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Abstract It is well-known that a contrast function defined on a product manifold
M × M induces a Riemannian metric and a pair of dual torsion-free affine connec-
tions on the manifold M . This geometrical structure is called a statistical manifold
and plays a central role in information geometry. Recently, the notion of pre-contrast
function has been introduced and shown to induce a similar differential geometrical
structure on M , but one of the two dual affine connections is not necessarily torsion-
free. This structure is called a statistical manifold admitting torsion. The notion of
statistical manifolds admitting torsion has been originally introduced to study a geo-
metrical structure which appears in a quantum statistical model. However, it has been
shown that an estimating function which is used in “classical” statistics also induces
a statistical manifold admitting torsion through its associated pre-contrast function.
The aim of this paper is to summarize such previous results. In particular, we focus
on a partially flat space, which is a statistical manifold admitting torsion where one
of its dual connections is flat. In this space, it is possible to discuss some properties
similar to those in a dually flat space, such as a canonical pre-contrast function and
a generalized projection theorem.

1 Introduction

A statistical manifold is a Riemannian manifold with a pair of dual torsion-free
affine connections and it plays a central role in information geometry. This geo-
metrical structure is induced from an asymmetric (squared) distance-like smooth
function called a contrast function by taking its second and third derivatives [1, 2].
TheKullback–Leibler divergence on a regular parametric statisticalmodel is a typical
example of contrast functions and its induced geometrical objects are the Fisher met-
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ric, the exponential and mixture connections. The geometrical structure determined
by these objects plays an important role in the geometry of statistical inference, as
is widely known [3, 4].

A statistical manifold admitting torsion (SMAT) is a Riemannian manifold with a
pair of dual affine connections, where only one of them must be torsion-free but the
other is not necessarily so. This geometrical structure naturally appears in a quantum
statistical model (i.e. a set of density matrices representing quantum states) [3] and
the notion of SMAT was originally introduced to study such a geometrical structure
from a mathematical point of view [5]. A pre-contrast function was subsequently
introduced as a generalization for the first derivative of a contrast function and it was
shown that an pre-contrast function induces a SMAT by taking its first and second
derivatives [6].

In statistics, an estimating function is a function defined on a direct product of
parameter and sample spaces, and it is used to obtain an estimator by solving its
corresponding estimating equation. Henmi and Matsuzoe [7] showed that a SMAT
also appears in “classical" statistics through an estimating function. More precisely,
an estimating function naturally defines a pre-contrast function on a parametric sta-
tistical model and a SMAT is induced from it.

This paper summarizes such previous results, focusing on a SMAT where one of
its dual connections is flat. We call this geometrical structure a partially flat space.
Although this space is different from a dually flat space in general since one of the
dual connections in a SMAT possibly has torsion, some similar properties hold. For
example, the canonical pre-contrast function can be naturally defined on a partially
flat space, which is an analog of the canonical contrast function (or canonical diver-
gence) in a dually flat space. In addition, a generalized projection theorem holds with
respect to the canonical pre-contrast function. This theorem can be seen as a gener-
alization of the projection theorem in a dually flat space. This paper is an extended
version of the conference proceedings [8].We consider a statistical problem to see an
example of statistical manifolds admitting torsion induced from estimating functions
and discuss some future problems, neither of which were included in [8].

2 Statistical Manifolds and Contrast Functions

Through this paper, we assume that all geometrical objects on differentiable man-
ifolds are smooth and restrict our attention to Riemannian manifolds, although the
most of the concepts can be defined for semi-Riemannian manifolds.

Let (M, g) be a Riemannian manifold and ∇ be an affine connection on M . The
dual connection ∇∗ of ∇ with respect to g is defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
X Z) (∀X,∀Y,∀Z ∈ X (M)),

where X (M) is the set of all vector fields on M .
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For an affine connection ∇ on M , its curvature tensor field R and torsion tensor
field T are defined by the following equations as usual:

R(X,Y )Z := ∇X∇Y Z − ∇Y∇X Z − ∇[X,Y ]Z ,

T (X,Y ) := ∇XY − ∇Y X − [X,Y ]

(∀X,∀Y,∀Z ∈ X (M)). It is said that an affine connection∇ is torsion-free if T = 0.
Note that for a torsion-free affine connection ∇, ∇∗ = ∇ implies that ∇ is the Levi-
Civita connection with respect to g. Let R∗ and T ∗ be the curvature and torsion tensor
fields of ∇∗, respectively. It is easy to see that R = 0 always implies R∗ = 0, but
T = 0 does not necessarily imply T ∗ = 0.

Let ∇ be a torsion-free affine connection on a Riemannian manifold (M, g).
Following [9], we say that (M, g,∇) is a statistical manifold if and only if ∇g is a
symmetric (0, 3)-tensor field, that is

(∇X g)(Y, Z) = (∇Y g)(X, Z) (∀X,∀Y,∀Z ∈ X (M)). (1)

This condition is equivalent to T ∗ = 0 under the condition that ∇ is a torsion-free. If
(M, g,∇) is a statistical manifold, so is (M, g,∇∗) and it is called the dual statistical
manifold of (M, g,∇). Since∇ and∇∗ are both torsion-free for a statistical manifold
(M, g,∇), R = 0 implies that ∇ and ∇∗ are both flat. In this case, (M, g,∇,∇∗) is
called a dually flat space [3].

Let φ be a real-valued function on the direct product M × M of a manifold M and
X1, . . . , Xi ,Y1, . . . ,Y j be vector fields on M . The functions φ[X1, . . . , Xi |Y1, . . . ,
Y j ], φ[X1, . . . , Xi | ] and φ[ |Y1, . . . ,Y j ] on M are defined by the equations

φ[X1, . . . , Xi |Y1, . . . ,Y j ](r) := (X1)p · · · (Xi )p(Y1)q · · · (Y j )qφ(p, q)|p=r,q=r ,

(2)

φ[X1, . . . , Xi | ](r) := (X1)p · · · (Xi )pφ(p, r)|p=r , (3)

φ[ |Y1, . . . ,Y j ](r) := (Y1)q · · · (Y j )qφ(r, q)|q=r (4)

for any r ∈ M , respectively [1]. Using these notations, a contrast function φ on
M is defined to be a real-valued function on M × M which satisfies the following
conditions [1, 2]:

(a) φ(p, p) = 0 (∀p ∈ M),

(b) φ[X | ] = φ[ |X ] = 0 (∀X ∈ X (M)),

(c) g(X,Y ) := −φ[X |Y ] (∀X,∀Y ∈ X (M)) is a Riemannian metric on M.

Note that these conditions imply that

φ(p, q) ≥ 0, φ(p, q) = 0 ⇐⇒ p = q
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in some neighborhood of the diagonal set {(r, r)|r ∈ M} in M × M . Although a
contrast function is not necessarily symmetric, this property means that a contrast
function measures some discrepancy between two points on M (at least locally). For
a given contrast function φ, the two affine connections ∇ and ∇∗ are defined by

g(∇XY, Z) = −φ[XY |Z ], g(Y,∇∗
X Z) = −φ[Y |X Z ]

(∀X,∀Y,∀Z ∈ X (M)). In this case, ∇ and ∇∗ are both torsion-free and dual to
each other with respect to g. This means that both of (M, g,∇) and (M, g,∇∗)
are statistical manifolds. In particular, (M, g,∇) is called the statistical manifold
induced from the contrast function φ.

A typical example of contrast functions is the Kullback–Leibler divergence on
a statistical model. Let S = {p(x; θ) | θ = (θ1, . . . , θd) ∈ Θ ⊂ Rd} be a regular
parametric statistical model, which is a set of probability density functions with
respect to a dominating measure ν on a sample space Ω . Each element is indexed
by a parameter (vector) θ in an open subset Θ of Rd and the set S satisfies some
regularity conditions, under which S can be seen as a differentiable manifold. The
Kullback–Leibler divergence of the two density functions p1(x) = p(x; θ1) and
p2(x) = p(x; θ2) in S is defined to be

φK L(p1, p2) :=
∫

Ω

p2(x) log
p2(x)

p1(x)
ν(dx).

It is easy to see that the Kullback–Leibler divergence satisfies the conditions (a),
(b) and (c), and so it is a contrast function on S. Its induced Riemannian metric and
dual connections are Fisher metric gF , the exponential connection ∇(e) and mixture
connection ∇(m), respectively. They are given as follows:

gF
jk(θ) := gF (∂ j , ∂k) = Eθ {s j (x, θ)sk(x, θ)},{
Γ

(e)
i j,k(θ) := gF (∇(e)

∂i
∂ j , ∂k) = Eθ [{∂i s j (x, θ)}sk(x, θ)]

Γ
(m)
ik, j (θ) := gF (∂ j ,∇(m)

∂i
∂k) = ∫

Ω
s j (x, θ)∂i∂k p(x; θ)ν(dx)

,

where Eθ indicates that the expectation is taken with respect to p(x; θ), ∂i = ∂
∂θ i

and si (x; θ) = ∂i log p(x; θ) (i = 1, . . . , d). As is widely known, this geometrical
structure plays the most fundamental and important role in the differential geometry
of statistical inference [3, 4].

3 Statistical Manifolds Admitting Torsion and Pre-contrast
Functions

A statistical manifold admitting torsion is an abstract notion for the geometrical
structure where only one of the dual connections is allow to have torsion, which
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naturally appears in a quantum statistical model [3]. The definition is obtained by
generalizing (1) in the definition of statistical manifold as follows [5].

Let (M, g) be a Riemannian manifold and ∇ be an affine connection on M . We
say that (M, g,∇) is a statistical manifold admitting torsion (SMAT for short) if and
only if

(∇X g)(Y, Z) − (∇Y g)(X, Z) = −g(T (X,Y ), Z) (∀X,∀Y,∀Z ∈ X (M)). (5)

This condition is equivalent to T ∗ = 0 in the casewhere∇ possibly has torsion, and it
reduces to (1) if∇ is torsion-free. Note that (M, g,∇∗) is not necessarily a statistical
manifold although ∇∗ is torsion-free. It should be also noted that (M, g,∇∗) is
a SMAT whenever a torsion-free affine connection ∇ is given on a Riemannian
manifold (M, g).

For a SMAT (M, g,∇), R = 0 does not necessarily imply that ∇ is flat, but it
implies that ∇∗ is flat since R∗ = 0 and T ∗ = 0. In this case, we call (M, g,∇,∇∗)
a partially flat space.

Let ρ be a real-valued function on the direct product T M × M of a manifold M
and its tangent bundle T M , and X1, . . . , Xi ,Y1, . . . ,Y j , Z be vector fields on M .
The function ρ[X1, . . . , Xi Z |Y1, . . . ,Y j ] on M is defined by

ρ[X1, . . . , Xi Z |Y1, . . . ,Y j ](r) := (X1)p · · · (Xi )p(Y1)q · · · (Y j )qρ(Z p, q)|p=r,q=r

for any r ∈ M . Note that the role of Z is different from those of the vector fields
in the notation of (2). The functions ρ[X1, . . . , Xi Z | ] and ρ[ |Y1, . . . ,Y j ] are also
defined in the similar way to (3) and (4).

We say thatρ is apre-contrast functiononM if and only if the following conditions
are satisfied [6, 7]:

(a) ρ( f1X1 + f2X2, q) = f1ρ(X1, q) + f2ρ(X2, q)

(∀ f1,∀ f2 ∈ C∞(M), ∀X1,∀X2 ∈ X (M), ∀q ∈ M).

(b) ρ[X | ] = 0 (∀X ∈ X (M))
(
i.e. ρ(X p, p) = 0 (∀p ∈ M)

)
.

(c) g(X,Y ) := −ρ[X |Y ] (∀X,∀Y ∈ X (M)) is a Riemannian metric on M.

Note that for any contrast function φ on M , the function ρφ which is defined by

ρφ(X p, q) := X pφ(p, q) (∀p,∀q ∈ M, ∀X p ∈ Tp(M))

is a pre-contrast function on M . The notion of pre-contrast function is obtained by
taking the fundamental properties of the first derivative of a contrast function as
axioms. For a given pre-contrast function ρ, two affine connections ∇ and ∇∗ are
defined by

g(∇XY, Z) = −ρ[XY |Z ], g(Y,∇∗
X Z) = −ρ[Y |X Z ]
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(∀X,∀Y,∀Z ∈ X (M)) in the same way as for a contrast function. In this case, ∇
and ∇∗ are dual to each other with respect to g and ∇∗ is torsion-free. However, the
affine connection ∇ possibly has torsion. This means that (M, g,∇) is a SMAT and
it is called the SMAT induced from the pre-contrast function ρ.

4 Canonical Pre-contrast Functions in Partially Flat Spaces

In a dually flat space (M, g,∇,∇∗), it is well-known that the canonical contrast
functions (called ∇ and ∇∗- divergences) are naturally defined, and the Pythagorean
theoremand the projection theoremare stated in terms of the∇ and∇∗- geodesics and
the canonical contrast functions [3, 4]. In a partially flat space (M, g,∇,∇∗), where
R = R∗ = 0 and T ∗ = 0, it is possible to define a pre-contrast function which can
be seen as canonical, and a projection theorem holds with respect to the “canonical"
pre-contrast function and the ∇∗-geodesic.

Proposition 1 (Canonical Pre-contrast Functions) Let (M, g,∇,∇∗) be a partially
flat space (i.e. (M, g,∇) is a SMATwith R = R∗ = 0 and T ∗ = 0) and (U, ηi ) be an
affine coordinate neighborhood with respect to∇∗ in M. The function ρ on TU ×U
defined by

ρ(Z p, q) := −gp(Z p, γ̇
∗(0)) (∀p,∀q ∈ U,∀Z p ∈ Tp(U )), (6)

is a pre-contrast function on U, where γ ∗ : [0, 1] → U is the ∇∗-geodesic such that
γ ∗(0) = p, γ ∗(1) = q and γ̇ ∗(0) is the tangent vector of γ ∗ at p. Furthermore,
the pre-contrast function ρ induces the original Riemannian metric g and the dual
connections ∇ and ∇∗ on U.

Proof For the function ρ defined as (6), the condition (a) in the definition of pre-
contrast functions follows from the bilinearity of the inner product gp. The condition
(b) immediately follows from γ̇ ∗(0) = 0 when p = q. By calculating the derivatives
of ρ with the affine coordinate system (ηi ), it can be shown that the condition (c)
holds and that the induced Riemannian metric and dual affine connections coincide
with the original g, ∇ and ∇∗. �

In particular, if (U, g,∇,∇∗) is a dually flat space, the pre-contrast function ρ

defined in (6) coincides with the directional derivative Z pφ
∗(·, q) of ∇∗-divergence

φ∗(·, q) with respect to Z p (cf. [10, 11]). Hence, the definition of (6) seems to be
natural one and we call the function ρ in (6) the canonical pre-contrast function in
a partially flat space (U, g,∇,∇∗).

From the definition of the canonical pre-contrast function, we can immediately
obtain the following theorem.

Corollary 1 (Generalized Projection Theorem) Let (U, ηi ) be an affine coordinate
neighborhood in a partially flat space (M, g,∇,∇∗) and ρ be the canonical pre-
contrast function on U. For any submanifold N in U, the following conditions are
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equivalent:

(i) The ∇∗ − geodesic starting at q ∈ U is perpendicular to Nat p ∈ N .

(i i) ρ(Z p, q) = 0 for any Z p in Tp(N ).

If (U, g,∇,∇∗) is a dually flat space, this theorem reduces to the projection theorem
with respect to the ∇∗-divergence φ∗, since ρ(Z p, q) = Z pφ

∗(p, q). In this sense, it
can be seen as a generalized version of the projection theorem in dually flat spaces,
and this is also one of the reasonswhywe consider the pre-contrast functionρ defined
in (6) as canonical.

5 Statistical Manifolds Admitting Torsion Induced from
Estimating Functions

As we mentioned in Introduction, a SMAT naturally appears through an estimating
function in a “classical" statistical model as well as in a quantum statistical model.
In this section, we briefly explain how a SMAT is induced on a parametric statistical
model from an estimating function. See [7] for more details.

Let S = {p(x; θ) | θ = (θ1, . . . , θd) ∈ Θ ⊂ Rd} be a regular parametric statis-
tical model. An estimating function on S, which we consider here, is a Rd -valued
function u(x, θ) satisfying the following conditions:

Eθ {u(x, θ)} = 0, Eθ {‖u(x, θ)‖2} < ∞, det

[
Eθ

{
∂u
∂θ

(x, θ)

}]
= 0 (∀θ ∈ Θ).

The first condition is called the unbiasedness of estimating functions, which is impor-
tant to ensure the consistency of the estimator obtained from an estimating func-
tion. Let X1, . . . , Xn be a random sample from an unknown probability distribution
p(x; θ0) in S. The estimator θ̂ for θ0 is called an M-estimator if it is obtained as a
solution to the estimating equation

n∑
i=1

u(X i , θ) = 0. (7)

The M-estimator θ̂ has the consistency

θ̂ −→ θ0 (in probability)

as n → ∞ and the asymptotic normality

√
n(θ̂ − θ0) −→ N

(
0,Avar

(
θ̂
))

(in distribution)
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as n → ∞ under some additional regularity conditions [12], which are also assumed
in the followingdiscussion.ThematrixAvar(θ̂) is the asymptotic variance-covariance
matrix of θ̂ and is given by

Avar(θ̂) = {A(θ0)}−1B(θ0){A(θ0)}−T , (8)

where A(θ) := Eθ {(∂u/∂θ)(x, θ)}, B(θ) := Eθ

{
u(x, θ)u(x, θ)T

}
and −T means

transposing an inverse matrix (or inverting a transposed matrix).
In order to induce the structure of SMAT on S from an estimating function, we

consider the notion of standardization of estimating functions. For an estimating
function u(x, θ), its standardization (or standardized estimating function) is defined
by

u∗(x, θ) := Eθ

{
s(x, θ)u(x, θ)T

} [
Eθ

{
u(x, θ)u(x, θ)T

}]−1
u(x, θ),

where s(x, θ) = (∂/∂θ) log p(x; θ) is the score function for θ [13]. Geometrically,
the i-th component of the standardized estimating function u∗(x, θ) is the orthogonal
projection of the i-th component of the score function s(x, θ) onto the linear space
spanned by all components of the estimating function u(x, θ) in the Hilbert space

Hθ := {a(x) | Eθ {a(x)} = 0, Eθ {a(x)2} < ∞}

with the inner product< a(x), b(x) >θ := Eθ {a(x)b(x)} (∀a(x),∀b(x) ∈ Hθ ). The
standardization u∗(x, θ)of u(x, θ)does not change the estimator since the estimating
equation obtained from u∗(x, θ) is equivalent to the original estimating equation (7).
In terms of the standardization, the asymptotic variance-covariance matrix (8) can
be rewritten as

Avar(θ̂) = {G(θ0)}−1,

whereG(θ) := Eθ

{
u∗(x, θ)u∗(x, θ)T

}
. ThematrixG(θ) is called aGodambe infor-

mation matrix [14], which can be seen as a generalization of the Fisher information
matrix.

As we have seen in Sect. 2, the Kullback–Leibler divergence φK L is a contrast
function on S. Hence, the first derivative of φK L is a pre-contrast function on S and
given by

ρK L((∂ j )p1 , p2) := (∂ j )p1φK L(p1, p2) = −
∫

Ω

s j (x, θ1)p(x; θ2)ν(dx)

for any two probability distributions p1(x) = p(x; θ1), p2(x) = p(x; θ2) in S and
j = 1, . . . , d. This observation leads to the following proposition [7].

Proposition 2 (Pre-contrast Functions from Estimating Functions) For an esti-
mating function u(x, θ) on the parametric model S, a pre-contrast function ρu :
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T S × S → R is defined by

ρu((∂ j )p1 , p2) := −
∫

Ω

u j
∗(x, θ1)p(x; θ2)ν(dx) (9)

for any two probability distributions p1(x) = p(x; θ1), p2(x) = p(x; θ2) in S and
j = 1, . . . , d, where u j

∗(x, θ) is the j-th component of the standardization u∗(x, θ)

of u(x, θ).

The use of the standardization u∗(x, θ) instead of u(x, θ) ensures that the definition
of the function ρu does not depend on the choice of coordinate system (parameter) of
S. In fact, for a coordinate transformation (parameter transformation) η = Φ(θ), the
estimating function u(x, θ) is changed into v(x, η) = u(x, Φ−1(η)) and we have

v∗(x, η) =
(

∂θ

∂η

)T

u∗(x, θ).

This is the same as the transformation rule of coordinate bases on a tangent space
of a manifold. The set of all components of the standardized estimating function
u∗(x, θ) can be seen as a representation of the coordinate basis {(∂1)p, . . . , (∂d)p}
on the tangent space Tp(S) of S, where p(x) = p(x; θ).

The proof of Proposition 2 is straightforward. In particular, the condition (b) in
the definition of pre-contrast function follows from the unbiasedness of the (stan-
dardized) estimating function. The Riemannian metric g, dual connections ∇ and
∇∗ induced from the pre-contrast function ρu are given as follows:

g jk(θ) := g(∂ j , ∂k) = Eθ {u j
∗(x, θ)uk∗(x, θ)} = G(θ) jk,{

Γi j,k(θ) := g(∇∂i ∂ j , ∂k) = Eθ [{∂i u j
∗(x, θ)}sk(x, θ)]

Γ ∗
ik, j (θ) := g(∂ j ,∇∗

∂i
∂k) = ∫

Ω
u j

∗(x, θ)∂i∂k p(x; θ)ν(dx)
,

where G(θ) jk is the ( j, k) component of the Godambe information matrix G(θ).
Note that ∇∗ is always torsion-free since Γ ∗

ik, j = Γ ∗
ki, j , whereas ∇ is not necessarily

torsion-free unless u∗(x, θ) is integrable with respect to θ (i.e. there exists a function
ψ(x, θ) satisfying ∂ jψ(x, θ) = u j

∗(x, θ) ( j = 1, . . . , d)).
If it is integrable and∇ is torsion-free, it is possible to construct a contrast function

on S, from which the pre-contrast function ρu in (9) is obtained by taking its first
derivative, as follows:

φu(p1, p2) =
∫

Ω

{ψ(x, θ1) − ψ(x, θ2)} p(x; θ2)ν(dx),

where ∂ jψ(x, θ) = u j
∗(x, θ) ( j = 1, . . . , d) and pl(x) = p(x; θ l) (l = 1, 2).
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Table 1 Votes cast in the n-th
constituency (n = 1, . . . , N )

Party C L Total

C X1n m1n − X1n m1n

L X2n m2n − X2n m2n

Total Xn mn − Xn mn

6 Example

In this section, we consider the estimation problem of voter transition probabilities
described in [15] to see an example of statistical manifolds admitting torsion (SMAT)
induced from estimation functions.

Suppose that we had two successive elections which were carried out in N con-
stituencies, and that the two political parties C and L contended in each election. The
table below summarizes the numbers of voters in the n-th constituency for the respec-
tive elections. It is assumed that we can observe only themarginal totalsm1n,m2n, Xn

and mn − Xn , where Xn is a random variable and the others are treated as fixed con-
stants. Let θ1 and θ2 be the probabilities that a voter who votes for the parties C
and L in Election 1 votes for C in Election 2, respectively. They are the parameters
of interest here. Then, the random variables X1n and X2n in Table1 are assumed to
independently follow the binomial distributions B(m1n, θ

1) and B(m2n, θ
2), respec-

tively.
In the n-th constituency, the probability function of the observation Xn = X1n +

X2n is given by

pn(xn; θ) =
m1n∑
x1n=0

(
m1n

x1n

) (
m2n

xn − x1n

) (
θ1

)x1n (
1 − θ1

)m1n−x1n (
θ2

)xn−x1n (
1 − θ2

)m2n−xn+x1n
,

where θ = (
θ1, θ2

)
. The statistical model S in this problem consists of all possible

probability functions of the observed data X = (X1, . . . , XN ) as follows:

S = {
p(x; θ)

∣∣ θ = (
θ1, θ2

) ∈ (0, 1) × (0, 1)
}
,

where p(x; θ) = ∏N
n=1 pn(xn; θ) (x = (x1, . . . , xN )) since X1, . . . , XN are inde-

pendent.
Although the maximum likelihood estimation for θ is possible based on the like-

lihood function L(θ) = p(X; θ), it is a little complicated since X1n and X2n are not
observed in each n-th constituency. An alternative approach for estimating θ is to
use the quasi-score function q(x, θ) = (q1(x, θ), q2(x, θ))T [15] as an estimating
function, where

q1(x, θ) =
N∑

n=1

m1n{xn − μn(θ)}
Vn(θ)

, q2(x, θ) =
N∑

n=1

m2n{xn − μn(θ)}
Vn(θ)

.

Here, μn(θ) and Vn(θ) are the mean and variance of Xn , respectively, i.e.
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μn(θ) = E(Xn) = m1nθ
1 + m2nθ

2 (10)

Vn(θ) = V (Xn) = m1nθ
1 (
1 − θ1) + m2nθ

2 (
1 − θ2) .

In this example, the random variables X1, . . . , XN in the observed data are indepen-
dent, but not identically distributed. However, it is possible to apply the results in
Sect. 5 by considering the whole of the left hand side of (7) as an estimating function
and modifying the results in this case. Note that the estimating function q(x, θ) is
already standardized since the i-th component qi (x, θ) of q(x, θ) is obtained by the
orthogonal projection of the i-th component of the score function s(x, θ) for θ onto
the linear space spanned by {x1 − μ1(θ), . . . , xN − μN (θ)}. In fact, the orthogonal
projection is calculated as follows:

Eθ

{
s(x, θ)(x − μ(θ))T

} [
Eθ

{
(x − μ(θ))(x − μ(θ))T

}]−1
(x − μ(θ))

= −Eθ

{
∂

∂θT (x − μ(θ))

} [
Eθ

{
(x − μ(θ))(x − μ(θ))T

}]−1
(x − μ(θ))

=
(
m11 · · · m1N

m21 · · · m2N

) ⎛
⎜⎝
V1(θ) · · · 0

...
. . .

...

0 · · · Vn(θ)

⎞
⎟⎠

−1 ⎛
⎜⎝

x1 − μ1(θ)
...

xN − μN (θ)

⎞
⎟⎠ =

(
q1(x, θ)

q2(x, θ)

)
,

where x = (x1, . . . , xN )T and μ(θ) = (μ1(θ), . . . , μN (θ))T . In addition, the esti-
mating function q(x, θ) is not integrablewith respect to θ since ∂q1/∂θ2 = ∂q2/∂θ1.
From Proposition 2 and the fact that q(x, θ) itself is a standardized estimating func-
tion, we immediately obtain the pre-contrast function ρq : T S × S → R defined by
q(x, θ), where

ρq((∂i )p1 , p2) = −
∑
x

qi (x, θ1)p(x; θ2) =
N∑

n=1

min{μn(θ1) − μn(θ2)}
Vn(θ1)

with pl(x) = p(x; θ l) ∈ S (l = 1, 2). The pre-contrast function ρq induces the sta-
tistical manifold admitting torsion as follows.
Riemannian metric g:

gi j (θ) =
∑
x

qi (x, θ)q j (x, θ)p(x; θ) =
N∑

n=1

1

Vn(θ)
minm jn.

Dual affine connections ∇∗ and ∇:

Γ ∗
i j,k(θ) =

∑
x

{∂i∂ j p(x; θ)}qk(x, θ)

=
N∑

n=1

mkn

Vn(θ)

[∑
x

xn{∂i∂ j p(x; θ)} − μn(θ)
∑
x

{∂i∂ j p(x; θ)}
]



48 M. Henmi and H. Matsuzoe

=
N∑

n=1

mkn

Vn(θ)

[
∂i∂ j

∑
x

xn p(x; θ) − μn(θ)∂i∂ j

∑
x

p(x; θ)

]

=
N∑

n=1

mkn

Vn(θ)
∂i∂ jμn(θ) = 0 (from (10))

Γi j,k(θ) = Γ ∗
i j,k(θ) − ∂i g jk(θ) (from the duality between ∇ and ∇∗)

=
N∑

n=1

1 − 2θ i

Vn(θ)2
minm jnmkn.

In this example, the statistical model S is ∇∗-flat since the coefficient of ∇∗ with
respect to the parameter θ is equal to zero. Furthermore, this shows that θ provides an
affine coordinate system for∇∗. Although the curvature tensor of∇ vanishes because
the curvature tensor of ∇∗ vanishes and ∇ is dual to ∇∗, the statistical model S is not
∇-flat because ∇ is not torsion-free, which comes from the non-integrability of the
estimating function q(x, θ). Hence, this geometrical structure provides an example
of partially flat spaces, which was discussed in Sect. 4.

7 Future Problems

In this paper, we have summarized existing results on statistical manifolds admitting
torsion, especially focusing on partially flat spaces.Although some results that are not
seen in the standard theory of information geometry have been obtained, including
a generalized projection theorem in partially flat spaces and statistical manifolds
admitting torsion induced from estimating functions in statistics, a lot of (essential)
problems have been unsolved. We discuss some of them to conclude this paper.

(1) The canonical pre-contrast function and the generalized projection theorem in
a partially flat spase (M, g,∇,∇∗) are described only in terms of the flat connec-
tion ∇∗. In this sense, it can be said that these are a concept and a theorem for the
Riemannian manifold (M, g) with the flat connection ∇∗. What is the role of the
affine connection ∇ in the partially flat space (M, g,∇,∇∗), especially when ∇ is
not torsion-free?
(2) The canonical pre-contrast function is defined in terms of the Riemannian met-
ric g and the ∇∗-geodesic in a partially flat space (U, g,∇,∇∗) without using the
affine coordinate system (ηi ) on U . Hence, this function can be defined in a general
statistical manifold admitting torsion (M, g,∇) as long as the∇∗-geodesic uniquely
exists. What is the condition under which this function is a pre-contrast function
that induces the original Riemannian metric g, dual affine connections ∇ and ∇∗?
What properties does the (canonical) pre-contrast function have in this case? These
problems are closely related to the works by [10, 11], who try to define a canonical
divergence (canonical contrast function) on a general statistical manifold beyond a
dually flat space.
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(3) The definition of pre-contrast functions from estimating functions is obtained
by replacing the score function which appears in the pre-contrast function as the
derivative of Kullback–Leibler divergence with the standardized estimating func-
tions. However, this is not the unique way to obtain a pre-contrast function from an
estimating function. For example, if we consider the β-divergence [16] (or density
power divergence [17]) as a contrast function, its first derivative is also a pre-contrast
function and takes the same form as (9) in Proposition 2. However, the estimating
function which appears in the pre-contrast function is not standardized. Although
the standardization seems to be natural, further consideration is necessary on how to
define a pre-contrast function from a given estimating function.
(4) For the example considered in Sect. 6, we can show that the pre-contrast func-
tion ρq coincides with the canonical pre-contrast function in the partially flat space
(S, g,∇,∇∗) and the generalized projection theorem (Corollary 1 in Sect. 4) can be
applied. However, its statistical meaning has not been clarified yet. Although it is
expected that the SMAT induced from an estimating function has something to do
with statistical inference based on the estimating function, the clarification on it is a
future problem.
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