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Preface

Self-organised biological aggregations (i.e., aggregations that form in the absence of
a leader or external factors) have caught the interest and imagination of scientists for
thousands of years. For example, Pliny the Elder, in his book The Natural History
(published around 77–79 AD) [1], discussed the migration and movement of various
flocks of birds, from thrushes and blackbirds to starlings and swallows. About
starlings, he noted that “it is a peculiarity of the starling to fly in troops, as it were,
and then to wheel round in a globular mass like a ball, the central troop acting as a
pivot for the rest”. In regard to swallows, Pliny the Elder remarked that they are “the
only birds that have a sinuous flight of remarkable velocity” [1]. These comments
emphasise humanity’s long-term fascination with the spatial and spatio-temporal
patterns displayed by various animal aggregations (including flocks of birds).

Over the last 60 years or so, researchers have used mathematical models to
identify the biological mechanisms that could explain the formation and structure
of these animal group patterns. One of the first studies in this area was published
by Breder [2], who used algebraic equations for the repulsive-attractive forces
among individuals, to understand “the basic nature of influences at work in a school
of fishes as well as in other less compact aggregations”. In his pioneering work,
Breder proposed the idea that there are attraction and repulsion forces between fish,
which vary with the distance between them and those forces are likely mediated
by different sensory mechanisms. Breder [2] identified vision to be the main factor
involved in the attraction of fish towards each other and suggested that repulsion
could be caused not only by vision but also by water movement or sound.

Currently, most of mathematical models for self-organised aggregations assume,
one way or another, that the attractive-repulsive interactions are the basic mech-
anism behind the formation and persistence of biological aggregations. (Here,
I define self-organised aggregations as being those biological aggregations that
form in the absence of a leader or some external stimulus.) In general, these
social interactions are nonlocal, with repulsion acting on short distances and
attraction acting on large spatial distances. Thus, many mathematical models for
self-organised biological aggregations are nonlocal. Nevertheless, the incorporation
into the mathematical models of these social interactions alone cannot explain all
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viii Preface

complex patterns observed empirically in cell, bacterial and animal aggregations.
This led researchers to consider another social interaction: alignment/polarisation.
However, alignment behaviours cannot be properly described with the help of
parabolic-type partial differential equations (which focus on random movements).
A more natural approach for modelling alignment behaviours sees the use of
hyperbolic and kinetic transport models.

The purpose of this monograph is to introduce this research area, of mathematical
approaches for the investigation of spatial and spatio-temporal patterns displayed by
self-organised biological aggregations, to students and researchers not familiar with
the topic. To this end, I consider a step-by-step approach to describe various 1D
and 2D local hyperbolic and kinetic models (where interactions depend only on
the local density of neighbours), as well as nonlocal models (where individuals can
perceive, via different sensory mechanisms, their conspecifics positioned further
away). I discuss the patterns obtained numerically with these models, as well as
other patterns that have been shown to exist or not with the help of analytical
methods. For completeness, I also give a brief overview of the most common
analytical approaches used to investigate the dynamics of hyperbolic and kinetic
models. In addition, I discuss briefly a variety of numerical schemes developed to
approximate the solutions of different hyperbolic and kinetic models (mainly related
to problems in physics, but which can be considered also in biological contexts).

The complexity and variety of these hyperbolic and kinetic models makes
it difficult to include here all types of models existent in the literature (and
all analytical and numerical approaches developed to investigate these models).
Moreover, because the investigation of collective aggregations and movement is
currently one of the most active research areas in mathematical biology, more and
more models are developed every month. Since one needs to stop somewhere, I
tried to focus on models that either introduced a new idea in terms of modelling
self-organised aggregations or used particular analytical and numerical techniques
to investigate the formation of patterns. However, there is a feeling that many
modelling/analytical/numerical aspects should have been presented in more detail.

Ultimately, I hope that this monograph will offer a first overview into the
use of kinetic and hyperbolic models to reproduce and investigate stationary and
moving biological aggregations. Moreover, I hope that researchers interested in
analytical and numerical approaches for hyperbolic and kinetic models (that have
been applied so far mainly to problems in physics and engineering) will become
aware of the complexity of phenomena in biology and the numerous open analytical
and numerical problems associated with the models for self-organised biological
aggregations.

This monograph is the result of multiple research collaborations (over the past
15 years) on various topics related to pattern formation in ecological and biological
systems and discussions with colleagues and mentors. I am particularly grateful to
my PhD supervisors, Prof. Mark A. Lewis and Prof. Gerda de Vries, as well as to
Prof. Frithjof Lutscher (with whom I collaborated at the beginning of my PhD),
who introduced me to the use of hyperbolic systems to describe 1D movement in
biological/ecological aggregations and guided my first steps in the analytical and
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numerical investigation of these mathematical models. Prof. Mark Lewis was very
supportive to extend a review article on hyperbolic and kinetic models for self-
organised biological aggregations (published in 2012 in the Journal of Mathematical
Biology) into a book. I am also very grateful to Prof. Pietro-Luciano Buono who
introduced me to the fascinating field of equivariant bifurcation theory: without
our collaboration on classifying the various spatial and spatio-temporal patterns
exhibited by 1D nonlocal hyperbolic systems, this monograph would not have
come to light. Prof. Thomas Hillen opened my eyes to the theory of hyperbolic
conservation laws (through the postgraduate courses he taught at the University
of Alberta while I was a PhD student). I must also thank Prof. Jose Carrillo de
la Plata and Prof. Nicola Bellomo who introduced me to their research on higher
dimensional kinetic equations (which led to our current collaborations). Many more
colleagues and collaborators, among which I mention Prof. Razvan Fetecau and
Prof. Kees Weijer, have influenced over the past years my research on pattern
formation in biological systems, which was the starting point of this monograph.

Finally, I would like to thank the editorial staff at Springer, in particular Dr. Eva
Hiripi, for their approachability and help with this book.

Dundee, UK Raluca Eftimie
October 2018
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Chapter 1
Introduction

1.1 Modelling Self-organised Aggregation and Movement

Aggregation and traffic-like movement are two of the most common collective
behaviours observed in animal and human communities, as well as in some cell
populations [1–3]. These two behaviours can lead to the formation of a large variety
of complex spatial and spatiotemporal group patterns in various organisms. Milling
schools of fish [4], stationary aggregations formed by resting animals, zigzagging
flocks of birds [5], pedestrian traffic jams [6], bi-directional lanes in ants traffic
[7], or rippling waves in Myxobacteria swarms [8] are only a few of the observed
patterns. The interest in these aggregative and movement behaviours was triggered
by the desire and necessity to understand and control the resulting group patterns.
For example, understanding the formation and movement of schools of fish and
swarms of insects is important to control insect outbreaks [9], or to establish
fishing strategies [10]. Understanding pedestrian movement is useful for improving
the architectural design of buildings, train stations, stadiums, or airport terminal
to increase their efficiency and safety[11–14]. In cell biology, understanding the
collective movement of cells is important in morphogenesis (tissue patterning) and
cancer [15, 16].

There are two types of aggregative and movement behaviours displayed by
organisms: aggregation and movement in response to external factors (e.g., exter-
nal chemicals), and aggregation and movement as a result of interactions with
conspecifics (self-organised behaviours). In this study we focus only on the self-
organised behaviours, and review some classes of mathematical models derived
to investigate them. For more general reviews of mathematical models describing
biological pattern formation (including patterns in response to chemotaxis) we refer
the reader to [17–20].

The mathematical models derived to investigate the self-aggregation patterns
observed in nature aim to propose plausible hypotheses regarding the biological

© Springer Nature Switzerland AG 2018
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2 1 Introduction
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Fig. 1.1 Caricature description of various scales at which self-organised behaviours can occur

mechanisms at the microscale-level (e.g., speed of animals/cells, turning rate of
animals/cells, presence/absence of attractive-repulsive social interactions, molecular
pathways inside cells that control movement and cell-cell interactions) that can
explain the observed group-level behaviours (e.g., the shape, size, and movement of
animal or cellular aggregation). In Fig. 1.1 we exemplify the relations between the
different scales over which dynamics can occur during self-organised behaviours in
animal and cell communities. Note that for collective cell dynamics, various studies
interpret differently the micro-scale level. For example, in [21] the authors see the
micro-scale level as the level of individual cells, which move as discrete entities
with specific positions and velocities (as in Fig. 1.1), while in [22] the authors see
the microscale level as the level of molecular processes that take place either inside
the cell or on the cell surface (e.g., receptor binding, activation of specific signalling
pathways inside cells). To clarify this issue, throughout this study we will refer to
the cell-level versus molecular-level dynamics (and note that in some studies the
cell-level can be connected to the molecular-level, thus giving rise to mesoscale
models).

Based on these different scales of cell/animal dynamics, the mathematical models
for self-organised biological aggregations can be classified as follows: individual-
based models (for microscale-level dynamics), kinetic models (for mesoscale-level
dynamics) and macroscopic parabolic and hyperbolic models (for macroscale-level
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dynamics):

• Individual-based models (or agent-based models): models describing the
behaviour of a number of entities (individuals/cells) with specific characteristics
(e.g., spatial position, velocity) that are tracked through time. These individual
characteristics can change through time in response to some well-defined rules.

• Kinetic models: continuum models that describe the evolution of a probability
distribution of individuals/cells in a population, in a phase space generally
described by the position, time and velocity (orientation) of individuals. In addi-
tion to individuals/cells velocity (or orientation), other specific characteristics
can be incorporated into these models: from individuals’ age and size [23], to the
activation level of cells [24], or the concentration of molecules inside cells or on
cells’ surface [25].

• Macroscopic parabolic and hyperbolic models: continuum models that describe
the spatial distribution of the whole population density (where all individual
characteristics are averaged).

The transitions from microscopic to kinetic and further to macroscopic models
involve different technical approximations, which come with analytical or computa-
tional drawbacks. In particular, the structure of these different types of models leads
to their investigation either from a computational perspective, or from an analytical
perspective (with relatively few models being investigated both analytically and
numerically):

• Computational approaches: the focus is on numerical simulations to repro-
duce and compare the simulated solution patterns with the available data (to
ascertaining whether the assumptions incorporated into the models are enough
to explain the experimentally-observed aggregation patterns). This approach is
commonly found in individual-based models for aggregations (i.e., models that
contain a set of decision rules that govern the movement of individuals, and
in particular their spatial position, speed and turning behaviours) [26–33]. In
spite of the complex group patterns displayed by the individual-based models
(e.g., swarms, tori, polarized groups [26]), the lack of analytical techniques to
investigate them causes difficulties in understanding some of these patterns [34].
In this case, numerical simulations are sometimes the only option to investigate
the behaviour of the models. We note that this approach is also very common
in some nonlinear continuum models for collective behaviours in cells [35, 36],
where the complexity of equations makes it difficult to investigate analytically
the resulting patterns.

• Analytical approaches: the focus is on using existence and uniqueness results to
show that the models can exhibit particular types of solutions, such as stationary
steady-state aggregations [37]. Homogenisation results are also used to try to
connect the dynamics at the micro-scale and macro-scale levels [38]. Such
analytical approaches are very common for continuum models (i.e., models
that describe the evolution of the density of individuals), and in particular for
kinetic models [39–44]. Since the numerical simulations for many of these
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kinetic models are too time consuming, the analytical results can offer a quicker
understanding of some dynamics of the models.

Throughout this monograph we will discuss the contribution of both approaches to
our understanding of pattern formation in biological self-organised aggregations. In
particular, we will emphasise the necessity of combining these two approaches to
obtain a complete description of the patterns that can be exhibited by the models.
Since the majority of individual-based models are investigated mainly numerically
(due to a lack of analytical techniques to investigate the existence and structure
of patterns obtained numerically, which might impede the discovery of some
new possible patterns), we decided to focus this monograph only on kinetic and
macroscopic models. However, before we discuss these models, we will briefly
present some individual-based models that are the starting point of kinetic and
hyperbolic models for aggregation and movement.

1.1.1 Individual-Based Models

There is a vast literature of individual-based models that describe self-organised
biological aggregations; see for example [21, 26, 29, 45–59], and the references
therein. Generally, these models are suitable to investigate the dynamics of small
and medium populations. Very large populations, such as tumour aggregations
formed of 109 − 1012 cells, are still difficult to be simulated numerically. The
behaviour of these large populations is usually modelled with the help of continuum
models. To connect the micro- and macro-scales, many studies start from individual-
based models and, in the limit of large numbers, derive equivalent kinetic and
then macroscopic models. However, the original individual-based models and the
limiting continuum models might not always agree in terms of the patterns they
exhibit [51] (since the macroscopic variables are obtained by averaging microscopic
variables that might play important roles in specific dynamics). One such example
is the existence of double milling patterns (see Fig. 1.2b) displayed by individual-
based models [51, 60], and the lack of these patterns in the corresponding continuum
models [44]. The validity of continuum models will be discussed in more detail in
the following sub-section.

Next, we present some individual-based models that are the starting point of
some of the continuum kinetic models that we will investigate in the following chap-
ters. We start with a few individual-based models for homogeneous populations, and
conclude with a model for a heterogeneous population.
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1. Vicsek Model. Vicsek et al. [28] introduced the following model for the
movement of N self-propelled particles with constant velocity. Each particle
i = 1..N aligns with its neighbours up to a random noise:

xi (t +Δt) = xi (t)+ vi (t)Δt, (1.1a)

vi (t +Δt) = vo

(
cos(θi(t))

sin(θi(t))

)
, (1.1b)

θi(t +Δt) = 〈θi(t)〉r +Δθ. (1.1c)

Here, xi (t) ∈ R
2 denotes the position vector of the i-th particle at time

t ∈ R
+, vi (t) ∈ R

2 is the velocity vector of the i-th particle at time t , and
θi(t) ∈ [−π, π] is the angle defining the direction of the velocity. (Note that
throughout this monograph we use the notation R

+ = {x ∈ R|x ≥ 0}.)
Moreover, 〈θi(t)〉r denotes the average direction of the velocities of particles
positioned within a circle of radius r around the reference particle xi (t) (and
〈θi(t)〉r = arctan[〈sin(θi(t))〉r/〈cos(θi(t))〉r ]). Also, vo ∈ R is the magnitude of
particles velocities. Finally, the term Δθ denotes a random noise (i.e., a random
number chosen with a uniform probability from an interval [−η/2, η/2]) [28].

The authors showed that, when varying the noise level η or the number
of particles N , this model exhibits transitions from a disordered behaviour
(characterised by zero averaged velocity) to an ordered behaviour (characterised
by nonzero average velocity), through spontaneous symmetry breaking of the
rotational symmetry [28]. To characterise the overall behaviour of the collective
of particles, the authors introduced an order parameter [28]:

φ = 1

Nvo

|
N∑

i=1

vi |. (1.2)

Here φ is called an order parameter, since it characterises the level of order
(or disorder) in a multi-particles system. Changes in this order parameter, as a
result of changes in various external model parameters (e.g., magnitude of noise),
can give rise to phase transitions, where the particles undergo a change in their
collective behaviour [61]. As discussed in [61], phase transitions can be:

1. discontinuous (or of the first order), when the order parameter that measures
the group structure undergoes a jump between two different values;

2. continuous (or of the second order), when the order parameter changes
quickly its value, but does not undergo a discontinuous jump.

Model (1.1) was shown to exhibit second order phase transitions [28, 61].
We conclude this discussion on phase transitions, by noting that in [62]

the authors mentioned the analogy between phase transitions and bifurcations,
emphasizing that “a phase transition is nothing other than a bifurcation in the
underlying microscopic dynamics”. We will return to this aspect in Chap. 6, in
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the context of subcritical and supercritical bifurcations for models described by
partial differential equations.

2. Cucker-Smale Model. Cucker and Smale [53] focused on flocks of birds and
considered Vicsek’s model (1.1) as a starting point for modelling changes in
birds’ positions and velocities. However, these authors assumed that each particle
(i.e., bird in a flock) adjusts its velocity by adding to it a weighted average of the
differences between its velocity and the velocities of its neighbours:

xi (t +Δt) = xi (t)+ vi (t)Δt, (1.3a)

vi(t +Δt) = vi (t)+ γ

N

N∑
j=1

aij

(
vj (t)− vi (t)

)
. (1.3b)

As before, xi , vi ∈ R
n (with n = 3 in [53]) for each particle i = 1, . . . , N .

The weights aij are assumed to depend on the distance between particles:

aij := 1(
1+ |xi − xj |2

)β . (1.4)

Parameter N gives the total number of particles in the system, while parameter γ

gives the strength of the interactions. Parameter β describes the rate of decay of
the influence between particles, as they move away from each other. The authors
then found conditions on the parameter β that ensured that all particles in the
aggregation will converge to a common velocity [53]. In particular, for

Γ (x(t)) = 1

2

∑
i �=j

|xi − xj |2, Λ(v(t)) = 1

2

∑
i �=j

|vi − vj |2, (1.5)

the authors show that there exists a constant B0 such that Γ (x(t)) ≤ B0, for all
t ∈ R, t > 0. Also, Λ(v(t)) → 0 as t → ∞, and xi − xj → x̂ij (where x̂ij

is a limit vector). When β < 1/2 the convergence to a flock with a common
velocity v̂ is always guaranteed. However, for β > 1/2, the authors showed that
convergence happens only for some initial conditions for birds positions (xi (0))

and velocities (vi(0)).
We note that while the Vicsek model (1.1) includes noise, the original Cucker-

Smale model (1.3) does not include any noise. (However, uniform noise could
be easily added to the velocity equation, as shown in [63].) Moreover, while
the particles in Vicsek’s model interact within well-defined spatial ranges (the
authors looked at the velocities of the neighbouring particles within a circle
of radius r around a reference particle i), the dynamics of the Cucker-Smale
model occurs over a very long spatial range (with β controlling the decay of
the interactions over this range). As shown in [53], one could slightly modify the
Cucker-Smale model in the spirit of Vicsek’s model by assuming that the velocity
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is a function of aij (|xi − xj |2) which acts only on finite distances:

vi (t +Δt) = vi(t)+ γ

N

N∑
j=1

aij (|xi − xj |2)
(
vj (t)− vi (t)

)
, (1.6)

with

aij (|xi − xj |2) =
{

1, if |xi − xj |2 ≤ r2,

0, otherwise,
(1.7)

where r the interaction distance between individuals. However, in this case the
change in the angular velocity is abrupt, which is in contrast with the continuous
change in the velocity for the Cucker-Smale model.

The weights aij are often referred to as “communication rates”. However,
these rates, which are usually distance-dependent, are different from the com-
munication mechanisms we will refer to in Chap. 5. Haskovec [64] introduced
an alternative derivation of these rates in terms of the topological interactions
between individuals:

aij = K(
1+ g2

ij

)β
, with gij =

N∑
k=1

χ

(
xi − xk

|xi − xj |
)

, (1.8)

with χ the characteristic function of the open unit ball in R
n. Here, the author

assumed that the important quantity is not the metric distance between two
particles i and j , but rather how many intermediate particles k separate them.

The discussion on the appropriateness of using metric-distance models (in
which individuals interact with all neighbours within a certain distance) versus
topological-distance models (in which individuals interact only with a fixed
number of neighbours) has been fuelled in the past years by various empirical
evidence which, in the end, seems to support both types of model assumptions.
Topological interactions can explain the dynamics of starling flocks [33], while
metric-distance interactions (given by the interaction zones) can explain the
dynamics of fish shoals [30] or flocking surf scoters [31]. We will return to this
discussion in Chap. 5, in the context of communication mechanisms.

3. D’Orsogna Model. D’Orsogna et al. [60] and Chuang et al. [51] developed an
individual-based model which assumed that the velocities of particles depend on
an attractive-repulsive potential:

dxi

dt
= vi , (1.9a)

mi

dvi

dt
= (α − β|vi|2)vi − 1

N

∑
i �=j

∇U(|xi − xj |), 1 ≤ i ≤ N. (1.9b)
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with

U(|xi − xj |) = Cre
−|xi−xj |/ lr − Cae

−|xi−xj |/ la . (1.10)

As before, xi ∈ R
n and vi ∈ R

n describe the position and velocity of particle i

at time t ∈ R
+, mi ∈ R

+ is the mass of this particle, α > 0 describes the self-
propulsion strength, while β > 0 is the friction. In the expression of the potential
function U , Cr and Ca represent the magnitudes of the repulsive and attractive
interactions, while lr and la represent the potential ranges for the repulsive and
attractive social interactions. In [60], the authors focus on the H-stability property
of the system, which ensures that the system preserves inter-particle space and
does not collapse as N →∞. (Note that a system of N particles interacting via
a potential U is called H-stable if there is a constant B > 0 such that U ≥ −NB.
If this property does not hold, then the system is called catastrophic, since the
aggregations collapse to their core.) The authors then go on and investigate the
formation of H-stable and catastrophic patterns, such as clumps (i.e., stationary
pulses), rings (i.e., vortices or mills; single mills and double mills), coherent
flocks (i.e., travelling pulses) or rigid-body rotation states (particles with fixed
positions that rotate around the swarm centre), in the parameter space determined
by the ratios lr / la and Cr/Ca . For a visual description of these patterns see
Fig. 1.2, while for their definitions see Table 1.2.

Haskovec [64] adapted the model (1.9) to incorporate topological-metric
interactions in the equation for the velocity:

mi
dvi

dt
= (α − β|vi|2)vi − 1

N

∑
i �=j

∇Ur(|xi − xj |)

− 1

N

∑
i �=j

aij

xi − xj

|xi − xj | , 1 ≤ i ≤ N. (1.11)

where Ur is the repulsive component of the potential U , and the attractive force
depends on the relative separation aij of the i-th and j -th individuals/particles.
The introduction of this particular attractive interaction has been shown to lead
to chaotic movement [64].

To conclude the discussion of these models with attractive-repulsive veloci-
ties, we note that phase transitions between different types of patterns have been
observed also in model (1.9), as the ratios lr / la and Cr/Ca are varied. Moreover,
in this class of models the transitions between certain patterns (e.g., from single
to double mills, or from rigid-body rotations to single mills) can be either gradual
or abrupt processes (see Fig. 8(b) in [51]), which is in contrast with the phase
transitions observed in Vicsek’s model [51].

4. Generalised Langevin Model. Chavanis and Sire [65] started with a generalised
Langevin (individual-based) model, and further used it to derive a class of general
kinetic and hydrodynamic/hyperbolic models for chemotactic aggregations.
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Fig. 1.2 Caricature description of various 2D patterns exhibited by one-population individual-
based models: (a) Single rings (mills); (b) Double rings (mills) formed of clockwise and counter-
clockwise rotating rings; (c) Travelling groups (or pulses); (d) Lane patterns; (e) Swarm patterns;
(f) Collapsed swarm patterns; (g) Rigid body rotation; (h) Ripples; (i) Network pattern (this is an
example of splitting-merging behaviours in 2D)

Since we will discuss these kinetic and hydrodynamic models in Chap. 6 in the
context of stochastic models for collective movement, here we briefly introduce
the generalised Langevin model for the collective movement of N bacteria in
response to a chemical c(x, t):

dxi

dt
= vi , i = 1, . . . N, (1.12a)

dvi

dt
= −ξvi +∇c +√2DRi(t), (1.12b)

∂c

∂t
= −kc +DcΔc + h

N∑
i=1

δ(x− xi(t)). (1.12c)
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As before, xi , vi ∈ R
n, x ∈ R

n and t ∈ R
+. The first term in Eq. (1.12b) is

a friction force (with ξ the friction coefficient of bacteria moving on the fixed
substrate). The second term in (1.12b) is a chemotactic attraction force due to the
chemical c, while the third term in (1.12b) is a random force (where Ri(t) is a
white noise and D is a diffusion coefficient). Finally, the terms in Eq. (1.12c)
describe the degradation of the chemical c at a rate k, the diffusion of this
chemical with diffusion coefficient Dc, and the production of the chemical at
a rate h by the cells themselves (i.e., at every spatial position of these cells).
Numerical simulations with this model have shown the formation of a network
pattern with filamentary structure; see also Fig. 1.2.

To conclude the discussion on these models, we note that the attractive effect
of the chemical could be replaced by an attractive-repulsive potential U [66]:

dxi

dt
= vi , i = 1, . . . N, (1.13a)

dvi

dt
= −ξvi − 1

m
∇U(x1, . . . xN)+√2DRi(t), (1.13b)

with

U(x1, . . . , xN) = m2
∑
i<j

ULR(|xi − xj |)+m2
∑
i<j

USR(|xi − xj |)

+m
∑

i

Uext (xi ), (1.14)

where m is the mass of particles/cells/bacteria. . . , ULR is a long-range binary
potential, USR a short-range binary potential, and Uext an external potential [66].

5. Zmurchok–de Vries Model. A final individual-based model that we review
here in the context of homogeneous populations was recently introduced by
Zmurchok and de Vries [67] to compare pattern formation with a 1D nonlocal
two-speed kinetic/hyperbolic models previously introduced in [68, 69] (which
will be discussed in detail in Chap. 5). The changes in the position (xi ∈ R)
and direction (vi) of particles/cells/individuals are described by the following
equations in 1D:

xi(t +Δt) = xi(t)+ Γ ±
i (y±i )vi (t +Δt)Δt, i = 1, . . . , N, (1.15a)

vi(t +Δt) =
{−vi(t), if λ±i Δt ≥ X,

vi(t), otherwise,
(1.15b)

with xi ∈ R, t ∈ R
+, X a uniformly distributed random variable

on [0, 1] (which is updated at every time step), λ±i Δt the probability
of turning during the time step Δt , and Γi(y

±
i ) is the travel speed.

Here, λ±i = λ1 + λ2f (y±al,i), Γ ±
i (y±i ) = γg(y±a,i − y±r,i), with y±

r,a,al;i
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describing the repulsive(r)/attractive(a)/alignment(al) social interactions for each
particle/cell/individual i within the respective interaction zones Z

L,R
r;i , Z

L,R
a;i

and Z
L,R
al;i (see also Fig. 1.3). Note that the ± signs describe the direction of

the reference individual, while the superscripts L,R describe the interaction
zone to the Left or to the Right of this individual i. These social interaction
forces are defined the same way as the interaction forces for the hyperbolic
models in [68, 69]. For example, the attractive force experienced by the ith
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particle/cell/individual is

y±a;i = ±qa

∑
j∈ZR

a;i

Ka(|xi − xj |)∓ qa

∑
j∈ZL

a;i

Ka(|xi − xj |), (1.16)

with Ka(·) an interaction kernel describing the width of the attractive interaction
zone (e.g., a Gaussian kernel in [67], or any of the kernels summarised in
Fig. 5.2). Similar interaction forces are derived for repulsion and alignment.
Following the approach in [68, 69] (for hyperbolic/kinetic models), the authors
in [67] have defined different types of nonlocal communication mechanisms,
which influence the way social interactions terms y±i affect the turning rates
λ±i ; see Fig. 1.3. A summary of the different yi terms, corresponding to the
communication mechanisms in Fig. 1.3 is shown in Table 1.1. (We will discuss
the importance of inter-individual communication on collective behaviours in
Sect. 1.2.)

In terms of pattern formation, Zmurchok and de Vries [67] have shown that
these nonlocal individual-based models can reproduce the majority of the patterns

Table 1.1 The nonlocal terms used to describe the social interactions in [67]

Model Social interactions: repulsion (y±r,i ), attraction (y±a,i ), alignment (y±al,i )

M1 y±
r,a;i = ±qr,a

∑
j∈ZR

r,a;i
Kr,a(dij )∓ qr,a

∑
j∈ZL

r,a;i
Kr,a(dij )

y±
al;i = ±qal

∑
j∈ZR

al;i , vj <0 Kal(dij )∓ qal

∑
j∈ZL

al;i , vj>0
Kal(dij )

M2 y±
r,a;i = ±qr,a

∑
j∈ZR

r,a;i
Kr,a(dij )∓ qr,a

∑
j∈ZL

r,a;i
Kr,a(dij )

y±
al;i = ±qal

∑
j∈ZR

al;i , vj <0 Kal(dij )± qal

∑
j∈ZL

al;i , vj <0 Kal(dij )

∓qal

∑
j∈ZR

al;i , vj >0 Kal(dij )∓ qal

∑
j∈ZL

al;i
Kal(dij )

M3 y+
r,a;i = qr,a

∑
j∈ZR

r,a;i
Kr,a(dij ), y−

r,a;i = qr,a

∑
j∈ZL

r,a;i
Kr,a(dij )

y+
al;i = qal

∑
j∈ZR

al;i , vj <0 Kal(dij )− qal

∑
j∈ZR

al;i , vj >0 Kal(dij ),

y−
al;i = qal

∑
j∈ZL

al;i , vj >0 Kal(dij )− qal

∑
j∈ZL

al;i , vj <0 Kal(dij ),

M4 y±
r,a;i = ±qr,a

∑
j∈ZR

r,a;i , vj <0 Kr,a(dij )∓ qr,a

∑
j∈ZL

r,a;i , vj >0 Kr,a(dij )

y±
al;i = ±qal

∑
j∈ZR

al;i , vj <0 Kal(dij )∓ qal

∑
j∈ZL

al;i , vj >0 Kal(dij )

M5 y+
r,a;i = qr,a

∑
j∈ZR

r,a;i , vj <0 Kr,a(dij ), y−
r,a;i = qr,a;i

∑
j∈ZL

al;i , vj >0 Kr,a(dij )

y+
al;i = qal

∑
j∈ZR

al;i , vj <0 Kal(dij ), y−
al;i = qal

∑
j∈ZL

al;i , vj >0 Kal(dij )

These terms are the translations of the diagrams from Fig. 1.3 into mathematical equations, after
summing up the information received from all neighbours (si ∈ (0,∞)). For each of the five
models, the equations for y±

r;i and y±
a;i are almost identical (since the effect of the repulsive and

attractive interactions is similar, but leads to opposite outcomes). Here qa , qr , and qal describe the
strength of the attraction, repulsion, and alignment interactions between the individual at xi at its
neighbours at xj , where dij = |xi − xj |. Kernels Ka(dij ), Kr(dij ) and Kal(dij ) give the width of

the attractive (ZR,L
a ), repulsive (ZR,L

r ) and alignment (ZR,L
al ) interaction zones. Since the direction

of the neighbours j is important for social interactions via communication, the sums distinguish
between individuals with vj > 0 and vj < 0
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Fig. 1.4 Examples of spatio-temporal patterns exhibited by the 1D individual-based mod-
els (1.15). Here N = 500 individuals that randomly scattered over a 1D domain [0, L], with
L = 10 and periodic boundary conditions. Patterns reprinted from [67], under the Creative
Commons Attribution License. (a) Stationary pulse 1. (b) Stationary pulse 2. (c) Ripples. (d)
Feathers. (e) Travelling pulse. (f) Travelling train. (g) Zigzag pulse. (h) Breathers. (i) Travelling
breather. Copyright c©2018 Zmurchok, de Vries

obtained in [69] with a hyperbolic model incorporating similar communication
mechanisms: from stationary pulses, to travelling pulses, travelling trains, ripples,
breathers, travelling breathers, feathers, zigzags, and splitting and merging pat-
terns. These patterns are summarised in Fig. 1.4. In Chap. 5 we will introduce a
kinetic/hyperbolic 1D model that is the mesoscale version of this microscale model,
and show how numerical simulations combined with bifurcation and symmetry
theory can help us understand the formation of some of the patterns, as well as the
transitions between certain patterns. Here, we emphasise that no investigation of the
phase transitions displayed by this individual-based model has been performed yet.

https://creativecommons.org/licenses/by/4.0/
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Even if the previous individual-based models focused on homogeneous pop-
ulations, in nature the cell/bacterial/animal populations are not homogeneous.
Therefore, some recent studies have developed individual-based models that inves-
tigate the interactions between different populations [70–72]. In the following we
briefly discuss such an individual-based model, since the patterns generated by this
model (see also Fig. 1.5) are generic for the interactions between two populations

)b()a( population 1

)d()c( population 1

population 2

population 1

population 1
population 2population 2

population 2

)f()e(

space (x)space (x)
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Fig. 1.5 Caricature description of the patterns that could be generated by two-population
individual-based models. (a) stationary aggregations with complete engulfment; (b) moving
aggregations (as given by the direction of the arrows) with complete engulfment; (c) moving aggre-
gations with partial engulfment; (d) stationary segregated aggregations; (e) moving segregating
aggregations; (f) segregated line formation
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(as displayed by both discrete and continuum models; see also the discussion in
Sect. 6.10).

• Pineda & Eftimie Model. Pineda and Eftimie [72] introduced an individual-
based model to describe the self-organised dynamics of two cell populations
which interact not only through spatially-dependent repulsive social forces, but
also through a chemical that can be secreted by the cells themselves or can
be secreted externally (which leads to an externally imposed stable chemical
gradient). Thus, assuming that a population of N cells is formed of two
subpopulations NA and NB of cells with different speeds (vi ) and different
chemotactic sensitivities (χi), then the equations for the evolution of the two
populations (characterised by position xi = (xi, yi) ∈ R

2 and velocity vi ∈ R
2)

are as follows:

xi (t +Δt) = xi (t)+ vi (t)Δt, i = iA + iB, iA,B = 1..NA,B, (1.17)

with

vi (t) = viei (t) = vi

(
cos θi(t)

sin θi(t)

)
, θi ∈ [−π, π], (1.18)

and

θi(t +Δt) = arg

⎧⎨
⎩χi

∇cT (t)

||∇cT (t)|| +
N∑

j=1,i �=j

mij Fij (t)+ αiσ i (t)

⎫⎬
⎭ (1.19)

It was assumed in [72] that the concentration cT of a chemical signal is secreted
by two sources: a local chemical signal cI secreted by the cells themselves (at
every position xi of cells), and an externally imposed chemical gradient cE

(changing only along the y direction). Therefore, ∇cT = ∇cI + ∇cE , with

∇cI (xi ) = −p

N∑
j=1,j �=i

KI (||xi − xj ||/l)xij ,

∇cE(y) = −cm

√
μE

DE

e−
√

μEDEy + e
√

μEDEy

e−
√

μEDEy + e
√

μEDEy
y. (1.20)

In the equation for the gradient of cI , KI is a modified Bessel function of
the second kind, l = √

DI μI (with DI = diffusion rate of chemical cI , μI =
degradation rate of chemical cI ), p measures the response of the cells to the
chemical gradient, and xij is a unitary vector directed from j to i. In the equation
for the gradient of cE (obtained after solving a simple diffusion-reaction equation
for the degradation of a chemical), cm gives the constant concentration of the
chemical cE at the upper boundary of the domain (in the y-direction), DE is the
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diffusion rate of the chemical cE , μE is the degradation rate of this chemical, and
y is a unitary vector pointing in the y-direction.

The second term in Eq. (1.19) describes the repulsive interactions between
cells i and j : Fij = fij xij , with

fij =
{

0, if xij (t) > 2r0,

1− xij

2r0
, if 0 ≤ xij (t) ≤ 2r0,

(1.21)

where xij (t) = ||xi(t) − xj (t)|| is the distance between two cells, and 2r0 is
the interaction distance between two cells. The parameter mij (from Eq. (1.19))
controls the magnitude of the repulsive cell-cell interactions.

Finally, the last term in Eq. (1.19) describes the noise affecting cells orien-
tation: αi is the noise intensity, while σ i = (cos ξi(t), sin ξi(t)) is a random
uniformly oriented unitary vector.

Numerical simulations with this individual-based model (where individual
cell dynamics was coupled with continuous chemical gradients) have shown: (1)
moving aggregations with complete engulfment of one population (with stronger
chemotactic sensitivity) by the other population (as in Fig. 1.5b); (2) moving
aggregations with partial engulfment of one population by the other population
(as in Fig. 1.5c); (3) segregated moving cell aggregations (as in Fig. 1.5e); (4) lane
formation, with the two lanes—corresponding to the two populations—moving
towards the external chemical gradient (as in Fig. 1.5f). We emphasise that while
all aggregation patterns in [72] are moving because cells are attracted to the
external chemical gradient cE , it is possible to obtain also stationary aggregations
(as those summarised in Fig. 1.5) for different parameter values. We will return to
these patterns in Chap. 6, in the context of patterns generated by two-population
kinetic models.

The models in [65] and [72] could be seen as connecting micro-scale dynamics
(as represented by the movement of individual cells/bacteria) to macro-scale
dynamics (as represented by the time-evolution of the diffusive chemicals). Another
approach that connects the micro- and macro-scale models is based on the derivation
of microscopic models on a lattice with cells of length Δx. The models (sometimes
called “master equations”) describe the probability p(x) of a particle/pedestrian,
initially positioned in cell x ∈ R, to move right (to x +Δx) or left (to x −Δx). (In
2D the particles can move also up and down.) In the limit Δx → 0, this microscopic
model becomes a macroscopic model for the density u(x) of particles/pedestrians at
x (where x is now a continuous space variable). This approach has been considered
for the derivation of some local and nonlocal hyperbolic systems with constant speed
[73–75], or for the derivation of local hyperbolic models with density-dependent
speed [76]. We will discuss these models in more detail in Chaps. 4 and 5.

Remark 1.1 While many individual-based models report results that are visually
similar to experimentally-observed collective migration (e.g., see [59, 77]), a
quantitative comparison between these numerical results and experimental data
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is a very tedious process. In this case, one needs to perform a large number
of simulations to obtain appropriate statistics (suitable for comparison with data
statistics). For this reason, the majority of individual-based models in the literature
ignore the quantitative comparison step.

1.1.2 Kinetic and Macroscopic Models

The kinetic (mesoscale) models describe phenomena occurring at intermediate
scales, where one can investigate the behaviour of the whole population as it is
influenced by individual characteristics (e.g., individual’s velocity, age, size, etc.).
The macroscale models can be derived from the kinetic models by taking an average
over the characteristic variable. This way, the description of the statistics for the
characteristic variable (e.g., velocity) in the kinetic models is reduced in continuous
models to only a small number of its moments [78]. For both mesoscale and
macroscale models, the spatial scale of interest is at least one order of magnitude
larger than the diameter of a cell (or the size of an individual/particle/etc.).

Initially, the macroscale models for animal movement and aggregation were
mainly of parabolic type (see [73, 79–86], and the references therein). These
models are suitable when one is interested in measuring the population as a whole
(i.e., mean square displacements, mean population drift) [87]. However, since the
parabolic models unrealistically assume an infinite speed of propagation (i.e., even
if the initial data has compact support, perturbations in this data can be perceived
everywhere in the domain [88]), scientists started to focus more and more on
hyperbolic and kinetic models [69, 73, 87, 89–94]. The use of these hyperbolic
and kinetic models is helped by the recent advances in experimental techniques,
which allow scientists to track the movement of individual particles/cells/animals
(i.e., individual speeds and turning angle distribution) [95, 96]. When this kind of
information exists, the hyperbolic and kinetic models become the natural choice of
continuum models [87]. Another reason for using these two types of models is the
possibility of incorporating into variables detailed descriptions of various biological
functions and activities (e.g., different animal communication mechanisms [69],
or different degrees of cell differentiation or cell activation—information that is
characteristic to lower molecular scales [24]). Moreover, directed movement that
leads to alignment/polarisation is easier incorporated into these transport models.

In principle, the use of kinetic and hyperbolic models (as well as parabolic
models) requires having a large population of interacting organisms [44, 97, 98]. As
emphasised in [97], mesoscale/macroscale models for biological movement and pat-
tern formation usually incorporate the hidden assumption that statistical correlations
between cells/particles can be neglected, which means that the predictions of these
models might fail in those spatial regions where cell/particle numbers are small
and there are strong long-range correlations in cell/particle movement. This calls
for caution when applying such models to smaller populations of bacteria, cells, or
animals, since it could lead to different group dynamics (as observed by Chuang et
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al. [51] in a swarming model which shows two different group patterns exhibited by
the continuum model and the individual-based model when the number of particles
is small—characterising an H-stable regime). However, these mesoscale/macroscale
models are still applied occasionally to investigate the dynamics of relatively small
populations (e.g., bacteria [65], cells [99]). One of the reasons for this is that
they can provide some qualitative and quantitative relationships between model
parameters. Thus, they can give a better insight into the underlying biological
and physical principles governing the investigated problem, compared to many
of the individuals-based models. To ensure that the continuum models offer a
good depiction of the dynamics displayed by relatively small populations, one can
derive them from individual-based models [43, 51, 65]. This approach requires,
however, to compare the two models in terms of their dynamics (and to check for
inconsistencies, and discuss parameter ranges of model validity) [51].

We need to emphasise that while all these multi-scale studies emphasise that
the continuum models are obtained from the discrete models as the number of
particles/cells N becomes very large (and thus the continuum model should be
a valid approximation of the discrete model for large N), it is still unclear what
one means by “small” or “large” populations of particles/cells. In [98] the author
suggests that interacting bacteria or cells can be found in communities less than a
few thousand particles, which implies that statistical fluctuations will be important
in these communities and thus the continuum limit might not be appropriate
(although one way of overcoming this problem is to use stochastic kinetic equations
[98]). Moreover, in [97] the author suggests that macroscopic models should not be
used to describe communities formed of a few hundreds of cells (or dynamics at the
edges of cell colonies). However, in [100] a continuum version of a discrete model
for self-organised movement of particles showed similar coherent moving flock
solutions when the discrete model was formed of N = 200 particles, and similar
densities of rotating vortices when the discrete model was formed of N = 400
particles. An even more extreme situation is presented in [99], where the solutions
of an individual-based model for epithelial cell monolayers agree very well with the
solutions of the corresponding continuum limit model, even for N = 20..32 cells.

The hyperbolic and kinetic models (as well as the parabolic ones) can be
local, when immediate neighbours or local environmental effects are important
[90, 101, 102], or nonlocal, when distant individuals or nonlocal environmental
effects play an important role [69, 103–105]. The nonlocal models focus on the
effects of three social interactions (repulsion, attraction, and alignment) on the
movement of organisms. These social interactions can influence the individuals
turning behaviour (e.g., organisms turn to align with their neighbours, or to move
away from them [68, 69, 103, 104], or turn to align with some external feature
such as a pheromone trail [106]), and/or influence their speeding behaviour (i.e.,
organisms speed-up or slow-down to move away from neighbours or towards them;
[104, 107]). In contrast, for local models the turning and speeding behaviours are
influenced only by local conspecifics [73, 101, 102, 108, 109].

Another aspect considered by these hyperbolic and kinetic models for self-
organised aggregations is the possibility of having demographic effects, in addition



1.1 Modelling Self-organised Aggregation and Movement 19

to movement in response to local or nonlocal conspecifics [73, 91, 110–112].
These demographic effects usually occur on a timescale faster than or equal to the
movement timescale. In general, they are modelled by quadratic (logistic) terms
[73, 113] or cubic terms [111, 114], although competition and prey-predation effects
could also be easily incorporated.

The majority of these models were derived to investigate cell and animal
populations (see, for example, [69, 90, 102, 103, 115, 116]). However, a few models
have also been used to describe pedestrian self-organised movement [94]. Note
that these particular models were initially introduced in the context of car traffic
[12, 117, 118], and later were used to describe pedestrian traffic [118, 119]. In
regards to the mathematical models for pedestrian movement, it is worth mentioning
that some of these models have been developed in parallel in applied mathe-
matics/physics/engineering (see the reviews in [120–122]) and in social sciences
(sociology and spatial geography) [123]. Moreover, recent studies have emphasised
the necessity of considering also social psychology when investigating the collective
dynamics of pedestrians [124].

In the last decade, there has been an explosion of applications of kinetic models to
social modelling and opinion formation, as well as to economic modelling and finan-
cial markets [125–127]. This was mainly the result of an increase in the awareness
that collective behaviours can lead to unexpected outcomes, very hard to predict.
And the kinetic models are the most obvious choice when investigating how the
dynamics of social and economic systems are influenced by individual behaviours
(especially since the trading between agents in an economy has similarities with
particles collisions as described by ideal gas dynamics).

The kinetic models for self-organised aggregations are generally based on the
Boltzmann equation, which describes the evolution of particles/cells/individuals as
point masses that interact via pair collisions, or on the Vlasov equation, which
describes the interactions between particles as mean field actions of the field
particles over the test particle [128]. The research into the kinetic equations that are
used to describe biological aggregations is particularly rich, different mathematical
schools contributing to it. Some of the research groups focusing on these types of
models are in France [38, 41, 129–131], Italy [24, 91, 119, 126, 132–134], Ger-
many/Swizerland/Austria [12, 37, 39], Spain [43, 44] and North America [42, 87,
135–139]. Historically, these groups focused on slightly different aspects of these
aggregations. For example, the German school focused on traffic models (as part of
early studies to improve highway traffic) [12, 140, 141]. The French school focused
more on theoretical aspects related to kinetic models for biological aggregations:
existence of solutions, limiting behaviour and homogenisation [38, 41, 131]. The
Italian school, on the other hand focused mainly on applications of these models to
medicine and social sciences: immunology and cell-cell interactions [91, 142, 143],
or human behaviours [119, 125, 126]. However, due to the high mobility of
researchers between different countries, this classification based on national schools
is not appropriate anymore (e.g., research groups in the USA stared focusing also on
traffic models [144] and models for biological aggregations [145]). In consequence,
throughout this monograph we will ignore this classification, and discuss the various
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types of kinetic models existent in the literature based on their approach: a more
analytical approach or a more numerical approach. This strategy will allow us to
identify the analytical and numerical challenges posed by the kinetic and continuum
hyperbolic models derived to investigate biological aggregations.

1.2 The Importance of Communication for Self-organised
Biological Behaviours

The main difference between modelling interacting particles in a physical context
(as modelled by the majority of kinetic models developed in the last few decades; see
[132, 146–148]) and modelling interacting animals/cells in a biological context is
that these animals/cells communicate directly with each other, and actively modify
each other’s behaviours. In fact, the survival of cells and animals depends on receiv-
ing and processing different information from the environment and their neighbours
(regarding food availability, potential dangers, etc.). Living organisms emit/perceive
information to/from conspecifics via different communication mechanisms: cell
signalling pathways in cells, or visual, auditory, chemical and tactile interactions
in animals (see Fig. 1.6). Therefore, through communication (which can be local
or non-local, depending on the spatial location of communicating neighbours) ani-
mals/cells continuously adapt their own behaviours to the behaviours of surrounding
individuals/cells. This leads to coordinated emergent behaviours at the level of the
whole communities, which sometimes can be difficult to predict. (We emphasise
here that physical particles can also interact with each other through gravitational,
electric, magnetic forces, as well as through fluid around them, but they don’t
actively adapt their behaviours in response to neighbouring particles.)

Since self-organised behaviours are the result of how animals and cells communi-
cate with each other, one of the particular aspects that we will focus on in this study
is the incorporation of inter-individual communication mechanisms and inter-cell
signalling pathways into the mathematical models for movement and aggregation.

The first mathematical models for self-organised collective dynamics in biology
assumed that animal communication was omnidirectional, with individuals perceiv-
ing all neighbours around them, or only some neighbours within specific distances
(i.e., within the repulsive, attractive or alignment interaction ranges); see Fig. 1.7a.
Then, to make the models more realistic, some researchers proposed the existence
of a blind-zone behind individuals, in which neighbours are undetectable [26]; see
Fig. 1.7b. Eftimie et al. [69] took this approach one step further, and incorporated
various communication mechanisms in a one-dimensional model for self-organised
dynamics. These communication mechanisms are combinations of uni-directional
and multi-directional perception and emission of information from/to neighbours
positioned at different distances (see also Chap. 5). As we have seen in Sect. 1.1.1,
this approach that focuses on multiple communication mechanisms was recently
transposed also to individual-based models [67]. A different type of communication
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Fig. 1.6 (a) Caricature description of communication-based interactions among humans/animals.
Individuals can communicate directly with their neighbours, but they can also eavesdrop on their
neighbours’ communication. (b) Caricature description of cell-cell communication via signalling
molecules produced by the cells. These molecules can act on the cells (juxtacrine signalling), in
the neighbourhood of the cell (paracrine signalling), or can travel long distances via blood vessels
(endocrine signalling)

incorporated into the mathematical models occurs via chemotactic signals, where
individuals in the community secrete chemicals that are perceived by (and modify
the movement behaviour of) their neighbours. One of the most common examples
is offered by the trail pheromone secreted by ants, which acts both as a recruitment
and a orientation signal [7]. We should also mention that individuals in large
communities could use different communication mechanisms at the same time (e.g.,
visual vs. auditory signals), depending on their physiological and psychological con-
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Fig. 1.7 Caricature description of communication-based interactions among individuals. (a)
Omnidirectional perception of all neighbours. (b) Directional perception of neighbours, under
the assumption that behind each individual (relative to its movement direction) there is a blind
cone. The basic interactions could take place within the repulsion range (where individuals try to
avoid each others), within the alignment/polarisation zone (where individuals try to align with each
other), or within the attraction range (where individuals are attracted towards each other)

straints. This heterogeneity in inter-individual communication adds another layer of
complexity in understanding the behavioural patterns of the whole community; see
also Fig. 1.8.

Therefore, to understand the mechanisms involved in the formation and move-
ment of self-organised aggregations, it is not enough to model changes in animals’
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Fig. 1.8 Caricature description of a heterogeneous population formed of individuals that com-
municate with each others in various ways. Some individuals can avoid communication with a
different sub-population. Moreover, communication can be uni-directional or omni-directional

velocity or turning rates (as many of current models in the literature do). One has to
add another level of detail by studying how inter-individual communication (which
can be local or nonlocal; see Fig. 1.7) affects these changes in velocity and turning
behaviour.

1.3 Overview

In this monograph we will not describe in detail the fundamental analytical and
numerical results obtained for these hyperbolic and kinetic models (e.g., existence
results, hydrodynamic limit, parabolic limit, bifurcation results, numerical scheme
used, etc.). Although we will review all these results in Chaps. 2, 7 and 8, our focus
will be on the modelling of various biological aggregations and on the resulting
spatial and spatio-temporal patterns. Classical existence results for hyperbolic
models can be found in [118, 149–151], while classical analytical results for kinetic
Boltzmann equations can be found in [148, 152–155]. LeVeque [156] reviewed the
numerical methods for hyperbolic equations and systems, while numerical methods
for kinetic equations can be found, for example, in [153, 157–160]. Bifurcation
theory techniques for PDEs can be found, for example, in [161–164].

Some hyperbolic and kinetic models have been previously reviewed in the con-
text of chemosensitive movement [93, 115, 116], tumour dynamics [165], collective
behaviours in socio-economic sciences [125] or more generally, in the context
of correlated and uncorrelated random walks [166] and local reaction transport
systems [109]. A detailed investigation of car traffic models on road networks
was considered in [167]. Traffic and crowd models were recently reviewed from
a modelling perspective [168–170] and from an analytical perspective [118, 170].
Transport and kinetic models have been discussed in the context of their applications
to car traffic [171], as well as their application to gases, semiconductors, photons,
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and some biological systems [128]. A more thorough discussion on the use of kinetic
models to describe various biological phenomena—with a particular focus on cancer
immunology—can be found in [172], while a discussion of kinetic models with
applications to socio-economic systems can be found in [125, 126]. Computational
approaches for kinetic models are discussed, for example, in [133, 134].

While all these reviews cover different aspects of kinetic and hyperbolic models
(mainly related to modelling and analytical aspects, but also some numerical
results), there is no study yet to combine all these aspects in a coherent manner
in the context of pattern formation in biological phenomena. Moreover, there are no
studies to focus on nonlocal models (the majority of studies mentioned above focus
exclusively on local dynamics). In general, the biological systems are more complex
than the physical systems, and thus the kinetic models that are applied to biological
phenomena require a more careful interpretation of the assumptions. Moreover,
the non-locality of biological phenomena adds another layer of complexity to the
modelling aspect, as well as to the investigation of these models in terms of both
numerical and analytical approaches. We emphasise that while there are studies
on the analytical approaches for pattern formation (via bifurcation and symmetry
theory; see [163, 164, 173]), there are no studies that focus on the application of
these approaches to the investigation of pattern formation in nonlocal hyperbolic
and kinetic models.

The purpose of this study is threefold:

1. to motivate the use of local and nonlocal hyperbolic and kinetic models for
biological aggregations (and how directional communication can be incorporated
into these models), since they allow for finite (and directional) propagation of
information—in contrast to the more commonly used parabolic models;

2. to summarise the patterns exhibited by these complex models (which were
derived to describe the complexity of self-organised biological behaviours,
including nonlocal behaviours);

3. to present briefly the analytical approaches (i.e., stability results, bifurcation and
symmetry results) and numerical approaches (i.e., various numerical schemes)
that have been used (or could be used) to identify and classify the patterns
exhibited by these models.

To achieve these goals, we use a structured approach. We start by presenting the
simplest advection-reaction equations used to describe biological behaviours (as
well as car traffic and pedestrian traffic behaviours). Then, we add complexity
in steps by considering systems of local and nonlocal hyperbolic equations that
have constant or density-dependent speeds and turning rates. We examine these
aspects in the context of one-dimensional and multi-dimensional spatial models. We
conclude by presenting some basic notions of stability and (equivariant) bifurcation
theory, as well as presenting briefly some numerical approaches for the numerical
approximation of these hyperbolic and kinetic models. This step-by-step approach
allows us to elaborate on the benefits of incorporating detailed social interactions
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or population dynamics into the models for self-organised movement. We examine
these benefits from the perspective of understanding various types of group patterns.
A summary and description of the spatial and spatio-temporal patterns discussed
throughout this review is shown in Table 1.2. In addition, to allow the reader to have
a visual understanding of these patterns from the very beginning (especially since
some of the studies presented in this monograph show analytically the existence
of particular types of solutions, without any numerical simulations), in Figs. 1.9
and 1.10 we present some caricature descriptions in the x − t plane of the 1D
patterns listed in Table 1.2 (While many of these patterns are also observed in
Fig. 1.4, we decided to present a caricature description of all these 1D patterns to
emphasise their spatio-temporal structure—which is not always clear in Fig. 1.4 due
to the stochasticity of the model and the simulations). In Fig. 1.11 we present some
caricature descriptions in the x − y plane of the 2D patterns listed in Table 1.2.

Table 1.2 Finite-amplitude and blow-up heterogeneous patterns exhibited by hyperbolic and
kinetic models describing aggregation and movement of organisms in 1D

Finite amplitude
solutions Description Figures References

Stationary pulses Spatially nonhomogeneous steady
states u that are motionless in
time (i.e., ∂u

∂t
= 0, but ∂u

∂x
�= 0).

Usually u(±∞) = 0.

Figs. 1.9a, 1.4a, b,
5.7a, 6.2a,
5.26a(i), b(i),
5.13b, 5.12d, 5.9b

[40, 67, 69,
90, 100, 102,
104, 174]

Travelling pulses Spatially non-homogeneous
solutions u that have a fixed shape
and move at a constant speed c:
u(x, t) = U(z), z = x − ct , and
U(±∞) = 0. With this definition,
we can understand the stationary
pulses as being travelling pulses
that move with zero speed
(c = 0).

Figs. 1.9b, 1.4e,
5.7b, 6.2b, 6.4b,
5.26a(iii), b(iii),
5.20b, 5.19a–c,
5.13a, c, c’, 5.12d,
5.11c, 5.9a

[67, 69, 101,
104]

Travelling fronts Spatially non-homogeneous
solutions u that have a fixed shape
(connecting two steady states u1
and u2) and move at a constant
speed c: u(x, t) = U(z),
z = x − ct . As z →±∞, the
strictly monotone profile U(z)

connects the two steady states:
U(−∞) = u1 and U(+∞) = u2.

Figs. 1.9c, 3.6b [73, 110–113]

Travelling trains Periodic solutions of the form
u(x, t) = U(z), z = x − ct , with
U a periodic function of z.

Figs. 1.9d, 1.4f,
5.7c

[67, 69]

Ripples (standing
waves)

Left-moving and right-moving
travelling waves that pass through
each other.

Figs. 1.9e, 1.2h,
1.4c, 5.7d, 5.12d,
5.11c

[67, 69, 90]

(continued)
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Table 1.2 (continued)

Finite amplitude
solutions Description Figures References

Modulated
standing waves

Space- and time-modulated
left-moving and right-moving
travelling waves that pass through
each other.

Figs. 1.9f, 5.12d,
5.11c

[175]

Feathers A particular type of stationary
pulse that periodically loses
density at the edges of the group.

Figs. 1.9g, 1.4d,
5.7g, 5.13a”

[67, 69]

Travelling
feathers

A type of moving aggregation that
periodically loses density from
the back (relative to its moving
direction)

Figs. 5.7k, 1.10h [107]

Breather Pulses that periodically expand
and contract. This leads to a
periodic change in the amplitude
of solutions. Note that the center
of mass of these pulses is always
stationary.

Figs. 1.9h, 1.4h,
5.7h

[67, 69]

Travelling
breathers (or
modulated
rotating waves)

Breather-like solutions that travel
through the domain. In this case,
the centre of mass of the pulse is
travelling at a certain speed.

Figs. 1.9i, 1.4i,
5.7i, 5.20c, 5.12d,
5.11c

[69]

Zigzag pulses Travelling pulses that periodically
change direction. (These are 1D
patterns. The 2D equivalent is
represented by vortices.)

Figs. 1.10a, 5.7e,
5.26a(ii), b(ii),
5.17, 5.13b’, b”,
c”

[67, 69]

Semi-zigzag
pulses (or
stop-and-go
waves)

Aggregation (pulse) patterns
characterised by movement in one
direction (i.e., “go”), alternated by
rest (i.e., “stop”).

Figs. 1.10b, 5.7f [69]

Travelling
zigzags

Zigzag pulses that travel through
the domain, as one run (left/right)
is longer than the other run
(right/left)

Figs. 5.7l, 1.10c [107, 176]

(continued)
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Table 1.2 (continued)

Finite amplitude
solutions Description Figures References

Amplitude
blow-up (finite
time)

The density u(x, t) concentrates
in one single point x, and
becomes infinite as time t

approaches a critical value
t = T < ∞:
limt→T ||u(x, t)||∞ = ∞.
Usually, the point x is fixed, and
the pattern is a “stationary
blow-up pattern”. However, there
are cases where the aggregation
moves through space as it
approaches the singularity
(located at (x∗, T )):
limt→T ,x→x∗ ||u(x, t)||∞ = ∞.
These patterns are referred to as
“moving blow-up patterns”. In
models describing the dynamics
of left-moving (u−) and
right-moving (u+) organisms, the
stationary and moving blow-ups
could happen at different spatial
points: x∗ = x∗1 (for u+) and
x∗ = x∗2 (for u−) [104]. Some
models also exhibit two-point
blow-ups:
limt→T ||u(x∗1 , t)||∞=limt→T

||u(x∗2 , t)||∞ =∞ [177]. In 2D, it
is possible to have blow-up
patterns along lines [178].

Fig. 1.10c [102, 104,
177–180]

Gradient blow-up
(shocks)

The density u is bounded, but its
gradient ∇xu becomes infinite at a
time point t = T < ∞. Note that,
in some cases, the blow-up of the
gradient can cause an infinite
growth in the amplitude of
solutions. These gradient blow-up
solutions lead to the formation of
shocks.

Figs. 1.10d, 3.6a,
2.4c

[12, 94]

Rarefaction
waves

A type of wave that expands with
time (in contrast with the shock
waves that are compressed with
time).

Figs. 1.10a, 2.4a

Chaotic patterns Patterns that are aperiodic in time. Figs. 1.10e, 5.13,
5.23

[67, 181]

Translated
homogeneous
solutions

Spatially homogeneous solutions
in 1D or 2D that are aligned in a
preferred direction

Figs. 1.11c, 6.2c [40]

(continued)
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Table 1.2 (continued)

Finite amplitude
solutions Description Figures References

Lanes Patterns (mainly in 2D)
characterised by the formation of
pulses that are spread in one
direction over the entire domain.
These groups can be formed of
motionless individuals, or of
individuals moving in opposite
directions.

Figs. 1.11a, 6.4c [51, 94]

Networks Patterns (in 2D) characterised by
the splitting and merging of
lane-like aggregations (e.g., ant
trail networks)

Figs. 1.2i, 1.11f

Single mills A 2D pattern where individuals
display a circular-type of motion.
All individuals move in the same
direction (either clockwise or
counterclockwise).

Figs. 6.2, 1.11b [44, 51]

Double mills A 2D pattern where individuals
display a circular-type of motion.
Some individuals move in
clockwise direction, while others
move in counter-clockwise
direction.

Fig. 6.2 [44]

Rigid-body
rotation

A 2D pattern where individuals
display a circular-type of motion
around the swarm centre. Unlike
the single/double mills where
individuals move freely within the
rotating aggregation, here the
individuals are at relatively fixed
positions inside the rotating
aggregation.

Figs. 1.2g, 6.2c [51, 182]

Here, u(x, t) describes the population density at (x, t). Some of these patterns (e.g., the zigzags)
can only be observed in 1D, while other patterns (e.g., single and double mills) can only be
observed in 2D. However, other patterns can be observed in both 1D and 2D (e.g. the stationary
and moving pulses)

We need to stress that here we do not attempt to review all relevant hyperbolic
and kinetic models. Given the intense research in this area, such an attempt would
be an impossible task. Rather, we try to present some approaches taken to model
and investigate group patterns that arise in self-organised cell, animal and human
communities. Moreover, our focus here is on recent research on nonlocal hyperbolic
and kinetic models (in contrast to previous publications in the literature that focus
mainly on local models). To help our exposition, we also present briefly the
analytical and numerical approaches commonly used to investigate these kinetic
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Fig. 1.9 Caricature description of the 1D patterns listed in Table 1.2. (a) Stationary pulses; (b)
Travelling pulses; (c) Travelling fronts (left-moving and right-moving, with respect to the middle
of the domain); (d) Travelling trains; (e) Ripples (or standing waves); (f) Modulated standing waves
(or modulated ripples); (g) Feathers; (h) Breathers; (i) Travelling breathers

and hyperbolic models in terms of pattern formation (although these approaches are
not always applied to every study).

The monograph is organised as follows. We start in Chap. 2 by introducing the
terminology behind the hyperbolic equations for conservation laws. In Chap. 3 we
discuss various one-equation hyperbolic models that describe population movement
and traffic flows. In Chap. 4, we introduce systems of hyperbolic equations (in one
spatial dimension). Here, the focus is on local hyperbolic systems. Then, in Chap. 5,
we extend the discussion to nonlocal hyperbolic models which describe behaviours
generated by long-distance interactions with neighbours. In Chap. 6, we discuss
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Fig. 1.10 Caricature description of the 1D patterns listed in Table 1.2 (continued from Fig. 1.9).
(a) Zigzag pulses; (b) Semi-zigzag pulses/Stop-and-Go waves; (c) Travelling zigzags; (d) Gradient
blow-up (shocks); (e) Chaotic patterns; (f) Rarefaction waves; (g) Amplitude blow-up (finite time);
(h) Travelling feathers

generalisations of these models to higher spatial dimensions using the kinetic theory
of transport processes. In Chap. 7 we present various numerical approaches used
to simulate the solutions of hyperbolic and kinetic models. In Chap. 8 we present
some basic techniques of bifurcation theory used to investigate some of the patterns
displayed by these models. We conclude in Chap. 9 with a general discussion on the
mathematical and biological relevance of the results presented in this monograph.
While three chapters (i.e., Chaps. 2, 7 and 8) are dedicated exclusively to the
analytical and numerical approaches used to investigate these models, each of
the other chapters that review and summarise various hyperbolic/kinetic models
in 1D and 2D also contains one or multiple sub-sections “Analytical approaches



1.3 Overview 31

(f)

(a)

)x(ecaps)x(ecaps

)y(
ecaps

)y (
ecaps

)x(ecaps)x(ecaps

)e()d(

)c()b(

space (x)

space (x)

Fig. 1.11 Caricature description of the 2D patterns listed in Table 1.2. (a) Lanes; (b) Mills
(vortices); (c) Translated homogeneous solutions; (d) Stationary 2D pulses (aggregations); (e)
Travelling 2D pulses (aggregations); (f) Network patterns

for the investigation of patterns” that detail some analytical results (arbitrarily
chosen to cover the variety of the approaches that can be used to investigate these
kinetic/macroscopic models). Since transport (car/pedestrian) models in 1D or 2D,
and kinetic 2D Boltzmann-type models have been reviewed in more detail in many
other studies published in the literature [3, 24, 148, 152, 153, 157, 183–189], here we
pay particular attention to nonlocal 1D kinetic/hyperbolic models, which have been
investigated more intensely in terms of pattern formation over the last few years, but
which are not as well known as the previously mentioned models.

The monograph can be used for higher undergraduate and graduate courses
in mathematical modelling and pattern formation in self-organised biological
aggregations, as the reviews of various models and studies presented in each of
Chaps. 3–6 are complemented by detailed discussions of specific mathematical
techniques applied to this class of hyperbolic/kinetic models. The combined
modelling, analytical and numerical perspectives of hyperbolic and kinetic models
introduced in this monograph, allow for tailoring the material to different courses
focused either on modelling & numerical approaches, or on modelling & analytical
approaches. Moreover, the monograph can be used for developing new research
directions, by focusing on the open problems highlighted throughout the book.
Finally, the material presented here could also be used for reading seminars for
higher undergraduate or graduate students.
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To follow the topics discussed in this review, the reader should have some basic
mathematical knowledge of partial differential equations, functional analysis and
numerical approaches to partial differential equations. However, no prior knowledge
of modelling is assumed, and therefore, some aspects related to modelling and basic
investigations of patterns are presented in more detail.
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Chapter 2
A Short Introduction to One-Dimensional
Conservation Laws

2.1 Introduction

The simplest hyperbolic models derived to investigate the movement of animal
or human populations are the advection equations. The three main advantages of
these models (in contrast to the individual-based models described in the previous
chapter) are:

• the models can be easily calibrated and validated;
• the existent analytical techniques allow for the theoretical investigation of

different types of solutions exhibited by these models;
• the existent numerical schemes allow for accurate numerical approximations of

the solutions exhibited by these models.

The analytical investigation into the existence and uniqueness of different types
of solutions exhibited by one-equation hyperbolic models or by hyperbolic systems
of equations has been the subject of many theoretical studies; see, for example,
[1–11]. Therefore, in this chapter we do not aim to give a comprehensive review
of the theory behind the hyperbolic equations and systems of equations; for such
a review we refer the reader to [4, 5, 7, 12, 13]. Rather, we aim to briefly review
some general aspects necessary to understand the various types of solutions (and
patterns) exhibited by the models discussed throughout this monograph. Although
this brief review focuses only on 1D local models, it is necessary to have it here
before we discuss more complex local and nonlocal models, for which the theory is
more complex (and not always fully developed).

The general advection equations that we will discuss in Chap. 3 are

∂u

∂t
+ ∂H(u)

∂x
= R(u), (2.1a)

u(x, 0) = u0(x). (2.1b)
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In the context of biological behaviours, u = u(x, t) ∈ R describes the density of
a population at position x and time t (with x, t ∈ R and t ≥ 0), H(u) : R → R

is a nonlinear function describing the advective movement (the “flux”), and R(u) :
R → R is a reaction term describing population dynamics as a result of birth and
death processes, or a term describing the rate at which population enters or leaves
the domain. Equation (2.1) can be derived using a “flow” approach [12] or, as we
will see in Chap. 4.2, a correlated random walk approach [14]. The “flow” approach
assumes that the rate of change of the density u in any fixed subdomain D ⊂ R is
given by the total population density entering or leaving the domain (i.e., flow H(u))
through the boundary ∂D, and the birth and death (R(u)) of individuals inside the
subdomain :

d

dt

∫
D

u(x, t)dx = −
∫

∂D

H(u(x, t)) · μdσ(x)+
∫

D

R(u(x, t))dx. (2.2)

Here, μ is the outward normal to the boundary ∂D, and dσ(x) is the surface
measure. Using Gauss’s divergence theorem, this equation can be written as

d

dt

∫
D

u(x, t)dx = −
∫

D

div(H)dx +
∫

D

R(u(x, t))dx. (2.3)

Since this equation holds for any (infinitesimal) sub-domain D ∈ R, we can ignore
the integral and recover equation (2.1).

In general, Eq. (2.1) can be written in the quasilinear form

∂u

∂t
+ h(u)

∂u

∂x
= R(u). (2.4)

Here, h(u) = H ′(u) is the advection velocity. For smooth solutions, Eqs. (2.1)
and (2.4) are equivalent. However, for discontinuous solutions the transport term
will be the product of a discontinuous velocity h(u) and a distributional derivative
∂u/∂x. Therefore, while the quasilinear equation (2.4) is meaningful for continuous
functions, Eq. (2.1) is meaningful also for discontinuous solutions interpreted in a
distributional sense [4].

In regard to the application of these models to the movement of biological
populations, we remark that the simplest quasilinear models (2.4) consider a
constant advection velocity h(u) = c and R(u) = 0. These models can be used
to study the movement of a population that has an initial density profile U(x). The
solution at time t is described by u(x, t) = U(x− ct) (which represents a travelling
wave solution, as it will be discussed later in this chapter). Figure 2.1 shows the
spatial movement, with velocity c, of such a population.

Throughout the rest of this chapter we will assume that R(u) = 0. In this case,
we note that the population density u is conserved, as

d

dt

∫
D

u(x, t)dx = H(u(∂Din, t))−H(u(∂Dout , t)) = inf low − outf low,

(2.5)
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Fig. 2.1 Schematic description of the transport (with velocity c) of an initial density profile U(z)

where ∂Din and ∂Dout are the inflow and outflow regions on the domain boundary
(in 1D these regions reduce to specific points, e.g., ∂Din = a and ∂Dout = b, for
D = [a, b]). For this reason, we refer to Eq. (2.1) as a conservation law.

The solutions of the hyperbolic equations (2.1) can be found using the method
of characteristics [12]. Note that the characteristics of a hyperbolic PDE are the
paths along which certain variables are conserved. For R(u) = 0, the solutions are
constant along the characteristic lines (x(t), t), with

∂x

∂t
= H ′(u(x(t), t)), x(0) = x0. (2.6)

The rate of change along these characteristics is

du(x(t), t)

dt
= ∂u

∂t
+ ∂u

∂x

dx

dt
= ∂u

∂t
+ ∂H(u)

∂x
= 0. (2.7)

If the characteristics speed H ′(u) is constant (i.e., H(u) is a linear function of u),
the characteristics are parallel lines. If the characteristics speed is density-dependent
(i.e., H(u) is a nonlinear function of u), the characteristic lines might intersect, and
the first intersection time T is given by

T = − 1

infx u′0(x)H ′′(u0(x))
, with inf

x
u′0(x)H ′′(u0(x)) < 0. (2.8)

Classical solutions exit only for t ≤ T . For t > T , solutions defined globally in time
can exist within a space of discontinuous solutions, where equation ut +H(u)x = 0
is interpreted in a distributional sense [4]. Therefore, in this case one has to ignore
the classical (continuous) interpretation of the solutions and focus only on weak
solutions. We will discuss this aspect in more detail in the next section, in the context
of systems of equations. In Chap. 7 we will discuss some numerical schemes that
can be used to approximate these classical/weak solutions (for single equations or
systems of equations).
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2.2 Fundamental Results for Systems of Conservation Laws

Since many of the models that will be discussed in Chaps. 3 and 4 are actually
described by two or more hyperbolic equations (e.g., for traffic models the equations
focus on changes in the density and speed of cars/pedestrians, while for populations
in 1D the equations focus on changes in the left- and right-moving individuals/cells),
in the following we present briefly the general theory behind conservation laws for
the more general case of hyperbolic systems (which can be easily reduced to the
scalar conservation laws discussed above). Our approach here follows closely the
exposition in [4, 11].

Let us then consider the following general system of n conservation laws:

∂u1

∂t
+ ∂H1(u1, . . . un)

∂x
= 0, (2.9a)

. . .

∂un

∂t
+ ∂Hn(u1, . . . , un)

∂x
= 0. (2.9b)

If we assume a smooth solution, and denote by u = (u1, . . . , un) ∈ R
n, H =

(H1, . . . , Hn) : Rn → R
n, and by J (u) ∈ R

n × R
n the Jacobian matrix associated

with this system,

J (u) := ∇H(u) =
⎛
⎜⎝

∂H1
∂u1

. . . ∂H1
∂un

. . .
∂Hn

∂u1
. . . ∂Hn

∂un

⎞
⎟⎠ ,

then we can re-write the non-linear hyperbolic system in the quasi-linear form

∂u
∂t
+ J (u)

∂u
∂x

= 0. (2.10)

Definition 2.1 We say that a function u(x, t) ∈ C1 is a classical solution for (2.10)
if and only if it satisfies system (2.10).

As discussed in the previous section, the discontinuous solutions of (2.9) need to be
interpreted in a distributional sense. In this case, we work with weak solutions:

Definition 2.2 We say that a function u(x, t) ∈ L
1
loc (locally integrable) is a weak

solution for (2.9) if and only if it satisfies the following equation

∫ ∫ [
u

∂φ

∂t
+H(u)

∂φ

∂x

]
dx dt = 0, (2.11)

for every φ ∈ C1
c (i.e., continuously differentiable with compact support).
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Note that these weak solutions are considered in the context of Sobolev spaces, on
which we define the weak derivatives [5]. For a summary of spaces used throughout
this study for hyperbolic and kinetic models (including the spaces discussed above,
C1, L1

loc, C1
c ), please see Table 2.1.

Table 2.1 Summary of spaces (over an arbitrary domain Ω) on which we discuss the solutions of
the hyperbolic/kinetic models reviewed in this monograph

Space Description

L
p(Ω) Space of all Lebesgue measurable functions f : Ω → R that satisfy∫

Ω
|f (x)|pdx < ∞.

L
1(Ω) Space of all integrable functions on Ω , obtained from L

p for the special
case p = 1.

L
1
loc(Ω) Space of locally integrable functions f : Ω → R (with Ω ⊆ R open

set).

L
2(Ω) Space of square integrable functions, obtained from L

p for the special
case p = 2.

L
2 is the only Hilbert space among the L

p spaces (for a definition of a
Hilbert space see below in this table). In the complex case, the inner
product on L

2 is 〈f, g〉 = ∫
Ω

f (x)g(x)dx.

L
∞(Ω) Space of essentially bounded measurable functions on Ω , obtained

from L
p in the limit case p →∞.

C(Ω) Space of all continuous real-valued functions f : Ω → R.

C1(Ω) Space of continuously differentiable functions.

C1
c (Ω) Space of continuously differentiable functions with compact support.

C∞c (Ω) Space of continuous functions with compact support, and which have
continuous derivatives of any order.

Wk,p(Ω)

(Sobolev space)
Sobolev space of all locally integrable functions f : Ω → R such that
for every multi-index α with |α| ≤ k, the weak derivative
Dα(f ) ∈ L

p(Ω).

The weak α-th derivative of f ∈ L
1
loc(Ω), is a function g ∈ L

1
loc

denoted as g = Dαf that satisfies
∫

f Dαφdx = (−1)|α|
∫

gφdx for all
test functions φ ∈ C∞c (Ω).

Hilbert space H A Hilbert space is a vector space H with an inner product
〈·, ·〉 : H ×H → K (with K = R or C), which is complete with respect
to the norm ||x|| := √〈x, x〉.

Hk(Ω):=Wk,2(Ω) Hilbert-Sobolev space obtained from the Sobolev space in the special
case of p = 2.

The Hilbert-Sobolev space has the inner product
〈f1, f2〉 := ∑

|α|≤k

∫
Ω

Dαf1D
αf2dx.

Banach space X A vector space X over R or over C, which is equipped with a norm and
which is complete with respect to that norm.

L
p spaces (including L

∞) are examples of Banach spaces. Any Hilbert
space is an example of a Banach space (but the converse is not true, as
not every norm comes from an inner product).

For these definitions, we use [5]
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Consider now the initial data

u(x, 0) = ū(x), ū ∈ L
1
loc. (2.12)

Definition 2.3 The Cauchy problem for a 1D system of conservation laws is given
by the system together with the initial data:

∂u
∂t
+ ∂H(u)

∂x
= 0, with u(x, 0) = ū(x). (2.13)

Definition 2.4 A function u(x, t) (with x ∈ R, t ∈ [0, T ]) is a weak solution of the
Cauchy problem (2.13) if u is continuous as a function from [0, T ] to L

1
loc, and the

restriction uR×(0,T ) is a distributional solution of (2.9) [6].

Definition 2.5 We say that system (2.10) is hyperbolic if for every u ∈ R
n, the

Jacobian matrix J (u) has n real eigenvalues. The system is strictly hyperbolic if the
real eigenvalues are all distinct:

λ1(u) < . . . < λn(u). (2.14)

If a system is strictly hyperbolic, then we can find dual bases of left eigenvectors
(i.e., row vectors (l1(u), . . . , ln(u))) and right eigenvectors (i.e., column vectors
(r1(u), . . . , rn(u))), which satisfy

J (u)ri (u) = λi(u)ri(u) and li(u)J (u) = λi(u)li (u), for i = 1, . . . , n.

(2.15)

For convenience, the eigenvectors are chosen to be normalised [15] such that

|ri | = 1, li · rj =
{

1 if i = j,

0 if i �= j.
(2.16)

For each pair of eigenvalues and corresponding right eigenvectors (λi(u), ri (u)),
there is an associated characteristic field.

Definition 2.6 The i-th characteristic field is called linearly degenerate if

∇λi(u) · ri(u) = 0, for all u ∈ R
n. (2.17)

The i-th characteristic field is called genuinely nonlinear if

∇λi(u) · ri (u) �= 0, for all u ∈ R
n. (2.18)

Here,∇λi(u)·ri (u) is the directional derivative of λi in the direction of eigenvectors
ri . In the linearly degenerate case, the eigenvalue λi is constant along each curve
corresponding to ri . Note that linear systems can generate only linearly degenerate
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fields. Nonlinear systems can generate both linearly degenerate and genuinely
nonlinear fields.

The assumption that the i-th characteristic field is either linearly degenerate or
genuinely nonlinear is necessary for the global existence results of solutions of (2.9).
With the help of this assumption, Glimm [16] showed the existence of global weak
solutions for the general hyperbolic system (2.9) with initial data having small
bounded variation (BV).

Definition 2.7 Consider a function u : D × [0,∞)→ R
n. The total variation of u

is defined as

Tot.Var.(u) = sup
N

{
N∑

j=1

|u(xj , t)− u(xj−1, t)|}, (2.19)

where the points xj ∈ D ⊆ R are such that x0 < x1 < . . . < xN . If the right-hand
side of (2.19) is bounded we say that function u has bounded variation.

Returning to global solutions we note that to construct them, there are two main
approaches (we will mention later another approach based on vanishing viscosity
approximations [17]): (a) the Glimm scheme [16, 18]; (b) the wave-front tracking
[19, 20]. Both approaches lead to a sequence of approximate solutions, whose
convergence is shown using a compactness argument based on uniform bounds for
the total variation of the solution (with the assumption that the total variation of the
initial data is sufficiently small). Before we discuss briefly these two approaches,
we need to define first the Riemann problem, which is the building block for these
approaches.

Definition 2.8 The Riemann problem of a conservation law is the initial value
problem with piecewise constant initial data:

∂u
∂t
+ ∂H(u)

∂x
= 0, (2.20a)

u(x, 0) =
{

ul, x ≤ 0,

ur, x > 0.
(2.20b)

We note that solutions to more general Cauchy problems can be constructed by
piecing together different solutions of Riemann problems. For simplicity, one can
assume that the discontinuity occurs at x = 0 (see Fig. 2.2).

Finally, we remark that the solution of the Riemann problem is self-similar: if
u(x, t) is a solution, then the rescaled function u(cx, ct) is also a solution, for any
constant c > 0. Therefore, one can consider solutions of the form u(x, t) = U(x/t).
Moreover, the solutions of a Riemann problem are invariant under the rescaling of
the independent variables [15]: if u(x, t) is a solution of ∂u/∂t + ∂H(u)/∂x = 0,
then for any θ > 0, uθ (x, t) := u(θx, θt) is also a solution.
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Fig. 2.2 Piecewise initial
condition for the Riemann
problem (2.20)

u(x,0)

u

x0

lu

r

We now return to the two approaches mentioned above that can be used to
construct global weak solutions [4, 6, 15]:

• Glimm scheme. Consider a fixed grid with mesh sizes Δt and Δx. Consider initial
data (u(x, 0)) that is assumed to be a piecewise constant function with jumps
at the grid points. The corresponding Riemann problem (i.e., the initial value
problem with piecewise constant initial data; see also Eqs. (2.20)) is solved by
constructing solutions up to some time Δt sufficiently small such that the waves
that are generated by different Riemann problems do not interact. Then, solution
u(·,Δt) is approximated by a piecewise constant function with jumps at the grid
points. The procedure is repeated by solving the new Riemann problems at each
of these jump points, thus propagating the solution up to 2Δt , 3Δt , etc.

• Wave-front tracking. As before, start with initial data approximated by a piece-
wise constant function, and solve the Riemann problem approximately, within the
class of piecewise functions. At the first time when two waves interact, the new
Riemann problem is approximately solved by a new piecewise constant function,
until the next time when the waves interact. And the process is repeated. Note
that while Glimm’s scheme requires a priori specification of the points where
the Riemann problem is to be solved, the wave-front tracking technique does not
require prior specification of the location of jumps.

Having constructed a sequence of approximate solutions uv (using either of the two
approaches discussed above), then one needs to extract a subsequence converging
in L

1
loc to a weak solution u(x, t) of the Cauchy problem, and using Helly’s

compactness (or selection) theorem the existence of weak solutions can be proven.
For a detailed discussion of these two approaches (including a proof of Helly
compactness theorem), we refer the reader to [4, 6].

As mentioned above, a different approach to show the existence of solutions
uses the vanishing viscosity approximations [15, 17], where the solutions of the
conservation law are obtained as limits for ε → 0 from solutions of the parabolic
equations

∂uε

∂t
+ J (uε)

∂uε

∂x
= ε

∂2ux

∂x2 , with ε � 1. (2.21)
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The complexity of this approach arises from the possible discontinuity of function
u, which makes it difficult to prove the convergence uε → u near the discontinuity
points. We note that some of the earliest proofs of existence of solutions using the
vanishing viscosity method (for the scalar case) were given by Oleinik [21] in 1D,
and Kruz̆kov [22] in higher dimensions. We will return to the study by Kruz̆kov[22]
in Sect. 2.2.2, in the context of entropy conditions for the uniqueness of weak
solutions. Another approach that focuses on BV solutions via vanishing viscosity
was considered in [17]. Since the purpose of this study is not to discuss the solutions
of the parabolic equations, we refer the reader to [15] for a detailed exposition on the
vanishing viscosity approach. However, before we conclude this section, it is worth
mentioning here that the vanishing viscosity approach does not consider Riemann
problems, but rather focuses on viscous travelling profiles (i.e., travelling waves for
the viscous equation (2.21)) that are solutions of the form uε(x, t) = Uε(x − λt),
λ ∈ R, and lie on a suitable centre manifold [15].

In the following subsections we will discuss briefly the different types of
solutions exhibited by linear and nonlinear hyperbolic systems, including travelling
front solutions.

2.2.1 Travelling Waves, Rarefaction Waves, Shocks
and Contact Discontinuities

Consider the following initial value problem for a linear n-dimensional system with
constant coefficients (i.e., J =constant matrix):

∂u
∂t
+ J

∂u
∂x

= 0, u(x, 0) = ū(x). (2.22)

At the end of the previous section we have mentioned the travelling wave
solutions for a scalar conservation law. Note that these travelling waves could be
either travelling pulses (as in Figs. 2.3, 2.1) or travelling fronts (as in Fig. 3.6),
depending on the boundary conditions at the end points of the domain.

Definition 2.9 A travelling wave solution is a solution of the form u(x, t) = U(x−
λt), where λ ∈ R is the travelling speed of the wave.

Next we show that the solution of the quasilinear system (2.22) with constant
coefficients can be written as a sum of travelling waves. Assume that this system
has n distinct real eigenvalues λ1 < . . . < λn. Using the basis of right and left
eigenvectors defined by (2.15)–(2.16), and multiplying Eq. (2.22) on the left by li ,
i = 1, . . . , n, one can decouple Eq. (2.22) into n scalar Cauchy problems [6]:

∂ui

∂t
+ λi

∂ui

∂x
= 0, with ui := liu. (2.23)



46 2 A Short Introduction to One-Dimensional Conservation Laws

0 0

(a) (b)

u(x,t1)

xx

t

u(x,0)

u(x,t2)

u(x,t1)

u(x,0)

t

Fig. 2.3 (a) Propagation of initial data of linear system (2.22) along the characteristic lines; (b)
Propagation of initial data for nonlinear or quasi-linear systems (2.9) or (2.10). The nonlinearity
of the model can lead to the intersection between different characteristic lines, at which time-point
a shock (discontinuity) forms. Moreover, the nonlinearity of the model can lead to changes in the
shape of interacting waves [6]

This equation can be solved explicitly, and its solution has the form of a travelling
wave (formed of sums of n waves, each travelling with one of the characteristic
speeds λi ):

u(t, x) =
n∑

i=1

ūi(x − λi t)ri . (2.24)

Simple calculations confirm that this function does indeed satisfy Eq. (2.22). Hence,
this travelling wave solution is a superposition of the n travelling wave solutions
ūi(x − λi t)ri . Since the hyperbolic system has constant coefficients, these travel
waves propagate without distortion along the characteristic lines, with speeds λi (see
Fig. 2.3a). We emphasise again that for the linear system (2.22) the characteristics
are straight lines. However, for systems with flux terms (H ) that depend explicitly
on x (or systems with reaction terms), the characteristics are no longer straight lines.

Returning now to the quasi-linear system (2.10), we note that if the wave
propagation speed depends on the density u, the profile of the solution will change
in time. In particular, the waves can interact with each other creating new waves.
This nonlinear effect is explained in [6] with the help of the i-th component
of the gradient of u with respect to the basis of eigenvectors (r1(u), . . . , rn(u)):
ui

x := ∂ui/∂x = li · (∂u/∂x). This allows to us to re-write the derivatives of u as
follows:

∂u
∂x

=
n∑

i=1

ui
xri(u),

∂u
∂t
= −

n∑
i=1

λi(u)ui
xri(u). (2.25)
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Differentiating first equation with respect to t and second equation with respect to
x, and equating the terms leads to

∂ui
x

∂t
+ ∂(λiu

i
x)

∂x
=

∑
j>k

(λj − λk)(li ·
(
(∇rk)rj − (∇rj )rk

)
u

j
xuk

x. (2.26)

The difference in speed λj−λk describes the rate at which the j -waves and k-waves

interact with each other, u
j
xu

k
x describes the product of the density of j -waves and

k-waves, and (∇rk)rj (or (∇rj )rk) is the directional derivative of rk (rj ) in the
direction of rj (rk). Overall, the term under the sum in (2.26) describes the amount
of i-waves produced by the interactions of j -waves with k-waves [6].

Definition 2.10 A wave for which the characteristics with different slopes (that
start from a line) fan out in the direction t > 0 is called a rarefaction wave
(or expansion wave). A wave for which the characteristics (of different slopes)
fan out from a point is called a centred rarefaction wave. A wave for which the
characteristics (of different slopes) converge in the direction t > 0 is called a
compression wave. A wave that forms a surface that separates zones of different
density is called a contact discontinuity. A description of these types of waves is
shown in Fig. 2.4.

Note that linearly degenerate fields lead to contact discontinuities, while gen-
uinely nonlinear fields lead to rarefaction waves or shock waves (depending on
whether the characteristics are divergent or convergent; see Fig. 2.4). Moreover, we
emphasise that the nonlinear interactions in the model dynamics lead to a decay
of the rarefaction waves, and to a steepness of the compression waves, which might
eventually lead to the formation of shocks in finite time [6]. To discriminate between
the shocks and the rarefaction waves one has to introduce some extra conditions,
which will be discussed in the next section.

2.2.2 The Rankine-Hugoniot Jump Condition

To be able to understand the behaviour of the solutions of the nonlinear system (2.9)
at discontinuities (particularly the relation between the solution states on both sides
of a shock wave), we start with a simplified problem: the Riemann problem. We say
that a function

U = u(x, t) =
{

ul, for x < λt,

ur, for x > λt
(2.27)

is a weak solution of (2.20a) if and only if the following condition holds [2]:

λ(ur − ul) = H(ur)−H(ul). (2.28)
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Fig. 2.4 Caricature description (in the (x, t) plane) of characteristic lines for the three types
of wave solutions that could be exhibited by a Riemann problem (2.20), together with a visual
description of these waves (in the (x, u) plane). (a, a’) centred rarefaction waves (where the
characteristic lines of the i-th field diverge); (b, b’) contact discontinuity (where the characteristic
lines travel parallel); (c, c’) shock waves (where the characteristic lines converge along a shock
line)

Equation (2.28) is called the Rankine-Hugoniot jump condition. This condition
connects the left (ul) and right (ur) states of the solution u with the speed (λ =
λ(u)) of the discontinuity. We can re-write the jumps in u and H(u) (across the
discontinuity) as follows: [u] = ur − ul and [H] = H(ur)−H(ul).

2.2.3 Admissibility Conditions: Entropy, Vanishing Viscosity
and Speed Stability

As we have seen above, nonlinear hyperbolic equations and systems may loose their
regularity: solutions that are initially smooth may become discontinuous at some
finite time. After the characteristic lines cross (as in Fig. 2.3b), there are points
where multiple characteristics lead back to t = 0, and thus the solution can take
multiple values at that point. Therefore, the weak solutions are non-unique, and
one has to use various additional conditions to select a unique physically realistic
solution. The conditions used to select this unique solution are called admissibility
conditions. In the following, we will discuss three such conditions [6]:
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1. Entropy Conditions. To introduce these conditions, let us first define the entropy
and the entropy flux:

Definition 2.11 A function η : Rn → R is called an entropy for system (2.9),
with entropy flux q : Rn → R, if for all u ∈ R

n the following condition is true:

∇η(u) · ∇H(u) = ∇q(u). (2.29)

Entropy Condition A weak solution of (2.9) is entropy-admissible if the
following inequality holds true (in the sense of distributions) for any pair (η, q)
of convex entropy and corresponding entropy flux [6]:

∂η(u)

∂t
+ ∂q(u)

∂x
≤ 0. (2.30)

This admissibility condition is useful only if one knows a nontrivial convex
entropy solution of the conservation law (2.20a) [6]. In the following, we focus on
two other types of admissibility conditions more amenable to direct applications.

Kružkov Entropy Condition A different type of entropy condition that is more
convenient to work with is the Kružkov entropy condition, which combines the
definition of an entropy condition with the one of a weak solution [23]. This
condition was introduced in the context of scalar conservation laws:

∂u

∂t
+ ∂H(u)

∂x
= 0, with (x, t) ∈ D = R

n × (0,∞),

u(x, 0) = u0(x). (2.31)

Definition 2.12 A function u ∈ L∞(Rn× (0,∞)) is a Kruz̆kov entropy solution
for (2.31) if the following inequality holds for all constants k and all non-negative
test functions φ ∈ C∞c (R× (0,∞)):

∫ ∫ (
|u− k|φt + sign(u− k)

(
H(u)−H(k)

)
φx

)
dx dt ≥ 0. (2.32)

Equivalently, we can say that u is a Kruz̆kov entropy solution if the following
inequality holds in distributional sense for all constants k:

∂

∂t
|u− k| + ∂

∂x
sign(u − k)

(
H(u)−H(k)

)
≤ 0. (2.33)

Note that functions ηK := |u− k| and qK := sign(u − k) · (H(u)− H(k)
)

are similar to the (entropy,entropy flux)=(η, q) pairs defined above in the context
of entropy solutions. However, the pair (ηK, qK ) is not of class C1.
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The first proof of uniqueness of the entropy solutions for scalar conservation
laws was given by Kružkov [22] (and uses the Kružkov entropies together with a
technical argument of doubling variables):

Theorem 2.1 Consider u and v two entropy solutions for the system (2.31), such
that ||u||L∞(D), ||v||L∞(D) ≤ M . Then

∫
|x|<R

|u(x, t)− v(x, t)|dx ≤
∫
|x|<R+Lt

|u(x, 0)− v(x, 0)|dx, (2.34)

for every R > 0, t > 0, and with L the Lipschitz constant for H(u): |H(z) −
H(w)| ≤ L|z−w| for every z,w ∈ [−M,M].
Therefore, if u(x, 0) = v(x, 0) then u = v, and so the entropy solutions are
unique if they exist.

2. Vanishing Viscosity Admissibility Condition. Based on the uniqueness results
for solutions of parabolic equations, another approach to investigate the unique-
ness of solutions for hyperbolic equations would be to transform the hyper-
bolic system (2.9) into a parabolic system by adding a small viscosity term
ε(∂2u/∂x2):

∂u
∂t
+ ∂H(u)

∂x
= ε

∂2u
∂x2 . (2.35)

Definition 2.13 A weak solution u of (2.9) is called admissible in the vanishing
viscosity sense if there is a sequence of smooth solutions uε of (2.35) which
converge to u in L

1
loc as ε → 0 [6].

It has been shown in [17] that the solutions of (2.35) are defined globally in
time, satisfy uniform bounded variation estimates independent of ε, and depend
continuously on the initial data (with a Lipschitz constant independent of time t

and viscosity parameter ε). Moreover, in the limit ε → 0, the solutions of (2.35)
converge to a unique limit that is a solution of (2.9) [17]. In the case where
J (u) = ∇H(u) is the Jacobian of the flux H(u), the vanishing viscosity limits are
the unique entropy weak solutions of the hyperbolic system (2.9) [17]. This way,
the vanishing viscosity limit would help single out the unique “good” solution of
the Cauchy problem that satisfies the entropy conditions.

Remark 2.1 The introduction of artificial viscosity into a hyperbolic model is
useful not only from an analytical point of view, but also from a numerical point
of view. Numerically, the goal of introducing artificial viscosity is to reduce the
oscillations that form behind the shock, for most finite difference methods; see
also Fig. 7.2. This approach has the advantage of being easy to incorporate into an
existing numerical scheme, and preserves the high-order accuracy of the scheme
[24].
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3. Speed Stability Conditions. One can derive admissibility conditions by
perturbing the initial piecewise state (2.20b) through the insertion of an
intermediate state u∗ ∈ [ul, ur ] (we focus for now on the one-equation
model) [6]. Thus, the original shock is split into two other shocks, each
satisfying the Rankine-Hugoniot conditions. The L

1-distance between the
original solution and the perturbed one does not increase in time if [6]:

speed of jump behind u∗ ≥ speed of jump ahead u∗,

which translates into

H(u∗)−H(ul)

u∗ − ul

≥ H(ur)−H(u∗)
ur − u∗

. (2.36)

This condition was generalised by Liu [25] to hyperbolic systems by defining
s → Si(s)(ul) to be the i-th shock curve through ul (i.e., the curve of all states u
that can be connected with ul via a shock in the i-th field) [6]:

Liu Admissibility Condition [25] Consider a point ur on the i-th shock curve
through ul: ur = Si(s)(ul), for some s ∈ R. The shock with left state ul and
right state ur satisfies the Liu admissibility condition if its speed is less or equal
to the speed of any smaller shock that connects ul to an intermediate state along
the same i-th shock curve, u∗ = Si(σ )(ul), for σ ∈ [0, s]:

λi(ul, ur) ≤ λi(ul, u∗). (2.37)

A different admissibility condition for hyperbolic systems of conservation
laws was introduced by Lax [6, 26]:

Lax Admissibility Condition [26] A shock of the i-th family that connects
the states ul and ur, and travels with speed λ = λi(ul, ur) satisfies the Lax
admissibility condition if:

λi(ul ) ≥ λi(ul, ur) ≥ λi(ur). (2.38)

Note that for contact discontinuities, the Lax entropy condition holds with
equalities:

λi(ul) = λi(ul, ur) = λi(ur). (2.39)

We conclude this Chapter by giving the following uniqueness result for the
solutions to the Riemann problem (2.20a)–(2.20b) [27].
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Theorem 2.2 (Evans [27]) Consider the Riemann problem (2.20a)–(2.20b), with
H(u) a uniformly convex function. Then there exists a unique weak admissible
solution for this Riemann problem. Moreover:

• if ul > ur, the admissible solution contains a shock curve of speed λ = [H]/[u].
In this case, the solution is given by

u(x, t) =
{

ul, x < λt,

ur, x > λt.
(2.40)

• if ul < ur, the solution contains a rarefaction wave. In this case, the solution is
given by

u(x, t) =
⎧⎨
⎩

ul, x < H′(ul)t,

(H′)−1, H′(ul)t < x < H′(ur),

ur, x > H′(ur)t.

(2.41)
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Chapter 3
One-Equation Local Hyperbolic Models

3.1 Introduction

The simplest macroscopic hyperbolic models derived to investigate the movement
of animal and human populations are advection and advection-reaction equations.
These models describe the evolution of populations when random movement
is negligible compared to directed movement. One-equation models have been
employed to investigate the movement and growth of animal populations [1, 2],
pedestrian and car traffic [3–7], or the formation of animal trails [8]. We mention
here car traffic models, since they were the starting point for models for pedestrian
dynamics. More precisely, while traffic models started being developed since the
1950s (see [3, 9]), the interest in developing models for crowd/pedestrian movement
started about a decade later (see [10, 11]), being motivated by the acknowledgement
of safety issues related to human traffic: evacuation of pedestrians in case of danger
[12, 13], structural design of buildings, stadiums or bridges [14, 15]. We should note
that more recent studies on pedestrian movement emphasised the need to consider
individual social and psychological characteristics (e.g., physical and cognitive
abilities, emotional condition, motivation) [16, 17] when investigating the collective
movement of pedestrians. While these aspects could be easily incorporated into the
kinetic theory of active particles (which will be reviewed in Chap. 6), they are not
usually taken into consideration by the models investigated in this monograph.

The general advection-reaction equation that will be discussed throughout this
chapter in various contexts related to animal, human, or car movement is given by:

∂u

∂t
+H ′(u)

∂u

∂x
= R(u), u(x, 0) = u0(x). (3.1)

Here, u = u(x, t) : R × R
+ → R is the population density (with x, t ∈ R and

t ≥ 0), H(u) is a real nonlinear function describing the advective movement, and
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R(u) is a real reaction term describing population growth as a result of birth and
death processes. Note that the reaction term is used to model group behaviours
when the movement occurs on a timescale similar or slower than the timescale
of organisms growth [1, 2]. It can also model group behaviours when there is no
population dynamics (i.e., no birth or death), but organisms can enter or leave a
certain domain [8].

In the following we start reviewing simple models with no reaction (R(u) = 0).
First, we present in more detail some examples of one-equation models for the
evolution of the density of pedestrians/cars with different velocity functions: from
constant or linear H ′(u) functions, to more complex multi-regime H(u) functions
describing different pedestrian behaviours. The traffic models in Sects. 3.2 and 3.3
are described by conservative advection equations. While the majority of examples
discussed in Sects. 3.2 and 3.3 focus on single roads, we also mention briefly 1D
models describing traffic on networks of roads. In Sects. 3.5 and 3.6 we review
some advection-reaction models for car/pedestrian traffic and animal dynamics. In
Sect. 3.7 we discuss in more detail an analytical approach used to investigate the
speed of travelling wave patterns.

Remark 3.1 Before we continue with the discussion of different types of hyper-
bolic models for car/pedestrian traffic, we need to discuss the relevance of these
continuous models at different spatial scales. The microscopic models consider
the behaviour of individual cars/pedestrians under the influence of neighbouring
cars/pedestrians. In these cases, the distance between cars/pedestrians is the same
order of magnitude as the size of cars/pedestrians (and the spatial scale of the
dynamics of the system). Note that these models could also incorporate different
internal and external factors that might influence drivers/pedestrians behaviours
(e.g., individual time pressure, presence of obstacles; see [18]). The mesoscopic
models focus on the probability distribution of cars/pedestrians over a large
spatial domain. These models investigate the impact of drivers/pedestrians attitudes
and behaviours (e.g., their psychological states, or acceleration/braking and lane-
changing behaviours, as given by probabilistic terms) on the overall dynamics of
car/pedestrian aggregations, without distinguishing individual space-time dynam-
ics [19]. Finally, the macroscopic models focus on the collective dynamics of
cars/pedestrians, ignoring any individual behaviours. Again, the dynamics occurs
on a spatial domain much larger than the magnitudes of cars/pedestrians and the
distances between them. Returning to the discussion in Chap. 1 on the number of
particles/cells/animals required for a mesoscopic/macroscopic model to be relevant,
we note that even if the number of cars/pedestrians is usually small (e.g., in the
order of tens or hundreds), continuum models have been used very often to describe
the behaviours of these cars/pedestrians since existent analytical techniques can be
applied to gain a better understanding of these models. It should be emphasised
that there are a few studies which focus on the equivalence between microscopic
models for car dynamics (in Lagrangian coordinates) and macroscopic models for
the same car dynamics (in Eulerian coordinates) [20, 21]. While the fundamental
diagram for the steady-state relation between speed and car density (discussed below
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in Fig. 3.3a, b) is usually the same for the two classes of models, other aspects are
different (e.g., the string stability condition for a second-order discrete car-following
model in [20] was shown to be different from the linear stability condition of an
equivalent continuum model).

3.2 First-Order Traffic Models

The advection equations discussed in Chap. 2 were initially derived in the context
of car traffic [3, 4, 22], but they were later applied to pedestrian traffic [4, 23–26], or
to combined car and pedestrian traffic [6]. For this reason, we briefly discuss them
in the following. The generic equations are

∂u

∂t
+ ∂(uv)

∂x
= 0, (3.2)

where u = u(x, t) : R × R
+ → R describes the density of cars or pedestrians at

position x and time t , and v is their velocity. If the velocity is a constant (v ∈ R),
or if it is a function of time and space only (v = v(x, t) : R × R

+ → R) or a
function of density only (v = v(u(x, t))), then Eq. (3.2) describes an instantaneous
velocity adaptation. More complicated models with non-local velocities, which take
into account the velocities of other cars further away have been investigated by
Helbing [4] and Helbing et al. [27]. (We will briefly return to these nonlocal models
in Chaps. 5 and 6.) If v = v(x, t), applying the so-called total derivative (which
describes the temporal changes in a coordinate system moving with velocity v) [4],

dv

dt
= ∂

∂t
+ v

∂

∂x
, (3.3)

leads to the following form of (3.2):

dvu

dt
+ u

∂v(x, t)

∂x
= 0. (3.4)

Equation (3.4) says that density increases in time when the velocity decreases along
the domain (i.e., ∂v/∂x < 0). These models are sometimes referred to as “first-order
models”, being described by a transport equation for the pedestrian/vehicle density
and a closed equation for the instantaneous velocity v(u).

In regard to the velocity v(u), these hyperbolic models generally assume that
there is a speed limit vmax . If there are no obstacles on the road, then cars/pedestrians
travel at this maximum speed: v = vmax [4, 33]. On crowded roads, the speed is
reduced. These two assumptions are incorporated into the equation for the speed as
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Fig. 3.1 Caricature description of various velocity functions v(u). (a) Single stage velocities:
(i) linear velocity, as introduced in [3, 28]—see also Eq. 3.5; (ii) logarithmic velocity, as given
by Eq. (3.6); (b) Multi-stage velocity functions: (i) velocity function introduced in [29, 30];
(ii) velocity function introduced in [31]. The shape in (b)(ii) is consistent with experimental
measurements in [32]

follows (see also Fig. 3.1a):

v(u) = vmax

(
1− u

umax

)
, for 0 ≤ u ≤ umax, (3.5)

with umax ∈ R the maximum (car/pedestrian) density. A slightly different speed
function, which also accounts for the slow-down at high densities is

v(u) = vmax ln
(umax

u

)
, for umin ≤ u ≤ umax, (3.6)

with vmax = v∗max/ ln(umax/umin). Many models for traffic flow that incorporate
such density-dependent speeds have been shown to exhibit shocks, which can
propagate either upstream or downstream [4, 34].

While linear speeds are easier to investigate analytically, they cannot always fit
observation data for pedestrian movement [14, 29, 32]. Therefore, the authors in
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[14, 25] considered the following nonlinear velocity to account for the influence
(on the walking velocity of pedestrians) of various physical, physiological and
psychological factors represented by the geographical area and the purpose of travel
(e.g., a rush hour vs. leisure time in Europe, USA or Asia):

v(u) = vM

(
1− e

−γ
(

1
u
− 1

uM

))
. (3.7)

Parameter γ is related to the purpose of travel, while the jam density uM is given by
uM = 1/(βGSm). Here, Sm is the mean surface occupied by a motionless pedestrian,
and βG is the coefficient for the geographical area occupied by a human body
(e.g., βG = 1.075 for European and American pedestrians, βG = 0.847 for Asian
pedestrians) [14]. Finally, vM is the average speed, which depends on the geographic
area and the purpose of travel. Note that Sm and βG are related to the individual’s
repulsion area, an aspect which will be discussed again in Chap. 5 in the context of
nonlocal models.

In general, for scalar conservation laws, if the initial density u(x, 0) ∈
[umin

0 , umax
0 ], for all x ∈ R, then the solution stays within the same bounds:

u(x, t) ∈ [umin
0 , umax

0 ] for all t ≥ 0, x ∈ R [35]. In [31] this is referred to as
the maximum principle for nonlinear hyperbolic equations. However, this principle
cannot account for the people behaviour in panic situations, where the maximum
density increases beyond the bounds for the initial density. To address this situation,
researchers have introduced models with multi-stage velocity functions (see
Fig. 3.1b(ii)). For example, Colombo and Rossini [31] constructed analytically
a multi-stage velocity function similar to the one described in Fig. 3.1b(ii).
This particular shape of v(u) is the result of certain assumptions on the flow
H(u) = uv(u) [36]:

• H(u) = 0 for u ∈ {0, umax};
• H(u) ∈ W 1,∞([0, umax] × [0,∞) (finite speed of propagation of waves);
• H(u) is strictly concave for u ∈ [0, uc] and u ∈ [uc, umax] (to avoid mixed

waves);
• maximum flow H(u) calculated during panic situations (i.e., u ∈ (uc, umax) is

lower than the maximum flow calculated during normal situations (u ∈ (0, uc));
• H(u) has a local minimum at u = uc, describing an increase in the flow when

entering a panic regime.

Colombo and Rossini [31] focused mainly on the analytical investigation of (3.2)
and showed that in addition to classical shocks and rarefaction waves (see definitions
in Chap. 2), this velocity function leads to the formation of nonclassical shocks
(i.e., discontinuity solutions that satisfy the Rankine-Hugoniot conditions, but not
necessarily Liu’s entropy condition; for details see Chapter III in [35], and our
discussion of these topics in Chap. 2). Figure 3.2 shows a caricature of a nonclassical
shock solution, which can describe panic situations that arise when individuals face
a higher density than the one they are in. Note that this solution does not satisfy the
maximum principle as defined in [31].
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Fig. 3.2 Example of a time
snapshot (t = 1) for a
non-classical shock solution,
as observed in [31], when the
change in density is described
by Eq. (3.2), the velocity v(u)

is given by a function similar
to the one depicted in
Fig. 3.1, and the initial
condition is u(0, x) = ul for
x < 0 and u(0, x) = ur for
x > 0. Note that for these
non-classical shocks to occur
it is necessary that ur > ul

t=1

u

u

ul

r

0 L+L−

Hughes [29] also considered a multi-stage velocity function (see Fig. 3.1b) to
describe a particular situation when the speed is almost constant at low densities,
and concave-shaped for intermediate densities. Moreover, the velocity takes into
account pedestrian discomfort that arises at very high densities. Thus, Eq. (3.2) can
be modified as follows:

∂u

∂t
+ ∂

∂t

(
ug(u)v2(u)v̄

) = 0, (3.8)

where g(u) accounts for the discomfort, and the unit vector v̄ gives the direction
of movement. The simplest case would be to choose v(u) as described by (3.5),
and g(u) = 1. However, Hughes [29] chose a multi-stage velocity function (see
Fig. 3.1b)

v(u) =

⎧⎪⎪⎨
⎪⎪⎩

A, for u < u0,

A(u0
u

)1/2, for u0 < u ≤ uc,

A( u0uc

umax−uc
)1/2( umax−u

u
)1/2, for uc < u ≤ umax.

(3.9)

Under normal conditions, u varies between 0 and uc. However, under exceptional
panic conditions, density u can cross the threshold uc and increase up to umax (the
maximum density in exceptional conditions of panic). Note that v(umax) = 0, and
thus any movement stops at very high densities. Moreover, there is a discontinuity in
the gradient of the speed at u = uc, which is not realistic. To model the discomfort
of pedestrians in dense crowds, Hughes [29] considered

g(u) =
{

1, for u < uc,

u(umax−uc)
uc(umax−u)

, for uc < u < umax.
(3.10)
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Di Francesco et al. [37] considered a model similar to (3.8), with the unit vector
v̄ assumed to be parallel to the gradient of a potential φ(x, t), which describes the
direction of motion of pedestrians at each point in the domain. This potential is
given by the Eikonal equation

|∇φ| = 1

v(u)
. (3.11)

Note that the choice v(u) = 1 − u can lead to a possible blow-up of |∇φ| when
u → 1, rendering the analysis very difficult. Di Francesco et al. [37] tried to address
this problem by adding a small viscosity term to the Eikonal equation. They proved
the existence and uniqueness of entropy solutions for the regularised equation.

A different class of transport models focus on the concept of “apparent density”
felt by pedestrians, which depends on the local gradient of pedestrians’ density [38].

u∗ = u
(

1+ η(1− u)∇u · v̄
)
, (3.12)

where u∗ denotes the apparent density, v̄ is the direction vector and η > 0. If the
local gradient of density is positive, then the apparent density is larger than the real
density (u∗ > u). This leads to traffic jams (associated with shocks). If, on the other
hand, the local gradient is negative, then u∗ < u. This leads to the formation of
vacuum areas (associated with rarefaction waves) [14]. Although De Angelis [38]
discussed possible numerical schemes to investigate the resulting models, numerical
solutions were not shown, the results being mainly analytical.

The transport models (3.2) can be used to investigate the interactions between
pedestrians and their environment, such as moving bridges. In this case, for example,
velocity v can depend not only on the density u but also on the lateral acceleration
of the bridge (z): v = v(u, z) [14]. More complicated dynamics can include space
dislocation (δ) and time delay (τ ): v = v(u(x+ δ, t))g(z(x, t − τ )). Note that these
models (with space dislocation) are a particular case of nonlocal models, where the
changes in velocity are given by nonlocal kernels; we will discuss nonlocal models
in Chap. 5.

Many of the models described previously have been investigated in terms of exis-
tence, uniqueness and stability of solutions to the corresponding Cauchy problems
(see Sect. 2.2 for a discussion of analytical approaches used to investigate these
transport models). Moreover, some of those models have also been investigated in
terms of optimal solutions that minimise the time of travel between two points, in
the presence or absence of a time-dependent highway toll [39]. In fact, optimisation
approaches are used very often in the context of car traffic on networks of roads,
to choose the optimal travelling route between two points. The density-dependent
speed models for traffic flow network have the general form [40, 41]:

du

dt
+ ∂vij (u)u

∂x
= 0, (3.13)
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where vij describe the nonnegative speed of cars along the arc γij on the network
(with the assumption that if two nodes, i and j , are not connected by a road then
vij = 0). Many of these studies on flow networks focus on theoretical optimal
control results, such as the minimisation of the cost incurred by different drivers
with different departure and arrival times, and finding optimal and equilibrium
solutions [41, 42], or the approximation of solutions of Riemann problems at the
junctions [43, 44]. There are also a few studies that show numerical simulations of
optimal solutions for traffic flow networks [42, 43, 45].

3.3 Second-Order Traffic Models

The models described in the previous section incorporate only the assumption
that velocity changes in response to changes in pedestrian/car density. While
such an assumption is not completely unrealistic [46], it does not fully describe
the complexity of road and highway traffic, since velocity can also change in
response to the traffic ahead (e.g., on-ramp highway situations). This leads to the
so-called “second-order models”: a conservation equation for the density u ∈ R of
pedestrians/vehicles, coupled with a second equation for the changes in the average
velocity v ∈ R

+:

∂u

∂t
+ ∂(uv)

∂x
= 0 (3.14a)

∂v

∂t
+ v

∂v

∂x
= F(u). (3.14b)

Note that these two equations correspond to the conservation of mass and momen-
tum, as used in continuum dynamics [47]. The term F(u) describes (1) how the
average velocity v adapts to an equilibrium velocity ve ∈ R

+, and (2) the drivers’
(or pedestrians’) awareness of the traffic conditions ahead. The simplest form of
F(u) includes only a velocity adaptation: e.g., F(u) = 1

τ
(ve(u) − v), where τ is

a relaxation time scale, and ve could be a constant [48] or could depend on the car
density [49]. More complex (and more realistic) terms F(u) can incorporate traffic
pressure (1/u)∂p/∂x, with p = p(u) being the pressure, which is an increasing
function of the density u: F(u) = − 1

u
px + 1

τ
(ve − v) [50]. This pressure term

describes preventive driving in response to road conditions [50]. In addition, F(u)

could also include a small viscosity component ν0∂
2v/∂x2, which is introduced to

smear out sharp shocks and to allow for a continuous description of freeway traffic
flow that can exhibit stop-and-go waves [51]: e.g., F(u) = − 1

u
px+ 1

τ
(v̄−v)+νovxx .

In terms of pattern formation, model (3.14) can exhibit shock waves, rarefaction
waves and clustering [46, 50, 52, 53]. The existence of shock waves has been
confirmed both analytically (via the Rankine-Hugoniot conditions) and numerically
[50, 52, 53].
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In the following we will discuss briefly a few examples of second-order models,
by focusing on the various terms that they incorporate. For a more general review
of equations describing the changes in the velocity of these models, see [20]. A first
example that we focus on here is the model introduced by Payne [54], where the
author proposed the following equation for the changes in vehicles speed:

∂v

∂t
+ v

∂v

∂x
= ve(u)− v

τ
− c2

0

u

∂u

∂x
. (3.15)

Parameter τ is the relaxation constant for the vehicles to approach the equilibrium
speed ve, and c0 is an “anticipation constant” (describing driver’s anticipation of
the traffic ahead). Investigation of the Riemann problem associated with this model
showed the existence of two types of shock waves and two types of rarefaction
waves; see Sect. 2.2 for a more detailed discussion of different types of analytical
solutions exhibited by hyperbolic equations/systems. Numerical investigation of
model (3.14a)–(3.15) confirmed these shock waves and rarefaction waves, as well
as the formation of free-flow regions and formation of clusters [52, 53].

One of the drawbacks of the model in [54] is the lack of preservation of the
anisotropic nature of traffic: vehicles can move against the flow, with negative
speeds [55, 56]. To address this problem, Aw and Rascale [56] introduced the
following equation for the changes in speed:

∂(v + p(u))

∂t
+ v

∂(v + p(u))

∂x
= 0, (3.16)

with p(u) a smooth increasing function of the form p(u) = uγ , γ > 0. Analytical
results showed that model (3.14a) with speed (3.16) and stepwise initial conditions
(i.e., (u(x, 0), v(x, 0)) = (ul, vl) for x < 0 and (u(x, 0), v(x, 0)) = (ur, vr ) for
x > 0) can exhibit shocks, rarefaction waves and contact discontinuities. However,
in contrast to the model (3.14a)+(3.15) which can exhibit negative velocities,
model (3.14a)+(3.16) exhibits only non-negative velocities.

A generalisation of the model (3.14a)–(3.16) was proposed in [33] to inves-
tigate the phase transitions (i.e., jump discontinuities—see Sect. 2.2) between
un-congested and congested pedestrian regions. The model is given as follows:

∂u

∂t
+ ∂(uv)

∂x
= 0, (3.17a)

∂(uw)

∂t
+ ∂(uvw)

∂x
= 0, (3.17b)

w = v + p(u), (3.17c)

with u(x, t) ∈ R being pedestrian density, v ∈ R
+ their velocity, w(x, t) ∈ R

+ the
desired velocity in the absence of any obstacles, and p being the offset velocity
between the desired and actual velocities (where p is an increasing function of
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pedestrian density). If one assumes that the desired velocity is a constant w =
V ∈ R

+, then the actual velocity is given by u = V − p(u). This model was
then generalised to incorporate congestion constraints (as controlled by parameter ε

that appears in the correction term Qε added to pedestrian pressure):

∂uε

∂t
+ ∂(uεvε)

∂x
= 0 (3.18a)

∂uεwε

∂t
+ ∂uεwεvε

∂x
= 0, (3.18b)

wε = vε + p(uε)+Qε(uε), Qε(u) = ε(
1
u
− 1

u∗
)g , g > 1, (3.18c)

with p(u) a convex function describing pedestrian pressure, p(0) = 0, p′(0) ≥ 0
and p(u) → ∞ as u → u∗. The ε-correction term (Qε) for the background
pressure p of the pedestrians is turned on when the density is close to the congestion
density (i.e., u → u∗). The authors investigate this perturbation problem as ε → 0,
and show that the transition from un-congested movement (u < u∗) to congested
movement (u = u∗) corresponds to a phase transition from a compressible
to an incompressible flow regime [33]. The interface between congested and
un-congested regions could be investigated with the help of Rankine-Hugoniot
conditions. However, such an analysis was not performed in [33]. (For a brief
discussion of the Rankine-Hugoniot conditions, see Sect. 2.2.)

To understand the relation between the traffic flux uv (i.e., vehicles/pedestrians
per hour) and traffic density u (i.e., vehicles/pedestrians per surface area), one uses
fundamental diagrams. The majority of traffic models in the literature that show
phase transitions [3], display a fundamental diagrams similar to the one shown in
Fig. 3.3a. However, empirical data similar to Fig. 3.3b suggest that the free-flow can
be represented by a curve in the flow-density plane, while the congested traffic is
described by a broad spreading of measurement points [57]. This led researchers
to try to develop more realistic models that can exhibit two qualitatively-different
behaviours [58]: (1) free vehicular traffic at low densities; (2) congested vehicular
traffic at higher densities, with one more degree of freedom (thus covering a 2-
dimensional domain). However, before we discuss these models in more detail, we
need to mention that for pedestrian movement, the fundamental diagrams depend
on the psychological status of individuals (i.e., normal versus panic conditions; see
Fig. 3.3c), on various infrastructural elements (e.g., upwards/downwards stairs; see
Fig. 3.3d), or on whether the flow is unidirectional or bidirectional [32, 59, 60].
Note in Fig. 3.3c that some fundamental diagrams for pedestrian movement show
increased flows not only at small/intermediate densities, but also at higher densities
(e.g., in panic situations), which is different from the car traffic flows.

A new class of models that investigate phase transitions in vehicular traffic
were proposed by Colombo [58, 61]. These models assume that the free-flow and
the congested phases are modelled by different equations defined on two different
domains (corresponding to the two domains shown in Fig. 3.3b): a first-order model
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Fig. 3.3 (a) Fundamental traffic diagram showing traffic flux (uv) versus vehicle density (u),
for the general flux function uvmax(1 − u/umax); here umax = 10, vmax = 2. (b) Caricature
description of averaged traffic data based on real data from [57, 62–64]. As noted in [64], data in the
fundamental diagram depends on the freeway location where the fundamental diagram is measured,
and on the traffic demand. The diagrams show that the higher density in traffic flow corresponds
to lower average vehicle speed. (c) Caricature description of averaged pedestrian traffic data based
on real data shown in [32, 65]. The dotted blue curves approximate pedestrian movement under
normal conditions [32, 65], while the continuous black curves approximate pedestrian movement
under panic conditions [32]. (d) Caricature description of averaged pedestrian traffic data based on
real data shown in [60, 66]. The dotted blue curves describe the movement on upward stairs, while
the continuous black curves describe the movement on downward stairs

for the free-flow (on domain Ωf ⊆ R
+ × R

+), and a second-order model for the
congestion (on domain Ωc ⊆ R

+×R
+). For example, the model in [58] is described

by the following equations:

∂u

∂t
+ ∂(uvf (u))

∂x
= 0, for (u, p) ∈ Ωf (free flow), (3.19a)

{
∂u
∂t
+ ∂(uvc(u,p))

∂x
= 0,

∂p
∂t
+ ∂((p−Q)vc(u,p)

∂x
= 0,

for (u, p) ∈ Ωc (congested flow), (3.19b)
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with vf (u) the velocity for the free phase and vc(u, p) the velocity for the congested
phase:

vf (u) = (
1− u

umax

)
v∗, vc(u, p) = (

1− u

umax

)p

u
, (3.20)

where v∗ is the fee-flow speed and umax is the maximum vehicle density. The vari-
able p describes a perturbation or deviation from the equilibrium state [67]. Finally,
parameter Q depends on the road conditions and characterises the phenomenon of
wide traffic jams. The domains for the two phases are defined as

Ωf = {(u, p) ∈ [0, umax] × [0,+∞]|vf (u) ≥ v∗f , q = pv∗}, (3.21a)

Ωc =
{
(u, p) ∈ [0, umax] × [0,+∞]|vc(u, p) ≤ v∗c ,

p −Q

u

∈ [Q− −Q

umax

,
Q+ −Q

umax

]}
, (3.21b)

with v∗f < v∗c two threshold speeds (above v∗f the flow is free, below v∗c the
flow is congested). Moreover, parameters Q− ∈ (0,Q) and Q+ ∈ (Q,+∞)

depend on the environment conditions and define the width of the congested region
[68]. These two phase domains are invariant, i.e., if the initial data is in the free
(respectively congested) phase, then the solution stays in the free (respectively
congested) phase [58]. Moreover, the solution of this model (with initial conditions
(u(x, 0), v(x, 0)) = (ul, pl) for x < 0, and (u(x, 0), v(x, 0)) = (ur, pr) for x > 0)
has been shown to be formed by phase-transition waves or rarefaction waves in Ωf ,
and by shocks, contact discontinuities or rarefaction waves in Ωc [69].

A slightly different two-phase model was proposed in [70], where the authors
started with the model in [61] and assumed that Q = 0, while the free-flow and
congestion vehicle speeds are described by:

v =
{

vf (u) := v∗, for u ∈ Ωf

vc(u, p) := (
1− umax

u

)(
a(u− uc)+ ucv

∗
uc−umax

)
(1+ p), for (u, p) ∈ Ωc.

(3.22)

Here, uc is a critical vehicle density (marking the transitions between the two
phases), and parameter a ∈ [−A, 0) (with A = ucv

∗/(uc−umax)
2). See, in Fig. 3.4

two examples of congested velocities for two different values of parameter a. The
Riemann problem associated with model (3.19) and speeds (3.22) (i.e., the Cauchy
problem with piecewise constant initial condition (u(x, 0), p(x, 0)) = (ul, pl) for
x < 0 and (u(x, 0), p(x, 0)) = (ur , pr) for x > 0; see also the discussion in
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Fig. 3.4 Examples of (a) free-flow speed (vf ) and congested speed (vc); (b) the flux function
H(u) = uv, for the second-order traffic model (3.19)–(3.22) in [70]. The parameters are: uc = 5,
umax = 10, v∗ = 0, A = 2, and two values of parameter a: a = −0.19 (red curve), a = −0.01
(green curve)

Sect. 2.2) can exhibit different types of solutions when the initial conditions belong
to the different phase domains [70, 71]:

• For ul, ur ∈ Ωf , the solution is represented by a contact discontinuity from ul

to ur [71].
• For ul, ur ∈ Ωc, the solution is represented by a shock/rarefaction wave from ul

to um, and a 2-contact discontinuity from um to ur , where um is the solution to
the system: pl/ul = pm/um, and vc(ur, pr) = vc(um, pm) [71].

• For ul ∈ Ωc, ur ∈ Ωf , the solution is represented by a 1-rarefaction wave from
ul to um, and a contact discontinuity from um to ur [71].

• For ul ∈ Ωf , ur ∈ Ωc, the solution is represented by a shock from ul to um−,
and a 2-contact discontinuity from um− to ur , where um− is the solution of the
system Q−/umax = pm−/um− and vc(um−, pm−) = vc(ur , pr) [71] (Fig. 3.5).

This class of two-phase models has been further developed in other studies that
used different functions for the congested speed. For example, Goatin [72] assumed
that the congested speed is similar to the one in the Aw-Rascale (AR) model [56]
(see Eq. (3.16)). By generalising the Aw-Rascale model to a two-phase model, the
author aimed to correct some drawbacks of the original AR model, namely: lack of
well-posedness near vacuum (i.e., when density is close to zero), and dependence
on initial data for the maximum speed reached by vehicles on empty roads. The new
two-phase model in [72] was described by the following equations:

{
∂u
∂t
+ ∂(uv(u))

∂x
= 0, for (u, v) ∈ Ωf (free flow),

v(u) := vf (u) = (
1− u

umax

)
v∗ (3.23a)

⎧⎪⎨
⎪⎩

∂u
∂t
+ ∂(uvc(u,p))

∂x
= 0, for (u, v) ∈ Ωc (congested flow),

∂u(v+p(u))
∂t

+ ∂(uv(v+p(u))
∂x

= 0,

p(u) = vref ln
(

u
umax

)
.

(3.23b)
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Fig. 3.5 Example of (a) density and (b) velocity profiles for a phase-transition model described
in [71]. The graphs, which are re-drawn from [71], correspond to the case ul ∈ Ωf , ur ∈ Ωc,
discussed above, where a new equilibrium state um appears between ul and ur . The parameters
are: v∗ = 45, umax = 1000

Here, p is a pressure function related to drivers anticipation of the traffic ahead of
them. The invariant domains for the free-flow and congested flow are described by:

Ωf = {(u, v) ∈ [0, u
f
max] × [v∗f , v∗]|v = vf (u)},

Ωc = {(u, v) ∈ [0, umax] × [0, v∗c ]|p(Q) ≤ v + p(u) ≤ p(umax)},

with v∗f and v∗c are two threshold speeds (above v∗f the flow is free, and below
v∗c the flow is congested; v∗ > v∗f > v∗c ). Parameter Q ∈ (0, umax) depends on
environmental conditions and determines the width of the congested region, and
the maximal free-flow density u

f
max and reference velocity vref satisfy condition

v∗f+vref ln(u
f
max/umax) = 0. Analytical results for this model showed the existence

of shocks, rarefaction waves and contact discontinuities depending on the initial data
[72].

3.4 Third-Order Traffic Models

A third-order model was introduced in [73, 74], where in addition to an equation
for the conservation of the density (u ∈ R) and an equation for the evolution of the
velocity (v ∈ R

+), the model contained also an equation for the velocity variance
θ ∈ R

+. To this end, Helbing [73, 74] started with the following gas-kinetic traffic
model for the phase-space density of vehicles ρ(w, t, x) (moving with velocity w,
but having a desired velocity we),

∂ρ

∂t
+ ∂ρw∂x + ∂

∂w

(
ρ

dw

dt

)
+ ∂

∂we

(
ρ

dwe

dt

)
=

(∂ρ

∂t

)
f luctuation

+
(∂ρ

∂t

)
interact ion

. (3.24)
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This equation includes (on the right-hand side) a velocity fluctuation term
due to imperfect driving, and a deceleration term due to interactions between
different cars. By considering the moment equations associated with this
kinetic model, Helbing [73, 74] derived the following third-order traffic
model for the spatial density u(x, t) = ∫

ρ(w, t, x)dv, the average velocity
v(t, x) = ∫

w(ρ(w, t, x)/u(t, x))dw, and the velocity variance θ(t, x) =∫
(w − v(t, x))2(ρ(w, t, x)/u(t, x))dw:

∂u

∂t
+ ∂(uv)

∂x
= 0, (3.25a)

∂v

∂t
+ v

∂v

∂x
+ 1

u

∂(uθ)

∂x
= 1

τ
(ve(u, v, θ) − v), (3.25b)

∂θ

∂t
+ v

∂θ

∂x
+ 2θ

∂v

∂x
= 2

τ
(θe(u, v, θ) − θ). (3.25c)

Here, ve(u, v, θ) is an equilibrium velocity (of the stationary and spatially homoge-
neous traffic flow), θe(u, v, θ) is an equilibrium variance, and τ is the relaxation
time (for the adaptation in the average velocity and average variance to the
equilibrium velocity and variance). In the equation for velocity, the term v∂(v)/∂x

describes velocity changes at x caused by average vehicle motion, while the term
(1/u)(∂uθ)/(∂x) accounts for driver’s awareness of the traffic ahead [73]. (Note that
the number “2” in the equation for the velocity variance arises during the calculation
of the second moment m2 =

∫
dw

∫
w2(we)ρ(w,we, t, x)dwe.)

As we have previously discussed, one of the most studied characteristics of
vehicular traffic is equilibrium solutions. Since the number of vehicles is conserved,
the equilibrium traffic of all these models (including model (3.25)) is uniquely
determined by the averaged spatial density ū = ∫

u(x, t)dx. The equilibrium
velocity and equilibrium variance can be obtained after integrating the previous
equations [73]. This particular model added more realism to the literature of
complex highway traffic: for small variance in speed, the cars travelled more or
less at the same speed, while for large variance in the speed some vehicles travelled
faster than others, causing lane changes.

3.5 Traffic Models that Include Reaction Terms

For all these different types of traffic models, reaction terms can be added to describe
the rates at which pedestrians (or cars) enter or leave a particular domain (see [4,
8] and the references therein). For example, the following equation was derived
by Helbing et al. [8] to describe the movement of pedestrians belonging to a sub-
population ua (part of the whole population u):

∂ua

∂t
+ ∂(uav(x, t))

∂x
= R+a (x, t)− R−a (x, t). (3.26)
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Here, R±a (x, t) are the rates at which pedestrians join and leave sub-population ua .
(In the context of car traffic, R±(x, t) usually denote the inflow/outflow of cars on
ramps.) In [8], this reaction-advection equation was then coupled with an equation
for the environmental changes (i.e., trail formation) caused by these pedestrians:

dG

dt
= G0(x)−G(x, t)+

(
1− G(x, t)

Gmax(x)

)∑
a

K(x)ua(x, t). (3.27)

Here G is a ground potential that measures the comfort of walking (with Gmax

the maximum clearing of the trail from vegetation), G0(x) describes the existent
trails (at positions x), and K(x) measures the attractiveness of the trail (at different
spatial positions x). Numerical simulations showed the formation of a simple trail
system (i.e., network patterns; see also Fig. 1.11), the shape of which depended on
the magnitude of K .

Models for pedestrian traffic (with pedestrians entering/leaving the domain)
exhibit various types of human behaviours, depending on the density of individuals
[4]. For example, at low densities the pedestrian flow is similar to streamlines of
fluids, while at higher densities the pedestrians organise themselves into different
lines of uniform walking direction [24]. Similar to car traffic, pedestrian traffic can
lead as well to jams [24]. When the rates R±(u) are nonzero, models (3.26) can also
exhibit patterns with increasing amplitude, such as localised clusters and stop-and-
go waves (which are sequences of traffic jams that alternate with free traffic) [75].
Other pedestrian models (of Langevin type) can incorporate social interactions as
well as boundary forces [23]. In particular, these models assume that pedestrians
are attracted/repelled by other persons or by boundary objects (e.g., buildings). In
Chap. 5, we will discuss in more detail the importance of these social interactions to
the formation of various group patterns.

As we have previously seen in Sect. 3.3, reaction terms can be also added to
second-order traffic models, to describe highway entries and exits, or local changes
in traffic flow caused by inhomogeneities in the road. The simplest and probably one
of most widely-used reaction terms is the relaxation velocity shown in Eq. (3.15).
In the following we discuss the more general model introduced in [76], which
incorporates different reaction terms with different physical meanings:

∂u

∂t
+ ∂uv(u, p)

∂x
= su(t, x, u, p), (3.28a)

∂p

∂t
+ ∂(p −Q)v(u, p)

∂x
= sp(t, x, u, p), (3.28b)
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with the velocity v(u, p) = (1 − u/umax)(p/u). The explicit form of the source
functions depends on the assumptions being modelled:

• vehicles entries and exits along an interval [a, b] [76]:

su(t, x, u, p) = ain(t, x)
(
1− u

umax

)− aout(t, x)
u

umax

,

sp(t, x, u, p) = −
(ain(t, x)

umax

+ aout(t, x)

umax

)
(p −Q).

Here, ain(t, x) = gin(t)χ[a,b](x) and aout(t, x) = gout (t)χ[a,b](x), with gin(t)

and gout(t) the fraction of the traffic density (per unit time) that enters and exits
the road, respectively. The source term sp describes a “stabilising” effect caused
by the entries and exits on vehicle flow [76].

• relaxation term added to the second equation, to model acceleration towards an
equilibrium velocity ve(u) [27, 76]:

su(t, x, u, p) = a(t, x)
(
1− u

umax

)
,

sp(t, x, u, p) = −a(t, x)

umax

(p −Q)+ umax

umax − u

u(ve − v)

τ
.

with τ the relaxation time corresponding to the average acceleration time. This
can be a constant, or can be density-dependent (τ = τ (u)).

• local changes in traffic speed (while the total vehicle density is conserved) [76]:

su(t, x, u, p) = 0,

sp(t, x, u, p) = χ(x)ua(t, u, p),

where χ(x) gives the location of a descent along the highway (between some
points x1 and x2), and a(t, u, p) ≥ 0 is the mean acceleration.

For more examples of source terms see [76] and the references therein. The general
model (3.28) has been shown to be well posed (for suitable conditions on the source
terms), thus admitting a unique solution defined for all t > 0 [76]. In contrast to
models without a source, these models have been shown to capture the formation
of queues (e.g., as for su = 0 and sp(t, x, u, p) = χ(x)ua(t, u, p) in [76]). In this
case, the increase in vehicle speed (triggered by a decrease in density associated
with the exit) leads to an accumulation of vehicles into a wide moving traffic jam.

Remark 3.2 The positive and negative aspects of different traffic models have been
discussed in various studies (see, for example, [55, 77, 78]), and thus we will
not review them here. However, we would like to emphasise that the continuous
development of all these different traffic models was triggered by the lack of realistic
patterns exhibited by some earlier models. For example, since many of first-order
models assumed that the average speed (v) was in equilibrium with the density
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(u), they could not describe non-equilibrium situations taking place at on-ramps,
or stop-and-go traffic (where the speed changes). Therefore, second-order models
were introduced to add a new dynamic equation for the average velocity v. Even
some of these models do not always describe the self-organised phenomena of stop-
and-go waves when the density increases above a critical value [54], which lead to
further refining of models [79, 80].

We will return to traffic models in Chap. 4, when we will discuss not only the
patterns generated by multiple populations of car drivers/pedestrians, but also the
patterns generated by ants moving along pheromone trails, and the application of
systems of hyperbolic equations to the traffic of molecules along filaments.

3.6 Advection-Reaction Equations for Animal Population
Dynamics

In the context of animal population growth and movement, the most common types
of reaction terms R(u) that appear in the general advection equation:

∂u

∂t
+ h(u)

∂u

∂x
= R(u), (3.29)

are [81]:

1. quadratic (logistic) growth: R(u) = ru(1− u);
2. cubic growth (“Allee” effect): R(u) = ru(1− u)(u− α), with α ∈ (0, 1).

Mickens [1] used a simpler version of (3.1), with constant velocity (h(u) = 1)
and logistic growth (R(u) = r1u(1 − r2u)), to describe the dynamics of a generic
population u. Because of the simplicity of this model, it was possible to find exact
time-dependent and time-independent solutions. The time-independent solutions
(i.e., the stationary solutions) were shown to be either bounded or unbounded,
depending on the initial condition. Another type of solution discussed by Mickens
[1] was the travelling front solution (see Fig. 3.6b). Again, because of the simplicity
of the model it was possible to find an exact expression for these travelling fronts.

A slightly more complex model was investigated by Lika and Hallam [2]. When
the advective velocity was described by a linear term h(u) = −ku (and the growth
was logistic), model (2.4) could exhibit shock solutions (see Fig. 3.6a). In particular,
advective waves with low speed were shown to steepen and lead to shock formation.
Note that these patterns are very common in large human aggregations which result
in panic stampede. The model in [2] can also exhibit travelling front patterns (see
Fig. 3.6b). These solutions, which exist only for speeds c > 1, are stable to certain
semi-finite domain perturbations. These authors also showed that it is not possible
to have travelling front patterns when the initial conditions have compact support.
This is in contrast with the classical Fisher’s equation, where initial conditions with
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Fig. 3.6 (a) Shock patterns exhibited by the advection model (3.2) with density-dependent speeds
v = u(1 − u). The initial condition is u(0) = 0.5 + 0.5e−(x−5)2

. (b) Travelling front patterns
exhibited by the advection reaction model (2.4), with h(u) = u, and f (u) = u(1 − u). The initial
data is similar to the data used by Lika and Hallam [2]: if x ≤ x0 then u(0) = 0.2e0.5(x−x0), and if
x > x0 then u(0) = 0.2(2− e−0.5(x−x0)). We take x0 = 5L/6, where L = 30 is the domain length

compact support lead to travelling front solutions moving with the minimum speed
c (where c = 2) [82]. In Sect. 3.7, we will discuss in more detail the approach to
find the speed and shape of travelling-wave solutions.

To reproduce the intricate animal population dynamics during self-organised
behaviours, the models derived in the recent years contain more complex
assumptions—such as nonlocal attractive-repulsive velocities [83]. We will discuss
these models in more detail in Chap. 5, where we will also show the numerical
patterns displayed by them.

We conclude this section by observing that some hyperbolic models consider the
change of the population with respect to age a ∈ R

+ (and not necessarily with
respect to space x). The classical example is represented by the McKendrick–Von
Foerster equation [84, 85]:

∂u

∂t
+ ∂u

∂a
= −μ(a)u(a, t), a > 0. (3.30)

Here μ(a) ∈ R
+ represents the age-dependent death rate of population u ∈ R.

Therefore, this equation models the changes in a population as a result of becoming
older and eventually dying. If μ(a) = 0 then population change is only the result
of getting older. The birth of the population is usually incorporated into the initial
conditions:

u(0, t) =
∫ ∞

0
b(a)u(a, t)da, t > 0, (3.31)
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where b(a) ∈ R
+ is the birth rate for age a. The problem is completed by the

specification of the initial age distribution: u(a, 0) = u0(a). This equation can be
solved exactly along the characteristic lines to obtain a closed-form solution [86,
87]:

u(a, t) =
{

u(0, t − a)e−
∫ a

0 μ(s)ds, when a < t,

u0(a − t)e−
∫ a
a−t μ(s)ds, when a ≥ t .

(3.32)

Note that these models could also include changes in population size with respect
to the space variable x:

∂u

∂t
+ ∂u

∂a
+ ∂u

∂x
= −μ(a)u(a, t). (3.33)

A slightly different type of age-structured model with local birth terms will be
presented at the end of Sect. 4.6.

3.7 Analytical Approaches for the Investigation of Patterns:
Speed of Travelling Waves

Since the travelling wave solutions are one of the simplest (but biologically very
important) solutions exhibited by the transport models for collective movement
of animals (as well as models for car/pedestrian movement), in the following we
present briefly the analytical approaches used to calculate the propagating speed
and shape of these solutions for a simple 1-equation hyperbolic model introduced in
Lika and Hallam [2]. For a more detailed discussion of travelling waves (and their
propagation speeds) in various biological populations we refer the reader to [88–90]
(although all these studies focus on parabolic equations).

Lika and Hallam [2] investigated the existence and stability of travelling
wave solutions for the following (non-dimensionalised) advection-reaction model
describing the movement and growth of a population with density u(x, t):

∂u

∂t
− u

∂u

∂x
= u(1− u). (3.34)

Travelling wave solutions for Eq. (3.34) are nonnegative functions 0 ≤ u(x, t) ≤ 1
(which connect the two spatially homogeneous steady states u = 0 and u = 1).
Writing u(x, t) = w(z), with z = x + ct the travel-wave coordinate and c > 0 the
wave speed to be determined, leads to the following differential equation

(c −w)
dw

dz
= w(1−w), (3.35)
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together with the boundary conditions

lim
z→−∞w(z) = 0, lim

z→+∞w(z) = 1. (3.36)

The travelling wave solution should also satisfy dw
dz

> 0. By linearising Eq. (3.35)
about the steady states w = 0 and w = 1, one obtains that the trivial state w = 0
is unstable for all c > 0 while the state w = 1 is stable for c > 1 and unstable for
0 < c < 1.

To investigate whether it is possible to have travelling waves with speeds c < 1
or c > 1, the authors integrate Eq. (3.35) to obtain a closed-form solution:

ln
( wc

(1−w)c−1

)
= z+ C∗, C∗ = const. (3.37)

Due to the invariance of the travelling wave solution to any shift in the origin of the
coordinate system, one can assume that for z = 0 one has w = 1/2, and thus the
solution is ln(2wc/(1 − w)c−1) = z. Moreover, the steepness of the wave at z = 0
is dw(0)

dz
= 1/(4c − 2), suggesting that the wave steepness decreases as the speed c

increases; see also Fig. 3.7a.
The boundary conditions (3.36) are then used to determine the existence/absence

of travelling wave solutions. For example, the boundary condition at z = −∞ is
satisfied by solution of (3.37) for any c > 0 and any constant C∗. In contrast, the
boundary condition at z = +∞ is (1) satisfied by the solution of (3.37) for any
constant C∗ when c > 1; (2) not satisfied by the solution of (3.37) for any constant
C∗ when c < 1. The authors in [2] conclude that for any c > 1 there is a travelling
wave u(x, t) = wc(x + ct) that satisfies 0 ≤ w ≤ 1 and w(0) = 1/2, while for

c=5

c=2 >1

c=0.5 <1

c=2

(a) (b)

Fig. 3.7 (a) Description of two possible travelling wave profiles, as given by Eq. (3.37) with C∗ =
0, for two speed values: c = 2 and c = 5. Note that lower speed is associated with a very steep
profile. (b) Comparison between the solution of (3.37) with C∗ = 0, when the speed c = 0.5 < 1
(and no travel front exists) and c = 2 > 1 (and a travel front exists)
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Fig. 3.8 (i) Initial density profile and (ii) spatio-temporal patterns for Eq. (3.34) when considering
two types of initial conditions: (a) u(x, 0) = 0.5 exp(−(x − 5)2), and (b) u(x, 0) = 0.2 ∗ (2 −
exp(2 ∗ (x − 5))) for x ≤ 5 and u(x, 0) = 0.2 exp(−2(x − 5)). The simulations are performed on
a finite domain [0, L] = [0, 10] with: (a) periodic boundary conditions, and (b) no-flux boundary
conditions.

c ≤ 1 there is no such solution; see also Fig. 3.7b. (From (3.37) note that for c = 1,
w(z) is increasing exponentially and reaches the threshold w = 1 at some finite z.)

Figure 3.8 shows the numerically-simulated travelling wave/front solutions for
two different types of initial conditions:

(a) a Gaussian-like function u(x, 0) = 0.5e−(x−5)2
;

(b) a composite function, as in [2]:

u(x, 0) =
{

0.2(2− e2(x−5)), x ≤ 5,

0.2e−2(x−5), x > 5.
(3.38)

Note that the logistic proliferation of population u leads to the spread of the front
(in Fig. 3.8a(ii) the spread can occur both ahead and behind the initial aggregation),
which adds to the transport of the population to the right, via the advection term.

Lika and Hallam [2] also investigated the stability of the travelling front to small
semi-finite domain perturbations. The authors have re-written u(x, t) = y(z, t) with
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z = x+ ct , and then added a small perturbation v to the travel wave solutions wc(z)

(i.e., y(z, t) = wc(z) + v(z, t)) and investigated when the perturbations decayed
towards 0. The perturbations were defined on a semi-domain as v(z, t) = 0 for
z ∈ (−∞, a) with some a ∈ R. For more details, we refer the reader to [2].

Remark 3.3 We need to emphasise that for parabolic PDEs, the existence and
stability of travelling front solutions is proven rigorously with the help of a classical
comparison argument based on upper and lower solutions; see [91, 92]. Since for
hyperbolic PDEs a similar comparison principle does not hold (see [93]), proving
the existence and uniqueness of such travelling waves/fronts for kinetic transport
equations (even 1-population models) is more complicated, and is not the aim of
this study. Nevertheless, we need to emphasise here that all these theoretical aspects
are still open problems for the great majority of the local and nonlocal kinetic
and hyperbolic models presented throughout this monograph (as the majority of
hyperbolic/kinetic models that investigate the travelling wave/front patterns focus
mainly on the speed at which the front of the population wave invades new
territories).

3.8 Numerical Approaches

For numerical simulations of these local models, one can use various numerical
schemes: from first order dissipative finite difference upwind and Lax-Friedrichs
schemes, to second-order dispersive finite-difference Lax-Wendroff and MacCor-
mack schemes, and even finite volume schemes (e.g., Godunov, Roe or Engquist-
Osher schemes). To minimise the dispersion that appears in second-order schemes,
various flux limiters (minmod, superbee, monotonized central—MC) are used. A
more detailed discussion of these numerical schemes can be found in LeVeque
[47, 94]. For hyperbolic models describing traffic on networks, in the past the focus
was mainly on first-order or second-order numerical schemes [95], although more
recent studies have started to focus on the construction of higher order finite volume
schemes [96, 97]. For an overall discussion of these various numerical schemes (and
other numerical schemes derived to discretise kinetic models), see Chap. 7. Note
that these numerical schemes can be applied also to systems of local and nonlocal
equations (described in Chaps. 4 and 5), and for this reason in the next two chapters
we will not discuss again these numerical approaches.

Regarding the specific model discussed in Sect. 3.7, the numerical simulations
shown in Fig. 3.8 were obtained by discretising the transport equation using a second
order MacCormack finite difference scheme (which includes also the reaction
terms). The same MacCormack scheme was used to create the travelling wave and
shock profiles shown in Fig. 3.6.
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Chapter 4
Local Hyperbolic/Kinetic Systems in 1D

4.1 Introduction

The models discussed in Chap. 3 assumed that individuals can move in only one
direction, either left or right, depending on the sign of the velocity. Of course,
the individual’s velocity can be density-dependent and change its sign as time
progresses, leading to changes in the movement direction of the whole population.
However, recent approaches in experimental ecology have started to focus on
collecting data on the speed and turning rates of different animals exhibiting
collective behaviours [1–3]. Similarly, studies in cell biology have started to
investigate the individual movement of cells and bacteria, some of which exhibit for
example “run-and-turn” behaviours [4]. These behaviours are similar to the “run-
and-tumble” and “run-reverse-turn” behaviours in bacterial communities [5, 6];
see also Fig. 4.1a–c. While the turning events of bacteria are usually random, the
turning events of amoebae cells can exhibit short-term memory with cells having a
tendency of turning away from previous turns [4]; see also Fig. 4.1d. The running
speeds, turning rates and turning angles during changes in movement direction of
cells and bacteria can all be measured experimentally [2, 4, 5], thus allowing for
a better quantitative description of cell/bacterial/animal movement. However, when
cells/bacteria/animals interact with conspecifics within a community [7], they might
change their velocity and turning in response to the behaviour of their conspecifics.
This adds another layer of complexity to the dynamics of the whole system, as
individual cell/bacteria/animal behaviours are difficult to predict emergent group-
level behaviours.

A different type of transport phenomena occurs in cellular biology, during
the bidirectional movement of molecules/particles along polarised microtubules
or axons [10–12] (see also Fig. 4.2). These particles (e.g., mitochondria, pigment
granules, lipid droplets, viruses [13]) are transported with the help of molecular
motors such as cytoplasmic dynein and conventional kinesin. Usually the kinesin

© Springer Nature Switzerland AG 2018
R. Eftimie, Hyperbolic and Kinetic Models for Self-organised Biological
Aggregations, Lecture Notes in Mathematics 2232,
https://doi.org/10.1007/978-3-030-02586-1_4

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02586-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-02586-1_4


82 4 Local Hyperbolic/Kinetic Systems in 1D

(a)

t1 t2

t3

t1
t2

)c()b(

t1 t2

t3

t4

t3

(d)
t1 t2

t3 t5t4

Fig. 4.1 Caricature description of three different bacterial movement strategies, and one cell
movement strategy. (a) The “run-and-tumble” strategy, where the turning angle during the
“tumble” is random. This strategy has been observed, for example, in Escherichia coli, Salmonella
typhimurium, Bacillus subtilis [8]; (b) The “run-and-reverse” strategy, where the bacteria undergo
a 180◦ reorientation. This strategy has been observed, for example, in Shewanella putrefaciens,
Pseudoalteromonas haloplanktis and Deleya marina [8]; (c) The “run-reverse-flick” strategy,
which combines the run-and-reverse with a random and fast tumble described by the flick. This
strategy has been observed in Vibrio Alginolyticus [8, 9] or in Pseudomonas aeruginosa [5]. (d)
The “run-and-turn” strategy exhibited by crawling cells [4], which is similar to the run-and-tumble
strategy in bacteria. Note the tendency of cells to reverse the turning direction from one step to
another (as emphasised in time steps t2 and t5)

+

kinesin

microtubule

dynein

Fig. 4.2 Caricature description of bidirectional movement of particles along a microtubule
filament (or axon), which displays polarity (see the “+” and “−” signs at the end of the
microtubule). The transported particles are bound to (and transported along) the microtubule by
molecular motors such as dynein and kinesin

moves to the microtubules’ “+” end, while the dynein moves to the “−” end [12,
13]. Since many molecules have both types of motors, it has been suggested that
the actual transport could be the results of a “tug-of-war” between molecular
motors for the “+” and “−” directions, with a “pause” state being reached when
a particle has activated both types of motors [12]. The transported particles can
reverse their direction every few seconds, depending on the motors that dominate the
dynamics [12, 13]. This movement-turning behaviour (towards the +/− ends of the
microtubules) gives rise to a biased random walk, which characterises the transport



4.2 Derivation of Local Models in 1D 83

of fish and frog pigment granules inside cells, or the transport of adenoviruses and
herpes viruses through the cytoplasm [13].

It should be mentioned that bi-directional movement has also been observed in
various ecological contexts: e.g., during ants movement along pheromone trails [14],
or during pedestrian movement at crosswalks [15] or along corridors [16].

To be able to incorporate the directionality of movement into the 1D math-
ematical models for self-organised biological behaviours (to further investigate
emergent group-level phenomena, also by using available experimental data), one
can split the initial population (u) into two subpopulations of left-moving (u−)
and right-moving (u+) individuals (or cells/bacteria/etc.). This leads to systems
of equations describing the movement and interactions of left-moving and right-
moving individuals as they change their direction of travel and/or their speeds.
Because these models incorporate detailed individual-level information regarding
movement directions (left or right), they are in fact kinetic (i.e. mesoscale) models,
being often referred to as “two-speed kinetic models”.

In the following, we review briefly some hyperbolic systems derived to inves-
tigate the movement of organisms in response to local conspecifics. We start with
the simplest hyperbolic models, which assume that left-moving and right-moving
individuals travel at a constant speed and have constant turning rates. Since these
models could not explain the complexities of some observed biological aggregations
(e.g., the splitting and merging of groups, or the increase in population size), more
complicated models have been derived. These new models incorporate density-
dependent turning rates, density-dependent speeds, or reaction terms describing
population growth and decay. Throughout this section, the underlying assumption
is that the behaviour of individuals is influenced only by the local density of their
conspecifics.

As for the one-population models in Chap. 3, one can use a variety of simple
first order and higher order finite difference schemes or finite volume schemes
to discretise and simulate the solutions of these hyperbolic systems. Since the
numerical approaches are similar to those mentioned in Sect. 3.8, we will not discuss
them here again. However, for a more detailed discussion of these various numerical
schemes, see Chap. 7.

4.2 Derivation of Local Models in 1D

The derivation of local hyperbolic models for self-organised movement follows the
classical Goldstein-Kac theory for correlated random walk [17, 18]. This approach
has been reviewed, for example, in [19–21]. In brief, denote by u+(x, t) ∈ R

and u−(x, t) ∈ R the densities of right-moving and left-moving individuals at
position x ∈ R and time t ∈ R

+. To derive the equations describing the evolution
of these densities, let us first consider the behaviour of an individual organisms
(in a population of size N). Denote by p+(x, t) (p−(x, t)) the probability that a
randomly chosen right-moving (left-moving) individual is found inside the interval
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[x−Δx/2, x+Δx/2) at time t . These probabilities are defined as follows [22, 23]:

p±(x, t) = 1

N

∫ x+Δx/2

x−Δx/2
u±(s, t)ds −→ Δxu±(x, t)

N
when Δx → 0. (4.1)

We denote by Δx and Δt the space and time steps, respectively. At each time step,
the individual changes direction with probability λ+Δt (if it was initially moving
right) or λ−Δt (if it was initially moving left); see also Fig. 4.3. This leads to the
following master equations:

p+(x, t +Δt) = (1− λ+Δt)p+(x −Δx, t)+ (λ−Δt)p−(x +Δx, t), (4.2a)

p−(x, t +Δt) = (λ+Δt)p+(x −Δx, t)+ (1− λ−Δt)p−(x +Δx, t). (4.2b)

Expanding Eqs. (4.2) in Taylor series, taking the limits Δt,Δx → 0, such that
γ = Δx/Δt , and using (4.1), leads to the following hyperbolic equations for the
evolution of densities of right- and left-moving individuals:

∂u+

∂t
+ γ

∂u+

∂x
= −λ+u+ + λ−u−, (4.3a)

∂u−

∂t
− γ

∂u−

∂x
= λ+u+ − λ−u−. (4.3b)

+

xΔ x + xxΔ x − 

+(a)

t + Δ t

(b)

t + Δ t

t

t

x − Δ x x x + Δ x

λ−

−

p (x,t

Δt) +

Δt) +

t,x(p

λ

Fig. 4.3 The movement and turning behaviour of (a) a right-moving individual, and (b) a left-
moving individual, in response to local neighbours. A right-moving individual can be positioned
at x at time t + Δt , if at the previous time step t it was at x − Δx and kept moving in the same
direction, or it was at x+Δx and moving left, and changed direction at the end of the time step Δt .
A similar explanation holds for the movement of a left-moving individual (see (b)). The change in
direction occurs at rates λ±
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Here, λ± are the constant turning rates, and γ is the constant speed. Note that
Eq. (4.1) helps us connect the random movement of an individual (given by the
position probabilities p±(x, t)) to the population distribution (described by the
density functions u±(x, t)).

Remark 4.1 As mentioned above, models (4.3) are often referred to as “two-speed
kinetic models”, since they incorporate individual-level characteristics (left and
right velocities±γ , and turning probabilities λ±) into the description of population
variables. For example, we could have defined u±(x, t) := u±(x, t; ±γ ), to make
it more clear that the population densities depend on the discrete speeds ±γ . We
will return to this aspect in Chap. 6, in the context of 2D kinetic Boltzmann-type
equations that can be reduced in 1D to equations similar to (4.3), by assuming that
the direction angle φ can take only two values, ±π (which reduces the continuous
speed/orientation model to a discrete speed/orientation model).

The hyperbolic system (4.3) can be reduced to a 1D telegraph equation by
considering the total population density u = u+ + u− and the population flow
v = u+ − u−. These two variables satisfy the following equations

∂u

∂t
+ γ

∂v

∂x
= 0, (4.4a)

∂v

∂t
+ γ

∂u

∂x
= Λ1u−Λ2v. (4.4b)

Here, Λ1 = λ− − λ+ and Λ2 = λ− + λ+. Differentiating Eqs. (4.4) with respect

to x and t , and eliminating the derivatives ∂2v
∂t∂x

and ∂v
∂x

(a process known as the Kac
trick [18]) leads to the following telegraph equation:

∂2u

∂t2
+Λ2

∂u

∂t
= γ 2 ∂2u

∂x2
− γΛ1

∂u

∂x
. (4.5)

A similar equation (with no drift Λ1 = 0 and with a reaction term) was investigated
by Holmes [19] in the context of population dispersal. Holmes [19] showed that this
telegraph equation can predict dispersal patterns that are very similar to the ones
obtained with parabolic equations.

Remark 4.2 Parabolic equations can be obtained as a limit of Eqs. (4.3), following
a rescale of the speed and turning rates: γ = γ0/ε, λ± = λ0/ε

2 (i.e., individuals
travel extremely fast and turn very rapidly), or equivalently a rescale of the space
and time variables: x = x∗/ε, t = t∗/ε2. The limit ε → 0 applied in the context of
the previous rescaling is known as the parabolic limit.

Remark 4.3 Hyperbolic equations of the form (2.1) (with R(u) = 0) can be
obtained as a limit of these two-speed kinetic equations (4.3), following a slightly
different rescaling: x = x∗/ε, t = t∗/ε. The limit ε → 0 applied in the context of
the previous rescaling is known as the hydrodynamic limit.
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Fig. 4.4 Solutions of hyperbolic systems transported along characteristic lines, on a finite domain
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Since the majority of biological populations live in restricted areas, the math-
ematical models that investigate these populations are usually defined on finite
domains [0, L]. For hyperbolic systems, the solutions are transported along the
characteristic lines, and thus the boundary conditions have to be prescribed only
at the points where the characteristics are directed inward [20] (see also Fig. 4.4).
Briefly, the three biologically realistic boundary conditions are: Dirichlet conditions
(for domains on which the population density is known at the boundary; including
the case where populations vanish on the boundaries), Neumann conditions (for
closed domains where no individuals/cells/particles can leave) and periodic bound-
ary conditions (for ring domains, or approximations of infinite domains). A detailed
discussion of these boundary conditions and their role on the existence of weak
and classical solutions for system (4.3) can be found in [20, 24]. Similar boundary
conditions can be derived for the corresponding telegraph equations that model
population movement [20]. We will return to these boundary conditions in Sect. 7.3,
in the context of numerical simulations for kinetic and hyperbolic systems.

In the following, we discuss briefly a few examples of hyperbolic models that
have been derived to investigate interactions between prey and predators moving in
opposite directions [25], or the formation and movement of bacterial aggregations,
such as colonies of Myxobacteria [26], colonies of Dictyostelium discoideum [27],
or even the intracellular active transport of particles along microtubules [28]. While
many of these models consider constant speeds and turning rates, a few others
consider turning rates and speeds that are influenced by conspecifics (either directly
through their density, or indirectly through chemical signals produced by these
conspecifics). We will also discuss a few examples of models that have different
reaction terms (i.e., the right-hand-sides of Eqs. (4.3) do not contain only transition
terms between the left-moving/right-moving states, but also transitions between
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moving/stationary states, as well as birth/death processes). Although we discuss
separately models with density-dependent speeds, density-dependent turning rates,
reaction terms, multiple-population models, as well as first and second order
traffic models, we need to emphasise that many of these models can fall into
multiple categories (e.g., could have density-dependent speeds and reaction terms,
or could be traffic-like models with multiple populations). Also, while a few models
are described exclusively by transport and/or reaction-transport equations, other
models combine reaction-transport equations with parabolic equations or ordinary
differential equations.

4.3 Density-Dependent Turning Rates

Model (4.3) describes the movement of right-moving and left-moving individuals
when their turning rates (λ±) are constant. While this assumption is supported by
experimental data on individual cells, bacteria or animals [1–3], it does not tell the
whole story since individuals in a group can also turn in response to interactions with
their neighbours. These interactions can be direct [25, 26, 29], or indirect through
chemicals produced by these neighbours [27, 30].

For the hyperbolic models (4.3) with constant speed and very simple density-
dependent turning rates (e.g., λ+(u+, u−) = 0 and λ−(u+, u−) = u+ as
in [25]), it is possible to find exact analytical solutions. For more general models,
however, only numerical and analytical methods (such as existence and asymptotic
results) could be used to investigate the various types of solutions. For example,
Lutscher and Stevens [26] studied the rippling behaviour observed in Myxobacteria
colonies. The hyperbolic model that they used incorporated turning rates that have a
constant random component (μ) and a directed density-dependent component (μ±):
λ± = μ + μ±(u+, u−), with μ±(u+, u−) = 2 tanh u−

√
u− or μ±(u+, u−) =

3
1+(u++u−)3 (u−)2. First, the authors showed the existence of unique solutions (in

C
1) for the local hyperbolic system introduced in [26]. (Note that the proof used

a contraction argument; see also Chap. 8.) Then, using analytical and numerical
results, they investigated the role of these nonlinear turning functions μ± on the
overall group patterns. For the numerical results, the authors used a first-order
upwind scheme with periodic boundary conditions, as well as a second-order Lax-
Wendroff scheme. The results showed that when the turning functions are equal
and depend only on the individuals moving in the opposite direction (see the
μ±(u+, u−) functions above), the model exhibits ripples and moving aggregations
(travelling pulses). These two patterns are shown in Fig. 4.5; see also Table 1.2 for
a description of these patterns.

Very recently, Kang et al. [31] identified parameter regions of global existence
for ripples and waves, and parameter regions of existence of finite-time blow-up
patterns, in a local hyperbolic model with density-dependent turning rates. The
authors used the same model (4.3) with the turning rates given by λ+(u+, u−) =
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Fig. 4.5 Reproduction of spatio-temporal patterns observed in [26] for a hyperbolic system of
the form (4.3) with constant speed γ and turning rates λ± = μ + 2 tanh u−

√
u−. (a) travelling

pulses (or waves); (b) ripples (or standing waves). Panels (i) show the total population density
u = u++u−; panels (ii) show the density of right-moving subpopulation u+; panels (iii) show the
density of left-moving sub-population u−

g(u−) and λ−(u+, u−) = g(u+), where

g(u) = μ+ up

1+ νuq
, for u ∈ R

+. (4.6)

As before, μ is a constant spontaneous reversal rate. Parameter p is a rate of
reversal increase for small population densities, while parameter p − q is a rate
of reversal increase/decrease for large population densities [31]. Finally, ν describes
a saturation level where the reversal rates stop increasing at the same rates as for
small populations [31]. For specific values of p, q , and μ the authors have shown
the existence of nontrivial wave patterns when ν ∈ (0, 1/8) ∪ {0}, existence of
finite-time blow-up solutions for ν = 0, and stable spatially homogeneous (or
equidistributed [31]) steady states for ν ∈ [1/8,∞).

We note that the rippling patterns obtained by Lutscher and Stevens [26], Kang
et al. [31] occurred when individuals changed their movement direction only in
response to conspecific moving in the opposite direction. Actually, this biological
mechanism seems to be crucial for the formation of ripples, as observed in discrete
models [32, 33], parabolic models [34–36], as well as nonlocal hyperbolic models
[37]. (We will revisit this pattern in Chap. 5.) Mathematically, it was shown that the
formation of ripples is associated with Hopf bifurcations [26]. For a review of these
bifurcations see the discussion in Chap. 8.

In contrast to these hyperbolic models where the turning rates depend on the local
density of conspecifics, Hillen and Stevens [27] derived a slightly different model to
investigate the effect of indirect interactions among organisms. These interactions
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were mediated by an external signal S, which was produced by individuals at a rate
α, decayed at a rate β, and diffused into the environment at a rate D:

∂u+

∂t
+ γ

∂u+

∂x
= −λ+

(
S,

∂S

∂x

)
u+ + λ−

(
S,

∂S

∂x

)
u−, (4.7a)

∂u−

∂t
− γ

∂u−

∂x
= λ+

(
S,

∂S

∂x

)
u+ − λ−

(
S,

∂S

∂x

)
u−, (4.7b)

τ
∂S

∂t
= D

∂2S

∂x2 + f (S, u+ + u−). (4.7c)

Here, function f (S, u++u−) = −βS+α(u++u−) describes the production/decay
of signal S. Moreover, the turning rates depend not only on the signal alone but also
on the gradient of this signal (∂S/∂x), suggesting some long-distance interactions.
Focusing on existence (and uniqueness) results, the authors showed that solutions
exist globally (i.e., there are no blow-up solutions) when signal production is linear
(i.e., f (S, u+ + u−) = α(u+ + u−)) and the turning rates (λ±(S, ∂S/∂x)) are
bounded. However, blow-up solutions are possible when the production of signal
S is nonlinear (i.e., f (S, u+ + u−) = S(u+ + u−)). Hillen and Levine [38]
investigated a similar hyperbolic model and showed that for their case, the formation
of blow-up patterns is preceded by the turning rates becoming negative. This causes
the densities u± to become negative, meaning that the hyperbolic model becomes
unrealistic just before the blow-up [38]. Even if these density blow-up patterns are
not biologically realistic, they can indicate that the investigated organisms tend
to form very dense aggregations. Examples of blow-up solutions are shown in
Figs. 1.10 and 5.22, and discussed in Table 1.2.

Note that these hyperbolic systems could be seen as displaying another type of
pattern: spatially homogeneous solutions with the majority of individuals aligned
in one direction. Since individuals are spread over the entire domain, they do not
actually form heterogeneous patterns. However, because the population can split
into two subpopulations of left-moving and right-moving individuals, this splitting
this could be seen as a type of group pattern. When the majority of individuals are
moving in one direction, this pattern is the precursor of lane patterns observed in
some 2D models [39]; see also Fig. 1.11.

4.4 Analytical Approaches for the Investigation of Patterns:
Stability of Homogeneous States and Travelling Waves
for Models with Density-Dependent Turning Rates

In the following we focus on a simple local hyperbolic model introduced by
Lutscher [29] to describe the alignment of animals in one spatial dimension, and
discuss the stability of spatially homogeneous steady states and the stability of
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waves of perfect alignment (i.e., all individuals are aligned in one direction, causing
the second population to become zero; which is in contrast to the case depicted in
Fig. 4.5a, where the second population persists at some very low densities). The
model takes the form [29]

∂u+

∂t
+ γ

∂u+

∂x
= μ(u+, u−)

(
u+ − u−), (4.8a)

∂u−

∂t
− γ

∂u−

∂x
= μ(u+, u−)

(
u− − u+), (4.8b)

with

μ(u+, u−) = a

(u+ + u−)3
u+u− − μ∗

2
. (4.9)

The first term in the above equation is a density-dependent turning rate (with
a > 0) that leads to alignment, while the second term (with μ∗ ≥ 0) is a constant
random tuning rate. It is clear from Eqs. (4.8) that this model can have spatially
homogeneous steady states with u+ = u− = ū, or states with u+ �= u− (that
satisfy μ(u+, u−) = 0); see Fig. 4.6. It was shown in [29] that small spatial
perturbations of spatially homogeneous steady states u+(x, t) = u−(x, t) = ū

(i.e., u± = ū + c±eσ t+ikx , with 0 < c± � 1) lead to a dispersion relation with
eigenvalues given by:

σ1,2 =
(a

4
ū2 − μ∗

2

)± 1

2

√(a

4
ū2 − μ∗

2

)2 − 4γ 2k2. (4.10)

When μ∗ is large, Re(σ1,2) < 0 and all modes are stable. However, as we decrease
μ∗ below a critical threshold μ∗ = aū2/2 all modes become unstable; see Fig. 4.7.
(Note that similar dispersion relations, where eigenvalues can be unstable for an

−
u  = u

u  = u

steady states, for the
local model introduced in
(Lutscher, 2002):

spatially homogeneous
Implicit definition of

+ −

+

u−

+u

Fig. 4.6 Examples of spatially homogeneous steady states (i.e., states which satisfy ∂u±/∂t =
∂u±/∂x = 0) in the (u+, u−) plane, for the local hyperbolic model (4.8). One can have states with
u+ = u− (magenta line), or states with u+ �= u− (green curve). Note the symmetry of the steady
states with respect to the u+ ↔ u− interchange
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Fig. 4.7 Real part of the dispersion relation as given by (4.10); the red curves describe σ1, while
the blue curves describe σ2. Note that (a) for large μ∗ (e.g., μ∗ = 1.0) all wavenumbers k are
stable, while (b) for small μ∗ (e.g., μ∗ = 0.1) all wavenumbers k are unstable

infinite range of wavenumbers, have been shown to exist in a relatively similar local
hyperbolic system introduced in [40].) This spectral result impacts the existence of
a centre manifold reduction—as it will be discussed in Chap. 8.

Lutscher [29] also showed that simple waves of total alignment (i.e., waves of
the form u+(x, t) = u+0 (x − γ t) and u−(x, t) = 0, or u+(x, t) = 0 and u−(x, t) =
u−0 (x + γ t)) are linearly stable with respect to the positive cone. To this end, the
author assumed that u+ ≥ 0 and u− = 0, and applied small perturbations w±.
These perturbations satisfy the following linearised system:

∂w+

∂t
+ γ

∂w+

∂x
= a(u)(u+)2w−,

∂w−

∂t
− γ

∂w−

∂x
= −a(u)(u+)2w−. (4.11)

Since the second equation (for w−) decouples from the first equation, one can
integrate it to obtain

d

dt

∫
D

w−(x, t)dx = −
∫

D

a(u)u+(x, t)2w−(x, t)dx ≤ 0, (4.12)

which implies that w− converges to 0, and thus the simple wave (u+ > 0, u− = 0)
is stable.

To conclude the discussion of the model in [29] we note that the author also
showed that for all initial data u±0 ∈ L

∞(R) there exists a unique mild solution (see
definition below) u± ∈ L

∞(R×[0, T )) of the initial value problem, for some T > 0.
Moreover, if the initial data is in Ck(R) then all solutions are in Ck(R) provided that
μ ∈ Ck,1. The proof of this existence result uses a standard contraction argument
[29] (see also Chap. 8).



92 4 Local Hyperbolic/Kinetic Systems in 1D

Definition 4.1 A mild solution is a pair of functions (u+, u−) ∈ L
∞(R× [0, T ))2

that satisfies the following integral equation (obtained by integrating system (4.8)
along the characteristic lines x±γ t = const and using a new variable z = z0±γ t):

u±(z) = u±0 ±
∫ z

z0

μ(u+, u−)
(
u+ − u−

)
(y)dy. (4.13)

4.5 Density-Dependent Speeds

The models mentioned in the previous section assume that the speed is constant,
while the turning behaviour is the result of local alignment interactions. However,
it is well known that some organisms change also their speed in response to
interactions with neighbours [41]. This can lead to an additional equation for the
evolution of the speed.

One of the first generalisations of models (3.1) to two different populations u and
v (or “two-phase” models) was proposed by Bick and Newell [42] in the context of
two-lane traffic:

∂u

∂t
+ ∂

∂x
(u(1− u− βv)) = 0, (4.14a)

∂v

∂t
+ ∂

∂x
(−v(1 − βu− v)) = 0. (4.14b)

Here, β > 0 models the changes in the velocities of the two populations as a result
of their interactions. The authors then investigated analytically the possibility of
having shock curves that connect different states.

Chertock et al. [43] derived a local hyperbolic model for pedestrian movement
from a microscopic model on a lattice. The authors considered the probabilities of
left-moving (p−x (t)) and right-moving (p+x (t)) pedestrians to be in a lattice cell x at
time t , and defined four different velocities which depend on the presence or absence
of pedestrians in the adjacent lattice cells (at x±Δx). For example, if right-moving
pedestrians are found in a cell x (i.e., p+x = 1, but p+x+Δx = 0), then their velocities
depend on the presence/absence of left-moving pedestrians:

1. velocity=c0 if p−x = p−x+Δx = 0 (no left-moving pedestrians in cells at x or
x +Δx),

2. velocity=c1 if p−x = 1, p−x+Δx = 0 (left-moving pedestrians in the cell at x),
3. velocity=c2 if p−x = 0, p−x+Δx = 1 (left-moving pedestrians in the cell at x +

Δx),
4. velocity=c3 if p−x = p−x+Δx = 1 (left-moving pedestrians in cells at x and x +

Δx),

with c3 < c2 ≈ c1 < c0. Similar velocities can be defined for left-moving
pedestrians when p−x = 1 (and their velocities depend on the presence/absence of
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right-moving pedestrians). With these definitions, the probabilities of moving from
cell x to cell x + Δx (for p+x ) or from cell x to cell x − Δx (for p−x ) in one time
step Δt are

P+x→x+Δx =Δt
(
c0p

+
x (1− p+x+Δx)(1− p−x )(1− p−x+Δx)

+ c1p
+
x (1− p+x+Δx)p

−
x (1− p−x+Δx)

+ c2p
+
x (1− p+x+Δx)(1− p−x )p−x+Δx

+ c3p
+
x (1− p+x+Δx)p

−
x p−x+Δx

)
, (4.15a)

P−x→x−Δx =Δt
(
c0p

−
x (1− p−x−Δx)(1− p+x )(1− p+x−Δx)

+ c1p
−
x (1− p−x−Δx)p

+
x (1− p+x−Δx)

+ c2p
−
x (1− p−x−Δx)(1− p+x )p+x−Δx

+ c3p
−
x (1− p−x−Δx)p

+
x p+x−Δx

)
. (4.15b)

In the limit Δx,Δt → 0, this microscale model becomes the following macroscale
model:

∂u+

∂t
+ ∂

∂x

(
f (u+)g(u−)

)
= 0, (4.16a)

∂u−

∂t
− ∂

∂x

(
f (u−)g(u+)

)
= 0, (4.16b)

with

f (w) = w(1−w), g(w) = (c3−c2−c1+c0)w
2+(c2+c1−2c0)u+c0. (4.17)

The authors used numerical simulations to compare the dynamics of the microscale
and macroscale models. For the simulation of the macroscopic model, they
employed a semi-discrete, second-order, central-upwind scheme [44], with a
nonlinear “minmod” limiter to avoid oscillations in the reconstruction of the
solution (see a description of this limiter in Chap. 7). The simulations showed
that both models could exhibit rippling behaviour, with pulses of left- and right-
moving pedestrians passing through each other. The strength of the slow-down
interactions (which is determined by the values of the velocities cj , j = 0, 1, 2, 3)
determines how well the numerics for the microscopic model match the numerics
for the macroscopic model: lower slow-down interactions are associated with an
almost perfect match. Model (4.16)–(4.17) can be non-hyperbolic in some regions
of the parameter space, since the Jacobian matrix

J =
(

f ′(u+)g(u−) f (u+)g′(u−)

−f (u−)g′(u+) −f ′(u−)g(u+)

)
(4.18)
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has real eigenvalues (which ensures hyperbolicity) only if the following condition
holds true:

(
f ′(u−)g(u+)+ f ′(u+)g(u−)

)2 − 4f (u−)f (u+)g′(u−)g′(u+) > 0.

Hence it is possible to have a non-hyperbolic regime for some specific values of
c0, c1, c2 and c3, for which the above inequality does not hold (and this happens
when the left-moving and right-moving pedestrians were both present at a particular
location in space). In this regime, the solution of the model (4.16) was shown
to exhibit spurious oscillations. To address this numerical problem, the authors
considered also a diffusive correction which described the presence of pedestrians
moving in the opposite directions:

∂u+

∂t
+ ∂

∂x

(
f (u+)g(u−)

)
= ε

2

∂

∂x

(
g(u−)

∂u+

∂x

)
, (4.19a)

∂u−

∂t
− ∂

∂x

(
f (u−)g(u+)

)
= ε

2

∂

∂x

(
g(u+)

∂u−

∂x

)
, (4.19b)

Numerical simulations for this new model showed solutions corresponding to
rarefaction waves and stop-and-go behaviours in pedestrian dynamics [43]; see also
Fig. 1.10b.

Model (4.16) can be generalised to include a desired pedestrian velocity V .
Appert-Rolland et al. [45] proposed a model for two-way one-lane pedestrian traffic
which assumes that pedestrians adapt their speed in response to pressure from their
neighbours:

∂u+

∂t
+ ∂

∂x

(
u+(V − p(u+, u−))

)
= 0, (4.20a)

∂u−

∂t
− ∂

∂x

(
u−(V − p(u+, u−))

)
= 0. (4.20b)

Here, function p is an increasing function of both u+ and u−. Generally, p can be
obtained from the data. However, in [45], the authors propose a particular form
for function p that allows for the investigation of congestion effects (see also
Eqs. (3.18)):

p(u+, u−) = pε(u+, u−) = P(u+ + u−)+Qε(u+, u−), (4.21a)

P(u+ + u−) = M(u+ + u−)m, m ≥ 1, (4.21b)

Qε(u+, u−) = ε

q(u+)
(

1
u++u− − 1

u∗
)d

, d > 1, (4.21c)
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with q an increasing function. Here, congestion occurs when u+ + u− → u∗. Note
that also for this model there are regions in the parameter space where (4.20) is
non-hyperbolic. As for the previous example, the authors considered a diffusive
perturbation of the model to stabilise the large wavenumbers that arise in the
parameter region where the model is non-hyperbolic. The numerical simulations
(performed with a central difference scheme [46]) have shown the existence of
travelling pulses, where both subpopulations u± travel in the same direction. For
large diffusive perturbations, the dynamics of the system approaches a spatially
homogenous steady state.

A slightly different hyperbolic model with density-dependent speeds (γ+ =
γ+(u+, ∂u+/∂x) and γ− = γ−(u−, ∂u−/∂x)) and turning rates (λ+ = λ− =
λ(u+, u−)) was introduced by Lutscher [47]:

∂u+

∂t
+ ∂

(
u+γ+(u+, ∂u+/∂x)

)
∂x

= −λ(u+, u−)u+ + λ(u+, u−)u−, (4.22a)

∂u−

∂t
− ∂

(
u−γ−(u−, ∂u−/∂x)

)
∂x

= λ(u+, u−)u+ − λ(u+, u−)u−. (4.22b)

The speeds γ± depend not only on the local density of individuals, but also on the
gradient of this density. In particular, these speeds satisfy the following additional
elliptic equations

β
∂2γ+

∂x2 = γ+ − E
(
u+,

∂u+

∂x

)
, β

∂2γ−

∂x2 = γ− − E
(
u−,−∂u−

∂x

)
, (4.23)

where E describes an expected speed. If this expected speed is constant (i.e.,
E = γ ), then the speed of the individuals is also constant (γ± = γ ). Analytical
results were used to discuss the stability of spatially homogeneous steady states.
Numerical simulations were performed only for right-moving individuals, with the
speed satisfying a parabolic equation of the form

τ
∂γ+

∂t
= β

∂2γ+

∂x2
− γ + E(u+,

∂u+

∂x
). (4.24)

The results showed that model (4.22)–(4.24) can exhibit travelling pulse solutions.
The density-dependent speeds could also be the result of indirect interac-

tions among organisms. These indirect interactions can be mediated by signals
S produced by the organisms themselves: γ± = γ (S, ∂S

∂t
, ∂S

∂x
), where S satis-

fies Eq. (4.7c) [27]. These signals could also be produced by other sources not
investigated explicitly. Such a situation is common in tumour immunology, where
the tumour-immune interactions are mediated by cytokines produced by various
types of immune cells, not all of them being investigated in the models (see, for
example, the tumour-immune interactions discussed in [48]). Mathematically, this
situation could be modelled by incorporating into Eq. (4.7c) an external source of
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communication signals. In Chap. 5 we will discuss a nonlocal model that considers
such an approach.

A different situation that could be modelled by density-dependent speeds is the
interaction of multiple species, each species influencing directly the velocity of the
other species. To our knowledge, this “cross-advection” mechanism has not received
much attention in the context of hyperbolic systems (although it has been recently
investigated in parabolic models for population dynamics [49]). To model such a
situation, the individuals’ speed would be described by γ±(u±, v±), where u± and
v± are the two species. More generally, each species could produce signals S that
would influence indirectly the speed of the other species: γ±(S(u±, v±)).

Finally we note that the organisms’ velocities could also depend on their age (a)

as well as their location in space (x): γ = γ (a, x) [20]. We will revise this aspect
in the next section, in the context of reaction hyperbolic systems.

We conclude this discussion on density-dependent speeds, by mentioning that in
Sect. 5.8 we will consider a more general situation where the speed of individuals
depends on the density of neighbours located further away (i.e., nonlocal speeds).

4.6 Models that Include Reaction Terms

When the hyperbolic models describe the evolution of organisms over long periods
of time, they incorporate also population dynamics (i.e., birth and death processes).
In this case, one has to be careful when modelling the death terms, since the
left- and right-moving particles (organisms) die as left- and right-moving particles
(organisms). On the other hand, the newly formed particles (organisms) can be
either left-moving or right-moving. For detailed discussions of such models see
[19, 20, 50–53]. The general equations for reaction-transport models with population
dynamics are

∂u+

∂t
+ γ

∂u+

∂x
= −λ+u+ + λ−u− + 1

2
m(u)u− g(u)u+, (4.25a)

∂u−

∂x
− γ

∂u−

∂x
= λ+u+ − λ−u− + 1

2
m(u)u− g(u)u−. (4.25b)

Here u = u+ + u− ∈ R is the total density, m(u) models the production
(multiplication) of particles/individuals/cells, and g(u) models the death of these
particles/individuals/cells. Note that while the production term depends on the total
density u (and the new-born particles/individuals/cells become left-moving or right-
moving with similar probabilities 1/2), the death terms depend on u+ and u−.
These equations have been used, for example, to study animal dispersal [19], or
to model epidemiological problems when the movement of infected individuals can
be described by a correlated random walk process [20, 54].

Solutions for the reaction-transport system (4.25) have been investigated exten-
sively: from existence and uniqueness results [24, 55, 56], to asymptotic behaviour
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of solutions [56, 57] and invariance results [51]. System (4.25) was also shown to
exhibit travelling front solutions [19, 20, 53, 56, 58, 59]. The minimal speed of the
travelling fronts was proven to depend on the nonlinear functions m(u) and g(u)

[58, 59].
The reaction-transport models (4.25) can be further generalised by adding

density-dependent speeds (γ (u)) and turning rates (λ±(u)) [60, 61]. Such models
had been shown to exhibit travelling front solutions [61].

Finally, these reaction-transport models could be used to study populations
structured by location in space (x) and age (a ≥ 0) [20], or by some other internal
state (especially relevant in case of cells, where signalling pathways inside cells
influence cells’ movement) [62]. For example, in [20] the authors assumed that age
can influence the speed (γ ) as well as the turning rates (λ±) of organisms:

∂u+

∂t
+ ∂u+

∂a
+ ∂γ (a, x)u+

∂x
= −λ+(a)u+ + λ−(a)u− + 1

2
m(u)u− g(u)u+,

(4.26a)

∂u−

∂x
+ ∂u−

∂a
− ∂γ (a, x)u−

∂x
= λ+(a)u+ − λ−(a)u− + 1

2
m(u)u− g(u)u−.

(4.26b)

Here, u±(a, x, t) describes the density of left- and right-moving individuals of age
a, positioned at x ∈ R at time t ∈ R

+. In contrast to the nonlocal birth term in
model (3.30), here the birth rate does not depend explicitly on age.

In the context of bacterial colonies, Xue et al. [62] considered a hyperbolic
model for the movement of an E. coli bacterial population, coupled with parabolic
equations for the dynamics of chemicals consumed (i.e., aspartate S(x, t)) and
secreted (i.e., succinate F(x, t)) by cells, and ordinary differential equations for the
dynamics of internal cell variables. The density of left-moving and right-moving
bacterial population is described by functions u±(x, y, z, t). Here [y, z] is an
internal state with variable y describing signal transduction (where the coordinates
yi , i = 1, . . . q , of this vector represent the concentrations of various proteins in the
cell and receptor states involved in signal transduction) and variable z describing
cellular metabolism (where the coordinates zi , i = 1, 2 include the concentration of
the components in the TCA cycle and ATP). The equations for the evolution of the
internal variables y = (y1, . . . , yq) and z = (z1, z2) are [62]:

dyi

dt
= f(yi, S), i = 1, . . . , q, and f = (f1, . . . , fq), (4.27)

dz1

dt
= g1(z, F ), with g1(zF) = F(x, t)− z1

tf
, (4.28)

dz2

dt
= g2(z, F ), with g2(z, F ) = z1 − z2

tm
. (4.29)
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Here tf is the characteristic time scale for the generation of the metabolic variable
z1 (e.g., fumarate in the TCA cycle; it is measured in seconds), while tm is the
characteristic time scale for the generation of variable z2 (e.g., associated with the
starving state of bacteria; it is measured in tens of minutes).

The equations for cells’ movement are [62]:

∂u+

∂t
+ s

∂u+

∂x
+

q∑
i=1

∂

∂yi

(
fi(y, S)u+

)
+

2∑
i=1

∂

∂zi

(
gi(z, F )u+

)

= λ(y)[−u+ + u−] + k(zu+), (4.30)

∂u−

∂t
− s

∂u−

∂x
+

q∑
i=1

∂

∂yi

(
fi(y, S)u−

)
+

2∑
i=1

∂

∂zi

(
gi(z, F )u−

)

= λ(y)[u+ − u−] + k(zu−). (4.31)

It is assumed that bacteria travel with a constant speed s, and the turning frequency
of bacteria depends on the signal transduction variable (λ(y)), while the proliferation
rate depends on the metabolic variables (k(z)). Finally, the equations for the
evolution of the two chemicals, aspartate (S) and succinate (F ) are [62]:

∂S

∂t
= DS

∂2S

∂x2 + αF

∫ ∫
h(z2)

(
u+(y, z)+ u−(y, z)

)
dydz

−βS

∫ ∫ (
1− h(z2)

)(
u+(y, z)+ u−(y, z)

)
dydz− γ S, (4.32)

∂F

∂t
= DF

∂2F

∂x2 − βF

∫ ∫
h(z2)

(
u+(y, z)+ u−(y, z)

)
dydz, (4.33)

where it was assumed that α, β > 0, γ ≥ 0 and h(z2) is an increasing function of
z2 (e.g., h(z2) = az2). It was shown in [62] that this complex 1D mathematical
model exhibits global weak solutions. This analytical result was complemented
by numerical simulations that have shown stationary aggregations (which were
also very slowly diffusing), and travelling band solutions (i.e., travelling pulses
or rotating waves). It should be noted that for the numerical simulations, the
authors used zero-flux boundary conditions. The hyperbolic equations for bacterial
movement were discretised using an upwind scheme combined with a Van Leer
flux limiting approach to preserve the positivity of solutions. The diffusion terms
were approximated with the help of a central difference scheme. The integral terms
in Eqs. (4.32)–(4.33) were discretised using a trapezoidal scheme. For more details
regarding these numerical approaches, see Chap. 7.

The models discussed until now assumed that the individuals/particles/cells are
moving either left (−) or right (+). However, in many situations it is possible to
have also third state, where the individuals/particles/cells are not moving. Such a
class of models was discussed in the review article by Bressloff and Newby [28],
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in the context of active intracellular transport. Particles moving along a single
microtubular filament (of length L) can be bound to the filament and moving left
(u−) or right (u+), or can be unbound from the filament and (maybe) diffusing (u0);
see also Fig. 4.2. The equations describing the dynamics of these different types of
particles could be written as follows:

∂u+

∂t
+ v

∂u+

∂x
= −β+u+ + αu0, (4.34a)

∂u−

∂t
− v

∂u−

∂x
= −β−u− + αu0, (4.34b)

∂u0

∂t
= D0

∂2u0

∂x2 + β+u+ + β−u− − 2αu0. (4.34c)

In the above equations v ∈ R
+ is the speed of bound left-moving/right-moving

particles, D0 is the diffusion rate of unbound particles, while β± ∈ R
+ and α ∈ R

+
are the transition rates between the moving and stationary states. Note that in this
model a filament-bound left-moving particle can become right-moving only after
becoming stationary and unbound (i.e., there is no direct transition between u− ↔
u+, and so the reaction terms are slightly different from those in the models above).
Since this model was defined on a finite domain [0, L], boundary conditions were
included in the model description: for example, a reflecting boundary at x = 0 (i.e.,
u−(0, t) = u+(0, t)), and an absorbing boundary at x = L (i.e., u−(L, t) = 0) [28].

This class of models (with/without diffusion for u0 and even for u±) for motor-
assisted transport of particles along microtubules/axons have been investigated
analytically and numerically in terms of: finding exact analytical solutions (using
Laplace transforms) [63–65], showing the existence of travelling waves [66], per-
forming numerical simulations for the time-evolution of solutions [63, 65, 67, 68].
Some studies even compared the numerical simulated solutions with experimental
data [67, 68].

4.7 Traffic Models

4.7.1 First-Order Models

Local hyperbolic systems are also used to model traffic or pedestrian flows
characterised by two distinct velocities γ1,2 ∈ R. However, in this case, the
“reaction” terms are actually speed-adaptation terms. A two-velocity model was
first introduced by Ruijgrok and Wu [69] in the context of gas dynamics:

∂u+

∂t
+ γ1

∂u+

∂x
= −αu+ + βu− + μu+u−, (4.35a)

∂u−

∂t
+ γ2

∂u−

∂x
= αu+ − βu− − μu+u−, (4.35b)
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As opposed to the models in the previous section, where the two velocities were
γ1 = −γ2, here both velocities γ1,2 could be positive. The last terms on the right-
hand-side of Eqs. (4.35) describe the transition from velocity γ2 to velocity γ1
following a binary collision with intensity μ. If γ2 > γ1, these terms model the
slowing-down process that takes place when a car of velocity γ2 travels behind a car
with velocity γ1.

A different class of multi-equation models describes the heterogeneous traffic
exhibited by multi-groups of drivers (i.e., cars, trucks, or vehicles with different
trips [70]). These types of models (see, for example, [71, 72]) denote by ui(t, x),
i = 1, . . . , n, the density of vehicles in the i-th class of drivers, and by vi(u1, .., un)

the average speed of the i-th class:

∂ui

∂t
+ ∂(uivi)

∂x
= 0, i = 0, . . . , n. (4.36)

As for single-population first-order models, the speed has the general form vi(u) =
ψ(ū)v∗i , with v∗i the maximum speed for drivers in the i-th class, and ψ(ū) a
decreasing function of the total population ū = u1 + . . . + un, with ψ(0) = 1
(or some positive constant) and ψ(umax) = 0 (with umax the maximum possible
density for the road) [70]. These types of models (with these assumptions on the
speed variable) admit entropy admissible shock wave solutions [70, 72].

4.7.2 Second-Order Models

Similar to the one-population models, the two-population models (for the dynamics
of left-moving/right-moving individuals) can be cast as second-order models by
introducing explicit formulas for the velocity of left-moving and right-moving
individuals. Appert-Roland et al.[45] introduced the following model for the
movement of two pedestrian subpopulations u± ∈ R on one lane:

∂u+

∂t
+ ∂(u+v+)

∂x
= 0, (4.37a)

∂u−

∂t
+ ∂(u−v−)

∂x
= 0, (4.37b)

∂(u+w+)

∂t
+ ∂(u+w+v+)

∂x
= 0, (4.37c)

∂(u−w−)

∂t
+ ∂(u−w−v−)

∂x
= 0, (4.37d)

w+ = v+ + p(u+, u−), (4.37e)

w− = −v− + p(u−, u+). (4.37f)
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As mentioned in Chap. 3, where we discussed a similar one-population model,
(v+, v−) ∈ R

+ × R
− describe the actual velocities for the two populations (with

v+ > 0 for right-moving individuals and v− < 0 for left-moving individuals), while
(w+, w−) ∈ R

+ × R
+ describe the desired pedestrian velocities in the absence of

any obstacles. Because the offset velocities p(u±, u∓) > 0 can be very large (since
p is not bounded; see Chap. 3), the actual velocities can reverse their sign. This
way, under the pressure of large right-moving (left-moving) crowds, the left-moving
(right-moving) individuals will reverse direction and will follow the majority of
the population, thus leading to the formation of travelling pulses. The model can
be easily generalised to consider congestion dynamics: u± → u±ε , w± → w±ε ,
v± → v±ε and p(u±, u±) → pε(u±ε , u∓ε ), with pε described by (4.21).

Model (4.37) can be further generalised to describe the movement of pedestrians
via multiple lanes. Thus, if one denotes by k the lane index, k = 1, 2, . . .K < ∞,
then the model reads [45]:

∂u+k
∂t

+ ∂(u+k v+k )

∂x
= S+k , (4.38a)

∂u−k
∂t

+ ∂(u−k v−k )

∂x
= S−k , (4.38b)

∂(u+k w+k )

∂t
+ ∂(u+k w+k v+k )

∂x
= R+k , (4.38c)

∂(u−k w−k )

∂t
+ ∂(u−k w−k v−k )

∂x
= R−k , (4.38d)

w+k = v+k + pk(u
+
k , u−k ), (4.38e)

w−k = −v−k + pk(u
−
k , u+k ). (4.38f)

Here, S±k and R±k are source terms that model the transition rates between different
lanes. Generally, pedestrians change lanes from k to k ± 1. In [45] the authors
denoted by λ+k→k±1 and λ−k→k±1 the transition rates for right-moving and left-
moving pedestrians, and assumed that λ±k→k±1 are decreasing with uk±1 = u+k±1 +
u−k±1, while the rates are zero at congestion: uk±1 = u∗. With these assumptions,
the transition rates can be written as:

Sk,α = λα
k+1→ku

α
k+1 + λα

k−1→k −
(
λα

k→k+1 + λα
k→k−1

)
uα

k , (4.39a)

R±k = λα
k+1→ku

α
k+1w

α
k+1 + λα

k−1→ku
α
k−1w

α
k−1 −

(
λα

k→k+1 + λα
k→k−1

)
uα

k wα
k ,

(4.39b)

α = ±. (4.39c)

Note that model (4.38) does not actually describe the spontaneous segregation of
pedestrians into different lanes. It only describes pedestrian dynamics after the
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lanes are formed. Unfortunately, the authors in [45] do not present any numerical
simulations for these multi-lane models.

4.8 Multiple Population Models

In contrast to the models presented in the previous section (which described
the dynamics of one population formed of left-moving/right-moving individuals
travelling on one lane (4.37) or on different lanes (4.38)), we now consider the
case of multiple populations moving through a one-lane domain. To this end,
we generalise models (4.3)–(4.25) to multiple species by considering a vector
u± = [u±i ] ∈ R

n, i = 1..n [20, 26]. Here, u±i denotes the left-moving (−) and
right-moving (+) particles of species i. Such models have been used to investigate
typical species interactions, such as predator-prey, competition, or mutualism [20],
Turing aggregation patterns [52], as well as epidemics spread [54].

As an example, Lutscher and Stevens [26] introduced the following two-
population model to describe the interactions between two cell types that differ in
their turning behaviour (due to different inter-cellular signalling):

∂u+1
∂t

+ γ
∂u+1
∂x

= −(μ+ λ+)u+1 + (μ+ λ−)u−1 , (4.40a)

∂u−1
∂t

− γ
∂u−1
∂x

= (μ+ λ+)u+1 − (μ+ λ−)u−1 , (4.40b)

∂u+2
∂t

+ γ
∂u+2
∂x

= −(μ+ ν+)u+1 + (μ+ ν−)u−1 , (4.40c)

∂u−2
∂t

− γ
∂u−2
∂x

= (μ+ ν+)u+1 − (μ+ ν−)u−1 , (4.40d)

where μ ≥ 0 is a constant turning rate and λ±(u±1 , u±2 ) and ν±(u±1 , u±2 ) are the
density-dependent turning rates that result from cell-cell interactions. The authors
also assumed various symmetry conditions in regard to the turning rates (conditions
that affect also the symmetry of the entire system):

λ±(u+1 , u−1 , u+2 , u−2 ) = λ±(u+1 , u−1 , u−2 , u+2 ), (4.41a)

ν±(u+1 , u−1 , u+2 , u−2 ) = ν±(u+1 , u−1 , u−2 , u+2 ), (4.41b)

ν+(u+1 , u−1 ) = ν−(u−1 , u+1 ), (4.41c)

The authors in [26] investigated the stability of the spatially homogeneous steady
states u±1 = c1 and u±2 = c2, and showed analytically that at the bifurcation
point all eigenvalues cross the imaginary axis. Thus, the instability arises via a
Hopf bifurcation. Although the model likely displays rotating waves (i.e., travelling
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pulses—as a result of Hopf bifurcations), no numerical simulations were presented
to confirm the type of patterns obtained with model (4.40).

A somehow similar two-population model was introduced by Watmough and
Edelstein-Keshet [73] to describe the dynamics of ant leaders/pioneers and follow-
ers, in response to the density of a pheromone trail. However, in contrast to the
model in [26], here the hyperbolic equations for the dynamics of left-moving and
right-moving leaders (L±) and right-moving and left-moving followers (F±), are
coupled with an ODE for the degradation and production of pheromones (T ):

∂T (x, t)

∂t
= −γ T (x, t)+ τf F (x, t)+ τlL(x, t), with

F = F+ + F−, L = L+ + L−, (4.42)

and

∂F+

∂t
+ v

∂F+

∂x
= −εF+ + αL+T − ρ+F+ + ρ−F−, (4.43a)

∂F−

∂t
− v

∂F−

∂x
= −εF− + αL−T + ρ+F+ − ρ−F−, (4.43b)

∂L+

∂t
+ s

∂L+

∂x
= εF+ − αL+T − λL+ + λL−, (4.43c)

∂L−

∂t
− s

∂L−

∂x
= εF− − αL−T + λL+ − λL−. (4.43d)

In the pheromone equation (4.42) γ is the degradation rate, while τf and τl are the
production rates. In Eqs. (4.43) for the ants movement, λ and ρ± describe the turning
rates, s and v are the speeds of leaders and followers, while ε and α describe the
exchanges between leaders and followers. Note that the pheromone density acts as a
communication mechanisms between leaders and followers (with leaders becoming
followers, at a rate αT , when they encounter and follow the pheromone trails). The
authors reduced this 5-equation system to a 3-equation system for the total follower
(F ) and leader (L) populations, and the density T of pheromones. Then they studied
the stability of the spatially-homogeneous steady states displayed by the reduced
model, and used the results to show qualitatively the existence of travelling waves
as heteroclinic orbits connecting the steady states. Numerical simulations confirmed
the existence of these travelling waves.

We decided to present this model for ants movement along pheromone trails,
as a simple example of local communication between different populations via a
chemical produced by the members of both populations. In contrast to the model
by Hillen and Stevens [27] discussed above, where the turning rates depended also
on the gradient of the external chemical (thus suggesting nonlocal interactions via
the chemical signal, among the members of the same population), in model (4.43)
the interactions between the two populations depend on the local density of
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the chemical. In the next chapter we will discuss more complex communication
mechanisms, which can lead to short-range and/or long-range interactions among
individuals (i.e., repulsion, attraction and alignment). In that context, we will
return to the investigation of multiple populations which use different animal
communication mechanisms to interact with each other. Furthermore, in Chap. 6 we
will discuss another model for ant-trail formation through pheromone deposition,
where the pheromone sensing will be assumed nonlocal.

Remark 4.4 The local hyperbolic models presented in these last two chapters form
the basis of modelling directional movement in animal/human communities. More-
over, the majority of models presented here were simple enough to be amenable
to analytical and numerical investigation of the solutions. However, the approaches
taken in these studies did not identify a large variety of patterns displayed by these
local models. It is not clear whether this is the result of an insufficient investigation
of the parameter spaces for these local models, or the models themselves cannot
exhibit more exotic patterns (due to their bifurcation and symmetry structure). In
the next two chapters, the focus will be on hyperbolic/kinetic models that include
nonlocal interactions between conspecifics. Particular emphasis will be on the
complex types of patterns that can be displayed by these nonlocal models. This
way, we aim to emphasise the contribution of nonlocal interactions (as a result of
nonlocal animal-animal and cell-cell communication) to the complex behaviours
observed in animal and cell aggregations.

Remark 4.5 Since many of the models discussed above have been derived using
random walk approaches, they incorporate intrinsically various stochastic aspects
(e.g., random initial positions of particles, transitions between moving/stationary
states governed by Markov processes, etc.; Note that a Markov process is a
stochastic process in which the future is independent of the past, given that we know
the present [74]). For a more in-depth discussion of stochastic processes in relation
to transport equations in cell biology, we refer the reader to [28, 75]. We will return
to the aspect of stochasticity at the end of Chap. 5, where we will discuss the explicit
incorporation of environmental noise into hyperbolic/kinetic models for collective
dynamics.
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Chapter 5
Nonlocal Hyperbolic Models in 1D

5.1 Introduction

The hyperbolic models discussed in Chaps. 3 and 4 assumed that the interactions
among organisms are only local. However, many organisms can receive information
about conspecifics that are further away using, for example, acoustic or visual
signals. An eloquent example is offered by migrating birds that fly during the
night in very loose flocks, with individuals 200–300 m apart from each other [1].
Despite these large inter-individual distances, radar tracking data indicates that all
birds move with the same speed and in the same direction [1]. The persistence
of these migrating flocks of birds can be explained by the use of long-distance
acoustic communication, to share “in-flight” information about movement speed
and directions [1, 2]. These nonlocal interactions among individuals belonging to
the same group are not restricted only to flocks of birds. Minnows, for example,
have the tendency to approach the larger of the two shoals of conspecifics when
exposed to predatory treat [3]. Their ability to decide which shoal is larger suggests
the possibility of long-distance communication through visual signals. Monkeys
have also been shown to use long-distance calls to communicate with conspecifics or
in response to predators [4, 5]. More recently, experimental studies on the collective
movement of cells have shown that cells can coordinate their behaviours across
many cell rows—through mechano-transduction pathways [6]. Thus, even cells
display nonlocal (i.e., long-distance) interactions. We need to emphasise that “long
distance” is a relative term, which depends on the physiological characteristics of
each species: it can range from micrometers for cells, to a few body lengths for fish,
and meters and even kilometres for birds or monkeys.

In general, animal communication is the result of various signals (visual,
chemical, acoustic, electrical or tactile signals) that organisms use to receive or to
send information about their position and direction of movement [7]. Some signals
(i.e., tactile and electrical signals) act on short spatial distances, while other signals
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Fig. 5.1 A simplified depiction of the spatial ranges for three social interactions: repulsion,
alignment and attraction. (a) one-dimensional (1D) case; (b) two-dimensional (2D) case. A
reference individual is positioned at x = 0

(i.e., visual and acoustic signals) act on large spatial distances; see also Fig. 1.6.
These communication signals are used to influence the social interactions among
group members by causing organisms to change their travel direction and speed. For
example, individuals can turn to move away from nearby neighbours (repulsion), to
move towards conspecifics that are further away (attraction), or to align with other
organisms that are at intermediate distances (alignment). They can also slow-down
to avoid collision with other individuals nearby (repulsion), or speed-up to approach
those that are further away (attraction). The spatial ranges for these three social
interactions are depicted in Fig. 5.1.

Incorporating nonlocal interactions into the mathematical models which describe
biological aggregations is a natural step in the modelling process. The majority of
these nonlocal models were derived to explain complex biological processes that
could not be reproduced by local models. For example, in the context of insect
aggregations, a well-known nonlocal parabolic model for swarm formation was
developed by Mogilner and Edelstein-Keshet [8] to address the lack of cohesive
swarms (i.e., lack of travelling pulse solutions) displayed by local aggregation
models [9]. In the context of cell aggregations, another nonlocal continuous model
was developed by Armstrong et al. [10] to address the lack of cell segrega-
tion/mixing patterns observed experimentally with different cross-adhesion and
self-adhesion strengths of cells during cell-cell interactions, but not reproduced by
local continuous models.

Another natural step in the modelling process is to investigate the structure of the
group patterns when individuals in a group communicate via different mechanisms.
Generally, the self-organised biological aggregations are very heterogeneous, with
individuals having different physiological characteristics (e.g., different age [11] or
different health states [12]). This heterogeneity also translates into a heterogeneity
of inter-individual communication, as discussed in [11] in the context of age-related
alarm calls in vervet monkeys (see also Fig. 1.8). Moreover, the differences in
communication could also affect the patterns exhibited by the animal groups, which
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in some extreme cases could mean speciation (thus spatial segregation of animal
communities), as discussed in [13].

In this chapter, we extend the previous hyperbolic models to account for the
long-distance communication that takes place among organisms belonging to the
same group. We first discuss some general 1-equation nonlocal hyperbolic models.
Then we focus on systems of hyperbolic equations, and discuss the group patterns
that arise when individuals use only one communication mechanism. Next, we
investigate the patterns that form in the presence of two different communication
mechanisms. In this context of animal communication, we also discuss the role of
particular social interactions (attraction, repulsion and alignment) on the resulting
group patterns. We conclude with a discussion on the effect of environmental noise
on inter-individual communication and aggregation patterns.

5.2 One-Equation Nonlocal Models with Density-Dependent
Speeds

The simplest way to incorporate nonlocal social interactions into a mathematical
model is to assume that individuals (u ∈ R) speed-up or slow-down in response to
neighbours detected ahead of them (3.2) [14, 15]:

∂u

∂t
+ ∂(Γ [u]u)

∂x
= 0, with x ∈ R, t ∈ R

+. (5.1)

The speed Γ [u] ∈ R is usually a functional (as described by [·]) of the nonlocal
repulsive and attractive interactions (with “�” denoting the convolution symbol):

Γ [u] = G(K � u) ≡ G
( ∫ ∞

−∞
K(x − y)u(y)dy

)
. (5.2)

The simplest choice for the speed function is a linear function: G(y) = y (see, for
example [14, 15]). The kernel K(x) is usually defined to be the difference between
a repulsive (Kr ) and an attractive (Ka) force, which have opposite effects—hence
the opposite sign [14, 16–18]:

K(x) = qrKr(x)− qaKa(x). (5.3)

If we consider also alignment interactions, then we have a linear combination of
repulsive (Kr ), attractive (Ka) and alignment (Kal) forces [19–21]:

K(x) = qrKr(x)− qaKa(x)+ qalKal(x). (5.4)

Here, qr , qa and qal describe the strength of the repulsive, attractive and alignment
interactions, respectively (with qr,al,a ∈ R

+). The following are the most com-
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Fig. 5.2 Examples of long-distance interaction functions Kj (x), j = r, a (where Kr describes the
spatial range of repulsive interactions, and Ka describes the spatial range of attractive interactions).
(a) Morse interaction (described by a decaying exponential); (b) Piecewise constant; (c) Gaussian;
(d) Translated Gaussian. The equations for these functions are given in the text below

mon choices for the repulsive (Kr ) and attractive (Ka) kernels (depicted also in
Fig. 5.2):

(a) Morse interaction kernel: Kj(s) = e|s|/sj , j = r, a, with sj describing the
length scale of the interactions [14, 16, 17]. See Fig. 5.2a;

(b) Piecewise constant kernel: Kj (s) = 1/2d if |s| ≤ sr and Kj(s) = 0 otherwise
[15]. See Fig. 5.2b;

(c) Gaussian kernel: Kj(s) = se
−s2/(2s2

j )
/2s2

j , j = r, a, with sj describing the
length scale of the interactions [8, 15, 19]. See Fig. 5.2c;

(d) Translated Gaussian kernel: Kj (s) = 1
2πm2

j

e
−(s−sj )

2/(2m2
j ), j, r, a, mj = sj /8

[19–21]. See Fig. 5.2d.

In Fig. 5.3 we graph the combined repulsive-attractive functions K(x) = Kr(x) −
Ka(x) for the four types of interaction kernels discussed above (and shown in
Fig. 5.2). We note that the last two functions in Fig. 5.3c and d are continuous
everywhere. This implies that on very short inter-individual distances (i.e., x ≈
0), the neighbours are not repelled very strongly. While this assumption is not
particularly realistic from a biological point of view (although one could argue that
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(c) (d)

Fig. 5.3 Examples of long-distance repulsive-attractive interaction kernels K(x) = Kr(x) −
Ka(x). (a) Morse kernel; (b) Piecewise constant kernel; (c) Gaussian kernel; (d) Translated
Gaussian kernel

the repulsion should be stronger at points x on the surface of the animal/cell where
0 < x � 1, to avoid pilling-up before animals/cells start pressing on each other),
it is convenient mathematically since it means infinite differentiability and bounded
norms. A more biologically realistic assumption is described by the Morse kernel
(see Fig. 5.3a),

K(s) = sgn(s)
(
− qae

−|s|/sa + qre
−|s|/sr

)
. (5.5)

Note that this kernel has the same qualitative behaviour as the atomic force
microscopy measurements of cell-cell adhesion interactions [22]. We also empha-
sise that the Morse interaction kernel has a jump discontinuity at zero, which
means that individuals are repelled more strongly at very short distances (i.e.,
distances close to zero). The discontinuity of kernel (5.5) seems to contribute to
the formation of blow-up patterns, as shown by Leverentz et al. [14]. In particular,
when the social interactions are attractive on long distances (i.e., sa > 1, sr = 1),
model (5.1)+(5.5) can display a single-point blow-up. The blow-up time is given by

T =
(
b(0) − a(0)

)
/2Mq(0), where b(0) and a(0) are the endpoints of an initial
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aggregation shaped like a sufficiently narrow pulse, and Mq(0) is the minimum
speed at which the two endpoints travel towards each other; for details, see [14].
In contrast, when the social interactions are repulsive on long distances (sa < 1,
sr = 1), the model can display two-point blow-ups (i.e., the singularities form at
two different points in space). Note that these blow-up patterns are caused by the
structure of the kernel K(s) at the origin (i.e., the discontinuity). In addition, when
the social interactions are attractive on long distances (e.g., sa = 4, sr = 1), but the
repulsion force is stronger than the attraction force (e.g., qa = 0.4, qr = 1), these
models can exhibit stationary pulses [14].

Topaz and Bertozzi [15] considered a more general velocity function

Γ [u(x, t)] = F(u)+G1(u) (K1 � H1(u))+G2(u) (K2 � H2(u)) , (5.6)

where F(u) describes local density-dependence of the velocity, K1,2 are attractive-
repulsive interaction kernels, G1,2 describe the strength of the interactions, and
H1,2 describe the dependence of convolutions on population density u. (As above,
we used [·] to emphasise that Γ is a functional, which depends on the nonlocal
interactions described with the help of the convolution symbol “�”.) By considering
the particular case F = 0 and G2 = 0 in (5.6), the authors showed that in 1D,
purely nonlocal velocities cannot lead to the formation of travelling pulses when
the kernels are biologically realistic (i.e., dK1/d|z| ≤ 0) [15]. To this end, they
considered the constant-density travelling band/pulse ansatz:

u(x, t) = u0WL(x − ct), WL(x − ct)Γ [u(x, t)] = cWL(x − ct), (5.7)

with

WL =
{

1, x ∈ [0, L],
0, otherwise.

(5.8)

Substituting these equations into (5.1), Topaz and Bertozzi [15] showed that the
nonlocal equation can admit constant-density travelling band solutions only if the
kernel K1 is a L-periodic kernel on [−L,L]. However, such a kernel cannot be
biologically realistic (since it does not decay with the distance). Moreover, when
G2 = 0 and F,G1 �= 0, it can be shown that the nonlocal model admits constant-
density travelling band solutions for any choice of kernels K1.

A slightly different class of nonlocal mathematical models assumes that the
population velocity depends on the gradient of the interaction potential K(x), and
eventually on an external potential V (x) [23–25]:

∂u

∂t
= ∂

∂x

(
u

∂

∂x
(K � u)+ V

)
, (5.9)

This model describes the movement of a population u in the direction of increasing
density of neighbours. In regard to the qualitative behaviour of these models, it has
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been shown in [24] that for a symmetric singular interaction potential K (i.e., the
kernel K is such that K ′(0+) �= 0, and K(x) = K(−x) for all x ∈ R), the stable
stationary states (pulses) are finite sums of Dirac masses:

ū =
n∑

i=1

ūiδūi (x), with ūi > 0,

n∑
i=1

ūi = 1. (5.10)

Moreover, in [24] the authors showed analytically that these steady states (i.e.,
stationary pulses) are linearly stable. Numerical simulations (using an implicit Euler
scheme) confirmed the shape of the steady states (as a sum of approximations of
Dirac masses), and their stability.

A similar one-equation nonlocal model introduced in [26] was shown to display
different types of steady states, depending on the type of the potential K(x): periodic
steady states with period r (if K(x) = (r−|x|)+), constant steady states (if K(x) =
α exp(−λ|x|), α �= 0, λ > 0), trivial steady states (for fast decaying potentials:
|K(x)| + |K ′(x)| < ce−ax , a, c > 0), blow-up solutions (if K(x) = K0(x) + K̄ ·
(x)+, with K̄ > 0, (x)+ = x for x ≥ 0 and (x)+ = 0 for x < 0), globally-defined
solutions (if K(x) = K0(x) + K̄ · (x)+, with K̄ ≤ 0, (x)+ = x for x ≥ 0 and
(x)+ = 0 for x < 0), and globally-defined Dirac masses. We emphasise that all
these pattern formation results in [26] are theoretical.

We will return to these types of nonlocal hyperbolic models in the next chapter,
when we will discuss models in two spatial dimensions. As we will see there, the
addition of another spatial dimension can allow for the emergence of multiple lanes
and vortices.

5.3 Derivation of Nonlocal Hyperbolic Systems

We assume now that individuals/cells can move either left or right on an 1D domain,
and thus we consider systems of left-moving and right-moving individuals/cells.
Because these individuals can change their movement direction (in response to
nearby or more distant conspecifics), we start our investigation of these nonlocal
systems by focussing first on the turning behaviour of individuals.

Similar to the stochastic derivation of local hyperbolic systems (4.3) (see
Sect. 4.2), one can derive a nonlocal version of these models using a correlated
random walk approach [7]. For this, consider a population of size N . As for the
local systems, the probability of a randomly chosen right or left-moving individual
to be found inside the interval [x−Δx/2, x+Δx/2) at time t is defined by Eq. (4.1).
To describe the turning behaviour, we assume that the probability of changing
direction has two components: a random component and a directed component.
This assumption is consistent with the biological behaviour of organisms, as
remarked by Lotka [87, p. 360]: “the type of motion presented by living organisms
. . . can be regarded as containing both a systematically directed and also a random
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element”. Therefore, the probability of a right-moving (left-moving) individual to
turn left/right is given by

λ± = probability of turning randomly +

probability of turning left/right in response to distant neighbors

= λ1Δt

2
+ λ2Δt

2
F±. (5.11)

Here, F± are non-dimensional, increasing, uniformly continuous functions of the
difference between the right-moving and left-moving neighbours that are located
far away. We choose 0 < λ1, λ2, F± < 1. Moreover, it is biologically realistic
to assume that when the numbers of these distant right-moving and left-moving
individuals are similar (i.e., their difference is almost zero), then movement is
more likely to be random (since individuals do not have any preference in turning
towards a particular distant neighbour). Mathematically, this means that F± ≈ 0.
To exemplify how we model turning behaviours, let us focus on the repulsive spatial
ranges. To avoid collisions with nearby neighbours, an individual will increase its
probability of turning around if there are more individuals in front of it moving
in the opposite direction, than individuals behind it moving in the same direction
(see Fig. 5.4). The turning probability will decrease if there are more individuals
behind it moving in the same direction. Hence, F± will be defined in terms of

p (x,t+    )

Δ 

Δ xΔ x + xxΔ x − 

+(a)

t + Δ t

x − Δ x + xjxj

−(b)

t + Δ t

t

t

xj−x Δ x − Δ x x x + Δ x x + Δ j   x

t )+t,x(p

tΔ 

Fig. 5.4 The movement probabilities of (a) a right-moving individual, and (b) a left-moving
individual. A right-moving individual can be positioned at x at time t + Δt , if at the previous
time step t it was at x − Δx and kept moving in the same direction, or it was at x + Δx and
moving left, and changed direction at the end of the time step. A similar explanation holds for
a left-moving individual (b). The change in direction is either random, or in response to distant
individuals positioned at x ± jΔx, where j takes values within a certain interaction range (e.g.,
repulsion, alignment, or attraction ranges)
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the difference between right-moving and left-moving neighbours that are within a
certain interaction range.

Before giving the expression for F±, we make one more assumption. We assume
that all other individuals have the same probabilities p±(x, t), independent of
the location of the right-moving or left-moving individual chosen previously (see
Eq. (4.1)). This assumption is made to ensure a rigorous derivation of the nonlocal
model using a correlated random walk approach, with the turning being governed
by a Poisson process [27, 28]. We note, however, that the assumption might be too
restrictive for some biological systems. For example, if individuals tend to avoid
being spatially too close to their neighbours, then the observation of an individual at
a particular position also implies that the nearby positions might not be occupied
[29]. Hence, the probability distributions are correlated. Also, foraging animals
might prefer spending more time in some regions than in others [28, 30], and
thus spatial positions in those regions are more likely to be occupied. However, as
noted by Othmer et al. [28], the macroscopic-level derivation of a transport equation
describing the changes in population density does not generally have to be governed
by a Poisson process.

Returning to the derivation of the model via a correlated random walk approach,
if the chosen individual is at point x, then the expected number of individuals
at distance jΔx that are moving right or left is Np±(x + jΔx, t). Under these
assumptions, the probability of turning in response to distant neighbours is described
by

F± = F

⎛
⎝±N

∞∑
j=−∞

Kw(jΔx)
(
p−(x + jΔx, t)− p+(x − jΔx, t)

)⎞⎠ ,

(5.12)

where F is a uniform continuous function of the difference between the left-moving
and right-moving neighbours positioned within a certain range described by kernels
Kw. Substituting (5.11) and (5.12) into Eq. (4.2) leads to

∂p+

∂t
+ Δx

Δt

∂p+

∂x
=− p+

(λ1

2
+ λ2

2
F+

)
+ p−

(λ1

2
+ λ2

2
F−

)

+O(Δx) terms, (5.13a)

∂p−

∂t
− Δx

Δt

∂p−

∂x
= p+

(λ1

2
+ λ2

2
F+

)
− p−

(λ1

2
+ λ2

2
F−

)

−O(Δx) terms. (5.13b)

Now let Δx,Δt → 0, such that Δx
Δt
→ γ . Since F± are assumed to be uniformly

continuous (because F is uniformly continuous), we can interchange the limit and
the functions F±. Multiplying Eqs. (5.13) by N and using Eq. (4.1), leads to the
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following nonlocal hyperbolic system

∂u+

∂t
+ γ

∂u+

∂x
= −u+λ+[u+, u−] + u−λ−[u+, u−], (5.14a)

∂u−

∂t
− γ

∂u−

∂x
= u+λ+[u+, u−] − u−λ−[u+, u−]. (5.14b)

Here, u± are probability density functions for the left- and right-moving individuals.
The nonlocal turning rates are described by

λ+[u+, u−] = λ1

2
+ λ2

2
F

(∫ ∞

−∞
Kw(s)(u−(x + s, t) − u+(x − s, t))ds

)
,

(5.15a)

λ−[u+, u−] = λ1

2
+ λ2

2
F

(
−

∫ ∞

∞
Kw(s)(u−(x + s, t) − u+(x − s, t))ds

)
.

(5.15b)

Remark 5.1 It was shown in [7, 31, 32] that by rescaling the time and space variable
(x = ψ/ε, t = τ/ε2, ε � 1), or the speed and the turning rates (γ = γ ∗/ε, λ1,2 =
λ∗1,2/ε

2, ε → 0), and then taking the parabolic limit (as ε → 0), model (5.14) can
be transformed into a parabolic advection-diffusion equation for the total population
density u = u+ + u−, similar to the one in [8]:

∂u

∂t
= ∂

∂x

(
D0

∂u

∂x

)
− ∂

∂x

(
B0u

(
F(y−[u])− F(y+[u]))), (5.16)

where y± = ± ∫∞
−∞ Kw(s)(u−(x+ s, t)−u+(x− s, t))ds, D = limε→0 γ 2/(2λ1),

and B = limε→0 γ λ2/(2λ1). Note that the nonlocal advection term is generated by
the differences in directional changes (i.e., λ−[u] − λ+[u], with u = u+ + u− the
total density). It was shown in [8] that in the absence of external drift factors, such an
advection-diffusion model cannot exhibit persistent travelling pulses. We will return
to this particular result in Sect. 5.7, when we will discuss the loss of spatio-temporal
patterns in the parabolic limit, as a result of the loss in the bifurcation structure of
the models.

5.4 Alignment Models

The most common assumption incorporated in the local as well as some nonlocal
hyperbolic models is that individuals/cell change their movement direction to align
with their neighbours [33, 34]. One of the first nonlocal models to incorporate
long-distance alignment interactions was introduced by Pfistner [33]. Modelling
the behaviour of Myxobacteria swarms, Pfistner [33] started with Eq. (5.14) and
assumed that bacteria turn only as a result of interactions with other bacteria further
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away (i.e., λ1 = 0 in (5.15)), which are detected within a perception interval
[−R,R]. The turning rates are defined by the following nonlocal terms:

λ+[u+, u−] = F

(∫ R

−R

(α(s)u+(x + s, t) + β(s)u−(x + s, t))ds

)
, (5.17a)

λ−[u+, u−] = F

(∫ R

−R

(α(s)u−(x − s, t) + β(s)u+(x − s, t))ds

)
, (5.17b)

where α and β are the weight functions for the surrounding densities. The functional
F , which describes the turning behaviour, is monotone increasing and positive. The
simulation results showed that the model can display stationary swarms [33]. Later,
Pfistner modified this model to incorporate moving boundaries for the swarm edges
[34]. The dynamics of the swarm was analysed numerically through the retraction
and expansion of the boundaries.

5.5 Repulsive, Attractive, and Alignment Models

The assumption that individuals turn only to align with their neighbours might
explain the behaviour of some bacteria (e.g., Myxobacteria [33]), but it cannot
explain the more complex behaviours observed in other groups, such as swarms of
insects or flocks of birds. A more realistic assumption would be that individuals
turn also to approach other neighbours further away, or to avoid collision with
neighbours in the immediate vicinity. A nonlocal model that considers all three
social interactions, namely alignment, attraction and repulsion, was introduced by
Eftimie et al. [19, 20]. There, the turning rates were described by the following
terms:

λ±[u+, u−] = λ1 + λ2 tanh
(
y±[u+, u−] − y0

)
, (5.18)

where

y±[u+, u−] = y±r [u+, u−] − y±a [u+, u−] + y±al[u+, u−]. (5.19)

The terms y±r , y±al and y±a denote the repulsion, alignment, and attraction inter-
actions that influence the likelihood of turning to the left (+) or to the right (−).
To describe these terms, we recall that communication can influence these social
interactions. Eftimie et al. [20] started with five communication mechanisms in 1D
and correspondingly modelled five different ways (models M1–M5) in which group
members can interact with each others (see Fig. 5.5 and Table 5.1). The following
assumptions were incorporated into the five models:

• model M1 assumes that the attractive and repulsive interactions depend on the
stimuli received from all neighbours, whereas the alignment depends only on the
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Fig. 5.5 The five sub-models (M1–M5) for signal reception introduced in [20]. A reference
individual is positioned at x, while its right-moving (u+) and left-moving (u−) neighbours can be
positioned at x+s and/or x−s. M1: information can be received from all neighbours (for attraction
and repulsion), or from neighbours moving towards the reference individual (for alignment); M2:
information is received from all neighbours (for attraction, repulsion, alignment); M3: information
is received only from ahead with respect to the moving direction of the reference individual
(for attraction, repulsion, alignment); M4: information is received only from neighbours moving
towards the reference individual; M5: information is received only from ahead, and only from
neighbours moving towards the reference individual

stimuli received from those neighbours moving towards the reference individual
(this case was investigated in [19]);

• model M2 assumes that all three social interactions depend on stimuli received
from all neighbours;

• model M3 assumes that the interactions depend only on the information received
from ahead (with respect to the moving direction);

• model M4 assumes that the social interactions depend on the stimuli received
from ahead and behind, only from neighbours moving towards the reference
individual;

• model M5 assumes that the social interactions depend on the stimuli received
only from ahead and only from neighbours moving towards the reference
individual.
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Table 5.1 The nonlocal terms used to describe the social interactions in [20]

Model Social interactions: repulsion (y±r ), attraction (y±a ), alignment (y±al )

M1 y±r,a = qr,a

∫∞
0 Kr,a(s)(u(x ± s) − u(x ∓ s))ds

y±al = qal

∫∞
0 Kal(s)(u

∓(x ± s) − u±(x ∓ s))ds

M2 y±r,a = qr,a

∫∞
0 Kr,a(s)(u(x ± s) − u(x ∓ s))ds

y±al = qal

∫∞
0 Kal(s)(u

∓(x ± s) + u∓(x ∓ s) − u±(x ± s)− u±(x ∓ s))ds

M3 y±r,a = qr,a

∫∞
0 Kr,a(s)(u(x ± s))ds

y±al = qal

∫∞
0 Kal(s)(u

∓(x ± s) − u±(x ± s))ds

M4 y±r,a = qr,a

∫∞
0 Kr,a(s)(u∓(x ± s) − u±(x ∓ s))ds

y±al = qal

∫∞
0 Kal(s)(u

∓(x ± s) − u±(x ∓ s))ds

M5 y±r,a = qr,a

∫∞
0 Kr,a(s)u∓(x ± s)ds

y±al = qal

∫∞
0 Kal(s)u

∓(x ± s)ds

These terms are the translations of the diagrams from Fig. 5.5 into mathematical equations, after
summing up the information received from all neighbours (s ∈ (0,∞)). The terms y−r,a and y−al

were obtained through a process similar to the one described in Fig. 5.5. For each of the five
models, the equations for y±r and y±a are almost identical (since the effect of the repulsive and
attractive interactions is similar but opposite—hence the negative sign in front of y±a term in
Eq. (5.19)). As mentioned in the main text, qa , qr , and qal give the strength of the attraction,
repulsion, and alignment interactions, respectively. Kernels Ka(s), Kr(s) and Kal(s) give the
spatial ranges for the attractive, repulsive and alignment interactions; see also Fig. 5.2. The total
density is u = u+ + u−

All these different assumptions are described by mathematical equations in
Table 5.1. We emphasise that not all these models are biologically realistic (see
also Fig. 5.5 for the biological interpretation of some of the assumptions). However,
this modelling approach proposed a straightforward way to incorporate various
communication mechanisms into a mathematical model.

Remark 5.2 For individual-based models, there are two modelling approaches
used to explain the empirical observations: the metric-distance approach (where
interactions among individuals depend only on the spatial distance at which
these individuals are located, which leads to short-range repulsion, medium-range
alignment/orientation, and long-range attraction interactions) and the topological-
distance approach (with the assumption is that individuals interact only with 6-7
of their neighbours [35]). By considering these communication mechanisms in
model (5.14)–(5.19), we connect the metric and topological approaches through the
assumption that individuals can interact only with those neighbours that they can
perceive (within some specific spatial ranges). It is very plausible that individuals
respond only to those neighbours that “catch their attention”—although experimen-
tal evidence supporting this idea is lacking at the moment, due to the difficulty
of gathering data regarding group-level communication. Partan [36] showed that
at behavioural level, the mechanisms that lead to the integration of signals from
neighbours involve not only communication but also perception and attention.
Ballerini et al. [35] do suggest that the number of 6–7 neighbours that were shown
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to influence the movement of a reference individual in a flock of starlings, is likely
the result of cortical incorporation of the visual input. Therefore, model (5.14)–
(5.19) combines topological-like interactions (via communication with specific
neighbours) with metric-distance interactions (via interaction zones).

To investigate the types of patterns displayed by this class of nonlocal hyperbolic
models, the authors in [19, 20] performed numerical simulations on a finite
domain [0, L] with periodic boundary conditions. To check whether the patterns
were not an artefact of the periodic boundary conditions, the authors performed
simulations also with Neumann and Dirichlet boundary conditions. The results
were consistent for all these different conditions (at least for some small time,
before the aggregations reached the boundaries). The numerical scheme chosen to
discretise the equations was a first-order upwind scheme. However, the simulations
were also checked with a second-order MacCormack scheme. The integrals were
discretised using the Simpson’s method, and were wrapped around the domain
(due to the periodic boundary conditions). Finally, the initial conditions for the
simulations were chosen to be small random perturbations of spatially homogeneous
steady states (u+, u−) = (u+∗ , u−∗ ) (with left-moving and right-moving individuals
uniformly spread over the whole domain).

The numerical results in [19, 20] suggested that alignment is a necessary ingre-
dient for the movement in the absence of any external environmental cues. More
precisely, attraction and repulsion alone lead to stationary groups. However, when
alignment was included, it was possible to obtain moving groups. The movement of
these aggregations was the result of Hopf bifurcations (while the attractive-repulsive
interactions alone lead only to real steady-state bifurcations); we will return to the
discussion of these bifurcations in Sect. 5.7. An alternative to including alignment
was to consider an environmental drift, which induces asymmetry in the reception
of signals [7]. For example, if we focus on attraction/repulsion term corresponding
to the general model M2, we can define the nonlocal terms as follows:

y±r,a = qr,a

∫ ∞

0
Kr,a(s)

(
p±u(x ± s)− p∓u(x ∓ s)

)
ds, (5.20)

where p± describe the communication signals received from the right (subscript
“+”) or from the left (subscript “−”). Figure 5.6 depicts the asymmetry in the per-
ception of signals, where p+ > p−. This assumption of asymmetric communication
(which translates into asymmetric equations; see the discussion below), can lead to
moving aggregations of individuals [7].

Incorporating various communication mechanisms (as shown by the terms in
Table 5.1) leads to more complex spatial and spatio-temporal patterns [20]; see
also Fig. 5.7. Some of these patterns, such as stationary pulses, travelling pulses, or
ripples, have been previously obtained with other hyperbolic [37, 38] or parabolic
models [39]. However, the majority of patterns described in [20] are new: breathers,
travelling breathers, feathers, zigzags, and semi-zigzags (see Fig. 5.7). A detailed
description of these patterns is given in Table 1.2. Since the majority of these
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Fig. 5.6 Caricature depiction of asymmetric reception of signals from neighbours, under the effect
of an external environmental drift, such as wind blowing from a certain direction (i.e., from right
in the above figure)

patterns have not been seen in local models, it suggests that simple local interaction
mechanisms might not be sufficient to explain some of the observed biological
behaviours, such as the zigzagging or the expanding/contracting flocks of birds
[40]. This latter behaviour is described mathematically by breathers or travelling
breathers—see Table 1.2. The importance of nonlocal interactions for the emergence
of the complex spatio-temporal patterns summarised in Fig. 5.7 is reinforced by
the comparison with the patterns shown in Fig. 1.4 (obtained with the nonlocal
individual-based model introduced in [41]).

Numerical simulations of model (5.14)+(5.18)+(5.19) also revealed that some
of these patterns can be obtained only for specific assumptions regarding the
communication signals. For example, breathers were obtained only with model M4,
and feathers were obtained only with model M3. There were a few other patterns,
such as stationary pulses, travelling trains and travelling pulses, which could be
obtained with the majority of nonlocal models. It is interesting to remark that
these three patterns are observed in almost every biological aggregation: stationary
pulses describe stationary/sleeping aggregations [42], travelling pulses describe
travelling/migrating aggregations [43], travelling trains describe waves of activity
that pass through aggregations [44]. A summary of some of the patterns exhibited
by models M2-M5 is shown in Table 5.2; see also [20]. Given the very large
parameter space corresponding to this model, a full investigation of this space with
the aim of identifying all possible patterns is very time consuming. (Note that non-
dimensionalising the model does not lead to a significant reduction in the number
of parameters.)

Because of their complexity, these nonlocal hyperbolic models have not been the
subject of a very thorough analytical investigation, with the aim of classifying the
numerically-observed patterns. So far, the investigation of some of the patterns has
been carried out in [21, 31, 45–47]. These studies focused on the use of weakly-
nonlinear analysis and centre manifold reductions to understand the formation of
those patterns that arise near codimension-1 and codimension-2 bifurcation points.
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Fig. 5.7 Finite size patterns exhibited by the nonlocal hyperbolic model (5.14) with constant speed
[20]. The turning rates are described by Eq. (5.18). The repulsive, alignment, and attractive terms
y±j , j = r, al, a are given in Table 5.1. The patterns are obtained with the five communication
models (M1–M5) described in Table 5.1). The following parameters (and their meaning) are the
same as in [20]. (a) Stationary pulses—type (1) (for model M2 with qal = 0, qa = 4, qr =
0.5, τ = 1); (b) travelling pulse (for model M1 with qal = 2, qa = 1.6, qr = 0.5, τ = 1); (c)
travelling trains (for model M3 with qal = 2, qa = 0, qr = 0, τ = 0.03); (d) ripples (for model
M5 with qal = 2, qa = 1.5, qr = 1.1, τ = 1); (e) zigzag pulses (for model M4: with qal = 0, qa =
2, qr = 2, τ = 1); (f) semi-zigzag pulses (for model M2 with qal = 2.2, qa = qr = 0, τ = 0.3);
(g) feathers (for model M3 with qal = 0, qa = 6, qr = 6.4, τ = 1); (h) breathers (for model M4
with qal = 0, qa = 2, qr = 1, τ = 1); (i) travelling breathers (for model M4 with qal = 2, qa =
4, qr = 4, τ = 1); (j) Stationary pulses—type (2) (for model M2 with qal = 0, qa = 2, qr = 2.4,
τ = 1.0); (k) Travelling feathers (for model M3 with qal = 2, qa = 1.9, qr = 2.0, τ = 1.0); (l)
Travelling zigzags (for model M2 with qal = 2.0, qa = 4.14, qr = 1.0, τ = 1.0). The rest of the
parameters are: γ = 0.1, sr = 0.25, sal = 0.5, sa = 1.0,mr = sr/8,mal = sal/8,ma = sa/8
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Table 5.2 Summary of some of the spatial and spatio-temporal patterns exhibited by the nonlocal
model (5.14) with communication mechanisms M2–M5

Patterns M2 M3 M4 M5

Travelling train
√ √ √

Travelling pulse
√ √ √

Stationary pulse
√ √ √

Zigzag pulse
√ √

Travelling zigzag
√ √

Semi-zigzag pulse
√

Breather
√

Travelling breather
√

Feather
√

Travelling feather
√

Ripple
√ √

Blow-up
√

To identify all patterns displayed by model (5.14) more intensive numerical simulations are
necessary, to cover the whole parameter space
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Fig. 5.8 Dispersion relation for model M4, obtained after substituting perturbations of the
spatially homogeneous steady states u± = u∗ + a±eσ t+ikj x into the linearised model (5.14)
with M4 nonlocal terms. Black curves depict the real part of this dispersion relation: Re(σ (kj )).
Green curves depict the imaginary part of this dispersion relation: Im(σ(kj )). We observe: (a) a
codimension-1 (k1) Steady-state bifurcation; (b) a codimension-1 (k4) Hopf bifurcation. The filled
black circles on the k-axis represent the discrete wavenumbers kj = 2πj/L, with L =domain
length

(Note that a codimension-1 bifurcation is the result of variations in one parameter,
while a codimension-2 bifurcation is the result of variations in two parameters).

In Fig. 5.8 we graph two examples of dispersion relations near two codimension-
1 bifurcation points: (a) a steady-state bifurcation point; (b) a Hopf bifurcation point.
A detailed investigation of the patterns arising near these steady-state and Hopf
points was performed in [21], where the authors used weakly-nonlinear analysis
to show that two patterns, namely stationary pulses and travelling pulses, arise from
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Fig. 5.9 (a) Travelling pulse patterns (top figure), and the subcritical bifurcation of these patterns
from spatially homogeneous steady states (bottom figure); (b) Stationary pulses (top figure), and
the subcritical bifurcation of these patterns from spatially homogeneous steady states (bottom
figure)

subcritical bifurcations from spatially homogeneous steady states; see Fig. 5.9. Note
that the stationary pulses are the result of real bifurcations (i.e., at the bifurcation
point, the dispersion relation associated with the hyperbolic system (5.14) is real;
similar to the case in Fig. 5.8a), while the travelling pulses are the result of complex
(Hopf) bifurcations (i.e., the dispersion relation at the bifurcation point is purely
imaginary; similar to the case in Fig. 5.8b). The mathematical mechanisms behind
the rest of the patterns (e.g., breathers, feathers, zigzags and semi-zigzags) are still
to be investigated. We should stress that, similar to the case of local hyperbolic
systems, the ripples generated by the nonlocal models (see Fig. 5.7d) are also
obtained via Hopf bifurcations.

The subcritical bifurcations which cause the formation of stationary pulses and
travelling trains in Fig. 5.9 are associated with the existence of a critical threshold
for the density of the group: animal groups with densities below this threshold will
disperse, while groups with densities above the threshold will become even more
dense and persist for a longer time. Biologically, the existence of such a threshold
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suggests that the density of the group is very important for the persistence of well
coordinated aggregations. This result is consistent with experimental observations of
density-dependent transitions between disordered and ordered behaviours in some
species of ants [48] or locusts [49]. The bifurcation diagrams at the bottom of
Fig. 5.9 offer a better understanding of the role of social interactions (i.e., alignment)
on the structure of these patterns. More precisely, in the case of stationary groups
with high individual turning rates, alignment has an aggregative effect, with the
groups becoming more dense (see Fig. 5.9b). However, in case of moving groups
(with relatively low individual turning rates), the effect of alignment is opposite:
density decreases as the groups become more elongated (see Fig. 5.9a). When
alignment becomes very large, the moving groups disintegrate and the individuals
spread over the domain (as the spatially homogeneous steady state—with zero
amplitude—is stable).

In addition to these codimension-1 bifurcations, the class of nonlocal hyperbolic
models described by (5.14) can exhibit also codimension-2 bifurcations: Hopf/Hopf,
Hopf/Steady-state and Steady-state/Steady-state; see Fig. 5.10. Because the seminal
studies in [50, 51] classify rigorously the patterns displayed by systems with
various symmetries and different bifurcation structures, the starting point for the
investigation of patterns arising near the codimension-2 points depicted in Fig. 5.10
was the identification of O(2) symmetry (reflection+translation) for the whole class
of models (5.14) defined on a finite domain [0, L]:

translation: θ.u±(x, t) = u±(x + θ, t), θ ∈ [0, L), (5.21a)

reflection: κ.(u+(x, t), u−(x, t)) = (u−(L− x, t), u+(L− x, t)). (5.21b)

In [45] the authors used both symmetry theory and weakly nonlinear analysis
to identify all types of spatial and spatio-temporal patterns that could arise in the
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Fig. 5.10 Dispersion relation for model M4, obtained after substituting perturbations of the
spatially homogeneous steady states u± = u∗ + a±eσ t+ikj x into the linearised model (5.14)
with M4 nonlocal terms. Black curves depict the real part of this dispersion relation: Re(σ (kj )).
Green curves depict the imaginary part of this dispersion relation: Im(σ(kj )). We observe (a) a
codimension-2 (k1 : k4) Steady-state/Hopf bifurcation; (b) a codimension-2 (k3 : k4) Hopf/Hopf
bifurcation; (c) a codimention-2 (k13 : k14) Steady-state/Steady-state bifurcation
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Fig. 5.11 (a) Dispersion relation for a codim-2 Hopf/Hopf bifurcation, as we vary parameters qr

and qa . (b) Neutral stability curves around a codim-2 Hopf/Hopf (H/H) point, in the (qr , qa ) plane.
(c) Patterns around the Hopf/Hopf point: rotating waves (RW; or travelling pulses) shown here for
qa = 0.72 and qr = 3.55; modulated rotating waves (MRW; or travelling breathers) shown here
for qa = 0.77 and qr = 3.56; standing waves (SW; or ripples) shown here for qa = 0.72 and
qr = 3.55; modulated standing waves (MSW; or modulated ripples) shown here for qa = 0.66
and qr = 3.56; spatially homogeneous solutions: “Homog. 1” shown here for qa = 0.54 and
qr = 3.61 (where u+∗ = u−∗ = 1), and “Homog. 2” shown here for qa = 0.7, qr = 3.67 (where
u+∗ ≈ 0.3 � u−∗ = 1.7)

neighbourhood of a Hopf/Hopf bifurcation point; see Fig. 5.11. For the numerical
simulations in Fig. 5.11, small perturbations were applied to the spatially homo-
geneous steady state u+∗ = u−∗ (here called “Homog.1”), for different parameter
values in the (qa, qr) space (see the black dots around the H/H bifurcation point in
Fig. 5.11b). It was shown analytically (with the help of amplitude equations obtained
using the weakly nonlinear analysis; see also Chap. 8) that modulated standing
waves (or modulated ripples) bifurcate from standing waves (or ripples), which in
turn bifurcate subcritically (i.e., unstable) from the spatially homogeneous steady
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states. Also the rotating waves (i.e., travelling pulses) bifurcate subcritically from
the homogeneous steady states (even if in Fig. 5.11 it is shown that for some values
of qr and qa these patterns could persist for very long time). We should mention
here that since the majority of the patterns around the H/H point are unstable, the
dynamics of the system approaches asymptotically another spatially homogeneous
steady state point (called here “Homog.2”, with u+∗ �= u−∗ ). The results in [45] also
identified parameter regions in the neighbourhood of H/H bifurcation points where
multiple patterns (i.e., group behaviours) could exist simultaneously. Biologically,
this means that for the same parameter values (e.g., same speed and same turning
rates), the groups can display different behaviours. The existence of these subcritical
bifurcations suggests that the transitions between different behaviours do not
necessarily involve changes in the parameter values (as it was shown numerically in
previous studies [52]). These transitions could be intrinsic to the group.

A similar classification of patterns can be performed also around the
Hopf/Steady-state and Steady-state/Steady-state bifurcation points; see the results in
[47]. Figure 5.12 shows (a) the dispersion relation for a particular Hopf/Steady-state
(H/Ss) bifurcation, (b) the neutral stability curves for the k1 and k4 wavenumbers,
(c) the bifurcation diagram around the Hopf/Steady-state point, and (d) the patterns
obtained around the Hopf/Steady-state point. As for the Hopf/Hopf case discussed
above, the majority of the patterns bifurcate subcritically (i.e., they form unstable
branches). Nevertheless, we note that we can have also patterns that bifurcate
supercritically (i.e., they form stable branches): rotating waves (i.e., travelling
pulses) and stationary pulses.

These two cases presented above (i.e., codimension-1 bifurcations for the M2
model, and codimension-2 bifurcations for the M4 model) illustrate the complex
bifurcating dynamics exhibited by the nonlocal models (5.14). As we have seen
in Fig. 5.7, other communication mechanisms (e.g., M3 or M5—see Fig. 5.5)
could exhibit different patterns, which might also arise around codimension-
1/codimension-2 bifurcation points. A detailed bifurcation investigation of these
communication models could shed light, for example, on the formation of feather-
like patterns (which seem to be specific to model M3). However, such an investiga-
tion is still an open problem.

5.6 Multiple Populations

As seen in Chap. 4, the hyperbolic models can be easily generalised to describe
the dynamics of interacting populations. However, different populations likely
use different communication mechanisms to interact with each other. Eftimie
[53] generalised model (5.14) to describe the movement and aggregation of two
populations u± and v± that perceive/emit differently the information from/to their
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Fig. 5.12 (a) Dispersion relation for a codim-2 Hopf/Steady-state bifurcation. (b) Neutral stability
curves around a codim-2 Hopf/Steady-state point, in the (qr , qa ) plane. (c) Bifurcation diagram
created by straightening the path around the Hopf/Steady-state point (in a clockwise direction). (d)
Patterns around the Hopf/Steady-state point: rotating waves (RW; or travelling pulses); modulated
rotating waves (MRW; or travelling breathers); standing waves (SW; or ripples); modulated
standing waves (MSW; or modulated ripples); stationary pulses (SP); modulated stationary pulses
(MSP)

neighbours:

∂u+

∂t
+ γ

∂u+

∂x
= −λ+u [u+, u−, v+, v−]u+ + λ−u [u+, u−, v+, v−]u−, (5.22a)

∂u−

∂t
− γ

∂u−

∂x
= λ+u [u+, u−, v+, v−]u+ − λ−u [u+, u−, v+, v−]u−, (5.22b)

∂v+

∂t
+ γ

∂v+

∂x
= −λ+v [u+, u−, v+, v−]v+ + λ−v [u+, u−, v+, v−]v−, (5.22c)

∂u−

∂t
− γ

∂u−

∂x
= λ+v [u+, u−, v+, v−]v+ − λ−v [u+, u−, v+, v−]v−. (5.22d)
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Table 5.3 Nonlocal social interaction terms (yu,v,±
j , j ∈ {a, al, r}) for the two-populations

model (5.22)

Model Social interactions: attraction (yMj,±
a ), repulsion (yMj,±

r ), alignment (yMj,±
al )

M2 y
M2,±
r,a = qr,a

∫∞
0 Kr,a(s) (u(x ± s) + v(x ± s) − u(x ∓ s)− v(x ∓ s)) ds

y
M2,±
al =

qal

∫∞
0 Kal(s)

(
u∓(x ∓ s) + u∓(x ± s)+ v∓(x ∓ s)+ v∓(x ± s) − u±(x ∓ s)

−u±(x ± s) − v±(x ∓ s) − v±(x ± s)
)
ds

M3 y
M3,±
r,a = qr,a

∫∞
0 Kr,a(s) (u(x ± s) + v(x ± s)) ds

y
M3,±
al = qal

∫∞
0 Kal(s)

(
u∓(x ± s) + v∓(x ± s) − u±(x ± s)− v±(x ± s)

)
ds

M4 y
M4,±
r,a =

qr,a

∫∞
0 Kr,a(s)

(
u∓(x ± s) + v∓(x ± s)− u±(x ∓ s) − v±(x ∓ s)

)
ds

y
M4,±
al = qal

∫∞
0 Kal(s)

(
u∓(x ± s) + v∓(x ± s) − u±(x ∓ s)− v±(x ∓ s)

)
ds

M2&M3 y
u,±
r,a,al = y

M2,±
r,a,al , y

v,±
r,a,al = y

M3,±
r,a,al

M2&M4 y
u,±
r,a,al = y

M2,±
r,a,al , y

v,±
r,a,al = y

M4,±
r,a,al

M3&M4 y
u,±
r,a,al = y

M3,±
r,a,al , y

v,±
r,a,al = y

M4,±
r,a,al

Here we show only the communication mechanisms M2, M3 and M4. For the model M2&M3,
the social interaction terms y

u,±
r,a,al are given by y

M2,±
r,a,al , while y

v,±
r,a,al are given by y

M3,±
r,a,al ; see also

Eq. (5.23). Similar explanations hold for models M2&M4 and M3&M4

The turning functions λ±u,v now depend on the interactions between the two
subpopulations:

λ±u,v[u±, v±] = λ1 + λ2f (yu,v,±
r [u±, v±] − yu,v,±

a [u±, v±] + y
u,v,±
al [u±, v±]).

(5.23)

The social interaction terms y
u,v,±
j , j = r, a, al are described in Table 5.3. Note that

in this table we describe only three communication mechanisms: M2, M3 and M4.
Since model M1 was a combination of M2 (for attraction-repulsion interactions)
and M4 (for alignment interactions), and model M5 did not seem to add any new
results, these two models were ignored in [53].

To identify the types of patterns obtained with these two-population models,
Eftimie [53] performed numerical simulations with initial conditions random
perturbations of the spatially homogeneous steady states u± = u∗ and v± = v∗.
The numerical approach was the same as for the one-population model: a second-
order MacCormack finite difference scheme (see also Chap. 7).

In contrast to the one-population models that displayed deterministic patterns,
the two-population models can exhibit also chaotic patterns. Some of these patterns
are shown in Fig. 5.13: chaotic feathers (panel (a”)) and chaotic zigzags (panels
(b”), (c”)). For comparison purposes, the parameters and the initial conditions are
the same across the horizontal rows. We note here that for the same parameter
values, the use of multiple communication mechanisms (panels (a”)–(c”)) can lead
to behaviours (patterns) that are not necessarily predicted by the behaviour of
the subpopulations that use only one communication mechanisms (panels (a)–(c),
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Fig. 5.13 Patterns obtained with one or two communication mechanisms. (a) Travelling pulses
(M3: qa = 2, u∗ = 0.8); (a’) Spatially homogeneous state (M4: qa = 2, v∗ = 0.3); (a”) Chaotic
feathers (M3&M4: qa = 2, u∗ = 0.8, v∗ = 0.3); (b) Stationary pulses (M2: qa = 6.7, u∗ = 0.1);
(b’) Zigzags (M4: qa = 6.7, v∗ = 1.0); (b”) Chaotic zigzags (M2&M4: qa = 6.7, u∗ = 0.1,
v∗ = 1.0); (c) Travelling pulses (M2: qa = 2.0, u∗ = 0.5); (c’) Travelling pulses (M3: qa = 2.0,
v∗ = 0.9); (c”) Chaotic zigzags (M2&M3: qa = 2.0, u∗ = 0.5, v∗ = 0.9). The rest of parameters
are qr = qal = 2.0, γ = 0.1, sa = 1.0, sal = 0.5, sr = 0.25, λ1 = 0.2, λ2 = 0.9, L = 10

(a’)–(c’)). A more detailed investigation of the types of patterns obtained with
two communication mechanisms is shown in Fig. 5.14, for different initial sub-
population sizes u∗ and v∗. The simultaneous use of different communication
mechanisms can lead to the emergence of spatial patterns in cases where the use
of only one communication mechanism leads to spatially homogeneous steady
states (as in Fig. 5.14b, c, for small u∗, v∗). The reverse is also true: the use of
multiple communication mechanisms can lead to spatially homogeneous states in
cases where the use of one mechanism leads to patterns (as in Fig. 5.14a, for large
u∗, v∗).

Finally, for the two-population model, it was shown numerically in [53] that
the use of different communication mechanisms can lead to the spatial sorting of
individuals inside the groups. For example, Fig. 5.15 shows that the fully aware
(M2) individuals that receive full information about the location and the movement
direction of all their neighbours are very likely to be positioned at the centre of the
aggregation. In contrast, individuals that receive only partial information about the
location and the movement direction of their neighbours (e.g., the M4-individuals),
are more likely to be positioned at the edges of the aggregation. This self-sorting
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Fig. 5.14 Summary of patterns obtained with two-population nonlocal hyperbolic models (5.22),
for different initial populations u+ = u− = u∗ and v+ = v− = v∗. (a) Model M2&M4; (b)
Model M2&M3; (c) Model M3&M4. The parameters are: qa = 2, qr = 2, qal = 2, γ = 0.1,
L = 10, sa = 1.0, sal = 0.5, sr = 0.25, λ1 = 0.2, λ2 = 0.9. By fixing the parameter values
and changing only the communication mechanisms (i.e., the direction to/from which signals are
emitted/perceived), it is possible to obtain different types of spatio-temporal patterns corresponding
to different aggregation behaviours at group level

behaviour characterises all types of spatial patterns, from stationary and travelling
pulses to chaotic patterns and fusion-fission patterns.

Avoidance Behaviours The majority of mathematical models for collective
behaviour focus on avoidance behaviours in the context of repulsion (to avoid
collision with nearby neighbours [54]). While this type of social interaction occurs
on short spatial ranges, the more complex avoidance behaviour can occur on
both shorter and longer spatial ranges (when neighbours are detected far away).
Avoidance behaviours have been observed in animal and human communities
in the context of epidemiological infections [55–58], food catching and sharing
among conspecifics and heterospecifics [59], interactions with predators [60].
Since communication can influence how animals/humans interact with each
other, and whether they avoid or not their conspecifics, Eftimie and Coulier
[61] investigated avoidance and learning behaviours in sub-populations that use
different communication mechanisms. To this end, the authors focused only on two
communication mechanisms, namely M2 and M4, and assumed that population u

(which communicates via M2) avoids population v (which communicates via M4);
see also Fig. 5.16. The avoidance behaviour is manifested in the alignment and
attractive interactions: population u does not align with v, nor is it attracted to v.

As expected, avoidance behaviours can lead to the segregation of individuals
inside the aggregations, leading even to different behaviours exhibited by the
two populations which stay connected; see Fig. 5.17. Moreover, the introduction
of avoidance behaviours in the u population can lead to changes in group-level
patterns. Figure 5.18 summarises the patterns that can be obtained for a fixed initial
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Fig. 5.15 Spatial structure of various spatial and spatio-temporal patterns exhibited by models
M2&M3 and M2&M4 (similar patterns are obtained also with M3&M4). The continuous and
dotted curves describe the total density of subpopulations u = u+ + u− and v = v+ + v−. The
inset shows a “bird’s eye view” of the total population density (u + v) as a function of time and
space. (a) Model M2&M4: (i) Stationary pulses for qa = 6.7, u±∗,M2 = 0.7, v±∗,M4 = 0.1; snapshot

at t = 990; (ii) Travelling pulses for qa = 6.7, u±∗,M2 = 0.6, v±∗,M4 = 0.9; snapshot at t = 670;

(b) Model M2&M3: (i) Stationary pulses for qa = 2.0, u±∗,M2 = 0.9, v±∗,M3 = 0.7; snapshot at

t = 800; (ii) Travelling pulses for qa = 2.0, u±∗,M2 = 0.9, v±∗,M3 = 0.5; snapshot at t = 1910;
The rest of parameters are qr = qal = 2.0, γ = 0.1, sa = 1.0, sal = 0.5, sr = 0.25, λ1 = 0.2,
λ2 = 0.9, L = 10

conditions for population v (i.e., v±(x, 0) = v∗ + Rand(0..0.01)) and various
densities for population u (i.e., u±(x, 0) = u∗ +Rand(0..0.01) with u∗ ∈ [0.1, 1]).
We note in this case a shift in the parameter values for u∗ where travelling pulse
patterns can occur: from low u∗ densities in the absence of avoidance (see also
Fig. 5.14a), to medium-high u∗ densities in the presence of avoidance. One needs
also to acknowledge that for different parameter values, it is possible to obtain
completely different patterns in the presence/absence of avoidance behaviours.
However, this is an aspect open to investigation.

Learning Tolerant Behaviours While avoidance behaviours are common in human
and animal communities, they are closely related to learning aspects regarding
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Fig. 5.17 Examples of patterns (a) with group separation, and (b) without group separation,
obtained with the avoidance model (5.22). For more details regarding the parameter values used
for numerical simulations see [61]

life in a community. In particular, it is possible for individuals to change their
attitudes towards neighbours based on interactions with more tolerant conspecifics
(including interactions with conspecifics never exposed to avoidance behaviours, as
seen in certain fish populations [62]). To investigate the effect of learning to tolerate
neighbours, Eftimie and Coulier [61] generalised model (5.22) by assuming that
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Fig. 5.18 Comparison between patterns obtained (a) without avoidance behaviour (as in
Fig. 5.14a), and (b) with avoidance behaviour in the u-population, for fixed initial v-population
size (v∗ = 0.8) and different initial u-population sizes (u∗ ∈ (0.1, 1.0)). The rest of parameters are
as in Fig. 5.14a

population u± (which uses communication mechanism M2) is composed of a sub-
population u±1 that avoids population v±, and a sub-population u±2 that tolerates
population v±. It was assumed that u± = u±1 + u±2 . The learning behaviour at
the level of population u± is described by the transitions rates a12 (from tolerance
to avoidance) and a21 (from avoidance to tolerance). As for all reaction-transport
models with left/right sub-populations, we assume that a tolerant population which
becomes intolerant has the same probability of becoming left-moving or right-
moving (and hence the rates a12

2 in Eqs. (5.24a)–(5.24b)). In a similar manner, the
intolerant population that learns to become tolerant can become either left-moving
or right-moving (and hence the rates a21

2 ). Population v uses the communication
mechanism M4, and is tolerant with population u. The new model is described by
the following equations:

∂u+1
∂t

+ γ
∂u+1
∂x

= −λ+u1
[u+1,2, u

−
1,2, v

+, v−]u+1 + λ−u1
[u+1,2, u

−
1,2, v

+, v−]u−1
− a21u

+
1 u2 + a12

u1

2
u2, (5.24a)

∂u−1
∂t

− γ
∂u−1
∂x

= λ+u1
[u+1,2, u

−
1,2, v

+, v−]u+1 − λ−u1
[u+1,2, u

−
1,2, v

+, v−]u−1
− a21u

−
1 u2 + a12

u1

2
u2, (5.24b)

∂u+2
∂t

+ γ
∂u+2
∂x

= −λ+u2
[u+1,2, u

−
1,2, v

+, v−]u+2 + λ−u2
[u+1,2, u

−
1,2, v

+, v−]u−2
+ a21u1

u2

2
− a12u

+
2 u1, (5.24c)

∂u−2
∂t

− γ
∂u−2
∂x

= λ+u2
[u+1,2, u

−
1,2, v

+, v−]u+2 − λ−u2
[u+1,2, u

−
1,2, v

+, v−]u−
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+ a21u1
u2

2
− a12u

−
2 u1, (5.24d)

∂v+

∂t
+ γ

∂v+

∂x
= −λ+v [u+, u−, v+, v−]v+ + λ−v [u+, u−, v+, v−]v−, (5.24e)

∂v−

∂t
− γ

∂v−

∂x
= λ+v [u+, u−, v+, v−]v+ − λ−v [u+, u−, v+, v−]v−. (5.24f)

Here u1,2 = u+1,2 + u−1,2, and all individuals in the populations move at the same
constant speed γ . The turning rates λ±u1,u2

are described in terms of avoidance and
learning behaviours:

λ±u1,u2
= λ1 + λ2f

(
yu1,u2;±
r − yu1,u2;±

a + y
u1,u2;±
al

)
, (5.25)

The nonlocal interaction terms y
u1,u2;±
j (for a population assumed, for example, to

communicate via mechanisms M2) are given in Table 5.4. The interaction terms for
population v (assumed, for example to communicate via mechanism M4) are the
same as in Table 5.3.

Numerical simulations performed in [61] with this model showed that avoidance
and learning behaviours can change the spatial structure of the aggregations—see
Fig. 5.19. In particular, while in the absence of avoidance the M2-individuals can
be found at the back of a travelling aggregation (with the M4-individuals leading
the group), the introduction of avoidance in the M2 population lead them move

Table 5.4 Nonlocal social interaction terms (yu1,u2;±
j , j ∈ {a, al, r}) for the three-populations

model (5.24) with avoidance and learning behaviours [61]

Population Social interactions: attraction
(
y

u1,2;±
a

)
, repulsion

(
y

u1,2;±
r

)
, alignment

(
y

u1,2;±
al

)
u1 y

u1;±
r = ±qr

∫∞
0 Kr(s) (u1(x + s) + u2(x + s) − u1(x − s)− u2(x − s)

+v(x + s) − v(x − s)) ds

y
u1;±
a = ±qa

∫∞
0 Kr(s) (u1(x + s) + u2(x + s) − u1(x − s)− u2(x − s)) ds

y
u1;±
al = ±qal

∫∞
0 Kal(s)

(
u−1 (x + s)+ u−1 (x − s) − u+1 (x + s) − u+1 (x − s)

+u−2 (x + s) + u−2 (x − s) − u+2 (x + s)− u+2 (x − s)
)
ds

u2 y
u2;±
r = ±qr

∫∞
0 Kr(s) (u1(x + s) + u2(x + s) − u1(x − s)− u2(x − s)

+v(x + s) − v(x − s)) ds

y
u2;±
a = ±qa

∫∞
0 Ka(s) (u1(x + s) + u2(x + s) − u1(x − s)− u2(x − s)

+v(x + s) − v(x − s)) ds

y
u2;±
al = qal

∫∞
0

(
u−1 (x + s) + u−1 (x − s) − u+1 (x + s)− u+1 (x − s) + u−2 (x + s)

+u−2 (x − s) − u+2 (x + s)− u+2 (x − s) + v−(x + s) + v−(x − s)

−v+(x + s) − v+(x − s)
)
ds

Here shown only the communication model M2. (Communication mechanism M4 is similar to the
one described in Table 5.3.) Note that both u1 and u2 are repelled by each other and by population v

within the repulsion range. Moreover, population u1 is only attracted to and aligns with population
u2 (within attraction and alignment ranges). In contrast, population u2 is attracted to and aligns
with both u1 and v populations
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Fig. 5.19 Spatial distribution of individuals inside moving aggregations: (a) with no avoidance
behaviours; (b) with avoidance behaviours displayed by u-population (communicating via M2); (c)
with avoidance and learning behaviours displayed by u population. For a more clear description of
the tolerant u-subpopulation (since this population is very small), we graph here the subpopulation
u2 magnified by 10 times (i.e., 10×u2). Initial conditions are random perturbations (of magnitude
0.01) of spatially homogeneous steady states: (a, a’) u∗ = 0.4, v∗ = 0.8, (b, b’) u∗ = 0.1,
v∗ = 0.2, (c, c’) u∗1 = 0.3, u∗2 = 0.001, v∗ = 0.4. The rest of the parameters are: a12 = a21 = 0.2,
qa = 6.7, qal = qr = 2, γ = 0.1, λ1 = 0.2, λ2 = 0.9. The nonlocal interactions are modelled by
translated Gaussian kernels, with sr = 0.25, sal = 0.5, sa = 0.5, on a domain of length L = 10
with periodic boundary conditions
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towards the front of the moving group (with the M4-individuals now trailing in the
back). The assumption that intolerant M2-individuals can learn from tolerant M2-
neighbours influenced the spatial segregation of the M2 population: the intolerant
M2-individuals were found at the front of the moving group while the tolerant
M2-individuals were found in the middle of the moving group (mingling with the
tolerant M4-individuals). This result suggests that tolerance.

To conclude this section, we note that this class on nonlocal models which
incorporate various inter-individual communication mechanisms can be easily gen-
eralised to investigate different aspects of social interactions in human and animal
communities. Classical intra-species and inter-species ecological interactions, such
as predation, competition or cooperation, can be easily incorporated into these
nonlocal hyperbolic models.

5.7 Analytical Approaches for the Investigation of Patterns:
Loss of Patterns in the Parabolic Limit

In Remark 5.1 we have mentioned that the limiting parabolic equation (5.16) cannot
exhibit persistent travelling pulses in the absence of external drift factors (as it was
shown numerically in [8]). This aspect was investigated analytically by Buono and
Eftimie [31], who focused on the symmetry and bifurcation structure of the original
hyperbolic model (5.14) and the limiting parabolic model (5.16). The authors first
showed that both the hyperbolic system (5.14) and the parabolic equation (5.16) are
O(2)-equivariant for all communication mechanisms (M1, . . . , M5), with the O(2)

action given by Eq. (5.21). Then they considered the linear operator L (linearised
at the spatially homogeneous steady state u = u∗) associated with the parabolic
equation (5.16),

L (ξ) = D0ξxx +∇h(u∗,K+ � u∗,K− � u∗, 0, 0, 0)

× (ξ,K+ � ξ,K− � ξ, ξx ,K+ � ξx,K− � ξx)� (5.26)

with

h(u,K+ � u,K− � u, ux,K+ � ux,K− � ux)

:= −B0
∂

∂x

(
u
(
F(y−[u])− F(y+[u]))) (5.27)

and kernels K(s) = qrKr(s)− qaKa(s) and convolutions

K± � u =
∫

K(s)u(x ± s, t)ds, and K±(s) � ux =
∫

K(s)ux(x ± s, t)ds.

(5.28)
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Buono and Eftimie [31] showed that the spectrum of the linear operator can have
only real eigenvalues, and thus the linear system cannot exhibit O(2)-symmetric
Hopf bifurcations. We note here that introducing an external environmental forcing
as discussed in Fig. 5.6 (or using an odd kernel as in [8]) leads to a forced symmetry
breaking from O(2) to SO(2) (where the reflection symmetry is lost).

Because the systems of parabolic equations usually display richer dynamics
(in terms of pattern formation) compared to single parabolic equations—see the
Turing bifurcations—Buono and Eftimie [31] considered also the parabolic limit
of systems of two different populations (u± and v±) which interact via different
communication mechanisms (Mi and Mj, with i �= j ∈ {2, . . . , 5}). The hyperbolic
model was described by Eq. (5.22), and the limit parabolic system was described by
the following two equations:

∂u

∂t
= Du

∂2u

∂x2 − Bu
∂

∂x

(
u
(
f (yu,−[u, v])− f (yu,+[u, v]))), (5.29a)

∂v

∂t
= Dv

∂2v

∂x2
− Bv

∂

∂x

(
v
(
f (yv,−[u, v])− f (yv,+[u, v]))), (5.29b)

with the diffusion and advection parameters

Du,v = lim
ε→0

γ

2λ
u,v
1

, Bu,v = lim
ε→0

γ λ
u,v
2

2λ
u,v
1

. (5.30)

Note that in the limit ε → 0, the nonlocal terms yu,v,± are the same for the
communication mechanisms M2 and M4, and for the mechanisms M3 and M5:

• For M2 and M4:

yu,±[u, v] = ±
∫ ∞

0
Ku(s)

(
(u+ v)(x + s)− (u+ v)(x − s)

)
ds. (5.31)

• For M3 and M5:

yv,±[u, v] =
∫ ∞

0
Kv(s)

(
u(x ± s)+ v(x ± s)

)
ds. (5.32)

The kernels Ku,v(s) are given as follows:

For M2,M3: Ku,v(s) = qrKr(s)− qaKa(s), (5.33a)

For M4,M5: Ku,v(s) = 1

2
(qrKr(s)− qaKa(s)+ qalKal(s)). (5.33b)

Even system (5.29) is O(2)-symmetric with respect to the action given by
Eq. (5.21) [31]. Moreover, if λ±u = λ±v (which implies that Bu = Bv and Du = Dv),
then the parabolic system (5.29) is symmetric with respect to the interchange
(u, v) → (v, u), and the symmetry group is O(2)× Z2 [31].
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Linear stability analysis of a generic spatially homogeneous equilibrium point
(u∗, v∗) showed that the parabolic system (5.29) can exhibit O(2)-symmetric
steady-state bifurcations independent of the communication mechanism used. (Note
that these bifurcations give rise to stationary aggregations.) Moreover, system (5.29)
can exhibit O(2)-symmetric Hopf bifurcations only if the two communication
mechanisms used by populations u and v are such that two parameters, b̄u and b̄v ,
have opposite signs with (B)b̄v + b̄u > 0 and −(B)b̄v − (D)2b̄u > 0, where
D = Dv/Du, B = Bv/Bu,

b̄u = −aMj iu
∗f ′(yu,−[u∗, v∗])

∫ ∞

0
Ku(s) sin(kns)ds, (5.34a)

b̄v = −aMj iv
∗f ′(yv,−[u∗, v∗])

∫ ∞

0
Kv(s) sin(kns)ds, (5.34b)

and aMj are different coefficients for the interaction kernels corresponding to
different communication mechanisms: aMj = 4 for Mj =M2,M4 and aMj = 2
for Mj =M3,M5. The upper indices “u, v” for the interaction kernels Ku,v(s)

differentiate these kernels if we assume that different populations use different com-
munication mechanisms that have different spatial actions (e.g., M2 corresponds to
long-range communication via visual and auditory stimuli, while M5 corresponds to
short-range communication via tactile stimuli). The dispersion relation that results
from the linear stability analysis of system (5.29), and which gives the eigenvalues
of the linearised system, is given in the following (and graphed in Fig. 5.20a):

σ 2 + σ
(
D + 1)k2

n + ikn(Bbv + bu)
)+ k4

nD + ik3
n(Bbv +Dbu) = 0. (5.35)

The Hopf bifurcations exhibited by the limiting parabolic system (5.29) lead to
rotating waves or modulated rotating waves, as shown in Fig. 5.20 (for more details,
see [31]).
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Fig. 5.20 (a) Example of dispersion relation σ(k1) as given by Eq. (5.35), showing complex
eigenvalues in the parameter space where b̄u > 0 and b̄v < 0. (b) Examples of rotating waves
(i.e., travelling pulses) exhibited by nonlocal parabolic system (5.29). (c) Examples of modulated
rotating waves exhibited by nonlocal parabolic system (5.29). For details regarding the parameter
values see [31]
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Therefore, while both the hyperbolic and (corresponding) parabolic models
for self-organised animal behaviours via communication mechanisms are O(2)-
symmetric, their bifurcation structure is quite different: the hyperbolic models can
exhibit all codimension-1 (Hopf and steady-state) and codimension-2 (Hopf/Hopf,
Hopf/steady-state, steady-state/steady-state) bifurcations, but the corresponding
parabolic models can exhibit only steady-state and steady-state/steady-state bifur-
cations. Therefore, the parabolic limit caused the loss of one of the mechanisms
responsible for obtaining moving aggregations (described by rotating waves),
namely the Hopf bifurcations with O(2) symmetry. To obtain Hopf bifurcations
in the limiting systems of parabolic equations (5.29), the authors in [31] needed
to impose the assumption that different communication mechanisms influence
differently the strength and spatial range of social interactions (such that parameters
b̄u and b̄v acquire opposite signs).

5.8 Systems with Density-Dependent Speeds

Despite the complexity of the patterns exhibited by hyperbolic systems with density-
dependent turning rates, these models cannot explain all observed group behaviours.
For example, they cannot explain the spontaneous splitting and merging behaviours
observed in flocks of birds [40], herds of ungulates [63], or schools of fish [64].
These behaviours have been previously associated with changes in individuals’
velocity [63, 64]. To address this issue, one can increase the complexity of the
nonlocal models by considering density-dependent speeds.

As mentioned earlier, organisms can speed-up to approach conspecifics further
away (attraction), or slow-down to avoid collisions from those near-by (repulsion)
[63, 65]. As with the turning behaviour, speed adaptation happens through commu-
nication via different signals, such as long-range visual or acoustic signals [64–66],
or short-range tactile signals [39, 64, 65]. As an example, pollock fish seem to use
vision for attractive interactions that keep the school together, and lateral line for
repulsive interactions that prevent collisions during swimming [64].

The previous description of nonlocal 1-equation models with density-dependent
speeds (see Eq. (5.1)) can be easily generalised to hyperbolic systems. The gen-
eral equations describing hyperbolic systems with density-dependent speeds and
density-dependent turning rates are

∂u+

∂t
+ ∂(Γ +[u+, u−]u+)

∂x
= −λ+[u+, u−]u+(x, t)+ λ−[u+, u−]u−(x, t),

(5.36a)

∂u−

∂t
− ∂(Γ −[u+, u−]u−)

∂x
= λ+[u+, u−]u+(x, t)− λ−[u+, u−]u−(x, t).

(5.36b)
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Here, Γ ±[u+, u−] are the density-dependent speeds, and λ±[u+, u−] are the
density-dependent turning rates (see Eq. (5.18)). Since individuals’ speeds cannot
be arbitrarily large, one can choose Γ ± to be bounded functions [20]. (This is in
contrast with the assumption of linear function employed by one-equation models.)
Moreover, it would make sense biologically to assume that increasing the intensity
of signals would lead to an increased speeding-up or slowing-down behaviour.
Mathematically, this means that Γ ± are increasing functions of the perceived
signals. An example of such a function is tanh [7, 17]:

Γ +[u+, u−] = γ

(
1+ tanh

(
qa

∫ ∞

0
Ka(s) (u(x + s, t) − u(x − s, t)) ds

−qr

∫ ∞

0
Kr(s) (u(x + s, t)− u(x − s, t)) ds

))
, (5.37a)

Γ −[u+, u−] = γ

(
1+ tanh

(
−qa

∫ ∞

0
Ka(s) (u(x + s, t) − u(x − s, t)) ds

+qr

∫ ∞

0
Kr(s) (u(x + s, t)− u(x − s, t)) ds

))
. (5.37b)

Analytical and numerical results for model (5.36)–(5.37) showed a variety of
new and interesting patterns [7, 17]. In particular, when the kernels Kj , j = r, a

are discontinuous at the origin (i.e., Morse interaction kernels), the hyperbolic
model exhibits not only finite-density patterns, but also blow-up patterns [17].
In particular, the sign of the jump at the origin ([K] = K(0+) − K(0−),
where K(x) = −qaKa(x) + qrKr(x)) determines whether blow-up solutions are
possible [17]. When [K] ≥ 0 (i.e., repulsion is stronger than attraction), the L∞-
norm of the solution is bounded for all times and the solution exists globally in
W 2,1(R)×W 2,1(R) [17]. In contrast, when [K] < 0 (i.e., attraction is stronger than
repulsion), the amplitude of the solution may blow up in finite time provided that
the initial data is large enough such that

maxx∈Ru±0 (x) >
β

α
. (5.38)

Here, β and α are constants which depends on the L∞ norms of the speed and
turning rate functions (see [17] for details). The blow-up time is

T = − 1

β
log(1− β

α
maxx∈Ru±0 (x)) (5.39)

It is worth mentioning that condition (5.38) is only a sufficient condition for
finite time blow-up. Numerical results have shown that initial data which does not
satisfy (5.38) may still blow up in finite time (as seen in Fig. 5.22b). This blow-up
behaviour can be prevented by large random turning rates (λ1). In fact, the transition
from blow-up patterns to finite-density patterns can be explained by an increase
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Fig. 5.21 Description of a bifurcation in the amplitude of solutions as the random turning rate λ1
increases past the threshold λc

1 ≈ 0.63 (which depends on other model parameters). For graphical
purposes, in the blow-up region we show the amplitude of the pattern at t = 4.5, while in the
finite-amplitude region we show the amplitude of the pattern at t = 100, when the pattern has
started to stabilise. See also [17]

in λ1 [17]; see Fig. 5.21. Note that the constant random turning rate λ1 induces a
diffusive effect into the hyperbolic model (as individuals turn randomly either left
or right).

There are actually two types of blow-up patterns, stationary or moving, depend-
ing on the strength of the repulsive interactions qr (see Fig. 5.22 and Table 1.2
for a description of these patterns). For weak repulsive interactions the blow-up
solutions are stationary (see Fig. 5.22a). However, strong repulsive interactions
cause left-moving and right-moving individuals to move away from each other while
approaching the spatial location where the blow-up takes place (see Fig. 5.22b).
The two-point blow-up patterns (Fig. 5.22) are caused by the densities u+ and u−
becoming infinite at two different spatial positions, x∗1 and x∗2 :

lim
t→T

||u+(x∗1 , t)||∞ = ∞, lim
t→T

||u−(x∗2 , t)||∞ = ∞, (5.40)

for stationary blow-ups, and

lim
t→T ,x→x∗1

||u+(x, t)||∞ = ∞, lim
t→T ,x→x∗2

||u−(x, t)||∞ = ∞, (5.41)

for moving blow-ups.
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Fig. 5.22 Blow-up patterns exhibited by a nonlocal hyperbolic model with density-dependent
speed introduced by Fetecau and Eftimie [17]. Shown is the total density u = u+ + u−. The
initial condition is u±(x, 0) = e−(x/2−L/4)2

, where L is the domain length. (a) Stationary blow-up
patterns. (b) Moving blow-up patterns. Using the notation from [17], the parameter values are: (a)
qal = 1, qa = 1, qr = 0.5, λ1 = 0, λ2 = 0; (b) qal = 1, qr = 0.8, qa = 1, λ1 = 0.2, λ2 = 0.
Condition (5.38) is satisfied for the parameters in (a), but not for the parameters in (b). Note that
for larger times, the numerical code breaks down (extremely large densities lead to numerical
oscillations, and the solution becomes negative)

In general, the assumption of density-dependent speed for a hyperbolic model
suggests possible shock solutions. This is true for many of the local models
discussed here [67, 68]. However, as shown by Fetecau and Eftimie [17], for the
nonlocal hyperbolic systems (5.36)–(5.37) the assumption of having turning rates
and speeds that are increasing and bounded does not allow for the formation of
shocks. This is consistent with other results obtained with nonlocal traffic flow
models which do not exhibit shock formation due to the smoothing effect that the
nonlocal terms have on the velocity [69]. (The effect is similar to the effect caused
by a viscous term.)

When kernels Kj , j = r, a are continuous at the origin, model (5.36)–(5.37)
was shown to exhibit group-splitting behaviours similar to those observed in nature
(for example, in schools of fish [70]), as well as more complex chaotic patterns [7].
Some of these chaotic patterns are shown in Fig. 5.23a, b. To emphasise the chaotic
nature of the patterns in panels (a),(b), we graph in Fig. 5.23a’, a” and b’, b” the
total population densities u = u++u− at two different time steps: (a’), (b’) t = 99,
(a”), (b”) t = 100. We note that an analytical investigation of the formation of these
patterns (which is likely the result of the interactions between different unstable
states) is still an open problem.

Remark 5.3 Note that taking the formal parabolic limit of the system (5.36) with
density-dependent speeds (via the rescaling of time and space variables x = x∗/ε,
t = t∗/ε2, or the rescaling of speed and turning rates γ = γ ∗/ε, λ± = λ±∗ /ε2, with
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Fig. 5.23 Examples of chaotic spatio-temporal patterns exhibited by model (5.36) with density-
dependent speeds (5.37). (a) Pattern obtained for qal = 0, qal = 0.5, qr = 0.1, λ1 = 0.2,
λ2 = 0.9. (a’), (a”) Time-snapshots of the pattern in (a). (b) Pattern obtained for qal = 0.6,
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ε � 1) we obtain (after dropping the “∗” for simplicity) an advection-diffusion
equation of the form [7]:

∂u

∂t
= D

∂2u

∂x2 − B
∂

∂x

(
α∗[u]u)− γ ∗

∂

∂x

(
g∗[u]u), (5.42)

where we had Γ ±[u+, u−] = γ (1±g[u]), and rescaled g[u] = εg∗[u]. We observe
that the nonlocal component of the individuals’ speed, g[u], gives rise to a drift
which is added to the drift caused by the difference in the turning rates: α[u] =
λ2εα

∗[u], with α∗ = 1
ε

(
f ∗(y−[u]) − f ∗(y+[u])). Therefore, we expect similar

qualitative behaviours for the parabolic equation (5.42), irrespective of whether the
communication mechanisms influence only the turning rates, only the speed, or both
the turning rates and the speed.

We conclude this section by observing that even these nonlocal hyperbolic
models with density-dependent speeds can be generalised to describe the interac-
tions between multiple species (which use different communication mechanisms).
However, to our knowledge, no such models have been developed yet, to investigate
the effect of multiple communication mechanisms on speeding-up/slowing-down
behaviours.
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5.9 Systems Incorporating Environmental Stochasticity

Even if the nonlocal hyperbolic/kinetic models discussed in the previous sections
can exhibit chaotic dynamics in the presence of deterministic inter-individual inter-
actions (as shown numerically in Figs. 5.13a”, c” and 5.23), we need to emphasise
that inter-individual communication can be affected by noise (e.g., abiotic, biotic or
anthropogenic; see Fig. 5.24 and the discussion in [71]). Ecological, physiological
and psychological studies have shown that anthropogenic (i.e., human-made) noise
can decrease the accuracy of animal communication [72–74], can increase the
energetic cost of animals (who try to move away from noise and change their feeding
patterns) [75], can restrict animal movement (which can impact whole ecosystems)
[76], or can impact the well functioning of different physiological systems (e.g.,
cardiac, auditory, neural or immune systems) in various animal species [77–82].
Therefore noise likely impacts that movement dynamics of the whole population
and the interactions among conspecifics [83]. Moreover, many of the species that
self-organise (e.g., birds) form relatively small aggregations, and in this case,
random fluctuations in population size—caused, for example, by environmental
stochasticity—can become important.

A generalisation of nonlocal models (5.14)–(5.19) could include the explicit
incorporation of environmental and anthropogenic stochasticity. However, we need
to emphasise that models (5.14)–(5.19) do incorporate implicitly a sort of stochastic-
ity, as they are derived using a correlated random walk approach (see Sect. 5.3) and
the resulting solutions can be seen as probability densities [84]. Thus, the explicit
incorporation of environmental and anthropogenic noise into the hyperbolic/kinetic
models discussed above adds another layer of stochasticity.

 wind, rain, ...)

Biotic noise

(e.g., schrimp noise)

Anthropogenic noise

(e.g., noise from 

oil&gas platforms)

Abiotic noise
(e.g., noise caused by

Fig. 5.24 Caricature description of the effect of noise (abiotic, biotic, anthropogenic) on the
emission/reception of communication signals from conspecifics
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Eftimie [84] has recently investigated the effect of anthropogenic noise on the
dynamics of nonlocal models (5.14)–(5.19), under two assumptions:

• As the presence of noise was shown to lead to changes in the emission/reception
of communication signals [85, 86], Eftimie [84] assumed that in noisy envi-
ronments individuals try to increase the detection level of signals emitted by
neighbours. Therefore, the term describing the perception of neighbours (see also
Eq. (5.20)) is now time-dependent:

y±r,a = qr,a

∫ ∞

0
Kr,a(s)

(
p±(t)u(x ± s)− p∓(t)u(x ∓ s)

)
ds, (5.43)

with p±(t) = p∗± + W(t), with W(t) = Rand[0, nm] (i.e., W(t) is a
uniform randomly distributed number within the interval [0, nm], where the
maximum noise level is nm ≤ 1). This particular choice of W(t) follows
the approach taken by the individual-based models for collective movement of
particles/cells/bacteria/animals discussed in Chap. 1 (see, for example, [88]).
Moreover, the general terms p± (with p+ possibly distinct from p−) were used
to describe also the asymmetric perception of neighbours due to abiotic noise
(e.g., wind blowing from a certain direction; see Fig. 5.6);

• In the presence of noise individuals try to increase their turning rates (to detect
better their neighbours):

λ± = λ1(t)+ λ2(t) tanh(y±[u+, u−] − y0), (5.44)

with λ1,2 = λ∗1,2+W(t) and W(t) = Rand[0, nm]. This assumption is similar to
the assumptions made by the majority of individual-based models for collective
dynamics of particles/cells/animals/etc.; see also the discussion in Chap. 1.

Since the large majority of individual-based models in the literature for self-
organised biological aggregations (e.g., see [88–90]) discuss the effect of noise on
the transition between ordered aggregations (where all individuals are moving in one
direction) and disordered aggregations (with individuals facing different directions),
the simulations in [84] started with parameter values that generated (in the absence
of noise) one travelling pulse/aggregation; see the caption of Fig. 5.26.

An investigation into the effect of perturbing the p± values showed (see
Fig. 5.25) that: (i) higher noise leads to the destruction of travelling aggregation
patterns (panels (a),(b)); and (ii) a heterogeneous environment (characterised by
asymmetric perception of neighbours: p∗+ �= p∗−) is more likely to destroy the
travelling aggregation patterns compared to a homogeneous environment (i.e., p∗+ =
p∗−); see panel (c) in Fig. 5.25.

The effect of noise on the turning rates λ1,2(t) is illustrated in Fig. 5.26. Panels (a)
show three examples of spatio-temporal patterns when we perturb deterministically
the turning rates by a constant (in time) value nm: (i) a stationary pulse for
nm = 0.8, (ii) a regular zigzag for nm = 0.3, and (iii) two travelling pulses
for nm = 0.1. Panels (b) show three examples of spatio-temporal patterns when
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Fig. 5.25 Pattern formation in a heterogeneous environment (p+ = 1.0, p− = 0.8), as we
increase the noise level in p±: (a) W(t) = Rand[0, 0.1], (b) W(t) = Rand[0, 0.5]. The
bifurcation diagram in (c) shows that travelling pulses persist mostly when p+ ≈ p− (and thus
the environment is homogeneous, being characterised by symmetric perception of neighbours
ahead/behind a reference individual). The parameter values used for the simulations are: γ = 0.1,
λ∗1 = 0.1, λ∗2 = 0.9, qa = 2.0, qr = 0.5, qal = 1.0, y0 = 0.2

we decrease the maximum noise level nm: (i) a stationary pulse for nm = 0.8,
(ii) a chaotic zigzag for nm = 0.3, and (iii) a travelling pulse for nm = 0.1.
Sub-panels (iv) and (iv’) show bifurcation diagrams for changes in the maximum
amplitude of the patterns as we decrease the nm values. The red amplitude values
are obtained when we start with nm = 1 and we decrease it towards nm = 0.1,
while the black amplitude values are obtained when we start with nm = 0.1 and
we increase it towards nm = 1. We observe that for the parameters used in these
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Fig. 5.26 (a) Spatio-temporal patterns (sub-panels (i)–(iii)) and bifurcation diagram (sub-panel
(iv)) obtained numerically when we perturb λ1,2 deterministically with a constant nm. (b)
Spatio-temporal patterns (sub-panels (i)–(iii)) and bifurcation diagram (sub-panel (iv)) obtained
numerically when we perturb λ1,2 randomly with a uniformly distributed number chosen within the
interval [0, nm]. The parameter values used for the simulations are: γ = 0.1, λ∗1 = 0.1, λ∗2 = 0.9,
qa = 2.0, qr = 0.5, qal = 1.0, p− = p+ = 1. The domain length is L = 10, and periodic
boundary conditions are considered

numerical simulations (and listed in the caption of Fig. 5.26), either random or
deterministic perturbations of the turning rates λ1,2 lead to similar transitions from
stationary pulses, to zigzags (chaotic or deterministic) and eventually to travelling



References 149

pulses. However, the detailed bifurcation structure (i.e., the parameter values at
which these transitions occur, and the number of bifurcating branches arising at the
bifurcation points) is different for the deterministic and stochastic cases. Moreover,
we notice a sort of hysteresis phenomenon during the transition between different
patterns (chaotic or deterministic). For example, if we start with nm = 1 in the
deterministic case (Fig. 5.26(iv)), we obtain a stationary pulse (pattern (a)) which
persists also as we decrease nm below the critical value nm = 0.54. Only by
decreasing nm ∈ (0.16, 0.2) leads to a zigzag pattern (b). Similar observations
hold also for the stochastic case (Fig. 5.26(iv’)): decreasing nm below 0.76 does
not lead to an immediate transition to a zigzag pattern (i.e., the solution stays on
the higher-amplitude red branch). This transition occurs as nm is decreased even
further: nm ∈ (0.22, 0.3).

A detailed, rigorous investigation of the bifurcation structure of these stochastic
systems is currently an open problem (as it will be discussed later in Sect. 8.8).
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Chapter 6
Multi-Dimensional Transport Equations

6.1 General Description of 2D and 3D Models

The 1D spatial models described in the previous chapters are easy to simulate
numerically and to investigate analytically. However, they are not very biological
realistic, since the majority of behaviours among individuals in cellular, bacterial
or animal communities occur in 2D or 3D. Moreover, while some 2D/3D patterns
can be reduced to similar 1D patterns (e.g., stationary pulses corresponding to
stationary aggregations, or travelling pulses (rotating waves) corresponding to
travelling aggregations), it is expected that many other 2D/3D patterns cannot be
reduced to simpler 1D patterns. Therefore, to understand the mechanisms behind the
formation of various biological aggregations observed in nature we need to focus on
2D/3D models.

The last two decades have seen the development of a large variety of 2D/3D
models describing self-organised phenomena in cells [1–6], animals [7–11] and
even humans [12–15]. While the majority of these models are local, many of
the recent models include also nonlocal interactions [2, 8, 9]. As mentioned
before for the 1D models, many of the 2D/3D models in the literature for self-
organised biological aggregations are of parabolic type, thus describing dominant
random movement behaviours; see, for example, [1, 2] and the references therein.
Nevertheless, the latest developments in experimental cell biology and ecology have
led to an accumulation of data regarding individual velocities and turning rates,
which in turn led to the further development of kinetic models; see, for example,
[3–5, 14, 15] and the references therein. Due to the complexity of these (mesoscale)
kinetic models, which renders them difficult to be investigated analytically and
numerically, some studies consider hydrodynamic and/or parabolic limits of these
models [10, 11, 16] (since these macroscopic models are somewhat easier to be
studied). We will discuss this aspect in more detail in Sect. 6.8.
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Fig. 6.1 Description of (a) the “flow” approach (where the arrows describe particles/cells that
enter/exit a control volume V ), and (b) the velocity-jump approach for the derivation of a 2D model
(generally a macroscopic model for (a) and a mesoscopic/kinetic model for (b)). For the case in
(b), we note that one can have also a spatial movement of particles/cells from some position (x′, y′)
to position (x, y)

In the following we discuss briefly the general structure of the 2D/3D kinetic
models for biological aggregations. To this end, we first note that while car traffic
models are usually in one spatial dimension (due to the 1D structure of roads and
highways), the models for pedestrian dynamics and more generally those for cell
and animal movement are usually described in two or three spatial dimensions
[17]. These (space) multi-dimensional models can be derived either using a “flow”
approach (where one focuses on the density of particles/cells/animals/pedestrians
that cross a surface or a volume; see Chapter 2 in [18], and Fig. 6.1a), or using
a 2D generalisation of the classical Goldstein-Kac approach or the more general
velocity-jump approach (see Fig. 6.1b), or using the binary collision of active-
particles approach. These different approaches allow for the incorporation of various
reaction terms describing birth/death processes, or inflow/outflow of individuals into
the domain.

We start the discussion of 2D kinetic models by focusing in Sect. 6.2 on models
with local interactions (which are generalisations of the 1D models discussed in
Chaps. 3 and 4). In Sect. 6.3 we focus on a class of nonlocal transport models
where the nonlocal interactions impact only the velocity. These models are 2D
generalisations of the 1D models discussed in Sect. 5.2. Next, in Sects. 6.4 and 6.5,
we discuss two types of nonlocal kinetic models where the turning is influenced
by interactions between particles/cells/animals (and the velocity could be constant
or density-dependent): (1) models derived from velocity-jump processes, and (2)
kinetic models for active particles. We emphasise that throughout this chapter we
focus mostly on models that consider direct cell-cell/animal-animal interactions;
although in Sect. 6.6 we mention also a few models that consider indirect cell-
cell interactions via an external signal (i.e., a chemical either produced by the
cells in the environment [19], or that is produced inside the cells [20]). Finally,
in Sect. 6.11 we present some kinetic models that incorporate explicitly stochastic
terms. To balance the exposition of this long list of various kinetic models in 2D, in
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Sects. 6.7, 6.8, and 6.9 we present in more detail some analytical approaches used to
manipulate the models in such a way that they become more amenable to analysis:
the mean-field approach used to derive mesoscale kinetic models from microscale
individual-based models (see the models in Chap. 1), the hydrodynamic limit and
the grazing collision limit of kinetic models to obtain macroscale hyperbolic models
(with respect to space).

To help the reader, we summarise in Fig. 6.2 some of the aggregation patterns
obtained with the 2D kinetic models discussed in this Chapter: (a) stationary pulses,
(b) travelling pulses, (c) spatially homogeneous states with individuals aligned
in one direction, (d) vortices. In Fig. 6.3 we show a splitting of the aggregation
patterns obtained with the kinetic model introduced in [8]. Note that this splitting
behaviour is usually accompanied by a merging behaviour (not shown here). As the
simulations are performed on a domain with periodic boundary conditions, the two
groups will meet again and merge. We will refer to these patterns throughout the
rest of the sections.
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Fig. 6.2 Examples of 2D patterns exhibited by kinetic models. (a) Stationary aggregations
(pulses) as in [8]; (b) Travelling pulses as in [8]; (c) Lane patterns as in [8]; (d) Vortices [7]. The
patterns in panels (a), (b), (c) were simulated using the same parameter values as in [8] (but on a
shorter domain [−3.14, 3.14]), where we show the total population density (as given by the color
bar) averaged over the orientation φ: ρ(x, y; t) = ∫

u(x, y; t, φ)dφ. Panel (d) reproduced from
[7]: Copyright c©2004 Society for Industrial and Applied Mathematics. Reprinted with permission.
All rights reserved
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Fig. 6.3 2D splitting of aggregation patterns, exhibited by the kinetic model introduced in [8];
see Eqs. (6.25)–(6.28). The numerical simulations were performed on a square domain [−L,L]
with L = 3.14, with social interactions having magnitudes qa = 5, qal = 5, qr = 1, and
speed γ = 1. Initial conditions are 2D Gaussian functions describing an aggregation (see left
panel), and boundary conditions are periodic. A spectral method is used to deal with the integrals
in model (6.25)–(6.28); see also Chap. 7. As time increases, the initial aggregation splits into
2 sub-groups that are moving apart. Shown is the total population density averaged over the
orientation angle φ: ρ(x, y; t) = ∫

u(x, y; t, φ)dφ. The color bar describes the range over which
the population density varies

6.2 Local Advective Models in 2D

The 2D movement of pedestrians has often been described with the help of first-
order transport models [21, 22]

∂u

∂t
+ ∂f (u)

∂x
+ ∂g(u)

∂y
= F(u), (6.1)

where u(x, y, t) ∈ R
+ is the total population density, and F(u) ∈ R describes

pedestrian inflow/outflow into the domain or birth/death processes. These models
are usually derived using the “flow” approach discussed in the previous section (see
also Fig. 6.1a). We emphasise that in addition to these first-order models in 2D, one
could have also second-order transport models for pedestrian movement [17]

∂u

∂t
+ ∂(uvx)

∂x
+ ∂(uvy)

∂y
= 0, (6.2a)

∂vx

∂t
+ vx

vx

∂x
+ vy

∂vx

∂y
= F1(x, u, v,∇v0u), (6.2b)

∂vy

∂t
+ vx

vy

∂y
+ vy

∂vy

∂y
= F2(x, u, v,∇v0u), (6.2c)

where v = (vx, vy) ∈ R
2 is the speed, v0 ∈ R represents some movement direction,

and F1,2 ∈ R describe terms that influence the changes in the velocity in x and y

directions.
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As an example of a first-order transport model for pedestrian dynamics, Hughes
[21] considered the following hypotheses regarding pedestrian motion:

(1) pedestrians’ speed is determined only by the density of their surrounding
neighbours;

(2) pedestrians move in direction perpendicular to a potential Φ that describes the
task they face to reach their common destination;

(3) pedestrians try to minimise their travel time, while avoiding at the same time
high densities;

(4) there is no pedestrian inflow/outflow into the domain.

These assumptions translate into the following f (u) and g(u) functions in Eq. (6.1):

f (u) = ug0(u)f 2
0 (u)

∂Φ

∂x
, g(u) = ug0(u)f 2

0 (u)
∂Φ

∂y
. (6.3)

Here f0(u) = a− bu describes the speed (with a, b some constants), and g0(u) is a
factor that models discomfort at very high densities, with

g0(u)f0(u) = 1√(
∂Φ
∂x

)2 +
(

∂Φ
∂y

)2
. (6.4)

For model (6.1)–(6.3), Hughes [21] discussed the existence of two possible types
of pedestrian flows (similar to the one-dimensional traffic flow behaviours in
[23]): a fast-moving, low-density flow called “supercritical flow”, and a slow-
moving high-density flow called “subcritical flow”. The author then used this
first-order transport model to describe numerically the movement and distribution
of pedestrians around a pillar, with a focus on the two types of pedestrian flows
(subcritical and supercritical).

In the context of second-order models, Bellomo and Dogbé [17] discussed
various pedestrian movement strategies, such as movement along straight lines
towards the target, or movement towards paths with small population density
gradients. Each strategy corresponds to different functions F1 and F2. For example,
the case of pedestrian moving along straight lines was described by F1 = F2 =
f1 + f2, with

f1 = α(ve(u)v0 − v), f2 = −K2(u)

u
∇v0u. (6.5)

Here f1 models the adaptation of pedestrians velocity to an equilibrium velocity
ve, and f2 models the influence of local population density gradients. It is worth
mentioning that the results in [17] are mainly analytical, the authors showing that
the various models they derived are actually of hyperbolic type. No numerical
simulations are performed to show how the strategies incorporated into the models
affect the groups-level behaviour of pedestrians.
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The classical Goldstein-Kac derivation [24, 25] of 1D hyperbolic systems for
moving particles (which was discussed in Chap. 3) can be carried out also in two
spatial dimensions. In this case, the derivation of the model gives rise to a system of
four equations for particles moving East, West, North and South (or right, left, up
and down) [26]:

∂uE

∂t
+ γ

∂uE

∂x
= −λuE + λuM, (6.6a)

∂uW

∂t
− γ

∂uW

∂x
= −λuW + λuM, (6.6b)

∂uN

∂t
+ γ

∂uN

∂y
= −λuN + λuM, (6.6c)

∂uS

∂t
− γ

∂uS

∂y
= −λuS + λuM, (6.6d)

where uj , j ∈ E,W,N, S , describe the density of organisms moving East, West,
North and South, and uM is given by uM = 1

4 (uE + uW + uN + uS). As in 1D, the
turning events are the result of Poisson processes.

Unfortunately, manipulating Eqs. (6.6) to obtain a telegraph equation in 2D
(similar to Eq. (4.5), which has a finite speed of propagation [27]) cannot lead to
a closed form equation for the total population density uM [28]. (Note that the 2D
telegraph equation does exist, but it cannot be obtained as a limit from Eqs. (6.6)).
Even if some work to solve this problem has been done in [27], this negative result
prompted scientists to focus on 2D kinetic transport models as generalisations of
local and nonlocal 1D hyperbolic models [26, 28–32]. We will discuss some of
these kinetic models in the following sections.

6.3 Nonlocal Advective Models in 2D

The most straightforward generalisation of the 1D nonlocal model (5.1) to two
spatial dimensions (2D) is given by

∂u

∂t
+∇(Γ [u]u) = 0, (6.7)

where the velocity Γ [u] incorporates also the prescribed trajectories v(x) followed
by the particles:

Γ [u] = γ (K � u)v(x), x ∈ R
2. (6.8)

An example of such as model was introduced in [33] to investigate pedestrian
movement. There the authors chose the vector v(x) to be the unit tangent at x to
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the geodesic curve connecting point x with the final destination of the individual
positioned at x. To add more biological realism, the velocity can be changed slightly,
as in [33, 34]:

Γ [u] = γ (u)
(
v(x)+ I (u)

)
, with I (u) = −ε

∇(K � u)√
1+ ||∇(K � u)||2 . (6.9)

Here, the term I (u) describes pedestrian deviation from the prescribed path, in
an attempt to avoid entering regions with high-density neighbours (which are
perceived through long-distance interactions) [34]. Models of the type (6.7)–(6.9)
have been shown to admit weak solutions [33, 35] that depend continuously on
the initial data [33, 34]. Moreover, numerical simulations performed with these
models (using a Lax-Friedrichs method with dimensional splitting) showed the
emergence of lane formation for pedestrians, as in Fig. 6.2d [33, 34]. Moreover,
in [34], the authors noted that the number of pedestrian lanes was correlated to the
size of the support of the convolution kernel K . Finally, the authors studied the
effect of the domain shape (and in particular the presence of columns inside the
domain) on the merging/splitting of lanes. We remark that in [34], the lane patterns
were obtained under the assumption that pedestrians receive information from their
neighbours positioned both ahead and behind them (i.e., isotropic environment).
This is equivalent to the communication mechanisms M2 described in Chap. 5.

To generalise model (5.1) to two spatial dimensions, Topaz and Bertozzi [7]
used the Hodge decomposition theorem [36] (which states that a vector field in
the plane can be decomposed uniquely into a divergence-free component and
a gradient component). Thus, the authors decomposed the velocity vector field
into a divergence-free component Γt (also known as transverse component, or
incompressible component; with ∇ · Γt ≡ 0) and a gradient component Γl (also
knows as longitudinal component; with ∇ × Γl ≡ 0):

Γ = Γt + Γl := ∇⊥Ψ +∇Φ. (6.10)

This decomposition can be re-applied directly to the interaction kernel K (since the
functions considered in [7] had integrable gradients, and the convolution commuted
with the derivatives):

K = ∇⊥N +∇P, (6.11)

where P describes the interaction pressure and N describes some additional motion
that allows for rotation. The authors then investigated two cases:

1. Incompressible motion: K = ∇⊥N , with ∇ · Γ = 0. For a Gaussian kernel
N = Gd(x) = (1/d2)exp(−|x|2/d2), the authors showed that the model can
exhibit vortex solutions. The equation for the boundary z(α, t) of the solution
(with α a parameter on the boundary) is

dz(α, t)

dt
=

∫ 2π

0
N(z(α, t) − z(α′, t))zα(α′, t)dα′. (6.12)
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The analytical solutions are backed up by numerical simulations; see also
Fig. 6.2d. Here, the authors used the Simpson’s rule to discretise the integral,
and a combination of fourth-order Runge-Kutta method and fourth-order Adams-
Bashforth method to discretise Eq. (6.12).

2. Potential motion: K = ∇P . For P = −Gd , the motion is convective and the
population is transported through space while it spreads away. For P = Gd , the
motion will lead to spatial aggregations (stationary pulses).

Bertozzi et al. [37] focused on model (6.7) (which was derived as the continuum
limit of an individual-based model), with nonlocal velocity

Γ [u] =
∫
R3

K(x − y)|(x − y)|u(y, t)dy, (6.13)

and investigated the stability and bifurcation dynamics of a single ring pattern. The
authors showed that a low-mode instability can lead to the deformation of the ring
pattern, while a high-mode instability can lead to the disintegration of the pattern.
They also noted that an analysis of the stability of double-mill patterns for these
transport models is still an open question.

Models (6.7) can be easily generalised to describe the interactions between
multiple populations in case of panic and repulsive situations, as well as follower-
leader dynamics and predator-prey interactions [35]. We will return to the discussion
of these models in Sect. 6.10.

6.4 Velocity-Jump Processes

Experimental results showed that some bacteria (e.g., Escherichia coli) move with
a constant velocity in a straight line, stop, and then choose a new direction with
a certain probability [38]. This behaviour, called “run and tumble” (which was
discussed in more detail at the beginning of Chap. 4; see also Fig. 4.1), can be
modelled by a velocity-jump process [30, 39]. This modelling approach is not
restricted only to bacteria, but can be used to model the behaviour of other organisms
(e.g., amoeboid cells [40] or birds [41]) that move following similar rules. The
general equation describing the movement of these organisms is

∂

∂t
u(x, t, v)+∇x · vu(x, t, v) = −λu(x, t, v)+ λ

∫
V

T (v, v′)u(x, t, v′)dv′,

(6.14)

where u(x, t, v) is the density distribution function for organisms at time t ≥ 0 and
spatial position x ∈ Rn, which move with velocity v ∈ Rn. Parameter λ describes
the random turning rate (with λ−1 the mean run length time between the random
choices of direction [30]). Generally, it is assumed that either λ = λ0 =constant, or
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λ = λ0 + λ1(u) (in which case the waiting time between jumps increases with
density) [30]. Finally, the turning kernel T (v, v′) describes the probability of a
velocity change from v′ to v, if a jump in velocity occurs. To ensure the conservation
of organisms, the kernel must satisfy

∫
T (v, v′)dv = 1. (6.15)

Note that the set of velocities V ⊂ Rn is compact and symmetric (which implies
that if v ∈ V then −v ∈ V ). This allows the multi-dimensional models (6.14) to
be reduced to the previous one-dimensional hyperbolic models (4.3) by considering
T (v, v′) = δ(v + v′) and only two possible values for the velocity: v = γ and
v = −γ [30]. If we ignore the interactions between particles (cells), we obtain
the transport equation (6.7) with constant velocity Γ [u] = v. For a derivation of
Eq. (6.14) in a biological context, see [30].

Equation (6.14) is similar to the classical Boltzmann equation, derived in the
context of kinetic theory of gas molecules [42, 43]. The right-hand-side of Eq. (6.14)
can be interpreted as a collision operator

Q(u, u) = −λu(x, t, v)+ λ

∫
V

T (v, v′)u(x, t, v′)dv′, (6.16)

which, for Boltzmann equation, has to satisfy the three conservation properties of
the collision process:

1. conservation of mass:
∫
V

Q(u, u)dv = 0;
2. conservation of momentum:

∫
V

Q(u, u)vdv = 0;
3. conservation of energy:

∫
V Q(u, u)|v|2dv = 0.

At equilibrium (Q(u, u) = 0), the distribution u(x, v, t) of the Boltzmann equation
is a local Maxwellian distribution:

u(x, v, t) = ū(x, t)

(2π)3/2
e−

|v−p0|2
2 , (6.17)

with ū(x, t) = ∫
V u(x, v, t)dv the mass density and p0(x, t) the mean velocity

p0 = ∫
V u(x, v, t)vdv. We need to emphasise here that in the context of the

Boltzmann equation, the collision operator incorporates some assumptions that
might not be considered biologically realistic: binary collision between pairs
of identical molecules, negligible influence of any possible external force, and
uncorrelated velocities and positions of a molecule. Nevertheless, as we will see
next, these types of models are being often applied to describe collective movement
in biology.

In general, Eq. (6.14) can incorporate reaction terms describing population
dynamics as a result of individuals/cells/bacteria entering or leaving the domain,
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or as a result of birth and death events [26, 32, 44]:

∂

∂t
u+ v · ∇xu = −λu+ λ

∫
V

T (v, v′)u(x, t, v′)dv′ + 1

|V |m(ū)− g(ū)u, (6.18)

with u = u(x, t, v), |V | = ∫
V dσv , and ū = ∫

V u(x, t, v)dσv. Here, m(ū) describes
the proliferation of the population, and g(ū) describes the decay (death) of the
population. In [45], the changes in population size (as given by the reaction terms)
are caused by pedestrians entering or leaving the system.

The complexity of models (6.14) is generated by the form of the turning kernel
T (v, v′) (assuming that λ is constant or might depend on the local density u). One
simple choice of the turning kernel in one space dimension was discussed in [30]:
T (v, v′) = δ(v+ v′). This choice implies that individuals change direction each
time a choice is made [30]. More complex models can be obtained by assuming
density-dependent turning kernels T and/or density-dependent rates λ. The majority
of models that describe the collective movement of organisms focus on the role
of one type of social interaction (which can usually be thought as alignment) in
determining the new movement direction [30, 45–50]. A few kinetic models focus
on the attractive and repulsive interactions that influence the velocity of organisms
[41]. Even fewer kinetic models incorporate all three social interactions: repulsion,
attraction and alignment [8]. In the following we discuss three examples of kinetic
models that incorporate different social interactions, and implicitly incorporate
different communication mechanisms.

• Turning depends on alignment. An example of a kinetic model where individ-
ual turning depends on alignment was introduced by Boissard et al. [50] to
describe ant-trail formation through the deposition of pheromones and interaction
with these pheromones through alignment interactions. The model assumes
nonlocal sensing of pheromones deposited by the ants at different positions in
space (and this implies a sort of nonlocal communication among ants, through
the pheromones they deposit). The equations describing the evolution of the
ant distribution function (F(x, ω, t)) and the pheromone distribution function
(G(x, ω, t)) are:

∂G(x, ω, t)

∂t
= vdF (x, ω, t) − veG(x, ω, t), (6.19a)

∂F (x, ω, t)

∂t
+ cω · ∇xF(x, ω, t) = Qr(F )+Qp(F), (6.19b)

Qp(F)(x, ω, t) = λpγ (TR(x, t))

∫
S1

ΦP (ω,ω′)
(
hp(ω)F (x, ω′, t)

− hp(ω′)F (x, ω, t)
)
dω′, (6.19c)

Qr(F )(x, ω, t) = λr

∫
S1

Φr(ω,ω′)
(
F(x, ω′, t)− F(x, ω, t)

)
dω′, (6.19d)



6.4 Velocity-Jump Processes 163

hp(ω) = (g
sym
R )|k|(ω), g

sym
R (x, ω, t) = SR(x, ω, t) + Sr(x, ω, t)

2TR(x, t)
,

(6.19e)

SR(x, ω, t) = 1

πR2

∫
|x−y|<R

G(y, ω, t)dy, TR(x, t) =
∫

S1
SR(x, ω, t)dω.

(6.19f)

Here x ∈ R
2, ω,ω′ ∈ S1 (with ω = post-jump velocity and ω′ = pre-jump

velocity), and t ≥ 0. Equation (6.19a) describes the deposition of pheromones
at a rate vd , and their degradation at a rate ve. Equation (6.19b) describes the
movement of ants at a constant speed c in direction ω, as a results of the random
velocity jumps (given by operator Qr ) and trail recruitment jumps (given by
operator Qp). For the jump probabilities, it is assumed that they depend on some
equilibrium probabilities: hr(ω) = 1/2π and hp depending on the density of
pheromones on the trails in direction ω. Moreover R is the maximum distance
within which an ant can perceive the pheromone molecules (i.e., their perception
radius) and SR(x, ω, t) describes the density of pheromones pointing in direction
ω that can be perceived by an ant positioned at x. The term TR(x, t) describes
the total pheromone density within the perception radius of an ant. Parameter
λp is the trail-recruitment frequency, parameter λr is the random velocity jump
frequency, and γ is a dimensionless increasing function of T describing the
increase in the trail recruitment as the pheromone density increases.

The authors did not show any numerical simulations for this kinetic model
(but they did ran simulations with an individual-based model that formed the
basis of the derivation for this particular kinetic model). Instead, they focused
on analytical approaches (i.e., hydrodynamic limit) to reduce—under some
approximations regarding the perception radius R and the transition probabilities
Φr , Φp—this kinetic model to a simpler macroscopic model for the evolution of
the ant density ρ(x, t) = ∫

S1 F(x, ω, t)dω and the pheromone density T (x, t) =∫
S1 G(x, ω, t)dω. For the details behind this hydrodynamic limit approach, we

refer the reader to [50]. And for a more in depth exposition of the hydrodynamic
limit for the general Boltzmann equation, we refer the reader to [51].

• Turning depends on attraction-alignment. Carrillo et al. [41] derived a
Boltzmann-type model corresponding to the Cucker-Smale individual-based
model for bird flocking (see also Eq. (1.3)). Recall that the Cucker-Smale model
assumed that particles/birds adjusted their velocities to a weighted average of
the relative velocity, with the weights being decreasing functions of the distance
between birds. The kinetic version of the Cucker-Smale model is given by the
following Boltzmann-type equation

∂u(x, v, t)

∂t
+ v · ∇xu(x, v, t) = Q(u, u)(x, v, t), x ∈ R

d, v ∈ R
d , d ≥ 1,

(6.20)
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with the collision operator

Q(u, u)(x, v) =
∫
Rd

∫
Rd

( 1

J
u(x, v∗)u(y, w∗)− u(x, v)u(y, w)

)
dwdy.

(6.21)

Here (v∗, w∗) are the pre-collision velocities and (v,w) are the post-collision
velocities for two birds with positions and velocities (x, v) and (y, w). These
velocities are related through the following formulas:

v = (1− ηa(x− y))v∗ + ηa(x− y)w∗, (6.22a)

w = ηa(x− y)v∗ + (1− ηa(x− y))w∗, (6.22b)

where η measures the intensity of the velocity change in the binary interactions,
and the weighting term models the communication distance:

a(x) = 1

(1+ |x|2)β . (6.23)

Finally, the term J in (6.21) is the Jacobian J = (1−2γ a)d of the transformation
of (v∗, w∗) into (v,w). Note that the velocity adaptation term has an alignment
effect, while the weight function a induces an attraction effect. We emphasise that
no simulations have been performed in [41], and thus there was no investigation
of the possible patterns displayed by this kinetic model.

We conclude the discussion of these attraction-alignment models, by mention-
ing that a slightly different version of a Cucker-Smale kinetic model was derived
in [52], where the changes in velocity were described in terms of the velocity
gradient for the collision operator Q(u, u);

∂u(x, v, t)

∂t
+ v · ∇xu(x, v, t)+ λ∇v ·Q(u, u) = 0, (6.24a)

Q(u, u)(x, v, t) =
∫

R2
a(x, y)(v∗ − v)u(x, v, t)u(y, v∗t)dv∗dy, (6.24b)

where the interaction kernel is similar to the one described above in Eq. (6.23):
a(x, y) = A/(1 + |x − y|2)β . Ha and Tadmor [52] showed the global existence
of classical solutions and time-asymptotic flocking behaviour (where particles’
velocities approach the velocity of the centre of mass) for compactly supported
initial data. We will return to this kinetic model in Sect. 6.7, in the context of
its derivation from an individual-based model (the Cucker-Smale model) via the
mean-field approach..

• Turning depends on attraction-repulsion-alignment. In an attempt to generalise
the 1D hyperbolic models introduced in [53, 54] (see also Eqs. (5.14) + (5.18) +
(5.19)), Fetecau [8] derived a new 2D kinetic model that incorporated all three
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types of social interactions (repulsion, attraction and alignment), which were
assumed to influence (in an additive manner similar to Eq. (5.19)) the turning
rate λ(x, φ, t) and the turning kernel T (φ′, φ):

∂u

∂t
+ eφ · ∇x = −λ(x, φ)u+

∫ π

−π

T (x, φ′, φ)u(x, φ′, t)dφ′. (6.25)

Note that Eq. (6.25) considers changes in orientation and not velocity—hence
the description of T in terms of the turning angles φ′ and φ. The turning rate λ

(which models turning from direction φ into any other direction) and the turning
kernel T (which describes turning from any direction φ′ into direction φ) are
related through the following formula

λ(x, φ) =
∫ π

−π

T (x, φ, φ′)dφ′. (6.26)

As mentioned above, the three social interactions (repulsion, attraction and
alignment) influence the turning behaviour of particles, and thus

T (φ′, φ) = Tal(φ
′, φ)+ Ta(φ

′, φ)+ Tr(φ
′, φ). (6.27)

Here Tj , j ∈ {al, a, r}, are turning kernels modelling reorientation as a result of
alignment (Tal), attractive (Ta), and repulsive (Tr ) interactions. These kernels are
described by the following equations [8]:

Tal(φ
′, φ) = qal

∫
R2

∫ π

−π

Kd
al(x-s)Ko

al(θ;φ′)wal(φ
′ − φ, φ′ − θ)u(s, θ, t)dθds,

(6.28a)

Ta(φ
′, φ) = qa

∫
R2

∫ π

−π

Kd
a (x-s)Ko

a (s; x, φ′)wa(φ
′ − φ, φ′ − ψ)u(s, θ, t)dθds,

(6.28b)

Tr(φ
′, φ) = qr

∫
R2

∫ π

−π

Kd
r (x-s)Ko

r (s; x, φ′)wr(φ
′ − φ, φ′ − ψ)u(s, θ, t)dθds.

(6.28c)

Here, kernels Kd
j , j ∈ {al, a, r}, model the distance of a reference individual

(at x) from its neighbours positioned (at s) inside the alignment, attractive, and
repulsive ranges. Kernels Ko

j , j ∈ {al, a, r}, describe the re-orientation of the
individuals facing in direction φ′ following interactions with neighbours facing
in direction θ , and which are inside the alignment, attractive and repulsive ranges.
Note that the alignment orientation kernel Ko

al depends on the direction θ of
neighbours at position s, while the attractive/repulsive orientation kernels Ko

r,a

depend on the spatial distance between the individuals at x and neighbours at s.
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Finally, wj , j ∈ {al, a, r}, gives the probability of turning from φ′ to φ, as a result
of interactions with neighbours located at or moving in direction θ (or ψ=angle
between the x-axis and the vector connecting the individuals with positions x and
s). Since λ and T are connected through Eq. (6.26), we note that also the turning
rates λ are described in terms of the three social interactions:

λ(x, φ) = λal(x, φ)+ λa(x, φ)+ λr(x, φ), (6.29)

with

λal(x, φ) = qal

∫
R2

∫ π

−π

Kd
al(x-s)Ko

al(θ;φ)u(s, θ, t)dθds, (6.30a)

λj (x, φ) = qj

∫
R2

∫ π

−π

Kd
j (x-s)Ko

j (s; x, φ)u(s, θ, t)dθds, j = r, a.

(6.30b)

For detailed descriptions of the kernels Kd
j and Ko

j , and the re-orientation
probabilities wj , j = r, al, a, we refer the reader to [8]. Note the similarity
between Eqs. (6.28) and the one-dimensional alignment, attractive, and repulsive
terms described in Table 5.1. Because the model in [8] incorporates the repulsive
assumption (i.e., individuals require a minimal space around them), it is more
realistic than the classical Boltzmann models that assume compressible, infinitely
small molecules.

This particular model was shown to produce stationary and moving aggrega-
tions (equivalent to the stationary and travelling pulses in 1D; see also Fig. 6.2b)
and translating solutions (i.e., spatially homogeneous solutions that are aligned
in a preferred direction - the equivalent of 1D case of individuals aligned either
left or right, while being homogeneously spread over the domain [53]).

Many of these kinetic models have been investigated numerically. For example,
Vauchelet [55] showed that a kinetic model for chemotaxis can exhibit finite size
aggregations (stationary pulses), as well as finite-time blow-up patterns. These
blow-up patterns can be point-wise or along some lines, depending on the shape
of the domain. As mentioned above, Fetecau [8] showed that the kinetic model
(6.25)–(6.30) with repulsive-attractive-alignment interactions can display stationary
and moving aggregating solutions, as well as spatially-translating solutions.

However, due to the complexity of these kinetic models, an analytical inves-
tigation of the resulting patterns is challenging. Perthame [56] summarised some
general analytical methods that are used to investigate the kinetic equations (6.14).
These methods range from existence and regularity results, to asymptotic problems
and the derivation of macroscopic models. In terms of understanding the patterns,
the analytical results go as far as proving the existence of bounded or blow-up
solutions [55, 57–59]. For simpler models (e.g., models that assume an uniform
distribution of velocities after the turning event, or an uniform distribution through
space) it is still possible to investigate analytically the structure of solutions.



6.4 Velocity-Jump Processes 167

For example, Schwetlick [32] used a kinetic model with population dynamics to
investigate travelling front solutions for three different reaction terms F(u), with
F(0) = F(1) = 0:

1. a positive source term (e.g., logistic growth): F > 0 on (0, 1);
2. a combustion-law-type term: there exists a θ ∈ (0, 1) such that F ≡ 0 on [0, θ ]

and F > 0 on (θ, 1);
3. a bistable growth term (Allee term): there exists a θ ∈ (0, 1) such that F < 0 on

(0, θ) and F > 0 on (θ, 1).

The results showed that for positive source terms there is an entire interval of
possible speeds. For the other two reaction terms, there are single front solutions
that move with unique speeds.

Another simple kinetic model that was investigated analytically, was considered
in [46, 48] to describe the angular alignment of interacting bundles of cells or
filaments:

∂u

∂t
= −u(θ, t)

∫ π

−π

T [u](θ, φ)dφ +
∫ π

−π

T [u](φ, θ)u(φ, t)dφ, (6.31)

with T the turning operator. Note that this particular model did not consider
any spatial distribution of cells/filaments (i.e., cells/filaments were assumed to be
equally spread over the whole domain). While the study in [46] showed analytically
and numerically that the model could exhibit stable peak-like solutions (in the
orientation space), the study by Kang et al. [48] showed analytically that uni-
directional or multi-directional alignment behaviours could result from different
initial distributions for the turning angle of cells/filaments (e.g., symmetric or non-
symmetric initial data). Moreover, the study in [46] argued against the possibility
of having time-periodic solutions bifurcating from stationary solutions (since there
were no complex eigenvalues near the constant solutions). We emphasise that the
uni-directional alignment behaviour exhibited by the model (6.31) corresponds
numerically to the case depicted in Fig. 6.2c.

Remark 6.1 While this monograph is dedicated to the modelling of spatial and
spatio-temporal phenomena occurring in various biological aggregations, it is
important to emphasise the great applicability of the class of models discussed here.
To this end, we note that in recent years Boltzmann-type equations have been used to
describe opinion formation and wealth distribution [60–66]. As an example, Düring
et al. [65] used a kinetic model to describe the irrationality and herding behaviour
of agents in economic markets. The authors defined u(x,w, t) to be the distribution
of agents at time t , with rational (x > 0) or irrational (x < 0) behaviours, which
hold an asset of an estimated value w > 0 that can change in response to new public
information (e.g., financial reports, balance sheet numbers, etc.) [65]. The evolution
of this distribution is governed by the following Boltzmann-type equation

∂u

∂t
+ ∂

∂x

(
Φ(x,w)u

) = QI (u)+QH (u, u), (x,w) ∈ R×R
+, (6.32)
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where the drift Φ(x,w) describes the effect that changes in the asset values have
on the rationality/irrationality of trading agents, the operator QI models public
information, and the operator QH models the herding behaviour. (For detailed
descriptions of QI and QH , see [65].) We can interpret this herding behaviour of
financial agents as a “collective behaviour” not in the physical space but in a socio-
economic space. In addition to taking a grazing collision limit (see the approach
described in Sect. 6.9), the authors in [65] also performed numerical simulations
for different parameter values measuring, for example, the influence level of public
information on the agent’s decision.

6.5 Kinetic Models for Active Particles

The kinetic models described previously incorporate detailed information (i.e.,
position, velocity and movement direction) regarding the individual behaviour of
organisms (or particles in general). Also, they generally ignore population dynamics
(i.e., death and birth processes). However, complex biological systems have specific
attributes that characterise them, such as the dominance behaviour in a group
of animals [67], the activation of a population of cells, or gene expression in a
population of genes [68]. To account for these complex attributes, new kinetic
models have been derived and used to investigate a large variety of biological
processes, ranging from the social behaviour of colonies of insects [67], to the evo-
lution of bacterial populations [69], or the evolution of cancer-immune interactions
(see the reviews in [68, 70], and the references therein). In all these models the
particles/cells are characterised (in addition to position and velocity) by internal
biological variables called “activities” [68, 70]. Examples of such “activities” are
the degree of recognition of cancer cells by the antigen-presenting cells [71], or the
degree of activation of immune cells [72]. In general, the turning kernel T and the
random turning rates λ might depend on cells’ activity. Usually, these kinetic models
also incorporate population dynamics: cell proliferation and death, and in some
cases genetic mutations. Thus, the most general equation describing the dynamics
of cell populations is

∂

∂t
u(x, t, v)+H(t) ·∇vu(x, t, v)+v ·∇xu(x, t, v) = L[u]+G[u]+I [u]. (6.33)

It is clear that Eq. (6.33) is the generalisation of (6.14). Here, u is usually a
vector (u = (u1, . . . un)) which describes various cell populations (e.g., immune
cells, normal endothelial cells, malignant cells [68]). Hence, (6.33) is a system of
kinetic equations. Variable v, which previously denoted the “velocity”, can now
describe also the “activity” state of the cell: v = (s, a), where s = velocity and
a = (a1, . . .am) denotes m “activity” states. Note that v can be a continuous variable
(if m = 1, as in [68]) or a discrete variable (if m > 1, as in [73]). The term H(t)·∇vu

describes the change in the density u over the activity space. Note that many of the
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kinetic models which investigate the evolution of cell populations do not consider
how these populations change over space (i.e., ∇xu = 0; see, for example, [68]).

In Eq. (6.33), L[u] is the classical transport operator (similar to the operator
describing the right-hand-side of Eq. (6.14)). This term incorporates a constant
λ which models the frequency of interactions (or turning rates) (see also (6.14)).
G[u] is a conservative operator describing the gain and loss of cells due to
conservative encounters (i.e., encounters that modify the activity state a of cells,
without generating or destroying cells). Finally, I [u] is an operator describing the
proliferation/destruction of cells. For a detailed description of L[u], G[u] and I [u]
see, for example, the model in [70], or the model in [16] which will be discussed in
more detail in Sect. 6.6.

Remark 6.2 Note that the operators above incorporate the assumption of binary
cell-cell interactions [74]. This assumption, which is not very realistic biologically,
is being made to simplify the modelling of complex interactions among cells and/or
among animals (and to be consistent with the kinetic theory of gasses). However,
one should not forget that these cell-cell interactions occur not only via direct cell-
cell contact but also indirectly via cytokines and growth factors produced by the cells
themselves or by other cells, which leads to interactions among multiple cells at the
same time (see [75] for a discussion on modelling tumour-immune interactions).
Similarly, animal interactions are not always direct and one-to-one: in many cases
animal-animal interactions are the result of different communication mechanisms
(e.g., using hearing, olfactive or visual signals), which can be perceived/emitted
by various and multiple neighbours (e.g., following eavesdropping [76]); see also
Fig. 1.6a. Hence, a cell/animal does not interact with only one other cell/animal but
with a number of other cells/animals (within a certain distance).

In the following we present an example of a kinetic model for tumour-immune
interactions described in [77], which even if it is in 1D (for the activity variable a)
can be easily generalised to 2D (i.e., a = (a1, a2)) or even to higher dimensions.
Starting with Eq. (6.33) for u = (u1, u2) (with u1 ∈ R

+ describing tumour cells
and u2 ∈ R

+ describing immune cells), the authors derived the following model:

∂u1(t, a)

∂t
+ ∂

∂a

(
− α12aA2(t)u1(t, a)+ α13aA0

3u1(t, a)
)
= −β12A2(t)u1(t, a)

+ β13A
0
3au1(t, a), (6.34a)

∂u2(t, a)

∂t
+ ∂

∂t

(
− α21aA1(t)u2(t, a)

)
= β21aA1(t)u2(t, a)

− λ
(
u2(t, u)− u∗2(a)

)
. (6.34b)

Here t ∈ R
+ represents time, and a ∈ R

+ is an internal state which describes the
mutation level of tumour cells (u1) and the activation level of immune cells (u2). The
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nonlocal terms Ai(t) =
∫∞

0 au1(t, a)da, i = 1, 2 describe the activation level of
the two populations, while A0

3 is a constant describing the (healthy) environmental
cells. Parameters αij describe conservative encounters that lead to the weakening of
the immune response in the presence of tumour cells (α21), the reduced progression
(mutation) of tumour cells in the presence of immune cells (α12), and the increased
progression of tumour cells in the presence of healthy environment that has
nutrients (α13). Parameters βij describe proliferative/destructive interactions that
increase/decrease cell numbers: elimination (at a rate β12) of tumour cells by the
activated immune cells, growth of tumour cells (at a rate β13) in the presence of
a healthy environments which feeds them, proliferation of immune cells (at a rate
β21) in the presence of mutated tumour cells. Finally, the last term in Eq. (6.34b)
describes the tendency of the immune response to relax (at a rate λ) towards a
healthy immune state u∗2(a).

The authors have proven the existence of continuous solutions u1,2, and showed
analytically that the immune response can go to the healthy state u∗2 provided that
tumour mutation level can be controlled, or the tumour grows to infinity if the
activation level of immune cells is not very high. No numerical simulations were
shown in this study, to confirm the analytical results. However, simulations for a
relatively similar model were shown in [78], which depicted travelling pulses (for
tumour and immune cells) through the activity space a ∈ (0, 1) (thus describing the
progression of tumour cells and the activation of immune cells).

Remark 6.3 As noted above, the kinetic models for active particles usually focus on
multiple interacting populations (i.e., u = (u1, . . . , un)). Since in many cases these
models do not consider any spatial heterogeneity, the interactions are usually local
in space (but can be non-local in the activity variable). In Sect. 6.10 we will return
to this aspect of interacting populations, and consider nonlocal spatial interactions
between different populations.

Remark 6.4 Some of the kinetic models for particle swarming and pedestrian
movement can be derived from individual-based models, in the case when the
number of particles becomes very large (see, Sect. 6.7). In contrast to this approach,
the kinetic models which investigate tumour growth as a result of interactions
with the immune cells (and the environment) are usually derived using the active
particles approach where the flow at time t into the elementary volume [a, a + da]
of the state space (with a = activity variable) is the result of cell transport, and
conservative, proliferative and destructive cell-cell interactions [74]. These two
approaches, namely the macroscopic limit of individual-based models and the active
particles approach, mirror the derivation of one-dimensional hyperbolic models,
which can be obtained using either a correlated random walk approach [24, 25],
or a traffic flow approach (see, for example, Chapter 2 in [18]).
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6.6 Multiscale Models with Explicit Dynamics
for the Microscale Variables

The kinetic equations discussed in this chapter can be considered multiscale models,
since they combine macroscopic-level dynamics related to cell/animal movement
with microscopic-level dynamics related to variables describing the internal state
of cells/animals (e.g., age, activation state of cells, number of receptors on cell
surface, etc.). However, the models presented in the previous sections usually
assumed a static microscopic variable (e.g., v = (s, a)), which did not evolve in
time (and hence the multiscale aspect could be considered implicit). Recent studies
on collective cell dynamics in the context of cancer invasion and metastasis have
started to pay particular attention to the temporal dynamics of cells and molecules
inside/on cells, and formulate detailed complex models that connect explicitly the
kinetic transport equations for cell movement, with ordinary differential equations
or integro-differential equations for the dynamics of molecules (i.e., the internal
variables that characterise the cells), and even reaction-diffusion equations for the
dynamics of various diffusive chemical compounds that control the movement of
cells and/or various molecules; see [3, 5, 6, 16, 20, 79] and references therein.

To illustrate these multiscale models with explicit microscale dynamics, we start
with a simple model introduced by Dolak and Schmeiser [20] to describe the
evolution of the density u(x, t, v, ξ) of a cell population (that depends on space
x ∈ R

n, time t ∈ R
+, velocity v ∈ V ⊂ R

n and an internal variable ξ ∈ R
k). The

components of the internal variable ξ are chemical concentrations inside the cells,
which can depend on the concentration of an external chemoattractant S(x, t):

dξ

dt
= η

(
ξ, S(t, x(t)

)
. (6.35)

The evolution of the external chemoattractant is described by the following reaction-
diffusion equation, where the production/degradation of the chemical depends on
cell densities and the inner states of the cells:

∂S

∂t
= DsΔxS + ν(S, ξ, u). (6.36)

Under the assumption that cell movement is not influenced by the internal variables
(i.e., the turning operator T is independent of ξ ), Dolak and Schmeiser [20]
proposed the following equation for the evolution of u(x, t, v, ξ):

∂u

∂t
+ v · ∇xu+∇ξ · (ηu) =

∫
V

[
T (v′, v)u(x, t, v′, ξ) − T (v, v′)u(x, t, v, ξ)

]
dv′.

(6.37)

The authors then derived a macroscopic limit of this kinetic model (where cell
movement would be described by a drift-diffusion equation), and applied it to
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investigate the dynamics of Dictyostelium discoideum cells under the influence of
an external cAMP concentration (modelled by S(x, t)) and two internal chemicals:
a chemical w activated by cAMP and inhibited by a second internal chemical ξ .
Numerical simulations with this macroscopic model for Dictyostelium dynamics
showed the formation of cellular aggregations (i.e., stationary pulses in 2D) in
response to cAMP waves. Note that for the simulations, the authors used an operator
splitting approach (see also Chap. 7), where the reaction terms and the diffusion
terms were discretised separately.

The last few years have seen the development of more complex multiscale
models that incorporate explicitly the evolution of the microscale (internal) vari-
able [3, 16, 19]. To illustrate these complex modelling approaches we focus on a
study by Kelkel and Surulescu [19]. In this article, the authors proposed a multiscale
kinetic model for the dynamics of a cancer cell population u(t, x, v, y) that depends
on time t ∈ R

+, space x ∈ R
n, velocity v ∈ V ⊂ R

n, and activity y ∈ R
2—

which is related to the concentration of some chemoattractant L that results from
the degradation of extracellular matrix, and to the density of some protein fibres Q

oriented towards θ ∈ S
n−1 (with S

n−1 denoting the unit sphere in R
n):

∂u

∂t
+ v · ∇xu+∇y ·

(
G(y,Q,L)u

)
= H(u,Q)+ C(L, u). (6.38)

Here H(u,Q) is a haptotaxis operator describing the changes in velocity orientation
due to the encounter between cells and fibres of the extracellular matrix:

H(u,Q)(t, x, v, y)

=
∫

v∈V

∫
θ∈Sn−1

ph(t, x, v′, y)ψ(v; v′, θ)u(t, x, v′, y)Q(t, x, θ)dθdv′

−ph(t, x, v, y)u(t, x, v, y)

∫
v∈V

∫
θ∈Sn−1

ψ(v′; v, θ)Q(t, x, θdθdv′), (6.39)

where the velocity space is V = [s1, s2] × S
n−1 with 0 ≤ s1 < s2 < ∞, ph

denotes the interaction frequency between cells and fibres, and ψ(v; v′, θ) denotes
the probability of a cell that has an initial velocity v′ to change its velocity to v after
encountering a fibre with orientation θ .

The chemotactic operator C(u,L), describes the changes in velocity orientation
due to cells moving towards the gradient of chemical L:

C(u,L)(t, x, v, y) =
∫

v∈V

pc(t, x, v′, y)K[∇L](v, v′)u(t, x, v′, y)dv′

−pc(t, x, v, y)u(t, x, v, y). (6.40)

Here pc denotes the interaction frequency between cells and the gradient of L, while
turning kernel K depends on ∇L.
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Finally, the y-divergence term is related to cell membrane reactions, where
the vector y = (y1, y2) ∈ (0, R0) × (0, R0) is such that y1 + y2 < R0 (with
R0 > 0 representing the maximum concentration of receptors on cell surface).
This condition leads to the definition of the space Y = {(y1, y2)|y1 + y2 < R0},
which will be used to define Q and L (see below). Function G that appears in
the y-divergence term in (6.38) was derived by applying the law of mass action
to describe the receptor-fibre and receptor-chemical interactions occurring at cell
membrane [19]:

dy
dt
= G(y,Q,L), with G(y,Q,L) =

(
k1(R0 − y1 − y2)Q− k−1y1

k2(R0 − y1 − y2)L− k−2y2

)
.

(6.41)

Here k1 and k−1 are the binding and unbinding rates of the complexes formed
between the number of receptors on a cell surface and the total density of protein
fibres (Q). Similarly, k2 and k−2 are the binding and unbinding rates of the
complexes formed between cell receptors and the chemical L.

Finally, the evolution of the variables Q and L is given by the following two
equations:

∂Q

∂t
= −κ

( ∫
v∈V

∫
y∈Y

(
1− ∣∣θ · v

|v|
∣∣)udvdy

)
Q (6.42)

∂L

∂t
= κ

∫
Sn−1

( ∫
v∈V

∫
y∈Y

(
1− ∣∣θ · v

|v|
∣∣)udvdy

)
Qdθ − rLL+DLΔxL, (6.43)

with κ the degradation rate of matrix fibres.
Kelkel and Surulescu [19] then showed the existence of a unique weak solution

for the above system. We emphasise that no numerical simulations were presented
in [19] to exemplify the patterns that could be exhibited by this complex kinetic
model.

The kinetic (mesoscale) models discussed throughout this chapter incorporate
microscopic features into the state variables. However, in the limit to macroscopic
models, these microscopic features are lost through averaging. Picolli and Tosin
[80] and Cristiani et al. [81] introduced a novel approach to modelling crowd
dynamics by deriving a new class of multiscale models that preserve the microscopic
dynamics. These models are given in terms of a time-evolving measure μt defined
on the Borel σ -algebraB(Rd) (for a definition of a Borel σ -algebra, see any classical
textbook on measure theory; e.g., [82]). For E ∈ B(Rd), μt(E) ≥ 0 represents the
mass of pedestrians contained in E, for t ≥ 0. Using this measure, the authors
derived two microscopic and macroscopic models, which were then combined in a
multiscale model:

• Microscopic model: For a population of N pedestrians with positions Pj (t),
j = 1, . . . , N , the measure μt is defined as the sum of Dirac masses centred at
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each position Pj :

μt =
N∑

j=1

δPj (t), j = 1, .., N. (6.44)

The microscopic model is a system of N coupled equations for the evolution of
the positions Pj :

dPj

dt
= v[μt ](Pj (t)), with v[μt ](x) = vdesired(x)+ ν[μt ](x). (6.45)

Here, vdesired : Rd → R
d is the desired velocity for pedestrians in the absence

of mutual interactions, and ν[μt ] : Rd → R
d is the interaction velocity that

results from inter-individual interactions. This interaction velocity incorporates
non-local interactions with neighbours:

ν[μt ](Pj ) =
∑

k=1,...,N,Pk �=Pj

f (|Pk − Pj |)g(αkj )
Pk − Pj

|Pk − Pj | , (6.46)

with function f : R+ → R, f (x) = −(qr/x)χ[0,sr ](x)+ qaxχ[0,sa](x) describ-
ing distance-related inter-individual interactions (where qr,a are the magnitudes
of repulsive and attractive interactions, and sr,a are the radii for repulsive and
attractive interactions). Also, αkj ∈ [−π, π] is the angle between vectors Pk−Pj

and vdesired(Pj ), and the function g : [−π, π] → [0, 1], g(s) = χ|s|≤α(s),
describes the angular focus of the pedestrian at Pj .

• Macroscopic model: Since the matter is continuous, the measure μt is absolutely
continuous with respect to the d-dimensional Lebesgue measure L d . By Radon-
Nikodym’s theorem, there exists a function ρ(x, t) called the density of μt

with respect to the measure L d , given by dμt = ρ(·, t)dL d . The strong-form
equation for the conservation of the density ρ is

∂ρ

∂t
+∇ · (ρv) = 0. (6.47)

The weak-form equivalent of this conservation equation is

d

dt

∫
Rd

ρ(x, t)φ(x)dx =
∫
Rd

ρ(x, t)v(x, t) · ∇φ(x)dx, for φ ∈ C1
0 (Rd),

(6.48)

with the interaction velocity

ν[μt ](x) =
∫
Rd

f (|y − x|)g(αxy)
y − x

|y − x|ρ(y, t)dy. (6.49)
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• Multiscale model: The multiscale model is a linear combination of the micro-
scopic and macroscopic models:

d

dt

⎛
⎝θ

N∑
j=1

φ(Pj (t))+ (1− θ)

∫
Rd

ρ(x, t)φ(x)dx

⎞
⎠ =

θ

N∑
j=1

v(t, Pj (t)) · ∇φ(Pj (t))+ (1− θ)

∫
Rd

ρ(x, t)v(x, t) · ∇φ(x)ds, (6.50)

with φ ∈ C1
0 (Rd) and the interaction velocity

ν[μt ](x) = θ
∑

k=1,...,N,Pk(t) �=x

f (|Pk(t)x|)g(αxPk(t))
Pk(t)− x

|Pk(t)− x|

+(1− θ)

∫
Rd

f (|y − x|)g(αxy)
y − x

|y − x|ρ(y, t)dy. (6.51)

The parameter θ ∈ [0, 1] weights the coupling between the microscopic and
macroscopic scales: θ = 0 corresponds to a macroscopic model, while θ = 1
corresponds to a microscopic model. Therefore, the first term in (6.51) gives the
microscopic contribution to the macroscopic dynamics [81]. For the numerical
simulations of this model, the authors used an algorithm that discretised both the
microscopic part (by updating the pedestrian positions Pj ) and the macroscopic part
(by updating the discrete values of the density ρi , with i the index of a grid cell Ei).
The numerical results showed macroscopic aggregations that have also microscopic
structures (e.g., small areas around microscopic individuals, which are caused by
inter-individual repulsion; Fig. 6.4a), and macroscopic travelling pulses that move
towards a microscopic leader (which has a pre-assigned velocity; Fig. 6.4b) [81].
The model can also exhibit lane formation before and after a bottleneck (Fig. 6.4c),
as well as clogging at the bottleneck (Fig. 6.4d).

6.7 Derivation of Mean-Field Models

Over the past few years, more and more researchers focused on the derivation
of kinetic models from individual-based models for swarming, while attempting
to connect the microscale dynamics of individual-based models to the macroscale
group-level dynamics of continuum models [41, 51, 52, 83–87]. The transition from
microscale to macroscale models can occur through the derivation of mean-field
models, which describe the averaged effect of all other particles on any given
particle. This approach is taken when the interaction potential between particles
is not sensitive to the position of particles, an assumption that is sometimes called
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Fig. 6.4 2D spatio-temporal patterns exhibited by the multi-scale model (6.50) (a) Macroscopic
aggregations containing microscopic individuals; (b) Travelling pulses following a microscopic
leader; (c) Lane formation near a bottleneck; (d) Bottleneck clogging. For (c), (d): blue describes
the density of right-moving pedestrians, while yellow describes the density of left-moving pedes-
trians. Reproduced from [81]. Copyright c©2011 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved

“long-range interaction”. Ha and Tadmor [52] started with a N-particle Cucker-
Smale model (1.3) and, for large numbers of particles, they derived a mean-field
kinetic model similar to the Vlasov model. To this end, they considered the N-
particle distribution function

uN = uN(x1, v1, . . .xi, vi , . . . , xN , vN , t), (xi, vi) ∈ R ×R
d , (6.52)

and the marginal distribution

uN(x1, v1, t) =
∫
R2d(N−1)

uN(x1, v1, x−, v−, t)dx−dv−,

(x−, v−) = (x2, v2, ..., xN , vN ). (6.53)

The derivation of the kinetic analogue of the Cucker-Smale model was based on the
Liouville equation

∂uN

∂t
+

N∑
i=1

vi · ∇xi u
N + λ

N

N∑
i=1

∇vi ·
⎛
⎝ N∑

j=1

a(xi, xj )(vj − vi)u
N

⎞
⎠ = 0. (6.54)
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Integrating (6.54) with respect to dx−dv− = dx2dv2. . .dxNdvN leads to

∫
R2d(N−1)

N∑
i=1

vi∇x1u
Ndx−dv− = v1 · ∇x1u

N(x1, v1), (6.55)

and

λ

N

N∑
i=1

∫
R2d(N−1)

N∑
j=1

∇vi ·
(
a(xi, xj )(vj − vi)u

N
)

dx−dv−

= λ

N

∫
R2d(N−1)

N∑
j=2

∇v1 ·
(
a(x1, xj )(vj − v1)u

N
)

dx−dv−. (6.56)

Because all particles are identical, the probability density function uN is symmetri-
cal

uN(. . . , xi, vi , . . . , xj , vj , . . .) = uN(. . . , xj , vj , . . . , xi, vi , . . .), (6.57)

and thus Ha and Tadmor [52] considered only the case xj = x2:

λ

N

∫
R2d(N−1)

N∑
j=2

∇v1 ·
(
a(x1, xj )(vj − v1)u

N
)

dx−dv−

= λ

N
(N − 1)

∫
R2d(N−1)

a(x1, x2)∇v1 ·
(
(v2 − v1)u

N
)

dx2dv2 . . . dxNdvN

= (λ− λ

N
)∇v1 ·

(∫
R2d

a(x1, x2)(v2 − v1)w
N(x1, v1, x2, v2, t)dx2dv2

)
,

(6.58a)

with

wN(x1, v1, x2, v2, t) =
∫
R2d(N−2)

uNdx3dv3 . . . dxNdvN . (6.59)

Therefore, the marginal distribution uN(x1, v2, t) satisfies

∂uN

∂t
+ v1 · ∇x1u

N +
(

λ− λ

N

)
∇v1 ·

(∫
R2d

a(x1, x2)(v2 − v1)w
Ndx2dv2

)
= 0,

(6.60)
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which in the limit N →∞ becomes

∂u

∂t
+ v1 · ∇x1u+ λ∇v1 ·

(∫
R2d

a(x1, x2)(v2 − v1)wdx2dv2

)
= 0, (6.61)

with u = limN→∞ uN(x1, v1), w = limN→∞ wN(x1, v1, x2, v2). To close this
equation, the authors made the assumption that

w(x1, v1, x2, v2, t) = u(x1, v1, t)u(x2, v2, t). (6.62)

After relabelling (x1, v1) → (x, v) and (x2, v2) → (x∗, v∗), it can be seen that the
distribution function u(x, v, t) satisfies the Vlasov-type mean field model

∂u

∂t
+ v · ∇xu+ λ∇v ·Q(u, u) = 0, with (6.63a)

Q(u, u)(x, v, t) =
∫
R2

a(x, x∗)(v∗ − v)u(x, v, t)u(x∗, v∗, t)dv∗dx∗. (6.63b)

It has been shown in [52] that as long as the initial data u0 has finite mass, then (6.63)
cannot exhibit finite-time blow-up solutions. In fact, the only possible solutions are
the bounded, classical solutions u ∈ C1(R2d × [0, T )) for any T ∈ (0,∞).

Chuang et al.[85] started with the individual-based model (1.9) introduced in
[88], and further derived a macroscopic model in the limit of large numbers of
particles N . To this end, the authors used the approach in [89] and defined a
probability density function u = u(x1, . . . , xN ;p1, . . . , pN ; t) that depends on the
positions xi and momentums pi , i = 1, . . . , N . They also defined the mass density
ρ(x, t), the velocity field v(x, t) and the continuum interaction force FU (x, t) as
follows

ρ(x, t) = m

N∑
i=1

〈δ(xi − x); u〉, (6.64a)

v(x, t) = p(x, t)

ρ(x, t)
=

∑N
i=1〈piδ(xi − x); u〉

ρ(x, t)
, (6.64b)

FU(x, t) =
N∑

i=1

〈−∇xiU(xi)δ(xi − x); u〉. (6.64c)

Here δ is the Dirac delta function, m = mi is the identical mass of particles and
U(xi) is the attractive-repulsive interaction potential introduced in (1.9), which acts
on the particle at xi . Substituting these terms into the Liouville equation, leads to
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the following continuum system:

∂ρ

∂t
+∇ · (ρv) = 0, (6.65a)

∂(ρv)

∂t
+∇ · (ρvv) = αρv − 2βEKv + FU , (6.65b)

with

FU(x, t) =
∫
Rd

−∇xU(x − y)
1

m2
ρ(x, t)ρ(y, t)dy. (6.66)

Here, EK = ρ|v|2/2 describes the kinetic energy, and U is the interaction potential
(see Eq. (1.10)). To compare this continuum model with the original discrete
model (1.9), Chuang et al. [85] discretised it using the Lax-Friedrichs scheme. The
simulations showed similar profiles for the averaged densities, averaged momentum
and averaged tangential velocities, for both the continuum and discrete models.
Moreover, both models displayed clump patterns (see also Fig. 6.2f) and lane
formation patterns (see also Fig. 6.2d). However, these result hold only in the
catastrophic regime. In the parameter regime of H-stability, the individual-based
model displays compactly supported solutions, while the continuum model displays
a uniform density distribution spread over the entire domain.

Bolley et al. [86] derived a mean-field limit for the following stochastic
individual-based model:

dxi = vidt, (6.67a)

dvi =
√

2dBi − F(xi, vi)dt − (H � u)(xi, vi )dt, (6.67b)

where Bi are N independent Brownian motions in R
d for particles i (i = 1, . . . , N),

and the functions F,H : R2d → R are chosen such that in the absence of noise
(Bi ≡ 0) the individual-based model (6.67) can be reduced either to the D’Orsogna
model or to the Cucker-Smale model discussed in Chap. 1.

• in D’Orsogna model (1.9): F(x, v) = (β|v|2 − α)v and H(x, v) = −∇xU(x);
• in Cucker-Smale model (1.3): F(x, v) = 0 and H(x, v) = a(x).

The mean-field continuum model corresponding to (6.67) is given by (in the
distributional sense)

∂u

∂t
+ v · ∇xu−∇v · (uF0[u]) = Δvu, with x, v ∈ R

d . (6.68)

The left-hand side of this equation is a transport operator, which describes the
movement of individuals that have velocity v and acceleration F0[u] = F +H � u

(that results from nonlocal interactions with neighbours). The right-hand side is a
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velocity diffusion term, which results from the noise in the velocity in Eqs. (6.67).
(Note that this term leads to solutions with smooth velocity profiles.) For these
stochastic and limit continuum models, Bolley et al. [86] investigated only the
existence and uniqueness of solutions; no numerical simulations were performed
to investigate the types of patterns exhibited by this mean-field continuum model.

To conclude the discussion of mean-field models derived as limits of individual-
based models, we note that Bolley et al. [87] focused on a stochastic version of
the classical Vicsek model (1.1) and derived a continuous version of it (defined in
terms of the gradient with respect to space, and in terms of the gradient, divergence
and Laplace operator with respect to the velocity variable; relatively similar to
Eq. (6.68)). A continuum limit of a different version of the Vicsek model (in 3D
with Gaussian noise added to the velocity, in contrast to the classical 2D Vicsek
model with uniformly distributed noise), as well as the limit of a stochastic version
of this new version of the Vicsek model, have been derived in [90]. Again, all these
models are investigated only analytically (in terms of the existence of solutions).
The authors do not perform numerical simulations to check whether the patterns
obtained with the discrete and continuum models are similar, or to investigate the
types of patterns exhibited by these models.

6.8 Analytical Approaches for the Investigation of Patterns:
Hyperbolic (and Parabolic) Scaling

In general, the kinetic (mesoscopic) models are difficult to be investigated analyt-
ically and numerically, due to their complexity generated by the presence of the
microscopic variable. One way of simplifying these models (and their analysis) is to
reduce them to macroscopic models of hyperbolic and parabolic types. The kinetic
(mesoscopic) models (6.14) and (6.33) can be reduced to hyperbolic (macroscopic)
models by taking the velocity moments of the distribution function u:

ū(x, t) =
∫

v∈V

u(x, v, t)dv, (6.69a)

(p0ū)(x, t) =
∫

v∈V

u(x, v, t)vdv, (6.69b)

where ū(x, t) is the density of particles/individuals/cells and p0 is the mean
velocity. Because of higher order moments, this approach does not lead to a
closed model for ū and p0. This requires the use of moment closure methods,
which connect the distribution u to functions ū and p0 [69, 91, 92]. For example,
Degond et al. [92] considered two closure methods, namely the monokinetic closure
(u(x, v, t) = ū(x, t)δp0(x,t)(v)) and the von Misses-Fisher closure (u(x, v, t) =
ū(x, t)Mp0(x,t)(v), with Mp0 = (1/C)exp(β(v · p0/|p0|))), to transform a Fokker-
Planck type equation of the form (6.68) into a macroscopic equation. Another
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approach involves the use of hyperbolic (hydrodynamic) scaling methods [20, 49,
56, 92, 93]. In particular, by rescaling the variables x and t such that ξ = εx and
τ = εt (the “hyperbolic scaling”), one can transforms the kinetic equations (6.14)
and (6.33) into hyperbolic ones [68, 93–95] (following expansions in powers of ε

for the variables in the model):

∂

∂t
ū+∇x(p0ū) = 0, (6.70a)

∂

∂t
(p0ū)+∇x(p0ū⊗ p0 + P) = F(ū). (6.70b)

where P is a pressure tensor which measures the statistical variation in velocity,

P =
∫

V

(w − p0)⊗ (w − p0)U(w)dw, (6.71)

and U(v) is the equilibrium distribution of u. The term F(ū) which appears in
Eq. (6.70b) is a nonlinear operator described in terms of the turning operator T

[93]. If the turning operator models only turning in the absence of any stimuli (e.g.,
a chemical substance), then F(ū) = 0.

In the context of kinetic models that describe the self-organised dynamics of
tumour and immune cell populations, this hyperbolic scaling can lead to hyperbolic
systems without source terms [70],

∂

∂t
ū+ ∇x(p0ū) = 0, (6.72a)

∂

∂t
(p0ū)+∇x(p0ū⊗ p0 + P) = 0, (6.72b)

or hyperbolic systems with source terms related to the conservative and proliferative
cell interactions [70]

∂

∂t
ū+∇x(p0ū) =

∫
G(U)(x, t, v)dv+

∫
I [U ](x, t, v)dv,

(6.73a)

∂

∂t
(p0u)+∇x(p0u⊗ po + P) =

∫
vG[U ](x, t, v)dv+

∫
vI [U ](x, t, v)dv.

(6.73b)

Operators G[U ] and I [U ] describe the conservative and the proliferative/destructive
cell interactions, respectively (see Eq. (6.33)). The absence or presence of source
terms depends on the scaling of the interaction frequency (λ) and the scaling of the
proliferative/destructive interactions (I [U ]) [70].

The kinetic models (6.14) and (6.33) have been investigated both numerically and
analytically, using stability [85], bifurcation [85, 96, 97] and asymptotic techniques



182 6 Multi-Dimensional Transport Equations

[70, 96]. The results have suggested, for example, conditions on various parameters
(e.g., parameters describing conservative interactions among cells [97]) that could
lead to the control and elimination of aggregations of tumour cells. They have also
suggested conditions that are necessary for the formation of certain group patterns.
As an example, [85] showed that the hydrodynamic framework does not allow for
double milling patterns (groups formed of individuals rotating in both directions),
due to velocity averaging inside a mesh cell. These hydrodynamic models can
exhibit only single milling patterns (i.e., groups formed of individuals rotating in
one direction; also called vortices). However, double milling patterns are possible
with the kinetic framework [84]. Moreover, the hydrodynamic models can exhibit
stationary pulses [93], or blow-up patterns for spherically symmetric solutions
[98]. They can also exhibit patches (i.e., stationary pulses) and lanes of aggregated
individuals [85].

Remark 6.5 Note that a different scaling for the variables x and t (that is, ξ =
εx and τ = ε2t , also called the “parabolic scaling”) leads to parabolic equations
[91, 99].

Remark 6.6 The parameter ε � 1 describes the ratio between the microscopic
length scale of interactions, and the macroscopic scale of the observation domain.
For the hydrodynamic scaling, ε is also equal to the ratio of the microscopic time
scale and the macroscopic observation time [100]. For more detailed discussions of
the hydrodynamic limits see, for example, [51, 101] (for hydrodynamic limits of the
Boltzmann equation), or [102] (for limits of particle models and more varied kinetic
models).

The two asymptotic methods mentioned here (involving hyperbolic and parabolic
scalings), have been derived to connect the mesoscopic-level kinetic models (which
describe the evolution of the distribution function for particles identified by position,
velocity and/or activity) to the macroscopic-level equations (either parabolic or
hyperbolic) for the density of particles. The choice of hydrodynamic vs. parabolic
limit could be decided by the phenomenological behaviour of the model. For exam-
ple, one should choose a hydrodynamic limit if velocity and direction are important
features of the phenomenon that has to be modelled. Also, the hydrodynamic limit
is a natural choice when one wants to preserve the interactions among particles [70].
The parabolic limit, on the other hand, is preferred when there are collisions among
particles [70].

6.9 Analytical Approaches for the Investigation of Patterns:
Grazing Collision Limit

The grazing collisions, that is collisions with very small deviation angles, were first
investigated for Boltzmann operators in the context of physics problems [103–105].
The grazing collision limit transforms the Boltzmann operator into a Fokker-Planck
operator, the latter one being more easy to investigate analytically. In the context of
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kinetic equations for swarming, the grazing collision limit was applied, for example,
by Carrillo et al. [41] to a Boltzmann-type model that incorporates the collisional
rules of the Cucker-Smale individual-based model (1.3):

∂u(x, v, t)

∂t
+ v · ∇xu(x, v, t) = Q(u, u)(x, v, t), (6.74a)

Q(u, u)(x, v, t) =
∫
Rd

∫
Rd

(
1

J
u(x, v∗)u(y,w∗)− u(x, v)u(y,w)

)
dwdy,

(6.74b)

with (v∗, w∗) the pre-collisional velocities and (v,w) the post-collisional velocities,
which are related through

v∗ = (1− γ a(x − y)) v + γ a(x − y)w, (6.75a)

w∗ = γ a(x − y)v + (1− γ a(x − y)) , a(x) = 1

(1+ |x|2)β , x ∈ R
d .

(6.75b)

Here, γ measures the intensity of the velocity change in the particle-particle
interactions. Finally, J = (1 − 2γ a)d is the Jacobian matrix associated with the
transformation of (v,w) into (v∗, w∗). For γ < 1/2 this Jacobian is positive.
To avoid the presence of J , Carrillo et al. [41] considered the weak formulation
of (6.74):

∂

∂t

∫
R2d

φ(x, v)u(x, v, t)dvdx + ∫
R2d (v · ∇xφ(x, v)) u(x, v, t)dvdx = (6.76)

∫
R4d (φ(x, v∗)− φ(x, v)) u(x, v, t)u(y,w, t)dvdxdwdy, (6.77)

for all smooth functions φ with compact support that satisfy

lim
t→0+

∫
R2d

φ(x, v)u(x, v, t) =
∫
R2d

φ(x, v)u0(x, v). (6.78)

By assuming that γ � 1, one can expand φ(x, v∗) in Taylor series of v∗ − v.
Keeping only the second-order terms in the collision integral leads to

∫
R4d

(
φ(x, v∗)− φ(x, v)

)
u(x, v, t)u(y, w, t)dsdvdydw =

γ

∫
R4d

(∇vφ(x, v) · (w − v)) a(x − y)u(x, v, t)u(y, w, t)dxdvdydw

+ γ 2

2

∫
R4d

( d∑
i,j=1

∂2φ(x, v̄)

∂v2
i

(wj − vj )
2
)
a(x − y)2u(x, v)u(y, w)dxdvdydw.

(6.79)
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Here, v̄ = θv + (1 − θ)v∗, for 0 ≤ θ ≤ 1. For small γ , the Boltzmann operator
Q(u, u) (6.74b) can be approximated by the dissipative operator

∇v ·
(
u(x, v, t)

(
H(x)∇vW(v) � u

)
(x, v, t)

)
. (6.80)

McNamara and Young [105] showed that this operator preserves the same properties
as the initial Boltzmann operator. Therefore, the approximated equation in the strong
formulation now reads

∂u

∂t
+ v · ∇xu = ∇v ·

(
ψ(u)(x, v, t)u(x, v, t)

)
, (6.81)

with

ψ(u)(x, v, t) =
((

H(x)∇vW(v)
)
� u

)
(x, v, t)

=
∫
R2d

v −w

(1+ |x − y|2)β u(y,w, t)dydw. (6.82)

This is similar to the Vlasov-type equation (6.63) that was derived by Ha and
Tadmor [52] via the mean-field limit of the Cucker-Smale model.

In the context of nonlocal kinetic models for animal aggregations, Carrillo et al.
[106] focused on a slightly different version of the model introduced by Fetecau [8]:

∂u

∂t
+ γ eφ∇xu = −Q−[u] +Q+[u, u], (6.83)

with Q−[u] = Q−
r [u] +Q−

a [u] +Q−
al[u], Q+[u, u]

= Q+
r [u, u] +Q+

a [u, u] +Q+
al[u, u],

and Q−
j [u] = λj (x, φ)u, Q+

j [u, u]

=
∫ π

−π

Tj (x, φ′, φ)u(x, φ′, t)dφ′), j = r, a, al,

where the nonlocal turning operators contain also a constant (density-independent)
term:

Tal(x, φ′, φ) = ηal

2π

+λ2qal

∫ π

−π

∫
R2

Ko
al(x− s)Ko

al(θ, φ′)ωal(φ
′ − φ, φ′ − θ)u(s, θ, t)dsdθ,

Tr,a(x, φ′, φ) = ηr,a

2π

+λ2qr,a

∫ π

−π

∫
R2

Kd
r,a(x− s)Ko

r,a(s, x, φ′)ωr,a(φ
′ − φ, φ′ − ψ)u(s, θ, t)dsdθ.
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Since the grazing collision assumes that individuals turn only a small angle upon
interactions with neighbours (e.g., moving in direction θ ), this leads to a re-scaling
of the probability of re-orientation term:

ωε
j (φ − φ′, φ − θ) = 1

ε
gε

(φ − φ′ − εR(φ − θ)

ε

)
, j = r, al, a. (6.84)

Substituting φ′ = φ − εβ − εR(φ − θ) into the last term (i.e., ψ(φ′)) of the weak
formulation of the collision operator (shown here only for alignment):

∫ φ

−φ

Qal[u]ψ(φ)dφ = ηal

∫ π

−π

(ρ(x, t)

2π
− u(x, φ, t)

)
ψ(φ)dφ

+
∫ π

−π

∫ π

−π

∫
R2

[
λ2qalK

d
al(x− s)Ko

al(θ, φ)u(x, φ, t)u(s, θ, t)

[ ∫ π

−π

ωε
al(φ − φ′)[ψ(φ′)− ψ(φ)dφ′]]]dsdθdφ, (6.85)

and expanding the term in Taylor series about φ, leads to the following approxima-
tion:

∫ π

−π

Qal[u]ψ(φ)dφ = ηal

∫ π

−π

(ρ(x, t)

2π
− u(x, φ, t)

)
ψ(φ)dφ

−
∫ π

−π

∂

∂φ

(
u(x, φ, t)Cε

al[u, x, φ])ψ(φ)dφ

+
∫ π

−π

(
u(x, φ, t)Dε

al [u, x, φ])ψ(φ)dφ. (6.86)

Here,

Cε
al[u, x, φ] =

∫ π

−π

∫
R2

λ2qalK
d
al(x − s)Ko

al(θ, φ)Aε
al(φ − θ)u(s, θ, t)dθds,

Dε
al[u, x, φ]

=
∫ π

−π

∫
R2

λ2qalK
d
al(x − s)Ko

al(θ, φ)Ko
al(θ, φ)Bε

al(φ − θ)u(s, θ, t)dθds,

Aε
al(φ − θ) = −ε

(
M1(ε)+M0(ε)R(φ − θ)

)
,

Bε
al(φ − θ) = ε2

2

(
M2(ε)+ 2M1(ε)R(φ − θ)+M0(ε)R(φ − θ)2), (6.87)

with Mn(ε) =
∫ π

−π βngε(β)dβ, n = 0, 1, 2, the moment generating functions
for gε(β). Similar expressions can be derived also for the attractive and repulsive



186 6 Multi-Dimensional Transport Equations

collision terms [106]:

∫ π

−π

Qr,a[u]ψ(φ)dφ = ηr,a

∫ π

−π

(ρ(x, t)

2π
− u(x, φ, t)

)
ψ(φ)dφ

−
∫ π

−π

∂

∂

(
u(x, φ, t)Cε

r,a[u, x, φ])ψ(φ)dφ

+
∫ π

−π

∂2

∂φ2

(
u(x, φ, t)Dε

r,a [u, x, φ])ψ(φ)dφ,

with

Cε
r,a [u, x, φ] =

∫ π

−π

∫
R2

λ2qr,aKd
r,a(x − s)Ko

r,a(s, x, φ)Aε
r,a(s, x, φ)u(s, θ, t)dsdθ,

Dε
r,a[u, x, φ] =

∫ π

−π

∫
R2

λ2qr,aKd
r,a(x − s)Ko

r,a(s, x, φ)Bε
r,a(s, x, φ)u(s, θ, t)dsdθ,

Aε
r,a(s, x, φ) = −ε

(
M1(ε) +M0(ε)R(φ − ψs)),

Bε
r,a(s, x, φ) = ε2

2

(
M2(ε) + 2M1(ε)R(φ − ψs)+M0(ε)R(φ − ψs)

2). (6.88)

Carrillo et al. [106] then showed that the grazing collision limit of model (6.83)
with the nonlocal turning operators defined above leads to the following Fokker-
Planck equation with non-local advective and diffusive terms in the orientation
space:

∂u

∂t
+ γ eφ · ∇xu = λ1

( 1

2π
ρ(x, t)− u(x, φ, t)

)

+ ∂

∂φ

(
− uCε[u, x, φ] + ∂

∂φ
(uDε [u, x, φ])

)
, (6.89)

with λ1 = ηal +ηr +ηa , Cε = Cε
al +Cε

r +Cε
a and Dε = Dε

al +Dε
r +Dε

a . Note that
this nonlocal model (6.89), with nonlocal diffusion, is in contrast with the majority
of the Fokker-Planck models in the literature for self-organised aggregations that
consider local diffusion [86, 87, 107]. While these Fokker-Planck models (with
local/nonlocal diffusion) are more easy to investigate analytically, there are not
many studies that focus also on their numerical investigation (see also the discussion
in Sect. 6.7).

6.10 Multiple Population Models with Nonlocal Interactions

As seen in the previous chapters, focusing on interactions between multiple
populations is a natural step in the modelling of population dynamics. In particular,
local (in space) interactions between different populations are usually considered
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by the kinetic models for active particles (see Sect. 6.5). However, for kinetic multi-
dimensional models that vary in space, modelling the interactions between different
populations is complicated by the particular form of the Boltzmann operator (which
can depend on both space and orientation/velocity). For example, Fetecau and
Meskas [9] derived a system of kinetic equations modelling the predator-prey
interactions between two populations, up(x, φ, t) (the prey) and uh(x, φ, t) (the
hunter/predator):

∂up

∂t
+ γ peφ · ∇xu

p = −λp(x, φ)up +
∫ π

−π

T p(x, φ′, φ)up(x, φ′, t)dφ′,

(6.90a)

∂uh

∂t
+ γ heφ · ∇xu

h = −λh(x, φ)uh +
∫ π

−π

T h(x, φ′, φ)uh(x, φ′, t)dφ′,

(6.90b)

where the angle φ gives the orientation of the populations, γ p,h are the speeds
of the two populations, λp,h are the turning rates from direction φ to any other
direction, and T p,h(x, φ′, φ) are the turning rates from any direction φ′ to direction
φ. While this model includes the same nonlocal attractive-repulsive-alignment
interactions introduced in [8] (and described by (6.27)–(6.28)), the interactions
in (6.90) are slightly different since: (i) they assume that individuals have a restricted
field of vision and cannot receive information from behind (see Fig. 6.5b), and
(ii) they model turning in response to predator-prey dynamics. The restricted field of
vision is modelled by the multiplicative introduction of another kernel into λj , Tj ,

x x

atrraction

repulsion

atrraction

(b)y(a) y

alignment
alignment

repulsion

Fig. 6.5 Examples of 2D reception mechanisms. (a) The individual at the centre of x−y axes can
receive information from all around it (i.e., from ahead, lateral and behind). (b) The individual at
the centre of x − y axes cannot receive information from behind it (they have a restricted field of
vision depicted by the pink region)
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j = r, al, a, which restricts the contribution of the interaction kernels [9]:

Kbz(φ − ψ) = 1

B

(
1

2
tanh

(
a(cos(φ − ψ) + (1− b

π
))

))
, (6.91)

where a determines the “steepness” of the field of vision (i.e., how fast does vision
decrease near the edges of the field of vision), b determines the width of the field of
vision, and constant B is chosen to normalise the kernel. For numerical simulations
the authors represented the space and angle integrals as convolutions, and used
Fourier spectral methods to evaluate them. The simulations with prey alone showed
[108]: (i) stationary (circular/oval) aggregations (similar to those in Fig. 1.2e); (ii)
transient milling aggregations (similar to those in Fig. 1.2a), and (iii) travelling
aggregations (similar to those in Fig. 1.2c). The numerical simulations with prey
and predators showed: (i’) prey engulfment by a stationary predator ring (similar to
the pattern in Fig. 1.5a); (ii’) splitting and merging of prey aggregations (when prey
tries to escape predators), as well as of predator aggregations (when predators split
after the prey split); (iii’) separated travelling pulse aggregations, where the predator
aggregation follows the prey aggregation (similar to the pattern in Fig. 1.5a).

Returning to the advection-only models, we mentioned in Sect. 6.3 that they can
be easily generalised to include the interactions between multiple populations. For
example, Lécureux-Mercier [35] modelled panic situations by considering two sub-
populations moving in two different directions v1 and v2:

∂u1

∂t
+∇ (Γ (K1 � u1 +K2 � u2)u1v1(x)) = 0, (6.92a)

∂u2

∂t
+∇ (Γ (K1 � u1 +K2 � u2)u2v2(x)) = 0. (6.92b)

Using Kruz̆kov’s theory (see Chap. 2), it was shown in [35] that this model has
a unique weak entropy solution. Moreover, numerical simulations have shown the
formation of lanes (in a 2D domain) formed of left-moving and right-moving sub-
populations. In the long term, these lanes have been shown to display fingering
behaviours, where left-moving and right-moving sub-populations segregate while
they move next to each other.

Another type of interaction modelled by Lécureux-Mercier [35] was the leader-
follower dynamics, where the author specified the vector ul ∈ R

2 for the position of
the leader, and the density u of the followers:

∂u

∂t
+∇

(
Γ (u)u(ul (t)− x)e−||ul−x||) = 0, (6.93a)

dul

dt
= (1+ (K � u)(ul))ψ(t), (6.93b)

where Γ (u) describes followers’ speed, ul − x describes the direction of a follower
located at x and directed towards the leader, and ψ(t) is the direction of the leader.
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Numerical simulations for these coupled PDE-ODE models (where the PDEs are
discretised with the Lax-Friedrichs scheme and the ODEs are discretised with the
Euler scheme) showed splitting groups and travelling groups [109].

6.11 Explicit Stochastic Models

Stochasticity is implicit in higher dimensional kinetic models, as the collisions
between particles/cells/bacteria follow the classical rules in the kinetic theory
of gases. As discussed at the beginning of this chapter, the derivation of these
models using the velocity jump process approach [30] assumes that changes in
the orientation/velocity of particles are usually random, being the result of Poisson
processes of intensities λ (with λ−1= the mean run length between the random
choices of direction [30]). Moreover, all the turning kernels in the models discussed
above described the probabilities of a velocity/orientation change between two
different velocities/directions, given that a re-orientation occurs. On the other
hand, as we discussed in Chap. 1, the kinetic models for collective movement are
valid for relatively large numbers of particles (in many situations they are being
obtained from individual-based models when the number of particles N → ∞).
However, in biology, the realistic number of particles/cells/bacteria in a system
could be relatively small (e.g., a few thousands of cells/bacteria/animals), and thus
environmental fluctuations likely have a strong impact. In this case, the limit N →
∞might not lead to a biologically realistic approximation of system dynamics. One
way to address this issue is to incorporate stochasticity in an explicit manner in these
kinetic/hydrodynamic models. To this end, Chavanis [110–113] started with the
Euler equations and the Keller-Segel equations, and proposed a class of kinetic and
hyperbolic (hydrodynamic) stochastic models that describe bacterial chemotaxis:

∂u

∂t
+∇ · (uv) = 0, (6.94a)

∂uv
∂t

+∇(uv⊗ v) = −Dξ∇u + u∇c − ξuv− ξ
√

2DuR(x, t), (6.94b)

∂c(x, t)

∂t
= −kc(x, t)+DcΔc(x, t)+ hu(x, t). (6.94c)

Here, u describes the density of bacteria, v is the local velocity, c is the concentration
of a chemotactic signal, ξ is a friction coefficient (for the bacteria moving on a
fixed matrigel), D is a diffusion coefficient and R(x, t) is a Gaussian random field
satisfying 〈R(x, t)〉 = 0 and 〈Rα(x, t)Rβ(x, t)〉 = δαβδ(x − x′)δ(t − t ′), where α

and β refer to space coordinates and 〈·〉 denotes the correlation function (i.e., the
correlation between random variables at two different points in space and time). In
the equation for the dynamics of the chemical, Dc is the diffusion coefficient, k is
the degradation rate of the chemical, while h is the production rate of this chemical
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by the cells themselves. The author focused only on the derivation of the model as
a limit of an individual-based stochastic Langevin model, and pattern formation
was not investigated for the hyperbolic model. However, pattern formation was
investigated for a simplified version of the stochastic Langevin model, and the
simulations showed: (i) the formation of a network pattern similar to the pattern
in Fig. 1.2i, and (ii) point-wise blow-up aggregations (eventually leading to Dirac
peaks, similar to the pattern in Fig. 1.2f) [110].

A kinetic version of the stochastic model for bacterial chemotaxis, derived as a
limit of an individual-based stochastic Langevin model, describes the evolution of a
distribution function f (x, v, t) and a chemical density c(x, t) [111]:

∂f

∂t
+ w · ∂f

∂x
+∇c · ∂f

∂w
= ∂

∂w
·
(
D

∂f

∂w
+ ξf w

)
+ ∂

∂w
·
(√

2Df Q(x, w, t)
)
,

(6.95a)

∂c

∂t
= DcΔc − kc + h

∫
f (x, w, t)dw, (6.95b)

In the absence of noise, this model reduces to a generalised Fokker-Planck equation.
Moreover, this kinetic model can be reduced to the hyperbolic model (6.94) by
taking the hydrodynamic moments of (6.95a) (see the approach in [110]), where one
defines the macroscopic variables u and v in terms of the above kinetic variables as
follows:

u(x, t) =
∫

f (x, w, t)dw, v(x, t) = (1/u)

∫
f wdw, (6.96)

and the Gaussian noise g(x, t) = ∫ √
2Df Qdw.

This class of hydrodynamic models was further generalised to include also
nonlocal interaction, as shown in [112, 113]:

∂u

∂t
+ ∇ · (uv) = 0, (6.97a)

u
(∂v

∂t
+ (v · ∇)v

)
= −d∇u− u∇Φ − ξuv−√2BuR(x, t), (6.97b)

with Φ(x, t) =
∫

v(x− x′)u(x′, t)dx′ (6.97c)

The authors investigated the evolution of small perturbations around a uniform
distribution with u(x) = u, Φ(x) = Φ, and v = 0, and identified conditions
under which these perturbations grow or decay. For the parameter values that ensure
stability, the authors further investigated the correlations of the density fluctuations
and correlations of the velocity fluctuations in the presence of noise. However, no
numerical simulations were performed to identify the patterns exhibited by this
model [112].
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For a more in-depth discussion (from a statistical mechanics perspective) of
stochastic transport models with applications to vehicular, pedestrian or ant trail
traffic, we refer the reader to [114].
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Chapter 7
Numerical Approaches for Kinetic
and Hyperbolic Models

To understand the spatial and spatio-temporal patterns exhibited by the hyperbolic
and kinetic models discussed in the previous chapters, one needs to combine
analytical results with numerical simulations. However, the complexity of these
local and nonlocal models often leads to numerical difficulties, ranging from the
high dimensionality of some equations, to maintaining the conservation properties
of other equations, dealing with increased computational cost when discretising
the reaction operator (modelling the birth/death of populations, or the transition
between different populations), or dealing with the presence of multiple scales [1].

Numerical methods for transport hyperbolic and kinetic equations is a very broad
and active research field, which developed very fast over the last few decades. While
this evolution was mainly triggered by problems in physics [2], the development of
complex kinetic and hyperbolic models for collective behaviours in cell biology and
ecology also required the use of new fast and accurate numerical schemes. Among
the numerous numerical studies in this area, we mention [1, 3–7].

Due to the large variety of numerical approaches (from finite difference methods,
to finite element methods, finite volume methods, Monte Carlo methods and even
hybrid methods) is impossible to discuss in detail all contributions to this field. In
consequence, in this chapter we aim to give the reader only an brief overview of
some of the most common numerical methods used to discretise and simulate the
hyperbolic and kinetic models described in the previous chapters. Thus, we start
in Sect. 7.1 by discussing some basic finite difference methods used for simple 1D
and 2D hyperbolic models. We also mention some simple finite volume methods
for linear hyperbolic equations. Then, in Sect. 7.2 we focus on numerical methods
developed to deal with the large dimension of kinetic models. In addition, we discuss
some numerical techniques developed to deal with stiff problems. We conclude in
Sect. 7.3 with a brief discussion of some biologically-realistic boundary conditions.
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7.1 Numerical Schemes for Hyperbolic Models

As we have seen in the previous chapters, many hyperbolic equations for collective
movement of cells/animals/particles can be formulated using the conservation law

ut +∇ · F(u) = S(u), (7.1)

where u = (u1, u2, . . . , um) is the vector for the variables of the system, F

describes the conserved flux, and S describes the dynamics of the populations
(birth/death, or transition between various sub-populations). The most common
approach to solve numerically these types of equations and systems of equations
is to use finite differences schemes [3]. To discretise such an equation, one can use
(1) unsplit methods, where a finite difference formula is derived to propagate the
whole equation to the next time step, or (2) splitting methods, where the equation
is split into different components (e.g., the advection part, the reaction/source part),
and different numerical methods are used to discretise each component separately
[3]. Since the unsplit methods depend on the expression of the reaction/source term
which interacts with the advection (thus influencing the accuracy and stability of
the scheme, and slowing-down the computation of the solution), in the following we
focus mainly on the faster splitting methods (although even these methods introduce
an error [8]). While there are many applications of this splitting approach to solving
mathematical models [8], throughout this chapter we discuss only the splitting
of the advection from the reaction components, splitting the x-direction from
the y-direction, or splitting the larger domain into smaller domains (i.e., domain
decomposition). In particular, in this section our focus is on splitting advection from
reaction, where the basic idea is to re-write the conservation law (7.1) as

ut = (A(u)+ R(u))u, (7.2)

where A(u) describes the discretised advection term (i.e., ∇ · F(u); see below) and
R(u) describes the reaction term (i.e., S(u)). Then the solution of each equation is
computed separately (over one time step) [8]:

ut = A(u), u(t = 0) = u0 ⇒ intermediate solution: u∗, (7.3a)

ut = R(u), u(t = 0) = u∗ ⇒ final solution over 1 time step: u∗∗. (7.3b)

Before discussing various methods for the discretisation of the advection com-
ponent (7.3a), we emphasise that the reaction term ut = R(u) = S(u) can
be discretised using classical numerical schemes for ODEs (such as the Runge-
Kutta schemes [9]). If these terms contain also nonlocal interactions, the integrals
need to be discretised first using, for example, classical Newton-Cotes formulas
(trapezoidal rule or Simpson’s rule [10, 11]), or more advanced Gaussian quadrature
formulas [11]. (Note that the 1D integrals that appear in Table 5.1 were discretised
using an extended Simpson’s rule; for details see [11].) We will return to the
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spatial  domain (x)

step
t    :

time
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x x

x j−1
n
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j−1/2 j+1/2

... N... j j+1

Fig. 7.1 Discretisation of the 1D domain into N points: xj , j = 1, . . . , N . In some cases, it is
useful to consider the intermediate points xj+1/2 = xj +Δx/2

discretisation of these nonlocal terms in Sect. 7.2, in the context of the discretisation
of the collision operator for higher dimensional kinetic equations.

In the following, we start the discussion of numerical finite-difference schemes
used to discretise hyperbolic models, by focusing on single advection equations,
i.e., u = u, with no source terms, S(u) = 0. (Note that systems of equations can be
approached in a similar manner.) In Sect. 7.1.1 we discuss the 1D case, in Sect. 7.1.2
we focus on higher resolution numerical schemes, while in Sect. 7.1.3 we discuss the
multi-dimensional (e.g., 2D) case (where we return briefly to the discussion about
splitting/unsplit methods).

7.1.1 1D Finite Difference and Finite Volume Methods

Finite Difference Schemes To start our discussion on the numerical schemes
developed to approximate the solution of a hyperbolic equation, we assume that
variable u (which represents the density of particles/animals/cells/etc.) is a function
of a single space variable: u(x). The spatial domain of u can be discretised into
equal-size intervals using a finite number of points N : xj = jΔx, j = 1, . . . , N ,
with Δx = xj − xj−1 = xj+1 − xj (see Fig. 7.1). Similarly, one can discretise into
equal-size intervals the time domain on which u is defined: tn = nΔt , n ≥ 0, with
Δt = tn − tn−1 = tn+1 − tn. The value of u at these grid points is u(xj , t

n) = un
j .

In the following, we discuss briefly some of the most common finite difference
schemes developed for 1D hyperbolic equations with no reaction/source terms (i.e.,
S(u) = 0):

∂u

∂t
+ ∂F (u)

∂x
= 0. (7.4)

If F(u) is differentiable, then one can replace this nonlinear equation with its quasi-
linear form

∂u

∂t
+ F ′(u)

∂u

∂x
= 0. (7.5)
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If F ′(u) = a =constant, we obtain the linear advection equation

∂u

∂t
+ a

∂u

∂x
= 0. (7.6)

Next, we summarise some numerical schemes can be used to discretise the linear
equation (7.6), as well as Eqs. (7.5) and (7.4). For a detailed review of a wider range
of schemes see [3]. Moreover, we focus only on explicit schemes (i.e., schemes
where calculating un+1 depends on calculating un), since implicit numerical
schemes are not commonly used for time-dependent hyperbolic problems [3].

• Upwind scheme. This first-order scheme depends on the sign of the derivative of
F . For the linear advection (7.6) this numerical scheme reads:

a > 0 : un+1
j = un

j − α(un
j − un

j−1), (7.7)

a < 0 : un+1
j = un

j − α(un
j+1 − un

j ), (7.8)

where α = a(Δt)/(Δx). The numerical scheme is stable only if 0 ≤ α ≤ 1 for
a > 0, and only if −1 ≤ α ≤ 0 for a < 0. There is also an implicit version of
this upwind scheme, obtained when we discretise the time derivative using the
time steps n and n− 1. For example, when a > 0, this implicit scheme reads

un
j + α(un

j − un
j−1) = un−1

j . (7.9)

For the quasi-linear conservation law (7.5), the upwind numerical scheme
reads:

aj > 0 : un+1
j = un

j − (Δt/Δx)(Fn
j − Fn

j−1), (7.10)

aj < 0 : un+1
j = un

j − (Δt/Δx)(Fn
j+1 − Fn

j ), (7.11)

with the local Courant number for the conservation law, aj , being given by

aj =
Fn

j+1 − Fn
j

un
j+1 − un

j

, if un
j+1 �= un

j , and aj = F ′(un
j ) otherwise. (7.12)

It is well known that the upwind scheme induced diffusive (or dissipation)
errors [12], where the discontinuous profile of a solution is being damped
numerically; see also Fig. 7.2a.

• Leapfrog scheme: For the linear advection equation (7.6), this second-order
scheme reads:

un+1
j = un−1

j − α(un
j+1 − un

j−1). (7.13)
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approximation

Exact solution

Numerical 

t=0 t>0

(a) Numerical dissipation (b) Numerical dispersion

timet=0 0>temit

Fig. 7.2 Caricature description of the effect (a) dissipation errors, and (b) dispersion errors, which
could appear following the numerical discretisation of equations. Dissipative errors dampen high
wave number components of the solution. Dispersion errors occur when waves associated with
different wave numbers travel at different speed. The numerical dissipation is often used to avoid
unwanted oscillations in the approximated solution (see our discussion about artificial viscosity in
Chap. 2)

This numerical scheme is stable provided that |aΔt/Δx| ≤ 1. The nonlinear
equation (7.4) has a similar discretisation:

un+1
j = un−1

j − α(Fn
j+1 − Fn

j−1). (7.14)

We note that this numerical scheme induces numerical dispersion errors [12],
where the discontinuous profile of a solution develops small oscillations; see also
Fig. 7.2b. This aspect is particularly problematic for biological problems, where
population densities must be non-negative to ensure biological realism.

• Lax-Friedrichs scheme. For the linear advection equation (7.6), the first-order
scheme reads:

un+1
j = 1

2
(un

j+1 + un
j−1)−

α

2
(un

j+1 − un
j−1). (7.15)

This scheme is stable if |aΔt/Δx| ≤ 1. For the nonlinear equation (7.4) we have

un+1
j = 1

2
(un

j+1 + un
j−1)−

α

2
(F n

j+1 − Fn
j−1). (7.16)

This scheme induces numerical dissipative errors, as well as dispersion
errors [13].

• Lax-Wendroff scheme. For the linear advection equation (7.6) we have

un+1
j = un

j −
α

2
(un

j+1 − un
j−1)−

α2

2
(un

j+1 − 2un
j + un

j−1). (7.17)

This numerical scheme is stable if |aΔt/Δx| ≤ 1. We note that also this scheme
induces dissipation errors in the solution.
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For nonlinear hyperbolic equations (7.4), the Lax-Wendroff method is not
unique, a few other methods being developed to generalise this scheme. One
such method (a direct generalisation of (7.17)) is:

un+1
j = un

j −
α

2
(F n

j+1 − Fn
j−1)+

α2

2
(un

j+1 − 2un
j + un

j−1). (7.18)

Another method that generalises the classical Lax-Wendroff scheme to non-
linear equations is the MacCormack method, discussed next.

• MacCormack scheme. For linear advection equations, this scheme takes the form

u∗j = un
j − α(un

j+1 − un
j ), (7.19)

un+1
j = 1

2
(un

j + u∗j )− α(u∗j − u∗j−1), (7.20)

which is the equivalent to the Lax-Wendroff scheme (for the linear case). The
corresponding scheme for the nonlinear equation takes the form

u∗j = un
j − (Δt/Δx)

(
F(un

j )− F(un
j−1)

)
, (7.21)

un+1
j = 1

2

(
un

j + u∗j
)
+ (Δt/Δx)

(
F(u∗j+1)− F(u∗j )

)
, (7.22)

This predictor-corrector scheme is well suited for discretising nonlinear equa-
tions (e.g., Euler equations, Navier-Stokes equations [14]). Unfortunately, it can
induce dispersive errors near sharp transitions, leading to oscillatory solutions.

These methods for the discretisation of the advection equation can be easily
extended to systems of equations of the form Ut + AUx = 0, with U =
(u1, . . . , um) : R × R → R

m and A ∈ R
m×m a constant matrix [3]. The stability

conditions for the numerical schemes applied to systems of hyperbolic equations are
defined in terms of the eigenvalues of matrix A. For example, the upwind method

Un+1
j = Un

j − A(Δt/Δx)(Un
j − Un

j−1), (7.23)

is stable only if 0 ≤ λl(Δt/Δx) ≤ 1 for all l = 1, . . . ,m (with λl the eigenvalues
of matrix A).

Finally, we acknowledge that all these schemes need to be accompanied by an
appropriate discretisation of the boundary conditions discussed in Chap. 4. We will
return to this aspect in Sect. 7.3.

Finite Volume Schemes The solutions of the hyperbolic systems may contain
discontinuities, which leads to difficulties in applying the classical finite difference
methods discussed above (since the differential equations are not valid at these
discontinuity points). This problem can be overcome by considering finite volume
methods based on the integral forms of the conservation laws. Instead of focusing on
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Fig. 7.3 Examples of simple discretisation grids for 1D and 2D domains, for the finite volume
methods. The cells can be chosen either vertex-centred (at the mesh points xi , i = 1, . . . , N for the
1D domain, or xi,j , i, j = 1, . . . , N for the 2D domain), or cell-centred (at the half mesh points
xi±1/2, i = 1, . . . , N for the 1D domain, or xi±1/2,j±1/2, i, j = 1, . . . , N for the 2D domain).
Other types of grids (non-orthogonal and even unstructured) could be also chosen to discretise
more complex domains [15]

the values u calculated at the grid points j (i.e., un
j = u(xj , t

n)), one could focus on
the average values of u over each grid interval (or cell) [xj , xj+1] centred at xj+1/2,
or over the translated interval [xj−1/2, xj+1/2] centred at xj (see also Fig. 7.3). For
example, one can consider the average value of u at the mid-point of the interval:

Un
j+1/2 =

1

xj+1 − xj

∫ xj+1

xj

u(x, tn)dx, (7.24)

with xj+1 − xj = Δx. For the initial conditions (u(x, 0) = u0), one could choose
the pointwise values of u0

j , or the average value U0
j = 1

xj+1−xj

∫ xj+1
xj

u(x, t0)dx.
The interpretation of u as an averaged value over the interval is consistent with the
integral formulation of the conservation law [3].

This integral approach can be used to develop finite-volume versions of the
previous numerical schemes (or other discrete schemes). To this end, the original
hyperbolic equation is integrated on each cell of the domain. For example, a finite-
volume version of the upwind scheme (7.7) is described by:

un+1
i+1/2 = un

i+1/2 − α(ui+1/2 − ui−1/2), (7.25)

with α = aΔt/Δx.
For a non-linear hyperbolic equation, one has

un+1
i+1/2 = un

i+1/2 − α
(
F̄ n

i+1/2 − F̄ n
i−1/2

)
, (7.26)



202 7 Numerical Approaches for Kinetic and Hyperbolic Models

with the numerical flux F̃ n
i+1/2 approximating the physical flux F(u(xi+1/2)) over

each cell

F̄ n
i+1/2 =

1

Δt

∫ tn+1

tn
F (u(xi+1/2, t))dt.

Godunov [16] observed that this numerical flux can be given in terms of the
Riemann solution at each cell interface xi+1/2, and can be computed explicitly as
follows

F̄ n
i+1/2 =

{
minun

i ≤u≤un
i+1

F(u), if un
i ≤ un

i+1,

maxun
i+1≤u≤un

i
F (u), if un

i+1 ≤ un
i .

This discretisation is referred to as the Godunov method. We note that this formula
is similar to the formula for the finite difference upwind scheme (shifted half a
cell—to calculate the centre of the cells). This holds true for lower order schemes,
but not for higher order schemes that require the reconstruction of polynomials of
certain degrees from the cells averages. Moreover, since the higher order schemes
usually involve oscillations around the discontinuities, specific numerical methods
have been developed over the last four decades. In the next section, we will discuss
in more detail some of these methods.

7.1.2 Higher Resolution Schemes for Nonlinear Equations

To capture the sharp solution profiles exhibited by nonlinear hyperbolic equations,
without having any misleading oscillations, Harten [17] introduced total variation
diminishing (TVD) schemes.

Definition 7.1 A numerical scheme is called a TVD scheme (or as Harten [17]
called it, total variation nonincreasing scheme (TVNI)) if T V (un+1) ≤ T V (un),
where the total variation for the discrete case is T V (un) =∑

j |un
j+1 − un

j |.
Harten [17] showed that a monotone numerical scheme is TVD, and a TVD scheme
is preserving the monotonicity. However, Godunov’s theorem [16] proves that linear
schemes that preserve the monotonicity can be at most first order accurate. To
overcome this problem Harten [17] introduced a new class of high resolution second
order accurate TVD schemes which use flux/slope limiters. There are currently
three types of techniques that can be used to develop numerical schemes which
are accurate in the presence of shocks or discontinuities: ENO (Essentially Non-
Oscillatory) techniques [4, 18, 19], WENO (Weighted Essentially Non-Oscillatory)
techniques [4, 19, 20], and MUSCL (Monotone Upstream-Centred Schemes for
Conservation Laws) techniques [21]. For a comparison of the ENO and WENO
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methods see [4, 19]. In the following we will discuss briefly a ENO scheme
introduced in [18] and a MUSCL-based scheme introduced in [22].

Harten et al. [18] proposed the following essentially non-oscillatory scheme
based on cell averaging to approximate a hyperbolic system of the form (7.1):

un+1
i = un

i − α(F̄i+1/2 − F̄i−1/2), with (7.27)

F̄i+1/2 =
m∑

k=0

λkF
R(ūi(xi+1/2, βkΔt), ūi+1(xi+1/2, βkΔt)), (7.28)

where α = (Δt)/(Δx),

FR(u1, u2) =
{

minu1≤u≤u2 F(u), if u1 ≤ u2,

maxu1≥u≥u2 F(u), if u1 > u2.
(7.29)

In the equations above, the numerical flux F̄i+1/2 = (1/Δt)
∫ Δt

0 F(u(xi+1/2, t))dt

is being discretised at each interface xi+1/2 using a numerical quadrature

F̄i+1/2 ≈
m∑

k=0

λkF (u(xi+1/2, βkΔt)). (7.30)

Finally, ūi is the lth-order Taylor approximation of ui :

ūi(x, t) =
Δt−l∑
l=0

l∑
k=0

∂lu(xi, 0)

∂xk∂tl−k

(x − xi)
k

k!
t l−k

(l − k)! , 0 ≤ k ≤ l. (7.31)

The high resolution schemes derived in [17, 18] are based on the finite volume
Godunov’s method. However, this method has some drawbacks as it relies on the
explicit formula for the solution of the Riemann problem. While this formula can be
obtained for scalar conservation laws, it might not be possible to obtain it for more
complicated conservation laws (e.g., the MHD equations in physics, or nonlocal
and nonlinear transport models in biology). Moreover, for Godunov’s scheme one
requires only the value of the flux at the interface (xi+1/2), and solving the whole
Riemann problem to obtain this value is time consuming.

One way of addressing these drawbacks is by approximating the exact solutions
of the Riemann problem, and using these approximations to define the numerical
flux F̄i+1/2. These numerical schemes are called approximate Riemann solvers. An
example of such a scheme is the Roe scheme [23], where the nonlinear flux F(u)x
is replaced by a linearised version: F(u)x = F ′(u)ux ≈ Ai+1/2ux . The coefficient
Ai+1/2 is given by the following Roe average:

Ai+1/2 =
{

F(un
i+1)−F(un

i )

un
i+1−un

i
, if un

i+1 �= un
i ,

F ′(un
i ), if un

i+1 = un
i .
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Solving the linearised Riemann problem

ut + Ai+1/2ux = 0, with u(x, tn) =
{

un
i , if x < xi+1/2,

un
i+1, if x > xi+1/2,

leads to the following flux

Fn
i+1/2 = FRoe(un

i , u
n
i+1) =

{
F(un

i ), if Ai+1/2 ≥ 0,

F (un
i+1), if Ai+1/2 < 0.

For a more detailed discussion of approximate Riemann solvers we refer the reader
to [21].

Another approach to address the drawbacks of using an upwind Godunov solver
for a high resolution numerical scheme is to use a central difference solver, such as
the Lax-Friedrichs solver. Nessyahu and Tadmor [22] introduced a family of second-
order central difference high resolution schemes based on the Lax-Friedrichs solver
combined with a slope limiter approach. The schemes have the following predictor-
corrector form:

u
n+1/2
i = un

i −
1

2
αF ′i , (7.32)

un+1
i+1/2 =

1

2

(
un

i + un
i+1

)+ 1

8

(
u′i − u′i+1

)− α
(
F(u

n+1/2
i+1 )− F(u

n+1/2
i )

)
,

(7.33)

with u′i an approximate slope at the grid point xi and F ′i the numerical derivative of
the function Fi . To ensure that this scheme is non-oscillatory and TDV, the following
condition for derivatives w′i = (u′i , F ′i ) needs to be satisfied:

0 ≤ w′i · sgn(Δui±1/2) ≤ Cw|MinMod{Δwi+1/2,Δwi−1/2}|, (7.34)

where the MinMod limiter is given by

MinMod{a, b} = 1

2

(
sgn(a)+ sgn(b)

) ·Min(|a|, |b|).

In the above inequality, we defined Δwi+1/2 = wi+1 − wi . To satisfy these
conditions, the numerical derivatives can be chosen for example to be

u′i = MinMod{Δui+1/2,Δui−1/2}, (7.35)

F ′i = MinMod{ΔFi+1/2,ΔFi−1/2}. (7.36)

Note that in addition to this MinMod limiter, there are many other possible choices
for the slope/flux limiters; e.g., monotonized central [24], superbee [25], Sweby
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[26], or van Leer [27] limiters. For a more in-depth discussion of these types of
non-oscillatory central differencing schemes we refer the reader to [22, 28].

7.1.3 Multi-Dimensional Finite Difference and Finite Volume
Schemes

The 2D version of a system of conservation laws is described by

∂u

∂t
+ ∂f (u)

∂x
+ ∂g(u)

∂y
= 0, (7.37)

where u = u(x, y, t) ∈ R
n. The methods used to discretise this multi-dimensional

(in space) equation range from simple generalisations of previous 1D numerical
(finite difference and finite volume) methods to 2D equations, to splitting methods
[3].

• Generalisation of 1D finite difference methods. Some of the previously discussed
1D methods can be easily generalised in 2D. For example, the 1D finite difference
Lax-Friedrichs scheme (7.15) can take the following form in 2D:

un+1
i,j = 1

4

(
un

i+1,j + un
i−1,j + un

i,j+1 + un
i,j−1

)

−Δt

2

(f n
i+1,j − f n

i−1,j

Δx
+ gn

i,j+1 − gn
i,j−1

Δy

)
, (7.38)

where f n
i,j = f (un

i,j ) and gn
i,j = g(un

i,j ).
• Generalisation of 1D high-resolution finite volume methods. Jiang and Tadmor

[28] generalised the 1D high-resolution scheme introduced in [22] to a 2D
domain by considering cells Ci+1/2,k+1/2 centred around the generic point
(xi+1/2, yk+1/2). Defining a normalised cell average as

ūn
i+1/2,k+1/2 =

1

|Ci+1/2,k+1/2|
∫

Ci+1/2,k+1/2

u(x, y, t)dxdy, (7.39)

and the space steps in the x and y directions as αx = Δt/Δx and αy = Δt/Δy,
one can write the predictor-corrector steps for the 2D scheme as follows:

u
n+1/2
ik = ūn

ik −
αx

2
f (u)′ik −

αy

2
g(u)′ik, (7.40a)

ūn+1
i+1/2,k+1/2 =

1

4

(
ūn

ik + ūn
i+1,k + ūn

i,k+1 + ūn
i+1,k+1

)
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+ 1

16

(
u′ik − u′i+1,k

)− αx

2

(
f (u

n+1/2
i+1,k )− f (u

n+1/2
i,k )

)

+ 1

16
(u′i,k+1 − u′i+1,k+1)−

αx

2

(
f (u

n+1/2
i+1,k+1)− f (u

n+1/2
i,k+1 )

)

+ 1

16
(u‘i,k − u‘i,k+1)− αy

2

(
g(u

n+1/2
i,k+1 )− g(ui,k)

)

+ 1

16
(u‘i+1,k − u‘i+1,k+1)− αy

2

(
g(u

n+1/2
i+1,k+1)− g(u

n+1/2
i+1,k )

)
.

(7.40b)

In the equations above, f (u)′ik and g(u)′ik are the 1D discrete slopes in the x and
y directions, respectively. Hence, starting with a cell average ūn

ik , the predictor

step computes the midpoint values u
n+1/2
ik while the corrector step computes the

new cell averages ūn+1
ik .

• Splitting methods. Equation (7.37) can be solved by splitting it into two 1D
problems along each spatial dimension: the first 1D problem can be written as

∂u∗

∂t
+ ∂f (u∗)

∂x
= 0, with u∗(x, y, 0) = u0(x, y), (7.41)

which has the solution u∗(x, y, t), and the second 1D problem

∂u∗∗

∂t
+ ∂g(u∗∗)

∂y
= 0, with u∗∗(x, y, 0) = u∗(x, y, t), (7.42)

which has the solution u∗∗(x, y, t). Each of these 1D problems can be solved
using previously-discussed numerical schemes. For a more detailed discussion
of these splitting methods, see [3].

We note here that even the 1D TVD schemes discussed above can be
generalised to 2D,

∂ui,j

∂t
+ 1

Δx

(
F̄i+1/2,j − F̄i−1/2,j

)
+ 1

Δy

(
F̄i,j+1/2 − F̄i,j−1/2

)
= 0, (7.43)

but the TVD is not in more than one dimension.
While the methods used to reduce the 2D equations (and even the 3D

equations) to 1D equations are easy to implement numerically, they have some
disadvantages as the 2D (or 3D) effects could impact the behaviour of the
solution locally by introducing a directional bias in the coordinate directions [3].
A relevant example is given by the possibility of having shock waves at angles
that are between the coordinate directions [3]. Therefore, current approaches
in the development of multi-dimensional numerical methods focus on schemes
that incorporate more information about the multidimensional behaviour of the
physical/biological problem (such as the direction of wave propagation) [3, 29].
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Remark 7.1 An important aspect in the numerical discretisation of hyperbolic
models for collective movement is the implementation of boundary conditions. On
one hand such boundary conditions (BCs) need to describe the biological realism
of the problem (e.g., movement inside a box-like domain as described by Neumann
BCs, or movement on a ring-like domain as described by periodic BCs), while on
the other hand they need to preserve the conservative character of the equations
(where is the case). For example, the upwind/downwind method (7.7) combined
with Neumann boundary conditions does not preserve the conservation of total
density for the hyperbolic system. We will return to the discussion of the boundary
conditions in Sect. 7.3.

Remark 7.2 Hyperbolic equations can be easily discretised using the method of
lines, which consists in first applying a discretisation scheme (e.g., a finite difference
scheme) in space only. This approach transforms the initial equation into a system
of ODEs of the form:

∂U

∂t
= LU, (7.44)

where U(t) = (. . . , ui(t), . . .) are the values of the variable u at the grid points
i and time t , and the operator L contains the discretisation of the transport term
(e.g., ∇ · F(U) in Eq. (7.1)) at the grid points i, as well as the discretisation of
any nonlinear reaction term that can appear in the right-hand-side of the hyperbolic
equations (e.g., S(U) in Eq. (7.1)). The solution of this system can be propagated
in time with the help of any numerical method for ODEs. For example, if one uses
an explicit Euler method [11] for the time-propagation, and an upwind method for
the space discretisation, it leads to an explicit upwind scheme of the form (7.7). On
the other hand, if one uses an implicit Euler method [11] for the time propagation,
and an upwind method for the space discretisation, it leads to an implicit upwind
scheme of the form (7.9).

7.2 Numerical Schemes for Higher Dimension Kinetic
Models

The literature on numerical methods for kinetic equations (and in particular the
kinetic Boltzmann equations) is vast and diverse, with numerical schemes being
developed since 1960s. Due to the intense activity in this research field, it is
impossible to do a comprehensive review of these methods. Therefore, in the
following we discuss briefly a few the approaches used to approximate the solutions
of kinetic equations.

The numerical approaches for kinetic equations can be classified as: probabilistic
Monte Carlo methods, deterministic finite difference methods, semi-Lagrangian
methods, discrete velocity methods, and spectral methods [30–39]. While the
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deterministic methods are more accurate, they are also computationally expensive
(due to the choice of integration points that preserve the conservation properties
of the collision operator; see Eqs. (6.14)–(6.17) and the discussion therein). In
contrast, the probabilistic methods have lower computational requirements. In fact,
throughout this section we aim to emphasise the difficulties of solving numerically
kinetic equations: from the high dimensionality of the equations (depending on
variables (x, t, v) ∈ R

d×R+×Rd , for some d ≥ 1), to maintaining the conservation
properties of the equations, the increased computational cost when discretising the
reaction operator, or even the presence of multiple scales [1].

As mentioned before, one of the most common approaches to solving (hyperbolic
and) kinetic equations is based on operator splitting, which solves separately the col-
lision/interaction step and the transport step (see the discussion in Sect. 7.1.3). While
the transport operator can be approximated with the help of finite difference or
finite volume schemes [40], the collision operator can be approximated using finite
difference schemes, spectral methods involving Fourier transforms [5], or Monte
Carlo methods [1]. In the following we review briefly the last two approaches.

7.2.1 Spectral Methods

To exemplify this class of numerical methods, we focus on the approach in Filbet
and Russo [5], who used the following operator splitting to approximate the solution
of the Boltzmann equation (6.14):

• a finite volume approach to solve the transport step (over the small time interval
Δt = [tn, tn+1]):

∂u∗

∂t
+ v · ∇xu∗ = 0, (7.45a)

u∗(x, 0, v) = un(x, v), with v ∈ [−π, π]2, x ∈ R
2, t ∈ R

+,

(7.45b)

where un(x, v) describes the solution of Boltzmann equation at the previous time
step tn, while u∗(x, t, v) describes the solution of the transport equation alone
(which uses un as initial condition). In 1D, denoting by un

i the density average
over the interval [xi−1/2, xi+1/2] (where xi+1/2, i ∈ I are a finite set of mesh
points over the computational domain),

f n
i =

1

Δx

∫ xi+1/2

xi−1/2

u(x, tn)dx, with Δx = xi+1/2 − xi−1/2,
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leads to the following approximation of the distribution function (with slope
correctors to avoid spurious oscillations):

uh(x, tn) = un
i

+ ε+i
6Δx2

[
2(x − xi)(x − xi−3/2)+ (x − xi−1/2)(x − xi+1/2)

]
×(un

i+1 − un
i )

− ε−i
6Δx2

[
2(x − xi)(x − xi+3/2)+ (x − xi−1/2)(x − xi+1/2)

]
×(un

i − un
i−1),

with

ε±i =
⎧⎨
⎩

min(1; 2un
i

un
i±1−un

i
), if un

i±1 − un
i > 0,

min(1; − 2(u∞−un
i

un
i±1−un

i
), if un

i±1 − un
i < 0,

and u∞ = maxj∈I {un
j } a local maximum.

• a Fourier spectral approach to evolve the collision operator:

∂u∗∗

∂t
= Q(u∗∗, u∗∗), (7.46a)

u∗∗(x, 0, v) = u∗(x,Δt, v), (7.46b)

where u∗∗(x, t, v) denotes the solution of the above ODE, which has as initial
condition the previous solution u∗(x, t, v) of the transport equation. Re-write the
collision operator Q as a difference between two operators describing the gain
(Q+) and loss (L) of particles/individuals/cells with velocity v:

Q(u, u)(v) = Q+(u, u)− L[u]u, (7.47)

with

Q+(u, u) =
∫
R2

∫
S1

B(|v − v∗|, θ)u(v′)u(v′∗)dωdv∗, (7.48)

L[u] =
∫
R2

∫
S1

B(|v − v∗|, θ)u(v∗)dωdv∗, (7.49)

where v and v∗ are the post-collision velocities of two particles that have pre-
collision velocities v′ and v′∗. Moreover, θ is the angle between v − v∗ and
v′ − v′∗ (i.e., the deflection angle). Finally, the collision kernel B describes the
details of the particle-particle interactions (see also Chap. 6).
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The distribution function u restricted to the velocity space [−π, π] is approx-
imated by the truncated Fourier series

uN(v) =
N∑

k=−N

ûke
ikv, with ûk = 1

(2π)2

∫
[−π,π]2

u(v)e−ikvdv. (7.50)

The coefficients ûk can be calculated by requiring that the uN functions satisfy

∫
[−π,π]2

(∂uN

∂t
+ uNL(uN)−Q+(uN , uN)

)
e−ikvdv = 0. (7.51)

Substituting (7.50) into (7.48) and (7.49) leads to the following approximations
for the collision operators (7.48)–(7.49):

Q+(uN, uN) =
N∑

l=−N

N∑
m=−N

ûl ûmB̂(l,m)ei(l+m)v, (7.52)

uNL(uN) =
N∑

l=−N

N∑
m=−N

ûl ûmB̂(m,m)ei(l+m)v, (7.53)

where the kernel modes B̂(l,m) are described by

B̂(l,m) =
∫
R2

∫
S1

B(|v − v∗|, θ)e−i(v−v∗) l+m
2 −i|v−v∗|ω m−l

2 dωdg.

Further, using (7.51), it leads to the following differential equations for the
Fourier coefficients ûk:

∂ûk

∂t
=

N∑
m=k−N

ûk−mûm

(
B̂(k −m,m)− B̂(m,m)

)
, (7.54)

with the initial condition

ûk(0) = 1

(2π)2

∫
[−π,π]2

u0(v)e−ikvdv. (7.55)

Calculating the solution for these differential equations (7.54) is computation-
ally much faster than calculating the solution of (7.46), which usually contains
a high-dimensional integral in the velocity/orientation space that needs to be
computed at every point in the physical space [1].

Following the computation of the transport and collision steps, the solution of the
Boltzmann equation at time tn+1 is approximated by un+1(x, v) = u∗∗(Δt, x, v).
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We conclude this discussion by noting that in the context of collective movement
in biology, a spectral method was recently used in [38] to approximate the solution
of a kinetic Vicsek model for swarming, with nonlocal interactions describing
particle alignment. The model was shown to exhibit features such as vortex
formation and travelling waves.

7.2.2 Monte Carlo Methods

When collisions between particles occur at a very fast rate, there is a large ratio of
time scales between the macroscopic and microscopic dynamics. This renders the
numerical investigation of the kinetic model—with the help of explicit numerical
schemes—computationally very expensive (since the model becomes numerically
“stiff”) [30]. In this case, a more efficient approach is offered by the use of
Monte Carlo algorithms, which are a class of algorithms that use random sampling
to approximate numerically the solutions. These algorithms have started to be
developed in the 1960s by Bird [41, 42], and have been used to approximate the
solution of the following Boltzmann equation:

∂u

∂t
+ v · ∇xu = 1

ε
Q(u, u), u(x, 0, v) = u0(x, v), (7.56)

where the collision operator is Q(u, u)(v) = Q+(u, u) − μu (i.e., the operator
for the probability of changing the velocity v is defined by a constant: L[u] =
μ). Parameter ε is called the Knudsen number, which is the ratio between the
collision mean free path of the particles and the characteristic length of variation
of macroscopic variables [43]. We assume here that ε � 1.

A classical probabilistic approach to approximate the solution of the Boltzmann
equation is described by the Direct Simulation Monte Carlo (DSMC) schemes [30,
41, 42, 44, 45]. For these schemes, the non-spatial Boltzmann equation (7.56) is
discretised with respect to time using, for example, a forward Euler scheme [30]:

un+1 =
(

1− μΔt

ε

)
un + μΔt

ε

Q+(u, u)

μ
. (7.57)

This equation can be given a probabilistic interpretation: a particle with velocity v

avoids collision with other particles at a probability (1−μΔt/ε), and collides with
other particles at a probability μΔt/ε and according to the rule offered by Q+(u, u)

[30].
The following DSMC conservative algorithm was introduced by Babovsky [45]

to describe the selection of independent pairs of particles with specific velocities. To
start, consider N particles. Then, the expected number of particles that collide in a
time step Δt is NμΔt/ε, and the expected number of collision pairs is NμΔt/(2ε)

[43].
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• Step 1. The initial velocity of particles v0
i (with i = 1, . . . , N) is computed by

sampling them from the initial density u0(v).
• Step 2. Given particles’ velocities vn

i (with i = 1, . . . , N), the velocities at the
next time step, vn+1

i , are computed as follows:

– define Nc = Iround(μNΔt/2ε), where Iround(z) gives the rounding of a
positive real number z:

Iround(z) =
{
[z], with probability [z] + 1− z,

[z] + 1 with probability z − [z],

with [z] denoting the integer part of z.
– select Nc pairs of (i, j) particles, uniformly among all possible pairs.
– for the selected pairs (i, j) perform the collision between the particles

(according the collision law Q(u(v), u(v))), and calculate the post-collisional
velocities v′i and v′j .

– define the velocities at the next time step: vn+1
i = v′i , vn+1

j = v′j .

– define vn+1
k = vn

k for all particles that have not been selected (i.e., N − 2Nc

particles velocities are not changed).

• This Step 2 is repeated up to a chosen total time t = T .

Note that the post-collisional velocities are calculated from the pre-collisional
velocities as follows:

v′i =
vi + vj

2
+ |vi − vj |

2
ω, v′j =

vi + vj

2
− |vi − vj |

2
ω,

with the 2D value of ω [30]

ω = (cos θ, sin θ), with θ = 2πψ2,

or the 3D value of ω [43]

ω = (cos φ sin θ, sin φ sin θ, cos θ), with θ = arccos(2ψ1 − 1), φ = 2πψ2.

and ψ1, ψ2 two uniformly distributed random variables in [0, 1]. As emphasised in
[43], this approach is equivalent to sampling the post collisional velocities based on
the rule Q(u, u)/μ.

In addition to this classical DSMC scheme introduced in [45], there are many
other schemes developed to improve the efficiency of calculating numerically the
solutions of nonlinear kinetic equations. For example, a similar DSMC scheme was
introduced in the 1960s by Bird [41, 42]. While in the Babovsky’s algorithm [45]
the particles collide only once per time step, in the Bird’s algorithm [42] multiple
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collisions are allowed per time step, and this difference impacts the time accuracy
of the methods (with the Bird’s scheme being considered of infinite order in time
[30]). More recently, modified DSMC methods have been developed to reduce the
statistical error through increasing the sample size [46–48]. These different Monte
Carlo methods could be adapted to be applied to the various kinetic models for cells
and animal behaviours discussed in Chap. 6, depending on the assumptions of the
models.

To conclude this discussion, we note that these Monte Carlo methods break
down for ε → 0 (i.e., in the hydrodynamic regime). To address this problem,
new numerical schemes have been developed: Time Relaxed Monte Carlo (TRMC)
methods [43], which are asymptotic preserving methods. In the following, we will
summarise briefly different asymptotic preserving numerical methods developed in
the context of both 1D and 2D/3D models.

7.2.3 Multi-Scale Stiff Kinetic Problems: Asymptotic
Preserving Methods and Domain Decomposition
Methods

Mathematical models described by hyperbolic and kinetic equations sometimes
include parameters that vary widely over the parameter space, and thus the standard
numerical solvers might not work well due to high computational costs. One could
think about using implicit schemes, which allow for larger time steps and faster
computation times, but since the collision operator is nonlinear and nonlocal, there
are problems with inverting this operator. To address this numerical problem, there
are different methods, such as domain decomposition methods and asymptotic
preserving methods [49–51]. The domain decomposition techniques are used to
solve the kinetic equations only on some small regions of the domain, where the
dynamics of the model departs from the thermodynamic equilibrium. For the rest of
the domain one uses classical numerical schemes to approximate the macroscopic
(hydrodynamic) equations. In contrast, the asymptotic preserving methods use the
same numerical scheme for both the perturbation problem and its limit problem.
These techniques have been used to explore the collective behaviour of particles
in the transition regime between mesoscopic and macroscopic dynamics. In the
following we briefly illustrate both approaches. For the asymptotic preserving
methods we first discuss a numerical scheme introduced in [52] in the context
of nonlocal 1D models for collective animal behaviours, and then discuss a time
relaxation scheme introduced in [53] in the context of general kinetic Boltzmann
equations. However, for a more detailed review of asymptotic preserving schemes
in the context of other types of hyperbolic and kinetic models with applications to
physics, we direct the reader to the study in [54]. For the domain decomposition
techniques we focus on a scheme proposed in [55].
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• Asymptotic preserving methods. Before we give examples of asymptotic
preserving numerical schemes, it is useful to first define the concept. To this end,
we adopt the same definition as in [1]:

Definition 7.2 Consider a kinetic equation given by (7.56). A consistent and
stable numerical discretisation method that uses a time step size Δt is called
asymptotic preserving if, for fixed Δt , in the limit ε → 0 it becomes a consistent
and stable numerical method for the limiting system.

We say that a numerical method is stable if the numerical errors grow slowly over
many time steps [8]. Moreover, a method is consistent if the numerical solution
is closer and closer to the exact solution as the time step becomes smaller [8].

As mentioned above, the basic framework for solving kinetic equations
employs a time-splitting approach. Therefore, in the following we briefly discuss
two such time-splitting schemes used for 1D and 2D/3D kinetic models.

– 1D model. A numerical asymptotic preserving method has been used in [52]
to investigate the preservation of numerical patterns exhibited by the following
nonlocal kinetic two-speed model (with v = ±γ ; see also Eq. (5.14))

∂u+

∂t
+ γ

∂u+

∂x
= −u+λ+[u+, u−] + u−λ−[u+, u−], (7.58a)

∂u−

∂t
− γ

∂u−

∂x
= u+λ+[u+, u−] − u−λ−[u+, u−], (7.58b)

following the parabolic scaling of space and time variables: x = x̃/ε and
t = t̃/ε2. For notational simplicity, in the following we ignore the “ ˜” from
these time and space variables. The limiting parabolic equation (obtained for
ε → 0) is

∂u

∂t
= D0

∂2u

∂x2 − B0
∂

∂x

(
u(f−[u] − f+[u])), (7.59)

where, u = u+ + u−, λ± = λ1 + λ2f (y±[u]) and f±[u] := f (y±[u]).
The stiff reaction part in (7.58), can be re-written in terms of the total

density (u) and the rescaled flux (J = (u+ − u−)/(ε)) [52],

∂u

∂t
= 0

∂J

∂t
= 1

ε2 uλ2(f [y−] − f [y+])+ (1− 1

ε2 )γ
∂u

∂x

− 1

ε2 J
(

2λ1 + ελ2(f [y+] + f [y−])
)
,

and then discretised using an implicit Euler scheme, where the total density is
evaluated at full grid points xi = iΔx, and the flux is evaluated at the half grid
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points xi+1/2 = (i + 1/2)Δx. The discrete time variable is defined as tn =
nΔt . This leads to an explicit expression for the flux J ∗ at the intermediate
time step:

J ∗i+1/2 =
ε2J n

i+1/2 + γ Δt
Δx

(ε2 − 1)(un
i+1 − un

i )

ε2 + 2λ1Δt + ελ2Δt(f+[un] + f−[un])i+1/2

+
λ2Δt

(
(f−[rn]−f+[un])+i+1/2u

n
i+(f−[un]−f+[un])−i+1/2u

n
i+1

)
ε2 + 2λ1Δt + ελ3Δt(f+[un] + f−[un])i+1/2

.

The transport part,

∂u

∂t
+ γ

∂J

∂x
= 0,

∂J

∂t
+ γ

∂u

∂x
= 0,

was discretised in [52] using a classical upwind scheme. Because of the
evaluation of the flux at the half-grid points, the discretisation of the transport
part was chosen independently of the sign of the drift:

1

Δt
(un+1

i − u∗i )+
1

Δx
(J ∗i+1/2 − J ∗i−1/2) = 0,

1

Δt

(
J n+1

i+1/2 − J ∗i+1/2

)+ 1

Δx
(u∗i+1 − u∗i ) = 0.

Finally, taking the limit ε → 0 in the formula for J ∗i+1/2, and substituting
the result in the discretised equation for the transport part, gives following
discretisation for the limiting parabolic equation (7.59):

un+1
i − un

i

Δt
= D0

(Δx)2 (∂c
xxu

n)i

− B0

Δx

(
un

i (f
−[un] − f+[un])+i+1/2

−un
i−1(f

−[un] − f+[un])+i−1/2

)

− B0

Δx

(
un

i+1(f
−[un] − f+[un])−i+1/2

−un
i (f

−[un] − f+[un])−i−1/2

)
.
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– 2D/3D models. As discussed before, the Boltzmann equations that include a
relaxation process (as a result of fast collision between particles) take the form

∂u

∂t
+ v · ∇xu = 1

ε
Q(u, u), u(x, t = 0, v) = u0(x, v). (7.60)

The limit ε → 0 corresponds to the hydrodynamic approximation of the
kinetic model, where the local mass density (ρ), momentum (ρw) and
temperature (T ) converge to the solution of compressible Euler equations
[53, 56]:

∂ρ

∂t
+∇ · (ρf ) = 0, (7.61a)

∂(ρw)

∂t
+∇ · (ρw ⊗ w)+∇(ρT ) = 0, (7.61b)

∂E

∂t
+∇ · (Ew + ρT w) = 0, with E = 3

2
ρT + 1

2
ρw2, (7.61c)

where “⊗” describes the tensor product between two vectors, i.e., for any two
vectors a = (a1, a2) and b = (b1, b2), their tensor product is

a ⊗ b =
(

a1b1 a1b2

a2b1 a2b2

)
. (7.62)

The macroscopic variables are described as follows (in terms of the kinetic
variables u and v):

ρ(x, t) =
∫
R3

u(x, t, v)dv, (7.63a)

ρw(x, t) =
∫
R3

vu(x, t, v)dv, (7.63b)

T (x, t) = 1

3ρ

∫
R3
[v − w(x, t)]2u(x, t, v)dv. (7.63c)

In this hydrodynamic case, the probabilistic numerical methods that use
random particles need to consider a very large number of particles, which
slows down the computation of the solution.

From a physical point of view, the collisions cause the velocity distribution
to approach the local Maxwellian faster before the transport part has any effect
[53]. Therefore, a numerical approximation of the solution should bring the
density near the local Maxwellian. Gabetta et al. [53] considered this aspect
and proposed a class of numerical scheme for the relaxation process: the so-
called Time Relaxed (TR) methods. These schemes start by representing the
solution in a power series for the mean values of successive iterations of the



7.2 Numerical Schemes for Higher Dimension Kinetic Models 217

bilinear operator Q(u, u). To this end, the solution of the discretised collision
problem (on the time interval [tn, tn+1])

∂un+1

∂t
= 1

ε
Q(un+1, un+1), (7.64)

with un+1(x, tn, v) = u∗(x, tn, v) and u∗ the solution of the transport
problem ∂u

∂t
+ v · ∇xu = 0 (calculated during the first step of the time-

splitting approach), can be written in the form of a power series. To obtain
a approximation that is valid in the ε � 1 regime, Gabetta et al. [53] rescaled
the time variable t ′ = (1−e−μt/ε), and U(t ′, v) = u(t, v)eμt/ε, which lead
to the following formal expansion for the density of particles:

u(t) = e−μt/ε

∞∑
k=0

(1− e−μt/ε)kuk, (7.65)

with functions uk given by the following recurrent formula:

uk+1(v) = 1

k + 1

k∑
h=0

1

μ
Q(uh, uk−h), k = 0, 1, . . . (7.66)

Using this representation, Gabetta et al. [53] constructed the following class
of numerical schemes:

un+1(v) = e−μΔt/ε
m∑

k=0

(1− e−μΔt/ε)kun
k(v) + (1− e−μΔt/ε)m+1M(v),

(7.67)

where M is the asymptotic stationary solution of the kinetic equation (i.e.,
the local Maxwellian associated with u; see also Chap. 6). It has been shown
that these schemes are of order m in time, and ensure the conservation of
mass, momentum and energy for the Boltzmann equation [53]. Moreover,
the schemes guarantee the correct hydrodynamic limit. Finally, these schemes
could be written using the following general formula [50]:

un+1 =
m∑

k=0

Akuk + Am+1M, (7.68)

where coefficients uk are given by (7.66), and the weights Ak = Ak(t
′) are

non-negative functions that satisfy the following three properties:
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consistency:

lim
t ′→0

A1(t
′)/t ′ = 1, lim

t ′→0
Ak(t

′)/t ′ = 0, k = 2, . . . ,m+ 1;

conservation:

m+1∑
k=0

Ak = 1, t ′ ∈ [0, 1];

asymptotic preserving:

lim
t ′→1

Ak(t
′) = 0, k = 0, . . .m.

An example of such weight functions is given in [50]:

Ak = (1− t ′)(t ′)k, k = 0, . . . ,m, Ak+1 = (t ′)m+1.

• Domain decomposition methods. A natural approach of approximating the
solutions of multi-scale kinetic equations is to sub-divide the domain into regions
corresponding to the hydrodynamic and kinetic descriptions of the models, and
solve the corresponding models on each sub-domain using appropriate solvers.
However, since in general the two regions are not known, the boundary between
them might have to be computed at every time step as part of the solution [1].

There are many numerical methods derived to solve efficiently the solution of
kinetic equations on different subdomains: from moving interface methods [55],
to moment guided Monte Carlo methods [57], low-variance deviational Monte
Carlo methods [58] or hybrid multiscale methods [59, 60]. In the following we
discuss briefly the moving interface method proposed in [55, 61], and refer the
reader to [1] for a review of other methods.

Consider the following 1D kinetic model (where the collision term is given by
the simplified Bhatnagar-Gross-Krook (BKG) operator) [55],

∂u

∂t
+ v

∂u

∂x
= 1

ε

(
M(u)− u), with u(x, v, 0) = u0(x, v), (7.69)

where x, v ∈ R, t ∈ R
+, ε is a relaxation time, and M(u) describes the local

Maxwellian distribution (6.17) (i.e., the collisions are modelled by a relaxation
towards the equilibrium M(u)). In the limit ε → 0 the density u converges to the
Maxwellian distribution, and one can obtain the (macroscopic) Euler equations
(see Eq. (7.61)).

To couple the macroscopic Euler equations with the mesoscopic equa-
tion (7.69), Degond et al. [55] assumed that the domain (i.e., the real line) can
be written as R

1 = Ω1 ∪ Ω2 ∪ Ω3, where the three disjoint subdomains were
chosen as follows: on Ω1 the model behaves kinetically, on Ω2 the model behaves
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macroscopically (i.e., the flow is close to the Maxwellian equilibrium), and Ω3
is chosen as the buffer zone between Ω1 and Ω2. Degond et al. [55] defined a
time-dependent function h(x, t) which encoded the topology and geometry of
the three subdomains:

h(x, t) =
⎧⎨
⎩

1, x ∈ Ω1,

0, x ∈ Ω2,

0 ≤ h(x, t) ≤ 1, x ∈ Ω3,

with h(x, 0) = h0(x). (7.70)

For example, if Ω1 = (−∞, a), Ω2 = (b,∞) and Ω3 = [a, b], the function
h(x, t) can be chosen piecewise linear: h(x, t) = (x−b)/(a−b), for x ∈ [a, b].
With the help of this function h(x, t), Degond et al. [55] defined two distribution
functions,

uR = hu, uL = (1− h)u,

whose evolution is given by

∂uR

∂t
= ∂(hu)

∂t
= u

∂h

∂t
+ h

∂u

∂t
,

∂uL

∂t
= ∂(1− h)u

∂t
= −u

∂h

∂t
+ (1− h)

∂u

∂t
.

Substituting ∂u/∂t from Eq. (7.69) into the above equations leads to the follow-
ing coupled equations for uR and uL (where u = uL + uR):

∂uR

∂t
+ hv

(∂uR

∂x
+ ∂uL

∂x

)
= h

ε
(M(u)− u)+ u

∂h

∂t
, (7.71a)

∂uL

∂t
+ (1− h)v

(∂uL

∂x
+ ∂uR

∂x

)
= (1− h)

ε
(M(u)− u)− u

∂h

∂t
, (7.71b)

with initial conditions

uR(x, v, 0) = h0(x)u0(x, v), uL(x, v, 0) = (1− h0(x))u0(x, v).

In region Ω2 one has h = 0, and the distribution u = uL is close to its associated
local Maxwellian M(u) = M(uL). Replacing uL by M(uL) in Eq. (7.71b) and
collecting the hydrodynamic moments (mass, momentum, energy) leads to the
following modified Euler equations (for x ≤ b) [55]:

∂ρL

∂t
+ (1− h)

∂

∂x
(ρLwL) = −(1− h)

∂

∂x

( ∫
R

vuRdv
)
− ρ

∂h

∂t
,

(7.72a)
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ρLwL

∂t
+ (1− h)

∂

∂x
(ρLw2

L + pL) = −(1− h)
∂

∂x

( ∫
R

v2uRdv
)
− ρw

∂h

∂t
,

(7.72b)

∂EL

∂t
+ (1− h)

∂

∂x

(
(EL + pL)wL

) = −(1− h)
∂

∂x

( ∫
R

v
|v|2

2
uRdv

)
− E

∂h

∂t
.

(7.72c)

Here, ρ = ∫
R

u dv is the density, w = ∫
R

vu dv is the mean velocity,
and T = (1/2ρ)

∫
R
|v − w|2u dv is the temperature in the local Maxwellian

distribution M[ρ,w, T ](v) = (ρ/(2πT )3/2) exp(−|w − v|2/(2T )). Moreover,
pL = ρLTL and the energy EL = (1/2)

∫
R
|v|2uL dv = ρL(3TL + w2

L)/2. The
initial conditions for this system are

(ρL,wL, TL)(x, 0) = (1− h0(x))(ρ,w, T )(x, 0).

In region Ω1, the solution is given by uR that satisfies

∂uR

∂t
+ hv

∂uR

∂x
+ hv

∂

∂x
M[wL, TL] = h

ε

(
M(u)− u

)
+ u

∂h

∂t
. (7.73)

Finally, in region Ω3, the solution is given by M(uL)+ uR. Once these solutions
are specified on each of the sub-domains, one can use classical numerical
methods (e.g., finite volume schemes) to discretise Eqs. (7.72) and (7.73). Note
that this method can be applied also in higher dimensions (i.e., x, v ∈ R

3 [55]).
We conclude this discussion by emphasising that different domain decompo-

sition methods have been applied to investigate multiscale problems that contain
isolated structures inside the domains, such as shocks, contacts and corners of
rarefaction fans [62]. For more details on the various domain decomposition
methods, we refer the reader to [49, 60, 63].

While the time-splitting approaches discussed throughout this chapter are widely
used when approximating kinetic equations, they usually suffer from order reduction
[1]. The last few years have seen the development of a new class of numerical
schemes without time splitting (e.g., exponential Runge-Kutta methods), which
allow for the derivation of uniformly accurate higher order methods [1]. The
difficulty with implementing the schemes without time splitting is related to
the time-dependence of the local Maxwellian, which does not allow a direct
application of the methods previously developed for the collision part (without time
dependance).

Since the purpose of the results of this chapter is not to describe in detail
the various asymptotic preserving numerical methods for kinetic and hyperbolic
equations derived over the last few decades, but rather to give the reader an overview
of the various approaches that could be considered when approximating numerically
the solution of the models discussed in Chaps. 3–6, we conclude our discussion on
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these numerical methods by referring the reader to the more detailed studies and
reviews in [1, 7, 32, 43, 50, 54, 64, 65] and the references therein.

7.3 Boundary Conditions

While choosing the most efficient numerical scheme to discretise the hyperbolic and
kinetic models discussed throughout this monograph is an important aspect, equally
important is to deal with the boundary of the domain (as animal/cell/bacterial
dynamics usually occurs on bounded domains). Even when considering an initial
value problem on an infinite domain (e.g., Rn, with n = 1, 2, 3), one needs to
truncate this domain for computational purposes. Boundary conditions also need
to be carefully chosen for the domain decomposition methods, where the differ-
ent regions (for the kinetic/mesoscopic and macroscopic dynamics) are coupled
together [66, 67]. Generally, the boundary conditions depend on the geometry of
the domain, but for models describing the collective movement of animals the
domains have usually classical shapes (e.g., rectangular or circular). Moreover,
these boundary conditions need to preserve the positivity of the solution, and for
conservation equations they also need to preserve the total mass.

We need to emphasise that while for parabolic equations one can prescribe a
condition for population density at each boundary, for the hyperbolic equations
one can prescribe conditions for the population density only at those boundaries
where the characteristics are pointing inwards [68, 69]. (Note that solutions are
already known at the boundaries where the characteristics are pointing outwards,
since these solutions have been transported by the characteristic lines from inside
the domain. If we impose extra conditions at these boundaries, then the solutions
arriving at the boundaries might not match the imposed conditions.) Hence, for the
kinetic/hyperbolic transport models discussed throughout this study, the boundary
conditions will be imposed only for population densities moving away from the
boundaries into the domain (i.e., densities with ingoing velocities).

As mentioned briefly in Chap. 4, relevant boundary conditions (BCs) for models
describing biological aggregations are: (a) periodic BCs, to describe arena-like
domains (on which many experiments are performed; e.g., [70, 71]); (b) reflecting
(Neumann) BCs, to describe walled domains; or (c) zero (Dirichlet) BCs, to
describe domains surrounded by regions which do not support the survival of the
population. Note that these BCs can be applied also to Boltzmann-like equations
for the collective movement of animals/cells/bacteria (although the classical BCs
for Boltzmann equations assume that a fraction (1 − α) of particles are reflected
elastically at the wall, while the remaining fraction α leaves the wall in a Maxwellian
distribution [1, 72, 73]). In Fig. 7.4 we describes these different types of BCs applied
to (a) the hyperbolic 1D systems (4.3) and (5.14) [68, 69], and (b) the kinetic 2D
systems (6.14) [68]. Note that the boundary conditions in Fig. 7.4b, are a simplified
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Fig. 7.4 (a) Examples of three types of boundary conditions (BCs) for the 1D hyperbolic
systems (4.3) and (5.14), as described in [68, 69]. (b) Examples of two types of boundary
conditions for the 2D kinetic systems (6.14), as described in [68]. Here, n(x) is the outer normal
at x, and n�v = n(x) · v is the inner product between the outer normal and the velocity. Moreover,
δD denotes the boundary of the domain

version of the more complex Boltzmann boundary conditions in [1, 74, 75]:

|n(x) · v|u(x, t, v) =
∫

n(x)·v̄>0
R(v, v̄)(n(x) · v̄)u(x, t, v̄)dv̄,

for every n(x) · v < 0, (7.74)

where R(v, v̄) describes the probability that a particle, which hits the boundary
surface with velocity v̄, will move away from it with velocity v. Moreover, this
probability distribution kernel satisfies the following conditions (which guarantee
the positivity and mass conservation at the boundaries):

R(v, v̄) ≥ 0,

∫
n(x)·v<0

R(v, v̄) = 1. (7.75)
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Fig. 7.5 Description of three types of boundary conditions (BCs) and their effects on the kernels
that describe the nonlocal terms in both 1D and 2D. (a),(a’) Periodic BCs; (b),(b’) Reflective BCs;
(c),(c’) Zero BCs

For the Dirichlet boundary conditions, one could also choose a more general form
(when the distribution function of the particles/cells/animals entering the domain D

is known) [1]:

u(x, t, v) = g(v, t), for x ∈ δD, and n(x) · v < 0. (7.76)

For a larger variety of boundary conditions for Boltzmann equation, we refer the
reader to [1, 76].

The presence of nonlocal interaction terms in the hyperbolic and kinetic models
requires a special treatment at the boundary of the finite domain. Figure 7.5 depicts
the three possible ways of dealing with the integrals (in 1D and 2D) for three
different BCs: (a),(a’) periodic BCs (where the integrals are wrapped around the
domain); (b),(b’) reflective BCs (where the integrals are reflected back into the
domain); (c),(c’) zero BCs (where the integrals are cut off at the boundary (since
no population is assumed to survive outside the domain).

To conclude this section, we mention that in the context of asymptotic preserving
numerical schemes for kinetic equations (discussed above in Sect. 7.2.3), there
is the question of how to choose the boundary conditions so that the numerical
solution offers a good approximation for both the mesoscopic and macroscopic
regimes, and the different kinetic boundary layers (corresponding to the different
order equations obtained during the Hilbert expansion of the density in powers of ε).
Some studies used boundary conditions from the macroscopic model [77]. However,
these conditions might not always provide a good approximation for the parameter
regimes where the model is kinetic (i.e., far from the limit ε → 0). To address this
issue, Lemou and Méhats [78] proposed a mesoscale-macroscale decomposition of
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the kinetic problem, where the boundary conditions were generated by the kinetic
model but also offered a good approximation of the macroscopic model in the limit
ε → 0.
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Chapter 8
A Few Notions of Stability
and Bifurcation Theory

While numerical approaches are a very important step in investigating the patterns
exhibited by the hyperbolic and kinetic models discussed in the previous chapters,
they could be slow and might not offer a full understanding of the models’ dynamics
due to the very large parameter space associated with some models. Moreover,
the analytical approaches discussed in Chap. 2 could offer an understanding of
the parameter space where different types of solutions could occur (e.g., finite vs.
density-blow up solutions, shocks vs. rarefaction waves, etc.). However, they cannot
offer much insight into the conditions for the formation of patterns, as well as the
transitions between different patterns.

Stability theory could identify the parameter conditions under which a pattern
could form, and eventually could become unstable giving rise to a different pattern.
While linear and weakly-linear stability analyses of homogeneous steady states
are relatively easy tasks, stability analysis of spatially heterogeneous solutions is
complicated by the complexity of the hyperbolic and kinetic models discussed
throughout this monograph, and in particular the nonlinear and nonlocal structure of
some of these models. Also difficult is the fully nonlinear stability analysis, which
is often specific to the system being investigated [1]. As already mentioned, the
nonlocality of the models presented in this monograph complicates the analysis
even more—which explains the lack of studies focused on the nonlinear analysis
of nonlocal (hyperbolic and kinetic) models for collective dynamics in biological
aggregations.

A deeper understanding of the formation of various spatial and spatio-temporal
patterns is offered by the bifurcation theory, which can distil the mathematical and
biological mechanisms not only behind the formation of patterns, but also behind the
transitions between different spatial and spatio-temporal patterns. In the following,
we will review some basic notions of linear stability analysis for pattern formation
in partial differential equations, as well as basic notions of symmetry theory and
bifurcation theory. These will help the reader understand better the approaches taken
by some of the studies reviewed in Chaps. 3–6. For more detailed discussions of
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these topics in stability and bifurcation theory, we refer the reader to the books by
Hoyle [2], Golubitsky and Stewart [3], Chossat and Lauterbach [4], Haragus and
Iooss [5], Kuznetsov [6], and Strogatz [7].

8.1 Basic Notions of Linear Stability Analysis

The first step in the investigation of pattern formation, is the identification of steady
states (spatially homogeneous and, if possible, spatially heterogeneous) and their
stability—since unstable states are usually associated with pattern formation and
transitions between different patterns. The linear stability technique involves the
identification of the eigenvalues of the linearised equation/system at the equilibrium
(steady state) points, with the goal of understanding the quantitative behaviour of
the solution near these points

We start the discussion of linear stability analysis by focusing first on ODEs,
and then on PDEs. Since the majority of studies in the mathematical literature
exemplify the linear stability analysis by focusing on parabolic reaction-diffusion
equations [8], here we decided to change a bit the approach and to focus on
nonlocal hyperbolic systems. This is particularly relevant in the context of the
models discussed throughout the previous chapters.

8.1.1 Linear Stability Analysis for ODE Models

Consider the following ODE model

du

dt
= f (u), with u, f ∈ R

n. (8.1)

The dynamics of this system is controlled, in the long term, by the steady states (or
fixed points or equilibrium points) of the system. A steady state of system (8.1) is a
time-independent solution u(t) = u∗ that satisfies f (u∗) = 0.

To investigate the linear stability of these steady states u∗, we consider small
temporal perturbations: u(t) = u∗ + aeλt . After substituting these expressions back
into (8.1) and linearising the nonlinear terms f (u) about the steady states, we obtain
that the linear stability of these states is controlled by the eigenvalues of the Jacobian
matrix J :

J (u∗) = Duf (u∗) =
⎛
⎜⎝

∂f1
∂u1

. . .
∂f1
∂un

. . . . . . . . .
∂fn

∂un
. . .

∂fn

∂un

⎞
⎟⎠

u=u∗

for f = (f1, . . . , fn), u = (u1, . . . , un). (8.2)
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If all eigenvalues λ of the characteristic equation det(J (u)− λI) = 0 have negative
real parts, we say that the steady state is linearly stable. If there are eigenvalues with
positive real parts we say that the steady state is unstable.

For a system in R
2 one can classify the fixed points in terms of the determinant

det(J ) = λ1λ2 and trace T r(J ) = λ1 + λ2 of the Jacobian matrix (where λ1 and λ2
are the two eigenvalues). For example, if det(J ) < 0, the eigenvalues are real and
of opposite signs and the fixed point is a saddle point. If det(J ) > 0 the eigenvalues
are either real and of opposite signs (and thus they are nodes) or complex conjugates
(and thus they are spirals or centres). If det(J ) = 0, at least one eigenvalue is zero.
The stability of the nodes and spirals is given by T r(J ): the fixed points are stable
for T r(J ) < 0, and unstable for T r(J ) > 0. When T r(J ) = 0 the eigenvalues
are purely imaginary, and the fixed points are centres. For more details on this fixed
point classification, see [7, 9].

Definition 8.1 A fixed point u∗ of (8.1) is called hyperbolic if and only if the
Jacobian matrix J (u∗) does not have any eigenvalues with zero real parts, i.e.,
Re(λi) �= 0 for i = 1, 2, . . . , n.

The stability of hyperbolic fixed points is not affected by small perturbations caused
by nonlinear small terms (the local phase portrait near a hyperbolic fixed point
being topologically equivalent to the phase portrait of the linearised system—see the
Hartman-Grobman theorem in [9, 10]). In regard to pattern formation, the important
cases are those where the eigenvalues have zero real parts (Re(λ) = 0), i.e., the fixed
points are non-hyperbolic. The changes in the stability of fixed points, which suggest
the possibility of a bifurcation, can only happen at non-hyperbolic fixed points. To
conclude this section, we note that the qualitative behaviour of system (8.1) in the
neighborhood of a nonhyperbolic fixed point u∗ is determined by its behaviour on
the centre manifold near u∗. Moreover, since the dimension of the centre manifold
is usually smaller than the dimension of the full system (8.1), it becomes easier to
investigate the qualitative behaviour of the system near a nonhyperbolic fixed point.
We will return to the discussion of the centre manifold theory in Sect. 8.6. For a
more comprehensive study on the stability of fixed points of ODE systems, we refer
the reader to [9].

8.1.2 Linear Stability Analysis for PDE Models

Let us focus now on partial differential equations (PDEs), and assume that the
models described in the previous chapters can be written in a general form as

∂u(x, t)

∂t
= L [u(x, t)] +N [u(x, t)], (x, t) ∈ R

d × R
1+, (8.3)

whereL [u] is a linear operator andN [u] is a nonlinear operator (containing higher
order terms O(uk), k ≥ 2, both local and nonlocal). Note that we have used [·]
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instead of (·) to emphasise that these linear and nonlinear terms can depend also
nonlocally on u(x, t).

Definition 8.2 A spatially homogeneous steady state of (8.3) is a solution u(x, t) =
u∗ =constant which satisfies

0 = L [u∗] +N [u∗]. (8.4)

A spatially heterogeneous steady state of (8.3) is a solution u(x, t) = u∗∗(x) which
satisfies

0 = L [u∗∗(x)] +N [u∗∗(x)]. (8.5)

We characterise a steady state as being stable or unstable if small perturbations of
this steady state decay or grow. Since a large part of this monograph focuses on
nonlocal hyperbolic systems, to exemplify the linear stability technique, we focus
on a generic 1D nonlocal hyperbolic system

∂u+

∂t
+ γ

∂u+

∂x
= −λ+[u+, u−]u+ + λ−[u+, u−]u−, (8.6a)

∂u−

∂t
− γ

∂u−

∂x
= λ+[u+, u−]u+ − λ−[u+, u−]u−, (8.6b)

on a finite domain [0, L] with periodic boundary conditions, and investigate the lin-
ear stability of a generic spatially homogeneous steady state (u+(t, x), u−(t, x)) =
(u∗+, u∗−). For example, the class of nonlocal hyperbolic systems (8.6) with the five
communication mechanisms M1–M5 (see Table 5.1) introduced in [11] can exhibit
one, three or five steady states; see Fig. 8.1a.

In the following we focus on the linear stability of a generic spatially homo-
geneous steady state (u+∗ , u−∗ )—any one of the states depicted in Fig. 8.1. (For a
detailed discussion of the linear stability approach in reaction diffusion systems, i.e.,
Turing mechanisms, see [8].) We note that the stability of a spatially heterogeneous
steady state (u∗∗+ (x), u∗∗− (x)) follows the same approach, but the calculations are
more challenging; see, for example, the studies in [12, 13] in the context of local
parabolic equations; to our knowledge, studies on the stability of heterogeneous
states exhibited by nonlocal hyperbolic equations/systems are very scarce, due to
the challenge posed by dealing with the nonlocal terms. Also challenging is the
application of nonlinear stability methods, which can offer more information about
the formation of patterns, compared to the classical linear methods [1].

We start the linear stability analysis of a steady state (u+∗ , u−∗ ) of system (8.6)
by considering small-amplitude perturbations of the steady state: u+(x, t) = u∗+ +
v+(x, t) and u−(x, t) = u∗− + v−(x, t) with v±(x, t) ∝ a±eσ t+ikx and |a±| � 1.
Here σ ∈ C is an eigenvalue that gives the temporal growth/decay of the small
perturbations (if Re(σ) > 0 or Re(σ) < 0, respectively), and k is the wavenumber
(which is a measure of the wavelike pattern, being proportional to the reciprocal of
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)b()a(

(qal)(qal)

Fig. 8.1 Plot of steady state u+∗ corresponding to (u+∗ , u−∗ )=(u+∗ , A − u+∗ ), as a function of the
magnitude of alignment parameter qal , for the five communication models introduced in [11]. In
the expression of the steady states, we have A = 1

L

∫ L

0 (u+(x) + u−(x))dx the total population
density on a finite domain [0, L]. We compare the cases of (a) symmetric perception of neighbours,
versus (b) asymmetric perception of neighbours, as described by Eq. (5.20) and Fig. 5.6. In (a) we
have p+ = p− = 1.0 (corresponding to symmetric perception), while in (b) we have p+ = 1.05
and p− = 0.95 (corresponding to asymmetric perception)

the wavelength ω of the pattern: k = 2π/ω). For finite domains, there is a discrete
set of possible wavenumbers kn = 2nπ/L, where L is the domain size and n is
an integer. Substituting the perturbed solutions u±(x, t) = u±∗ + v±(x, t) into the
linearised hyperbolic system leads to the following equations

∂v+

∂t
+ γ

∂v+

∂x
= −λ+[u+∗ , u−∗ ]v+ + λ−[u+∗ , u−∗ ]v−

− u+∗ λ+u (K ∗ v+)+ u−∗ λ−u (K ∗ v−),

∂v−

∂t
− γ

∂v−

∂x
= λ+[u+∗ , u−∗ ]v+ − λ−[u+∗ , u−∗ ]v−

+ u+∗ λ+u (K ∗ v+)− u−∗ λ−u (K ∗ v−).

Here, λ±u are the derivatives of λ± with respect to u = (u+, u−), which appear in the
Taylor expansion of λ± about the steady states (u+∗ , u−∗ ). Re-writing these equations
in terms of a±eσ t+ikx , we obtain (after simplifying the exponentials eσ t+ikx)

a+
(
σ + γ ik + λ+[u+∗ , u−∗ ] + u+∗ λ+u K̂(k)

)
+ a−

(− λ−[u+∗ , u−∗ ] − u−∗ λ−u K̂(k)
) = 0,

a+
(− λ+[u+∗ , u−∗ ] − u+∗ λ+u K̂(k)

)
+ a−

(
σ − γ ik + λ−[u+∗ , u−∗ ] + u−∗ λ−u K̂(k)

) = 0,
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where K̂(k) is the Fourier transform of the interaction kernel K(s):

K̂(k) =
∫

K(s)eiksds. (8.7)

To find a non-trivial solution for this algebraic system, we impose that the
determinant is zero, and obtain the characteristic equation that connects the growth
rate σ of the perturbations with the wavenumber k:

σ 2 + σA(k)+ B(k) = 0, (8.8)

where A(k) and B(k) are nonlinear terms that depend on the parameters of the
system and on the steady states. The expression σ = σ(k) is called a dispersion
relation.

If Re(σ(k)) > 0 for some k = kn, we say that the homogeneous steady
state (u+∗ , u−∗ ) is unstable to spatial perturbations. Otherwise, if Re(σ(k)) < 0
for all k, we say that the steady state is linearly stable. Note that since we
assumed a finite domain (to be able to compare the analytical stability results with
the numerical results, as in [11, 14]), the possible unstable wavenumbers kn and
the corresponding spatial wavelengths of allowable patterns could depend on the
boundary conditions. The most unstable wavenumber kn (i.e., the wavenumber for
which σ(kn) has the largest positive value) gives—at least for small time where
the linear stability analysis is valid—the number of “peaks” (i.e., aggregations)
that form in the domain. In Fig. 8.2 we show a caricature description of (a) a
typical example of dispersion relation for which the wavenumber k2 is unstable,
and (b) the corresponding two-peak pattern that emerges (at least for small time).
(Compare Fig. 8.2a with Fig. 4.7 which showed a non-standard dispersion relation
for a class of local hyperbolic systems introduced in [15].) If the eigenvalues
σ(kn) have only real parts then the spatial pattern emerges as a result of real

k
u*

parameter
change in 

k k

(a)

(k)σ
u(x,t)

(b)

x

31 2

Fig. 8.2 Caricature description of (a) a typical example of dispersion relation for which the
wavenumber k2 becomes unstable (as we vary a certain model parameter), and (b) the corre-
sponding two-peak pattern u(x, t) that emerges (at least for small time). The dashed line shows
the spatially homogeneous solution
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(steady state) bifurcations, and the aggregations that form are motionless (e.g.,
stationary pulses; see also Fig. 1.9a). If, on the other hand, the eigenvalues σ(kn)

have complex parts (i.e., Im(σ(kn)) �= 0) then the spatial pattern emerges as a
result of complex (Hopf) bifurcations, and the aggregations that form are moving
through space (e.g., travelling pulses; see also Fig. 1.9b). We will return to the
discussion of real and complex bifurcations in the next section. It is possible
that multiple wavenumbers become unstable at the same time; see Fig. 5.10. The
spatially heterogeneous solution that emerges, is the sum of the unstable modes:
u(x, t) = ∑n2

n1 Cne
σ(kn)t cos(knx). The mode-mode interactions could give rise to

more complex spatial and spatio-temporal patterns, as discussed in Chap. 5.
To conclude this brief discussion on linear stability analysis, we emphasise that

even if the small perturbations v± grow exponentially with time, they are eventually
bounded by the nonlinear terms in the reaction-advection equations. If the solution
of the PDE is bounded in time, a spatially heterogeneous solution will emerge.
For a more detailed discussion of linear stability analysis on pattern formation in
partial differential equations in biology (including the stability of steady states for
2D models), we refer the reader to the seminal book by Murray [8].

8.2 Basic Notions of Bifurcation Theory

To be able to understand the changes in the patterns exhibited by various (finite
and infinite dimensional) dynamical systems, one needs to have some basic notions
of bifurcation theory, i.e., the mathematical theory that studies changes in the
qualitative or topological structure of a family of differential equations. The term
“bifurcation” was first introduced by Henri Poincaré in [16]. A bifurcation occurs
when a small change in a parameter value (i.e., the bifurcation parameter) leads
to a qualitative change in the behaviour of a system. Since in the mathematical
literature there are several very good textbooks on bifurcation theory [3, 6, 7, 17, 18],
the aim of this chapter is not to give a detailed exposition of the topic, but rather
to give the reader enough information to follow the discussion in the previous
chapters regarding the mechanisms behind the formation of various patterns. In the
following, we will assume that the reader has basic notions of dynamical systems
(both finite dimensional and infinite dimensional) and functional analysis; see also
the books by Strogatz [7], Robinson [19] and Evans [20].

Even if this monograph focuses on PDEs, we decided to start this brief review
of basic notions of bifurcation theory by focusing first on classical bifurcations for
ODEs (one dimensional and two dimensional). Our reason for this choice is based
on (1) the importance of these classical bifurcations for understanding the long-term
dynamics of spatially homogeneous populations (i.e., populations with individuals
evenly distributed over the domain), and (2) the importance of these bifurcations in
the reduction of infinite-dimensional (PDE) systems to finite-dimensional systems
(via Central Manifold reduction, Lyapunov-Schmidt reduction, or weakly nonlinear
analysis). In regard to point (1), we note that the class of 1D nonlocal hyperbolic
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(λ) Im(λ)

Re(λ)Re(λ)

(a) (b)Im

λ(μ)

λ(μ)

λ(μ)

Fig. 8.3 Caricature description of the eigenvalues that generate real and complex bifurcations, as
we vary a generic parameter μ. (a) Real eigenvalues λ(μ); (b) Complex eigenvalues (λ(μ) and
λ(μ)). In general, the complex eigenvalues cross the imaginary axis with nonzero slopes

models introduced in [11] was shown to display spatially homogeneous solutions
(u+, u−) = (u+∗ , u−∗ ) with u+∗ �= u−∗ (corresponding to more individuals facing
one direction than the other direction), and these solutions arise via saddle-node
and (subcritical) pitchfork bifurcations [11, 14]; see also Fig. 8.1. In regard to point
(2), we will see in Sect. 8.5 that we could understand the dynamics of a nonlocal
hyperbolic system near a bifurcation point via the dynamics of an ODE for the
amplitude of the perturbations as given by Eq. (8.38).

The codimension (“codim”) of a bifurcation is given by the number of parame-
ters that need to be varied to reach the locus of the bifurcation. Throughout Chap. 5
we referred to codimension-1 bifurcations (where one parameter μ was varied) and
codimension-2 bifurcations (where two parameters, μ1 and μ2, were varied at the
same time). In the following we will review briefly four codimension-1 classical
bifurcations from fixed points: saddle-node bifurcations, transcritical bifurcations,
pitchfork bifurcations and Hopf bifurcations. The first three types of bifurcations
are stationary (or steady state), i.e., they correspond to a real eigenvalue λ(μ)

passing through zero (see Fig. 8.3a). The fourth bifurcation is oscillatory, with the
real part of the complex eigenvalues passing through zero, while the imaginary
part is nonzero (see Fig. 8.3b). Since the majority of bifurcations identified in the
literature of hyperbolic and kinetic models for self-organised behaviours are local,
here we focus mainly on these local bifurcations. However, towards the end of this
section we will also mention briefly some examples of nonlocal bifurcations (e.g.,
homoclinic loops) exhibited by the nonlocal hyperbolic models (5.14).

The structure of the bifurcations is encoded in their normal forms (i.e., simplified
equations that determine the dynamics of the system/bifurcation), and all systems
that exhibit a bifurcation are locally topologically equivalent to the normal form
of the bifurcation. Thus, in the following we describe briefly the normal forms
corresponding to four classical codimension-1 local bifurcations. To this end we
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start with the following differential equation in R:

du

dt
= f (u,μ), (8.9)

where u is a real-valued function of time t (u ∈ R
+) and μ is a real bifurcation

parameter (μ ∈ R). Assume that the vector field f (u,μ) satisfies the following two
conditions:

f (0, 0) = 0,
∂f (0, 0)

∂u
= 0. (8.10)

The first condition says that u = 0 is an equilibrium point when μ = 0, while the
second condition is necessary for the appearance of a local bifurcation at μ = 0. (If
∂f (0, 0)/∂u �= 0, the implicit function theorem says that f (u,μ) = 0 has a unique
solution u = u(μ) in the neighbourhood of 0, and thus u = 0 is the only solution for
μ = 0 or sufficiently small μ, leading to the impossibility of having a bifurcation
for small values of μ [5]).

• Saddle-node bifurcations. Assume that in addition to conditions (8.10), the
vector field f (u,μ) satisfies also two other conditions:

∂f

∂μ
(0, 0) = 1 �= 0,

∂2f

∂u2 (0, 0) = c �= 0. (8.11)

Following a Taylor expansion of f (u,μ) near (0, 0), we obtain the following
truncated equation

du

dt
= μ+ cu2. (8.12)

This normal form Eq. (8.12) approximates the dynamics of the full model (8.9).
Equation (8.12) has the following fixed points: u = 0 for μ = 0, and u =
±√−μ/c for μ/c < 0. The stability of the fixed points is determined by the
sign of derivative ∂f

∂u
. For c > 0 the non-trivial fixed points exist only when

μ < 0, and +2c
√−μ/c is unstable while −2c

√−μ/c is stable (see Fig. 8.4a).
For c < 0 the non-trivial fixed points exist only when μ > 0, and+2c

√−μ/c is
stable while −2c

√−μ/c is unstable (see Fig. 8.4a).
• Transcritical bifurcations. Assume that in addition to conditions (8.10), the

vector field f (u,μ) satisfies also three other conditions:

∂f

∂μ
(0, 0) = 0,

∂2f

∂u∂μ
(0, 0) = 1 �= 0,

∂2f

∂u2
(0, 0) = 2c �= 0. (8.13)

Expanding f (u,μ) in Taylor series about (0, 0), and incorporating the above con-
ditions leads to the following truncated normal form equation for a transcritical
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(a)

(c)

(b)

uc>0

c<0

c<0

c>0 c<0 uu

c>0 uu

u

Fig. 8.4 Bifurcation diagrams in the (μ, u) plane of the normal form equations corresponding to:
(a) Saddle-node bifurcations; (b) Transcritical bifurcations; (c) Pitchfork bifurcations. The solid
continuous curves describe stable states, while the dashed curves describe unstable states
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bifurcation:

du

dt
= μu+ cu2, u, μ, c ∈ R. (8.14)

The fixed points of this equation are u = 0 and u = −μ/c. Simple linear stability
analysis shows that u = 0 is stable for μ < 0 and unstable for μ > 0, while
u = −μ/c is stable for μ > 0 and unstable for μ < 0 (see Fig. 8.4b).

• Pitchfork bifurcations. In many cases, the models have some sort of symmetry.
The simplest symmetry is the reflection symmetry u → −u. We need to
emphasise that this symmetry is not biologically realistic in this form, since one
cannot have a population with negative density−u. However, in some biological
systems one could have a slightly different version of this symmetry: u → U−u,
with U a maximum populations size; see the steady states in Fig. 8.1a, which are
symmetric with respect to u = A/2 , where A = (1/L)

∫ L

0 [u+(x) + u−(x)]dx

denoted the total population density. Assume now that the vector field f (u,μ)

is odd with respect to u, satisfies conditions (8.10) and also the following
conditions:

∂f

∂μ
(0, 0) = 0,

∂2f

∂μ∂u
(0, 0) = 1 �= 0,

∂3f

∂u3
(0, 0) = 6c �= 0. (8.15)

Following a Taylor expansion of f (u,μ) near (0, 0), we obtain the following
truncated normal form equation

du

dt
= μu+ cu3. (8.16)

This equation has the following fixed points: u = 0 for any μ, and u = ±√−μ/c

for μ/c < 0. These non-trivial points exist for μ > 0 when c < 0 and for μ < 0
when c > 0. The trivial point is stable for μ < 0 and unstable for μ > 0. The
nontrivial point ±√−μ/c is unstable for c > 0 and μ < 0, and stable for c < 0
and μ > 0 (see Fig. 8.4c). The appearance of stable branches for μ > 0 shown in
the right panel of Fig. 8.4c occurs through a supercritical bifurcation, while the
appearance of unstable branches for μ < 0 in the left panel of Fig. 8.4c occurs
through a subcritical bifurcation.

Remark 8.1 The pitchfork bifurcations that give rise to the spatially-
homogeneous steady states graphed in Fig. 8.1a are the result of the symmetries
of the nonlocal hyperbolic system (8.6) with the five communication mechanisms
described in Table 5.1. For symmetric communication mechanisms (i.e.,
p+ = p− = 1.0), the bifurcations shown in Fig. 8.1a are perfect. However,
as we perturb the perception mechanisms (i.e. p+ = 1.05, p− = 0.95), thus
assuming asymmetric communication, we obtain imperfect bifurcation diagrams
as a result of symmetry breaking, as shown in Fig. 8.1b.
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Remark 8.2 The three bifurcations of fixed points discussed above in the one-
dimensional case (i.e., saddle-node, transcritical and pitchfork bifurcations) can
be easily generalised to two and higher dimensions. For example, for the normal
form equations in 2D (with variables u and v) we can assume that the dynamics in
the u-direction is given by the normal forms discussed above, and the dynamics
in the v-direction is exponentially damped [7]:

du

dt
= μ+ cu2,

dv

dt
= −v,

du

dt
= μu+ cu2,

dv

dt
= −v,

du

dt
= μu+ cu3,

dv

dt
= −v.

For a more detailed discussion regarding the generalisation of these bifurcations
to higher dimensions, and the fact that the addition of higher dimensions does
not influence the bifurcations (which still occur along a one-dimensional space),
see [7].

• Hopf bifurcations. Consider now the following differential equation in R
2:

du
dt
= f(u, μ), with u = (u, v) ∈ R

2, μ ∈ R. (8.17)

Assume that the vector field f ∈ R
2 satisfies f(0, 0) = 0 (i.e., u = 0 at μ = 0).

The presence of a bifurcation is determined by the linearisation of f(u, μ) at
(0, 0), as given by the Jacobian matrix J = Duf(0, 0). Moreover, assume that
the Jacobian matrix has the following canonical form

J =
(

α(μ) β(μ)

−β(μ) α(μ)

)
, (8.18)

and at μ = 0 we have α(0) = 0, α′(0) �= 0 and β(0) = ω �= 0 (so that in the
neighbourhood of μ = 0, we have det (J ) �= 0). The linearised equations (8.17)
are

du

dt
= α(μ)u+ β(μ)u+O(u2, v2, uv), (8.19a)

dv

dt
= −β(μ)u+ α(μ)v +O(u2, v2, uv). (8.19b)

Let us introduce a new variable z = u+ iv, which allows us to re-write Eq. (8.19)
as

dz

dt
= (

α(μ)− iβ(μ)
)
z+O(|z|2), as |z| → 0. (8.20)
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Making a transformation of the form ψ = z+S(z, z̄, μ), with S ≈ O(|z|2) leads
to a normal form equation

dψ

dt
= (

α(μ)− iβ(μ)
)
ψ + A(μ)|ψ|2ψ +O(|ψ|4), (8.21)

with A(μ) = a(μ)+ ib(μ) a complex term.

To understand the dynamics of this normal form equation, it is better to introduce
the polar coordinates ψ = reiθ (with r > 0 and 0 ≤ θ ≤ 2π), which transforms
Eq. (8.21) into the following system:

dr

dt
= α(μ)r + a(μ)r3, (8.22a)

dθ

dt
= −β(μ)+ b(μ)r2. (8.22b)

Note that Eq. (8.22a) is the normal form for a pitchfork bifurcation in r . This
suggests that a Hopf bifurcation is a pitchfork bifurcation in r direction, with a
rotation in θ direction. From the phase equation (8.22b) we obtain θ = θ0 +ω(μ)t ,
with ω(μ) = −β(μ) − b(μ)α(μ)/a(μ) → −β(0) as μ → 0 (since we assumed
above that α(0) = 0).

The fixed points of the amplitude equation (8.22a) are r = 0 and r =√−α(μ)/a(μ). We assume that a(μ) �= 0 in the neighbourhood of μ = 0.
This non-trivial solution branch corresponds to a periodic solution with period
2π/|ω(μ)| → 2π/|ω(0)| as μ → 0. The stability of these two solutions depends
on the signs of α(μ) and a(μ). While we keep these two functions general enough
to not discuss their signs, we graph in Fig. 8.5 the two possible Hopf bifurcations:
(a) a supercritical bifurcation, and (b) a subcritical bifurcation.

The Hopf bifurcation represents one way through which limit cycles are created
or destroyed. However, limit cycles can be destroyed when two different cycles (a

μ

r

(a) (b)

r

00 μ

Fig. 8.5 Bifurcation diagram for: (a) a supercritical Hopf bifurcation; (b) a subcritical Hopf
bifurcation. Continuous solid curves indicate stable branches, while dashed curves indicate
unstable branches
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Fig. 8.6 Caricature description of (a) a homoclinic orbit (in the form of a stationary pulse
connecting two zero steady states); (b) a heteroclinic cycle connecting a travelling pulse (pattern
1—in red) and a stationary pulse (pattern 2—in blue); (c) a heteroclinic cycle connecting two
stationary states (pattern 1—in red; and pattern 2—in blue)

stable and an unstable cycle) coalesce via a saddle-node bifurcation of cycles [7].
This is a global bifurcation since it does not occur anymore near a fixed point.
Note that global bifurcations occur when larger invariant sets, such as periodic
orbits, collide with each other or with other equilibria. In the following we discuss
briefly two types of global bifurcations that have been shown to be exhibited by the
nonlocal hyperbolic systems (8.7).

• Homoclinic bifurcations occur when a limit cycle moves closer to a saddle
point until it coalesces with it becoming a homoclinic loop. In the context of
partial differential equations, a homoclinic loop describes a travelling pulse or a
stationary pulse, i.e., a nonzero solution u(z) = u(x − ct) which connects (as
z → ±∞) the stable and unstable manifolds of a spatially homogeneous steady
state (usually u∗ = 0; see Fig. 5.7a, b) and propagates with speed c > 0 (for
travelling pulses) or c = 0 (for stationary pulses). See Fig. 8.6a for a caricature
description of a homoclinic loop.

• Heteroclinic bifurcations occur when a cycle connects different unstable
(spatially homogeneous or heterogeneous) states, via their stable and unsta-
ble manifolds. These bifurcations are more difficult to be identified for the
hyperbolic and kinetic models discussed in the previous chapters, due to the
large parameter space that needs to be investigated. The nonlocal hyperbolic
models (8.7) can exhibit heteroclinic cycles that connect two stationary states
(R. Eftimie—unpublished results), which are the result of Steady-state/Steady-
state heteroclinic bifurcations; see Fig. 8.6c for a caricature description of a
heteroclinic cycle connecting two different stationary states. Figure 8.6b shows a
caricature description of a heteroclinic cycle connecting a stationary state and a
travelling pulse (which is somehow similar—at macroscopic level—to the semi-
zigzag dynamics shown in Fig. 5.7f, but for one aggregation peak). We need to
emphasise here that the analytical study of heteroclinic bifurcations in hyperbolic
and kinetic models is still an open problem at this moment.
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Remark 8.3 As emphasised by Knobloch and Aulbach [21], the various bifurcating
objects (which are formed of small bounded solutions, such as steady states or
orbits) always lie on centre manifolds. Therefore, from a bifurcation point of view,
it is enough to study the flow of a system on the centre manifold. We will return to
the existence of these centre manifolds (for both ODEs and PDEs) in Sect. 8.6.

8.3 Symmetry of Hyperbolic and Kinetic Equations

Symmetry and symmetry breaking phenomena are very common in self-organised
biological communities, as shown by various experiments [22–26]. From a mathe-
matical point of view, many of the models for self-organised patterns in biological
aggregations that we discussed in the previous chapters have some sort of symmetry
(either as a result of the equations themselves, or as a result of the domain and
the boundary conditions—e.g., periodic conditions). The presence of symmetries is
welcomed since it allows us to reduce the size of the system (which reduces the
cost of solving the equations). However, very few studies on kinetic and hyperbolic
models for biological aggregations recognised the importance of these symmetries
on cell/bacterial/animal pattern formation [27–30]. Since the symmetries of systems
of differential equations (ODEs and PDEs) are usually discussed in terms of a group
of transformations of variables that preserve the structure of the equations and their
solutions, in the following we give a brief introduction to the most common notions
of group theory that are used to understand the symmetries of a model. To this end,
we follow the approaches in [2, 3].

Definition 8.3 A group Γ is a set {γ1, γ2, γ3, . . .} together with an operation “·”
(which maps Γ × Γ → Γ ) that satisfies the group axioms:

• The group is closed under the group operation: for any γ1, γ2 ∈ Γ , then γ3 =
γ1 · γ2 ∈ Γ ;

• Associativity axiom: for any γ1, γ2, γ3 ∈ Γ , then (γ1 · γ2) · γ3 = γ1 · (γ2 · γ3);
• Identity axiom: there exists an element e ∈ Γ such that γ · e = e · γ = γ , for

any γ ∈ Γ ;
• Inverse axiom: for any γ ∈ Γ , there exists an element γ−1 ∈ Γ such that γ ·

γ−1 = γ−1 · γ = e.

Let us now summarise some of the most common groups that are important in
pattern formation [3]:

• Lie group: a finite-dimensional smooth manifold together with a group structure,
such that the group operations are smooth maps;

• Dn: the dihedral group of order 2n, generated by rotations and reflections in
the plane that preserve a regular polygon with n sides. For example, D2 is the
symmetry group of a rectangle, and is isomorphic with the direct product Z2×Z2;

• Zn: the cyclic group of order n, generated only by rotations;
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• S1: the circle group of unit complex numbers. The group characterises the
periodic solutions;

• O(n): the orthogonal group in R
n, which consists of n × n orthogonal matrices

(i.e., real matrices A with the property that their transposes are equal to their
inverses: A� = A−1). The group is isomorphic to the group of all rotations and
reflections in R

n that keep the origin fixed;
• SO(n): the special orthogonal group consisting of n×n orthogonal matrices with

determinant 1. It is a subgroup of O(n), and is sometimes called the rotation
group, since in R

2 and R
3 its elements are the rotations around a point (n = 2)

and around a line (n = 3);
• SO(2): the special orthogonal group in R

2, which consists of rotations

Rθ =
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
(8.23)

in the plane. This group is isomorphic with S1, since if we write a complex
number eiθ = cos(θ)+ i sin(θ) as a 2× 2 real matrix

eiθ ↔
(

cos(θ) − sin(θ)

sin(θ) cos(θ)

)
, (8.24)

then the unit complex number corresponds to the 2 × 2 orthogonal matrix with
unit determinant.

• Tn = S1 × . . .× S1: the n-torus;
• E(2): the Euclidean group of the plane, generated by rotations, reflections and

translations.

To describe how the elements of a group act on some space in a way that preserves
the structure of that space, we introduce the notion of group action [3]:

Definition 8.4 Consider Γ a Lie group and V a vector space. The action of Γ on
V is a homomorphism ρ : Γ → GL(V ) (with GL(V ) the general linear group of
invertible matrices on V). We denote the group action ρ(γ )(v) = γ · v.

Definition 8.5 A dynamical system that has an appropriate symmetry is called
an equivariant dynamical system. In this case, the bifurcation theory is called
equivariant bifurcation theory.

Consider the following generic dynamical system that depends on a parameter
μ ∈ R:

du

dt
= f (u,μ), with u ∈ R

n, f : Rn ×R→ R
n. (8.25)

Definition 8.6 We say that system (8.25) is equivariant with respect to a group Γ

if f (γ · u, c) = γ · f (u, c), for all γ ∈ Γ . Here “·” denotes the group action; see
[17].
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Note that a group element γ ∈ Γ is a symmetry of system (8.25) if given a solution
u(t), then γ ·u(t) is also a solution of (8.25). We define the group orbit of a solution
u as Γ u = {γ · u, for γ ∈ Γ } (i.e., the group orbit is the set of solutions connected
by the group action). Therefore, if one knows a solution of a differential equation,
the whole group orbit of this solution will be solutions, too.

One can classify the solutions with respect to their symmetry groups by
computing the isotropy subgroups [3, 27]:

Definition 8.7 Consider the action “·” of a group Γ on a vector space V . The
isotropy subgroup of a point v ∈ V is defined as

Σv := {γ ∈ Γ |γ · v = v}. (8.26)

In other words, the isotropy subgroup of v is the set of all elements (symmetries)
that leaves v invariant.

Let us focus now on the notion of conjugacy:

Definition 8.8 We say that two group elements a1, a2 ∈ Γ are conjugate (or in
the same conjugacy class) if there exist a group element γ ∈ Γ such that a1 =
γ · a2 · γ−1.

One can further show that solutions u and γ · u of (8.25) have conjugate isotropy
subgroups: Σγ ·u = γ · Σu · γ−1. This result is important since it allows us to
classify solutions in terms of the conjugacy classes of their isotropy subgroups.
More precisely, the isotropy subgroups of all points on an orbit of the action of
a group Γ belong to the same conjugacy class. Because the points on the same
group orbit have similar existence and stability characteristics, we usually assume
(in a loose sense) that the isotropy subgroups are similar [2]. When classifying
the solutions of a system of differential equations, we can simplify our analysis
by ignoring those solutions corresponding to similar isotropy subgroups (see for
example [27] for the classification of steady states solutions for the amplitude
equations that resulted from a weakly nonlinear analysis of a Hopf/Hopf bifurcation
with O(2) symmetry).

For the dynamical system (8.25), to find an equilibrium solution u with isotropy
subgroup Σu, we can restrict our search to the fixed point subspace of this isotropy
subgroup [27]:

Definition 8.9 Consider an isotropy subgroup Σv ∈ Γ . The fixed point subspace
of Σv is defined as

Fix(Σv) := {v ∈ V |σ · v = v, for all σ ∈ Σ}. (8.27)

We conclude this list of definitions necessary for understanding the symmetries
of differential equations, by discussing subspaces that are invariant under the action
of a group Γ (since these are the spaces that support bifurcations) [3]:
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Definition 8.10 Consider a subspace V ∈ R
n. We say that V is Γ -invariant if

γ · V = V for any γ ∈ V .

Definition 8.11 If the subspace V ∈ R
n is such that it has only two Γ invariant

subspaces, namely V and {0}, we say that V is Γ -irreducible. We say that the action
of Γ is absolutely irreducible if the only linear maps that commute with the action
of Γ on V are the scalar multiples of the identity: {aI, a ∈ R}.
The above notion of absolute irreducibility is important to the Equivariant Branching
Lemma, which predicts the existence of branches of symmetry-breaking solutions
near bifurcations:

Theorem 8.1 (Equivariant Branching Lemma [3]) Consider Γ ⊂ O(n) a
compact Lie group acting absolutely irreducible onRn. Consider the Γ -equivariant
bifurcation problem

du

dt
= f (u,μ), (8.28)

with f : R
n × R → R

n satisfying the following conditions: f (0, μ) = 0,
Duf (0, μ) = c(μ)I (where I=identity operator), with c(0) = 0 (bifurcation
condition) and c′(0) �= 0 (eigenvalue crossing condition). If Σ is an isotropy
subgroup of Γ with dim Fix(Σ) = 1, then there exist a unique smooth branch
of solutions to f (u,μ) = 0, with symmetry given by the isotropy group Σ .

Note that, depending on some conditions for the bifurcation equation f (u,μ) =
0 in Fix(Σ), and on whether Σ = Γ or Σ < Γ , one can distinguish
between saddle-node bifurcation, transcritical bifurcation or pitchfork bifurcation
(see Theorem 2.3.2 in [4]).

The solution branches that bifurcate from the fixed point u = 0 are called
primary branches (see Fig. 5.11b, c). It is possible to have other solutions that
bifurcate from these primary branches (further away from the original fixed point),
and they give rise to secondary branches (see Fig. 5.11b, c). These secondary
branches can lead to an exchange in the stability of solutions.

Returning now to the nonlocal hyperbolic and kinetic equations discussed in
Chaps. 4–6, we note that the majority of those models exhibit O(2) or SO(2)

symmetries:

• translations: Tθ · u(x, t) = u(x − θ, t), with θ ∈ [0, L);
• reflections (with respect to the domain boundary): κ · (u+(x, t), u−(x, t)) =(

u−(L− x, t), u+(L− x, t)
)
;

Since the boundary conditions used for the majority of 1D nonlocal hyperbolic and
kinetic models discussed in this study [11, 14, 27, 28] are periodic, the translation
operator Tθ (= rotation operator on a 1D line) generates a group isomorphic to
SO(2). Moreover, one can check that Tθ ◦ κ = κ ◦ T −1

θ , and thus the translation
and reflection operators generate a group isomorphic to O(2) [30]. It was also
shown in various studies [27–30] that the 1D nonlocal hyperbolic system (5.14)
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with communication mechanisms M1–M5 (see also Fig. 5.5 and Table 5.1) is O(2)-
invariant: if u(x, t) = (u+(x, t), u−(x, t)) is a solution of (5.14), then Tθ · u(x, t)

and κ · u(x, t) are also solutions of (5.14).
The symmetry structure of nonlocal 1D hyperbolic models (5.14), together

with the types of bifurcations exhibited by these models (i.e., real or complex
bifurcations), was used in [27, 28] to classify rigorously the patterns emerging
near codimension-2 Hopf/Hopf and Hopf/Steady-state bifurcations, via the isotropy
subgroups generated by the O(2) action on the elements of the hyperbolic system.
As an example, we show in Table 8.1 the isotropy subgroups of the O(2)×T

2 action,
together with the corresponding types of solutions. For more details, we refer the
reader to the studies by Buono and Eftimie [27, 28].

Regarding the 2D kinetic models discussed in this study, we note that there are
different studies in the literature which investigate the symmetry and invariance
properties of various Vlasov-type and Boltzmann-type equations (mainly in 2D, but
a few also in 1D) [31–37]. Some of these studies have shown that the collision
integral operator for the Boltzmann equation is SO(2)-invariant [31]. Although
none of these studies focused on the application of Boltzmann-like equations to
describe the collective movement of cells/bacteria/animals, we expect that many of
the models discussed in Chap. 6 are also SO(2)-invariant. Finally, since in Chap. 6
we mentioned the Fokker-Planck equations that were derived from Boltzmann-
type models via grazing collision limits, it is worth noting that over the last
three decades various mathematical studies in the literature have investigated the
symmetries of such Fokker-Planck equations [38–41]. A few studies also focused
on the bifurcations around homogeneous and heterogeneous states in Vlasov and
Vlasov-Fokker-Plank systems used to describe different physics problems [42].
However, it is expected that biological applications of such systems (see some of
the biologically-inspired kinetic models described in Chap. 6) could lead to more
complex bifurcations.

8.4 Compact Operators and the Fredholm Alternative

Since the Lyapunov-Schmidt reduction (not discussed in this monograph, but
reviewed in [30]) and the weakly-nonlinear analysis (discussed in Sect. 8.5)
approaches used to reduce the infinite-dimensional nonlinear PDE systems to finite-
dimensional ODE systems to study bifurcation dynamics, are based on Fredholm
operators and the Fredholm alternative, in the following we present a few definitions
related to these two topics. Consider thus two Banach spaces, X and Y (see also
Table 2.1).

Definition 8.12 A linear operator (or a linear transformation) T : X → Y is
bounded if there is a constant M such that

||T u||Y ≤ M||u||X, for all u ∈ X.
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Definition 8.13 A bounded linear operator T : X → Y is compact if for each
bounded sequence ui ⊂ X, there exists a subsequence {uik } such that {T uik} is
convergent.

If T : X → Y is a bounded linear operator, we define its range (Ran(T )) by

Ran(T ) := {y ∈ Y |∃ x ∈ X, s.t. T x = y},

and its kernel (ker(T )) by

ker(T ) = {x ∈ X|T x = 0}.

Definition 8.14 A Fredholm operator is a bounded linear operator T : X → Y

with finite-dimensional kernel ker(T ) and cokernel coker(T ) = Y/Ran(T ), and
closed range Ran(T ). We denote by F (X, Y ) the space of all Fredholm operators
between X and Y .

Definition 8.15 The index of a Fredholm operator is defined as

index(T ) = dim ker(T )− dim coker(T )

Note that the index of an operator is a measure of how invertible an operator is.
In particular, if T is an invertible operator then index(T ) = 0. The index of a
Fredholm operator has some properties:

• If T is a Fredholm operator and K is a compact operator, then T + K is a
Fredholm operator and index(T +K) = index(T ).

• If T and S are Fredholm operators, the T S is Fredholm and index(T S) =
index(T )+ index(S).

• If T is a Fredholm operator, the adjoint T ∗ is also Fredholm, and index(T ∗) =
−index(T ).

Theorem 8.2 (Fredholm Alternative) Consider a compact operator T : X → X,
and λ ∈ C non-zero. Only one of the following statements hold true:

(i) Equation T u = λu has a non-trivial solution u ∈ X;
(ii) The operator T − λ has a bounded inverse (T − λ)−1 on X.

The second statement is equivalent to the fact that the non-homogeneous equation
T u = λu − f has a unique solution for each f ∈ X. One can prove the
Fredholm alternative using the index theory of Fredholm operators (by showing
that index(T − λ) = 0, which implies that T − λ is surjective whenever there is no
eigenvalue).

Moreover, the Fredholm alternative can be restated in terms of Fredholm indices
[43]: if K is a compact operator and λ �= 0, then λI − K is Fredholm, and
index(λI −K) = 0

It should be mentioned that the Fredholm alternative can be used to establish
spectral results for compact operators. Note that the spectrum of an operator T is
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defined as [43]:

σ(T ) = {λ ∈ C|λI − T is not invertible}.

Buono and Eftimie [30] showed that for the nonlocal hyperbolic systems (5.14),
the operator T = d

dt
−L (with L the linearised operator at a steady state u∗(x)) is a

Fredholm operator of index zero. It was also proven that the spectrum of L is made
up of a finite number of eigenvalues with finite multiplicity [30]. This result ensures
that the Centre Manifold Theorem (see Sect. 8.6) holds for this class of nonlocal
hyperbolic systems (5.14).

8.5 Analytical Approaches for the Investigation of Patterns:
Weakly Nonlinear Analysis

The method of weakly nonlinear analysis generalises the linear stability analysis
performed near a bifurcation point, by including also nonlinear terms (via an
asymptotic expansion). As discussed above, the linear stability analysis is valid
only for small time and infinitesimal perturbations, and cannot capture the long-time
effect of the nonlinear terms which dominate the growth of the unstable modes. To
overcome this impediment, the weakly nonlinear analysis uses two separate time
scales: a fast time scale described by the original time variable t (which gives the
time region where the solution starts to develop), and a slow time scale (T = εmt ,
for some m > 0) on which the effects of the nonlinear terms become important.
(Note that close to the bifurcation point, the amplitude of the patterns evolves on a
slow temporal scale.) It is assumed that as ε → 0, the two time variables (t and T )
are independent. The weakly nonlinear analysis then reduces the dynamics of the
full system to the temporal evolution (on the slow time scale) of the amplitude of
the perturbations of the steady state, and these differential equations (either ODEs
or PDEs) are faster to solve than the full nonlinear systems.

Although the weakly nonlinear analysis can be performed in the neighborhood
of codim-1 [44] and codim-2 points [27, 28], in the following we focus on the
simpler case of codimension-1 bifurcations (with real eigenvalues) and describe the
main steps of this approach. To this end, we consider the 1D nonlocal hyperbolic
system (5.14) introduced in [14, 44], which can exhibit codimension-1 steady-state
bifurcations as we vary, for example, the magnitude of attractive interactions qa .
Denote by q∗a the critical value of qa for which the dispersion relation satisfies
σ(q∗a , kc) = 0 (where k = kc > 0 is the critical wavenumber; e.g., kc = k2
in Fig. 8.2a for the dispersion relation described by the dotted curve). A solution
of (5.14) near the bifurcation point is given by (see [44])

u±(x, t) ∝ eσ t+ikcx + c.c., (8.29)
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where “c.c” stands for “complex conjugate”. Perturbing the parameter qa in the
neighborhood of its critical value, qa = q∗a + νε2 (with 0 < ε � 1 and ν =
±1 a parameter that will give the direction of the bifurcating solution branches),
substituting this expression into the dispersion relation σ(qa, kc) and expanding it
into Taylor series about q∗a leads to the following eigenfunction for the solution:

eσ(qa,kc)t+ikcx ≈ e
ikcx+σ(q∗a ,kc)+ dσ(q∗a ,kc)

dqa = e
ikcx+ dσ(q∗a ,kc)

dqa = α(ε2t)eikcx. (8.30)

Since the amplitude of the solution depends on the slow time ε2t , the authors in
[44] introduced a slow-time variable T = ε2t . The left-moving and right-moving
densities were re-written as u±(x, t) = ũ±(x, t, ε, T ). After dropping the tilde for
simplicity and assuming a formal expansion of u± in powers of ε,

u+(x, t, ε, T ) = u+∗ + εu+1 + ε2u+2 + ε3u+3 +O(ε4),

u−(x, t, ε, T ) = u−∗ + εu−1 + ε2u−2 + ε3u−3 +O(ε4),

these expressions can be substituted into the nonlinear system (5.14). The nonlinear
turning rates λ±[u+, u−] are then expanded in Taylor series about the steady states
u±∗ . Overall, the nonlinear hyperbolic system (5.14) can be re-written as

0 = N
(∑

j≥1

εjuj

) ≈∑
j≥1

(L (uj )+Nj (uj−k)+ Ej ), k ≥ 1. (8.31)

Here, L (uj ) describes the linear part of the system (5.14), Nj (uj−k) contains
nonlinear terms formed of u±j−1, u±j−2, etc. (which were calculated at previous

O(εj−k) steps, where k ≥ 1), and Ej contains the slow time derivatives ∂T u±j−2
(for j ≥ 3) and the terms multiplied by ν. While the linear operator L is the same
at each O(εj ), the nonlinear operators Nj and Ej are calculated at each j -step. For
the nonlocal system (5.14) described in [44], the linear operator L is given by

L (u) =
(

γ ∂x + L1 +M5K � · −L1 +M5K � ·
−L1 −M5K � · −γ ∂x + L1 −M5K � ·

)(
u+
u−

)
, (8.32)

where L1 and M5 are constants depending on the steady states and the various
model parameters, while the convolutions “K�·” are defined as a difference between
repulsive and attractive nonlocal interactions:

K � u± = qr

(
K̃r � u± −Kr � u±

)− q∗a
(
K̃a � u± −Ka � u±

)
, (8.33)

with K̃r,a(s) = Kr,a(−s) and Kr,a � u±(x) = ∫∞
−∞ Kr,a(s)u

±(x − s)ds.
At O(ε1) the nonlinear terms are zero (N1 = E1 = 0), and solving the nonlinear

system (5.14) reduces to solving the linear system L (u) = 0, which has a nontrivial
solution. For this reason, at each O(εj ), j ≥ 2, the nonlinear system L (uj ) =
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Nj +Ej has a solution if and only of Nj +Ej satisfies the Fredholm alternative. To
check whether this alternative is applied, one needs to investigate first whether the
linear operator L is compact. Consider the Hilbert space [44]

Y = {v(x, t) ∈ [0, L] × [0,∞)| lim
T→∞

1

T

∫ T

0

∫ L

0
|v|2dxdt < ∞} (8.34)

with the inner product

〈v, w〉 = lim
T→∞

∫ T

0

∫ L=2π/kc

0

(
v1w̄1 + v2w̄2)dxdt. (8.35)

Here v = (v1, v2)� and w = (w1, w2)�, which satisfy periodic boundary
conditions. Since v are bounded on L2([0, L] × [0, T ]) (see [44]), then
limT→∞(1/T )||v||2

L2([0,L]×[0,T ]) is finite. Because the linear operator L is given
also in terms of the differential operator ∂/∂x (which is not bounded), one needs
to interpret this differential operator as a distribution in a Sobolev subspace of Y .
Consider the space

Vbc = {(v+, v−) ∈ Y |(∂xv
+, ∂xv−) ∈ Y, and v±(L, t) = v±(0, t)}, (8.36)

with the norm ||v||2Vbc
= ||(v+, v−)||2Y +||(∂xv

+, ∂xv−||2Y , which is associated with
the inner product (8.35). As discussed in [27], the linear operator L : Vbc → Y

is bounded, and following the approach in Kmit and Recke [45] for linear local
hyperbolic systems, one can show that L is a Fredholm operator; see the proof for
nonlocal hyperbolic systems in [30].

Since the Fredholm alternative can be applied, the term Nj + Ej has to be
orthogonal on the bounded solution of the adjoint homogeneous problem L ∗(û) =
0:

〈û, (Nj + Ej )〉 = 0. (8.37)

Focusing only on those terms in Nj +Ej that contain the exponentials e±ikcx (since
they give rise to secular solutions that grow unbounded), and substituting these
terms into the inner product (8.37) one eventually obtains the following differential
equation for the evolution of the amplitude α(T ) (truncated here at the third order
α|α|2):

dα

dT
= −ναY − α|α|2X, (8.38)

where X and Y are constant terms that depend on model parameters. This complex
amplitude can be re-written as α(T ) = R(t)eiθ(T ), with real terms R(T ) = |α| and
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θ(T ) that satisfy

dR

dT
= −νR (Y )− R3 (X), (8.39)

dθ

dT
= −ν"(Y )− R3"(X). (8.40)

Here " and  denote the imaginary and real parts of the coefficients X and Y .
The equation for the real amplitude R(T ) exhibits two steady states: R = 0 and
R = √−ν (Y )/ (X). The stability of these states can be investigated in a classical
way via small perturbations: R(T ) = R∗ + Rδ , with R∗ denoting the steady state
and Rδ being a small perturbation which satisfies

dRδ

dT
= Rδ

(− ν (Y )− 2R∗2 X
)
. (8.41)

It is easy to observe that the zero state R∗ = 0 is stable for ν (Y ) > 0 and
unstable otherwise. In contrast, the nonzero state R∗ = √−ν (Y )/ (X) is stable
for ν (Y ) < 0 and unstable otherwise. One can graph the solution of (8.39) (and
its stability) for the exact parameter values used during numerical simulations, to
obtain bifurcation diagrams for the amplitudes of the solution branches as functions
of parameter values (e.g., qa here). We graph two caricature examples of the
bifurcating branches in Fig. 8.7 (see also Fig. 5.9 for bifurcation diagrams based
on specific model parameters, as we vary the magnitude of alignment qal).

Remark 8.4 Note in Fig. 8.7a that the 3rd-order truncation of the amplitude equa-
tion (8.38) allows only for the detection of the main nontrivial amplitude branch
that bifurcates from α = 0 at qa = q∗a . The fact that this branch is unstable,
it suggests that there exists also a stable high-amplitude spatially heterogeneous
solution towards which the small perturbations of the spatial homogeneous steady
state will grow, and which can be detected numerically. Therefore, in the range
qa ∈ (q∗, q∗a ] two qualitatively different stable states co-exit (together with an
unstable state). One could identify the secondary bifurcation point qa = q∗ where
the unstable branch α > 0 changes stability and becomes stable by considering
truncations of (8.38) up to the 5th and even 7th orders.

Remark 8.5 We also note in Fig. 8.7a a hysteresis phenomenon characterised by a
lack of reversibility in the dynamics of the system: for qa > q∗a the zero-amplitude
(α = 0) solution is unstable and small perturbations of it will grow and give rise
to high-amplitude spatially heterogeneous solutions (i.e., the solution jumps fast
to the upper red curve). As we decrease qa below q∗a the dynamics of the system
follows the stable high-amplitude branch, and does not decrease immediately to
α = 0. The solution jumps back to α = 0 only when qa = q∗. The bifurcation
at qa = q∗ is a saddle-node bifurcation. Moreover, the high-amplitude state exists
only for qa > q∗. It could be possible that for some very large qa (i.e., qa further
away from the bifurcation point qa) this high-amplitude state disappears through a
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Fig. 8.7 Caricature description of the bifurcation diagram near a codimension-1 bifurcation point,
in the (α, qa) plane. The continuous curves describe the stable states and the dashed curves
describe the unstable states. (a) Subcritical bifurcation obtained for ν < 0: for qa < q∗a small
perturbations of the homogeneous steady state (with zero amplitude) decay to zero, while large
perturbations (above the nonzero dashed curve) growth even larger towards a high-amplitude
spatially heterogeneous solution (which is detected numerically). At the point qa = q∗ (usually
located further away from the bifurcation point q∗a ) the unstable branch α > 0 becomes unstable
through a saddle-node bifurcation. For qa > q∗a small perturbations of the homogeneous steady
state grow towards a high-amplitude heterogeneous state. (b) Supercritical bifurcation obtained
for ν > 0: for qa > q∗a small perturbations grow and give rise to a small-amplitude spatially
heterogeneous solution, while for qa < q∗a the small perturbations decay towards zero as the
homogeneous steady state is stable

different bifurcation; however, this aspect cannot be investigated through a weakly
nonlinear analysis which loses its validity away from the bifurcation points.

Weakly nonlinear analysis has been applied to investigate the solutions emerging
in the vicinity of other bifurcation points [27, 28, 44]:

• a Hopf bifurcation point [44], where σ := ±iω and the solution can be
represented as

u±(x, t, T ) ∝ β(T )eiωt+ikcx + c.c. (8.42)

The equation for the variation of amplitude β(T ) on the slow time scale T is
similar to the one for the steady-state bifurcation point (8.38):

dβ(T )

dT
= −βY − β|β|2X, (8.43)

with X and Y given in terms of the model parameters. If we now take into
consideration also the reflection symmetry of the domain, we can represent the
solution as

u±(x, t, T ) ∝ β1(T )eiωt+ikcx + β2(T )eiωt−ikcx + c.c. (8.44)
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In this case, the equations for the variation of the amplitudes β1(T ) and β2(T )

are

dβ1(T )

dT
= −β1X1 + β1|β1|2X2 + β1|β2|2X3, (8.45a)

dβ2(T )

dT
= −β2Y1 + β2|β1|2Y2 + β2|β2|2Y3. (8.45b)

Note that by considering also the reflection symmetry, we obtain a system of
coupled normal form equations, which exhibits more complex steady states
compared to Eq. (8.43).

• a Hopf/Hopf bifurcation point [27], where the solution can be represented as
(considering also the reflection symmetry of the domain):

u±(x, t) ∝ α1(T )eiω(km)t+ikmx + α2(T )eiω(km)t−ikmx + β1(T )eiω(kn)t+iknx

+β2(T )eiω(kn)t−iknx + c.c., (8.46)

with km �= kn the two distinct Hopf interacting modes. The equations for the
variation of the amplitudes on the slow-time scale T are given as follows:

dα1(T )

dT
= −α1X1 + α1|α1|2X2 + α1|α2|2X3 + α1|β1|2X4 + α1|β2|2X5,

dα2(T )

dT
= −α2Y1 + α2|α1|2Y2 + α2|α2|2Y3 + α2|β1|2Y4 + α2|β2|2Y5,

dβ1(T )

dT
= −β1Z1 + β1|α1|2Z2 + β1|α1|2Z3 + β1|β1|2Z4 + β1|β2|2Z5,

dβ2(T )

dT
= −β2Ψ1 + β2|α1|2Ψ2 + β2|α2|2Ψ3 + β2|β1|2Ψ4 + β2|β2|2Ψ5.

The symmetries of the model lead to similarities between the parameters Xi , Yi ,
Zi and Ψi , i = 1, . . . , 5:

X1 = Y1, Z1 = Ψ1, X2 +X3 = Y2 + Y3, Z2 + Z3 = Ψ2 + Ψ3,

X4 +X5 = Y4 + Y5, Z4 + Z5 = Ψ4 + Ψ5.

Since these similarities in parameter values mean that the steady state solutions
have conjugate isotropy subgroups, it allowed the authors in [27] to ignore
some of the solutions of the above system of coupled amplitude equations.
We summarise in Table 8.1 the various types of solutions that emerge near a
Hopf/Hopf bifurcation point (given in terms of the above amplitudes) and their
corresponding isotropy subgroups; for details see [27].
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• a Hopf/Steady-state bifurcation point [28], where the solution can be represented
as (considering also the reflection symmetry):

u±(x, t) ∝ α(T )eikmx+β1(T )eiω(kn)t+iknx+β2(T )eiω(kn)t−iknx+c.c, (8.47)

with km the steady-state mode and kn the Hopf mode. The equations for the
variation of the amplitudes on the slow-time scale T are

dα

dT
= −αX1 + α|α|2X2 + α|β1|X3 + α|β2|2X4,

dβ1

dT
= −β1Y1 + β1|α|2Y2 + β1|β1|2Y3 + β1|β2|2Y4,

dβ2

dT
= −β2Z1 + β2|α|2Z2 + β2|β2|2Z3 + β2|β1|2Z4.

Parameters Xi , Yi , Zi , i = 1, .., 4, depend on model parameters, and are related
through the symmetries of the system [28].

• a steady-state/steady-state bifurcation point [28], where the solution can be
represented as

u±(x, t) ∝ α1(T )eikmx + α2(T )eiknx + c.c, (8.48)

with km and kn the two distinct steady-state modes. The equations for the
evolution of the amplitudes are

dα1(T )

dT
= −α1X1 + α1|α1|2X2 + α1|α2|2X3,

dα2(T )

dT
= −α2Y1 + α2|α1|2Y2 + α2|α2|2Y3.

Remark 8.6 We need to discuss briefly the normal form equation (8.38) (and
implicitly the coupled systems of normal form equations given above). In general,
one assumes that the amplitude α depends not only on the slow time scale T but
also on a slow space variable X = εpx. This leads to a PDE (i.e., a Ginzburg-
Landau amplitude equation) for the evolution of α(X, T ). However, for the nonlocal
hyperbolic system (5.14) with periodic boundary conditions, the zero mode k = 0
is not an admissible mode (due to the conservation of the total density, which is
not satisfied by eigenfunctions with modes k = 0 on finite domains with periodic
boundary conditions). In this case, one could assume that α = α(T ) and the
temporal evolution of the amplitude is reduced to an ODE (8.38) (i.e., a Stuart-
Landau amplitude equation).

However, since numerical simulations for these nonlocal hyperbolic models have
shown the existence of patterns with space-modulated amplitudes (see the semi-
zigzags and travelling breathers in Fig. 5.7f, i) it would be interesting to investigate
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the evolution of the space-modulated amplitude equation (α(X, T )) on infinite
domains.

8.6 Centre Manifold Theory

We have seen in Sect. 8.5 that the multiple scales approach for the weakly nonlinear
analysis reduces the infinite-dimensional PDE system (5.14) to a finite-dimensional
ODE system that can be investigated more easily (and which preserves the stability
and bifurcation structure of the original system). Other approaches that can be
used to reduce the hyperbolic and kinetic equations/systems to more manageable
equations/systems are the Centre Manifold reduction and the Lyapunov-Schmidt
reduction. The Centre Manifold reduction focuses on finding a dynamical subsystem
invariant under the flow of the full system (and which contains the bifurcation
that needs to be investigated), while the Lyapunov-Schmidt reduction focuses on
identifying an equation for the equilibria (fixed points or periodic solutions), and
then performing a reduction of this equation to a low-dimension set of algebraic
equations (also called the bifurcation equations) [46]. A review of these two
approaches in the context of nonlocal hyperbolic systems can be found in [30].
Note that the Fredholm property of the linear operator L , which we discussed in
Sects. 8.4 and 8.5, is central to the application of the Lyapunov-Schmidt reduction;
see [30]. However, in the following we will ignore the Lyapunov-Schmidt reduction,
and focus only on the Centre Manifold reduction. For a detailed presentation of the
Lyapunov-Schmidt reduction in both finite and infinite dimensions, we refer the
reader to [46].

Mirroring the approach in Sect. 8.1 (where we first looked at linear stability
results in ODE systems and then in PDE systems), here too we start our discussion
on the Centre Manifold Theorem (which ensures the possibility of having a Centre
Manifold reduction to simplify the model dynamics around a non-hyperbolic fixed
point) by focusing first on the finite-dimensional systems. Then, we consider its
generalisation to infinite-dimensional systems. This approach allows us to show
how the classical, simple version of the theorem that is listed in almost all books
on dynamical systems and bifurcation theory [6, 9], is generalised to infinite
dimensions through the addition of some extra assumptions.

• Finite-dimensional systems. In the following we give the statement of the
Centre Manifold Theorem for ODE systems. We also discuss the form of the
extended centre manifold, which includes also a dependence on parameters and
thus can be used for bifurcation results. But first let us define the stable, unstable
and centre subspaces of a linear system du/dt = Au. To this end, assume that
matrix A has eigenvalues λj = aj + ibj , and corresponding to these eigenvalues
there are the generalised eigenvectors wj = w1

j + iw2
j . Then the stable (Es),

unstable (Eu) and centre (Ec) subspaces spanned by the real and imaginary parts
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of the eigenvectors wj corresponding to eigenvalues λj are:

Es = Span{w1
j , w

2
j |aj < 0},

Eu = Span{w1
j , w

2
j |aj > 0},

Ec = Span{w1
j , w

2
j |aj = 0}.

Theorem 8.3 (Centre Manifold Theorem [9]) Consider the nonlinear system

du

dt
= f (u), u ∈ R

n, (8.49)

with f ∈ Cr(E), r ≥ 1, and E ⊂ R
n which includes the origin. Assume that

f (0) = 0, and Dfu(0) has p eigenvalues with positive real parts, k eigenvalues
with negative real parts, and m = n − p − k eigenvalues with zero real parts.
Then there exists a m-dimensional centre manifold Wc(0) tangent to the centre
subspace Ec at 0, a k-dimensional stable manifold Ws(0) tangent to the stable
subspace Es at 0, and a p-dimensional unstable manifold Wu(0) tangent to the
unstable subspace Eu at 0.

Locally, system (8.49) can be written as

du

dt
= Cu+ F(u, v),

dv

dt
= Pv +G(u, v), (8.50)

with (u, v) ∈ R
m×R

k+p, C is a square matrix with m eigenvalues with zero real
parts, and P is a square matrix with k eigenvalues with negative real parts and
p eigenvalues with positive real parts. Moreover, F(0) = G(0) = 0, DF(0) =
DG(0) = 0, and there is a function h(u) = v (that defines the central manifold)
such that the flow on the central manifold is given (locally, for |u| < δ) by

du

dt
= Cu+ F(u, h(u)), for all u ∈ R

m with |u| < δ. (8.51)

In the context of bifurcation theory, we need to consider also the effect of a
parameter μ. For this reason, we work on extended central manifolds, where we
generalise Eq. (8.50) through the addition of a trivial equation for the derivative
of parameter μ:

du

dt
= Cu+ F(u, v, μ),

dv

dt
= Pv +G(u, v,μ),

dμ

dt
= 0. (8.52)

We note that the equation for the derivative of μ adds one more dimension to
the centre manifold (= m + 1), since now we work in the neighbourhood of
(u, v) = (0, 0) and μ = 0 (where the bifurcation occurs). Moreover, the equation
that parametrises the centre manifold now has the form v = h(u,μ). Therefore,
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the equation for the extended central manifold can be written as

du

dt
= Cu+ F(u, h(u,μ), μ). (8.53)

If u is a scalar and C = 0, then the above equation can have three possible
descriptions, corresponding to the saddle-node, transcritical and pitchfork bifur-
cations discussed in Sect. 8.2:

Saddle-node:
du

dt
= μ+ cu2,

Transcritical:
du

dt
= μu+ cu2,

Pitchfork:
du

dt
= μu+ cu3.

For a detailed proof of the Centre Manifold Theorem, we refer the reader to
[9, 47].

• Infinite-dimensional systems. The centre manifold theory for PDEs has been
developed in various studies published over the past three decades (see [5, 48–
51] and the references therein). In the following we give the assumptions and
the statement of the Centre Manifold Theorem for infinite-dimensional systems
(following the approach in [5]), and then discuss the applicability of this theorem
to the class of nonlocal 1D hyperbolic systems (5.14) discussed in Chap. 5.

First, let us consider three Banach spaces, X, Y and Z, which satisfy the
following continuous embeddings:

Z ↪→ Y ↪→ X. (8.54)

We define L(Z,X) to be the Banach space of linear bounded operatorsL : Z →
X, with the operator norm

||L ||L(Z,X) = sup
||u||Z=1

(||L u||X) (8.55)

For some k ≥ 2 we define C k(Z,X) the Banach space of functions b : Z →
X that are k-times continuously differentiable. The space is equipped with the
following norm:

||b||C k = max
j=0,...,k

(
sup
y∈Z

||Djb(y)||L(Zj,X)

)
, (8.56)

where D denotes the differential operator. Finally, for a constant η > 0, we define
the space Cη(R,X) of exponentially growing functions with the norm

||u||Cη = sup
t∈R

(
e−η|t |||u(t)||X

)
< ∞, for u ∈ C 0(R,X). (8.57)
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Assume now that a generic PDE can be represented as

du

dt
= F(u) = L u+N (u). (8.58)

Here L and N are the linear and nonlinear parts of operator F . Next, we list the
hypotheses that need to be satisfied by L and N for the existence of a central
manifold, as given in [5]:

(A) Assume that L ∈ L(Z,X), and for some k ≥ 2 there exist a neighborhood
V (0) of 0 such that N ∈ C k(V , Y ) and N (0) = 0 (i.e., u = 0 is an
equilibrium of (8.58)) and DN (0) = 0 (i.e., L is the linearisation of the
operator N about 0).

(B) Consider the spectrum σ of the linear operator L , which is defined as σ =
σ+

⋃
σ0

⋃
σ−, with

σ+ = {λ ∈ σ |Re(λ) > 0}, σ0 = {λ ∈ σ |Re(λ) = 0},
σ− = {λ ∈ σ |Re(λ) < 0}.

Assume that there is a positive constant g > 0 such that

inf
λ∈σ+

(Reλ) > g and sup
λ∈σ−

(Reλ) < −g. (8.59)

Moreover, assume that the set σ0 has a finite number of eigenvalues with
finite algebraic multiplicities.

(C) Let P0 be the projection onto the generalised eigenspaces of σ0, and define
Ph = I−P0. Consider now the linear operatorLh which is the restriction of
L to d(L )h = PhD(L ). Then, for any η ∈ [0, g] and any f ∈ Cη(R, Yh),
the linear problem

duh

dt
= Lhuh + f (t) (8.60)

has a unique solution uh = Khf ∈ C (R, Zh), with Kh a bounded linear
operator from Cη(R, Yh) to Ch(R, Zh)

)
. Also, there exist a continuous map

C : [0, g] → R such that

||Kh||
L

(
Cη(R,Yh),Ch(R,Zh)

) ≤ C(η). (8.61)

Theorem 8.4 (Centre Manifold Theorem [5]) Assume that hypotheses (A)–(C)
hold. Then there exist a map Ψ ∈ C k(E0, Zh) with Ψ (0) = 0, DΨ (0) = 0, and
a neighborhood of 0, O(0) ∈ Z such that the manifold

M0 = {u0 + Ψ (u0), for u0 ∈ E0} ⊂ Z (8.62)
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satisfies the following conditions:

(i) M0 is locally invariant;
(ii) M0 contains the set of bounded solutions of (8.58) that stay in O for all

t ∈ R.

Here, the manifold M0 is called a local centre manifold, while the map Ψ is
called the reduction function.

If we consider now a solution u of (8.58), with u ∈ M0, then we can write
u = u0 + Ψ (u0), with u0 satisfying

du0

dt
= L0u0 + P0N (u0 + Ψ (u0)). (8.63)

Here, L0 is the restriction of L to E0 = Range(P0) = {P0u ∈ X|u ∈ Z}.
As for the finite-dimensional case, let us consider a parameter-dependent

PDE,

du

dt
= F(u) = L u+N (u, μ), (8.64)

with N (u, μ) defined in the neighborhood of (0, 0) ∈ Z × R
m. Then we obtain

an analogue of the previous Centre Manifold Theorem, with the parameter-
dependent local extended centre manifold given by [5]:

M0(μ) = {u0 + Ψ (u0, μ), for u0 ∈ E0} ⊂ Z. (8.65)

To understand better the difficulties of applying this theorem to hyperbolic
systems, let us first give the following spectral property.

Definition 8.16 (Spectral Mapping Property [52]) Consider A an infinitesi-
mal generator of a C0 semigroup eAt . Then A has the spectral mapping property
if the spectrum of this semigroup, σ(eAt ), satisfies:

σ(eAt ) \ {0} = eσ(A)t \ {0}, for t ≥ 0, (8.66)

where eσ(A)t denotes the closure of the set.

It was shown by Renardy [53] that for hyperbolic systems the spectral
mapping property does not generally hold (see also the dispersion relation shown
in Fig. 4.7, for the local hyperbolic system introduced in [15]). This impacts
the validity of the Central Manifold theorems for hyperbolic systems (since
the hypothesis (B) given above is violated). Lichtner [52] has proven that this
spectral property holds for a class of linear hyperbolic systems. Moreover,
different versions of the Central Manifold Theorem were proven for various
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(local) hyperbolic systems with applications to fluid dynamics or lasers [54–
56]. Returning to the class of nonlocal 1D hyperbolic models (5.14) introduced
in Chap. 5, it was shown in [30] that if u∗∗(x) is a steady state solution of the
nonlocal hyperbolic system (5.14) and L is the linearised operator at u∗∗(x),
then the spectrum of L contains isolated eigenvalues with finite multiplicity and
no accumulation point in C. Moreover, this spectrum has only a finite number
of eigenvalues with finite multiplicity on the imaginary axis [30], and thus
hypothesis (B) holds true. Using the model symmetries to decompose (5.14) into
a family of finite-dimensional systems, it was shown in [30] that also hypothesis
(C) was satisfied.

We emphasise that the validity of the spectral property for the various
hyperbolic/kinetic models discussed throughout this monograph is still an open
problem.

We conclude this section by giving the statement of the Contraction Mapping
Theorem (which is used in the construction of the Centre Manifold [47], or in the
proof of existence of unique solutions for hyperbolic systems—as mentioned in
Chap. 4). To this end, we use the version of the theorem stated in [47].

Theorem 8.5 (Contraction Mapping Theorem [47]) Consider two Banach
spaces X and Y , and a continuous map F : X × Y → Y that is a contraction
in the second variable:

||F(x, y)− F(x, y ′)|| ≤ k||y − y ′||, ∀ x ∈ X, ∀ y, y ′ ∈ Y, and some k < 1.

The following results hold true:

1. For every x ∈ X, there exists a unique fixed point y(x) ∈ Y for the map F :

y(x) = F(x, y(x)).

2. For every x ∈ X, y ∈ Y , the following inequality holds true:

||y − y(x)|| ≤ 1

1− k
||x − x ′||.

3. If the map F is Lipschitz continuous with respect to x,

||F(x, y)− F(x ′, y)|| ≤ L||x − x ′||, ∀x, x ′ ∈ X, ∀y ∈ Y,

then the map x → y(x) is also Lipschitz continuous with respect to x:

||y(x)− y(x ′)|| ≤ L

1− k
||x − x ′||.
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4. For any convergent sequence xn → x̄ ∈ X, and any y0 ∈ Y , the sequence of
iterates yn+1 = F(xn, yn) converges to the fixed point ȳ = y(x̄).

For a proof of this theorem see [47].

8.7 Stochastic Bifurcations

As we have seen numerically at the end of Chap. 5, stochastic hyperbolic models
could also exhibit various bifurcations when we vary model parameters. These
bifurcations could represent transitions between two different deterministic-types
of patterns, or transitions between deterministic and random patterns (e.g., from a
travelling pulse for low noise, to a chaotic zigzag for medium noise, and a stationary
pulse for high noise; see Fig. 5.26a).

Similar to the deterministic case, the stochastic bifurcation theory focuses on
qualitative changes in parametrised classes of stochastic dynamical systems [57].
While the bifurcation theory for deterministic PDE systems is well developed
[3, 17], the field of stochastic bifurcations for stochastic PDEs is still not fully
developed [58], and to our knowledge it was never applied to the very few
stochastic hyperbolic/kinetic models derived to investigate pattern formation in
animal aggregations. For this reason, we will not detail here the basic concepts of
stochastic bifurcation theory, but we refer the reader to the books by Arnold [59]
and Blömker [58] (which introduce and develop the concepts of bifurcation theory
for stochastic ODEs and PDEs). However, for the completeness of our discussion
on bifurcations, in the following we discuss briefly two approaches used to describe
bifurcations in the context of random dynamical systems. As noted in [58], these
two approaches sometimes can give completely different results.

• A D-bifurcation or dynamical bifurcation is characterised by changes in the
structure of the random attractor (e.g., as shown by the sign changes in the
Lyapunov exponents for the random dynamical system);

• A P-bifurcation or phenomenological bifurcation is characterised by changes
in the density function for stationary measures associated with the random
dynamical system.

These two concepts can be used to describe the classical types of bifurcations that
can appear in a stochastic context (e.g., stochastic pitchfork, stochastic transcritical,
saddle node, or Hopf bifurcations) [57, 60, 61].

Similar to the case of deterministic PDEs, one could approximate the stochastic
PDEs with amplitude equations for the dominant modes, which could be then used
to investigate the impact of noise on the dynamics of the system near points of
changes in stability [58]. However, one needs to emphasise that, as for deterministic
hyperbolic PDEs, spectral gap properties might impact the possibility of deriving
such amplitude equations through random centre manifold reductions.
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8.8 Bifurcation and Symmetry Theory in the Context
of Hyperbolic/Kinetic Models

To conclude this chapter, we need to review the application of the previous notions
of stability and bifurcation theory to the kinetic and hyperbolic models discussed in
the previous chapters. In this context, we note that the calculation of the steady states
and their stability (as well as the existence of different classical and weak solutions)
are relatively common approaches taken when investigating the patterns generated
by different models [14, 27, 29, 44, 62–69]. However, the analytical investigation
of the branches bifurcating at different points where spatially homogeneous and
heterogeneous solutions loose their stability is still an open problem for the vast
majority of models discussed throughout this monograph, as well as for many other
models in the literature (which were not even mentioned here, due to the limited
space and purpose of this study). As we have seen above, one of the main reasons for
this lack of results is the applicability of the Centre Manifold Theorem for different
classes of hyperbolic systems. While it was shown in [30] that this theorem holds
for the nonlocal 1D hyperbolic systems introduced in Chap. 5, its applicability to
the majority of all other hyperbolic/kinetic models discussed here is still an open
problem.

Similarly, the impact of various symmetries on model dynamics has been
mainly investigated for nonlocal hyperbolic models [27–30]. As seen above in
our discussion on the symmetries of Boltzmann and Fokker-Planck models, many
other models in the literature do exhibit similar O(2) and SO(2) symmetry, which
impacts the types of patterns one expects to see [3]. However, this investigation
is still an open problem in the context of the models for collective behaviours
in biology. Equally an open problem is the understanding of the similar-looking
patterns displayed by some deterministic hyperbolic models with symmetry and the
corresponding stochastic models without symmetry (see Fig. 5.26).

The impact of this lack of results on the understanding of the bifurcating
dynamics of the models summarised in this monograph will become more evident
in the next Chapter, as Table 9.1 will show that only the nonlocal hyperbolic
systems discussed in Chap. 5 have been observed to exhibit a large variety of
spatial and spatio-temporal patterns (some of which were identified through the
rigorous investigation of the solution branches bifurcating near codim-1 and codim-
2 points). However, it is expected that many other hyperbolic and kinetic classes
of models could exhibit equally interesting spatial and spatio-temporal patterns
and bifurcations. The identification of these potential patterns can only be done
by combining analytical approaches with intensive numerical simulations (which
still needs to be performed for the majority of models discussed throughout this
monograph).
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Chapter 9
Discussion and Further Open Problems

9.1 Summary

For the past 30 years, hyperbolic and kinetic models have been used to investigate
the growth, movement and self-organisation of cells, animals, and even human
pedestrians. One of the main reasons for employing such models—as opposed to
the classical parabolic models—is their finite propagation speed that makes them
more biologically realistic. Another reason is that these models do seem to exhibit
a richer pattern dynamics compared to the parabolic models.

In this study, we reviewed some of the local and nonlocal hyperbolic and kinet-
ics models derived to investigate various biological aggregations and traffic-like
movement. We presented models that investigated the movement and aggregation
of various bacteria (e.g., Myxobacteria, Escherichia Coli), cells (e.g., tumour cells),
and animal populations (e.g., flocks of birds or herds of ungulates). Moreover,
since traffic-like collective movement is such a common behaviour in biology (from
intracellular transport, to ant traffic and pedestrian self-organised movement [1–
3]), we also discussed some traffic flow models. (Although it may seem unusual
to discuss car-traffic models in a monograph focused on biological phenomena, we
chose to do so at the beginning of Chap. 3 since the same car-traffic models have
been applied to describe pedestrian traffic and collective behaviours, and further
generalised to biological traffic, such as cellular, bacterial and ants traffic.)

Our goal was not to provide a very comprehensive review of these hyperbolic
and kinetic models. Rather, we wanted to present the complexity of the biological
and mathematical problems, and to summarise the patterns exhibited by the models.
Moreover, since this study is intended for researchers not familiar with these types
of models (and the analytical and numerical approaches derived to investigate them),
we took a step-by-step approach to present a clearer view of the motivations and the
costs associated with increased model complexity. We started with the simplest one-
dimensional models described by advection or advection-reaction equations. Then,

© Springer Nature Switzerland AG 2018
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we investigated systems of local and non-local hyperbolic models that have constant
or density-dependent speeds and turning rates. Finally, we discussed a couple of
kinetic models in higher dimensions, and their hydrodynamic limits (and in some
cases their parabolic limits). By choosing this structural approach to review the
hyperbolic and kinetic models, we were able to highlight the contribution of these
models to the investigation of group patterns in various communities of organisms.
We also stressed the difficulties that these complex models are confronted with,
such as the absence of analytical approaches to investigate some of the resulting
spatial and spatio-temporal patterns, and/or the absence of numerical approaches to
illustrate the behaviour of the more complex kinetic models.

The mathematical models reviewed in this study were mainly deterministic (even
if they were shown to exhibit also chaotic dynamics; see, for example, Fig. 5.23).
Even so, the kinetic models contained a stochastic component in the velocity, since
the turning events were usually governed by Poisson processes. However, recent
studies started to focus on models that incorporate stochasticity in an explicit
manner, either additively or multiplicatively, and thus we reviewed a few such
models at the end of Chaps. 5 and 6. Another way to incorporate stochasticity into
the models was to start with the Langevin equations for the motion of particles
(where external noise was added explicitly to particles’ velocity), and then derive
the corresponding stochastic kinetic and hyperbolic equations [4–6]. Note that this
Langevin approach (as well as the stochastic Ornstein-Uhlenbeck processes [7])
lead to distribution functions that satisfied equations which were hyperbolic with
respect to the space variable and parabolic with respect to the velocity variable. For
this reason, we chose not to describe them here in more detail.

The majority of models discussed here incorporated spatial dynamics. The few
exceptions were: (i) the kinetic models for active particles, where the population
could also change over an “activity” space; and (ii) the age-structured models, that
could describe the formation of human pairs [8], predator-prey dynamics [9], tumour
growth [10], or the epidemic spread of diseases [11] in age-structured populations.

9.2 Biological Relevance of Models’ Assumptions
and Generated Numerical Patterns

The numerical investigation of the patterns exhibited by the kinetic and hyperbolic
models reviewed in this study allows for a visual comparison of these theoretical
models with the patterns observed in nature, with the final goal of determining
whether the assumptions incorporated into the models can explain the reality. In
regard to animal behaviours, these assumptions usually refer to: (i) the necessity
of having repulsive-attractive-alignment interactions versus only alignment interac-
tions, or only attractive-repulsive interactions; (ii) the nature of spatial interactions
as determined by the various nonlocal kernels; (iii) the nature of inter-individual
communication mechanisms. In regard to cell behaviours, these assumptions usually
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refer to (i’) the strength of cell-cell adhesion versus the strength of cell-matrix
adhesion; (ii’) the appropriate incorporation of specific signalling pathways that
control cell macroscopic behaviours (e.g., movement, turning).

The mathematical models reviewed here were shown to exhibit a large variety
of spatial and spatio-temporal patterns. Many of these patterns can be connected to
empirically observed animal group behaviours: zigzagging flocks of birds, rippling
behaviours observed in Myxobacteria colonies, travelling pulses and stationary
pulses corresponding to moving (e.g., travelling schools of fish) and resting
aggregations, respectively. The expanding and contracting group behaviours that
characterise the breather patterns have been observed for example in flocks of
birds [12]. Vortices or mills (i.e., rotating groups) are group patterns observed quite
frequently in schools of fish (e.g., barracuda, bluefin tuna, or sharks [13, 14]) or
groups of ants [15]. The formation of shock waves (i.e., gradient blow-up patterns)
is a well known pedestrian behaviour observed during mass events which result in
panic stampede [16]. The travelling trains could describe the propagation of density
waves through the aggregation (a behaviour observed in schools of herring [17]).

While many of the mathematical patterns can be traced back to empirical
observations, there are also some biologically unrealistic patterns, such as the
density blow-ups. These patterns are mathematical artefacts caused by the particular
assumptions incorporated into the models (e.g., interaction kernels discontinuous
at the origin [18], or nonlinear production of an external signal [19]). When such
blow-up solutions occur, it is an indication that the model is no longer appropriate
to describe the behaviour of the biological system. We note here that these solutions
were displayed by both local and nonlocal hyperbolic models (see also Table 9.1 for
a summary of the patterns discussed here).

In regard to inter-individual communication, it was shown that some patterns
seem to be connected with specific communication mechanisms. For example,
mechanism M5—describing interactions with neighbours moving towards the
reference individual—seems to generate the observed ripples in Myxobacteria
colonies (irrespective of how this mechanism is incorporated into local or nonlocal
continuum models [20–22], or into individual-based models [23]). However, the
most common pattern observed in every biological aggregation, namely the sta-
tionary pulses, is associated with the majority of communication mechanisms (see
also Table 5.2). Moreover, when multiple communication mechanisms are used in a
combined manner by one group of individuals, it can lead to behaviours (patterns)
not predicted by the use of one communication mechanisms, including chaotic
behaviours; see the discussion in Sect. 5.6.

A recent review by Bellomo and Dogbé [24] discussed the derivation and use of
empirical data to validate models for traffic and crowds dynamics. Available data
usually refers to the speed and movement direction of cars and pedestrians [25–
27], as well as cells [28], bacteria [29, 30], fish [31], birds [32] or ungulates [33].
However, the incorporation of this data into kinetic and hyperbolic models is still an
open research area, with very few studies combining modelling with data analysis.

Another open research area is related to the translation of results obtained
with animal crowd models to the understanding of human behaviours [34, 35].
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When ethical concerns do not allow to experiment with human subjects, one could
focus on non-human subjects (e.g., ants, mice, sheep) to gain some understanding
on collective human behaviour (and movement) under specific conditions (e.g.,
extreme escape from various built environments). However, as recently discussed
in [36], there is the need to have a more systematic connection between animal and
human experiments, to be able to understand better the context in which reliable
inferences can be drawn from experiments with non-human crowds.

9.3 Directions for Future Research

We conclude the discussion of pattern formation in this monograph by summarising
some possible directions of future research. To this end, we focus on modelling,
numerical and analytical aspects.

Modelling Multiscale models have been developed intensively over the past years
in the context of cell dynamics, to connect macroscopic processes related to cell
movement and turning behaviours, to microscopic processes that occur inside cells
and control cell movement/turning. The majority of kinetic models in the litera-
ture consider simplifications of the molecular-level processes (i.e., cell signalling
pathways) involved in cell movement and turning. In the future it is expected that
more detailed signalling pathways will be incorporated into the multiscale models
for collective cell movement (e.g., the Erk/MAPK pathway, the JNK pathway or
the p38 signalling pathway that all have roles in cell migration [37]). Moreover, not
many multiscale models have been developed in the context of ecological collective
movement (among the very few we mentioned for human crowds [38, 39]). It is
expected that in the future, research in animal communication, animal psychology
and physiology will be combined with mathematical modelling of animal move-
ment, to increase our understanding regarding the collective behaviour of animals
[40].

Another aspect related to modelling that will develop further in the next years
is the incorporation of stochastic events in these hyperbolic/kinetic models. More
and more studies recognise the importance of environmental and demographic
stochasticity in animal/cell movement [41–43]. Until now the majority of models
for the collective movement of cells/bacteria/animals that incorporated stochasticity
have been of discrete type, with stochasticity affecting the individual level (see the
IBMs discussed briefly in Chap. 1). However, we expect that the upcoming decades
will see a significant increase in the development of stochastic transport models
for animal/cell dynamics, where noise will have an impact at the population level.
This will lead to the further development of analytical and numerical methods to
investigate the patterns generated by these new models.

Numerical Investigation of Patterns One of the most interesting (and most
difficult to investigate) aspects of patterns formation focuses on connecting the
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observed biological patterns to specific mathematical and biological mechanisms.
Intensive numerical investigations could provide some understanding of the bio-
logical mechanisms behind specific patterns. We mentioned before the connection
between the communication mechanism M5 and ripples [20, 21, 44, 45]. Stationary
pulses, on the other hand, are one of the most common patterns, being observed
in almost every model discussed here (see Tables 5.2 and 9.1, and the majority
of models discussed throughout this monograph). Hence, we cannot associate
this pattern with a specific biological mechanism. However, since many of the
models presented here have not been the subject of very thorough numerical
and analytical investigations, it is possible that they could exhibit even more
(possible exotic) patterns. The discovery of new spatial and spatio-temporal patterns
(especially for multi-dimensional nonlocal kinetic and hyperbolic models) requires
the development of fast numerical schemes, to be able to run multiple simulations
that would span large parameter spaces. This is particularly relevant for the multi-
dimensional (nonlocal) kinetic models. Intensive simulations are also required for
the numerical investigation of the bifurcation dynamics of these models, and the
tracking of various solution branches that can bifurcate at specific points in the
parameter space. In particular, new continuation algorithms need to be developed to
take into account the characteristics of these local/nonlocal hyperbolic and kinetic
models. One first step was recently made in [46], where the authors described
a continuation algorithm that considers the symmetry structure of the nonlocal
hyperbolic models presented in Chap. 5; see Eqs. (5.14), (5.18) and (5.19).

Analytical Investigation of Patterns While numerical simulations can offer
some insight into the mechanisms behind these patterns, analytical investigations
(using, for example, existence results, linear and nonlinear stability, bifurcation
and symmetry theory) are necessary to: (i) explain the role of model parameters
on the formation (or not) of the patterns, (ii) reduce the size of the parameter
space where we look for specific patterns, (iii) rigorously identify and classify
all patterns that could be exhibited by a mathematical model, (iv) decide whether
the model is biologically realistic (e.g., exhibits finite or blow-up patterns, and
if so in which biologically realistic/unrealistic parameter spaces?). As discussed
throughout this review, many hyperbolic and kinetic models have not been subjected
to detailed analytical investigation of pattern formation (and this could explain
the lack of patterns in columns 2, 3, 4 and 6 of Table 9.1). Moreover, apart
form classifying these patterns based on their symmetry subgroups (as discussed
in Chap. 8), it is unclear how else one could classify them. This classification
approach raises another question: how to classify the (similarly-looking) patterns
generated by the corresponding stochastic models (see Fig. 5.26), which have lost
the initial symmetry. It is likely that further analytical investigations would reveal
that these complex hyperbolic and kinetic models might generate new patterns and
bifurcations, whose investigation could be very challenging.
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Combining analytical and numerical approaches will lead to the further devel-
opment of the area of pattern formation in nonlocal kinetic and hyperbolic models.
Some of the questions that could be answered in the future are:

• Can the patterns observed in nonlocal models (especially the more exotic ones,
such as the feathers, breathers, zigzags) be exhibited also by the local models? If
not, why?

• Are the complex (exotic) patterns discussed throughout this monograph specific
only to the hyperbolic/kinetic models? In other words, if we develop parabolic
or individual-based models that incorporate communication mechanisms similar
to the ones discussed in nonlocal hyperbolic systems, can we obtain similar
patterns?

• Can the complex 1D patterns exhibited by the 1D nonlocal hyperbolic and kinetic
models be generalised to 2D models? If so, what are the mathematical/biological
assumptions that need to be incorporated into these 2D models, to generate the
appropriate patterns?

• How could one incorporate various 2D communication mechanisms into the
existent mesoscopic and macroscopic models for the collective behaviours
of cells/bacteria/animals? In this case, could the corresponding 2D patterns
be associated with particular communication mechanisms (or combination of
mechanisms)?

• How do we connect the 1D and 2D models for collective spatial movement of
cells/bacteria/animals to the available data? What kind of data is necessary to be
collected to parametrise these models, to allow for quantitative predictions?

• Could the assumption of “pairwise interactions”, which is incorporated into the
Boltzmann-type kinetic models, impede our understanding of the contribution
of other particles/cells to these interactions? This is a valid question since the
in vivo dynamics of cells is not always determined by pairwise interactions,
but by interactions with a variety of other cells via communication molecules
(cytokines, chemokines) produced by these cells. Similarly, it is less likely
that animals in group interact with their neighbours via “binary collisions”,
and is more likely that these interactions involve more than two individuals (if
the community comprises multiple individuals). Moreover the derivation of the
Boltzmann equation in the limit N → ∞ also requires that collisions involve
only uncorrelated particles, in the sense that particles that have collided already
will not collide again. This assumption does not seem to carry great biological
realism, since animals in a group will likely interact again.

• Can we understand the bifurcation structure of the stochastic PDE models for
the collective movement of cells/bacteria/animals? How can we extend the
current stochastic bifurcation theory [47–50] (mainly developed for ODEs) to the
nonlocal and local transport models discussed in this study (as well as many more
other models in the literature)? How can we adapt the (dynamical) D-bifurcation
and (phenomenological) P-bifurcation theory to the realities of the chaotic and
deterministic patterns generated by the nonlocal hyperbolic models presented
briefly in Chap. 5?



272 9 Discussion and Further Open Problems

To conclude, we remark that the use of hyperbolic and kinetic models to answer
biological questions is far from having reached its full potential. On the contrary,
they seem to be used more and more to investigate various problems in ecology and
medicine. Moreover, in the last few years these models have been applied to new
research areas, such as social dynamics [51], economy [52] or human psychology
[53]. Furthermore, the authors in [54, 55] suggested that these kinetic models could
be the start of a biological mathematical theory for complex systems. In particular,
Bellomo and Forni [55] argued that these models can incorporate two of the most
important aspects of living matter: the notion of function or purpose for biological
organisms, and the multi-scale aspect of biological interactions. While some first
steps have been taken in this direction, we note that these are very complex aspects
that require further extensive investigations.
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