
Chapter 3
One-Equation Local Hyperbolic Models

3.1 Introduction

The simplest macroscopic hyperbolic models derived to investigate the movement
of animal and human populations are advection and advection-reaction equations.
These models describe the evolution of populations when random movement
is negligible compared to directed movement. One-equation models have been
employed to investigate the movement and growth of animal populations [1, 2],
pedestrian and car traffic [3–7], or the formation of animal trails [8]. We mention
here car traffic models, since they were the starting point for models for pedestrian
dynamics. More precisely, while traffic models started being developed since the
1950s (see [3, 9]), the interest in developingmodels for crowd/pedestrian movement
started about a decade later (see [10, 11]), being motivated by the acknowledgement
of safety issues related to human traffic: evacuation of pedestrians in case of danger
[12, 13], structural design of buildings, stadiums or bridges [14, 15]. We should note
that more recent studies on pedestrian movement emphasised the need to consider
individual social and psychological characteristics (e.g., physical and cognitive
abilities, emotional condition, motivation) [16, 17] when investigating the collective
movement of pedestrians. While these aspects could be easily incorporated into the
kinetic theory of active particles (which will be reviewed in Chap. 6), they are not
usually taken into consideration by the models investigated in this monograph.

The general advection-reaction equation that will be discussed throughout this
chapter in various contexts related to animal, human, or car movement is given by:

∂u

∂t
+ H ′(u)

∂u

∂x
= R(u), u(x, 0) = u0(x). (3.1)

Here, u = u(x, t) : R × R
+ → R is the population density (with x, t ∈ R and

t ≥ 0), H(u) is a real nonlinear function describing the advective movement, and
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R(u) is a real reaction term describing population growth as a result of birth and
death processes. Note that the reaction term is used to model group behaviours
when the movement occurs on a timescale similar or slower than the timescale
of organisms growth [1, 2]. It can also model group behaviours when there is no
population dynamics (i.e., no birth or death), but organisms can enter or leave a
certain domain [8].

In the following we start reviewing simple models with no reaction (R(u) = 0).
First, we present in more detail some examples of one-equation models for the
evolution of the density of pedestrians/cars with different velocity functions: from
constant or linear H ′(u) functions, to more complex multi-regime H(u) functions
describing different pedestrian behaviours. The traffic models in Sects. 3.2 and 3.3
are described by conservative advection equations. While the majority of examples
discussed in Sects. 3.2 and 3.3 focus on single roads, we also mention briefly 1D
models describing traffic on networks of roads. In Sects. 3.5 and 3.6 we review
some advection-reaction models for car/pedestrian traffic and animal dynamics. In
Sect. 3.7 we discuss in more detail an analytical approach used to investigate the
speed of travelling wave patterns.

Remark 3.1 Before we continue with the discussion of different types of hyper-
bolic models for car/pedestrian traffic, we need to discuss the relevance of these
continuous models at different spatial scales. The microscopic models consider
the behaviour of individual cars/pedestrians under the influence of neighbouring
cars/pedestrians. In these cases, the distance between cars/pedestrians is the same
order of magnitude as the size of cars/pedestrians (and the spatial scale of the
dynamics of the system). Note that these models could also incorporate different
internal and external factors that might influence drivers/pedestrians behaviours
(e.g., individual time pressure, presence of obstacles; see [18]). The mesoscopic
models focus on the probability distribution of cars/pedestrians over a large
spatial domain. These models investigate the impact of drivers/pedestrians attitudes
and behaviours (e.g., their psychological states, or acceleration/braking and lane-
changing behaviours, as given by probabilistic terms) on the overall dynamics of
car/pedestrian aggregations, without distinguishing individual space-time dynam-
ics [19]. Finally, the macroscopic models focus on the collective dynamics of
cars/pedestrians, ignoring any individual behaviours. Again, the dynamics occurs
on a spatial domain much larger than the magnitudes of cars/pedestrians and the
distances between them. Returning to the discussion in Chap. 1 on the number of
particles/cells/animals required for a mesoscopic/macroscopicmodel to be relevant,
we note that even if the number of cars/pedestrians is usually small (e.g., in the
order of tens or hundreds), continuummodels have been used very often to describe
the behaviours of these cars/pedestrians since existent analytical techniques can be
applied to gain a better understanding of these models. It should be emphasised
that there are a few studies which focus on the equivalence between microscopic
models for car dynamics (in Lagrangian coordinates) and macroscopic models for
the same car dynamics (in Eulerian coordinates) [20, 21]. While the fundamental
diagram for the steady-state relation between speed and car density (discussed below
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in Fig. 3.3a, b) is usually the same for the two classes of models, other aspects are
different (e.g., the string stability condition for a second-order discrete car-following
model in [20] was shown to be different from the linear stability condition of an
equivalent continuum model).

3.2 First-Order Traffic Models

The advection equations discussed in Chap. 2 were initially derived in the context
of car traffic [3, 4, 22], but they were later applied to pedestrian traffic [4, 23–26], or
to combined car and pedestrian traffic [6]. For this reason, we briefly discuss them
in the following. The generic equations are

∂u

∂t
+ ∂(uv)

∂x
= 0, (3.2)

where u = u(x, t) : R × R
+ → R describes the density of cars or pedestrians at

position x and time t , and v is their velocity. If the velocity is a constant (v ∈ R),
or if it is a function of time and space only (v = v(x, t) : R × R

+ → R) or a
function of density only (v = v(u(x, t))), then Eq. (3.2) describes an instantaneous
velocity adaptation. More complicated models with non-local velocities, which take
into account the velocities of other cars further away have been investigated by
Helbing [4] and Helbing et al. [27]. (We will briefly return to these nonlocal models
in Chaps. 5 and 6.) If v = v(x, t), applying the so-called total derivative (which
describes the temporal changes in a coordinate system moving with velocity v) [4],

dv

dt
= ∂

∂t
+ v

∂

∂x
, (3.3)

leads to the following form of (3.2):

dvu

dt
+ u

∂v(x, t)

∂x
= 0. (3.4)

Equation (3.4) says that density increases in time when the velocity decreases along
the domain (i.e., ∂v/∂x < 0). These models are sometimes referred to as “first-order
models”, being described by a transport equation for the pedestrian/vehicle density
and a closed equation for the instantaneous velocity v(u).

In regard to the velocity v(u), these hyperbolic models generally assume that
there is a speed limit vmax . If there are no obstacles on the road, then cars/pedestrians
travel at this maximum speed: v = vmax [4, 33]. On crowded roads, the speed is
reduced. These two assumptions are incorporated into the equation for the speed as
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Fig. 3.1 Caricature description of various velocity functions v(u). (a) Single stage velocities:
(i) linear velocity, as introduced in [3, 28]—see also Eq. 3.5; (ii) logarithmic velocity, as given
by Eq. (3.6); (b) Multi-stage velocity functions: (i) velocity function introduced in [29, 30];
(ii) velocity function introduced in [31]. The shape in (b)(ii) is consistent with experimental
measurements in [32]

follows (see also Fig. 3.1a):

v(u) = vmax

(
1 − u

umax

)
, for 0 ≤ u ≤ umax, (3.5)

with umax ∈ R the maximum (car/pedestrian) density. A slightly different speed
function, which also accounts for the slow-down at high densities is

v(u) = vmax ln
(umax

u

)
, for umin ≤ u ≤ umax, (3.6)

with vmax = v∗
max/ ln(umax/umin). Many models for traffic flow that incorporate

such density-dependent speeds have been shown to exhibit shocks, which can
propagate either upstream or downstream [4, 34].

While linear speeds are easier to investigate analytically, they cannot always fit
observation data for pedestrian movement [14, 29, 32]. Therefore, the authors in
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[14, 25] considered the following nonlinear velocity to account for the influence
(on the walking velocity of pedestrians) of various physical, physiological and
psychological factors represented by the geographical area and the purpose of travel
(e.g., a rush hour vs. leisure time in Europe, USA or Asia):

v(u) = vM

(
1 − e

−γ
(
1
u
− 1

uM

))
. (3.7)

Parameter γ is related to the purpose of travel, while the jam density uM is given by
uM = 1/(βGSm). Here, Sm is the mean surface occupied by a motionless pedestrian,
and βG is the coefficient for the geographical area occupied by a human body
(e.g., βG = 1.075 for European and American pedestrians, βG = 0.847 for Asian
pedestrians) [14]. Finally, vM is the average speed, which depends on the geographic
area and the purpose of travel. Note that Sm and βG are related to the individual’s
repulsion area, an aspect which will be discussed again in Chap. 5 in the context of
nonlocal models.

In general, for scalar conservation laws, if the initial density u(x, 0) ∈
[umin

0 , umax
0 ], for all x ∈ R, then the solution stays within the same bounds:

u(x, t) ∈ [umin
0 , umax

0 ] for all t ≥ 0, x ∈ R [35]. In [31] this is referred to as
the maximum principle for nonlinear hyperbolic equations. However, this principle
cannot account for the people behaviour in panic situations, where the maximum
density increases beyond the bounds for the initial density. To address this situation,
researchers have introduced models with multi-stage velocity functions (see
Fig. 3.1b(ii)). For example, Colombo and Rossini [31] constructed analytically
a multi-stage velocity function similar to the one described in Fig. 3.1b(ii).
This particular shape of v(u) is the result of certain assumptions on the flow
H(u) = uv(u) [36]:

• H(u) = 0 for u ∈ {0, umax};
• H(u) ∈ W 1,∞([0, umax] × [0,∞) (finite speed of propagation of waves);
• H(u) is strictly concave for u ∈ [0, uc] and u ∈ [uc, umax] (to avoid mixed

waves);
• maximum flow H(u) calculated during panic situations (i.e., u ∈ (uc, umax) is

lower than the maximum flow calculated during normal situations (u ∈ (0, uc));
• H(u) has a local minimum at u = uc, describing an increase in the flow when

entering a panic regime.

Colombo and Rossini [31] focused mainly on the analytical investigation of (3.2)
and showed that in addition to classical shocks and rarefactionwaves (see definitions
in Chap. 2), this velocity function leads to the formation of nonclassical shocks
(i.e., discontinuity solutions that satisfy the Rankine-Hugoniot conditions, but not
necessarily Liu’s entropy condition; for details see Chapter III in [35], and our
discussion of these topics in Chap. 2). Figure 3.2 shows a caricature of a nonclassical
shock solution, which can describe panic situations that arise when individuals face
a higher density than the one they are in. Note that this solution does not satisfy the
maximum principle as defined in [31].
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Fig. 3.2 Example of a time
snapshot (t = 1) for a
non-classical shock solution,
as observed in [31], when the
change in density is described
by Eq. (3.2), the velocity v(u)

is given by a function similar
to the one depicted in
Fig. 3.1, and the initial
condition is u(0, x) = ul for
x < 0 and u(0, x) = ur for
x > 0. Note that for these
non-classical shocks to occur
it is necessary that ur > ul

t=1

u

u
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r
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Hughes [29] also considered a multi-stage velocity function (see Fig. 3.1b) to
describe a particular situation when the speed is almost constant at low densities,
and concave-shaped for intermediate densities. Moreover, the velocity takes into
account pedestrian discomfort that arises at very high densities. Thus, Eq. (3.2) can
be modified as follows:

∂u

∂t
+ ∂

∂t

(
ug(u)v2(u)v̄

) = 0, (3.8)

where g(u) accounts for the discomfort, and the unit vector v̄ gives the direction
of movement. The simplest case would be to choose v(u) as described by (3.5),
and g(u) = 1. However, Hughes [29] chose a multi-stage velocity function (see
Fig. 3.1b)

v(u) =

⎧
⎪⎪⎨

⎪⎪⎩

A, for u < u0,

A(u0
u

)1/2, for u0 < u ≤ uc,

A( u0uc

umax−uc
)1/2( umax−u

u
)1/2, for uc < u ≤ umax.

(3.9)

Under normal conditions, u varies between 0 and uc. However, under exceptional
panic conditions, density u can cross the threshold uc and increase up to umax (the
maximum density in exceptional conditions of panic). Note that v(umax) = 0, and
thus any movement stops at very high densities. Moreover, there is a discontinuity in
the gradient of the speed at u = uc, which is not realistic. To model the discomfort
of pedestrians in dense crowds, Hughes [29] considered

g(u) =
{
1, for u < uc,

u(umax−uc)
uc(umax−u)

, for uc < u < umax.
(3.10)
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Di Francesco et al. [37] considered a model similar to (3.8), with the unit vector
v̄ assumed to be parallel to the gradient of a potential φ(x, t), which describes the
direction of motion of pedestrians at each point in the domain. This potential is
given by the Eikonal equation

|∇φ| = 1

v(u)
. (3.11)

Note that the choice v(u) = 1 − u can lead to a possible blow-up of |∇φ| when
u → 1, rendering the analysis very difficult. Di Francesco et al. [37] tried to address
this problem by adding a small viscosity term to the Eikonal equation. They proved
the existence and uniqueness of entropy solutions for the regularised equation.

A different class of transport models focus on the concept of “apparent density”
felt by pedestrians, which depends on the local gradient of pedestrians’ density [38].

u∗ = u
(
1 + η(1 − u)∇u · v̄

)
, (3.12)

where u∗ denotes the apparent density, v̄ is the direction vector and η > 0. If the
local gradient of density is positive, then the apparent density is larger than the real
density (u∗ > u). This leads to traffic jams (associated with shocks). If, on the other
hand, the local gradient is negative, then u∗ < u. This leads to the formation of
vacuum areas (associated with rarefaction waves) [14]. Although De Angelis [38]
discussed possible numerical schemes to investigate the resulting models, numerical
solutions were not shown, the results being mainly analytical.

The transport models (3.2) can be used to investigate the interactions between
pedestrians and their environment, such as moving bridges. In this case, for example,
velocity v can depend not only on the density u but also on the lateral acceleration
of the bridge (z): v = v(u, z) [14]. More complicated dynamics can include space
dislocation (δ) and time delay (τ ): v = v(u(x + δ, t))g(z(x, t − τ )). Note that these
models (with space dislocation) are a particular case of nonlocal models, where the
changes in velocity are given by nonlocal kernels; we will discuss nonlocal models
in Chap. 5.

Many of the models described previously have been investigated in terms of exis-
tence, uniqueness and stability of solutions to the corresponding Cauchy problems
(see Sect. 2.2 for a discussion of analytical approaches used to investigate these
transport models). Moreover, some of those models have also been investigated in
terms of optimal solutions that minimise the time of travel between two points, in
the presence or absence of a time-dependent highway toll [39]. In fact, optimisation
approaches are used very often in the context of car traffic on networks of roads,
to choose the optimal travelling route between two points. The density-dependent
speed models for traffic flow network have the general form [40, 41]:

du

dt
+ ∂vij (u)u

∂x
= 0, (3.13)
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where vij describe the nonnegative speed of cars along the arc γij on the network
(with the assumption that if two nodes, i and j , are not connected by a road then
vij = 0). Many of these studies on flow networks focus on theoretical optimal
control results, such as the minimisation of the cost incurred by different drivers
with different departure and arrival times, and finding optimal and equilibrium
solutions [41, 42], or the approximation of solutions of Riemann problems at the
junctions [43, 44]. There are also a few studies that show numerical simulations of
optimal solutions for traffic flow networks [42, 43, 45].

3.3 Second-Order Traffic Models

The models described in the previous section incorporate only the assumption
that velocity changes in response to changes in pedestrian/car density. While
such an assumption is not completely unrealistic [46], it does not fully describe
the complexity of road and highway traffic, since velocity can also change in
response to the traffic ahead (e.g., on-ramp highway situations). This leads to the
so-called “second-order models”: a conservation equation for the density u ∈ R of
pedestrians/vehicles, coupled with a second equation for the changes in the average
velocity v ∈ R

+:

∂u

∂t
+ ∂(uv)

∂x
= 0 (3.14a)

∂v

∂t
+ v

∂v

∂x
= F(u). (3.14b)

Note that these two equations correspond to the conservation of mass and momen-
tum, as used in continuum dynamics [47]. The term F(u) describes (1) how the
average velocity v adapts to an equilibrium velocity ve ∈ R

+, and (2) the drivers’
(or pedestrians’) awareness of the traffic conditions ahead. The simplest form of
F(u) includes only a velocity adaptation: e.g., F(u) = 1

τ
(ve(u) − v), where τ is

a relaxation time scale, and ve could be a constant [48] or could depend on the car
density [49]. More complex (and more realistic) terms F(u) can incorporate traffic
pressure (1/u)∂p/∂x, with p = p(u) being the pressure, which is an increasing
function of the density u: F(u) = − 1

u
px + 1

τ
(ve − v) [50]. This pressure term

describes preventive driving in response to road conditions [50]. In addition, F(u)

could also include a small viscosity component ν0∂2v/∂x2, which is introduced to
smear out sharp shocks and to allow for a continuous description of freeway traffic
flow that can exhibit stop-and-gowaves [51]: e.g.,F(u) = − 1

u
px+ 1

τ
(v̄−v)+νovxx .

In terms of pattern formation, model (3.14) can exhibit shock waves, rarefaction
waves and clustering [46, 50, 52, 53]. The existence of shock waves has been
confirmed both analytically (via the Rankine-Hugoniot conditions) and numerically
[50, 52, 53].
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In the following we will discuss briefly a few examples of second-order models,
by focusing on the various terms that they incorporate. For a more general review
of equations describing the changes in the velocity of these models, see [20]. A first
example that we focus on here is the model introduced by Payne [54], where the
author proposed the following equation for the changes in vehicles speed:

∂v

∂t
+ v

∂v

∂x
= ve(u) − v

τ
− c20

u

∂u

∂x
. (3.15)

Parameter τ is the relaxation constant for the vehicles to approach the equilibrium
speed ve, and c0 is an “anticipation constant” (describing driver’s anticipation of
the traffic ahead). Investigation of the Riemann problem associated with this model
showed the existence of two types of shock waves and two types of rarefaction
waves; see Sect. 2.2 for a more detailed discussion of different types of analytical
solutions exhibited by hyperbolic equations/systems. Numerical investigation of
model (3.14a)–(3.15) confirmed these shock waves and rarefaction waves, as well
as the formation of free-flow regions and formation of clusters [52, 53].

One of the drawbacks of the model in [54] is the lack of preservation of the
anisotropic nature of traffic: vehicles can move against the flow, with negative
speeds [55, 56]. To address this problem, Aw and Rascale [56] introduced the
following equation for the changes in speed:

∂(v + p(u))

∂t
+ v

∂(v + p(u))

∂x
= 0, (3.16)

with p(u) a smooth increasing function of the form p(u) = uγ , γ > 0. Analytical
results showed that model (3.14a) with speed (3.16) and stepwise initial conditions
(i.e., (u(x, 0), v(x, 0)) = (ul, vl) for x < 0 and (u(x, 0), v(x, 0)) = (ur, vr ) for
x > 0) can exhibit shocks, rarefaction waves and contact discontinuities. However,
in contrast to the model (3.14a)+(3.15) which can exhibit negative velocities,
model (3.14a)+(3.16) exhibits only non-negative velocities.

A generalisation of the model (3.14a)–(3.16) was proposed in [33] to inves-
tigate the phase transitions (i.e., jump discontinuities—see Sect. 2.2) between
un-congested and congested pedestrian regions. The model is given as follows:

∂u

∂t
+ ∂(uv)

∂x
= 0, (3.17a)

∂(uw)

∂t
+ ∂(uvw)

∂x
= 0, (3.17b)

w = v + p(u), (3.17c)

with u(x, t) ∈ R being pedestrian density, v ∈ R
+ their velocity, w(x, t) ∈ R

+ the
desired velocity in the absence of any obstacles, and p being the offset velocity
between the desired and actual velocities (where p is an increasing function of
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pedestrian density). If one assumes that the desired velocity is a constant w =
V ∈ R

+, then the actual velocity is given by u = V − p(u). This model was
then generalised to incorporate congestion constraints (as controlled by parameter ε

that appears in the correction term Qε added to pedestrian pressure):

∂uε

∂t
+ ∂(uεvε)

∂x
= 0 (3.18a)

∂uεwε

∂t
+ ∂uεwεvε

∂x
= 0, (3.18b)

wε = vε + p(uε) + Qε(uε), Qε(u) = ε
(
1
u

− 1
u∗

)g , g > 1, (3.18c)

with p(u) a convex function describing pedestrian pressure, p(0) = 0, p′(0) ≥ 0
and p(u) → ∞ as u → u∗. The ε-correction term (Qε) for the background
pressure p of the pedestrians is turned on when the density is close to the congestion
density (i.e., u → u∗). The authors investigate this perturbation problem as ε → 0,
and show that the transition from un-congested movement (u < u∗) to congested
movement (u = u∗) corresponds to a phase transition from a compressible
to an incompressible flow regime [33]. The interface between congested and
un-congested regions could be investigated with the help of Rankine-Hugoniot
conditions. However, such an analysis was not performed in [33]. (For a brief
discussion of the Rankine-Hugoniot conditions, see Sect. 2.2.)

To understand the relation between the traffic flux uv (i.e., vehicles/pedestrians
per hour) and traffic density u (i.e., vehicles/pedestrians per surface area), one uses
fundamental diagrams. The majority of traffic models in the literature that show
phase transitions [3], display a fundamental diagrams similar to the one shown in
Fig. 3.3a. However, empirical data similar to Fig. 3.3b suggest that the free-flow can
be represented by a curve in the flow-density plane, while the congested traffic is
described by a broad spreading of measurement points [57]. This led researchers
to try to develop more realistic models that can exhibit two qualitatively-different
behaviours [58]: (1) free vehicular traffic at low densities; (2) congested vehicular
traffic at higher densities, with one more degree of freedom (thus covering a 2-
dimensional domain). However, before we discuss these models in more detail, we
need to mention that for pedestrian movement, the fundamental diagrams depend
on the psychological status of individuals (i.e., normal versus panic conditions; see
Fig. 3.3c), on various infrastructural elements (e.g., upwards/downwards stairs; see
Fig. 3.3d), or on whether the flow is unidirectional or bidirectional [32, 59, 60].
Note in Fig. 3.3c that some fundamental diagrams for pedestrian movement show
increased flows not only at small/intermediate densities, but also at higher densities
(e.g., in panic situations), which is different from the car traffic flows.

A new class of models that investigate phase transitions in vehicular traffic
were proposed by Colombo [58, 61]. These models assume that the free-flow and
the congested phases are modelled by different equations defined on two different
domains (corresponding to the two domains shown in Fig. 3.3b): a first-order model
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Fig. 3.3 (a) Fundamental traffic diagram showing traffic flux (uv) versus vehicle density (u),
for the general flux function uvmax(1 − u/umax); here umax = 10, vmax = 2. (b) Caricature
description of averaged traffic data based on real data from [57, 62–64]. As noted in [64], data in the
fundamental diagram depends on the freeway location where the fundamental diagram is measured,
and on the traffic demand. The diagrams show that the higher density in traffic flow corresponds
to lower average vehicle speed. (c) Caricature description of averaged pedestrian traffic data based
on real data shown in [32, 65]. The dotted blue curves approximate pedestrian movement under
normal conditions [32, 65], while the continuous black curves approximate pedestrian movement
under panic conditions [32]. (d) Caricature description of averaged pedestrian traffic data based on
real data shown in [60, 66]. The dotted blue curves describe the movement on upward stairs, while
the continuous black curves describe the movement on downward stairs

for the free-flow (on domain Ωf ⊆ R
+ × R

+), and a second-order model for the
congestion (on domainΩc ⊆ R

+×R
+). For example, the model in [58] is described

by the following equations:

∂u

∂t
+ ∂(uvf (u))

∂x
= 0, for (u, p) ∈ Ωf (free flow), (3.19a)

{
∂u
∂t

+ ∂(uvc(u,p))
∂x

= 0,
∂p
∂t

+ ∂((p−Q)vc(u,p)
∂x

= 0,
for (u, p) ∈ Ωc (congested flow), (3.19b)
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with vf (u) the velocity for the free phase and vc(u, p) the velocity for the congested
phase:

vf (u) = (
1 − u

umax

)
v∗, vc(u, p) = (

1 − u

umax

)p

u
, (3.20)

where v∗ is the fee-flow speed and umax is the maximum vehicle density. The vari-
able p describes a perturbation or deviation from the equilibrium state [67]. Finally,
parameter Q depends on the road conditions and characterises the phenomenon of
wide traffic jams. The domains for the two phases are defined as

Ωf = {(u, p) ∈ [0, umax] × [0,+∞]|vf (u) ≥ v∗
f , q = pv∗}, (3.21a)

Ωc =
{
(u, p) ∈ [0, umax] × [0,+∞]|vc(u, p) ≤ v∗

c ,
p − Q

u

∈ [Q− − Q

umax

,
Q+ − Q

umax

]}
, (3.21b)

with v∗
f < v∗

c two threshold speeds (above v∗
f the flow is free, below v∗

c the
flow is congested). Moreover, parameters Q− ∈ (0,Q) and Q+ ∈ (Q,+∞)

depend on the environment conditions and define the width of the congested region
[68]. These two phase domains are invariant, i.e., if the initial data is in the free
(respectively congested) phase, then the solution stays in the free (respectively
congested) phase [58]. Moreover, the solution of this model (with initial conditions
(u(x, 0), v(x, 0)) = (ul, pl) for x < 0, and (u(x, 0), v(x, 0)) = (ur, pr) for x > 0)
has been shown to be formed by phase-transition waves or rarefaction waves in Ωf ,
and by shocks, contact discontinuities or rarefaction waves in Ωc [69].

A slightly different two-phase model was proposed in [70], where the authors
started with the model in [61] and assumed that Q = 0, while the free-flow and
congestion vehicle speeds are described by:

v =
{

vf (u) := v∗, for u ∈ Ωf

vc(u, p) := (
1 − umax

u

)(
a(u − uc) + ucv

∗
uc−umax

)
(1 + p), for (u, p) ∈ Ωc.

(3.22)

Here, uc is a critical vehicle density (marking the transitions between the two
phases), and parameter a ∈ [−A, 0) (with A = ucv

∗/(uc −umax)
2). See, in Fig. 3.4

two examples of congested velocities for two different values of parameter a. The
Riemann problem associated with model (3.19) and speeds (3.22) (i.e., the Cauchy
problem with piecewise constant initial condition (u(x, 0), p(x, 0)) = (ul, pl) for
x < 0 and (u(x, 0), p(x, 0)) = (ur , pr) for x > 0; see also the discussion in
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Fig. 3.4 Examples of (a) free-flow speed (vf ) and congested speed (vc); (b) the flux function
H(u) = uv, for the second-order traffic model (3.19)–(3.22) in [70]. The parameters are: uc = 5,
umax = 10, v∗ = 0, A = 2, and two values of parameter a: a = −0.19 (red curve), a = −0.01
(green curve)

Sect. 2.2) can exhibit different types of solutions when the initial conditions belong
to the different phase domains [70, 71]:

• For ul, ur ∈ Ωf , the solution is represented by a contact discontinuity from ul

to ur [71].
• For ul, ur ∈ Ωc, the solution is represented by a shock/rarefaction wave from ul

to um, and a 2-contact discontinuity from um to ur , where um is the solution to
the system: pl/ul = pm/um, and vc(ur, pr) = vc(um, pm) [71].

• For ul ∈ Ωc, ur ∈ Ωf , the solution is represented by a 1-rarefaction wave from
ul to um, and a contact discontinuity from um to ur [71].

• For ul ∈ Ωf , ur ∈ Ωc, the solution is represented by a shock from ul to um−,
and a 2-contact discontinuity from um− to ur , where um− is the solution of the
system Q−/umax = pm−/um− and vc(um−, pm−) = vc(ur , pr) [71] (Fig. 3.5).

This class of two-phase models has been further developed in other studies that
used different functions for the congested speed. For example, Goatin [72] assumed
that the congested speed is similar to the one in the Aw-Rascale (AR) model [56]
(see Eq. (3.16)). By generalising the Aw-Rascale model to a two-phase model, the
author aimed to correct some drawbacks of the original AR model, namely: lack of
well-posedness near vacuum (i.e., when density is close to zero), and dependence
on initial data for the maximum speed reached by vehicles on empty roads. The new
two-phase model in [72] was described by the following equations:

{
∂u
∂t

+ ∂(uv(u))
∂x

= 0, for (u, v) ∈ Ωf (free flow),

v(u) := vf (u) = (
1 − u

umax

)
v∗ (3.23a)

⎧
⎪⎨

⎪⎩

∂u
∂t

+ ∂(uvc(u,p))
∂x

= 0, for (u, v) ∈ Ωc (congested flow),
∂u(v+p(u))

∂t
+ ∂(uv(v+p(u))

∂x
= 0,

p(u) = vref ln
(

u
umax

)
.

(3.23b)
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Fig. 3.5 Example of (a) density and (b) velocity profiles for a phase-transition model described
in [71]. The graphs, which are re-drawn from [71], correspond to the case ul ∈ Ωf , ur ∈ Ωc,
discussed above, where a new equilibrium state um appears between ul and ur . The parameters
are: v∗ = 45, umax = 1000

Here, p is a pressure function related to drivers anticipation of the traffic ahead of
them. The invariant domains for the free-flow and congested flow are described by:

Ωf = {(u, v) ∈ [0, uf
max] × [v∗

f , v∗]|v = vf (u)},
Ωc = {(u, v) ∈ [0, umax] × [0, v∗

c ]|p(Q) ≤ v + p(u) ≤ p(umax)},

with v∗
f and v∗

c are two threshold speeds (above v∗
f the flow is free, and below

v∗
c the flow is congested; v∗ > v∗

f > v∗
c ). Parameter Q ∈ (0, umax) depends on

environmental conditions and determines the width of the congested region, and
the maximal free-flow density u

f
max and reference velocity vref satisfy condition

v∗
f +vref ln(uf

max/umax) = 0. Analytical results for this model showed the existence
of shocks, rarefactionwaves and contact discontinuities depending on the initial data
[72].

3.4 Third-Order Traffic Models

A third-order model was introduced in [73, 74], where in addition to an equation
for the conservation of the density (u ∈ R) and an equation for the evolution of the
velocity (v ∈ R

+), the model contained also an equation for the velocity variance
θ ∈ R

+. To this end, Helbing [73, 74] started with the following gas-kinetic traffic
model for the phase-space density of vehicles ρ(w, t, x) (moving with velocity w,
but having a desired velocity we),

∂ρ

∂t
+ ∂ρw∂x + ∂

∂w

(
ρ

dw

dt

)
+ ∂

∂we

(
ρ

dwe

dt

)
=

(∂ρ

∂t

)

f luctuation

+
(∂ρ

∂t

)

interact ion
. (3.24)
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This equation includes (on the right-hand side) a velocity fluctuation term
due to imperfect driving, and a deceleration term due to interactions between
different cars. By considering the moment equations associated with this
kinetic model, Helbing [73, 74] derived the following third-order traffic
model for the spatial density u(x, t) = ∫

ρ(w, t, x)dv, the average velocity
v(t, x) = ∫

w(ρ(w, t, x)/u(t, x))dw, and the velocity variance θ(t, x) =∫
(w − v(t, x))2(ρ(w, t, x)/u(t, x))dw:

∂u

∂t
+ ∂(uv)

∂x
= 0, (3.25a)

∂v

∂t
+ v

∂v

∂x
+ 1

u

∂(uθ)

∂x
= 1

τ
(ve(u, v, θ) − v), (3.25b)

∂θ

∂t
+ v

∂θ

∂x
+ 2θ

∂v

∂x
= 2

τ
(θe(u, v, θ) − θ). (3.25c)

Here, ve(u, v, θ) is an equilibrium velocity (of the stationary and spatially homoge-
neous traffic flow), θe(u, v, θ) is an equilibrium variance, and τ is the relaxation
time (for the adaptation in the average velocity and average variance to the
equilibrium velocity and variance). In the equation for velocity, the term v∂(v)/∂x

describes velocity changes at x caused by average vehicle motion, while the term
(1/u)(∂uθ)/(∂x) accounts for driver’s awareness of the traffic ahead [73]. (Note that
the number “2” in the equation for the velocity variance arises during the calculation
of the second moment m2 = ∫

dw
∫

w2(we)ρ(w,we, t, x)dwe.)
As we have previously discussed, one of the most studied characteristics of

vehicular traffic is equilibrium solutions. Since the number of vehicles is conserved,
the equilibrium traffic of all these models (including model (3.25)) is uniquely
determined by the averaged spatial density ū = ∫

u(x, t)dx. The equilibrium
velocity and equilibrium variance can be obtained after integrating the previous
equations [73]. This particular model added more realism to the literature of
complex highway traffic: for small variance in speed, the cars travelled more or
less at the same speed, while for large variance in the speed some vehicles travelled
faster than others, causing lane changes.

3.5 Traffic Models that Include Reaction Terms

For all these different types of trafficmodels, reaction terms can be added to describe
the rates at which pedestrians (or cars) enter or leave a particular domain (see [4,
8] and the references therein). For example, the following equation was derived
by Helbing et al. [8] to describe the movement of pedestrians belonging to a sub-
population ua (part of the whole population u):

∂ua

∂t
+ ∂(uav(x, t))

∂x
= R+

a (x, t) − R−
a (x, t). (3.26)
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Here, R±
a (x, t) are the rates at which pedestrians join and leave sub-population ua .

(In the context of car traffic, R±(x, t) usually denote the inflow/outflow of cars on
ramps.) In [8], this reaction-advection equation was then coupled with an equation
for the environmental changes (i.e., trail formation) caused by these pedestrians:

dG

dt
= G0(x) − G(x, t) +

(
1 − G(x, t)

Gmax(x)

) ∑

a

K(x)ua(x, t). (3.27)

Here G is a ground potential that measures the comfort of walking (with Gmax

the maximum clearing of the trail from vegetation), G0(x) describes the existent
trails (at positions x), and K(x) measures the attractiveness of the trail (at different
spatial positions x). Numerical simulations showed the formation of a simple trail
system (i.e., network patterns; see also Fig. 1.11), the shape of which depended on
the magnitude of K .

Models for pedestrian traffic (with pedestrians entering/leaving the domain)
exhibit various types of human behaviours, depending on the density of individuals
[4]. For example, at low densities the pedestrian flow is similar to streamlines of
fluids, while at higher densities the pedestrians organise themselves into different
lines of uniform walking direction [24]. Similar to car traffic, pedestrian traffic can
lead as well to jams [24]. When the rates R±(u) are nonzero, models (3.26) can also
exhibit patterns with increasing amplitude, such as localised clusters and stop-and-
go waves (which are sequences of traffic jams that alternate with free traffic) [75].
Other pedestrian models (of Langevin type) can incorporate social interactions as
well as boundary forces [23]. In particular, these models assume that pedestrians
are attracted/repelled by other persons or by boundary objects (e.g., buildings). In
Chap. 5, we will discuss in more detail the importance of these social interactions to
the formation of various group patterns.

As we have previously seen in Sect. 3.3, reaction terms can be also added to
second-order traffic models, to describe highway entries and exits, or local changes
in traffic flow caused by inhomogeneities in the road. The simplest and probably one
of most widely-used reaction terms is the relaxation velocity shown in Eq. (3.15).
In the following we discuss the more general model introduced in [76], which
incorporates different reaction terms with different physical meanings:

∂u

∂t
+ ∂uv(u, p)

∂x
= su(t, x, u, p), (3.28a)

∂p

∂t
+ ∂(p − Q)v(u, p)

∂x
= sp(t, x, u, p), (3.28b)



3.5 Traffic Models that Include Reaction Terms 71

with the velocity v(u, p) = (1 − u/umax)(p/u). The explicit form of the source
functions depends on the assumptions being modelled:

• vehicles entries and exits along an interval [a, b] [76]:

su(t, x, u, p) = ain(t, x)
(
1 − u

umax

) − aout(t, x)
u

umax

,

sp(t, x, u, p) = −
(ain(t, x)

umax

+ aout(t, x)

umax

)
(p − Q).

Here, ain(t, x) = gin(t)χ[a,b](x) and aout(t, x) = gout (t)χ[a,b](x), with gin(t)

and gout(t) the fraction of the traffic density (per unit time) that enters and exits
the road, respectively. The source term sp describes a “stabilising” effect caused
by the entries and exits on vehicle flow [76].

• relaxation term added to the second equation, to model acceleration towards an
equilibrium velocity ve(u) [27, 76]:

su(t, x, u, p) = a(t, x)
(
1 − u

umax

)
,

sp(t, x, u, p) = −a(t, x)

umax

(p − Q) + umax

umax − u

u(ve − v)

τ
.

with τ the relaxation time corresponding to the average acceleration time. This
can be a constant, or can be density-dependent (τ = τ (u)).

• local changes in traffic speed (while the total vehicle density is conserved) [76]:

su(t, x, u, p) = 0,

sp(t, x, u, p) = χ(x)ua(t, u, p),

where χ(x) gives the location of a descent along the highway (between some
points x1 and x2), and a(t, u, p) ≥ 0 is the mean acceleration.

For more examples of source terms see [76] and the references therein. The general
model (3.28) has been shown to be well posed (for suitable conditions on the source
terms), thus admitting a unique solution defined for all t > 0 [76]. In contrast to
models without a source, these models have been shown to capture the formation
of queues (e.g., as for su = 0 and sp(t, x, u, p) = χ(x)ua(t, u, p) in [76]). In this
case, the increase in vehicle speed (triggered by a decrease in density associated
with the exit) leads to an accumulation of vehicles into a wide moving traffic jam.

Remark 3.2 The positive and negative aspects of different traffic models have been
discussed in various studies (see, for example, [55, 77, 78]), and thus we will
not review them here. However, we would like to emphasise that the continuous
development of all these different trafficmodels was triggered by the lack of realistic
patterns exhibited by some earlier models. For example, since many of first-order
models assumed that the average speed (v) was in equilibrium with the density
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(u), they could not describe non-equilibrium situations taking place at on-ramps,
or stop-and-go traffic (where the speed changes). Therefore, second-order models
were introduced to add a new dynamic equation for the average velocity v. Even
some of these models do not always describe the self-organised phenomena of stop-
and-go waves when the density increases above a critical value [54], which lead to
further refining of models [79, 80].

We will return to traffic models in Chap. 4, when we will discuss not only the
patterns generated by multiple populations of car drivers/pedestrians, but also the
patterns generated by ants moving along pheromone trails, and the application of
systems of hyperbolic equations to the traffic of molecules along filaments.

3.6 Advection-Reaction Equations for Animal Population
Dynamics

In the context of animal population growth and movement, the most common types
of reaction terms R(u) that appear in the general advection equation:

∂u

∂t
+ h(u)

∂u

∂x
= R(u), (3.29)

are [81]:

1. quadratic (logistic) growth: R(u) = ru(1 − u);
2. cubic growth (“Allee” effect): R(u) = ru(1 − u)(u − α), with α ∈ (0, 1).

Mickens [1] used a simpler version of (3.1), with constant velocity (h(u) = 1)
and logistic growth (R(u) = r1u(1 − r2u)), to describe the dynamics of a generic
population u. Because of the simplicity of this model, it was possible to find exact
time-dependent and time-independent solutions. The time-independent solutions
(i.e., the stationary solutions) were shown to be either bounded or unbounded,
depending on the initial condition. Another type of solution discussed by Mickens
[1] was the travelling front solution (see Fig. 3.6b). Again, because of the simplicity
of the model it was possible to find an exact expression for these travelling fronts.

A slightly more complex model was investigated by Lika and Hallam [2]. When
the advective velocity was described by a linear term h(u) = −ku (and the growth
was logistic), model (2.4) could exhibit shock solutions (see Fig. 3.6a). In particular,
advective waves with low speed were shown to steepen and lead to shock formation.
Note that these patterns are very common in large human aggregations which result
in panic stampede. The model in [2] can also exhibit travelling front patterns (see
Fig. 3.6b). These solutions, which exist only for speeds c > 1, are stable to certain
semi-finite domain perturbations. These authors also showed that it is not possible
to have travelling front patterns when the initial conditions have compact support.
This is in contrast with the classical Fisher’s equation, where initial conditions with
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Fig. 3.6 (a) Shock patterns exhibited by the advection model (3.2) with density-dependent speeds
v = u(1 − u). The initial condition is u(0) = 0.5 + 0.5e−(x−5)2 . (b) Travelling front patterns
exhibited by the advection reaction model (2.4), with h(u) = u, and f (u) = u(1 − u). The initial
data is similar to the data used by Lika and Hallam [2]: if x ≤ x0 then u(0) = 0.2e0.5(x−x0), and if
x > x0 then u(0) = 0.2(2 − e−0.5(x−x0)). We take x0 = 5L/6, where L = 30 is the domain length

compact support lead to travelling front solutions moving with the minimum speed
c (where c = 2) [82]. In Sect. 3.7, we will discuss in more detail the approach to
find the speed and shape of travelling-wave solutions.

To reproduce the intricate animal population dynamics during self-organised
behaviours, the models derived in the recent years contain more complex
assumptions—such as nonlocal attractive-repulsive velocities [83]. We will discuss
these models in more detail in Chap. 5, where we will also show the numerical
patterns displayed by them.

We conclude this section by observing that some hyperbolic models consider the
change of the population with respect to age a ∈ R

+ (and not necessarily with
respect to space x). The classical example is represented by the McKendrick–Von
Foerster equation [84, 85]:

∂u

∂t
+ ∂u

∂a
= −μ(a)u(a, t), a > 0. (3.30)

Here μ(a) ∈ R
+ represents the age-dependent death rate of population u ∈ R.

Therefore, this equation models the changes in a population as a result of becoming
older and eventually dying. If μ(a) = 0 then population change is only the result
of getting older. The birth of the population is usually incorporated into the initial
conditions:

u(0, t) =
∫ ∞

0
b(a)u(a, t)da, t > 0, (3.31)
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where b(a) ∈ R
+ is the birth rate for age a. The problem is completed by the

specification of the initial age distribution: u(a, 0) = u0(a). This equation can be
solved exactly along the characteristic lines to obtain a closed-form solution [86,
87]:

u(a, t) =
{

u(0, t − a)e− ∫ a
0 μ(s)ds, when a < t,

u0(a − t)e− ∫ a
a−t μ(s)ds, when a ≥ t .

(3.32)

Note that these models could also include changes in population size with respect
to the space variable x:

∂u

∂t
+ ∂u

∂a
+ ∂u

∂x
= −μ(a)u(a, t). (3.33)

A slightly different type of age-structured model with local birth terms will be
presented at the end of Sect. 4.6.

3.7 Analytical Approaches for the Investigation of Patterns:
Speed of Travelling Waves

Since the travelling wave solutions are one of the simplest (but biologically very
important) solutions exhibited by the transport models for collective movement
of animals (as well as models for car/pedestrian movement), in the following we
present briefly the analytical approaches used to calculate the propagating speed
and shape of these solutions for a simple 1-equation hyperbolic model introduced in
Lika and Hallam [2]. For a more detailed discussion of travelling waves (and their
propagation speeds) in various biological populations we refer the reader to [88–90]
(although all these studies focus on parabolic equations).

Lika and Hallam [2] investigated the existence and stability of travelling
wave solutions for the following (non-dimensionalised) advection-reaction model
describing the movement and growth of a population with density u(x, t):

∂u

∂t
− u

∂u

∂x
= u(1 − u). (3.34)

Travelling wave solutions for Eq. (3.34) are nonnegative functions 0 ≤ u(x, t) ≤ 1
(which connect the two spatially homogeneous steady states u = 0 and u = 1).
Writing u(x, t) = w(z), with z = x + ct the travel-wave coordinate and c > 0 the
wave speed to be determined, leads to the following differential equation

(c − w)
dw

dz
= w(1 − w), (3.35)
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together with the boundary conditions

lim
z→−∞ w(z) = 0, lim

z→+∞ w(z) = 1. (3.36)

The travelling wave solution should also satisfy dw
dz

> 0. By linearising Eq. (3.35)
about the steady states w = 0 and w = 1, one obtains that the trivial state w = 0
is unstable for all c > 0 while the state w = 1 is stable for c > 1 and unstable for
0 < c < 1.

To investigate whether it is possible to have travelling waves with speeds c < 1
or c > 1, the authors integrate Eq. (3.35) to obtain a closed-form solution:

ln
( wc

(1 − w)c−1

)
= z + C∗, C∗ = const. (3.37)

Due to the invariance of the travelling wave solution to any shift in the origin of the
coordinate system, one can assume that for z = 0 one has w = 1/2, and thus the
solution is ln(2wc/(1 − w)c−1) = z. Moreover, the steepness of the wave at z = 0
is dw(0)

dz
= 1/(4c − 2), suggesting that the wave steepness decreases as the speed c

increases; see also Fig. 3.7a.
The boundary conditions (3.36) are then used to determine the existence/absence

of travelling wave solutions. For example, the boundary condition at z = −∞ is
satisfied by solution of (3.37) for any c > 0 and any constant C∗. In contrast, the
boundary condition at z = +∞ is (1) satisfied by the solution of (3.37) for any
constant C∗ when c > 1; (2) not satisfied by the solution of (3.37) for any constant
C∗ when c < 1. The authors in [2] conclude that for any c > 1 there is a travelling
wave u(x, t) = wc(x + ct) that satisfies 0 ≤ w ≤ 1 and w(0) = 1/2, while for

c=5

c=2 >1

c=0.5 <1

c=2

(a) (b)

Fig. 3.7 (a) Description of two possible travelling wave profiles, as given by Eq. (3.37) with C∗ =
0, for two speed values: c = 2 and c = 5. Note that lower speed is associated with a very steep
profile. (b) Comparison between the solution of (3.37) with C∗ = 0, when the speed c = 0.5 < 1
(and no travel front exists) and c = 2 > 1 (and a travel front exists)
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Fig. 3.8 (i) Initial density profile and (ii) spatio-temporal patterns for Eq. (3.34) when considering
two types of initial conditions: (a) u(x, 0) = 0.5 exp(−(x − 5)2), and (b) u(x, 0) = 0.2 ∗ (2 −
exp(2 ∗ (x − 5))) for x ≤ 5 and u(x, 0) = 0.2 exp(−2(x − 5)). The simulations are performed on
a finite domain [0, L] = [0, 10] with: (a) periodic boundary conditions, and (b) no-flux boundary
conditions.

c ≤ 1 there is no such solution; see also Fig. 3.7b. (From (3.37) note that for c = 1,
w(z) is increasing exponentially and reaches the threshold w = 1 at some finite z.)

Figure 3.8 shows the numerically-simulated travelling wave/front solutions for
two different types of initial conditions:

(a) a Gaussian-like function u(x, 0) = 0.5e−(x−5)2;
(b) a composite function, as in [2]:

u(x, 0) =
{
0.2(2 − e2(x−5)), x ≤ 5,
0.2e−2(x−5), x > 5.

(3.38)

Note that the logistic proliferation of population u leads to the spread of the front
(in Fig. 3.8a(ii) the spread can occur both ahead and behind the initial aggregation),
which adds to the transport of the population to the right, via the advection term.

Lika and Hallam [2] also investigated the stability of the travelling front to small
semi-finite domain perturbations. The authors have re-written u(x, t) = y(z, t) with
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z = x + ct , and then added a small perturbation v to the travel wave solutionswc(z)

(i.e., y(z, t) = wc(z) + v(z, t)) and investigated when the perturbations decayed
towards 0. The perturbations were defined on a semi-domain as v(z, t) = 0 for
z ∈ (−∞, a) with some a ∈ R. For more details, we refer the reader to [2].

Remark 3.3 We need to emphasise that for parabolic PDEs, the existence and
stability of travelling front solutions is proven rigorously with the help of a classical
comparison argument based on upper and lower solutions; see [91, 92]. Since for
hyperbolic PDEs a similar comparison principle does not hold (see [93]), proving
the existence and uniqueness of such travelling waves/fronts for kinetic transport
equations (even 1-population models) is more complicated, and is not the aim of
this study. Nevertheless, we need to emphasise here that all these theoretical aspects
are still open problems for the great majority of the local and nonlocal kinetic
and hyperbolic models presented throughout this monograph (as the majority of
hyperbolic/kinetic models that investigate the travelling wave/front patterns focus
mainly on the speed at which the front of the population wave invades new
territories).

3.8 Numerical Approaches

For numerical simulations of these local models, one can use various numerical
schemes: from first order dissipative finite difference upwind and Lax-Friedrichs
schemes, to second-order dispersive finite-difference Lax-Wendroff and MacCor-
mack schemes, and even finite volume schemes (e.g., Godunov, Roe or Engquist-
Osher schemes). To minimise the dispersion that appears in second-order schemes,
various flux limiters (minmod, superbee, monotonized central—MC) are used. A
more detailed discussion of these numerical schemes can be found in LeVeque
[47, 94]. For hyperbolic models describing traffic on networks, in the past the focus
was mainly on first-order or second-order numerical schemes [95], although more
recent studies have started to focus on the construction of higher order finite volume
schemes [96, 97]. For an overall discussion of these various numerical schemes (and
other numerical schemes derived to discretise kinetic models), see Chap. 7. Note
that these numerical schemes can be applied also to systems of local and nonlocal
equations (described in Chaps. 4 and 5), and for this reason in the next two chapters
we will not discuss again these numerical approaches.

Regarding the specific model discussed in Sect. 3.7, the numerical simulations
shown in Fig. 3.8 were obtained by discretising the transport equation using a second
order MacCormack finite difference scheme (which includes also the reaction
terms). The same MacCormack scheme was used to create the travelling wave and
shock profiles shown in Fig. 3.6.
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