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Abstract. Nowadays, user actions are tracked and recorded by multi-
ple websites and e-commerce platforms, allowing them to better under-
stand their preferences and support them with specific and accurate
content suggestions. Researches have proposed several recommenda-
tion approaches and addressed several challenges such as data spar-
sity and cold start. However, the low-scalability problem remains a
major challenge when handling large volumes of user actions data. This
issue becomes more challenging when it comes to real-time applica-
tions. Such constraint requires a new class of low latency recommenda-
tion approaches capable of incrementally and continuously update their
knowledge and models at scale as soon as data arrives. In this paper,
we focus on the user-centered collaborative filtering as one of the most
adopted recommendation approaches known for its lack of scalability. We
propose two distributed and scalable implementations of collaborative fil-
tering addressing the challenges and the requirements of batch offline and
incremental online recommendation scenarios. Several experiments were
conducted on a distributed environment using the MovieLens dataset in
order to highlight the properties and the advantages of each variant.
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1 Introduction

Thanks to recommender systems, users are now assisted by personalized sugges-
tions when searching for goods or content on the internet. Such systems help
reduce the information overload problem and enable users to discover suitable
choices and make better decisions. These suggestions are inferred by recom-
mendation approaches based on the collected historical data describing users’
actions and behaviors. In fact, historical data enable recommender systems and
marketers to model users’ consumption patterns and therefore better person-
alize and tailor their communications and offerings to each one based on their
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predicted future interests. Such smart systems are not only beneficial for users
but also for service providers since they assist, support and implement their
marketing strategy by inferring knowledge from the data they collect.

In the literature, various methods have been used in recommendation systems
such as user-centered or item-centered collaborative filtering methods. User-
centered collaborative filtering is based on the idea that a user can like items
that have already been liked by similar users depending on their action history.
The item-centered collaborative filtering is based on the idea that a user can
like items similar to items he has previously liked. While collaborative filtering
methods only use the users action history, other content-based methods have
been used in recommendation systems to exploit the user demographics and the
item characteristics. A third method family has been proposed in the literature
and it is the hybrid method family that combines the two other method families.

In practice, the use of content-based methods requires user demographics
(e.g. age, gender, country, etc.) or item characteristics (e.g. type, price, country of
production, etc.) or both together. Since these data are not necessarily available
on different recommendation systems, the use of collaborative filtering methods
is becoming more and more popular. Thus, in this work we have chosen to focus
on collaborative user-centered filtering and the problems that come with its use
in current recommendation systems.

The major problems of collaborative filtering are cold-start, data sparsity
and low scalability especially for the user-centered variant. Besides, the com-
plexity of collaborative filtering and the fact that it requires processing all the
historical data at once in a batch modes makes it resource heavy and leads to
long processing times that become excessive with the growth of usage data. This
explains the adopted strategy in production environments that resorts to discard
all the learned models and reprocess all the available data periodically or when a
given volume of usage data is collected. These collaborative filtering constraints
makes it inadequate for real-time stream recommendations where suggestions
must be provided with low latency in reaction to the latest observed behaviors.
In this context, a stream based recommendation approach has the ability to
better coordinate and synchronize the service/content provider’s marketing and
point of sale systems by ensuring they analyze and react to the same up-to-date
view of each customer.

On the other hand, companies with common business purposes tend to share
their users action history in order to better understand their preferences. Feeding
a shared and cooperative recommendation system with user data from different
sources further complicates the use of user-centered collaborative filtering tech-
niques since many events (i.e. users actions) may occur from these sources and
have to be shared and processed instantly.

In this work, we propose several variants and implementations of the user-
centered collaborative filtering in order to make it able to handle the two recom-
mendation scenarios that can face service providers, namely the online scenario
for stream based real-time recommendation and the offline one based on a single
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batch processing of historical data. All the proposed variants’ implementations
are distributed, resilient, fault tolerant and help reduce the processing time.

The first scenario addresses the continuous online recommendations based
on consumption event streams that requires processing new incoming data with
low latency in order to rapidly take into account the knowledge it carries. In
order to achieve continuous stream recommendation, we resorted to making the
collaborative filtering learning algorithm incremental and distributable. Indeed,
distributed processing, using stateless procedures, increases the recommender
system’s horizontal scalability and ability to process more data simply by deploy-
ing new replicas of the computational nodes. Moreover, the incremental aspect
of the proposed collaborative filtering variant avoids the need to reprocess all the
historical data every time a new user action is observed. Therefore, new obser-
vations only require updating the part of the model or the subset of knowledge
they affect.

The second scenario is related to offline, one time, batch recommendation
use cases where large volumes of static data are available and at rest. In this
context, we believe that batch recommendation algorithms are more adequate
since they allow making several passes over the data which may lead to extract
more knowledge when compared with incremental approaches making only one
pass. Therefore, we propose a distributed implementation of user-centered col-
laborative filtering which is more suitable to one time offline learning and rec-
ommendation over big datasets.

We should point out that in this work we are careful to respect the privacy
and the concerns of those to whom the data relate.

This paper is organized as follows. In Sect. 2, we present an overview of
recommender systems and their underlying approaches. In Sect. 3, we present
our proposed approach for scalable collaborative filtering with its two variants
targeting (1) the online incremental stream processing and (2) the offline batch
use cases. In Sect. 4, we evaluate our proposals and discuss the obtained results.
Finally, in Sect. 5, we conclude the paper with some possible perspectives.

2 Related Works

Recommender systems are a class of personalization systems whose main objec-
tive is to predict users’ interests towards the available informational content in
the application domain. To achieve this goal, several approaches and method-
ologies were proposed in the literature [12,18]. Recommender systems based
on collaborative filtering techniques use correlations in users’ rating patterns
in order to predict their interests. Collaborative filtering approaches are mainly
classified into two categories: User-Centered Collaborative Filtering (UCCF) and
Item-Centered Collaborative Filtering (ICCF).

UCCF is based on the idea that if two users have liked similar items in the
past, they will probably have similar preferences and therefore look for the same
items in the future.

UCCF first calculates the similarities between each pair of users through
based on rating patterns in order to build neighborhood of similar users. From
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there, the algorithm recommends to the current user the items that are appre-
ciated by his neighborhood [12].

ICCF calculates the similarities between items based on their patterns. Then,
items similar to the ones that the current user liked in the past will be recom-
mended to him [15].

The main advantage of collaborative filtering techniques is that they do not
require a pinpoint item description. Given that the recommendation process is
based on user-item interactions, this technique makes it possible to apply in all
application domains in order to recommend complex items without the need to
describe or analyze them.

2.1 Scalable Stream Processing of Collaborative Filtering

Highly interactive online services (e.g. VOD websites such as netflix.com, MOD
websites such as soundcloud.com) are increasingly popular on the Web. Such
services can have a large amount of data characterizing consumers’ behaviors
since they interact continuously with these services and the items they provide.
Since the process of neighborhood construction takes so long, it is then calculated
periodically. If the recommendation system begins to analyze users’ behaviors
at a time t1 and finishes it at t2, the interactions that were observed during
this period are not taken into consideration. The larger the amount of data to
be analyzed, the greater the time between t1 and t2, and the more the newly
collected data are ignored.

On the basis of this observation, several research studies have attempted
to provide the necessary solutions to accommodate the continuous data flow
problem. Recently, real-time recommendation systems are increasingly attracting
researchers’ attention [3,7].

Papagelis proposed an approach to solve the scalability problem [14]. His
approach is based on incremental updates of the users’ similarities, making it
possible to calculate the similarities in an online application. Das discussed the
problems issued from the large volumes of data and the accelerating content
evolution [5]. He then proposed online templates in order to generate recom-
mendations for users on Google News. Koren introduced a new neighborhood
model with an improved accuracy [13]. The proposed approach takes into account
recent actions. It is then more scalable than the previous method, without com-
promising recommendations relevance or other desired properties.

Diaz-Aviles and Chen provided users with a real-time thematic recommen-
dation by analyzing social data flows [4,6]. However, the proposed systems have
the inconvenience of not being able to support large volumes of data. Stream-
Rec, proposed by Chandramouli, implements a recommendation model based
on collaborative filtering in a scalable and incremental way allowing it to handle
continuous data flows [2].

Huang was inspired by Papagelis [14] and StreamRec, to build TencentRec
[11]. It is a general recommendation system that implements a series of algo-
rithms in order to satisfy the different application requirements. The proposed
approach takes into account various types of user action data, including implicit

https://www.netflix.com/
https://soundcloud.com/
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and explicit actions as in StreamRec. Huang has used approximation techniques
in this approach. In fact, even though Papagelis’ method reduces the necessary
computations for the similarities update, these calculations are still very expen-
sive and cannot be done within a real-time delay.

2.2 Distributed Approaches for Batch Collaborative Filtering

Distributed collaborative filtering approaches started by the work of Tveit on
UCCF [16]. The author used the Pearson correlation as a similarity measure
whose computation was implemented in a peer-to-peer distributed architecture.

The UCCF has been implemented by Han [8,9] using distributed hash tables.
Users were distributed over different computation nodes in a way that guarantees
that each node handles users having in common at least one item rated similarly.
This allowed to build local training sets and to calculate similarities between
users belonging to the same computation node and then predict the missing
ratings.

Later, more sophisticated approaches were proposed to associate traditional
collaborative filtering techniques with other new ideas.

In order to calculate users’ similarities, Xie [17] used a schema relying on
distributed hash tables (DHT). The number of users considered in the similarity
calculation process has been reduced by taking into account only those who
have very similar preferences. Furthermore, in order to avoid rating biases, users’
ratings have been normalized.

The approach proposed by Castagnos and Boyer in [1] made it possible to
take into account the user implicit actions during the training step. Each user is
characterized by a profile and an ID. Both allowed users to be categorized using
Pearson correlation. In fact, for each user four lists of user ID have been defined:
the most similar users, the ones with similarity exceeding the defined similarity
threshold, the blacklisted users, and the users who added the active user in their
profile.

2.3 Motivation and Objectives

Classic recommendation algorithms are complex and require a heavy processing
footprint especially in the neighborhoods construction phase where each pair of
items or users is processed in order to measure their similarity degree. Moreover,
each time a user’s attitude towards an item is observed (e.g. purchase or rating)
the user’s (resp. item’s) neighborhood needs to be updated by recalculating the
similarities with all the other users (resp. items).

Offline and batch execution often process large and complex static data and
is more concerned with throughput than latency of individual components of
the computation. This type of execution addresses the need to predict variables
when it comes to making the prediction periodically on data batches.

Real-time recommendation systems are more demanding in terms of latency.
They process data streams whose calculation is executed using elementary data
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or a smallish window of recent data. This calculation is relatively simpler than
that of batch data and must be carried out quasi-instantaneously.

To make predictions even simpler, one solution would be to carry out the
calculations incrementally in order to reuse the results of the previously carried
out calculations and infer the new predictions using fewer computation resources.

3 An Approach for Distributed Collaborative Filtering
Supporting Stream and Batch Recommendations

Our proposal includes two implementations of the user-centered collaborative fil-
tering algorithm. First, we detail the approach for processing batches or streams
of unary or binary data using incremental calculations. This ensures that the last
data collected is taken into account when generating recommendations, which is
very well adapted to the real-time context that is found in several applications.
Then, we address application domains relying on multi-valued data such as rat-
ings to model users’ attitudes by a distributed variant for offline recommendation
on big data at rest, which do not plan to handle more user data before the end
of the current recommendation process.

3.1 Distributed Incremental Collaborative Filtering for Stream
Recommendation (DCFS)

The proposed approach targets use cases where users’ behaviors are modeled
using unary or binary variables. It is based on a distributed and incremental
modeling and prediction of pair of users or items correlation, independently of
the other pairs.

A recommendation system based on collaborative filtering has two main
steps: users’ similarity computation (or the items’ one), and ratings’ prediction.
Since the computations’ complexity lies in the similarity step, we have then
focused on alleviate these computations in our approach, and for which we have
chosen the Jaccard measure. This choice was made by taking into account how
to incrementally upgrade the different similarity measures. In fact, the Jaccard
measure has the fewest variables to update when it comes to making calculations
incrementally, so this is the best measure for our approach.

The Jaccard measure (cf. Eq. 1) is based on calculating two correlations. The
first correlation concerns the shared actions (i.e. set of actions made by both
users) and the second concerns the union of actions (i.e. set of all actions per-
formed by at least one of the two users). In the case of user-centered collaborative
filtering, it can be reduced to merely calculating the number of common items
for a pair of users, and the number of items present in their actions history.

J(A,B) =
|A ∩ B|
|A ∪ B| (1)

The Fig. 1 details the workflow of our proposal which contains two steps. It starts
by generating users’ correlation tuples in the first step and goes then ahead to
calculate similarity degrees in a second step.
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Fig. 1. Distributed incremental collaborative filtering

The calculation of the two correlation counters (intersection counter IC, and
union counter UC) for a pair of users can be done in an incremental manner, and
independently of the counters of the other pairs. This consists in calculating, for
each new action between a user ux and an item ii, the correlation between ux

and any other user uy with respect to ii: if uy has a recorded action for ii, the
intersection counter is incremented, otherwise the union counter is incremented.

These increments are carried out by generating correlation tuples in the form
(User pair, Intersection counter, Union counter). For example, if the action (ux,
ii) arrives to the recommendation system, the following correlation tuples will
be generated:

– For each user uy with the same action as ux towards ii, we generate the tuple
((ux, uy), 1, 0) which consists in incrementing the intersection counter.

– For any user uy that does not have the same action as ux towards the item
ii, we generate the tuple ((ux, uy), 0, 1) which consists in incrementing the
union counter.

Then, for each user pair, we join their correlation tuples with their intersec-
tion and union counters. The correlation tuples of a user pair will allow updating
the counters and subsequently infer the new similarity value between the two
users:

Sim(A,B) =
ICA,B

UCA,B
(2)
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The following table (Table 1) illustrates an example of a user-item action matrix,
where “x” denotes the user’s action towards the item. Our proposal does not need
to record this user-item matrix, it is only mentioned to illustrate the example.

Table 1. User-item action matrix

I1 I2 I3

U1 - - x

U2 - x x

U3 x x -

U4 x - x

At this level, the user u1 shares the following counters with the users u2, u3

and u4:

– IC1,2 = 1; UC1,2 = 2
– IC1,3 = 0; UC1,3 = 3
– IC1,4 = 1; UC1,4 = 2

If, for example, a new action (u1, i1) arrives to the recommendation system,
the following correlation tuples will be generated:

– Intersection tuples: Users with the same action as u1 towards i1 are u3 and
u4, therefore we generate the tuples ((u1, u3), 1, 0) and ((u1, u4), 1, 0).

– Union tuples: Only the user u2 does not have the same action as u1 towards
i1, therefore we generate the tuple ((u1, u2), 0, 1).

These generated tuples make it possible to update the correlation counters
of u1 with the other users, which will become: UC1,2 = 3; IC1,3 = 1; IC1,4 = 2.

Thus, the similarity degrees between u1 and other users can be inferred:
Sim1,2 = 0, 33; Sim1,3 = 0, 33; Sim1,4 = 1.

Note that our proposal allows processing static data in a batch mode, with
one pass computation, by generating the tuples of correlation for all the actions
at the same time. Then, tuples are grouped by user pairs allowing to calculate
the sum of the increments’ values in order to obtain two final counters for each
user, and subsequently deducing the degree of similarity.

In both cases of use, our proposal offers a constant complexity for the simi-
larity calculation after the arrival of a new user action and makes it possible to
use the results of the previous calculations in order to perform the future ones.

3.2 Distributed Collaborative Filtering for Batch Recommendation
(DCFB)

The incremental variant of our approach used a low complexity similarity mea-
sure to better fit the real-time recommendation requirements. Outside the real-
time application context, other complex measures can be implemented since
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they may outperform the Jaccard similarity measure by taking into account all
the available data points every time two users need to be compared. Moreover,
classic similarity measures makes it possible to handle all types of variables mod-
eling user’s actions and attitudes since they aren’t restricted to binary or unary
variables.

Batch processing allows accessing all the data at hand when a recommenda-
tion is needed. This offline processing provides the ability to manage multi-valued
static data and calculate the exact degrees of similarity for collaborative filter-
ing when using classic non-incremental measures. In this context, we propose
a solution for batch recommendation by incorporating the most used similarity
measurements and rating estimators.

The used similarity measures are the Cosine similarity (cf. Eq. 3) and the
Pearson correlation (cf. Eq. 4).

simx,y =
−→
Rx · −→

Ry

||−→Rx||2 × ||−→Ry||2
=

∑
i∈I rx,i × ry,i

√∑
i∈I r2x,i ×

√∑
i∈I r2y,i

(3)

simx,y =

∑
i∈Ix∩Iy

(rx,i − r̄x)(ry,i − r̄y)
√∑

i∈Ix∩Iy
(rx,i − r̄x)2 ×

√∑
i∈Ix∩Iy

(ry,i − r̄y)2
(4)

Concerning the rating estimators, the following three estimators were adopted:
– The similarity-weighted average (SW) which predicts the user rating for an

item based on the user’s neighborhood ratings for this item.

rx,i =

∑
y∈U simx,y × ry,i
∑

y∈U |simx,y| (5)

– The average based on the centered ratings (CR) which is based on biased
ratings in order to avoid the differences in user rating behavior.

rx,i = r̄x +

∑
y∈U simx,y × (ry,i − r̄y)

∑
y∈U |simx,y| (6)

– The average based on the standard deviation (SD) thereby compensating for
users differing in ratings spread as well as mean ratings.

rx,i = r̄x + σx

∑
y∈U simx,y × (ry,i − r̄y)/σy

∑
y∈U |simx,y| (7)

The general architecture of our proposal is detailed in Fig. 2. The first step
allows preparing the necessary statistics for the similarities calculation and rat-
ings predictions. Afterwards, the similarity between each pair of users is calcu-
lated according to the chosen similarity measure using the previously calculated
statistics. The third step consists on predicting the missing ratings for each user
based on his similarity degrees with the rest of the users and using a rating
estimator. Finally, after predicting all missing ratings for a given user, a list of
the best items is recommended.

In the following, we detail all the steps required to generate recommendations
while highlighting their distributed algorithms.
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Fig. 2. Distributed collaborative filtering architecture

Users Statistics Preparation: The statistics that need to be computed for
each user differ according to the rating estimator and the chosen measure of
similarity. They can be the user mean rating r̄i, the Euclidean norm ||−→Ri||2
or the user ratings’ standard deviation σi. Table 2 summarizes the statistics
that need to be calculated according to the used measures of similarity and
rating estimators. The calculation is done by grouping ratings per user and then
inferring the statistics of each user.

Similarity Calculation: This step focuses on calculating the similarity for each
pair of users. First, users’ ratings are grouped by items (i.e. ratings concerning
the same item are redirected to the same calculation node). Then, for each item,
correlation tuples are generated for each pair of users who have rated the item.
The correlation tuples are defined as (User pair, T1, T2, T3) tuple.

Table 2. User statistics to be calculated

Pearson correlation Cosine similarity

Similarity-weighted
average

User mean rating Euclidean norm

Average based on the
centered ratings

User mean rating User mean rating Euclidean norm

Average based on the
standard deviation

User mean rating
Standard deviation

User mean rating Euclidean norm
Standard deviation
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Similarity measures are based on formulas that are of the form of
a/(b × c). The three terms T1 (cf. Eq. 8), T2 (cf. Eq. 9) and T3 (cf. Eq. 10)
calculate respectively the elementary values of a, b and c produced from a single
item. These terms allow calculating the similarity degree between each pair of
users (cf. Eq. 11).

T1 =

{
rx,z × ry,z if Cosine

(rx,z − r̄x) × (ry,z − r̄y) if Pearson
(8)

T2 =

{
null if Cosine

(rx,z − r̄x)2 if Pearson
(9)

T3 =

{
null if Cosine

(ry,z − r̄y)2 if Pearson
(10)

simx,y =

⎧
⎪⎪⎨

⎪⎪⎩

∑
T1

||−→Rx||2×||−→Ry||2
if Cosine

∑
T1√∑

T2×
√∑

T3
if Pearson

(11)

The following user-item ratings matrix (Table 3) is used to illustrate examples
for each component of our proposal for batch data:

Table 3. User-item ratings matrix

Ix Iy Iz Iw

Ua ra,x ra,y - -

Ub rb,x rb,y rb,z -

Uc rc,x - rc,z -

Ud - rd,y rd,z rd,w

The similarity calculation process for this user-item ratings matrix is
described within the Fig. 3.

Missing Ratings Prediction: The third step predicts the ratings that users
have not yet assigned. A filtering can be carried out in order to preserve only
the most similar users for the active user. This filtering is performed either by
pruning the degrees of similarity which are less than a similarity threshold t or
by fixing the neighborhood size at n.

The similarity degrees of a same user are then grouped together to gener-
ate correlation tuples. For each item that the active user has not rated, and
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Fig. 3. Similarity degrees calculation

for each similar user who has rated the item, a correlation tuple is generated
gathering data about the second user rating and the similarity degree between
both users.

These tuples are defined as (Active user, Item not rated, Term T4 (cf. Eq. 12),
Term T5 (cf. Eq. 13)) tuple. They allow predicting the missing user ratings
through Eq. 14.

The Fig. 4 details the missing ratings prediction process for each user, based
on similarity degrees already calculated.

T4 =

⎧
⎪⎨

⎪⎩

simx,y × ry,z if SW

simx,y × (ry,z − r̄y) if CR

simx,y × ry,z−r̄y

σy
if SD

(12)

T5 = |simx,y| (13)

rx,z =

⎧
⎪⎨

⎪⎩

∑
T4∑
T5 if SW

r̄x +
∑

T4∑
T5 if CR

r̄x + (σx ×
∑

T4∑
T5 ) if SD

(14)
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Fig. 4. Missing ratings prediction

4 Experimentation

In this section, we present the experimentation of our approach, detail the tar-
geted application domain, and discuss the obtained results for the different vari-
ants that were evaluated.

4.1 Experimentation Setup

In this work, we adopted the MovieLens 1 m dataset [10] since it is the closest
to our requirements with regard to the available variables. In fact, this dataset
includes ratings assigned by a set of users to the movies they have watched. The
dataset used in the following experiments includes 3.900 movies, 6.040 users and
1.000.209 ratings (1 to 5).

In order to evaluate our approaches relevance and performances, we com-
puted the Mean Absolute Error (MAE) and the Root Mean Squared Error
(RMSE) as quality measures and the Mean Execution Time (MET) as the
evaluation metric of efficiency. The experiments were carried out on a cluster
consisting of 16 processing machines, each having one core of 2.4 GHz.
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MAE =

√
√
√
√

1
STest

∑

(u,i)∈ST est

|r̂u,i − ru,i| (15)

RMSE =

√
√
√
√

1
STest

∑

(u,i)∈ST est

(r̂u,i − ru,i)2 (16)

4.2 Implemented Prototype

Our approach has been implemented using the Flink distribution platform. It is
a distributed execution engine based on the MapReduce paradigm. Furthermore,
it allows building execution plans that are much more complex than the simple
combination of both map and reduce operations. Flink is also distinguished from
other distributed execution engines by its ability to handle continuous data flows
in a transparent and controllable way.

It’s worth mentioning that any framework that is able to apply processing
on a pipeline or data stream in a MapReduce way can be used to implement our
proposal (e.g. samza, kafka streams, spark).

4.3 Incremental Collaborative Filtering Evaluation

We compared our incremental variant DCFS to the traditional non-distributed
UCCF approach (using Jaccard measure) and DCFB (using Cosine-SW combi-
nation). We have experimented different numbers of processing machines which
we used to draw the curve shown in Fig. 5. We have to mention that the results
in this figure are for the similarity step only. In addition, we have to specify that
for the DCFB and the non-distributed Jaccard the similarity of each pair of users
was calculated at once (i.e. 18.237.780 similarities were calculated for the 6.040
users), whereas for the DCFS the similarities are calculated progressively as in a
real-time recommendation scenario where at the arrival of each new user action
the similarities concerned by the new action will be updated (i.e. 6.036.667.952
similarities were calculated or updated for the 6.040 users).

In practice, this means that the results of the DCFS concern the calculations
made during the arrival of all the actions of the users, whereas the results of
the two other approaches concern a single similarity calculation operation that
have been made in order to maintain the accuracy of the similarity values. Then
the DCFS calculates 331 times more similarity values compared to the other
two approaches. So, to be able to compare these approaches we must divide
the DCFS computation times by 331 to obtain the computation times which
concern the same number of similarity values calculated by the DFCB or the
non-distributed Jaccard.

The mean execution time of our approach is much better than the traditional
approach, even when using a single processing machine. Indeed, this is due to
the incremental aspect of our approach, which preserves the already performed
calculations results and used them to infer the new calculations ones.



Distributed Collaborative Filtering 257

Fig. 5. DCFS mean execution time evaluation

By increasing the number of processing machines, the mean execution time
of our approach decreases which validates the motivation behind distributing
computations. However, this improvement is not as important as the one coming
from the incremental calculations.

4.4 Batch Collaborative Filtering Evaluation

The experiments of the batch variant took into account the six combinations of
the similarity measures (Cosine and Pearson) and the rating estimators (SW,
CR and SD). These experiments were performed using 16 processing machines
and taking into account all users without pruning non-similar users. The Table 4
enumerates MET (in seconds), MAE and RMSE results of these combinations.

The obtained results show that the CR estimator has the poorest predic-
tion quality independently of the similarity measure. The best MAE and RMSE
values were obtained respectively by the Cosine-SD and the Pearson-SD combi-
nations. The mean execution time results led to the conclusion that the use of
the Pearson correlation measure allows to have better performances than those
involving the Cosine similarity. Concerning the rating estimators, SW offers the
shortest execution time, followed by SD then CR. Thus, the most efficient com-
bination was the Pearson-SW.

Table 4. DCFB and traditional UCCF evaluation

P-SW P-CR P-SD C-SW C-CR C-SD UCCF (P-SW)

MAE 0.745 0.811 0.744 0.748 0.787 0.742 0.745

RMSE 0.910 0.998 0.909 0.913 0.971 0.911 0.910

MET 305 314 306 313 318 308 1063
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The Pearson-SW combination of our batch variant has the same MAE and
RMSE value as the UCCF (Pearson-SW) since it adopts the same algorithm,
only distributing its calculations on different nodes with no approximation. In
addition, our approach has a shorter mean execution time than the traditional
approach. These results confirm that our approach has improved the execution
time without information loss or decrease in prediction accuracy.

We also compared the performance of our batch variant with the tradi-
tional one in terms of mean execution time using different numbers of processing
machines (cf. Fig. 6).

Fig. 6. DCFB mean execution time evaluation

We used in this experiment the Pearson measure and the similarity-weighted
average rating estimator. From the obtained results, we can find that starting
from the use of 4 processing machines, our approach provides a shorter mean
execution time than the traditional approach.

5 Conclusion and Future Works

In this work, we proposed two distributed variants of the collaborative filtering
approach for batch and stream processing-based recommendations. Our offline
approach resorts to processing distribution in order to manage the large volume
of batch data whereas the online one relies on an incremental processing of
continuous data streams for online real-time recommendation. The experiments
show that the proposed approaches improve the processing time in both scenarios
and preserve recommendation quality.

In future works, we will focus on proposing new approximate similarity mea-
sures for multi-valued variables which are more adapted to incremental modeling
and recommendation. Such measures should improve recommender systems per-
formances without compromising the exactitude of their results or the real-time
low latency constraints.
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