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Abstract Clustering categorical distributions in the probability simplex is a
fundamental taskmet in many applications dealing with normalized histograms. Tra-
ditionally, differential-geometric structures of the probability simplex have been used
either by (i) setting the Riemannian metric tensor to the Fisher information matrix
of the categorical distributions, or (ii) defining the dualistic information-geometric
structure induced by a smooth dissimilarity measure, the Kullback–Leibler diver-
gence. In this work, we introduce for this clustering task a novel computationally-
friendly framework for modeling the probability simplex termed Hilbert simplex
geometry. In the Hilbert simplex geometry, the distance function is described by a
polytope. We discuss the pros and cons of those different statistical modelings, and
benchmark experimentally these geometries for center-based k-means and k-center
clusterings. Furthermore, since a canonical Hilbert metric distance can be defined
on any bounded convex subset of the Euclidean space, we also consider Hilbert’s
projective geometry of the elliptope of correlation matrices and study its clustering
performances.
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Fig. 1 Categorical datasets modeled by a generative statistical mixture model of multinoulli distri-
butions can be visualized as a weighted set of normalized histograms or equivalently by a weighted
point set encoding multinoulli distributions in the probability simplex Δd (here, d = 2 for trinoulli
distributions — trinomial distributions with a single trial)

1 Introduction and Motivation

The categorical distributions and multinomial distributions are important probability
distributions often met in data analysis [1], text mining [2], computer vision [3]
and machine learning [4]. A multinomial distribution over a set X = {e0, . . . , ed}
of outcomes (e.g., the d + 1 distinct colored faces of a die) is defined as follows:
Let λi

p > 0 denote the probability that outcome ei occurs for i ∈ {0, . . . , d} (with
∑d

i=0 λi
p = 1). Denote bym the total number of events, withmi reporting the number

of outcome ei . Then the probability Pr(X0 = m0, . . . , Xd = md) that a multinomial
random variable X = (X0, . . . , Xd) ∼ Mult(p = (λ0

p, . . . , λ
d
p),m) (where Xi count

the number of events ei , and
∑d

i=0 mi = m) is given by the following probability
mass function (pmf):

Pr(X0 = m0, . . . , Xd = md) = m!
∏d

i=0 mi !
d∏

i=0

(
λi
p

)mi
.

The multinomial distribution is called a binomial distribution when d = 1 (e.g., coin
tossing), a Bernoulli distribution when m = 1, and a “multinoulli distribution” (or
categorical distribution) whenm = 1 and d > 1. Themultinomial distribution is also
called a generalized Bernoulli distribution. A random variable X following a multi-
noulli distribution is denoted by X = (X0, . . . , Xd) ∼ Mult(p = (λ0

p, . . . , λ
d
p)). The

multinomial/multinoulli distribution provides an important feature representation in
machine learning that is often met in applications [5–7] as normalized histograms
(with non-empty bins) as illustrated in Fig. 1.
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(a) k = 3 clusters

(b) k = 5 clusters

Fig. 2 Visualizing some k-center clustering results on a toy dataset in the space of trinomials Δ2

for the considered four types of distances (and underlying geometries): Fisher-Hotelling-Raometric
distance (Riemannian geometry), Kullback–Leibler non-metric divergence (information geometry),
Hilbert metric distance (Hilbert projective geometry), and total variation/L1 metric distance (norm
geometry). Observe that the L1 balls have hexagonal shapes on the probability simplex (intersection
of a rotated cube with the plane HΔd ). The color density maps indicate the distance from any point
to its nearest cluster center

A multinomial distribution p ∈ Δd can be thought as a point lying in the proba-
bility simplex Δd (standard simplex) with coordinates p = (λ0

p, . . . , λ
d
p) such that

λi
p = Pr(X = ei ) > 0 and

∑d
i=0 λi

p = 1. The open probability simplex Δd can be

embedded in R
d+1 on the hyperplane HΔd : ∑d

i=0 x
i = 1. Notice that observations

with D categorical attributes can be clustered using k-mode [8] with respect to
the Hamming distance. Here, we consider the different task of clustering a set
Λ = {p1, . . . , pn} of n categorical/multinomial distributions in Δd [5] using center-
based k-means++ or k-center clustering algorithms [9, 10], which rely on a dissimi-
larity measure (loosely called distance or divergence when smooth) between any two
categorical distributions. In this work, we mainly consider four distances with their
underlying geometries: (1) Fisher-Hotelling-Rao distance ρFHR (spherical geome-
try), (2) Kullback–Leibler divergence ρIG (dually flat geometry), (3) Hilbert distance
ρHG (generalize Klein’s hyperbolic geometry), and (4) the total variation/L1 distance
(norm geometry). The geometric structures of spaces are necessary in algorithms, for
example, to define midpoint distributions. Figure 2 displays the k-center clustering
results obtained with these four geometries as well as the L1 distance ρL1 normed
geometry on toy synthetic datasets in Δ2. We shall now explain the Hilbert sim-
plex geometry applied to the probability simplex, describe how to perform k-center
clustering in Hilbert geometry, and report experimental results that demonstrate the
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superiority of the Hilbert geometry when clustering multinomials and correlation
matrices.

The rest of this paper is organized as follows: Sect. 2 formally introduces the dis-
tance measures in Δd . Section 3 introduces how to efficiently compute the Hilbert
distance. Section 4 presents algorithms for Hilbert minimax centers and Hilbert
center-based clustering. Section 5 performs an empirical study of clustering multi-
nomial distributions, comparing Riemannian geometry, information geometry, and
Hilbert geometry. Section6presents a seconduse case ofHilbert geometry inmachine
learning: clustering correlation matrices in the elliptope [11]. Finally, Sect. 7 con-
cludes this work by summarizing the pros and cons of each geometry. Although
some contents require prior knowledge on geometric structures, we will present the
detailed algorithms so that the general audience can still benefit from this work.

2 Four Distances with their Underlying Geometries

2.1 Fisher-Hotelling-Rao Riemannian Geometry

The Rao distance between two multinomial distributions is [6, 12]:

ρFHR(p, q) = 2 arccos

(
d∑

i=0

√
λi
pλ

i
q

)

. (1)

It is a Riemannian metric length distance (satisfying the symmetric and triangu-
lar inequality axioms) obtained by setting the metric tensor g to the Fisher infor-
mation matrix (FIM) I (p) = (gi j (p))d×d with respect to the coordinate system
(λ1

p, . . . , λ
d
p), where

gi j (p) = δi j

λi
p

+ 1

λ0
p

.

We term this geometry the Fisher-Hotelling-Rao (FHR) geometry [13–16]. The met-
ric tensor g allows one to define an inner product on each tangent plane Tp of the
probability simplex manifold: 〈u, v〉p = u�g(p)v. When g is everywhere the iden-
tity matrix, we recover the Euclidean (Riemannian) geometry with the inner product
being the scalar product: 〈u, v〉 = u�v. The geodesics γ (p, q;α) are defined by the
Levi-Civita metric connection [17, 18] that is derived from the metric tensor. The
FHR manifold can be embedded in the positive orthant of an Euclidean d-sphere
in R

d+1 by using the square root representation λ �→ √
λ [12]. Therefore the FHR

manifold modeling of Δd has constant positive curvature: It is a spherical geometry
restricted to the positive orthant with the metric distance measuring the arc length
on a great circle.
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2.2 Information Geometry

A divergence D is a smooth C3 differentiable dissimilarity measure [19] that allows
to define a dual structure in Information Geometry (IG), see [17, 18, 20]. A f -
divergence is defined for a strictly convex function f with f (1) = 0 by:

I f (p : q) =
d∑

i=0

λi
p f

(
λi
q

λi
p

)

≥ f (1) = 0.

It is a separable divergence since the d-variate divergence can be written as a sum
of d univariate (scalar) divergences: I f (p : q) =∑d

i=0 I f (λ
i
p : λi

q). The class of
f -divergences plays an essential role in information theory since they are prov-
ably the only separable divergences that satisfy the information monotonicity prop-
erty [17, 21] (for d ≥ 2). That is, by coarse-graining the histograms, we obtain lower-
dimensional multinomials, say p′ and q ′, such that 0 ≤ I f (p′ : q ′) ≤ I f (p : q) [17].
The Kullback–Leibler (KL) divergence ρIG is a f -divergence obtained for the func-
tional generator f (u) = − log u:

ρIG(p, q) =
d∑

i=0

λi
p log

λi
p

λi
q

. (2)

It is an asymmetric non-metric distance:ρIG(p, q) = ρIG(q, p). In differential geom-
etry, the structure of a manifold is defined by two independent components:

1. A metric tensor g that allows to define an inner product 〈·, ·〉p at each tangent
space (for measuring vector lengths and angles between vectors);

2. A connection∇ that defines parallel transport
∏

c
∇ , i.e., a way to move a tangent

vector from one tangent plane Tp to any other one Tq along a smooth curve c,
with c(0) = p and c(1) = q.

In FHR geometry, the implicitly-used connection is called the Levi-Civita con-
nection that is induced by the metric g: ∇LC = ∇(g). It is a metric connection
since it ensures that 〈u, v〉p = 〈∏∇LC

c(t) u,
∏∇LC

c(t) v〉c(t) for t ∈ [0, 1]. The underlying
information-geometric structure of KL is characterized by a pair of dual connec-
tions [17] ∇ = ∇(−1) (mixture connection) and ∇∗ = ∇(1) (exponential connection)
that induces a corresponding pair of dual geodesics (technically, ±1-autoparallel
curves, [18]). Those connections are said flat as they define two dual global affine
coordinate systems θ and η on which the θ - and η-geodesics are (Euclidean)
straight line segments, respectively. For multinomials, the expectation parameters
are: η = (λ1, . . . , λd) and they one-to-one correspond to the natural parameters:

θ =
(
log λ1

λ0 , . . . , log λd

λ0

)
∈ R

d . Thus in IG, we have two kinds of midpoint multino-

mials of p and q, depending on whether we perform the (linear) interpolation on the
θ - or the η-geodesics. Informally speaking, the dual connections ∇(±1) are said cou-
pled to the FIM since we have ∇+∇∗

2 = ∇(g) = ∇LC. Those dual (torsion-free affine)
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connections are not metric connections but enjoy the following metric-compatibility
property when used together as follows: 〈u, v〉p = 〈∏c(t)u,

∏∗
c(t)v〉c(t) (for t ∈

[0, 1]), where ∏ :=∏∇ and
∏∗ :=∏∇∗

are the corresponding induced dual par-
allel transports. The geometry of f -divergences [19] is the α-geometry (for α =
3 + 2 f ′′′(1)) with the dual ±α-connections, where ∇(α) = 1+α

2 ∇∗ + 1−α
2 ∇. The

Levi-Civita metric connection is ∇LC = ∇(0). More generally, it was shown how to
build a dual information-geometric structure for any divergence [19]. For example,
we can build a dual structure from the symmetric Cauchy–Schwarz divergence [22]:

ρCS(p, q) = − log
〈λp, λq〉

√〈λp, λp〉〈λq , λq〉
. (3)

2.3 Hilbert Simplex Geometry

InHilbert geometry (HG),we are given a bounded convex domainC (here,C = Δd ),
and the distance between any two points M , M ′ of C is defined [23] as follows:
Consider the two intersection points AA′ of the line (MM ′) with C , and order them
on the line so that we have A, M, M ′, A′. Then the Hilbert metric distance [24] is
defined by:

ρHG(M, M ′) =
{∣
∣
∣log |A′M ||AM ′|

|A′M ′||AM |
∣
∣
∣ , M = M ′,

0 M = M ′.
(4)

It is also called the Hilbert cross-ratio metric distance [25, 26]. Notice that we take
the absolute value of the logarithm since theHilbert distance is a signed distance [27].
WhenC is the unit ball, HG lets us recover theKlein hyperbolic geometry [26].When
C is a quadric bounded convex domain, we obtain the Cayley–Klein hyperbolic
geometry [28] which can be studied with the Riemannian structure and the corre-
sponding metric distance called the curved Mahalanobis distances [29, 30]. Cayley–
Klein hyperbolic geometries have negative curvature. Elements on the boundary are
called ideal elements [31].

In Hilbert geometry, the geodesics are straight Euclidean lines making them con-
venient for computation. Furthermore, the domain boundary ∂C needs not to be
smooth: One may also consider bounded polytopes [32]. This is particularly inter-
esting formodelingΔd , the d-dimensional open standard simplex.We call this geom-
etry the Hilbert simplex geometry [33]. In Fig. 3, we show that the Hilbert distance
between twomultinomial distributions p (M) and q (M ′) can be computed by finding
the two intersection points of the line (1 − t)p + tq with ∂Δd , denoted as t0 ≤ 0
and t1 ≥ 1. Then

ρHG(p, q) =
∣
∣
∣
∣log

(1 − t0)t1
(−t0)(t1 − 1)

∣
∣
∣
∣ = log

(

1 − 1

t0

)

− log

(

1 − 1

t1

)

.
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t0

A 0
M(p) 1

M ′(q) t1

A′

p(t) = (1− t)p+ tq

Fig. 3 Computing the Hilbert metric distance for trinomials on the 2D probability simplex as the
logarithm of the cross ratio (M, M ′; A, A′) of the four collinear points A, M, M ′ and A′

Fig. 4 Balls in the Hilbert simplex geometry Δ2 have polygonal Euclidean shapes of constant
combinatorial complexity. At infinitesimal scale, the balls have hexagonal shapes, showing that the
Hilbert geometry is not Riemannian

The shape of balls in polytope-domain HG is Euclidean polytopes1 [26], as
depicted in Fig. 4. Furthermore, the Euclidean shape of the balls does not change
with the radius. Hilbert balls have hexagons shapes in 2D [34], rhombic dodecahe-
dra shapes in 3D, and are polytopes [26] with d(d + 1) facets in dimension d. When
the polytope domain is not a simplex, the combinatorial complexity of balls depends
on the center location [34], see Fig. 5. The HG of the probability simplex yields a
non-Riemannian geometry, because, at an infinitesimal radius, the balls are poly-
topes and not ellipsoids (corresponding to squared Mahalanobis distance balls used
to visualize metric tensors [35]). The isometries in Hilbert polyhedral geometries are
studied in [36]. In Appendix 9, we recall that any Hilbert geometry induces a Finsle-
rian structure that becomes Riemannian iff the boundary is an ellipsoid (yielding the
hyperbolic Cayley–Klein geometries [27]). Notice that in Hilbert simplex/polytope
geometry, the geodesics are not unique (see Figure 2 of [25]).

1To contrast with this result, let us mention that infinitesimal small balls in Riemannian geometry
have Euclidean ellipsoidal shapes (visualized as Tissot’s indicatrix in cartography).
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Fig. 5 Hilbert balls in quadrangle domains have combinatorial complexity depending on the center
location

2.4 L1-Norm Geometry

The Total Variation (TV) metric distance between two multinomials p and q is
defined by:

TV(p, q) = 1

2

d∑

i=0

|λi
p − λi

q |.

It is a statistical f -divergence obtained for the generator f (u) = 1
2 |u − 1|. The L1-

norm induced distance ρL1 (L1) is defined by:

ρL1(p, q) = ‖λp − λq‖1 =
d∑

i=0

|λi
p − λi

q | = 2TV(p, q).

Therefore the distance ρL1 satisfies information monotonicity (for coarse-grained
histograms p′ and q ′ of ΔD′

with D′ < D):

0 ≤ ρL1(p
′, q ′) ≤ ρL1(p, q).

For trinomials, the ρL1 distance is given by:

ρL1(p, q) = |λ0
p − λ0

q | + |λ1
p − λ1

q | + |λ0
q − λ0

p + λ1
q − λ1

p|.

The L1 distance function is a polytopal distance function described by the dual
polytope Z of the d-dimensional cube called the standard (or regular) d-cross-
polytope [37], the orthoplex [38] or the d-cocube [39]: The cross-polytope Z
can be obtained as the convex hull of the 2d unit standard base vectors ±ei for
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Table 1 Comparing the geometric modelings of the probability simplex Δd

Riemannian Geometry Information Rie. Geo. Non-Rie. Hilbert Geo.

Structure (Δd , g,∇LC = ∇(g)) (Δd , g,∇(α),∇(−α)) (Δd , ρ)

Levi-Civita ∇LC = ∇(0) Dual connections ∇(±α) so Connection of Rd

that ∇(α)+∇(−α)

2 = ∇(0)

Distance Rao distance (metric) α-divergence (non-metric) Hilbert distance (metric)

KL or reverse KL for
α = ±1

Property Invariant to
reparameterization

Information monotonicity Isometric to a normed
space

Calculation Closed-form Closed-form Easy (Algorithm1)

Geodesic Shortest path Straight either in θ/η Straight

Smoothness Manifold Manifold Non-manifold

Curvature Positive Dually flat Negative

i ∈ {0, . . . , d − 1}. The cross-polytope is one of the three regular polytopes in dimen-
sion d ≥ 4 (with the hypercubes and simplices): It has 2d vertices and 2d facets.
Therefore the L1 balls on the hyperplane HΔd supporting the probability simplex
is the intersection of a (d + 1)-cross-polytope with d-dimensional hyperplane HΔd .
Thus the “multinomial ball” BallL1(p, r) of center p and radius r is defined by
BallL1(p, r) = (λp ⊕ rZ ) ∩ HΔd . In 2D, the shape of L1 trinomial balls is that of a
regular octahedron (twelve edges and eight faces) cut by the 2D plane HΔ2 : Trino-
mial balls have hexagonal shapes as illustrated in Fig. 2 (for ρL1). In 3D, trinomial
balls are Archimedean solid cuboctahedra, and in arbitrary dimension, the shapes are
polytopeswith d(d + 1) vertices [40]. Let us note in passing, that in 3D, the L1 multi-
nomial cuboctahedron ball has the dual shape of the Hilbert rhombic dodecahedron
ball.

Table 1 summarizes the characteristics of the threemain geometries: FHR, IG, and
HG. Let us conclude this introduction by mentioning the Cramér–Rao lower bound
and its relationship with information geometry [41]: Consider an unbiased estimator
θ̂ = T (X) of a parameter θ estimated from measurements distributed according
to a smooth density p(x; θ) (i.e., X ∼ p(x; θ)). The Cramér–Rao Lower Bound
(CRLB) states that the variance of T (X) is greater or equal to the inverse of the FIM
I (θ): Vθ [T (X)] � I −1(θ). For regular parametric families {p(x; θ)}θ , the FIM
is a positive-definite matrix and defines a metric tensor, called the Fisher metric in
Riemannian geometry. The FIM is the cornerstone of information geometry [17] but
requires the differentiability of the probability density function (pdf).

A better lower bound that does not require the pdf differentiability is the
Hammersley–Chapman–Robbins Lower Bound [42, 43] (HCRLB):

Vθ [T (X)] ≥ sup
Δ

Δ2

Eθ

[(
p(x;θ+Δ)−p(x;θ)

p(x;θ)

)2
] . (5)
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By introducing the χ2-divergence, χ2(P : Q) = ∫
(
dP−dQ

dQ

)2
dQ, we rewrite the

HCRLB using the χ2-divergence in the denominator as follows:

Vθ [T (X)] ≥ sup
Δ

Δ2

χ2(P(x; θ + Δ) : P(x; θ))
. (6)

Note that theFIM is not defined for non-differentiable pdfs, and therefore theCramér–
Rao lower bound does not exist in that case.

3 Computing Hilbert Distance in Δd

Let us start with the simplest case: The 1D probability simplex Δ1, the space of
Bernoulli distributions. Any Bernoulli distribution can be represented by the activa-
tion probability of the random bit x : λ = p(x = 1) ∈ Δ1, corresponding to a point in
the intervalΔ1 = (0, 1). Wewrite the Bernoulli manifold as an exponential family as

p(x) = exp (xθ − F(θ)) , x ∈ {0, 1},

where F(θ) = log(1 + exp(θ)). Therefore λ = exp(θ)

1+exp(θ)
and θ = log λ

1−λ
.

3.1 1D Probability Simplex of Bernoulli Distributions

By definition, the Hilbert distance has the closed form:

ρHG(p, q) =
∣
∣
∣
∣log

λq(1 − λp)

λp(1 − λq)

∣
∣
∣
∣ =
∣
∣
∣
∣log

λp

1 − λp
− log

λq

1 − λq

∣
∣
∣
∣ .

Note that θp = log λp

1−λp
is the canonical parameter of the Bernoulli distribution.

The FIM of the Bernoulli manifold in the λ-coordinates is given by: g = 1
λ

+
1

1−λ
= 1

λ(1−λ)
. The FHR distance is obtained by integration as:

ρFHR(p, q) = 2 arccos
(√

λpλq +√(1 − λp)(1 − λq)
)

.

Notice that ρFHR(p, q) has finite values on ∂Δ1.
The KL divergence of the ±1-geometry is:

ρIG(p, q) = λp log
λp

λq
+ (1 − λp) log

1 − λp

1 − λq
.

The KL divergence belongs to the family of α-divergences [17].
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Fig. 6 Calculating the two
intersection points x(t0) and
x(t1) of the line (pq) with
the boundary of the
probability simplex Δd : For
each facet f\i , we calculate
the intersection point of line
x(t) = (1 − t)p + tq with
the d-dimensional
hyperplane H\i supporting
the facet f\i

3.2 Arbitrary Dimension Case

Given p, q ∈ Δd , we first need to compute the intersection of line (pq) with the
border of the d-dimensional probability simplex to get the two intersection points p′
and q ′ so that p′, p, q, q ′ are ordered on (pq). Once this is done, we simply apply
the formula in Eq. 4 to get the Hilbert distance.

A d-dimensional simplex consists of d + 1 vertices with their corresponding (d −
1)-dimensional facets. For theprobability simplexΔd , let ei = (0, . . . , 0

︸ ︷︷ ︸
i

, 1, 0, . . . , 0)

denote the d + 1 vertices of the standard simplex embedded in the hyperplane
HΔ :∑d

i=0 λi = 1 in Rd+1. Let f\ j denote the simplex facets that is the convex hull
of all vertices except e j : f\ j = hull(e0, . . . , e j−1, e j+1, . . . , ed). Let H\ j denote the
hyperplane supporting this facet, which is the affine hull f\ j = affine(e0, . . . , e j−1,

e j+1, . . . , ed).
To compute the two intersection points of (pq)withΔd , a naive algorithm consists

in computing the unique intersection point r j of the line (pq) with each hyperplane
H\ j ( j = 0, . . . , d) and checking whether r j belongs to f\ j .

Amuchmore efficient implementation given byAlgorithm(1) calculates the inter-
section point of the line x(t) = (1 − t)p + tq with each H\ j ( j = 0, . . . , d). These
intersection points are represented using the coordinate t . For example, x(0) = p and
x(1) = q. Due to convexity, any intersection point with H\ j must satisfy either t ≤ 0
or t ≥ 1. Then, the two intersection points with ∂Δd are obtained by t0 = max{t :
∃ j, x(t) ∈ H\ j and t ≤ 0} and t1 = min{t : ∃ j, x(t) ∈ H\ j and t ≥ 1}. Figure 6
illustrates this calculation method. This algorithm only requires O(d) time and O(1)
memory.
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Lemma 1 The Hilbert distance in the probability simplex can be computed in opti-
mal Θ(d) time.

Algorithm 1: Computing the Hilbert distance

Data: Two points p = (λ0p, . . . , λ
d
p), q = (λ0q , . . . , λ

d
q ) in the d-dimensional simplex Δd

Result: Their Hilbert distance ρHG(p, q)

1 begin
2 t0 ← −∞; t1 ← +∞;
3 for i = 0 . . . d do
4 if λip = λiq then
5 t ← λip/(λ

i
p − λiq );

6 if t0 < t ≤ 0 then
7 t0 ← t ;
8 else if 1 ≤ t < t1 then
9 t1 ← t ;

10 if t0 = −∞ or t1 = +∞ then
11 Output ρHG(p, q) = 0;
12 else if t0 = 0 or t1 = 1 then
13 Output ρHG(p, q) = ∞;
14 else

15 Output ρHG(p, q) =
∣
∣
∣log(1 − 1

t0
) − log(1 − 1

t1
)

∣
∣
∣;

Once an arbitrary distance ρ is chosen, we can define a ball centered at c and of
radius r as Bρ(c, r) = {x : ρ(c, x) ≤ r}. Figure 4 displays the hexagonal shapes of
the Hilbert balls for various center locations in Δ2.

Theorem 1 (Balls in a simplicialHilbert geometry [26])Aball in theHilbert simplex
geometry has a Euclidean polytope shape with d(d + 1) facets.

Note that when the domain is not simplicial, the Hilbert balls can have varying
combinatorial complexity depending on the center location. In 2D, the Hilbert ball
can have s ∼ 2s edges inclusively, where s is the number of edges of the boundary
of the Hilbert domain ∂C .

Since a Riemannian geometry is locally defined by ametric tensor, at infinitesimal
scales, Riemannian balls have Mahalanobis smooth ellipsoidal shapes: Bρ(c, r) =
{x : (x − c)�g(c)(x − c) ≤ r2}. This property allows one to visualize Riemannian
metric tensors [35]. Thus we conclude that:

Lemma 2 ([26]) Hilbert simplex geometry is a non-manifold metric length space.

As a remark, let us notice that slicing a simplex with a hyperplane does not always
produce a lower-dimensional simplex. For example, slicing a tetrahedron by a plane
yields either a triangle or a quadrilateral. Thus the restriction of a d-dimensional ball
B in a Hilbert simplex geometry Δd to a hyperplane H is a (d − 1)-dimensional
ball B ′ = B ∩ H of varying combinatorial complexity, corresponding to a ball in the
induced Hilbert sub-geometry in the convex sub-domain H ∩ Δd .
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3.3 Visualizing Distance Profiles

Figure 7 displays the distance profile from any point in the probability simplex to
a fixed reference point (trinomial) based on the following common distance mea-
sures [18]: Euclidean (metric) distance, Cauchy–Schwarz (CS) divergence, Hellinger
(metric) distance, Fisher-Rao (metric) distance, KL divergence and Hilbert simpli-
cial (metric) distance. The Euclidean and Cauchy–Schwarz divergence are clipped
toΔ2. The Cauchy–Schwarz distance is projective so that ρCS(λp, λ′q) = ρCS(p, q)

for any λ, λ′ > 0 [44].

4 Center-Based Clustering

We concentrate on comparing the efficiency of Hilbert simplex geometry for clus-
tering multinomials. We shall compare the experimental results of k-means++ and
k-center multinomial clustering for the three distances: Rao and Hilbert metric dis-
tances, and KL divergence. We describe how to adapt those clustering algorithms to
the Hilbert distance.

4.1 k-means++ Clustering

The celebrated k-means clustering [45] minimizes the sum of within-cluster vari-
ances, where each cluster has a center representative element. When dealing with
k = 1 cluster, the center (also called centroid or cluster prototype) is the center of
mass defined as the minimizer of

ED(Λ, c) = 1

n

n∑

i=1

D(pi : c),

where D(· : ·) is a dissimilarity measure. For an arbitrary D, the centroid c may not
be available in closed form. Nevertheless, using a generalization of the k-means++
initialization [9] (picking randomly seeds), one can bypass the centroid computation,
and yet guarantee probabilistically a good clustering.

Let C = {c1, . . . , ck} denote the set of k cluster centers. Then the generalized
k-means energy to be minimized is defined by:

ED(Λ,C) = 1

n

n∑

i=1

min
j∈{1,...,k} D(pi : c j ).
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(a) Reference point (3/7,3/7,1/7)

(b) Reference point (5/7,1/7,1/7)

Fig. 7 Acomparison of different distancemeasures onΔ2. The distance ismeasured from∀p ∈ Δ2

to a fixed reference point (the black dot). Lighter color means shorter distance. Darker color means
longer distance. The contours show equal distance curves with a precision step of 0.2
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By defining the distance D(p,C) = min j∈{1,...,k} D(p : c j ) of a point to a set, we can
rewrite the objective function as ED(Λ,C) = 1

n

∑n
i=1 D(pi ,C). Let E∗

D(Λ, k) =
minC : |C |=k ED(Λ,C) denote the global minimum of ED(Λ,C) wrt some given Λ

and k.
The k-means++ seeding proceeds for an arbitrary divergence D as follows: Pick

uniformly at random at first seed c1, and then iteratively choose the (k − 1) remaining
seeds according to the following probability distribution:

Pr(c j = pi ) = D(pi , {c1, . . . , c j−1})
∑n

i=1 D(pi , {c1, . . . , c j−1}) (2 ≤ j ≤ k).

Since its inception (2007), this k-means++ seeding has been extensively studied [46].
We state the general theorem established by [47]:

Theorem 2 (Generalized k-means++ performance, [47]) Let κ1 and κ2 be two con-
stants such that κ1 defines the quasi-triangular inequality property:

D(x : z) ≤ κ1 (D(x : y) + D(y : z)) , ∀x, y, z ∈ Δd ,

and κ2 handles the symmetry inequality:

D(x : y) ≤ κ2D(y : x), ∀x, y ∈ Δd .

Then the generalized k-means++ seeding guarantees with high probability a con-
figuration C of cluster centers such that:

ED(Λ,C) ≤ 2κ2
1 (1 + κ2)(2 + log k)E∗

D(Λ, k). (7)

The ratio ED(Λ,C)

E∗
D(Λ,k) is called the competitive factor. The seminal result of ordinary

k-means++ was shown [9] to be 8(2 + log k)-competitive. When evaluating κ1, one
has to note that squared metric distances are not metric because they do not satisfy
the triangular inequality. For example, the squared Euclidean distance is not a metric
but it satisfies the 2-quasi-triangular inequality with κ1 = 2.

We state the following general performance theorem:

Theorem 3 (k-means++performance in ametric space) In anymetric space (X , d),
the k-means++ wrt the squared metric distance d2 is 16(2 + log k)-competitive.

Proof Since a metric distance is symmetric, it follows that κ2 = 1. Consider the
quasi-triangular inequality property for the squared non-metric dissimilarity d2:

d(p, q) ≤ d(p, q) + d(q, r),

d2(p, q) ≤ (d(p, q) + d(q, r))2,

d2(p, q) ≤ d2(p, q) + d2(q, r) + 2d(p, q)d(q, r).
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Let us apply the inequality of arithmetic and geometric means2:

√
d2(p, q)d2(q, r) ≤ d2(p, q) + d2(q, r)

2
.

Thus we have

d2(p, q) ≤ d2(p, q) + d2(q, r) + 2d(p, q)d(q, r) ≤ 2(d2(p, q) + d2(q, r)).

That is, the squared metric distance satisfies the 2-approximate triangle inequality,
and κ1 = 2. The result is straightforward from Theorem 2.

Theorem 4 (k-means++ performance in a normed space) In any normed space
(X , ‖ · ‖), the k-means++ with D(x : y) = ‖x − y‖2 is 16(2 + log k)-competitive.

Proof In any normed space (X , ‖ · ‖), we have both ‖x − y‖ = ‖y − x‖ and the
triangle inequality:

‖x − z‖ ≤ ‖x − y‖ + ‖y − z‖.

The proof is very similar to the proof of Theorem 3 and is omitted.

Since any inner product space (X , 〈·, ·〉) has an induced norm ‖x‖ = √〈x, x〉,
we have the following corollary.

Corollary 1 In any inner product space (X , 〈·, ·〉), the k-means++ with D(x :
y) = 〈x − y, x − y〉 is 16(2 + log k)-competitive.

We need to report a bound for the squared Hilbert symmetric distance (κ2 = 1).
In [26] (Theorem 3.3), it was shown that Hilbert geometry of a bounded convex
domainC is isometric to a normedvector space iffC is an open simplex: (Δd , ρHG) �
(V d , ‖ · ‖NH), where ‖ · ‖NH is the corresponding norm. Therefore κ1 = 2. We write
“NH” for short for this equivalent normed Hilbert geometry. Appendix 8 recalls the
construction due to [25], and shows the squared Hilbert distance fails the triangle
inequality and it is not a distance induced by an inner product.

As an empirical study, we randomly generate n = 106 tuples (x, y, z) based on
the uniform distribution in Δd . For each tuple (x, y, z), we evaluate the ratio

κ1 = D(x : z)
D(x : y) + D(y : z) .

Figure 8 shows the statistics for four different choices of D: (1) D(x : y) =
ρ2
FHR(x, y); (2) D(x : y) = 1

2KL(x : y) + 1
2KL(y : x); (3) D(x : y) = ρ2

HG(x, y);
(4) D(x : y) = ρ2

L1(x, y). We find experimentally that κ1 is upper bounded by 2 for
ρ2
FHR, ρ

2
HG and ρ2

L1, while the average κ1 value is smaller than 0.5. For all the com-
pared distances, κ2 = 1. ThereforeρFHR andρHG have better k-means++performance
guarantee as compared to ρIG.

2For positive values a and b, the arithmetic-geometric mean inequality states that
√
ab ≤ a+b

2 .
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Fig. 8 The maximum, mean, standard deviation, and minimum of κ1 on 106 randomly generated
tuples (x, y, z) in Δd for d = 1, . . . , 10

(a) k = 3 clusters

(b) k = 5 clusters

Fig. 9 k-Means++ clustering results on a toy dataset in the space of trinomials Δ2. The color
density maps indicate the distance from any point to its nearest cluster center

We get by applying Theorem 4:

Corollary 2 (k-means++ in Hilbert simplex geometry) The k-means++ seeding in
a Hilbert simplex geometry in fixed dimension is 16(2 + log k)-competitive.

Figure 9 displays the clustering results of k-means++ in Hilbert simplex geometry
as compared to the other geometries for k ∈ {3, 5}.

The KL divergence can be interpreted as a separable Bregman divergence [48].
TheBregman k-means++performance has been studied in [48, 49], and a competitive
factor of O( 1

μ
) is reported using the notion of Bregman μ-similarity (that is suited

for data-sets on a compact domain).
In [50], spherical k-means++ is studied wrt the distance dS(x, y) = 1 − 〈x, y〉

for any pair of points x, y on the unit sphere. Since 〈x, y〉 = ‖x‖2‖y‖2 cos(θx,y) =
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cos(θx,y), we have dS(x, y) = 1 − cos(θx,y), where θx,y denotes the angle between
a pair of unit vectors x and y. This distance is called the cosine distance since it
amounts to one minus the cosine similarity. Notice that the cosine distance is related
to the squared Euclidean distance via the identity: dS(x, y) = 1

2‖x − y‖2. The cosine
distance is different from the spherical distance that relies on the arccos function.

Since divergences may be asymmetric, one can further consider mixed diver-
gence M(p : q : r) = λD(p : q) + (1 − λ)D(q : r) for λ ∈ [0, 1], and extend the
k-means++ seeding procedure and analysis [51].

For a given data set, we can compute κ1 or κ2 by inspecting triples and pairs of
points, and get data-dependent competitive factor improving the bounds mentioned
above.

4.2 k-Center Clustering

Let Λ be a finite point set. The cost function for a k-center clustering with centers C
(|C | = k) is:

fD(Λ,C) = max
pi∈Λ

min
c j∈C

D(pi : c j ).

The farthest first traversal heuristic [10] has a guaranteed approximation factor of 2
for any metric distance (see Algorithm3).

In order to use the k-center clustering algorithm described in Algorithm2, we
need to be able to compute the 1-center (or minimax center) for the Hilbert sim-
plex geometry, that is the Minimum Enclosing Ball (MEB, also called the Smallest
Enclosing Ball, SEB).

Algorithm 2: k-Center clustering
Data: A set of points p1, . . . , pn ∈ Δd . A distance measure ρ on Δd . The maximum number

k of clusters. The maximum number T of iterations.
Result: A clustering scheme assigning each pi a label li ∈ {1, . . . , k}

1 begin
2 Randomly pick k cluster centers c1, . . . , ck using the kmeans++ heuristic;
3 for t = 1, . . . , T do
4 for i = 1, . . . , n do
5 li ← argminkl=1 ρ(pi , cl );

6 for l = 1, . . . , k do
7 cl ← argminc maxi :li=l ρ(pi , c);

8 Output {li }ni=1;
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Algorithm 3: A 2-approximation of the k-center clustering for any metric dis-
tance ρ.
Data: A set Λ; a number k of clusters; a metric distance ρ.
Result: A 2-approximation of the k-center clustering

1 begin
2 c1 ← ARandomPointOf(Λ);
3 C ← {c1};
4 for i = 2, . . . , k do
5 ci ← argmaxp∈Λ ρ(p,C);
6 C ← C ∪ {ci };
7 Output C ;

We may consider the SEB equivalently either in Δd or in the normed space V d .
In both spaces, the shapes of the balls are convex. Let Λ = {p1, . . . , pn} denote the
point set in Δd , and V = {v1, . . . , vn} the equivalent point set in the normed vector
space (following the mapping explained in Appendix 8). Then the SEBs BHG(Λ) in
Δd and BNH(V ) in V d have respectively radii r∗

HG and r∗
NH defined by:

r∗
HG = min

c∈Δd
max

i∈{1,...,n} ρHG(pi , c),

r∗
NH = min

v∈V d
max

i∈{1,...,n} ‖vi − v‖NH.

The SEB in the normed vector space (V d , ‖ · ‖NH) amounts to find the minimum
covering norm polytope of a finite point set. This problem has been well-studied
in computational geometry [52–54]. By considering the equivalent Hilbert norm
polytope with d(d + 1) facets, we state the result of [54]:

Theorem 5 (SEB in Hilbert polytope normed space, [54]) A (1 + ε)-approximation
of the SEB in V d can be computed in O(d3 n

ε
) time.

We shall now report two algorithms for computing the SEBs: One exact algorithm
in V d that does not scale well in high dimensions, and one approximation in Δd that
works well for large dimensions.

4.2.1 Exact Smallest Enclosing Ball in a Hilbert Simplex Geometry

Given a finite point set {p1, . . . , pn} ∈ Δd , the SEB in Hilbert simplex geometry is
centered at

c∗ = argminc∈Δd max
i∈{1,...,n} ρHG(c, xi ),

with radius
r∗ = min

c∈Δd
max

i∈{1,...,n} ρHG(c, xi ).
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Fig. 10 Computing the SEB in Hilbert simplex geometry amounts to compute the SEB in the
corresponding normed vector space

An equivalent problem is to find the SEB in the isometric normed vector space
V d via the mapping reported in Appendix 8. Each simplex point pi corresponds to
a point vi in the V d .

Figure 10 displays some examples of the exact smallest enclosing balls in the
Hilbert simplex geometry and in the corresponding normed vector space.

To compute the SEB, one may also consider the generic LP-type randomized
algorithm [55].We notice that an enclosing ball for a point set in general has a number
k of points on the border of the ball, with 2 ≤ k ≤ d(d+1)

2 . Let D = d(d+1)
2 denote the

varying size of the combinatorial basis, then we can apply the LP-type framework
(we check the axioms of locality and monotonicity, [56]) to solve efficiently the
SEBs.

Theorem 6 (Smallest Enclosing Hilbert Ball is LP-type, [56, 57]) The smallest
enclosing Hilbert ball amounts to find the smallest enclosing ball in a vector space
with respect to a polytope norm that can be solved using a LP-type randomized
algorithm.

The Enclosing Ball Decision Problem (EBDP, [58]) asks for a given value r ,
whether r ≥ r∗ or not. Thedecisionproblemamounts tofindwhether a set {r BV + vi }
of translates can be stabbed by a point [58]: That is, whether∩n

i=1(r BV + vi ) is empty
or not. Since these translates are polytopes with d(d + 1) facets, this can be solved
in linear time using Linear Programming.

Theorem 7 (Enclosing Hilbert Ball Decision Problem) The decision problem to test
whether r ≥ r∗ or not can be solved by Linear Programming.
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This yields a simple scheme to approximate the optimal value r∗: Let r0 =
maxi∈{2,...,n} ‖vi − v1‖NH. Then r∗ ∈ [ r02 , r0] = [a0, b0]. At stage i , perform a
dichotomic search on [ai , bi ] by answering the decision problem for ri+1 = ai+bi

2 ,
and update the radius range accordingly [58].

However, the LP-type randomized algorithm or the decision problem-based algo-
rithm do not scale well in high dimensions. Next, we introduce a simple approxi-
mation algorithm that relies on the fact that the line segment [pq] is a geodesic in
Hilbert simplex geometry. (Geodesics are not unique. See Figure 2 of [25].)

4.2.2 Geodesic Bisection Approximation Heuristic

In Riemannian geometry, the 1-center can be arbitrarily finely approximated by a
simple geodesic bisection algorithm [59, 60]. This algorithm can be extended to HG
straightforwardly as detailed in Algorithm4.

Algorithm 4: Geodesic walk for approximating the Hilbert minimax center,
generalizing [60]

Data: A set of points p1, . . . , pn ∈ Δd . The maximum number T of iterations.
Result: c ≈ argminc maxi ρHG(pi , c)

1 begin
2 c0 ← ARandomPointOf({p1, . . . , pn});
3 for t = 1, . . . , T do
4 p ← argmaxpi ρHG(pi , ct−1);
5 ct ← ct−1#

ρ

1/(t+1) p;

6 Output cT ;

The algorithm first picks up a point c0 at random from Λ as the initial center, then
computes the farthest point p (with respect to the distance ρ), and then walk on the
geodesic from c0 to p by a certain amount to define c1, etc. For an arbitrary distance
ρ, we define the operator #ρ

α as follows:

p#ρ
αq = v = γ (p, q, α), ρ(p : v) = αρ(p : q),

where γ (p, q, α) is the geodesic passing through p and q, and parameterized by
α (0 ≤ α ≤ 1). When the equations of the geodesics are explicitly known, we can
either get a closed form solution for #ρ

α or perform a bisection search to find v′ such
that ρ(p : v′) ≈ αρ(p : q). See [61] for an extension and analysis in hyperbolic
geometry. See Fig. 11 to get an intuitive idea on the experimental convergence rate
of Algorithm 4. See Fig. 12 for visualizations of centers wrt different geometries.

Furthermore, this iterative algorithm implies a core-set [62] (namely, the set of
farthest points visited during the geodesic walks) that is useful for clustering large
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Fig. 11 Convergence rate of Algorithm4 measured by the Hilbert distance between the current
minimax center and the true center (left) or their Hilbert distance divided by the Hilbert radius of
the dataset (right). The plot is based on 100 random points in Δ9/Δ255

data-sets [63]. See [52] for core-set results on containment problems wrt a convex
homothetic object (the equivalent Hilbert polytope norm in our case).

A simple algorithm dubbedMinCon [53] can find an approximation of the Min-
imum Enclosing Polytope. The algorithm induces a core-set of size O( 1

ε2
) although

the theorem is challenged in [52].
Thus by combining the k-center seeding [10] with the Lloyd-like batched iter-

ations, we get an efficient k-center clustering algorithm for the FHR and Hilbert
metric geometries. When dealing with the Kullback–Leibler divergence, we use the
fact that KL is a Bregman divergence, and use the 1-center algorithm ([64, 65] for
approximation in any dimension, or [55] which is exact but limited to small dimen-
sions).

Since Hilbert simplex geometry is isomorphic to a normed vector space [26] with
a polytope norm with d(d + 1) facets, the Voronoi diagram in Hilbert geometry of
Δd amounts to compute a Voronoi diagram wrt a polytope norm [66–68].

5 Experiments

We generate a dataset consisting of a set of clusters in a high dimensional statistical
simplex Δd . Each cluster is generated independently as follows. We first pick a
random center c = (λ0

c, . . . , λ
d
c ) based on the uniform distribution on Δd . Then any

random sample p = (λ0, . . . , λd) associated with c is independently generated by
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Fig. 12 The
Riemannian/IG/Hilbert/L1
minimax centers of three
point clouds in Δ2 based on
Algorithm4. The color maps
show the distance from
∀p ∈ Δ2 to the
corresponding center
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λi = exp(log λi
c + σεi )

∑d
i=0 exp(log λi

c + σεi )
,

where σ > 0 is a noise level parameter, and each εi follows independently a stan-
dard Gaussian distribution (generator 1) or the Student’s t-distribution with five
degrees of freedom (generator 2). Let σ = 0, we get λi = λi

c. Therefore p is ran-
domly distributed around c. We repeat generating random samples for each cluster
center, andmake sure that different clusters have almost the same number of samples.
Then we perform clustering based on the configurations n ∈ {50, 100}, d ∈ {9, 255},
σ ∈ {0.5, 0.9}, ρ ∈ {ρFHR, ρIG, ρHG, ρEUC, ρL1}. For simplicity, the number of clus-
ters k is set to the ground truth. For each configuration, we repeat the clustering
experiment based on 300 different random datasets. The performance is measured
by the normalized mutual information (NMI), which is a scalar indicator in the range
[0, 1] (the larger the better).

The results of k-means++ and k-centers are shown in Tables 2 and 3, respectively.
The large variance of NMI is because that each experiment is performed on random
datasets wrt different random seeds. Generally, the performance deteriorates as we
increase the number of clusters, increase the noise level or decrease the dimension-
ality, which have the same effect to reduce the inter-cluster gap.

The key comparison is the three columns ρFHR, ρHG and ρIG, as they are based
on exactly the same algorithm with the only difference being the underlying geom-
etry. We see clearly that in general, their clustering performance presents the order
HG > FHR > IG. The performance of HG is superior to the other two geometries,
especiallywhen the noise level is large. Intuitively, theHilbert balls aremore compact
in size and therefore can better capture the clustering structure (see Fig. 2).

The column ρEUC is based on the Euclidean enclosing ball. It shows the worst
scores because the intrinsic geometry of the probability simplex is far from the
Euclidean geometry.

6 Hilbert’s Projective Geometry of the Space
of Correlation Matrices

In this section,we present theHilbert’s projective geometry to the space of correlation
matrices

C d = {Cd×d : C � 0;Cii = 1,∀i} .

If C1,C2 ∈ C , then (1 − λ)C1 + λC2 ∈ C for 0 < λ < 1. Therefore C is a convex
set, known as an elliptope [11] embedded in the p.s.d. cone. See Fig. 13 for an
intuitive view of C3, where the coordinate system (x, y, z) is the off-diagonal entries
of C ∈ C3.

In order to compute the Hilbert distance ρHG(C1,C2), we need to compute the
intersection of the line (C1,C2) with ∂C , denoted as C ′

1 and C
′
2, then we have
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Table 2 k-means++ clustering accuracy in NMI on randomly generated datasets based on different
geometries. The table shows the mean and standard deviation after 300 independent runs for each
configuration. ρ is the distance measure. n is the sample size. d is the dimensionality of Δd . σ is
noise level

k n d σ ρFHR ρIG ρHG ρEUC ρL1

3 50 9 0.5 0.76 ± 0.22 0.76 ± 0.24 0.81± 0.22 0.64 ± 0.23 0.70 ± 0.22

0.9 0.44 ± 0.20 0.44 ± 0.20 0.57± 0.22 0.31 ± 0.17 0.38 ± 0.18

255 0.5 0.80 ± 0.24 0.81 ± 0.24 0.88± 0.21 0.74 ± 0.25 0.79 ± 0.24

0.9 0.65 ± 0.27 0.66 ± 0.28 0.72± 0.27 0.46 ± 0.24 0.63 ± 0.27

100 9 0.5 0.76 ± 0.22 0.76 ± 0.21 0.82± 0.22 0.60 ± 0.21 0.69 ± 0.23

0.9 0.42 ± 0.19 0.41 ± 0.18 0.54± 0.22 0.27 ± 0.14 0.34 ± 0.16

255 0.5 0.82 ± 0.23 0.82 ± 0.24 0.89± 0.20 0.74 ± 0.24 0.80 ± 0.25

0.9 0.66 ± 0.26 0.66 ± 0.28 0.72± 0.26 0.45 ± 0.25 0.64 ± 0.27

5 50 9 0.5 0.75 ± 0.14 0.74 ± 0.15 0.81± 0.13 0.61 ± 0.13 0.68 ± 0.13

0.9 0.44 ± 0.13 0.42 ± 0.13 0.55± 0.15 0.31 ± 0.11 0.36 ± 0.12

255 0.5 0.83 ± 0.15 0.83 ± 0.15 0.88± 0.14 0.77 ± 0.16 0.82 ± 0.15

0.9 0.71 ± 0.17 0.70 ± 0.19 0.75± 0.17 0.50 ± 0.17 0.68 ± 0.18

100 9 0.5 0.74 ± 0.13 0.74 ± 0.14 0.80± 0.14 0.60 ± 0.13 0.67 ± 0.13

0.9 0.42 ± 0.11 0.40 ± 0.12 0.55± 0.15 0.29 ± 0.09 0.35 ± 0.11

255 0.5 0.83 ± 0.14 0.83 ± 0.15 0.88± 0.13 0.77 ± 0.15 0.81 ± 0.15

0.9 0.69 ± 0.18 0.69 ± 0.18 0.73± 0.17 0.48 ± 0.17 0.67 ± 0.18

(a) Generator 1

k n d σ ρFHR ρIG ρHG ρEUC ρL1

3 50 9 0.5 0.62 ± 0.22 0.60 ± 0.22 0.71± 0.23 0.45 ± 0.20 0.54 ± 0.22

0.9 0.29 ± 0.17 0.27 ± 0.16 0.39± 0.19 0.17 ± 0.13 0.25 ± 0.15

255 0.5 0.70 ± 0.25 0.69 ± 0.26 0.74± 0.25 0.37 ± 0.29 0.70 ± 0.26

0.9 0.42± 0.25 0.35 ± 0.20 0.40 ± 0.19 0.03 ± 0.08 0.44± 0.26
100 9 0.5 0.63 ± 0.22 0.61 ± 0.22 0.71± 0.22 0.46 ± 0.19 0.56 ± 0.20

0.9 0.29 ± 0.15 0.26 ± 0.14 0.38± 0.20 0.18 ± 0.12 0.24 ± 0.14

255 0.5 0.71 ± 0.26 0.69 ± 0.27 0.75± 0.25 0.31 ± 0.28 0.70 ± 0.27

0.9 0.41 ± 0.26 0.33 ± 0.20 0.38 ± 0.18 0.02 ± 0.06 0.43± 0.26
5 50 9 0.5 0.64 ± 0.15 0.61 ± 0.14 0.70± 0.14 0.48 ± 0.14 0.57 ± 0.15

0.9 0.31 ± 0.12 0.29 ± 0.12 0.41± 0.15 0.20 ± 0.09 0.26 ± 0.10

255 0.5 0.74 ± 0.17 0.72 ± 0.17 0.77± 0.16 0.41 ± 0.20 0.74 ± 0.17

0.9 0.44 ± 0.17 0.37 ± 0.16 0.44 ± 0.15 0.04 ± 0.06 0.47± 0.17
100 9 0.5 0.62 ± 0.14 0.61 ± 0.14 0.71± 0.14 0.46 ± 0.13 0.54 ± 0.14

0.9 0.30 ± 0.10 0.27 ± 0.11 0.40± 0.13 0.19 ± 0.08 0.25 ± 0.09

255 0.5 0.73 ± 0.18 0.70 ± 0.18 0.75± 0.16 0.37 ± 0.20 0.73 ± 0.17

0.9 0.43 ± 0.16 0.35 ± 0.14 0.41 ± 0.12 0.03 ± 0.06 0.46± 0.18

(b) Generator 2
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Table 3 k-center clustering accuracy in NMI on randomly generated datasets based on different
geometries. The table shows the mean and standard deviation after 300 independent runs for each
configuration. ρ is the distancemeasure. n is the sample size. d is the dimensionality of the statistical
simplex. σ is noise level

k n d σ ρFHR ρIG ρHG ρEUC ρL1

3 50 9 0.5 0.87 ± 0.19 0.85 ± 0.19 0.92± 0.16 0.72 ± 0.22 0.80 ± 0.20

0.9 0.54 ± 0.21 0.51 ± 0.21 0.70± 0.23 0.36 ± 0.17 0.44 ± 0.19

255 0.5 0.93 ± 0.16 0.92 ± 0.18 0.95± 0.14 0.89 ± 0.18 0.90 ± 0.19

0.9 0.76 ± 0.24 0.72 ± 0.26 0.82± 0.24 0.50 ± 0.28 0.76 ± 0.25

100 9 0.5 0.88 ± 0.17 0.86 ± 0.18 0.93± 0.14 0.70 ± 0.20 0.80 ± 0.20

0.9 0.53 ± 0.20 0.49 ± 0.19 0.70± 0.22 0.33 ± 0.14 0.41 ± 0.18

255 0.5 0.93 ± 0.16 0.92 ± 0.17 0.95± 0.13 0.88 ± 0.19 0.93 ± 0.16

0.9 0.81 ± 0.22 0.75 ± 0.24 0.83± 0.22 0.47 ± 0.28 0.79 ± 0.22

5 50 9 0.5 0.82 ± 0.13 0.81 ± 0.13 0.89± 0.12 0.67 ± 0.13 0.75 ± 0.13

0.9 0.50 ± 0.13 0.47 ± 0.13 0.66± 0.15 0.34 ± 0.11 0.40 ± 0.12

255 0.5 0.92± 0.11 0.91± 0.12 0.93± 0.11 0.87 ± 0.13 0.92± 0.12
0.9 0.77 ± 0.15 0.71 ± 0.17 0.85± 0.17 0.54 ± 0.19 0.74 ± 0.16

100 9 0.5 0.83 ± 0.12 0.81 ± 0.13 0.89± 0.11 0.67 ± 0.11 0.76 ± 0.13

0.9 0.48 ± 0.12 0.46 ± 0.12 0.66± 0.15 0.33 ± 0.09 0.39 ± 0.10

255 0.5 0.93± 0.10 0.92± 0.11 0.94± 0.09 0.89 ± 0.11 0.92 ± 0.11

0.9 0.81 ± 0.14 0.74 ± 0.15 0.84± 0.16 0.52 ± 0.19 0.79 ± 0.14

(a) Generator 1

k n d σ ρFHR ρIG ρHG ρEUC ρL1

3 50 9 0.5 0.68 ± 0.22 0.67 ± 0.22 0.80± 0.20 0.48 ± 0.22 0.60 ± 0.22

0.9 0.32 ± 0.18 0.29 ± 0.17 0.45± 0.21 0.20 ± 0.14 0.26 ± 0.15

255 0.5 0.79 ± 0.24 0.75 ± 0.24 0.82± 0.22 0.13 ± 0.23 0.81± 0.24
0.9 0.35 ± 0.27 0.35 ± 0.21 0.42± 0.19 0.00 ± 0.02 0.32 ± 0.30

100 9 0.5 0.66 ± 0.22 0.65 ± 0.22 0.79± 0.21 0.45 ± 0.19 0.59 ± 0.20

0.9 0.30 ± 0.16 0.28 ± 0.14 0.42± 0.19 0.20 ± 0.12 0.26 ± 0.14

255 0.5 0.78 ± 0.25 0.76 ± 0.24 0.82± 0.21 0.05 ± 0.14 0.77 ± 0.27

0.9 0.29 ± 0.28 0.29 ± 0.20 0.39± 0.20 0.00 ± 0.02 0.22 ± 0.25

5 50 9 0.5 0.69 ± 0.14 0.66 ± 0.14 0.77± 0.13 0.50 ± 0.13 0.61 ± 0.14

0.9 0.34 ± 0.12 0.30 ± 0.12 0.46± 0.15 0.22 ± 0.09 0.28 ± 0.10

255 0.5 0.80± 0.15 0.76 ± 0.15 0.82± 0.14 0.24 ± 0.23 0.81± 0.14
0.9 0.42 ± 0.21 0.38 ± 0.16 0.46± 0.15 0.00 ± 0.02 0.39 ± 0.22

100 9 0.5 0.66 ± 0.13 0.64 ± 0.14 0.77± 0.14 0.47 ± 0.13 0.57 ± 0.13

0.9 0.31 ± 0.11 0.28 ± 0.10 0.44± 0.13 0.21 ± 0.08 0.25 ± 0.09

255 0.5 0.80± 0.16 0.76 ± 0.15 0.82± 0.13 0.12 ± 0.17 0.81± 0.16
0.9 0.32 ± 0.19 0.30 ± 0.15 0.41± 0.13 0.00 ± 0.01 0.26 ± 0.18

(b) Generator 2
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Fig. 13 The elliptope C3 (two different perspectives)

ρHG(C1,C2) =
∣
∣
∣
∣log

‖C1 − C ′
2‖‖C ′

1 − C2‖
‖C1 − C ′

1‖‖C2 − C ′
2‖
∣
∣
∣
∣ .

Unfortunately there is no closed form solution of C ′
1 and C ′

2. Instead, we apply a
binary searching algorithm. Note a necessary condition for C ∈ C is that C has
a positive spectrum. If C has at least one non-positive eigenvalue, then C /∈ C . To
determine whether a givenC is inside the elliptope requires a spectral decomposition
of C . Therefore the computation of C ′

1 and C
′
2 is in general expensive.

We compare the Hilbert elliptope geometry with commonly used distance mea-
sures including the L2 distance ρEUC, L1 distance ρL1, and the square root of the
log-det divergence

ρLD(C1,C2) = tr(C1C
−1
2 ) − log |C1C

−1
2 | − d.

Due to the high computational complexity,we only investigate k-means++ clustering.
The investigated dataset consists of 100matrices forming 3 clusters inC3 with almost
identical size. Each cluster is independently generated according to

P ∼ W −1(I3×3, ν1),

Ci ∼ W −1(P, ν2),

whereW −1(A, ν) denotes the inverseWishart distribution with scale matrix A and ν

degrees of freedom, and Ci is a point in the cluster associated with P . Table 4 shows
the k-means++ clustering performance in terms of NMI. Again Hilbert geometry is
favorable as compared to alternatives, showing that the good performance of Hilbert
clustering is generalizable.
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Table 4 NMI (mean±std) of k-means++ clustering based on different distance measures in the
elliptope (500 independent runs)

ν1 ν2 ρHG ρEUC ρL1 ρLD

4 10 0.62± 0.22 0.57±0.21 0.56±0.22 0.58±0.22

4 30 0.85± 0.18 0.80±0.20 0.81±0.19 0.82±0.20

4 50 0.89± 0.17 0.87±0.17 0.86±0.18 0.88±0.18

5 10 0.50± 0.21 0.49±0.21 0.48±0.20 0.47±0.21

5 30 0.77± 0.20 0.75±0.21 0.75±0.21 0.75±0.21

5 50 0.84± 0.19 0.82±0.19 0.82±0.20 0.84± 0.18

7 Conclusion

We introduced the Hilbert projective metric distance and its underlying non-
Riemannian geometry formodeling the space ofmultinomials or the open probability
simplex. We compared experimentally in simulated clustering tasks this geometry
with the traditional differential geometricmodelings (either the Fisher-Hotelling-Rao
metric connection or the dually coupled non-metric affine connections of information
geometry [17]).

The main feature of Hilbert geometry (HG) is that it is a metric non-manifold
geometry, where geodesics are straight (Euclidean) line segments. This makes this
geometry computationally attractive. In simplex domains, theHilbert balls have fixed
combinatorial (Euclidean) polytope structures, and HG is known to be isometric to
a normed space [25, 69]. This latter isometry allows one to generalize easily the
standard proofs of clustering (e.g., k-means or k-center). We demonstrated it for the
k-means++ competitive performance analysis and for the convergence of the 1-center
heuristic [60] (smallest enclosing Hilbert ball allows one to implement efficiently the
k-center clustering). Our experimental k-means++ or k-center comparisons of HG
algorithms with the manifold modeling approach yield superior performance. This
may be intuitively explained by the sharpness of Hilbert balls as compared to the
FHR/IG ball profiles.

Chentsov [70] defined statistical invariance on a probability manifold under
Markov morphisms and proved that the Fisher Information Metric is the unique
Riemannian metric (up to rescaling) for multinomials. However, this does not rule
out that other distances (with underlying geometric structures) may be used to model
statistical manifolds (e.g., Finsler statistical manifolds [71, 72], or the total variation
distance— the onlymetric f -divergence [73]). Defining statistical invariance related
to geometry is the cornerstone problem of information geometry that can be tackled
from many directions (see [74] and references therein for a short review).

In this paper,we introducedHilbert geometries inmachine learning by considering
clustering tasks in the probability simplex and in the correlation elliptope.Acanonical
Hilbertmetric distance can be defined on any bounded convex subset of the Euclidean
space with the key property that geodesics are straight Euclidean line segments thus
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making this geometry well-suited for fast and exact computations. Thus we may
consider clustering in other bounded convex subsets like the simplotopes [75].

One future direction is to consider theHilbertmetric for regularization and sparsity
in machine learning (due to its equivalence with a polytope normed distance).

Our Python codes are freely available online for reproducible research:
https://www.lix.polytechnique.fr/~nielsen/HSG/

8 Isometry of Hilbert Simplex Geometry to a Normed
Vector Space

Consider the Hilbert simplex metric space (Δd , ρHG) where Δd denotes the d-
dimensional open probability simplex and ρHG the Hilbert cross-ratio metric. Let
us recall the isometry ([25], 1991) of the open standard simplex to a normed vector
space (V d , ‖ · ‖NH). Let V d = {v ∈ R

d+1 : ∑i v
i = 0} denote the d-dimensional

vector space sitting in R
d+1. Map a point p = (λ0, . . . , λd) ∈ Δd to a point v(x) =

(v0, . . . , vd) ∈ V d as follows:

vi = 1

d + 1

⎛

⎝d log λi −
∑

j =i

log λ j

⎞

⎠ = log λi − 1

d + 1

∑

j

log λ j .

We define the corresponding norm ‖ · ‖NH in V d by considering the shape of its
unit ball BV = {v ∈ V d : |vi − v j | ≤ 1,∀i = j}. The unit ball BV is a symmetric
convex set containing the origin in its interior, and thus yields a polytope norm ‖ · ‖NH
(Hilbert norm) with 2

(d+1
2

) = d(d + 1) facets. Reciprocally, let us notice that a norm
induces a unit ball centered at the origin that is convex and symmetric around the
origin.

The distance in the normed vector space between v ∈ V d and v′ ∈ V d is defined
by:

ρV (v, v′) = ‖v − v′‖NH = inf
{
τ : v′ ∈ τ(BV ⊕ {v})} ,

where A ⊕ B = {a + b : a ∈ A, b ∈ B} is the Minkowski sum.
The reverse map from the normed space V d to the probability simplexΔd is given

by:

λi = exp(vi )
∑

j exp(v
j )

.

Thus we have (Δd , ρHG) ∼= (V d , ‖ · ‖NH). In 1D, (V 1, ‖ · ‖NH) is isometric to the
Euclidean line.

Note that computing the distance in the normed vector space requires naively
O(d2) time.

https://www.lix.polytechnique.fr/~nielsen/HSG/


326 F. Nielsen and K. Sun

Unfortunately, the norm ‖ · ‖NH does not satisfy the parallelogram law.3 Notice
that a norm satisfying the parallelogram law can be associated with an inner product
via the polarization identity. Thus the isometry of the Hilbert geometry to a normed
vector space is not equipped with an inner product. However, all norms in a finite
dimensional space are equivalent. This implies that in finite dimension, (Δd , ρHG)

is quasi-isometric to the Euclidean space R
d . An example of Hilbert geometry in

infinite dimension is reported in [25]. Hilbert spaces are not CAT spaces except when
C is an ellipsoid [76].

9 Hilbert Geometry with Finslerian/Riemannian
Structures

In a Riemannian geometry, each tangent plane TpM of a d-dimensional manifold
M is equivalent to R

d : TpM � R
d . The inner product at each tangent plane TpM

can be visualized by an ellipsoid shape, a convex symmetric object centered at point
p. In a Finslerian geometry, a norm ‖ · ‖p is defined in each tangent plane TpM ,
and this norm is visualized as a symmetric convex object with non-empty interior.
Finslerian geometry thus generalizes Riemannian geometry by taking into account
generic symmetric convex objects instead of ellipsoids for inducing norms at each
tangent plane. Any Hilbert geometry induced by a compact convex domain C can
be expressed by an equivalent Finslerian geometry by defining the norm in Tp at p
as follows [76]:

‖v‖p = FC (p, v) = ‖v‖
2

(
1

pp+ + 1

pp−

)

,

where FC is the Finsler metric, ‖ · ‖ is an arbitrary norm on Rd , and p+ and p− are
the intersection points of the line passing through p with direction v:

p+ = p + t+v, p− = p + t−v.

A geodesic γ in a Finslerian geometry satisfies:

dC (γ (t1), γ (t2)) =
∫ t2

t1

FC (γ (t), γ̇ (t))dt.

In TpM , a ball of center c and radius r is defined by:

B(c, r) = {v : FC (c, v) ≤ r}.

3Consider A = (1/3, 1/3, 1/3), B = (1/6, 1/2, 1/3), C = (1/6, 2/3, 1/6) and D =
(1/3, 1/2, 1/6). Then 2AB2 + 2BC2 = 4.34 but AC2 + BD2 = 3.84362411135.
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Thus any Hilbert geometry induces an equivalent Finslerian geometry, and since
Finslerian geometries include Riemannian geometries, one may wonder which
Hilbert geometries induce Riemannian structures? The only Riemannian geometries
induced by Hilbert geometries are the hyperbolic Cayley–Klein geometries [27, 29,
30] with the domain C being an ellipsoid. The Finslerian modeling of information
geometry has been studied in [71, 72].

There is not a canonical way of defining measures in a Hilbert geometry since
Hilbert geometries are Finslerian but not necessary Riemannian geometries [76]. The
Busemann measure is defined according to the Lebesgue measure λ of Rd : Let Bp

denote the unit ball wrt. to the Finsler norm at point p ∈ C , and Be the Euclidean
unit ball. Then the Busemann measure for a Borel set B is defined by [76]:

μC (B) =
∫

B

λ(Be)

λ(Bp)
dλ(p).

The existence and uniqueness of center points of a probability measure in Finsler
geometry have been investigated in [77].

10 Bounding Hilbert Norm with Other Norms

Let us show that ‖v‖NH ≤ βd,c‖v‖c, where ‖ · ‖c is any norm. Let v =∑d
i=0 ei xi ,

where {ei } is a basis of Rd+1. We have:

‖v‖c ≤
d∑

i=0

|xi |‖ei‖c ≤ ‖x‖2
√
√
√
√

d∑

i=0

‖ei‖2c
︸ ︷︷ ︸

βd

,

where the first inequality comes from the triangle inequality, and the second inequal-
ity is from the Cauchy–Schwarz inequality. Thus we have:

‖v‖NH ≤ βd‖x‖2,

with βd = √
d + 1 since ‖ei‖NH ≤ 1.

Let αd,c = min{v : ‖v‖c=1} ‖v‖NH. Consider u = v
‖v‖c . Then ‖u‖c = 1 so that

‖v‖NH ≥ αd,c‖v‖c. To find αd , we consider the unit �2 ball in V d , and find the
smallest λ > 0 so that λBV fully contains the Euclidean ball (Fig. 14).

Therefore, we have overall:

αd‖x‖2 ≤ ‖v‖NH ≤ √
d + 1‖x‖2

In general, note that we may consider two arbitrary norms ‖ · ‖l and ‖ · ‖u so that:
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Fig. 14 Polytope balls BV
and the Euclidean unit ball
BE . From the figure the
smallest polytope ball has
radius ≈ 1.5

αd,l‖x‖l ≤ ‖v‖NH ≤ βd,u‖x‖u .

11 Funk Directed Metrics and Funk Balls

The Funk metric [78] wrt a convex domain C is defined by

FC (x, y) = log

(‖x − a‖
‖y − a‖

)

,

where a is the intersection of the domain boundary and the affine ray R(x, y) starting
from x and passing through y. Correspondingly, the reverse Funk metric is

FC (y, x) = log

(‖y − b‖
‖x − b‖

)

,

where b is the intersection of R(y, x) with the boundary. The Funk metric is not a
metric distance.

The Hilbert metric is simply the arithmetic symmetrization:

HC (x, y) = FC (x, y) + FC (y, x)

2
.

It is interesting to explore clustering based on the Funk geometry, which we leave
as a future work.



Clustering in Hilbert’s Projective Geometry … 329

References

1. Agresti, A.: Categorical Data Analysis, vol. 482. Wiley, New Jercy (2003)
2. Aggarwal, C.C., Zhai, C.X.: Mining Text Data. Springer Publishing Company, Berlin (2012)
3. Messing, R., Pal, C., Kautz, H.: Activity recognition using the velocity histories of tracked

keypoints. In: International Conference on Computer Vision, pp. 104–111. IEEE (2009)
4. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Cambridge

(2012)
5. Chaudhuri, K., McGregor, A.: Finding metric structure in information theoretic clustering. In:

Conference on Learning Theory (COLT), pp. 391–402 (2008)
6. Lebanon, G.: Learning Riemannian metrics. In: Conference on Uncertainty in Artificial Intel-

ligence (UAI), pp. 362–369 (2002)
7. Rigouste, L., Cappé, O., Yvon, F.: Inference and evaluation of the multinomial mixture model

for text clustering. Inf. Process. Manag. 43(5), 1260–1280 (2007)
8. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categorical

values. Data Min. Knowl. Discov. 2(3), 283–304 (1998)
9. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: ACM-SIAM

Symposium on Discrete Algorithms (SODA), pp. 1027–1035 (2007)
10. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor. Comput.

Sci. 38, 293–306 (1985)
11. Tropp, J.A.: Simplicial faces of the set of correlation matrices. Discret. Comput. Geom. 60(2),

512–529 (2018)
12. Kass, R.E., Vos, P.W.: Geometrical Foundations of Asymptotic Inference. Wiley Series in

Probability and Statistics. Wiley-Interscience, New Jercy (1997)
13. Hotelling, H.: Spaces of statistical parameters. Bull. Amer. Math. Soc. 36, 191 (1930)
14. Rao, C.R.: Information and accuracy attainable in the estimation of statistical parameters. Bull.

Calcutta Math. Soc. 37(3), 81–91 (1945)
15. Rao, C.R.: Information and the accuracy attainable in the estimation of statistical parameters.

Breakthroughs in Statistics, pp. 235–247. Springer, New York (1992)
16. Stigler, S.M.: The epic story of maximum likelihood. Stat. Sci. 22(4), 598–620 (2007)
17. Amari, Si: Information Geometry and Its Applications. Applied Mathematical Sciences, vol.

194. Springer, Japan (2016)
18. Calin, O., Udriste, C.: Geometric Modeling in Probability and Statistics. Mathematics and

Statistics. Springer International Publishing, New York (2014)
19. Amari, Si, Cichocki, A.: Information geometry of divergence functions. Bull. Pol. Acad. Sci.:

Tech. Sci. 58(1), 183–195 (2010)
20. Shima, H.: The Geometry of Hessian Structures. World Scientific, Singapore (2007)
21. Liang, X.: A note on divergences. Neural Comput. 28(10), 2045–2062 (2016)
22. Jenssen, R., Principe, J.C., Erdogmus, D., Eltoft, T.: The Cauchy–Schwarz divergence and

Parzen windowing: connections to graph theory and mercer kernels. J. Frankl. Inst. 343(6),
614–629 (2006)

23. Hilbert, D.: Über die gerade linie als kürzeste verbindung zweier punkte. Mathematische
Annalen 46(1), 91–96 (1895)

24. Busemann, H.: The Geometry of Geodesics. Pure and Applied Mathematics, vol. 6. Elsevier
Science, Amsterdam (1955)

25. de la Harpe, P.: On Hilbert’s metric for simplices. Geometric Group Theory, vol. 1, pp. 97–118.
Cambridge University Press, Cambridge (1991)

26. Lemmens, B., Nussbaum, R.: Birkhoff’s version of Hilbert’s metric and its applications in
analysis. Handbook of Hilbert Geometry, pp. 275–303 (2014)

27. Richter-Gebert, J.: Perspectives on Projective Geometry: A Guided Tour Through Real and
Complex Geometry. Springer, Berlin (2011)

28. Bi, Y., Fan, B., Wu, F.: Beyond Mahalanobis metric: Cayley–Klein metric learning. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2339–2347 (2015)



330 F. Nielsen and K. Sun

29. Nielsen, F., Muzellec, B., Nock, R.: Classification with mixtures of curved Mahalanobis met-
rics. In: IEEE International Conference on Image Processing (ICIP), pp. 241–245 (2016)

30. Nielsen, F., Muzellec, B., Nock, R.: Large margin nearest neighbor classification using curved
Mahalanobis distances (2016). arXiv:1609.07082 [cs.LG]

31. Stillwell, J.: Ideal elements in Hilbert’s geometry. Perspect. Sci. 22(1), 35–55 (2014)
32. Bernig, A.: Hilbert geometry of polytopes. Archiv der Mathematik 92(4), 314–324 (2009)
33. Nielsen, F., Sun, K.: Clustering in Hilbert simplex geometry. CoRR arXiv: abs/1704.00454

(2017)
34. Nielsen, F., Shao, L.: On balls in a polygonal Hilbert geometry. In: 33st International Sym-

posium on Computational Geometry (SoCG 2017). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik (2017)

35. Laidlaw, D.H., Weickert, J.: Visualization and Processing of Tensor Fields: Advances and
Perspectives. Mathematics and Visualization. Springer, Berlin (2009)

36. Lemmens, B., Walsh, C.: Isometries of polyhedral Hilbert geometries. J. Topol. Anal. 3(02),
213–241 (2011)

37. Condat, L.: Fast projection onto the simplex and the �1 ball.Math. Program. 158(1–2), 575–585
(2016)

38. Park, P.S.: Regular polytopic distances. Forum Geom. 16, 227–232 (2016)
39. Boissonnat, J.D., Sharir, M., Tagansky, B., Yvinec, M.: Voronoi diagrams in higher dimensions

under certain polyhedral distance functions. Discret. Comput. Geom. 19(4), 485–519 (1998)
40. Bengtsson, I., Zyczkowski, K.: Geometry of Quantum States: An Introduction to Quantum

Entanglement. Cambridge University Press, Cambridge (2017)
41. Nielsen, F.: Cramér–Rao lower bound and information geometry. Connected at Infinity II, pp.

18–37. Springer, Berlin (2013)
42. Chapman, D.G.: Minimum variance estimation without regularity assumptions. Ann. Math.

Stat. 22(4), 581–586 (1951)
43. Hammersley, H.: On estimating restricted parameters. J. R. Stat. Society. Ser. B (Methodol.)

12(2), 192–240 (1950)
44. Nielsen, F., Sun, K.: On Hölder projective divergences. Entropy 19(3), 122 (2017)
45. Nielsen, F., Nock, R.: Further heuristics for k-means: the merge-and-split heuristic and the

(k, l)-means. arXiv:1406.6314 (2014)
46. Bachem, O., Lucic, M., Hassani, S.H., Krause, A.: Approximate k-means++ in sublinear time.

In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, pp. 1459–1467
(2016)

47. Nielsen, F., Nock, R.: Total Jensen divergences: definition, properties and k-means++ clustering
(2013). arXiv:1309.7109 [cs.IT]

48. Ackermann,M.R., Blömer, J.: Bregman clustering for separable instances. ScandinavianWork-
shop on Algorithm Theory, pp. 212–223. Springer, Berlin (2010)

49. Manthey, B., Röglin, H.: Worst-case and smoothed analysis of k-means clustering with Breg-
man divergences. J. Comput. Geom. 4(1), 94–132 (2013)

50. Endo, Y., Miyamoto, S.: Spherical k-means++ clustering. Modeling Decisions for Artificial
Intelligence, pp. 103–114. Springer, Berlin (2015)

51. Nielsen, F., Nock, R., Amari, Si: On clustering histograms with k-means by using mixed α-
divergences. Entropy 16(6), 3273–3301 (2014)

52. Brandenberg, R., König, S.: No dimension-independent core-sets for containment under homo-
thetics. Discret. Comput. Geom. 49(1), 3–21 (2013)

53. Panigrahy, R.: Minimum enclosing polytope in high dimensions (2004). arXiv:cs/0407020
[cs.CG]

54. Saha, A., Vishwanathan, S., Zhang, X.: New approximation algorithms for minimum enclosing
convex shapes. In: ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1146–1160
(2011)

55. Nielsen, F., Nock, R.: On the smallest enclosing information disk. Inf. Process. Lett. 105(3),
93–97 (2008)

http://arxiv.org/abs/1609.07082
http://arxiv.org/abs/abs/1704.00454
http://arxiv.org/abs/1406.6314
http://arxiv.org/abs/1309.7109
http://arxiv.org/abs/cs/0407020


Clustering in Hilbert’s Projective Geometry … 331

56. Sharir, M., Welzl, E.: A combinatorial bound for linear programming and related problems.
STACS 92, 567–579 (1992)

57. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). New Results and New trends in
Computer Science, pp. 359–370. Springer, Berlin (1991)

58. Nielsen, F., Nock, R.: Approximating smallest enclosing balls with applications to machine
learning. Int. J. Comput. Geom. Appl. 19(05), 389–414 (2009)

59. Arnaudon, M., Nielsen, F.: On approximating the Riemannian 1-center. Comput. Geom. 46(1),
93–104 (2013)

60. Bâdoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pp. 801–802 (2003)

61. Nielsen, F., Hadjeres, G.: Approximating covering and minimum enclosing balls in hyperbolic
geometry. International Conference onNetworkedGeometric Science of Information, pp. 586–
594. Springer, Cham (2015)
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