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Abstract Exponential families andmixture families are parametric probabilitymod-
els that can be geometrically studied as smooth statistical manifolds with respect to
any statistical divergence like the Kullback–Leibler (KL) divergence or the Hellinger
divergence. When equipping a statistical manifold with the KL divergence, the
inducedmanifold structure is dually flat, and theKLdivergence between distributions
amounts to an equivalent Bregman divergence on their corresponding parameters.
In practice, the corresponding Bregman generators of mixture/exponential families
require to performdefinite integral calculus that can either be too time-consuming (for
exponentially large discrete support case) or even do not admit closed-form formula
(for continuous support case). In these cases, the dually flat construction remains
theoretical and cannot be used by information-geometric algorithms. To bypass this
problem, we consider performing stochastic Monte Carlo (MC) estimation of those
integral-based mixture/exponential family Bregman generators. We show that, under
natural assumptions, theseMC generators are almost surely Bregman generators.We
define a series of dually flat information geometries, termed Monte Carlo Informa-
tion Geometries, that increasingly-finely approximate the untractable geometry. The
advantage of this MCIG is that it allows a practical use of the Bregman algorithmic
toolbox on a wide range of probability distribution families. We demonstrate our
approach with a clustering task on a mixture family manifold. We then show how to
generate MCIG for arbitrary separable statistical divergence between distributions
belonging to a same parametric family of distributions.
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1 Introduction

We concisely describe the construction and properties of dually flat spaces [1, 8]
in Sect. 1.1, define the statistical manifolds of exponential families and mixture fam-
ilies in Sect. 1.2, and discuss about the computational tractability of Bregman algo-
rithms in dually flat spaces in Sect. 1.3.

1.1 Dually Flat Space: Bregman Geometry

A smooth (potentially asymmetric) distance D(·, ·) is called a divergence in infor-
mation geometry [1, 8], and induces a differential-geometric dualistic structure [1,
2, 8, 17]. In particular, a strictly convex and twice continuously differentiable D-
dimensional real-valued function F , termed a Bregman generator, induces a dually
connection-flat structure via a corresponding Bregman Divergence (BD) [4] BF (·, ·)
given by:

BF (θ1 : θ2) := F(θ1) − F(θ2) − 〈θ1 − θ2,∇F(θ2)〉, (1)

where 〈y, x〉 := y�x denotes the inner product, and∇F(θ) := (∂i F(θ))i denotes the
gradient vector of partial first-order derivatives with respect to vector parameter θ.
We use the standard notational convention of information geometry [1, 8]: ∂i :=: ∂

∂θi

to indicate1 a contravariant vector [18] θ = (θi )i .
The Legendre–Fenchel transformation [30] :

F∗(η) = sup
θ

{〈θ, η〉 − F(θ)}, (2)

is at the heart of the duality of flat structures by defining two global affine coordinate
systems: The primal affine θ-coordinate system and the dual affine η-coordinate sys-
tem, so that any point P of the manifoldM can either be accessed by its primal θ(P)

coordinates or equivalently by its dual η(P) coordinates. We can switch between
these two dual coordinates as follows:

1The :=: symbolmeans it is a notational convention equality, like
∑k

i=1 xi :=: x1 + . . . xk . It differs
from a := b which denotes the symbol of a quantity equality by definition.
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η = η(θ) = ∇F(θ) = (∂i F(θ))i , (3)

θ = θ(η) = ∇F∗(η) = (∂i F∗(η))i , (4)

with reciprocal gradients∇F∗ := (∇F)−1.We used the notational convention ∂i :=:
∂

∂ηi
which indicates the covariant vector [18] η = (ηi )i .
The metric tensor g of the dually flat structure (M, F) can either be expressed

using the θ- or η-coordinates using the Hessians of the potential functions [53]:

G(θ) = ∇2F(θ), (5)

G∗(η) = ∇2F∗(η). (6)

It defines a smooth bilinear form 〈v, v′〉g on M so that for two vectors v,w of a
tangent plane TP :

〈v, v′〉g = θ(v)�G(θ)θ(w), (7)

= η(v)�G∗(η)η(w), (8)

where θ(v) = (vi )i and η(v) = (vi )i denote the contravariant coefficients and covari-
ant coefficients of a vector v, respectively. That is, any vector v ∈ TP can be written
either as v =∑i v

i ei or as
∑

i vi e
∗i , where {ei }i and {e∗i }i are the dual basis [18]

of the vector space structure of TP .
Matrices G(θ) and G∗(η) are symmetric positive definite (SPD, denoted by

G(θ) 	 0 and G∗(η) 	 0), and they satisfy the Crouzeix identity [13]:

G(θ)G∗(η) = I, (9)

where I stands for the D × D identity matrix. This indicates that at each tangent
plane TP , the dual coordinate systems are biorthogonal [57] (with {ei }i and {e∗i }i
forming a dual basis [18] of the vector space structure of TP ):

〈ei , e∗ j 〉 = δ
j
i , (10)

with δ
j
i the Krönecker symbol: δ j

i = 1 if and only if (iff) i = j , and 0 otherwise. We
have:

∂ηi

∂θ j
= gi j (θ) = 〈ei , e j 〉, (11)

∂θi

∂η j
= gi j (η) = 〈e∗i , e∗ j 〉. (12)

The convex conjugate functions F(θ) and F∗(η) are called dual potential func-
tions, and define the global metric [53].
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Table 1 Overview of the dually differential-geometric structure (M, F) induced by a Bregman
generator F . Notice that if F and ∇F∗ are available in closed-form then so are ∇F and F∗

Manifold (M, F) Primal structure Dual structure

Affine coordinate system θ(·) η(·)
Conversion θ ↔ η θ(η) = ∇F∗(η) η(θ) = ∇F(θ)

Potential function F(θ) =
〈θ,∇F(θ)〉 − F∗(∇F(θ))

F∗(η) =
〈η,∇F∗(η)〉 − F(∇F∗(η))

Metric tensor g G(θ) = ∇2F(θ) G∗(η) = ∇2F∗(η)

gi j = ∂i∂ j F(θ) gi j = ∂i∂ j F∗(η)

Geodesic (λ ∈ [0, 1]) γ(P, Q) := {(PQ)λ =
(1 − λ)θ(P) + λθ(Q)}λ

γ∗(P, Q) := {(PQ)∗λ =
(1 − λ)η(P) + λη(Q)}λ

Table 1 summarizes the differential-geometric structures of dually flat spaces.
Since Bregman divergences are canonical divergences2 of dually flat spaces [1], the
geometry of dually flat spaces is also referred to the Bregman geometry [15] in the
literature.

Definition 1 (Bregman generator) A Bregman generator is a strictly convex and
twice continuously differentiable real-valued function F : R

D → R.

Let us cite the following well-known properties of Bregman generators [4]:

Property 1 (Bregman generators are equivalent up to modulo affine terms) The
Bregman generator F2(θ) = F1(θ) + 〈a, θ〉 + b (with a ∈ R

D and b ∈ R) yields the
same Bregman divergence as the Bregman divergence induced by F1, BF2(θ1 : θ2) =
BF1(θ1 : θ2), and therefore the same dually flat space (M, F2) ∼= (M, F1).

Property 2 (Linearity rule of Bregman generators) Let F1, F2 be two Bregman gen-
erators and λ1,λ2 > 0. Then Bλ1F1+λ2F2(θ : θ′) = λ1BF1(θ : θ′) + λ2BF2(θ : θ′).

In practice, the algorithmic toolbox in dually flat spaces (e.g., clustering [4], min-
imum enclosing balls [39], hypothesis testing [31] and Chernoff information [32],
Voronoi diagrams [6, 34], proximity data-structures [45, 46], etc.) can be used when-
ever the dual Legendre convex conjugates F and F∗ are both available in closed-form
(see Type 1 of Table 4). In that case, both the primal γ(P, Q) := {(PQ)λ}λ and dual
γ∗(P, Q) := {(PQ)∗λ}λ geodesics are available in closed form. These dual geodesics
can either be expressed using the θ or η-coordinate systems as follows:

(PQ)λ =
{

θ((PQ)λ) = θ(P) + λ(θ(Q) − θ(P)),

η((PQ)λ) = ∇F(θ((PQ)λ)) = ∇F(∇F∗(η(P)) + λ(∇F∗(η(Q)) − ∇F∗(η(P)))),

(13)

2That is, we can associate to any dually flat manifold a divergence that amounts to a Bregman
divergence [1].
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Table 2 Some fundamental Bregman clustering algorithms [4, 22, 41] (of the Bregman algorithmic
toolbox) that illustrate which closed-form are required to be run in practice

Algorithm F(θ) η(θ) = ∇F(θ) θ(η) = ∇F∗(η) F∗(η)

Right-sided Bregman clustering � � × ×
Left-sided Bregman clustering × × � �
Symmetrized Bregman centroid � � � �
Mixed Bregman clustering � � � �
Maximum Likelihood Estimator for EFs × × � ×
Bregman soft clustering (≡ EM) × � � �

(PQ)∗λ =
{

η((PQ)∗λ) = η(P) + λ(η(Q) − η(P)),

θ((PQ)∗λ) = ∇F∗(η((PQ)∗λ)) = ∇F∗(∇F(θ(P)) + λ(∇F(θ(Q)) − ∇F(θ(P))))

(14)
That is, the primal geodesic corresponds to a straight line in the primal coordinate
system while the dual geodesic is a straight line in the dual coordinate system.
However, in many interesting cases, the convex generator F or its dual F∗ (or both)
are not available in closed form or are computationally intractable, and the above
Bregman toolbox cannot be used. Table 2 summarizes the closed-form formulas
required to execute some fundamental clustering algorithms [4, 22, 41] in a Bregman
geometry.

Let us notice that so far the points P ∈ M in the dually flat manifold have no
particular meaning, and that the dually flat space structure is generic, not necessar-
ily related to a statistical flat manifold. We shall now quickly review the dualistic
structure of statistical manifolds [24].

1.2 Geometry of Statistical Manifolds

Let I1(x; y) denote a scalar divergence. A statistical divergence between two prob-
ability distributions P and Q, with Radon-Nikodym derivatives p(x) and q(x) with
respect to (w.r.t.) a base measure μ defined on the support X , is defined as:

I (P : Q) =
∫

x∈X
I1 (p(x) : q(x)) dμ(x). (15)

A statistical divergence is a measure of dissimilarity/discrimination that satisfies
I (P : Q) ≥ 0 with equality iff. P = Q (a.e., reflexivity property) . For example, the
Kullback–Leibler divergence is a statistical divergence:

KL(P : Q) :=
∫

x∈X
kl(p(x) : q(x))dμ(x), (16)
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with corresponding scalar divergence:

kl(x : y) := x log
x

y
. (17)

The KL divergence between P and Q is also called the relative entropy [11]
because it is the difference of the cross-entropy h×(P : Q) between P and Q with
the Shannon entropy h(P) of P:

KL(P : Q) = h×(P : Q) − h(P), (18)

h×(P : Q) :=
∫

x∈X
p(x) log

1

q(x)
dμ(x), (19)

h(P) :=
∫

x∈X
p(x) log

1

p(x)
dμ(x) = h×(P : P). (20)

Thuswedistinguish a statistical divergence fromaparameter divergence by stating
that a statistical divergence is a separable divergence that is the definite integral on
the support of a scalar divergence.

In information geometry [1, 8], we equip a probability manifoldM = {p(x; θ) :
θ ∈ Θ} with a metric tensor g (for measuring angles between vectors and lengths
of vectors in tangent planes) and a pair of dual torsion-free connections ∇ and ∇∗
(for defining parallel transports and geodesics) that are defined by their Christoffel
symbolsΓi jk andΓ ∗

i jk . These geometric structures (M, D) := (M, gD,∇D,∇∗
D) can

be induced by any smooth C∞ divergence D(· : ·) [1, 2, 8, 17] as follows:

gi j (x) = ∂2

∂xi∂x j
D(x : y)

∣
∣
∣
∣
y=x

, (21)

Γi jk(x) = − ∂3

∂xi∂x j∂yk
D(x : y)

∣
∣
∣
∣
y=x

. (22)

The dual divergence D∗(p : q) := D(q : p) highlights the reference duality [57],
and the dual connection∇∗ is induced by the dual divergence D∗(· : ·) (∇∗ is defined
by Γ ∗

i jk(x) = − ∂3

∂xi∂x j∂yk
D∗(x : y)

∣
∣
∣
y=x

). Observe that the metric tensor is self-dual:

g∗ = g.
Let us give some examples of parametric probability families and their statistical

manifolds induced by the Kullback–Leibler divergence.

1.2.1 Exponential Family Manifold (EFM)

We start by a definition:

Definition 2 (Exponential family) Let μ be a prescribed base measure and t (x) a
sufficient statistic vector. We can build a corresponding exponential family:
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Et,μ := {p(x; θ) ∝ exp(〈t (x), θ〉)}θ, (23)

where p(x; θ) := dP(θ)
dμ (x).

The densities are normalized by the cumulant function F :

F(θ) := log

(∫

x∈X
exp(〈t (x), θ〉)dμ(x)

)

, (24)

so that:
p(x; θ) = exp(〈t (x), θ〉 − F(θ)). (25)

The function F is a Bregman generator on the natural parameter space:

Θ :=
{

θ :
∫

x∈X
exp(〈t (x), θ〉)dμ(x) < ∞

}

. (26)

If we add an extra carrier term k(x) and consider the measure ν(x) := μ(x)
exp(k(x)) , we

get the generic form of an exponential family [36]:

Et,k,ν := {p(x; θ) ∝ exp(〈t (x), θ〉 + k(x)) : θ ∈ Θ} . (27)

We call the function F the Exponential Family Bregman Generator, or EFBG for
short in the remainder.

It turns out that (Et,μ,KL,∇KL,∇∗
KL)

∼= (M, F) (meaning the information-
geometric structure of the statistical manifold is isomorphic to the information-
geometry of a dually flat manifold) so that:

KL(p(x; θ1) : p(x; θ2) = BF (θ2 : θ1), (28)

= BF∗(η1 : η2), (29)

with η = Ep(x;θ)[t (x)] the dual parameter called the expectation parameter or
moment parameter.

1.2.2 Mixture Family Manifold (MFM)

Another important type of families of probability distributions are the mixture
families:

Definition 3 (Mixture family) Given a set of k prescribed statistical distributions
p0(x), . . . , pk−1(x), all sharing the same support X (say, R), a mixture family M
of order D = k − 1 consists of all strictly convex combinations of these component
distributions [43, 44]:
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M :=
{

m(x; η) =
k−1∑

i=1

ηi pi (x) +
(

1 −
k−1∑

i=1

ηi

)

p0(x) : ηi > 0,
k−1∑

i=1

ηi < 1

}

.

(30)

It shall be understood from the context that M is a shorthand forMp0(x),...,pD .
It turns out that (M,KL,∇KL,∇∗

KL)
∼= (M,G) so that:

KL(m(x; η) : m(x; η′)) = BG(η : η′), (31)

for the Bregman generator being the Shannon negative entropy (also called Shannon
information):

G(η) = −h(m(x; η)) =
∫

x∈X
m(x; η) logm(x; η)dμ(x). (32)

We call function G the Mixture Family Bregman Generator, or MFBG for short in
the remainder.

For a mixture family, we prefer to use the notation η instead of θ for indexing
the distribution parameters as it is customary in textbooks of information geometry
[1, 8]. One reason comes from the fact that the KL divergence between two mixtures
amounts to a BD on their respective parameters (Eq. 31) while the KL divergence
between exponential family distributions is equivalent to a BD on the swapped order
of their respective parameters (Eq. 28), see [3, 19]. Thus in order to get the same
order of arguments for the KL between two exponential family distributions, we need
to use the dual Bregman divergence on the dual η parameter, see Eq. 29.

1.2.3 Cauchy Family Manifold (CFM)

This example is only given to emphasize that probability families may neither be
exponential nor mixture families [28].

A Cauchy distribution has probability density defined on the support X = R by:

p(x;μ,σ) = 1

πσ
(
1 + ( x−μ

σ

)2
) . (33)

The space of all Cauchy distributions:

C = {p(x;μ,σ) : μ ∈ R,σ > 0}. (34)

is a location-scale family [23]. It is not an exponential family nor a mixture family.
Table 3 compares the dually flat structures of mixture families with exponential

families. In information geometry, (Et,k,μ,KL,∇KL,∇∗
KL) = (Et,k,μ, g,∇e,∇m) and

(M,KL,∇KL,∇∗
KL) = (M, g,∇m,∇e) where g is the Fisher information metric
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Table 3 Characteristics of the dually flat geometries of Exponential Families (EFs) and Mixture
Families (MFs)

Exponential Family Mixture Family

Density p(x; θ) =
exp(〈θ, x〉 − F(θ))

m(x; η) =∑k−1
i=1 ηi fi (x) + c(x)

fi (x) = pi (x) − p0(x)

Family/Manifold M = {p(x; θ) : θ ∈
Θ◦}

M = {m(x; η) : η ∈ H◦}

Convex function
(≡ ax + b)

F : cumulant F∗: negative entropy

Dual coordinates moment η = E[t (x)] θi = h×(p0 : m) − h×(pi : m)

Fisher Information
g = (gi j )i j

gi j (θ) = ∂i∂ j F(θ) gi j (η) = ∫X fi (x) f j (x)
m(x;η)

dμ(x)

g = Var[t (X)]
gi j (η) = −∂i∂ j h(η)

Christoffel symbol Γi j,k = 1
2∂i∂ j∂k F(θ) Γi j,k = − 1

2

∫
X

fi (x) f j (x) fk (x)
m2(x;η)

dμ(x)

Entropy −F∗(η) −F∗(η)

Kullback–Leibler
divergence

BF (θ2 : θ1) BF∗ (η1 : η2)

= BF∗ (η1 : η2) = BF (θ2 : θ1)

tensor and ∇e and ∇m are the exponential and mixture connections, respectively.
These connections are dual to each others, see [8].

1.3 Computational Tractability of Dually Flat Statistical
Manifolds

The previous section explained the dually flat structures (i.e., Bregman geometry)
of the exponential family manifold and of the mixture family manifold. However
these geometries may be purely theoretical as the Bregman generator F may not be
available in closed form so that the Bregman toolbox cannot be used in practice.
This work tackles this problem faced in exponential and mixture family manifolds
by proposing the novel framework of Monte Carlo Information Geometry (MCIG).
MCIG approximates the untractable Bregman geometry by considering the Monte
Carlo stochastic integration of the definite integral-based ideal Bregman generator.

But first, let us quickly review the five types of tractability of Bregman geometry
in the context of statistical manifolds by giving an illustrating family example for
each type:

Type 1. F and ∇F∗ are both available in closed-form, and so are ∇F and
F∗. For example, this is the case of the the Gaussian exponential family. The
normal distribution [36] has sufficient statistic vector t (x) = (x, x2) so that its
log-normalizer is
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F(θ) = log

(∫ +∞

−∞
exp(θ1x + θ2x

2)dx

)

. (35)

Since
∫∞
−∞ exp(θ1x + θ2x2) =

√
π

−θ2
exp(− θ21

4θ2
) for θ2 < 0, we find:

F(θ) = log

(∫

exp(θ1x + θ2x
2)dx

)

= − θ21
4θ2

+ 1

2
log

π

−θ2
. (36)

This is in accordance with the direct canonical decomposition [36] of the den-
sity p(x; θ) = exp(〈t (x), θ〉 − F(θ)) of the normal density p(x;μ,σ) = 1√

2πσ

exp(− (x−μ)2

2σ2 ).

Remark 1 When F(θ) can be expressed using the canonical decomposition of expo-
nential families, this means that the definite integral log(

∫
exp(〈t (x), θ〉 + k(x))dx)

is available in closed form, and vice-versa.

Type 2. F is available in closed form (and so is ∇F) but ∇F∗ is not available in
closed form (and therefore F∗ is not available too). This is for example the Beta
exponential family. ABeta distributionBe(α,β) has density on support x ∈ (0, 1):

p(x;α,β) = 1

B(α,β)
xα−1(1 − x)β−1, (37)

where B(α,β) = Γ (α)Γ (β)

Γ (α+β)
, and (α > 0,β > 0) are the shape parameters. The

Beta family of distributions is an exponential family with θ = (α,β), t (x) =
(log(x), log(1 − x)), k(x) = − log(x) − log(1 − x) and F(θ) = log B(θ1, θ2) =
logΓ (θ1) + logΓ (θ2) − logΓ (θ1 + θ2). Note that we could also have chosen
θ = (α − 1,β − 1) and k(x) = 0. Thus ∇F(θ) = (ψ(θ1) − ψ(θ1 + θ2),ψ(θ2) −
ψ(θ1 + θ2)) where ψ(x) = Γ ′(x)

Γ (x) is the digamma function. Inverting the gradient

∇F(θ) = η to get η = ∇F∗(θ) is not available in closed-form.3

Type 3. This type of families has discrete support X and thus requires an expo-
nential time to compute the log-normalizer. For example, consider the Ising mod-
els [5, 9, 21]: Let G = (V, E) be an undirected graph of |V | nodes and |E | edges.
Each node v ∈ V is associated with a binary random variable xv ∈ {0, 1}. The
probability of an Ising model is defined as follows:

p(x; θ) = exp

⎛

⎝
∑

v∈V
θvxv +

∑

(v,w)∈E
θvwxvxw − F(θ)

⎞

⎠ . (38)

3To see this, consider the digamma difference property: fΔ(θ) = ψ(θ) − ψ(θ + Δ) =
−∑Δ−1

i=0
1

x+i for Δ ∈ N. We cannot invert fΔ(θ) since it involves solving the root of a high-degree
polynomial.
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The vector t (x) = (. . . , xv, . . . , xvw, . . .) of sufficient statistics is D-dimensional
with D = |V | + |E |. The log-normalizer is:

F(θ) = log

⎛

⎝
∑

(xv)v∈{0,1}|V |

⎛

⎝exp
∑

v∈V
θvxv +

∑

(v,w)∈E
θvwxvxw

⎞

⎠

⎞

⎠ . (39)

It requires to sum up 2|V | terms.
Type 4. This type of families has a Bregman generator which is not available
in closed-form. For example, this is the case of the Polynomial Exponential Fam-
ily [10, 42] (PEF) which are helpful to model a multimodal distribution (instead
of using a statistical mixture). Consider the following vector of sufficient statistics
t (x) = (x, x2, . . . , xD) for defining an exponential family:

Et (x),μ =
{

p(x; θ) = exp

(
D∑

i=1

θi x
i − F(θ)

)

: θ ∈ Θ

}

. (40)

(Beware that here, xi = Pow(x, i) := x × · · · × x︸ ︷︷ ︸
i times

denotes the i th power of x

(monomial of degree i), and not a contravariant coefficient of a vector x .)
In general, the definite integral of the cumulant function (the Exponential Family
BregmanGenerator, EFBG) of Eq. 24 does not admit a closed form, but is analytic.
For example, choosing t (x) = x8, we have:

F(θ) = log
∫ ∞

−∞
exp(θx8)dx = log 2 + logΓ (9/8) − 1

8
log(−θ), (41)

for θ < 0. But
∫∞
−∞ exp(−x8 − x4 − x2)dx � 1.295 is not available in closed

form.
Type 5. This last category is even more challenging from a computational point
of view because of log-sum terms. For example, the mixture family. As already
stated, the negative Shannon entropy (i.e., theMixture Family BregmanGenerator,
MFBG) is not available in closed form for statistical mixture models [43]. It is in
fact even worse, as the Shannon entropy of mixtures is not analytic [56].

This paper considers approximating the computationally untractable generators
of statistical exponential/mixture families (type 4 and type 5) using stochastic Monte
Carlo approximations.

In [12], Critchley et al. take a different approach of the computational tractability
by discretizing the supportX into a finite number of bins, and considering the corre-
sponding discrete distribution. However, this approach does not scale well with the
dimension of the support. Our Monte Carlo Information Geometry scales to arbi-
trary high dimensions because it relies on the fact that the Monte Carlo stochastic
estimator is independent of the dimension [52].
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1.4 Paper Organization

In Sect. 2, we consider the MCIG structure of mixture families: Namely, Sect. 2.1
considers first the uni-order families to illustrate the basic principle. It is followed by
the general case in Sect. 2.2. Similarly, Sect. 3 handles the exponential family case
by first explaining the uni-order case in Sect. 3.1 before tackling the general case
in Sect. 3.2. Sect. 4 presents an application of the computationally-friendly MCIG
structures for clustering distributions in dually flat statistical mixture manifolds. In
Sect. 5, we show how to construct non-flat MCIG structures of a parametric family
of distributions given by a statistical separable divergence. Finally, we conclude and
discuss several perspectives in Sect. 6.

2 Monte Carlo Information Geometry of Mixture Families

Recall the definition of a statistical mixture model (Definition 3): Given a set of k
prescribed statistical distributions p0(x), . . . , pk−1(x), all sharing the same support
X , amixture familyMof order D = k − 1consists in all strictly convex combinations
of the pi (x)’s [43]:

M :=
{

m(x; η) =
k−1∑

i=1

ηi pi (x) +
(

1 −
k−1∑

i=1

ηi

)

p0(x) : ηi > 0,
k−1∑

i=1

ηi < 1

}

.

(42)
The differential-geometric structure ofM is well studied in information geome-

try [1, 8] (although much less than for the exponential families), where it is known
that:

KL(m(x; η) : m(x; η′)) = BG(η : η′), (43)

for the Bregman generator being the Shannon negative entropy (MFBG):

G(η) = −h(m(x; η)) =
∫

x∈X
m(x; η) logm(x; η)dμ(x). (44)

The negative entropy G(η) = ∫x∈X m(x; η) logm(x; η)dμ(x) is a smooth and
strictly convex function which induces a dually flat structure with Legendre convex
conjugate:

F(θ) = G∗(θ) = −
∫

x∈X
p0(x) logm(x; η)dμ(x) = h×(p0(x) : m(x; η)), (45)

interpretable as the cross-entropy of p0(x) with the mixture m(x; η) [43].
Notice that the component distributions may be heterogeneous like p0(x) being a

fixed Cauchy distribution, p1(x) being a fixed Gaussian distribution, p2(x) a Laplace
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distribution, etc. Except for the case of the finite categorical distributions (that are
both interpretable as either amixture family and an exponential family, see [1]),G(η)

provably does not admit a closed form [56] (i.e., meaning that the definite integral of
Eq. 32 does not admit a simple formula using common standard functions). Thus the
dually-flat geometry (M,G) is a theoretical construction which cannot be explicitly
used by Bregman algorithms.

One way to tackle the lack of closed form in Eq. 32, is to approximate the definite
integrals whenever they are used by using Monte Carlo stochastic integration. How-
ever, this is computationally very expensive, and, even worse, it cannot guarantee
that the overall computation is consistent.

Let us briefly explain themeaning of consistency:We can estimate theKLbetween
two distributions p and q by drawing m variates x1, . . . , xm ∼ p(x), and use the
following MC KL estimator:

K̂Lm(p : q) := 1

m

m∑

i=1

log
p(xi )

q(xi )
. (46)

Now, suppose we have KL(p : q) ≤ KL(q : r), then their MC estimates may not
satisfy K̂Lm(p : q) < K̂Lm(q : r) (since each timeweevaluate a K̂Lm wedrawdiffer-
ent samples). Thus when running a KL/Bregman algorithm, the more MC stochastic
approximations of integrals are performed in the algorithm, the less likely is the out-
put consistent. For example, consider computing the Bregman Voronoi diagram [34]
of a set of nmixtures belonging to amixture familymanifold (say, with D = 2) using
the algorithm explained in [34]: Since we use for each BD calculation or predicate
evaluation relying on F or F∗ stochastic Monte Carlo integral approximations, this
MC algorithm may likely not deliver a proper combinatorial structure of the Voronoi
diagram: The Voronoi structure is likely to be inconsistent.

Let us now show howMonte Carlo Information Geometry (MCIG) approximates
this computationally untractable (M,G) geometric structure by defining a consistent
and computationally-friendly dually-flat information geometry (M, G̃S) for a finite
number m of identically and independently distributed (iid) random samples S.

2.1 MCIG of Order-1 Mixture Family

In order to highlight the principle of MCIGs, let us first consider a mixture family
of order D = 1. That is, we consider a set of mixtures of k = 2 components with
density:

m(x; η) = η p1(x) + (1 − η)p0(x) = p0(x) + η(p1(x) − p0(x)), (47)
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Fig. 1 Example of a mixture family of order D = 1 (k = 2): p0(x) ∼ Gaussian(−2, 1) (red) and
p1(x) ∼ Laplace(2, 1) (green). The two mixtures arem1(x) = m(x; η1) (black) with η1 = 0.7 and
m2(x) = m(x; η2) (grey) with η2 = 0.2.Weighted component distributions are displayed in dashed

with parameter η ranging in (0, 1). The two prescribed component densities p0(x)
and p1(x) (with respect to a base measure μ, say the Lebesgue measure) are defined
on a common support X . Densities p0(x) and p1(x) are assumed to be linearly
independent [8].

Figure 1 displays an example of uni-order mixture family with heterogeneous
components: p0(x) is chosen as a Gaussian distribution while p1(x) is taken as
a Laplace distribution. A mixture m(x; η) of M is visualized as a point P (here,
one-dimensional) with η(P) = η.

Let S = {x1, . . . , xm} denote a iid sample from a fixed proposal distribution q(x)
(with q(x) > 0 for x ∈ X , and q(x) independent of η).We approximate the Bregman
generator G(η) using Monte Carlo stochastic integration with importance sampling
as follows:

G(η) � G̃S(η) := 1

m

m∑

i=1

1

q(xi )
m(xi ; η) logm(xi ; η). (48)

Let us prove that the Monte Carlo function G̃S(η) is a proper Bregman gen-
erator. That is, that G̃S(η) is strictly convex and twice continuously differentiable
(Definition 1).
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Write for short mx(η) := m(x; η) so that G(η) = ∫x∈X mx (η) logmx (η)dμ(x)
is approximated by 1

m

∑m
i=1

1
q(xi )

mxi (η) logmxi (η). Since 1
m

1
q(xi )

> 0, it suffices to
prove that the function gx (η) = mx(η) logmx (η) is strictly convex wrt parameter η.
Then we shall conclude that G̃S(η) is strictly convex because it is a finite positively
weighted sum of strictly convex functions.

Let us write the first and second derivatives of gx (η) as follows:

gx (η)′ = mx (η)′(logmx (η) + 1), (49)

gx (η)′′ = mx (η)′′(logmx (η) + 1) + (mx (η)′)2

mx(η)
. (50)

Since m ′
x(η) = p1(x) − p0(x) and m ′′

x(η) = 0, we get:

gx (η)′′ = (p1(x) − p0(x))2

mx(η)
. (51)

Thus it follows that:

G̃ ′′
S(η) = 1

m

m∑

i=1

1

q(xi )

(p1(xi ) − p0(xi ))2

m(xi ; η)
≥ 0. (52)

It is strictly convex provided that there exists at least one xi such that p1(xi ) �= p0(xi ).
Let D ⊂ X denote the degenerate set D = {x ∈ X : p1(x) = p0(x)}. For exam-

ple, if p0(x) and p1(x) are two distinct univariate normal distributions, then |D| = 2
(roots of a quadratic equation), and

μq(D) :=
∫

x∈X
1[p0(x)=p1(x)]q(x)dμ(x) = 0. (53)

Assumption 1 (AMF1D)We assume that p0(x) and p1(x) are linearly independent
(non-singular statistical model, see [8]), and that μq(D) = 0.

Lemma 1 (Monte Carlo Mixture Family Function is a Bregman generator) The
Monte Carlo Mixture Family Function (MCMFF) F̃S(θ) is a Bregman generator
almost surely.

Proof When there exists a sample x ∈ S with two distinct densities p0(x) and p1(x),
we have (p1(xi ) − p0(xi ))2 > 0 and therefore G̃ ′′

S(η) > 0. The probability to get a
degenerate sample is almost zero.

To recap, the MCMFF of the MCIG of uni-order family has the following
characteristics:
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Fig. 2 A series GS(η) of Bregman Monte Carlo Mixture Family generators (for m =
|S| ∈ {10, 100, 1000, 10000}) approximating the untractable ideal negentropy generator G(η) =
−h(m(x; η)) (red) of a mixture family with prescribed Gaussian distributions m(x; η) = (1 −
η)p(x; 0, 3) + η p(x; 2, 1) for the proposal distribution q(x) = m(x; 1

2 )

Monte Carlo Mixture Family Generator 1D:

G̃S(η) = 1

m

m∑

i=1

1

q(xi )
m(xi ; η) logm(xi ; η), (54)

G̃ ′
S(η) = θ = 1

m

m∑

i=1

1

q(xi )
(p1(xi ) − p0(xi ))(1 + logm(xi ; η)), (55)

G̃ ′′
S(η) = 1

m

m∑

i=1

1

q(xi )

(p1(xi ) − p0(xi ))2

m(xi ; η)
. (56)

Note that (G∗)′ and G∗ may be calculated numerically but not in closed-form.We
may also MC approximate ∇G∗ since θ = (h×(p0 : m) − h×(pi : m))i .

Thus we change from type 5 to type 2 the computational tractability of mixtures
by adopting the MCIG approximation.

Figure 2 displays a series of Bregmanmixture familyMC generators for a mixture
family for different values of |S| = m.

As we increase the sample size of S, the MCMFF Bregman generator tends to
the ideal mixture family Bregman generator.
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Fig. 3 The Monte Carlo Mixture Family Generator Ĝ10 (MCMFG) considered as a random vari-
able: Here, we show five realizations (i.e., S1, . . . ,S5) of the randomized generator form = 5. The
ideal generator is plot in thick red

Theorem 1 (Consistency of MCIG) Almost surely, limm→∞(M, G̃S) = (M,G)

when μq(D) = 0.

Proof It suffices to prove that limm→∞ G̃S(η) = G(η). The general theory of Monte
Carlo stochastic integration yields a consistent estimator provided that the following
variance is bounded

Varq

[
m(x; η) logm(x; η)

q(x)

]

< ∞. (57)

For example, when m(x; η) is a mixture of prescribed isotropic gaussians (say,
from a KDE), and q(x) is also an isotropic Gaussian, the variance is bounded. Note
that q is the proposal density wrt the base measure μ.

In practice, the proposal distribution q(x) can be chosen as the uniform mixture
of the fixed component distributions:

q(x) = 1

m

D∑

i=0

pi (x). (58)

Notice that the Monte Carlo Mixture Family Function is a random variable (r.v.
for short) estimator itself by considering a vector of iid variables instead of a sample
variate: Ĝm(η). Figure 3 displays five realizations of the random variable Ĝm(η) for
m = 10.
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Fig. 4 Example of a mixture family of order D = 2 (k = 3): p0(x) ∼ Gaussian(−2, 1) (red),
p1(x) ∼ Laplace(0, 1) (blue) and p2(x) ∼ Cauchy(2, 1) (green). The two mixtures are m1(x) =
m(x; η1) (black) with η1 = (0.3, 0.5) and m2(x) = m(x; η) (gray) with η = (0.1, 0.4)

2.2 General D-Order Mixture Case

Here, we consider statistical mixtures with k = D + 1 > 2 prescribed distributions
p0(x), . . . , pD(x). The component distributions are linearly independent so that they
define a non-singular statistical model [8].

We further strengthen conditions on the prescribed distributions as follows:

Assumption 2 (AMF)We assume that the linearly independent prescribed distribu-
tions further satisfy:

supB∈B

⎧
⎨

⎩
μq(B) : ∃λ �= (0),

∑

i �= j

λi
(
pi |B − p j

∣
∣
B

) = 0

⎫
⎬

⎭
= 0, ∀ j, (59)

where the supremum is over all subsets B of the σ-algebra B of the probability space
with support X and measure μ, with pi |B denoting the restriction of pi to subset
B. In other words, we impose that the components (pi )i still constitute an affinely
independent family when restricted to any subset of positive measure.

For example, Figure 4 displays two mixture distributions belonging to a 2D mixture
family with Gaussian, Laplace and Cauchy component distributions.

Recall that the mixture family Monte Carlo generator is:
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G̃S(η) = 1

m

m∑

i=1

1

q(xi )
m(xi ; η) logm(xi ; η). (60)

In order to prove that G is strictly convex, we shall prove that ∇2G̃S(η) 	 0
almost surely. It suffices to consider the basic Hessian matrix ∇2gx = (∂i∂ jgx (η))i j
of gx (η) = mx (η) logmx (η). We have the partial first derivatives:

∂igx (η) = (pi (x) − p0(x))(1 + logm(x; η)), (61)

and the partial second derivatives:

∂i∂ jgx (η) = (pi (x) − p0(x))(p j (x) − p0(x))

m(x; η)
, (62)

so that

∂i∂ j G̃S(η) = 1

m

m∑

l=1

1

q(xl)

(pi (xl) − p0(xl))(p j (xl) − p0(xl))

m(xl; η)
. (63)

Theorem 2 (Monte Carlo Mixture Family Function is a Bregman generator) The
Monte Carlo multivariate function G̃S(η) is always convex and twice continuously
differentiable, and strictly convex almost surely.

Proof Consider the D-dimensional vector:

vl =

⎡

⎢
⎢
⎣

p1(xl )−p0(xl )√
q(xl )m(xl ;η)

...
pD(xl )−p0(xl )√
q(xl )m(xl ;η)

⎤

⎥
⎥
⎦ . (64)

Then we rewrite the Monte Carlo generator G̃S(η) as:

∂i∂ j G̃S(η) = 1

m

m∑

l=1

vlv
�
l . (65)

Since vlv
�
l is always a symmetric positive semidefinite matrix of rank one, we

conclude that G̃S(η) is a symmetric positive semidefinite matrix whenm < D (rank
deficient) and a symmetric positive definite matrix (full rank) almost surely when
m ≥ D.
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3 Monte Carlo Information Geometry of Exponential
Families

We follow the same outline as for mixture familes: Sect. 3.1 first describes the uni-
variate case. It is then followed by the general multivariate case in Sect. 3.1.

3.1 MCIG of Order-1 Exponential Family

We consider the order-1 exponential family of parametric densities with respect to a
base measure μ:

E := {p(x; θ) = exp(t (x)θ − F(θ) + k(x)) : θ ∈ Θ} , (66)

whereΘ is the natural parameter space, such that the log-normalizer/cumulant func-
tion [1] is

F(θ) = log

(∫

exp(t (x)θ + k(x))dμ(x)

)

. (67)

The sufficient statistic function t (x) and 1 are linearly independent [8].
WeperformMonteCarlo stochastic integrationby sampling a setS = {x1, . . . , xm}

of m iid variates from a proposal distribution q(x) to get:

F(θ) � F̃†
S(θ) := log

(
1

m

m∑

i=1

1

q(xi )
exp(t (xi )θ + k(xi ))

)

. (68)

Without loss of generality, assume that x1 is the element that minimizes the suf-
ficient statistic t (x) among the elements of S, so that ai = t (xi ) − t (x1) ≥ 0 for all
xi ∈ S.

Let us factorize 1
q(x1)

exp(t (x1)θ + k(x1)) in Eq. 68 and remove an affine term

from the generator F̃S(θ) to get the equivalent generator (see Property 1):

F̃†
S (θ) ≡ F̃S (θ), (69)

F̃S (θ) = log

(

1 +
m∑

i=2

exp((t (xi ) − t (x1))θ + k(xi ) − k(x1) − log q(xi ) + log q(x1))

)

, (70)

= log

(

1 +
m∑

i=2

exp(aiθ + bi )

)

, (71)

:= lse+
0 (a2θ + b2, . . . , amθ + bm), (72)
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Fig. 5 Graph plots of the lse and lse+
0 functions: The lse function (violet) is only convex while the

lse+
0 function (green) is always guaranteed to be strictly convex

with a2, . . . , am > 0 and bi = k(xi ) − k(x1) − log q(xi ) + log q(x1). Function
lse+

0 (x1, . . . , xm) = lse(0, x1, . . . , xm) is the log-sum-exp function [20, 47]
lse(x1, . . . , xm) = log

∑n
i=1 exp(xi ) with an additional argument set to zero.

Let us notice that the lse+
0 function is always strictly convexwhile the lse function

is only convex4 [7], p. 74. Figure 5 displays the graph plots of the lse and lse+
0

functions. Let us clarify this point with a usual exponential family: The binomial
family. The binomial distribution is a categorical distribution with D = 1 (and 2
bins). We have F(θ) = log(1 + exp(θ)) = lse(0, θ) := lse+

0 (θ). We check the strict
convexity of F(θ): F ′(θ) = eθ

1+eθ and F ′′(θ) = eθ

(1+eθ)2
> 0.

We write for short lse+
0 (x) = lse+

0 (x1, . . . , xd) for a d-dimensional vector x .

Theorem 3 (lse+
0 is a Bregman generator)Multivariate function lse+

0 (x) is a Breg-
man generator.

Proof is deferred to Appendix 7.

Lemma 2 (UnivariateMonte Carlo Exponential Family Function is a Bregman gen-
erator) Almost surely, the univariate function F̃S(θ) is a Bregman generator.

Proof The first derivative is:

η = F̃ ′
S(θ) =

∑m
i=2 ai exp(aiθ + bi )

1 +∑m
i=2 exp(aiθ + bi )

≥ 0, (73)

4Function lse can be interpreted as a vector function, and is C2, convex but not strictly con-
vex on R

m . For example, lse is affine on lines since lse(x + λ1) = lse(x) + λ (or equivalently
lse(x1, . . . , xm) = λ + lse(x1 − λ, . . . , xm − λ)). It is affine only on lines passing through the ori-
gin.
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and is strictly greater than 0 when there exists at least two elements with distinct
sufficient statistics (i.e., t (xi ) �= t (x j )) so that at least one ai > 0.

The second derivative is:

F̃ ′′
S (θ) =

(∑m
i=2 a

2
i exp(ai θ + bi )

) (
1 +∑m

i=2 exp(ai θ + bi )
)− (∑m

i=2 ai exp(ai θ + bi )
)2

(1 +∑m
i=2 exp(ai θ + bi ))2

=:Num
Den

(74)

For each value of θ ∈ Θ , we shall prove that F̃ ′′
S(θ) > 0. Let ci = ci (θ) =

exp(aiθ + bi ) > 0 for short (θ being fixed, we omit it in the ci notation in the calculus
derivation). Consider the numerator Num since the denominator Den is a non-zero
square, hence strictly positive. We have:

Num >

(
m∑

i=2

a2i ci

)(
m∑

i=2

ci

)

−
(

m∑

i=2

aici

)2

, (75)

Num >
∑

i j

a2i ci c j −
∑

i

a2i c
2
i − 2

∑

i< j

aia j ci c j , (76)

Num >
∑

i= j

a2i c
2
i +

∑

i �= j

a2i ci c j −
∑

i

a2i c
2
i − 2

∑

i< j

aia j ci c j , (77)

Num >
∑

i< j

a2i ci c j +
∑

i> j

a2i ci c j − 2
∑

i< j

aia j ci c j , (78)

Num >
∑

i< j

a2i ci c j +
∑

i< j

a2j ci c j − 2
∑

i< j

aia j ci c j , (79)

Num >
∑

i< j

(a2i + a2j − 2aia j )ci c j , (80)

Num >
∑

i< j

(ai − a j )
2ci c j > 0. (81)

Therefore the numerator is strictly positive if at least two ai ’s are distinct.

Thus we add the following assumption:

Assumption 3 (AEF1D) For all y ∈ dom(t), Eq [1t (x)=y] = 0.

To recap, the MCEFF of the MCIG of uni-order family has the following
characteristics:
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Monte Carlo Mixture Family Generator 1D:

F̃S (θ) = lse+
0 (a2θ + b2, . . . , amθ + bm), (82)

ai = t (xi ) − t (x1), (83)
bi = k(xi ) − k(x1) − log q(xi ) + log q(x1), (84)

F̃ ′
S (θ) =

∑m
i=2 ai exp(aiθ + bi )

1 +∑m
i=2 exp(aiθ + bi )

=:η, (85)

F̃ ′′
S (θ) =

(∑m
i=2 a

2
i exp(aiθ + bi )

) (
1 +∑m

i=2 exp(aiθ + bi )
)− (∑m

i=2 ai exp(aiθ + bi )
)2

(1 +∑m
i=2 exp(aiθ + bi ))2

(86)

3.2 The general D-Order Case

The difference of sufficient statistics ai = t (xi ) − t (x1) is now a vector of
dimension D:

ai =
⎡

⎢
⎣

a1i
...

aD
i

⎤

⎥
⎦ . (87)

We replace the scalar multiplication aiθ by an inner product 〈ai , θ〉 in Eq. 72, and
let ci (θ) = exp(〈ai , θ〉 + bi ) with bi = k(xi ) − k(x1) − log q(xi ) + log q(x1). Then
the Monte Carlo Exponential Family Function (MCEFF) writes concisely as:

F̃S(θ) = log

(

1 +
m∑

l=2

cl(θ)

)

, (88)

:= lse+
0 (c2(θ), . . . , cm(θ)), (89)

Theorem 4 (Monte Carlo Exponential Family Function is a Bregman Generator)
Almost surely, the function F̃S(θ) is a proper Bregman generator.

Proof We have the gradient of first-order partial derivatives:

ηi = ∂i F̃S(θ) =
∑m

l=2 a
i
l cl(θ)

1 +∑m
l=2 cl(θ)

, (90)

and the Hessian matrix of second-order partial derivatives:
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∂i∂ j F̃S(θ) = (
∑m

l=2 a
i
l a

j
l cl (θ))(1 +∑m

l=2 cl(θ)) − (
∑m

l=2 a
i
l cl (θ))(

∑m
l=2 a

j
l cl (θ))

(1 +∑m
l=2 cl(θ))

2 =:Num
Den

.

(91)

Let us prove that the Hessian matrix ∇2 F̃S(θ) = (∂i∂ j F̃S(θ))i j is always sym-
metric positive semi-definite, and symmetric positive definite almost surely.

Indeed, we have:

Num =
∑

k

aika
j
k ck

︸ ︷︷ ︸
:=D

+
∑

k,l

aika
j
k ckcl −

∑

k,l

aikcka
j
l cl

︸ ︷︷ ︸
:=E

. (92)

Let us rewrite D as D = CA�AwithC = diag(c1, . . . , cD). It follows that matrix
D is symmetric positive definite. Let us prove that matrix E is also SPD:

E
�=
∑

k<l

aika
j
k ckcl +

∑

l<k

aik z
j
k ckcl −

∑

k<l

aika
j
l ckcl −

∑

l<k

aika
j
l ckcl , (93)

��=
∑

k<l

(
aika

j
k + ail a

j
l − aika

j
l − ail a

j
k

)
ckcl , (94)

=
∑

k<l

(aik − ail )(a
j
k − a j

l )ckcl . (95)

�: The terms l = k vanish
��: After a change of variable l ↔ k in the second and fourth sums of Eq. 93.

Thus Eq. 95 can be rewritten as (ak − al)(ak − al)�ckcl where ak =
⎡

⎢
⎣

a1k
...

aD
k

⎤

⎥
⎦. It

follows that E is a positivelyweighted sumof rank-1 symmetric positive semi-definite
matrices, and is therefore symmetric positive semi-definite.

We want yT Ey > 0 for all y �= 0 ∈ R
D . Suppose that there exists y �= 0 ∈ R

D

such that yT Ey = 0. Noting that aik − ail = ti (xk) − ti (xl), we can write this as

∑

k<l

⎛

⎝
∑

i

yi ci (ti (xk) − ti (xl))
∑

j

y j c j (t j (xk) − t j (xl))

⎞

⎠ = 0, (96)

which implies

∑

i

yi ci (ti (xk) − ti (xl))
∑

j

y j c j
(
t j (xk) − t j (xl)

) = 0, ∀k < l, (97)
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since each of these terms is non negative. In particular, we have the existence of a
y �= 0 ∈ R

D such that

∑

i

yi ti (xk) =
∑

i

yi ti (xl), ∀y �= 0, ∀k < l. (98)

Toget almost surely aMonteCarloBregmangenerator,we introduce the following
assumption:

Assumption 4 (AEF) The sufficient statistics (ti ) verify that for all λ �= 0 and all
y ∈ dom(

∑
i λi ti ):

Eq
[
1∑

i λi ti (x)=y
] = 0.

4 Application to Clustering

In this section, we demonstrate the practical use of MCIG to cluster a set of mixtures
in Sect. 4.1, and consider in Sect. 4.2 parallel calculations/aggregations of Monte
Carlo Exponential/Mixture Functions.

4.1 Clustering Mixtures on the Mixture Family Manifold

Consider clustering a set of n mixturesm(x; η1), . . . ,m(x; ηn) of the mixture family
manifold. Prior work considered clustering the mixture components (e.g., Gaussian
components) to simplifymixtures by using the Bregman k-means [14, 37]. This prior
work can be interpreted as a Gaussian component quantization procedure.

Here, we address the different problem of clustering the mixtures themselves, not
their components.

Since KL(m(x; ηi ) : m(x; η j )) = BG(ηi : η j ) for G(η) = −h(m(x; η)) (Shan-
non information), we may approximate the KL divergence from the MC Bregman
Divergence (MCBD) G̃S as follows:

KL(m(x; ηi ) : m(x; η j )) = BG(ηi : η j ), (99)

� BG̃S (ηi : η j ). (100)

One advantage of using a MCIG is that all divergence computations BG̃S per-
formed during the execution of a Bregman algorithm are consistent by reusing the
same variates of S. In particular, this also guarantees to always have nonnegative
estimated KL divergences.

The traditional way to MC estimate the KL divergence is to consider the MC
stochastic integration of the extended Kullback–Leibler divergence [4]:
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êKLm(p : q) := 1

m

m∑

i=1

(

log
p(xi )

q(xi )
+ q(xi )

p(xi )
− 1

)

, (101)

for x1, . . . , xm ∼ p(x). Indeed, if we just used the MC KL estimator:

K̂Lm(p : q) := 1

m

m∑

i=1

log
p(xi )

q(xi )
, (102)

we may endup with negative values to our estimated KL, depending on the sample
variates! This never happens for eKL which is a statistical divergence for the scalar
divergence ekl(p : q) = p log p

q + q − p ≥ 0.
Bregman k-means [4, 22] can be applied using either the sided or their sym-

metrized centroid [40]: The right-sided centroid is always the center of mass of
the parameters. The left-sided centroid requires to compute F ′(θ) and its reciprocal
inverse function (F ′(θ))−1 (wlog, assuming D = 1 for simplicity5). Although F ′(θ)
is available in closed form (and define the dual parameter θ):

G̃ ′
S(η) = 1

m

m∑

i=1

1

q(xi )
(p1(xi ) − p0(x)) (1 + logm(x; η)) = θ, (103)

the dual parameter of (M,G) cannot be written as a simple function η = F∗′(η).
Notice that θ = G̃ ′

S(η) is an increasing function of η and that the inverting operation
can be performed numerically. Indeed, we can compute η = (G̃ ′

S)−1(θ) = G̃∗
S(θ)

using a numerical scheme (e.g., bisection search).
The symmetric Jeffreys divergence is:

J (m(x; ηi ) : m(x; η j )) = KL(m(x; ηi ) : m(x; η j )) + KL(m(x; η j ) : m(x; ηi )), (104)
= BG(ηi : η j ) + BG(η j : ηi ), (105)
= BG(ηi : η j ) + BG∗ (θi : θ j ), (106)
= 〈Δθi j , Δηi j 〉, (107)

where Δθi j = θi − θ j and Δηi j = ηi − η j .
We may approximate the J divergence by considering the Monte Carlo Bregman

generator in Eq. 105:

J (m(x; ηi ) : m(x; η j )) � BG̃S (ηi : η j ) + BG̃S (η j : ηi ). (108)

We can then apply the technique of mixed Bregman clustering [49] that considers
two centers per cluster. Moreover a fast probabilistic initialization, called mixed
Bregman k-means++ [49], allows one to guarantee a good initialization with high
probability (without computing centroids but requiring to compute divergences).

5Otherwise, we need to consider monotone operator theory [25] to invert ∇F(θ).
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Another technique to bypass the computation of the gradient ∇G̃S in the BD
consists in taking the scaled skew α-Jensen divergence [35] for an infinitesimal
value of α. Indeed, we have the α-Jensen divergence defined by:

Jα
F (p : q) = (1 − α)F(p) + αF(q) − F((1 − α)p + αq), (109)

and asymptotically this skewed Jensen divergences yield the sided Bregman diver-
gences [35] as follows:

lim
α→0+

Jα
F (p : q)

α
= BF (q : p), (110)

lim
α→1−

Jα
F (p : q)

1 − α
= BF (p : q), (111)

Thus we have for small values of α > 0 (say, α = 0.001):

J (m(x; ηi ) : m(x; η j )) = BG(ηi : η j ) + BG(η j : ηi ), (112)

� 1

α
Jα
G̃S

(ηi : η j ) + 1

1 − α
J 1−α

G̃S
(ηi : η j ). (113)

The last equation Eq.113 is the symmetrized skew Jensen divergence studied
in [29].

Figure 6 plots the result of a 2-cluster clustering wrt the Jeffreys’ divergence for
a set of n = 8 mixtures.

4.2 Parallelizing Information Geometry

We can distribute the Monte Carlo information geometry either on a multicore
machine with l cores with shared memory or on a cluster of l machines with dis-
tributed memory, or even consider hybrid architectures.

Let (M, F̃S1), . . . , (M, F̃Sl )be a set of l information-geometricmanifolds obtained
from iid sample sets S1, . . . ,Sl . Let ⊕s

i=1Si be a partition of S.

4.2.1 Multicore Architectures

On a multicore architecture, we may evaluate the mixture family Bregman diver-
gence BG̃S (η : η′) by evaluating BG̃Si

(θ : θ′), and using the compositionality rule of
Bregman generators in BDs (Property 2) with:

G̃S(θ) =
l∑

i=1

|Si |
|S| G̃Si (η). (114)
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Fig. 6 Clustering a set of n = 8 statistical mixtures of order D = 2 with K = 2 clusters: Each
mixture is represented by a 2D point on the mixture family manifold. The Kullback–Leibler diver-
gence is equivalent to an integral-based Bregman divergence that is computationally untractable:
The Bregman generator is stochastically approximated by Monte Carlo sampling

That is, G̃S(η) is the arithmetic weighted mean of the mixture sub-generators.
For the exponential families, recall that we have:

F̃S(θ) = log

(
s∑

i=1

|Si |
|S| exp(F̃Si )

)

. (115)

That is, F̃S(θ) can be interpreted as an exponential mean (quasi-arithmetic mean,
called f -mean [35] for the monotonically increasing function f (x) = exp(x)) of the
sub-generators. Thuswe can perform the computation of theMCBregman generators
on multi-core architectures easily with a MapReduce strategy [33].

Fact 1 (MapReduce evaluation of MC Bregman generators) The MCMF or MCEF
functions can be computed in parallel using a quasi-arithmetic mean MapReduce
operation.

4.2.2 Cluster Architectures

Since theMCBregman generators can be interpreted as random variables G̃m(θ) and
F̃m(θ), we may obtain robust estimate [51] by carrying the calculations on l MCIGs
on a cluster architecture, and then integrate those l geometries.
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Given a sequence of matching parameters θ1 ∈ (M, F̃s1), . . . , θl ∈ (M, F̃sl ), we
aggregate these parameters by doing the KL-averaging method [26]. This amounts
to compute a sided centroid for θ.

5 Information-Geometric Structures Induced by Statistical
Separable Divergences

In this section, we consider Monte Carlo sampling to define a (tractable) statistical
divergence that approximates another (untractable) statistical divergence, and uses
this MC statistical divergence to define an information-geometric manifold.

The core structure of information geometry [1] is a manifold M equipped with a
pair of dual connections, ∇ and ∇∗ coupled to the metric tensor g: (M, g,∇,∇∗). In
terms of differential geometry, the definition of this coupling is expressed as

X〈Y, Z〉g = 〈∇XY, Z〉g + 〈Y,∇∗
X Z〉g, (116)

where X,Y and Z are smooth vector fields on M . The coupling of connections to the
metric tensor means that the dual parallel transport is compatible with the metric:

〈u, v〉c(0) =
〈 ∇∏

c(0)→c(t)

u,

∇∗
∏

c(0)→c(t)

v

〉

c(t)

, (117)

where c is a smooth curve (parallel transport is path dependent, except for dually
flat connections). The notation

∏∇
c(0)→c(t) u means that vector u ∈ Tc(0) = Tp is par-

allel transported along smooth curve c to tangent plane Tc(t) with respect to the
affine connection ∇. From this (M, g,∇,∇∗) structure, a statistical manifold [24]
(M, g,C) can be defined, where C(X,Y, Z) = 〈∇XY − ∇∗

XY, Z〉 is a totally sym-
metric cubic tensor, termed the Amari–Chentsov cubic tensor. It follows a one-
parameter family of dual connections [1] (with ∇0 being the Levi-Civita metric con-
nection): (M, g,∇−α,∇α) so that if connection ∇α has constant curvature κ then
its dual connection has also the same curvature. Furthermore, one can build [1, 16,
17] a pair of dual connections coupled to a metric from any smooth divergence D:
(M, Dg, D∇, D∇∗). Figure 7 summarizes the fundamental structures of parametric
information geometry and their relationships.

Let us consider a separable statistical divergence:

D[p : q] :=
∫

d(p(x) : q(x))dμ(x), (118)

whered(x : y) is a scalar divergence. For example, the f -divergences [1] are obtained
for i f (x : y) = x f (x/y):
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Riemannian Manifolds
(M, g) = (M, g, LC∇)

Smooth Manifolds

Conjugate Connection Manifolds
(M, g,∇,∇∗)

(M, g, C = Γ∗ − Γ)

Distance = Non-metric divergence Distance = Metric geodesic length

g = Fisherg
Fishergij = E[∂il∂j l]

Spherical Manifold Hyperbolic Manifold

Self-dual Manifold

Dually flat Manifolds
(M,F, F ∗)

(Hessian Manifolds)
Dual Legendre potentials

Bregman Pythagorean theorem

Divergence Manifold
(M,Dg, D∇, D∇∗ = D∗∇)
D∇ − flat ⇔ D∇∗ − flat

f -divergences Bregman divergence

Expected Manifold
(M, Fisherg,∇−α,∇α)

α-geometry

Multinomial
family

LC∇ = ∇+∇∗
2

Euclidean Manifold

Location-scale
family

Location
family

Parametric
families

Fisher-Riemannian
Manifold

KL∗ on exponential families
KL on mixture families
Conformal divergences on deformed families
Etc.

Cubic skewness tensor
Cijk = E[∂il∂j l∂kl]
αC = ∇αFisherg

∇α = 1+α
2 ∇ + 1−α

2 ∇∗

Γ±α = Γ̄ ∓ α
2 C

(M, g,∇−α,∇α)
(M, g, αC)

canonical
divergence

I[pθ : p
θ′ ] = D(θ : θ′)

Fig. 7 The web of fundamental information-geometric structures. An arrow a → b means that
geometric structure b is a special case of the (meta-)structure a

I f [p : q] :=
∫

p(x) f

(
p(x)

q(x)

)

dμ(x) =
∫

i f (p(x) : q(x))dμ(x), (119)

The f -divergences are the only statistical separable divergences that satisfy the
information monotonicity property [1]. On a parametric family of distributions {pθ},
the statistical f -divergences amount to equivalent parameter divergences:

D f (θ1 : θ2) := I f [pθ1 : pθ2 ] (120)

The information-geometric structure induced by this (parameter) divergence is
(M, D f g, D f ∇, D f ∇∗), and the dual connections correspond to the expected α-
connections[1] for f -divergences.

Itmay happen that D f , althoughwell-defined,may not be available in closed form.
In that case, we approximate the divergence by Monte Carlo stochastic integration
by drawing a set Sm = {x1, . . . , xm} of m iid variates from pθ1 :

D̃Sm (θ1 : θ2) := 1

m

m∑

i=1

1

pθ1(xi )
d(pθ1(xi ) : pθ2(xi )). (121)

We need to assert that D̃Sm is a smooth divergence: The smoothness of the
divergence D̃Sm follows from the smoothness divergence of the corresponding
scalar divergence d. Then we need to guarantee that D̃Sm (θ1 : θ2) = 0 iff θ1 = θ2.
Since d(pθ1(x) : pθ2(x)) = 0 if and only if pθ1(x) = pθ2(x), we need to assert that
with high probability pθ1(x) �= pθ2(x) when θ1 �= θ2. Let I = maxθ1,θ2 μ({pθ1(x) =
pθ2(x), x ∈ X }). When I = 0, then almost surely D̃S is a divergence. This condition
holds when the probability densities intersect in at most a finite number of points. It
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follows the corresponding information-geometric structure (M, D̃Sm g, D̃Sm ∇, D̃Sm ∇∗)
(with its associated one-family of α-connections) such that asymptotically, we have:

lim
m→∞(M, D̃Sm g, D̃Sm ∇, D̃Sm ∇∗) = (M, Dg, D∇, D∇∗), (122)

as desired.
Let us quickly report two examples to illustrate these divergence-based sequences

of information-geometric structures:

• Polynomial Exponential Families (PEFs) of order D with the γ-divergences [50]:
Let us notice that we do not need to normalize the PEF distributions in order
to sample variates, and that the γ-divergence Dγ is a projective divergence [48]
(invariant by positive rescaling of the distributions) which tends to the KL diver-
gence when γ → 0. Since the densities of any two distinct PEF distributions of
order D intersect in at most D + 1 points, we check that I = 0. Thus for γ → 0
andm → ∞, we tend to a dually flat manifold. As an application, we can consider
clustering these PEFs on a MCIG manifold.

• Consider a mixture family {mη(x) = (1 − η)p1(x) + η p2(x), η ∈ (0, 1)} of order
D = 1 for the two mixture component distributions p1 and p2, linearly indepen-
dent. We have mη1(x) = mη2(x) iff p1(x) = p2(x) (holds only for this particular
case of D = 1). Assume I = 0 for the component distributions, then we obtain
a sequence of Monte Carlo information-geometric structures that tend asymptoti-
cally to the dually flat mixture manifold.

In the later case, we consider the MCIG manifold for a 1D mixture manifold
with respect to an arbitrary divergence. Notice that the divergence-based MCIG for
the exponential/mixture manifold may not be flat for KL. In Sect. 2.2, we took the
different approach of approximating the negative differential entropy via Monte-
Carlo, ensuring that all sequence of MCIG manifolds are dually flat.

6 Conclusion and Perspectives

In this work, we proposed a new type of randomized information-geometric structure
to cope with computationally untractable information-geometric structures (types 4
and 5 in the classification of Table 4): Namely, the Monte Carlo Information Geom-
etry [38] (MCIG). MCIG performs stochastic integration of the ideal but computa-
tionally intractable definite integral-based Bregman generator (e.g. Eq. 32 for mix-
ture family) for mixture family and Eq. 24 for exponential family). We proved that
the MC Bregman generators for the mixture family and the exponential family are
almost surely strictly convex and differentiable (Theorem 2 and Theorem 4, respec-
tively), and therefore yield a computationally tractable information-geometric struc-
ture (Type 2 in the classification of Table 4). Thuswe can get a series of consistent and
computationally-friendly information-geometric structures that tend asymptotically
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Table 4 A smooth and strictly convex function F induces a dually flat structure: We classify those
structures according to their computational tractability properties

Type F ∇F∗ Example

Type 1 Closed-form Closed-form Gaussian (exponential) family

Type 2 Closed-form Not closed-form Beta (exponential) family

Type 3 Comp. intractable Not closed-form Ising family [54]

Type 4 Not closed-form Not closed-form Polynomial exponential family [42]

Type 5 Not analytic Not analytic Mixture family

to the untractable ideal information geometry. We have demonstrated the usefulness
of our technique for a basic Bregman k-means clustering technique: Clustering sta-
tistical mixtures on a mixture family manifold. Although the MCIG structures are
computationally convenient, we do not have in closed-form ∇F∗ (nor F∗) because
our Bregman generators are the sum of basic generators whose gradients are the sum
of elementary gradients that cannot be inverted easily.6 This step requires a numerical
or symbolic technique [25].

We note that in the recent work of [27], Matsuzoe et al. defined a sequence of
statistical manifolds relying on a sequential structure of escort expectations for non-
exponential type statistical models.

Codes for reproducible results are available at:

https://franknielsen.github.io/MCIG/

7 Function lse+0 (x) is a Bregman Generator

We give the proof of Theorem 3:

Proof Since lse+
0 (x1, . . . , xd) = log

(
1 +∑d

i=1 exp(xi )
)
is twice continuously dif-

ferentiable, it suffices to prove that ∇2lse+
0 (x) 	 0. We have:

∂i lse
+
0 (x) = exi

1 +∑k e
xk

, (123)

∂ j∂i lse
+
0 (x)

j �=i= −exi ex j

(1 +∑k e
xk )2

, (124)

∂i∂i lse
+
0 (x) = exi (1 +∑k e

xk ) − exi ex j

(1 +∑k e
xk )2

. (125)

6The Legendre conjugate of an infimal convolution of elementary functions is the sum of the
elementary conjugate functions.

https://franknielsen.github.io/MCIG/
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It follows that the Hessian (∂ j∂i lse
+
0 (x))i j is a diagonally dominant matrix since:

exi

(

1 +
∑

k

exk

)

= exi + exi
∑

k

exk >
∑

j �=i

∣
∣−exi ex j

∣
∣ = exi

∑

j �=i

ex j . (126)

To conclude that theHessianmatrix is SPD,we useGershgorin circle theorem [55]
to bound the spectrum of a square matrix: The eigenvalues of the Hessian matrix are
thus real and fall inside a disk of center (exi (1 +∑k e

xk ))i and radius exi
∑

j �=i e
x j .

Therefore all eigenvalues are positive, and the Hessian matrix is positive definite.

For x = (x1, . . . , xd) ∈ R
d , we have:

∇lse(x) = σ(x), (127)

where σ(x) is the softmax function:

σ(x) :=
(

exi
∑d

k=1 e
xk

)

i∈{1,...,d}
. (128)

By analogy, we may define for x ∈ R
d :

σ+
0 (x) :=

(
exi

1 +∑k e
xk

)

i∈{1,...,d}
, (129)

so that ∇lse+
0 (x) = σ+

0 (x).
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