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Chapter 3
Pericytes for Therapeutic Bone Repair

Carolyn A. Meyers, Joan Casamitjana, Leslie Chang, Lei Zhang, 
Aaron W. James, and Bruno Péault

Abstract Besides seminal functions in angiogenesis and blood pressure 
 regulation, microvascular pericytes possess a latent tissue regenerative potential 
that can be revealed in culture following transition into mesenchymal stem cells. 
Endowed with robust osteogenic potential, pericytes and other related perivascular 
cells extracted from adipose tissue represent a potent and abundant cell source for 
refined bone tissue engineering and improved cell therapies of fractures and other 
bone defects. The use of diverse bone formation assays in  vivo, which include 
mouse muscle pocket osteogenesis and calvaria replenishment, rat and dog spine 
fusion, and rat non- union fracture healing, has confirmed the superiority of purified 
perivascular cells for skeletal (re)generation. As a surprising observation though, 
despite strong endogenous bone-forming potential, perivascular cells drive bone 
regeneration essentially indirectly, via recruitment by secreted factors of local 
osteo-progenitors.
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 Introduction

Pericytes are stellate cells in close contact with endothelial cells and embedded 
within a basal lamina, which form a discontinuous layer in capillaries (<10 μm 
diameter), and continuous one around microvessels (diameter 10–100 μm) [1]. First 
described in 1873 by C. Rouget as, visionarily, contractile cells regulating blood 
flow, it is Zimmermann who coined the term pericyte in 1923 to describe cells, also 
known as mural cells, structurally supporting the vasculature [2]. Promotion of 
angiogenesis, blood vessel diameter regulation [3], and maintenance of vascular 
integrity and permeability [4] are the main functions attributed to pericytes, through 
direct cell contact and communication.

As early as the 1970s were pericytes suggested to be also involved in tissue 
regeneration [5]. It was, however, not before the first decade of this century that 
definitive experimental evidence was gained that pericytes are native ancestors of 
mesenchymal stem cells (MSC), the existence of which had been previously docu-
mented exclusively in long-term cultures of vascularized organs [6]. Pericytes can 
differentiate into chondrocytes, adipocytes and osteocytes, regardless of their tissue 
of origin [6–8], as well as skeletal and cardiac muscle [6, 9], and myofibroblasts at 
the origin of pathologic fibrosis [10, 11]. Pericytes also support hematopoiesis [12–
16] and can modulate immune-inflammatory reactions [17].

Among the potential uses of pericytes/progenitor cells for tissue engineering, the 
application to bone tissue is most commonly studied [18]. The bone is a richly vas-
cularized organ, and the reaction to bone injury includes the processes of osteogen-
esis and vasculogenesis that go hand in hand. The theory that mural cells participate 
in endogenous bone tissue repair has long been posited. Before the advent of cell 
lineage tracing, the use of intravascular dyes that label mural cells suggested that 
pericytes participate in osteochondral repair [1, 19]. Later studies using smooth 
muscle actin (SMA) reporter animals also suggested that endogenous mural cells 
give rise to bone cells after fracture [20]. SMA is a non-specific marker which labels 
some pericytes, smooth muscle, and fibroblasts/myofibroblasts. Therefore, to our 
knowledge, the direct participation of bone-associated pericytes in repair has never 
been definitely shown. Nevertheless, these observations of the reparative potential 
of endogenous SMA+ cells, combined with the known mesenchymal progenitor 
cell properties of human pericytes [6], gave impetus for the use of exogenous peri-
cytes for bone tissue repair. The osteogenic potential of human pericytes and other 
perivascular cells has been examined in both ectopic and orthotopic models. These 
findings are briefly reviewed below.
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 Identification and Purification of Perivascular Cells  
for Bone Repair

The possibility of using human pericytes/perivascular progenitor cells to speed bone 
repair was made possible by prior studies that used the cell surface marker CD146, 
also known as Mel-CAM (melanoma cell adhesion molecule), for the identification 
and purification of pericytes ([21, 22]; see also [23] for a review). Of note, CD146 
expression is by no means specific to pericytes, and as a heterophilic cell-cell adhe-
sion molecule, it is often upregulated when diverse cell types adopt a location on the 
outside aspect of the endothelial cell [24]. CD146 is also expressed by endothelial 
cells [25], vascular smooth muscle cells (VSMC) [26], fractions of lymphocytes 
[27], and tumor cells [28]. Therefore fluorescence-activated cell sorting for a com-
bination of cell surface markers (CD146+CD34-CD31-CD45-) is most commonly 
used by our group to identify a pericyte among uncultured stromal populations [6, 
29, 30]. The potential non-specific identity of CD146+ progenitors has led some 
investigators to favor the term tissue-specific progenitor cells over pericytes. A pre-
sumably analogous CD146+ progenitor cell can also be identified among culture- 
derived cell populations [22]. CD146+ pericytes/progenitors have been examined 
for their bone-forming potential alone [31] or in combination with other perivascu-
lar mesenchymal progenitor cells derived from the tunica adventitia and typified by 
CD34 expression and absence of other endothelial cell and pericyte markers (termed 
adventitial cells or adventitial progenitor cells) [29, 32]. When CD146+ pericytes 
and CD34+ adventitial progenitor cells are used in combination, they are most com-
monly referred to as perivascular stem cells or perivascular stromal cells (PSCs) 
[29], referring to their shared perivascular location. At least in the context of bone 
tissue engineering, PSCs are most commonly derived from subcutaneous adipose 
tissue [33]. The rationale for adipose derivation is based principally on the easy 
access and dispensability of this tissue depot. Once in culture, PSCs are able to 
undergo differentiation toward multiple mesenchymal lineages under appropriate 
culture conditions (Fig. 3.1), including osteoblastogenic (Fig. 3.1a–c) and adipo-
cytic cell fates (Fig. 3.1d). Importantly the umbrella term of PSC is used, despite the 
clear understanding that these perivascular progenitor cells differ in their location 
and cellular morphology within the vascular wall, markers for in situ detection, 
frequency within different tissues, and gene network profiles [34]. The functional 
relevance of cellular differences between CD146+ pericytes and CD34+ adventitial 
progenitor cells for bone repair outcomes is as yet not known.

We have described methods general to all human organs: fresh tissues undergo 
mechanical and enzymatic digestion prior to cell isolation and immunolabeling for 
FACS, with at least one pericyte, endothelial, and hematopoietic cell marker. Sorted 
populations are seeded in endothelial growth medium 2 (EGM-2) in gelatin-coated 
plates and passaged using 20% FCS-supplemented Dulbecco’s modified Eagle’s 
medium [6]. The immunophenotype CD146+CD34-CD31-CD45-CD56- suc-
cessfully isolates pericytes in multiple tissues including the skeletal muscle, bone 
marrow, white adipose tissue, placenta, pancreas, umbilical cord, heart, kidneys, 
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infrapatellar fat pad, and liver [6, 9, 14, 18, 29, 30, 35–38, 39–41]. Of note, the 
same immunophenotype has been used to isolate pericytes from other mammalian 
species, including dog [42], sheep [43], and horse [44, 45], offering large animal 
models of perivascular cell-mediated tissue regeneration.

 Pericytes and Ectopic Bone Formation

Animal models of ectopic bone formation have been used to confirm the capacity 
for in vivo osteogenic differentiation of implanted human pericytes. Human adi-
pose tissue (AT)-derived CD146+ pericytes have been observed to directly ossify 

Fig. 3.1 Differentiation of human perivascular stem cells in vitro and stimulation of an osteochon-
drogenic program in vivo. (a, b) PSCs are a multipotent progenitor cell type in vitro. (a) Human 
PSCs were cultured in the presence of osteogenic differentiation medium. Frank confluent miner-
alization was observed among PSC under inductive culture conditions (Alizarin red staining 
shown). (b) Conversely, intracellular lipid accumulation can be visualized within PSC under 
appropriate adipogenic conditions (Oil red O staining shown). (c, d) PSC implantation in a rat 
spinal fusion model induces a combination of intramembranous and endochondral bone formation. 
(c) Woven bone formation, and prominent bone lining osteoblasts in areas of intramembranous 
bone formation by PSC. (d) Chondrocyte hypertrophy and mineralization in areas of endochondral 
bone formation induced by PSC. Scale bar: 25 um
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when implanted in a SCID (severe combined immunodeficiency) mouse muscle 
pouch [23]. Inconspicuous bone is produced when AT pericytes are implanted on 
a collagen sponge carrier, which represents a relatively inert substance with little 
osteoinductive properties [29]. In contrast, when AT pericytes are implanted intra-
muscularly using an osteoinductive demineralized bone matrix (DBM) carrier, 
robust bone formation is observed [29]. In somewhat similar observations, other 
groups have shown that CD146+ AT-derived progenitor cells do not form signifi-
cant bone when implanted in a subcutaneous ossicle model [22]. In contrast, bone-
associated (bone marrow or periosteum) CD146+ progenitor cells drive robust bone 
formation in the same subcutaneous ossicle model [22]. Head-to-head comparisons 
of AT-derived pericytes and adventitial cells from the same patient sample have 
been performed [23]. Both perivascular cell types induce vascularized ectopic bone 
and without substantive differences in the degree of bone formation [23]. This pilot 
study demonstrated that pericytes and adventitial cells have a similar bone-forming 
potential and laid the framework for later studies in which these two cell popula-
tions were combined. Next, experiments have been performed in which uncultured 
AT-derived PSCs (combined pericytes + adventitial cells) were implanted intra-
muscularly and compared with an unsorted/uncultured stromal population from the 
same patient’s adipose sample (termed stromal vascular fraction, SVF) [29]. Here, 
a DBM scaffold was again used. Results showed that independent of cell number, 
AT-derived PSC led to more robust intramuscular ossification in comparison to 
SVF from the same patient sample using quantitative metrics of bone formation by 
micro-computed tomography, histomorphometry, and select immunohistochemical 
markers of the bone [29]. Increased bone formation among AT-PSC implants was 
accompanied by a significant increase in vascularity of the implant site, accompa-
nied by increased elaboration of VEGF (vascular endothelial growth factor) [38]. 
Ectopic bone formation induced by AT-PSC was also associated with an altered 
inflammatory milieu within the early wound environment [17]. Overall, these stud-
ies showed that AT-derived pericytes or AT-derived adventitial cells either alone 
or combined result in significant ectopic bone formation. Moreover, and for the 
first time, it was observed that these FACS-purified cell populations outcompete 
unpurified stromal cell populations from the same patient sample in terms of bone-
forming efficacy.

 Pericytes in Calvarial Defect Regeneration

The extent to which AT-derived PSC can induce bone repair was first examined in a 
mouse calvarial defect model [33]. Here, equal numbers of unpurified SVF or PSC 
from the same patient’s adipose tissue were implanted in a non-healing, circular, 
full-thickness calvarial defect of the parietal bone. Cells were implanted on a 
hydroxyapatite-coated polymeric scaffold for an additional osteoinductive effect. 
Similar to intramuscular implants, radiographic and histologic analysis showed 
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AT-derived PSC led to a significant increase in bone regenerate at the defect site 
over an 8-week time course. In comparison, unpurified SVF from the same patient 
had no statistically appreciable benefit in comparison to a scaffold without cells. In 
this xenograft model, sparse but present human-specific antigens were detectable 
within the healing bone defect. Again, and in similarity to intramuscular studies, 
bone defect vascularity was significantly increased with PSC treatment. Thus, 
across both ectopic and bone repair models, AT-derived human PSCs have con-
served features upon transplantation, including pro-osteogenic/pro-vasculogenic 
effects of a greater magnitude than unpurified stromal cell fractions. Whether these 
findings correlated with the enrichment of osteoinductive PSC, or conversely the 
elimination of an inhibitory cell type within the heterogeneous stroma of SVF, is 
still a matter of conjecture.

 Pericytes in Spinal Fusion

Spinal fusion represents a more functionally demanding environment for a bone 
graft substitute and represents an assay for the production of contiguous and biome-
chanically sound bone tissue. The use of AT-derived human PSC as a cellular ther-
apy for bone grafting has been validated in a rat posterolateral lumbar spinal fusion 
model. In these studies, human AT-PSC implantation was performed across three 
cell densities in rats, using a DBM scaffold as a moldable carrier. PSC demonstrated 
a dose-dependent increase in ossification, increase in bone deposition, increase in 
measurements of bone strength, and complete fusion between lumbar bone seg-
ments in all rats [46]. In this model, both intramembranous (Fig. 3.1c) and endo-
chondral bone formation (Fig. 3.1d) was spurred on by PSC implantation. Like in 
other studies, new bone regenerate was observed to be a product of both direct 
osteodifferentiation and host osteoblastogenesis. Like the calvarial defect model, 
paracrine-mediated bone formation of rat origin predominated [46]. In follow-up 
studies, Lee et  al. extended these observations to rats rendered osteoporotic by 
ovariectomy. Here, increased numbers of implanted human AT-PSC were required 
to surmount the hormonal changes of estrogen withdrawal [47].

 Pericytes for Non-union Fracture Healing

Atrophic non-union is associated with biological failure of fracture healing. Animal 
studies have shown the vascular ingrowth within atrophic non-union is much 
reduced at early timepoints [48]. In combination with the observation, the mesen-
chymal progenitor cell content within fibrous non-unions is reduced, and the prolif-
erative and osteogenic capabilities of these non-union derived cells are likewise 
reduced [49]. CD146+ AT pericytes were examined in a well-established model of 
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rat tibial atrophic non-union [48, 50]. Human AT pericytes were percutaneously 
injected 3 weeks after the establishment of fibrous non-union. Results showed that 
pericyte injection increased fracture callus size and increased mineralization, even-
tually resulting in increased bone union [50]. Like in other models, the efficacy of 
pericyte treatment was primarily a paracrine phenomenon, and in fact species- 
specific immunohistochemistry failed to later identity residual human cells. These 
data suggest that at least in the inhospitable microenvironment of atrophic non- 
union, the benefit of pericytes primarily resides in their trophic abilities.

 Discussion

Pericytes have crossed the limits of vascular biology and entered the field of regen-
erative medicine via their mesenchymal stem cell-cultured progeny. Advantages 
of using conventional MSCs include the simplicity of the derivation method and 
possibility to obtain large numbers of cells. On the negative side, MSCs are the cul-
tured product of a heterogeneous mixture of unseparated cells, and in vitro growth 
involves cell exposure to animal proteins, hence chances of xenogeneic immuniza-
tion, and entails risks of bacterial contamination and genetic instability. There have 
been occasional reports of MSC malignant transformation [51]; principally, it is 
increasingly accepted that MSC recruitment to the tumor stroma can favor can-
cer development [52]. For all these reasons, it might be beneficial to use purified, 
non- cultured perivascular cells in place of culture-derived MSCs for cell therapies. 
Bone repair has been the first envisioned therapeutic use of pericytes and adventitial 
perivascular cells. Bone structure is relatively simple, and targeted interventions, 
such as non-union fracture reduction or spine fusion, are usually not life-threaten-
ing, providing convenient models in which to gain a proof-of-concept demonstra-
tion of the therapeutic usability of perivascular presumptive MSCs. Importantly, 
PSCs also appear to represent a reliable source of autologous therapeutic cells, 
regardless of age, gender, and body mass index [30]. Experimentally, as described 
in this article, pericytes and adventitial cells purified from human or canine adipose 
tissue exhibited dramatic bone-forming potential in all autologous and xenogeneic 
in vivo assays performed, including calvarial regeneration and muscle pouch osteo-
genesis in mice, spine fusion in rats and dogs, and non-union fracture repair in rats. 
In these tests, PSCs performed at least as well as conventional MSCs are signifi-
cantly better than the plain stromal vascular fraction. The bone produced following 
PSC transplantation was histologically normal and mechanically competent. These 
data illustrate the propensity of perivascular cells to differentiate along the bone 
cell lineage: culturing human adipose tissue-derived pericytes on a hard hydrogel 
substrate was sufficient to induce osteogenesis [53], and transcriptome analysis 
in single adventitial cells revealed expression of genes associated with osteogenic 
commitment and differentiation [34], which may have an important significance 
in cardiovascular pathology since adventitial progenitor cells have been shown in 
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the mouse to drive blood vessel calcification, also known as arteriosclerosis [54]. 
However, even though PSCs are clearly endowed with strong osteogenic potential, 
a paradoxical yet recurrent observation is that over time little chimerism can be 
detected in newly developed bone following xenogeneic PSC transplantation, sug-
gesting these perivascular progenitors merely mediate bone formation by recruiting 
local osteogenic cells and reinforcing the growing belief that MSCs and related tis-
sue regenerative cells function largely via trophic/chemotactic factor secretion [55]. 
Do pericytes and adventitial cells, which all contribute to MSC cultures and are 
arranged along blood vessels as a hierarchy of regenerative cells [34], play distinct 
roles as either osteoblastic progenitors or trophic secretory cells during osteogen-
esis? This important question is currently under investigation in experiments where 
either perivascular cell subset or the combination of the two is administered in the 
same injury setting.

Although recognized in all tissues with canonical markers and characteristic 
perivascular distribution, pericytes and adventitial cells represent heterogeneous 
cell populations which also exhibit organ-restricted anatomic, phenotypic, and 
functional specializations, the complexity of which is being gradually uncovered 
[11]. Regarding bone formation, we have recently identified novel surface markers 
which typify PSC subsets endowed with higher osteogenic potential (Ding, Meyers 
et al., unpublished results), as was already recently done for pro-fibrotic ability [10] 
and chondrogenic capacity [56]. Ongoing studies will converge to explain the bone 
healing effect of pericytes and other regenerative perivascular cells, both natively in 
situ and following purification and transplantation, and contribute to the develop-
ment of a refined therapeutic product (Table 3.1).
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Table 3.1 Summary of in vivo orthopedic models of PSC application

Model Species/strain Human cell used

Intramuscular implant SCID mouse AT pericyte, AT-adventitial cell, AT-PSC
Calvarial bone defect SCID mouse AT-PSC
Spinal fusion Athymic rat AT-PSC
Non-union SD rat AT pericyte
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