
Formal Modelling and Verification
of Cloud Resource Allocation in Business

Processes

Ikram Garfatta1(B), Kais Klai2, Mohamed Graiet3, and Walid Gaaloul4

1 Faculty of Sciences, University of Monastir, Monastir, Tunisia
ikram.garfatta@gmail.com

2 LIPN, CNRS UMR 7030, University of Paris 13, Villetaneuse, France
kais.klai@lipn.univ-paris13.fr

3 ISIMM, Universiy of Monastir, Monastir, Tunisia
mohamed.graiet@imag.fr

4 Telecom SudParis, UMR 5157 Samovar, University of Paris-Saclay, Paris, France
walid.gaaloul@telecom-sudparis.eu

Abstract. Cloud environments have been increasingly used by com-
panies for deploying and executing business processes to enhance their
performance while lowering the operating cost. Nevertheless, the combi-
nation of business processes and Cloud environments is a field that needs
to be further studied since it lacks an explicit and formal description of
the resource perspective in the existing business processes and especially
of Cloud-related properties, namely vertical/horizontal elasticity. There-
fore, this field cannot yet fully benefit of what Cloud environments can
offer. Besides the lack in formalization, there is also a need for a verifi-
cation method to check the correctness of allocations. In fact, without
formal verification, the designer can easily model erroneous allocations
which lead to runtime errors if left untreated at design-time. In this work,
we address the above shortcomings by proposing a formal model for
the Cloud resource perspective in business processes using the Coloured
Petri net formalism, which can be used to check the correctness of Cloud
resource allocation at design-time.

Keywords: Business Process Models · Formal verification
Cloud resources · Elasticity · Coloured Petri net

1 Introduction

Finding the right compromise between the best performance and the lowest cost
has always been sought by enterprises that deal with Business Process Man-
agement Systems. Combining BPM with Cloud environments has proved to be
of great benefit for such enterprises in their quest, especially considering that
properties such as elasticity and shareability are at the very essence of the defi-
nition of Cloud Computing. Researchers have been investigating the possibilities
c© Springer Nature Switzerland AG 2018
H. Panetto et al. (Eds.): OTM 2018 Conferences, LNCS 11229, pp. 552–567, 2018.
https://doi.org/10.1007/978-3-030-02610-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02610-3_31&domain=pdf


Formal Modelling and Verification of Cloud Resource Allocation 553

of hosting entire Business Processes in the Cloud, going to the extent of propos-
ing the Business Process as a Service (BPaaS) as a new service model that takes
part in the Cloud computing paradigm [23].

On the other hand, the resource perspective in BPM has caught the interest
of researchers since many activities may require certain resources for their proper
execution. Many studies have dealt with the human resources management [6,7],
but non-human resources, especially Cloud resources, were seldom considered.

Taking advantage of Cloud resources, however, is not only achieved by imple-
menting the whole Business Process on the Cloud. A Business Process (BP) can
use resources managed by a Cloud provider without having to be part of that
Cloud environment. The communication between the BP and the Cloud provider
has to be well defined for the interaction to be flawless. In an effort to outline
this relationship between the two domains, a first attempt was made in [10]. The
idea was to extend the Business Process Model to include configurable Cloud
resources allocation. The extension comprises three operators essentially, which
are designed to define the way the Cloud provider assigns the resources to the
process activities taking into account both the elasticity and shareability con-
cepts, and emphasizing on the type and capacity of the required resources. These
proposed operators, though designed to deal with configurable allocations, can
also be used for non-configurable ones if we consider them after configuration.
Despite the visual representation it offers, this proposition remains unverified and
lacking formalism. In fact, the interaction between the Business Process and the
Cloud resources provider, however intuitive it may seem, is a very intricate task.
Thus, using the operators in [10] can easily result into faulty allocations. For
instance, two activities may request the same resource to consume at the same
time with a total required capacity that exceeds the capacity the resource can
provide. This allocation, though representable using the operators in [10], is a
situation that ought to be avoided.

To be able to avoid unsound allocations, a verification method needs to be
applied at design time to insure a correct behaviour at runtime. To achieve
this goal, we propose a formal model to represent the Cloud resource allocation
mechanism in BP models, using Coloured Petri Nets [12]. Having formalized the
allocation aspect, we are then able to verify essential structural and behavioural
properties by formally analysing and verifying the model.

The remainder of this paper is organized as follows: the related work is pre-
sented in Sect. 2. Section 3 introduces basic concepts used in the other sections
and our proposed model is detailed in Sect. 4. Results for a case study are pre-
sented in Sect. 5. Finally, we conclude and provide insights for future work in
Sect. 6.

2 Related Work

Business processes usually include activities that need resources to carry out
their expected tasks. The required resources can be classified into two categories:
human resources which are basically the workforce needed for the execution of



554 I. Garfatta et al.

the activities, and non-human resources. In literature, more attention has been
drawn to the first category, whereas only a few researches have dealt with the
second one. Our work focuses on this disregarded category, and more precisely
on Cloud resources.

The representation of the resource perspective in the context of business pro-
cesses has been the subject of some works in literature. For example, in [18], the
authors have extended the BPMN 2.0 metamodel in order to model and visu-
alize the resource perspective requirements. This extension was however proved
to be against the workflow resource patterns [17]. This work was then followed
by the proposition of an approach [8,19] that enables the implementation of the
requirements of the resource perspective in extended BPMN models and resource
structure models into BPEL definitions in an attempt to provide a support to
the lifecycle (i.e., definition, implementation, verification and validation) of the
resource perspective requirements in the development of PAISs based on WfMSs.

Petri net has been prominently present in research dealing with the verifica-
tion of the structural aspect in business processes. This formalism was used in [1]
to define a number of workflow patterns that formalize the control flow in busi-
ness processes. Other works used Petri net to verify workflow specifications [20]
with focus on checking their soundness [21]. In [17], series of workflow resource
patterns were proposed to capture the various ways in which human resources
are represented and used in business processes. Using ordinary Petri net to for-
malize Cloud resource allocation would result in massive impractical models. We
use Coloured Petri net to get a concise and more elegant representation without
losing the benefit of formality that Petri net offers. Another asset of our CPN
model is its support for multi-tenancy. Not only does it allow the allocation of
multiple resources to one activity, it also covers the sharing of the same Cloud
resources by multiple process instances that may pertain to different processes.

Despite the research effort put into the modelling of human resource, works
that deal with non-human resources, especially Cloud resources, are still scarce
and no formal patterns have been proposed for their modelling. For instance,
an extension to BPMN was proposed in [10]. This work aimed at representing
the Cloud perspective but lacked expressivity and formality. In our work, we
present a formal model that offers a more rigorous expressiveness. In a previous
work [5], an Event-B formal specification of the Cloud resource perspective was
proposed as a step towards its validation. This work, however, does not treat the
resource management as minutely as we do in our present work by detailing the
interaction between the Cloud provider and business activities. This is probably
due to the fact that Event-B is not the most suitable language to formally
describe behavioural properties.

Cloud properties have recently been addressed in some researches in an
attempt at their modelling and analysis. A temporal logic called CLTLt(D)
(Timed Constraint LTL) was used by [4] to formalize elasticity in Cloud-based
systems. In [2], authors define a formal framework for the description and eval-
uation of service-based business processes elasticity. Elasticity mechanisms and
strategies for service-based business processes were described in [14] using Petri



Formal Modelling and Verification of Cloud Resource Allocation 555

net. An analytical model based on Markov chain was used in [24] to evalu-
ate elasticity strategies and help Cloud providers decide on which strategy to
implement. In [13] authors propose an elasticity model description language for
StratModel on which they based their framework for the evaluation of elasticity
strategies.

Although the elasticity property has been relatively recurrent in literature
when business processes are discussed in a Cloud computing context, these works
do not approach elasticity from the same point that we consider in this present
work. In fact, they all regard elasticity as a behaviour of the whole system where
this property manifests as adding/removing copies of a service or resizing its
capacity depending on the considered type of elasticity. In this paper however,
we are interested in elasticity at a lower lever, that is to say, we focus on elasticity
as the behaviour of each service that requires some Cloud resources to finish its
execution. This property concerns the made requests as they may vary from one
execution to another of the same business process, as well as it concerns the
required resources which can exhibit an elastic behaviour to satisfy the requests.

3 Preliminaries

In this section, we present essential concepts for the comprehension of this paper.

3.1 Cloud Resource Allocation in Business Processes

The allocation mechanism was treated in [11] where a resource perspective exten-
sion to BPMN was proposed. This extension allows a description of the resources
as well as their allocation management. This work was then followed by [10]
where the focus was directed on the configurable allocation of Cloud resources.
The authors considered three types of Cloud resources, namely network, stor-
age and compute resources and focused on two key properties, namely elasticity
and shareability of resources. They adopted a pattern-based modelling approach
and hence their proposition consisted of three operators mainly: the assignment,
elasticity and sharing/batching operators. The application of the said operators
allows for a customizable selection of the required resources by a business process
while taking into account their properties. Using this approach results in models
that are better in terms of expressivity than the models in which the resource
perspective had to be hard-coded, while being lower in terms of complexity.
These operators, however designed to express a configurable resource allocation,
can be used in their configured form to express a basic allocation. Since we
are not interested in our work in the configuration aspect of the allocation, we
present these operators stripped of the configuration-related notions.

The resource assignment operator can be considered as the main opera-
tor since it is the one that expresses which resources are actually allocated to
which activity. Two parameters are used in this operator, namely a type and a
range. The former basically expresses whether all of the connected resources are
assigned to the activity (type AND), only one of them is assigned to the activity



556 I. Garfatta et al.

(type XOR) or an unfixed number of the connected resources are assigned to
the activity (type OR). On the other hand, the range parameter is but a config-
uration guideline specified by the Cloud provider to additionally constraint the
minimal and maximal number of resources of each type that should be assigned
to each activity. The second operator is used to express the elasticity aspect of
a set of resources. It is used to specify the way the resources scale up and down
(vertical, horizontal or hybrid elasticity). The third and last operator deals with
the shareability of a resource. It specifies the activities allowed to share a specific
resource.

The Considered Allocation Mechanism. Although the model proposed
in [10] presents a considerable improvement compared to having the resource
allocations hard-coded in an ad-hoc manner, it still presents a number of issues.
In fact, the proposed modelling approach is informal and the operators should
be described formally. Furthermore, even though the elasticity operator is used
to set an elasticity type for each of the provided resources, it does not actually
allow the modelling of the desired behaviour rigorously. As a matter of fact,
the interaction between the Cloud resources provider and the different business
processes’ activities cannot be depicted using such operators.

In our work, we approach Cloud resource allocation in a way that is inspired
from the work in [10] and yet treats it formally and more elaborately. We pro-
pose a model that separates the Cloud provider from the requesting activities and
therefore is able to represent the interaction between the two parties. This model
allows the modelling of parallel requests as well as exclusive requests which corre-
spond to an AND- and XOR-typed assignment operator respectively. Basically,
a Cloud provider offers a number of resources. Each resource is characterized
by a type, a provided capacity and a number of provided instances. An activity
makes a request for a number of instances of some resource of a certain type indi-
cating the requested capacity. Elasticity in our work is not a mere description of
a resource property. It is considered at three different levels:

1. Elasticity at the level of the request: an elastic request is a request for a non
fixed number of resource instances that have a possibly varying capacity. In
other words, both the number of instances and their requested capacity can
vary at each execution within the range of a fixed interval.

2. Elasticity at the level of the provider: a resources administered by a Cloud
provider can be elastic, i.e., it may have the capability of scaling-up and
down its provided capacity. It can be either horizontally or vertically elas-
tic. A horizontally elastic resource scales-up/down by creating/destroying
resource instances. A vertically elastic resource scales-up/down by increas-
ing/decreasing the capacity of its instances.
Two strategies can be considered when dealing with elasticity. The first is a
proactive strategy: the provider predicts the need to scale-up/down a resource
before the scaling becomes a necessity. This can be triggered by reaching
capacity thresholds or a certain usage percentage. The second is a reactive



Formal Modelling and Verification of Cloud Resource Allocation 557

strategy: the provider proceeds to scale-up when an elastic resource is no
longer able to satisfy an incoming request.

3. Elasticity at the level of the requester: an activity’s needs may vary during
the execution of the process, and consequently, it can choose to ask for more
or less resources at runtime.

3.2 Coloured Petri Net

Petri nets have proven to be one of the best formalisms to model and analyse
concurrent systems. Nevertheless, the basic Petri net model is not suitable for the
modelling of many systems encountered in IT. In fact, trying to describe a real
system using Petri nets usually results in a very large and complex model that
may even be inaccurate. Moreover, the tokens in a Petri net are often mapped
into objects or resources in the modelled system. However, a simple Petri net
token does not make a suitable representation for an object with attributes. To
solve these problems many authors propose extensions of the basic Petri net
model. Several authors have extended the basic Petri net model with coloured
or typed tokens [22] which have values. A large Petri net model can therefore be
represented in a much more compact and manageable manner using a Coloured
Petri net.

Coloured Petri Nets (CP-nets or CPNs) [12] is a graphical language designed
to construct models of concurrent systems and analyse their properties. It com-
bines the capabilities of Petri nets, which serve as basis for the graphical nota-
tion, with the capabilities of the programming language CPN ML, which is based
on the high-level functional programming language Standard ML [15], to define
data types. CP-nets are generally used to model systems where concurrency and
communication are key characteristics, such as business processes and workflows.

We refer the reader to [12] for a formal definition of Coloured Petri nets.

4 A Coloured Petri Net Formal Modelling of Cloud
Resource Allocation in BP

In this section, we detail the provider’s and requester’s sub-models separately
while highlighting the way we represent elasticity at its different levels. Then we
explain the way our model can be integrated with the BP’s control flow model.

4.1 Overview of the Model

In this work, we propose a coloured Petri net model to represent the cloud
resources perspective in BPs. As shown in Fig. 1, our model separates the
requester from the provider, resulting in two sub-models communicating asyn-
chronously through three buffers: buffer request, buffer response and buffer
release.



558 I. Garfatta et al.

Requester Provider

buffer_release

REQUESTS

buffer_release

REQUESTS

buffer_request

REQUESTS

buffer_request

REQUESTS

buffer_response

RESPONSE

buffer_response

RESPONSE

Fig. 1. Global view on the model

Colour Sets. To be able to represent the specific aspects of Cloud resource
allocation, we create the following main colour sets which we use in our model:

– idp: an integer representing the process identifier.
– idi: an integer representing the process’s instance identifier.
– id: a couple (p: idp, i: idi) to identify a unique process instance.
– ida: an integer representing the activity’s instance identifier.
– idr: an integer representing the resource identifier.
– restype: an enumeration to specify the type of a resource (a compute, storage

or network resource).
– capacity: an integer representing the capacity of a resource.
– instnumber: an integer representing the number of instances of a resource.
– elasticity: an enumeration to specify the type of resource elasticity (none,

vertical or horizontal).
– instance: a couple (cap: capacity, inb: instnumber) to represent the number

of resource instances with a capacity cap.
– resource: an octuple (r: idr, t: restype, init cap: capacity, init inst:

instnumber, total cap: capacity, total inst: instnumber, inst list: list
(instance), el: elasticity) where init cap is the resource instances initial
capacity, init inst is the initial number of provided resource instances,
total cap is the total provided capacity, total inst is the total number of
provided instances, inst list is a list of the resource’s instances and el is the
resource’s elasticity type.

– demand: an octuple (r: idr, t: restype, inst min: instnumber, inst max:
instnumber, inst: instnumber, cap min: capacity, cap max: capacity, cap:
capacity) where inst min and inst max are the lower and upper bounds
of the possible number of requested instances, inst is the actual number of
requested instances, cap min and cap max are the lower and upper bounds
of the possible requested capacity and cap is the actual requested capacity.

– request: a couple (a: ida, ld: list demand) where ida identifies the requesting
activity and list demand specifies a set of requested resources.

– requests: a couple (i: id, req: request) where id identifies the process as
well as the instance and request is a list of requested resources by a specific
activity.

– response: a couple (reqs: requests, b: bool) indicating whether a certain
request has been satisfied.



Formal Modelling and Verification of Cloud Resource Allocation 559

For the sake of simplifying the expressions used in our model later on, we denote
by lR the list of resource identifiers of the elements of a list of resources l.

4.2 The Provider’s Sub-model

Upon the reception of a request, and depending on the availability of resources,
the provider either allocates the requested resources to the requesting activity or
sends back a response indicating the rejection of the request. Upon the release of
resources, the provider takes them back into consideration as available resources.

We propose the model in Fig. 2 to represent the behaviour of the provider.

Fig. 2. The provider’s model with reactive elasticity

The presence of a request in the buffer request enables the receive transition.
If that request is satisfiable (enough resources are available in the place resource)
a positive response is deposited in the buffer response and the provided resources
are updated accordingly through the Accept(X, req) function (the requested
number of instances is subtracted from the corresponding resource’s provided
instances), otherwise if the request is unsatisfiable (not enough instances avail-
able of some non elastic requested resource) a negative response is sent through
the buffer response. The case where resources need to be duplicated for the
request to become satisfiable (i.e., reactive elasticity) is treated through the
duplicate transition.

Released resources are communicated via the buffer release. The firing of
the release transition updates the values of the the corresponding resource from
the resources place by adding the released resource’s instances to the provided
resource’s instances list.



560 I. Garfatta et al.

Proactive Elasticity for the Provider’s Sub-model. As previously men-
tioned in Sect. 3.1, a Cloud provider may consider a proactive strategy to manage
the elasticity of its resources. To do so, the model in Fig. 3 needs to be composed
with the one in Fig. 2 by merging the resources place of the two models. Condi-
tions 1 to 4 are used to trigger the duplication/consolidation actions. Transitions
duplicateH and consolidateH are responsible for the management of horizon-
tally elastic resources. Transitions duplicateV and consolidateV are responsible
for the management of vertically elastic resources.

resources duplicateH

duplicateH(res)

res

[condition1]

consolidateH

consolidateH(res)

res

[condition2]

duplicateV

consolidateV

duplicateV(res) res

res
consolidateV(res)

[condition3]

[condition4]

Fig. 3. Proactive elasticity for the provider

4.3 The Requester’s Sub-model for Parallel Requests

In need of resources to accomplish its task, an activity sends a request to the
provider indicating the type of resources it needs as well as the number of
instances and capacity required. If it gets a positive response for all the requested
resources, the activity proceeds to execute and releases those resources upon
completion. Otherwise, the activity fails to execute. This behaviour corresponds
to the use of the assignment operator with its type parameter set to AND.

requestREQs (id,req)

REQUESTS

buffer_request

REQUESTS

buffer_request

REQUESTS

buffer_release

REQUESTS

buffer_release

p1(id,req)

execute

fail

(id,req)

(id,req)

p2 end

final
buffer_response RESPONSE

RESPONSE

RESPONSE

((id,req),true) ((id,req),true) ((id,req),true)

((id,req),false)

REQUESTS REQUESTS
(id,req) ((id,req),true)

((id,req),false)

(id,req)

Fig. 4. The requester’s model for parallel requests



Formal Modelling and Verification of Cloud Resource Allocation 561

We propose the model in Fig. 4 to represent the behaviour of the requester
when making a demand for multiple resources. In order to request some
resources, the task has to go through a three-step procedure:

1. announce its request to the provider (the blue arc) via buffer request and
wait for its response;

2. start its execution and consume the acquired resources (the green arc) as soon
as a positive response to the request is available in buffer response;

3. and lastly release those resources (the purple arc) through buffer release and
finish its execution successfully.

In case the request had not been met (a corresponding negative response is
present in buffer response), the task fails (the red arc), and skips to a final state
that indicates its failure. We note that we use lists to represent a request for
multiple resources. It is worth mentioning that to model the assignment of a
single resource, we simply use lists containing one element.

4.4 The Requester’s Sub-model for an Exclusive Choice of Requests

An activity may need to make an exclusive choice between a number of requests
and leave the decision for runtime. This behaviour corresponds to the one
expressed by the assignment operator with an XOR type.

To model this using CPN, we propose the model in Fig. 5. This model is
similar to the previous one, with the few following changes: the place REQs
and transition request are duplicated as many times as the number of exclusive
requests. A place pXOR is added to make sure that only one request transition
is fired, and therefore only one request is made at runtime.

request1REQs1 (id,req)

REQUESTS

buffer_request

REQUESTS

buffer_request

REQUESTS

buffer_release

REQUESTS

buffer_release

p1(id,req)

execute

fail

(id,req)

(id,req)

p2 end

final
buffer_response RESPONSE

RESPONSE

RESPONSE

((id,req),true) ((id,req),true) ((id,req),true)

((id,req),false)

REQUESTS REQUESTS
(id,req)

((id,req),true)

((id,req),false)

(id,req)

REQs2

REQUESTS

request2 (id,req)

(id,req)

(id,req)

pXOR

Fig. 5. The requester’s model for requests with an exclusive choice

The Requester’s Sub-model with Support for Elasticity. As previously
mentioned in Sect. 3.1, a requester may need more or less resources than it had
already requested. To be able to represent this behaviour, an elasticity mech-
anism that allows a requester to update its request just before its execution



562 I. Garfatta et al.

needs to be implemented. Figure 6 shows the model we propose to support such
a property. To avoid a more complex model, we use req3 to refer to a request
smaller than the initial request req and (req + req2) to refer to a request larger
than the initial request req.

requestREQs (id,req)

REQUESTS

buffer_request

REQUESTS

buffer_request

REQUESTS

buffer_release

REQUESTS

buffer_release

p1(id,req)

execute

fail

(id,req)

(id,req)

p3 end

finalbuffer_response

RESPONSE

RESPONSE

RESPONSE

((id,req),true) ((id,req),true)

((id,req),true)

((id,req),false)

REQUESTS REQUESTS

(id,req)
((id,req),true)

((id,req),false)

(id,req)

Ask for 
more

(id,req)

((id,req),true)

p5(id,req2)

p4(id,req) OK

(id,req2)

(id,req) KO

(id,req)

Ask for 
less(id,req) p2(id,req)

Ask for 
less1

Ask for 
less2

(id,req)

(id,req)

((id,req),false)

((id,req),true)

(id,req3)

(id,req3)

(id,req-req3)

((id,req3),true)

((id,req2),true)

((id,req+req2),true)

(id,req2)

((id,req2),false)

(id,req)

(id,req3)

REQUESTS

REQUESTS

REQUESTS

Fig. 6. The requester’s model for requests with support for elasticity

4.5 Composing the Control Flow and the Resource Perspective

As soon as knowledge of resource requests is provided, the pattern for the
requester is duplicated and the following steps are performed to create the link
between the control flow model and that of the requester:

1. A token representing resource requests coming from the requesting activity of
the process instance in question is placed in REQs. If an exclusive choice is
required for these requests, each demand is placed in a separate REQs place
following the requester’s model for requests with an exclusive choice.

2. The request transition is merged with the transition representing the activity
after which the requests are made known. In case the requests are made at
the beginning of the process (i.e., before any activity has started) the request
transition is placed after the start place along with an additional place to
maintain the correct structure of the Petri net. In case of exclusive choice, as
many request transitions as the number of exclusive requests are created.

3. A place typed request is added between the newly created transition in step
2 and the transition of the requesting activity with the corresponding request
inscribed on both its in and out arcs. In the case of an exclusive choice, this
is done for each request transition.

4. The execute transition of the requester’s model is merged with the transition
representing the requesting activity in the control flow model.



Formal Modelling and Verification of Cloud Resource Allocation 563

It is worth mentioning that our proposed model supports multi-tenancy at
multiple levels. As a matter of fact, it allows the modelling of multiple resources
used by a single activity. Besides, it allows the modelling of, not only mul-
tiple processes but also multiple instances, sharing the same pool of Cloud
resources. This is achieved by using the same provider model composed with
multiple requester models pertaining to different activities of different processes’
instances.

5 Evaluation

In order to evaluate our work, we established the corresponding model for a case
study from France Telecom/Orange labs [3] which, due to the lack of space, we
thoroughly present on our web page1.

5.1 Case Study

The model of our case study has been implemented and validated using CPN
Tools which offer a palette to analyse the net’s state space. In this section we
discuss some of the results indicated by the resulting state space analysis report.
The full CPN model along with the generated report file can be found on our
web page1 where we present our case study with different provided resources to
showcase errors detection when the allocation requests are unsatisfiable and lead
to a deadlock. In fact, the allocations’ correctness amounts to having a corre-
sponding CPN model whose dead markings correspond to final markings only.
The presence of a dead marking that does not correspond to a final marking
translates the fact that some made request is unsatisfiable and prevents a com-
plete execution of the business process. This can be deducted by inspecting the
report file of the CPN model in question.

5.2 Checking Behavioural Properties

A major strength of Petri nets is their support for the analysis of many properties
and problems associated with the modelled systems [16]. Those properties can
be classified into two categories: those which depend on the initial marking, and
those which are independent of the initial marking. The former type of properties
is referred to as marking-dependent or behavioural properties, whereas the latter
type of properties is called structural properties.

In this section, we are interested in basic behavioural properties. The prop-
erties boundedness, reversibility and liveness are independent of each other.

Boundedness. The state space report shows that all of the places of our illus-
trating example’s model are bounded. This translates the fact that the number
of tokens in every place does not exceed some finite number for any marking

1 http://www-inf.it-sudparis.eu/SIMBAD/tools/CLoudResourceBP.

http://www-inf.it-sudparis.eu/SIMBAD/tools/CLoudResourceBP


564 I. Garfatta et al.

reachable from the initial marking. We are particularly interested in the bound-
edness of the three buffer places which are shown to be bounded by the number
of initially made requests. By verifying this property, it is guaranteed that there
is no overflows in the buffers, no matter what firing sequence is taken.

Reversibility. To be able to derive this property from the model of our pro-
posed example, we use a short-circuited version of the model where we added a
transition repeat that retrieves answers from the final place and restores them
as requests in the REQs place in order to simulate a continuous flow of requests.

The state space report indicates that all of the markings are home markings
which translates the fact that for each marking M reachable from the initial
marking Mi, Mi is reachable from M . Thus, we can always get back to Mi.

Reachability. Reachability is a fundamental basis for studying the dynamic
properties of any system [16]. The reachability problem for Petri nets is the
problem of finding if a given marking M in a net (P,Mi) is reachable from the
initial marking Mi. This property can be relaxed if we are only interested in
the markings of a subset of places. In this case, we talk about a submarking
reachability problem. This problem can be defined as the problem of finding
whether M ′ is reachable from Mi, where M ′ is any marking whose restriction
to a given subset of places agrees with that of a given marking M .

In our case, it is interesting to make sure that the initial marking of the
resource perspective’s model is reachable. This is proved by the fact that all of
the markings (including the initial marking) are home markings (see Sect. 5.2).

Liveness/Deadlock-Freedom. The concept of liveness is closely related to
the complete absence of deadlocks in operating systems. In fact, a live Petri net
guarantees a deadlock-free operation, regardless of the firing sequence.

The resulting state space analysis report for our illustrating example’s model
(the short-circuited version) indicates that all of our model’s transitions are
live, which means that every transition remains fireable for any firing sequence.
Therefore we can say that the whole CPN model is live and can deduct that it is
deadlock-free. In other words, a final marking (a marked “final” place) is always
reachable. In case of a faulty allocation, this property cannot be satisfied and a
deadlock is indeed detected.

If we limit this property to the requester’s and provider’s sub-models only,
without taking into account the control flow’s sub-model, we find that it is always
satisfied which means that our model makes sure that, even if a request cannot
be satisfied and the requesting activity fails, which may result in the failure of
the whole BP, the model can still manage incoming requests from other BPs. In
other words, our proposed model supports multi-tenancy at multiple levels.



Formal Modelling and Verification of Cloud Resource Allocation 565

6 Conclusion

Business process deployment in the Cloud has been a hot topic over the last
years. The Cloud resource perspective however, has rarely been broached in the
context of BPM and the need to formalize this perspective has yet to be studied.
To address this issue, we proposed in this paper a Coloured Petri Net formal
model for Cloud resource allocation in Business Processes.

The CPN model that we propose can be manipulated to map the BPMN
extension proposed in [10]. However, we chose to represent an allocation mech-
anism that is richer and more detailed. Therefore, BPMN cannot be used to
represent the Cloud resource allocation and elasticity aspect as we treat it using
coloured Petri net in this work. From a designer’s point of view, it would be
easier to use a more business-related language than to model a business process
using Petri net. Consequently, we will be proposing in future work a BPMN
extension that includes all the relevant information needed to perform an auto-
matic transformation into our CPN model which can then be used to verify the
initial model.

This formalization that we propose is a first step towards the verification
of Cloud resource allocation in business processes. We have so far worked on
the verification of generic properties such as liveness and deadlock-freedom of
the model. In the future work, we will detail how to use our model to verify
other properties which are more specific to resource management and therefore
improve the correctness verification of the allocations at design-time. To do so,
we consider proving domain-specific properties like the shareability of Cloud
resources. Such properties and others can be expressed in LTL (Linear Temporal
Logic) and verified using tools as Helena [9] and CPN Tools.

References

1. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

2. Amziani, M., Melliti, T., Tata, S.: Formal modeling and evaluation of service-
based business process elasticity in the cloud. In: 2013 IEEE 22nd International
Workshop on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE), pp. 284–291. IEEE (2013)

3. Assy, N., Yongsiriwit, K., Gaaloul, W., Yahia, I.G.B.: A framework for semantic
telco process management - an industrial case study. In: 14th International Con-
ference on Intelligent Systems Design and Applications, ISDA 2014, 28–30 Novem-
ber 2014, Okinawa, Japan, pp. 44–49 (2014). https://doi.org/10.1109/ISDA.2014.
7066276

4. Bersani, M.M., Bianculli, D., Dustdar, S., Gambi, A., Ghezzi, C., Krstic, S.:
Towards the formalization of properties of cloud-based elastic systems. In: Pro-
ceedings of the 6th International Workshop on Principles of Engineering Service-
Oriented and Cloud Systems, pp. 38–47. ACM (2014)

5. Boubaker, S., Mammar, A., Graiet, M., Gaaloul, W.: An event-B based approach
for ensuring correct configurable business processes. In: IEEE International Con-
ference on Web Services, ICWS 2016, 27 June – 2 July 2 2016, San Francisco, CA,
USA, pp. 460–467 (2016). https://doi.org/10.1109/ICWS.2016.66

https://doi.org/10.1109/ISDA.2014.7066276
https://doi.org/10.1109/ISDA.2014.7066276
https://doi.org/10.1109/ICWS.2016.66


566 I. Garfatta et al.

6. Cabanillas, C., Knuplesch, D., Resinas, M., Reichert, M., Mendling, J., Ruiz-
Cortés, A.: RALph: a graphical notation for resource assignments in business pro-
cesses. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE 2015. LNCS,
vol. 9097, pp. 53–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19069-3 4

7. Cabanillas, C., Norta, A., Resinas, M., Mendling, J., Ruiz-Cortés, A.: Towards
process-aware cross-organizational human resource management. In: Bider, I., et al.
(eds.) BPMDS/EMMSAD -2014. LNBIP, vol. 175, pp. 79–93. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-662-43745-2 6

8. Chiotti, O., Stroppi, L.J.R., Villarreal, P.: Extending the WS-humantask architec-
ture to support the resource perspective of BPEL processes (2014)

9. Evangelista, S.: The Helena Petri net tool (2013). http://www.lipn.univ-paris13.
fr/∼evangelista/helena/

10. Hachicha, E., Assy, N., Gaaloul, W., Mendling, J.: A configurable resource alloca-
tion for multi-tenant process development in the cloud. In: Nurcan, S., Soffer, P.,
Bajec, M., Eder, J. (eds.) CAiSE 2016. LNCS, vol. 9694, pp. 558–574. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-39696-5 34

11. Hachicha, E., Gaaloul, W.: Towards resource-aware business process development
in the cloud. In: 29th IEEE International Conference on Advanced Information
Networking and Applications, AINA 2015, 24–27 March 2015, Gwangju, South
Korea, pp. 761–768 (2015)

12. Jensen, K., Kristensen, L.M.: Coloured Petri Nets: Modelling and Validation of
Concurrent Systems, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.
1007/b95112

13. Jrad, A.B., Bhiri, S., Tata, S.: STRATModel: elasticity model description language
for evaluating elasticity strategies for business processes. In: Panetto, H. (ed.) OTM
2017. LNCS, vol. 10573, pp. 448–466. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-69462-7 29

14. Klai, K., Tata, S.: Formal modeling of elastic service-based business processes. In:
2013 IEEE International Conference on Services Computing (SCC), pp. 424–431.
IEEE (2013)

15. Milner, R., Tofte, M., Harper, R.: Definition of Standard ML. MIT Press, Cam-
bridge (1990)

16. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

17. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
resource patterns: identification, representation and tool support. In: Pastor, O.,
Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005). https://doi.org/10.1007/11431855 16

18. Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: Extending BPMN 2.0: method and
tool support. In: Dijkman, R., Hofstetter, J., Koehler, J. (eds.) BPMN 2011.
LNBIP, vol. 95, pp. 59–73. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-25160-3 5

19. Stroppi, L.J.R., Chiotti, O., Villarreal, P.D.: Extended resource perspective sup-
port for BPMN and BPEL. In: CIbSE, pp. 56–69 (2012)

20. Van Der Aalst, W.M.: Workflow verification: finding control-flow errors using Petri-
net-based techniques. Bus. Process. Manag. 1806, 161–183 (2000)

21. Van Der Aalst, W.M., et al.: Soundness of workflow nets: classification, decidability,
and analysis. Form. Asp. Comput. 23(3), 333–363 (2011)

https://doi.org/10.1007/978-3-319-19069-3_4
https://doi.org/10.1007/978-3-319-19069-3_4
https://doi.org/10.1007/978-3-662-43745-2_6
http://www.lipn.univ-paris13.fr/~evangelista/helena/
http://www.lipn.univ-paris13.fr/~evangelista/helena/
https://doi.org/10.1007/978-3-319-39696-5_34
https://doi.org/10.1007/b95112
https://doi.org/10.1007/b95112
https://doi.org/10.1007/978-3-319-69462-7_29
https://doi.org/10.1007/978-3-319-69462-7_29
https://doi.org/10.1007/11431855_16
https://doi.org/10.1007/978-3-642-25160-3_5
https://doi.org/10.1007/978-3-642-25160-3_5


Formal Modelling and Verification of Cloud Resource Allocation 567

22. Van Hee, K., Verkoulen, P.: Integration of a data model and high-level Petri nets.
In: Proceedings of the 12th International Conference on Applications and Theory
of Petri Nets, Gjern, pp. 410–431 (1991)

23. Woitsch, R., Utz, W.: Business process as a service (BPaaS). In: Janssen, M., et al.
(eds.) I3E 2015. LNCS, vol. 9373, pp. 435–440. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25013-7 35

24. Yataghene, L., Ioualalen, M., Amziani, M., Tata, S.: Using formal model for evalua-
tion of business processes elasticity in the cloud. In: Drira, K., et al. (eds.) ICSOC
2016. LNCS, vol. 10380, pp. 33–44. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-68136-8 3

https://doi.org/10.1007/978-3-319-25013-7_35
https://doi.org/10.1007/978-3-319-25013-7_35
https://doi.org/10.1007/978-3-319-68136-8_3
https://doi.org/10.1007/978-3-319-68136-8_3

	Formal Modelling and Verification of Cloud Resource Allocation in Business Processes
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Cloud Resource Allocation in Business Processes
	3.2 Coloured Petri Net

	4 A Coloured Petri Net Formal Modelling of Cloud Resource Allocation in BP
	4.1 Overview of the Model
	4.2 The Provider's Sub-model
	4.3 The Requester's Sub-model for Parallel Requests
	4.4 The Requester's Sub-model for an Exclusive Choice of Requests
	4.5 Composing the Control Flow and the Resource Perspective

	5 Evaluation
	5.1 Case Study
	5.2 Checking Behavioural Properties

	6 Conclusion
	References




