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Abstract We study the class on non-parametric deformed statistical models where
the deformed exponential has linear growth at infinity and is sub-exponential at
zero. This class generalizes the class introduced by N.J. Newton. We discuss the
convexity and regularity of the normalization operator, the form of the deformed
statistical divergences and their convex duality, the properties of the escort densities,
and the affine manifold structure of the statistical bundle

1 Introduction

In this paper we study a geometry on the set P of strictly positive probability
densities on a probability space (X,X , μ). In some cases one is led to consider the
set P of probability densities i.e., without the restriction of strict positivity. There
is a considerable literature on the Information Geometry in the sense defined in the
Amari and Nagaoka monograph [2] onP . There is also a non-parametric approach
i.e., we are not considering the geometry induced on the parameter set of a given
statistical model but on the full set of densities. This was done in [21, 23] by using
logarithmic chart to represent densities.

A different approach, that leads to the construction of an Hilbert manifold on
P , has been proposed by N.J. Newton in [18, 19]. It is based on the use of the
chart p �→ p − 1 − log p instead of a purely logarithmic chart. This paper presents
a variation on the same theme by enlarging the class of permitted charts.

Let M ⊂ P . At each p ∈ M , the Hilbert space of square-integrable random
variables L2(p) provides a fiber that sits at p ∈ M , so we can define the Hilbert
bundle with base M . The Hilbert bundle, or similar bundles with fibers which are
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vector spaces of random variables, provides a convenient framework for Information
Geometry, cf. [1, 12, 21].

If M is an exponential manifold in the sense of [23], there exists a splitting of
each fiber L2(p) = Hp ⊕ H ⊥

p , such that eachHp contains a dense vector sub-space
which is an expression of the tangent space TpM of the manifold. Moreover, the
manifold onM is an affine manifold (it can be defined by an atlas whose transition
mapping are affine) and it is also an Hessian manifold (the inner product on each
fiber is the second derivative of a potential function, [24]).

When the sample space is finite and M is the full set P of positive probability
densities, thenHp is the space of centered square integrable random variables L2

0(p)

and moreover there is an identification of the fiber with the tangent space Hp �
TpP . A similar situation occurs even when M is a finite-dimensional exponential
family. It is difficult to devise set-ups other than those mentioned above, where
the identification of the Hilbert fiber with the tangent space holds true. In fact, a
necessary condition would be the topological linear isomorphism among fibers. One
possible option would be to take as fibers the spaces of bounded functions L∞

0 (p),
see G. Loaiza and H.R. Quiceno [14].

This difficulty is overcome in the N.J. Newton’s setting. On a probability space
(X,X , μ), he considers the “balanced chart” M 
 p �→ log p + p − 1 ∈ L2

0(μ).
In this chart, all the tangent spaces are identified with the fixed Hilbert space L2

0(μ)

so that the statistical Hilbert bundle is trivialized.
N.J. Newton balanced chart falls in a larger class of “deformation” of the usual

logarithmic representation. It is in fact an instance of the class of “deformed loga-
rithm” as defined by J. Naudts [17]. It is defined as logA(x) = ∫ x

1 dt/A(t), where A
is a suitable increasing function. If A is bounded, then a special class of deformed
logarithms results. It includes N.J. Newton balanced chart as well as other deformed
logarithms, notably the G. Kaniadakis logarithm [10, 11, 20].

In this paper, we try a mixture of the various approaches by considering deformed
logarithms with linear growth as established by N.J. Newton, but we do not look for
a trivialization of the Hilbert bundle. Instead we construct an affine atlas of charts,
each one centered at a p ∈ M . This is obtained by adapting the construction of
the exponential manifold of [21] to the deformed exponential models as defined
by J. Naudts [17]. Moreover, we allow for a form of general reference measure by
using an idea introduced by R.F. Vigelis and C.C. Cavalcante [26]. That is, each
density has the form q = expA(u − K p(u) + logA p), where expA = log−1

A is an
exponential-like function which has a linear growth at +∞ and is dominated by an
exponential at −∞.

The formalism of deformed exponentials is discussed in Sect. 2. This section is
intended to be self-contained and contains material from the references discussed
above without an explicit mention. The following Sect. 3 is devoted to the study of
non-parametric deformed exponential families. In Sect. 4 we introduce the formula-
tion of the divergence, in accordance with our approach. In Sect. 5 the construction
of the Hilbert statistical bundle is outlined.

A first version of this piece of research has been presented at the GSI 2017
Conference [16] and we refer to that paper for some of the proofs.
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2 Deformed Exponential

Let us introduce a class of the deformed exponential, according to the formalism
introducedby [17].Assume to be given a function A from ]0,+∞[onto ]0, a[, strictly
increasing, continuously differentiable and such that

∥
∥A′∥∥∞ < ∞. This implies a =

‖A‖∞ and A(x) ≤ ∥
∥A′∥∥∞ x , so that

∫ 1
0 dξ/A(ξ) = +∞.

The A-logarithm is the function

logA(x) =
∫ x

1

dξ

A(ξ)
, x ∈]0,+∞[ .

The A-logarithm is strictly increasing from −∞ to +∞, its derivative log′
A(x) =

1/A(x) is positive and strictly decreasing for all x > 0, hence logA is strictly concave.
By inverting the A-logarithm, one obtains the A-exponential, expA = log−1

A . The
function expA : ] − ∞,+∞[→]0,+∞[ is strictly increasing, strictly convex, and is
the solution to the Cauchy problem

exp′
A(y) = A(expA(y)), expA(0) = 1 . (1)

As a consequence, we have the linear bound

∣
∣expA(y1) − expA(y2)

∣
∣ ≤ ‖A‖∞ |y1 − y2| . (2)

The behavior of the A-logarithm is linear for large arguments and super-
logarithmic for small arguments. To derive explicit bounds, set

α1 = min
x≤1

A(x)

x
, α2 = max

x≤1

A(x)

x
,

namely, they are the best constants such that α1x ≤ A(x) ≤ α2x for 0 < x ≤ 1. Note
that α1 ≥ 0 while α2 > 0. If in addition also α1 > 0, then

1

α2
log x ≤ logA x ≤ 1

α1
log x , 0 < x ≤ 1 . (3)

If otherwise α1 = 0, the left inequality is true only.
For x ≥ 1 we have A(1) ≤ A(x) < ‖A‖∞, hence

1

‖A‖∞
(x − 1) < logA x ≤ 1

A(1)
(x − 1) , x ≥ 1 . (4)

Under the assumptions made on the function A, the coefficient α1 > 0, if and only
if A′(0+) > 0.
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2.1 Examples

The main example of A-logarithm is the N.J. Newton A-logarithm [18], with

A(ξ) = 1 − 1

1 + ξ
= ξ

1 + ξ
,

so that
logA(x) = log x + x − 1 .

There is a simple algebraic expression for the product,

logA(x1x2) = logA(x1) + logA(x2) + (x1 − 1)(x2 − 1) .

Other similar examples are available in the literature. One is a special case of the
G. Kaniadakis’ exponential of [9], generated by

A(ξ) = 2ξ 2

1 + ξ 2
.

It turns out

logA x = x − x−1

2
,

whose inverse provides
expA(y) = y +

√
1 + y2 .

A remarkable feature of the G. Kaniadakis’ exponential is the relation

expA(y) expA(−y) =
(

y +
√
1 + y2

) (
−y +

√
1 + y2

)
= 1

Notice that the A function for N.J. Newton exponential is concave, while the A
function of G. Kaniadakis exponential is not.

Another example is A(ξ) = 1 − 2−ξ , which gives logA(x) = log2(1 − 2−x ) and
expA(y) = log2(1 + 2y).

Notable examples of deformed exponentials that do not fit into our set of assump-
tions are Tsallis q-logarithms, see [25]. For instance, for q = 1/2,

log1/2 x = 2
(√

x − 1
) =

∫ x

1

dξ√
ξ
.

In this case, log1/2(0+) = − ∫ 1
0 dξ/

√
ξ = −2, so that the inverse is not defined

for all real numbers. Tsallis logarithms provide models having heavy tails, which is
not the case in our setting.



A Class of Non-parametric Deformed Exponential Statistical Models 19

2.2 Superposition Operator

The deformed exponential will be employed to represent positive probability densi-
ties in the type p(x) = expA[u(x)], where u is a random variable on a probability
space (X,X , μ). For this reason, we are interested in the properties of the superpo-
sition operator

SA : u �→ expA ◦ u (5)

defined in some convenient functional setting. About superposition operators, see
e.g. [3, Ch. 1] and [4, Ch. 3].

It is clear from the Lipschitz condition (2) that expA(u) ≤ 1 + ‖A‖∞ |u|, which
in turn implies that the superposition operator SA maps Lα(μ) into itself for all
α ∈ [1,+∞] and the mapping is uniformly Lipschitz with constant ‖A‖∞. Notice
that we are assuming that μ is a finite measure.

The superposition operator SA : Lα(μ) → Lα(μ) is 1-to-1 and its image consists
of all positive random variables f such that logA f ∈ Lα(μ). The following propo-
sition intercepts a more general result [19]. We give a direct proof here for sake of
completeness and because our setting includes deformed logarithms other than the
case treated there.

Proposition 1 1. For all α ∈ [1,∞], the superposition operator SA of Eq. (5) is
Gateaux-differentiable with derivative

d SA(u)[h] = A(expA(u))h . (6)

2. SA is Fréchet-differentiable from Lα(μ) to Lβ(μ), for all α > β ≥ 1.

Proof 1. Equation (1) implies that for each couple of random variables u, h ∈
Lα(μ)

lim
t→0

t−1
(
expA(u + th) − expA(u)

) − A(expA(u))h = 0

holds point-wise. Moreover, if each α ∈ [1,∞[, by Jensen inequality we infer
that if t > 0 then

∣
∣t−1

(
expA(u + th) − expA(u)

) − A(expA(u))h
∣
∣α ≤

t−1 |h|α
∫ t

0

∣
∣A(expA(u + rh)) − A(expA(u))

∣
∣α dr ≤ (2 ‖A‖∞)α |h|α .

Now, dominated convergence forces the limit to hold in Lα(μ). If t < 0, it
sufficies to replace h with −h.
Whenever α = ∞, we can use the second-order bound
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∣
∣t−1

(
expA(u + th) − expA(u)

) − A(expA(u))h
∣
∣ =

|t |−1h2

∣
∣
∣
∣

∫ t

0
(t − r)

d

dr
A(expA(u + rh)) dr

∣
∣
∣
∣ ≤ t

2
‖h‖2∞

∥
∥A′∥∥∞ ‖A‖∞ .

As
∥
∥A′ · A

∥
∥∞ < ∞, the RHS goes to 0 as t → 0 uniformly for each h ∈ L∞(μ).

2. Given u, h ∈ Lα(μ), thanks again to Taylor formula,

∫ ∣
∣expA(u + h) − expA(u) − A(expA(u))h

∣
∣β dμ ≤

∫
|h|β

∫ 1

0

∣
∣A(expA(u + rh)) − A(expA(u))

∣
∣β dr dμ .

By means of Hölder inequality, with conjugate exponents α/β and α/(α − β),
the RHS is bounded by

(∫
|h|α dμ

) β

α
(∫∫ ∣

∣A(expA(u + rh)) − A(expA(u))
∣
∣

αβ

α−β dr dμ

) α−β

α

.

Consequently,

‖h‖−1
Lα(μ)

∥
∥expA(u + h) − expA(u) − A(expA(u))h

∥
∥

Lβ (μ)
≤

(∫∫ ∣
∣A(expA(u + rh)) − A(expA(u))

∣
∣

αβ

α−β dr dμ

) α−β

αβ

.

In order to show that the RHS vanishes as ‖h‖Lα(μ) → 0, observe that for all
δ > 0 we have

∣
∣A(expA(u + rh)) − A(expA(u))

∣
∣ ≤

{
2 ‖A‖∞ always,
∥
∥A′∥∥∞ ‖A‖∞ δ if |h| ≤ δ,

so that, decomposing the double integral as
∫∫ = ∫∫

|h|≤δ
+ ∫∫

|h|>δ
, we obtain

∫∫ ∣
∣A(expA(u + rh)) − A(expA(u))

∣
∣γ dr dμ ≤

(2 ‖A‖∞)γ μ {|h| > δ} + (∥
∥A′∥∥∞ ‖A‖∞ δ

)γ ≤
(2 ‖A‖∞)γ δ−α

∫
|h|α dμ + (∥∥A′∥∥∞ ‖A‖∞ δ

)γ
,

where γ = αβ/(α − β) and we have used Cebičev inequality. Now it is clear that
the last bound implies the conclusion for each α < ∞. The case α = ∞ follows
a fortiori. �
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Remark 1 It is not generally true that the superposition operator SA be Fréchet dif-
ferentiable for α = β, cf. [3, §1.2]. We repeat here the well known counter-example.

Assume μ is a non-atomic probability measure. For each λ ∈ R and δ > 0 define
the simple function

hλ,δ(x) =
{

λ if |x | ≤ δ,

0 otherwise.

For each α ∈ [1,+∞[ we have

lim
δ→0

∥
∥hλ,δ

∥
∥

Lα(μ)
= lim

δ→0
|λ|μ {|x | ≤ δ}1/α = 0 .

Differentiability at 0 in Lα(μ) would imply for all λ

0 = lim
δ→0

∥
∥expA(hλ,δ) − 1 − A(1)hλ,δ

∥
∥

Lα(μ)∥
∥hλ,δ

∥
∥

Lα(μ)

=

lim
δ→0

∣
∣expA(λ) − 1 − A(1)λ

∣
∣μ {x | |x | ≤ δ}1/α

|λ|μ {x | |x | ≤ δ}1/α =
∣
∣
∣
∣
expA(λ) − 1

λ
− A(1)

∣
∣
∣
∣ ,

which is a contradiction.

Remark 2 Theorems about the differentiability of the deformed exponential are
important because of computations like d

dθ
expA(v(θ)) = exp′

A(v(θ))v̇(θ) are essen-
tial for the geometrical theory of statistical models. Several variations in the choice
of the combination domain space - image space are possible. Also, one could look
at a weaker differentiability property than Frechét differentiability. Our choice is
motivated by the results of the following sections. A large class of cases is discussed
in [19].

Remark 3 It would also be worth to study the action of the superposition operator on
spaces of differentiable functions, for example Gauss-Sobolev spaces of P. Malliavin
[15]. If μ is the standard Gaussian measure on Rn , and u is a differentiable function
such that u, ∂

∂xi
u ∈ L2(μ), i = 1, . . . , n, then it follows that expA(u) ∈ L2(μ) as

well as ∂
∂xi

expA(u) ∈ L2(μ), since

∂

∂xi
expA(u(x)) = A(expA(u(x))

∂

∂xi
u(x) .

We do not pursue this line of investigation here.
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3 Deformed Exponential Family Based on expA

According to [5, 26], let us define the deformed exponential curve in the space of
positive measures on (X,X ) as follows

t �→ μt = expA(tu + logA p) · μ , u ∈ L1(μ) .

We have the following inequality:

expA(x + y) ≤ ‖A‖∞ x+ + expA(y).

Actually, it is true for x ≤ 0, as being expA increasing. For x = x+ > 0 the
inequality follows from Eq. (2). As a consequence, each μt is a finite measure,
μt (X) ≤ t ‖A‖∞

∫
u+ dμ + 1, with μ0 = p · μ. The curve is actually continu-

ous and differentiable in L1(μ) because the point-wise derivative of the density
pt = expA(tu + logA(p)) is ṗt = A(pt )u so that | ṗt | ≤ ‖A‖∞ |u|. In conclusion
μ0 = p · μ and μ̇0 = A (p) u · μ.

There are twoways to normalize the density pt to total mass 1, either dividing by a
normalizing constant Z(t) to get the statistical model t �→ expA(tu + logA p)/Z(t)
or, subtracting a constant ψ(t) from the argument to get the model t �→ expA(tu −
ψ(t) + logA(p)). Unlike the standard exponential case, where these two methods
lead to the same result, this is not the case for deformed exponentials where expA(α +
β) �= expA(α) expA(β). We choose in the present paper the latter option.

Here we use the ideas of [5, 17, 26] to construct deformed non-parametric expo-
nential families. Recall that we are given: the probability space (X,X , μ); the set
P of the positive probability densities and the function A satisfying the conditions
set out in Sect. 2. Throughout this section, the density p ∈ P will be fixed.

The following proposition is taken from [16] where a detailed proof is given.

Proposition 2 1. The mapping L1(μ) 
 u �→ expA(u + logA p) ∈ L1(μ) has full
domain and is ‖A‖∞ -Lipschitz. Consequently, the mapping

u �→
∫

g expA(u + logA p) dμ

is ‖g‖∞ · ‖A‖∞-Lipschitz for each bounded function g.

2. For each u ∈ L1(μ) there exists a unique constant K p(u) ∈ R such that expA(u −
K p(u) + logA p) · μ is a probability.

3. K p(u) = u if, and only if, u is constant. In such a case,

expA(u − K p(u) + logA p) · μ = p · μ .

Otherwise, expA(u − K p(u) + logA p) · μ �= p · μ.
4. A density q is of the form q = expA(u − K p(u) + logA p), with u ∈ L1(μ) if,

and only if, logA q − logA p ∈ L1(μ).
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5. If
expA(u − K p(u) + logA p) = expA(v − K p(v) + logA p) ,

with u, v ∈ L1(μ), then u − v is constant.
6. The functional K p : L1(μ) → R is translation invariant. More specifically,

K p(u + c) = K p(u) + cK p(1)

holds for all c ∈ R.
7. K p : L1(μ) → R is continuous and convex.

3.1 Escort Density

For each positive density q ∈ P , its escort density is defined as

escort (q) = A(q)
∫

A(q) dμ
,

see [17]. Notice that 0 ≤ A(q) ≤ ‖A‖∞. In particular, q̃ = escort (q) is a bounded

positive density. Hence, escort
(
P

)
⊆ P ∩ L∞(μ). Clearly, the inclusion

escort (P) ⊆ P ∩ L∞(μ) is true as well.

Proposition 3 1. The mapping escort : P → P ∩ L∞(μ) is a.s. injective.

2. A bounded positive density q̃ is an escort density, i.e., q̃ ∈ escort
(
P

)
if, and

only if,

lim
α↑‖A‖∞

∫
A−1

(

α
q̃

‖q̃‖∞

)

dμ ≥ 1 . (7)

3. Condition (7) is fulfilled if μ
{
q̃ = ‖q̃‖∞

}
> 0. In particular, every density taking

a finite number of different values, i.e., a simple density, is an escort density.
4. If q̃1 = escort (q1) is an escort density, and q2 is a bounded positive density such

that
μ

{
q̃1 > t ‖q̃1‖∞

} ≤ μ
{
q2 > t ‖q2‖∞

}
, t > 0 ,

then q2 is an escort density as well.

Proof 1. Let escort (q1) = escort (q2) for μ-almost all x . Say,
∫

A ◦ q1 dμ ≥∫
A ◦ q2 dμ. Then A(q2(x)) ≤ A(q1(x)), for μ-almost all x . Since A is strictly

increasing, it follows q2(x) ≤ q1(x) for μ-almost all x , which, in turn, implies
q1 = q2 μ-a.s. because both μ-integrals are equal to 1. Thus the escort mapping
is a.s. injective.

2. Fix a q̃ ∈ P ∩ L∞(μ), and define the function
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f (α) =
∫

A−1

(

α
q̃

‖q̃‖∞

)

dμ, α ∈ [0, ‖A‖∞ [ .

It is finite, increasing, continuous and f (0) = 0. It is clear that the range condition
(7) is necessary because q̃ = escort (q) implies q = A−1

((∫
A(q) dμ

)
q̃
)
and, in

turn, 1 = ∫
A−1

((∫
A(q) dμ

)
q̃
)

dμ, given that q is a probability density. If we
takeα = ∫

A(q) dμ ‖q̃‖∞ ≤ ‖A‖∞, the range condition is satisfied. Conversely,

if the range condition holds, there exists α ≤ ‖A‖∞ such that q = A−1
(
α

q̃
‖q̃‖∞

)

is a positive probability density whose escort is q̃ .
3. This is a special case of Item 2, in that

f (α) =
∫

A−1

(

α
q̃

‖q̃‖∞

)

dμ ≥ A−1(α)μ
{
q̃ = ‖q̃‖∞

}
.

Therefore, f (α) ↑ +∞, as α ↑ ‖A‖∞.
4. For each bounded positive density q we have

∫
A−1

(
q

‖q‖∞

)

dμ =
∫ +∞

0
μ

{
q

‖q‖∞
> A(t)

}

dt =
∫ ‖A‖∞

0
μ

{
q

‖q‖∞
> s

}
1

A′ (A−1(s)
) ds .

Now the necessary condition of Item3. Follows from Item1. and our assumptions.
�

The previous proposition shows that the range of the escort mapping is uniformly
dense as it contains all simple densities. Moreover, in the partial order induced by
the rearrangement of the normalized density (that is for each q the mapping t �→
μ

{
q

‖q‖∞
> t

}
), it contains the full right interval of each element. But the range of the

escort mapping is not the full set of bounded positive densities, unless the σ -algebra
X is generated by a finite partition. To provide an example, consider on the Lebesgue
unit interval the densities qδ(x) ∝ (1 − x1/δ), δ > 0, and A(x) = x/(1 + x). The
density qδ turns out to be an escort if, and only if, δ ≤ 1.

3.2 Gradient of the Normalization Operator K p

Proposition2 shows that the functional K p is a global solution of an equation. We
now study its local properties by the implicit function theorem as well as the related
subgradients of the convex function K p. We refer to [7, Part I] for the general theory
of convex functions in infinite dimension.

For every u ∈ L1(μ), let us write
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q(u) = expA(u − K p(u) + logA p) (8)

while q̃(u) = escort (q(u)) denotes its escort density.

Proposition 4 1. The functional K p : L1(μ) → R is Gateaux-differentiable with
derivative

d

dt
K p(u + tv)

∣
∣
∣
∣
t=0

=
∫

vq̃(u) dμ .

It follows that K p : L1(μ) → R is monotone and globally Lipschitz.

2. For every u, v ∈ L1(μ), the inequality

K p(u + v) − K p(u) ≥
∫

vq̃(u) dμ

holds, i.e., the density q̃(u) ∈ L∞(μ) is the unique subgradient of K p at u.

Proof 1. Consider the equation

F(t, κ) =
∫

expA(u + tv − κ + logA p) dμ − 1 = 0, t, κ ∈ R ,

so that κ = K p(u + tv). Derivations under the integral hold by virtue of the
bounds

∣
∣
∣
∣
∂

∂t
expA(u + tv − κ + logA p)

∣
∣
∣
∣ =

∣
∣A(expA(u + tv − κ + logA p))v

∣
∣ ≤ ‖A‖∞ |v|

and
∣
∣
∣
∣
∂

p
∂κ expA(u + tv − κ + logA p)

∣
∣
∣
∣ = ∣

∣A(expA(u + tv − κ + logA p))
∣
∣ ≤ ‖A‖∞ .

Furthermore, the partial derivative with respect to κ is never zero. Thanks to the
implicit function theorem, there exists the derivative (dκ/dt)t=0 which is the
desired Gateaux derivative. Since q̃(u) is positive and bounded, K p is monotone
and globally Lipschitz.

2. Thanks to the convexity of expA and the derivation formula, we have

expA(u + v − K p(u + v) + logA p) ≥ q + A(q)(v − (K p(u + v) − K p(v))) ,

where q = expA(u − K p(u) + logA p). If we take μ-integral of both sides,

0 ≥
∫

v A(q) dμ − (K p(u + v) − K p(v))
∫

A(q) dμ .
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Isolating the increment K p(u + v) − K p(v), the desired inequality obtains.
Therefore, q̃(u) is a subgradient of K p at u. From Item 1. we deduce that q̃(u) is
the unique subgradient and further q̃(u) is the Gateaux differential of K p at u. �

We can also establish Fréchet-differentiability of the functional, under more strin-
gent assumptions.

Proposition 5 Let α ≥ 2.

1. The superposition operator

Lα(μ) 
 v �→ expA(v + logA p) ∈ L1(μ)

is continuously Fréchet differentiable with derivative

d expA(v) = (h �→ A(expA(v + logA p))h) ∈ L (Lα(μ), L1(μ)) .

2. The functional K p : Lα(μ) → R, implicitly defined by the equation

∫
expA(v − K p(v) + logA p) dμ = 1, v ∈ Lα(μ)

is continuously Fréchet differentiable with derivative

d K p(v) = (h �→
∫

hq̃(v) dμ) ,

where q̃(u) = escort (q(u)).

Proof 1. Setting β = 1 in Proposition1, we get easily the assertion. It remains
just to check that the Fréchet derivative is continuous, i.e., that the Fréchet
derivative is a continuous map Lα(μ) → L (Lα(μ), L1(μ)). If ‖h‖Lα(μ) ≤ 1
and v, w ∈ Lα(μ) we have

∫ ∣
∣(A[expA(v + logA p)] − A[expA(w + logA p)])h∣

∣ dμ

≤ ‖A[expA(v + logA p) − A[expA(w + logA p)]‖Lσ (μ) ,

where σ = α/ (α − 1) is the conjugate exponent ofα. On the other hand,

‖A[expA(v + logA p) − A[expA(w + logA p)]‖Lσ (μ)

≤ ∥
∥A′∥∥∞ ‖A‖∞ ‖v − w‖Lσ (μ)

and so the map Lα(μ) → L (Lα(μ), L1(μ)) is continuous whenever α ≥ σ,

i.e., α ≥ 2.
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2. Fréchet differentiability of K p is a consequence of the Implicit Function Theorem
in Banach spaces, see [6], applied to the C1-mapping

Lα(μ) × R 
 (v, κ) �→
∫

expA(v − κ + logA p) dμ .

The value of the derivative is given by Proposition4. �

4 Deformed Divergence

In analogy with the standard exponential case, define the A-divergence between
probability densities as

DA(q‖p) =
∫

(
logA q − logA p

)
escort (q) dμ, for q, p ∈ P .

Since logA is strictly concave with derivative 1/A, we have

logA (x) ≤ logA (y) + 1

A (y)
(x − y)

for all x, y > 0 and with equality if, and only if, x = y. Hence

A (y)
(
logA (y) − logA (x)

) ≥ y − x . (9)

It follows in particular that DA(·‖·) is a well defined, possibly extended valued,
function.

Observe further that by Proposition2, logA q − logA p ∈ L1 (μ), and so
DA(q‖p) < ∞, whenever q = q(u).

The binary relation DA is a faithful divergence in that it satisfies the following
Gibbs’ inequality.

Proposition 6 It holds DA(q‖p) ≥ 0 and DA(q‖p) = 0 if and only if p = q.

Proof From inequality (9) it follows

DA(q‖p) = 1
∫

A (q) dμ

∫
(
logA q − logA p

)
A (q) dμ

≥ 1
∫

A (q) dμ

∫
(q − p) dμ = 0.

Moreover, equality holds if and only if p = q μ-a.e. �
There are other alternative definitions that may fully candidate to be a divergence

measure. For instance:
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IA(q‖p) = −
∫

logA(p/q)q dμ.

or also

D̃A(q‖p) =
∫

A(q/p) logA(p/q)p dμ.

By means of the concavity of logA, it is not difficult to check that both satisfy Gibbs’
condition of Proposition6, as well as they equal the Kullback–Leibner functional in
the non-deformed case. Observe further that the functional IA(q‖p) is closely related
to Tallis’ divergence (see [25] and also [14]). In fact, if one replaces logA with the
q-logarithm, one gets just Tallis’ q-divergence.

However our formulation for the divergence is motivated by the structure of the
deformed exponential representation. As it will be now seen, our definition of diver-
gence is more adapted to the present setting and it turns out be closely related to the
normalizing operator.

In the equation

q = expA(u − K p(u) + logA p), u ∈ L1(μ) , q ∈ P , (10)

the random variable u is identified up to an additive constant for any fixed density q.
There are at least two options for selecting an interesting representative member in
the equivalence class.

One option is to impose the further condition
∫

u p̃ dμ = 0,where p̃ = escort (p),
the integral being well defined, given that the escort density is bounded. This restric-
tion provides a unique element uq . On the other hand, if we solve Eq. (10) with
respect to u − K (u), we get the desired relation:

K p(uq) = E p̃
[
logA p − logA q

] = DA(p‖q), (11)

where u = uq is uniquely characterized by the two equations: E p̃ [u] = 0 and q =
expA(u − K p(u) + logA p).

Observe further that Eq. (11) entails the relation

K p(u) = DA(p‖q(u)) ∀u ∈ L1 (μ) .

The previous choice is that followed in the construction of the non-parametric expo-
nential manifold, see [22, 23].

With regard to the non-deformed case, Eq. (11) yields the Kulback-Leibler diver-
gence with p and q exchanged, with respect to what is considered more natural in
Statistical Physics, see for example the comments [13].

For this purpose, we undertake another choice for the random variable in the
equivalence class. More specifically, in Eq. (10) the random variable u will be now
centered with respect to q̃ = escort (q), i.e., Eq̃ [u] = 0.
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To avoid confusion let us rewrite Eq. (10) as follows and where for convenience
the function K p is replaced with Hp = −K p:

q = expA(v + Hp(v) + logA p), v ∈ L1(μ), Eq̃ [v] = 0, (12)

so that
Hp(vq) = Eq̃

[
logA q − logA p

] = DA(q‖p),

where v = vq is the solution to the two equations Eq̃ [v] = 0 and q = expA(v +
Hp(v) + logA p). There are hence twonotable representations of the sameprobability
density q:

q = expA(u − K p(u) + logA p) = expA(v + Hp(v) + logA p)

which implies uq − vq = K p(uq) + Hp(vq). This, in turn, leads to

−E p̃
[
vq

] = Eq̃
[
uq

] = K p(uq) + Hp(vq) = K p(uq) − K p(vq).

This provides the following remarkable relation

Hp(vq) = Eq̃
[
uq

] − K p(uq). (13)

4.1 Variational Formula

We now present a variational formula in the spirit of the classical one by Donsker-
Varadhan. Next proposition provides the convex conjugate of K p, in the duality
L∞(μ) × L1(μ).

In what follows, the operator η �→ η̂ denotes the inverse of the escort operator,
i.e., η = escort

(
η̂
)
. In the light of the results established in Sect. 3.1, this operator

maps a dense subset of P ∩ L∞(μ) onto P .

Proposition 7 1. The convex conjugate function of K p:

K ∗
p (w) = sup

u∈L1(μ)

(∫
wu dμ − K p (u)

)

, w ∈ L∞(μ) (14)

has domain contained into P ∩ L∞(μ). More precisely,

escort (P) ⊆ domK ∗
p ⊆ P ∩ L∞(μ).

2. K ∗
p (w) ≥ 0 for all w ∈ L∞(μ). For any η ∈ escort (P), the conjugate K ∗

p(η) is
given by the Legendre transform:
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K ∗
p(η) =

∫
η uη̂ dμ − K p(uη̂) .

So that K ∗
p(η) = Hp(vη̂) = DA(η̂‖p); equivalently:

K ∗
p(escort (q)) = DA(q‖p) ∀p, q ∈ L1(μ).

3. It holds the inversion formula

K p (u) = max
η∈escort(P )

(∫
ηu dμ − DA(η̂‖p)

)

= max
q∈P

(∫
escort (q) u dμ − DA(q‖p)

)

, ∀u ∈ L1(μ).

Proof 1. It follows from the fact that K p is monotone and translation invariant. Let
us first suppose w /∈ L∞+ (μ). That means that

∫
wχC dμ < 0

is true for some indicator function χC . If we consider the cone generated by the
function −χC , we can write

K ∗
p (w) ≥ sup

u∈ cone(−χC )

(∫
wu dμ − K p (u)

)

≥ sup
u∈ cone(−χC )

∫
wu dμ = +∞,

since K p (u) ≤ 0when u ∈ cone(−χC ). Now consider the case in whichw ≥ 0.
If we set u = λ ∈ R, we have K p(λ) = λ and consequently

K ∗
p(w) ≥ sup

λ∈R

(

λ

∫
w dμ − λ

)

. (15)

This sup is+∞, unless
∫

w dμ = 1. Hence, K ∗
p (w) < ∞ impliesw ∈ P . Sum-

marizing, the domain of K ∗
p is contained into P ∩ L∞(μ), and this proves one

of the two claimed inclusions. The other one will be a direct consequence of the
next point.

2. Equation (15) implies K ∗
p ≥ 0. By Proposition4 the concave and Gateaux dif-

ferentiable function u �→ ∫
ηu dμ − K p(u) has derivative at u given by η −

d K p(u) = η − escort (q(u)), where q(u) = expA(u − K p(u) + logA p). Under
our assumptions, the derivative vanishes at u = uη̂ and the sup in the definition of
K ∗

p is attained at that point. The maximum value is K ∗
p(η) = ∫

ηu dμ − K p(u),
by setting u = uη̂.
The last formula follows straightforward from Eq. (13).

3. For a well-known property of Fenchel–Moreau duality theory, we have:
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K p (u) ≥
∫

wu dμ − K ∗
p(w) ∀u ∈ L1(μ), ∀w ∈ L∞(μ)

K p (u) =
∫

wu dμ − K ∗
p(w) ⇐⇒ w ∈ ∂K p (u) .

Clearly in our case ∂K p (u) is a singleton and the image of ∂K p is the set
escort (P). Therefore

K p (u) = max
w∈escort(P )

(∫
wu dμ − K ∗

p(w)

)

.

By Item 2 the desired inversion formula obtains. �

5 Hilbert Bundle Based on expA

We shall introduce theHilbertmanifold of probability densities as defined in [18, 19].
A slightly more general set-up than the one used in that reference will be introduced.
By means of a general A function, we provide an atlas of charts, and define a linear
bundle as an expression of the tangent space.

LetP(μ) denote the set of all μ-densities on the probability space (X,X , μ) of
the kind

q = expA(u − K1(u)), u ∈ L2(μ), Eμ [u] = 0 . (16)

Notice that 1 ∈ P(μ) because we can take u = 0.

Proposition 8 1. P(μ) is the set of all densities q such that logA q ∈ L2(μ), in
which case u = logA q − Eμ

[
logA q

]
.

2. If in addition A′(0+) > 0, then P(μ) is the set of all densities q such that both
q and log q are in L2(μ).

3. Let A′(0+) > 0. On a product space with reference probability measures μ1 and
μ2, and densities respectively q1 and q2, we have q1 ∈ P(μ1) and q2 ∈ P(μ2)

if, and only if, q1 ⊗ q2 ∈ P(μ1 ⊗ μ2).

Proof 1. From Eq. (16), it follows logA q = u − K1(u) ∈ L2(μ), provided u ∈
L2(μ). Conversely, let logA q ∈ L2(μ). Equation (16) yields

u = logA q − K1(u) and K1(u) = − logA q.

Therefore u = logA q − Eμ

[
logA q

]
and u ∈ L2(μ).

2. Write ∣
∣logA q

∣
∣2 = ∣

∣logA q
∣
∣2 (q < 1) + ∣

∣logA q
∣
∣2 (q ≥ 1)

and use the bounds of Eqs. (3) and (4) to get
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Eμ

[∣
∣logA q

∣
∣2

]
≤ 1

α2
2

Eμ

[|log q|2 (q < 1)
] + 1

A(1)2
Eμ

[|q − 1|2 (q ≥ 1)
] ≤

1

α2
2

Eμ

[|log q|2] + 1

A(1)2
Eμ

[
q2] .

We deduce that the two conditions q and log q in L2(μ) imply logA q ∈ L2(μ).
Conversely, let logA q ∈ L2(μ). By means of the other two bounds (recall that
α1 > 0) we have too

Eμ

[∣
∣logA q

∣
∣2

]
≥ 1

α2
1

Eμ

[|log q|2 (q < 1)
] + 1

‖A‖2∞
Eμ

[
(q − 1)2(q ≥ 1)

]
.

Consequently, Eμ

[
(q − 1)2(q ≥ 1)

]
< +∞. This in turn gives Eμ

[
(q − 1)2

]
<

+∞, and so q ∈ L2(μ).
Once again, the previous inequality provides the condition Eμ

[|log q|2 (q < 1)
]

< +∞. On the other hand, Eμ

[|log q|2 (q ≥ 1)
]

< +∞ since |log q|2 (q ≥ 1) ≤
(q − 1)2(q ≥ 1). Therefore, log q ∈ L2(μ).

3. We deduce by the previous item that: q1 ⊗ q2 ∈ P(μ1 ⊗ μ2) if and only if both
q1 ⊗ q2 and log(q1 ⊗ q2) are in L2(μ1 ⊗ μ2).

The first condition is equivalent to both q1 ∈ L2(μ1) andq2 ∈ L2(μ2). The second
one is equivalent to log q1 + log q2 ∈ L2(μ1 ⊗ μ2). On the other hand, we have

Eμ1⊗μ2

[
(log q1 + log q2)

2
] =

Eμ1

[
log2 q1

] + Eμ2

[
log2 q2

] + 2 Eμ1

[
log q1

]
Eμ2

[
log q2

]
.

(17)

By Eq. (17), q1 ∈ P(μ1) and q2 ∈ P(μ2) imply q1 ⊗ q2 ∈ P(μ1 ⊗ μ2).
Conversely, assume q1 ⊗ q2 ∈ P(μ1 ⊗ μ2). This implies that it holds,
Eμ1⊗μ2

[
(log q1 + log q2)

2
]

< +∞. Since Eμi

[
log qi

] ≤ Eμ1 [qi − 1] = 0. We
have Eμ1

[
log q1

]
Eμ2

[
log q2

] ≥ 0. In view of Eq. (17), we can infer that q1 ∈
P(μ1) and q2 ∈ P(μ2) �

We proceed now to define an Hilbert bundle with base P(μ). The notion of
Hilbert bundle has been introduced in Information Geometry by [1]. We are here
using an adaptation to the A-exponential of arguments elaborated by [8, 21]. Notice
that the construction depends in a essential way on the specific conditions we are
assuming for the present class of deformed exponential.

At each q ∈ P(μ) the escort density q̃ is bounded, so that we can define the fiber
given by the Hilbert spaces

Hq = {
u ∈ L2(μ)|Eq̃ [u] = 0

}

with scalar product 〈u, v〉q = ∫
uv dμ. The Hilbert bundle is
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HP(μ) = {
(q, u)|q ∈ P(μ), u ∈ Hq

}
.

For each p, q ∈ P(μ) the mapping U
q
pu = u − Eq̃ [u] is a continuous linear map-

ping fromHp toHq . Moreover, Ur
qU

q
p = U

r
p. In particular, U

p
qU

q
p is the identity on

Hp and so Uq
p is an isomorphism of Hp onto Hq .

In the next proposition an affine atlas of charts is constructed in order to define
our Hilbert bundle which is an expression of the tangent bundle. The velocity of a
curve t �→ p(t) ∈ P(μ) is given in the Hilbert bundle by the so called A-score that,
in our case, takes the form A(p(t))−1 ṗ(t), where ṗ(t) is computed in L1(μ).

The following proposition is taken from [16] where a detailed proof is presented.

Proposition 9 1. Fix p ∈ P(μ). A positive density q ∈ P(μ) if and only if

q = expA(u − K p(u) + logA p), with u ∈ L2(μ) and E p̃ [u] = 0.

2. For any fixed p ∈ P(μ) the mapping sp : P(μ) → Hp defined by

q �→ logA q − logA p + DA(p‖q)

is injective and surjective, with inverse ep(u) = expA(u − K p(u) + logA p).
3. The atlas

{
sp|p ∈ P(μ)

}
is affine with transitions

sq ◦ ep(u) = U
q
pu + sp(q) .

4. The velocity of the differentiable curve t �→ p(t) ∈ P(μ) in the chart sp is
dsp(p(t))/dt ∈ Hp. Conversely, given any u ∈ Hp, the curve

p : t �→ expA(tu − K p(tu) + logA p)

satisfies p(0) = p and has velocity u at t = 0, expressed in the chart sp. If the
velocity of a curve is t �→ u̇(t), in a chart sp, then U

q
pu̇(t) is its velocity in the

chart sq .
5. If t �→ p(t) ∈ P(μ) is differentiable with respect to the atlas then it is differen-

tiable as a mapping in L1(μ). It follows that the A-score is well-defined and is the
expression of the velocity of the curve t �→ p(t) in the moving chart t �→ sp(t).

We end here our discussion of the geometry of the Hilbert bundle, because our
aim is limited to show the applicability of the analytic results obtained in the previ-
ous section. A detailed discussion of the relevant geometric objects e.g., the affine
covariant derivative, is not attempted here.
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6 Final Remarks

A non-parametric Hilbert manifold based on a deformed exponential representation
of positive densities has been firstly introduced by N.J. Newton [18, 19]. We have
derived regularity properties of the normalizing functional K p and discussed the
relevant Fenchel conjugation. In particular, we have discussed some properties of the
escort mapping and a form of the divergence that appears to be especially adapted
to our set-up. We have taken a path different from that of N.J. Newton original
presentation. We allow for a manifold defined by an atlas containing charts centered
at each density in the model. In conclusion, we have discussed explicitly a version
of the Hilbert bundle as a family of codimension 1 sub-vector spaces of the basic
Hilbert space.
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