
Crowdsourcing Task Assignment
with Online Profile Learning

Silvana Castano(B), Alfio Ferrara(B), and Stefano Montanelli(B)

DI, Università degli Studi di Milano, Via Comelico, 39, 20135 Milan, Italy
{silvana.castano,alfio.ferrara,stefano.montanelli}@unimi.it

Abstract. In this paper, we present a reference framework called Argo+
for worker-centric crowdsourcing where task assignment is characterized
by feature-based representation of both tasks and workers and learning
techniques are exploited to online predict the most appropriate task to
execute for a requesting worker. On the task side, features are used to
represent requirements expressed in terms of knowledge expertise that
are asked to workers for being involved in the task execution. On the
worker side, features are used to compose a profile, namely a structured
description of the worker capabilities in executing tasks. Experimental
results obtained on a real crowdsourcing campaign are discussed by com-
paring the performance of Argo+ against a baseline with conventional
task assignment techniques.

1 Introduction

In the recent years, the crowdsourcing philosophy has gained a lot of attention
and many crowdsourcing systems/platforms appeared on the web scene for sat-
isfying the growing need of marketplaces where the offer of requesters providing
jobs to execute can meet the work-force provided by the crowd. For requesters,
the key point is to get the jobs completed as fast as possible by also consider-
ing the tradeoff between the quality of the obtained results and the expenses to
sustain [11,14]. For workers, the key point is to find a system where the crowd
motivation is triggered and encouraged, as well as the profits are attractive (in
terms of experience, advance in human capital, remuneration) [1]. Most of the
crowdsourcing platforms (e.g., CrowdFlower - https://www.crowdflower.com/,
Amazon Mechanical Turk - https://www.mturk.com/, Crowdcrafting - https://
crowdcrafting.org/) are task-centric, in that they are designed to support dif-
ferent types of tasks and mechanisms for task result evaluation, mostly charac-
terized by consensus- and/or inference-based techniques [19]. On the opposite,
mechanisms for worker evaluation and tools for supervising the worker accu-
racy/trustworthiness can (strongly) differ from one system to another. Mostly,
the worker evaluation is enforced by exploiting the results on the executed tasks:
the more a worker provides good/valid results, the more a worker is considered as
trustworthy (see for instance [5,27,29,30]). The worker reliability is progressively
revealed during task execution and it becomes known at the end of activities.
c© Springer Nature Switzerland AG 2018
H. Panetto et al. (Eds.): OTM 2018 Conferences, LNCS 11229, pp. 226–242, 2018.
https://doi.org/10.1007/978-3-030-02610-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02610-3_13&domain=pdf
https://www.crowdflower.com/
https://www.mturk.com/
https://crowdcrafting.org/
https://crowdcrafting.org/

Crowdsourcing Task Assignment with Online Profile Learning 227

However, humans have different knowledge and abilities, thus a crowd worker
can be trustworthy on a certain task campaign that is coherent with her/his atti-
tudes, as well as she/he can be inaccurate on another campaign with different
topic requirements not compliant with her/his attitudes. In other words, there
is the need to switch from a task-centric to a worker-centric design paradigm
to leverage on the human factors of crowd workers and effectively enforce the
crowdsourcing task assignment. A key capability of the worker-centric paradigm
is the availability of techniques for learning the worker-profile features during
task assignment and execution [2]. We argue that the capability to effectively
discover and represent the profile of engaged crowd workers is a strategic asset
of future crowdsourcing marketplaces. This way, it becomes possible for a sys-
tem to predict the worker trustworthiness on considered topics and to selectively
choose a qualified and motivated crowd to recruit/involve in a given campaign
according to the required knowledge/abilities.

In this paper, we present Argo+, a reference framework for worker-centric
crowdsourcing where task assignment is characterized by feature-based repre-
sentation of both tasks and workers and learning techniques are exploited to
online predict the most appropriate worker for a given task. On the task side,
features are used to represent requirements expressed in terms of knowledge
expertise that are asked to workers for being involved in the task execution.
On the worker side, features are used to compose a profile, namely a structured
description of the worker capabilities in executing tasks along multiple dimen-
sions (i.e., the features). From the system point of view, the goal of Argo+ is
to predict the tasks on which a worker is expected to provide successful results
based on the specified task requirements, thus increasing the number of success-
ful results while reducing the number of task executions at the same time. From
the worker point of view, the goal of Argo+ is to receive tasks that are compatible
with her/his profile, thus leveraging on worker interest, motivation, and finally
satisfaction. A further distinguishing aspect of Argo+ is related to the dynamic
and adaptive nature of the worker profiles that are continuously evolving based
on the results of executed crowdsourcing activities. Online learning techniques
are employed in Argo+ to capture the real worker capabilities by progressively
adjusting the features of worker profiles to resemble the features of tasks that
have been successfully executed by the worker. In the paper, we focus on dis-
cussing an essential implementation of the Argo+ framework characterized by
the use of (i) probabilistic topic modeling for enforcing task assignment, and (ii)
techniques inspired to the Rocchio relevance feedback for enforcing worker pro-
file learning. Experimental results are finally provided to analyze the behavior
of Argo+ on both a third-party dataset and a real crowdsourcing campaign, by
comparing the performance of the proposed framework against a baseline with
conventional task routing techniques.

The paper is organized as follows. Section 2 provides the related work. The
proposed Argo+ framework is presented in Sect. 3. The Argo+ techniques and the
related implementation based on probabilistic topic modeling are illustrated in
Sect. 4. Experimental results are discussed in Sect. 5. Concluding remarks are
finally provided in Sect. 6.

228 S. Castano et al.

2 Related Work

The idea to enforce task assignment (a.k.a. task routing) by considering spe-
cific human factors according to a sort of worker-centric crowdsourcing model is
becoming popular in the very-recent crowdsourcing literature [2,16]. In [8], HITs
(Human Intelligent Tasks) to execute are assigned to crowd workers by match-
ing keywords extracted from task descriptions and worker preferences extracted
from worker profiles on social networks. Limitations still exist due to possible
incompatibilities (i.e., use of different keywords) among task features and social-
network preferences. A similar approach is presented in [1] where relevance and
diversity measures are introduced to capture the workers that are most appropri-
ate for assignment of a certain task. A cross-task crowdsourcing approach (CTC)
characterized by a transfer learning method and a bayesian model is proposed
in [22] based on the intuition that the history of executed tasks can be exploited
to extract knowledge on workers abilities. In CTC, the application target is a
large crowdsourcing platform where many tasks are executed by each worker
so that learning can be effectively employed. Budget constraints are introduced
in [11] to enforce task routing with an incentive-compatible approach. Issues
about task routing discussed from the marketplace point-of-view are presented
in [14] where a comparative analysis of a set of well-known crowdsourcing plat-
forms is provided. The goal of [14] is to observe the crowdsourcing ecosystem as
a whole and to provide insights about possible platform improvements on task
design and worker understanding empowerments. An approach based on the
specification of Service Level Agreements (SLAs) is proposed in [18] where the
task assignment mechanism is dynamically adjusted to fulfill a set of declared
requirements. The satisfaction of human skill requirements can be included in
the SLA for being exploited by the task scheduler. However, a fixed list of skills
is specified in the SLA and it cannot be extended at runtime to catch the real
worker attitudes with respect to the executed tasks.

The idea to improve the crowdsourcing performances through learning of
worker expertise has been also envisaged. In [10], implicit and explicit learning
stages are enforced to capture the predict the degree of worker success in execut-
ing specific kinds of tasks. In [24], the worker profile is predicted by observing
the results on the executions of taste tasks and a taste-matching function is pro-
posed to adjust the prevision according to the correct task answer (presuming
that such a correct task answer is available). In [9], a warm-up phase is pre-
sented for the iCrowd framework to estimate the worker accuracy through the
execution of an initial set of tasks with known answer. After warm-up, the tasks
assigned to a worker are adaptively chosen according to the estimated worker
accuracy based on the quality of provided answers. Other similar approaches are
aimed at capturing the worker abilities by relying on cognitive tests in a sort of
psycho-analytics approach (e.g., [12]). Sometimes, the cognitive model is based
on a predefined taxonomy/ontology of worker skills taken from target crowd-
sourcing applications or reference skill classifications [13,17]. Learning requires
the specification of task types to consider and focused learning tasks to use for
training. Online learning techniques have been also proposed for improving the

Crowdsourcing Task Assignment with Online Profile Learning 229

quality of crowdsourcing results. In [20], the problem of crowdsourcing labeling is
modeled as a multi-armed bandit (MAB) problem where the goal is to learn the
most effective combination of labelers for a given labeling task to execute. How-
ever, we stress that this solution is specifically conceived for the labeling problem
under majority-voting employment. Other approaches based on (multi-armed)
bandits algorithms are presented in [15,28] where the focus is on optimizing task
assignment in relation with predefined budget constraints.

Original Contribution. With respect to the related work discussed above, the
Argo+ framework proposed in this paper is characterized by the following orig-
inal contribution. First, the features used for representing the worker expertise
are not predefined in type and number and the degree of worker expertise on
a certain feature dynamically changes through learning functions based on the
successful rate of executed tasks. Moreover, the specification of an initial worker
profile is not mandatory in Argo+, thus allowing the system to start the crowd-
sourcing activities without requiring the execution of an extra bulk of profiling
tasks/questions devoted to recognize the worker abilities in advance with respect
to the participation to real crowdsourcing campaigns. The evolving nature of the
Argo+ worker profile captures the worker capabilities that have been concretely
employed and shown in task execution, thus allowing to choose the work-force
of a task by selecting workers that are really expected to provide a successful
contribution/answer.

3 The Argo+ Framework

Consider a requester, namely a campaign manager, submitting a crowdsourc-
ing campaign C based on a set of tasks T = {t1, . . . , tn} for execution on a
crowdsourcing system CS by a crowd of workers W = {w1, . . . , wk}.

A task t ∈ T is defined as t = 〈idt, at,mt, dt, Ft〉, where idt is the unique task
identifier, at is the task action, mt is the task modality, dt is the task description,
and Ft is the set of task-features. A task action at denotes the task target,
namely the goal that needs to be satisfied through crowd execution (e.g., picture
labeling, movie recognition, sentiment evaluation). A modality mt represents the kind
of worker answer required in task execution. Conventional modalities are (i)
creation for denoting that the worker is called to generate a free task answer,
and (ii) decision for denoting that the task answer is chosen by workers within a
set of possible alternative options. Further task modalities are possible, such as
for example rating and ranking, and details are provided in [6]. A description dt

represents the task request given to each worker for illustrating what is demanded
to her/him in the task execution. For instance, in a task t with action picture

labeling and decision modality, the description dt can be recognize the historical period

of the following artwork among the given options. A set of task-features Ft provides
a description of task requirements, namely a specification of the capabilities
expected from a worker for being involved in the execution of the task t. For each
feature f ∈ Ft, a task-feature weight ω(f) is associated to denote the relevance
of f within the task-features Ft. A task-feature f ∈ Ft is a label that denotes

230 S. Castano et al.

an expected worker expertise in a specific domain knowledge. For instance, the
task-features of the considered task t can be art history and renaissance to denote
required domain knowledge.

A worker w ∈ W is defined as w = 〈idw, Fw〉, where idw is the unique
worker identifier and Fw is the worker profile expressed as a set of worker-
features. A worker-feature f ∈ Fw denotes a worker capability, namely knowledge
expertise, and it is associated with a worker-feature weight ω(f) denoting the
“degree” of expertise/ability associated with the worker. In Argo+, a worker
profile is adaptive and evolving, meaning that (i) the worker-features Fw of a
worker w ∈ W are dynamically determined based on the executed tasks and (ii)
the associated worker-feature weights are progressively adjusted (i.e., learned)
based on the quality of executed tasks. For instance, given a set of tasks T with
task-features Ft, the more a worker w successfully executes the tasks T , the more
the worker-features in Fw and the corresponding worker-feature weights become
similar to the task-features of Ft.

The Argo+ framework and the conceptual schema of the underlying
worker/task management repository are shown in Fig. 1. The framework is artic-
ulated in the following components:

WORKERFEATURE

TASK

id

modality

description

W-F

T-F

action

weight

weight

id

label

(1,N) (1,N)

(1,N)

(1,N)

CROWD
WORKERS

REQUESTER
(campaign manager)

CROWDS.
RESULTS

PROFILE
INITIALIZATION

TASK
CLASSIFICATION

TASK
ASSIGNMENT

PROFILE
LEARNING

RESULT
EVALUATION

TASK
PROFILES

WORKER
PROFILES

TASK
ANNOTATION

TASKS
TO EXECUTE

Fig. 1. The Argo+ framework

Task Annotation. This component has the goal to associate a task t ∈ T with
the corresponding set of task-features Ft and related task-feature weights. In a
basic scenario, we expect that task annotation is manually performed by the
requester, who has the role to choose the set of task-features Ft and to setup the
corresponding weights in force of her/his understanding of the crowdsourcing
campaign. The requester determines the composition of the set Ft by specifying
requirements on the worker domain knowledge. Usually, tasks characterized by
a common action, modality, and description are associated with the same set of
features Ft. Since a campaign is typically characterized by few different types of
task requests, manual task annotation can be considered a viable and effective
solution.

Crowdsourcing Task Assignment with Online Profile Learning 231

Profile Initialization. This component has the goal to associate a worker
w ∈ W with the worker-features Fw and corresponding weights ω(f). In a
crowdsourcing campaign, for each worker, the set of worker-features Fw coin-
cides with the set of task-features Ft associated with the tasks T to execute in
the crowdsourcing campaign. A weight ω(f) is then assigned to each worker-
feature f ∈ Fw. Two alternative solutions are envisaged in Argo+ for profile
initialization. Similarly to most of the existing crowdsourcing systems, profile ini-
tialization can be enforced through an initial positioning questionnaire based on
ad-hoc questions in which workers self-evaluate their knowledge/abilities before
their involvement in task execution (custom profile initialization). The question-
naire is usually provided by the campaign manager and it is defined according
to the features of tasks T constituting the campaign. In this solution, the result
of profile initialization is that task assignment is initially based on worker pref-
erences as determined through the questionnaire answers. As an alternative, the
worker profile can be initialized according to a default configuration which is
common to any worker, thus avoiding both the preparation and the execution
of a positioning questionnaire (flat profile initialization). In this solution, each
worker profile gradually evolves from the common initialization towards the per-
sonal profile as learned from executed tasks. The flat initialization grounds in
the idea that the self-evaluation of worker knowledge is subjective and untrust-
worthy due to possible over-/under-estimation of real worker expertise, thus a
flat profile initialization is more effective than a custom one.

Task Classification. This component has the goal to aggregate the tasks T
into K classes, so that tasks with similar features Ft are associated with a same
class. A number of categorization approaches can be exploited for task aggrega-
tion, ranging from distance-based algorithms to probabilistic models based on
latent features mined from data [23]. As a general remark, we recommend that
the adopted solution for task classification is characterized by overlap support,
meaning that a task can be associated with more than one class due to different
similarities causes with other tasks. This way, it is possible that a task with a
plurality of features has multiple associated classes and it can be exploited by
workers with different expertise, each one focused on a different class.

Task Assignment. This component has the goal to choose the work-force of
each task t ∈ T and to schedule the related execution. In Argo+, task assignment
is expected to follow a worker-centric criterion. This means that assignment is
triggered by a worker w asking for a task to execute, which is determined “on-
the-fly” by the system according to the w profile. Argo+ exploits the results
of task classification and it detects the most appropriate task class k for the
worker w, then the task t with the highest probability of being associated with
k is assigned to w. The most appropriate task class for a worker w is the class k
that best fits the w profile, thus maximizing the probability of w to successfully
execute a task t in k.

Result Evaluation. For each task t ∈ T , this component has the goal to deter-
mine the final task result α(t) on the basis of the answers provided by workers

232 S. Castano et al.

involved in the t execution. Different solutions can be employed by a crowdsourc-
ing system CS for determining α(t). Popular solutions are based on majority
voting mechanisms where the final task result corresponds to the answer that
obtained the majority of preferences by the involved workers [5]. Alternative
solutions are characterized by statistics-based techniques where the final task
result is determined by considering the distribution of collected worker answers
through the combination of one or more statistical indicators, like for example
arithmetic mean, variance, or deviation [6]. As a result, the final task result α(t)
is determined by relying on the adopted solution. Given a task t, a further goal
of result evaluation is to assess the quality of each collected worker answer in
light of the determined α(t). We say that a worker w provided a successful con-
tribution to the task t when the worker answer coincides with (or is equivalent
to) α(t) according to the employed techniques for task result evaluation. Other-
wise, we say that a worker w provided an unsuccessful contribution to the task t.
According to this, we define the worker-task result ρ(w, t) as follows:

ρ(w, t) =
{

1 if w provided succ. contrib.
0 otherwise

Profile Learning. This component has the goal to update/evolve the worker
profiles according to the results of executed tasks. The idea of Argo+ is to progres-
sively learn the knowledge of a worker w by considering the features of tasks and
related weights on which w provided successful contributions. For effective pro-
file learning, update/evolution operations on the profile of the worker w should
be triggered each time w executes a task t, on the basis of the quality of provided
task answer. This way, learning results can affect all the subsequent task assign-
ments for the worker w. However, we need to consider that real crowdsourcing
systems are mostly characterized by group-based task assignment in which a task
t is assigned to a set of independent workers, each one called to autonomously
execute t. As a result, the final task result α(t) of a task t can be determined
only when a certain number of worker answers are collected. In most situations,
this means that, the quality of answer provided by a worker w to a task t can-
not be determined immediately after the execution of t by w. A basic solution
to this issue is the use of delayed learning actions, in which update operations
to worker profiles are enforced when the final results of executed tasks become
available. A more effective solution is the use of gang-based learning actions, in
which the quality of worker answers is immediately determined after a task exe-
cution according to probability-based predictions determined by observing the
behavior of similar workers (that can be considered as a “gang”) [7].

4 Techniques for Argo+

In the following, we present a possible implementation of Argo+ based on the use
of probabilistic topic modeling for realizing the task classification component. In
particular, the proposed solution is characterized by the use of Latent Dirichlet
Allocation (LDA) [4] over the task-features, which has the goal to produce a soft

Crowdsourcing Task Assignment with Online Profile Learning 233

task aggregation based on two discrete probability distributions, namely φ and θ.
φ describes the probability distribution of task-features on classes. In particular,
φk denotes the probability of each task-feature f of being associated with the kth
class on the K possible classes. θ describes the probability distribution of classes
on tasks. In particular, θt denotes the probability of the task t of belonging to
each class k among the K possible classes. Finally, we denote θk

t as the probability
of the task t to be associated with the class k. The choice of K, namely the
number of classes on which LDA works for task classification, is a configuration
parameter and it is discussed in Sect. 5.

The results of task classification has an impact on (i) how to select the
tasks for assignment to a requesting worker (task assignment component), (ii)
how to update the worker profile according to the task results (profile learning
component).

4.1 Assigning Tasks to Workers

Consider a worker w and associated worker profile Fw. When w asks for a task t
to execute, the probability distributions (φ, θ) created by task classification are
exploited. Through φ, Argo+ calculates the maximum a posteriori estimation θw

given the worker features Fw. This is done by using collapsed Gibbs sampling [26]
to learn the latent assignment of features to classes given the observed features
Fw. In particular, we repeatedly estimate the probability p(f | φk) of a feature
f to be assigned to a class k and we exploit this to estimate the probability
p(k | w) of the class k to be the correct assignment for the worker w. This
sampling process is repeated until convergence, so that for each class k ∈ K we
finally estimate:

θk
w ∝

∑
f∈Fw

ω(f)k

∑
f∈Fw

∑
j∈K

ω(f)j
, (1)

where ω(f)i denotes the weight of features of type f that have been assigned to
class i. Then, from the distribution θw, we select the class z such that:

z = arg max
z∈K

θz
w. (2)

Given z as the most relevant task class for the worker w, we assign to w the task
t such that:

t = arg max
t∈T

θz
t . (3)

We stress that a task t is available for assignment until the number of task
executions expected by the system is reached, then it is marked as finished and
it is excluded from the assignment mechanism.

Example 1. Consider to enforce Argo+ on a system with task classification based
on K = 10. A worker w asks for a task to execute and the profile Fw is defined
by the following features:

234 S. Castano et al.

Fw = 〈 (web search, 0.85), (classification, 0.85), (smartphone, 0.51), (text, 0.34), ... 〉
Starting from Fw, we exploit Eq. 1 in order to classify the worker w with respect
to the classes K. The resulting distribution θw is:

K 1 2 3 4 5 6 7 8 9 10
θw 0.07 0.57 0.02 0.08 0.06 0.02 0.02 0.04 0.02 0.07

From θw, we exploit Eq. 2 to select the most relevant class for the worker profile,
that is k = 2. The top-3 features associated with k = 2 in φ2 are: classification,
tweets, and web search, which motivates the relevance of the class with respect to
the worker profile Fw. Given the class, it is now possible to exploit Eq. 3 in order
to select a task t for worker execution. The features Ft of the task selected for
assignment to w are:

Fw = 〈 (web search, 1.0), (classification, 1.0), (smartphone, 1.0)〉

4.2 Learning Worker Profiles

For updating a worker profile, Argo+ relies on learning techniques inspired to the
Rocchio relevance feedback [21]. When a worker w executes a task t, we associate
the worker w with a new set of features F ′

w = Fw ∪ Ft. We denote ω(f)w as the
weight of the feature f in Fw (possibly being 0 if f was not in Fw) and ω(f)t

the weight of feature f in Ft (possibly being 0 if f was not in Ft). Then, the
new weight ω(f)′ for each feature in F ′

w is updated as follows:

ω(f)′ = δ · ω(f)w + (1 − δ) · θz
t · ρ(w, t) · ω(f)t, (4)

where δ is a dumping factor in [0, 1] that determines how much of the original
weight of the profile features contributes to the new weight, and z is the class
chosen for the task assignment. The idea behind profile update is that when a
worker profile feature is not included in the task features, its weight is reduced
by a factor δ. In the other case, the new profile feature weight ω(f)′ is computed
as the weighted sum between the previous profile feature weight ω(f)w and the
task feature weight ω(f)t, which contribution is proportional to the relevance
θz

t of the task t in the class z. The task feature weight ω(f)t is forced to be
equal to 0 when the worker does not provide a successful contribution on the
task (resulting in a reduction of the corresponding profile feature weight).

Example 2. Consider the task assignment of Example 1. The worker w executed
t and ρ(w, t) = 1. We update Fw by applying Eq. 4. The updated worker profile
F ′

w is the following (the class-task relevance θ2t = 0.77):

Fw = 〈 (web search, 0.78), (classification, 0.78), (smartphone, 0.74), (text, 0.03), ... 〉
We note that the three features of t affects the worker profile by changing the
relative feature weights. Features web search and classification remain the most
relevant, but the weight of smartphone that is a feature of t is increased. On
the opposite, the feature text of Fw becomes less relevant in the new worker
profile, due to the fact that it is not part of the task feature set Ft. After the
profile update, Argo+ will exploit the new worker profile for the subsequent task
assignments to w.

Crowdsourcing Task Assignment with Online Profile Learning 235

5 Evaluation of Learning-Based Task Assignment
in Argo+

For evaluation purposes, we rely on the Argo+ implementation presented in
Sect. 4 and we consider two different experiments characterized by different task
datasets called Amt-dts and Argo-dts, respectively.

Amt-dts contains the results of a third-party crowdsourcing campaign run on
Amazon Mechanical Turk and presented in [25]. In Amt-dts, tasks are assigned
to workers according to a motivation-based criterion by relying on the intuition
that the quality of worker contributions can be improved when tasks are assigned
to workers according to their motivation to execute tasks. Through Amt-dts,
we consider a third-party dataset with the aim to compare Argo+ against a
well-known crowdsourcing system equipped with a task assignment mechanism
characterized by totally-different design principles.

Argo-dts, contains the results of a crowdsourcing campaign run through our
Argo crowdsourcing system [5]. In Argo-dts, tasks are assigned to workers accord-
ing to a trustworthiness-based mechanism, in which workers that demonstrate
high reliability are rewarded and involved in tasks where commitment is hard
to obtain (i.e., complex tasks). Through Argo-dts, the goal is to have a base-
line comparison for observing the behavior of Argo+ against a basic version of
expertise-based task assignment mechanism.

Our experimental evaluation is organized in two different experiments based
on Amt-dts and Argo-dts, respectively. In both the experiments, the task answers
contained in the datasets are considered as a baseline for comparison against
Argo+ and the goal is to assess whether Argo+ succeeds in improving the task
assignments with respect to the considered baseline.

In the following, we first present the experimental setup and associated eval-
uation metrics, then we discuss the obtained results in the two experiments with
Amt-dts and Argo-dts, respectively.

5.1 Experimental Setup and Evaluation Metrics

Both Amt-dts and Argo-dts consist in a set of task answers collected from crowd
workers on a given crowdsourcing campaign. Multiple answers are provided for
each task by different workers and each worker is involved in the execution of a
variable number of tasks.

Given a crowdsourcing execution over a given set of tasks T , we call stream
of answers S = {a1, . . . , an} a sequence of worker task answers where a =
〈w, t, ρ(w, t), r〉 denotes that the worker w executed the task t ∈ T by providing
the worker-task result ρ(w, t). The r value is the request timestamp denoting
when the worker submitted the task answer and completed the task execution.
According to Sect. 3, the worker-task result ρ(w, t) is specified to distinguish the
worker answers that represent a successful contribution from the others. In a
stream of answers, given a worker w, it is possible to retrace the time-sequence
of tasks executed by w which coincides with the task assignments received by w
during time.

236 S. Castano et al.

In both the experiments, the considered dataset, namely Amt-dts or Argo-dts,
represents a stream of answers considered as a baseline for comparison against
Argo+. Since the set of tasks concretely executed by each worker cannot be
changed, our experiments are based on the idea to post-analyze the stream
of answers in the baseline and to change the assignment sequence of tasks to
workers according to the assignment schedule determined by Argo+. We aim at
verifying whether the task assignment of Argo+ succeeds in capturing the worker
profile and in improving the time-sequence of executed tasks, so that the tasks
successfully executed by a worker w are assigned to w before than other tasks.

Given a stream of answers S, we call σ(r,S) the success rate of S at the
request timestamp r and it is defined as follows:

σ(r,S) =
1
r

r∑
i=1

ρ(w, t)i

where ρ(w, t)i is the worker-task result of the ith task execution at the request
timestamp r in the stream of answers S. In the experiments, we compare two
different streams of answers. One is the baseline stream (i.e., Amt-dts or Argo-dts)
and one is the stream of answers of Argo+.

To this end, given two different streams of answers S1 and S2, we call incre-
ment value Ir(S1,S2) the ratio between the success rate of S1 and the success rate
of S2 at the timestamp r. The increment value Ir(S1,S2) is defined as follows:

Ir(S1,S2) =
σ(r,S1)
σ(r,S2)

Considering a stream of answers S, we call assignment performance σS
R the com-

prehensive success rate of S defined as follows:

σS
R =

∫ R

1

σ(r,S)dr

where R the overall number of successfully executed tasks in the stream of
answers S, namely R is the sum of all the ρ(w, t) = 1 in S.

5.2 Results on the Amt-dts Dataset

The Amt-dts dataset contains 707 crowd answers about 22 different kinds of tasks,
each one associated with a specific set of tags/keywords taken from a set of 39
thematic tags. The task keywords have been exploited for setting up the task
features Ft expected by Argo+. In particular, for each keyword associated with a
task t in Amt-dts, a corresponding task feature f is created in Argo+ for the task
t with a corresponding weight ω(f) = 1. Moreover, 23 workers are involved in
the execution of dataset tasks, each one associated with a static set of featuring
keywords. The same set of thematic tags is exploited in Amt-dts for describing
both tasks and workers. In the experiment, two different Argo+ configurations are

Crowdsourcing Task Assignment with Online Profile Learning 237

considered. One configuration with a flat worker profile (called Argo+noprofile)
where ω(f) = 0 is initially defined for each thematic tag (i.e., worker-feature),
and one configuration with a custom worker profile (called Argo+profile) where
ω(f) = 1 if the tag/worker-feature is associated with the worker in Amt-dts.

In the experiment, Argo+ has been configured with K = 10 classes for task
classification and a dumping factor δ = 0.3 for worker profile learning. We note
that choosing a high value of K produces classes with few and (usually) precise
associated tasks, but the presence of few tasks per class negatively affects the
learning mechanism. For instance, consider to choose K so that it corresponds
to the number of available tasks. This way, each class is associated with very few
tasks (probably just one per class). As a result, once that the task of a class k
is assigned to a worker w, learning that w is capable to successfully execute the
tasks of k is not useful since the class k is empty for w and subsequent tasks need
to be picked up from other classes, thus enforcing a task assignment mechanism
that is equivalent to a random choice. On the opposite, choosing a low value
of K produces classes with many associated tasks. Given a class k, there are
tasks t that are associated with k through a high probability value θk

t , but there
are also a (usually long) tail of tasks with low probability values. This means
that a worker w with a profile fitting the class k is satisfied of the initial tasks
taken from k, but subsequent assignments risk to be inappropriate due to the
fact that tasks are not so relevant for the class k (i.e., low probability value θk

t).
In our experiments, the choice of K = 10 has been determined experimentally
by exploiting perplexity which measures the ability of a model to generalize to
unseen data [3]. In the experiment, we run the LDA algorithm considering a
variable number of K and we calculated the corresponding perplexity value for
each execution. Perplexity decreases as K increases and we decided to set K to
the minimum value for which perplexity reaches a stable value (i.e., K = 10).

The comparison of the baseline Amt-dts (S1) against Argo+noprofile (S2) and
Argo+profile (S3) is performed by comparing (i) the success rate σ(r,S1), σ(r,S2),
and σ(r,S3) (Fig. 2(a)), and (ii) the increment value I(S2,S1) and I(S3,S1)
(Fig. 2(b)). We observe that both Argo+noProfile and Argo+Profile succeed in
improving the success rate of Amt-dts, since successfully executed tasks are
assigned to workers before than others in most cases. For the first 150 requests,
the success rate of Argo+noProfile is around 20% better than Amt-dts. It is also
interesting to note that at the very beginning of the system execution (r < 10)
the behavior of Argo+noProfile and Argo+Profile is characterized by an unstable
trend. We believe that this behavior is due to the fact that learning has insuf-
ficient information for recognizing the appropriate task class for each worker.
However, Argo+ quickly learns the worker profile (r ≥ 10) and this has a positive
impact on the assignment of subsequent tasks. The performance of Argo+noProfile

becomes similar to Amt-dts after the 300th worker request. This is due to the
fact that Argo+ first selects tasks that are highly relevant for the worker profile,
but subsequent assignments are about residual tasks of the K classes on which
the relevance for the worker profile is weaker.

238 S. Castano et al.

Fig. 2. (a) the success rate on executed tasks, (b) the increment value of Argo+ with
respect to Amt-dts

Finally, we compare Amt-dts and Argo+ through the assignment performance
measure σR and we obtain that σS1

R = 399.59, σS2
R = 424.66, and σS3

R = 399.61.
As a result, we observe that the use of a flat initialization of worker profile
provides the best performance on the three considered streams of answers (see
also Fig. 2(b) on the increment value). This confirms the intuition behind the
use of flat profiles which argues that the auto-evaluation of worker knowledge is
usually misplaced with respect to the real worker expertise, and thus unreliable
and sometimes damaging for the performance of the crowdsourcing system.

5.3 Results on the Argo-dts Dataset

The Argo-dts dataset contains 14, 016 crowd answers about 1, 507 tasks on paint-

ings. The Argo-dts dataset has been collected during a crowdsourcing campaign
between November and December 2017 which involved 367 students from the
Faculty of Arts and Literature at the University of Milan. The painting tasks are
about paintings from 56 different authors spanning from the 13th century to the
20th century. For each task, the worker is asked to examine a painting and to
choose the correct author among a set of six possible painters. For painting, both
task and worker features are taken from Wikidata1 and they include the name
of the author, the year, and the Wikidata thematic categories available for a
painting. An example of task and worker answer is given in Fig. 3. Two different
configurations of Argo+ are considered. One called Argo+noprofile is characterized
by a flat worker profile where ω(f) = 0 is initially defined for each feature (i.e.,
worker-feature) taken from Wikidata. One called Argo+profile is characterized by
a custom worker profile where ω(f) = 1 for each feature on which the worker
has declared an expertise. A self-evaluation questionnaire has been submitted
to workers about knowledge of painters and different periods in the art history

1 https://www.wikidata.org.

https://www.wikidata.org

Crowdsourcing Task Assignment with Online Profile Learning 239

for collecting the perceived worker expertise before starting the crowdsourcing
activities. In the experiment, Argo+ has been configured with a number of classes
K = 30 for task classification and a dumping factor δ = 0.3 for worker profile
learning. The number K has been determined through perplexity by following
the same approach discussed in the Amt-dts experiment.

WORKER OPTIONS

Ra aello Sanzio
Gustav Klimt
Piero della Francesca
Francisco Goya
Giotto
Michelangelo Buonarroti

TASK FEATURES

Ra aello Sanzio
1516
High Renaissance

Portrait paintings of
cardinals

EXAMPLE OF WORKER ANSWER

{ "gold_answer" : "Q5597",
 "argo_answer" : "Ra aello Sanzio",
 "worker_answer_id" : "Q5432",
 "worker_answer" : "Francisco Goya",
 "task_id" : 1102,
 "answer_timestamp" : 2017-11-13T14:42:19,
 "worker_id" : 527,
 "task_refused" : false }

Fig. 3. Example of painting task in Argo-dts with associated task features and an
example of (wrong) worker answer

The comparison of the baseline Argo-dts (S1) against Argo+noprofile (S2) and
Argo+profile (S3) is shown for the first 200 tasks requests in Fig. 4(a) and (b),
respectively. The Argo-dts experiment confirms that both Argo+noProfile and
Argo+Profile succeed in significantly improving the success rate of the baseline. In
comparison with the previous Amt-dts, this experiment with Argo-dts show that
Argo+noProfile and Argo+Profile follow a very similar trend. This means that, in
Argo-dts, the initialization of a custom worker profile does not provide a relevant
impact, neither positive or negative, on the success rate of executed tasks. Sim-
ilarly to the experiment with Amt-dts, it is interesting to note that an unstable
trend on the success rate occurs at the beginning of task assignment. In this
case, the instability behavior of the two Argo+ streams can be observed within
an initial window-frame of around 30–50 tasks. This value is higher than the one
observed in Amt-dts and (more or less) coincides with the number K of classes
used for task classification (i.e., K = 30 in Argo-dts). We argue that this result
highly depends on the use of a learning mechanism inspired to the Rocchio rel-
evance feedback, in which the learned worker expertise is immediately exploited
for subsequent task assignments. As a result, apart from the perplexity consider-
ations, we argue that the use of a high number of classes for task classification is
recommended in large crowdsourcing campaigns. This way, the initial window-
frame in which tasks of different classes are assigned to each worker is enlarged
and the learning mechanism can discover more worker expertnesses before start-
ing focused assignments based on learned knowledge.

According to the increment values in Fig. 4(b), we note that Argo+Profile pro-
vides a slightly better performance than Argo+noProfile. However, the behavior of
the two Argo+ configurations is very similar in comparison with the baseline. We
argue that this result is due to the training information received by the involved
workers before starting the crowdsourcing activities. In particular, workers were
recommended to carefully fill out the self-evaluation questionnaire by providing
fair degrees about their expertise in Arts and paintings. As a result, we have

240 S. Castano et al.

Fig. 4. (a) the success rate on executed tasks, (b) the increment value of Argo+ with
respect to Argo-dts

that the use of a trustworthy crowd has a positive impact on the performance
of the task assignment mechanism. However, the degree of trustworthiness of a
crowd cannot be determined a-priori, before the crowdsourcing activities. Thus,
we confirm that the adoption of a flat profile initialization is a more reliable
solution that provides the better performance in the general case (see the results
of the Amt-dts experiment).

6 Concluding Remarks

In this paper, we presented the Argo+ framework and a related techniques for
crowdsourcing task assignment with online learning of worker profiles. An imple-
mentation based on techniques inspired to topic modeling and Rocchio relevance
feedback is illustrated. Experimental results on a third-party dataset and a real
crowdsourcing campaign show promising results by increasing the number of
successfully executed tasks in a considered time frame.

Future research activities are devoted to extend the Argo+ framework to
consider/support human skills, such as originality, perceptual speed, and deduc-
tive reasoning, in addition to knowledge expertise when modeling task features
and worker profiles. The possible use of alternative techniques with respect to
LDA and Rocchio-inspired learning mechanism will be also considered in future
work. In addition, ongoing work are focused on worker profile management over
different crowdsourcing campaigns. The idea is that the profile of a worker is
saved when a crowdsourcing campaign is terminated, so that it can be eventu-
ally exploited in subsequent campaigns. This way, the learned worker experience
contributes to positively affect task assignments on startup of crowdsourcing
campaigns subsequently joined by a worker. This intuition goes in the direction
to consider the crowd as a permanent component of a crowdsourcing system
where the workforce to involve in a campaign can be dynamically composed

Crowdsourcing Task Assignment with Online Profile Learning 241

according to the expertise degree of each worker on the tasks to execute. As a
result, like in a real job-marketplace, it becomes possible that workers can nego-
tiate their participation to crowdsourcing activities based on the contribution
they can provide in terms of (profile-certified) expertise.

References

1. Alsayasneh, M., et al.: Personalized and diverse task composition in crowdsourcing.
IEEE Trans. Knowl. Data Eng. 30(1), 128–141 (2018)

2. Amer-Yahia, S., Roy, S.B.: Human factors in crowdsourcing. PVLDB 9(13), 1615–
1618 (2016)

3. Arun, R., Suresh, V., Veni Madhavan, C.E., Narasimha Murthy, M.N.: On finding
the natural number of topics with latent Dirichlet allocation: some observations. In:
Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI),
vol. 6118, pp. 391–402. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-13657-3 43

4. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3(Jan), 993–1022 (2003)

5. Castano, S., Ferrara, A., Genta, L., Montanelli, S.: Combining crowd consensus and
user trustworthiness for managing collective tasks. Futur. Gener. Comput. Syst.
54, 378–388 (2016)

6. Castano, S., Ferrara, A., Montanelli, S.: A multi-dimensional approach to crowd-
consensus modeling and evaluation. In: Johannesson, P., Lee, M.L., Liddle, S.W.,
Opdahl, A.L., López, Ó.P. (eds.) ER 2015. LNCS, vol. 9381, pp. 424–431. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25264-3 31

7. Cesa-Bianchi, N., Gentile, C., Zappella, G.: A gang of bandits. In: Proceedings
of the 27th Internatioanl Conference on Neural Information Processing Systems,
Lake Tahoe, Nevada, USA, pp. 737–745 (2013)

8. Difallah, D.E., Demartini, G., Cudré-Mauroux, P.: Pick-a-crowd: tell me what you
like, and I’ll tell you what to do. In: Proceedings of the 22nd WWW International
Conference, Rio de Janeiro, Brazil (2013)

9. Fan, J., Li, G., Ooi, B.C., Tan, K.l., Feng, J.: iCrowd: an adaptive crowdsourcing
framework. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 1015–1030. ACM, Melbourne (2015)

10. Gadiraju, U., Fetahu, B., Kawase, R.: Training workers for improving performance
in crowdsourcing microtasks. In: Conole, G., Klobučar, T., Rensing, C., Konert,
J., Lavoué, É. (eds.) EC-TEL 2015. LNCS, vol. 9307, pp. 100–114. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24258-3 8

11. Goel, G., Nikzad, A., Singla, A.: Allocating tasks to workers with matching con-
straints: truthful mechanisms for crowdsourcing markets. In: Proceedings of the
23rd WWW International Conference, Seoul, Korea (2014)

12. Goncalves, J., Feldman, M., Hu, S., Kostakos, V., Bernstein, A.: Task routing and
assignment in crowdsourcing based on cognitive abilities. In: Proceedings of the
26th WWW International Conference, Perth, Australia (2017)

13. Hassan, U., Curry, E.: A capability requirements approach for predicting worker
performance in crowdsourcing. In: Proceedings of the 9th International Conference
on Collaborate Computing, Austin, Texas, USA (2013)

14. Jain, A., Sarma, A.D., Parameswaran, A., Widom, J.: Understanding workers,
developing effective tasks, and enhancing marketplace dynamics: a study of a large
crowdsourcing marketplace. Proc. VLDB Endow. 10(7), 829–840 (2017)

https://doi.org/10.1007/978-3-642-13657-3_43
https://doi.org/10.1007/978-3-642-13657-3_43
https://doi.org/10.1007/978-3-319-25264-3_31
https://doi.org/10.1007/978-3-319-24258-3_8

242 S. Castano et al.

15. Jain, S., Narayanaswamy, B., Narahari, Y.: A multiarmed bandit incentive mech-
anism for crowdsourcing demand response in smart grids. In: Proceedings of the
28th AAAI Conference on Artificial Intelligence, Qulébec, Canada, pp. 721–727
(2014)

16. Karger, D.R., Oh, S., Shah, D.: Budget-optimal task allocation for reliable crowd-
sourcing systems. Oper. Res. 62(1), 1–24 (2014)

17. Kazai, G., Kamps, J., Milic-Frayling, N.: Worker types and personality traits in
crowdsourcing relevance labels. In: Proceedings of the 20th CIKM, Glasgow, Scot-
land, UK (2011)

18. Khazankin, R., Psaier, H., Schall, D., Dustdar, S.: QoS-based task scheduling in
crowdsourcing environments. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R.
(eds.) ICSOC 2011. LNCS, vol. 7084, pp. 297–311. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-25535-9 20

19. Li, G., Wang, J., Zheng, Y., Franklin, M.J.: Crowdsourced data management: a
survey. IEEE Trans. Knowl. Data Eng. 28(9), 2296–2319 (2016)

20. Liu, Y., Liu, M.: An online learning approach to improving the quality of crowd-
sourcing. IEEE Trans. Netw. 25(4), 2166–2179 (2017)

21. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval,
vol. 1. Cambridge University Press, Cambridge (2008)

22. Mo, K., Zhong, E., Yang, Q.: Cross-task crowdsourcing. In: Proceedings of the
19th ACM SIGKDD International Conference, Chicago, Illinois, USA (2013)

23. Müller, E., Günnemann, S., Färber, I., Seidl, T.: Discovering multiple clustering
solutions: grouping objects in different views of the data. In: Proceedings of the
28th IEEE ICDE International Conference, Washington, DC, USA, pp. 1207–1210
(2012)

24. Organisciak, P., Teevan, J., Dumais, S.T., Miller, R., Kalai, A.T.: A crowd of your
own: crowdsourcing for on-demand personalization. In: Proceedings of the 2nd
AAAI HCOMP, Pittsburgh, USA (2014)

25. Pilourdault, J., Amer-Yahia, S., Lee, D., Roy, S.B.: Motivation-aware task assign-
ment in crowdsourcing. In: Proceedings of the 20th EDBT International Confer-
ence, Venice, Italy (2017)

26. Porteous, I., Newman, D., Ihler, A., Asuncion, A., Smyth, P., Welling, M.: Fast
collapsed gibbs sampling for latent Dirichlet allocation. In: Proceedings of the 14th
ACM SIGKDD International Conference, pp. 569–577 (2008)

27. Simpson, E., Roberts, S.: Bayesian methods for intelligent task assignment in
crowdsourcing systems. In: Guy, T., Kárný, M., Wolpert, D. (eds.) Decision Mak-
ing: Uncertainty, Imperfection, Deliberation and Scalability. SCI, vol. 538, pp. 1–32.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15144-1 1

28. Tran-Thanh, L., Stein, S., Rogers, A., Jennings, N.R.: Efficient crowdsourcing of
unknown experts using bounded multi-armed bandits. Artif. Intell. 214, 89–111
(2014)

29. Tranquillini, S., Daniel, F., Kucherbaev, P., Casati, F.: Modeling, enacting, and
integrating custom crowdsourcing processes. ACM Trans. Web 9(2), 7:1–7:43
(2015)

30. Zheng, Y., Li, G., Li, Y., Shan, C., Cheng, R.: Truth inference in crowdsourcing:
is the problem solved? Proc. VLDB Endow. 10(5), 541–552 (2017)

https://doi.org/10.1007/978-3-642-25535-9_20
https://doi.org/10.1007/978-3-319-15144-1_1

	Crowdsourcing Task Assignment with Online Profile Learning
	1 Introduction
	2 Related Work
	3 The Argo+ Framework
	4 Techniques for Argo+
	4.1 Assigning Tasks to Workers
	4.2 Learning Worker Profiles

	5 Evaluation of Learning-Based Task Assignment in Argo+
	5.1 Experimental Setup and Evaluation Metrics
	5.2 Results on the Amt-dts Dataset
	5.3 Results on the Argo-dts Dataset

	6 Concluding Remarks
	References

