
Towards Event Log Querying for Data
Quality

Let’s Start with Detecting Log Imperfections

Robert Andrews(B), Suriadi Suriadi, Chun Ouyang, and Erik Poppe

Queensland University of Technology, Brisbane, Australia
{r.andrews,s.suriadi,c.ouyang,e.poppe}@qut.edu.au

Abstract. Process mining is, by now, a well-established discipline
focussing on process-oriented data analysis. As with other forms of data
analysis, the quality and reliability of insights derived through analy-
sis is directly related to the quality of the input (garbage in - garbage
out). In the case of process mining, the input is an event log comprised
of event data captured (in information systems) during the execution of
the process. It is crucial then that the event log be treated as a first-class
citizen. While data quality is an easily understood concept little effort
has been directed towards systematically detecting data quality issues
in event logs. Analysts still spend a large proportion of any project in
‘data cleaning’, often involving manual and ad hoc tasks, and requiring
more than one tool. While there are existing tools and languages that
query event logs, the problem of different approaches for different log
imperfections remains. In this paper we take the first steps to developing
QUELI (Querying Event Log for Imperfections) a log query language
that provides direct support for detecting log imperfections. We develop
an approach that identifies capabilities required of QUELI and illustrate
the approach by applying it to 5 of the 11 event log imperfection patterns
described in [29]. We view this as a first step towards operationalising
systematic, automated support for log cleaning.

Keywords: Process mining · Event log query language
Data quality · Event log imperfection patterns

1 Introduction

Process mining is, by now, a well-established discipline focussing on process-
oriented data analysis. As with other forms of data analysis, the quality and
reliability of insights derived through analysis is directly related to the quality
of the input (garbage in - garbage out). In the case of process mining, the input
is an event log comprised of event data captured (in information systems) during
the execution of the process. It is crucial then that the event log be treated as a
first-class citizen.

c© Springer Nature Switzerland AG 2018
H. Panetto et al. (Eds.): OTM 2018 Conferences, LNCS 11229, pp. 116–134, 2018.
https://doi.org/10.1007/978-3-030-02610-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02610-3_7&domain=pdf

Towards Event Log Querying for Data Quality 117

From it’s inception to the present day, process mining has focused on three
key areas; discovery, (taking an event log and generating a process model), con-
formance (comparing an existing process model with an event log drawn from
the same process), and enhancement (extending an existing process model using
information recorded in an event log) [3]. Process mining then is a model-based
discipline with the event log being seen as the enabler for model development
and subsequent process analysis. The Process Mining Manifesto [2] provides a
star-rating for event logs in terms of their readiness for use in a process mining
analysis. Existing data quality frameworks for event logs that have been pro-
posed [9,21] are useful in classifying/labelling identified quality issues, but are
not useful in detecting specific examples of quality issues.

Historically, analysts have devoted much time and effort to cleaning data (i.e.
ensuring the data is ‘fit for purpose’) prior to analysis. A recent survey revealed
data scientists spend more than half their time collecting, labeling, cleaning and
organising data [11] and, while some cleaning tasks can be automated, “far too
much handcrafted work...is still required”[18] with (compatibility) issues arising
through the use of multiple tools [30] in collecting and preparing data.

Quality issues commonly found in event logs have been described [9,29] and,
although solutions in the form of filtering, detection and repair algorithms [13,
15,19,31] have been proposed, the problem (different approaches to deal with
different log imperfections), persists. A common feature of all these approaches
however is an underlying capability to, in some way, query the log for the presence
(or absence) of certain characteristics. Hence, our long-term goal is to develop an
event log query language that can directly detect log imperfection issues. We call
this Querying Event Log for Imperfections (QUELI). We take into consideration
the view expressed by Behashti et al. [6] that “querying methods need to enable
users to express their data analysis and querying needs using process-aware
abstractions rather than other lower level abstractions”. This simply means that
more than being somehow possible, it should be actually convenient to
encode event log and process constructs in a query language.

The key questions we consider are (i) what are the capabilities required to
achieve QUELI?, and (ii) how do we identify these capabilities? In Sect. 3 we
address these questions as a three stage approach involving (i) considering how
log imperfections manifest in a log (i.e. what to look for in detecting log imper-
fections), (ii) stepwise refinement (narrative to rigorous algorithmic) of detection
strategies, and (iii) consolidation of the algorithms to abstract ’building blocks’.

The major contributions of this paper are:

– definition of algorithms to detect 5 out of 11 log imperfection patterns
described in [29];

– a preliminary (and by no means complete) consolidation of building blocks
needed by QUELI; and

– a systematic approach to identifying remaining/further building blocks
needed by QUELI.

The remainder of this paper is structured as follows: Sect. 2 describes the
background to the project with a focus on (event log) data quality and discusses

118 R. Andrews et al.

related work in the areas of detecting log quality issues and event log querying. In
Sects. 3 and 4 we introduce our approach to developing detection strategies and
algorithms for the selected log imperfection patterns and in Sect. 5 we consolidate
the pattern-at-a-time requirements into a set of QUELI constructs and briefly
assess a range of existing log query languages against their ability to support
the QUELI constructs. Section 6 concludes the paper with a brief discussion and
some thoughts on future work.

2 Background and Related Work

Data quality is an easily understood concept, at least to the extent that “high”
quality data is generally regarded as being desirable and “poor” quality data
undesirable as input for any analysis. However, the numerous published attempts
to objectively describe the characteristics of high/poor quality data (see [4,16,34]
for various surveys of data quality research), testify to the fact that the ‘devil
is in the detail’ as far as a universal understanding of data quality goes. High
quality data has been defined as “data that is fit for use by data consumers” [28]
with data quality considered as “the degree to which the characteristics of data
satisfy stated and implied needs when used under specified conditions” [1]. Data
quality is frequently described as being a multi-dimensional concept [33] with
dimensions (i.e. measurable data quality properties) such as accuracy/correct-
ness, completeness, unambiguity/understandability and timeliness/currentness
[1,5,33] being frequently mentioned.
Table 1. Manifestation of quality issues in
event log entities [9]

Event log entities

Quality issues Missing

data

Incorrect

data

Imprecise

data

Irrelevant

data

Case I1 I10 I26

Event I2 I11 I27

Relationship I3 I12 I19

Case attrs. I4 I13 I20

Position I5 I14 I21

Activity name I6 I15 I22

Timestamp I7 I16 I23

Resource I8 I17 I24

Event attrs. I9 I18 I25

The issue of data quality for
event logs was first considered in
[2] with event log quality frame-
works being proposed in [9,21,32].
Mans et al. [21] describes event log
quality as a two-dimensional spec-
trum with the first dimension con-
cerned about the level of abstrac-
tion of the events and the second
one concerned with the accuracy of
the timestamp (in terms of its (i)
granularity, (ii) directness of regis-

tration (i.e. the currency of the timestamp recording) and (iii) correctness. Bose
et al. [9] identify four broad categories of issues affecting process mining event
log quality: Missing, Incorrect, Imprecise and Irrelevant data. The authors then
show where each of these issues may manifest themselves in the various entities
of an event log resulting in 27 separate data quality issues (see Table 1). Such
frameworks are useful in classifying quality issues, however, they do not pro-
vide guidance as to how to discover quality issues in a log, nor do they provide
a mechanism to quantify the extent to which a log is affected by any identified
quality issue. For instance, how many cases are affected by missing events?

Towards Event Log Querying for Data Quality 119

In Suriadi et al. [29] the authors describe a set of 11 log imperfection patterns1

that capture some data quality issues commonly found in event logs (see Table 2
for relationship between patterns and quality issues in Table 1). In this paper
we use 5 of the 11 log imperfection patterns described in [29] as the basis for
understanding the requirements of an event log query language.

2.1 Related Work

Table 2. Relationship between indi-
vidual patterns and quality frame-
work.

Pattern Quality issue/s

Form-based event capture I16, I27
Inadvertent time travel I16
Unanchored event I23, I16
Scattered event I2
Elusive case I3
Scattered case I12
Collateral events I27
Polluted label I15, I17
Distorted label I15
Synonymous labels I15
Homonymous label I22

Suriadi et al. [29] adopt a patterns-based
approach to describing event log qual-
ity issues and provide indicative rules for
detecting the presence of each described
log imperfection pattern. As the name sug-
gests, an indicative rule describes condi-
tions that make it likely that the related
imperfection pattern is present in the log.
The indicative rules are not however, at a
low enough level to be immediately oper-
ationalised to provide direct support for
pattern detection. Lu et al. [19] apply so-
called behaviour patterns (“partial orders

of activities where direct and indirect succession of activities are specified”) to
detect and visualise areas of complexity in an event log. While not specifically
designed to detect log quality issues, the approach can be used to visualise event
concurrency and hence provide an indication of the possibility of the existence
of Form-based Event Capture and Collateral Events patterns [29]. Unsupervised
event log pattern detection approaches such as [8,17] use statistical methods
to detect frequently occurring behaviours in logs. These approaches suffer from
“pattern explosion” (return many patterns) and require the user to sift through
returned patterns to decide which are interesting. As these approaches are tar-
geted at frequently occurring behaviours, infrequent behaviours (which may rep-
resent data quality issues) are harder to detect. Mannhardt et al. [20] by con-
trast, describe an approach involving manual specification of behavioural activity
patterns which encode assumptions about how high-level activities manifest in
lower-level events in a log. This approach is neither quality focused nor domain
agnostic (requires domain knowledge), and relies on the expertise of the user
in specifying patterns with the risk that the user may miss important patterns.
Research in the area of record-linkage, data matching and ontology matching
exists [10,27], but generally deals with less complex issues, e.g. only matching
labels based on similarity measures.

Log repair, by definition, involves rectifying some identified quality issue. Log
repair approaches necessarily require a filtering or querying step to identify log
elements that are the subject of repair actions. As an example, in [13] the authors
discuss three indicators of event order-related quality issues in event logs (mixed

1 http://www.workflowpatterns.com/patterns/logimperfection/.

http://www.workflowpatterns.com/patterns/logimperfection/

120 R. Andrews et al.

granularity timestamps, unusual or low-frequency directly followed relations or
statistical anomalies in timestamp values) and describe techniques by which the
log may be queried to detect each anomaly.

Unlike approaches that implement only one (or a limited range of) pattern
types, event log query languages can potentially be used to encode multiple types
of patterns (depending on the language constructs and the formulation of the
event log). For instance, where the event log is represented as a table, SQL may
be applied to log querying. In [12] the authors point out that formulating con-
ceptually simple, but nevertheless fundamental, process related questions such
as ‘retrieve all directly follows relations between events’ is inefficient and diffi-
cult to phrase in standard SQL (requiring joining the events table to itself and
a NOT EXISTS nested sub-query) and has performance implications. Dijkman
et al. [12] then propose (but do not implement) a relational algebaraic operator
to extract the ‘directly follows’ relation from a log. In [25] the authors exploit
RelationalXES [26] a relational database architecture for storing event log data
and show how conventional SQL can be used to encode declarative constraints
to extract process knowledge from event logs stored in relational tables. The
approach, implemented as SQLMiner, has at least the following limitations: (i)
data-perspective constraints have not yet been implemented, (ii) intermediate
results are not available for follow-on queries, and (iii) native SQL is not process-
aware, therefore the encoded declarative constraints are complex (and possibly
beyond the ability of all but expert level SQL users).

FQSPARQL [7] is a process event query language and graph-based querying
process engine derived from SPARQL [24]. The FPSPARQL approach models
an event log as a graph of typed nodes and edges. In [22] de Murillas, Reijers and
van der Aalst describe DAPOQ, the Data-Aware Process Oriented Query Lan-
guage for querying event data. DAPOQ was purpose built for process querying
and so has the advantages of improved query development time and readability
of queries. The language supports the traditional process view (events, instances
and processes), with the data perspective (data models, objects and object ver-
sions). Process Instance Query Language (PIQL) [23] describes a query language
specifically designed to report on various Process Performance Indicators (PPIs).
PPI queries are formulated in PIQL to return the number of process instances or
tasks that are (i) (not) finalized, (ii) (not) cancelled, (iii) executed by {name},
(iv) start before {date}, etc. The fact that the language is specifically designed
to report on a PPIs limits its generality. XSLT (Extensible Stylesheet Language
Transformations) is a declarative data transformation language developed by
the W3C and used for transforming XML documents. If the event log is encoded
as a tree structure (a log contains several cases and each case contains one or
more events) in XES/XML, XSLT can be used to filter, transform and query the
event log. Durand et al. [14] leverage this prevalence of XML-based standards
for encoding event logs to build an XML vocabulary and execution language on
top of XSLT, that can be used to query and analyse event sequences.

Towards Event Log Querying for Data Quality 121

3 Approach

Our approach for identifying log query constructs, which are key building blocks
for a query language that is suitable for detecting imperfections in event logs, is
illustrated in Fig. 1. By ‘constructs’, we mean a collection of functionality that
is required by a language (e.g. a log query language) to serve its purpose (e.g.
to detect log imperfections).

Fig. 1. Approach for identifying query constructs for log imperfection detection

Inputs. The inputs to our approach are an event log and, if available, domain
knowledge (e.g. the valid ranges of values for the timestamps of certain activi-
ties). An event log is a collection of events. An event can be defined as a tuple
consisting of various attributes. An attribute may be mandatory or optional. For
example, there are three mandatory event attributes, known as case identifier,
activity label, and timestamp, required for process mining.

Definition 1 (Event). Let Case be the set of case identifiers, Act the set
of activity labels, and Time the set of timestamps. E ⊆ Case×Act×Time is
the set of events. For any event e ∈ E , case(e) ∈ Case, act(e) ∈ Act , and
time(e) ∈ Time, represent the case identifier, activity label, and timestamp of
event e. ��
Definition 2 (Event Log). An event log L ⊆ E is a set of events. ��

Detection Algorithms. In order to identify the constructs needed for querying
an event log for the existence of various imperfections, we start by developing
detection strategies to address certain log imperfections. These detection strate-
gies should be generic, i.e. independent of any specific language and system/tool,
and rigorously defined in the form of an algorithm (for each strategy per log
imperfection pattern) so that they can be implemented in a precise and unam-
biguous way. In the next section of this paper, we elaborate on the detection
strategies for five event log imperfection patterns among those defined in [29].

122 R. Andrews et al.

Outputs. Each algorithm will produce some artifacts (such as statistical sum-
mary of certain characteristics in an event log, or the derivation of sub-logs that
meet certain criteria) that will then be used to reason about the existence, or
lack thereof, of certain log imperfections.

Query Constructs. Having defined the algorithms for detecting various log
imperfections, we consolidate them to identify which part(s) of the algorithms
can potentially be used as query constructs. These constructs provide direct
support to querying capabilities and thus they are key building blocks for the
intended query language. As an indication of the generality and reusability of
such a construct, it should be applicable to several log imperfection detection
algorithms. In Sect. 5, we explain how we consolidate the algorithms to identify
potential query constructs. It is worth noting that these constructs are still at
their early stage, and further analysis of other log imperfections is needed in order
for one to be reasonably assured that a comprehensive collection of constructs
has been identified.

4 Detection Strategies for Log Imperfection Patterns

In this section we propose the design of strategies for detecting the presence of
log imperfection patterns. For each pattern, we start with describing how the
pattern manifests in an event log, what could be the main reason that has led
to the existence of the pattern in the log, and how the pattern exemplifies a
data quality issue that is defined at a more abstract level as discussed in Sect. 2.
From there, we continue to present our detection strategy for the pattern which
consists of an outline of the underlying detection mechanism in natural language
and then a conceptual design of the strategy specified in the form of an algorithm.

4.1 Form-Based Event Capture

The pattern manifests in an event log as multiple occurrences of groups of events
characterised by a common set of activity labels with each event in the group
having the same or very nearly the same timestamp (allowing for physical logging
by the system) in the same case. An example of the pattern is shown in Fig. 2.

Fig. 2. Example of form-based event capture

A main reason that may cause
this pattern to arise is that
when process-related data is
entered into fields on a com-
puterised form, updates to form
field values are logged as sepa-
rate events (e.g. one event per
field) in response to a user
action (e.g. clicking ‘Save’ on
the form). In this case, the
activity labels are usually informed directly by the corresponding form field
names. It can be observed, taking the example in Fig. 2, that the presence of

Towards Event Log Querying for Data Quality 123

Algorithm 1. DetectForm-basedEventCapture

input : event log L, timestamp difference Δt
output: FG
begin

G ← findSimultaneousEvents(L, Δt) /∗ Step-1 : G is a set of event groups ∗/
A ← ∅ /∗ Step-2.a: To compute a set of groups of activity labels A ∗/
foreach Gi ∈ G do

A ← A ∪ {getActLabels(Gi)}
D ← A /∗ Step-2.b: To compute a set of distinct groups of activity labels D ∗/
do

Dt ← D
D0 ← getOneSetElement(D)
D ← D \ {D0}
foreach Di ∈ D do

if D0 ∩ Di �= ∅ then
D0 ← Di ∪ D0

D ← D \ {Di}
D ← D ∪ {D0}

while D �= Dt;
if |D| = 1 then

FG ← {D, |L|} /∗ Detection ends if only one distinct group of activity labels ∗/
else

FG ← ∅ /∗ Step-3 : To compute the likelihood of form existence FG ∗/
foreach D ∈ D do

countD ← 0
foreach G ∈ G do

if getActLabels(G) ⊆ D then
countD++

FG ← FG ∪ (D, countD)

this pattern in an event log leads to the recording of incorrect timestamps of
affected events representing the time the form was saved, not the time each of
affected events actually occurred. As such, this pattern presents a more concrete
example of data quality issue I16 - Incorrect data: timestamp.

Detection Strategy: The main idea is to discover the existence of a form by
identifying the group of activity labels that are likely informed by the corre-
sponding fields on that form. An outline of our detection strategy follows.

Step-1. Due to the fact that these activities are logged as events that have the
same or very nearly the same timestamps in the same case, the first step of
detection is to find groups of such simultaneous events.
Step-2. It is important to realise that updates may be applied to different
fields on a form in different cases. For example, as shown in Fig. 2, in one case
(Episode ID1) ‘Primary Survey’ and ‘Airway Clear’ are among those updated, and
in another case (Episode ID2) update occurred to ‘Primary Survey’ and ‘Pupils

124 R. Andrews et al.

Responsive’ on the form. Hence, it is necessary to find the group of all possible
fields on each form (given the scope of the data available in a log).

This can be achieved by (a) extracting the groups of activity labels from the
groups of simultaneous events and (b) traversing the activity labels group by
group and merging the groups that have at least one overlapping label between
them. As such, the second step of detection will yield distinct groups of activity
labels meaning that each activity label belongs to only one of the groups.

However, it is possible that only one distinct group of activity labels is identi-
fied and the detection process will then end with an output of mainly this group
of activity labels. In this case, a conclusion likely to be drawn by end users is
that either all the events in the log are recorded from a single form or no form
exists.
Step-3. This is to help understand how likely each group of activity labels may
inform the existence of a form. Certain quantitative measures can be computed
to provide reasonable indication for the likelihood of form existence. An example
of such a measure is to count how often each group of activity labels, including its
sub-groups, have appeared in the event log. This can help end users to make their
decision given necessary domain knowledge. E.g., if the above count of a specific
group of activity labels is larger than a certain threshold value, a conclusion can
be drawn that there exists a form that contains the corresponding field names.

4.2 Collateral Events

This pattern manifests as an event log containing groups of activities with times-
tamps that are very close to each other (e.g. within seconds). The problem may
be introduced into the log through incorrect or too fine grained logging of event

Fig. 3. Example of collateral events

data. As illustrated by the example
in Fig. 3, the snippet of an event log
contains a list of micro-steps of a
process activity, whereas it is the
activity, but not its micro-steps,
that is of interest to process analy-
sis. As such, this pattern presents
a more concrete example of data
quality issue I27 - Irrelevant data:
event.

Detection Strategy: The key objective is to discover a high-level (parent)
activity by identifying the list of micro-steps (instead of the activity) that are
possibly recorded in the event log. Hence, the detection strategy is similar to
that of form-based event capture. The differences are: (1) the central objects for
detection of collateral events are parent process activities and their micro-steps
(instead of forms and their fields in the case of form-based event capture); and
(2) the input time difference Δt for detection of collateral events has a greater
value than that of form-based event capture. Algorithm1 can be re-used for
detection of collateral events, because it is generic (e.g. being independent of
specific objects to identify, such as a form and its fields vs. a process activity
and its micro-steps) and configurable (e.g. Δt being a user input variable).

Towards Event Log Querying for Data Quality 125

4.3 Inadvertent Time Travel

This pattern manifests as a number of cases in the log where the temporal order-
ing of events deviates significantly from the majority of cases in the log or from
a mandatory temporal ordering property. For example, Fig. 4 shows a snippet of
a log with this imperfection pattern: the activity Arrival first hospital (henceforth
referred to as activity A) was recorded to take place on 2011-09-08 00:30:00;
however, the time of the Injury activity (henceforth referred to as activity B),
which triggered the patient being sent to the hospital, was recorded to take place
more than 23 h later (at 2011-09-08 23:47:01). The cause of this problem is the
‘midnight problem’ whereby a hospital staff recorded the correct ‘time’ of patient
arrival but failed to change the ‘date’ portion of the timestamp (it should have
been 2011-09-09). The occurrence of this pattern is often associated with manual

Fig. 4. Example of inadvertent time travel

recording of timestamp data
and results from the ‘proximity’
between correct value and the
recorded, incorrect value. Prox-
imity errors occur through a
user pressing an incorrect key
on a keyboard, or as in our
example above, a user failing to
recognise the recently-crossed
date/time boundary (such as
the mentioned midnight problem, or a new year). This pattern negatively
impacts the attribute accuracy of the log in that the temporal ordering of the
events no longer reflects the actual ordering of events. Therefore, this pattern is
a manifestation of the data quality issue I16 - Incorrect data: timestamp.

Detection Strategy: The main idea is to discover the existence of pairs of
activities, within the same case, with ‘unusual’ temporal ordering, i.e., it either
deviates from the majority of the cases or violates some mandatory ordering.
Once such pairs of activities are discovered, we then extract statistical summary
information (such as the proportion of cases with the deviant temporal ordering)
to be presented to users to determine if the unusual temporal ordering is indeed
a data quality issue. An outline of our detection strategy is as follows.
Step-1. Using the example from Fig. 4, an unusual temporal ordering of two
events is seen when in one or more cases, the activity B succeeds A, while in the
majority of cases B (the injury event) precedes A. In other words, we say A and
B occurred in any order (in parallel). The first detection step is thus to identify
all pairs of activity names that can occur in any order.
Step-2. Next, for each pair of activity names that can occur in any order, we
extract the corresponding pairs of events. Using our example above, the idea
here is to obtain two sets of pairs of events: the first set consists of all pairs of
events where A was followed by B, and the second group consists of all event
pairs where B was followed by A.
Step-3. Finally, we obtain some statistical summary of those two groups. The
intended statistical summary includes information such as the proportion of cases
of usual vs. unusual temporal ordering and the frequency of each pair of events.

126 R. Andrews et al.

This statistical summary information is then presented to the user to determine
if it is an acceptable deviance or if it is an event log quality issue.

Algorithm 2. DetectInadvertentTimeTravel

input : event log L
output: S(A||B)
begin

/∗ Step-1 : A|| is a set of activity names that can occur in any order ∗/
A|| ← findParallelEventPairs(L).

S(A||B) ← ∅ /∗ Initialise the return value ∗/
foreach (a, b) ∈ A|| do

/∗ Step-2 : L(a||b) and L(b||a) are the corresponding sets of pairs of events with

activities that can occur in any order ∗/
Let L(a||b) = {(e, e′) ∈ L × L | ∃(a,b)∈A|| : act(e) = a ∧ act(e′) = b}
Let L(b||a) = {(e, e′) ∈ L × L | ∃(a,b)∈A|| : act(e) = b ∧ act(e′) = a}
/∗ Step-3 : Calculate the statistical summary ∗/
StatSumm(a||b) ← getStatSummary(L(a||b))
StatSumm(b||a) ← getStatSummary(L(b||a))
S(A||B) ← S(A||B) ∪ {StatSumm(a||b)} ∪ {StatSumm(b||a)}

4.4 Synonymous Labels

This pattern manifests as the existence of multiple values of a particular attribute
that seem to share a similar meaning but are nevertheless, distinct. For example,
Fig. 5 shows a snippet of a log with this imperfection pattern: the activities
Medical Assign and DrSeen refer to the activity of consulting a medical doctor.
However, the labels (or names) given to the activity are different.

Fig. 5. Example of synonymous labels

This log imperfection pattern may
arise when an event log is constructed
from multiple source logs, each of
which represents the same process,
but uses a different label to represent
essentially the same process step. The
existence of multiple names for the
same attribute creates ambiguity in
an event log. As such, this imperfec-
tion pattern is a manifestation of the
I22 - Imprecise data: event attributes
quality issue.

Detection Strategy: The main idea is to discover the existence of pairs of
activities that never occur together within the same case. Using the example
above, the underlying assumption is that some cases were recorded in one par-
ticular system using the activity name Medical Assign while other cases were
recorded in another system using the activity name DrSeen. Then, we examine

Towards Event Log Querying for Data Quality 127

Algorithm 3. DetectSynonymousLabels

Input : event log L
Output: {Asynonymous}
begin

/∗ Step-1 : A# is a set of activity names that are in conflict ∗/
A# ← findConflictPairs(L) is a set consisting of pairs of events with
conflict relation.

Asynonymous ← NULL /∗ Initialise the return value ∗/
foreach (a, b) ∈ A# do

/∗ Step-2 : Obtain the corresponding events for each pair of activity names that are

in conflict ∗/
Let L#a = {e ∈ L | ∃(a,b)∈A# : act(e) = a }
Let L#b = {e ∈ L | ∃(a,b)∈A# : act(e) = b }
/∗ Step-3 : Obtain the context variable and check for similarity of the context

variables ∗/
Ccontext(a) = getContextVariables(L#a, L)
Ccontext(b) = getContextVariables(L#b, L)
if Ccontext(a) ≈ Ccontext(b) then

Asynonymous ← Asynonymous ∪ (a, b)

the contextual variables surrounding this pair of activity names. Contextual vari-
ables include the surrounding activity names preceding, succeeding, or running
in parallel with the activity name being examined. If the contextual variables
are similar, then this pair of activity names may be candidate for synonymous
label. An outline of our detection strategy is as follows.
Step-1. The first step in our detection strategy is to identify those activity labels
that never occur together within the same case, across all cases seen in the event
log. When two activity labels never occur together within the same case, we call
these activity labels to be in conflict. By examining the whole event log, we will
get a list of pairs of activity names that are in conflict.
Step-2. Next, for each pair of activity names that are in conflict, we extract
the corresponding contextual variables as explained above. To do so, we need
to extract two groups of events: each group consists of all events whose activity
names is the same as one of those activity names in conflict. Using our example
above, the first group of events will be those events whose activity names are
equal to Medical Assign, while the other group consists of all events with activity
name DrSeen.
Step-3. For each group of events extracted in the previous step, we obtain the
contextual variables and then compare them to see if they are similar. Using the
example above, if the contextual variables between the activity names DrSeen
and Medical Assign are similar enough, we store this pair of activity names into
a list to be presented to users for determination.

128 R. Andrews et al.

4.5 Homonymous Labels

This pattern manifests as the existence of an activity name being repeated mul-
tiple times within a case (i.e. the same activity name applied to each occurrence
of the activity), but the interpretation of the activity, from a process perspective,
differs across the various occurrences. For example, in Fig. 6, the activity name
Triage Assessment occurred multiple times within the same case. The second and
third occurrences happened roughly 7 days after the first. From a process per-
spective, the first occurrence referred to an actual triage activity of a patient,
while the second and third occurrences referred to a doctor reviewing the triag-
ing decision made earlier (it is impossible to be triaged again after a patient
has been discharged from the hospital). This log imperfection pattern may arise

Fig. 6. Example of homonymous labels

when the original logging or the sub-
sequent event log extraction does not
record the context information neces-
sary to distinguish between the dif-
ferent occurrences of the activity. For
instance, in our example, the first
triage activity activity should have
been further qualified by using the name Triage - Initial, while the second and
third should be further qualified by using the name Triage - Review. The occur-
rence of this log imperfection pattern makes certain activity names too coarse to
reflect the different connotations associated with the recorded events. As such,
this is a manifestation of the I12 - Imprecise data: activity name data quality
issue.

Detection Strategy: A homonymous label pattern manifests itself as the occur-
rence of an activity name at rather ‘odd’ places within a case, e.g. the occurrence
of a triage activity after the patient was discharged (in the example above). In
other words, similar to the Inadvertent Time Travel pattern, the first detec-
tion step is thus to discover the existence of pairs of activities, within the same
case, with ‘unusual’ temporal ordering. Next, from those pairs of activities with
unusual temporal ordering, we identify those activities that are repeated at least
twice within the same case (a homonymous label pattern will only be seen if the
activity is repeated). Finally, for each activity that is repeated, we obtain the
contextual variable to identify if we see one or more distinct contextual variables.
We then present the contextual variables along with the activity names to users
to determine if there is a homonymous label pattern in the log. An outline of
our detection strategy is as follows.
Step-1. As explained above, the first step in our detection strategy is to identify
those pairs of activity names with unusual temporal ordering. As explained in
the detection of Inadvertent Time Travel pattern, we can identify such pairs of
activity names by extracting those pairs of activities that happened in any order.
Step-2. The logic behind this step is similar to Step-2 of the Inadvertent Time
Travel pattern: for each pair of activity names that can occur in any order, we
extract the corresponding pairs of events.

Towards Event Log Querying for Data Quality 129

Step-3. Next, for each pair of activities that can occur in any order, we extract
those duplicated activity names within a case. This step is needed to narrow
down the list of potential homonymous activity labels for further examination.
As explained above, homonymous label pattern exists for an activity name that
occurs at least twice within a case.
Step-4. Finally, for the set of duplicated activity names extracted from Step-3,
we obtain the contextual variables for each occurrence of this activity name. We
then return the set of contextual variables for each duplicated activity name from
Step-3 to users to determine the existence of the homonymous label pattern.

5 Towards Required Capabilities for QUELI

By presenting detection strategies for a number of event log imperfection pat-
terns we have shown that interacting with event log data in a way that enables
the detection of data quality issues is often non-trivial. Rather than expecting
users to manually apply these strategies to their data sets it would be useful to
provide them with “building blocks” that they can use to apply these strategies

Algorithm 4. DetectHomonymousLabels

Input : event log L
Output: Ncontext

begin
/∗ Step-1 : A|| is a set of activity names that can occur in any order ∗/
A|| ← findParallelEventPairs(L).

/∗ Step-2 : L(a||b) and L(b||a) are the corresponding sets of pairs of events for all

activities that can occur in any order ∗/
L(a||b) ← ∅
L(b||a) ← ∅
foreach (a, b) ∈ A|| do

Let L(a||b) = {(e, e′) ∈ L × L | ∃(a,b)∈A|| : act(e) = a ∧ act(e′) = b}
Let L(b||a) = {(e, e′) ∈ L × L | ∃(a,b)∈A|| : act(e) = b ∧ act(e′) = a}
L(a||b) ← L(a||b) ∪ L(a||b)
L(a||b) ← L(a||b) ∪ L(b||a)

/∗ Step-3 : Identify duplicated activity names in a case. The set Acandidates consists of all

activity names that can be duplicated within a case. ∗/
Acandidates = getDuplicateNames(L(a||b), L(b||a))

/∗ Initialise the return value ∗/
N(context) ← ∅
foreach a ∈ Acandidates do

/∗ Step-4 : Extract the contextual variables. ∗/
Lcandidates = { e ∈ L | e.act = a }
Ccontext(a) ← getContextVariables(Lcandidates, L)
Ncontext ← Ncontext ∪ (a, Ncontext(a))

130 R. Andrews et al.

through querying. Our detection strategies already show reoccurring operations
and data structures used in the detection. In Table 3 we aggregate the primi-
tives used in the presented detection strategies, generalise them, and show which
primitives are relevant to detecting more than one pattern in order to identify
some potential “building blocks”.

Table 3. Aggregated primitives to detect log imperfection patterns [29]

Primitive: findSimultaneousEvents(L, Δt)

Relates to: Form-based Event Capture, Collateral Events

Primitive: getOneSetElement(D)

Relates to: Form-based Event Capture, Collateral Events

Primitive: findRelationshipPairs(L,[||, #, <, >])

Relates to: Inadvertent Time Travel, Synonymous Label, Homonymous Label

Generalisation: We combine findParallelEventPairs(L) and
findConflictPairs(L) and anticipate the need to extract direct-follow and
direct-precede relations

Primitive: getActLabels(L,A ⊆ A, δ(L))

Relates to: Form-based Event Capture, Collateral Events

Primitive: getStatSummary(L, L)

Relates to: Inadvertent Time Travel, Homonymous Label

Primitive: getContextVariables(a ∈ A,L)

Relates to: Synonomous Label, Homonymous Label

Primitive: getDuplicateNames(L, L)

Relates to: Homonymous Label

On a higher level, we can summarise that, to apply the presented detection
strategies, a mixture of high-level language features are required. These are (i)
support for selection/projection of data, (ii) support for aggregation of results,
(iii) support for set-operations, (iv) support for loops, and (v) support for event-
relations (e.g. parallel, conflict) (see Table 4). In the following we show that
the required high-level language features are not supported by any single query
language. As at least one of the referenced languages is Turing complete and
can therefore theoretically perform any operation that can be defined as an
algorithm, we more specifically check for direct support. We define direct support
for a primitive as the availability of parameterised function calls, so that the
query can be performed without writing procedural code. An example of such a
parameterised operator for filtering events in a log is the WHERE clause in an
SQL statement.

The getActLabel() primitive returns activity labels associated with events.
Hence, this primitive requires selection (to identify events) and projection (to
return the activity label attribute values) functionality. All query languages sup-
port this functionality. All our proposed detection algorithms make use of set

Towards Event Log Querying for Data Quality 131

operations. As a set-based language, SQL provides support for set operations.
PIQL supports querying the numbers of process or task instances and is therefore
not able to provide the actual sets of event (tasks) as required for our primi-
tives. The getStatSummary() primitive returns aggregates of low-level data. SQL
provides support for aggregation through the GROUP BY clause and built-in
functions such as MIN(), MAX(), AVG(). XSLT is Turing complete and should
therefore in theory be able to provide support for all our primitives, however,
aggregations are, in fact, not well supported and are practically infeasible. All our
detection algorithms involve some form of repetition, generally count-controlled,
with two algorithms (Form-based Event Capture and Collateral Events) requir-
ing condition-controlled iteration. Only XSLT provides direct support for both
forms of repetition, DAPOQ supports only count-controlled repetition, while
the other languages do not support either form of repetition. The findRelation-
shipPairs() primitive requires identifying relationships between pairs of events.
While this is possible in a language such as SQL, the query is complex and, using
only standard SQL features, requires manual specification of pairs of events and
relationship type. Hence, it is not reasonable to conclude that SQL provides
direct support for this primitive. Only FPSPARQL, through its notion of paths,
provides direct support for this primitive.

Table 4. High-level features required for application of detection strategies

Features SQL FPSPARQL DAPOQ PIQL XSLT

Support for selection/projection of
data Relates to: getActLabels()

Y Y Y Y Y

Support for set-operations
Relates to: All strategies

Y Y Y N N

Support for aggregation of results
Relates to: getStatSummary()

Y Y N Y N

Support for repetition
Relates to: Form-based Event
Capture, Collateral Events

N N N N Y

Support for event-relations
Relates to: findRelationshipPairs()

N Y N N N

6 Conclusion

This work was motivated by our experiences in data preparation for multiple
process mining case studies. For each study, the objective was to construct event
logs with the highest possible data quality. Often, the starting point was source
log(s) (i) drawn from non-process aware information systems, (ii) all of which
exhibited a mixture of the issues described in [9,21,29] and (iii) required the

132 R. Andrews et al.

use of multiple off-the-shelf tools and, sometimes, custom-developed software to
identify and rectify quality issues (with the associated save, open, save-as dif-
ferent format, import operations to move from one environment to the next).
In this paper we have outlined an approach that identified a small set of func-
tion primitives for detecting a range of data quality issues commonly found in
event logs, viz. log imperfection patterns. We note that, unsurprisingly, none of
the tools or query languages we considered provide direct support for all of
the functional requirements we derived. The detection strategies and algorithms
provided in this paper meet our aim of providing guidance to process analysts
in detecting the log imperfection patterns and form the basis of future work in
implementing the primitives in QUELI.

Acknowledgement. The contributions to this paper of Robert Andrews and Chun
Ouyang were supported through ARC Discovery Grant DP150103356.

References

1. ISO/IEC 25010:2011: Systems and software engineering - Systems and software
product Quality Requirements and Evaluation (SQuaRE) - System and software
quality models (2011)

2. van der Aalst, W., et al.: Process mining manifesto. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 169–194. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28108-2 19

3. van der Aalst, W.: Process Mining: Discovery Conformance and Enhancement of
Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-19345-3

4. Batini, C., Palmonari, M., Viscusi, G.: Opening the closed world: a survey of infor-
mation quality research in the wild. In: Floridi, L., Illari, P. (eds.) The Philosophy
of Information Quality. SL, vol. 358, pp. 43–73. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-07121-3 4

5. Batini, C., Scannapieco, M.: Data Quality: Concepts, Methodologies and Tech-
niques. Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-33173-5

6. Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R.: Scalable graph-based
OLAP analytics over process execution data. Distrib. Parallel Datab. 34(3), 379–
423 (2016)

7. Beheshti, S.-M.-R., Benatallah, B., Motahari-Nezhad, H.R., Sakr, S.: A query lan-
guage for analyzing business processes execution. In: Rinderle-Ma, S., Toumani,
F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 281–297. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23059-2 22

8. Jagadeesh Chandra Bose, R.P., van der Aalst, W.M.P.: Abstractions in process
mining: a taxonomy of patterns. In: Dayal, U., Eder, J., Koehler, J., Reijers,
H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 159–175. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03848-8 12

9. Jagadeesh Chandra Bose, R.P., Mans, R.S., van der Aalst, W.M.: Wanna improve
process mining results? CIDM 2013, 127–134 (2013)

10. Christen, P.: Data Matching: Concepts and Techniques for Record Linkage, Entity
Resolution, and Duplicate Detection. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31164-2

https://doi.org/10.1007/978-3-642-28108-2_19
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-319-07121-3_4
https://doi.org/10.1007/978-3-319-07121-3_4
https://doi.org/10.1007/3-540-33173-5
https://doi.org/10.1007/978-3-642-23059-2_22
https://doi.org/10.1007/978-3-642-03848-8_12
https://doi.org/10.1007/978-3-642-31164-2
https://doi.org/10.1007/978-3-642-31164-2

Towards Event Log Querying for Data Quality 133

11. CrowdFlower: 2017 Data Scientist Report (2017). https://visit.crowdflower.com.
Accessed 25 July 2018

12. Dijkman, R., Gao, J., Grefen, P., ter Hofstede, A.: Relational algebra for in-
database process mining. arXiv preprint arXiv:1706.08259 (2017)

13. Dixit, P.M., et al.: Detection and interactive repair of event ordering imperfec-
tion in process logs. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol.
10816, pp. 274–290. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91563-0 17

14. Durand, J., Cho, H., Moberg, D., Woo, J.: XTemp: event-driven testing and mon-
itoring of business processes. In: Proceedings of Balisage, The Markup Conference
2011, vol. 7. Balisage Series on Markup Technologies (2011)

15. Günther, C.W., Rozinat, A.: Disco: discover your processes. BPM (Demos) 940,
40–44 (2012)

16. Laranjeiro, N., Soydemir, S.N., Bernardino, J.: A survey on data quality: classifying
poor data. In: PRDC 2015, pp. 179–188. IEEE (2015)

17. Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs.
In: Ceravolo, P., Russo, B., Accorsi, R. (eds.) SIMPDA 2014. LNBIP, vol. 237, pp.
1–31. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-27243-6 1

18. Lohr, S.: For big-data scientists, ‘janitor work’ is key hurdle to insights. New York
Times, 17 August 2014

19. Lu, X., et al.: Semi-supervised log pattern detection and exploration using event
concurrence and contextual information. In: Panetto, H., et al. (eds.) OTM On
the Move to Meaningful Internet Systems, pp. 154–174. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-69462-7 11

20. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint,
P.J.: From low-level events to activities - a pattern-based approach. In: La Rosa,
M., Loos, P., Pastor, O. (eds.) BPM 2016. LNCS, vol. 9850, pp. 125–141. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-45348-4 8

21. Mans, R.S., van der Aalst, W.M., Vanwersch, R., Moleman, A.: Process Support
and Knowledge Representation in Health Care. LNCS, vol. 7738, pp. 140–153.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36438-9

22. González López de Murillas, E., Reijers, H.A., van der Aalst, W.M.P.: Everything
you always wanted to know about your process, but did not know how to ask.
In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 296–309.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7 22

23. Perez-Alvarez, J.M., Gomez-Lopez, M.T., Parody, L., Gasca, R.M.: Process
instance query language to include process performance indicators in DMN. In:
EDOCW 2016, pp. 1–8. IEEE (2016)

24. Prud‘hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C rec-
ommendation, January 2008 (2008)

25. Schönig, S., Rogge-Solti, A., Cabanillas, C., Jablonski, S., Mendling, J.: Efficient
and customisable declarative process mining with SQL. In: Nurcan, S., Soffer, P.,
Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 290–305. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39696-5 18

26. Shabani, S., et al.: Relational XES: data management for process mining. In:
CAiSE 2015. CEUR-WS. org (2015)

27. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges.
IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)

28. Strong, D.M., Lee, Y.W., Wang, R.Y.: Data quality in context. Commun. ACM
40(5), 103–110 (1997)

https://visit.crowdflower.com
http://arxiv.org/abs/1706.08259
https://doi.org/10.1007/978-3-319-91563-0_17
https://doi.org/10.1007/978-3-319-91563-0_17
https://doi.org/10.1007/978-3-319-27243-6_1
https://doi.org/10.1007/978-3-319-69462-7_11
https://doi.org/10.1007/978-3-319-45348-4_8
https://doi.org/10.1007/978-3-642-36438-9
https://doi.org/10.1007/978-3-319-58457-7_22
https://doi.org/10.1007/978-3-319-39696-5_18

134 R. Andrews et al.

29. Suriadi, S., Andrews, R., ter Hofstede, A., Wynn, M.: Event log imperfection pat-
terns for process mining: towards a systematic approach to cleaning event logs. Inf.
Syst. 64, 132–150 (2017)

30. Suriadi, S., Wynn, M.T., Ouyang, C., ter Hofstede, A.H.M., van Dijk, N.J.: Under-
standing process behaviours in a large insurance company in australia: a case study.
In: Salinesi, C., Norrie, M.C., Pastor, Ó. (eds.) CAiSE 2013. LNCS, vol. 7908, pp.
449–464. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38709-
8 29

31. Vázquez-Barreiros, B., Mucientes, M., Lama, M.: Mining duplicate tasks from
discovered processes. In: ATAED@ Petri Nets/ACSD, pp. 78–82 (2015)

32. Verhulst, R.: Evaluating quality of event data within event logs: an extensible
framework. Ph.D. thesis, Technische Universiteit Eindhoven (2016)

33. Wand, Y., Wang, R.Y.: Anchoring data quality dimensions in ontological founda-
tions. Commun. ACM 39(11), 86–95 (1996)

34. Wang, R.Y., Storey, V., Firth, C.: A framework for analysis of data quality research.
IEEE Trans. Knowl. Data Eng. 7(4), 623–640 (1995)

https://doi.org/10.1007/978-3-642-38709-8_29
https://doi.org/10.1007/978-3-642-38709-8_29

	Towards Event Log Querying for Data Quality
	1 Introduction
	2 Background and Related Work
	2.1 Related Work

	3 Approach
	4 Detection Strategies for Log Imperfection Patterns
	4.1 Form-Based Event Capture
	4.2 Collateral Events
	4.3 Inadvertent Time Travel
	4.4 Synonymous Labels
	4.5 Homonymous Labels

	5 Towards Required Capabilities for QUELI
	6 Conclusion
	References

