
Chapter 8
A Few Notions of Stability
and Bifurcation Theory

While numerical approaches are a very important step in investigating the patterns
exhibited by the hyperbolic and kinetic models discussed in the previous chapters,
they could be slow and might not offer a full understanding of the models’ dynamics
due to the very large parameter space associated with some models. Moreover,
the analytical approaches discussed in Chap. 2 could offer an understanding of
the parameter space where different types of solutions could occur (e.g., finite vs.
density-blow up solutions, shocks vs. rarefaction waves, etc.). However, they cannot
offer much insight into the conditions for the formation of patterns, as well as the
transitions between different patterns.

Stability theory could identify the parameter conditions under which a pattern
could form, and eventually could become unstable giving rise to a different pattern.
While linear and weakly-linear stability analyses of homogeneous steady states
are relatively easy tasks, stability analysis of spatially heterogeneous solutions is
complicated by the complexity of the hyperbolic and kinetic models discussed
throughout this monograph, and in particular the nonlinear and nonlocal structure of
some of these models. Also difficult is the fully nonlinear stability analysis, which
is often specific to the system being investigated [1]. As already mentioned, the
nonlocality of the models presented in this monograph complicates the analysis
even more—which explains the lack of studies focused on the nonlinear analysis
of nonlocal (hyperbolic and kinetic) models for collective dynamics in biological
aggregations.

A deeper understanding of the formation of various spatial and spatio-temporal
patterns is offered by the bifurcation theory, which can distil the mathematical and
biological mechanisms not only behind the formation of patterns, but also behind the
transitions between different spatial and spatio-temporal patterns. In the following,
we will review some basic notions of linear stability analysis for pattern formation
in partial differential equations, as well as basic notions of symmetry theory and
bifurcation theory. These will help the reader understand better the approaches taken
by some of the studies reviewed in Chaps. 3–6. For more detailed discussions of
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these topics in stability and bifurcation theory, we refer the reader to the books by
Hoyle [2], Golubitsky and Stewart [3], Chossat and Lauterbach [4], Haragus and
Iooss [5], Kuznetsov [6], and Strogatz [7].

8.1 Basic Notions of Linear Stability Analysis

The first step in the investigation of pattern formation, is the identification of steady
states (spatially homogeneous and, if possible, spatially heterogeneous) and their
stability—since unstable states are usually associated with pattern formation and
transitions between different patterns. The linear stability technique involves the
identification of the eigenvalues of the linearised equation/system at the equilibrium
(steady state) points, with the goal of understanding the quantitative behaviour of
the solution near these points

We start the discussion of linear stability analysis by focusing first on ODEs,
and then on PDEs. Since the majority of studies in the mathematical literature
exemplify the linear stability analysis by focusing on parabolic reaction-diffusion
equations [8], here we decided to change a bit the approach and to focus on
nonlocal hyperbolic systems. This is particularly relevant in the context of the
models discussed throughout the previous chapters.

8.1.1 Linear Stability Analysis for ODE Models

Consider the following ODE model

du

dt
= f (u), with u, f ∈ R

n. (8.1)

The dynamics of this system is controlled, in the long term, by the steady states (or
fixed points or equilibrium points) of the system. A steady state of system (8.1) is a
time-independent solution u(t) = u∗ that satisfies f (u∗) = 0.

To investigate the linear stability of these steady states u∗, we consider small
temporal perturbations: u(t) = u∗ + aeλt . After substituting these expressions back
into (8.1) and linearising the nonlinear terms f (u) about the steady states, we obtain
that the linear stability of these states is controlled by the eigenvalues of the Jacobian
matrix J :

J (u∗) = Duf (u∗) =
⎛
⎜⎝

∂f1
∂u1

. . .
∂f1
∂un

. . . . . . . . .
∂fn

∂un
. . .

∂fn

∂un

⎞
⎟⎠

u=u∗

for f = (f1, . . . , fn), u = (u1, . . . , un). (8.2)



8.1 Basic Notions of Linear Stability Analysis 229

If all eigenvalues λ of the characteristic equation det(J (u) − λI) = 0 have negative
real parts, we say that the steady state is linearly stable. If there are eigenvalues with
positive real parts we say that the steady state is unstable.

For a system in R
2 one can classify the fixed points in terms of the determinant

det(J ) = λ1λ2 and trace T r(J ) = λ1 + λ2 of the Jacobian matrix (where λ1 and λ2
are the two eigenvalues). For example, if det(J ) < 0, the eigenvalues are real and
of opposite signs and the fixed point is a saddle point. If det(J ) > 0 the eigenvalues
are either real and of opposite signs (and thus they are nodes) or complex conjugates
(and thus they are spirals or centres). If det(J ) = 0, at least one eigenvalue is zero.
The stability of the nodes and spirals is given by T r(J ): the fixed points are stable
for T r(J ) < 0, and unstable for T r(J ) > 0. When T r(J ) = 0 the eigenvalues
are purely imaginary, and the fixed points are centres. For more details on this fixed
point classification, see [7, 9].

Definition 8.1 A fixed point u∗ of (8.1) is called hyperbolic if and only if the
Jacobian matrix J (u∗) does not have any eigenvalues with zero real parts, i.e.,
Re(λi) �= 0 for i = 1, 2, . . . , n.

The stability of hyperbolic fixed points is not affected by small perturbations caused
by nonlinear small terms (the local phase portrait near a hyperbolic fixed point
being topologically equivalent to the phase portrait of the linearised system—see the
Hartman-Grobman theorem in [9, 10]). In regard to pattern formation, the important
cases are those where the eigenvalues have zero real parts (Re(λ) = 0), i.e., the fixed
points are non-hyperbolic. The changes in the stability of fixed points, which suggest
the possibility of a bifurcation, can only happen at non-hyperbolic fixed points. To
conclude this section, we note that the qualitative behaviour of system (8.1) in the
neighborhood of a nonhyperbolic fixed point u∗ is determined by its behaviour on
the centre manifold near u∗. Moreover, since the dimension of the centre manifold
is usually smaller than the dimension of the full system (8.1), it becomes easier to
investigate the qualitative behaviour of the system near a nonhyperbolic fixed point.
We will return to the discussion of the centre manifold theory in Sect. 8.6. For a
more comprehensive study on the stability of fixed points of ODE systems, we refer
the reader to [9].

8.1.2 Linear Stability Analysis for PDE Models

Let us focus now on partial differential equations (PDEs), and assume that the
models described in the previous chapters can be written in a general form as

∂u(x, t)
∂t

= L [u(x, t)] + N [u(x, t)], (x, t) ∈ R
d × R

1+, (8.3)

whereL [u] is a linear operator andN [u] is a nonlinear operator (containing higher
order terms O(uk), k ≥ 2, both local and nonlocal). Note that we have used [·]
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instead of (·) to emphasise that these linear and nonlinear terms can depend also
nonlocally on u(x, t).

Definition 8.2 A spatially homogeneous steady state of (8.3) is a solution u(x, t) =
u∗ =constant which satisfies

0 = L [u∗] + N [u∗]. (8.4)

A spatially heterogeneous steady state of (8.3) is a solution u(x, t) = u∗∗(x) which
satisfies

0 = L [u∗∗(x)] + N [u∗∗(x)]. (8.5)

We characterise a steady state as being stable or unstable if small perturbations of
this steady state decay or grow. Since a large part of this monograph focuses on
nonlocal hyperbolic systems, to exemplify the linear stability technique, we focus
on a generic 1D nonlocal hyperbolic system

∂u+

∂t
+ γ

∂u+

∂x
= −λ+[u+, u−]u+ + λ−[u+, u−]u−, (8.6a)

∂u−

∂t
− γ

∂u−

∂x
= λ+[u+, u−]u+ − λ−[u+, u−]u−, (8.6b)

on a finite domain [0, L] with periodic boundary conditions, and investigate the lin-
ear stability of a generic spatially homogeneous steady state (u+(t, x), u−(t, x)) =
(u∗+, u∗−). For example, the class of nonlocal hyperbolic systems (8.6) with the five
communication mechanisms M1–M5 (see Table 5.1) introduced in [11] can exhibit
one, three or five steady states; see Fig. 8.1a.

In the following we focus on the linear stability of a generic spatially homo-
geneous steady state (u+∗ , u−∗ )—any one of the states depicted in Fig. 8.1. (For a
detailed discussion of the linear stability approach in reaction diffusion systems, i.e.,
Turing mechanisms, see [8].) We note that the stability of a spatially heterogeneous
steady state (u∗∗+ (x), u∗∗− (x)) follows the same approach, but the calculations are
more challenging; see, for example, the studies in [12, 13] in the context of local
parabolic equations; to our knowledge, studies on the stability of heterogeneous
states exhibited by nonlocal hyperbolic equations/systems are very scarce, due to
the challenge posed by dealing with the nonlocal terms. Also challenging is the
application of nonlinear stability methods, which can offer more information about
the formation of patterns, compared to the classical linear methods [1].

We start the linear stability analysis of a steady state (u+∗ , u−∗ ) of system (8.6)
by considering small-amplitude perturbations of the steady state: u+(x, t) = u∗+ +
v+(x, t) and u−(x, t) = u∗− + v−(x, t) with v±(x, t) ∝ a±eσ t+ikx and |a±| � 1.
Here σ ∈ C is an eigenvalue that gives the temporal growth/decay of the small
perturbations (if Re(σ) > 0 or Re(σ) < 0, respectively), and k is the wavenumber
(which is a measure of the wavelike pattern, being proportional to the reciprocal of
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Fig. 8.1 Plot of steady state u+∗ corresponding to (u+∗ , u−∗ )=(u+∗ , A − u+∗ ), as a function of the
magnitude of alignment parameter qal , for the five communication models introduced in [11]. In
the expression of the steady states, we have A = 1

L

∫ L

0 (u+(x) + u−(x))dx the total population
density on a finite domain [0, L]. We compare the cases of (a) symmetric perception of neighbours,
versus (b) asymmetric perception of neighbours, as described by Eq. (5.20) and Fig. 5.6. In (a) we
have p+ = p− = 1.0 (corresponding to symmetric perception), while in (b) we have p+ = 1.05
and p− = 0.95 (corresponding to asymmetric perception)

the wavelength ω of the pattern: k = 2π/ω). For finite domains, there is a discrete
set of possible wavenumbers kn = 2nπ/L, where L is the domain size and n is
an integer. Substituting the perturbed solutions u±(x, t) = u±∗ + v±(x, t) into the
linearised hyperbolic system leads to the following equations

∂v+

∂t
+ γ

∂v+

∂x
= −λ+[u+∗ , u−∗ ]v+ + λ−[u+∗ , u−∗ ]v−

− u+∗ λ+
u (K ∗ v+) + u−∗ λ−

u (K ∗ v−),

∂v−

∂t
− γ

∂v−

∂x
= λ+[u+∗ , u−∗ ]v+ − λ−[u+∗ , u−∗ ]v−

+ u+∗ λ+
u (K ∗ v+) − u−∗ λ−

u (K ∗ v−).

Here, λ±
u are the derivatives of λ± with respect to u = (u+, u−), which appear in the

Taylor expansion of λ± about the steady states (u+∗ , u−∗ ). Re-writing these equations
in terms of a±eσ t+ikx , we obtain (after simplifying the exponentials eσ t+ikx)

a+
(
σ + γ ik + λ+[u+∗ , u−∗ ] + u+∗ λ+

u K̂(k)
)

+ a−
( − λ−[u+∗ , u−∗ ] − u−∗ λ−

u K̂(k)
) = 0,

a+
( − λ+[u+∗ , u−∗ ] − u+∗ λ+

u K̂(k)
)

+ a−
(
σ − γ ik + λ−[u+∗ , u−∗ ] + u−∗ λ−

u K̂(k)
) = 0,
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where K̂(k) is the Fourier transform of the interaction kernel K(s):

K̂(k) =
∫

K(s)eiksds. (8.7)

To find a non-trivial solution for this algebraic system, we impose that the
determinant is zero, and obtain the characteristic equation that connects the growth
rate σ of the perturbations with the wavenumber k:

σ 2 + σA(k) + B(k) = 0, (8.8)

where A(k) and B(k) are nonlinear terms that depend on the parameters of the
system and on the steady states. The expression σ = σ(k) is called a dispersion
relation.

If Re(σ(k)) > 0 for some k = kn, we say that the homogeneous steady
state (u+∗ , u−∗ ) is unstable to spatial perturbations. Otherwise, if Re(σ(k)) < 0
for all k, we say that the steady state is linearly stable. Note that since we
assumed a finite domain (to be able to compare the analytical stability results with
the numerical results, as in [11, 14]), the possible unstable wavenumbers kn and
the corresponding spatial wavelengths of allowable patterns could depend on the
boundary conditions. The most unstable wavenumber kn (i.e., the wavenumber for
which σ(kn) has the largest positive value) gives—at least for small time where
the linear stability analysis is valid—the number of “peaks” (i.e., aggregations)
that form in the domain. In Fig. 8.2 we show a caricature description of (a) a
typical example of dispersion relation for which the wavenumber k2 is unstable,
and (b) the corresponding two-peak pattern that emerges (at least for small time).
(Compare Fig. 8.2a with Fig. 4.7 which showed a non-standard dispersion relation
for a class of local hyperbolic systems introduced in [15].) If the eigenvalues
σ(kn) have only real parts then the spatial pattern emerges as a result of real

k
u*

parameter
change in 

k k

(a)

(k)σ
u(x,t)

(b)

x

31 2

Fig. 8.2 Caricature description of (a) a typical example of dispersion relation for which the
wavenumber k2 becomes unstable (as we vary a certain model parameter), and (b) the corre-
sponding two-peak pattern u(x, t) that emerges (at least for small time). The dashed line shows
the spatially homogeneous solution



8.2 Basic Notions of Bifurcation Theory 233

(steady state) bifurcations, and the aggregations that form are motionless (e.g.,
stationary pulses; see also Fig. 1.9a). If, on the other hand, the eigenvalues σ(kn)

have complex parts (i.e., Im(σ(kn)) �= 0) then the spatial pattern emerges as a
result of complex (Hopf) bifurcations, and the aggregations that form are moving
through space (e.g., travelling pulses; see also Fig. 1.9b). We will return to the
discussion of real and complex bifurcations in the next section. It is possible
that multiple wavenumbers become unstable at the same time; see Fig. 5.10. The
spatially heterogeneous solution that emerges, is the sum of the unstable modes:
u(x, t) = ∑n2

n1 Cne
σ(kn)t cos(knx). The mode-mode interactions could give rise to

more complex spatial and spatio-temporal patterns, as discussed in Chap. 5.
To conclude this brief discussion on linear stability analysis, we emphasise that

even if the small perturbations v± grow exponentially with time, they are eventually
bounded by the nonlinear terms in the reaction-advection equations. If the solution
of the PDE is bounded in time, a spatially heterogeneous solution will emerge.
For a more detailed discussion of linear stability analysis on pattern formation in
partial differential equations in biology (including the stability of steady states for
2D models), we refer the reader to the seminal book by Murray [8].

8.2 Basic Notions of Bifurcation Theory

To be able to understand the changes in the patterns exhibited by various (finite
and infinite dimensional) dynamical systems, one needs to have some basic notions
of bifurcation theory, i.e., the mathematical theory that studies changes in the
qualitative or topological structure of a family of differential equations. The term
“bifurcation” was first introduced by Henri Poincaré in [16]. A bifurcation occurs
when a small change in a parameter value (i.e., the bifurcation parameter) leads
to a qualitative change in the behaviour of a system. Since in the mathematical
literature there are several very good textbooks on bifurcation theory [3, 6, 7, 17, 18],
the aim of this chapter is not to give a detailed exposition of the topic, but rather
to give the reader enough information to follow the discussion in the previous
chapters regarding the mechanisms behind the formation of various patterns. In the
following, we will assume that the reader has basic notions of dynamical systems
(both finite dimensional and infinite dimensional) and functional analysis; see also
the books by Strogatz [7], Robinson [19] and Evans [20].

Even if this monograph focuses on PDEs, we decided to start this brief review
of basic notions of bifurcation theory by focusing first on classical bifurcations for
ODEs (one dimensional and two dimensional). Our reason for this choice is based
on (1) the importance of these classical bifurcations for understanding the long-term
dynamics of spatially homogeneous populations (i.e., populations with individuals
evenly distributed over the domain), and (2) the importance of these bifurcations in
the reduction of infinite-dimensional (PDE) systems to finite-dimensional systems
(via Central Manifold reduction, Lyapunov-Schmidt reduction, or weakly nonlinear
analysis). In regard to point (1), we note that the class of 1D nonlocal hyperbolic



234 8 A Few Notions of Stability and Bifurcation Theory

(λ) Im(λ)

Re(λ)Re(λ)

(a) (b)Im

λ(μ)

λ(μ)

λ(μ)

Fig. 8.3 Caricature description of the eigenvalues that generate real and complex bifurcations, as
we vary a generic parameter μ. (a) Real eigenvalues λ(μ); (b) Complex eigenvalues (λ(μ) and
λ(μ)). In general, the complex eigenvalues cross the imaginary axis with nonzero slopes

models introduced in [11] was shown to display spatially homogeneous solutions
(u+, u−) = (u+∗ , u−∗ ) with u+∗ �= u−∗ (corresponding to more individuals facing
one direction than the other direction), and these solutions arise via saddle-node
and (subcritical) pitchfork bifurcations [11, 14]; see also Fig. 8.1. In regard to point
(2), we will see in Sect. 8.5 that we could understand the dynamics of a nonlocal
hyperbolic system near a bifurcation point via the dynamics of an ODE for the
amplitude of the perturbations as given by Eq. (8.38).

The codimension (“codim”) of a bifurcation is given by the number of parame-
ters that need to be varied to reach the locus of the bifurcation. Throughout Chap. 5
we referred to codimension-1 bifurcations (where one parameter μ was varied) and
codimension-2 bifurcations (where two parameters, μ1 and μ2, were varied at the
same time). In the following we will review briefly four codimension-1 classical
bifurcations from fixed points: saddle-node bifurcations, transcritical bifurcations,
pitchfork bifurcations and Hopf bifurcations. The first three types of bifurcations
are stationary (or steady state), i.e., they correspond to a real eigenvalue λ(μ)

passing through zero (see Fig. 8.3a). The fourth bifurcation is oscillatory, with the
real part of the complex eigenvalues passing through zero, while the imaginary
part is nonzero (see Fig. 8.3b). Since the majority of bifurcations identified in the
literature of hyperbolic and kinetic models for self-organised behaviours are local,
here we focus mainly on these local bifurcations. However, towards the end of this
section we will also mention briefly some examples of nonlocal bifurcations (e.g.,
homoclinic loops) exhibited by the nonlocal hyperbolic models (5.14).

The structure of the bifurcations is encoded in their normal forms (i.e., simplified
equations that determine the dynamics of the system/bifurcation), and all systems
that exhibit a bifurcation are locally topologically equivalent to the normal form
of the bifurcation. Thus, in the following we describe briefly the normal forms
corresponding to four classical codimension-1 local bifurcations. To this end we
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start with the following differential equation in R:

du

dt
= f (u,μ), (8.9)

where u is a real-valued function of time t (u ∈ R
+) and μ is a real bifurcation

parameter (μ ∈ R). Assume that the vector field f (u,μ) satisfies the following two
conditions:

f (0, 0) = 0,
∂f (0, 0)

∂u
= 0. (8.10)

The first condition says that u = 0 is an equilibrium point when μ = 0, while the
second condition is necessary for the appearance of a local bifurcation at μ = 0. (If
∂f (0, 0)/∂u �= 0, the implicit function theorem says that f (u,μ) = 0 has a unique
solution u = u(μ) in the neighbourhood of 0, and thus u = 0 is the only solution for
μ = 0 or sufficiently small μ, leading to the impossibility of having a bifurcation
for small values of μ [5]).

• Saddle-node bifurcations. Assume that in addition to conditions (8.10), the
vector field f (u,μ) satisfies also two other conditions:

∂f

∂μ
(0, 0) = 1 �= 0,

∂2f

∂u2 (0, 0) = c �= 0. (8.11)

Following a Taylor expansion of f (u,μ) near (0, 0), we obtain the following
truncated equation

du

dt
= μ + cu2. (8.12)

This normal form Eq. (8.12) approximates the dynamics of the full model (8.9).
Equation (8.12) has the following fixed points: u = 0 for μ = 0, and u =
±√−μ/c for μ/c < 0. The stability of the fixed points is determined by the
sign of derivative ∂f

∂u
. For c > 0 the non-trivial fixed points exist only when

μ < 0, and +2c
√−μ/c is unstable while −2c

√−μ/c is stable (see Fig. 8.4a).
For c < 0 the non-trivial fixed points exist only when μ > 0, and +2c

√−μ/c is
stable while −2c

√−μ/c is unstable (see Fig. 8.4a).
• Transcritical bifurcations. Assume that in addition to conditions (8.10), the

vector field f (u,μ) satisfies also three other conditions:

∂f

∂μ
(0, 0) = 0,

∂2f

∂u∂μ
(0, 0) = 1 �= 0,

∂2f

∂u2
(0, 0) = 2c �= 0. (8.13)

Expanding f (u,μ) in Taylor series about (0, 0), and incorporating the above con-
ditions leads to the following truncated normal form equation for a transcritical
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(a)

(c)

(b)

uc>0

c<0

c<0

c>0 c<0 uu

c>0 uu

u

Fig. 8.4 Bifurcation diagrams in the (μ, u) plane of the normal form equations corresponding to:
(a) Saddle-node bifurcations; (b) Transcritical bifurcations; (c) Pitchfork bifurcations. The solid
continuous curves describe stable states, while the dashed curves describe unstable states
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bifurcation:

du

dt
= μu + cu2, u, μ, c ∈ R. (8.14)

The fixed points of this equation are u = 0 and u = −μ/c. Simple linear stability
analysis shows that u = 0 is stable for μ < 0 and unstable for μ > 0, while
u = −μ/c is stable for μ > 0 and unstable for μ < 0 (see Fig. 8.4b).

• Pitchfork bifurcations. In many cases, the models have some sort of symmetry.
The simplest symmetry is the reflection symmetry u → −u. We need to
emphasise that this symmetry is not biologically realistic in this form, since one
cannot have a population with negative density −u. However, in some biological
systems one could have a slightly different version of this symmetry: u → U −u,
with U a maximum populations size; see the steady states in Fig. 8.1a, which are
symmetric with respect to u = A/2 , where A = (1/L)

∫ L

0 [u+(x) + u−(x)]dx

denoted the total population density. Assume now that the vector field f (u,μ)

is odd with respect to u, satisfies conditions (8.10) and also the following
conditions:

∂f

∂μ
(0, 0) = 0,

∂2f

∂μ∂u
(0, 0) = 1 �= 0,

∂3f

∂u3
(0, 0) = 6c �= 0. (8.15)

Following a Taylor expansion of f (u,μ) near (0, 0), we obtain the following
truncated normal form equation

du

dt
= μu + cu3. (8.16)

This equation has the following fixed points: u = 0 for any μ, and u = ±√−μ/c

for μ/c < 0. These non-trivial points exist for μ > 0 when c < 0 and for μ < 0
when c > 0. The trivial point is stable for μ < 0 and unstable for μ > 0. The
nontrivial point ±√−μ/c is unstable for c > 0 and μ < 0, and stable for c < 0
and μ > 0 (see Fig. 8.4c). The appearance of stable branches for μ > 0 shown in
the right panel of Fig. 8.4c occurs through a supercritical bifurcation, while the
appearance of unstable branches for μ < 0 in the left panel of Fig. 8.4c occurs
through a subcritical bifurcation.

Remark 8.1 The pitchfork bifurcations that give rise to the spatially-
homogeneous steady states graphed in Fig. 8.1a are the result of the symmetries
of the nonlocal hyperbolic system (8.6) with the five communication mechanisms
described in Table 5.1. For symmetric communication mechanisms (i.e.,
p+ = p− = 1.0), the bifurcations shown in Fig. 8.1a are perfect. However,
as we perturb the perception mechanisms (i.e. p+ = 1.05, p− = 0.95), thus
assuming asymmetric communication, we obtain imperfect bifurcation diagrams
as a result of symmetry breaking, as shown in Fig. 8.1b.
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Remark 8.2 The three bifurcations of fixed points discussed above in the one-
dimensional case (i.e., saddle-node, transcritical and pitchfork bifurcations) can
be easily generalised to two and higher dimensions. For example, for the normal
form equations in 2D (with variables u and v) we can assume that the dynamics in
the u-direction is given by the normal forms discussed above, and the dynamics
in the v-direction is exponentially damped [7]:

du

dt
= μ + cu2,

dv

dt
= −v,

du

dt
= μu + cu2,

dv

dt
= −v,

du

dt
= μu + cu3,

dv

dt
= −v.

For a more detailed discussion regarding the generalisation of these bifurcations
to higher dimensions, and the fact that the addition of higher dimensions does
not influence the bifurcations (which still occur along a one-dimensional space),
see [7].

• Hopf bifurcations. Consider now the following differential equation in R
2:

du
dt

= f(u, μ), with u = (u, v) ∈ R
2, μ ∈ R. (8.17)

Assume that the vector field f ∈ R
2 satisfies f(0, 0) = 0 (i.e., u = 0 at μ = 0).

The presence of a bifurcation is determined by the linearisation of f(u, μ) at
(0, 0), as given by the Jacobian matrix J = Duf(0, 0). Moreover, assume that
the Jacobian matrix has the following canonical form

J =
(

α(μ) β(μ)

−β(μ) α(μ)

)
, (8.18)

and at μ = 0 we have α(0) = 0, α′(0) �= 0 and β(0) = ω �= 0 (so that in the
neighbourhood of μ = 0, we have det (J ) �= 0). The linearised equations (8.17)
are

du

dt
= α(μ)u + β(μ)u + O(u2, v2, uv), (8.19a)

dv

dt
= −β(μ)u + α(μ)v + O(u2, v2, uv). (8.19b)

Let us introduce a new variable z = u+ iv, which allows us to re-write Eq. (8.19)
as

dz

dt
= (

α(μ) − iβ(μ)
)
z + O(|z|2), as |z| → 0. (8.20)
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Making a transformation of the form ψ = z+S(z, z̄, μ), with S ≈ O(|z|2) leads
to a normal form equation

dψ

dt
= (

α(μ) − iβ(μ)
)
ψ + A(μ)|ψ|2ψ + O(|ψ|4), (8.21)

with A(μ) = a(μ) + ib(μ) a complex term.

To understand the dynamics of this normal form equation, it is better to introduce
the polar coordinates ψ = reiθ (with r > 0 and 0 ≤ θ ≤ 2π), which transforms
Eq. (8.21) into the following system:

dr

dt
= α(μ)r + a(μ)r3, (8.22a)

dθ

dt
= −β(μ) + b(μ)r2. (8.22b)

Note that Eq. (8.22a) is the normal form for a pitchfork bifurcation in r . This
suggests that a Hopf bifurcation is a pitchfork bifurcation in r direction, with a
rotation in θ direction. From the phase equation (8.22b) we obtain θ = θ0 + ω(μ)t ,
with ω(μ) = −β(μ) − b(μ)α(μ)/a(μ) → −β(0) as μ → 0 (since we assumed
above that α(0) = 0).

The fixed points of the amplitude equation (8.22a) are r = 0 and r =√−α(μ)/a(μ). We assume that a(μ) �= 0 in the neighbourhood of μ = 0.
This non-trivial solution branch corresponds to a periodic solution with period
2π/|ω(μ)| → 2π/|ω(0)| as μ → 0. The stability of these two solutions depends
on the signs of α(μ) and a(μ). While we keep these two functions general enough
to not discuss their signs, we graph in Fig. 8.5 the two possible Hopf bifurcations:
(a) a supercritical bifurcation, and (b) a subcritical bifurcation.

The Hopf bifurcation represents one way through which limit cycles are created
or destroyed. However, limit cycles can be destroyed when two different cycles (a

μ

r

(a) (b)

r

00 μ

Fig. 8.5 Bifurcation diagram for: (a) a supercritical Hopf bifurcation; (b) a subcritical Hopf
bifurcation. Continuous solid curves indicate stable branches, while dashed curves indicate
unstable branches
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Fig. 8.6 Caricature description of (a) a homoclinic orbit (in the form of a stationary pulse
connecting two zero steady states); (b) a heteroclinic cycle connecting a travelling pulse (pattern
1—in red) and a stationary pulse (pattern 2—in blue); (c) a heteroclinic cycle connecting two
stationary states (pattern 1—in red; and pattern 2—in blue)

stable and an unstable cycle) coalesce via a saddle-node bifurcation of cycles [7].
This is a global bifurcation since it does not occur anymore near a fixed point.
Note that global bifurcations occur when larger invariant sets, such as periodic
orbits, collide with each other or with other equilibria. In the following we discuss
briefly two types of global bifurcations that have been shown to be exhibited by the
nonlocal hyperbolic systems (8.7).

• Homoclinic bifurcations occur when a limit cycle moves closer to a saddle
point until it coalesces with it becoming a homoclinic loop. In the context of
partial differential equations, a homoclinic loop describes a travelling pulse or a
stationary pulse, i.e., a nonzero solution u(z) = u(x − ct) which connects (as
z → ±∞) the stable and unstable manifolds of a spatially homogeneous steady
state (usually u∗ = 0; see Fig. 5.7a, b) and propagates with speed c > 0 (for
travelling pulses) or c = 0 (for stationary pulses). See Fig. 8.6a for a caricature
description of a homoclinic loop.

• Heteroclinic bifurcations occur when a cycle connects different unstable
(spatially homogeneous or heterogeneous) states, via their stable and unsta-
ble manifolds. These bifurcations are more difficult to be identified for the
hyperbolic and kinetic models discussed in the previous chapters, due to the
large parameter space that needs to be investigated. The nonlocal hyperbolic
models (8.7) can exhibit heteroclinic cycles that connect two stationary states
(R. Eftimie—unpublished results), which are the result of Steady-state/Steady-
state heteroclinic bifurcations; see Fig. 8.6c for a caricature description of a
heteroclinic cycle connecting two different stationary states. Figure 8.6b shows a
caricature description of a heteroclinic cycle connecting a stationary state and a
travelling pulse (which is somehow similar—at macroscopic level—to the semi-
zigzag dynamics shown in Fig. 5.7f, but for one aggregation peak). We need to
emphasise here that the analytical study of heteroclinic bifurcations in hyperbolic
and kinetic models is still an open problem at this moment.
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Remark 8.3 As emphasised by Knobloch and Aulbach [21], the various bifurcating
objects (which are formed of small bounded solutions, such as steady states or
orbits) always lie on centre manifolds. Therefore, from a bifurcation point of view,
it is enough to study the flow of a system on the centre manifold. We will return to
the existence of these centre manifolds (for both ODEs and PDEs) in Sect. 8.6.

8.3 Symmetry of Hyperbolic and Kinetic Equations

Symmetry and symmetry breaking phenomena are very common in self-organised
biological communities, as shown by various experiments [22–26]. From a mathe-
matical point of view, many of the models for self-organised patterns in biological
aggregations that we discussed in the previous chapters have some sort of symmetry
(either as a result of the equations themselves, or as a result of the domain and
the boundary conditions—e.g., periodic conditions). The presence of symmetries is
welcomed since it allows us to reduce the size of the system (which reduces the
cost of solving the equations). However, very few studies on kinetic and hyperbolic
models for biological aggregations recognised the importance of these symmetries
on cell/bacterial/animal pattern formation [27–30]. Since the symmetries of systems
of differential equations (ODEs and PDEs) are usually discussed in terms of a group
of transformations of variables that preserve the structure of the equations and their
solutions, in the following we give a brief introduction to the most common notions
of group theory that are used to understand the symmetries of a model. To this end,
we follow the approaches in [2, 3].

Definition 8.3 A group Γ is a set {γ1, γ2, γ3, . . .} together with an operation “·”
(which maps Γ × Γ → Γ ) that satisfies the group axioms:

• The group is closed under the group operation: for any γ1, γ2 ∈ Γ , then γ3 =
γ1 · γ2 ∈ Γ ;

• Associativity axiom: for any γ1, γ2, γ3 ∈ Γ , then (γ1 · γ2) · γ3 = γ1 · (γ2 · γ3);
• Identity axiom: there exists an element e ∈ Γ such that γ · e = e · γ = γ , for

any γ ∈ Γ ;
• Inverse axiom: for any γ ∈ Γ , there exists an element γ −1 ∈ Γ such that γ ·

γ −1 = γ −1 · γ = e.

Let us now summarise some of the most common groups that are important in
pattern formation [3]:

• Lie group: a finite-dimensional smooth manifold together with a group structure,
such that the group operations are smooth maps;

• Dn: the dihedral group of order 2n, generated by rotations and reflections in
the plane that preserve a regular polygon with n sides. For example, D2 is the
symmetry group of a rectangle, and is isomorphic with the direct productZ2×Z2;

• Zn: the cyclic group of order n, generated only by rotations;
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• S1: the circle group of unit complex numbers. The group characterises the
periodic solutions;

• O(n): the orthogonal group in R
n, which consists of n × n orthogonal matrices

(i.e., real matrices A with the property that their transposes are equal to their
inverses: A� = A−1). The group is isomorphic to the group of all rotations and
reflections in R

n that keep the origin fixed;
• SO(n): the special orthogonal group consisting of n×n orthogonal matrices with

determinant 1. It is a subgroup of O(n), and is sometimes called the rotation
group, since in R

2 and R
3 its elements are the rotations around a point (n = 2)

and around a line (n = 3);
• SO(2): the special orthogonal group in R

2, which consists of rotations

Rθ =
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
(8.23)

in the plane. This group is isomorphic with S1, since if we write a complex
number eiθ = cos(θ) + i sin(θ) as a 2 × 2 real matrix

eiθ ↔
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, (8.24)

then the unit complex number corresponds to the 2 × 2 orthogonal matrix with
unit determinant.

• Tn = S1 × . . . × S1: the n-torus;
• E(2): the Euclidean group of the plane, generated by rotations, reflections and

translations.

To describe how the elements of a group act on some space in a way that preserves
the structure of that space, we introduce the notion of group action [3]:

Definition 8.4 Consider Γ a Lie group and V a vector space. The action of Γ on
V is a homomorphism ρ : Γ → GL(V ) (with GL(V ) the general linear group of
invertible matrices on V). We denote the group action ρ(γ )(v) = γ · v.

Definition 8.5 A dynamical system that has an appropriate symmetry is called
an equivariant dynamical system. In this case, the bifurcation theory is called
equivariant bifurcation theory.

Consider the following generic dynamical system that depends on a parameter
μ ∈ R:

du

dt
= f (u,μ), with u ∈ R

n, f : Rn × R → R
n. (8.25)

Definition 8.6 We say that system (8.25) is equivariant with respect to a group Γ

if f (γ · u, c) = γ · f (u, c), for all γ ∈ Γ . Here “·” denotes the group action; see
[17].
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Note that a group element γ ∈ Γ is a symmetry of system (8.25) if given a solution
u(t), then γ ·u(t) is also a solution of (8.25). We define the group orbit of a solution
u as Γ u = {γ · u, for γ ∈ Γ } (i.e., the group orbit is the set of solutions connected
by the group action). Therefore, if one knows a solution of a differential equation,
the whole group orbit of this solution will be solutions, too.

One can classify the solutions with respect to their symmetry groups by
computing the isotropy subgroups [3, 27]:

Definition 8.7 Consider the action “·” of a group Γ on a vector space V . The
isotropy subgroup of a point v ∈ V is defined as

Σv := {γ ∈ Γ |γ · v = v}. (8.26)

In other words, the isotropy subgroup of v is the set of all elements (symmetries)
that leaves v invariant.

Let us focus now on the notion of conjugacy:

Definition 8.8 We say that two group elements a1, a2 ∈ Γ are conjugate (or in
the same conjugacy class) if there exist a group element γ ∈ Γ such that a1 =
γ · a2 · γ −1.

One can further show that solutions u and γ · u of (8.25) have conjugate isotropy
subgroups: Σγ ·u = γ · Σu · γ −1. This result is important since it allows us to
classify solutions in terms of the conjugacy classes of their isotropy subgroups.
More precisely, the isotropy subgroups of all points on an orbit of the action of
a group Γ belong to the same conjugacy class. Because the points on the same
group orbit have similar existence and stability characteristics, we usually assume
(in a loose sense) that the isotropy subgroups are similar [2]. When classifying
the solutions of a system of differential equations, we can simplify our analysis
by ignoring those solutions corresponding to similar isotropy subgroups (see for
example [27] for the classification of steady states solutions for the amplitude
equations that resulted from a weakly nonlinear analysis of a Hopf/Hopf bifurcation
with O(2) symmetry).

For the dynamical system (8.25), to find an equilibrium solution u with isotropy
subgroup Σu, we can restrict our search to the fixed point subspace of this isotropy
subgroup [27]:

Definition 8.9 Consider an isotropy subgroup Σv ∈ Γ . The fixed point subspace
of Σv is defined as

Fix(Σv) := {v ∈ V |σ · v = v, for all σ ∈ Σ}. (8.27)

We conclude this list of definitions necessary for understanding the symmetries
of differential equations, by discussing subspaces that are invariant under the action
of a group Γ (since these are the spaces that support bifurcations) [3]:
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Definition 8.10 Consider a subspace V ∈ R
n. We say that V is Γ -invariant if

γ · V = V for any γ ∈ V .

Definition 8.11 If the subspace V ∈ R
n is such that it has only two Γ invariant

subspaces, namely V and {0}, we say that V is Γ -irreducible. We say that the action
of Γ is absolutely irreducible if the only linear maps that commute with the action
of Γ on V are the scalar multiples of the identity: {aI, a ∈ R}.
The above notion of absolute irreducibility is important to the Equivariant Branching
Lemma, which predicts the existence of branches of symmetry-breaking solutions
near bifurcations:

Theorem 8.1 (Equivariant Branching Lemma [3]) Consider Γ ⊂ O(n) a
compact Lie group acting absolutely irreducible onRn. Consider the Γ -equivariant
bifurcation problem

du

dt
= f (u,μ), (8.28)

with f : R
n × R → R

n satisfying the following conditions: f (0, μ) = 0,
Duf (0, μ) = c(μ)I (where I=identity operator), with c(0) = 0 (bifurcation
condition) and c′(0) �= 0 (eigenvalue crossing condition). If Σ is an isotropy
subgroup of Γ with dim Fix(Σ) = 1, then there exist a unique smooth branch
of solutions to f (u,μ) = 0, with symmetry given by the isotropy group Σ .

Note that, depending on some conditions for the bifurcation equation f (u,μ) =
0 in Fix(Σ), and on whether Σ = Γ or Σ < Γ , one can distinguish
between saddle-node bifurcation, transcritical bifurcation or pitchfork bifurcation
(see Theorem 2.3.2 in [4]).

The solution branches that bifurcate from the fixed point u = 0 are called
primary branches (see Fig. 5.11b, c). It is possible to have other solutions that
bifurcate from these primary branches (further away from the original fixed point),
and they give rise to secondary branches (see Fig. 5.11b, c). These secondary
branches can lead to an exchange in the stability of solutions.

Returning now to the nonlocal hyperbolic and kinetic equations discussed in
Chaps. 4–6, we note that the majority of those models exhibit O(2) or SO(2)

symmetries:

• translations: Tθ · u(x, t) = u(x − θ, t), with θ ∈ [0, L);
• reflections (with respect to the domain boundary): κ · (u+(x, t), u−(x, t)) =(

u−(L − x, t), u+(L − x, t)
)
;

Since the boundary conditions used for the majority of 1D nonlocal hyperbolic and
kinetic models discussed in this study [11, 14, 27, 28] are periodic, the translation
operator Tθ (= rotation operator on a 1D line) generates a group isomorphic to
SO(2). Moreover, one can check that Tθ ◦ κ = κ ◦ T −1

θ , and thus the translation
and reflection operators generate a group isomorphic to O(2) [30]. It was also
shown in various studies [27–30] that the 1D nonlocal hyperbolic system (5.14)
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with communication mechanisms M1–M5 (see also Fig. 5.5 and Table 5.1) is O(2)-
invariant: if u(x, t) = (u+(x, t), u−(x, t)) is a solution of (5.14), then Tθ · u(x, t)

and κ · u(x, t) are also solutions of (5.14).
The symmetry structure of nonlocal 1D hyperbolic models (5.14), together

with the types of bifurcations exhibited by these models (i.e., real or complex
bifurcations), was used in [27, 28] to classify rigorously the patterns emerging
near codimension-2 Hopf/Hopf and Hopf/Steady-state bifurcations, via the isotropy
subgroups generated by the O(2) action on the elements of the hyperbolic system.
As an example, we show in Table 8.1 the isotropy subgroups of the O(2)×T

2 action,
together with the corresponding types of solutions. For more details, we refer the
reader to the studies by Buono and Eftimie [27, 28].

Regarding the 2D kinetic models discussed in this study, we note that there are
different studies in the literature which investigate the symmetry and invariance
properties of various Vlasov-type and Boltzmann-type equations (mainly in 2D, but
a few also in 1D) [31–37]. Some of these studies have shown that the collision
integral operator for the Boltzmann equation is SO(2)-invariant [31]. Although
none of these studies focused on the application of Boltzmann-like equations to
describe the collective movement of cells/bacteria/animals, we expect that many of
the models discussed in Chap. 6 are also SO(2)-invariant. Finally, since in Chap. 6
we mentioned the Fokker-Planck equations that were derived from Boltzmann-
type models via grazing collision limits, it is worth noting that over the last
three decades various mathematical studies in the literature have investigated the
symmetries of such Fokker-Planck equations [38–41]. A few studies also focused
on the bifurcations around homogeneous and heterogeneous states in Vlasov and
Vlasov-Fokker-Plank systems used to describe different physics problems [42].
However, it is expected that biological applications of such systems (see some of
the biologically-inspired kinetic models described in Chap. 6) could lead to more
complex bifurcations.

8.4 Compact Operators and the Fredholm Alternative

Since the Lyapunov-Schmidt reduction (not discussed in this monograph, but
reviewed in [30]) and the weakly-nonlinear analysis (discussed in Sect. 8.5)
approaches used to reduce the infinite-dimensional nonlinear PDE systems to finite-
dimensional ODE systems to study bifurcation dynamics, are based on Fredholm
operators and the Fredholm alternative, in the following we present a few definitions
related to these two topics. Consider thus two Banach spaces, X and Y (see also
Table 2.1).

Definition 8.12 A linear operator (or a linear transformation) T : X → Y is
bounded if there is a constant M such that

||T u||Y ≤ M||u||X, for all u ∈ X.
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Definition 8.13 A bounded linear operator T : X → Y is compact if for each
bounded sequence ui ⊂ X, there exists a subsequence {uik } such that {T uik} is
convergent.

If T : X → Y is a bounded linear operator, we define its range (Ran(T )) by

Ran(T ) := {y ∈ Y |∃ x ∈ X, s.t. T x = y},

and its kernel (ker(T )) by

ker(T ) = {x ∈ X|T x = 0}.

Definition 8.14 A Fredholm operator is a bounded linear operator T : X → Y

with finite-dimensional kernel ker(T ) and cokernel coker(T ) = Y/Ran(T ), and
closed range Ran(T ). We denote by F (X, Y ) the space of all Fredholm operators
between X and Y .

Definition 8.15 The index of a Fredholm operator is defined as

index(T ) = dim ker(T ) − dim coker(T )

Note that the index of an operator is a measure of how invertible an operator is.
In particular, if T is an invertible operator then index(T ) = 0. The index of a
Fredholm operator has some properties:

• If T is a Fredholm operator and K is a compact operator, then T + K is a
Fredholm operator and index(T + K) = index(T ).

• If T and S are Fredholm operators, the T S is Fredholm and index(T S) =
index(T ) + index(S).

• If T is a Fredholm operator, the adjoint T ∗ is also Fredholm, and index(T ∗) =
−index(T ).

Theorem 8.2 (Fredholm Alternative) Consider a compact operator T : X → X,
and λ ∈ C non-zero. Only one of the following statements hold true:

(i) Equation T u = λu has a non-trivial solution u ∈ X;
(ii) The operator T − λ has a bounded inverse (T − λ)−1 on X.

The second statement is equivalent to the fact that the non-homogeneous equation
T u = λu − f has a unique solution for each f ∈ X. One can prove the
Fredholm alternative using the index theory of Fredholm operators (by showing
that index(T − λ) = 0, which implies that T − λ is surjective whenever there is no
eigenvalue).

Moreover, the Fredholm alternative can be restated in terms of Fredholm indices
[43]: if K is a compact operator and λ �= 0, then λI − K is Fredholm, and
index(λI − K) = 0

It should be mentioned that the Fredholm alternative can be used to establish
spectral results for compact operators. Note that the spectrum of an operator T is
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defined as [43]:

σ(T ) = {λ ∈ C|λI − T is not invertible}.

Buono and Eftimie [30] showed that for the nonlocal hyperbolic systems (5.14),
the operator T = d

dt
−L (with L the linearised operator at a steady state u∗(x)) is a

Fredholm operator of index zero. It was also proven that the spectrum of L is made
up of a finite number of eigenvalues with finite multiplicity [30]. This result ensures
that the Centre Manifold Theorem (see Sect. 8.6) holds for this class of nonlocal
hyperbolic systems (5.14).

8.5 Analytical Approaches for the Investigation of Patterns:
Weakly Nonlinear Analysis

The method of weakly nonlinear analysis generalises the linear stability analysis
performed near a bifurcation point, by including also nonlinear terms (via an
asymptotic expansion). As discussed above, the linear stability analysis is valid
only for small time and infinitesimal perturbations, and cannot capture the long-time
effect of the nonlinear terms which dominate the growth of the unstable modes. To
overcome this impediment, the weakly nonlinear analysis uses two separate time
scales: a fast time scale described by the original time variable t (which gives the
time region where the solution starts to develop), and a slow time scale (T = εmt ,
for some m > 0) on which the effects of the nonlinear terms become important.
(Note that close to the bifurcation point, the amplitude of the patterns evolves on a
slow temporal scale.) It is assumed that as ε → 0, the two time variables (t and T )
are independent. The weakly nonlinear analysis then reduces the dynamics of the
full system to the temporal evolution (on the slow time scale) of the amplitude of
the perturbations of the steady state, and these differential equations (either ODEs
or PDEs) are faster to solve than the full nonlinear systems.

Although the weakly nonlinear analysis can be performed in the neighborhood
of codim-1 [44] and codim-2 points [27, 28], in the following we focus on the
simpler case of codimension-1 bifurcations (with real eigenvalues) and describe the
main steps of this approach. To this end, we consider the 1D nonlocal hyperbolic
system (5.14) introduced in [14, 44], which can exhibit codimension-1 steady-state
bifurcations as we vary, for example, the magnitude of attractive interactions qa .
Denote by q∗

a the critical value of qa for which the dispersion relation satisfies
σ(q∗

a , kc) = 0 (where k = kc > 0 is the critical wavenumber; e.g., kc = k2
in Fig. 8.2a for the dispersion relation described by the dotted curve). A solution
of (5.14) near the bifurcation point is given by (see [44])

u±(x, t) ∝ eσ t+ikcx + c.c., (8.29)
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where “c.c” stands for “complex conjugate”. Perturbing the parameter qa in the
neighborhood of its critical value, qa = q∗

a + νε2 (with 0 < ε � 1 and ν =
±1 a parameter that will give the direction of the bifurcating solution branches),
substituting this expression into the dispersion relation σ(qa, kc) and expanding it
into Taylor series about q∗

a leads to the following eigenfunction for the solution:

eσ(qa,kc)t+ikcx ≈ e
ikcx+σ(q∗

a ,kc)+ dσ(q∗
a ,kc)

dqa = e
ikcx+ dσ(q∗

a ,kc)

dqa = α(ε2t)eikcx. (8.30)

Since the amplitude of the solution depends on the slow time ε2t , the authors in
[44] introduced a slow-time variable T = ε2t . The left-moving and right-moving
densities were re-written as u±(x, t) = ũ±(x, t, ε, T ). After dropping the tilde for
simplicity and assuming a formal expansion of u± in powers of ε,

u+(x, t, ε, T ) = u+∗ + εu+
1 + ε2u+

2 + ε3u+
3 + O(ε4),

u−(x, t, ε, T ) = u−∗ + εu−
1 + ε2u−

2 + ε3u−
3 + O(ε4),

these expressions can be substituted into the nonlinear system (5.14). The nonlinear
turning rates λ±[u+, u−] are then expanded in Taylor series about the steady states
u±∗ . Overall, the nonlinear hyperbolic system (5.14) can be re-written as

0 = N
( ∑

j≥1

εjuj

) ≈
∑
j≥1

(L (uj ) + Nj (uj−k) + Ej ), k ≥ 1. (8.31)

Here, L (uj ) describes the linear part of the system (5.14), Nj (uj−k) contains
nonlinear terms formed of u±

j−1, u±
j−2, etc. (which were calculated at previous

O(εj−k) steps, where k ≥ 1), and Ej contains the slow time derivatives ∂T u±
j−2

(for j ≥ 3) and the terms multiplied by ν. While the linear operator L is the same
at each O(εj ), the nonlinear operators Nj and Ej are calculated at each j -step. For
the nonlocal system (5.14) described in [44], the linear operator L is given by

L (u) =
(

γ ∂x + L1 + M5K � · −L1 + M5K � ·
−L1 − M5K � · −γ ∂x + L1 − M5K � ·

)(
u+
u−

)
, (8.32)

where L1 and M5 are constants depending on the steady states and the various
model parameters, while the convolutions “K�·” are defined as a difference between
repulsive and attractive nonlocal interactions:

K � u± = qr

(
K̃r � u± − Kr � u±) − q∗

a

(
K̃a � u± − Ka � u±)

, (8.33)

with K̃r,a(s) = Kr,a(−s) and Kr,a � u±(x) = ∫ ∞
−∞ Kr,a(s)u

±(x − s)ds.
At O(ε1) the nonlinear terms are zero (N1 = E1 = 0), and solving the nonlinear

system (5.14) reduces to solving the linear system L (u) = 0, which has a nontrivial
solution. For this reason, at each O(εj ), j ≥ 2, the nonlinear system L (uj ) =
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Nj +Ej has a solution if and only of Nj +Ej satisfies the Fredholm alternative. To
check whether this alternative is applied, one needs to investigate first whether the
linear operator L is compact. Consider the Hilbert space [44]

Y = {v(x, t) ∈ [0, L] × [0,∞)| lim
T →∞

1

T

∫ T

0

∫ L

0
|v|2dxdt < ∞} (8.34)

with the inner product

〈v,w〉 = lim
T →∞

∫ T

0

∫ L=2π/kc

0

(
v1w̄1 + v2w̄2)dxdt. (8.35)

Here v = (v1, v2)� and w = (w1, w2)�, which satisfy periodic boundary
conditions. Since v are bounded on L2([0, L] × [0, T ]) (see [44]), then
limT →∞(1/T )||v||2

L2([0,L]×[0,T ]) is finite. Because the linear operator L is given
also in terms of the differential operator ∂/∂x (which is not bounded), one needs
to interpret this differential operator as a distribution in a Sobolev subspace of Y .
Consider the space

Vbc = {(v+, v−) ∈ Y |(∂xv
+, ∂xv−) ∈ Y, and v±(L, t) = v±(0, t)}, (8.36)

with the norm ||v||2Vbc
= ||(v+, v−)||2Y +||(∂xv

+, ∂xv−||2Y , which is associated with
the inner product (8.35). As discussed in [27], the linear operator L : Vbc → Y

is bounded, and following the approach in Kmit and Recke [45] for linear local
hyperbolic systems, one can show that L is a Fredholm operator; see the proof for
nonlocal hyperbolic systems in [30].

Since the Fredholm alternative can be applied, the term Nj + Ej has to be
orthogonal on the bounded solution of the adjoint homogeneous problem L ∗(û) =
0:

〈û, (Nj + Ej )〉 = 0. (8.37)

Focusing only on those terms in Nj +Ej that contain the exponentials e±ikcx (since
they give rise to secular solutions that grow unbounded), and substituting these
terms into the inner product (8.37) one eventually obtains the following differential
equation for the evolution of the amplitude α(T ) (truncated here at the third order
α|α|2):

dα

dT
= −ναY − α|α|2X, (8.38)

where X and Y are constant terms that depend on model parameters. This complex
amplitude can be re-written as α(T ) = R(t)eiθ(T ), with real terms R(T ) = |α| and
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θ(T ) that satisfy

dR

dT
= −νR�(Y ) − R3�(X), (8.39)

dθ

dT
= −ν�(Y ) − R3�(X). (8.40)

Here � and � denote the imaginary and real parts of the coefficients X and Y .
The equation for the real amplitude R(T ) exhibits two steady states: R = 0 and
R = √−ν�(Y )/�(X). The stability of these states can be investigated in a classical
way via small perturbations: R(T ) = R∗ + Rδ , with R∗ denoting the steady state
and Rδ being a small perturbation which satisfies

dRδ

dT
= Rδ

( − ν�(Y ) − 2R∗2�X
)
. (8.41)

It is easy to observe that the zero state R∗ = 0 is stable for ν�(Y ) > 0 and
unstable otherwise. In contrast, the nonzero state R∗ = √−ν�(Y )/�(X) is stable
for ν�(Y ) < 0 and unstable otherwise. One can graph the solution of (8.39) (and
its stability) for the exact parameter values used during numerical simulations, to
obtain bifurcation diagrams for the amplitudes of the solution branches as functions
of parameter values (e.g., qa here). We graph two caricature examples of the
bifurcating branches in Fig. 8.7 (see also Fig. 5.9 for bifurcation diagrams based
on specific model parameters, as we vary the magnitude of alignment qal).

Remark 8.4 Note in Fig. 8.7a that the 3rd-order truncation of the amplitude equa-
tion (8.38) allows only for the detection of the main nontrivial amplitude branch
that bifurcates from α = 0 at qa = q∗

a . The fact that this branch is unstable,
it suggests that there exists also a stable high-amplitude spatially heterogeneous
solution towards which the small perturbations of the spatial homogeneous steady
state will grow, and which can be detected numerically. Therefore, in the range
qa ∈ (q∗, q∗

a ] two qualitatively different stable states co-exit (together with an
unstable state). One could identify the secondary bifurcation point qa = q∗ where
the unstable branch α > 0 changes stability and becomes stable by considering
truncations of (8.38) up to the 5th and even 7th orders.

Remark 8.5 We also note in Fig. 8.7a a hysteresis phenomenon characterised by a
lack of reversibility in the dynamics of the system: for qa > q∗

a the zero-amplitude
(α = 0) solution is unstable and small perturbations of it will grow and give rise
to high-amplitude spatially heterogeneous solutions (i.e., the solution jumps fast
to the upper red curve). As we decrease qa below q∗

a the dynamics of the system
follows the stable high-amplitude branch, and does not decrease immediately to
α = 0. The solution jumps back to α = 0 only when qa = q∗. The bifurcation
at qa = q∗ is a saddle-node bifurcation. Moreover, the high-amplitude state exists
only for qa > q∗. It could be possible that for some very large qa (i.e., qa further
away from the bifurcation point qa) this high-amplitude state disappears through a
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Fig. 8.7 Caricature description of the bifurcation diagram near a codimension-1 bifurcation point,
in the (α, qa) plane. The continuous curves describe the stable states and the dashed curves
describe the unstable states. (a) Subcritical bifurcation obtained for ν < 0: for qa < q∗

a small
perturbations of the homogeneous steady state (with zero amplitude) decay to zero, while large
perturbations (above the nonzero dashed curve) growth even larger towards a high-amplitude
spatially heterogeneous solution (which is detected numerically). At the point qa = q∗ (usually
located further away from the bifurcation point q∗

a ) the unstable branch α > 0 becomes unstable
through a saddle-node bifurcation. For qa > q∗

a small perturbations of the homogeneous steady
state grow towards a high-amplitude heterogeneous state. (b) Supercritical bifurcation obtained
for ν > 0: for qa > q∗

a small perturbations grow and give rise to a small-amplitude spatially
heterogeneous solution, while for qa < q∗

a the small perturbations decay towards zero as the
homogeneous steady state is stable

different bifurcation; however, this aspect cannot be investigated through a weakly
nonlinear analysis which loses its validity away from the bifurcation points.

Weakly nonlinear analysis has been applied to investigate the solutions emerging
in the vicinity of other bifurcation points [27, 28, 44]:

• a Hopf bifurcation point [44], where σ := ±iω and the solution can be
represented as

u±(x, t, T ) ∝ β(T )eiωt+ikcx + c.c. (8.42)

The equation for the variation of amplitude β(T ) on the slow time scale T is
similar to the one for the steady-state bifurcation point (8.38):

dβ(T )

dT
= −βY − β|β|2X, (8.43)

with X and Y given in terms of the model parameters. If we now take into
consideration also the reflection symmetry of the domain, we can represent the
solution as

u±(x, t, T ) ∝ β1(T )eiωt+ikcx + β2(T )eiωt−ikcx + c.c. (8.44)
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In this case, the equations for the variation of the amplitudes β1(T ) and β2(T )

are

dβ1(T )

dT
= −β1X1 + β1|β1|2X2 + β1|β2|2X3, (8.45a)

dβ2(T )

dT
= −β2Y1 + β2|β1|2Y2 + β2|β2|2Y3. (8.45b)

Note that by considering also the reflection symmetry, we obtain a system of
coupled normal form equations, which exhibits more complex steady states
compared to Eq. (8.43).

• a Hopf/Hopf bifurcation point [27], where the solution can be represented as
(considering also the reflection symmetry of the domain):

u±(x, t) ∝ α1(T )eiω(km)t+ikmx + α2(T )eiω(km)t−ikmx + β1(T )eiω(kn)t+iknx

+β2(T )eiω(kn)t−iknx + c.c., (8.46)

with km �= kn the two distinct Hopf interacting modes. The equations for the
variation of the amplitudes on the slow-time scale T are given as follows:

dα1(T )

dT
= −α1X1 + α1|α1|2X2 + α1|α2|2X3 + α1|β1|2X4 + α1|β2|2X5,

dα2(T )

dT
= −α2Y1 + α2|α1|2Y2 + α2|α2|2Y3 + α2|β1|2Y4 + α2|β2|2Y5,

dβ1(T )

dT
= −β1Z1 + β1|α1|2Z2 + β1|α1|2Z3 + β1|β1|2Z4 + β1|β2|2Z5,

dβ2(T )

dT
= −β2Ψ1 + β2|α1|2Ψ2 + β2|α2|2Ψ3 + β2|β1|2Ψ4 + β2|β2|2Ψ5.

The symmetries of the model lead to similarities between the parameters Xi , Yi ,
Zi and Ψi , i = 1, . . . , 5:

X1 = Y1, Z1 = Ψ1, X2 + X3 = Y2 + Y3, Z2 + Z3 = Ψ2 + Ψ3,

X4 + X5 = Y4 + Y5, Z4 + Z5 = Ψ4 + Ψ5.

Since these similarities in parameter values mean that the steady state solutions
have conjugate isotropy subgroups, it allowed the authors in [27] to ignore
some of the solutions of the above system of coupled amplitude equations.
We summarise in Table 8.1 the various types of solutions that emerge near a
Hopf/Hopf bifurcation point (given in terms of the above amplitudes) and their
corresponding isotropy subgroups; for details see [27].
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• a Hopf/Steady-state bifurcation point [28], where the solution can be represented
as (considering also the reflection symmetry):

u±(x, t) ∝ α(T )eikmx+β1(T )eiω(kn)t+iknx+β2(T )eiω(kn)t−iknx+c.c, (8.47)

with km the steady-state mode and kn the Hopf mode. The equations for the
variation of the amplitudes on the slow-time scale T are

dα

dT
= −αX1 + α|α|2X2 + α|β1|X3 + α|β2|2X4,

dβ1

dT
= −β1Y1 + β1|α|2Y2 + β1|β1|2Y3 + β1|β2|2Y4,

dβ2

dT
= −β2Z1 + β2|α|2Z2 + β2|β2|2Z3 + β2|β1|2Z4.

Parameters Xi , Yi , Zi , i = 1, .., 4, depend on model parameters, and are related
through the symmetries of the system [28].

• a steady-state/steady-state bifurcation point [28], where the solution can be
represented as

u±(x, t) ∝ α1(T )eikmx + α2(T )eiknx + c.c, (8.48)

with km and kn the two distinct steady-state modes. The equations for the
evolution of the amplitudes are

dα1(T )

dT
= −α1X1 + α1|α1|2X2 + α1|α2|2X3,

dα2(T )

dT
= −α2Y1 + α2|α1|2Y2 + α2|α2|2Y3.

Remark 8.6 We need to discuss briefly the normal form equation (8.38) (and
implicitly the coupled systems of normal form equations given above). In general,
one assumes that the amplitude α depends not only on the slow time scale T but
also on a slow space variable X = εpx. This leads to a PDE (i.e., a Ginzburg-
Landau amplitude equation) for the evolution of α(X, T ). However, for the nonlocal
hyperbolic system (5.14) with periodic boundary conditions, the zero mode k = 0
is not an admissible mode (due to the conservation of the total density, which is
not satisfied by eigenfunctions with modes k = 0 on finite domains with periodic
boundary conditions). In this case, one could assume that α = α(T ) and the
temporal evolution of the amplitude is reduced to an ODE (8.38) (i.e., a Stuart-
Landau amplitude equation).

However, since numerical simulations for these nonlocal hyperbolic models have
shown the existence of patterns with space-modulated amplitudes (see the semi-
zigzags and travelling breathers in Fig. 5.7f, i) it would be interesting to investigate
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the evolution of the space-modulated amplitude equation (α(X, T )) on infinite
domains.

8.6 Centre Manifold Theory

We have seen in Sect. 8.5 that the multiple scales approach for the weakly nonlinear
analysis reduces the infinite-dimensional PDE system (5.14) to a finite-dimensional
ODE system that can be investigated more easily (and which preserves the stability
and bifurcation structure of the original system). Other approaches that can be
used to reduce the hyperbolic and kinetic equations/systems to more manageable
equations/systems are the Centre Manifold reduction and the Lyapunov-Schmidt
reduction. The Centre Manifold reduction focuses on finding a dynamical subsystem
invariant under the flow of the full system (and which contains the bifurcation
that needs to be investigated), while the Lyapunov-Schmidt reduction focuses on
identifying an equation for the equilibria (fixed points or periodic solutions), and
then performing a reduction of this equation to a low-dimension set of algebraic
equations (also called the bifurcation equations) [46]. A review of these two
approaches in the context of nonlocal hyperbolic systems can be found in [30].
Note that the Fredholm property of the linear operator L , which we discussed in
Sects. 8.4 and 8.5, is central to the application of the Lyapunov-Schmidt reduction;
see [30]. However, in the following we will ignore the Lyapunov-Schmidt reduction,
and focus only on the Centre Manifold reduction. For a detailed presentation of the
Lyapunov-Schmidt reduction in both finite and infinite dimensions, we refer the
reader to [46].

Mirroring the approach in Sect. 8.1 (where we first looked at linear stability
results in ODE systems and then in PDE systems), here too we start our discussion
on the Centre Manifold Theorem (which ensures the possibility of having a Centre
Manifold reduction to simplify the model dynamics around a non-hyperbolic fixed
point) by focusing first on the finite-dimensional systems. Then, we consider its
generalisation to infinite-dimensional systems. This approach allows us to show
how the classical, simple version of the theorem that is listed in almost all books
on dynamical systems and bifurcation theory [6, 9], is generalised to infinite
dimensions through the addition of some extra assumptions.

• Finite-dimensional systems. In the following we give the statement of the
Centre Manifold Theorem for ODE systems. We also discuss the form of the
extended centre manifold, which includes also a dependence on parameters and
thus can be used for bifurcation results. But first let us define the stable, unstable
and centre subspaces of a linear system du/dt = Au. To this end, assume that
matrix A has eigenvalues λj = aj + ibj , and corresponding to these eigenvalues
there are the generalised eigenvectors wj = w1

j + iw2
j . Then the stable (Es),

unstable (Eu) and centre (Ec) subspaces spanned by the real and imaginary parts
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of the eigenvectors wj corresponding to eigenvalues λj are:

Es = Span{w1
j , w

2
j |aj < 0},

Eu = Span{w1
j , w

2
j |aj > 0},

Ec = Span{w1
j , w

2
j |aj = 0}.

Theorem 8.3 (Centre Manifold Theorem [9]) Consider the nonlinear system

du

dt
= f (u), u ∈ R

n, (8.49)

with f ∈ Cr(E), r ≥ 1, and E ⊂ R
n which includes the origin. Assume that

f (0) = 0, and Dfu(0) has p eigenvalues with positive real parts, k eigenvalues
with negative real parts, and m = n − p − k eigenvalues with zero real parts.
Then there exists a m-dimensional centre manifold Wc(0) tangent to the centre
subspace Ec at 0, a k-dimensional stable manifold Ws(0) tangent to the stable
subspace Es at 0, and a p-dimensional unstable manifold Wu(0) tangent to the
unstable subspace Eu at 0.

Locally, system (8.49) can be written as

du

dt
= Cu + F(u, v),

dv

dt
= Pv + G(u, v), (8.50)

with (u, v) ∈ R
m ×R

k+p, C is a square matrix with m eigenvalues with zero real
parts, and P is a square matrix with k eigenvalues with negative real parts and
p eigenvalues with positive real parts. Moreover, F(0) = G(0) = 0, DF(0) =
DG(0) = 0, and there is a function h(u) = v (that defines the central manifold)
such that the flow on the central manifold is given (locally, for |u| < δ) by

du

dt
= Cu + F(u, h(u)), for all u ∈ R

m with |u| < δ. (8.51)

In the context of bifurcation theory, we need to consider also the effect of a
parameter μ. For this reason, we work on extended central manifolds, where we
generalise Eq. (8.50) through the addition of a trivial equation for the derivative
of parameter μ:

du

dt
= Cu + F(u, v, μ),

dv

dt
= Pv + G(u, v,μ),

dμ

dt
= 0. (8.52)

We note that the equation for the derivative of μ adds one more dimension to
the centre manifold (= m + 1), since now we work in the neighbourhood of
(u, v) = (0, 0) and μ = 0 (where the bifurcation occurs). Moreover, the equation
that parametrises the centre manifold now has the form v = h(u,μ). Therefore,
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the equation for the extended central manifold can be written as

du

dt
= Cu + F(u, h(u,μ), μ). (8.53)

If u is a scalar and C = 0, then the above equation can have three possible
descriptions, corresponding to the saddle-node, transcritical and pitchfork bifur-
cations discussed in Sect. 8.2:

Saddle-node:
du

dt
= μ + cu2,

Transcritical:
du

dt
= μu + cu2,

Pitchfork:
du

dt
= μu + cu3.

For a detailed proof of the Centre Manifold Theorem, we refer the reader to
[9, 47].

• Infinite-dimensional systems. The centre manifold theory for PDEs has been
developed in various studies published over the past three decades (see [5, 48–
51] and the references therein). In the following we give the assumptions and
the statement of the Centre Manifold Theorem for infinite-dimensional systems
(following the approach in [5]), and then discuss the applicability of this theorem
to the class of nonlocal 1D hyperbolic systems (5.14) discussed in Chap. 5.

First, let us consider three Banach spaces, X, Y and Z, which satisfy the
following continuous embeddings:

Z ↪→ Y ↪→ X. (8.54)

We define L(Z,X) to be the Banach space of linear bounded operatorsL : Z →
X, with the operator norm

||L ||L(Z,X) = sup
||u||Z=1

(||L u||X) (8.55)

For some k ≥ 2 we define C k(Z,X) the Banach space of functions b : Z →
X that are k-times continuously differentiable. The space is equipped with the
following norm:

||b||C k = max
j=0,...,k

(
sup
y∈Z

||Djb(y)||L(Zj,X)

)
, (8.56)

where D denotes the differential operator. Finally, for a constant η > 0, we define
the space Cη(R,X) of exponentially growing functions with the norm

||u||Cη = sup
t∈R

(
e−η|t |||u(t)||X

)
< ∞, for u ∈ C 0(R,X). (8.57)
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Assume now that a generic PDE can be represented as

du

dt
= F(u) = L u + N (u). (8.58)

Here L and N are the linear and nonlinear parts of operator F . Next, we list the
hypotheses that need to be satisfied by L and N for the existence of a central
manifold, as given in [5]:

(A) Assume that L ∈ L(Z,X), and for some k ≥ 2 there exist a neighborhood
V (0) of 0 such that N ∈ C k(V , Y ) and N (0) = 0 (i.e., u = 0 is an
equilibrium of (8.58)) and DN (0) = 0 (i.e., L is the linearisation of the
operator N about 0).

(B) Consider the spectrum σ of the linear operator L , which is defined as σ =
σ+

⋃
σ0

⋃
σ−, with

σ+ = {λ ∈ σ |Re(λ) > 0}, σ0 = {λ ∈ σ |Re(λ) = 0},
σ− = {λ ∈ σ |Re(λ) < 0}.

Assume that there is a positive constant g > 0 such that

inf
λ∈σ+

(Reλ) > g and sup
λ∈σ−

(Reλ) < −g. (8.59)

Moreover, assume that the set σ0 has a finite number of eigenvalues with
finite algebraic multiplicities.

(C) Let P0 be the projection onto the generalised eigenspaces of σ0, and define
Ph = I −P0. Consider now the linear operatorLh which is the restriction of
L to d(L )h = PhD(L ). Then, for any η ∈ [0, g] and any f ∈ Cη(R, Yh),
the linear problem

duh

dt
= Lhuh + f (t) (8.60)

has a unique solution uh = Khf ∈ C (R, Zh), with Kh a bounded linear
operator from Cη(R, Yh) to Ch(R, Zh)

)
. Also, there exist a continuous map

C : [0, g] → R such that

||Kh||
L

(
Cη(R,Yh),Ch(R,Zh)

) ≤ C(η). (8.61)

Theorem 8.4 (CentreManifold Theorem [5]) Assume that hypotheses (A)–(C)
hold. Then there exist a map Ψ ∈ C k(E0, Zh) with Ψ (0) = 0, DΨ (0) = 0, and
a neighborhood of 0, O(0) ∈ Z such that the manifold

M0 = {u0 + Ψ (u0), for u0 ∈ E0} ⊂ Z (8.62)
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satisfies the following conditions:

(i) M0 is locally invariant;
(ii) M0 contains the set of bounded solutions of (8.58) that stay in O for all

t ∈ R.

Here, the manifold M0 is called a local centre manifold, while the map Ψ is
called the reduction function.

If we consider now a solution u of (8.58), with u ∈ M0, then we can write
u = u0 + Ψ (u0), with u0 satisfying

du0

dt
= L0u0 + P0N (u0 + Ψ (u0)). (8.63)

Here, L0 is the restriction of L to E0 = Range(P0) = {P0u ∈ X|u ∈ Z}.
As for the finite-dimensional case, let us consider a parameter-dependent

PDE,

du

dt
= F(u) = L u + N (u, μ), (8.64)

with N (u, μ) defined in the neighborhood of (0, 0) ∈ Z × R
m. Then we obtain

an analogue of the previous Centre Manifold Theorem, with the parameter-
dependent local extended centre manifold given by [5]:

M0(μ) = {u0 + Ψ (u0, μ), for u0 ∈ E0} ⊂ Z. (8.65)

To understand better the difficulties of applying this theorem to hyperbolic
systems, let us first give the following spectral property.

Definition 8.16 (Spectral Mapping Property [52]) Consider A an infinitesi-
mal generator of a C0 semigroup eAt . Then A has the spectral mapping property
if the spectrum of this semigroup, σ(eAt ), satisfies:

σ(eAt ) \ {0} = eσ(A)t \ {0}, for t ≥ 0, (8.66)

where eσ(A)t denotes the closure of the set.

It was shown by Renardy [53] that for hyperbolic systems the spectral
mapping property does not generally hold (see also the dispersion relation shown
in Fig. 4.7, for the local hyperbolic system introduced in [15]). This impacts
the validity of the Central Manifold theorems for hyperbolic systems (since
the hypothesis (B) given above is violated). Lichtner [52] has proven that this
spectral property holds for a class of linear hyperbolic systems. Moreover,
different versions of the Central Manifold Theorem were proven for various
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(local) hyperbolic systems with applications to fluid dynamics or lasers [54–
56]. Returning to the class of nonlocal 1D hyperbolic models (5.14) introduced
in Chap. 5, it was shown in [30] that if u∗∗(x) is a steady state solution of the
nonlocal hyperbolic system (5.14) and L is the linearised operator at u∗∗(x),
then the spectrum of L contains isolated eigenvalues with finite multiplicity and
no accumulation point in C. Moreover, this spectrum has only a finite number
of eigenvalues with finite multiplicity on the imaginary axis [30], and thus
hypothesis (B) holds true. Using the model symmetries to decompose (5.14) into
a family of finite-dimensional systems, it was shown in [30] that also hypothesis
(C) was satisfied.

We emphasise that the validity of the spectral property for the various
hyperbolic/kinetic models discussed throughout this monograph is still an open
problem.

We conclude this section by giving the statement of the Contraction Mapping
Theorem (which is used in the construction of the Centre Manifold [47], or in the
proof of existence of unique solutions for hyperbolic systems—as mentioned in
Chap. 4). To this end, we use the version of the theorem stated in [47].

Theorem 8.5 (Contraction Mapping Theorem [47]) Consider two Banach
spaces X and Y , and a continuous map F : X × Y → Y that is a contraction
in the second variable:

||F(x, y) − F(x, y ′)|| ≤ k||y − y ′||, ∀ x ∈ X, ∀ y, y ′ ∈ Y, and some k < 1.

The following results hold true:

1. For every x ∈ X, there exists a unique fixed point y(x) ∈ Y for the map F :

y(x) = F(x, y(x)).

2. For every x ∈ X, y ∈ Y , the following inequality holds true:

||y − y(x)|| ≤ 1

1 − k
||x − x ′||.

3. If the map F is Lipschitz continuous with respect to x,

||F(x, y) − F(x ′, y)|| ≤ L||x − x ′||, ∀x, x ′ ∈ X, ∀y ∈ Y,

then the map x → y(x) is also Lipschitz continuous with respect to x:

||y(x) − y(x ′)|| ≤ L

1 − k
||x − x ′||.
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4. For any convergent sequence xn → x̄ ∈ X, and any y0 ∈ Y , the sequence of
iterates yn+1 = F(xn, yn) converges to the fixed point ȳ = y(x̄).

For a proof of this theorem see [47].

8.7 Stochastic Bifurcations

As we have seen numerically at the end of Chap. 5, stochastic hyperbolic models
could also exhibit various bifurcations when we vary model parameters. These
bifurcations could represent transitions between two different deterministic-types
of patterns, or transitions between deterministic and random patterns (e.g., from a
travelling pulse for low noise, to a chaotic zigzag for medium noise, and a stationary
pulse for high noise; see Fig. 5.26a).

Similar to the deterministic case, the stochastic bifurcation theory focuses on
qualitative changes in parametrised classes of stochastic dynamical systems [57].
While the bifurcation theory for deterministic PDE systems is well developed
[3, 17], the field of stochastic bifurcations for stochastic PDEs is still not fully
developed [58], and to our knowledge it was never applied to the very few
stochastic hyperbolic/kinetic models derived to investigate pattern formation in
animal aggregations. For this reason, we will not detail here the basic concepts of
stochastic bifurcation theory, but we refer the reader to the books by Arnold [59]
and Blömker [58] (which introduce and develop the concepts of bifurcation theory
for stochastic ODEs and PDEs). However, for the completeness of our discussion
on bifurcations, in the following we discuss briefly two approaches used to describe
bifurcations in the context of random dynamical systems. As noted in [58], these
two approaches sometimes can give completely different results.

• A D-bifurcation or dynamical bifurcation is characterised by changes in the
structure of the random attractor (e.g., as shown by the sign changes in the
Lyapunov exponents for the random dynamical system);

• A P-bifurcation or phenomenological bifurcation is characterised by changes
in the density function for stationary measures associated with the random
dynamical system.

These two concepts can be used to describe the classical types of bifurcations that
can appear in a stochastic context (e.g., stochastic pitchfork, stochastic transcritical,
saddle node, or Hopf bifurcations) [57, 60, 61].

Similar to the case of deterministic PDEs, one could approximate the stochastic
PDEs with amplitude equations for the dominant modes, which could be then used
to investigate the impact of noise on the dynamics of the system near points of
changes in stability [58]. However, one needs to emphasise that, as for deterministic
hyperbolic PDEs, spectral gap properties might impact the possibility of deriving
such amplitude equations through random centre manifold reductions.
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8.8 Bifurcation and Symmetry Theory in the Context
of Hyperbolic/Kinetic Models

To conclude this chapter, we need to review the application of the previous notions
of stability and bifurcation theory to the kinetic and hyperbolic models discussed in
the previous chapters. In this context, we note that the calculation of the steady states
and their stability (as well as the existence of different classical and weak solutions)
are relatively common approaches taken when investigating the patterns generated
by different models [14, 27, 29, 44, 62–69]. However, the analytical investigation
of the branches bifurcating at different points where spatially homogeneous and
heterogeneous solutions loose their stability is still an open problem for the vast
majority of models discussed throughout this monograph, as well as for many other
models in the literature (which were not even mentioned here, due to the limited
space and purpose of this study). As we have seen above, one of the main reasons for
this lack of results is the applicability of the Centre Manifold Theorem for different
classes of hyperbolic systems. While it was shown in [30] that this theorem holds
for the nonlocal 1D hyperbolic systems introduced in Chap. 5, its applicability to
the majority of all other hyperbolic/kinetic models discussed here is still an open
problem.

Similarly, the impact of various symmetries on model dynamics has been
mainly investigated for nonlocal hyperbolic models [27–30]. As seen above in
our discussion on the symmetries of Boltzmann and Fokker-Planck models, many
other models in the literature do exhibit similar O(2) and SO(2) symmetry, which
impacts the types of patterns one expects to see [3]. However, this investigation
is still an open problem in the context of the models for collective behaviours
in biology. Equally an open problem is the understanding of the similar-looking
patterns displayed by some deterministic hyperbolic models with symmetry and the
corresponding stochastic models without symmetry (see Fig. 5.26).

The impact of this lack of results on the understanding of the bifurcating
dynamics of the models summarised in this monograph will become more evident
in the next Chapter, as Table 9.1 will show that only the nonlocal hyperbolic
systems discussed in Chap. 5 have been observed to exhibit a large variety of
spatial and spatio-temporal patterns (some of which were identified through the
rigorous investigation of the solution branches bifurcating near codim-1 and codim-
2 points). However, it is expected that many other hyperbolic and kinetic classes
of models could exhibit equally interesting spatial and spatio-temporal patterns
and bifurcations. The identification of these potential patterns can only be done
by combining analytical approaches with intensive numerical simulations (which
still needs to be performed for the majority of models discussed throughout this
monograph).
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