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Abstract Dissimilarity quantifiers such as divergences (e.g.Kullback–Leibler infor-
mation, relative entropy) and distances between probability distributions are widely
used in statistics, machine learning, information theory and adjacent artificial intelli-
gence (AI). Within these fields, in contrast, some applications deal with divergences
between other-type real-valued functions and vectors. For a broad readership, we
present a correspondingly unifying framework which – by its nature as a “struc-
ture on structures” – also qualifies as a basis for similarity-based multistage AI and
more humanlike (robustly generalizing) machine learning. Furthermore, we discuss
some specificalities, subtleties as well as pitfalls when e.g. one “moves away” from
the probability context. Several subcases and examples are given, including a new
approach to obtain parameter estimators in continuous models which is based on
noisy divergence minimization.

1 Outline

The goals formulated in the abstract are achieved in the following way and order:
to address a wide audience, throughout the paper (with a few connection-indicative
exceptions) we entirely formulate and investigate divergences and distances between
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functions, even for the probability context. In Sect. 2, we provide some non-technical
background and overview of some of their principally possible usabilities for tasks
in data analytics such as statistics, machine learning, and artificial intelligence (AI).
Furthermore, we indicate some connections with geometry and information. There-
after, in Sect. 3 we introduce a new structured framework (toolkit) of divergences
between functions, and discuss their building-blocks, boundary behaviour, as well
as their identifiability properties. Several subcases, running examples, technical sub-
tleties of practical importance, etc. are illuminated, too. Finally, we study diver-
gences between “entirely different functions” which e.g. appear in the frequent sit-
uation when for data-derived discrete functions one wants to find a closest possi-
ble continuous-function model (cf. Sect. 4); several corresponding noisy minimum-
divergence procedures are compared – for the first time within a unifying framework
– and new methods are derived too.

2 Some General Motivations and Uses of Divergences

2.1 Quantification of Proximity

As a starting motivation, it is basic knowledge that there are numerous ways of
evaluating the proximity d(p, q) of two real numbers p and q of primary interest.
For instance, to quantify that p and q nearly coincide one could use the difference
d(1)(p, q) := p − q ≈ 0 or the fraction d(2)(p, q) := p

q ≈ 1, scaled (e.g. magnify-

ing, zooming-in) versions d(3)
m (p, q) := m · (p − q) ≈ 0 or d(4)

m (p, q) := m · p
q ≈ 1

with “scale” m of secondary (auxiliary) interest, as well as more flexible hybrids
d(5)
m1,m2,m3

(p, q) := m3 · ( p
m1

− q
m2

) ≈ 0 where mi may also take one of the values

p, q. All these “dissimilarities” d( j)(·, ·) can principally take any sign and they are
asymmetric which is consistent with the – in many applications required – desire that
one of the two primary-interest numbers (say p) plays a distinct role; moreover, the
involved divisions cause technical care if one principally allows for (convergence to)
zero-valued numbers. Amore sophisticated, nonlinear alternative to d(1)(·, ·) is given
by the dissimilarity d(6)

φ (p, q) := φ(p) − (φ(q) + φ′(q) · (p − q)) where φ(·) is a
strictly convex, differentiable function and thus d(6)

φ (p, q) quantifies the difference

betweenφ(p) and the value at p of the tangent line taken atφ(q). Notice that d(6)
φ (·, ·)

is generally still asymmetric but always stays nonnegative independently of the pos-
sible signs of the “generator” φ and the signs of p,q. In contrast, as a nonlinear alter-
native to d(4)

m (·, ·) one can construct from φ the dissimilarity d(7)
φ (p, q) := q · φ

( p
q

)

(where m = q) which is also asymmetric but can become negative depending on the
signs of p, q, φ. More generally, one often wants to work with dissimilarities d(·, ·)
having the properties
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(D1) d(p, q) � 0 for all p, q (nonnegativity),
(D2) d(p, q) = 0 if and only if p = q (reflexivity; identity of indiscernibles1),

and such d(·, ·) is then called a divergence (or disparity, contrast function). Loosely
speaking, the divergence d(p, q) of p and q can be interpreted as a kind of “directed
distance from p to q”.2 As already indicated above, the underlying directness turns
out to be especially useful in contexts where the first component (point), say p,
is always/principally of “more importance” or of “higher attention” than the second
component, say q; this is nothing unusual, since after all, one of ourmost fundamental
daily-life constituents – namely time – is directed (and therefore also time-dependent
quantities)! Moreover, as a further analogue consider the “way/path-length” d(p, q)

a taxi would travel from point p to point q in parts of a city with at least one
one-way street. Along the latter, there automatically exist points p �= q such that
d(p, q) �= d(q, p); this non-equality may even hold for all p �= q if the street pattern
is irregular enough; the same holds on similar systems of connected “one-way loops”,
directed graphs, etc. However, sometimes the application context demands for the
usage of a dissimilarity d(·, ·) satisfying (D1), (D2) and
(D3) d(p, q) = d(q, p) for all p, q (symmetry),

and such d(·, ·) is denoted as a distance; notice that we don’t assume that the
triangle inequality holds. Hence, we regard a distance as a symmetric diver-
gence. Moreover, a distance d(·, ·) can be constructed from a divergence d̃(·, ·)
e.g. by means of either the three “symmetrizing operations” d(p, q) := d̃(p, q) +
d̃(q, p), d(p, q) := min{d̃(p, q), d̃(q, p)}, d(p, q) := max{d̃(p, q), d̃(q, p)} for
all p and q.

In many real-life applications, the numbers p, q of primary interest as well as
the scaling numbers mi of secondary interest are typically replaced by real-valued
functions x → p(x), x → q(x), x → mi (x), where x ∈ X is taken from some
underlying set X . To address the entire functions as objects we use the abbrevi-
ations P := {

p(x)
}
x∈X , Q := {

q(x)
}
x∈X , Mi := {

mi (x)
}
x∈X , and alternatively

sometimes also p(·), q(·), mi (·). This is conform with the high-level data process-
ing paradigms in “functional programming” and “symbolic computation”, where
functions are basically treated as whole entities, too.

Depending on the nature of the data-analytical task, the function P of primary
interest may stem either from a hypothetical model, or its analogue derived from
observed/measured data, or its analogue derived from artificial computer-generated
(simulated) data; the same holds for Q where “cross-over constellations” (w.r.t. to
the origin of P) are possible.

The basic underlying set (space) X respectively the function argument x can
play different roles, depending on the application context. For instance, if X ⊂ N

is a subset of the integers N then x ∈ X may be an index and p(x) may describe
the x th real-valued data-point. Accordingly, P is then a s-dimensional vector where
s is the total number of elements inX with eventually allowing for s = ∞. In other

1See e.g. Weller-Fahy et al. [93].
2Alternatively, one can think of d(p, q) as degree of proximity from p to q.
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situations, x itself may be a data point of arbitrary nature (i.e. X can be any set)
and p(x) a real value attributed to x ; this p(x) may be of direct or of indirect use.
The latter holds for instance in cases where p(·) is a density function (onX ) which
roughly serves as a “basis” for the operationalized calculation of the “local aggre-
gations over all3 A ⊂ X ” in the sense of A → ∑

x∈A p(x) or A → ∫
A p(x) dλ̃(x)

subject to some “integrator” λ̃(·) (including classical Riemann integrals dλ̃(x) =
dx); as examples for nonnegative densities p(·) � 0 one can take “classical” (volu-
metric,weights-concerning) inertial-mass densities, population densities, probability
densities, whereas densities p(·) with possible negative values can occur in electro-
magnetism (charge densities, polarization densities), in other fields of contemporary
physics (negative inertial-mass respectively gravitational-mass densities) as well as
in the field of acoustic metamaterials (effective density), to name but a few.

Especially when used as a set of possible states/data configurations (rather than
indices),X can be of arbitrary complexity. For instance, each x itself may be a real-
valued continuous function on a time interval [0, T ] (i.e. x : [0, T ] →] − ∞,∞[)
which describes the scenario of the overall time-evolution of a quantity of inter-
est (e.g. of a time-varying quantity in an deterministic production process of one
machine, of the return on a stock, of a neural spike train). Accordingly, one can take
e.g. X = C

([0, T ], ] − ∞,∞[) to be the set of all such continuous functions, and
e.g. p(·) a density thereupon (which is then a function on functions). Other kinds of
functional data analytics can be covered in an analogous fashion.

To proceed with the proximity-quantification of the primary-interest functions
P := {

p(x)
}
x∈X , Q := {

q(x)
}
x∈X , in accordancewith the above-mentioned inves-

tigations one can deal with the pointwise dissimilarities/divergences
d( j)

φ (p(x), q(x)), d(5)
m1(x),m2(x),m3(x)

(p(x), q(x)) for fixed x ∈ X , but in many con-
texts it is crucial to take “summarizing” dissimilarities/divergences

D( j)
φ (P, Q) :=

∑

x∈X
d( j)
φ (p(x), q(x)) · λ(x) or D( j)

φ (P, Q) :=
∫

X

d( j)
φ (p(x), q(x)) dλ(x)

subject to some weight-type “summator”/“integrator” λ(·) (including classical
Riemann integrals); analogously, one can deal with
D(5)

φ,M1,M2,M3
(P, Q) := ∑

x∈X d(5)
m1(x),m2(x),m3(x)

(p(x), q(x)) · λ(x) or

D(5)
φ,M1,M2,M3

(P, Q) := ∫
X d(5)

m1(x),m2(x),m3(x)
(p(x), q(x)) dλ(x). Notice that the

requirements (D1), (D2) respectively (D3) carry principally over in a straightfor-
wardmanner also to these pointwise and aggregated dissimilarities between the func-
tions (rather than real points), and accordingly one calls them (pointwise/aggregated)
divergences respectively distances, too.

3Measurable.
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2.2 Divergences and Geometry

There are several ways how pointwise dissimilarities d(·, ·) respectively aggregated
dissimilarities D(·, ·) between two functions P := {

p(x)
}
x∈X and

Q := {
q(x)

}
x∈X can be connected with geometric issues. To start with an “all-

encompassing view”, following the lines of e.g. Birkhoff [14] and Millmann and
Parker [50], one can build from any set S , whose elements can be interpreted as
“points”, together with a collection L of non-empty subsets of S , interpreted as
“lines” (as a manifestation of a principle sort of structural connectivity between
points), and an arbitrary distance d(·, ·) onS × S , an axiomatic constructive frame-
work of geometry which can be of far-reaching nature; therein, d(·, ·) plays basically
the role of a marked ruler. Accordingly, each triplet (S ,L , d(·, ·)) forms a dis-
tinct “quantitative geometric system”; the most prominent classical case is certainly
S = R

2 withL as the collection of all vertical and non-vertical lines, equippedwith
the Euclidean distance d(·, ·), hence generating the usual Euclidean geometry in the
two-dimensional space. In the case that d(·, ·) is only an asymmetric divergence but
not a distance anymore, we propose that some of the outcoming geometric building
blocks have to be interpreted in a direction-based way (e.g. the use of d(·, ·) as a
marked directed ruler, the construction of points of equal divergence from a center
viewed as distorted directed spheres, etc.). For d(·, ·) one takesS ⊂ R whereas for
D(·, ·) one has to work withS being a family of real-valued functions on X .

Secondly, from any distance d(·, ·) on a “sufficiently rich” set S and a finite
number of (fixed or adaptively flexible) distinct “reference points” si (i = 1, . . . , n)
one can construct the corresponding Voronoi cells V (si ) by

V (si ) := {z ∈ S : d(z, si ) � d(z, s j ) for all j = 1, . . . , n }.

This produces a tesselation (tiling) of S which is very useful for classification
purposes. Of course, the geometric shape of these tesselations is of fundamental
importance. In the case that d(·, ·) is only an asymmetric divergence but not a distance
anymore, then V (si ) has to be interpreted as a directed Voronoi cell and then there
is also the “reversely directed” alternative

Ṽ (si ) := {z ∈ S : d(si , z) � d(s j , z) for all j = 1, . . . , n }.

Recent applications where S ⊂ R
d and d(·, ·) is a Bregman divergence or a more

general conformal divergence, can be found e.g. in Boissonnat et al. [15], Nock et
al. [64] (and the references therein), where they also deal with the corresponding
adaption of k-nearest neighbour classification methods.

Thirdly, consider a “specific framework” where the functions P := P̃θ1 :={
p̃θ1(x)

}
x∈X and Q := P̃θ2 := {

p̃θ2(x)
}
x∈X depend on some parameters θ1 ∈ Θ ,

θ2 ∈ Θ , which reflect the strive for a complexity-reducing representation of “oth-
erwise intrinsically complicated” functions P , Q. The way of dependence of the
function (say) p̃θ(·) on the underlying parameter θ from an appropriate space Θ
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of e.g. manifold type, may show up directly e.g. via its operation/functioning as
a relevant system-indicator, or it may be manifested implicitly e.g. such that p̃θ(·)
is the solution of an optimization problem with θ-involving constraints. In such
a framework, one can induce divergences D(P̃θ1 , P̃θ2) =: f (θ1, θ2) and – under
sufficiently smooth dependence – study their corresponding differential-geometric
behaviour of f (·, ·) on Θ . An example is provided by the Kullback–Leibler diver-
gence between two distributions of the same exponential family of distributions,
which defines a Bregman divergence on the parameter space. This and related issues
are subsumed in the research field of “information geometry”; for comprehensive
overviews see e.g. Amari [3], Amari [1], Ay et al. [8]. Moreover, for recent con-
nections between divergence-based information geometry and optimal transport the
reader is e.g. referred to Pal and Wong [66, 67], Karakida and Amari [34], Amari et
al. [2], Peyre and Cuturi [71], and the literature therein.

Further relations of divergences with other approaches to geometry can be over-
viewed e.g. from the wide-range-covering research-article collections in Nielsen and
Bhatia [58], Nielsen and Barbaresco [55–57]. Finally, geometry also enters as a tool
for visualizing quantitative effects on divergences.

2.3 Divergences and Uncertainty in Data

In general, data-uncertainty (including “deficiencies” like data incompleteness, fak-
ery, unreliability, faultiness, vagueness, etc.) can enter the framework in various dif-
ferent ways. For instance, in situations where x ∈ X plays the role of an index (e.g.
X = {1, 2, . . . , s}) and p(x) describes the x th real-valued data-point, the uncer-
tainty is typically4 incorporated by adding a random argument ω ∈ Ω to end up
with the “vectors” P(ω) := {

p(x,ω)
}
x∈X , Q(ω) := {

q(x,ω)
}
x∈X of random data

points. Accordingly, one ends up with random-variable-type pointwise divergences
ω → d( j)

φ (p(x,ω), q(x,ω)), ω → d(5)
m1(x),m2(x),m3(x)

(p(x,ω), q(x,ω)) (x ∈ X ) as
well as with the random-variable-type “summarizing” divergences
ω → D( j)

φ (P(ω), Q(ω)) := ∑
x∈X d( j)

φ (p(x,ω), q(x,ω)) · λ(x) respectively

ω → D( j)
φ (P(ω), Q(ω)) := ∫

X d( j)
φ (p(x,ω), q(x,ω)) dλ(x), as well as with

ω → D(5)
φ,M1,M2,M3

(P(ω), Q(ω)) := ∑
x∈X d(5)

m1(x),m2(x),m3(x)
(p(x,ω), q(x,ω)) ·

λ(x), resp. ω → D(5)
φ,M1,M2,M3

(P(ω), Q(ω)) := ∫
X d(5)

m1(x),m2(x),m3(x)
(p(x,ω),

q(x,ω))dλ(x). More generally, one can allow for random scalesm1(x,ω),m2(x,ω),
m3(x,ω).

In other situations with finitely-many-elements carrying X , the state x may e.g.
describe a possible outcome Y (ω) of an uncertainty-prone observation of a quantity
Y of interest and p(x), q(x) represent the corresponding probability mass functions
(“discrete density functions”) at x under two alternative probability mechanisms Pr ,
P̃r (i.e. p(x) = Pr [{ω ∈ Ω : Y (ω) = x}], q(x) = P̃r [{ω ∈ Ω : Y (ω) = x}]); as

4In a probabilistic approach rather than a chaos-theoretic approach.
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already indicated above, P := {
p(x)

}
x∈X respectively Q := {

q(x)
}
x∈X serve then

as a kind of “basis” for the computation of the probabilities
∑

x∈A p(x) respectively∑
x∈A q(x) that an arbitrary event {ω ∈ Ω : Y (ω) ∈ A} (A ⊂ X ) occurs. Accord-

ingly, the pointwise divergences d( j)
φ (p(x), q(x)), d(5)

m1(x),m2(x),m3(x)
(p(x), q(x)) (x ∈

X ), and the aggregated divergences D( j)
φ (P, Q) := ∑

x∈X d( j)
φ (p(x), q(x)),

D(5)
φ,M1,M2,M3

(P, Q) := ∑
x∈X d(5)

m1(x),m2(x),m3(x)
(p(x), q(x)), D(5)

φ,M1,M2,M3
(P, Q) :=

∫
X d(5)

m1(x),m2(x),m3(x)
(p(x), q(x)) dλ(x) can then be regarded as (nonnegative, reflex-

ive) dissimilarities between the two alternative uncertainty-quantification-bases P
and Q. Analogously, when e.g. X = R

n is the n-dimensional Euclidean space and
P , Q are classical probability density functions interpreted roughly via p(x)dx =
Pr [{ω ∈ Ω : Y (ω) ∈ [x, x + dx[}, q(x)dx = P̃r [{ω ∈ Ω : Y (ω) ∈ [x, x + dx[},
then d( j)

φ (p(x), q(x)), d(5)
m1(x),m2(x),m3(x)

(p(x), q(x)) (x ∈ X ), D( j)
φ (P, Q) :=

∫
X d( j)

φ (p(x), q(x)) dx , D(5)
φ,M1,M2,M3

(P, Q) := ∫
X d(5)

m1(x),m2(x),m3(x)
(p(x), q(x)) dx

serve as dissimilarities between the two alternative uncertainty-quantification-bases
P , Q.

Let us finally mention that in concrete applications, the “degree” of intrinsic data-
uncertainty may be zero (deterministic), low (e.g. small random data contamination
and small random deviations from a “basically” deterministic system, slightly noisy
data, measurement errors) or high (forecast of the price of a stock in one year from
now). Furthermore, the data may contain “high unusualnesses” (“surprising obser-
vations”) such as outliers and inliers. All this should be taken into account when
choosing or even designing the right type of divergence which have different sensi-
tivity to such issues (see e.g. Kißlinger and Stummer [37] and the references therein).

2.4 Divergences, Information and Model Uncertainty

In the main spirit of this book on geometric structures of information, let us also
connect the latter with dissimilarities in a wide sense which is appropriate enough
for our ambitions of universal modeling. In correspondingly adapting some con-
ception e.g. of Buckland [20] to our above-mentioned investigations, in the fol-
lowing we regard a density function (say) p(·) as a fundamental basis of informa-
tion understood as quantified real – respectively hypothetical – knowledge which
can be communicated about some particular (family of) subjects or (family of)
events; according to this information-as-knowledge point of view, pointwise dissim-
ilarities/divergences/distances d(p(x), q(x)) (x ∈ X ) respectively aggregated dis-
similarities/divergences/distances D(P, Q) quantify the proximity between the two
information-bases P := {

p(x)
}
x∈X and Q := {

q(x)
}
x∈X in a directed/nonnegative

directed/nonnegative symmetric way. Hence, d(·, ·) respectively D(·, ·) themselves
can be seen as a higher-level information on pairs of information bases.



156 M. Broniatowski and W. Stummer

Divergences can be used for the quantification of information-concerning issues
for model uncertainty (model risk) and exploratory model search in various dif-
ferent ways. For instance, suppose that we search for (respectively learn to under-
stand) a true unknown density function Qtrue := {

qtrue(x)
}
x∈X of an underlying

data-generating mechanism of interest, which is often supposed to be a member
of a prefixed class P of “hypothetical model-candidate density functions”; fre-
quently, this task is (e.g. for the sake of fast tractability) simplified to a setup of
finding the true unknown parameter θ = θ0 – and hence Qtrue = Qθ0 – within a
parametric family P := {Qθ}θ∈Θ . Let us first consider the case where the data-
generating mechanism of interest Qtrue is purely deterministic and hence also
all the candidates Q ∈ P are (taken to be) not of probability-density-function
type. Although one has no intrinsic data-uncertainty, one faces another type of
knowledge-lack calledmodel-uncertainty. Then, one standard goal is to “track down”
(respectively learn to understand) this true unknown Qtrue respectively Qθ0 by col-
lecting and purpose-appropriately postprocessing some corresponding data obser-
vations. Accordingly, one attempts to design a density-function-construction rule
(mechanism, algorithm) data → Pdata := {

pdata(x)
}
x∈X to produce data-derived

information-basis-type replica of a “comparable principal form” as the anticipated
Qtrue. This rule should theoretically guarantee that Pdata converges – with rea-
sonable “operational” speed – to Qtrue as the number Ndata of data grows, which
particularly implies that (say) D(Pdata, Qtrue) for some prefixed aggregated diver-
gence D(·, ·) becomes close to zero “fast enough”. On these grounds, one reasonable
strategy to down-narrow the true unknown data-generating mechanism Qtrue is to
take a prefixed class Phyp of hypothetical density-function models and compute
in f odeg := infQ∈P hyp D(Pdata, Q) which in the light of the previous discussions
can be interpreted as an “unnormalized degree of informative evidence of Qtrue being
a member of Phyp”, or from a reversed point of view, as an “unnormalized degree
of goodness of approximation (respectively fit) of the data-derived density function
Pdata through/by means of Phyp”. Within this current paradigm, if in f odeg is too
large (to be specified in a context-dependent, appropriately quantified sense by tak-
ing into account the size of Ndata), then one has to repeat the same procedure with

a different class P̃hyp; on the other hand, if (and roughly only if) in f odeg is small

enough then Q̂data := arg infQ∈P hyp D(Pdata, Q) (which may not be unique) is “the
most reasonable” approximation. This procedure is repeated recursively as soon as
new data points are observed.

In contrast to the last paragraph, let us now cope with the case where the true
unknown data-generating mechanism of interest is prone to uncertainties (i.e. is
random, noisy, risk-prone) and hence Qtrue as well as all the candidates Q ∈ P
are of probability-density-function type. Even more, the data-derived information-
basis-type replicaω → data(ω) → Pdata(ω) := {

pdata(ω)(x)
}
x∈X of Qtrue is now a

density-function-valued (!) randomvariable; notice that in an above-mentioned “full-
scenario” time-evolutionary context, this becomes a density-function-on-functions-
valued random variable. Correspondingly, the above-
mentioned procedure for the deterministic case has to be adapted and the notions
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of convergence and smallness have to be stochastified, which leads to the need of
considerably more advanced techniques.

Another field of applying divergences to a context of synchronous model and
data uncertainty is Bayesian sequential updating. In such a “doubly uncertain”
framework, one deals with a parametric context of probability density functions
Qtrue = Qθ0 , P := {Qθ}θ∈Θ where the uncertain knowledge about the parame-
ter θ (to be learnt) is operationalized by replacing it with a random variable ϑ
on Θ . Based on both (i) an initial prior distribution Prior1[·] := Pr [ϑ ∈ · ] of
ϑ (with probability density function pdf θ → prior1(θ)) and (ii) observed data
data1(ω), . . . , dataNdata (ω) of number Ndata , a posterior distribution Post1[·,ω] :=
Pr [ϑ ∈ · | data1(ω), . . . , dataNdata (ω); prior [·] ] of ϑ (with pdf θ → post1(θ,ω))
is determined with (amongst other things) the help of the well-known Bayes for-
mula. This procedure is repeated recursively with new incoming data input (block)
dataNdata+1, where the new prior distribution Prior2[·,ω] := Post1[·,ω] is chosen
as the old posterior and the new posterior distribution is Post2[·,ω] := Pr [ϑ ∈ ·
| data1, . . . , dataNdata , dataNdata+1; Prior2[·,ω] ] (with pdf θ → post2(θ,ω)), etc.
The corresponding (say) aggregated divergence D(P(ω), Q(ω)) between the
probability-density-valued random variablesω → P(ω) := {

prior2(θ,ω)
}

θ∈Θ
, and

ω → Q(ω) := {
post2(θ,ω)

}
θ∈Θ

serves as “degree of informativity of the new data-
point observation on the learning of the true unknown θ0”.

As another application in a “doubly uncertain” framework, divergences D(P, Q)

appear also in a dichotomous Bayesian testing problem between the two alternative
probability densities functions P and Q, where D(P, Q) represents an appropriate
average (over prior probabilities) of the corresponding difference between the prior
Bayes risk (prior minimal mean decision loss) and the posterior Bayes risk (posterior
minimal mean decision loss). This, together with non-averaging versions and an
interpretation of D(P, Q) as a (weighted-average) statistical information measure in
the sense of De Groot [29] can be found e.g. in Österreicher and Vajda [65]; see also
Stummer [78–80], Liese and Vajda [42], Reid and Williamson [73]. In contrast of
this employment of D(P, Q) as quantifier of “decision risk reduction” respectively
“model risk reduction” respectively “information gain”, a different use of divergences
D(P, Q) in a “double uncertain” general Bayesian context of dichotomous loss-
dependent decisions between arbitrary probability density functions P and Q can be
found in Stummer and Vajda [81], where they achieve Dφα

(P, Q) (for some power
functions φα cf. (5)) as upper and lower bound of the Bayes risk (minimal mean
decision loss) itself and also give applications to decisionmaking of time-continuous,
non-stationary financial stochastic processes.

Divergences can be also employed to detect distributional changes in streams
(respectively clouds) (data j ) j∈τ of uncertain (random, noisy, risk-prone) data
indexed by j from an arbitrary countable set τ (e.g. the integers, an undirected
graph); a survey together with some general framework can be found in Kißlinger
and Stummer [38]: the basic idea is to pick out two5 non-identical, purpose-
appropriately chosen subcollections respectively sample patterns (e.g. windows)

5Where one of them may e.g. stem from training data.
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dataone(ω) := (datas1(ω), . . . , datasN1 (ω)), datatwo(ω) :=
(datat1(ω), . . . , datatN2 (ω)), and tobuild from themdata-derivedprobability-density
functions ω → dataone(ω) → Pdataone(ω) := {

pdataone(ω)(x)
}
x∈X ,

ω → datatwo(ω) → Pdatatwo(ω) := {
pdatatwo(ω)(x)

}
x∈X . If a correspondingly cho-

sen (say) aggregated divergence D
(
Pdataone(ω), Pdatatwo(ω)

)
– which plays the role

of a condensed change-score – is “significantly large” in the sense that it is large
enough – compared to some sound threshold which within the model reflects the
desired “degree of confidential plausibility” – then there is strong indication of a dis-
tributional change which we then “believe in”. Notice that both components of the
divergence D(·, ·) are now probability-density-function-valued random variables.
The sound threshold can e.g. be derived from advanced random asymptotic theory.

From the above discussion it is clear that divergence-based model-uncertainty
methods are useful tools in concrete applications for machine learning and artificial
intelligence, see e.g. Collins et al. [25],Murata et al. [54], Banerjee et al. [9], Tsuda et
al. [87], Cesa-Bianchi and Lugosi [21], Nock and Nielsen [63], Sugiyama et al. [85],
Wu et al. [94], Nock et al. [62], Nielsen et al. [60], respectively Minka [51], Cooper
et al. [26], Lizier [46], Zhang et al. [96], Chhogyal [22], Cliff et al. [23, 24].

3 General Framework

For the rest of this paper, we shall use the following

Main (i.e. non-locally used) Notation and Symbols

R, N, Rd Set of real respectively integer numbers respectively d-dimensional vectors
Θ , θ Set of parameters, see p. 188
1 Function with constant value 1
1A(z) = δz [A] Indicator function on the set A evaluated at data point z, which

is equal to Dirac’s one-point distribution on z evaluated at A
#A Number of elements in set A
X ;X# Space/set where data can take values in; space/set of countable size
F System of admissible events/data-collections (σ-algebra) onX
λ Reference measure/integrator/summator, see p. 160 & Sect. 3.1 on p. 165
λ-a.a. λ-almost all, see p. 160
λL Lebesgue measure (“Riemann-type” integrator), see p. 160, & Sect. 3.1
λ# Counting measure (“classical summator”), see p. 160 & Sect. 3.1 on p. 165
P := {

p(x)
}
x∈X Function from which the divergence/dissimilarity is measured from, see p. 160

Q := {
q(x)

}
x∈X Function to which the divergence/dissimilarity is measured to, see p. 160

Mi := {
mi (x)

}
x∈X Scaling function (i = 1, 2) respec. aggregation function (i = 3), see p. 161,

(1) and paragraph (I1) thereafter, as well as Sect. 3.3 on p. 170
p(·), q(·), mi (·), Alternative representations of P , Q, Mi

R := {
r(x)

}
x∈X Function used for the aggregation function m3(·), see Sect. 3.3.1 on p. 171

Wi Connector function of the form Wi := {
wi (x, y, z)

}
x,y,z∈...

, for adaptive

scaling and aggregation functions mi (x) = wi (x, p(x), q(x)) (i = 1, 2, 3),
see e.g. Assumption 2 on p. 163 and Sect. 3.3.1.3 on p. 181
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P,Q,Mi ,Wi Functions with p(x) � 0, q(x) � 0,mi (x) � 0,wi (x) � 0 for λ-a.a. x ∈ X
Qχ := {

qχ(x)
}
x∈X Function for the aggregation function m3(·), see Sect. 4.2 on p. 184, (73)

⇀P, ⇀Q λ-probability density functions (incl. probability mass functions for λ = λ#),
i.e. for which ⇀p(x) � 0, ⇀q(x) � 0 for λ-a.a. x ∈ X and

∫
X

⇀p(x) dλ(x) = 1,
see Remark 2 on p. 172

⇀Qθ := {
⇀qθ(x)

}
x∈X λ-probab. density function which depends on a parameter θ ∈ Θ , see p. 188

R
( P
M1

)
Range (image) of the function

{ p(x)
m1(x)

}
x∈X , see paragraph (I2) on p. 161

R(Y1, . . . , YN ) Range (image) of the random variables Y1, . . . , YN , see p. 182
⇀̃Qθ := {

⇀̃qθ(x)
}
x∈X λ-probab. density function (modification of ⇀Qθ) defined by

⇀̃qθ(x) := ⇀qθ(x) · (1 − 1R (Y1(ω),...,YN (ω))(x)), see p. 191
φ := {

φ(t)
}
t∈]a,b[ Divergence generator, a convex real-valued function on ]a, b[, see p. 161, (1)

and paragraph (I2), as well as Sect. 3.2 on p. 165
Φ(]a, b[); Class of all such φ, see paragraph (I2) on p. 161
φ := {

φ(t)
}
t∈[a,b] Continuous extension of φ on [a, b], with φ(t) = φ(t) for all t ∈]a, b[, see (I2)

φ′+,c(t) c-weighted mixture of left-hand and right-hand derivative of φ at t, see (I2)
ΦC1 (]a, b[) Subclass of everywhere continuously differentiable φ, with

derivative φ′(t) (being equal to φ′+,c(t) for all c ∈ [0, 1]), see (I2) on p. 161
φα α-power-function type divergence generator, see (5) on p. 166, (14), (18), (19)
φT V Generator of total variation distance, see (31) on p. 169
φie Divergence generator with interesting effects, see (35) on p. 170
ψφ,c Function given by ψφ,c(s, t) := φ(s) − φ(t) − φ′+,c(t) · (s − t) � 0, see (I2)
ψφ,c Bivariate extension of ψφ,c , see (I2) on p. 161∫
X . . .,

∑
X . . . Integral/sum over extension of integrand/summand . . ., see (I2) & (2) on p. 165

Dc
φ,M1,M2,M 3,λ

(P, Q) Divergence between two functions P (scaled by M1) and Q (scaled by M2),
generated by φ and weight c, and aggregated byM3 and λ, see (1) on p. 161

Dφ,M1,M2,M 3,λ(P, Q) As above, but with φ ∈ ΦC1 (]a, b[) and obsolete c, see Sect. 3.2 on p. 165
Dλ(P, Q) General λ-aggregated divergence, see p. 189, respectively pseudo-divergence,

see Definition 2 on p. 195
DM ,λ(

⇀P,
⇀Q) Pointwise decomposable pseudo-divergence, scaled byM

and aggregated byM and λ, see Sect. 4.6 on p. 200
NN0, NN1 Nonnegativity setup 0 respectively 1, see p. 166 resp. p. 171
PR ·λ, QR ·λ, MR ·λ Measures with λ-densities p(·) · r(·), q(·) · r(·),m(·) · r(·),

see Remark 2 on p. 171
⇀P

1 ·λ
, ⇀Q

1 ·λ
Probability measures (distributions) with λ-densities ⇀p(·), ⇀q(·), see Remark 2

Qλ2
Θ , ⇀Q

1 ·λ2

θ Class of probability measures with λ2-densities ⇀qθ(·) with parameter θ ∈ Θ ,
see p. 188

⇀P
emp
N , ⇀P

emp
N , ⇀pemp

N (·) Data-derived empirical (probability) distribution, and probability mass
function (λ#-density) thereof, see Remark 2 on p. 172

⇀P
emp(ω)

N , ⇀P
emp(ω)

N Data-derived “extended” empirical (probability) distribution, and
probability mass function thereof, see (85) on p. 190 and thereafter

DPD, CASD Density-power divergences (see p. 174), Csiszar–Ali–Silvey divergences (see p. 177)
�i1, φ∗(0), �i2, �i3 Certain limits, see (50), (71), (72)
P ⊥ Q The functionsP,Q are “essentially different”, see (64) to (66) and thereafter
P �⊥ Q Negation ofP ⊥ Q, see p. 192
P ∼ Q The functionsP,Q are “equivalent” (concerning zeros), see (80)
P � Q Negation ofP ∼ Q, see p. 195
θ̂N ,Dλ2

Minimum-divergence estimator (“approximator”) of the true unknown
parameter θ0, based on N data observations, see (82) on p. 189
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θ̂N ,Dλ#
, θ̂N ,Dλ Certain minimum-divergence estimators, see (83), (86)

θ̂N ,decDλ , θ̂N ,decD⇀
Qτ ,λ

Certain minimum-divergence estimators, see (107), (123)

θ̂N ,supD φ,λ
Certain minimum-divergence estimator, see (135)

Pλ Certain class of nonnegative, mutually equivalent functions, see p. 194
Pλ�, P̃λ Certain classes of nonnegative functions, see p. 194
Pλ

Θ ,Pλ⊥
emp ,P

λ
Θ,emp Certain classes of nonnegative functions, see p. 195

D0,D1, ρQ Functionals and mapping for decomposable pseudo-divergences,
see Definition 3 on p. 195

ψdec , ψ0, ψ1, ρ Mappings for pointwise decomposable pseudo-divergences,
see Definition 3 on p. 196

h0, h1, h2 Mappings for pointwise decomposable pseudo-divergences,
see Definition 3 on p. 196

ψdec
m Perspective function of ψdec , see (120)

New Divergence Toolkit

In the above Sect. 2, we have motivated that for many different tasks within a broad
spectrum of situations, it is useful to employ divergences as “directed distances”,
including distances as their symmetric special case. For the rest of the paper, we
shall only deal with aggregated forms of divergences, and thus drop the attribute
“aggregated” from now on. In the following, we present a fairly universal, flexible,
multi-component system of divergences by adapting and widening the concept of
scaled Bregman divergences of Stummer [81] and Stummer andVajda [84] to the cur-
rent context of arbitrary (measurable) functions. To begin with, let us assume that the
modeled respectively observed (random) data take values in a state spaceX (with at
least two distinct values), equippedwith a systemF of admissible events (σ-algebra)
and a σ-finite measure λ (e.g. the Lebesgue measure, the counting measure, etc.).
Furthermore, we suppose that x → p(x) ∈ [−∞,∞] and x → q(x) ∈ [−∞,∞]
are (correspondingly measurable) functions onX which satisfy p(x) ∈] − ∞,∞[,
q(x) ∈] − ∞,∞[ for λ-almost all (abbreviated as λ-a.a.) x ∈ X .6 To address the
entire functions as objects we write P := {

p(x)
}
x∈X , Q := {

q(x)
}
x∈X and alter-

natively sometimes also p(·), q(·). To better highlight the very important special case
of λ-probability density functions – where p(x) � 0, q(x) � 0 for λ-a.a. x ∈ X and∫
X p(x) dλ(x) = 1,

∫
X q(x) dλ(x) = 1 – we use the notation ⇀P, ⇀p, ⇀Q, ⇀q instead of

P , p, Q, q (where⇀· · · symbolizes a lying 1). For instance, if λ = λL is the Lebesgue
measure on the s-dimensional Euclidean space X = R

s , then ⇀P, ⇀Q are “classical”
(e.g. Gaussian) probability density functions. In contrast, in the discrete setupwhere
the state space (i.e. the set of all possible data points)X = X# has countably many
elements and λ := λ# is the counting measure (i.e., λ#[{x}] = 1 for all x ∈ X#),
then ⇀P, ⇀Q are probability mass functions and (say) ⇀p(x) can be interpreted as prob-
ability that the data point x is taken by the underlying random (uncertainty-prone)
mechanism. If p(x) � 0, q(x) � 0 for λ-a.a. x ∈ X (but not necessarily with the
restrictions

∫
X p(x) dλ(x) = 1 = ∫

X q(x) dλ(x)) then we writeP,Q,p,q instead
of P , p, Q, q.

6This means that there exists a N ∈ F with λ[N ] = 0 (where the empty set N = ∅ is allowed) such
that for all x ∈ X \{N } (say) p(x) ∈] − ∞,∞[ holds.



Some Universal Insights on Divergences for Statistics … 161

Back to generality, we quantify the dissimilarity between the two functions P ,Q
in terms of divergences Dc

β(P, Q) with β = (φ, M1, M2,M3,λ), defined by

0 � Dc
φ,M1,M2,M3,λ

(P, Q)

:= ∫
X

[
φ
( p(x)
m1(x)

) − φ
( q(x)
m2(x)

) − φ′+,c

( q(x)
m2(x)

) · ( p(x)
m1(x)

− q(x)
m2(x)

)] · m3(x) dλ(x) (1)

(see Stummer [81], Stummer and Vajda [84] for the case c = 1,m1(x) = m2(x) =
m3(x)). Here, we use:

(I1) (measurable) scaling functions m1 : X → [−∞,∞] and m2 : X →
[−∞,∞] as well as a nonnegative (measurable) aggregating function m3 :
X → [0,∞] such that m1(x) ∈] − ∞,∞[, m2(x) ∈] − ∞,∞[, m3(x) ∈
[0,∞[ for λ-a.a. x ∈ X .7 In accordance with the above notation, we use the
symbols Mi := {

mi (x)
}
x∈X respectivelymi (·) to refer to the entire functions,

and Mi, mi(·) when they are nonnegative as well as ⇀Mi , ⇀mi (·) when they
manifest λ-probability density functions. Furthermore, let us emphasize that
we allow for / cover adaptive situations in the sense that all three functions
m1(x), m2(x), m3(x) (evaluated at x) may also depend on p(x) and q(x).

(I2) the so-called “divergence-generator” φ which is a continuous, convex (finite)
function φ : E →] − ∞,∞[ on some appropriately chosen open interval
E =]a, b[ such that [a, b] covers (at least) the union R

(
P
M1

) ∪ R
( Q
M2

)
of

both ranges R
(

P
M1

)
of

{ p(x)
m1(x)

}
x∈X and R

( Q
M2

)
of

{ q(x)
m2(x)

}
x∈X ; for instance,

E =]0, 1[, E =]0,∞[ or E =] − ∞,∞[; the class of all such functions
will be denoted by Φ(]a, b[). Furthermore, we assume that φ is contin-
uously extended to φ : [a, b] → [−∞,∞] by setting φ(t) := φ(t) for t ∈
]a, b[ as well as φ(a) := limt↓a φ(t), φ(b) := limt↑b φ(t) on the two bound-
ary points t = a and t = b. The latter two are the only points at which
infinite values may appear. Moreover, for any fixed c ∈ [0, 1] the (finite)
function φ′+,c :]a, b[→] − ∞,∞[ is well-defined by φ′+,c(t) := c · φ′+(t) +
(1 − c) · φ′−(t), where φ′+(t) denotes the (always finite) right-hand derivative
of φ at the point t ∈]a, b[ and φ′−(t) the (always finite) left-hand deriva-
tive of φ at t ∈]a, b[. If φ ∈ Φ(]a, b[) is also continuously differentiable
– which we denote by φ ∈ ΦC1(]a, b[) – then for all c ∈ [0, 1] one gets
φ′+,c(t) = φ′(t) (t ∈]a, b[) and in such a situationwe always suppress the obso-
lete indices c, + in the corresponding expressions. We also employ the con-
tinuous continuation φ′+,c : [a, b] → [−∞,∞] given by φ′+,c(t) := φ′+,c(t)

(t ∈]a, b[), φ′+,c(a) := limt↓a φ′+,c(t), φ′+,c(b) := limt↑b φ′+,c(t). To explain
the precise meaning of (1), we also make use of the (finite, nonnegative)
function ψφ,c :]a, b[×]a, b[→ [0,∞[ given by ψφ,c(s, t) := φ(s) − φ(t) −
φ′+,c(t) · (s − t) � 0 (s, t ∈]a, b[). To extend this to a lower semi-continuous

7As an example, let X = R, λ = λL be the Lebesgue measure (and hence, except for rare
cases, the integral turns into a Riemann integral) and ⇀m1(x) := 1

2 · x−1/2 · 1[0,1](x) � 0; since∫
X

⇀m1(x) dλ(x) = 1 this qualifies as a probability density and thus is a possible candidate for
⇀m1(x) = ⇀q(x) in Sect. 3.3.1.2 below.
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function ψφ,c : [a, b] × [a, b] → [0,∞] we proceed as follows: firstly, we set
ψφ,c(s, t) := ψφ,c(s, t) for all s, t ∈]a, b[. Moreover, since for fixed t ∈]a, b[,
the function s → ψφ,c(s, t) is convex and continuous, the limit ψφ,c(a, t) :=
lims→a ψφ,c(s, t) always exists and (in order to avoid overlines in (1)) will
be interpreted/abbreviated asφ(a) − φ(t) − φ′+,c(t) · (a − t). Analogously, for
fixed t ∈]a, b[we setψφ,c(b, t) := lims→b ψφ,c(s, t)with corresponding short-
hand notation φ(b) − φ(t) − φ′+,c(t) · (b − t). Furthermore, for fixed s ∈]a, b[
we interpret φ(s) − φ(a) − φ′+,c(a) · (s − a) as

ψφ,c(s, a) := {
φ(s) − φ′+,c(a) · s + lim

t→a

(
t · φ′+,c(a) − φ(t)

)} · 1]−∞,∞[
(
φ′+,c(a)

)

+ ∞ · 1{−∞}
(
φ′+,c(a)

)
,

where the involved limit always exists but may be infinite. Analogously, for
fixed s ∈]a, b[ we interpret φ(s) − φ(b) − φ′+,c(b) · (s − b) as

ψφ,c(s, b) :={
φ(s) − φ′+,c(b) · s + lim

t→b

(
t · φ′+,c(b) − φ(t)

)} · 1]−∞,∞[
(
φ′+,c(b)

)

+ ∞ · 1{+∞}
(
φ′+,c(b)

)
,

where again the involved limit always exists but may be infinite. Finally,
we always set ψφ,c(a, a) := 0, ψφ,c(b, b) := 0, and ψφ,c(a, b) := lims→a ψφ,c

(s, b), ψφ,c(b, a) := lims→b ψφ,c(s, a). Notice that ψφ,c(·, ·) is lower semi-
continuous but not necessarily continuous. Since ratios are ultimately involved,
we also consistently takeψφ,c

(
0
0 ,

0
0

) := 0. Taking all this into account, we inter-

pret Dc
φ,M1,M2,M3,λ

(P, Q) as
∫
X ψφ,c

( p(x)
m1(x)

,
q(x)
m2(x)

)
m3(x) dλ(x) at first glance

(see further investigations in Assumption 2 below), and use the (in lengthy
examples) less clumsy notation

∫
X ψφ,c

( p(x)
m1(x)

,
q(x)
m2(x)

)
m3(x) dλ(x) as a short-

cut for the implicitly involved boundary behaviour. �
Notice that despite of the “difference-structure” in the integrand of (1), the split-
ting of the integral into differences of several “autonomous” integrals may not
always be feasible due to the possible appearance of differences between infinite
integral values. Furthermore, there is non-uniqueness in the construction (1); for
instance, one (formally) gets Dc

φ,M1,M2,M3,λ
(P, Q) = Dc

φ̃,M1,M2,M3,λ
(P, Q) for any

φ̃(t) := φ(t) + c1 + c2 · t (t ∈ E) with c1, c2 ∈ R. Moreover, there exist “essen-
tially different” pairs (φ,M) and (φ̆, M̆) (where φ(t) − φ̆(t) is nonlinear in t) for
which Dc

φ,M,M,M,λ(P, Q) = Dc
φ̆,M̆,M̆,M̆,λ

(P, Q) (see e.g. [37]). Let us alsomention
that we could further generalize (1) by adapting the divergence concept of Stummer
and Kißlinger [82] who also deal even with non-convex non-concave divergence
generators φ; for the sake of brevity, this is omitted here.

Notice that by construction we obtain the following important assertion:
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Theorem 1 Let φ ∈ Φ(]a, b[) and c ∈ [0, 1]. Then there holds
Dc

φ,M1,M2,M3,λ
(P, Q) � 0 with equality if p(x)

m1(x)
= q(x)

m2(x)
for λ-almost all x ∈ X .

Depending on the concrete situation, Dc
φ,M1,M2,M3,λ

(P, Q) may take infinite value.

To get “sharp identifiability” (i.e. reflexivity) one needs further assumptions on
φ ∈ Φ(]a, b[), c ∈ [0, 1]. As a motivation, consider the case where m3(x) ≡ 1
and φ ∈ Φ(]a, b[) is affine linear on the whole interval ]a, b[, and hence its exten-
sion φ is affine-linear on [a, b]. Accordingly, one gets for the integrand-builder
ψφ,c(s, t) ≡ 0 and hence Dc

φ,M1,M2,M3,λ
(P, Q) = ∫

X ψφ,c
( p(x)
m1(x)

,
q(x)
m2(x)

)
dλ(x) = 0

even in cases where p(x)
m1(x)

�= q(x)
m2(x)

for λ-a.a. x ∈ X . In order to avoid such and
similar phenomena, we use the following set of requirements:

Assumption 2 Let c ∈ [0, 1], φ ∈ Φ(]a, b[) and R
(

P
M1

) ∪ R
( Q
M2

) ⊂ [a, b]. The
aggregation function is supposed to be of the form m3(x) = w3

(
x, p(x)

m1(x)
,

q(x)
m2(x)

)

for some (measur.) function w3 : X × [a, b] × [a, b] → [0,∞]. Moreover, for all
s ∈ R

(
P
M1

)
, all t ∈ R

( Q
M2

)
and λ-a.a. x ∈ X , let the following conditions hold:

(a) φ is strictly convex at t ;
(b) if φ is differentiable at t and s �= t , then φ is not affine-linear on the interval

[min(s, t),max(s, t)] (i.e. between t and s);
(c) if φ is not differentiable at t , s > t and φ is affine linear on [t, s], then we

exclude c = 1 for the (“globally/universally chosen”) subderivative φ′+,c(·) =
c · φ′+(·) + (1 − c) · φ′−(·);

(d) if φ is not differentiable at t , s < t and φ is affine linear on [s, t], then we exclude
c = 0 for φ′+,c(·);

(e) w3(x, s, t) < ∞;
(f) w3(x, s, t) > 0 if s �= t ;
(g) w3(x, a, a) · ψφ,c(a, a) := 0 by convention (even in cases where the function

w3(x, ·, ·) · ψφ,c(·, ·) is not continuous on the boundary point (a, a));
(h) w3(x, b, b) · ψφ,c(b, b) := 0 by convention (even in cases where the function

w3(x, ·, ·) · ψφ,c(·, ·) is not continuous on the boundary point (b, b));
(i) w3(x, a, t) · ψφ,c(a, t) > 0, where w3(x, a, t) · ψφ,c(a, t) := lims→a w3

(x, s, t) · ψφ,c(s, t) if this limit exists, and otherwise we set by convention
w3(x, a, t) · ψφ,c(a, t) := 1 (or any other strictly positive constant);

(j) w3(x, b, t) · ψφ,c(b, t) > 0, where w3(x, b, t) · ψφ,c(b, t) is analogous to (i);
(k) w3(x, s, a) · ψφ,c(s, a) > 0, where w3(x, s, a) · ψφ,c(s, a) := limt→a w3

(x, s, t) · ψφ,c(s, t) if this limit exists, and otherwise we set by convention
w3(x, s, a) · ψφ,c(s, a) := 1 (or any other strictly positive constant);

(l) w3(x, s, b) · ψφ,c(s, b) > 0, where w3(x, s, b) · ψφ,c(s, b) is analogous to (k);
(m) w3(x, a, b) · ψφ,c(a, b) > 0, where w3(x, a, b) · ψφ,c(a, b) := lims→a w3

(x, s, b) · ψφ,c(s, b) if this limit exists, and otherwise we set by convention
w3(x, a, b) · ψφ,c(a, b) := 1 (or any other strictly positive constant);

(n) w3(x, b, a) · ψφ,c(b, a) > 0, where w3(x, b, a) · ψφ,c(b, a) := lims→b w3

(x, s, a) · ψφ,c(s, a) if this limit exists, and otherwise we set by convention
w3(x, b, a) · ψφ,c(b, a) := 1 (or any other strictly positive constant). �
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Under Assumption 2, we always interpret the corresponding divergence

Dc
φ,M1,M2,M3,λ

(P, Q) := Dc
φ,M1,M2,W3,λ

(P, Q) :=

:=
∫

X
w3

(
x,

p(x)

m1(x)
,
q(x)

m2(x)

) · [
φ
( p(x)

m1(x)

) − φ
( q(x)

m2(x)

)

−φ′
+,c

( q(x)

m2(x)

) · ( p(x)

m1(x)
− q(x)

m2(x)

)]
dλ(x)

as
∫
X w3 · ψφ,c

(
x, p(x)

m1(x)
,

q(x)
m2(x)

)
dλ(x), where w3 · ψφ,c(x, s, t) denotes the exten-

sion of the functionX ×]a, b[×]a, b[� (x, s, t) → w3(x, s, t) · ψφ,c(s, t) onX ×
[a, b] × [a, b] according to the conditions (g) to (n) above.

Remark 1 (a) We could even work with a weaker assumption obtained by replacing
s with p(x)

m1(x)
as well as t with q(x)

m2(x)
and by requiring that then the correspondingly

plugged-in conditions (a) to (n) hold for λ-a.a. x ∈ X .
(b) Notice that our above context subsumes aggregation functions of the form
m3(x) = w̃3(x, p(x), q(x),m1(x),m2(x)) with w̃3(x, z1, z2, z3, z4) having appro-
priately imbeddable behaviour in its arguments x, z1, z2, z3, z4, the outcoming ratios
z1
z3
, z2
z4
and possible boundary values thereof. �

The following requirement is stronger than the “model-individual/dependent”
Assumption 2 but is more “universally applicable” (amongst all models such that
R

(
P
M1

) ∪ R
( Q
M2

) ⊂ [a, b], take e.g. E =]a, b[ as E =]0,∞[ or E =] − ∞,∞[):
Assumption 3 Let c ∈ [0, 1], φ ∈ Φ(]a, b[) on some fixed ]a, b[ ∈ ] − ∞,+∞[
such that ]a, b[ ⊃ R

(
P
M1

) ∪ R
( Q
M2

)
. The aggregation function is of the formm3(x) =

w3
(
x, p(x)

m1(x)
,

q(x)
m2(x)

)
for some (measurable) function w3 : X × [a, b] × [a, b] →

[0,∞]. Furthermore, for all s ∈]a, b[, t ∈]a, b[ and λ-a.a. x ∈ X , the conditions
(a) to (n) of Assumption 2 hold.

Important examples in connectionwith theAssumptions 2, 3will be given in Sect. 3.2
(for φ) and Sect. 3.3 (for m1, m2, w3) below. With these assumptions at hand, we
obtain the following non-negativity and reflexivity assertions:

Theorem 4 Let the Assumption 2 be satisfied. Then there holds:
(1) Dc

φ,M1,M2,M3,λ
(P, Q) � 0. Depending on the concrete situation,

Dc
φ,M1,M2,M3,λ

(P, Q) may take infinite value.

(2) Dc
φ,M1,M2,M3,λ

(P, Q) = 0 if and only if
p(x)

m1(x)
= q(x)

m2(x)
forλ-a.a. x ∈ X .

Theorem 4 – whose proof will be given in the appendix – says that
Dc

φ,M1,M2,M3,λ
(P, Q) is indeed a “proper” divergence under the Assumption 2.

Hence, the latter will be assumed for the rest of the paper, unless stated otherwise: for
instance, we shall sometimes work with the stronger Assumption 3; thus, for more
comfortable reference, we state explicitly
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Corollary 1 Under the more universally applicable Assumption 3, the Assertions
(1) and (2) of Theorem 4 hold.

Under some non-obvious additional constraints on the functions P , Q it may
be possible to show the Assertions (1), (2) of Theorem 4 by even dropping the
purely generator-concerning Assumptions 2(b) to (d); see e.g. Sect. 3.3.1.2 below.
In the following, we discuss several important features and special cases of β =
(φ, M1, M2,M3,λ) in a well-structured way. Let us start with the latter.

3.1 The Reference Measure λ

In (1), λ can be interpreted as a “governer” upon the principle aggregation struc-
ture, whereas the “aggregation function” m3 tunes the fine aggregation details.
For instance, if one chooses λ = λL as the Lebesgue measure on X ⊂ R, then
the integral in (1) turns out to be of Lebesgue-type and (with some rare excep-
tions) consequently of Riemann-type. In contrast, in the discrete setup where
X := X# has countably many elements and is equipped with the counting measure
λ := λ# := ∑

z∈X #
δz (where δz is Dirac’s one-point distribution δz[A] := 1A(z),

and thus λ#[{z}] = 1 for all z ∈ X#) then (1) simplifies to

0 � Dc
φ,M1,M2,M3,λ#

(P, Q)

:= ∑
z∈X

[
φ
( p(z)
m1(z)

) − φ
( q(z)
m2(z)

) − φ′+,c

( q(z)
m2(z)

) · ( p(z)
m1(z)

− q(z)
m2(z)

)] · m3(z) , (2)

which we interpret as
∑

z∈X ψφ,c
( p(z)
m1(z)

,
q(z)
m2(z)

) · m3(z) with the same conventions

and limits as in the paragraph right after (1); if X# = {z0} for arbitrary z0 ∈ X̃ , we
obtain the corresponding one-point divergence over any space X̃ .

3.2 The Divergence Generator φ

We continue with the inspection of interesting special cases of
β = (φ, M1, M2,M3,λ) by dealingwith the first component. For this, letΦC1(]a, b[)
be the class of all functions φ ∈ Φ(]a, b[)which are also continuously differentiable
on E =]a, b[. For divergence generator φ ∈ ΦC1(]a, b[), the formula (1) becomes
(recall that we suppress the obsolete c and subderivative index +)

0 � Dφ,M1,M2,M3,λ(P, Q)

:= ∫
X

[
φ
( p(x)
m1(x)

) − φ
( q(x)
m2(x)

) − φ′( q(x)
m2(x)

) · ( p(x)
m1(x)

− q(x)
m2(x)

)] · m3(x) dλ(x) , (3)

whereas (2) turns into



166 M. Broniatowski and W. Stummer

0 � Dφ,M1,M2,M3,λ# (P, Q)

:= ∑
x∈X

[
φ
( p(x)
m1(x)

) − φ
( q(x)
m2(x)

) − φ′( q(x)
m2(x)

) · ( p(x)
m1(x)

− q(x)
m2(x)

)] · m3(x).

Formally, by defining the integral functional gφ,M3,λ(ξ) := ∫
X φ(ξ(x)) · m3(x)

dλ(x) and plugging in e.g. gφ,M3,λ

(
P
M1

) = ∫
X φ

( p(x)
m1(x)

) · m3(x) dλ(x), the diver-
gence in (3) can be interpreted as

0 � Dφ,M1,M2,M3,λ(P, Q)

= gφ,M3,λ

(
P
M1

) − gφ,M3,λ

( Q
M2

) − g′
φ,M3,λ

( Q
M2

, P
M1

− Q
M2

)
(4)

where g′
φ,M3,λ

(
η, · ) denotes the corresponding directional derivate at η = Q

M2
. If one

has a “nonnegativity-setup” (NN0) in the sense that for all x ∈ X there holds p(x)
m1(x)

�
0 and q(x)

m2(x)
� 0 (but not necessarily p(x) � 0, q(x) � 0, m1(x) � 0, m2(x) � 0)

then one can take a = 0, b = ∞, i.e. E =]0,∞[, and employ the strictly convex
power functions

φ̃(t) := φ̃α(t) := tα−1
α(α−1) ∈] − ∞,∞[, t ∈]0,∞[, α ∈ R\{0, 1} ,

φ(t) := φα(t) := φ̃α(t) − φ̃′
α(1) · (t − 1) = tα−1

α(α−1) − t−1
α−1 ∈ [0,∞[, t ∈]0,∞[,

α ∈ R\{0, 1} , (5)

which satisfy (with the notations introduced in the paragraph right after (1))

φα(1) = 0, φ′
α(t) = tα−1−1

α−1 , φ′
α(1) = 0, φ′′

α(t) = tα−2 > 0, t ∈]0, ∞[, (6)

φα(0) := limt↓0 φα(t) = 1
α · 1]0,1]∪]1,∞[(α) + ∞ · 1]−∞,0[(α),

φα(∞) := lim
t↑∞ φα(t) = ∞, (7)

φ′
α(0) := limt↓0 φ′

α(t) = 1
1−α · 1]1,∞[(α) − ∞ · 1]−∞,0[∪]0,1[(α),

φ′
α(∞) := limt↑∞ φ′

α(t) = ∞ · 1]1,∞[(α) + 1
1−α · 1]−∞,0[∪]0,1[(α) = limt↑∞ φα(t)

t , (8)

ψφα (s, t) = 1
α·(α−1) ·

[
sα + (α − 1) · tα − α · s · tα−1

]
, s, t ∈]0, ∞[, (9)

ψφα (0, t) = tα
α · 1]0,1[∪]1,∞[(α) + ∞ · 1]−∞,0[(α), t ∈]0, ∞[, (10)

ψφα (∞, t) = ∞, t ∈]0, ∞[,
lims→∞ 1

s · ψφα (s, 1) = 1
1−α · 1]−∞,0[∪]0,1[(α) + ∞ · 1]1,∞[(α),

ψφα (s, 0) = sα
α·(α−1) · 1]1,∞[(α) + ∞ · 1]−∞,0[∪]0,1[(α), s ∈]0, ∞[, (11)

ψφα (s, ∞) = sα
α·(α−1) · 1]−∞,0[(α) + ∞ · 1]0,1[∪]1,∞[(α), s ∈]0, ∞[,

ψφα (0, 0) := 0 (which is unequal to limt→0 lims→0 ψφα (s, t) forα < 0

and which is unequal to lim
s→0

lim
t→0

ψφα (s, t) forα > 1),

ψφα (∞, ∞) := 0 (which is unequal to limt→∞ lims→∞ ψφα (s, t) forα ∈ R\{0, 1}
and which is unequal to lim

s→∞ lim
t→∞ ψφα (s, t) forα ∈]0, 1[∪]1,∞[),

ψφα (0, ∞) := lims→0 limt→∞ ψφα (s, t) = ∞ (12)
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(which coincides with lim
t→∞ lim

s→0
ψφα (s, t) forα ∈ R\{0, 1}),

ψφα (∞, 0) := lims→∞ limt→0 ψφα (s, t) = ∞ (13)
(which coincides with lim

t→0
lim
s→∞ ψφα (s, t) forα ∈ R\{0, 1}).

The perhaps most important special case is α = 2, for which (5) turns into

φ2(t) := (t−1)2

2 , t ∈]0,∞[= E, (14)

having for s, t ∈]0,∞[ the properties (cf. (7)–(13))

φ2(1) = 0, φ′
2(1) = 0, φ2(0) = 1

2 , φ2(∞) = ∞, φ′
2(0) = − 1

2 ,

φ′
2(∞) = ∞ = limt↑∞ φ2(t)

t ,ψφ2(s, t) = (s−t)2

2 , (15)

ψφ2(0, t) = t2

2 , ψφ2(∞, t) = ∞, lims→∞ 1
s · ψφ2(s, 1) = ∞,

ψφ2(s, 0) = s2

2 , ψφ2(s,∞) = ∞, ψφ2(0, 0) := 0, (16)

ψφ2(∞,∞) := 0, ψφ2(0,∞) = ∞, ψφ2(∞, 0) = ∞.

Also notice that the divergence-generator φ2 of (14) can be trivially extended to

φ̄2(t) := (t−1)2

2 , t ∈] − ∞,∞[= Ē, (17)

which is useful in a general setup (GS)where for all x ∈ X onehas p(x)
m1(x)

∈ [−∞,∞]
and q(x)

m2(x)
∈ [−∞,∞]. Convex extensions to ]a,∞[with a ∈] − ∞, 0[ can be easily

done by the shift φ̄α(t) := φα(t − a).
Further examples of everywhere strictly convex differentiable divergence gen-

erators φ ∈ ΦC1(]a, b[) for the “nonnegativity-setup” (NN0) (i.e. a = 0, b = ∞,
E =]0,∞[) can be obtained by taking the α-limits

φ̃1(t) := limα→1 φα(t) = t · log t ∈ [−e−1, ∞[, t ∈]0, ∞[,
φ1(t) := limα→1 φα(t) = φ̃1(t) − φ̃′

1(1) · (t − 1) = t · log t + 1 − t ∈ [0, ∞[, t ∈]0, ∞[, (18)
φ̃0(t) := limα→0 φα(t) = − log t ∈] − ∞, ∞[, t ∈]0, ∞[,
φ0(t) := limα→0 φα(t) = φ̃0(t) − φ̃′

0(1) · (t − 1) = − log t + t − 1 ∈ [0, ∞[, t ∈]0, ∞[, (19)

which satisfy
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φ1(1) = 0, φ′
1(t) = log t, φ′

1(1) = 0, φ′′
1(t) = t−1 > 0, t ∈]0,∞[,

φ1(0) := limt↓0 φ1(t) = 1, φ1(∞) := limt↑∞ φ1(t) = ∞, (20)

φ′
1(0) := limt↓0 φ′

1(t) = −∞, φ′
1(∞) := limt↑∞ φ′

1(t) = +∞ = limt↑∞ φ1(t)
t , (21)

ψφ1 (s, t) = s · log ( s
t

) + t − s, s, t ∈]0,∞[, (22)

ψφ1 (0, t) = t, ψφ1 (∞, t) = ∞, lims→∞ 1
s · ψφ1 (s, 1) = ∞, t ∈]0,∞[, (23)

ψφ1 (s, 0) = ∞, ψφ1 (s,∞) = ∞, s ∈]0,∞[, (24)
ψφ1 (0, 0) := 0 (which coincides with limt→0 lims→0 ψφ1 (s, t)

but which does not coincide with lim
s→0

lim
t→0

ψφ1 (s, t) = ∞),

ψφ1 (∞,∞) := 0 (which does not coincide with

lim
t→∞ lim

s→∞ ψφ1 (s, t) = lim
s→∞ lim

t→∞ ψφ1 (s, t) = ∞,

ψφ1 (0,∞) := lims→0 limt→∞ ψφ1 (s, t) = ∞
(which coincides with lim

t→∞ lim
s→0

ψφ1 (s, t)),

ψφ1 (∞, 0) := lims→∞ limt→0 ψφ1 (s, t) = ∞
(which coincides with lim

t→0
lim
s→∞ ψφ1 (s, t)),

as well as

φ0(1) = 0, φ′
0(t) = 1 − 1

t , φ′
0(1) = 0, φ′′

0(t) = t−2 > 0, t ∈]0,∞[, (25)
φ0(0) := limt↓0 φ0(t) = ∞, φ0(∞) := limt↑∞ φ0(t) = ∞, (26)

φ′
0(0) := limt↓0 φ′

0(t) = −∞, φ′
0(∞) := limt↑∞ φ′

0(t) = 1 = limt↑∞ φ0(t)
t , (27)

ψφ0 (s, t) = − log
( s
t

) + s
t − 1, s, t ∈]0,∞[, (28)

ψφ0 (0, t) = ∞, ψφ0 (∞, t) = ∞, lims→∞ 1
s · ψφ0 (s, 1) = 1, t ∈]0,∞[, (29)

ψφ0 (s, 0) = ∞, ψφ0 (s,∞) = ∞, s ∈]0,∞[, (30)
ψφ0 (0, 0) := 0 (which does not coincide with

lim
t→0

lim
s→0

ψφ0 (s, t) = lim
s→0

lim
t→0

ψφ0 (s, t) = ∞),

ψφ0 (∞,∞) := 0 (which does not coincide with

lim
t→∞ lim

s→∞ ψφ0 (s, t) = lim
s→∞ lim

t→∞ ψφ0 (s, t) = ∞),

ψφ0 (0,∞) := lims→0 limt→∞ ψφ0 (s, t) = ∞
(which coincides with lim

t→∞ lim
s→0

ψφ0 (s, t)),

ψφ0 (∞, 0) := lims→∞ limt→0 ψφ0 (s, t) = ∞
(which coincides with lim

t→0
lim
s→∞ ψφ0 (s, t)).

An important, but (in our context) technically delicate, convex divergence generator
is φT V (t) := |t − 1| which is non-differentiable at t = 1; the latter is also the only
point of strict convexity. Further properties are for arbitrarily fixed s, t ∈]0,∞[,
c ∈ [0, 1] (if not stated otherwise)



Some Universal Insights on Divergences for Statistics … 169

φT V (1) = 0, φT V (0) = 1, φT V (∞) = ∞, (31)

φ′
T V,+,c(t) = 1]1,∞[(t) + (2c − 1) · 1{1}(t) − 1]0,1[(t),

φ′
T V,+,1(t) = 1[1,∞[(t) − 1]0,1[(t),

φ′
T V,+, 12

(t) = 1]1,∞[(t) − 1]0,1[(t) = sgn(t − 1) · 1]0,∞[(t),

φ′
T V,+,c(1) = 2c − 1, φ′

T V,+,1(1) = 1, φ′
T V,+, 12

(1) = 0, (32)

φ′
T V,+,c(0) = limt→0 φ′

T V,+,c(t) = −1, φ′
T V,+,c(∞) = limt→∞ φ′

T V,+,c(t) = 1,

ψφT V ,c(s, t) = 1]0,1[(t) · 2(s − 1) · 1]1,∞[(s) + 1]1,∞[(t) · 2(1 − s) · 1]0,1](s)

+ 1{1}(t) ·
[
2(1 − c) · (s − 1) · 1]1,∞[(s) + 2c · (1 − s) · 1]0,1](s)

]
,

ψφT V , 12
(s, 1) = |s − 1|, (33)

ψφT V ,c(0, t) = lims→0 ψφT V ,c(s, t) = 2 · 1]1,∞[(t) + 2c · 1{1}(t),
ψφT V ,c(∞, t) = lims→∞ ψφT V ,c(s, t) = ∞ · 1]0,1[(t) + ∞ · 1{1}(t) · 1[0,1[(c),
lims→∞ 1

s · ψφT V ,c(s, 1) = 2(1 − c), (34)

ψφT V ,c(s, 0) = limt→0 ψφT V ,c(s, t) = 2(s − 1) · 1]1,∞[(s),
ψφT V ,c(s,∞) = limt→∞ ψφT V ,c(s, t) = 2(1 − s) · 1]0,1](s),
ψφT V ,c(0, 0) := 0 (which coincides with both limt→0 lims→0 ψφT V ,c(s, t)

and lim
s→0

lim
t→0

ψφT V ,c(s, t)),

ψφT V ,c(∞,∞) := 0 (which coincides with both limt→∞ lims→∞ ψφT V ,c(s, t)

and lim
s→∞ lim

t→∞ ψφT V ,c(s, t)),

ψφT V ,c(0,∞) := lims→0 limt→∞ ψφT V ,c(s, t) = 2

(which coincides with lim
t→∞ lim

s→0
ψφT V ,c(s, t)),

ψφT V ,c(∞, 0) := lims→∞ limt→0 ψφT V ,c(s, t) = ∞
(which coincides with lim

t→0
lim
s→∞ ψφT V ,c(s, t)).

In particular, one sees from Assumption 2(a) that – in our context – φT V can only be
potentially applied if q(x)

m2(x)
= 1 for λ-a.a. x ∈ X and from Assumption 2(c), (d) that

we generally have to exclude c = 1 and c = 0 for φ′+,c(·) (i.e. we choose c ∈]0, 1[);
as already mentioned above, under some non-obvious additional constraints on the
functions P , Q it may be possible to drop the Assumptions 2(c), (d), see for instance
Sect. 3.3.1.2 below.

Another interesting and technically delicate example is the divergence generator
φie(t) := t − 1 + (1−t)3

3 · 1[0,1](t)which is convex, twice continuously differentiable,
strictly convex at any point t ∈]0, 1] and affine-linear on [1,∞[. More detailed, one
obtains for arbitrarily fixed s, t ∈]0,∞[ (if not stated otherwise):



170 M. Broniatowski and W. Stummer

φie(1) = 0, φie(0) = − 2
3 , φie(∞) = ∞, (35)

φ′
ie(t) = 1 − (1 − t)2 · 1]0,1[(t),

φ′
ie(1) = 1, φ′

ie(0) = limt→0 φ′
ie(t) = 0, φ′

ie(∞) = limt→∞ φ′
ie(t) = 1,

φ′′
ie(t) = 2(1 − t) · 1]0,1[(t), φ′′

ie(1) = 0,

ψφie (s, t) = (1−s)3

3 · 1]0,1[(s) + (1 − t)2 ·
[
2
3 · (1 − t) + (s − 1)

]
· 1]0,1[(t),

ψφie (s, 1) = (1−s)3

3 · 1]0,1[(s),

ψφie (0, t) = lims→0 ψφie (s, t) = 1
3 · 1[1,∞[(t) + 1

3 ·
[
1 − (1 − t)2 · (1 − 2t)

]
· 1]0,1[(t),

ψφie (∞, t) = lims→∞ ψφie (s, t) = ∞ · 1]0,1[(t),
lims→∞ 1

s · ψφie (s, 1) = 0,

ψφie (s, 0) = limt→0 ψφie (s, t) = (
s − 1

3

) · 1[1,∞[(s) + s2 · (1 − s
3

) · 1]0,1[(s),

ψφie (s,∞) = limt→∞ ψφie (s, t) = (1−s)3

3 · 1]0,1[(s),
ψφie (0, 0) := 0 (which coincides with both limt→0 lims→0 ψφie (s, t)

and lim
s→0

lim
t→0

ψφie (s, t)),

ψφie (∞,∞) := 0 (which coincides with both limt→∞ lims→∞ ψφie (s, t)

and lim
s→∞ lim

t→∞ ψφie (s, t)),

ψφie (0,∞) := lims→0 limt→∞ ψφie (s, t) = 1
3

(which coincides with lim
t→∞ lim

s→0
ψφie (s, t)),

ψφie (∞, 0) := lims→∞ limt→0 ψφie (s, t) = ∞
(which coincides with lim

t→0
lim
s→∞ ψφie (s, t)).

In particular, one sees from the Assumptions 2(a), (b) that – in our context – φie can
only be potentially applied in the following two disjoint situations:

(i) q(x)
m2(x)

< 1 for λ-a.a. x ∈ X ;

(i i) q(x)
m2(x)

= 1 and p(x)
m1(x)

� 1 for λ-a.a. x ∈ X .

As already mentioned above, under some non-obvious additional constraints on
the functions P , Q it may be possible to drop Assumption 2(b) and consequently (ii)
can then be replaced by
(̃i i) q(x)

m2(x)
= 1 for λ-a.a. x ∈ X ;

see for instance Sect. 3.3.1.2 below.

3.3 The Scaling and the Aggregation Functions m1, m2,m3

In the above two Sects. 3.1 and 3.2, we have illuminated details of the choices of
the first and the last component of β = (φ, M1, M2,M3,λ). Let us now discuss the
principal roles as well as examples of m1, m2, m3, which widen considerably the
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divergence-modeling flexibility and thus bring in a broad spectrum of goal-oriented
situation-based applicability. To start with, recall that in accordance with (1), the
aggregation function m3 tunes the fine aggregation details (whereas λ can be inter-
preted as a “governer” upon the basic/principle aggregation structure); furthermore,
the function m1(·) scales the function p(·) and m2(·) the function q(·). From a
modeling perspective, these two scaling functions can e.g. be “purely direct” in the
sense that m1(x), m2(x) are chosen to directly reflect some dependence on the data-
reflecting state x ∈ X (independent of the choice of P ,Q), or “purely adaptive” in
the sense that m1(x) = w1(p(x), q(x)), m2(x) = w2(p(x), q(x)) for some appro-
priate (measurable) “connector functions” w1, w2 on the productR(P) × R(Q) of
the ranges of

{
p(x)

}
x∈X and

{
q(x)

}
x∈X , or “hybrids” m1(x) = w1(x, p(x), q(x))

m2(x) = w2(x, p(x), q(x)). Also recall that in consistency with Assumption 2 we
always assume m3(x) = w3

(
x, p(x)

m1(x)
,

q(x)
m2(x)

)
for some (measurable) function w3 :

X × [a, b] × [a, b] → [0,∞].Whenever applicable and insightfulness-enhancing,
we use the notation Dc

φ,W1,W2,W3,λ
(P, Q) instead of Dc

φ,M1,M2,M3,λ
(P, Q).

Let us start with the following important sub-setup:

3.3.1 m1(x) = m2(x) := m(x), m3(x) = r(x) · m(x) ∈ [0,∞] for Some
(meas.) Function r : X → R Satisfying r(x) ∈] − ∞, 0[∪]0,∞[
for λ−a.a. x ∈ X

As an interpretation, here the scaling functions are strongly coupled with the aggre-
gation function; in order to avoid “case-overlapping”, we assume that the function
r(·) does not (explicitly) depend on the functions m(·), p(·) and q(·) (i.e. it is not of
the form r(·) = h(·,m(·), p(·), q(·)) ). From (1) one can deduce

0 � Dc
φ,M,M,R·M,λ(P, Q)

:= ∫
X

[
φ
( p(x)
m(x)

) − φ
( q(x)
m(x)

) − φ′+,c

( q(x)
m(x)

) · ( p(x)
m(x) − q(x)

m(x)

)] · m(x) · r(x) dλ(x) , (36)

which for the discrete setup (X ,λ) = (X#,λ#) (recall λ#[{x}] = 1 for all x ∈ X#)
simplifies to

0 � Dc
φ,M,M,R·M,λ#

(P, Q)

= ∑
x∈X

[
φ
( p(x)
m(x)

) − φ
( q(x)
m(x)

) − φ′+,c

( q(x)
m(x)

) · ( p(x)
m(x) − q(x)

m(x)

)] · m(x) · r(x) . (37)

Remark 2 (a) If one has a “nonnegativity-setup” (NN1) in the sense that for λ-
almost all x ∈ X there holds m(x) � 0, r(x) � 0, p(x) � 0, q(x) � 0, then (36)
(and hence also (37)) can be interpreted as scaledBregman divergence Bφ

(
P,Q |M)

between the two nonnegative measures P,Q (on (X ,F )) defined by P[•] :=
PR·λ[•] := ∫

• p(x) · r(x) dλ(x) andQ[•] := QR·λ[•] := ∫
• q(x) · r(x) dλ(x),with

scaling by the nonnegative measure M[•] := MR·λ[•] := ∫
• m(x) · r(x) dλ(x).
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(b) In a context of r(x) ≡ 1 and “λ-probability-densities” ⇀p, ⇀q on general state

space X , then ⇀P
1·λ[•] := ∫

•
⇀p(x) dλ(x) and ⇀Q

1·λ[•] := ∫
•

⇀q(x) dλ(x) are proba-
bility measures (where 1 stands for the function with constant value 1). Accord-
ingly, (36) (and hence also (37)) can be interpreted as scaled Bregman divergence

Bφ

(⇀P
1·λ

,
⇀Q

1·λ |M1·λ) which has been first defined in Stummer [81], Stummer and
Vajda [84], see also Kisslinger and Stummer [35–37] for the “purely adaptive” case
m(x) = w

(
⇀p(x), ⇀q(x)

)
and indications on non-probability measures. For instance,

if Y is a random variable taking values in the discrete space X#, then (with a slight

abuse of notation8) ⇀q(x) = ⇀Q
1·λ# [Y = x]may be its probability mass function under

a hypothetical/candidate law ⇀Q
1·λ#

, and ⇀p(x) = 1
N · #{i ∈ {1, . . . , N } : Yi = x} =:

⇀p
emp
N (x) is the probability mass function of the corresponding data-derived “empiri-

cal distribution” ⇀P
1·λ# [•] := ⇀P

emp

N [•] := 1
N · ∑N

i=1 δYi [•] of an N -size independent
and identically distributed (i.i.d.) sample Y1, . . . ,YN of Y which is nothing but the
probability distribution reflecting the underlying (normalized) histogram. Typically,
for small respectively medium sample size N one gets ⇀p

emp
N (x) = 0 for some states

x ∈ X which are feasible but “not yet” observed; amongst other things, this explains
why density-zeros play an important role especially in statistics and information the-
ory. This concludes the current Remark 2. �

In the following, we illuminate two important special cases of the scaling (and
aggregation-part) function m(·), namely m(x) := 1 and m(x) := q(x):

3.3.1.1 m1(x) = m2(x) := 1, m3(x) = r(x) for Some (Measurable) Function
r : X → [0,∞] Satisfying r(x) ∈]0,∞[ for λ−a.a. x ∈ X

Accordingly, (36) turns into

0 � Dc
φ,1,1,R·1,λ(P, Q)

:= ∫
X

[
φ
(
p(x)

) − φ
(
q(x)

) − φ′+,c

(
q(x)

) · (
p(x) − q(x)

)] · r(x) dλ(x) , (38)

which for the discrete setup (X ,λ) = (X#,λ#) becomes9

0 � Dc
φ,1,1,R·1,λ#

(P, Q)

:=
∑

x∈X

[
φ
(
p(x)

) − φ
(
q(x)

) − φ′
+,c

(
q(x)

) · (
p(x) − q(x)

)] · r(x) (39)

8Respectively working with canonical space representation and Y := id.
9As a side remark, let us mention here that in the special case of continuously differentiable strictly
log-convex divergence generatorφ, one can construct divergenceswhich are tighter than (38) respec-
tively (39), see Stummer and Kißlinger [82]; in a finite discrete space and for differentiable expo-
nentially concave divergence generator φ, a similar tightening (called L-divergence) can be found
in Pal and Wong [66, 67].
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Notice that for r(x) ≡ 1, the divergences (38) and (39) are “consistent extensions”
of themotivating pointwise dissimilarity d(6)

φ (·, ·) from Sect. 2. A special case of (38)
is e.g. the rho-tau divergence (cf. Lemma 1 of Zhang and Naudts [95]).
Let us exemplarily illuminate the special case φ = φα together with p(x) � 0,
q(x) � 0, forλ-almost all x ∈ X which bymeans of (9), (22), (28) turns (38) into the
“explicit-boundary” version (of the corresponding “implicit-boundary-describing”∫

. . .)10

0 � Dφα,1,1,R·1,λ(P,Q)

= ∫
X

r(x)
α·(α−1) · [

p(x)α + (α − 1) · q(x)α − α · p(x) · q(x)α−1] dλ(x) (40)

= ∫
X

r(x)
α·(α−1) · [

p(x)α + (α − 1) · q(x)α − α · p(x) · q(x)α−1] · 1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+ ∫
X r(x) · [ p(x)α

α · (α−1) · 1]1,∞[(α) + ∞ · 1]−∞,0[∪]0,1[(α)
] · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)
dλ(x)

+ ∫
X r(x) · [q(x)α

α · 1]0,1[∪]1,∞[(α) + ∞ · 1]−∞,0[(α)
] · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
dλ(x) ,

for α ∈ R\{0, 1}, (41)
0 � Dφ1,1,1,R·1,λ(P,Q)

= ∫
X r(x) · [

p(x) · log (p(x)
q(x)

) + q(x) − p(x)
] · 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+ ∫
X r(x) · ∞ · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)
dλ(x)

+ ∫
X r(x) · q(x) · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
dλ(x) (42)

0 � Dφ0,1,1,R·1,λ(P,Q)

= ∫
X r(x) ·

[
− log

(p(x)
q(x)

) + p(x)
q(x) − 1

]
· 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+ ∫
X r(x) · ∞ · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)
dλ(x)

+ ∫
X r(x) · ∞ · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
dλ(x) , (43)

where we have employed (10), (11) (23), (24), (29), (30); notice that
Dφ1,1,1,R·1,λ(P,Q) is a generalized version of the Kullback–Leibler information
divergence (resp. of the relative entropy). According to the above calculations, one
should excludeα � 0 wheneverp(x) = 0 for all x in some Awith λ[A] > 0, respec-
tively α � 1 whenever q(x) = 0 for all x in some Ã with λ[ Ã] > 0 (a refined alter-
native forα = 1 is given in Sect. 3.3.1.2 below). As far as splitting of the first integral
e.g. in (42) resp. (43) is concerned, notice that the integral (PR·λ − QR·λ)[X ] :=
∫
X

[
q(x) − p(x)

] · r(x) dλ(x) resp.
∫
X

[
p(x)
q(x) − 1

]
· r(x) dλ(x)may be finite even

in caseswherePR·λ[X ] = ∫
X p(x) · r(x) dλ(x) = ∞ andQR·λ[X ] = ∫

X q(x) ·
r(x) dλ(x) = ∞ (especially in case of unbounded data space (e.g.X = R) when an
additive constant is involved and r(·) is bounded from above); furthermore, there are
situationswherePR·λ[X ] = QR·λ[X ] < ∞ and thus (PR·λ − QR·λ)[X ] = 0 but
∫
X

[
p(x)
q(x) − 1

]
· r(x) dλ(x) = ∞. For α = 2, we obtain from (41) and (15) to (16)

10The first resp. second resp. third integral in (41) can be interpreted as divergence-contribution of
the function-(support-)overlap resp. of one part of the function-nonoverlap (e.g. describing “extreme
outliers”) resp. of the other part of the function-nonoverlap (e.g. describing “extreme inliers”).
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0 � Dφ2,1,1,R·1,λ(P,Q) = ∫
X

r(x)
2 · [

p(x) − q(x)
]2
dλ(x) , (44)

where we can exceptionally drop the non-negativity constraintsp(x) � 0,q(x) � 0.
As for interpretation, (44) is nothing but half of the r(·)-weighted squared L2(λ)-
distance between p(·) and q(·).

In the special sub-setup of r(x) ≡ 1 and “λ-probability-densities” ⇀p ⇀q on data
space X (cf. Remark 2(b)), we can deduce from (41)–(43) the divergences

Dφα,1,1,1·1,λ(
⇀P,

⇀Q) (45)

which for the choice α > 0 can be interpreted as “order−α” density-power diver-
gences DPD of Basu et al. [10] between the two corresponding probability measures
⇀P

1·λ
and ⇀Q

1·λ
; for their statistical applications see e.g. Basu et al. [12], Ghosh and

Basu [30, 31] and the references therein, and for generalα ∈ R see e.g. Stummer and
Vajda [84]. In particular, the case α = 1 corresponding divergence in (45) is called
“Kullback–Leibler information divergence” between ⇀P and ⇀Q, and is also known
under the name “relative entropy”. For α = 2, we derive Dφ2,1,1,R·1,λ(

⇀P,
⇀Q) from

(44) with r(x) = 1 which is nothing but half of the squared L2-distance between the
two “λ-probability-densities” ⇀p and ⇀q.

For the special discrete setup (X ,λ) = (X#,λ#) (recall λ#[{x}] = 1 for all x ∈
X#), the divergences (41)–(44) simplify to

0 � Dφα,1 ,1 ,R ·1 ,λ(P,Q)

= ∑
x∈X

r(x)
α·(α−1) · [(p(x)

)α + (α − 1) · (q(x)
)α − α · p(x) · (q(x)

)α−1]

·1]0,∞[
(
p(x) · q(x)

)

+ ∑
x∈X r(x) · [ p (x)α

α·(α−1) · 1]1,∞[(α) + ∞ · 1]−∞,0[∪]0,1[(α)
] · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)

+ ∑
x∈X r(x) · [ q(x)α

α · 1]0,1[∪]1,∞[(α) + ∞ · 1]−∞,0[(α)
] · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
,

for α ∈ R\{0, 1},(46)
0 � Dφ1,1 ,1 ,R ·1 ,λ(P,Q)

= ∑
x∈X r(x) · [

p(x) · log ( p (x)
q(x)

) + q(x) − p(x)
] · 1]0,∞[

(
p(x) · q(x)

)

+ ∑
x∈X r(x) · ∞ · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)

+ ∑
x∈X r(x) · q(x) · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
,

0 � Dφ0,1 ,1 ,R ·1 ,λ(P,Q)

= ∑
x∈X r(x) · [ − log

( p (x)
q(x)

) + p (x)
q(x) − 1

] · 1]0,∞[
(
p(x) · q(x)

)

+ ∑
x∈X r(x) · ∞ · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)

+ ∑
x∈X r(x) · ∞ · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
,

0 � Dφ2,1 ,1 ,R ·1 ,λ# (P,Q) = ∑
x∈X

r(x)
2 · [

p(x) − q(x)
]2

.
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Hence, as above, one should exclude α � 0 whenever p(x) = 0 for all x in some
A with λ[A] > 0, respectively α � 1 whenever q(x) = 0 for all x in some Ã with
λ[ Ã] > 0 (a refined alternative for α = 1 is given in Sect. 3.3.1.2 below).

In particular, take the probability context of Remark 2(b), with discrete random

variable Y , hypothetical probability mass function q(x) := ⇀q(x) = ⇀Q
1·λ# [Y = x],

and data-derived probability mass function (relative frequency) p(x) := ⇀p
emp
N (x) =

1
N · #{i ∈ {1, . . . , N } : Yi = x}with sample size N . For r(x) ≡ 1, the corresponding

sample-size-weighted divergences 2N · Dφα,1,1,1,λ# (
⇀
P
emp

N ,
⇀Q) (for α ∈ R) can be

used as goodness-of-fit test statistics; see e.g. Kisslinger and Stummer [37] for their
limit behaviour as the sample size N tends to infinity.

3.3.1.2 m1(x) = m2(x) := q(x), m3(x) = r(x) · q(x) ∈ [0,∞] for Some (meas.)
Function r : X → R Satisfying r(x) ∈] − ∞, 0[∪]0,∞[ for λ−a.a. x ∈ X

In such a set-up, the divergence (36) becomes

0 � Dc
φ,Q,Q,R·Q,λ(P, Q)

= ∫
X

[
φ
( p(x)
q(x)

) − φ
(
1
) − φ′+,c

(
1
) · ( p(x)

q(x) − 1
)] · q(x) · r(x) dλ(x) (47)

= ∫
X

[
q(x) · φ

( p(x)
q(x)

) − q(x) · φ
(
1
) − φ′+,c

(
1
) · (

p(x) − q(x)
)] · r(x) dλ(x) , (48)

where in accordancewith the descriptions right after (1)we require thatφ :]a, b[→ R

is convex and strictly convex at 1 ∈]a, b[ and incorporate the zeros of p(·), q(·), r(·)
by the appropriate limits and conventions. In the following, we demonstrate this
in a non-negativity set-up where for λ-almost all x ∈ X one has r(x) ∈]0,∞[ as
well as p(x) ∈ [0,∞[, q(x) ∈ [0,∞[, and hence E =]a, b[=]0,∞[. In order to
achieve a reflexivity result in the spirit of Theorem 4, we have to check for – respec-
tively analogously adapt most of – the points in Assumption 2: to begin with, the
weightw(x, s, t) evaluated at s := p(x), t := q(x) has to be substituted/replaced by
w̃(x, t̃) := r(x) · t̃ evaluated at t̃ = q(x), and the dissimilarity ψφ,c(s, t) has to be

substituted/replaced by ˜̃ψφ,c (̃s, t̃) := ψφ,c
(
s̃
t̃
, 1

)
with the plug-in s̃ = p(x). Putting

things together, instead of the integrand-generating term w(x, s, t) · ψφ,c(s, t) we

have to inspect the boundary behaviour of w̃(x, t̃) · ˜̃ψφ,c (̃s, t̃) being explicitly given
(with a slight abuse of notation) by the function ψ̃φ,c :]0,∞[3→ [0,∞[ in

ψ̃φ,c
(
r, s̃, t̃

) := r · t̃ · ψφ,c
(
s̃
t̃
, 1

) = r · t̃ · [
φ
(
s̃
t̃

) − φ(1) − φ′+,c(1) · (
s̃
t̃
− 1

)]

= r · t̃ · [
φ
(
s̃·r
t̃ ·r

) − φ(1) − φ′+,c(1) · (
s̃·r
t̃ ·r − 1

)] = r · t̃ · ψφ,c
(
s̃·r
t̃ ·r , 1

)
. (49)

Since the general right-hand-derivative concerning assumption t ∈ R
( Q
M2

)
has s̃

t̃ = 1
as its analogue, we require that the convex function φ :]0,∞[→] − ∞,∞[ is strictly
convex (only) at 1 in conformity with Assumption 2(a) (which is also employed in
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Assumption 3); for the sake of brevity we use the short-hand notation 2(a) etc. in the
following discussion. We shall not need 2(b) to 2(d) in the prevailing context, so that
the above-mentioned generatorφT V (t) := |t − 1| is allowed for achieving reflexivity
(for reasons which will become clear in the proof of Theorem 5 in the appendix).
The analogue of 2(e) is r(x) · t̃ < ∞ which is always (almost surely) automatically
satisfied (a.a.sat.), whereas 2(f) converts to “r(x) · t̃ > 0 for all s̃ �= t̃” which is also
a.a.sat. except for the case t̃ = 0 which will be below incorporated in combination
with ψφ,c-multiplication (cf. (50)). For the derivation of the analogue of 2(k) we
observe that for fixed r > 0, s̃ > 0 the function t̃ → ψ̃φ,c

(
r, s̃, t̃

)
is (the r -fold of)

the perspective function (at s̃) of the convex function ψφ,c
(·, 1) and thus convex with

existing limit

�i1 := r · 0 · ψφ,c
(
s̃
0 , 1

) := limt→0 ψ̃φ,c
(
r, s̃, t̃

) =
= −r · s̃ · φ′+,c(1) + r · s̃ · limt̃→0

[
t̃
s̃ · φ

(
s̃
t̃

)] = r · s̃ · (φ∗(0) − φ′+,c(1)) � 0 , (50)

where φ∗(0) := limu→0 u · φ
(
1
u

) = limv→∞ φ(v)

v
exists but may be infinite (recall

that φ′+,c(1) is finite). Notice that in contrast to 2(k) we need not assume �i1 > 0
(and thus do not exclude φT V ). To convert 2(i), we employ the fact that for fixed
r > 0, t̃ > 0 the function s̃ → ψ̃φ,c

(
r, s̃, t̃

)
is convex with existing limit

r · t̃ · ψφ,c
(0
t̃
, 1

) := lim
s→0

ψ̃φ,c
(
r, s̃, t̃

) = r · t̃ · (φ(0) + φ′
+,c(1) − φ(1)) > 0 ,

where φ(0) := limu→0 φ(u) exists but may be infinite. To achieve the analogue of
2(g), let us first remark that for fixed r > 0 the function (̃s, t̃) → ψ̃φ,c

(
r, s̃, t̃

)
may

not be continuous at (̃s, t̃) = (0, 0), but due to the very nature of a divergence we
make the 2(g)-conform convention of setting

r · 0 · ψφ,c
(
0
0 , 1

) := ψ̃φ,c
(
r, 0, 0

) := 0

(notice that e.g. the power function φ−1 of (5) with index α = −1 obeys
limt̃→0 ψ̃φ−1

(
r, t̃, t̃

) = 0 �= r
2 = limt̃→0 ψ̃φ−1

(
r, t̃2, t̃

)
). The analogues of the remain-

ingAssumptions 2(h),(j),(�),(m),(n) are (almost surely) obsolete because of our basic
(almost surely) finiteness requirements. Summing up, with the above-mentioned lim-
its and conventions we write (47) explicitly as
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0 � Dc
φ,Q,Q,R·Q,λ(P,Q)

= ∫
X r(x) · [

q(x) · φ
(p(x)
q(x)

) − q(x) · φ
(
1
) − φ′+,c

(
1
) · (

p(x) − q(x)
)]

·1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+[
φ∗(0) − φ′+,c(1)

] · ∫
X r(x) · p(x) · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x) · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
dλ(x)

= ∫
X r(x) ·

[
q(x) · φ

(p(x)
q(x)

) − q(x) · φ
(
1
) − φ′+,c

(
1
) · (

p(x) − q(x)
)]

·1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+[
φ∗(0) − φ′+,c(1)

] · ∫
X r(x) · p(x) · 1{0}

(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x) · 1{0}

(
p(x)

)
dλ(x) . (51)

In case of QR·λ[X ] := ∫
X q(x) · r(x) dλ(x) < ∞, the divergence (51) becomes

0 � Dc
φ,Q ,Q ,R ·Q ,λ(P,Q)

= ∫
X r(x) ·

[
q(x) · φ

( p (x)
q(x)

) − φ′+,c

(
1
) · (

p(x) − q(x)
)] · 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+[
φ∗(0) − φ′+,c(1)

] · ∫X r(x) · p(x) · 1{0}
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1)

] · ∫
X r(x) · q(x) · 1{0}

(
p(x)

)
dλ(x) − φ(1) · ∫

X r(x) · q(x) dλ(x) .

(52)

Moreover, in case of φ
(
1
) = 0 and (PR·λ − QR·λ)[X ] = ∫

X

(
p(x) − q(x)

) ·
r(x) dλ(x) ∈] − ∞,∞[ (but not necessarily PR·λ[X ] = ∫

X p(x) · r(x) dλ(x) <

∞, QR·λ[X ] = ∫
X q(x) · r(x) dλ(x) < ∞), the divergence (51) turns into

0 � Dc
φ,Q ,Q ,R ·Q ,λ(P,Q) = ∫

X r(x) · q(x) · φ
( p (x)
q(x)

) · 1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+φ∗(0) · ∫
X r(x) · p(x) · 1{0}

(
q(x)

)
dλ(x) + φ(0) · ∫

X r(x) · q(x) · 1{0}
(
p(x)

)
dλ(x)

−φ′+,c

(
1
) · ∫

X r(x) · (p(x) − q(x)
)
dλ(x) . (53)

Let us remark that (53) can be interpreted as φ-divergence Dc
φ

(
μ, ν

)
between the

two nonnegative measures μ, ν (on (X ,F )) (cf. Stummer and Vajda [83]), where
μ[•] := PR·λ[•] and ν[•] := QR·λ[•]. In the following, we briefly discuss two
important sub-cases. First, in the “λ-probability-densities” context of Remark 2(b)
one has for generalX the manifestation p(x) := ⇀p(x) � 0, q(x) := ⇀q(x) � 0, and
under the constraintφ(1) = 0 the corresponding divergence Dc

φ,
⇀
Q,

⇀
Q,R·⇀Q,λ

(
⇀
P,

⇀
Q) turns

out to be the (r-)“localφ-divergence ofAvlogiaris et al. [6, 7]; in case of r(x) ≡ 1 this
reduces – due to the fact

∫
X

(
⇀p(x) − ⇀q(x)

)
dλ(x) = 0 – to the classical Csiszar-Ali-

Silvey φ-divergence CASD ([4, 27], see also e.g. Liese and Vajda [41], Vajda [89])
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0 � Dc

φ,
⇀
Q,

⇀
Q,1·⇀Q,λ

(
⇀
P,

⇀
Q) = ∫

X
⇀q(x) · φ

(⇀p(x)
⇀q(x)

) · 1]0,∞[
(

⇀p(x) · ⇀q(x)
)
dλ(x)

+φ∗(0) · ∫
X

⇀p(x) · 1{0}
(

⇀q(x)
)
dλ(x) + φ(0) · ∫

X
⇀q(x) · 1{0}

(
⇀p(x)

)
dλ(x)

−φ′+,c

(
1
) · ∫

X

(
⇀p(x) − ⇀q(x)

)
dλ(x)

= ∫
X

⇀q(x) · φ
(⇀p(x)

⇀q(x)

) · 1]0,∞[
(

⇀p(x) · ⇀q(x)
)
dλ(x)

+φ∗(0) · P1·λ[⇀q(x) = 0] + φ(0) · Q1·λ[⇀p(x) = 0] ; (54)

if φ(1) �= 0 then one has to additionally subtract φ(1) (cf. the corresponding special
case of (52)). In particular, for the special sub-setup where for λ-almost all x ∈ X
there holds p(x) := ⇀p(x) > 0, q(x) := ⇀q(x) > 0, r(x) ≡ 1 , φ(1) = 0, one ends up
with the reduced Csiszar-Ali-Silvey divergence

0 � Dc

φ,
⇀
Q,

⇀
Q,1·⇀Q,λ

(
⇀
P,

⇀
Q) = ∫

X
⇀q(x) · φ

(⇀p(x)
⇀q(x)

)
dλ(x)

which can be interpreted as a “consistent extension” of the motivating pointwise
dissimilarity d(7)

φ (·, ·) from the introductory Sect. 2; notice the fundamental struc-

tural difference to the divergence (38) which reflects d(6)
φ (·, ·). For comprehensive

treatments of statistical applications of CASD, the reader is referred to Liese and
Vajda [41], Read and Cressie [72], Vajda [89], Pardo [68], Liese and Miescke [40],
Basu et al. [13].

Returning to the general divergence setup (51), we derive the reflexivity result (to
be proved in the appendix):

Theorem 5 Let c ∈ [0, 1], r(x) ∈]0,∞[ for λ-a.a. x ∈ X , R
(
P
Q

) ∪ {1} ⊂ [a, b],
and φ ∈ Φ(]a, b[) be strictly convex at t = 1. Moreover, suppose that

∫
X

(
p(x) − q(x)

) · r(x) dλ(x) = 0 (55)

(but not necessarily
∫
X p(x) · r(x) dλ(x) < ∞,

∫
X q(x) · r(x) dλ(x) < ∞).

Then:
(1) Dc

φ,Q,Q,R·Q,λ(P,Q) � 0. Depending on the concrete situation,
Dc

φ,Q,Q,R·Q,λ(P,Q) may take infinite value.

(2) Dc
φ,Q,Q,R·Q,λ(P,Q) = 0 if and only if p(x) = q(x) forλ-a.a. x ∈ X . (56)

Remark 3 (a) In the context of non-negative measures, the special case c = 1 –
together with

∫
X p(x) · r(x) dλ(x) < ∞,

∫
X q(x) · r(x) dλ(x) < ∞ – of

Theorem 5 was first achieved by Stummer and Vajda [83].
(b) Assumption (55) is always automatically satisfied if one has coincidence of
finite total masses in the sense of PR·λ[X ] = ∫

X p(x) · r(x) dλ(x) = ∫
X q(x) ·

r(x) dλ(x) = QR·λ[X ] < ∞. For r(x) ≡ 1 this is always satisfied forλ-probability

densities p(x) := ⇀p(x), q(x) := ⇀q(x), since ⇀P
1·λ[X ] = ⇀Q

1·λ[X ] = 1.
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(c)Notice that in contrast to Theorem4, the generator-concerningAssumptions 2(b)–
(d) are replaced by the “model-concerning” constraint (55). This opens the gate for
the use of the generators φie and φT V for cases where (55) is satisfied. For the latter,
we obtain with c = 1

2 explicitly from (49) and (33)

ψ̃φT V , 12

(
r, s̃, t̃

) := r · t̃ · ψφT V , 12

( s̃
t̃
, 1

) = r · t̃ · ∣∣ s̃
t̃

− 1
∣∣ = r · ∣∣̃s − t̃

∣∣,

and hence from (51) together with φT V (1) = 0, φT V (0) = 1 (cf. (31)), φ′
T V,+, 12

(1) =
0 (cf. (32)), φ∗

T V (0) = lims→∞ 1
s · ψφT V , 12

(s, 1) = 1 (cf. (34)) we get

0 � Dc
φ,Q,Q,R·Q,λ(P,Q) = ∫

X r(x) · ∣∣p(x) − q(x)
∣
∣ dλ(x) (57)

which is nothing but the (possibly infinite) r(·)-weighted L1-distance between the
functions x → p(x) and x → q(x).

(d) In the light of (52), Theorem 4 (adapted to the current context) and Theorem 5,
let us indicate that if one wants to use Ξ := ∫

X q(x) · φ
(p(x)
q(x)

) · r(x) dλ(x) (with
appropriate zero-conventions) as a divergence, then one should either employ gener-
ators φ satisfying φ(1) = φ′+,c(1) = 0, or employ models fulfilling the assumption
(56) together with generatorsφ satisfyingφ(1) = 0. On the other hand, if this integral
Ξ appears in your application context “naturally”, then one should be aware that Ξ
may become negative depending on the involved set-up; for a counter-example, see
Stummer and Vajda [83]. This concludes Remark 3.

As an important example, we illuminate the special case φ = φα with α ∈ R\{0, 1}
(cf. (5)) under the constraint (PR·λ − QR·λ)[X ] = ∫

X

(
p(x) − q(x)

) · r(x) dλ(x)
∈] − ∞,∞[. Accordingly, the “implicit-boundary-describing” divergence (48) resp.
the corresponding “explicit-boundary” version (53) turn into the generalized power
divergences of order α (cf. Stummer and Vajda [83] for r(x) ≡ 1)11

0 � Dφα,Q,Q,R·Q,λ(P,Q)

= ∫
X

1
α·(α−1) ·

[(p(x)
q(x)

)α − α · p(x)
q(x) + α − 1

]
· q(x) · r(x) dλ(x) (58)

= 1
α·(α−1) · ∫

X r(x) · q(x) ·
[(p(x)

q(x)

)α − α · p(x)
q(x) + α − 1

]
· 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+φ∗
α(0) · ∫

X r(x) · p(x) · 1{0}
(
q(x)

)
dλ(x) + φα(0) · ∫

X r(x) · q(x) · 1{0}
(
p(x)

)
dλ(x)

= 1
α·(α−1)

∫
X r(x) ·

[
p(x)α · q(x)1−α − q(x)

]
· 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+ 1
1−α · ∫

X r(x) · (p(x) − q(x)) dλ(x) + ∞ · 1]1,∞[(α) · ∫
X r(x) · p(x) · 1{0}

(
q(x)

)
dλ(x)

+( 1
α·(1−α)

· 1]0,1]∪]1,∞[(α) + ∞ · 1]−∞,0[(α)
) · ∫

X r(x) · q(x) · 1{0}
(
p(x)

)
dλ(x),

11This can be interpreted analogously as in footnote 10.
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where we have employed (8) and (7); especially, one gets for α = 2

0 � Dφ2,Q,Q,R·Q,λ(P,Q) = ∫
X

1
2 · (p(x)−q(x))2

q(x) · r(x) dλ(x)

= 1
2

∫
X r(x) · (p(x)−q(x))2

q(x) · 1[0,∞[(p(x)) · 1]0,∞[(q(x)) dλ(x)

+∞ · ∫
X r(x) · p(x) · 1{0}

(
q(x)

)
dλ(x)

which is called Pearsons’s chisquare divergence. Under the same constraint (PR·λ −
QR·λ)[X ] ∈] − ∞,∞[, the case α = 1 leads by (18)–(22) to the generalized
Kullback–Leibler divergence (generalized relative entropy)

0 � Dφ1,Q,Q,R·Q,λ(P,Q) = ∫
X

[
p(x)
q(x) · log (p(x)

q(x)

) + 1 − p(x)
q(x)

]
· q(x) · r(x) dλ(x)

= ∫
X r(x) · p(x) · log (p(x)

q(x)

) · 1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+ ∫
X r(x) · (q(x) − p(x)) dλ(x) + ∞ · ∫

X r(x) · p(x) · 1{0}
(
q(x)

)
dλ(x)

(which equals (42)), and for α = 0 one gets from (19), (25)–(27) the generalized
reverse Kullback–Leibler divergence (generalized reverse relative entropy)

0 � Dφ0,Q,Q,R·Q,λ(P,Q) = ∫
X

[ − log
(p(x)
q(x)

) + p(x)
q(x) − 1

] · q(x) · r(x) dλ(x)

= ∫
X r(x) · q(x) · log (q(x)

p(x)

) · 1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+ ∫
X r(x) · (p(x) − q(x)) dλ(x) + ∞ · ∫

X r(x) · q(x) · 1{0}
(
p(x)

)
dλ(x).

Notice that instead of the limit in (50) one could also use the convention r · 0 ·
ψφ

(
s
0 , 1

) := ψ̃φ

(
r, s, 0

) := 0; in the context of λ-probability densities, one then ends
up with divergence by Rüschendorf [75].

For the discrete setup (X ,λ) = (X#,λ#), the divergence in (51) simplifies to

0 � Dc
φ,Q,Q,R·Q,λ#

(P,Q)

= ∑
x∈X r(x) · [

q(x) · φ
(p(x)
q(x)

) − q(x) · φ
(
1
) − φ′+,c

(
1
) · (

p(x) − q(x)
)]

·1]0,∞[
(
p(x) · q(x)

)

+[
φ∗(0) − φ′+,c(1)

] · ∑
x∈X r(x) · p(x) · 1{0}

(
q(x)

)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∑
x∈X r(x) · q(x) · 1{0}

(
p(x)

)
(59)

which in case of φ(1) = φ′+,c(1) = 0 – respectively φ(1) = 0 and (55) – turns into

0 � Dc
φ,Q ,Q ,R ·Q ,λ#

(P,Q) = ∑
x∈X r(x) · q(x) · φ( p (x)

q(x)

) · 1]0,∞[
(
p(x) · q(x)

)

+φ∗(0) · ∑
x∈X r(x) · p(x) · 1{0}

(
q(x)

) + φ(0) · ∑
x∈X r(x) · q(x) · 1{0}

(
p(x)

)
. (60)
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3.3.1.3 m1(x) = m2(x) := w(p(x),q(x)), m3(x) = r(x) · w(p(x),q(x)) ∈ [0,∞[
for Some (Measurable) Functions w : R(P) × R(Q) → R and r : X → R

Such a choice extends the context of the previous Sect. 3.3.1.2 where the “connector
function” w took the simple form w(u, v) = v, as well as the setup of Sect. 3.3.1.1
dealing with constant w(u, v) ≡ 1. This introduces a wide flexibility with diver-
gences of the form

0 � Dc
φ,W (P,Q),W (P,Q),R·W (P,Q),λ(P, Q)

:= ∫
X

[
φ
( p(x)

w(p(x),q(x))

) − φ
( q(x)

w(p(x),q(x))

)

−φ′+,c

( q(x)
w(p(x),q(x))

) · ( p(x)
w(p(x),q(x)) − q(x)

w(p(x),q(x))

)] · w(p(x), q(x)) · r(x) dλ(x),(61)

which for the discrete setup (X ,λ) = (X#,λ#) (recall λ#[{x}] = 1 for all x ∈ X#)
simplifies to

0 � Dc
φ,W (P,Q),W (P,Q),R·W (P,Q),λ#

(P, Q) = ∑
x∈X

[
φ
( p(x)

w(p(x),q(x))

) − φ
( q(x)

w(p(x),q(x))

)

−φ′+,c

( q(x)
w(p(x),q(x))

) · ( p(x)
w(p(x),q(x)) − q(x)

w(p(x),q(x))

)] · w(p(x), q(x)) · r(x) . (62)

A detailed discussion of this wide class of divergences (61),(62) is beyond the scope
of this paper. For the λ-probability density context (and an indication for more gen-
eral functions), see the comprehensive paper of Kisslinger and Stummer [37] and the
references therein. Finally, by appropriate choices ofw(·, ·)we can even derive diver-
gences of the form (60) but with non-convex non-concave φ: see e.g. the “perturbed”
power divergences of Roensch and Stummer [74].

3.3.2 Global Scaling and Aggregation, and Other Paradigms

Our universal framework also contains, as special cases, scaling and aggregation
functions of the form mi (x) := m�,i (x) · Hi

(
(mg,i (z))z∈X

)
for some (meas., pos-

sibly nonnegative) functions ml,i : X �→ R, mg,i : X �→ R and some nonzero
scalar functionals Hi thereupon (i = 1, 2, 3, x ∈ X ). Accordingly, the compo-
nents Hi

(
. . .

)
can be viewed as “global tunings”, and may depend adaptively

on the primary-interest functions P and Q, i.e. mg,i (z) = wg,i (x, p(x), q(x)). For
instance, in a finite discrete setup (X#,λ#) with strictly convex and differentiable
φ, m1(x) ≡ m2(x) ≡ 1, m3(x) = Hi

(
(wg,3(q(x)))z∈X

)
this reduces to the confor-

mal divergences of Nock et al. [64] (they also indicate the extension to equal non-
unity scaling m1(x) ≡ m2(x)), for which the subcase wg,3(q(x)) := (

φ′ (q(x))
)2
,

H3
((
h(x)

)
x∈X

) := (
1 + ∑

x∈X h(x)
)−1/2

leads to the total Bregman divergences
ofLiu et al. [44, 45],Vemuri et al. [91]. In contrast,Nock et al. [62] usem1(x) ≡ m1 =
H1

(
(p(x))z∈X

)
, m2(x) ≡ m1 = H1

(
(q(x))z∈X

)
, m3(x) ≡ 1. A more detailed dis-

cussion can be found in Stummer andKißlinger [82] and Roensch and Stummer [74],
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where they also give versions for nonconvex nonconcave divergence generators. Let
us finally mention that for the construction of divergence families, there are other
recent paradigms which are essentially different to (1), e.g. by means of measuring
the tightness of inequalities (cf. Nielsen et al. [60, 61]), respectively of comparative
convexity (cf. Nielsen et al. [59]).

4 Divergences for Essentially Different Functions

4.1 Motivation

Especially in divergence-based statistics, one is often faced with the situation where
the functions p(·) and q(·) are of “essentially different nature”. For instance,
consider the situation where the uncertainty-prone data-generating mechanism is
a random variable Y taking values in X = R having a “classical” (e.g. Gaus-
sian) probability density ⇀q(·) with respect to the one-dimensional Lebesque mea-

sure λL , i.e. Pr [Y ∈ • ] := ⇀Q
1·λL [•] := ∫

•
⇀q(x) dλL(x) where the latter is almost

always a Riemann integral (i.e. dλL(x) = dx); notice that we have set r(x) ≡
1 (x ∈ R). As already indicated above, under independent and identically dis-
tributed (i.i.d.) data observations Y1, . . . ,YN of Y one often builds the correspond-
ing “empirical distribution” ⇀P

emp

N [•] := 1
N · ∑N

i=1 δYi [•] which is nothing but the
probability distribution reflecting the underlying (normalized) histogram. By rewrit-

ing ⇀P
1·λ# [•] := ⇀P

emp

N [•] = ∫
•

⇀p(x) dλ#(x) with empirical probability mass func-
tion ⇀p(x) := 1

N · #{i ∈ {1, . . . , N } : Yi = x} =: ⇀p
emp
N (x) one encounters some basic

problems for a straightforward application of divergence concepts: the two aggre-
gating measures λL and λ# do not coincide and actually they are of “essentially
different” nature; moreover, ⇀p(·) is nonzero only on the range R(Y1, . . . ,YN ) =
{z1, . . . , zs} of distinguishable points z1, . . . , zs (s � N ) occupied by Y1, . . . ,YN .
In particular, one has λL [{z1, . . . , zs}] = 0. Accordingly, building a “non-coarsely
discriminating” dissimilarity/divergence D(

⇀P,
⇀Q) between such type of functions

⇀P := {
⇀p(x)

}
x∈X and ⇀Q := {

⇀q(x)
}
x∈X , is a task like “comparing apples with

pears”. There are several solutions to tackle this. To begin with, in the following
we take the “encompassing” approach of quantifying their dissimilarity by means of
their common superordinate characteristics as “fruits”. Put in mathematical terms,
we choose e.g. X = R, λ = λL + λ# and work with the particular representations
⇀p(x) := ⇀̃p(x) · 1{z1,...,zs }(x) with ⇀̃p(x) > 0 for λ-almost all x ∈ {z1, . . . , zs} as well
as ⇀q(x) := ⇀̃q(x) · 1 Ã\{z1,...,zs }(x) with

⇀̃q(x) > 0 for λ-almost all x ∈ Ã\{z1, . . . , zs}
with some large enough (measurable) subset Ã of X = R such that

1 =
∫

X

⇀p(x) dλ#(x) =
∫

X

⇀p(x) dλ(x) and 1 =
∫

X

⇀q(x) dλL (x) =
∫

X

⇀q(x) dλ(x) (63)
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hold. In fact,with these choices one gets Pr [Y ∈ • ] = ∫
•

⇀q(x) dλ(x) and⇀P
emp

N [•] =∫
•

⇀p(x) dλ(x), as well as

p(x) · q(x) = 0 forλ-almost all x ∈ X , (64)

p(x) · 1{0}
(
q(x)

) = p(x) forλ-almost all x ∈ X , (65)

q(x) · 1{0}
(
p(x)

) = q(x) forλ-almost all x ∈ X (66)

for the special choices p(x) = ⇀p(x) and q(x) = ⇀q(x). By means of these and (63),
the divergence (51) simplifies to

Dc

φ,
⇀
Q,

⇀
Q,1·⇀Q,λ

(
⇀P,

⇀Q) = φ∗(0) + φ(0) − φ(1) > 0. (67)

Since for arbitrary space X (and not only R) and any aggregator λ thereupon,
the formula (67) holds for all functions ⇀P := {

⇀p(x)
}
x∈X , ⇀Q := {

⇀q(x)
}
x∈X which

satisfy (63) as well as (64)–(66) for λ-almost all x ∈ X , and since φ∗(0) + φ(0) −
φ(1) is just a constant (whichmay be infinite), these divergences Dc

φ,
⇀
Q,

⇀
Q,1·⇀Q,λ

(
⇀P,

⇀Q)

are not suitable for discriminating between such “essentially different” (basically
orthogonal) λ-probability densities ⇀P and ⇀Q. More generally, under the validity of
(64)–(66) for λ-almost all x ∈ X – which we denote byP ⊥ Q and which basically
amounts to pair of functions of the type

p(x) := p̃(x) · 1A(x) with p̃(x) > 0 forλ-almost all x ∈ A, (68)

q(x) := q̃(x) · 1B\A(x) with q̃(x) > 0 forλ-almost all x ∈ B\A, (69)

with some (measurable) subsets Ã ⊂ B of X – the divergence (51) turns into

Dc
φ,Q,Q,R·Q,λ(P,Q) = [

φ∗(0) − φ′+,c(1)
] · ∫

X r(x) · p(x) dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x) dλ(x) > 0 (70)

which now depends on P and Q, in a rudimentary “weighted-total-mass” way.
Inspired by this, we specify a statistically interesting divergence subclass:

Definition 1 We say that a divergence (respectively dissimilarity respectively dis-
tance)12 D(·, ·) is encompassing for a class P̃ of functions if

• for arbitrarily fixed Q := {
q(x)

}
x∈X ∈ P̃ the function P := {

p(x)
}
x∈X →

D(P, Q) is non-constant on the subfamily of all P ∈ P̃ with P ⊥ Q, and
• for arbitrarily fixed P ∈ P̃ the function Q → D(P, Q) is non-constant on the
subfamily of all Q ∈ P̃ with Q ⊥ P .

Accordingly, due to (67) the prominently used divergences Dc

φ,
⇀
Q,

⇀
Q,1·⇀Q,λ

(
⇀P,

⇀Q) are

not encompassing for the class of P̃ of all λ-probability densities; more gener-

12i.e. the properties (D1) and (D2) (respectively (D2) respectively (D1), (D2) and (D3)) are satisfied.
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ally, because of (70) the divergences Dc
φ,Q,Q,R·Q,λ(P,Q) are in general encom-

passing for the class of P̃ of all λ-probability densities, but not for P̃ := {P̃ :={
p̃(x)

}
x∈X | ∫

X r(x) · p̃(x) dλ(x) = c̃ } for any fixed c̃.

4.2 m1(x) = m2(x) := q(x),
m3(x) = r(x) · q(x)χ∈ [0,∞] for Some χ > 1 and
Some (Measurable) Function r : X → [0,∞[

In the following, we propose a new way of repairing the above-mentioned encom-
passing-concerning deficiency for λ-probability density functions, by introducing
a new divergence in terms of choosing a generator φ :]0,∞[→ R which is con-
vex and strictly convex at 1, the scaling function m1(x) = m2(x) := q(x) as in
the non-negativity set-up of Sect. 3.3.1.2, but the more general aggregation func-
tionm3(x) = r(x) · q(x)χ ∈ [0,∞[ for some power χ > 1 and some (measurable)
function r : X → [0,∞[ which satisfies r(x) ∈]0,∞[ for λ-almost all x ∈ X . To
incorporate the zeros ofp(·),q(·), r(·)by appropriate limits and conventions,wepro-
ceed analogously to Sect. 3.3.1.2. Accordingly, we inspect the boundary behaviour
of the function ψ̃φ,c :]0,∞[3→ [0,∞[ given by

ψ̃φ,c
(
r, s̃, t̃

) := r · t̃χ · ψφ,c
(
s̃
t̃ , 1

) = r · t̃χ · [
φ
(
s̃
t̃

) − φ(1) − φ′+,c(1) · (
s̃
t̃ − 1

)]

= r · t̃χ · [
φ
(
s̃·r
t̃ ·r

) − φ(1) − φ′+,c(1) · (
s̃·r
t̃ ·r − 1

)] = r · t̃χ · ψφ,c
(
s̃·r
t̃ ·r , 1

)
.

As in Sect. 3.3.1.2, the Assumption 2(a) is conformly satisfied, for which we use the
short-hand notation 2(a) etc. in the following discussion. Moreover, we require the
validity of 2(b)–2(d) at the point t = 1. The analogue of 2(e) is r(x) · t̃χ < ∞which
is always (almost surely) automatically satisfied (a.a.sat.), whereas 2(f) converts to
“r(x) · t̃χ > 0 for all s̃ �= t̃” which is also a.a.sat. except for the case t̃ = 0 which
will be incorporated below. For the derivation of the analogue of 2(k) we observe
that for fixed r > 0, s̃ > 0

�i2 := r · 0χ · ψφ,c
(
s̃
0 , 1

) := limt→0 ψ̃φ,c
(
r, s̃, t̃

) =
= r · s̃χ · limt̃→0

[
t̃χ

s̃χ · φ
(
s̃
t̃

)] = r · s̃χ · φ∗
χ(0) � 0, (71)

where φ∗
χ(0) := limu→0 uχ−1 · u · φ

(
1
u

) = limv→∞ φ(v)

vχ exists but may be infinite.
To convert 2(i), we employ the fact that for fixed r > 0, t̃ > 0 the function s̃ →
ψ̃φ,c

(
r, s̃, t̃

)
is convex with existing limit

�i3 := r · t̃χ · ψφ,c
(0
t̃
, 1

) := lim
s→0

ψ̃φ,c
(
r, s̃, t̃

)

= r · t̃χ · (φ(0) + φ′
+,c(1) − φ(1)) > 0. (72)



Some Universal Insights on Divergences for Statistics … 185

To achieve the analogue of 2(g), let us first remark that for fixed r > 0 the function
(̃s, t̃) → ψ̃φ,c

(
r, s̃, t̃

)
may not be continuous at (̃s, t̃) = (0, 0), but due to the very

nature of a divergence we make the 2(g)-conform convention of setting

r · 0χ · ψφ,c
(
0
0 , 1

) := ψ̃φ,c
(
r, 0, 0

) := 0 .

The analogues of the Assumptions 2(h), (j), (�), (m), (n) are obsolete because of
our basic finiteness requirements. Putting together all the building-blocks, with the
above-mentioned limits and conventions we obtain the divergence

0 � Dc
φ,Q,Q,R·Qχ,λ(P,Q)

:= ∫
X r(x) ·

[
q(x)χ · φ

(p(x)
q(x)

) − q(x)χ · φ
(
1
) − φ′+,c

(
1
) · (

p(x) · q(x)χ−1 − q(x)χ
)]

dλ(x)

:= ∫
X r(x) ·

[
q(x)χ · φ

(p(x)
q(x)

) − q(x)χ · φ
(
1
) − φ′+,c

(
1
) · (

p(x) · q(x)χ−1 − q(x)χ
)]

·1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+φ∗
χ(0) · ∫

X r(x) · p(x)χ · 1]0,∞[
(
p(x)

) · 1{0}
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x)χ · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
dλ(x)

= ∫
X r(x) ·

[
q(x)χ · φ

(p(x)
q(x)

) − q(x)χ · φ
(
1
) − φ′+,c

(
1
) · (

p(x) · q(x)χ−1 − q(x)χ
)]

·1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+φ∗
χ(0) · ∫

X r(x) · p(x)χ · 1{0}
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x)χ · 1{0}

(
p(x)

)
dλ(x) . (73)

In case ofQR·λ
χ [X ] := ∫

X q(x)χ · r(x) dλ(x) < ∞, the divergence (73) becomes

0 � Dc
φ,Q,Q,R·Qχ,λ(P,Q)

= ∫
X r(x) ·

[
q(x)χ · φ

(p(x)
q(x)

) − φ′+,c

(
1
) · (

p(x) · q(x)χ−1 − q(x)χ
)]

·1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+φ∗
χ(0) · ∫

X r(x) · p(x)χ · 1{0}
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1)

] · ∫
X r(x) · q(x)χ · 1{0}

(
p(x)

)
dλ(x)

−φ(1) · ∫
X r(x) · q(x)χ dλ(x) . (74)

Moreover, in case of φ
(
1
) = 0 and

∫
X

(
p(x) · q(x)χ−1 − q(x)χ

) · r(x) dλ(x) ∈
[0,∞[ (but not necessarily

∫
X p(x) · q(x)χ−1 · r(x) dλ(x) < ∞,

∫
X q(x)χ ·

r(x) dλ(x) < ∞), the divergence (73) turns into

0 � Dc
φ,Q,Q,R·Qχ,λ(P,Q) = ∫

X r(x) · q(x)χ · φ
(p(x)
q(x)

) · 1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+φ∗
χ(0) · ∫

X r(x) · p(x)χ · 1{0}
(
q(x)

)
dλ(x) + φ(0) · ∫

X r(x) · q(x)χ · 1{0}
(
p(x)

)
dλ(x)

−φ′+,c
(
1
) · ∫

X

(
p(x) · q(x)χ−1 − q(x)χ

) · r(x) dλ(x) .
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In contrast to the case χ = 1 where for λ-probability-density functions ⇀p, ⇀q, the
divergence (53) was further simplified due to

∫
X

(
⇀p(x) − ⇀q(x)

)
dλ(x) = 0, for the

current setup χ > 1 the latter has no impact for further simplification. However, in
general, for the new divergence defined by (73) one gets for any P ⊥ Q from (68),
(69), (64)–(66) the expression

0 � Dc
φ,Q,Q,R·Qχ,λ(P,Q)

= φ∗
χ(0) · ∫

X r(x) · p(x)χ dλ(x) + [
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x)χ dλ(x) (75)

which is encompassing for the class of λ-probability functions. By inspection of the
above calculations, one can even relax the assumptions away from convexity:

Theorem 6 Letχ > 1, c ∈ [0, 1],φ :]0,∞[→ R such that bothφ′+,c(1)andφ(0) :=
lims→0 φ(s) exist and ψφ,c(s, 1) = φ(s) − φ(1) − φ′+,c(1) · (s − 1) � 0 for all s >

0. Moreover, assume thatψφ,c(s, 1) = 0 if and only if s = 1. Furthermore, let the lim-
its �i2 � 0 defined by (71) and �i3 � 0 defined by (72) exist and satisfy �i2 + �i3 > 0.
Then one gets for the divergence defined by (73):
(1) Dc

φ,Q,Q,R·Qχ,λ(P,Q) � 0. Depending on the concrete situation,
Dc

φ,Q,Q,R·Qχ,λ(P,Q) may take infinite value.

(2) Dc
φ,Q,Q,R·Qχ,λ(P,Q) = 0 if and only if p(x) = q(x) forλ-a.a. x ∈ X .

(3) For P ⊥ Q, the representation (75) holds.

Remark 4 (1) As seen above, if the generator φ is in Φ(]0,∞[) and satisfies the
Assumptions 2(a)–(d) for t = 1, then the requirements on φ in Theorem 6 are auto-
matically satisfied. The case χ = 1 has already been covered by Theorem 5.
(2) For practical purposes, it is sometimes useful to work with a sub-setup of choices
χ > 1, c ∈ [0, 1] and φ such that �i2 ∈]0,∞[ and/or �i3 ∈]0,∞[. �

Let us give some examples. To begin with, for α ∈ R\{0, 1} take the power
functions φ(t) := φα(t) := tα−1

α(α−1) − t−1
α−1 ∈ [0,∞[, t ∈]0,∞[, with the proper-

tiesφα(1) = 0,φ′
α(1) = 0 (cf. (6)) andφα(0) := limt↓0 φα(t) = 1

α
· 1]0,1]∪]1,∞[(α) +

∞ · 1]−∞,0[(α). Then, for arbitrary χ ∈ R one gets the representation

0 � Dφα,Q,Q,R·Qχ,λ(P,Q)

:= ∫
X r(x) ·

[
q(x)χ · φα

(p(x)
q(x)

) − q(x)χ · φα
(
1
) − φ′

α

(
1
) · (

p(x) · q(x)χ−1 − q(x)χ
)]

dλ(x)

(76)

= ∫
X

[
φα

( p(x)
wχ̃(p(x),q(x))

) − φα
( q(x)
wχ̃(p(x),q(x))

)

−φ′
α

( q(x)
wχ̃(p(x),q(x))

) · ( p(x)
wχ̃(p(x),q(x)) − q(x)

wχ̃(p(x),q(x))

)] · wχ̃(p(x),q(x)) · r(x) dλ(x)

= Dφα,Qχ̃,Qχ̃,R·Qχ̃,λ(P,Q) (77)

with the adaptive scaling/aggregation function wχ̃(u, v) = vχ̃ and χ̃ := 1 + χ−1
1−α

;
in other words, the divergence (76) can be seen as a particularly adaptively scaled
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Bregman divergence of non-negative functions in the sense of Kißlinger and Stum-
mer [37], from which their robustness and non-singularity-asymptotical-statistics
properties can be derived as a special case (for the probability setup ⇀P, ⇀Q, r(x) ≡ 1,
and beyond). From (77), it is immediate to see that the case χ = 1 corresponds
to the generalized power divergences (58) of order α ∈ R\{0, 1}, whereas χ = α
corresponds to the unscaled divergences (40), i.e.

0 � Dφα,Q,Q,R·Qα,λ(P,Q) = Dφα,1,1,R·1,λ(P,Q) (78)

= ∫
X

r(x)
α·(α−1) ·

[
p(x)α + (α − 1) · q(x)α − α · p(x) · q(x)α−1

]
dλ(x) (c f. (40))

which forα > 1, r(x) ≡ 1,p = ⇀p, q = ⇀q is a multiple of theα-order density-power
divergences DPD used by Basu et al. [10]; as a side remark, in the latter setup our
divergence (77) manifests a smooth interconnection between PD and DPD which
differs from that of Patra et al. [70], Ghosh et al. [32].

For (76), let us shortly inspect the corresponding �i2 from (71) as well as �i3 from
(72). Only forα ∈]0, 1[∪]1,∞[, one gets finite �i3 = r t̃χ

α
∈]0,∞[ for allχ ∈ R, r >

0, t̃ > 0. Additionally, one obtains finite �i2 only for χ = 1, α ∈]0, 1[ where �i2 =
r s̃
1−α

(PD case), respectively for χ > 1, α ∈]0, 1[∪]1,χ[ where �i2 = 0, respectively
for α = χ > 1 where �i2 = r s̃α

α·(α−1) (DPD case), for all r > 0, s̃ > 0.
Another interesting example for the divergence Dc

φ,Q,Q,R·Qχ,λ(P,Q) in (73) is
given for α ∈ R\{0, 1} by the generators

φ(t) := ˜̃φα(t) := (α−1)·tα−α·tα−1+1
α·(α−1) , t > 0, ˜̃φα(1) = 0, ˜̃φ′

α(1) = 0,

for which t → ˜̃φα(t) = ˜̃φα(t) − ˜̃φα(0) − ˜̃φ′
α(1) · (t − 1) = ψφα

(t, 1) is strictly
decreasing on ]0, 1[ and strictly increasing on ]1,∞[. Hence, the corresponding

assumptions of Theorem 6 are satisfied. Beyond this, notice that ˜̃φα(·) is strictly con-
vex on ]0,∞[ if α ∈]1, 2], respectively strictly convex on ]1 − 1

α−1 ,∞[ and strictly
concave on ]0, 1 − 1

α−1 [ if α > 2, respectively strictly convex on ]0, 1 + 1
1−α

[ and
strictly concave on ]1 + 1

1−α
,∞[ if α ∈] − ∞, 0[∪]0, 1[. Furthermore, the corre-

sponding �i3 is finite only for α > 1, namely �i3 = r t̃χ

α·(α−1) ∈]0,∞[ for all χ ∈ R,
r > 0, t̃ > 0. Additionally, if α > 1 one gets finite �i2 only for χ > α > 1 where
�i2 = 0, respectively forα = χ > 1where �i2 = r s̃α

α
for all r > 0, s̃ > 0. Notice that

for χ = α > 1, the limits �i2, �i3 for the cases φα and ˜̃φα are asymmetric. Indeed,
by straightforward calculations one can easily see that

0 � D˜̃φα,Q,Q,R·Qα,λ
(P,Q) = Dφα,1,1,R·1,λ(Q,P)

= ∫
X

r(x)
α·(α−1) ·

[(
q(x)

)α + (α − 1) · (
p(x)

)α − α · q(x) · (p(x)
)α−1

]
dλ(x) (79)

which is the “reversion” of the divergence (40).
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4.3 Minimum Divergences - The Encompassing Method

So far, we have almost entirely dealt with aggregated divergences between functions
P := {

p(x)
}
x∈X , Q := {

q(x)
}
x∈X under the same aggregator (measure) λ. On the

other hand, in Sect. 4.1 we have already encountered an important statistical situation
where two aggregatorsλ1 andλ2 come into play. Let us now investigate such a context
in more detail. To achieve this, for the rest of this paper we confine ourselves to the
following probabilistic setup: the modeled respectively observed (random) data take
values in a state spaceX (with at least twodistinct values), equippedwith a systemF
of admissible events (σ-algebra) and two σ-finite measures λ1 and λ2. Furthermore,
let ⇀P := {

⇀p
}
x∈X , ⇀Q := {

⇀q
}
x∈X such that ⇀p(x) � 0 for λ1-a.a. x ∈ X , ⇀q(x) � 0

for λ2-a.a. x ∈ X ,
∫
X

⇀p(x) dλ1(x) = 1, and
∫
X

⇀q(x) dλ2(x) = 1; in other words,
⇀P is a λ1-probability density function and

⇀Q is a λ2-probability density function; the

two corresponding probability measures are denoted by ⇀P
1·λ1 [•] := ∫

•
⇀p(x) dλ1(x)

and ⇀Q
1·λ2 [•] := ∫

•
⇀q(x) dλ2(x). Notice that we henceforth assume r(x) = 1 for all

x ∈ X .
More specific, we deal with a parametric framework of double uncertainty in

the data and in the model (cf. Sect. 2.4). The former is described by a random vari-

able Y taking values in the space X and by its probability law ⇀Q
1·λ2

θ0
[•] which (as

far as model risk is concerned) is supposed to be unknown but belong to a class

Qλ2
Θ = {⇀Q1·λ2

θ [•] : θ ∈ Θ} of probability measures on (X ,F ) indexed by a set
of parameters Θ ⊂ R

d (the non-parametric case works basically in analogous way,

withmore sophisticated technicalities). Accordingly, all Pr [Y ∈ • | θ] = ⇀Q
1·λ2

θ [•] =∫
•

⇀qθ(x) dλ2(x) (θ ∈ Θ) are principal model-candidate laws, with θ0 to be found out
(approximately andwith high confidence) by N concrete data observations described
by the independent and identically distributed random variables Y1, . . . YN . Further-
more, we assume that the true unknown parameter θ0 (to be learnt) is identifiable
and that the family Qλ2

Θ is (measure-theoretically) equivalent in the sense

⇀Q
1·λ2

θ �= ⇀Q
1·λ2

θ0
and ⇀Q

1·λ2

θ ∼ ⇀Q
1·λ2

θ0
for all θ, θ0 ∈ Θ with θ �= θ0. (80)

As usual, the equivalence ⇀Q
1·λ2 ∼ Á⇀Q

1·λ2

means that for λ2-a.a. x ∈ X there holds
the density-function-relation: ⇀q(x) = 0 if and only if Ê⇀q(x) = 0; this implies in par-
ticular that ⇀q(x) · 1{0}

(
Ê⇀q(x)

) = 0 and Ê⇀q(x) · 1{0}
(

⇀q(x)
) = 0 for λ2-a.a. x ∈ X , and

by cutting off “datapoints/states of zero contributions” one can then even take X

small enough such that ⇀q(x) · Ê⇀q(x) > 0 (and hence, 1]0,∞[
(

⇀q(x) · Ê⇀q(x)
) = 1) for

λ2-a.a. x ∈ X . Clearly, since any λ2-aggregated divergence Dλ2(·, ·) satisfies (the
aggregated version of) the axioms (D1) and (D2), and since θ0 is identifiable, one
gets immediately in terms of the corresponding λ2-probability density functions
⇀Qθ := {

⇀qθ(x)
}
x∈X
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θ0 = argminθ∈Θ Dλ2

(⇀Qθ0 ,
⇀Qθ

)
for every θ0 ∈ Θ. (81)

Inspired by this, one major idea of tracking down (respectively, learning) the true

unknown θ0 is to replace ⇀Q
1·λ2

θ0
by a data-observation-derived – and thus noisy

– probability law ω → ⇀P
obs(ω);1·λ1

N [•] := ∫
•

⇀pY1(ω),...,YN (ω)(x) dλ1(x) where the λ1-

probability density function ⇀P
obs(ω)

N := {
⇀pY1(ω),...,YN (ω)(x)

}
x∈X depends, as indexed,

on the outcome of the observations Y1(ω), . . . ,YN (ω). If ⇀P
obs(ω);1·λ1

N converges in

distribution to ⇀Q
1·λ2

θ0
as N tends to infinity, then one intuitively expects to obtain the

so-called minimum-divergence estimator (“approximator”)

θ̂N (ω) := θ̂N ,Dλ2
(ω) := arginfθ∈Θ Dλ2

(⇀P
obs(ω)

N ,
⇀Qθ

)
(82)

which estimates θ0 consistently in the usual sense of the convergence θn → θ0 for
n → ∞. However, by the nature of our divergence construction, the method (82)
makes principal sense only if the two aggregators λ1 and λ2 coincide (and if (82)
is analytically respectively computationally solvable)! Remark that the minimum
distance estimator (82) depends on the choice of the divergence Dλ2(·, ·).
Subsetup 1. For instance, if by nature the set X of all possible data points has
only countably many elements, say X = X# = {z1, . . . zs} (where s is an inte-
ger larger than one or infinity), then a natural model-concerning aggregator is
the counting measure λ2 := λ# (recall λ#[{x}] = 1 for all x ∈ X ), and hence
⇀Q

1·λ2

θ [•] = ∑
x∈• ⇀qθ(x) = ∑

x∈X 1•(x) · ⇀qθ(x) (where • stands for any arbitrary
subset of X ). In such a context, a popular choice for the data-observation-derived

probability law is the so-called “empirical distribution” ω → ⇀P
obs(ω);1·λ1

N [•] =
∫
•

⇀pY1(ω),...,YN (ω)(x) dλ1(x) := ∑
x∈• ⇀p

emp(ω)

N (x) =: ⇀P
emp(ω)

N [•], where λ1 := λ# =
λ2 and ⇀p

emp(ω)

N (x) := 1
N · #{i ∈ {1, . . . , N } : Yi (ω) = x} is the total number of

x-observations divided by the total number N of observations. In other words,
⇀P

obs(ω);1·λ1

N [•] := ⇀P
emp(ω)

N [•] := 1
N · ∑N

i=1 δYi (ω)[•], where δz[•] is the correspond-
ing Dirac (resp. one-point) distribution given by δz[A] := 1A(z). Hence, in such a
set-up it makes sense to solve the noisy minimization problem

θ̂N (ω) := θ̂N ,Dλ#
(ω) := arginfθ∈Θ Dλ#

(⇀P
emp(ω)

N ,
⇀Qθ

)
(83)

where ⇀P
emp(ω)

N := {
⇀p
emp
N (x)

}
x∈X and Dλ# (·, ·) is the discrete version of any of the

divergences above. Notice that – at least for small enough number N of observa-
tions – for some x ∈ X with λ#[{x}] > 0 one has ⇀p

emp
N (x) = 0 but ⇀qθ(x) > 0 (i.e.

an “extreme inlier”), and hence, ⇀qθ(x) · 1{0}
(

⇀p
emp
N (x)

)
> 0; this must be taken into
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account in the calculation of the explicit forms of the corresponding divergences.13

By the assumed convergence, this effect disappears as N becomes large enough. �
Subsetup 2. Consider the “crossover case” where X is uncountable (e.g. X = R)
and the familyQλ2

Θ is assumed to be continuous (nonatomic) in the sense

0 = ⇀Q
1·λ2
θ [{z}] = Pr [Y ∈ {z} | θ] = ∫

X 1{z}(x) · ⇀qθ(x) dλ2(x) for all z ∈ X , θ ∈ Θ (84)

(e.g. ⇀qθ(·) are Gaussian densities with mean θ and variance 1), and the data-
observation-derived probability law is the “extended” empirical distribution

ω → ⇀P
obs(ω);1·λ1

N [•] = ∫
•

⇀pY1(ω),...,YN (ω)(x) dλ1(x)

:= ∑
x∈• ⇀p

emp(ω)

N (x) · 1R (Y1(ω),...,YN (ω))(x) =: ⇀P
emp(ω)

N [•] , (85)

where the extension on X is accomplished by attributing zeros to all x outside the
finite range R(Y1(ω), . . . ,YN (ω)) = {z1(ω), . . . , zs(ω)} of distinguishable points
z1(ω), . . . , zs(ω) (s � N ) occupied by the observations Y1(ω), . . . , YN (ω); notice
that the involved counting measure given by
λ1[•] := ∑

z∈X 1R (Y1(ω),...,YN (ω))(z) · δz[•] puts 1 to each data-point zwhich has been
observed. Because λ1 and λ2 are now essentially different, the minimum-divergence
method (82) can not be applied directly (by taking either λ := λ1 or λ := λ2), despite

of ⇀P
emp(ω)

N converging in distribution to ⇀Q
1·λ2

θ0
as N tends to infinity. �

There are several ways to circumvent the problem in Subsetup 2. In the following,
we discuss in more detail our abovementioned new encompassing approach:

(Enc1) take the encompassing aggregator λ := λ1 + λ2 and the imbedding
⇀P

emp(ω)

N := {
⇀p
emp(ω)

N (x)
}
x∈X with ⇀p

emp(ω)

N (x) := ⇀p
emp(ω)

N (x) ·
1R (Y1(ω),...,YN (ω))(x);

(Enc2) choose a “sufficiently discriminating” (e.g. encompassing) divergence
Dλ(·, ·) from above and evaluate them with the density-functions obtained
in (Enc1);

(Enc3) solve the corresponding noisy minimization problem

θ̂N (ω) := θ̂N ,Dλ
(ω) := arginfθ∈Θ Dλ

(⇀P
emp(ω)

N ,
q⇀Qθ

)
(86)

for
q⇀Qθ := ⇀Qθ respectively

q⇀Qθ := ⇀̃Qθ (to be defined right below);

(Enc4) compute the noisy minimal distance Dλ

(⇀P
emp(ω)

N ,
q⇀Qθ

)
> 0 as an indicator

of “goodness of fit” (goodness of noisy approximation”);

13E.g. applying the divergence (46) for α ∈ R\{0, 1}, the sum-entry r(x) · ⇀qθ(x)
α

α appears, which
can be viewed as penalty for the cell x being empty of data observations (“intrinsic empty-cell-
penalty”); for divergence (60), the penalty is φ(0) · r(x) · ⇀qθ(x).
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(Enc5) investigate sound statistical properties of the outcoming estimator θ̂N (ω), e.g.
show probabilistic convergence (as N tends to infinity) to the true unknown
parameter θ0, compute the corresponding convergence speed, analyze its
robustness against data-contamination, etc.

Typically, for fixed N the step (Enc3) is not straightforward to solve, and conse-
quently, the tasks described in the unavoidable step (Enc4) become even much more
complicated; a detailed discussion of both is – for the sake of brevity – beyond the
scope of this paper. As far as (Enc1) is concerned, things are non-trivial due to the
generally well-known fact that “continuous” densities are only almost-surely unique.
Indeed, consider e.g. the case where the θ-family of functions ⇀Qθ := {

⇀qθ(x)
}
x∈X

satisfies

⇀qθ(x) > 0 for all x ∈ X and ⇀Q
1 ·λ2

θ [X ] = ∫
X

⇀qθ(x) dλ2(x) = 1 for all θ ∈ Θ (87)

and the alternative θ-family of functions ⇀̃Qθ := {
⇀̃qθ(x)

}
x∈X defined by ⇀̃qθ(x) :=

⇀qθ(x) · (1 − 1R (Y1(ω),...,YN (ω))(x)); for the latter, one obtains

⇀̃Q
1 ·λ2

θ [X ] = ∫
X

⇀̃qθ(x) dλ2(x) = ∫
X

⇀̃qθ(x) d(λ1 + λ2)(x) = 1 for all θ ∈ Θ. (88)

Furthermore, due to (85) one has

1 = ⇀P
emp(ω)
N [X ] = ∫

X
⇀p
emp(ω)
N (x) dλ1(x) = ∫

X
⇀p
emp(ω)
N (x) d(λ1 + λ2)(x) (89)

and the validity of (64)–(66) with p(x) := ⇀p
emp(ω)

N (x), q(x) := ⇀̃qθ(x) and λ = λ1 +
λ2; in other words, there holds the singularity (measure-theoretical orthogonality)
⇀P

emp(ω)

N ⊥ ⇀̃Qθ for all θ ∈ Θ . Accordingly, for the step (Enc2) one can e.g. take
directly the (family of) encompassing divergences Dc

φ,Q,Q,R·Qχ,λ(P,Q) of (73) for

P := ⇀P
emp(ω)

N ,Q := ⇀̃Qθ, λ := λ1 + λ2, r(x) ≡ 1, and apply (75) to get

0 � Dc
φ,Q,Q,1·Qχ,λ(P,Q) = φ∗

χ(0) · ∑
x∈R (Y1(ω),...,YN (ω))

(
⇀p
emp(ω)

N (x)
)χ

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X

(
⇀qθ(x)

)χ
dλ2(x) ; (90)

hence, the corresponding solution of (Enc3) does not depend on the data-observa-
tions Y1(ω), . . . ,YN (ω), and thus is “statistically non-relevant”. As an important
remark for the rest of this paper, let us mention that – only – in situations where

no observations are taken into account, then ⇀̃Qθ = ⇀Qθ,R(Y1, . . . ,YN ) = ∅, and λ1

collapses to the “zero aggregator” (i.e. λ1[•] ≡ 0).

In contrast, let us replace the alternative θ-family ⇀̃Qθ by the original
⇀Qθ, on which

λ1 acts differently. In fact, instead of (88) there holds
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1 = ⇀Q
1·λ2

θ [X ] = ∫
X

⇀qθ(x) dλ2(x) <
∫
X

⇀qθ(x) d(λ1 + λ2)(x)

= 1 + ∑
x∈R (Y1(ω),...,YN (ω))

⇀qθ(x) for all θ ∈ Θ ; (91)

moreover, one has for all θ ∈ Θ the non-singularity ⇀P
emp(ω)

N �⊥ ⇀Qθ but

1{0}
(

⇀qθ(x)
) = 0 for all x ∈ X , (92)

1{0}
(

⇀p
emp(ω)

N (x)
) = 1 − 1R (Y1(ω),...,YN (ω))(x) for all x ∈ X , (93)

1]0,∞[
(

⇀p
emp(ω)

N (x) · ⇀qθ(x)
) = 1R (Y1(ω),...,YN (ω))(x) for all x ∈ X . (94)

Correspondingly, for the step (Enc2) one can e.g. take directly the (family of) encom-

passing divergences Dc
φ,Q,Q,R·Qχ,λ(P,Q) of (73) for P := ⇀P

emp(ω)

N , Q := ⇀Qθ,
λ := λ1 + λ2, r(x) ≡ 1; the corresponding solution of the noisy minimization prob-
lem (Enc3) generally does depend on the data-observations Y1(ω), . . . , YN (ω),
as required. Let us demonstrate this exemplarily for the special subsetup where
φ : [0,∞[→ [0,∞[ is continuous (e.g. strictly convex on ]0,∞[), differentiable at
1, φ(1) = φ′(1) = 0, φ(t) ∈]0,∞[ for all t ∈ [0, 1[∪[1,∞[, χ > 1, r(x) ≡ 1, and∫
X

⇀qθ(x)
χ dλ2(x) ∈]0,∞[ for all θ ∈ Θ . Then, for each fixed θ ∈ Θ we derive from

(73) and (92)–(94) the divergence

0 < D
φ,

⇀
Qθ,

⇀
Qθ,1·⇀Q

χ

θ ,λ1+λ2

(⇀P
emp(ω)

N ,
⇀Qθ

)

= ∫
X

⇀qθ(x)
χ · φ

(⇀p
emp(ω)

N (x)
⇀qθ(x)

) · 1]0,∞[
(

⇀p
emp(ω)

N (x) · ⇀qθ(x)
)
d(λ1 + λ2)(x)

+φ(0) · ∫
X

⇀qθ(x)
χ · 1{0}

(
⇀p
emp(ω)

N (x)
)
d(λ1 + λ2)(x)

=
∑

x∈R (Y1(ω),...,YN (ω))

⇀qθ(x)
χ · φ

(⇀p
emp(ω)

N (x)
⇀qθ(x)

) + φ(0) ·
∫

X

⇀qθ(x)
χ dλ2(x) < ∞ .

(95)

When choosing this divergence (95) in step (Enc2), we call the solution θ̂N (ω) of the
corresponding noisy minimization problem (86) of step (Enc3) a minimum (φ,χ)-
divergence estimator of the true unknown parameter θ0; in ML and AI contexts,
the pair (φ,χ) may be regarded as “hyperparameter”. Exemplarily, for the power
functions φ := φα (cf. (5)) with α = χ > 1, we obtain from (95) (see also (78),
(41)) the divergence

]0,∞[� D
φα,

⇀
Qθ,

⇀
Qθ,1·⇀Q

α

θ ,λ1+λ2

(⇀P
emp(ω)

N ,
⇀Qθ

) = 1
α

· ∫
X

⇀qθ(x)
α dλ2(x)

+∑
x∈R (Y1(ω),...,YN (ω))

[ (
⇀p

emp(ω)

N (x))α

α·(α−1) − ⇀p
emp(ω)

N (x) · ⇀qθ(x)
α−1

α−1 + ⇀qθ(x)
α

α

]

= 1
α

· ∫
X

⇀qθ(x)
α dλ2(x)

+ 1
N

∑N
i=1

[ (
⇀p

emp(ω)

N (Yi (ω)))α−1

α·(α−1) − ⇀qθ(Yi (ω))α−1

α−1 + ⇀qθ(Yi (ω))α

α·⇀pemp(ω)

N (Yi (ω))

]
, (96)
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where for the last equality we have used the representation

∑
x∈X ⇀p

emp(ω)

N (x) · 1R (Y1(ω),...,YN (ω))(x) · δx [•] = 1
N · ∑N

i=1 δYi (ω)[•] ; (97)

notice that ⇀p
emp(ω)

N (Yi (ω)) = #{ j ∈ {1, . . . , N } : Y j (ω) = Yi (ω)}/N . Clearly, the
outcoming minimum (φ,χ)-divergence estimator of (95) (and in particular, the
minimum (φα,α)-divergence estimator of (96)) depends on the data observations
Y1(ω), . . . ,YN (ω), where for technical reasons as e.g. existence and uniqueness – as
well as for the tasks (Enc4), (Enc5) – some further assumptions are generally needed;
for the sake of brevity, corresponding details will appear in a forthcoming paper.

4.4 Minimum Divergences - Grouping and Smoothing

Next, we briefly indicate two other ways to circumvent the problem described in
Subsetup 2 of Sect. 4.3, with continuous (nonatomic) Qλ2

Θ and λ2 from (84):

(GR) grouping (partitioning, quantization) of data: convert14 everything into a
purely discrete context, by subdividing the data-point-setX = ⋃s

j=1 A j into
countably many – (say) s ∈ N ∪ {∞}\{1} – (measurable) disjoint classes
A1, . . . , As with the property λ2[A j ] > 0 (“essential partition”); proceed as in
Subsetup 1 of Sect. 4.3, with X new := {A1, . . . , As} instead of {z1, . . . , zs},
and thus the i th data observation Yi (ω) and the corresponding running variable
x) manifest (only) the corresponding class-membership. For the subcase of
Csiszar-Ali-Slivey divergences and adjacently related divergences, thorough
statistical investigations (such as efficiency, robustness, types of grouping,
grouping-error sensitivity, etc.) of the corresponding minimum-divergence-
estimation can be found e.g. in Victoria-Feser and Ronchetti [92], Menendez
et al. [47–49], Morales et al. [52, 53], Lin and He [43].

(SM) smoothing of the empirical density function: convert everything to a purely
continuous context, by keeping the original data-point-set X and by “con-
tinuously modifying” (e.g. with the help of kernels) the empirical density
⇀p
emp
N (·) to a function ⇀p

emp,smo
N (·) � 0 such that

∫
X

⇀p
emp,smo
N (x) dλ2(x) = 1

and that for all θ ∈ Θ there holds: ⇀p
emp,smo
N (x) = 0 if and only if ⇀qθ(x) = 0

(in addition to (80)). For the subcase of Csiszar-Ali-Slivey divergences,
thorough statistical investigations (such as efficiency, robustness, informa-
tion loss, etc.) of the corresponding minimum-divergence-estimation can be
found e.g. in Basu and Lindsay [11], Park and Basu [69], Chapter 3 of
Basu et al. [13], Kuchibhotla and Basu [39], Al Mohamad [5], and the ref-
erences therein. Due to the “curse of dimensionality”, such a solution can-
not be applied successfully in a large-dimension setting, as required in the

14In several situations, such a conversion can appear in a natural way; e.g. an institution may
generate/collect data of “continuous value” but mask them for external data analysts to group-
frequencies, for reasons of confidentiality (information asymmetry).
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so called “big data” paradigm. For instance (in preparation for divergence
valuation), take X = R

d , λ2 to be the d−dimensional Lebesgue measure
and ⇀p

emp,smo
N (x) := 1

N

∑N
i=1 K (x,Yi , hn) = ∫

X K (x, y, hn) d
⇀P

emp

N (y)where
K (·, ·, ·) is an appropriate smooth kernel function with “bandwidth” hn , e.g.

K (x, y, hn) := 1
hn
ÁK

(
x−y
hn

)
with appropriate nonnegative function ÁK (·) satis-

fying
∫

Rd
ÁK (y) dλ2(y) = 1. Since such kernel smoothers KS use local averag-

ing, and for large d most neighborhoods tend to be empty of data observations
(because data often “live” on lower-dimensional manifolds, sparsity of data), a
typical KS technique (choosing concrete kernels and bandwidths, etc.) needs
then a huge amount N of data to provide a reasonable accuracy; for d = 8
one may need N to be 1 million. For background details, the reader is e.g.
referred to DasGupta [28], Scott and Wand [77], Chapter 7 of Scott [76] and
the references therein.

For the sake of brevity, a detailed discussion of (GR) and (SM) is beyond the scope
of this paper.

4.5 Minimum Divergences - The Decomposability Method

Let us discuss yet another strategy to circumvent the problem described in Subsetup
2 of Sect. 4.3. As a motivation, for a divergence of the form

0 � Dλ(P,Q) = ∫
X f1(x) · 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+ ∫
X f2(x) · 1{0}

(
p(x)

) · 1]0,∞[(q(x)) dλ(x)

+ ∫
X f3(x) · 1{0}

(
q(x)

) · 1]0,∞[(p(x)) dλ(x) (98)

with f1(x) � 0, f2(x) � 0, f3(x) � 0, and an “adjacent” dissimilarity

D̃λ(P,Q) = ∫
X f1(x) · 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+ ∫
X g2(x)) · 1{0}

(
p(x)

) · 1]0,∞[(q(x)) dλ(x)

+ ∫
X g3(x)) · 1{0}

(
q(x)

) · 1]0,∞[(p(x)) dλ(x), (99)

there holds Dλ(P,Q) = D̃λ(P,Q) for all equivalent P ∼ Q (where for both, the
second and third integral become zero), but (in case that g2(·), g3(·) differ sufficiently
enough from f2(·), f3(·)) one gets Dλ(P,Q) �= D̃λ(P,Q) forP ⊥ Q and even for
P � Q; in the latter two cases, depending on the signs of g2(·), g3(·), D̃λ(P,Q)

may even become negative.

Such issues are of importance for our current problemwhere e.g.P := ⇀P
emp(ω)

N ⊥
⇀̃Qθ =: Q. For further illuminations, and for the sake of a compact presentation, we
use henceforth the notationsPλ for an arbitrarily fixed class of nonnegative,mutually
equivalent functions (i.e. P1 ∼ P2 for all P1 ∈ Pλ, P2 ∈ Pλ), and Pλ� for a
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corresponding class of nonnegative (not necessarily mutually equivalent) functions
such that P1 � P2 for all Pλ

1 ∈ Pλ, P2 ∈ Pλ�. Furthermore, we employ P̃λ :=
Pλ ∪ Pλ� and specify:

Definition 2 We say that a function Dλ : P̃λ ⊗ Pλ → R is a pseudo-divergence
on P̃λ × Pλ, if its restriction toPλ ∪ Pλ is a divergence, i.e.

Dλ(P,Q) � 0 for all P ∈ Pλ,Q ∈ Pλ, and (100)

Dλ(P,Q) = 0 if and only if P = Q ∈ Pλ .

If also Dλ(P,Q) > 0 for all P ∈ Pλ�,Q ∈ Pλ, then Dλ(·, ·) is a divergence.
As for interpretation, a pseudo-divergence Dλ(·, ·) acts like a divergence if both
arguments are fromPλ, but only like a dissimilarity if the first argument is fromPλ�

and thus is “quite different” from the second argument. In the following, we often
use pseudo-divergences for our noisy minimum-distance-estimation problem – cf.

(81), (82) – by taking λ = λ1 + λ2,Pλ := Pλ
Θ := (⇀̃Qθ

)
θ∈Θ

:= ({
⇀̃qθ(x)

}
x∈X

)
θ∈Θ

(cf. (87), (88)), andPλ� := Pλ⊥
emp := (⇀P

emp(ω)

N

)
N∈N

= ({
⇀p
emp(ω)

N (x)
}
x∈X

)
N∈N

(cf.
(85), (Enc1)) covering all numbers N of data observations (sample sizes), and the
according P̃λ := Pλ

Θ,emp = Pλ
Θ ∪ Pλ⊥

emp; notice that by construction we have even
the function-class-relationship ⊥ which is stronger than �. In such a setup, we

have seen that for the choice P := ⇀P
emp(ω)

N ,Q := ⇀̃Qθ the divergence Dc
φ,Q,Q,1·Qχ,λ

(P,Q) > 0 of (90) is unpleasant for (Enc3) since the solution does not depend on the
data-observations Y1(ω), . . . , YN (ω); also recall the special case of power functions
φ := φα (cf. (5)) with α = χ > 1 which amounts to the unscaled divergences (78),
(40) and thus to (41). In (95), for general φ we have repaired this deficiency by

replacingQ := ⇀̃Qθ withQ := ⇀Qθ, at the cost of getting total mass larger than 1 but
by keeping the strict positivity of the involved divergence; especially for φ := φα,
the divergence (41) has then amounted to (96).

In contrast, let us show another method to repair the (Enc3)-deficiency of (41),

by sticking to Q := ⇀̃Qθ but changing the basically underlying divergence. In fact,
we deal with the even more general

Definition 3 (a) We say that a pseudo-divergence Dλ : P̃λ ⊗ Pλ → R is decom-
posable if there exist functionals D0 : P̃λ �→ R, D1 : Q �→ R and a (measurable)
mapping ρQ : X �→ R (for each Q ∈ Pλ) such that15

15In an encompassing way, the part (a) reflects a measure-theoretic “plug-in” version of decom-
posable pseudo-divergences D : (Pmeas,λ1 ∪ Pmeas,λ2 ) ⊗ Pmeas,λ1 �→ R, where Pmeas,λ1 is
a family of mutually equivalent nonnegative measures of the form P[•] := P1 ·λ1 [•] :=
∫
• p(x) dλ1(x), Pmeas,λ2 is a family of nonnegative measures of the form P[•] := P

1 ·λ2 [•] :=∫
• q(x) dλ2(x) such that any P ∈ Pmeas,λ1 is not equivalent to any P ∈ Pmeas,λ2 , and (101)
is replaced with D(P,Q) = D0(P) + D1(Q) + ∫

X ρQ(x) dP(x) for all P ∈ P ∈ Pmeas,λ1 ∪
Pmeas,λ2 ,Q ∈ Pmeas,λ2 ; cf. Vajda [90], Broniatowski and Vajda [18], Broniatowski et al. [19];
part (b) is new.
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Dλ(P,Q) = D0(P) + D1(Q) + ∫
X ρQ (x) · p(x) dλ(x) for all P ∈ P̃λ,Q ∈ Pλ.

(101)

(b) We say that a pseudo-divergence Dλ : P̃λ ⊗ Pλ → R is pointwise decompos-
able if it is of the form Dλ(P,Q) = ∫

X ψdec(p(x),q(x)) dλ(x) for some (measur-
able) mapping ψdec : [0,∞[×[0,∞[�→ R with representation

ψdec(s, t) := ψ0
(
s + h0(x, s) · 1{0}(t)

) · 1]c0,∞[(s) · 1]c0,∞[(t)
+ψ1

(
t + h1(x) · 1{0}(t)

) · 1]c1,∞[(t)
+ρ

(
t + h2(x) · 1{0}(t)

) · s for all (s, t) ∈ [0,∞[×[0,∞[\{(0, 0)} , (102)

ψdec(0, 0) := 0,

with constants c0, c1, c0 ∈ {0, 1}, and (measurable) mappings ψ0,ψ1, ρ : [0,∞[�→
R, h1, h2 : X �→ [0,∞[, h0 : X × [0,∞[�→ R, such that

ψdec(s, t) = ψ0(s) + ψ1(t) + ρ(t) · s � 0 for all (s, t) ∈]0,∞[×]0,∞[ , (103)

ψdec(s, t) = 0 if and only if s = t , (104)

s + h0(x, s) � 0 for all s ∈ [0,∞[ andλ-almost all x ∈ X .

Remark 5 (a) Any pointwise decomposable pseudo-divergence is decomposable,
under the additional assumption that the integral

∫
X . . . dλ(x) can be split into three

appropriate parts.
(b) For use in (Enc3), D1(·) and ρQ(·) should be non-constant.
(c) In the Definitions 2 and 3 we have put the “extension-role” to the first component
P; of course, everything can be worked out analogously for the second component
Q by using (pseudo-)divergences Dλ : Pλ × P̃λ → R.
(d) We could even extend (102) for bivariate functions h1(x, s), h2(x, s). �

Notice that from (102) one obtains the boundary behaviour

R � ψdec(s, 0) = ψ0(s + h0(x, s)) · qc0 + ψ1(h1(x)) · qc1 + ρ(h2(x)) · s for all s > 0, (105)
R � ψdec(0, t) = ψ0(0) · qc0 + ψ1(t) for all t > 0 , (106)

with qc0 := 1]c0,∞[(0), qc1 := 1]c1,∞[(0), qc0 := 1]c0,∞[(0). Notice that ψdec(s, 0) of
(105) does generally not coincide with the eventually existent “(103)-limit”
limt→0[ψ0(s) + ψ1(t) + ρ(t) · s] (s > 0), which reflects a possibly “non-smooth
boundary behaviour” (also recall (98), (99)). Moreover, when choosing a decompos-
able pseudo-divergence (101) in step (Enc2), we operationalize the solution θ̂N (ω)

of the corresponding noisy minimization problem (86) of step (Enc3) as follows:
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Definition 4 (a) We say that a functional TDλ
: Pλ

Θ,emp �→ Θ generates a minimum
decomposable pseudo-divergence estimator (briefly, min−decDλ-estimator)

θ̂N ,decDλ
(ω) := TDλ

(⇀P
emp(ω)

N

)
for ⇀P

emp(ω)

N ∈ Pλ⊥
emp (107)

of the true unknown parameter θ0, if Dλ(·, ·) : Pλ
Θ,emp ⊗ Pλ

Θ �→ R is a decompos-
able pseudo-divergence and

TDλ

(⇀P
) = arginfθ∈Θ

[
D1(⇀Qθ) + ∫

X ρ⇀
Qθ

(x) · ⇀p(x) dλ(x)
]
for all ⇀P ∈ Pλ

Θ,emp.

(108)

(b) If Dλ(·, ·) is a pointwise decomposable pseudo-divergence we replace (108) by

TDλ

(⇀P
) = arginfθ∈Θ

∫
X ψdec(⇀p(x), ⇀̃qθ(x)) dλ(x) for all ⇀P ∈ Pλ

Θ,emp ,

but do not introduce a new notion (also recall that λ = λ2 and ⇀̃qθ(·) = ⇀qθ(·) for the
case of no observations, e.g. if ⇀P ∈ Pλ2

Θ ).

To proceed, let us point out that by (107) and (97) every min−decDλ-estimator
rewrites straightforwardly as

θ̂N ,decDλ
(ω) = arginfθ∈Θ

[
D1(

⇀Qθ) + 1
N

∑N
i=1 ρ⇀

Qθ

(Yi (ω))
]

(109)

and is Fisher consistent in the sense that

TD(
⇀Qθ0) = arginfθ∈Θ D(

⇀Qθ0 ,
⇀Qθ) = θ0 for all θ0 ∈ Θ . (110)

Furthermore, the criterion to be minimized in (109) is of the form

θ �→ D1(
⇀Qθ) + 1

N

∑N
i=1 ρ⇀

Qθ

(Yi (ω))

which e.g. for the task (Enc5) opens the possibility to apply themethods of the asymp-
totic theory of so-called M-estimators (cf. e.g. Hampel et al. [33], van der Vaart and
Wellner [88], Liese and Mieske [40]). The concept of min−decDλ-estimators (101)
were introduced in Vajda [90], Broniatowski and Vajda [18] within the probability-
law-restriction of the non-encompassing, “plug-in” context of footnote 15.

In the following, we demonstrate that our new concept of pointwise decompos-
ability defined by (102) is very useful and flexible for creating new min−decDλ-
estimators and imbedding existing ones. In fact, since in our current statistics-ML-AI
context we have chosen λ[•] := λ1[•] + λ2[•] with
λ1[•] := ∑

z∈X 1R (Y1(ω),...,YN (ω))(z) · δz[•] and λ2[•] stemming from (87), we have

seen that P := ⇀P
emp(ω)

N ⊥ ⇀̃Qθ =: ⇀Q for all θ ∈ Θ . Hence, from (102), (105), (106)
we obtain
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Dλ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= ∫

X ψdec
(

⇀p
emp(ω)

N (x), ⇀̃qθ(x)
)
dλ(x)

= ∫
X

[
ψ0(0) · qc0 + ψ1

(
⇀̃qθ(x)

)]
· 1{0}(⇀p

emp(ω)

N (x)) d(λ1 + λ2)(x)

+ ∫
X

[
ψ0

(
⇀p
emp(ω)

N (x) + h0
(
x, ⇀p

emp(ω)

N (x)
))

· qc0
+ψ1(h1(x)) · qc1 + ρ(h2(x)) · ⇀p

emp(ω)

N (x)
]

· 1{0}(⇀̃qθ(x)) d(λ1 + λ2)(x)

= ∫
X

[
ψ0(0) · qc0 + ψ1

(
⇀qθ(x)

)]
dλ2(x) + ∑

x∈X
[
ψ0

(
⇀p
emp(ω)

N (x)

+h0
(
x, ⇀p

emp(ω)

N (x)
))

· qc0
+ψ1(h1(x)) · qc1 + ρ(h2(x)) · ⇀p

emp(ω)

N (x)
]

· 1R (Y1(ω),...,YN (ω))(x)

= ∫
X

[
ψ0(0) · qc0 + ψ1

(
⇀qθ(x)

)]
dλ2(x) + 1

N

∑N
i=1 ρ(h2(Yi (ω)))

+ 1
N

∑N
i=1

ψ0

(
⇀p

emp(ω)

N (Yi (ω))+h0
(
Yi (ω),

⇀p
emp(ω)

N (Yi (ω))

))
·qc0+ψ1(h1(Yi (ω)))·qc1

⇀p
emp(ω)

N (Yi (ω))
, (111)

where we have employed (97); recall that ⇀p
emp(ω)

N (Yi (ω)) = #{ j ∈ {1, . . . , N } :
Y j (ω) = Yi (ω)}/N . Hence, we always choose D1(

⇀Q) = D1(
⇀̃Qθ) = ∫

X

[
ψ0(0) +

ψ1
(

⇀̃qθ(x)
)]

dλ2(x) = ∫
X

[
ψ0(0) + ψ1

(
⇀qθ(x)

)]
dλ2(x) = D1(

⇀Qθ). Notice that

the functions h0, h1, h2 may depend on the parameter θ. Indeed, for h0(x, s) ≡ 0,
h1(x) ≡ 0, h2(x) = ⇀qθ(x) ( �= ⇀̃qθ(x)), the pseudo-divergence (111) turns into

Dλ

(
⇀P
emp(ω)
N ,

⇀̃Qθ

)
= ∫

X

[
ψ0(0) · qc0 + ψ1

(
⇀qθ(x)

)]
dλ2(x) + 1

N
∑N

i=1 ρ
(

⇀qθ(Yi (ω))
)

+ 1
N

∑N
i=1

ψ0
(

⇀p
emp(ω)
N (Yi (ω))

)
· qc0+ψ1(0)· qc1

⇀p
emp(ω)
N (Yi (ω))

, (112)

whereas for h0(x, s) ≡ 0, h1(x) = ⇀qθ(x), h2(x) = ⇀qθ(x), (111) becomes

Dλ

(⇀P
emp(ω)

N ,
⇀̃Qθ

)
= ∫

X

[
ψ0(0) · qc0 + ψ1

(
⇀qθ(x)

)]
dλ2(x)

+ 1
N

∑N
i=1

[
ρ
(

⇀qθ(Yi (ω))
)

+ qc1·ψ1(
⇀qθ(Yi (ω)))

⇀p
emp(ω)

N (Yi (ω))

]
+ 1

N

∑N
i=1

ψ0

(
⇀p

emp(ω)

N (Yi (ω))

)
·qc0

⇀p
emp(ω)

N (Yi (ω))
. (113)

The last sum in (112) respectively (113) is the desiredD0(
⇀P

emp(ω)

N ). As an example,
let us take c0 = c1 = c0 = −1 (and hence, qc0 = qc1 = qc0 = 1) and for α > 1 the
power functions φ(t) := φα(t) := tα−α·t+α−1

α·(α−1) (t ∈]0,∞[) of (6), for which by (9)
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and (103) one derives immediately the decomposition ψ0(t) := ψ0
α(t) := tα

α(α−1) >

0,ψ1(t) := ψ1
α(t) := tα

α
> 0, ρ(t) := ρα(t) := − tα−1

α−1 < 0 (t ∈]0,∞[). Accordingly,
(111) simplifies to

Dλ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
:= Dλ,α

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)

= 1
α

∫
X

⇀qθ(x)
α dλ2(x) − 1

N ·(α−1)

∑N
i=1

(
h2(Yi (ω))

)α−1

+ 1
N

∑N
i=1

(
⇀p

emp(ω)

N (Yi (ω))+h0

(
Yi (ω),

⇀p
emp(ω)

N (Yi (ω))

))α

+(α−1)·
(
h1(Yi (ω))

)α

α·(α−1)·⇀pemp(ω)

N (Yi (ω))
, (114)

and in particular the special case (112) turns into

Dλ,α

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= 1

α

∫
X

⇀qθ(x)
α dλ2(x) − 1

N ·(α−1)

∑N
i=1

(
⇀qθ(Yi (ω))

)α−1

+ 1
N ·α·(α−1)

∑N
i=1

(
⇀p
emp(ω)

N (Yi (ω))
)α−1

, (115)

whereas the special case (113) simplifies to

0 < Dλ,α

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= 1

α

∫
X

⇀qθ(x)
α dλ2(x)

+ 1
N

∑N
i=1

[
(

⇀qθ(Yi (ω))

)α

α·⇀pemp(ω)

N (Yi (ω))
−

(
⇀qθ(Yi (ω))

)α−1

α−1

]
+ 1

N

∑N
i=1

(
⇀p

emp(ω)

N (Yi (ω))

)α−1

α·(α−1) . (116)

Notice that (116) coincides with (96), but both were derived within quite different
frameworks: to obtain (116) we have used the concept of decomposable pseudo-
divergences (which may generally become negative at the boundary) together with
⇀Q := ⇀̃Qθ which leads to total mass of 1 (cf. (88)); on the other hand, for estab-
lishing (96) we have employed the concept of divergences (which are generally
always strictly positive at the boundary) together with ⇀Q := ⇀Qθ which amounts to
total mass greater than 1 (cf. (91)). Moreover, choosing h0(x, s) ≡ 0, h1(x) ≡ 0,
h2(x) ≡ 0 in (114) gives exactly the divergence (90) for the current generator
φ(t) := φα(t) with α > 1; recall that the latter has been a starting motivation for
the search of repairs. For c0 = c1 = c0 = −1 and the limit case α → 1 one gets
φ(t) := φ1(t) := t · log t + 1 − t (t ∈]0,∞[) of (18), forwhich by (22) and (103)we
obtain the decomposition ψ0(t) := ψ0

1(t) := t · log t − t , ψ1(t) := ψ1
1(t) := t > 0,

ρ(t) := ρ1(t) := − log t . Accordingly, (111) simplifies to
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Dλ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
:= Dλ,1

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)

= 1 − 1
N

∑N
i=1 log

(
h2(Yi (ω))

)

+ 1
N

∑N
i=1

ψ0
1

(
⇀p

emp(ω)

N (Yi (ω))+h0

(
Yi (ω),

⇀p
emp(ω)

N (Yi (ω))

))
+h1(Yi (ω))

⇀p
emp(ω)

N (Yi (ω))
, (117)

and in particular the special case (112) turns into

Dλ,1

(
⇀P
emp(ω)
N ,

⇀̃Qθ

)
= 1

N

N∑

i=1

log
(

⇀p
emp(ω)
N (Yi (ω))

)
− 1

N

N∑

i=1

log
(

⇀qθ(Yi (ω))
)
, (118)

whereas the special case (113) becomes

0 < Dλ,1

(
⇀P
emp(ω)
N ,

⇀̃Qθ

)
= 1

N
∑N

i=1 log
(

⇀p
emp(ω)
N (Yi (ω))

)
− 1

N
∑N

i=1 log
(

⇀qθ(Yi (ω))
)

+ 1
N

∑N
i=1

⇀qθ(Yi (ω))

⇀p
emp(ω)
N (Yi (ω))

. (119)

To end up this subsection, let us briefly indicate that choosing in step (Enc2) a decom-
posable pseudo-divergence of the form (respectively) (111)–(119), and in the course
of (Enc3) minimize this over θ ∈ Θ , we end up at the corresponding min−decDλ-
estimator (109). For the special case (118) (i.e. α = 1) this leads to the omnipresent,
celebrated maximum-likelihood-estimator (MLE) which is known to be efficient but
not robust. The particular choice (115) for α > 1 gives the density-power diver-
gence estimator DPDE of Basu et al. [10], where α = 2 amounts to the (squared)
L2-estimator which is robust but not efficient (see e.g. Hampel et al. [33] ); accord-
ingly, taking α ∈]1, 2[ builds a smooth bridge between the robustness and efficiency.
The reversed version of the DPDE can be analogously imbedded in our context, by

employing our new approach with φ(t) := ˜̃φα(t) (cf. (79)).

4.6 Minimum Divergences - Generalized Subdivergence
Method

One can flexibilize some of the methods of the previous Sect. 4.5, by employing an
additional (a.s.) strictly positive density function M to define a pseudo-divergence
DM,λ : P̃λ ⊗ Pλ → R of the form DM,λ(P,Q) =∫
X ψdec

( p(x)
m(x) ,

q(x)
m(x)

) · m(x) dλ(x) for some (measurable) mapping

ψdec : [0,∞[×[0,∞[�→ R with representation
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ψdec(s, t) := ψ0
(
s + h0(x, s) · 1{0}(t)

)
· 1]c0,∞[(s) · 1]c0,∞[(t)

+ψ1
(
t + h1(x) · 1{0}(t)

)
· 1]c1,∞[(t)

+ρ
(
t + h2(x) · 1{0}(t)

)
· s for all (s, t) ∈ [0, ∞[×[0, ∞[\{(0, 0)} , (c f.(102))

ψdec(0, 0) := 0.

It is straightforward to see that DM,λ(·, ·) is a pointwise decomposable pseudo-
divergence in the sense of Definition 3(b), and one gets for fixed m > 0

ψdec
m (s, t) := m · ψdec

(
s
m , t

m

)
= m · ψ0

(
s
m

)
+ m · ψ1

(
t
m

)
+ ρ

(
t
m

)
· s � 0

for all (s, t) ∈]0,∞[×]0,∞[ , (120)

ψdec
m (s, t) = 0 if and only if s = t ,

s
m + h0

(
x, s

m

)
� 0 for all s ∈ [0,∞[ andλ-almost all x ∈ X ,

R � ψdec
m (s, 0) = m · ψ0

(
s
m + h0

(
x, s

m

))
· qc0 + m · ψ1(h1(x)) · qc1 + ρ(h2(x)) · s

for all s > 0 , (121)

R � ψdec
m (0, t) = m · ψ0(0) · qc0 + m · ψ1

(
t
m

)
for all t > 0 . (122)

For each class-family memberM := ⇀Qτ with arbitrarily fixed τ ∈ Θ , we can apply
Definition 4 to Dλ(·, ·) := D⇀

Qτ ,λ
(·, ·), and arrive at the correspondingmin−decD⇀

Qτ ,λ
-

estimators

θ̂N ,decD⇀
Qτ ,λ

(ω) := TD⇀
Qτ ,λ

(⇀P
emp(ω)

N

)
for ⇀P

emp(ω)

N ∈ Pλ⊥
emp (123)

of the true unknown parameter θ0. Hence, analogously to the derivation of (111), we
obtain from (102), (121), (122) for each τ ∈ Θ

D⇀
Q τ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= ∫

X ψdec
( ⇀p

emp(ω)
N (x)
⇀q τ (x)

,
⇀̃q θ(x)
⇀q τ (x)

)
· ⇀qτ (x) dλ(x)

= ∫
X ψ1

( ⇀q θ(x)
⇀q τ (x)

)
· ⇀qτ (x) dλ2(x) + ∑

x∈X
[

⇀qτ (x) · ψ0
( ⇀p

emp(ω)
N (x)
⇀q τ (x)

+ h0
(
x,

⇀p
emp(ω)
N (x)
⇀q τ (x)

))
· qc0

+ ⇀qτ (x) · ψ1(h1(x)) · qc1 + ρ(h2(x)) · ⇀pemp(ω)
N (x)

]
· 1R (Y1(ω),...,YN (ω))(x) + ψ0(0) · qc0

= ∫
X ψ1

( ⇀q θ(x)
⇀q τ (x)

)
· ⇀qτ (x) dλ2(x) + 1

N

∑N
i=1 ρ(h2(Yi (ω))) + ψ0(0) · qc0

+ 1
N

∑N
i=1

ψ0
(

⇀p
emp(ω)
N (Yi (ω))
⇀qτ (Yi (ω))

+h0

(
Yi (ω),

⇀p
emp(ω)
N (Yi (ω))
⇀qτ (Yi (ω))

))
· qc0+ψ1(h1(Yi (ω)))· qc1

⇀p
emp(ω)
N (Yi (ω))

· ⇀qτ (Yi (ω)) . (124)
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Just as in the derivation of (112) respectively (113), reasonable choices for the

“boundary-functions” in (124) are h0(x, s) ≡ 0, h1(x) ≡ 0, h2(x) = ⇀qθ(x)
⇀qτ (x)

, respec-

tively h0(x, s) ≡ 0, h1(x) ≡ ⇀qθ(x)
⇀qτ (x)

, h2(x) = ⇀qθ(x)
⇀qτ (x)

. As for example, consider for all

θ0, θ, τ ∈ Θ the scaled Bregman divergences in the sense of Stummer [81], Stummer
and Vajda [84] (cf. Remark (2)(b)), for which we get from (36) with r(x) ≡ 1

0 � Dc

φ,
⇀
Qτ ,

⇀
Qτ ,1·⇀Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ)

:= ∫
X

[
φ
(⇀qθ0

(x)
⇀qτ (x)

) − φ
( ⇀qθ(x)

⇀qτ (x)

) − φ′+,c

( ⇀qθ(x)
⇀qτ (x)

) · (⇀qθ0
(x)

⇀qτ (x)
− ⇀qθ(x)

⇀qτ (x)

)] · ⇀qτ (x) dλ2(x) ,

=: D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) , (125)

from which – together with (120) – one can identify immediately the point-
wise decomposabilitywithψ0(s) := ψ0

φ(s) := φ(s),ψ1(t) := ψ1
φ(t) := t · φ′+,c(t) −

φ(t), ρ(t) := ρφ(t) := −φ′+,c(t); by plugging this into (124), one obtains the objec-

tive D
φ,

⇀
Qτ ,λ2

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
, which in the course of (Enc3) should be – for fixed

τ ∈ Θ – minimized over θ ∈ Θ in order to obtain the corresponding τ -individual”

min−decD
φ,

⇀
Qτ ,λ

-estimator θ̂N ,τ (ω) := arginfθ∈Θ D
φ,

⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
. Recall

that this choice can be motivated by 0 = minθ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) and θ0 =
argminθ∈ΘD

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ). Furthermore, onegets even 0 = minθ∈Θ minτ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ), θ0 = argminθ∈Θ minτ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ), and in case of

maxτ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) < ∞ also 0 = minθ∈Θ maxτ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ),

θ0 = argminθ∈Θ maxτ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ). This suggests the alternative,

“τ -uniform” estimators θ̂N (ω) := argminθ∈Θ minτ∈Θ D
φ,

⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
,

respectively θ̂N (ω) := argminθ∈Θ maxτ∈Θ D
φ,

⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
. As a side remark,

let us mention that in general, (say) minτ∈Θ D
φ,

⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
is not necessarily

decomposable anymore, and therefore the standard theory of M-estimators is not
applicable to this class of estimators.
With our approach, we can generate numerous further estimators of the true unknown
parameter θ0, by permuting the positions – but not the roles (!) – of the parameters
(θ0, θ, τ ) in the (pseudo-)divergences of the above investigations. For the sake of
brevity, we only sketch two further cases; the full variety will appear elsewhere. To
start with, consider the adaptively scaled and aggregated divergence
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0 � Drev

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) := Dc

φ,
⇀
Q

2

θ0
/
⇀
Qτ ,

⇀
Q

2

θ /
⇀
Qτ ,1·⇀Qθ0

,λ2

(
⇀Qθ0 ,

⇀Qθ)

:= ∫
X

[
φ

(
⇀qθ0

(x)
⇀
qθ0

(x)2

⇀
qτ (x)

)
− φ

(
⇀qθ(x)
⇀
qθ (x)2

⇀
qτ (x)

)
− φ′+,c

(
⇀qθ(x)
⇀
qθ (x)2

⇀
qτ (x)

)
·
((

⇀qθ0
(x)

⇀
qθ0

(x)2

⇀
qτ (x)

)
−

(
⇀qθ(x)
⇀
qθ (x)2

⇀
qτ (x)

))]

·⇀qτ (x) dλ2(x)

= ∫
X

[
φ
( ⇀qτ (x)

⇀qθ0
(x)

) − φ
(⇀qτ (x)

⇀qθ(x)

) − φ′+,c

(⇀qτ (x)
⇀qθ(x)

) · ( ⇀qτ (x)
⇀qθ0

(x)
− ⇀qτ (x)

⇀qθ(x)

)] · ⇀qθ0(x) dλ2(x)

=: ∫
X

[
ψ0,rev

⇀qτ (x)
(⇀qθ0(x)) + ψ1,rev

⇀qτ (x)
(⇀qθ(x)) + ρrev⇀qτ (x)

(⇀qθ(x)) · ⇀qθ0(x)
]
dλ2(x)

(indeed, by Theorem 4 and (80) this is zero if and only if θ = θ0). By means of
the involved mappings ψ0(s) := ψ0,rev

m (s) := s · φ(ms ), ψ1(t) := ψ1,rev
m (t) := −m ·

φ′+,c(
m
t ), ρ(t) := ρrevm (t) := m

t · φ′+,c(
m
t ) − φ(mt ) =: φ�(mt ) (s, t,m > 0), the prop-

erties (103), (104) are applicable and thus Drev

φ,
⇀
Qτ ,λ2

(·, ·) can be extended to a point-

wise decomposable pseudo-divergence on P̃λ ⊗ Pλ by using (102) with appro-
priate functions h0,h1,h2 and constants c0,c1,c0. Furthermore, by minimizing over
θ ∈ Θ the objective (111) with these choicesψ0,rev

m (·),ψ1,rev
m (·), ρrevm (·), in the course

of (Enc3) we end up at the corresponding min−decDrev

φ,
⇀
Qτ ,λ

-estimator. In particular,

the corresponding special case h0(x, s) ≡ 0, h1(x) ≡ 1, h2(x) = ⇀qθ(x) ( �= ⇀̃qθ(x))
leads to the objective (cf. (112) but with ψ1(1) instead of ψ1(0))

Drev

φ,
⇀
Qτ ,λ2

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= φ∗(0) · qc0 − ∫

X
⇀qτ (x) · φ′+,c

(⇀qτ (x)
⇀qθ(x)

)
dλ2(x)

+ 1
N

∑N
i=1 φ�

(⇀qτ (Yi (ω))
⇀qθ(Yi (ω))

)

+ 1
N

∑N
i=1

[
φ
( ⇀qτ (Yi (ω))

⇀p
emp(ω)

N (Yi (ω))

)
· qc0 − ⇀qτ (Yi (ω))·φ′+,c(

⇀qτ (Yi (ω)))

⇀p
emp(ω)

N (Yi (ω))
· qc1

]

to be minimized over θ. As a second possibility to permutate the positions of the
parameters (θ0, θ, τ ), let us consider

0 � Dc

φ,
⇀
Q θ ,

⇀
Q θ ,1 ·⇀Q θ ,λ2

(
⇀Qθ0 ,

⇀Qτ )

:= ∫
X

[
φ
( ⇀qθ0

(x)
⇀q θ(x)

) − φ
( ⇀q τ (x)

⇀qθ(x)

) − φ′+,c

( ⇀q τ (x)
⇀qθ(x)

) · ( ⇀qθ0
(x)

⇀qθ(x)
− ⇀q τ (x)

⇀qθ(x)

)] · ⇀qθ(x) dλ2(x) ; (126)

this is a pointwise decomposable divergence between⇀Qθ0 and
⇀Qτ , but it is not a diver-

gence – yet still a nonnegative and obviously not pointwise decomposable functional
– between ⇀Qθ0 and

⇀Qθ. Indeed, for θ = θ0 �= τ one obtains Dc

φ,
⇀
Qθ0

,
⇀
Qθ0

,1·⇀Qθ0
,λ2

(
⇀Qθ0 ,

⇀Qτ ) > 0. Notice that from (126) one gets
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∫
X φ

(⇀qθ0
(x)

⇀qθ(x)

) · ⇀qθ(x) dλ2(x) �
∫
X

{[
φ
(⇀qτ (x)

⇀qθ(x)

) − φ′+,c

(⇀qτ (x)
⇀qθ(x)

) · ⇀qτ (x)
⇀qθ(x)

]
· ⇀qθ(x)

+φ′+,c

(⇀qτ (x)
⇀qθ(x)

) · ⇀qθ0(x)
}
dλ2(x) =: D c

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) , (127)

provided that the integral on the right-hand side exists and is finite. If moreover
φ(1) = 0, then by (54) the inequality (127) rewrites as

Dc
φ,λ2

(
⇀Qθ0 ,

⇀Qθ) := Dc

φ,
⇀
Qθ,

⇀
Qθ,1·⇀Qθ,λ

(
⇀Qθ0 ,

⇀Qθ) � Dc

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) (128)

with (for fixed θ) equality if and only if θ0 = τ ; this implies that

Dc
φ,λ2

(
⇀Qθ0 ,

⇀Qθ) = maxτ∈Θ D c

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) (129)

= maxτ∈Θ

∫
X

[
ψ1,sub

⇀qτ (x)
(⇀qθ(x)) + ρsub⇀qτ (x)

(⇀qθ(x)) · ⇀qθ0(x)
]
dλ2(x) (130)

withψ0(s) := ψ0,sub
m (s) ≡ 0,ψ1(t) := ψ1,sub

m (t) := t · φ(mt ) − m · φ′+,c(
m
t ), ρ(t) :=

ρsubm (t) := φ′+,c(
m
t ) (s, t,m > 0). In other words, this means that the Csiszar-Ali-

Silvey divergence CASD Dc
φ,λ2

(
⇀Qθ0 ,

⇀Qθ) can be represented as the τ -maximum over
– not necessarily nonnegative – pointwise decomposable (in the sense of (103), (104))
functionals D c

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) between
⇀Qθ0 and

⇀Qθ. Furthermore, from Theorem 5

and (130) we arrive at

0 = minθ∈Θ Dc
φ,λ2

(
⇀Qθ0 ,

⇀Qθ) = minθ∈Θ maxτ∈Θ D c

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ)

= minθ∈Θ maxτ∈Θ

∫
X

[
ψ1,sub

⇀qτ (x)
(⇀qθ(x)) + ρsub⇀qτ (x)

(⇀qθ(x)) · ⇀qθ0(x)
]
dλ2(x) ,

θ0 = argminθ∈Θ maxτ∈Θ D c

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ). (131)

Accordingly, in analogy to the spirit of (81), (82), (86), respectively Definition 4
and (110), in order to achieve an estimator of the true unknown parameter θ0 we
first extend the “pure parametric case” D c

φ,
⇀
Qτ ,λ2

: Pλ
Θ ⊗ Pλ

Θ �→ R to a singularity-

covering functional D c

φ,
⇀
Qτ ,λ

: Pλ
Θ,emp ⊗ Pλ

Θ �→ R, although it is not a pseudo-

divergence anymore; indeed, by employing the reduced form of (102) we take

Dc

φ,
⇀
Q τ ,λ

(
⇀P,

⇀Q) := ∫
X

[
ψ1,sub

⇀q τ (x)

(
⇀q(x) + h1(x) · 1{0}(⇀q(x))

)
· 1]c1,∞[(⇀q(x))

+ρsub⇀q τ (x)

(
⇀q(x) + h2(x) · 1{0}(⇀q(x))

)
· ⇀p(x)

]
dλ(x) for all ⇀P ∈ Pλ

Θ,emp,
⇀Q ∈ Pλ

Θ . (132)

Hence, analogously to the derivation of (111), we obtain from (132)
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supτ∈Θ D c

φ,
⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= supτ∈Θ

∫
X ψ1,sub

⇀qτ (x)

(
⇀qθ(x)

)
dλ2(x)

+∑
x∈X

[
ψ1,sub

⇀qτ (x)

(
h1(x)

)
· qc1 + ρsub⇀qτ (x)

(h2(x)) · ⇀p
emp(ω)

N (x)
]

· 1R (Y1(ω),...,YN (ω))(x)

= supτ∈Θ

∫
X

[
⇀qθ(x) · φ

(⇀qτ (x)
⇀qθ(x)

)
− ⇀qτ (x) · φ′+,c

(⇀qτ (x)
⇀qθ(x)

)]
dλ2(x) (133)

+ 1
N

∑N
i=1 φ′+,c

(⇀qτ (Yi (ω))

h2(Yi (ω))

)

+ 1
N

∑N
i=1

h1(Yi (ω))·φ
(

⇀
qτ (Yi (ω))

h1(Yi (ω))

)
−⇀qτ (Yi (ω))·φ′+,c

(
⇀
qτ (Yi (ω))

h1(Yi (ω))

)

⇀p
emp(ω)

N (Yi (ω))
· qc1 (134)

to be minimized over θ ∈ Θ . In the view of (131), we can estimate (respectively
learn) the true unknown parameter θ0 by the estimator

θ̂N ,supDφ,λ
(ω) := arginfθ∈Θ supτ∈Θ D c

φ,
⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
for ⇀P

emp(ω)

N ∈ Pλ⊥
emp ,

(135)

which under appropriate technical assumptions (integrability, etc.) exists, is finite,
unique, and Fisher consistent; moreover, this method can be straightforwardly
extended to non-parametric setups. Similarly to the derivation of (112) respectively
(113), reasonable choices for the “boundary-functions” in (134) are h2(x) := ⇀qθ(x)
togetherwith h1(x) ≡ 1 respectively h1(x) := ⇀qθ(x) (where the nominator in the last
sum becomes −⇀qτ (Yi (ω)) · φ′+,c(1))). In the special case with c1 = 0 = qc1 – where
the choice of h1(·) is irrelevant – and h2(x) := ⇀qθ(x), the estimator θ̂N ,supDφ,λ

(ω)

was first proposed independently by Liese and Vajda [42] under the name modified
φ-divergence estimator and Broniatowski and Keziou [16, 17] under the name min-
imum dual φ-divergence estimator ; furthermore, within this special-case setup, Bro-
niatowski and Keziou [17] also introduced for each fixed θ ∈ Θ the related, so-called

dual φ-divergence estimator θ̂N ,θ,Dφ,λ
(ω) := argsupτ∈Θ D c

φ,
⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
. The

latter four references also work within a nonparametric framework. Let us also
mention that by (128) and (129), θ̂N ,Dφ,λ

(ω) can be interpreted as maximum sub-
φ-divergence estimator, whereas θ̂N ,supDφ,λ

(ω) can be viewed as minimum super-φ-
divergence estimator (cf. Vajda [90], Broniatowski andVajda [18] for the probability-
measure-theoretic context of footnote 15).

Remark 6 Making use of the escort parameter τ proves to be useful in statistical
inference under the model; its use under misspecification has been considered in
Toma and Broniatowski [86], Al Mohamad [5], for Csiszar-Ali-Silvey divergences.

As a final example, consider c1 = 0, h2(x) := ⇀qθ(x), and φ(t) := t log t + 1 − t , for
which we can deduce

θ̂N ,supDφ,λ
(ω) = θ̂N ,θ,Dφ,λ

(ω) = argsupξ∈Θ
1
N

∑N
i=1 log

(
⇀qξ(Yi (ω))

)
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for all θ ∈ Θ , i.e. in this case all maximum sub-φ-divergence estimators and the min-
imum super-φ-divergence estimator exceptionally coincide, and give the celebrated
maximum-likelihood estimator.

5 Conclusions

Motivated by fields of applications from statistics, machine learning, artificial intel-
ligence and information geometry, we presented for a wide audience a new unifying
framework of divergences between functions. Within this, we illuminated several
important subcases – such as scaled Bregman divergences and Csiszar-Ali-Silvey
φ-divergences – as well as involved subtleties and pitfalls. For the often desired task
of finding the “continuous” model with best divergence-proximity to the observed
“discrete” data, we summarized existing and also derived new approaches. As far as
potential future studies is concerned, the kind of universal nature of our introduced
toolkit suggests quite a lot of possibilities for further adjacent developments and
concrete applications.
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Appendix: Proofs

Proof of Theorem 4. Assertion (1) and the “if-part” of (2) follow immediately from
Theorem1which uses less restrictive assumptions. In order to show the “only-if” part
of (2) (and the “if-part” of (2) in an alternativeway), one can use the straightforwardly
provable fact that the Assumption 2 implies

w3 · ψφ,c(x, s, t) = 0 if and only if s = t (136)

for all s ∈ R
(

P
M1

)
, all t ∈ R

( Q
M2

)
and λ-a.a. x ∈ X . To proceed, assume that

Dc
φ,M1,M2,M3,λ

(P, Q) = 0, which by the non-negativity ofw3 · ψφ,c(·, ·) implies that

w3 · ψφ,c
( p(x)
m1(x)

,
q(x)
m2(x)

) = 0 for λ-a.a. x ∈ X . From this and the “only-if” part of

(136), we obtain the identity p(x)
m1(x)

= q(x)
m2(x)

forλ-a.a. x ∈ X . �
Proof of Theorem 5. Consistently with Theorem 1 (and our adaptions) the “if-part”
follows from (51). By our above investigations on the adaptions of theAssumptions 2
to the current context, it remains to investigate the “only-if” part (2) for the following
four cases (recall that φ is strictly convex at t = 1):
(ia) φ is differentiable at t = 1 (hence, c is obsolete and φ′+,c(1) collapses to φ′(1))
and the function φ is affine linear on [1, s] for some s ∈ R

(
P
Q

)\[a, 1];
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(ib) φ is differentiable at t = 1, and the function φ is affine linear on [s, 1] for some
s ∈ R

(
P
Q

)\[1, b];
(i i) φ is not differentiable at t = 1, c = 1, and the function φ is affine linear on [1, s]
for some s ∈ R

(
P
Q

)\[a, 1];
(i i i) φ is not differentiable at t = 1, c = 0, and the function φ is affine linear on
[s, 1] for some s ∈ R

(
P
Q

)\[1, b].
It is easy to see from the strict convexity at 1 that for (ii) one has φ(0) + φ′+,1(1) −
φ(1) > 0, whereas for (iii) one gets φ∗(0) − φ′+,0(1) > 0; furthermore, for (ia) there
holds φ(0) + φ′(1) − φ(1) > 0 and for (ib) φ∗(0) − φ′(1) > 0. Let us first examine
the situations (ia) respectively (ii) under the assumptive constraint Dc

φ,Q,Q,R·Q,λ

(P,Q) = 0with c = 1 respectively (in case of differentiability) obsolete c, forwhich
we can deduce from (51)

0 = Dc
φ,Q ,Q ,R ·Q ,λ(P,Q)

�
∫
X r(x) · [q(x) · φ( p (x)

q(x)

) − q(x) · φ
(
1
) − φ′+,c

(
1
) · (p(x) − q(x)

)]

·1]0,∞[
(
p(x)

) · 1]p (x),∞[
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x) · 1{0}

(
p(x)

) · 1]p (x),∞[
(
q(x)

)
dλ(x) � 0,

and hence
∫
X 1]p(x),∞[

(
q(x)

) · r(x) dλ(x) = 0. From this and (55) we obtain

0 = ∫
X

(
p(x) − q(x)

) · r(x) dλ(x) = ∫
X

(
p(x) − q(x)

) · 1]q(x),∞[
(
p(x)

) · r(x) dλ(x)

and therefore
∫
X 1]q(x),∞[

(
p(x)

) · r(x) dλ(x) = 0. Since for λ-a.a. x ∈ X we have
r(x) > 0, we arrive at p(x) = q(x) for λ-a.a. x ∈ X . The remaining cases (ib)
respectively (iii) can be treated analogously. �
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