
Chapter 9
Discussion and Further Open Problems

9.1 Summary

For the past 30 years, hyperbolic and kinetic models have been used to investigate
the growth, movement and self-organisation of cells, animals, and even human
pedestrians. One of the main reasons for employing such models—as opposed to
the classical parabolic models—is their finite propagation speed that makes them
more biologically realistic. Another reason is that these models do seem to exhibit
a richer pattern dynamics compared to the parabolic models.

In this study, we reviewed some of the local and nonlocal hyperbolic and kinet-
ics models derived to investigate various biological aggregations and traffic-like
movement. We presented models that investigated the movement and aggregation
of various bacteria (e.g., Myxobacteria, Escherichia Coli), cells (e.g., tumour cells),
and animal populations (e.g., flocks of birds or herds of ungulates). Moreover,
since traffic-like collective movement is such a common behaviour in biology (from
intracellular transport, to ant traffic and pedestrian self-organised movement [1–
3]), we also discussed some traffic flow models. (Although it may seem unusual
to discuss car-traffic models in a monograph focused on biological phenomena, we
chose to do so at the beginning of Chap. 3 since the same car-traffic models have
been applied to describe pedestrian traffic and collective behaviours, and further
generalised to biological traffic, such as cellular, bacterial and ants traffic.)

Our goal was not to provide a very comprehensive review of these hyperbolic
and kinetic models. Rather, we wanted to present the complexity of the biological
and mathematical problems, and to summarise the patterns exhibited by the models.
Moreover, since this study is intended for researchers not familiar with these types
of models (and the analytical and numerical approaches derived to investigate them),
we took a step-by-step approach to present a clearer view of the motivations and the
costs associated with increased model complexity. We started with the simplest one-
dimensional models described by advection or advection-reaction equations. Then,
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we investigated systems of local and non-local hyperbolic models that have constant
or density-dependent speeds and turning rates. Finally, we discussed a couple of
kinetic models in higher dimensions, and their hydrodynamic limits (and in some
cases their parabolic limits). By choosing this structural approach to review the
hyperbolic and kinetic models, we were able to highlight the contribution of these
models to the investigation of group patterns in various communities of organisms.
We also stressed the difficulties that these complex models are confronted with,
such as the absence of analytical approaches to investigate some of the resulting
spatial and spatio-temporal patterns, and/or the absence of numerical approaches to
illustrate the behaviour of the more complex kinetic models.

The mathematical models reviewed in this study were mainly deterministic (even
if they were shown to exhibit also chaotic dynamics; see, for example, Fig. 5.23).
Even so, the kinetic models contained a stochastic component in the velocity, since
the turning events were usually governed by Poisson processes. However, recent
studies started to focus on models that incorporate stochasticity in an explicit
manner, either additively or multiplicatively, and thus we reviewed a few such
models at the end of Chaps. 5 and 6. Another way to incorporate stochasticity into
the models was to start with the Langevin equations for the motion of particles
(where external noise was added explicitly to particles’ velocity), and then derive
the corresponding stochastic kinetic and hyperbolic equations [4–6]. Note that this
Langevin approach (as well as the stochastic Ornstein-Uhlenbeck processes [7])
lead to distribution functions that satisfied equations which were hyperbolic with
respect to the space variable and parabolic with respect to the velocity variable. For
this reason, we chose not to describe them here in more detail.

The majority of models discussed here incorporated spatial dynamics. The few
exceptions were: (i) the kinetic models for active particles, where the population
could also change over an “activity” space; and (ii) the age-structured models, that
could describe the formation of human pairs [8], predator-prey dynamics [9], tumour
growth [10], or the epidemic spread of diseases [11] in age-structured populations.

9.2 Biological Relevance of Models’ Assumptions
and Generated Numerical Patterns

The numerical investigation of the patterns exhibited by the kinetic and hyperbolic
models reviewed in this study allows for a visual comparison of these theoretical
models with the patterns observed in nature, with the final goal of determining
whether the assumptions incorporated into the models can explain the reality. In
regard to animal behaviours, these assumptions usually refer to: (i) the necessity
of having repulsive-attractive-alignment interactions versus only alignment interac-
tions, or only attractive-repulsive interactions; (ii) the nature of spatial interactions
as determined by the various nonlocal kernels; (iii) the nature of inter-individual
communication mechanisms. In regard to cell behaviours, these assumptions usually
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refer to (i’) the strength of cell-cell adhesion versus the strength of cell-matrix
adhesion; (ii’) the appropriate incorporation of specific signalling pathways that
control cell macroscopic behaviours (e.g., movement, turning).

The mathematical models reviewed here were shown to exhibit a large variety
of spatial and spatio-temporal patterns. Many of these patterns can be connected to
empirically observed animal group behaviours: zigzagging flocks of birds, rippling
behaviours observed in Myxobacteria colonies, travelling pulses and stationary
pulses corresponding to moving (e.g., travelling schools of fish) and resting
aggregations, respectively. The expanding and contracting group behaviours that
characterise the breather patterns have been observed for example in flocks of
birds [12]. Vortices or mills (i.e., rotating groups) are group patterns observed quite
frequently in schools of fish (e.g., barracuda, bluefin tuna, or sharks [13, 14]) or
groups of ants [15]. The formation of shock waves (i.e., gradient blow-up patterns)
is a well known pedestrian behaviour observed during mass events which result in
panic stampede [16]. The travelling trains could describe the propagation of density
waves through the aggregation (a behaviour observed in schools of herring [17]).

While many of the mathematical patterns can be traced back to empirical
observations, there are also some biologically unrealistic patterns, such as the
density blow-ups. These patterns are mathematical artefacts caused by the particular
assumptions incorporated into the models (e.g., interaction kernels discontinuous
at the origin [18], or nonlinear production of an external signal [19]). When such
blow-up solutions occur, it is an indication that the model is no longer appropriate
to describe the behaviour of the biological system. We note here that these solutions
were displayed by both local and nonlocal hyperbolic models (see also Table 9.1 for
a summary of the patterns discussed here).

In regard to inter-individual communication, it was shown that some patterns
seem to be connected with specific communication mechanisms. For example,
mechanism M5—describing interactions with neighbours moving towards the
reference individual—seems to generate the observed ripples in Myxobacteria
colonies (irrespective of how this mechanism is incorporated into local or nonlocal
continuum models [20–22], or into individual-based models [23]). However, the
most common pattern observed in every biological aggregation, namely the sta-
tionary pulses, is associated with the majority of communication mechanisms (see
also Table 5.2). Moreover, when multiple communication mechanisms are used in a
combined manner by one group of individuals, it can lead to behaviours (patterns)
not predicted by the use of one communication mechanisms, including chaotic
behaviours; see the discussion in Sect. 5.6.

A recent review by Bellomo and Dogbé [24] discussed the derivation and use of
empirical data to validate models for traffic and crowds dynamics. Available data
usually refers to the speed and movement direction of cars and pedestrians [25–
27], as well as cells [28], bacteria [29, 30], fish [31], birds [32] or ungulates [33].
However, the incorporation of this data into kinetic and hyperbolic models is still an
open research area, with very few studies combining modelling with data analysis.

Another open research area is related to the translation of results obtained
with animal crowd models to the understanding of human behaviours [34, 35].
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When ethical concerns do not allow to experiment with human subjects, one could
focus on non-human subjects (e.g., ants, mice, sheep) to gain some understanding
on collective human behaviour (and movement) under specific conditions (e.g.,
extreme escape from various built environments). However, as recently discussed
in [36], there is the need to have a more systematic connection between animal and
human experiments, to be able to understand better the context in which reliable
inferences can be drawn from experiments with non-human crowds.

9.3 Directions for Future Research

We conclude the discussion of pattern formation in this monograph by summarising
some possible directions of future research. To this end, we focus on modelling,
numerical and analytical aspects.

Modelling Multiscale models have been developed intensively over the past years
in the context of cell dynamics, to connect macroscopic processes related to cell
movement and turning behaviours, to microscopic processes that occur inside cells
and control cell movement/turning. The majority of kinetic models in the litera-
ture consider simplifications of the molecular-level processes (i.e., cell signalling
pathways) involved in cell movement and turning. In the future it is expected that
more detailed signalling pathways will be incorporated into the multiscale models
for collective cell movement (e.g., the Erk/MAPK pathway, the JNK pathway or
the p38 signalling pathway that all have roles in cell migration [37]). Moreover, not
many multiscale models have been developed in the context of ecological collective
movement (among the very few we mentioned for human crowds [38, 39]). It is
expected that in the future, research in animal communication, animal psychology
and physiology will be combined with mathematical modelling of animal move-
ment, to increase our understanding regarding the collective behaviour of animals
[40].

Another aspect related to modelling that will develop further in the next years
is the incorporation of stochastic events in these hyperbolic/kinetic models. More
and more studies recognise the importance of environmental and demographic
stochasticity in animal/cell movement [41–43]. Until now the majority of models
for the collective movement of cells/bacteria/animals that incorporated stochasticity
have been of discrete type, with stochasticity affecting the individual level (see the
IBMs discussed briefly in Chap. 1). However, we expect that the upcoming decades
will see a significant increase in the development of stochastic transport models
for animal/cell dynamics, where noise will have an impact at the population level.
This will lead to the further development of analytical and numerical methods to
investigate the patterns generated by these new models.

Numerical Investigation of Patterns One of the most interesting (and most
difficult to investigate) aspects of patterns formation focuses on connecting the
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observed biological patterns to specific mathematical and biological mechanisms.
Intensive numerical investigations could provide some understanding of the bio-
logical mechanisms behind specific patterns. We mentioned before the connection
between the communication mechanism M5 and ripples [20, 21, 44, 45]. Stationary
pulses, on the other hand, are one of the most common patterns, being observed
in almost every model discussed here (see Tables 5.2 and 9.1, and the majority
of models discussed throughout this monograph). Hence, we cannot associate
this pattern with a specific biological mechanism. However, since many of the
models presented here have not been the subject of very thorough numerical
and analytical investigations, it is possible that they could exhibit even more
(possible exotic) patterns. The discovery of new spatial and spatio-temporal patterns
(especially for multi-dimensional nonlocal kinetic and hyperbolic models) requires
the development of fast numerical schemes, to be able to run multiple simulations
that would span large parameter spaces. This is particularly relevant for the multi-
dimensional (nonlocal) kinetic models. Intensive simulations are also required for
the numerical investigation of the bifurcation dynamics of these models, and the
tracking of various solution branches that can bifurcate at specific points in the
parameter space. In particular, new continuation algorithms need to be developed to
take into account the characteristics of these local/nonlocal hyperbolic and kinetic
models. One first step was recently made in [46], where the authors described
a continuation algorithm that considers the symmetry structure of the nonlocal
hyperbolic models presented in Chap. 5; see Eqs. (5.14), (5.18) and (5.19).

Analytical Investigation of Patterns While numerical simulations can offer
some insight into the mechanisms behind these patterns, analytical investigations
(using, for example, existence results, linear and nonlinear stability, bifurcation
and symmetry theory) are necessary to: (i) explain the role of model parameters
on the formation (or not) of the patterns, (ii) reduce the size of the parameter
space where we look for specific patterns, (iii) rigorously identify and classify
all patterns that could be exhibited by a mathematical model, (iv) decide whether
the model is biologically realistic (e.g., exhibits finite or blow-up patterns, and
if so in which biologically realistic/unrealistic parameter spaces?). As discussed
throughout this review, many hyperbolic and kinetic models have not been subjected
to detailed analytical investigation of pattern formation (and this could explain
the lack of patterns in columns 2, 3, 4 and 6 of Table 9.1). Moreover, apart
form classifying these patterns based on their symmetry subgroups (as discussed
in Chap. 8), it is unclear how else one could classify them. This classification
approach raises another question: how to classify the (similarly-looking) patterns
generated by the corresponding stochastic models (see Fig. 5.26), which have lost
the initial symmetry. It is likely that further analytical investigations would reveal
that these complex hyperbolic and kinetic models might generate new patterns and
bifurcations, whose investigation could be very challenging.
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Combining analytical and numerical approaches will lead to the further devel-
opment of the area of pattern formation in nonlocal kinetic and hyperbolic models.
Some of the questions that could be answered in the future are:

• Can the patterns observed in nonlocal models (especially the more exotic ones,
such as the feathers, breathers, zigzags) be exhibited also by the local models? If
not, why?

• Are the complex (exotic) patterns discussed throughout this monograph specific
only to the hyperbolic/kinetic models? In other words, if we develop parabolic
or individual-based models that incorporate communication mechanisms similar
to the ones discussed in nonlocal hyperbolic systems, can we obtain similar
patterns?

• Can the complex 1D patterns exhibited by the 1D nonlocal hyperbolic and kinetic
models be generalised to 2D models? If so, what are the mathematical/biological
assumptions that need to be incorporated into these 2D models, to generate the
appropriate patterns?

• How could one incorporate various 2D communication mechanisms into the
existent mesoscopic and macroscopic models for the collective behaviours
of cells/bacteria/animals? In this case, could the corresponding 2D patterns
be associated with particular communication mechanisms (or combination of
mechanisms)?

• How do we connect the 1D and 2D models for collective spatial movement of
cells/bacteria/animals to the available data? What kind of data is necessary to be
collected to parametrise these models, to allow for quantitative predictions?

• Could the assumption of “pairwise interactions”, which is incorporated into the
Boltzmann-type kinetic models, impede our understanding of the contribution
of other particles/cells to these interactions? This is a valid question since the
in vivo dynamics of cells is not always determined by pairwise interactions,
but by interactions with a variety of other cells via communication molecules
(cytokines, chemokines) produced by these cells. Similarly, it is less likely
that animals in group interact with their neighbours via “binary collisions”,
and is more likely that these interactions involve more than two individuals (if
the community comprises multiple individuals). Moreover the derivation of the
Boltzmann equation in the limit N → ∞ also requires that collisions involve
only uncorrelated particles, in the sense that particles that have collided already
will not collide again. This assumption does not seem to carry great biological
realism, since animals in a group will likely interact again.

• Can we understand the bifurcation structure of the stochastic PDE models for
the collective movement of cells/bacteria/animals? How can we extend the
current stochastic bifurcation theory [47–50] (mainly developed for ODEs) to the
nonlocal and local transport models discussed in this study (as well as many more
other models in the literature)? How can we adapt the (dynamical) D-bifurcation
and (phenomenological) P-bifurcation theory to the realities of the chaotic and
deterministic patterns generated by the nonlocal hyperbolic models presented
briefly in Chap. 5?
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To conclude, we remark that the use of hyperbolic and kinetic models to answer
biological questions is far from having reached its full potential. On the contrary,
they seem to be used more and more to investigate various problems in ecology and
medicine. Moreover, in the last few years these models have been applied to new
research areas, such as social dynamics [51], economy [52] or human psychology
[53]. Furthermore, the authors in [54, 55] suggested that these kinetic models could
be the start of a biological mathematical theory for complex systems. In particular,
Bellomo and Forni [55] argued that these models can incorporate two of the most
important aspects of living matter: the notion of function or purpose for biological
organisms, and the multi-scale aspect of biological interactions. While some first
steps have been taken in this direction, we note that these are very complex aspects
that require further extensive investigations.
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