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Abstract Twostrictly increasing functionsρ and τ determine the rho-tau embedding
of a statistical model. The Riemannian metric tensor is derived from the rho-tau
divergence. It depends only on the product ρ ′τ ′ of the derivatives of ρ and τ . Hence,
once the metric tensor is fixed still some freedom is left to manipulate the geometry.
We call this the gauge freedom. A sufficient condition for the existence of a dually
flat geometry is established. It is shown that, if the coordinates of a parametric model
are affine then the rho-tau metric tensor is Hessian and the dual coordinates are affine
as well. We illustrate our approach using models belonging to deformed exponential
families, and give a simple and precise characterization for the rho-tau metric to
become Hessian.

1 Introduction

A statistical manifold [1, 2, 7] is an abstractmanifoldM equippedwith aRiemannian
metric g and anAmari—Chentsov tensor T . If themanifold is a smooth differentiable
manifold then it can be realized [8] as a statistical model.

Most studies of statisticalmodels are based on thewidely used logarithmic embed-
ding of probability density functions. Here, more generally embeddings are consid-
ered. Recent work [11, 12, 23] unifies the formalism of rho-tau embeddings [19]
with statistical models belonging to deformed exponential families [10]. The present
exposition continues this investigation.

The notion of a statistical manifold has been generalized in the non-parametric
setting [14, 15, 20, 21] to include Banachmanifolds. The corresponding terminology
is used here, although up to now only a few papers have combined non-parametric
manifolds with deformed exponential families [9, 13, 16, 18].
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The rho-tau divergence is discussed in the next section. Eguchi [4, 5] proved
under rather general conditions that, given a differentiable manifold, a divergence
function defines ametric tensor and a pair of connections. These are derived in Sect. 4,
respectively Sect. 6. Parametric statistical models are discussed in Sect. 7, which
discusses Hessian geometry, and Sect. 8, which deals with deformed exponential
families.

2 The Statistical Manifold

The points of a given statistical manifoldM are assumed to be random variables over
some measure space (X , μ). A random variable X is defined as any measurable real
function. The expectation, if it exists, is denoted EμX . Throughout the text it is
assumed that the manifold is differentiable and that for each X in M the tangent
plane TXM is well-defined.

The derivative of a random variable is again a random variable. Therefore one
can expect that the tangent vectors at a point X of M are random variables with
vanishing expectation value. Let us assume that these tangent vectors can be used
as a local chart in the vicinity of the point X and that they belong to some Banach
space B. Then M is a Banach manifold, provided a number of technical conditions
are satisfied.

In the simplest case the manifold M consists of all strictly positive probability
distributions on a discrete set X . These probability distributions can be considered
as positive-valued random variables with expectation equal to 1. The space B of
all random variables is a Banach space for instance for the L1 norm. The manifold
M is a Banach manifold. Our approach here is the same as that adopted in [21],
where random variables are called χ -functions, and functions of random variables
are called χ -functionals.

In the more general situation the choice of an appropriate norm for the tangent
vectors is not so simple. See the work of Pistone et al. [14–16].

3 Rho-Tau Divergence

Given a strictly convex differentiable function h and a pair of real-valued random
variables P and Q the Bregman divergence [3] is given by

D(P, Q) = Eμ

[
h(P) − h(Q) − (P − Q)h′(Q)

]
, (1)

whereh′ denotes the derivative ofh.Ageneralization involving two strictly increasing
real functions ρ(u) and τ(u) is proposed in [19]. For the sake of completeness the
definition is repeated here. Throughout the text these functions ρ and τ are assumed
to be at least once, sometimes twice differentiable.
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There exists a strictly convex function f with the property that f ′ ◦ ρ = τ . It is
given by

f (u) =
∫ ρ−1(u)

τ (v)dρ(v). (2)

The convex conjugate function f ∗ is therefore given by

f ∗(u) =
∫ τ−1(u)

ρ(v)dτ(v), (3)

provided the lower boundary of the integrals is chosen appropriately.
The original definition [19] of the rho-tau divergence can be written as

Dρ,τ (P, Q) = Eμ

[
f (ρ(P)) + f ∗(τ (Q)) − ρ(P)τ (Q)

]
(4)

which is assumed to be ≤ +∞. The reformulation given below simplifies the proof
of some of its properties.

Definition 1 Let be given two strictly increasing differentiable functions ρ and τ ,
defined on a common open interval D in R. The rho-tau divergence of two random
variables P and Q with values in D is given by

Dρ,τ (P, Q) = Eμ

(∫ P

Q
[τ(v) − τ(Q)] dρ(v)

)
. (5)

This definition is equivalent to (4). To see this, split (5) into two parts. Use (2)
to write the former contribution as Eμ f ◦ ρ(P) − Eμ f ◦ ρ(Q) and the latter as
−Eμτ(Q)[ρ(P) − ρ(Q)]. Use partial integration to prove that f ◦ ρ + f ∗ ◦ τ =
ρτ . This definition also generalizes (1). To see this take I = f , ρ = id, and τ = I ′.

Note that the integral in (5) is a Stieltjes integral, which is well-defined because
ρ and τ are strictly increasing functions. The result is non-negative. Hence, the
μ-expectation is either convergent or it diverges to +∞.

Let P and Q be two random variables with joint probability distribution p(ζ, η).
Then (5) can be written as

Dρ,τ (P, Q) =
∫

p(ζ, η)dζdη

(∫ ζ

η

[τ(v) − τ(η)] dρ(v)

)

≤
∫

p(ζ, η)dζdη |τ(ζ ) − τ(η)| |ρ(ζ ) − ρ(η)|
≤ {

Eμ|τ(P) − τ(Q)|2Eμ|ρ(P) − ρ(Q)|2}1/2 . (6)

To obtain the latter the Cauchy–Schwarz inequality is used.

Theorem 1 Dρ,τ (P, Q) ≥ 0 with equality if P = Q. If μ is faithful, i.e. EμP = 0
implies P = 0 for any non-negative P, then Dρ,τ (P, Q) = 0 implies P = Q.
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Proof From (5) it is immediately clear that Dρ,τ (P, Q) ≥ 0 and Dρ,τ (P, P) = 0.
Assume now that Dρ,τ (P, Q) = 0. By assumption this implies that

∫ P

Q
[τ(v) − τ(Q)] dρ(v) = 0 μ-almost everywhere.

However, because τ and ρ are strictly increasing the integral is strictly positive unless
P = Q, μ-almost everywhere. �

It can be easily verified that the rho-tau divergence satisfies the following gener-
alized Pythagorean equality for any three points P, Q, R

Dρ,τ (P, Q) + Dρ,τ (Q, R) − Dρ,τ (P, R) = Eμ {[ρ(P) − ρ(Q)][τ(R) − τ(Q)]} .

The general expression for the rho-tau entropy is

Sρ,τ (P) = −Eμ f (ρ(P)) + constant = −Eμ

∫ P

τ(u)dρ(u). (7)

See for instance Section 2.6 of [23]. The function f is a strictly convex function
which, given ρ, can still be chosen arbitrarily and then determines τ . The following
identity holds

Dρ,τ (P, Q) = −Sρ,τ (P) + Sρ,τ (Q) − Eμ [ρ(P) − ρ(Q)] τ(Q). (8)

In [12, 23], we also discuss rho-tau cross-entropy, as well as the notion of “dual
entropy” arising out of rho-tau embedding.

Rho-tau divergence Dρ,τ (P, Q) is a special form of the more general divergence
function D (α)

f,ρ(P, Q) arising out of convex analysis, see [19, 20]:

D (α)
f,ρ(P, Q) = 4

1 − α2

× Eμ

{
1 − α

2
f (ρ(P)) + 1 + α

2
f (ρ(Q)) − f

(
1 − α

2
ρ(P) + 1 + α

2
ρ(Q)

)}
.

(9)

Clearly

lim
α→1

D (α)
f,ρ(P, Q) = Dρ,τ (P, Q) = Dτ,ρ(Q, P);

lim
α→−1

D (α)
f,ρ(P, Q) = Dρ,τ (Q, P) = Dτ,ρ(P, Q);

with f ′ ◦ ρ = τ (and equivalent ( f ∗)′ ◦ τ = ρ, with f ∗ denoting convex conjugate
of f ). Though inD (α)

f,ρ(P, Q) the two free functions are f (a strictly convex function)
and ρ (a strictly monotone increasing function), as reflected in its subscripts, there is
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only notational difference from the ρ, τ specification of two function’s choice. This
is because for f, f ∗, ρ, τ , a choice of any two functions (one of which would have
to be either ρ or τ ) would specify the remaining two. See [19, 22].

4 Tangent Vectors

The rho-tau divergence introduced above can be used to fix a Riemannian metric on
the tangent planes of the statistical manifold M.

In the standard situation of the Fisher-Rao metric the point P is a probability
density function pθ , parametric with θ ∈ R

n . A short calculation gives

∂ jEμ p
θY = 〈

∂ j log pθ ,Y
〉
θ
, (10)

with 〈X,Y 〉θ = Eμ pθ XY , and where ∂ j is an abbreviation for ∂/∂θ j . The metric
tensor is then given by

gi j (θ) = 〈∂i log pθ , ∂ j log pθ 〉θ .

The score variables ∂ j log pθ have vanishing expectation and span the tangent plane
at the point pθ .

These expressions are now generalized. Fix P in M. Make the assumption that
there exists some open neighborhoodU of P inM and a one-to-one correspondence
χP between elements Q of U and tangent vectors X = χP(Q) of TPM, satisfying
χP(P) = 0. This map χP is used as a local chart centered at the point P . The
directional derivative dX is then defined as

dX P := lim
ε→0

χ−1
P (εX) − χ−1(0)

ε
,

and is assumed to exist for all X ∈ TPM. Here, we leave the topology unspecified.
Now we take one of the two increasing functions ρ and τ , say ρ, to define a two-

point correlation function Eμρ(P)Y , and the other function, τ , to act as a deformed
logarithmic function replacing the logarithmic function which appears in the defini-
tion of the standard scores. The expression analogue to (10) now involves derivatives
of Eμρ(P)Y and of τ(P). It becomes

dXEμρ(P)Y = 〈
dXτ(P),Y

〉
P , (11)

with

〈X,Y 〉P = Eμ

ρ ′(P)

τ ′(P)
XY.
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This relation should hold for any P inM and X in TPM, and for any random variable
Y . The metric tensor gXY ≡ g(X,Y ) becomes

gXY (P) = 〈
dXτ(P), dY τ(P)

〉
P= Eμρ ′(P)τ ′(P)dX PdY P. (12)

This metric tensor is related to the divergence function introduced in the previous
section by

dP
Y d

Q
X Dρ,τ (P, Q)

∣∣∣∣
P=Q

= −gXY (P),

where dP is the derivative acting only on P and dQ acts only on Q. See [21] for the
derivation of the metric tensor in the form of (12) for the non-parametric setting.

In the case of amodel pθ which belongs to the exponential family the tangent plane
can be identified with the coordinate space. The chart becomes χpθ (pζ ) = ζ − θ so
that

dζ p
θ := lim

ε→0

1

ε

(
pθ+ε(ζ−θ) − pθ

)
.

If (ζ − θ)i = δi, j then dζ pθ = ∂ j pθ follows and (11) reduces to (10).

5 Gauge Freedom

From (12) it is clear that the metric tensor depends only on the product ρ ′τ ′ and not
on ρ and τ separately. This implies that once the metric tensor is fixed there remains
one function to be chosen freely, either the embedding ρ or the deformed logarithm τ ,
keeping ρ ′τ ′ fixed. This is what we call the gauge freedom of the rho-tau formalism.

The notion of gauge freedom is common in Physics to mark the introduction of
additional degrees of freedom which do not modify the model but control some of
its appearances. Here, the Riemannian metric of the manifold is considered to be an
essential feature while the different geometries such as the Riemannian geometry or
Amari’s dually flat geometries are attributes which give a further characterization.

It is known for long that distinct choices of the divergence function can lead to the
same metric tensor. The present formalism offers the opportunity to profit from this
freedom. Quantities such as the divergence function, the entropy or the alpha-family
of connections depend on the specific choice of both ρ and τ . This is illustrated
further on. Some examples are found in Table1.

The simplest choice to fix the gauge is ρ = id. Several classes generalizing Breg-
man divergences found in the literature, e.g. [6, 10], belong to this case. The phi-
divergence of [10] is obtained by choosing τ equal to the deformed logarithm logφ

(see Sect. 8), the derivative of which is 1/φ. This implies ρ ′τ ′ = 1/φ, which is also
the condition for the deformedmetric tensor of [10] to be conformally equivalentwith
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Table 1 Examples of ρ, τ combinations

ρ(u) τ (u) (ρ′τ ′)(u) f (u) f ∗(u)

u log u
1

u
u[log u − 1] eu

2
√
u 2

√
u

1

u

1

2
u2

1

2
u2

u logq (u)
1

uq
u

2 − q

[
logq (u) − 1

] 1
2−q

[
expq (u)

]2−q

ρ(u) logρ(u)
ρ′

ρ
(u) u[log u − 1] eu

u logφ(u)
1

φ(u)
u logφ(u) −

∫ u

1

v

φ(v)
dv

∫ expφ(u)

1

v

φ(v)
dv

(12). The U-divergence of [6] is obtained by taking τ equal to the inverse function
of U ′. These were discussed in detail in [11, 12, 23].

Also of interest is the gauge defined by ρ(u) = 1/τ ′(u). Let logρ be the corre-
sponding deformed logarithm (see (21) below). It satisfies logρ(u) = τ(u) − τ(1).
Hence, the entropy becomes

Sρ,τ (P) = −Eμρ(P)τ (P) + EμP + constant.

The divergence becomes

Dρ,τ (P, Q) = Eμρ(P)
[
logρ(P) − logρ(Q)

] − Eμ [P − Q] .

This expression is an obvious generalization of the Kullback–Leibler divergence.

6 Induced Geometry

A divergence function not only fixes a metric tensor by taking two derivatives, it also
fixes a pair of torsion-free connections by taking an extra derivative w.r.t. the first
argument [4, 5]. In particular, the rho-tau-divergence (5) determines an alpha-family
of connections [11, 19, 21].

A covariant derivative ∇Z with respect to a vector field Z is defined by

〈∇ZdXτ(P), dY τ(P)〉P = −dP
Z d

P
Y d

Q
X Dρ,τ (P, Q)

∣∣
∣∣
Q=P

.

A short calculation of the righthand side, with Dρ,τ defined by (4), gives

〈∇ZdXτ(P), dY τ(P)〉P = Eμ [dXτ(P)] dZdYρ(P).
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Let ∇(1)
Z = ∇Z and let ∇(−1)

Z be the operator obtained by interchanging ρ and τ .
This is

〈∇(−1)
Z dXτ(P), dY τ(P)〉P = Eμ [dXρ(P)] dZdY τ(P)

= 〈dXτ(P), dZdY τ(P)〉P . (13)

This shows that ∇(−1)
Z is the adjoint of dZ with respect to g. In addition one has

〈∇(1)
Z dXτ(P), dY τ(P)〉P + 〈dXτ(P),∇(−1)

Z dY τ(P)〉P = dZ gXY (P). (14)

The latter expression shows that the connections ∇(1) and ∇(−1) are the dual of each
other with respect to g. The alpha-family of connections is then obtained by linear
interpolation with α ∈ [−1, 1]

∇(α)
Z = 1 + α

2
∇(1)

Z + 1 − α

2
∇(−1)

Z , (15)

such that the covariant derivatives ∇(α) and ∇(−α) are mutually dual. In particular,
∇(0) is self-dual and therefore coincides with the Levi-Civita connection. The family
ofα-connections (15) is induced by the divergence functionD (α)

f,ρ(P, Q) given by (9),
with corresponding α-values. Furthermore, upon switching ρ ↔ τ in the divergence
function, the designation of 1-connection vs (−1)-connection also switches.

From (13) it is clear that the covariant derivative ∇(−1)
Z vanishes on the tangent

plane when
〈dXτ(P), dZdY τ(P)〉P = 0 for all X,Y ∈ TPM. (16)

If this holds for all P inM then the ∇(−1)-geometry is flat. This implies that the dual
geometry∇(1) is also flat— see Theorem 3.3 of [1]. The interpretation of (16) is that
all second derivatives dZdY τ(P) are orthogonal to the tangent plane.

7 Parametric Models

The previous sections deal with the geometry of arbitrary manifolds consisting of
random variables, without caring whether they possess special properties. Now para-
metric models with a Hessian metric g are considered.

From here on the random variables of the manifoldM are probability distribution
functions pθ , labeled with coordinates θ belonging to some open convex subset
U of Rn . The manifold is assumed to be differentiable. In particular, the θ i are
covariant coordinates and the assumption holds that the derivatives ∂i pθ ≡ ∂pθ /∂θ i

form a basis for the tangent plane TθM ≡ TpθM. The simplifications induced by this
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setting are that the tangent planes are finite-dimensional and that the dual coordinates
belong again to Rn . For general Banach manifolds both properties need not to hold.
The assumptions imply that the metric tensor

gi j (θ) = 〈∂iτ(pθ ), ∂ jτ(pθ )〉θ
is a strictly positive-definite matrix.

The metric g of the manifold M is said to be Hessian if there exists a strictly
convex function (θ) with the property that gi j (θ) = ∂i∂ j(θ). See for instance
[17]. Let �(η) denote the convex dual of (η). This is

�(η) = sup
θ

{〈η, θ〉 − (θ) : θ ∈ U }.

LetU ∗ denote the subset of Rn of η for which the maximum is reached at some θ in
U . This θ is unique and defines a bijection θ �→ η between U and U ∗. These η are
dual coordinates for the manifold M. Conversely [11], if there exist coordinates ηi
for which gi j (θ) = ∂ jηi then the rho-tau metric tensor g is Hessian.

The condition (16) for ∇(−1) to vanish can now be written as

〈∂iτ(pθ ), ∂k∂ jτ(pθ )〉θ = 0, for all θ ∈ U and for all i, j, k. (17)

Theorem 2 Assume that the θ i are affine coordinates such that ∇(−1) = 0. Then

(1) the metric tensor g is Hessian;
(2) the ηi are affine coordinates for the ∇(1)-geometry.

Proof (1) The metric tensor (12) becomes

gi j (p
θ ) = 〈∂iτ(pθ ), ∂ jτ(pθ )〉θ = Eμ

(
∂iτ(pθ )

)
∂ jρ(pθ ) = Eμ

(
∂ jτ(pθ )

)
∂iρ(pθ ).

This implies

∂kgi j (p
θ ) = Eμ

(
∂k∂iτ(pθ )

)
∂ jρ(pθ ) + Eμ

(
∂iτ(pθ )

)
∂k∂ jρ(pθ ),

but also

∂kgi j (p
θ ) = Eμ

(
∂k∂ jτ(pθ )

)
∂iρ(pθ ) + Eμ

(
∂ jτ(pθ )

)
∂k∂iρ(pθ ).

These equations simplify by means of (17). The result is

∂kgi j (p
θ ) = Eμ

(
∂iτ(pθ )

)
∂k∂ jρ(pθ ) = Eμ

(
∂ jτ(pθ )

)
∂k∂iρ(pθ ).
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This implies that ∂kgi j (θ) = ∂i gk j (θ). Hence there exist functions η j (θ) such that
gi j (θ) = ∂iη j (θ). As remarked above, it is proved in [11] that this suffices to conclude
that the metric g is Hessian.

(2) Let us show that
η(t) = (1 − t)η(1) + tη(2). (18)

is a solution of the Euler-Lagrange equations

d2

dt2
θ i + �i

km

(
d

dt
θ k

) (
d

dt
θm

)
= 0. (19)

Here, the�i
km are the coefficients of the connection�(1) inducedby the∇(1)-geometry.

They follow from
�i j,k = ∂i g jk(θ). (20)

One has
d

dt
θ i = ∂θ i

∂η j

dη j

dt
= gi j (θ)

[
η

(2)
j − η

(1)
j

]

and

d2

dt2
θ i = d

dt
gi j (θ)

[
η

(2)
j − η

(1)
j

]

= [
∂kg

i j (θ)
] dθ k

dt

[
η

(2)
j − η

(1)
j

]

= [
∂kg

i j (θ)
]
gkl(θ)

[
η

(2)
l − η

(1)
l

] [
η

(2)
j − η

(1)
j

]

= [
∂kg

i j (θ)
]
g jm(θ)

(
d

dt
θ k

)(
d

dt
θm

)
.

The l.h.s. of (19) becomes

l.h.s. = {[
∂kg

i j (θ)
]
g jm(θ) + �i

km

}(
d

dt
θ k

)(
d

dt
θm

)
.

This vanishes because (20) implies

�i
km = − [

∂kg
i j (θ)

]
g jm(θ).

�

It is important to realize that the discussion in this section is generic for parametric
models, without assuming particular parametric families.
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8 The Deformed Exponential Family

A repeated measurement of n independent random variables F1, . . . , Fn results in a
joint probability distribution π(ζ1, . . . , ζn), which describes the probability that the
true value of themeasured data equals ζ .More generally, themodel can be taken to be
a deformed exponential family, obtained by using a deformed exponential function
expφ . Following [10], a deformed logarithm logφ is defined by

logφ(u) =
∫ u

1
dv

1

φ(v)
, (21)

where φ(v) is strictly positive and integrable on the open interval (0,+∞). The
deformed exponential function expφ(u) is the inverse function of logφ(u). It is defined
on the rangeR of logφ(u), but is eventually extended with the value 0 if u < R and
with the value +∞ if u > R.

The expression for the probability density function then becomes

pθ (x) = expφ

(
n∑

k=1

θ k Fk(x) − α(θ)

)

. (22)

The function α(θ) serves to normalize pθ and is assumed to exist within the open
convex domain U ⊂ R

n in which the model is defined. One can show [10] that it is
a convex function. However, in general it does not coincide with the potential (θ)

of the previous section. The explanation is that escort probabilities come into play.
Indeed, from

0 = ∂iEμ p
θ = Eμφ(pθ ) [Fi − ∂iα]

follows that
∂iα = Ẽθ Fi ,

with the escort expectation Ẽθ defined by

ẼθY = Eμφ(pθ )Y

Eμφ(pθ )
.

Only in the non-deformed case, when φ(u) = u, the escort Ẽθ coincides with the
model expectation Eθ . Then the dual coordinates ηi satisfy ηi = Eθ Fi = ∂iα(θ).

In general, the rho-tau metric tensor g of the deformed exponential model is not
Hessian.We have the following Theorem (see [12])

Theorem 3 With respect to the (deformed) φ-exponential family pθ obeying (22),
the rho-tau metric tensor g is

(a) conformal to Hessian if
ρ ′τ ′φ = φ′;
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(b) Hessian if
ρ ′τ ′φ = id.

In case (a), the rho-tau metric tensor is conformally equivalent with the metric
tensor obtained by taking the Hessian of the normalization function α; in case (b) the
potential (θ) is constructed in [10]. However, there still leaves a gauge freedom.
The question is then whether one can choose ρ and τ so that condition (16) for the
dually flat geometry is satisfied. A sufficient condition is that ρ = id and τ = logφ .
This is the rho-affine gauge. In this gauge both the θ i and the ηi coordinates are affine
and the model has a dually flat structure.

Acknowledgements The research reported here is supported by DARPA/ARO Grant W911NF-
16-1-0383 (PI: Jun Zhang).
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