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Abstract. Business processes have to constantly adapt in order to react
to changes induced by, e.g., new regulations or customer needs resulting
in so called concept drifts. By now techniques to detect concept drifts
are applied on process execution logs ex post, i.e., after the process is
finished. However, detecting concept drifts during run-time bears many
benefits such as instant reaction to the concept drift. Introducing pro-
cess histories as a novel way to detect and represent incremental, sudden,
recurring, and gradual concept drifts through mining the evolution of a
process model based on an event stream will face this challenge. There-
fore, a formal definition of process histories is given, the concept of pro-
cess histories is prototypically implemented and compared with existing
approaches based on a synthetic event log.
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1 Introduction

Business processes have to constantly adapt in order to react to changes [15]
induced by, for example, new regulations or customer needs resulting in so called
concept drifts [5]. A recent example for new regulations possibly forcing business
process changes is the General Data Protection Regulation as non-compliance
with these regulations can cause fines up to AC20 million [8]. Process changes are
explicitly defined and stored in so called change logs [16] and hence are known to
the company. Contrary, concept drifts are happening as the process evolves and
hence are to be detected from process execution logs, i.e., logs that store events
of executing process instances such as starting or completing process tasks. By
now techniques to detect concept drifts in business processes work on process
execution logs and are hence applied ex post, i.e., after the process is finished.
However, detecting concept drifts during run-time bears many benefits such as
being able to instantly react to the concept drift.

Run-time detection of concepts drifts works on event streams rather than
on process execution logs. As event streams are infinite, online concept drift
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detection faces the following challenges: start and end event of the stream are
unknown; it is not known how many events belong to a trace; it is not known
which future events will occur and when they will occur. Moreover, different
kinds of concept drift are to be distinguished, i.e., incremental, sudden, recurring,
and gradual drifts [5]. So far, the focus has been put on incremental and sudden
drifts only, however, detecting recurring and gradual drifts can be important for
many application domains as well. These challenges will be tackled along the
following research questions:

RQ1 How to detect and reflect process model evolution based on event streams?
RQ2 How to detect incremental, sudden, recurring, and gradual concept drifts

based on event streams?

For addressing RQ1, process histories are introduced. A process history
reflects viable models that are discovered for a process based on an event stream.
Process histories provide a novel way to detect and represent concept drifts
through mining the evolution of a process model based on an event stream.
The challenging question is when a new model is created, i.e., which event or
sequence of incoming events triggers the creation of a new model in the history.
We present two new algorithms. The first algorithm creates the process history
and discovers new viable models. The detection of a viable model, is based on
conformance [17] and the “age” of the event information using the sliding win-
dow approach, i.e., older process instances do have no impact on the current
business process logic. The second algorithm determines concept drifts based on
the synthesised process histories (RQ2) and enables the detection of incremental,
sudden, recurring, and gradual drifts. The evaluation comprises a prototypical
implementation as well as a comparison with existing approaches on detecting
concept drifts based on synthetic and real-life logs. In summary, this work pro-
vides means to detect incremental, sudden, recurring, and gradual concept drifts
based on event streams and the concept of process histories during run-time.

The paper is structured as follows: In Sect. 2, the required definitions and
techniques for this work are described. Section 3 features the main contribution
of this work, followed by an evaluation, Sect. 4, based on a synthetic log created
using the process models of [4]. The related work is presented in Sect. 5 and an
outlook and summary is provided in the last section, Sect. 6.

2 Fundamentals

This section introduces fundamentals on business processes and process mining,
defines process histories and discusses event streams in comparison with process
execution logs.

Process Execution Log. Every time a business process is executed, the infor-
mation on the execution is usually recorded using the XES1 [1] format. In short,

1 Extensible Event Stream.
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a business process corresponds to a log node in a XES file. One log can have zero
to many trace elements. A trace corresponds to an executed process instance
of the business process and it contains information about the process instance,
like an id, Runtime and has zero to many event elements. An event symbolises
an executed activity in the process instance and contains information related to
this event and the id of the log as well. In a stream based architecture, the last
part is important to relate specific events to their corresponding log.

These log files, allow for the three main types of process mining [18].

– Process Model Discovery. This technique is used for finding a fitting process
model for the log file.

– Process Conformance Checking. This technique takes an event log and an
already discovered process model, and checks if the log fits the process model.

– Process Enhancement. This technique allows to change and improve the
already discovered process model with a new log file.

Process History. A process history contains every process model for one busi-
ness process and is defined as follows:

Definition 1 (Process History). Let P be a business process. A process his-
tory HP is a list of viable process models Mn, n ∈ N that have been discovered
for P with Mn being the current model for P , formally:

HP :=< M0,M1, ...,Mn−1,Mn, .. > (1)

For synthesising a process history, process model discovery and process con-
formance checking techniques are applied in Algorithm 1 in Sect. 3 to find, check
and adapt the current process model.

Since log files are static and created after the execution of process instances,
process mining approaches are often applied offline, i.e., ex-post. Our contribu-
tion aims at synthesising a process history for a business process online, i.e., at
run-time. To achieve this goal, an event stream, instead of log files is used [23].

Event Stream. An event stream represents a continuous flow of events pro-
duced by process instances of a business process. To help identify which events
belong to which trace or event log, a unique identifier is embedded in the event
itself. There are at least two main differences between a log file and an event
stream. First, a log file is finite meaning that the information on the number of
events per trace and which events appear is available. Second, a log file is also
complete, so the specific end and start events of a business process are known.
In an event stream it is not guaranteed, that there are no more events for a trace
coming in. It is unlikely as well, that we listen to the stream from the time when
the first event of the first process instance has occurred, until the last event of
the last process instance, because of main memory issues and of course usability.
It should be possible to start listening to an event stream at any time. For the
implementation of Algorithm 1, special data structures are required, to discover
a process model.



Process Histories - Detecting and Representing Concept Drifts 321

Data Structures: A process history covers all viable process models that have
been executed for a specific process. Any time an event is sent to the process
execution engine, it will be processed using the three types of process mining.
For process model discovery, there is a plethora of algorithms available to mine
process models, for example, the α-miner [19] or the inductive miner [10].

For process model discovery, we are using an adapted version of the stream-
based abstract representation (S-BAR) [23]. S-BAR introduces an abstract rep-
resentation of the directly follows set of events. This set of events consists of
every observed pair of subsequently executed events. This is achieved by creat-
ing two maps. In this case, a map relates to the well-known data structure of a
hash table [7], consisting of keys and their corresponding values.

The first map, trace map, is built using the trace id of a trace as key. The
corresponding value to a trace id, is the whole trace. In an event stream, one
event at a time is processed. After processing the event, is put into the trace map.
To cope with memory issues and to help determine active traces, the point in
time when the first and currently last event of a trace is being processed is also
stored. The second map, directly follows map represents the directly follow
relations of all events w.r.t. the trace map. As key, the preceding event is being
stored, with the following event as the corresponding value.

The usage of these maps is explained in detail in Sect. 3. Figure 1, shows the
trace map and directy follows map for the traces [A, B, C] and [A, C, B].

Fig. 1. Event stream containing two traces with different order of events.

For using the inductive miner, an assumption of specific start and end events
is required. Since we look at an event stream, it cannot be guaranteed to identify
the correct end or start events. E.g., a set of collected start events of each trace
can be taken as input. The example in Fig. 1, shows two traces that both have
the same starting event “A”, so this event would be the only start event for
the inductive miner. For the end events, we can only consider the last known
events of already known traces. The traces in Fig. 1 provide two possible end
events. The first trace has as an end event “C”, while the second trace has as an
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end event “B”. This results in a set containing two end events marked for the
inductive miner, namely “B” and “C”.

Conformance Checking: Every time a new event is processed, we check if
this newly extended trace is fitting an already mined process model using con-
formance checking [17]. Conformance checking replays a trace on a given process
model and tries to align it as good as possible. The fitness of a trace in its most
basic way, is calculated using costs for inserting events into the model if there
are too many events in the log and inserting events in the log, if there are not
enough events in the log to fit the model.

Sliding Window: The two maps, trace map and directly follows map, contain
the necessary information about every processed event. Since business processes
change, already finished or older traces may be part of a preceding version of
the business process. Another important factor is, that not every trace can be
saved in the main memory, because of capacity issues. To resolve that, the sliding
window approach is used. The sliding window only stores k data entries, here keys
in the trace map. If there are already k entries stored, the oldest one is removed
before storing the new entry. If the trace map would be exceeding k, the key
value pair with the oldest currently known end event is removed. This method
ensures, that only currently active and newer traces are taken into account while
discovering a new process model and checking its fitness.

Concept Drift: The last important concept for process histories are concept
drifts [21]. A concept drift reflects a shift in the business process logic, meaning
that the execution of a business process changed over time. There are several
reasons for a change in the process model, like a new business policy or adaptions
in the business process logic to meet customer needs. Every time the business
process logic changes, a new process model is discovered.

[4] defines 4 kinds of types of concept drifts.

– Sudden Drift. It shows a complete new workflow for the business process, for
example caused by a new legislation, like GDPR.

– Recurring Drift. There could be a process model that is used for a specific
time in the year, for example, Christmas season, in which workflows are exe-
cuted differently to meet customer needs. These drifts appear periodically
and replace the process model with another already known process model.

– Incremental Drift. Describes small changes, that are natural in the evolution
of a business process. Especially in the beginning, the process history will
be often extended, because a new process model is discovered after each new
event in the event stream. This results in many sub process models.

– Gradual Drift. The process got changed and all process instances since the
change point have a different process model. Mn and Mn−1 coexist, as long
as already started process instances of Mn−1 are still running.

It is to be noted, that recurring drifts and incremental drifts, can also be
gradual drifts, since process instances of the PMn−1 could still be executed.

A process history enables the detection of each of these drifts and is defined
in the next section.
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3 Contribution

This section describes the contribution of this paper, synthesising process histo-
ries and detecting concept drifts.

3.1 Synthesising a Process History

For tackling RQ1, a process history, HP , is synthesised. The process history
contains a list of already known process models, Mi, for a process P , where M0

is the first known process model for P and Mn is the last known and currently
used model for P . With the list of process models, all historical changes of P ’s
logic are represented in HP , and show the evolution of P .

These models are discovered using an event stream.
The developed Algorithm 1 synthesises a process history and is described in

the remainder of this subsection. As input an event stream, ES, a window limit
k and the thresholds φ and σ are required. The thresholds are described in detail
in the following paragraphs.

At the beginning the process history, HP , is an empty list and does not
contain any process models. The trace map, explained in Sect. 2, contains no
items in the beginning. The directly follows map is created after an unfit trace
is detected.

For usage of the sliding windows approach, the window size k must be defined.
Only k items are possible in the trace map. Every time a new event is processed,
it is checked, if its trace id is already existing in the trace map. If it does not
exist and the size of the map is smaller than k, the trace id is used as key and
as a value, the event is used as the starting event of the corresponding trace. If
the map has already k items, the oldest trace is removed from the trace map. If
the trace id is found in the trace map, this event will be appended to the trace.

Afterwards, if there is already at least one model in the process history, the
fitness of the active trace is checked. For this purpose, we use common confor-
mance checking techniques. Conformance checking returns the fitness value for
a trace for a process model by replaying and aligning the trace to the model [2].
For the alignment costs of the trace, two different costs are calculated. The costs
for a move in a log, describe if an event is found in the log but not in the model
at this position. On the other hand, costs for a move in a model, describe if an
event is found in the model but not in the log. For our purposes, only moves
in a log are considered, because in an online environment, it is not known, if a
process instance reached its end event yet, which means, that the trace can still
fit the model. The fitness value of a trace for a model ranges between 0, does
not match at all, and 1, matches the model perfectly.

The model in Fig. 2 for example, is our last known model in the process
history. The two traces that would match completely would be [A, B, C, D] and
[A, C, B, D]. Since we only take the moves in the log into account, the two traces
[A, B, C] and [A, C, B] receive a perfect score, and it is assumed, that those
process instances are still being executed and the end event “D” has not been
processed at the moment.
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Input: Event Stream ES (a series of events)
k (Limit for number of trace map items)
σ (Threshold for the fitness of a trace for a model, [0,1])

φ (Threshold for distinction of a new viable model [0,1])
Result: Process History HP (contains all viable process models in

chronological order.)
HP = [ ]
M duration = 0
trace map<trace id,trace> = 0
for e in ES do

if trace map contains key e.trace id then
trace map[’e.trace id’].append(e)

else
if trace map.size ≥ k then

trace map.delete oldest
trace map.insert(e.trace id,e)

if H.size �= 0 and conformance checking(traces[e.trace id],HP .last) < σ
then

directly follows map<event,event> = 0
for t in trace map.values do

if conformance checking(t,HP .last) < σ then
for i in t.size do

if i != 0 then
directly follows map.insert(t[i-1],t[i])

Model = inductive miner(directly follows map)
fitting traces counter = 0
durations = [ ]
for t in trace map.values do

if conformance checking(t,Model)≥ σ then
fitting traces counter+= 1
if t.end event in Mode.end events then

durations.append(t.end event.time-t.start event.time)
ScoreModel,trace map.values s= fitting traces new / trace map.values.size
if s ≥ φ then

HP .append(Model)
M duration = durations.average + durations.std deviation
unfinished traces =
trace map.get unfinished(HP [HP .size-1],trace map, M duration)
detect concept drift(trace map.values,unfinished traces,HP ,φ,δ)

if |HP | = 0 then
HP .append(inductive miner(e))

The last trace [A, D, B], received a lower fitness score, based only on moves
in the log. The second event “D” is not expected this early in the process model
and cannot be aligned in a perfect way, so it is moved in the log.

To define if a trace fits the model, a threshold, σ is introduced, ranging from 0
to 1. While 0, would result in any trace fitting any model, 1 would only consider
perfectly matching traces as fitting. For the purpose of detecting viable process
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Fig. 2. A process model with one parallel gateway and 3 related traces. While the
Move-Log fitness is perfect for the first two traces, the last trace contains an additional
event and receives a lower score

Fig. 3. Model Mn−1 is only fitting one the first trace perfectly. Model Mn is fitting all
traces. Mn is now the new model.

models, a high threshold like 1 is suggested. This guarantees to only consider
perfectly matching traces for the distinction.

If the trace of the currently processed event, does not fit the last known
process model of the process history, a new model is mined, using the induc-
tive miner. As input for the inductive miner, the abstract representation of the
directly follows relation is sufficient. Only unfitting traces in the current window
are used for discovering the new process model. The inductive miner always pro-
duces sound workflow nets and suffers from less instabilities like the α-miner,
which does not detect short loops for example.

To distinguish between viable new process models and anomalous process
instances, a score for a process model for a set of traces is defined as:

Definition 2 (Model score). Let T be a given set of traces, M a process model,
and φ ∈ (0,1] be a threshold. Moreover let A ⊆ T be the set of all traces having
a fitness score greater or equal than φ and let χA(t) be the indicator function,
returning 1 if t ∈ T is in A, 0 otherwise.
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Then SM,T , the model score of process model M w.r.t. T , is defined as

SM,T =
∑

t∈T χA(t)
|T | .

In the algorithm, for calculating the score for the new model using the current
trace map, the values of the whole map, are checked for conformance with the
newly discovered process model. If a trace is fitting the new model, a counter
is increased by 1, starting at 0. In addition, if the trace’s end event is one of
the end events of the new model, the complete execution time is calculated
and stored in a list of execution times for this model. The variable M duration
describes the average execution time of M plus the standard deviation. The
number of fitting traces is then divided by the number of all possible traces from
the trace map, which results in the score for the new model and the trace map.
The score for this model, ranges from 0 to 1 as well. To determine if the new
model is viable, the score must be greater or equal than φ. φ is introduced as
a threshold between 0 and 1, where 0 considers any model as viable and 1 only
models that fit every trace from the current window to the new model. For the
history in the evaluation, only models fitting at least 90% of the traces from the
current window have been considered to get a strict list of viable models, with
results discussed in Sect. 4.

In Fig. 3, the detection and creation of a new process model in the process
history is shown. On the left, the two longer traces do not fit the last known
process model in the process history. The newly discovered model, visible in
Fig. 3 on the right, is able to fit all current traces into the model. Since the new
model fits all current traces, the new model is appended to the process history.
The old model is now Mn−1 in the process history and the newly created model
is now the last and current model in our process history, Mn.

Every time a new model is discovered and appended to HP , a concept drift is
detected. To determine the type of the concept drift, unfinished traces for Mn−1

from the trace map need to be collected. A trace is likely to be unfinished if its
end event is not part of the end events of Mn−1 and its current execution time
is lower than the execution time stored in M duration. If its execution time is
larger, the process instance is likely to be cancelled.

3.2 Concept Drift Distinction

Algorithm 1 synthesises a process history for a specific process. Every time a new
process model is appended to the process history, a concept drift is detected. The
4 types of concept drifts, in relation to a process history, can be defined formally
as follows:

Definition 3 (Concept Drift Types). Let T be a given set of traces and U be
a given set of unfinished traces. Moreover let H be a process history for a process
P and δ ∈ [0, 1], ε ∈ [0, 1] be thresholds and the function fitness, defined for one
trace and a model, ranging from 0 to 1. The following drift types are defined as
follows:
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– Incremental Drift if |H| ≥ 2 ∧ ∃(t ∈ T, fitness(t,Mn−1) ≥ δ ∧ fitness
(t,Mn) ≥ δ)

– Recurring Drift if |H| ≥ 3 ∧ ¬ IncrementalDrift ∧ ∃ m ∈ N, 2 ≤ m ≤ n,
|SMn,T − SMn−m,T

| ≤ ε
– Gradual Drift if U �= ∅

– Sudden Drift if ¬IncrementalDrift ∧ ¬RecurringDrift ∧ ¬GradualDrift

As a fitness function, this work is using again conformance checking with
only considering moves in the log [2].

It is to be noted, that an incremental drift and a recurring drift can be a
gradual drift as well. This approach allows to detect concept drifts and identify
the type of the concept drift with the use of Algorithm 2 and tackle RQ2.

As input parameters a list of traces T , the traces from the trace map, a list
of unfinished traces U for Mn−1, collected by Algorithm 1, for detecting gradual
drifts, a process history HP , δ for determining fit traces and ε are required.
ε describes the maximum error that is allowed between two model scores to be
equally viable for T and ranges from 0 to 1, where 0 only determines equal scores
to be similar viable and 1 determines any scores to be similar viable.

If there are less than two process models in the process history, it can be
concluded that there is no concept drift, since a drift appears when the business
process logic changes and a new model is discovered.

For every process model of H the model score is calculated using traces from
T , like described in Algorithm 1. The variable Incremental is calculated during
the calculation of the scores to save execution time. If “Incremental” equals 1
an incremental drift is detected, otherwise not.

If there are traces out of T that fit the preceding model and the current model,
an incremental drift is detected. As as long as U is not empty, the incremental
drift is a gradual drift as well. Otherwise it is a sudden incremental drift.

For recurring drifts, the score of any model from Mn−2 to M0 is calculated. If
there is at least one model Mm, where the difference between SMn,T and SMm,T

is less or equal ε, a recurring drift is detected. Then it is again distinguished
between a gradual recurring drift and a sudden recurring drift, using the same
approach as before.

If it is not a recurring drift or an incremental drift, it number of elements in U
is checked. If there is at least one trace, a gradual drift is detected. Otherwise it
is not a gradual drift and a sudden drift is detected, since it is already concluded
that it is not an incremental or recurring drift either.

The return value is a vector with 4 items corresponding to Incremental
Drift, Recurring Drift, Gradual Drift and Sudden Drift. E.g., a gradual
recurring drift return [0, 1, 1, 0], while a sudden drift returns [0, 0, 0, 1].

In Fig. 4, a complete process history is shown with ε = 0.05 and δ = 1. The
first concept drift from M0 to M1 is detected with T containing t1 [A, B, C, D,
E] and t2 [A, C, B, D, E]. An incremental drift can be detected between M0 and
M1, since there is only a new event, E, added to the end of the process. The
same traces that fit M0, fit M1 as well.
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Fig. 4. Complete process history of a single business process

Let t2,3 [A, B, C, D], t4,5 [A, C, B, D] and t6,...,9 [A, F, G, D] be new traces
in the event stream. With a small window size k, e.g., 5, M2 is mined. Only
t6,...,9 are considered for the model, since they are not fitting M1. The difference
between SM2,t5−9 and SM1,t5−9 or SM0,t5,...,9 is greater than ε, so it is not a
recurring drift. There are no traces fitting M2 and M1 as well, so an incremental
drift is not possible. Since t5 is likely to be not finished for M1, a gradual drift
is detected.

Assume the next traces in the event stream are t10−12 [A, B, C, D] and
t13 [A, C, B, D]. This results in Mn−1. The difference between SM0,t9,...,13 and
SMn−1,t9,...,13 is 0. A recurring drift is detected with the recurrence of M0. Since
t9 s already finished, it is not a gradual drift as well.

Let the next traces be, t14,...,17 [A, E, G], which result in Mn. There is no
equally similar score to SMn,t13,...,17 and there are no unfinished traces.

In the next section, the two algorithms are evaluated on a synthesised log,
following the insurance example used in [4].

4 Evaluation

This section describes a tested example of process histories. Process Execution
log files have been synthesised, transformed into an event stream and the pro-
cess history discovered. The business process depicts an insurance process, first
described in [4]. Since not all concept drifts have been integrated in the source,
additional concept drifts have been added. With this process history, the type of
concept drifts has been detected. The first part of this section covers the imple-
mentation of the algorithms and the framework for the evaluation. The second
part shows the execution and results. The implementation is available at http://
gruppe.wst.univie.ac.at/projects/ProcessHistory.

http://gruppe.wst.univie.ac.at/projects/ProcessHistory
http://gruppe.wst.univie.ac.at/projects/ProcessHistory
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Input: Traces traces (list of traces), Traces u (list of unfinished traces), H
(Process History),

δ (Threshold for fitting models ∈ [0,1]
ε (maximum error between similar process models)

Result: type vector[0,0,0,0] (Positions represent Drifts
[Inc,Rec,Grad,Sudden], 1 represents this type of drift
occurred. )

if H.size <= 1 then
return ”Error: No drift”

Scores = [ ]
Incremental = 0
for M in H do

model score = 0
for t in traces do

if conformance checking(t,PM)>= δ then
model score += 1
if M == Mn−1 and conformance checking(t,Mn)>= δ then

Incremental = 1
Scores.append(model score/traces.size)

Scores = Scores.reverse // Reverse order so Scores[0] == Mn

if (Incremental == 1) then
if u.size �= 0 then

return [1,0,1,0] //Incremental Gradual Drift
else

return [1,0,0,0] // Incremental Drift

for i in Scores.size do
//Start with 0 if i ≤ 1 then

next
if (|Scores[0]-Score|≤ ε) then

if u.size �= 0 then
return [0,1,1,0] //Recurring Gradual Drift

else
return [0,1,0,0] // Recurring Drift

if u.size �= 0 then
return [0,0,1,0] // Gradual Drift

return [0,0,0,1] // Sudden Drift

4.1 Implementation

A tool to synthesise process execution log files, has been implemented in Ruby
[12]. A web service has been implemented as well, to transform static log files
into an event stream. The generated log files have time stamps in every event
as information. The web service extracts the list of events from the log files
and orders them, based on time stamps. This results in a chronological correct
event stream. Every event is then sent to the main web service. This web service,
written in Ruby as well, processes each event and runs both algorithms described
in Sect. 3. The process history is constantly adapted and provided through a
REST interface. For the mining algorithm we are using the inductive miner,
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implemented in ProM called from extension RapidProm [3] of Rapidminer. The
output is then retrieved using the REST interface.

4.2 Evaluation

For the evaluation, we synthesised process execution log files, based on the pro-
cess models used in [5]. Small modifications have been applied, because only one
path of some decisions showed concept drifts. For every process model 100 pro-
cess instances were created. Since not all types of drifts are detectable in these
models, we added new process instances to find every type of concept drift. For
the creation of the process history, k was set to 50, δ to 1 and σ to 0.9.

For the distinction of a concept drift, ε was set to 0.05 and σ to 1. As is
often the case in data mining approaches, the values for the parameters are
highly dependent on the domain of the business processes. The parameters in
this evaluation are fairly strict and only consider perfect fitting models as viable
if at least 90 % of the current traces are fitting the new model.

The first 100 process instances consisted of “Register”, “Decide High/Low”, ,
“High Insurance Check”, “High Med.History Check”, “Contact Hospital”, “Pre-
pare Notification”, “By Phone”, “By Email”,“By Post” and “Notification Sent”.
The order of “High Insurance Check”, “High Med. History Check” and the order
and existence of “By Phone”, “By Email”, “By Post” have been randomised, so
that the inductive miner is able to detect the parallel paths and decisions. The
first models produced can vary a lot, depending on the order of events in the
event stream. Figure 5 shows the first discovered viable process models in the
process history. M0 consists of only one event. During the first 100 instances,
the process model evolves and, depending on the order of the execution of the
process instances, the first part of the first parallel gateway can be seen in M4.
Algorithm 2 detects for the first process models in the history only incremen-
tal drifts, as expected. This can be reasoned because, every time a new event
is found at the end of a trace or a new parallel order instead of sequence is
mined, all other traces from the previous model are fitting the new model, e.g.,
the trace [“Register”, “Decide High/Low”, “High Insurance Check”,“Contact
Hospital”] and the trace [“Register”, “Decide High/Low”, “Contact Hospital”,
“High Insurance Check”] are both fitting M5.

After each possible combination is executed, Mn−4 (Fig. 7), is discovered. To
create a gradual drift, the next 50 instances are fitting Mn−4, but did not finish
before the next 100 instances started in the stream, containing small adaptations.
Instead of a parallel gateway for the medical checks, cheaper checks, like “High
Insurance Check”, are done at the beginning. If this check fails, the other checks
are automatically skipped. Unfit traces now contain only a subset of the 3 events.
After 45 instances, σ and the score of the new process model Mn−3 for the traces
of the trace map are equal, so the model is appended to the process history. Since
there are 5 instances for Mn−4 not finished as well, we detected a gradual drift.
An incremental drift has been detected as well, since some traces fit Mn−4 and
Mn−3 perfectly.
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Fig. 5. Process Models containing concept drifts.

All the concept drifts from [4] cannot be detected with our approach. As can
be seen in Fig. 6, the first process model includes the events “By Phone”, “By
Email”, “By Post” in optional parallel paths. The first concept drift described
in [4] changes the parallel gateway to a decision, where only one event is cho-
sen (Fig. 6(b)). Since all paths are optional anyway, all traces fit, even if only
one event is present. To negate this, a periodical model could be mined, using
all traces in the trace map to detect a stricter model fitting all traces. The
other model containing again a subset of choices already possible in the parallel
optional model, suffers from the same problem. The concept drift from Fig. 6 (b)
to (c) could be detected, but only if b is discovered. The drift from (a) to (c)
cannot be detected.

Another 100 instances have been put into the event stream, representing a
new legislation. The split of high and low insurance claims has been removed,
i.e., every claim is treated the same way. The notifications are only allowed to
be sent per post as well. After 45 instances, the model Mn−2 is discovered. This
model varies vastly from Mn−3, since the score from Mn−2 is 0.9 and the score
of Mn−3 is 0.1. No traces from Mn−3 match Mn−2. Also Mn−2 does not conform
to any other known model in the process history. A sudden drift is detected.

In the next 100 instances, a new event at the end has been discovered.
“Receive delivery confirmation” is appended to the end of the new process
instances. Again after 45 instances, Mn−1 is discovered. Since the 5 oldest traces
still fit Mn−2 and Mn−1 an incremental drift is detected.

Afterwards the first 100 instances have been put into the stream again with
modified time stamps. As expected, after 45 instances, Mn is discovered, which
is identical to Mn−4 and both have the same score of 0.9. A recurring drift has
been detected.

All four types of concept drifts can be detected. A problem occurs, if the
process model after the concept drift is just a stricter model. This means if new
traces fit the current model perfectly, no new model will be discovered and no
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Fig. 6. The concept drift from a to b is not detectable as well as the drift from a to c,
since traces from b and c fit a. The drift from b to c is detectable.

concept drift will be detected. This can be negated by discovering a new model
periodically instead of only if an unfit trace has been found, but this could lead
to big mixed process models, if not only the unfit traces are used for discovering
a new model. E.g., the sudden drift in Fig. 7 from Mn−3 to Mn−2, could also be
interpreted with a decision after the “Register” event, which leads to the path
from Mn−3 or the path from Mn−2.

Section 5 covers the related work in this field.

5 Related Work

A plethora of algorithms use XES files for discovering process model. The most
prominent mining algorithm is the α-miner [13]. This mining technique trans-
forms a directly follow abstraction [23] into a Petri Net [14]. These XES files do
not change while they are used for process mining.

Online process mining : An online setting using abstract methods is described in
[23] working with directly follows relation, [6] using the heuristics net miner [20]
or [11] detecting concept drifts in ltl declared models. The requirements for an
online setting, are (a) finite memory. Process execution logs tend to get larger
and larger. The size of these files gets so big, that mining the entire XES file at
once is not possible, because there is not enough main memory available. Since
the files get larger, there is also more data to process. For an online setting, the
calculations need to be finished at run-time (b), therefore there are run-time
constraints. To cope with these requirements in an offline setting, many process
mining approaches, create an abstract representation of an event log to retrieve
a process model. The S-BAR approach complies with the following principles.
It reuses existing approaches for finding the process model. For the usage of
existing techniques, an abstract representation is built.

Concept Drift in Process Mining : A sudden shift, induced by a new legislation
for example, can cause a change in a business process. This is followed by a
change in the process execution and the process execution logs. The already
mined process model might be not suitable any more for conformance checking,
a concept drift [21]. In [4], an approach to find concept drifts in process execution
logs is discussed. Features to interpret the relationships of events are introduced.
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Fig. 7. Process Models containing concept drifts.

– Relation Type Count. Defines a vector for every event, containing the num-
ber of events that always, sometimes and never follow a specific event.

– Relation Entropy. The average rate at which a specific relation is being
created.

– Window Count. The count is defined for a specific relation, like the follows
relation, on a give length.

– J-measure. Originally proposed by Smyth and Goodman [9], to calculate the
goodness of a rule, like b follows a. This is done with cross-entropy of two
events and a specific windows size.

The first two features are calculated using the whole log, while the other two
features are calculated on each trace. Concept drifts, are detected by splitting
the log in smaller sub-logs and finding the point of change through statistical
tests, like the Kolmogorov-Smirnov test and the Mann-Whitney U test.

The related work, offers ways to retrieve process models from process execu-
tion logs and detect concept drifts in an offline environment. While it is possible
to detect the exact point in time when the drift is happening, there is no differ-
entiating of types of concept drifts. Also since it is done offline, the results are
ex-post. The online mining approaches use a similar strategy to discover process
models at run-time. Concept drifts can be detected, but are not differentiated
and not all types of concept drifts can be detected.
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6 Summary and Outlook

This work introduces process histories to reflect the evolution of a process based
on an event stream during run-time. The histories consist of a sequence of viable
models of this process. Based on this model sequence, incremental, sudden, recur-
ring, and gradual concept drifts can be detected. For synthesizing the process
histories, an algorithm utilizing conformance checking and the “age” of event
information has been presented. All concepts are evaluated through a proof-of-
concept implementation and a comparison with existing approaches. With static
log files [4], the exact point of time of a concept drift can be detected, but is
not using an online environment and does not differentiate the types of concept
drifts. In an online environment [11,22], concept drifts can be detected, but not
all types of concept drifts have been covered and the drift is detected relatively
late. The advantage of the other approaches is the detection of stricter pro-
cess models, since they are not focused on detecting drifts, but discovering new
process models. Future work will focus on the refinement of synthesizing process
histories, i.e., parallel events at the end of a process, other techniques to calculate
the fitness of a specific trace, detecting concept drifts in a stricter model as well
as testing other mining algorithms including the frequency of events and other
approaches like lossy counting instead of sliding window for the determination
of impactful traces.
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