), we
seek the direction of greatest increase of the measures for a single continuous
concept. In particular, we compute RCVs by least squares linear regression of
the concept measures for a set of inputs. We measure the relevance of a concept
with bidirectional relevance scores, Br. The Br scores assume positive values
when increasing values of the concept measures positively affect classification
and negative in the opposite case.

We address breast cancer histopathology as an application for functionally
grounded evaluation. The classification of high-resolution patches as tumorous
and non-tumorous tissue is often used as a first step by state-of-the-art breast
cancer classifiers [3]. Identifying the factors relevant to classification is essen-
tial to improve the physicians’ trust in automated grading. For this reason,
we referred to the Nottingham Histologic Grading system (NHG) [2] to select
nuclear pleomorphism, and especially variations in nuclei size, shape and texture
as concept measures.

The main contributions of this paper are (i) the expression of concept mea-
sures as RCVs; (ii) the development and evaluation of Br scores; (iii) the com-
putation of nuclei pleomorphism relevance for breast cancer.

In the following, we clarify the notations adopted in the paper. We consider
the set {xi, yi}Ni=1 of inputs and ground truth pairs and a deep convolutional neu-
ral network (CNN) for binary classification with prediction output f(xi) ∈ [0, 1].
The input xi is a 224 × 224 × 3 image patch and yi ∈ {0, 1} is the correspond-
ing class label (with y = 1 for the tumor class). The disjoint set {xj , cj}Kj=1 is
representative of a concept C, with measures cj ∈ IR for each image sample xj .
In the activation space, the output of layer l for input xi is Φl(xi) and the RCV
for C is −→v l

C (we will drop superscript l to simplify the notation). An overview
of the method is presented in Fig. 1.

2 Methods

2.1 Correlation to Network Prediction

As a prior analysis, we compute the Pearson product-moment correlation coeffi-
cient ρ between cj and f(xj) for j = 1, ..,K. If cj is not relevant for f(xj), their
correlation should be low. In this case, Φl(xj) should not encode information
about cj and it should be unlikely to find a good linear regression. A high cor-
relation could instead suggest a positive (if ρ > 0) or negative (ρ < 0) influence
of the concept on the prediction.
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Fig. 1. Method overview. I. Network training. The last node of the CNN outputs a
logistic regression function. The class Tumor is assigned to the input patch when
f(xi) > 0.5. II. Linear Regression. We compute average measurements of morphological
and texture features from each xj . Linear regression cj = −→v C ·Φl(xj) is solved on each
(Φl(xj), cj) at layer l. III. Sensitivity. Sensitivity is computed for the xi as the derivative
of f(xi) along −→v C.

2.2 Regression Concept Vectors

We extract and flatten the Φl(xj) for each xj . The RCV −→v C is the vector in
the space of the activation that best fits the direction of the strongest increase
of the concept measures. This direction can be computed as the least squares
linear regression fit of {Φl(xj), cj}Kj=1 (see Fig. 1). In the NHG, for example,
larger nuclei are assigned higher grades by pathologists. If we take nuclei area
as a concept, we seek the vector in the activation space that points towards
representations of larger nuclei.

2.3 Sensitivity to RCV

For each testing pair (xi, yi) we compute the sensitivity score Sl
C,i as the direc-

tional derivative along the direction of the RCV:

Sl
C,i =

∂f(xi)
∂Φl(xi)

· −→v C (1)

Sl
C,i represents the network sensitivity to changes in the input along the direction

of increasing values of the concept measures. When moving along this direction,
f(xi) may either increase, decrease or remain unchanged (Sl

C,i=0). The sign of
Sl
C,i represents the direction of change, while the magnitude of Sl

C,i represents
the rate of change. TCAV computes global explanations from the N sensitivi-
ties although it does not consider their magnitude. Hence, we propose Br as an
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alternative measure. Br scores were formulated by taking into account the prin-
ciples of explanation continuity and selectivity proposed in [12]. For the former,
we consider whether the sensitivity scores are similar for similar data samples.
For the latter, we redistribute the final relevance to concepts with the strongest
impact on the decision function. We define Br scores as the ratio between the
coefficient of determination of the least squares regression, R2, and the coefficient
of variation σ̂/μ̂ of the N sensitivity scores:

Br = R2 ×
(

μ̂

σ̂

)
(2)

R2 ≤ 1 indicates how closely the RCV fits the {Φl(xi), ci}Ni=1. The coefficient of
variation is the standard deviation of the scores over their average, and describes
their relative variation around the mean. For the same value of R2, the Br for
spread scores is lower than for scores that lay closely concentrated near their
sample mean. After computing Br for multiple concepts, we scale the scores to
the range [−1, 1] by dividing by the maximum absolute value.

2.4 Evaluation of the Explanations

The explanations are evaluated on the basis of their statistical significance as
proposed in [6]. We compute TCAV and Br scores for 30 repetitions and perform
a two-tailed t-test with Bonferroni correction (with significance level α = 0.01),
as suggested in [6]. If we can reject the null hypothesis of TCAV of 0.5 for random
scores and Br of 0, we accept the result as statistically significant.

3 Experiments and Results

3.1 Datasets

We trained the network on the challenging Camelyon16 and Camelyon17
datasets1. More than 40,000 patches at the highest resolution level were extracted
from Whole Slide Images (WSIs) with ground truth annotation. To extract con-
cepts, we used the nuclei segmentation data set in [9], for which no labels of
tumorous and non-tumorous regions were available. The dataset contains WSIs
of several organs with more than 21,000 annotated nuclei boundaries. From this
data set, we extracted 300 training patches only from the WSIs of breast tissue.

3.2 Network Architecture and Training

A ResNet101 [5] pretrained on ImageNet was finetuned with binary cross-entropy
loss for classification of tumor and non-tumor patches. For each input, the net-
work outputs its probability to be tumor with a logistic regression function. We
trained for 30 epochs with Nesterov momentum stochastic gradient descent and
1 https://camelyon17.grand-challenge.org/ as of June 2018.

https://camelyon17.grand-challenge.org/
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standard hyperparameters (initial learning rate 10−4, momentum 0.9). Staining
normalization and online data augmentation (random flipping, brightness, satu-
ration and hue perturbation) were used to reduce the domain shift between the
different centers. Statistics on network performance were computed from five
random splits with unseen test patients.2

3.3 Results

Classification Performance. The validation accuracy of our classifier is just below
the performance of the patch classifier used to get state-of-the-art results on
the Camelyon17 challenge [3], as reported in Table 1. We report the per-patch
validation accuracy for both models, although details about the training setup
in [3] are unknown. Bootstrapping of the false positives was not performed and
the training set size was kept limited (with 40 K patches instead of 600 K). The
obtained accuracy is sufficient for a meaningful model interpretation analysis,
which may be used to boost the network accuracy and generalization. Besides
this, the analysis could itself be used as an alternative to bootstrapping for
detecting mislabeled examples [8].

Table 1. Network accuracy % for binary classification of Camelyon17 patches.

Model Validation accuracy

Zanjani et al. 98.7

ResNet101 92.43 ± 0.657

Correlation Analysis. We expressed the NHG criteria for nuclei pleomorphism
as average statistics of the nuclei morphology and texture features. From the
patches (xj) with ground truth segmentation, we computed average nuclei area,
Euler coefficient and eccentricity of the ellipses that have the same second-
moments as the nuclei segmented contours. We extracted three Haralick texture
features inside the segmented nuclei, namely Angular Second Moment (ASM),

Table 2. Pearson correlation between the concept measurements and the network
prediction.

Correlation ASM Eccentricity Euler Area Contrast

ρ −0.2985 −0.1869 −0.1460 0.1534 0.2820 0.4119

p-value ≤ 0.001 ≤ 0.001 ≤ 0.01 ≤ 0.001 ≤ 0.001 ≤ 0.001

2 The pretrained models and the source code used for the experiments can be found
at https://github.com/medgift/iMIMIC-RCVs.

https://github.com/medgift/iMIMIC-RCVs
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contrast and correlation [4]. The Pearson correlation between the concept mea-
surements and the relative network prediction is shown in Table 2. The concept
measures for contrast had the largest correlation coefficient, ρ = 0.41.

Are We Learning the Concepts? The performance of the linear regression was
used to check if the network is learning the concepts and in which layers. The
determination coefficient of the regression R2 expresses the percentage of varia-
tion that is captured by the regression. We computed R2 for all xj patches over
multiple reruns to analyze the learning dynamics. Almost all the concepts were
learned in the early layers of the network (see Fig. 2a), with eccentricity and
Euler being the only two exceptions. Figure 2b shows that the concept Euler is
highly unstable and has almost zero mean, suggesting that the learned RCVs
might be random directions.

Fig. 2. (a) R2 at different layers in the network. Results were averaged over three
reruns. 95% confidence intervals are reported. (b) The RCVs for the concept Euler
show high instability of the determination coefficient. Best on screen.

Sensitivity and Relevance. Sensitivity scores were computed on N = 300 patches
(xi) from Camelyon17. The global relevance was tested with TCAV and Br,
as reported in Fig. 3. Contrast is relevant for the classification, with TCAV =
0.75 and Br = 0.25. Even stronger is the impact of correlation, which shifts
the classification output towards the non-tumor class. In this case sensitivies
are mostly negative, with Br = −1 and TCAV = 0.1. These scores mirror the
preliminary analysis of Pearson correlation in Table 2. Unstable concepts, such
as Euler and eccentricity, lead to almost zero Br scores, in accordance with
the initial hypothesis that the RCVs for these concepts might just be random
vectors.

Statistical Evaluation. We performed a two-tailed t-test to compare the distri-
butions of the scores against the null hypothesis of learning a random direction
for the TCAV (mean 0.5) and Br (mean 0) scores. The results are presented in



130 M. Graziani et al.

Fig. 3. Comparison of TCAV (∈ [0, 1]) and Br (∈ [−1, 1]) scores. Contrast is relevant
according to both measurements. Br scores show that higher correlation drives the
decision towards the non-tumor class. Scores for the unstable Euler are approximately
flattened to zero by Br.

Table 3. Statistical significance of the scores. The p-values are reported for two-tailed
t-tests evaluating the difference between the distributions of the obtained scores against
a normal distribution of the scores for random concepts, i.e. mean 0.5 for TCAV and
0 for Br.

Correlation ASM Eccentricity Euler Area Contrast

TCAV 0.002 0.001 0.02 0.01 0.001 0.001

Br 0.001 0.001 0.30 1.0 0.001 0.001

Table 3. There was a significant difference (with p-value ≤ 0.01) in the scores
for all the relevant concepts, namely correlation, ASM, area and contrast. The
statistical significance of correlation improves for Br scores. From the sensitivity
and relevance analysis, we do not expect the Euler and eccentricity concepts to
be statistically different from random directions. The analysis of both TCAV
and Br scores confirms this hypothesis (p-value ≤ 0.01) for the eccentricity,
although the confidence to not reject the null hypothesis is higher with Br. The
Euler concept is not rejected by the TCAV analysis. Br scores, instead, reject
the hypothesis of this score being relevant.

4 Discussion and Future Work

RCVs showed that nuclei contrast and correlation were relevant to the classifi-
cation of patches of breast tissue. This is in accordance with the NHG grading
system, which identifies hyperchromatism as a signal of nuclear atypia. Extend-
ing the set of analyzed concepts can lead to the identification of other relevant
concepts. RCVs can give insights about network training. The learning of the
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concepts across layers is linked to the size of the receptive field of the neurons
and the increasing complexity of the sought patterns (see Fig. 2 and [6]). Hence,
more abstract concepts, potentially useful in other applications, can be learned
and analyzed in deep layers of the network. Moreover, outliers in the values of
the sensitivity scores can identify challenging training inputs or highlight domain
mismatches (e.g. differences across hospitals, staining techniques, etc.).

Overall, this paper proposed a definition of RCVs and a proof of concept on
breast cancer data. RCVs could be extended to many other tasks and application
domains. In the computer vision domain, RCVs could also express higher-level
concepts such as materials, objects and scenes. In signal processing tasks, RCVs
could be used, for instance, to determine the relevance of the occurrence of a
keyword in topic modeling, or of a phoneme in automatic speech recognition.

Acknowledgements. This work was possible thanks to the project PROCESS, part
of the European Union’s Horizon 2020 research and innovation program (grant agree-
ment No. 777533).
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Abstract. Interpretability is a fundamental property for the acceptance
ofmachine learningmodels in highly regulated areas. Recently, deep neural
networks gained the attention of the scientific community due to their high
accuracy in vast classification problems. However, they are still seen as
black-box models where it is hard to understand the reasons for the labels
that they generate. This paper proposes a deepmodel withmonotonic con-
straints that generates complementary explanations for its decisions both
in terms of style and depth. Furthermore, an objective framework for the
evaluation of the explanations is presented. Our method is tested on two
biomedical datasets and demonstrates an improvement in relation to tra-
ditional models in terms of quality of the explanations generated.

Keywords: Interpretable machine learning · Deep neural networks
Explanations · Aesthetics evaluation · Dermoscopy

1 Introduction

In the most recent years many machine learning models are replacing or helping
humans in decision-making scenarios. The recent success of deep neural networks
(DNN) in the most diverse applications led to a widespread use of this technique.
Nonetheless, their high accuracy is not accompanied by high interpretability. On
the contrary, they remain mostly as black-box models. In this way and despite
the success of DNN, in areas such as medicine and finance, which have legal and
safety constraints, their use is somehow restricted. Therefore, and in order to
take advantage of the DNN potential, it is critical to develop robust strategies
to explain the behavior of the model. In the literature it is possible to find sev-
eral different strategies to generate reasonable and perceptible explanations for
machine learning model’s behavior. However, those strategies can be grouped in
three clusters of interpretable methods: pre-model, in-model and post-model [6].

One of the options is to consider the relevance of example-based explanations
in human reasoning to try to make sense about the data we are dealing with. The
c© Springer Nature Switzerland AG 2018
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main idea here is that a complex data distribution might be easily interpretable
considering prototypical examples. Considering that the goal is to understand
the data before building any machine learning model, one can consider this
strategy as interpretability before the model, i.e. pre-model.

An alternative is to build interpretability in the model itself. Inside this
group, models can be based in rules, cases, sparsity and/or monotonicity. Rule-
based models are characterized by a set of rules which describe the classes and
define predictions. One problem typically related with this strategy is the size
of the interpretable model. In order to solve this issue, Wang et al. [9] proposed
a Bayesian framework to control the size and shape of the model. Nevertheless,
a rule-based model is as interpretable as its original features are. Leveraging
once more the power of examples in human understanding but now with the
aim of building a machine learning model, case-based methods appear as serious
competitors in the explainability challenge. In [5], the authors present a model
that generates its explanations based on cluster divisions. Each cluster is char-
acterized by a prototype and a set of defining features. From this, it is possible
to deduce that the model’s explanations are limited by the quality of the pro-
totype. Sparsity is also an important property to achieve interpretability. With
a limited number of activations it is easier to determine what were the events
that determined the model’s decision. However, if the decision can not be made
with just a few activations, sparsity can decisively affect the accuracy of the
model. Another way of facilitating the model interpretability is to guarantee the
monotonicity of the learnt function in relation to some of the inputs [4].

Finally, interpretability can be performed after building a model. One of the
options is sensitivity analysis, which consists on disturbing the input of the model
and observing what happens to its output. In a computer vision context this
could mean occlusions of some parts of the image [3]. One issue with sensitivity
analysis is that a change in the input may not represent a realistic scenario in the
data distribution. Other possibility is to create a new model capable of imitating
the one which is giving the classification predictions. For instance, one can mimic
a DNN with a more shallow [1] and, consequently, more interpretable network.
However, it is not always the case that a simpler model exists. Lastly, we have
interpretability given by investigation on hidden layers of deep convolutional
neural networks [10].

1.1 Satisfying the Curiosity of Decision Makers

Human beings have different ways of thinking and learning [8]. There are people
for whom a visual explanation is more easily apprehended and, on the contrary,
there are people who prefer a verbal explanation. In order to satisfy all the
decision makers, an interpretable model should be able to provide different styles
of explanations and with different levels of granularity. Furthermore, it should
present as many explanations as the decision maker needs to be confident about
his/her decisions. It is also important to mention that some observations require
more complex explanations than others, which reinforces the idea of different
depth in the explanations.
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2 Complementary Explanations Using Deep Neural
Networks

In addition to their high accuracy in various classification problems, DNN have
the ability to jointly integrate different strategies of interpretability, such as, the
previously mentioned, case-based, monotonicity and sensitivity analysis. Thus,
it is a model that presents itself at the forefront to satisfy the decision makers
in their search for valuable and diverse explanations.

Input
(monotonic)

Input
(unconstrained)

DNN (monotonic) DNN

Concatenate

DNN (monotonic)

Output

Fig. 1. Proposed DNN architecture.

Xopt Xft Xthrs

Fig. 2. Feature impact analysis.

We will focus on binary classification settings with a known subset of mono-
tonic features. Without loss of generality, we will assume that monotonic fea-
tures increase with the probability of observing the positive class. The proposed
architecture consists on two independent streams of densely connected layers
that process the monotonic and non-monotonic features respectively. We impose
constraints on the weights of the monotonic stream to be positive to facilitate
interpretability. Then, both streams are merged and processed by a sequence of
densely connected layers with positive constraints. Thus, we are promoting that
the non-monotonic stream maps its feature space into a latent monotonic space.
It is expected that the non-monotonic features will require additional expressive-
ness to transform a non-monotonic space into a monotonic one. In this sense,
we validate topologies where the non-monotonic stream has at least as many
–and possibly more– layers than the monotonic stream. Figure 1 illustrates the
proposed architecture.

Explanation by Local Contribution. To measure the contribution, Cft, of a
feature ft on the prediction y, we can find the assignment Xopt that approximates
X to an adversarial example (see (1)):

(ȳ − f(X))2 (1)

where ȳ = 1 − y is the opponent class, y ∈ {0, 1}, and f(X) is the estimated
probability. We can use backpropagation with respect to ft to find the value Xopt

(see Fig. 2) that minimizes (1). It is relevant to note that for monotonic features,
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such value is known a priori. Since some features may have a generalized higher
contribution than others, resulting in repetitive explanations, we balanced the
contribution on the target variable with the range of the feature domain traversed
from the initial value to the local minimum Xopt. Namely:

Cft = |f(X) − f(X ′)| · Xft − Xopt

Xmax − Xmin
(2)

where X ′ is the input vector after assigning Xopt to the feature ft. Thus, the
contribution can be measured by approximating X to the adversarial space. On
the other hand, the inductive rule constructed for ft covers the space between
Xft and the value Xthrs where the probability of the predicted class is maximum.

Explanation by Similar Examples. DNN are able to learn intermediate
semantic representations adapted to the predictive task. Thus, we can use the
nearest neighbors in the semantic space as an explanation for the decision. While
the latent space is not fully interpretable, we can evaluate which features (and
at which degree) impact the distance between two observations using sensitivity
analysis. In this sense, two types of explanations can be extracted:

– Similar: the nearest neighbor in the latent space and what features make
them similar.

– Opponent: the nearest neighbor from the opponent class in the latent space
and what features make them different.

3 The Three Cs of Interpretability

Interpretability and explainability are tied concepts often used interchangeably.
In this work, we will focus on local explanations of the predicted class, where indi-
vidual explanations are provided for each observation. Despite the vast amount
of effort that has been invested around interpretable models, the concept itself
is still vaguely defined and lacks of a unified formal framework to assess it. The
efficacy of an explanation depends on its ability to convince the target audience.
Thus, it is surrounded by external intangible factors such as the background of
the audience and its willingness to accept the explanation as a truth. While it is
hard to fully assess the quality of an explanation, some proxy functions can be
used to summarize the quality of a prediction under certain assumptions. Let us
define an explanation as a simple model that can be applied to a local context
of the data. A good explanation should maximize the following properties:

– Completeness: It should be susceptible of being applied in other cases where
the audience can verify the validity of that explanation. e.g., the blue rows in
Fig. 3 where the decision rule precondition holds and the observations within
the same distance of the neighbor explanation (Fig. 3).

– Correctness: It should generate trust (i.e., be accurate). e.g., the label agree-
ment between the blue rows and between the points inside the n-sphere.

– Compactness: It should be succinct. e.g., the number of conditions in the
decision rule and the feature dimensionality of a neighbor-based explanation.
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A B Y
0 4 1
2 3 1
4 2 0
3 6 1
3 3 1

If A ≥ 1∧B ≤ 5∧B ≥ 2
then y = 1

Compl: 3/5
Corr: 2/3
Compt: 3

Compl: 4/14
Corr: 3/4
Compt: 2

Fig. 3. Illustration of explanation quality for decision rules and KNN (where the black
dot is the new observation and the blue dot is the nearest-neighbor).

4 Experimental Assessment

We validate the performance of the proposed methodology on two applications.
First, we consider the post-surgical aesthetic evaluation (i.e., poor, fair, good,
and excellent) of breast cancer patients [2]. The dataset has 143 images with
23 high-level features describing breast asymmetry in terms of shape, global
and local color (i.e., scars). The second application consists on the classifica-
tion of dermoscopy images in three classes: common nevus, atypical nevus and
melanoma. The dataset [7] has 14 features from 200 patients describing the pres-
ence of certain colors on the nevus and abnormal patterns such as asymmetry,
dots, streaks, among others. In both cases, we consider binary discretizations of
the problem (see Table 1). In this work, we assume features are already extracted
in a previous stage of the pipeline. However, the entire pipeline covering feature
extraction and model fitting could be learned end-to-end using intermediate
supervision on the feature representation.

We compare the performance of the proposed DNN against classical inter-
pretable models: a decision tree (DT) with bounded depth learned with the
CART algorithm, and a Nearest Neighbor classifier (KNN with K = 1). We used
stratified 10-fold cross-validation to choose the best hyper-parameter configura-
tion and to generate the explanations. We explore DNN topologies with depth
between 1 and 3 per block (see Fig. 1). We show in Table 1 the model perfor-
mance of the three models. DNN achieved better performance than the remaining
classifiers in most cases.

To measure the quality of the explanations we used accuracy for correctness,
the fraction of the training set covered by the explanation as completeness, and
the size in bytes of the explanation (the lower the better) after compression
using the standard Deflate algorithm. Despite this compactness metric doesn’t
reflect the actual complexity of the explanations, it is a proxy function to define
it under the assumption that the time to understand an explanation is pro-
portional to its length. We generate explanations that account for 95% of the
feature impact and embedding distance. This value can be adapted to produce
more general/global or customized/local explanations. As can be seen in the



138 W. Silva et al.

Table 1. Quality of the predictions in terms of area under the ROC and Precision-
Recall curves. Quality of the explanations in terms of correctness (Corr), completeness
(Compl), and compactness (Compt).

Binarization Model Predictions Explanations

ROC PR Type Corr Compl Compt

BCCT [2]: Breast aesthetics

Excellent vs.

Good, Fair,

Poor

DT 71.96 92.19 Rule 75.52 3.82 31.97

1-NN 67.37 90.74 Similar 89.27 3.25 95.94

Opponent 72.96 80.84 96.00

DNN 80.61 96.55 Similar 85.69 95.20 124.94

Opponent 92.04 46.87 149.68

Rule 99.91 3.69 62.59

Excellent,

Good vs. Fair,

Poor

DT 85.18 75.20 Rule 51.75 3.16 30.00

1-NN 52.81 39.49 Similar 85.69 2.98 95.94

Opponent 54.76 91.26 95.97

DNN 86.78 82.82 Similar 72.52 17.34 80.36

Opponent 81.16 31.28 138.00

Rule 98.89 2.33 48.59

Excellent,

Good Fair vs.

Poor

DT 94.20 74.92 Rule 76.92 6.71 17.0769

1-NN 54.42 20.63 Similar 94.45 3.01 95.94

Opponent 84.42 85.33 96.00

DNN 91.03 73.00 Similar 87.25 1.46 79.79

Opponent 92.82 67.86 157.81

Rule 99.88 5.48 58.44

PH2 [7]: Dermoscopy images

Common vs.

Atypical,

Melanoma

DT 97.60 97.90 Rule 43.00 5.03 13.10

1-NN 94.37 94.29 Similar 94.97 5.56 15.29

Opponent 59.42 81.38 15.94

DNN 99.74 99.83 Similar 97.11 39.00 19.32

Opponent 74.59 70.61 37.69

Rule 98.86 38.83 16.27

Common,

Atypical vs.

Melanoma

DT 95.55 81.63 Rule 82.00 5.82 19.00

1-NN 80.94 63.67 Similar 94.81 5.70 15.23

Opponent 69.75 86.98 21.25

DNN 96.02 89.30 Similar 91.49 8.15 33.27

Opponent 84.02 62.12 46.24

Rule 97.89 44.84 23.65

results, the proposed model is able to achieve the best performance in correct-
ness results for rule explanations. For case-based explanation, the 1-NN approach
with similar prototype achieves better performance in some cases at the expense
of completeness. Therefore, we validate that besides having a good predictive
performance in terms of classification, we can use DNN to produce explanations
with high quality. Figure 4 shows some explanations produced by the DNN for
both datasets.
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Input image

Prediction:
{Poor, Fair}

Rule: High visibility of the scar (sX2a > 0.98), low inter-breast

overlap (pBOD ≤ 0.9), low inter-breast compliance (pBCE ≤
0.43) and high upward nipple retraction (pUNR > 0.71)

Similar case

Why?: Similar scar (sEMDL),

inter-breast overlap (pBOD),

color (cEMDb), contour differ-

ence (pBCD) and upward nipple

retraction (pUNR).

Opponent case

Why?: Strong difference on the

scar visibility (sX2a), breast over-

lap (pBOD), upward nipple retrac-

tion (pUNR), compliance evaluation

(pBCE) and lower contour (pLBC)

Input image

Prediction:
{Common, Atypical}

Rule: It is symmetric, doesn’t have black color, blue whitish

veil, atypical pigmented network or streaks.

Similar case

Why?: Both images have light and

dark brown color and atypical pres-

ence of dots/globules.

Opponent case

Why?: It doesn’t have light brown

color or atypical dots/globules. It

has blue whitish veil and pigmented

network.

Fig. 4. Visualization of the explanations. In the BCCT dataset we are considering
the binary classification problem: {Poor, Fair} vs. {Good, Excellent}. Regarding the
PH2, the classification problem comes down to {Common, Atypical} vs. {Melanoma}.
pBOD and pBCE represent the negation of the original features, pBOD and pBCE,
and are presented to make the explanation more intuitive.

5 Conclusion

In order for a machine learning model to be adopted in highly regulated areas
such as medicine and finance, it needs to be interpretable. However, interpretabil-
ity is a vague concept and lacks an objective framework for evaluation.

In this work, we proposed a DNN model able to generate complementary
explanations both in terms of type and granularity. Moreover, there can be as
many explanations as the ones the decision maker considers necessary to satisfy
his/her doubts. We also define some proxy functions that summarize relevant
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aspects of interpretability, namely, completeness, correctness and compactness.
This way we get an objective framework to evaluate the explanations generated.

The model is evaluated in two biomedical applications: post-surgical aesthetic
evaluation of breast cancer patients and classification of dermoscopy images.
Both the quantitative and qualitative results of our model show an improvement
in the quality of the explanations generated compared to other interpretable
models. Future work will focus on extending this model to ordinal and multiclass
classification.
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Abstract. Content-Based Image Retrieval (CBIR) is an application of
computer vision techniques for searching an existing database for visually
similar entries to a specific query image. One application of CBIR in the
dermatology domain is displaying a set of visually similar images with
a pathology-confirmed diagnosis for a given query skin image. Recently,
CBIR algorithms using machine learning with high accuracy rates have
gained more attention since researchers have reported they have the
potential to help physicians, patients, and other users make trustwor-
thy and accurate classifications of skin diseases based on visually simi-
lar cases. However, we do not have many insights into how interactive
CBIR tools are actually perceived by end users. We present the design
and evaluation of a CBIR user interface and investigate users’ classifi-
cation accuracy on dermoscopy images and explore users’ perception of
confidence and trust. Our study with 16 novice users for a given set of
annotated dermoscopy images indicates that, in general, CBIR enables
novices to make a significantly more accurate classification on a new skin
lesion image from four commonly-observed categories: Nevus, Seborrheic
Keratosis, Basal Cell Carcinoma, and Malignant Melanoma.

Keywords: Dermatology · Skin cancer · CBIR · Machine learning
Artificial intelligence · Evaluation · Human-computer interaction

1 Introduction

Skin cancer is one of the most common cancers, and the number of skin related
patient visits in primary care is considerable. Melanoma, the deadliest type of
skin cancer, is curable if it is diagnosed early. Basal cell carcinoma, another
type of skin cancer, also needs early detection to be properly treated. Consid-
ering significant number of dermatology related visits in clinics, supporting non
expert physicians in their diagnostic decision can improve patient outcomes and
at the same time can save costs for healthcare systems by reducing unnecessary
referrals and providing early diagnosis. This can also lead to a better resource
management where there is a limited access to specialists and support general
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physicians as an educational tool. Recent advances in computer-aided diagnostic
methods can aid self-examining approaches based on images, which can signifi-
cantly improve early detection as the most important step to improve prognosis.
In fact, modern machine learning classifiers are becoming increasingly capable of
classifying skin cancer images with a level of competence comparable to derma-
tologists [1,2]. Although medical imaging diagnostics can benefit from intelligent
computer vision and machine learning techniques, most AI algorithms provide
a black box diagnosis based on percentages which clinicians do not trust [3] and
most of the knowledge contained in visual data is barely extracted and applied
to deliver an accurate diagnostic decision.

With recent advances in machine learning algorithms, there has been renewed
interest in content-based image retrieval (CBIR) approaches where computer
vision methods can be used to visually search for images to a “query” image in
large databases based on the content of the image and visual clues such as shape,
color, and pattern [4]. CBIR provides similar images where user can interpret
the results and determine whether they are reliable. Furthermore, within the
dermatology context, this technology is designed to assist with identifying and
comparing skin lesions using percentage-based classifiers. CBIR-based tools can
be a safe and effective implementation and integration of artificial intelligence
and machine learning algorithms in clinical workflow to be validated in a low
risk clinical setting. Modern CBIR systems offer powerful possibilities for lower-
ing the overall search time and increase retrieval accuracy and are being used in
a number of scientific endeavors [5,6]. Although designing and evaluating such
systems in direct collaboration with users has received only limited attention,
findings in a study on CT images suggest that when interpretation was sup-
plemented with an image retrieval tool, diagnostic accuracy was improved [7].
Therefore, there are several open questions about how these tools can be safely
integrated and accepted in real-world settings to support the diagnostic work of
medical professionals.

In our research, we are examining how a CBIR decision support tool can be
used by non-dermatologists in classification of dermoscopic skin lesion images. In
this paper, we use an intuitive and scalable method on CBIR as an explainable
artificial intelligence application, and investigate to what extent a CBIR system
can help a non-dermatologist make an accurate classification of a given skin lesion
image. We also explored to what extent the use of CBIR affects the confidence
levels of these users. Our findings shed new insights into how user-centered design
techniques can improve non-expert user interaction with CBIR systems and open
up new opportunities for non-experts to explore, trust, and learn from medical
image collections.

2 Method

2.1 Study Design

We used an experimental approach to answer our key research question: to what
extent, does using a CBIR system affect user’s ability to make a more accurate
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classification on a new skin image? The key concepts we are using to answer
this question are decision accuracy, confidence level, and user trust. Our study
used a within-subjects design where all the participants went through the same
tasks and questionnaires. The experiment consisted of two conditions (without
CBIR and with CBIR). Each user was presented with the query images one at a
time and was asked to choose one best category by clicking on the appropriate
button. The same normal lighting condition with a large screen was provided for
all users.

2.2 Dataset

All the images are from publicly available datasets, including The International
Skin Imaging Collaboration (ISIC) archive [8] and a dermoscopy atlas [9]. Since
the number of skin lesion classification categories is very large (over 100 com-
monly observed), we had to limit our study to 4 common skin lesion categories,
similar to those used in the ISIC classification challenge 2017 [10] i.e. Nevus, Seb-
orrheic Keratosis (SK), Basal Cell Carcinoma (BCC) and Malignant Melanoma
(MM). All the images were approved by an expert dermatologist who had expe-
rience working with dermoscopic images. To simplify complex medical terms for
general users, we used simple terminologies for each skin lesion category. From
the 1021 images in our dataset, 40 query images were chosen: 20 without CBIR
and 20 with CBIR. We selected 5 query images from each category for each
condition to provide an equal disease distribution. Among the 20 images in both
conditions, 4 of the images were repeated, one from each category so there were
36 unique query images.

2.3 System Description

We used an existing classifier and built a user interface on top. This system was
designed as a decision support tool to read and retrieve all the similar images for
each query image based on a list of classification probabilities from a classifier
trained on the 4 classes of interest for each image. All the images were presented
to the user based on a file that stored a dictionary where the key was the name of
the query image and the value is a list of tuples (imagename, cosinedistance) of
the top 20 closest images inclusive. The number represented the cosine distance
between that image and the query image computed using the deep feature of
the query image and the image being compared. All the retrieved similar images
were sorted by their cosine distance in ascending order, so the first similar image
was the most similar image to the query image based on our machine learning
algorithm [11]. Figure 1 shows a screen capture of the interactive user interface
with our CBIR system. During the CBIR condition, the 15 most visually similar
images of the collection were returned for each query image, sorted from top
left row to the bottom right row. Our user-interface software for the study was
written using HTML, CSS, JavaScript, NodeJS and MongoDB.
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Fig. 1. Sample screenshot with CBIR algorithm results.

2.4 Protocol

We used the following protocol: After signing a consent form, participants were
given a pre-task questionnaire about their past experience in medical image
search. For the next 10 min, they went through a brief tutorial to learn about
4 different skin lesion categories (presented as educational slides). Next, partic-
ipants started the study by classifying 20 query skin lesion images in the first
condition, followed by classifying 20 query skin lesion images in the second con-
dition. To reduce possible bias resulting from fatigue or learning effects, which
are common in within-subject studies, each participant was randomized to start
without CBIR or with CBIR condition. In addition, the order of “query” images
was randomly selected by a shuffle algorithm inside the system, and was varied
from user to user. Once the study ended, they were provided with total feedback
on their performance. Finally, they filled out a post-task questionnaire about
their experience.

2.5 Data Collection

We used multiple methodologies to gain insights from the different data types
obtained in the study and recorded by the system. Qualitative data was obtained
from interviews and questionnaire, and quantitative data such as decision accu-
racy and confidence level were recorded in a computer log captured in our deci-
sion support tool interface.

3 Results

16 participants successfully completed the lab experiment, including 10 males
and 6 females, all non-expert adults (graduate students). From the pre-task
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Fig. 2. Total accuracies in each condition (without CBIR and with CBIR) are shown.
x axis represents the condition and y axis represents number of correct answers in each
condition (out of 20). By incorporating CBIR, the mean accuracy is increased from
10.31(51.56%) to 12.19(60.94%)

questionnaire, we learned that 11 participants (68.57%) had experience in med-
ical image search previously. They were mainly looking for photographs. The
key motivation for them was personal-diagnosis (73%) and self-education (73%).
However, most of the participants only found their previous searches somewhat
useful and somewhat trustworthy. Irrelevant and untrustworthy images were
stated as the major problems encountered during the search process.

Accuracy: For accuracy calculations, user decisions were compared to the diag-
nosis for every query. Overall, there was a significant improvement in mean clas-
sification accuracy from 51.56% (165 of 320) without CBIR to 60.94% (195 of
320) with CBIR as shown in Fig. 2. Corresponding null hypothesis was that there
is no difference in the means, and difference in mean accuracy between condi-
tions was tested by the two-tailed t test for paired samples. The improvement
was greatest for the Nevus and MM categories, as shown in Table 1. For the
Seborrheic Keratosis Category, although the accuracy decreased, no significant
difference was found.

Confidence and Trust: To determine the change in users confidence in deci-
sions without vs with CBIR, we used the Likert scale [12] score in scale of
1 (least confident) to 5 (most confident) for every query. Our null hypothesis
was that there is no difference in the means. The difference in mean confidence
between conditions was tested by the two-tailed t test for paired samples. The
overall mean user confidence score was 3.47 without using CBIR and 3.7 with
using CBIR (P< 0.05). Users mean confidence in TP cases was improved by
6.59% (P< 0.05) which shows showing similar cases is effectively increases users
confidence. However when the classification result was incorrect, the impact of
showing similar cases was not as significant in increasing users confidence, and
was only increased by 2.52%. In addition, significant difference between confi-
dence on correct classifications (78.16%) and incorrect classifications (69.74%)
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Table 1. TP (True Positives) and Percentage of Correct classifications With and With-
out CBIR. Significant results where P< 0.05 (paired two-sided t test) are shown in
bold.

Skin lesion category Total correct classifications
without CBIR (N=80)

Total correct classifications
with CBIR (N=80)

Nevus 50(62.5%) 72(90%)

Seborrheic Keratosis 29(36.25%) 19(23.75%)

Basal Cell Carcinoma 49(61.25%) 57(71.25%)

Malignant Melanoma 37(41.25%) 49(61.25%)

Total 165(51.56%) 195(60.94%)

using CBIR was found (P< 0.05). Table 2 reveals mean confidence level with
and without using CBIR, as well as standard deviation errors in parentheses.
Trust as another critical factor was also measured on the Likert scale score in
scale of 1 (least confident) to 5 (most confident) in pre-task and post-task ques-
tionnaire. Our null hypothesis was that there is no difference in the means, and
the difference was tested by the two-tailed t test for paired samples. 11 of the
users had previous experience with medical image search and reported a mean of
54.5% (SD = 0.98) trust on their previous findings. After the study, these users
self-reported a mean of 59.29% (SD = 1.08) trust to the CBIR results; however,
the difference was not significant (p = 0.65).

Table 2. Confidence level and SD of classifications With and Without CBIR. Signifi-
cant results where P< 0.05 (paired two-sided t test) are shown in bold.

Classification Average confidence without CBIR Average confidence with CBIR

Correct 71.57%(0.66) 78.16%(0.52)

Incorrect 67.22%(0.61) 69.74%(0.48)

Total 69.4%(0.63) 74%(0.54)

4 Discussion

Although role of AI image classifiers in medicine are undeniably positive, their
inner structures are often hard to comprehend and they are not usually used in
the real-world settings. CBIR decision support tools can be seen as transparent
applications of AI and are likely to play a growing role in the clinical practice of
dermatology since this field heavily relies on the training level and expertise of
medical professionals in visual inspection of skin diseases. In our user-centered
design approach, we tried to tackle the problem of skin lesion classification and
users’ perceptions in using CBIR. Our initial results indicate that CBIR can
indeed be effective for users based on the number of correct classifications they
made and the increase in their confidence levels when using a CBIR interface.
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According to the data collected in our study, applying CBIR models that
deliver most visually similar images within the decision support tool will help
users in decision making process where the final decision can be left to dis-
cretion of the user. It is noteworthy that users’ accuracy scores on SK images
actually decreased. Although it’s not a significant difference, this may be related
to the limited number of SK images in the dataset which resulted in fewer sim-
ilar images from the SK category. We are currently limited to small and public
datasets that often have low quality images; however, as the database for such
systems grows, system accuracy is likely to increase. Our findings indicate that
there should be enough representation of different disease in dataset for CBIR
systems, regardless of malignancy status, when all diseases have an equal distri-
bution balance. Other major decision making challenges for users are imperfect
accuracy rates of algorithms, quality of the images(such as contrast, lighting,
size), external objects in the images(such as ruler and hair), inconsistency in
force and tilt while placing the dermoscopy device on the skin [13], and insuffi-
ciently magnified images.

Our findings also demonstrate that users confidence level with seeing similar
images significantly increased. Hence, patient safety needs to be addressed in real
clinical settings, and we need to investigate how primary physicians can adopt
CBIR in clinical setting safely for better patient care outcome and more efficient
workflow. Trust as another critical factor was measured in pre-task and post-
task questionnaire. According to the data collected in our study, although trust
is increased because of similar results, it’s not a significant value. One reason
may be due to the novelty of the system. Medical tools need to have long term
impact, and trust can be increased overtime with personal experience, scientific
evaluation, and publications. Another reason may be related to user expertise
level and lack of medical knowledge.

In this study, we were limited to non-expert users as proxies for population
of medical students, general physicians, and expert dermatologists. Primary care
physicians have limited training in dermatology and in most cases no training in
dermoscopy which is standard of diagnosis and management for skin cancer pig-
mented and vascular lesions. In our study we focused on novices to understand
the implications of offering interactive CBIR tools to investigate their classifi-
cation accuracy. According to our results, we believe this system can help users
both in image interpretation and as an educational tool, since the user will be
able to view pre-diagnosed similar images.

In future work, we will consider whether the results from novices transfer to
other user groups. Initial informal feedback from general physicians shows their
knowledge of dermoscopic skin lesions is as limited as the novices we tested,
and we plan to perform user studies with experts and with physicians in future
to confirm these findings. For establishing an effective interaction between a
CBIR system and users, it is key to know how CBIR tools can be safely and
effectively implemented, integrated, and customized for people with different
levels of expertise.
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