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Abstract. Nowadays security concerns of computing devices are grow-
ing significantly. This is due to ever increasing number of devices con-
nected to the network. In this context, optimising the performance of
intrusion detection systems (IDS) is a key research issue to meet demand-
ing requirements on security of complex and large scale networks. Within
the IDS systems, attack classification plays an important role. In this
work we propose and evaluate the use the generalizing power of neural
networks to classify attacks. More precisely, we use multilayer perceptron
(MLP) with the back-propagation algorithm and the sigmoidal activa-
tion function. The proposed attack classification system is validated and
its performance studied through a subset of the DARPA dataset, known
as KDD99, which is a public dataset labelled for an IDS and previously
processed. We analysed the results corresponding to different configura-
tions, by varying the number of hidden layers and the number of training
epochs to obtain a low number of false results. We observed that it is
required a large number of training epochs and that by using the entire
data set consisting of 31 features the best classification is carried out for
the type of Denial-Of-Service and Probe attacks.

1 Introduction

Today computer networks, from IoT devices to servers and large data centers,
have a widespread distribution and services, which has inevitably led to multiple
security problems for the computing devices connected to a network, data stor-
age devices, etc. Many security problems arise when computer network systems
are attacked to get illegal access. The IDS systems aim to protect the accessi-
bility to the system, its integrity and confidentiality of data. In order to detect
attacks against information systems, and therefore act against them to protect
the systems, there have been done considerable research efforts and have been
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developed tools (hardware and/or software), among which the IDS (Intrusion
Detection System) [4,11,17] are very important.

There are basically two types of IDS systems:

• NIDS (Network IDS): this type of IDS analyse packets passing through the
network and look for the “signatures” (set of conditions) in the network traffic,
comparing them with those in a database [16] for alert classification.

• HIDS (Host-Based IDS): this type of IDS operate directly on a machine by
monitoring the operating system through its log file system and hard drives,
to detect intrusions, malicious activity or policy violations.

On the other hand, for NIDS case, there have been proposed various tech-
niques, which can be grouped into main ones [16]:

• Pattern Matching Based: Techniques in this group determine intrusions by
comparing the activity with known signatures [2,3]. These techniques enable
to achieve low false positive rate [13,18] but do not contribute to detecting
new attacks.

• Anomaly Detection Based: Techniques in this group (see e.g. [23,24])
determine intrusions by looking for anomalies in network traffic. They achieve
a high rate of false positives but are able to identify new attacks, not yet in
the database.

There exist, in the literature, many interesting artificial intelligence and
machine learning approaches for solving problems related to the intrusion detec-
tion of general purpose or limited to a single class of anomalies (with decision
trees, Bayesian classifiers, multilayer perceptron). There are numerous refer-
ences, the reader is referred to [1,5,7,10,15] for some relevant approaches.

On the other hand, existing IDS, like Snort1, an open-source software, show
limitations with regard to the understanding of the attacks, closely related to
the “signatures”. In fact, they are not able to acquire new knowledge, unless the
system administrator updates the definitions, just as conceptually happens with
anti-viruses. So, if an unknown attack occurs, although it may differ slightly
from a present in definitions, the IDS will not be able to spot that.

In order to overcome such limitations, in this paper we propose to use a
multilayer perceptron (MLP) with the back-propagation algorithm and the sig-
moidal activation function for attack classification. An MLP network is able to
identify intrusion into the system, in both known and unknown forms, and to
reduce false alarms, if properly trained with a series of examples. The proposed
attack classification system based on MLP is validated and its performance stud-
ied through a subset of the DARPA dataset, known as KDD99, which is a public
dataset labelled for an IDS and previously processed. We analysed the results
corresponding to different configurations, by varying the number of hidden layers
and the number of training epochs to obtain a low number of false results.

The rest of the paper is structured as follows. In present an overview of an
MPL network in Sect. 3. In Sect. 4, we describe the KDD99 data set used for
1 https://www.snort.org/.
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validation as well as processing, feature selection and training. Some computa-
tional results based on the obtained training configurations are summarised in
Sect. 5. We end the paper in Sect. 6 with some conclusions and indications for
future work.

2 Intrusion Detection for IoT and Edge Computing

Internet is of course a mean to rapidly retrieve needed information and data, but
something is changing in classical management of information. Recent analyses
have estimated that the traffic generated by mobile devices and smart sensors,
will overcome traffic by Personal Computers and “old” nodes on Internet. The
new scenario, known as Internet of Things (IoT), mainly include many “things”
(i.e. sensors, actuators, mobile smart devices, smart phones etc.) that commu-
nicate on proper networks, with proper protocols, both providing services to
(human) users and to other “things”. When dealing with IoT, consider that
recent studies showed, in healthcare use case with more than 30 millions of users,
a data throughput with more than 25.000 records per second. The throughput
reaches easily millions of records per seconds in other hi-tech scenarios like smart
cities.

One potential way to face the problem of managing this huge amount of data,
is to bring communications (and networks), storage and processing units closer
to devices. This solution was commonly addressed as Edge Computing. The
solution is the integration of concepts both from Edge and Cloud computing.
The result is Fog Computing and Networking. Fog Computing is a distributed
paradigm that provides Cloud capabilities at network edges.

Besides sensors property of providing low traffic rate, large scale scenarios
involve thousands and thousands sensors and smart devices. Big Data manage-
ment requires both connections among smart devices and the use of proper Fog
resources in order to store and manage (possibly at real-time) the huge volume
of data generated by sources. In this case, Fog has to provide complex network-
ing functionalities to link clusters of smart devices each other and to connect
them to (virtual) computing and storage nodes in the “classical Cloud” parts of
Fog infrastructures. Fog networks not only provide connectivity, but many func-
tionalities and Quality of Service too, like security, throughput, limited latency
etc.

In this scenario, the introduction of an Intrusion Detection System in IoT
is appealing as Fog services. We should provide a mean to collect networking
information and to propagate it into the Cloud, in order to perform a fast and
effective analysis of network traffic. The intrusion detection system we want to
realize, must be fast enough to provide a (quasi) real-time management of traffic.
The introduction of Machine Learning and NN at Cloud level in an IoT/Edge
architecture allows for proper analyses within acceptable deadlines.

The process of discovering insights and hidden and not trivial evidences of
intrusion allows for predictions on the base of data we are handling. Anyway, all
mining should be executed in a Fog environment, moving and scheduling compu-
tational load closer to data. This is a problem since data may be distributed and
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can even be migrated as consequence of mobility. Data access and routing have
to be defined properly in IoT where data storage is distributed and where anal-
yses should execute at real time. In our approach, we collect useful information
(i.e.: IDS features) from data. The used approach exploits Big Data Cleaning
framework to take into account only of needed features. Then, Machine Learning
services in the Cloud use extracted features for detection purposes.

In this sense, our approach enables IoT devices (and smart devices too) to
benefit from CLoud resources and services in order to exploit services they will
never be able to execute (like and IDS service).

3 The Multilayer Perceptron Networks

In this section we start by recalling some basic concepts about MPL networks.
Multilayer perceptrons networks have been introduced to cope with the limita-
tions of single-layer perceptrons. An eraly results by Minsky and Papert [14],
demonstrated how a simple exclusive OR (XOR), which is a classification prob-
lem but not linearly separable, could not be solved by that network. Therefore
more levels (also called layers) of neurons connected in cascade can be consid-
ered.

The multi-layer networks are composed of the following three layers:

• Input layer: Composed of n nodes, without any processing capacity, which
send the inputs to subsequent layers.

• Hidden layer (one or more): Composed of neural elements whose calcula-
tions are input to subsequent neural units.

• Output layer: Composed of m nodes, whose calculations are the actual
outputs of the neural network.

In case of a competitive learning, the output is selected on the basis of a com-
putational principle that takes the name of Winner-Takes-All, in other words
only the neuron with the greatest “activity” will remain active, while the other
neurons will be inactive.

Graphically, we can view the input data on a plane and each layer draws a
straight line inside. The intersections between the various lines, generate decision
regions. This is a limit to be considered, because the inclusion of too many
layers can create too many regions, which means that the perceptron loses the
ability to generalize, but it specializes on the set of training data samples. This
phenomenon is called overfitting. Dually, the inverse problem exists as well,
where the network has a number of neurons unable to learn and it is called
underfitting.

Avoiding similar “excesses” can be achieved by preventive mechanisms such
as cross-validation and the early stopping. Contrary to the single perceptron,
assuming some hypotheses about activation functions of the individual element,
it is possible to approximate any continuous function on a compact set and then
to solve the problems of classification of not linearly separable sets (Kolmogorov
theorem (1957)). According to that theorem, with three layers it was possible to
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implement any continuous function in [0, 1]n, where in the first layer we place
the n input elements, in the intermediate layer (2n + 1) elements, and in last
layer we place the m elements (equal to the number of elements of the co-domain
space R

m).

3.1 Training a Neural Network

The modelling of a multilayer neural network leads to two main problems,
namely, we have to:

• Select the architecture: the number of layers and neurons that each layer
should possess, and

• Train the network: determine the appropriate weights of each neuron and
its threshold.

Typically, if we fix an architecture, the training problem can be seen as the
ability of the system to produce the outputs as similar to the desired ones, which
is equivalent to minimizing the error –usually the most used is the squared error:

Ei(w) =
1
2
||Di −Oi||2 (1)

where we indicate for simplicity as Di the desired output of the generic i-th
neuron (in place of yi), and with Oi the obtained output (in place of y(xi, w),
depending on the weight and input).

It is commonplace to usually follow heuristic methods such as structural
stabilization, regularization as well as search methods Simulated annealing and
Genetic algorithms (see e.g. [8,19]), because the statistical theories are often not
adequate.

The structural stabilization heuristic consists in gradually growing, during
the training, the number of neural elements (whose set is called training set).
Initially, the error of this network is estimated on the training set and on a
different set, called validation set. Then, we can select the network that produces
the minimum error on the latter. Once trained, the network will be evaluated
using a third set called test set.

The regularization heuristic, on the other hand, consists of adding penalty
to the error, with the effect of restricting the choice set of weights w (see Eq. 1).

4 KDD99 Dataset and Features Description

We aim to train a neural network to enable it to predict and distinguish between
malicious connections (see next a list of various kinds of attacks from four main
categories) and not malicious (normal connections). To train our network we will
use a publicly available dataset, which is labelled for IDS, namely the KDD99,
a subset of DARPA dataset2. This dataset was created by acquiring nine weeks
2 https://www.ll.mit.edu/ideval/data/.

https://www.ll.mit.edu/ideval/data/
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of raw TCP dump data from a LAN, simulating a typical U.S. Air Force LAN,
that is, attacks on a military environment. The connections are a sequence of
TCP packets and each record consists of about 100 bytes.

The attacks fall into four main categories:

• DOS: denial-of-service, e.g. syn flood.
• R2L: unauthorized access from a remote machine, e.g. guessing password.
• U2R: unauthorized access to local superuser (root) privileges, e.g., various

“buffer overflow” attacks.
• Probe: surveillance and other probing, e.g., port scanning.

Being the dataset very large, about 500.000 records, we used only a tenth part
for the training of MPL network. The features originally are not organized in a
tabular file but, through pre-processing, we have changed the format in ARFF,
which is useful to process it in KNIME environment with the components of
Weka package [12]. According to the category, we can observe the following
attacks:

Category Attack
DOS Back,Land,Neptune,Pod,Smurf,Teardrop
U2R Ipsweep,Nmap,Portsweep,Satan
R2L Bueroverow,Perl,Loadmodule,Rootkit

Probe Ftpwrite, Imap,GuessPasswd,Phf,Multihop
Warezmaster,Warezclient

Each sample have the following features, classified into three main categories:

Basic features of individual TCP connections:

1. Duration: length (number of seconds) of the connection.
2. Procotol type: type of the protocol, e.g. tcp, udp, etc.
3. Service: network service at the destination, e.g., http, telnet, etc.
4. Src bytes: number of data bytes from source to destination.
5. Dst bytes: number of data bytes from destination to source.
6. Flag : normal or error status of the connection.
7. Land : 1, if connection is from/to the same host/port; 0, otherwise.
8. Wrong fragment : number of “wrong” fragments.
9. Urgent : number of urgent packets.

Content features within a connection suggested by domain knowl-
edge:

10. Hot : number of “,hot” indicators.
11. Num failed logins: number of failed login attempts.
12. Logged in: 1 if successfully logged in; 0, otherwise.
13. Num compromised : number of “compromised” conditions.
14. Root shell : 1, if root shell is obtained; 0, otherwise.
15. Su attempted : 1, if “su root” command attempted; 0, otherwise.
16. Num root : number of “root” accesses.
17. Num file creations: number of file creation operations.
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18. Num shells: number of shell prompts.
19. Num access files: number of operations on access control files.
20. Num outbound cmds: number of outbound commands in an ftp session.
21. Is hot login: 1, if the login belongs to the “hot” list; 0, otherwise.
22. Is guest login: 1, if the login is a “guest” login; 0, otherwise.

Traffic features computed using a two-second time window:

23. Count : number of connections to the same host as the current connection in
the past two seconds.

24. Serror rate: % of connections that have “SYN” errors.
25. Rerror rate: % of connections that have “REJ” errors.
26. Same srv rate: % of connections to the same service.
27. Diff srv rate: % of connections to different services.
28. Srv count : number of connections to the same service as the current connec-

tion in the past two seconds.
The following features refer to these same-service connections.

29. Srv serror rate: % of connections that have “SYN” errors.
30. Srv rerror rate: % of connections that have “REJ” errors.
31. Srv diff host rate: % of connections to different hosts.

In addition to traffic features computed using a two-second time window, we
added nine other similar attributes but relative to the destination and marked
them with “dst”. There is also a “class” attribute that identifies the type of
attack, which is our target attribute.

In the following subsections, we detail the various components used in
our system. For the data analysis, we used KNIME software, which enables
data pre-processing (extractions, transformation and loading, modelling [20–22],
analysing, and displaying data.)

4.1 Preprocessing and Features Selection

Given the huge number of features, we are compelled to make a selection of the
essential attributes. Also, the attributes have different types: continuous, discrete
and symbolic, each with its own resolution and range of variation. We can convert
symbolic attributes into numerical (attributes like protocol type, service, flag)
and normalize the other attributes between 0 and 1.

We can observe the following blocks by using KNIME model [9]:

• ARFF Reader: It reads the file containing the samples.
• Partitioning: It partitions the table considering only 10% of the dataset.
• Category to Number: It takes symbolic attributes and converts them to

numeric values.
• Row Filter: It filters rows of non-malicious connections by marking them

with a 0 and rows of malicious connections by marking them with 1.
• Concatenate: It combines the changed tables.
• Normalizer: It normalizes between 0 and 1 the attribute values, dividing

the value of each attribute by its maximum.
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• Color Manager: It assigns a color to the Normal class (0) and one to Attack
class (1).

• AttributeSelectedClassifier (v3.7): It carries out the selection of the most
discriminating attributes, based on various algorithms that we show next.

To select the discriminating attributes, we tested different configurations for
the AttributeSelectedClassifier block, also making use of an external tool, Weka
Explorer, to better display the outcomes. No substantial differences were noted:
both search algorithms on 31 attributes will select 11: protocol type, service,
flag, src bytes, dst bytes, land, wrong fragment, root shell, count, diff srv rate,
dst host same src port rate.

We have considered the two following search algorithms:

• GreadyStepwise: This basically uses a Hill Climbing (HC) algorithm to
return a number of essential features equal to 11. The choice of HC algo-
rithm is preferred due to its lower computational time (about 28 s in our
experiments).

• BestFirst: This is similar to GreadyStepwise but with the use of backtrack-
ing. It returns the same number of features (11) but with a higher computa-
tional time (32 s), reason for which it was discarded.

We applied, in addition, the ranker in order to obtain a consistency on fea-
tures choices. From a list of attributes classified by an evaluator, it sorts them in
descending vote and still get a consistent choice. All these blocks, for practical
reasons, are encapsulated in a single meta-node, called Pre-processing.

4.2 Training of the Multilevel Perceptron

In this phase, we present examples to the network and then we calculate the
resulting error, with respect to the desired outputs. Based on this value, it is
decided whether to train the network again or not.

An epoch is defined as the amount of time elapsing between the presentation
of the first sample of the training set and the last one. Therefore, the termination
condition may be a predetermined number of reasonably epochs coming to a
point where the error is less than an established value. In KNIME we used
WekaMultiLayerPerceptron and WekaPredictor to achieve the MLP network. It
should be noted here that the neurons are using a sigmoidal activation function.

The block diagram of the subsystem used for the test is shown in Fig. 1.
We can observe the presence of the “ARFF Reader” and the preprocessing block
before treated. We have also added the following blocks:

• Column Filter: filters the columns by selecting only 11 relevant attributes.
• Shuffle: mixes samples of the data set.
• Partitioning: divides the sample into two groups of features. We call the first

one TS (Training Set) and it is formed from 60% of the samples and the other
is called TTS (Test Set) and is formed from 40% (the usual percentages).

• MultiLayerPerceptron: trains the MLP based on TS.
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Fig. 1. KNIME training scheme.

• WekaPredictor: classifies data according to training carried out on the pre-
vious module. In the project once it is used with TS input and the other with
TTS input.

• Scorer: compares the attributes of two columns and shows the confusion
matrix. The latter gives us information on the erroneous classification. In
addition, it also shows the accuracy statistics (true/false negative/positive,
etc.).

5 Computational Results

Each subset was tested with two different configurations of the MLP:

• a: Number of hidden layers equal to the sum of features and classes divided
by two.

• t: Number of hidden layers equal to the sum of features and classes.

In Figs. 2, 3 and 4, we show graphical representations of the results in terms
of error rate with increasing training periods, in order to choose the appropriate
parameters. It is observed that each time the system is trained again.

Fig. 2. Error rate bar graph corre-
sponding to configuration a.

Fig. 3. Error rate bar graph corre-
sponding to configuration t.

Based on the results, we have chosen to configure the WekaMultiLayerPerceptron
with the following parameters:
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Fig. 4. Error rate graph corresponding to a and t configurations.

• Learning Rate and Momentum: 0.5
• Training Time: 80
• HiddenLayers: a

We observe that it is needed a large number of iterations to achieve an acceptable
error and that we have chosen two usual values for learning rate and momentum.

6 Conclusion

In this paper we have addressed attack classification in intrusion detection sys-
tems (IDS) by multilayer perceptron (MLP) with the back-propagation algo-
rithm and the sigmoidal activation function. The proposed attack classification
system is validated and its performance studied through a subset of the DARPA
dataset, known as KDD99, which is a public dataset labelled for an IDS and pre-
viously processed. We have observed that MLP neural networks are well suited
to the classification and achieved a high classification rate with them, making
error rate low. This was possible thanks to the analysis of various configurations.
MPL networks require time and a good knowledge domain to be trained, how-
ever after that they are able to quickly classify both existing and new attacks.
Another advantage of the proposed model is related to scalability, namely, we
do not need to train again the entire network when we add a new type of attack,
but only the set of layers that have the new attack as input.

Future work will be focused on the possibility of removing the classification
errors, trying new types of attacks and changing other parameters such as learn-
ing rate and momentum as well as comparing the results with other machine
learning models. In addition we will try some other Machine Learning frame-
work on the Cloud like Google Cloud Machine Learning and Amazon Machine
Learning in order to improve results and performances.
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