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Abstract. Data is emerging as a new industrial asset in the factory of
the future, to implement advanced functions like state detection, health
assessment, as well as manufacturing servitization. In this paper, we fos-
ter Industry 4.0 data exploration by relying on a relevance evaluation
approach that is: (i) flexible, to detect relevant data according to dif-
ferent analysis requirements; (ii) context-aware, since relevant data is
discovered also considering specific working conditions of the monitored
machines; (iii) operator-centered, thus enabling operators to visualise
unexpected working states without being overwhelmed by the huge vol-
ume and velocity of collected data. We demonstrate the feasibility of our
approach with the implementation of an anomaly detection service in the
Smart Factory, where the attention of operators is focused on relevant
data corresponding to unusual working conditions, and data of interest is
properly visualised on operator’s cockpit according to adaptive sampling
techniques based on the relevance of collected data.

Keywords: Data exploration · Data relevance · Data summarisation
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1 Introduction

Big data management is an ever-growing research topic given the emerging
data-intensive applications of the Smart Factory. In order to improve operation
process performance, monitoring, control and health assessment [11], big data
streams, generated by embedded systems (RFID technology, sensors, mobile and
wearable devices) are collected and processed in the cyber space (edge and cloud
computing). In this context, human operators still play a crucial role to recognise
critical situations that have not been encountered before, based on their long-
term experience, but they must be supported in the identification of relevant
data without being overwhelmed by the huge amount of information. In the so-
called “Human in the Loop Cyber Physical Systems (CPS)”, human actions and
machine actuations go hand-by-hand and can often complement each other [14].

c© Springer Nature Switzerland AG 2018
H. Panetto et al. (Eds.): OTM 2018 Conferences, LNCS 11229, pp. 354–371, 2018.
https://doi.org/10.1007/978-3-030-02610-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02610-3_20&domain=pdf


A Relevance-Based Data Exploration Approach to Assist Operators 355

As an example of CPS, let’s consider a multi-spindle machine, designed to
perform flexible manufacturing tasks. The machine is equipped with multiple
spindles (e.g., from three to five), that work independently each other on the raw
material. Spindles use different tools (that are selected according to the instruc-
tions specified in the part program executed by the numerical control of the
machine) in distinct steps of the manufacturing process. Spindle precision, work-
ing performance, as well as minimisation of tool breaks and machine downtimes
are critical factors in these kinds of systems. Therefore, monitoring activities
might be very complex, checking several kinds of events in multiple conditions
in order to identify anomalies. Anomalies can be discovered when incoming data
goes beyond or below an expected range or with the occurrence of unexpected
data patterns [13]. Traditional anomaly detection solutions (e.g., [8,9]) apply
machine learning techniques to train proper models using historical data and
use them to predict the future behaviour of monitored systems. The occurrence
of unknown working states, never used before to train machine learning mod-
els, can be recognised and managed by operators according to their expertise.
To this aim, operators must be supported in the effective exploration of data
streams. For example, in the multi-spindle machine the ‘spindle rolling friction
torque increase’ and the ‘tool wear’ should be promptly detected and avoided.
The former one may happen for lack of lubrication or other mechanical wears
like bearings damage. The latter one may lead to long downtimes as well and
is managed through tool usage optimisation in order to balance the trade-off
between the tools wear and the risk of tool breaking during manufacturing. Sev-
eral working conditions must be considered, with a high likelihood of finding
behaviours never met before. On the other hand, the increasing importance of
human-machine interactions [7] calls for new models and techniques to organise
collected data according to different exploration perspectives and to attract the
attention of operators on relevant data only.

In this paper, we propose a novel approach where multi-dimensional data
modelling, data summarisation and relevance evaluation techniques are pro-
posed to implement big data exploration and anomaly detection based on data
streams. In particular: (i) collected data are organised according to different
dimensions, in order to meet distinct system monitoring requirements; (ii) a
clustering algorithm for big data streams is applied to provide a comprehensive
view over collected data and to enable data exploration using a reduced amount
of information; (iii) data relevance techniques focus the attention of operators
on relevant data only, thus increasing the effectiveness and efficiency of the data
exploration process. The proposed model and techniques have been tested in
the Smart Factory context for anomaly detection. Nevertheless, they have to be
intended as a general approach for Big Data exploration. Proposed model and
techniques aim at preparing data to address “Human in the Loop” issues.

The proposed approach relies on the IDEAaS (Interactive Data Exploration
As-a-Service) framework [3]. Specifically, we extend the research presented in [3]
with the following novel contributions:
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(i) we introduce a mechanism to adapt data monitoring (e.g., for anomaly
detection) based on the relevance evaluation;

(ii) we address relevance-driven adaptive sampling for visualisation purposes on
the operator’s cockpit;

(iii) we expand the experimental results, performing additional experiments to
test effectiveness and response times of data relevance evaluation.

The paper is organised as follows: in Sect. 2 we introduce the research chal-
lenges; in Sect. 3 we provide an overview of the relevance-based data explo-
ration approach and of the IDEAaS framework; Sect. 4 contains the description
of the multi-dimensional model on which the approach relies; in Sects. 5 and 6
relevance-based techniques and adaptive data visualisation are described; Sect. 7
presents experimental evaluation; in Sect. 8 related work are discussed; finally,
Sect. 9 closes the paper.

2 Research Challenges

To support big data exploration in dynamic contexts of interconnected systems,
such as the considered application scenario, several research challenges raise and
must be addressed.

Flexibility. Exploration depends on different analysis requirements. For exam-
ple, in the considered application scenario the ‘spindle rolling friction torque
increase’ and ‘tool wear’ events must be monitored to manage maintenance
activities and purchase of new tools. Since many unknown situations may occur,
due to the complexity of monitored system, analysts and operators must be sup-
ported in the identification of possible invisible problems [12]. Multi-dimensional
data modelling represents a powerful mean to enable organisation of data accord-
ing to different perspectives, in turn related to distinct observed problems and
requirements. Data modelling according to “facets” or “dimensions”, either flat
or hierarchically organised, has been recognised as a factor for easing data explo-
ration, since it offers the opportunity of performing flexible aggregations of
data [18]. Moreover, a definition of relevance is required to attract the oper-
ator’s attention on relevant data only, corresponding to an unexpected status.
Also the concept of unexpected status must be defined as well.

Context-Awareness. The detection of relevant data may also depend on the
specific working conditions of the observed system. For example, the machine
performance may change with respect to the specific part program that is being
executed. In different conditions, the range of tolerance for a given measure may
be different. Relevance evaluation algorithms and visualisation tools must reflect
this difference.

Operator-Centered Visualisation. Operators must be able to visualise unex-
pected working states and relevant data without being overwhelmed by the huge
volume and velocity of collected data. The ability of providing a compact view
over data is strongly required. Data summarisation and sampling techniques
are recommended, where data is processed and observed in an aggregated way,
instead of monitoring each single record [1].
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Fig. 1. The IDEAaS framework architecture.

3 Approach Overview

Figure 1 presents the IDEAaS framework modular architecture. The framework
is implemented according to a service-oriented architecture, where Core Services
implement data acquisition, data summarisation, sampling and relevance eval-
uation, and extensible services, built upon core ones, implement data-intensive
functionalities for different application domains, such as the Industry 4.0 one.
Among these data-intensive functionalities, in this paper we describe the State
Detection Service.

As shown in the figure, data coming from the physical system, collected
through sensors and IoT technologies, is sent to the Data Acquisition Service
to be stored in the cyber space. Data is collected according to a set of features.
Examples of features for the considered multi-spindle machines are spindle veloc-
ity (nm/min), the absorbed electric current (Amp) on X, Y and Z axes, the
spindle rotation speed (rpm) and the percentage of absorbed power (%). We
refer to measures as the values collected for each feature, associated with a given
timestamp. Let’s denote with F = {F1, F2 . . . Fn} the overall set of features. We
formally define a measure for the feature Fi as a scalar value Xi(t), expressed in
terms of the unit of measure uFi

, taken at the timestamp t. The Data Acquisition
Service operates in order to minimise time spent for data acquisition. Specifically,
measures are first saved as JSON documents within a NoSQL database (Collected
Data), using MongoDB technology. Measures are associated with other informa-
tion about the physical system and the working conditions in which measures
have been collected, for example, the tool used for manufacturing or the part
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program that is being executed by the machine. This information is modelled
through analysis dimensions, resulting in a multi-dimensional data model that is
detailed in Sect. 4. The Model-MetaData relational database (MySQL) contains
metadata about dimensions of the model.

The Data Summarisation Service is in charge of summarising collected mea-
sures. This service applies clustering to aggregate measures that are closely
related in the multi-dimensional space and ideally correspond to the same
behaviour of the monitored system. Clustered measures are stored using Mon-
goDB technology as well (Summarised Data) and processed by the Data Rele-
vance Evaluation service, that helps identifying relevant data. Finally, the Data
Sampling service applies relevance-based sampling techniques in order to reduce
the total amount of data to be visualised on the operator’s cockpit. The way
data summarisation, relevance evaluation and sampling techniques are used to
assist operators in data exploration is detailed in the next sections, with focus
on the anomaly detection issues. The IDEAaS framework has been implemented
in Java, on top of a Glassfish Server Open Source Edition 4.

3.1 State Detection Service in a Nutshell

The State Detection Service is in charge of detecting current status of the mon-
itored system and managing the interaction with visualisation tools, such as
cockpits and dashboards, on which operators can explore data.

We consider four different values for the status of the monitored system, (a)
ok, when the system works normally; (b) changed, when the system behaviour
changed with respect to the normal one, but no anomalies have been detected
yet; (c) warning, when the system works in anomalous conditions that may lead
to breakdown or damage; (d) error, when the system works in unacceptable con-
ditions or does not operate. The changed and warning status are used to perform
an early detection of a potential deviation towards an error status. The warning
or error status occurs when one or more features exceed a given bound. Besides
defining features bounds, we introduced the notion of contextual bounds. A con-
textual bound represents the limit of a feature within specific conditions (e.g.,
determined by the tool used and/or the part program that is being executed)
in which the feature is measured. The rationale is that, in specific conditions,
a feature should assume values within a specific range, that might be different
from the overall physical limits for the same feature disregarding the working
conditions. If the measure overtakes warning bounds, but not the error ones,
then the feature status is warning, otherwise the feature is in the error status.
Features (contextual) bounds are fixed by domain experts, for instance through
to the FMEA/FMECA analysis. The operators can monitor state changes in
order to revise features and contextual bounds for specific working conditions.

The State Detection Service includes data relevance evaluation techniques
to attract the operator’s attention on every state change. In fact, the State
Detection Service provides the following methods, as remarked in Fig. 1:

– SendAlert sends asynchronous notifications about detected changes of the
working status in the monitored system, based on Summarised Data; to this
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aim, this method relies on the Data Relevance Evaluation Service and adapts
the anomaly detection frequency according to the data relevance, as detailed
in Sect. 5.2;

– GetAlertStatus sends a summary report on the current status of the moni-
tored system; this service is required to synchronise visualisation tools to the
current status of the physical system, when external cockpits and dashboards
get connected with the State Detection Service.

Data visualisation must take into account the high volume of information to
be visualised and facilitate the interaction of operators with the Graphical User
Interface (GUI) of the visualisation tool. To this purpose, the following additional
methods are exposed by the State Detection Service:

– ExploreRelevantData sends relevant data, by relying on the Data Relevance
Evaluation service; data is transferred as clusters of aggregated measures (as
shown in Sect. 4) and visualised according to the multi-dimensional model
described in the next section; this method has been designed to support oper-
ators to focus on relevant data only, without specifying any data search and
filtering criteria, since operators do not have any a-priori knowledge about
which data can be considered as relevant;

– GetData sends data within a given time interval and/or for specific search and
filtering criteria expressed on dimensions of the multi-dimensional model; this
functionality can be used, for example, once relevant summarised data has
been identified; since sent data may reach a massive size, sampling techniques
are applied; hence, sampling takes into account the relevance of data that is
being transmitted, by adapting the sampling ratio to the data relevance, as
described in Sect. 6.

4 Clustering Based Multi-dimensional Model

In the multi-dimensional model used within the IDEAaS framework, measures
are organised through the feature spaces and the domain-specific dimensions.

A feature space conceptually represents a set of related features, that are
jointly measured to observe a physical phenomenon. In the example domain, the
set composed of spindle power absorption and rpm features is a feature space
used to monitor spindle rolling friction torque increase. In fact, spindle rolling
friction torque increase may be identified when the rpm value decreases and,
at the same time, the power absorption increases. Therefore, these two features
must be monitored jointly. Given a feature space FSj = {F1, . . . Fh}, we denote
with Xj(t) a record of measures 〈X1(t), . . . Xh(t)〉 for the features in FSj ,
synchronised with respect to the timestamp t.

Domain-specific dimensions organise records according to different “facets”,
such as the observed machine, the tool used during manufacturing, the part pro-
gram that is being executed by the numerical control of the monitored system.
Domain-specific dimensions can be organised in hierarchies: tools can be aggre-
gated into tool types, while monitored physical components (e.g., spindles) can
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be aggregated into the machines they belong to, in turn organised into plants
and enterprises. Therefore, a record Xj(t) is always associated with: (i) the
timestamp at which measures in the record have been collected; (ii) the mon-
itored feature space FSj ; (iii) the values of domain-specific dimensions. Once
the feature space and domain-specific dimensions have been fixed, the stream of
records over time can be used to monitor the evolution of the feature space for
the considered dimensions.

Data summarisation is used here to provide an overall view over a set of
records using a reduced amount of information and allows to depict the behaviour
of the system better than single records, that might be affected by noise and
false outliers. In our approach, data summarisation is based on clustering-based
techniques. The application of the clustering algorithm to the stream of records
incrementally produces a set of syntheses S = {s1, s2, . . . , sn}, providing a loss-
less representation of records.

A synthesis conceptually represents a working behaviour of the monitored
system, corresponding to a set of records, with close values for each feature.
Please refer to [4] for more details about the incremental clustering algorithm.
Formally, we define a synthesis of records as:

si = 〈idi, Ni,LSi, SSi,X0
i , Ri〉 (1)

where: (i) idi is the unique identifier of si; (ii) Ni is the number of records
included into the synthesis; (iii) LSi is a vector representing the linear sum of
measures in si; (iv) SSi is the quadratic sum of points in si for each feature; (v)
X0

i represents the centroid of the synthesis in the feature space; (vi) Ri is the
radius of the synthesis.

The clustering algorithm at a given time t produces a set of syntheses S(t)
starting from records collected from timestamp t − Δt to timestamp t and built
on top of the previous set of syntheses S(t−Δt) for a given feature space FSj and
domain-specific dimensions. Therefore, we formally define the multi-dimensional
model as a set V of nodes within an hypercube structure, where time, feature
spaces and domain-specific dimensions represent hypercube axes and each node
v ∈ V is described as

v = 〈S(t), FSj , d1, d2, . . . dp〉 (2)

where S(t) is the set of syntheses at time t, for the feature space FSj and the
values d1, d2, . . . dp of domain-specific dimensions D1, . . . Dp.

For example, an arbitrary node vA = 〈S(t1), FS1,m1, c2, u2, ppa〉, represents
the set of syntheses obtained by summarising records collected from time t1 −
Δt to t1 for machine m1 (spindle c2), while using tool u2 and executing part
program ppa, considering features in the feature space FS1. Data exploration is
performed over dimensions and is guided by data relevance evaluation techniques
as described in the following.
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Fig. 2. Evolution of summarised data (syntheses) over time. Feature space and domain-
specific dimensions are fixed and not shown here.

5 Relevance-Based Data Exploration

We define data relevance as the distance of the physical system behaviour from
an expected status. This status corresponds to the normal working conditions of
the system and is represented by the set of syntheses Ŝ(t0). Ŝ(t0) can be tagged
by the domain experts while observing the monitored system when operates nor-
mally. Data relevance at time t is based on the computation of distance between
the set of syntheses S(t) = {s1, s2, . . . , sn} and Ŝ(t0) = {ŝ1, ŝ2, . . . , ŝm}, where n
and m represent the number of syntheses in S(t) and Ŝ(t0), respectively, and n
and m do not necessarily coincide. We denoted this distance with Δ(S(t), Ŝ(t0)),
computed as:

Δ(Ŝ(t0), S(t)) =

∑
ŝi∈Ŝ(t0)

d(ŝi, S(t)) +
∑

sj∈S d(Ŝ(t0), sj)

m + n
(3)

where d(ŝi, S(t)) = minj=1,...nds(ŝi, sj) is the minimum distance between ŝi ∈
Ŝ(t0) and a synthesis in S(t). Similarly, d(Ŝ(t0), sj) = mini=1,...mds(ŝi, sj). To
compute the distance between two syntheses ds(ŝi, sj), we combined different
factors: (i) the euclidean distance between syntheses centroids dX 0(ŝi, sj), to
verify if sj moved with respect to ŝi and (ii) the difference between syntheses
radii dR(ŝi, sj), to verify if there has been an expansion or a contraction of
synthesis sj with respect to ŝi. Formally:

ds(ŝi, sj) = αdX 0(ŝi, sj) + βdR(ŝi, sj) (4)

where α, β ∈[0, 1] are weights such that α + β = 1, used to balance the impact
of terms in Eq. (4). Weights α and β can be set by operators according to their
domain knowledge. For preliminary experiments we equally weighted the two
terms of Eq. (4), that is, α = β = 1

2 . Future efforts will be devoted to automati-
cally identify the best values to set-up α and β.

Roughly speaking, the relevance techniques allow to identify what are the
syntheses that changed over time (namely, appeared, have been merged or
removed) for a specific feature space and given values of domain-specific dimen-
sions. Let’s denote with S(t) = {s1, s2, . . . , sk} such syntheses at time t, where
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Fig. 3. Anomaly detection through data exploration based on relevance evaluation:
data relevance techniques detect changes in syntheses set due to spindle rolling friction
torque increase, that may be identified when the rpm value decreases and, at the same
time, the power absorption increases.

k ≤ n and n is the number of syntheses ∈ S(t). These syntheses are con-
sidered as relevant and will be proposed to the operators to start the explo-
ration. For example, let’s consider Fig. 2. Figure 2(a) corresponds to the normal
working conditions, as labelled by domain experts according to their exper-
tise, therefore Ŝ(t0) = {ŝ1, ŝ2, . . . , ŝ7}. At time t, shown in Fig. 2(b), a new
synthesis 8 is identified while syntheses 5 and 6 have been merged, that is,
S(t) = {s1, s2, . . . , s[5,6], s7, s8} and S(t) = {s[5,6], s8}. Finally, in Fig. 2(c) the
synthesis 7 moved and S(t + Δt) = {s[5,6], s7, s8}.

5.1 Relevance-Based Data Exploration for Anomaly Detection

For anomaly detection purposes, for each synthesis sc ∈ S(t), the distance of
synthesis centroid from the warning and error bounds is computed. In the fol-
lowing, we will consider features bounds, but the same considerations hold for
the contextual ones. We denote with dw

c the record of distances between the
centroid of the synthesis sc and the warning bounds and with de

c the record of
distances between the centroid of sc and the error bounds. The State Detection
Service uses dw

c and de
c to perform anomaly detection, by distinguishing among

ok, warning and error status. Both dw
c and de

c are records having as compo-
nents the distance for each feature. For example, d

e%
7 represents the distance

of the centroid of the synthesis 7 from the error bound of the percentage of
absorbed power (see Fig. 3). Each relevant synthesis in sc is described as:

sc = 〈idc, Nc,LSc, SSc,X0
c , Rc,dw

c ,de
c〉 (5)

Every Δt seconds, when the syntheses set S(t) is updated, data is analysed to
check for anomalies.

For example, in Fig. 3 synthesis 7 moved over time getting closer to the
boundaries. Note that distance also helps to detect potential state changes. In
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fact, at time t + Δt synthesis 7 still remains inside the wealth zone (ok status),
but its movement is detected through relevance-based techniques. Therefore,
synthesis 7 is recognised as relevant and monitored to promptly detect potential
warning or error status occurrences. After Δt seconds, synthesis 7 moved again
and crosses the warning bound of the percentage of absorbed power feature,
causing a warning alert. The warning status is assigned to the feature and is
propagated to the feature space and over the hierarchy of monitored system
according to the following rules: (i) the status of a feature space corresponds to
the worst one among its features; (ii) similarly, the status of a physical component
(e.g., the spindle) corresponds to the worst one among monitored feature spaces
on that component and the status of composite systems (e.g., the multi-spindle
machine) corresponds to the worst one among its components. Figure 3 also
shows that it is possible to identify the feature with respect to the warning or
error bound that has been exceeded (e.g., among rpm and percentage of absorbed
power). When a synthesis moved closer to bounds, the IDEAaS framework reacts
by reducing the interval time Δt to check data for anomalies as described in the
following.

5.2 Adaptive Relevance Evaluation

The State Detection Service checks the system status by relying on Data Rele-
vance Evaluation Service and after the application of the Data Summarisation
Service. If the relevance evaluation detects changes in data compared to the
expected working behaviour, the State Detection Service identifies the new sta-
tus of the system. If a warning or error status is detected, the State Detection
Service notifies an alert message to the cockpit with the new status, using the
SendAlert method. This check is performed every Δt seconds.

Therefore, setup of Δt parameter influences the performances of the system.
Small Δt values increase the promptness in identifying relevant syntheses, in
order to attract the attention of the operators on them. On the other hand,
response times of data acquisition and clustering may not be able to face small
Δt values (see experimental evaluation in Sect. 7). The rationale behind our
approach is to change Δt as syntheses get closer to warning and error bounds,
since they correspond to potentially critical situations that must be monitored
at finer granularity.

To this aim, Δt value is changed according to the distance of relevant syn-
thesis sc ∈ S(t) that is closer to warning and error bounds. We denote with
dw min
c (resp., de min

c ) the component of dw
c (resp., de

c) that presents the mini-
mum distance from the warning bounds (resp., the error bounds). The interval
time Δt is updated as follows:

– if dw min
c

R > 1, the feature status is set to ok (see for example synthesis 7 in
Fig. 3 at time t + Δt), Δt is set to a default value defined by the domain
expert according to his/her knowledge about the monitored system;

– if dw min
c

R <= 1 and de min
c

R > 1 the synthesis centroid is between warning
bounds and error bounds (see for example synthesis 7 in Fig. 3 at time t+2Δt),
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the feature status is set to warning, Δt is reduced as Δt = Δt(d
e min
c

R − 1)
until Δt = minimum value supported by the framework (see experimental
evaluation in Sect. 7);

– if de min
c

R <= 1 the synthesis centroid is beyond error bounds, the feature
status is set to error, Δt is set to the minimum supported value (that is,
checks are made as more frequently as possible).

6 Adaptive Sampling for Data Visualisation

An effective visualisation of an unexpected working status and related data on
operator’s cockpit must consider the impact of data volume and velocity, to avoid
operators be overwhelmed by the huge amount of data. To this purpose, data
sampling techniques are usually applied, where sampling is performed taking
into account the size and capacity of the cockpit interface, independently of the
specific conditions which visualised data refers to. In our approach, clustering
and relevance evaluation techniques are used to implement adaptive sampling for
data visualisation. To this purpose, ExploreRelevantData and GetData meth-
ods of the State Detection Service have been implemented.

Request for Relevant Data. When the operator at time t requests for rele-
vant data, the method ExploreRelevantData is invoked. This method relies on
relevance evaluation techniques to recognise the most recent relevant syntheses
set S(ti), processed at time ti (ti <= t). Each synthesis sc ∈ S(ti) is marked
with the corresponding status and with additional information about whether
the synthesis moved, changed (expansion or contraction) or has been removed.
All syntheses in S(ti) recognised as anomalous are visualised as shown in Fig. 3.

Exploration of Relevant Syntheses. Once relevant syntheses have been iden-
tified, the operator may request to explore in detail records that have been
clustered within relevant syntheses. These records are returned by invoking the
GetData method. Records may correspond to a time-window h, and for spe-
cific values of analysis dimensions, the amount of extracted data may be really
large and difficult to visualise. In order to enable data visualisation, a classical
adaptive sampling technique has been designed. Nevertheless, in our approach
sampling frequency varies according to data relevance evaluation. Considering
maxn as the maximum number of data supported by the visualisation tool and
n as the number of data extracted from the database, when n >> maxn a sam-
pling technique is applied selecting only maxn data among the n data ready for
visualisation. Sampling rate is adaptively modified by a factor that depends on
the detected status (warning or error) within the time-window. When data is
not recognised as critical, the sampling rate is set to the minimum value. In the
case all data in the interval is not relevant, or is equally relevant, the sampling
frequency is set to maxn

t−h . This strategy facilitates the cooperation between opera-
tors who acts remotely on powerful visualisation interfaces and on-site operators,
who may need data visualisation on less powerful HMI embedded in or close to
the monitored machine, by setting different values of maxn.
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Fig. 4. Visualisation of relevant data on operator’s cockpit in the anomaly detection
application scenario (GetData method).

Figure 4 shows an implementation of remote visualisation cockpit. The cock-
pit guides data exploration through analysis dimensions in the considered
domain, therefore it first considers the monitored system, along with the rel-
evant feature spaces. Figure 4 shows an overview of the data of the multi-spindle
machine with ID 101143 and its status. In the overview, the operator can visu-
alise the status of the three spindles of multi-spindle machine, denoted with
"Unit 1.0", "Unit 2.0" and "Unit 3.0". Indeed spindle "Unit 1.0" is work-
ing correctly with respect to all the observed feature spaces, while spindle "Unit
2.0" is in warning status. In particular, syntheses calculated for features "f4"
and "f5" are detected as relevant and associated to the warning status. There-
fore, the warning status is propagated to the "tool wear" feature space as well.
Finally, spindle "Unit 3.0" is in error status. In fact, even if the "tool wear"
warning status has been detected, a more critical status is identified for feature
space "spindle rolling friction torque increase". Starting from relevant
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data, the operator may request to visualise data in detail through the GetData
method, as shown in Fig. 4. Moreover, the operator may further explore data by
setting the time interval of data to be plotted and the other dimensions (such
as the tool or the part program) to filter data in the exploration process. In this
example maxn is fixed to 3600 records. This value has been chosen considering
the device on which the operator is navigating. On the left part of Fig. 4, the
operator requests to visualise data corresponding to the spindle rolling friction
torque increase of "Unit 3.0" spindle. In this case the amount of data to be
visualised is under the maxn value, therefore the sampling techniques are not
applied. In the right part of Fig. 4 the operator selected a wider time interval
for the same feature space and dimensions, that, in our example scenario, corre-
sponds to 7200 records, exceeding the maxn value. In the figure is shown how all
the data, without sampling, is plotted on the cockpit: due to the high number
of measures, it is evident that this visualisation is not valuable for the operator.

7 Experimental Evaluation

We performed experiments on the State Detection Service in order to test its
performance in terms of processing time and its effectiveness in promptly detect-
ing anomalies. We collected measures from three multi-spindle machines, each of
them mounting three spindles. For each spindle the values of 8 features have been
collected every 500 ms. Globally we faced an acquisition rate of 144 measures per
second. After six months of monitoring on the three machines 630,720,000 mea-
sures have been collected. We run experiments on a MacBook Pro mounting
MacOS High Sierra, 2.8 GHz Intel Core i7, RAM 16 GB.

Fig. 5. Response times of the State Detection Service with respect to the number of
processed measures.
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Fig. 6. Correlation between the value of the percentage deviation from the values of
rpm and absorbed power features in normal working conditions (black line) and the
value of Δ(Ŝ(t0), S(t)) computed according to Eq. (3) (dashed red line) (Color figure
online).

Figure 5 plots response times with respect to the number of analysed mea-
sures. As evident in the figure, response times proportionally (but not exponen-
tially) increase with the number of processed measures. As shown in Fig. 5 our
State Detection Service can process 35000 measures in 60 s on average, corre-
sponding to ∼583 measures per second. Therefore, our State Detection Service
can successfully cope with the acquisition rate.

To test effectiveness of the service to detect anomalies, we artificially intro-
duced a percentage of values for rpm and absorbed power features with respect
to their value in normal working conditions. Further evaluation in an actual pro-
duction environment with real faults is being performed. Figure 6 shows how our
relevance evaluation techniques promptly react to the introduced variations. For
this experiment, we set the weights α = β = 1

2 in Eq. (4).
In order to quantify the correlation between the two curves in Fig. 6, we used

the Pearson Correlation Coefficient (PCC) ∈ [−1,+1]. In the experiment, the
value of PCC is higher than 0.85, that represents a strong correlation.

Figure 7 shows the average time required by the IDEAaS techniques to pro-
cess a single record for different Δt values. In figure is shown how lower Δt val-
ues require more time to process data. In fact, every time clustering is applied,
some initializations have to be performed (e.g., opening/closing connection to
database, access to the set of syntheses previously computed). Therefore, lower
Δt values lead to more frequent initializations. On the other hand, higher Δt
values decrease the promptness in identifying anomalous situations, as shown in
Fig. 6.

As a final remark, for what concerns the efficacy of the cockpit to support
domain experts during data exploration, sampling techniques offer doubtless
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Fig. 7. Response time for IDEAaS algorithm processing time with respect to Δt value.

advantages to ease exploration of data through the proposed implementation of
visualisation cockpit. It is straightforward that visualising all the data, without
adaptive sampling techniques, is not valuable for the operators and will prevent
them to easy inspect and identify incoming anomalies.

8 Related Work

The IDEAaS approach we described in this paper can be classified among
approaches that have been proposed to address anomaly detection in presence
of big data streams (please refer to [16] for a comprehensive survey). These
approaches differ from those based on static data, since all the observations are
not available at once and measures are collected and processed incrementally.
Moreover, the IDEAaS framework also differs from solutions for anomaly detec-
tion in presence of evolving graphs [10,15], that are characterized by causal/non-
causal relationships between measurements.

Among the approaches for anomaly detection on evolving data, the authors
in [16] focused on unsupervised proposals, since supervised and semi-supervised
scenarios are rare to happen in real-world applications, due to the lack of label
information regarding the anomalies that could be detected in collected obser-
vations. Unsupervised approaches can be in turn classified into statistical-based,
nearest neighbors-based and clustering-based. Statistical-based approaches usu-
ally require a priori knowledge about the underlying distribution of the measures,
that is almost always unavailable when data is collected incrementally. In [8] an
approach based on in-memory big data processing is described. A preparation
phase is used to generate a model for the “usual state” of the system, by apply-
ing machine learning (pre-training) on stored data. An operation phase compares
real-time incoming data with the “usual state” to identify anomalies. Similarly,
in [9] machine learning is used to train data collected during regular execution
of the manufacturing process in order to learn a probabilistic “normal model”.
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Authors in [2] applies Hierarchical Temporal Memory (HTM) to anomaly detec-
tion, by performing two post-processing steps over the output of HTM system:
(i) computing the prediction error; (ii) computing the anomaly likelihood.

Nearest neighbors-based approaches rely on the assumption that a measure
can be considered as an anomaly if its distance from a significant portion of other
measures is greater than a given threshold [5,19]. In clustering-based approaches,
anomalies are discovered either: (a) since they are assumed to fall into clusters
with small number of data points or low density; (b) based on their distance
from nearest clusters centroids. The approach in [17] operates in two steps: (i)
learning of the normal behaviour of the system (based on past data), using a
clustering technique (K-means algorithm); (ii) detecting at real-time an anoma-
lous behaviour when new data does not belong to previously detected clusters.
The approach in [6] builds a cluster model using Gaussian clustering, that is
updated as incoming data arrives. Clustering is performed over a time window.
As a new data arrives, the algorithm tries to assign it to an existing cluster. If
this is not possible, the evaluation on new data is suspended. When the time
window expires, a batch clustering algorithm (e.g. DBScan) is performed, in
order to check if suspended data is an anomaly or can be recognized as a new
cluster.

Although our approach is cluster-based, it is focused on the evolution of
summarised data over time in order to detect anomalies. Indeed, we rely on
summarisation techniques as a basis on which to apply relevance evaluation.
Moreover, exploration is performed over the multi-dimensional model. This dis-
tinguishes the IDEAaS framework from the approaches described in [16] and
from traditional Complex Event Processing (CEP) approaches, that are mainly
based on pre-defined queries and event detection rules.

9 Conclusions and Future Work

In this paper, we proposed a general-purpose framework that relies on relevant-
based data exploration to support domain experts in the inspection and iden-
tification of critical situations, out from the large amount of available measure
taken from a monitored system. In particular, the framework relies on the com-
bined use of different techniques: (i) an incremental clustering algorithm, to
provide summarised representation of collected data; (ii) data relevance evalu-
ation techniques, to attract the experts’ attention on relevant data only; (iii) a
multi-dimensional organisation of summarised data and adaptive sampling, to
enable effective visualisation of data for operators.

The proposed framework has been tested in the Smart Factory context for
anomaly detection. Nevertheless, it must be intended as a general approach for
Big Data exploration. In fact, the framework can be generalised by defining
the dimensions of the multi-dimensional model for different case studies and
domains. Summarisation and data relevance evaluation techniques are designed
to be applied in any domain that is based on numeric measures collected from
a monitored system.
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Although preliminary experiments are promising, future development will be
focused on further improving the approach using technologies for streaming and
parallel processing, such as Spark/Storm. Moreover, the State Detection Ser-
vice, on which we focused to test the relevance-based data exploration, will be
enhanced by introducing pattern recognition techniques to learn from the syn-
theses evolution. Further usability studies are being performed on the operator’s
cockpit. This would in principle enable the implementation of health assessment
strategies, on top of the ecosystem of services and techniques described in this
paper.
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