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Preface

This collective book is devoted to the recent advancements of the Geometric
Structures of Information (GSI) and Information Geometry (IG). The book consists
of twelve contributed chapters that have been carefully peer reviewed and revised.
Each chapter has been assigned to two to five reviewers. I am very thankful for the
reviewers’ expertise, feedback, and insight and would like to acknowledge them in
alphabetical order:

Ayan Basu, Charles Casimiro Cavalcante, Shinto Eguchi, Gaëtan Hadjeres,
Tomoyuki Ichiba, Peter Jupp, Amor Keziou, Takashi Kurose, Bertrand Lods,
Hiroshi Matsuzoe, Subrahamanian Moosath K. S., Cyrus Mostajeran, Jan Naudts,
Nigel Newton, Frank Nielsen, Richard Nock, Atsumi Ohara, Xavier Pennec,
Giovanni Pistone, Hector Roman Quiceno-Echavarría, Johannes Ruf, George
Ruppeiner, Salem Said, Aida Toma, Barbara Trivellato, Pavan Turaga, Paul Vos,
and Konstantinos Zografos. I apologize for any potential omission.

I list below the collection of chapters in order of appearance in this book:

1. Naudts and Zhang present in their paper entitled “Rho-Tau Embedding of
Statistical Models” the ðq; sÞ monotone embeddings of statistical models (for
any two increasing functions q and s) and discuss the gauge freedom and its
induced geometry.

2. Montrucchio and Pistone studied a class of nonparametric deformed statistical
models, its associated statistical divergence, and the underlying geometry in
their paper “A Class of Non-parametric Deformed Exponential Statistical
Models.”

3. Henmi and Matsuzoe survey and report recent results on statistical manifolds
admitting torsion (SMAT) and precontrast functions and show how to get this
SMAT structure from an estimating function in their paper entitled “Statistical
Manifolds Admitting Torsion and Partially Flat Spaces.”

4. Ohara studies some transformation on the probability simplex from the view-
point of affine differential geometry and provides some applications in his paper
entitled “Conformal Flattening on the Probability Simplex and Its Applications
to Voronoi Partitions and Centroids.”

v



5. Nielsen and Hadjeres introduce a series of computationally friendly information-
geometric dualistic manifolds approximating a computationally untractable sta-
tistical manifold in their paper “Monte Carlo Information-Geometric Structures.”

6. Wong in his paper “Information Geometry in Portfolio Theory” applies the
principle of information geometry to financial problems.

7. Maroufy and Marriott describe the use of information geometry for Cox
regression in survival analysis in their paper entitled “Generalising Frailty
Assumptions in Survival Analysis: A Geometric Approach.”

8. Broniatowski and Stummer present a unifying view of dissimilarities in their
detailed paper “Some Universal Insights on Divergences for Statistics, Machine
Learning and Artificial Intelligence.”

9. Chirikjian studies information theory in interaction with Lie groups in his paper
called “Information-Theoretic Matrix Inequalities and Diffusion Processes on
Unimodular Lie Groups.”

10. Said, Bombrun, and Berthoumieu proved that the Fisher-Rao information
metric of any location-scale model is a warped Riemannian metric provided
that the model is invariant under the action of some Lie group in their paper
“Warped Riemannian Metrics for Location-Scale Models.”

11. Nielsen and Sun propose to use Hilbert’s projective geometry for modeling the
probability simplex and the elliptope of correlation matrices in their paper
entitled “Clustering in Hilbert’s Projective Geometry: The Case Studies of the
Probability Simplex and the Elliptope of Correlation Matrices.”

12. Finally, Barbaresco presents an introduction on Koszul’s pioneering work on
homogeneous bounded domains that has revealed itself as the elementary
structures of information geometry in his paper “Jean-Louis Koszul and the
Elementary Structures of Information Geometry.”

I would also like to thank Christoph Baumann and his support staff at Springer
Nature that made the publishing process very smooth. Finally, I heartily thank Prof.
Hiroaki Kitano (President of Sony Computer Science Laboratories, Inc.) for his
kind support and encouragements over the years.

Tokyo, Japan Frank Nielsen
August 2018 Sony Computer Science Laboratories, Inc.
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Rho-Tau Embedding of Statistical
Models

Jan Naudts and Jun Zhang

Abstract Twostrictly increasing functionsρ and τ determine the rho-tau embedding
of a statistical model. The Riemannian metric tensor is derived from the rho-tau
divergence. It depends only on the product ρ ′τ ′ of the derivatives of ρ and τ . Hence,
once the metric tensor is fixed still some freedom is left to manipulate the geometry.
We call this the gauge freedom. A sufficient condition for the existence of a dually
flat geometry is established. It is shown that, if the coordinates of a parametric model
are affine then the rho-tau metric tensor is Hessian and the dual coordinates are affine
as well. We illustrate our approach using models belonging to deformed exponential
families, and give a simple and precise characterization for the rho-tau metric to
become Hessian.

1 Introduction

A statistical manifold [1, 2, 7] is an abstractmanifoldM equippedwith aRiemannian
metric g and anAmari—Chentsov tensor T . If themanifold is a smooth differentiable
manifold then it can be realized [8] as a statistical model.

Most studies of statisticalmodels are based on thewidely used logarithmic embed-
ding of probability density functions. Here, more generally embeddings are consid-
ered. Recent work [11, 12, 23] unifies the formalism of rho-tau embeddings [19]
with statistical models belonging to deformed exponential families [10]. The present
exposition continues this investigation.

The notion of a statistical manifold has been generalized in the non-parametric
setting [14, 15, 20, 21] to include Banachmanifolds. The corresponding terminology
is used here, although up to now only a few papers have combined non-parametric
manifolds with deformed exponential families [9, 13, 16, 18].
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2 J. Naudts and J. Zhang

The rho-tau divergence is discussed in the next section. Eguchi [4, 5] proved
under rather general conditions that, given a differentiable manifold, a divergence
function defines ametric tensor and a pair of connections. These are derived in Sect. 4,
respectively Sect. 6. Parametric statistical models are discussed in Sect. 7, which
discusses Hessian geometry, and Sect. 8, which deals with deformed exponential
families.

2 The Statistical Manifold

The points of a given statistical manifoldM are assumed to be random variables over
some measure space (X , μ). A random variable X is defined as any measurable real
function. The expectation, if it exists, is denoted EμX . Throughout the text it is
assumed that the manifold is differentiable and that for each X in M the tangent
plane TXM is well-defined.

The derivative of a random variable is again a random variable. Therefore one
can expect that the tangent vectors at a point X of M are random variables with
vanishing expectation value. Let us assume that these tangent vectors can be used
as a local chart in the vicinity of the point X and that they belong to some Banach
space B. Then M is a Banach manifold, provided a number of technical conditions
are satisfied.

In the simplest case the manifold M consists of all strictly positive probability
distributions on a discrete set X . These probability distributions can be considered
as positive-valued random variables with expectation equal to 1. The space B of
all random variables is a Banach space for instance for the L1 norm. The manifold
M is a Banach manifold. Our approach here is the same as that adopted in [21],
where random variables are called χ -functions, and functions of random variables
are called χ -functionals.

In the more general situation the choice of an appropriate norm for the tangent
vectors is not so simple. See the work of Pistone et al. [14–16].

3 Rho-Tau Divergence

Given a strictly convex differentiable function h and a pair of real-valued random
variables P and Q the Bregman divergence [3] is given by

D(P, Q) = Eμ

[
h(P) − h(Q) − (P − Q)h′(Q)

]
, (1)

whereh′ denotes the derivative ofh.Ageneralization involving two strictly increasing
real functions ρ(u) and τ(u) is proposed in [19]. For the sake of completeness the
definition is repeated here. Throughout the text these functions ρ and τ are assumed
to be at least once, sometimes twice differentiable.
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There exists a strictly convex function f with the property that f ′ ◦ ρ = τ . It is
given by

f (u) =
∫ ρ−1(u)

τ (v)dρ(v). (2)

The convex conjugate function f ∗ is therefore given by

f ∗(u) =
∫ τ−1(u)

ρ(v)dτ(v), (3)

provided the lower boundary of the integrals is chosen appropriately.
The original definition [19] of the rho-tau divergence can be written as

Dρ,τ (P, Q) = Eμ

[
f (ρ(P)) + f ∗(τ (Q)) − ρ(P)τ (Q)

]
(4)

which is assumed to be ≤ +∞. The reformulation given below simplifies the proof
of some of its properties.

Definition 1 Let be given two strictly increasing differentiable functions ρ and τ ,
defined on a common open interval D in R. The rho-tau divergence of two random
variables P and Q with values in D is given by

Dρ,τ (P, Q) = Eμ

(∫ P

Q
[τ(v) − τ(Q)] dρ(v)

)
. (5)

This definition is equivalent to (4). To see this, split (5) into two parts. Use (2)
to write the former contribution as Eμ f ◦ ρ(P) − Eμ f ◦ ρ(Q) and the latter as
−Eμτ(Q)[ρ(P) − ρ(Q)]. Use partial integration to prove that f ◦ ρ + f ∗ ◦ τ =
ρτ . This definition also generalizes (1). To see this take I = f , ρ = id, and τ = I ′.

Note that the integral in (5) is a Stieltjes integral, which is well-defined because
ρ and τ are strictly increasing functions. The result is non-negative. Hence, the
μ-expectation is either convergent or it diverges to +∞.

Let P and Q be two random variables with joint probability distribution p(ζ, η).
Then (5) can be written as

Dρ,τ (P, Q) =
∫

p(ζ, η)dζdη

(∫ ζ

η

[τ(v) − τ(η)] dρ(v)

)

≤
∫

p(ζ, η)dζdη |τ(ζ ) − τ(η)| |ρ(ζ ) − ρ(η)|
≤ {

Eμ|τ(P) − τ(Q)|2Eμ|ρ(P) − ρ(Q)|2}1/2 . (6)

To obtain the latter the Cauchy–Schwarz inequality is used.

Theorem 1 Dρ,τ (P, Q) ≥ 0 with equality if P = Q. If μ is faithful, i.e. EμP = 0
implies P = 0 for any non-negative P, then Dρ,τ (P, Q) = 0 implies P = Q.
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Proof From (5) it is immediately clear that Dρ,τ (P, Q) ≥ 0 and Dρ,τ (P, P) = 0.
Assume now that Dρ,τ (P, Q) = 0. By assumption this implies that

∫ P

Q
[τ(v) − τ(Q)] dρ(v) = 0 μ-almost everywhere.

However, because τ and ρ are strictly increasing the integral is strictly positive unless
P = Q, μ-almost everywhere. �

It can be easily verified that the rho-tau divergence satisfies the following gener-
alized Pythagorean equality for any three points P, Q, R

Dρ,τ (P, Q) + Dρ,τ (Q, R) − Dρ,τ (P, R) = Eμ {[ρ(P) − ρ(Q)][τ(R) − τ(Q)]} .

The general expression for the rho-tau entropy is

Sρ,τ (P) = −Eμ f (ρ(P)) + constant = −Eμ

∫ P

τ(u)dρ(u). (7)

See for instance Section 2.6 of [23]. The function f is a strictly convex function
which, given ρ, can still be chosen arbitrarily and then determines τ . The following
identity holds

Dρ,τ (P, Q) = −Sρ,τ (P) + Sρ,τ (Q) − Eμ [ρ(P) − ρ(Q)] τ(Q). (8)

In [12, 23], we also discuss rho-tau cross-entropy, as well as the notion of “dual
entropy” arising out of rho-tau embedding.

Rho-tau divergence Dρ,τ (P, Q) is a special form of the more general divergence
function D (α)

f,ρ(P, Q) arising out of convex analysis, see [19, 20]:

D (α)
f,ρ(P, Q) = 4

1 − α2

× Eμ

{
1 − α

2
f (ρ(P)) + 1 + α

2
f (ρ(Q)) − f

(
1 − α

2
ρ(P) + 1 + α

2
ρ(Q)

)}
.

(9)

Clearly

lim
α→1

D (α)
f,ρ(P, Q) = Dρ,τ (P, Q) = Dτ,ρ(Q, P);

lim
α→−1

D (α)
f,ρ(P, Q) = Dρ,τ (Q, P) = Dτ,ρ(P, Q);

with f ′ ◦ ρ = τ (and equivalent ( f ∗)′ ◦ τ = ρ, with f ∗ denoting convex conjugate
of f ). Though inD (α)

f,ρ(P, Q) the two free functions are f (a strictly convex function)
and ρ (a strictly monotone increasing function), as reflected in its subscripts, there is
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only notational difference from the ρ, τ specification of two function’s choice. This
is because for f, f ∗, ρ, τ , a choice of any two functions (one of which would have
to be either ρ or τ ) would specify the remaining two. See [19, 22].

4 Tangent Vectors

The rho-tau divergence introduced above can be used to fix a Riemannian metric on
the tangent planes of the statistical manifold M.

In the standard situation of the Fisher-Rao metric the point P is a probability
density function pθ , parametric with θ ∈ R

n . A short calculation gives

∂ jEμ p
θY = 〈

∂ j log pθ ,Y
〉
θ
, (10)

with 〈X,Y 〉θ = Eμ pθ XY , and where ∂ j is an abbreviation for ∂/∂θ j . The metric
tensor is then given by

gi j (θ) = 〈∂i log pθ , ∂ j log pθ 〉θ .

The score variables ∂ j log pθ have vanishing expectation and span the tangent plane
at the point pθ .

These expressions are now generalized. Fix P in M. Make the assumption that
there exists some open neighborhoodU of P inM and a one-to-one correspondence
χP between elements Q of U and tangent vectors X = χP(Q) of TPM, satisfying
χP(P) = 0. This map χP is used as a local chart centered at the point P . The
directional derivative dX is then defined as

dX P := lim
ε→0

χ−1
P (εX) − χ−1(0)

ε
,

and is assumed to exist for all X ∈ TPM. Here, we leave the topology unspecified.
Now we take one of the two increasing functions ρ and τ , say ρ, to define a two-

point correlation function Eμρ(P)Y , and the other function, τ , to act as a deformed
logarithmic function replacing the logarithmic function which appears in the defini-
tion of the standard scores. The expression analogue to (10) now involves derivatives
of Eμρ(P)Y and of τ(P). It becomes

dXEμρ(P)Y = 〈
dXτ(P),Y

〉
P , (11)

with

〈X,Y 〉P = Eμ

ρ ′(P)

τ ′(P)
XY.
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This relation should hold for any P inM and X in TPM, and for any random variable
Y . The metric tensor gXY ≡ g(X,Y ) becomes

gXY (P) = 〈
dXτ(P), dY τ(P)

〉
P= Eμρ ′(P)τ ′(P)dX PdY P. (12)

This metric tensor is related to the divergence function introduced in the previous
section by

dP
Y d

Q
X Dρ,τ (P, Q)

∣∣∣∣
P=Q

= −gXY (P),

where dP is the derivative acting only on P and dQ acts only on Q. See [21] for the
derivation of the metric tensor in the form of (12) for the non-parametric setting.

In the case of amodel pθ which belongs to the exponential family the tangent plane
can be identified with the coordinate space. The chart becomes χpθ (pζ ) = ζ − θ so
that

dζ p
θ := lim

ε→0

1

ε

(
pθ+ε(ζ−θ) − pθ

)
.

If (ζ − θ)i = δi, j then dζ pθ = ∂ j pθ follows and (11) reduces to (10).

5 Gauge Freedom

From (12) it is clear that the metric tensor depends only on the product ρ ′τ ′ and not
on ρ and τ separately. This implies that once the metric tensor is fixed there remains
one function to be chosen freely, either the embedding ρ or the deformed logarithm τ ,
keeping ρ ′τ ′ fixed. This is what we call the gauge freedom of the rho-tau formalism.

The notion of gauge freedom is common in Physics to mark the introduction of
additional degrees of freedom which do not modify the model but control some of
its appearances. Here, the Riemannian metric of the manifold is considered to be an
essential feature while the different geometries such as the Riemannian geometry or
Amari’s dually flat geometries are attributes which give a further characterization.

It is known for long that distinct choices of the divergence function can lead to the
same metric tensor. The present formalism offers the opportunity to profit from this
freedom. Quantities such as the divergence function, the entropy or the alpha-family
of connections depend on the specific choice of both ρ and τ . This is illustrated
further on. Some examples are found in Table1.

The simplest choice to fix the gauge is ρ = id. Several classes generalizing Breg-
man divergences found in the literature, e.g. [6, 10], belong to this case. The phi-
divergence of [10] is obtained by choosing τ equal to the deformed logarithm logφ

(see Sect. 8), the derivative of which is 1/φ. This implies ρ ′τ ′ = 1/φ, which is also
the condition for the deformedmetric tensor of [10] to be conformally equivalentwith
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Table 1 Examples of ρ, τ combinations

ρ(u) τ (u) (ρ′τ ′)(u) f (u) f ∗(u)

u log u
1

u
u[log u − 1] eu

2
√
u 2

√
u

1

u

1

2
u2

1

2
u2

u logq (u)
1

uq
u

2 − q

[
logq (u) − 1

] 1
2−q

[
expq (u)

]2−q

ρ(u) logρ(u)
ρ′

ρ
(u) u[log u − 1] eu

u logφ(u)
1

φ(u)
u logφ(u) −

∫ u

1

v

φ(v)
dv

∫ expφ(u)

1

v

φ(v)
dv

(12). The U-divergence of [6] is obtained by taking τ equal to the inverse function
of U ′. These were discussed in detail in [11, 12, 23].

Also of interest is the gauge defined by ρ(u) = 1/τ ′(u). Let logρ be the corre-
sponding deformed logarithm (see (21) below). It satisfies logρ(u) = τ(u) − τ(1).
Hence, the entropy becomes

Sρ,τ (P) = −Eμρ(P)τ (P) + EμP + constant.

The divergence becomes

Dρ,τ (P, Q) = Eμρ(P)
[
logρ(P) − logρ(Q)

] − Eμ [P − Q] .

This expression is an obvious generalization of the Kullback–Leibler divergence.

6 Induced Geometry

A divergence function not only fixes a metric tensor by taking two derivatives, it also
fixes a pair of torsion-free connections by taking an extra derivative w.r.t. the first
argument [4, 5]. In particular, the rho-tau-divergence (5) determines an alpha-family
of connections [11, 19, 21].

A covariant derivative ∇Z with respect to a vector field Z is defined by

〈∇ZdXτ(P), dY τ(P)〉P = −dP
Z d

P
Y d

Q
X Dρ,τ (P, Q)

∣∣
∣∣
Q=P

.

A short calculation of the righthand side, with Dρ,τ defined by (4), gives

〈∇ZdXτ(P), dY τ(P)〉P = Eμ [dXτ(P)] dZdYρ(P).
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Let ∇(1)
Z = ∇Z and let ∇(−1)

Z be the operator obtained by interchanging ρ and τ .
This is

〈∇(−1)
Z dXτ(P), dY τ(P)〉P = Eμ [dXρ(P)] dZdY τ(P)

= 〈dXτ(P), dZdY τ(P)〉P . (13)

This shows that ∇(−1)
Z is the adjoint of dZ with respect to g. In addition one has

〈∇(1)
Z dXτ(P), dY τ(P)〉P + 〈dXτ(P),∇(−1)

Z dY τ(P)〉P = dZ gXY (P). (14)

The latter expression shows that the connections ∇(1) and ∇(−1) are the dual of each
other with respect to g. The alpha-family of connections is then obtained by linear
interpolation with α ∈ [−1, 1]

∇(α)
Z = 1 + α

2
∇(1)

Z + 1 − α

2
∇(−1)

Z , (15)

such that the covariant derivatives ∇(α) and ∇(−α) are mutually dual. In particular,
∇(0) is self-dual and therefore coincides with the Levi-Civita connection. The family
ofα-connections (15) is induced by the divergence functionD (α)

f,ρ(P, Q) given by (9),
with corresponding α-values. Furthermore, upon switching ρ ↔ τ in the divergence
function, the designation of 1-connection vs (−1)-connection also switches.

From (13) it is clear that the covariant derivative ∇(−1)
Z vanishes on the tangent

plane when
〈dXτ(P), dZdY τ(P)〉P = 0 for all X,Y ∈ TPM. (16)

If this holds for all P inM then the ∇(−1)-geometry is flat. This implies that the dual
geometry∇(1) is also flat— see Theorem 3.3 of [1]. The interpretation of (16) is that
all second derivatives dZdY τ(P) are orthogonal to the tangent plane.

7 Parametric Models

The previous sections deal with the geometry of arbitrary manifolds consisting of
random variables, without caring whether they possess special properties. Now para-
metric models with a Hessian metric g are considered.

From here on the random variables of the manifoldM are probability distribution
functions pθ , labeled with coordinates θ belonging to some open convex subset
U of Rn . The manifold is assumed to be differentiable. In particular, the θ i are
covariant coordinates and the assumption holds that the derivatives ∂i pθ ≡ ∂pθ /∂θ i

form a basis for the tangent plane TθM ≡ TpθM. The simplifications induced by this
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setting are that the tangent planes are finite-dimensional and that the dual coordinates
belong again to Rn . For general Banach manifolds both properties need not to hold.
The assumptions imply that the metric tensor

gi j (θ) = 〈∂iτ(pθ ), ∂ jτ(pθ )〉θ
is a strictly positive-definite matrix.

The metric g of the manifold M is said to be Hessian if there exists a strictly
convex function (θ) with the property that gi j (θ) = ∂i∂ j(θ). See for instance
[17]. Let �(η) denote the convex dual of (η). This is

�(η) = sup
θ

{〈η, θ〉 − (θ) : θ ∈ U }.

LetU ∗ denote the subset of Rn of η for which the maximum is reached at some θ in
U . This θ is unique and defines a bijection θ �→ η between U and U ∗. These η are
dual coordinates for the manifold M. Conversely [11], if there exist coordinates ηi
for which gi j (θ) = ∂ jηi then the rho-tau metric tensor g is Hessian.

The condition (16) for ∇(−1) to vanish can now be written as

〈∂iτ(pθ ), ∂k∂ jτ(pθ )〉θ = 0, for all θ ∈ U and for all i, j, k. (17)

Theorem 2 Assume that the θ i are affine coordinates such that ∇(−1) = 0. Then

(1) the metric tensor g is Hessian;
(2) the ηi are affine coordinates for the ∇(1)-geometry.

Proof (1) The metric tensor (12) becomes

gi j (p
θ ) = 〈∂iτ(pθ ), ∂ jτ(pθ )〉θ = Eμ

(
∂iτ(pθ )

)
∂ jρ(pθ ) = Eμ

(
∂ jτ(pθ )

)
∂iρ(pθ ).

This implies

∂kgi j (p
θ ) = Eμ

(
∂k∂iτ(pθ )

)
∂ jρ(pθ ) + Eμ

(
∂iτ(pθ )

)
∂k∂ jρ(pθ ),

but also

∂kgi j (p
θ ) = Eμ

(
∂k∂ jτ(pθ )

)
∂iρ(pθ ) + Eμ

(
∂ jτ(pθ )

)
∂k∂iρ(pθ ).

These equations simplify by means of (17). The result is

∂kgi j (p
θ ) = Eμ

(
∂iτ(pθ )

)
∂k∂ jρ(pθ ) = Eμ

(
∂ jτ(pθ )

)
∂k∂iρ(pθ ).
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This implies that ∂kgi j (θ) = ∂i gk j (θ). Hence there exist functions η j (θ) such that
gi j (θ) = ∂iη j (θ). As remarked above, it is proved in [11] that this suffices to conclude
that the metric g is Hessian.

(2) Let us show that
η(t) = (1 − t)η(1) + tη(2). (18)

is a solution of the Euler-Lagrange equations

d2

dt2
θ i + �i

km

(
d

dt
θ k

) (
d

dt
θm

)
= 0. (19)

Here, the�i
km are the coefficients of the connection�(1) inducedby the∇(1)-geometry.

They follow from
�i j,k = ∂i g jk(θ). (20)

One has
d

dt
θ i = ∂θ i

∂η j

dη j

dt
= gi j (θ)

[
η

(2)
j − η

(1)
j

]

and

d2

dt2
θ i = d

dt
gi j (θ)

[
η

(2)
j − η

(1)
j

]

= [
∂kg

i j (θ)
] dθ k

dt

[
η

(2)
j − η

(1)
j

]

= [
∂kg

i j (θ)
]
gkl(θ)

[
η

(2)
l − η

(1)
l

] [
η

(2)
j − η

(1)
j

]

= [
∂kg

i j (θ)
]
g jm(θ)

(
d

dt
θ k

)(
d

dt
θm

)
.

The l.h.s. of (19) becomes

l.h.s. = {[
∂kg

i j (θ)
]
g jm(θ) + �i

km

}(
d

dt
θ k

)(
d

dt
θm

)
.

This vanishes because (20) implies

�i
km = − [

∂kg
i j (θ)

]
g jm(θ).

�

It is important to realize that the discussion in this section is generic for parametric
models, without assuming particular parametric families.
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8 The Deformed Exponential Family

A repeated measurement of n independent random variables F1, . . . , Fn results in a
joint probability distribution π(ζ1, . . . , ζn), which describes the probability that the
true value of themeasured data equals ζ .More generally, themodel can be taken to be
a deformed exponential family, obtained by using a deformed exponential function
expφ . Following [10], a deformed logarithm logφ is defined by

logφ(u) =
∫ u

1
dv

1

φ(v)
, (21)

where φ(v) is strictly positive and integrable on the open interval (0,+∞). The
deformed exponential function expφ(u) is the inverse function of logφ(u). It is defined
on the rangeR of logφ(u), but is eventually extended with the value 0 if u < R and
with the value +∞ if u > R.

The expression for the probability density function then becomes

pθ (x) = expφ

(
n∑

k=1

θ k Fk(x) − α(θ)

)

. (22)

The function α(θ) serves to normalize pθ and is assumed to exist within the open
convex domain U ⊂ R

n in which the model is defined. One can show [10] that it is
a convex function. However, in general it does not coincide with the potential (θ)

of the previous section. The explanation is that escort probabilities come into play.
Indeed, from

0 = ∂iEμ p
θ = Eμφ(pθ ) [Fi − ∂iα]

follows that
∂iα = Ẽθ Fi ,

with the escort expectation Ẽθ defined by

ẼθY = Eμφ(pθ )Y

Eμφ(pθ )
.

Only in the non-deformed case, when φ(u) = u, the escort Ẽθ coincides with the
model expectation Eθ . Then the dual coordinates ηi satisfy ηi = Eθ Fi = ∂iα(θ).

In general, the rho-tau metric tensor g of the deformed exponential model is not
Hessian.We have the following Theorem (see [12])

Theorem 3 With respect to the (deformed) φ-exponential family pθ obeying (22),
the rho-tau metric tensor g is

(a) conformal to Hessian if
ρ ′τ ′φ = φ′;
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(b) Hessian if
ρ ′τ ′φ = id.

In case (a), the rho-tau metric tensor is conformally equivalent with the metric
tensor obtained by taking the Hessian of the normalization function α; in case (b) the
potential (θ) is constructed in [10]. However, there still leaves a gauge freedom.
The question is then whether one can choose ρ and τ so that condition (16) for the
dually flat geometry is satisfied. A sufficient condition is that ρ = id and τ = logφ .
This is the rho-affine gauge. In this gauge both the θ i and the ηi coordinates are affine
and the model has a dually flat structure.

Acknowledgements The research reported here is supported by DARPA/ARO Grant W911NF-
16-1-0383 (PI: Jun Zhang).

References

1. Amari, S., Nagaoka, H.: Methods of Information Geometry. AMS Monograph. Oxford Uni-
versity Press, Oxford (2000). (Originally published in Japanese by Iwanami Shoten, Tokyo,
Japan, 1993.)
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7. Lauritzen, S.: Statistical manifolds. In: Amari, S., Barndorff-Nielsen, O., Kass, R., Lauritzen,
S., Rao, C.R. (eds.) Differential Geometry in Statistical Inference. Lecture Notes, vol. 10, pp.
163–216. IMS, Hayward (1987)

8. Lê, H.V.: Statistical manifolds are statistical models. J. Geom. 84, 83–93 (2005)
9. Montrucchio, L., Pistone, G.: Deformed exponential bundle: the linear growth case. In: Nielsen,

F., Barbaresco, F. (eds.) GSI 2017 LNCS Proceedings of Geometric Science of Information,
pp. 239–246. Springer, Berlin (2017)

10. Naudts, J.: Estimators, escort probabilities, and phi-exponential families in statistical physics.
J. Ineq. Pure Appl. Math. 5, 102 (2004)

11. Naudts, J., Zhang, J.: Information geometry under monotone embedding. Part II: Geometry.
In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017 LNCS Proceedings of Geometric Science of
Information, pp. 215–222. Springer, Berlin (2017)

12. Naudts, J., Zhang J.: Information geometry under monotone embedding. Inf. Geom. (under
review)

13. Newton, N.J.: An infinite-dimensional statistical manifold modeled on Hilbert space. J. Funct.
Anal. 263, 1661–1681 (2012)

14. Pistone, G., Sempi, C.: An infinite dimensional geometric structure on the space of all the
probability measures equivalent to a given one. Ann. Stat. 33, 1543–1561 (1995)

15. Pistone, G., Rogantin, M.P.: The exponential statistical manifold: mean parameters, orthogo-
nality and space transformations. Bernoulli 5, 721–760 (1999)



Rho-Tau Embedding of Statistical Models 13

16. Pistone, G.: κ-exponential models from the geometrical viewpoint. Eur. Phys. J. B 70, 29–37
(2009)

17. Shima, H.: The Geometry of Hessian Structures. World Scientific, Singapore (2007)
18. Vigelis, R.F., Cavalcante, C.C.: On φ-families of probability distributions. J. Theor. Probab.

26, 870–884 (2013)
19. Zhang, J.: Divergence function, duality, and convex analysis. Neural Comput. 16, 159–195

(2004)
20. Zhang, J.: Referential duality and representational duality on statistical manifolds. In: Proceed-

ings of the Second International Symposium on Information Geometry and Its Applications,
Tokyo, Japan, pp. 58–67 (2005)

21. Zhang, J.: Nonparametric information geometry: from divergence function to referential-
representational biduality on statistical manifolds. Entropy 15, 1 (2013)

22. Zhang, J.: On monotone embedding in information geometry. Entropy 17, 4485–4499 (2015)
23. Zhang, J., Naudts, J.: Information geometry under monotone embedding. Part I: Divergence

functions. In: Nielsen, F., Barbaresco, F. (eds.) GSI 2017 LNCS Proceedings of Geometric
Science of Information, pp. 205–214. Springer, Berlin (2017)



A Class of Non-parametric Deformed
Exponential Statistical Models

Luigi Montrucchio and Giovanni Pistone

Abstract We study the class on non-parametric deformed statistical models where
the deformed exponential has linear growth at infinity and is sub-exponential at
zero. This class generalizes the class introduced by N.J. Newton. We discuss the
convexity and regularity of the normalization operator, the form of the deformed
statistical divergences and their convex duality, the properties of the escort densities,
and the affine manifold structure of the statistical bundle

1 Introduction

In this paper we study a geometry on the set P of strictly positive probability
densities on a probability space (X,X , μ). In some cases one is led to consider the
set P of probability densities i.e., without the restriction of strict positivity. There
is a considerable literature on the Information Geometry in the sense defined in the
Amari and Nagaoka monograph [2] onP . There is also a non-parametric approach
i.e., we are not considering the geometry induced on the parameter set of a given
statistical model but on the full set of densities. This was done in [21, 23] by using
logarithmic chart to represent densities.

A different approach, that leads to the construction of an Hilbert manifold on
P , has been proposed by N.J. Newton in [18, 19]. It is based on the use of the
chart p �→ p − 1 − log p instead of a purely logarithmic chart. This paper presents
a variation on the same theme by enlarging the class of permitted charts.

Let M ⊂ P . At each p ∈ M , the Hilbert space of square-integrable random
variables L2(p) provides a fiber that sits at p ∈ M , so we can define the Hilbert
bundle with base M . The Hilbert bundle, or similar bundles with fibers which are

L. Montrucchio
Collegio Carlo Alberto, Piazza Vincenzo Arbarello 8, 10122 Turin, Italy
e-mail: luigi.montrucchio@unito.it

G. Pistone (B)
de Castro Statistics, Collegio Carlo Alberto, Piazza Vincenzo Arbarello 8,
10122 Turin, Italy
e-mail: giovanni.pistone@carloalberto.org

© Springer Nature Switzerland AG 2019
F. Nielsen (ed.), Geometric Structures of Information, Signals and Communication
Technology, https://doi.org/10.1007/978-3-030-02520-5_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02520-5_2&domain=pdf
mailto:luigi.montrucchio@unito.it
mailto:giovanni.pistone@carloalberto.org
https://doi.org/10.1007/978-3-030-02520-5_2


16 L. Montrucchio and G. Pistone

vector spaces of random variables, provides a convenient framework for Information
Geometry, cf. [1, 12, 21].

If M is an exponential manifold in the sense of [23], there exists a splitting of
each fiber L2(p) = Hp ⊕ H ⊥

p , such that eachHp contains a dense vector sub-space
which is an expression of the tangent space TpM of the manifold. Moreover, the
manifold onM is an affine manifold (it can be defined by an atlas whose transition
mapping are affine) and it is also an Hessian manifold (the inner product on each
fiber is the second derivative of a potential function, [24]).

When the sample space is finite and M is the full set P of positive probability
densities, thenHp is the space of centered square integrable random variables L2

0(p)

and moreover there is an identification of the fiber with the tangent space Hp �
TpP . A similar situation occurs even when M is a finite-dimensional exponential
family. It is difficult to devise set-ups other than those mentioned above, where
the identification of the Hilbert fiber with the tangent space holds true. In fact, a
necessary condition would be the topological linear isomorphism among fibers. One
possible option would be to take as fibers the spaces of bounded functions L∞

0 (p),
see G. Loaiza and H.R. Quiceno [14].

This difficulty is overcome in the N.J. Newton’s setting. On a probability space
(X,X , μ), he considers the “balanced chart” M 
 p �→ log p + p − 1 ∈ L2

0(μ).
In this chart, all the tangent spaces are identified with the fixed Hilbert space L2

0(μ)

so that the statistical Hilbert bundle is trivialized.
N.J. Newton balanced chart falls in a larger class of “deformation” of the usual

logarithmic representation. It is in fact an instance of the class of “deformed loga-
rithm” as defined by J. Naudts [17]. It is defined as logA(x) = ∫ x

1 dt/A(t), where A
is a suitable increasing function. If A is bounded, then a special class of deformed
logarithms results. It includes N.J. Newton balanced chart as well as other deformed
logarithms, notably the G. Kaniadakis logarithm [10, 11, 20].

In this paper, we try a mixture of the various approaches by considering deformed
logarithms with linear growth as established by N.J. Newton, but we do not look for
a trivialization of the Hilbert bundle. Instead we construct an affine atlas of charts,
each one centered at a p ∈ M . This is obtained by adapting the construction of
the exponential manifold of [21] to the deformed exponential models as defined
by J. Naudts [17]. Moreover, we allow for a form of general reference measure by
using an idea introduced by R.F. Vigelis and C.C. Cavalcante [26]. That is, each
density has the form q = expA(u − K p(u) + logA p), where expA = log−1

A is an
exponential-like function which has a linear growth at +∞ and is dominated by an
exponential at −∞.

The formalism of deformed exponentials is discussed in Sect. 2. This section is
intended to be self-contained and contains material from the references discussed
above without an explicit mention. The following Sect. 3 is devoted to the study of
non-parametric deformed exponential families. In Sect. 4 we introduce the formula-
tion of the divergence, in accordance with our approach. In Sect. 5 the construction
of the Hilbert statistical bundle is outlined.

A first version of this piece of research has been presented at the GSI 2017
Conference [16] and we refer to that paper for some of the proofs.
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2 Deformed Exponential

Let us introduce a class of the deformed exponential, according to the formalism
introducedby [17].Assume to be given a function A from ]0,+∞[onto ]0, a[, strictly
increasing, continuously differentiable and such that

∥
∥A′∥∥∞ < ∞. This implies a =

‖A‖∞ and A(x) ≤ ∥
∥A′∥∥∞ x , so that

∫ 1
0 dξ/A(ξ) = +∞.

The A-logarithm is the function

logA(x) =
∫ x

1

dξ

A(ξ)
, x ∈]0,+∞[ .

The A-logarithm is strictly increasing from −∞ to +∞, its derivative log′
A(x) =

1/A(x) is positive and strictly decreasing for all x > 0, hence logA is strictly concave.
By inverting the A-logarithm, one obtains the A-exponential, expA = log−1

A . The
function expA : ] − ∞,+∞[→]0,+∞[ is strictly increasing, strictly convex, and is
the solution to the Cauchy problem

exp′
A(y) = A(expA(y)), expA(0) = 1 . (1)

As a consequence, we have the linear bound

∣
∣expA(y1) − expA(y2)

∣
∣ ≤ ‖A‖∞ |y1 − y2| . (2)

The behavior of the A-logarithm is linear for large arguments and super-
logarithmic for small arguments. To derive explicit bounds, set

α1 = min
x≤1

A(x)

x
, α2 = max

x≤1

A(x)

x
,

namely, they are the best constants such that α1x ≤ A(x) ≤ α2x for 0 < x ≤ 1. Note
that α1 ≥ 0 while α2 > 0. If in addition also α1 > 0, then

1

α2
log x ≤ logA x ≤ 1

α1
log x , 0 < x ≤ 1 . (3)

If otherwise α1 = 0, the left inequality is true only.
For x ≥ 1 we have A(1) ≤ A(x) < ‖A‖∞, hence

1

‖A‖∞
(x − 1) < logA x ≤ 1

A(1)
(x − 1) , x ≥ 1 . (4)

Under the assumptions made on the function A, the coefficient α1 > 0, if and only
if A′(0+) > 0.
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2.1 Examples

The main example of A-logarithm is the N.J. Newton A-logarithm [18], with

A(ξ) = 1 − 1

1 + ξ
= ξ

1 + ξ
,

so that
logA(x) = log x + x − 1 .

There is a simple algebraic expression for the product,

logA(x1x2) = logA(x1) + logA(x2) + (x1 − 1)(x2 − 1) .

Other similar examples are available in the literature. One is a special case of the
G. Kaniadakis’ exponential of [9], generated by

A(ξ) = 2ξ 2

1 + ξ 2
.

It turns out

logA x = x − x−1

2
,

whose inverse provides
expA(y) = y +

√
1 + y2 .

A remarkable feature of the G. Kaniadakis’ exponential is the relation

expA(y) expA(−y) =
(

y +
√
1 + y2

) (
−y +

√
1 + y2

)
= 1

Notice that the A function for N.J. Newton exponential is concave, while the A
function of G. Kaniadakis exponential is not.

Another example is A(ξ) = 1 − 2−ξ , which gives logA(x) = log2(1 − 2−x ) and
expA(y) = log2(1 + 2y).

Notable examples of deformed exponentials that do not fit into our set of assump-
tions are Tsallis q-logarithms, see [25]. For instance, for q = 1/2,

log1/2 x = 2
(√

x − 1
) =

∫ x

1

dξ√
ξ
.

In this case, log1/2(0+) = − ∫ 1
0 dξ/

√
ξ = −2, so that the inverse is not defined

for all real numbers. Tsallis logarithms provide models having heavy tails, which is
not the case in our setting.
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2.2 Superposition Operator

The deformed exponential will be employed to represent positive probability densi-
ties in the type p(x) = expA[u(x)], where u is a random variable on a probability
space (X,X , μ). For this reason, we are interested in the properties of the superpo-
sition operator

SA : u �→ expA ◦ u (5)

defined in some convenient functional setting. About superposition operators, see
e.g. [3, Ch. 1] and [4, Ch. 3].

It is clear from the Lipschitz condition (2) that expA(u) ≤ 1 + ‖A‖∞ |u|, which
in turn implies that the superposition operator SA maps Lα(μ) into itself for all
α ∈ [1,+∞] and the mapping is uniformly Lipschitz with constant ‖A‖∞. Notice
that we are assuming that μ is a finite measure.

The superposition operator SA : Lα(μ) → Lα(μ) is 1-to-1 and its image consists
of all positive random variables f such that logA f ∈ Lα(μ). The following propo-
sition intercepts a more general result [19]. We give a direct proof here for sake of
completeness and because our setting includes deformed logarithms other than the
case treated there.

Proposition 1 1. For all α ∈ [1,∞], the superposition operator SA of Eq. (5) is
Gateaux-differentiable with derivative

d SA(u)[h] = A(expA(u))h . (6)

2. SA is Fréchet-differentiable from Lα(μ) to Lβ(μ), for all α > β ≥ 1.

Proof 1. Equation (1) implies that for each couple of random variables u, h ∈
Lα(μ)

lim
t→0

t−1
(
expA(u + th) − expA(u)

) − A(expA(u))h = 0

holds point-wise. Moreover, if each α ∈ [1,∞[, by Jensen inequality we infer
that if t > 0 then

∣
∣t−1

(
expA(u + th) − expA(u)

) − A(expA(u))h
∣
∣α ≤

t−1 |h|α
∫ t

0

∣
∣A(expA(u + rh)) − A(expA(u))

∣
∣α dr ≤ (2 ‖A‖∞)α |h|α .

Now, dominated convergence forces the limit to hold in Lα(μ). If t < 0, it
sufficies to replace h with −h.
Whenever α = ∞, we can use the second-order bound



20 L. Montrucchio and G. Pistone

∣
∣t−1

(
expA(u + th) − expA(u)

) − A(expA(u))h
∣
∣ =

|t |−1h2

∣
∣
∣
∣

∫ t

0
(t − r)

d

dr
A(expA(u + rh)) dr

∣
∣
∣
∣ ≤ t

2
‖h‖2∞

∥
∥A′∥∥∞ ‖A‖∞ .

As
∥
∥A′ · A

∥
∥∞ < ∞, the RHS goes to 0 as t → 0 uniformly for each h ∈ L∞(μ).

2. Given u, h ∈ Lα(μ), thanks again to Taylor formula,

∫ ∣
∣expA(u + h) − expA(u) − A(expA(u))h

∣
∣β dμ ≤

∫
|h|β

∫ 1

0

∣
∣A(expA(u + rh)) − A(expA(u))

∣
∣β dr dμ .

By means of Hölder inequality, with conjugate exponents α/β and α/(α − β),
the RHS is bounded by

(∫
|h|α dμ

) β

α
(∫∫ ∣

∣A(expA(u + rh)) − A(expA(u))
∣
∣

αβ

α−β dr dμ

) α−β

α

.

Consequently,

‖h‖−1
Lα(μ)

∥
∥expA(u + h) − expA(u) − A(expA(u))h

∥
∥

Lβ (μ)
≤

(∫∫ ∣
∣A(expA(u + rh)) − A(expA(u))

∣
∣

αβ

α−β dr dμ

) α−β

αβ

.

In order to show that the RHS vanishes as ‖h‖Lα(μ) → 0, observe that for all
δ > 0 we have

∣
∣A(expA(u + rh)) − A(expA(u))

∣
∣ ≤

{
2 ‖A‖∞ always,
∥
∥A′∥∥∞ ‖A‖∞ δ if |h| ≤ δ,

so that, decomposing the double integral as
∫∫ = ∫∫

|h|≤δ
+ ∫∫

|h|>δ
, we obtain

∫∫ ∣
∣A(expA(u + rh)) − A(expA(u))

∣
∣γ dr dμ ≤

(2 ‖A‖∞)γ μ {|h| > δ} + (∥
∥A′∥∥∞ ‖A‖∞ δ

)γ ≤
(2 ‖A‖∞)γ δ−α

∫
|h|α dμ + (∥∥A′∥∥∞ ‖A‖∞ δ

)γ
,

where γ = αβ/(α − β) and we have used Cebičev inequality. Now it is clear that
the last bound implies the conclusion for each α < ∞. The case α = ∞ follows
a fortiori. �
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Remark 1 It is not generally true that the superposition operator SA be Fréchet dif-
ferentiable for α = β, cf. [3, §1.2]. We repeat here the well known counter-example.

Assume μ is a non-atomic probability measure. For each λ ∈ R and δ > 0 define
the simple function

hλ,δ(x) =
{

λ if |x | ≤ δ,

0 otherwise.

For each α ∈ [1,+∞[ we have

lim
δ→0

∥
∥hλ,δ

∥
∥

Lα(μ)
= lim

δ→0
|λ|μ {|x | ≤ δ}1/α = 0 .

Differentiability at 0 in Lα(μ) would imply for all λ

0 = lim
δ→0

∥
∥expA(hλ,δ) − 1 − A(1)hλ,δ

∥
∥

Lα(μ)∥
∥hλ,δ

∥
∥

Lα(μ)

=

lim
δ→0

∣
∣expA(λ) − 1 − A(1)λ

∣
∣μ {x | |x | ≤ δ}1/α

|λ|μ {x | |x | ≤ δ}1/α =
∣
∣
∣
∣
expA(λ) − 1

λ
− A(1)

∣
∣
∣
∣ ,

which is a contradiction.

Remark 2 Theorems about the differentiability of the deformed exponential are
important because of computations like d

dθ
expA(v(θ)) = exp′

A(v(θ))v̇(θ) are essen-
tial for the geometrical theory of statistical models. Several variations in the choice
of the combination domain space - image space are possible. Also, one could look
at a weaker differentiability property than Frechét differentiability. Our choice is
motivated by the results of the following sections. A large class of cases is discussed
in [19].

Remark 3 It would also be worth to study the action of the superposition operator on
spaces of differentiable functions, for example Gauss-Sobolev spaces of P. Malliavin
[15]. If μ is the standard Gaussian measure on Rn , and u is a differentiable function
such that u, ∂

∂xi
u ∈ L2(μ), i = 1, . . . , n, then it follows that expA(u) ∈ L2(μ) as

well as ∂
∂xi

expA(u) ∈ L2(μ), since

∂

∂xi
expA(u(x)) = A(expA(u(x))

∂

∂xi
u(x) .

We do not pursue this line of investigation here.
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3 Deformed Exponential Family Based on expA

According to [5, 26], let us define the deformed exponential curve in the space of
positive measures on (X,X ) as follows

t �→ μt = expA(tu + logA p) · μ , u ∈ L1(μ) .

We have the following inequality:

expA(x + y) ≤ ‖A‖∞ x+ + expA(y).

Actually, it is true for x ≤ 0, as being expA increasing. For x = x+ > 0 the
inequality follows from Eq. (2). As a consequence, each μt is a finite measure,
μt (X) ≤ t ‖A‖∞

∫
u+ dμ + 1, with μ0 = p · μ. The curve is actually continu-

ous and differentiable in L1(μ) because the point-wise derivative of the density
pt = expA(tu + logA(p)) is ṗt = A(pt )u so that | ṗt | ≤ ‖A‖∞ |u|. In conclusion
μ0 = p · μ and μ̇0 = A (p) u · μ.

There are twoways to normalize the density pt to total mass 1, either dividing by a
normalizing constant Z(t) to get the statistical model t �→ expA(tu + logA p)/Z(t)
or, subtracting a constant ψ(t) from the argument to get the model t �→ expA(tu −
ψ(t) + logA(p)). Unlike the standard exponential case, where these two methods
lead to the same result, this is not the case for deformed exponentials where expA(α +
β) �= expA(α) expA(β). We choose in the present paper the latter option.

Here we use the ideas of [5, 17, 26] to construct deformed non-parametric expo-
nential families. Recall that we are given: the probability space (X,X , μ); the set
P of the positive probability densities and the function A satisfying the conditions
set out in Sect. 2. Throughout this section, the density p ∈ P will be fixed.

The following proposition is taken from [16] where a detailed proof is given.

Proposition 2 1. The mapping L1(μ) 
 u �→ expA(u + logA p) ∈ L1(μ) has full
domain and is ‖A‖∞ -Lipschitz. Consequently, the mapping

u �→
∫

g expA(u + logA p) dμ

is ‖g‖∞ · ‖A‖∞-Lipschitz for each bounded function g.

2. For each u ∈ L1(μ) there exists a unique constant K p(u) ∈ R such that expA(u −
K p(u) + logA p) · μ is a probability.

3. K p(u) = u if, and only if, u is constant. In such a case,

expA(u − K p(u) + logA p) · μ = p · μ .

Otherwise, expA(u − K p(u) + logA p) · μ �= p · μ.
4. A density q is of the form q = expA(u − K p(u) + logA p), with u ∈ L1(μ) if,

and only if, logA q − logA p ∈ L1(μ).
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5. If
expA(u − K p(u) + logA p) = expA(v − K p(v) + logA p) ,

with u, v ∈ L1(μ), then u − v is constant.
6. The functional K p : L1(μ) → R is translation invariant. More specifically,

K p(u + c) = K p(u) + cK p(1)

holds for all c ∈ R.
7. K p : L1(μ) → R is continuous and convex.

3.1 Escort Density

For each positive density q ∈ P , its escort density is defined as

escort (q) = A(q)
∫

A(q) dμ
,

see [17]. Notice that 0 ≤ A(q) ≤ ‖A‖∞. In particular, q̃ = escort (q) is a bounded

positive density. Hence, escort
(
P

)
⊆ P ∩ L∞(μ). Clearly, the inclusion

escort (P) ⊆ P ∩ L∞(μ) is true as well.

Proposition 3 1. The mapping escort : P → P ∩ L∞(μ) is a.s. injective.

2. A bounded positive density q̃ is an escort density, i.e., q̃ ∈ escort
(
P

)
if, and

only if,

lim
α↑‖A‖∞

∫
A−1

(

α
q̃

‖q̃‖∞

)

dμ ≥ 1 . (7)

3. Condition (7) is fulfilled if μ
{
q̃ = ‖q̃‖∞

}
> 0. In particular, every density taking

a finite number of different values, i.e., a simple density, is an escort density.
4. If q̃1 = escort (q1) is an escort density, and q2 is a bounded positive density such

that
μ

{
q̃1 > t ‖q̃1‖∞

} ≤ μ
{
q2 > t ‖q2‖∞

}
, t > 0 ,

then q2 is an escort density as well.

Proof 1. Let escort (q1) = escort (q2) for μ-almost all x . Say,
∫

A ◦ q1 dμ ≥∫
A ◦ q2 dμ. Then A(q2(x)) ≤ A(q1(x)), for μ-almost all x . Since A is strictly

increasing, it follows q2(x) ≤ q1(x) for μ-almost all x , which, in turn, implies
q1 = q2 μ-a.s. because both μ-integrals are equal to 1. Thus the escort mapping
is a.s. injective.

2. Fix a q̃ ∈ P ∩ L∞(μ), and define the function
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f (α) =
∫

A−1

(

α
q̃

‖q̃‖∞

)

dμ, α ∈ [0, ‖A‖∞ [ .

It is finite, increasing, continuous and f (0) = 0. It is clear that the range condition
(7) is necessary because q̃ = escort (q) implies q = A−1

((∫
A(q) dμ

)
q̃
)
and, in

turn, 1 = ∫
A−1

((∫
A(q) dμ

)
q̃
)

dμ, given that q is a probability density. If we
takeα = ∫

A(q) dμ ‖q̃‖∞ ≤ ‖A‖∞, the range condition is satisfied. Conversely,

if the range condition holds, there exists α ≤ ‖A‖∞ such that q = A−1
(
α

q̃
‖q̃‖∞

)

is a positive probability density whose escort is q̃ .
3. This is a special case of Item 2, in that

f (α) =
∫

A−1

(

α
q̃

‖q̃‖∞

)

dμ ≥ A−1(α)μ
{
q̃ = ‖q̃‖∞

}
.

Therefore, f (α) ↑ +∞, as α ↑ ‖A‖∞.
4. For each bounded positive density q we have

∫
A−1

(
q

‖q‖∞

)

dμ =
∫ +∞

0
μ

{
q

‖q‖∞
> A(t)

}

dt =
∫ ‖A‖∞

0
μ

{
q

‖q‖∞
> s

}
1

A′ (A−1(s)
) ds .

Now the necessary condition of Item3. Follows from Item1. and our assumptions.
�

The previous proposition shows that the range of the escort mapping is uniformly
dense as it contains all simple densities. Moreover, in the partial order induced by
the rearrangement of the normalized density (that is for each q the mapping t �→
μ

{
q

‖q‖∞
> t

}
), it contains the full right interval of each element. But the range of the

escort mapping is not the full set of bounded positive densities, unless the σ -algebra
X is generated by a finite partition. To provide an example, consider on the Lebesgue
unit interval the densities qδ(x) ∝ (1 − x1/δ), δ > 0, and A(x) = x/(1 + x). The
density qδ turns out to be an escort if, and only if, δ ≤ 1.

3.2 Gradient of the Normalization Operator K p

Proposition2 shows that the functional K p is a global solution of an equation. We
now study its local properties by the implicit function theorem as well as the related
subgradients of the convex function K p. We refer to [7, Part I] for the general theory
of convex functions in infinite dimension.

For every u ∈ L1(μ), let us write
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q(u) = expA(u − K p(u) + logA p) (8)

while q̃(u) = escort (q(u)) denotes its escort density.

Proposition 4 1. The functional K p : L1(μ) → R is Gateaux-differentiable with
derivative

d

dt
K p(u + tv)

∣
∣
∣
∣
t=0

=
∫

vq̃(u) dμ .

It follows that K p : L1(μ) → R is monotone and globally Lipschitz.

2. For every u, v ∈ L1(μ), the inequality

K p(u + v) − K p(u) ≥
∫

vq̃(u) dμ

holds, i.e., the density q̃(u) ∈ L∞(μ) is the unique subgradient of K p at u.

Proof 1. Consider the equation

F(t, κ) =
∫

expA(u + tv − κ + logA p) dμ − 1 = 0, t, κ ∈ R ,

so that κ = K p(u + tv). Derivations under the integral hold by virtue of the
bounds

∣
∣
∣
∣
∂

∂t
expA(u + tv − κ + logA p)

∣
∣
∣
∣ =

∣
∣A(expA(u + tv − κ + logA p))v

∣
∣ ≤ ‖A‖∞ |v|

and
∣
∣
∣
∣
∂

p
∂κ expA(u + tv − κ + logA p)

∣
∣
∣
∣ = ∣

∣A(expA(u + tv − κ + logA p))
∣
∣ ≤ ‖A‖∞ .

Furthermore, the partial derivative with respect to κ is never zero. Thanks to the
implicit function theorem, there exists the derivative (dκ/dt)t=0 which is the
desired Gateaux derivative. Since q̃(u) is positive and bounded, K p is monotone
and globally Lipschitz.

2. Thanks to the convexity of expA and the derivation formula, we have

expA(u + v − K p(u + v) + logA p) ≥ q + A(q)(v − (K p(u + v) − K p(v))) ,

where q = expA(u − K p(u) + logA p). If we take μ-integral of both sides,

0 ≥
∫

v A(q) dμ − (K p(u + v) − K p(v))
∫

A(q) dμ .
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Isolating the increment K p(u + v) − K p(v), the desired inequality obtains.
Therefore, q̃(u) is a subgradient of K p at u. From Item 1. we deduce that q̃(u) is
the unique subgradient and further q̃(u) is the Gateaux differential of K p at u. �

We can also establish Fréchet-differentiability of the functional, under more strin-
gent assumptions.

Proposition 5 Let α ≥ 2.

1. The superposition operator

Lα(μ) 
 v �→ expA(v + logA p) ∈ L1(μ)

is continuously Fréchet differentiable with derivative

d expA(v) = (h �→ A(expA(v + logA p))h) ∈ L (Lα(μ), L1(μ)) .

2. The functional K p : Lα(μ) → R, implicitly defined by the equation

∫
expA(v − K p(v) + logA p) dμ = 1, v ∈ Lα(μ)

is continuously Fréchet differentiable with derivative

d K p(v) = (h �→
∫

hq̃(v) dμ) ,

where q̃(u) = escort (q(u)).

Proof 1. Setting β = 1 in Proposition1, we get easily the assertion. It remains
just to check that the Fréchet derivative is continuous, i.e., that the Fréchet
derivative is a continuous map Lα(μ) → L (Lα(μ), L1(μ)). If ‖h‖Lα(μ) ≤ 1
and v, w ∈ Lα(μ) we have

∫ ∣
∣(A[expA(v + logA p)] − A[expA(w + logA p)])h∣

∣ dμ

≤ ‖A[expA(v + logA p) − A[expA(w + logA p)]‖Lσ (μ) ,

where σ = α/ (α − 1) is the conjugate exponent ofα. On the other hand,

‖A[expA(v + logA p) − A[expA(w + logA p)]‖Lσ (μ)

≤ ∥
∥A′∥∥∞ ‖A‖∞ ‖v − w‖Lσ (μ)

and so the map Lα(μ) → L (Lα(μ), L1(μ)) is continuous whenever α ≥ σ,

i.e., α ≥ 2.
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2. Fréchet differentiability of K p is a consequence of the Implicit Function Theorem
in Banach spaces, see [6], applied to the C1-mapping

Lα(μ) × R 
 (v, κ) �→
∫

expA(v − κ + logA p) dμ .

The value of the derivative is given by Proposition4. �

4 Deformed Divergence

In analogy with the standard exponential case, define the A-divergence between
probability densities as

DA(q‖p) =
∫

(
logA q − logA p

)
escort (q) dμ, for q, p ∈ P .

Since logA is strictly concave with derivative 1/A, we have

logA (x) ≤ logA (y) + 1

A (y)
(x − y)

for all x, y > 0 and with equality if, and only if, x = y. Hence

A (y)
(
logA (y) − logA (x)

) ≥ y − x . (9)

It follows in particular that DA(·‖·) is a well defined, possibly extended valued,
function.

Observe further that by Proposition2, logA q − logA p ∈ L1 (μ), and so
DA(q‖p) < ∞, whenever q = q(u).

The binary relation DA is a faithful divergence in that it satisfies the following
Gibbs’ inequality.

Proposition 6 It holds DA(q‖p) ≥ 0 and DA(q‖p) = 0 if and only if p = q.

Proof From inequality (9) it follows

DA(q‖p) = 1
∫

A (q) dμ

∫
(
logA q − logA p

)
A (q) dμ

≥ 1
∫

A (q) dμ

∫
(q − p) dμ = 0.

Moreover, equality holds if and only if p = q μ-a.e. �
There are other alternative definitions that may fully candidate to be a divergence

measure. For instance:



28 L. Montrucchio and G. Pistone

IA(q‖p) = −
∫

logA(p/q)q dμ.

or also

D̃A(q‖p) =
∫

A(q/p) logA(p/q)p dμ.

By means of the concavity of logA, it is not difficult to check that both satisfy Gibbs’
condition of Proposition6, as well as they equal the Kullback–Leibner functional in
the non-deformed case. Observe further that the functional IA(q‖p) is closely related
to Tallis’ divergence (see [25] and also [14]). In fact, if one replaces logA with the
q-logarithm, one gets just Tallis’ q-divergence.

However our formulation for the divergence is motivated by the structure of the
deformed exponential representation. As it will be now seen, our definition of diver-
gence is more adapted to the present setting and it turns out be closely related to the
normalizing operator.

In the equation

q = expA(u − K p(u) + logA p), u ∈ L1(μ) , q ∈ P , (10)

the random variable u is identified up to an additive constant for any fixed density q.
There are at least two options for selecting an interesting representative member in
the equivalence class.

One option is to impose the further condition
∫

u p̃ dμ = 0,where p̃ = escort (p),
the integral being well defined, given that the escort density is bounded. This restric-
tion provides a unique element uq . On the other hand, if we solve Eq. (10) with
respect to u − K (u), we get the desired relation:

K p(uq) = E p̃
[
logA p − logA q

] = DA(p‖q), (11)

where u = uq is uniquely characterized by the two equations: E p̃ [u] = 0 and q =
expA(u − K p(u) + logA p).

Observe further that Eq. (11) entails the relation

K p(u) = DA(p‖q(u)) ∀u ∈ L1 (μ) .

The previous choice is that followed in the construction of the non-parametric expo-
nential manifold, see [22, 23].

With regard to the non-deformed case, Eq. (11) yields the Kulback-Leibler diver-
gence with p and q exchanged, with respect to what is considered more natural in
Statistical Physics, see for example the comments [13].

For this purpose, we undertake another choice for the random variable in the
equivalence class. More specifically, in Eq. (10) the random variable u will be now
centered with respect to q̃ = escort (q), i.e., Eq̃ [u] = 0.
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To avoid confusion let us rewrite Eq. (10) as follows and where for convenience
the function K p is replaced with Hp = −K p:

q = expA(v + Hp(v) + logA p), v ∈ L1(μ), Eq̃ [v] = 0, (12)

so that
Hp(vq) = Eq̃

[
logA q − logA p

] = DA(q‖p),

where v = vq is the solution to the two equations Eq̃ [v] = 0 and q = expA(v +
Hp(v) + logA p). There are hence twonotable representations of the sameprobability
density q:

q = expA(u − K p(u) + logA p) = expA(v + Hp(v) + logA p)

which implies uq − vq = K p(uq) + Hp(vq). This, in turn, leads to

−E p̃
[
vq

] = Eq̃
[
uq

] = K p(uq) + Hp(vq) = K p(uq) − K p(vq).

This provides the following remarkable relation

Hp(vq) = Eq̃
[
uq

] − K p(uq). (13)

4.1 Variational Formula

We now present a variational formula in the spirit of the classical one by Donsker-
Varadhan. Next proposition provides the convex conjugate of K p, in the duality
L∞(μ) × L1(μ).

In what follows, the operator η �→ η̂ denotes the inverse of the escort operator,
i.e., η = escort

(
η̂
)
. In the light of the results established in Sect. 3.1, this operator

maps a dense subset of P ∩ L∞(μ) onto P .

Proposition 7 1. The convex conjugate function of K p:

K ∗
p (w) = sup

u∈L1(μ)

(∫
wu dμ − K p (u)

)

, w ∈ L∞(μ) (14)

has domain contained into P ∩ L∞(μ). More precisely,

escort (P) ⊆ domK ∗
p ⊆ P ∩ L∞(μ).

2. K ∗
p (w) ≥ 0 for all w ∈ L∞(μ). For any η ∈ escort (P), the conjugate K ∗

p(η) is
given by the Legendre transform:



30 L. Montrucchio and G. Pistone

K ∗
p(η) =

∫
η uη̂ dμ − K p(uη̂) .

So that K ∗
p(η) = Hp(vη̂) = DA(η̂‖p); equivalently:

K ∗
p(escort (q)) = DA(q‖p) ∀p, q ∈ L1(μ).

3. It holds the inversion formula

K p (u) = max
η∈escort(P )

(∫
ηu dμ − DA(η̂‖p)

)

= max
q∈P

(∫
escort (q) u dμ − DA(q‖p)

)

, ∀u ∈ L1(μ).

Proof 1. It follows from the fact that K p is monotone and translation invariant. Let
us first suppose w /∈ L∞+ (μ). That means that

∫
wχC dμ < 0

is true for some indicator function χC . If we consider the cone generated by the
function −χC , we can write

K ∗
p (w) ≥ sup

u∈ cone(−χC )

(∫
wu dμ − K p (u)

)

≥ sup
u∈ cone(−χC )

∫
wu dμ = +∞,

since K p (u) ≤ 0when u ∈ cone(−χC ). Now consider the case in whichw ≥ 0.
If we set u = λ ∈ R, we have K p(λ) = λ and consequently

K ∗
p(w) ≥ sup

λ∈R

(

λ

∫
w dμ − λ

)

. (15)

This sup is+∞, unless
∫

w dμ = 1. Hence, K ∗
p (w) < ∞ impliesw ∈ P . Sum-

marizing, the domain of K ∗
p is contained into P ∩ L∞(μ), and this proves one

of the two claimed inclusions. The other one will be a direct consequence of the
next point.

2. Equation (15) implies K ∗
p ≥ 0. By Proposition4 the concave and Gateaux dif-

ferentiable function u �→ ∫
ηu dμ − K p(u) has derivative at u given by η −

d K p(u) = η − escort (q(u)), where q(u) = expA(u − K p(u) + logA p). Under
our assumptions, the derivative vanishes at u = uη̂ and the sup in the definition of
K ∗

p is attained at that point. The maximum value is K ∗
p(η) = ∫

ηu dμ − K p(u),
by setting u = uη̂.
The last formula follows straightforward from Eq. (13).

3. For a well-known property of Fenchel–Moreau duality theory, we have:
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K p (u) ≥
∫

wu dμ − K ∗
p(w) ∀u ∈ L1(μ), ∀w ∈ L∞(μ)

K p (u) =
∫

wu dμ − K ∗
p(w) ⇐⇒ w ∈ ∂K p (u) .

Clearly in our case ∂K p (u) is a singleton and the image of ∂K p is the set
escort (P). Therefore

K p (u) = max
w∈escort(P )

(∫
wu dμ − K ∗

p(w)

)

.

By Item 2 the desired inversion formula obtains. �

5 Hilbert Bundle Based on expA

We shall introduce theHilbertmanifold of probability densities as defined in [18, 19].
A slightly more general set-up than the one used in that reference will be introduced.
By means of a general A function, we provide an atlas of charts, and define a linear
bundle as an expression of the tangent space.

LetP(μ) denote the set of all μ-densities on the probability space (X,X , μ) of
the kind

q = expA(u − K1(u)), u ∈ L2(μ), Eμ [u] = 0 . (16)

Notice that 1 ∈ P(μ) because we can take u = 0.

Proposition 8 1. P(μ) is the set of all densities q such that logA q ∈ L2(μ), in
which case u = logA q − Eμ

[
logA q

]
.

2. If in addition A′(0+) > 0, then P(μ) is the set of all densities q such that both
q and log q are in L2(μ).

3. Let A′(0+) > 0. On a product space with reference probability measures μ1 and
μ2, and densities respectively q1 and q2, we have q1 ∈ P(μ1) and q2 ∈ P(μ2)

if, and only if, q1 ⊗ q2 ∈ P(μ1 ⊗ μ2).

Proof 1. From Eq. (16), it follows logA q = u − K1(u) ∈ L2(μ), provided u ∈
L2(μ). Conversely, let logA q ∈ L2(μ). Equation (16) yields

u = logA q − K1(u) and K1(u) = − logA q.

Therefore u = logA q − Eμ

[
logA q

]
and u ∈ L2(μ).

2. Write ∣
∣logA q

∣
∣2 = ∣

∣logA q
∣
∣2 (q < 1) + ∣

∣logA q
∣
∣2 (q ≥ 1)

and use the bounds of Eqs. (3) and (4) to get
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Eμ

[∣
∣logA q

∣
∣2

]
≤ 1

α2
2

Eμ

[|log q|2 (q < 1)
] + 1

A(1)2
Eμ

[|q − 1|2 (q ≥ 1)
] ≤

1

α2
2

Eμ

[|log q|2] + 1

A(1)2
Eμ

[
q2] .

We deduce that the two conditions q and log q in L2(μ) imply logA q ∈ L2(μ).
Conversely, let logA q ∈ L2(μ). By means of the other two bounds (recall that
α1 > 0) we have too

Eμ

[∣
∣logA q

∣
∣2

]
≥ 1

α2
1

Eμ

[|log q|2 (q < 1)
] + 1

‖A‖2∞
Eμ

[
(q − 1)2(q ≥ 1)

]
.

Consequently, Eμ

[
(q − 1)2(q ≥ 1)

]
< +∞. This in turn gives Eμ

[
(q − 1)2

]
<

+∞, and so q ∈ L2(μ).
Once again, the previous inequality provides the condition Eμ

[|log q|2 (q < 1)
]

< +∞. On the other hand, Eμ

[|log q|2 (q ≥ 1)
]

< +∞ since |log q|2 (q ≥ 1) ≤
(q − 1)2(q ≥ 1). Therefore, log q ∈ L2(μ).

3. We deduce by the previous item that: q1 ⊗ q2 ∈ P(μ1 ⊗ μ2) if and only if both
q1 ⊗ q2 and log(q1 ⊗ q2) are in L2(μ1 ⊗ μ2).

The first condition is equivalent to both q1 ∈ L2(μ1) andq2 ∈ L2(μ2). The second
one is equivalent to log q1 + log q2 ∈ L2(μ1 ⊗ μ2). On the other hand, we have

Eμ1⊗μ2

[
(log q1 + log q2)

2
] =

Eμ1

[
log2 q1

] + Eμ2

[
log2 q2

] + 2 Eμ1

[
log q1

]
Eμ2

[
log q2

]
.

(17)

By Eq. (17), q1 ∈ P(μ1) and q2 ∈ P(μ2) imply q1 ⊗ q2 ∈ P(μ1 ⊗ μ2).
Conversely, assume q1 ⊗ q2 ∈ P(μ1 ⊗ μ2). This implies that it holds,
Eμ1⊗μ2

[
(log q1 + log q2)

2
]

< +∞. Since Eμi

[
log qi

] ≤ Eμ1 [qi − 1] = 0. We
have Eμ1

[
log q1

]
Eμ2

[
log q2

] ≥ 0. In view of Eq. (17), we can infer that q1 ∈
P(μ1) and q2 ∈ P(μ2) �

We proceed now to define an Hilbert bundle with base P(μ). The notion of
Hilbert bundle has been introduced in Information Geometry by [1]. We are here
using an adaptation to the A-exponential of arguments elaborated by [8, 21]. Notice
that the construction depends in a essential way on the specific conditions we are
assuming for the present class of deformed exponential.

At each q ∈ P(μ) the escort density q̃ is bounded, so that we can define the fiber
given by the Hilbert spaces

Hq = {
u ∈ L2(μ)|Eq̃ [u] = 0

}

with scalar product 〈u, v〉q = ∫
uv dμ. The Hilbert bundle is
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HP(μ) = {
(q, u)|q ∈ P(μ), u ∈ Hq

}
.

For each p, q ∈ P(μ) the mapping U
q
pu = u − Eq̃ [u] is a continuous linear map-

ping fromHp toHq . Moreover, Ur
qU

q
p = U

r
p. In particular, U

p
qU

q
p is the identity on

Hp and so Uq
p is an isomorphism of Hp onto Hq .

In the next proposition an affine atlas of charts is constructed in order to define
our Hilbert bundle which is an expression of the tangent bundle. The velocity of a
curve t �→ p(t) ∈ P(μ) is given in the Hilbert bundle by the so called A-score that,
in our case, takes the form A(p(t))−1 ṗ(t), where ṗ(t) is computed in L1(μ).

The following proposition is taken from [16] where a detailed proof is presented.

Proposition 9 1. Fix p ∈ P(μ). A positive density q ∈ P(μ) if and only if

q = expA(u − K p(u) + logA p), with u ∈ L2(μ) and E p̃ [u] = 0.

2. For any fixed p ∈ P(μ) the mapping sp : P(μ) → Hp defined by

q �→ logA q − logA p + DA(p‖q)

is injective and surjective, with inverse ep(u) = expA(u − K p(u) + logA p).
3. The atlas

{
sp|p ∈ P(μ)

}
is affine with transitions

sq ◦ ep(u) = U
q
pu + sp(q) .

4. The velocity of the differentiable curve t �→ p(t) ∈ P(μ) in the chart sp is
dsp(p(t))/dt ∈ Hp. Conversely, given any u ∈ Hp, the curve

p : t �→ expA(tu − K p(tu) + logA p)

satisfies p(0) = p and has velocity u at t = 0, expressed in the chart sp. If the
velocity of a curve is t �→ u̇(t), in a chart sp, then U

q
pu̇(t) is its velocity in the

chart sq .
5. If t �→ p(t) ∈ P(μ) is differentiable with respect to the atlas then it is differen-

tiable as a mapping in L1(μ). It follows that the A-score is well-defined and is the
expression of the velocity of the curve t �→ p(t) in the moving chart t �→ sp(t).

We end here our discussion of the geometry of the Hilbert bundle, because our
aim is limited to show the applicability of the analytic results obtained in the previ-
ous section. A detailed discussion of the relevant geometric objects e.g., the affine
covariant derivative, is not attempted here.
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6 Final Remarks

A non-parametric Hilbert manifold based on a deformed exponential representation
of positive densities has been firstly introduced by N.J. Newton [18, 19]. We have
derived regularity properties of the normalizing functional K p and discussed the
relevant Fenchel conjugation. In particular, we have discussed some properties of the
escort mapping and a form of the divergence that appears to be especially adapted
to our set-up. We have taken a path different from that of N.J. Newton original
presentation. We allow for a manifold defined by an atlas containing charts centered
at each density in the model. In conclusion, we have discussed explicitly a version
of the Hilbert bundle as a family of codimension 1 sub-vector spaces of the basic
Hilbert space.
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Statistical Manifolds Admitting Torsion
and Partially Flat Spaces

Masayuki Henmi and Hiroshi Matsuzoe

Abstract It is well-known that a contrast function defined on a product manifold
M × M induces a Riemannian metric and a pair of dual torsion-free affine connec-
tions on the manifold M . This geometrical structure is called a statistical manifold
and plays a central role in information geometry. Recently, the notion of pre-contrast
function has been introduced and shown to induce a similar differential geometrical
structure on M , but one of the two dual affine connections is not necessarily torsion-
free. This structure is called a statistical manifold admitting torsion. The notion of
statistical manifolds admitting torsion has been originally introduced to study a geo-
metrical structure which appears in a quantum statistical model. However, it has been
shown that an estimating function which is used in “classical” statistics also induces
a statistical manifold admitting torsion through its associated pre-contrast function.
The aim of this paper is to summarize such previous results. In particular, we focus
on a partially flat space, which is a statistical manifold admitting torsion where one
of its dual connections is flat. In this space, it is possible to discuss some properties
similar to those in a dually flat space, such as a canonical pre-contrast function and
a generalized projection theorem.

1 Introduction

A statistical manifold is a Riemannian manifold with a pair of dual torsion-free
affine connections and it plays a central role in information geometry. This geo-
metrical structure is induced from an asymmetric (squared) distance-like smooth
function called a contrast function by taking its second and third derivatives [1, 2].
TheKullback–Leibler divergence on a regular parametric statisticalmodel is a typical
example of contrast functions and its induced geometrical objects are the Fisher met-
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ric, the exponential and mixture connections. The geometrical structure determined
by these objects plays an important role in the geometry of statistical inference, as
is widely known [3, 4].

A statistical manifold admitting torsion (SMAT) is a Riemannian manifold with a
pair of dual affine connections, where only one of them must be torsion-free but the
other is not necessarily so. This geometrical structure naturally appears in a quantum
statistical model (i.e. a set of density matrices representing quantum states) [3] and
the notion of SMAT was originally introduced to study such a geometrical structure
from a mathematical point of view [5]. A pre-contrast function was subsequently
introduced as a generalization for the first derivative of a contrast function and it was
shown that an pre-contrast function induces a SMAT by taking its first and second
derivatives [6].

In statistics, an estimating function is a function defined on a direct product of
parameter and sample spaces, and it is used to obtain an estimator by solving its
corresponding estimating equation. Henmi and Matsuzoe [7] showed that a SMAT
also appears in “classical" statistics through an estimating function. More precisely,
an estimating function naturally defines a pre-contrast function on a parametric sta-
tistical model and a SMAT is induced from it.

This paper summarizes such previous results, focusing on a SMAT where one of
its dual connections is flat. We call this geometrical structure a partially flat space.
Although this space is different from a dually flat space in general since one of the
dual connections in a SMAT possibly has torsion, some similar properties hold. For
example, the canonical pre-contrast function can be naturally defined on a partially
flat space, which is an analog of the canonical contrast function (or canonical diver-
gence) in a dually flat space. In addition, a generalized projection theorem holds with
respect to the canonical pre-contrast function. This theorem can be seen as a gener-
alization of the projection theorem in a dually flat space. This paper is an extended
version of the conference proceedings [8].We consider a statistical problem to see an
example of statistical manifolds admitting torsion induced from estimating functions
and discuss some future problems, neither of which were included in [8].

2 Statistical Manifolds and Contrast Functions

Through this paper, we assume that all geometrical objects on differentiable man-
ifolds are smooth and restrict our attention to Riemannian manifolds, although the
most of the concepts can be defined for semi-Riemannian manifolds.

Let (M, g) be a Riemannian manifold and ∇ be an affine connection on M . The
dual connection ∇∗ of ∇ with respect to g is defined by

Xg(Y, Z) = g(∇XY, Z) + g(Y,∇∗
X Z) (∀X,∀Y,∀Z ∈ X (M)),

where X (M) is the set of all vector fields on M .
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For an affine connection ∇ on M , its curvature tensor field R and torsion tensor
field T are defined by the following equations as usual:

R(X,Y )Z := ∇X∇Y Z − ∇Y∇X Z − ∇[X,Y ]Z ,

T (X,Y ) := ∇XY − ∇Y X − [X,Y ]

(∀X,∀Y,∀Z ∈ X (M)). It is said that an affine connection∇ is torsion-free if T = 0.
Note that for a torsion-free affine connection ∇, ∇∗ = ∇ implies that ∇ is the Levi-
Civita connection with respect to g. Let R∗ and T ∗ be the curvature and torsion tensor
fields of ∇∗, respectively. It is easy to see that R = 0 always implies R∗ = 0, but
T = 0 does not necessarily imply T ∗ = 0.

Let ∇ be a torsion-free affine connection on a Riemannian manifold (M, g).
Following [9], we say that (M, g,∇) is a statistical manifold if and only if ∇g is a
symmetric (0, 3)-tensor field, that is

(∇X g)(Y, Z) = (∇Y g)(X, Z) (∀X,∀Y,∀Z ∈ X (M)). (1)

This condition is equivalent to T ∗ = 0 under the condition that ∇ is a torsion-free. If
(M, g,∇) is a statistical manifold, so is (M, g,∇∗) and it is called the dual statistical
manifold of (M, g,∇). Since∇ and∇∗ are both torsion-free for a statistical manifold
(M, g,∇), R = 0 implies that ∇ and ∇∗ are both flat. In this case, (M, g,∇,∇∗) is
called a dually flat space [3].

Let φ be a real-valued function on the direct product M × M of a manifold M and
X1, . . . , Xi ,Y1, . . . ,Y j be vector fields on M . The functions φ[X1, . . . , Xi |Y1, . . . ,
Y j ], φ[X1, . . . , Xi | ] and φ[ |Y1, . . . ,Y j ] on M are defined by the equations

φ[X1, . . . , Xi |Y1, . . . ,Y j ](r) := (X1)p · · · (Xi )p(Y1)q · · · (Y j )qφ(p, q)|p=r,q=r ,

(2)

φ[X1, . . . , Xi | ](r) := (X1)p · · · (Xi )pφ(p, r)|p=r , (3)

φ[ |Y1, . . . ,Y j ](r) := (Y1)q · · · (Y j )qφ(r, q)|q=r (4)

for any r ∈ M , respectively [1]. Using these notations, a contrast function φ on
M is defined to be a real-valued function on M × M which satisfies the following
conditions [1, 2]:

(a) φ(p, p) = 0 (∀p ∈ M),

(b) φ[X | ] = φ[ |X ] = 0 (∀X ∈ X (M)),

(c) g(X,Y ) := −φ[X |Y ] (∀X,∀Y ∈ X (M)) is a Riemannian metric on M.

Note that these conditions imply that

φ(p, q) ≥ 0, φ(p, q) = 0 ⇐⇒ p = q
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in some neighborhood of the diagonal set {(r, r)|r ∈ M} in M × M . Although a
contrast function is not necessarily symmetric, this property means that a contrast
function measures some discrepancy between two points on M (at least locally). For
a given contrast function φ, the two affine connections ∇ and ∇∗ are defined by

g(∇XY, Z) = −φ[XY |Z ], g(Y,∇∗
X Z) = −φ[Y |X Z ]

(∀X,∀Y,∀Z ∈ X (M)). In this case, ∇ and ∇∗ are both torsion-free and dual to
each other with respect to g. This means that both of (M, g,∇) and (M, g,∇∗)
are statistical manifolds. In particular, (M, g,∇) is called the statistical manifold
induced from the contrast function φ.

A typical example of contrast functions is the Kullback–Leibler divergence on
a statistical model. Let S = {p(x; θ) | θ = (θ1, . . . , θd) ∈ Θ ⊂ Rd} be a regular
parametric statistical model, which is a set of probability density functions with
respect to a dominating measure ν on a sample space Ω . Each element is indexed
by a parameter (vector) θ in an open subset Θ of Rd and the set S satisfies some
regularity conditions, under which S can be seen as a differentiable manifold. The
Kullback–Leibler divergence of the two density functions p1(x) = p(x; θ1) and
p2(x) = p(x; θ2) in S is defined to be

φK L(p1, p2) :=
∫

Ω

p2(x) log
p2(x)

p1(x)
ν(dx).

It is easy to see that the Kullback–Leibler divergence satisfies the conditions (a),
(b) and (c), and so it is a contrast function on S. Its induced Riemannian metric and
dual connections are Fisher metric gF , the exponential connection ∇(e) and mixture
connection ∇(m), respectively. They are given as follows:

gF
jk(θ) := gF (∂ j , ∂k) = Eθ {s j (x, θ)sk(x, θ)},{
Γ

(e)
i j,k(θ) := gF (∇(e)

∂i
∂ j , ∂k) = Eθ [{∂i s j (x, θ)}sk(x, θ)]

Γ
(m)
ik, j (θ) := gF (∂ j ,∇(m)

∂i
∂k) = ∫

Ω
s j (x, θ)∂i∂k p(x; θ)ν(dx)

,

where Eθ indicates that the expectation is taken with respect to p(x; θ), ∂i = ∂
∂θ i

and si (x; θ) = ∂i log p(x; θ) (i = 1, . . . , d). As is widely known, this geometrical
structure plays the most fundamental and important role in the differential geometry
of statistical inference [3, 4].

3 Statistical Manifolds Admitting Torsion and Pre-contrast
Functions

A statistical manifold admitting torsion is an abstract notion for the geometrical
structure where only one of the dual connections is allow to have torsion, which
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naturally appears in a quantum statistical model [3]. The definition is obtained by
generalizing (1) in the definition of statistical manifold as follows [5].

Let (M, g) be a Riemannian manifold and ∇ be an affine connection on M . We
say that (M, g,∇) is a statistical manifold admitting torsion (SMAT for short) if and
only if

(∇X g)(Y, Z) − (∇Y g)(X, Z) = −g(T (X,Y ), Z) (∀X,∀Y,∀Z ∈ X (M)). (5)

This condition is equivalent to T ∗ = 0 in the casewhere∇ possibly has torsion, and it
reduces to (1) if∇ is torsion-free. Note that (M, g,∇∗) is not necessarily a statistical
manifold although ∇∗ is torsion-free. It should be also noted that (M, g,∇∗) is
a SMAT whenever a torsion-free affine connection ∇ is given on a Riemannian
manifold (M, g).

For a SMAT (M, g,∇), R = 0 does not necessarily imply that ∇ is flat, but it
implies that ∇∗ is flat since R∗ = 0 and T ∗ = 0. In this case, we call (M, g,∇,∇∗)
a partially flat space.

Let ρ be a real-valued function on the direct product T M × M of a manifold M
and its tangent bundle T M , and X1, . . . , Xi ,Y1, . . . ,Y j , Z be vector fields on M .
The function ρ[X1, . . . , Xi Z |Y1, . . . ,Y j ] on M is defined by

ρ[X1, . . . , Xi Z |Y1, . . . ,Y j ](r) := (X1)p · · · (Xi )p(Y1)q · · · (Y j )qρ(Z p, q)|p=r,q=r

for any r ∈ M . Note that the role of Z is different from those of the vector fields
in the notation of (2). The functions ρ[X1, . . . , Xi Z | ] and ρ[ |Y1, . . . ,Y j ] are also
defined in the similar way to (3) and (4).

We say thatρ is apre-contrast functiononM if and only if the following conditions
are satisfied [6, 7]:

(a) ρ( f1X1 + f2X2, q) = f1ρ(X1, q) + f2ρ(X2, q)

(∀ f1,∀ f2 ∈ C∞(M), ∀X1,∀X2 ∈ X (M), ∀q ∈ M).

(b) ρ[X | ] = 0 (∀X ∈ X (M))
(
i.e. ρ(X p, p) = 0 (∀p ∈ M)

)
.

(c) g(X,Y ) := −ρ[X |Y ] (∀X,∀Y ∈ X (M)) is a Riemannian metric on M.

Note that for any contrast function φ on M , the function ρφ which is defined by

ρφ(X p, q) := X pφ(p, q) (∀p,∀q ∈ M, ∀X p ∈ Tp(M))

is a pre-contrast function on M . The notion of pre-contrast function is obtained by
taking the fundamental properties of the first derivative of a contrast function as
axioms. For a given pre-contrast function ρ, two affine connections ∇ and ∇∗ are
defined by

g(∇XY, Z) = −ρ[XY |Z ], g(Y,∇∗
X Z) = −ρ[Y |X Z ]
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(∀X,∀Y,∀Z ∈ X (M)) in the same way as for a contrast function. In this case, ∇
and ∇∗ are dual to each other with respect to g and ∇∗ is torsion-free. However, the
affine connection ∇ possibly has torsion. This means that (M, g,∇) is a SMAT and
it is called the SMAT induced from the pre-contrast function ρ.

4 Canonical Pre-contrast Functions in Partially Flat Spaces

In a dually flat space (M, g,∇,∇∗), it is well-known that the canonical contrast
functions (called ∇ and ∇∗- divergences) are naturally defined, and the Pythagorean
theoremand the projection theoremare stated in terms of the∇ and∇∗- geodesics and
the canonical contrast functions [3, 4]. In a partially flat space (M, g,∇,∇∗), where
R = R∗ = 0 and T ∗ = 0, it is possible to define a pre-contrast function which can
be seen as canonical, and a projection theorem holds with respect to the “canonical"
pre-contrast function and the ∇∗-geodesic.

Proposition 1 (Canonical Pre-contrast Functions) Let (M, g,∇,∇∗) be a partially
flat space (i.e. (M, g,∇) is a SMATwith R = R∗ = 0 and T ∗ = 0) and (U, ηi ) be an
affine coordinate neighborhood with respect to∇∗ in M. The function ρ on TU ×U
defined by

ρ(Z p, q) := −gp(Z p, γ̇
∗(0)) (∀p,∀q ∈ U,∀Z p ∈ Tp(U )), (6)

is a pre-contrast function on U, where γ ∗ : [0, 1] → U is the ∇∗-geodesic such that
γ ∗(0) = p, γ ∗(1) = q and γ̇ ∗(0) is the tangent vector of γ ∗ at p. Furthermore,
the pre-contrast function ρ induces the original Riemannian metric g and the dual
connections ∇ and ∇∗ on U.

Proof For the function ρ defined as (6), the condition (a) in the definition of pre-
contrast functions follows from the bilinearity of the inner product gp. The condition
(b) immediately follows from γ̇ ∗(0) = 0 when p = q. By calculating the derivatives
of ρ with the affine coordinate system (ηi ), it can be shown that the condition (c)
holds and that the induced Riemannian metric and dual affine connections coincide
with the original g, ∇ and ∇∗. �

In particular, if (U, g,∇,∇∗) is a dually flat space, the pre-contrast function ρ

defined in (6) coincides with the directional derivative Z pφ
∗(·, q) of ∇∗-divergence

φ∗(·, q) with respect to Z p (cf. [10, 11]). Hence, the definition of (6) seems to be
natural one and we call the function ρ in (6) the canonical pre-contrast function in
a partially flat space (U, g,∇,∇∗).

From the definition of the canonical pre-contrast function, we can immediately
obtain the following theorem.

Corollary 1 (Generalized Projection Theorem) Let (U, ηi ) be an affine coordinate
neighborhood in a partially flat space (M, g,∇,∇∗) and ρ be the canonical pre-
contrast function on U. For any submanifold N in U, the following conditions are
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equivalent:

(i) The ∇∗ − geodesic starting at q ∈ U is perpendicular to Nat p ∈ N .

(i i) ρ(Z p, q) = 0 for any Z p in Tp(N ).

If (U, g,∇,∇∗) is a dually flat space, this theorem reduces to the projection theorem
with respect to the ∇∗-divergence φ∗, since ρ(Z p, q) = Z pφ

∗(p, q). In this sense, it
can be seen as a generalized version of the projection theorem in dually flat spaces,
and this is also one of the reasonswhywe consider the pre-contrast functionρ defined
in (6) as canonical.

5 Statistical Manifolds Admitting Torsion Induced from
Estimating Functions

As we mentioned in Introduction, a SMAT naturally appears through an estimating
function in a “classical" statistical model as well as in a quantum statistical model.
In this section, we briefly explain how a SMAT is induced on a parametric statistical
model from an estimating function. See [7] for more details.

Let S = {p(x; θ) | θ = (θ1, . . . , θd) ∈ Θ ⊂ Rd} be a regular parametric statis-
tical model. An estimating function on S, which we consider here, is a Rd -valued
function u(x, θ) satisfying the following conditions:

Eθ {u(x, θ)} = 0, Eθ {‖u(x, θ)‖2} < ∞, det

[
Eθ

{
∂u
∂θ

(x, θ)

}]
= 0 (∀θ ∈ Θ).

The first condition is called the unbiasedness of estimating functions, which is impor-
tant to ensure the consistency of the estimator obtained from an estimating func-
tion. Let X1, . . . , Xn be a random sample from an unknown probability distribution
p(x; θ0) in S. The estimator θ̂ for θ0 is called an M-estimator if it is obtained as a
solution to the estimating equation

n∑
i=1

u(X i , θ) = 0. (7)

The M-estimator θ̂ has the consistency

θ̂ −→ θ0 (in probability)

as n → ∞ and the asymptotic normality

√
n(θ̂ − θ0) −→ N

(
0,Avar

(
θ̂
))

(in distribution)
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as n → ∞ under some additional regularity conditions [12], which are also assumed
in the followingdiscussion.ThematrixAvar(θ̂) is the asymptotic variance-covariance
matrix of θ̂ and is given by

Avar(θ̂) = {A(θ0)}−1B(θ0){A(θ0)}−T , (8)

where A(θ) := Eθ {(∂u/∂θ)(x, θ)}, B(θ) := Eθ

{
u(x, θ)u(x, θ)T

}
and −T means

transposing an inverse matrix (or inverting a transposed matrix).
In order to induce the structure of SMAT on S from an estimating function, we

consider the notion of standardization of estimating functions. For an estimating
function u(x, θ), its standardization (or standardized estimating function) is defined
by

u∗(x, θ) := Eθ

{
s(x, θ)u(x, θ)T

} [
Eθ

{
u(x, θ)u(x, θ)T

}]−1
u(x, θ),

where s(x, θ) = (∂/∂θ) log p(x; θ) is the score function for θ [13]. Geometrically,
the i-th component of the standardized estimating function u∗(x, θ) is the orthogonal
projection of the i-th component of the score function s(x, θ) onto the linear space
spanned by all components of the estimating function u(x, θ) in the Hilbert space

Hθ := {a(x) | Eθ {a(x)} = 0, Eθ {a(x)2} < ∞}

with the inner product< a(x), b(x) >θ := Eθ {a(x)b(x)} (∀a(x),∀b(x) ∈ Hθ ). The
standardization u∗(x, θ)of u(x, θ)does not change the estimator since the estimating
equation obtained from u∗(x, θ) is equivalent to the original estimating equation (7).
In terms of the standardization, the asymptotic variance-covariance matrix (8) can
be rewritten as

Avar(θ̂) = {G(θ0)}−1,

whereG(θ) := Eθ

{
u∗(x, θ)u∗(x, θ)T

}
. ThematrixG(θ) is called aGodambe infor-

mation matrix [14], which can be seen as a generalization of the Fisher information
matrix.

As we have seen in Sect. 2, the Kullback–Leibler divergence φK L is a contrast
function on S. Hence, the first derivative of φK L is a pre-contrast function on S and
given by

ρK L((∂ j )p1 , p2) := (∂ j )p1φK L(p1, p2) = −
∫

Ω

s j (x, θ1)p(x; θ2)ν(dx)

for any two probability distributions p1(x) = p(x; θ1), p2(x) = p(x; θ2) in S and
j = 1, . . . , d. This observation leads to the following proposition [7].

Proposition 2 (Pre-contrast Functions from Estimating Functions) For an esti-
mating function u(x, θ) on the parametric model S, a pre-contrast function ρu :
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T S × S → R is defined by

ρu((∂ j )p1 , p2) := −
∫

Ω

u j
∗(x, θ1)p(x; θ2)ν(dx) (9)

for any two probability distributions p1(x) = p(x; θ1), p2(x) = p(x; θ2) in S and
j = 1, . . . , d, where u j

∗(x, θ) is the j-th component of the standardization u∗(x, θ)

of u(x, θ).

The use of the standardization u∗(x, θ) instead of u(x, θ) ensures that the definition
of the function ρu does not depend on the choice of coordinate system (parameter) of
S. In fact, for a coordinate transformation (parameter transformation) η = Φ(θ), the
estimating function u(x, θ) is changed into v(x, η) = u(x, Φ−1(η)) and we have

v∗(x, η) =
(

∂θ

∂η

)T

u∗(x, θ).

This is the same as the transformation rule of coordinate bases on a tangent space
of a manifold. The set of all components of the standardized estimating function
u∗(x, θ) can be seen as a representation of the coordinate basis {(∂1)p, . . . , (∂d)p}
on the tangent space Tp(S) of S, where p(x) = p(x; θ).

The proof of Proposition 2 is straightforward. In particular, the condition (b) in
the definition of pre-contrast function follows from the unbiasedness of the (stan-
dardized) estimating function. The Riemannian metric g, dual connections ∇ and
∇∗ induced from the pre-contrast function ρu are given as follows:

g jk(θ) := g(∂ j , ∂k) = Eθ {u j
∗(x, θ)uk∗(x, θ)} = G(θ) jk,{

Γi j,k(θ) := g(∇∂i ∂ j , ∂k) = Eθ [{∂i u j
∗(x, θ)}sk(x, θ)]

Γ ∗
ik, j (θ) := g(∂ j ,∇∗

∂i
∂k) = ∫

Ω
u j

∗(x, θ)∂i∂k p(x; θ)ν(dx)
,

where G(θ) jk is the ( j, k) component of the Godambe information matrix G(θ).
Note that ∇∗ is always torsion-free since Γ ∗

ik, j = Γ ∗
ki, j , whereas ∇ is not necessarily

torsion-free unless u∗(x, θ) is integrable with respect to θ (i.e. there exists a function
ψ(x, θ) satisfying ∂ jψ(x, θ) = u j

∗(x, θ) ( j = 1, . . . , d)).
If it is integrable and∇ is torsion-free, it is possible to construct a contrast function

on S, from which the pre-contrast function ρu in (9) is obtained by taking its first
derivative, as follows:

φu(p1, p2) =
∫

Ω

{ψ(x, θ1) − ψ(x, θ2)} p(x; θ2)ν(dx),

where ∂ jψ(x, θ) = u j
∗(x, θ) ( j = 1, . . . , d) and pl(x) = p(x; θ l) (l = 1, 2).
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Table 1 Votes cast in the n-th
constituency (n = 1, . . . , N )

Party C L Total

C X1n m1n − X1n m1n

L X2n m2n − X2n m2n

Total Xn mn − Xn mn

6 Example

In this section, we consider the estimation problem of voter transition probabilities
described in [15] to see an example of statistical manifolds admitting torsion (SMAT)
induced from estimation functions.

Suppose that we had two successive elections which were carried out in N con-
stituencies, and that the two political parties C and L contended in each election. The
table below summarizes the numbers of voters in the n-th constituency for the respec-
tive elections. It is assumed that we can observe only themarginal totalsm1n,m2n, Xn

and mn − Xn , where Xn is a random variable and the others are treated as fixed con-
stants. Let θ1 and θ2 be the probabilities that a voter who votes for the parties C
and L in Election 1 votes for C in Election 2, respectively. They are the parameters
of interest here. Then, the random variables X1n and X2n in Table1 are assumed to
independently follow the binomial distributions B(m1n, θ

1) and B(m2n, θ
2), respec-

tively.
In the n-th constituency, the probability function of the observation Xn = X1n +

X2n is given by

pn(xn; θ) =
m1n∑
x1n=0

(
m1n

x1n

) (
m2n

xn − x1n

) (
θ1

)x1n (
1 − θ1

)m1n−x1n (
θ2

)xn−x1n (
1 − θ2

)m2n−xn+x1n
,

where θ = (
θ1, θ2

)
. The statistical model S in this problem consists of all possible

probability functions of the observed data X = (X1, . . . , XN ) as follows:

S = {
p(x; θ)

∣∣ θ = (
θ1, θ2

) ∈ (0, 1) × (0, 1)
}
,

where p(x; θ) = ∏N
n=1 pn(xn; θ) (x = (x1, . . . , xN )) since X1, . . . , XN are inde-

pendent.
Although the maximum likelihood estimation for θ is possible based on the like-

lihood function L(θ) = p(X; θ), it is a little complicated since X1n and X2n are not
observed in each n-th constituency. An alternative approach for estimating θ is to
use the quasi-score function q(x, θ) = (q1(x, θ), q2(x, θ))T [15] as an estimating
function, where

q1(x, θ) =
N∑

n=1

m1n{xn − μn(θ)}
Vn(θ)

, q2(x, θ) =
N∑

n=1

m2n{xn − μn(θ)}
Vn(θ)

.

Here, μn(θ) and Vn(θ) are the mean and variance of Xn , respectively, i.e.
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μn(θ) = E(Xn) = m1nθ
1 + m2nθ

2 (10)

Vn(θ) = V (Xn) = m1nθ
1 (
1 − θ1) + m2nθ

2 (
1 − θ2) .

In this example, the random variables X1, . . . , XN in the observed data are indepen-
dent, but not identically distributed. However, it is possible to apply the results in
Sect. 5 by considering the whole of the left hand side of (7) as an estimating function
and modifying the results in this case. Note that the estimating function q(x, θ) is
already standardized since the i-th component qi (x, θ) of q(x, θ) is obtained by the
orthogonal projection of the i-th component of the score function s(x, θ) for θ onto
the linear space spanned by {x1 − μ1(θ), . . . , xN − μN (θ)}. In fact, the orthogonal
projection is calculated as follows:

Eθ

{
s(x, θ)(x − μ(θ))T

} [
Eθ

{
(x − μ(θ))(x − μ(θ))T

}]−1
(x − μ(θ))

= −Eθ

{
∂

∂θT (x − μ(θ))

} [
Eθ

{
(x − μ(θ))(x − μ(θ))T

}]−1
(x − μ(θ))

=
(
m11 · · · m1N

m21 · · · m2N

) ⎛
⎜⎝
V1(θ) · · · 0

...
. . .

...

0 · · · Vn(θ)

⎞
⎟⎠

−1 ⎛
⎜⎝

x1 − μ1(θ)
...

xN − μN (θ)

⎞
⎟⎠ =

(
q1(x, θ)

q2(x, θ)

)
,

where x = (x1, . . . , xN )T and μ(θ) = (μ1(θ), . . . , μN (θ))T . In addition, the esti-
mating function q(x, θ) is not integrablewith respect to θ since ∂q1/∂θ2 = ∂q2/∂θ1.
From Proposition 2 and the fact that q(x, θ) itself is a standardized estimating func-
tion, we immediately obtain the pre-contrast function ρq : T S × S → R defined by
q(x, θ), where

ρq((∂i )p1 , p2) = −
∑
x

qi (x, θ1)p(x; θ2) =
N∑

n=1

min{μn(θ1) − μn(θ2)}
Vn(θ1)

with pl(x) = p(x; θ l) ∈ S (l = 1, 2). The pre-contrast function ρq induces the sta-
tistical manifold admitting torsion as follows.
Riemannian metric g:

gi j (θ) =
∑
x

qi (x, θ)q j (x, θ)p(x; θ) =
N∑

n=1

1

Vn(θ)
minm jn.

Dual affine connections ∇∗ and ∇:

Γ ∗
i j,k(θ) =

∑
x

{∂i∂ j p(x; θ)}qk(x, θ)

=
N∑

n=1

mkn

Vn(θ)

[∑
x

xn{∂i∂ j p(x; θ)} − μn(θ)
∑
x

{∂i∂ j p(x; θ)}
]
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=
N∑

n=1

mkn

Vn(θ)

[
∂i∂ j

∑
x

xn p(x; θ) − μn(θ)∂i∂ j

∑
x

p(x; θ)

]

=
N∑

n=1

mkn

Vn(θ)
∂i∂ jμn(θ) = 0 (from (10))

Γi j,k(θ) = Γ ∗
i j,k(θ) − ∂i g jk(θ) (from the duality between ∇ and ∇∗)

=
N∑

n=1

1 − 2θ i

Vn(θ)2
minm jnmkn.

In this example, the statistical model S is ∇∗-flat since the coefficient of ∇∗ with
respect to the parameter θ is equal to zero. Furthermore, this shows that θ provides an
affine coordinate system for∇∗. Although the curvature tensor of∇ vanishes because
the curvature tensor of ∇∗ vanishes and ∇ is dual to ∇∗, the statistical model S is not
∇-flat because ∇ is not torsion-free, which comes from the non-integrability of the
estimating function q(x, θ). Hence, this geometrical structure provides an example
of partially flat spaces, which was discussed in Sect. 4.

7 Future Problems

In this paper, we have summarized existing results on statistical manifolds admitting
torsion, especially focusing on partially flat spaces.Although some results that are not
seen in the standard theory of information geometry have been obtained, including
a generalized projection theorem in partially flat spaces and statistical manifolds
admitting torsion induced from estimating functions in statistics, a lot of (essential)
problems have been unsolved. We discuss some of them to conclude this paper.

(1) The canonical pre-contrast function and the generalized projection theorem in
a partially flat spase (M, g,∇,∇∗) are described only in terms of the flat connec-
tion ∇∗. In this sense, it can be said that these are a concept and a theorem for the
Riemannian manifold (M, g) with the flat connection ∇∗. What is the role of the
affine connection ∇ in the partially flat space (M, g,∇,∇∗), especially when ∇ is
not torsion-free?
(2) The canonical pre-contrast function is defined in terms of the Riemannian met-
ric g and the ∇∗-geodesic in a partially flat space (U, g,∇,∇∗) without using the
affine coordinate system (ηi ) on U . Hence, this function can be defined in a general
statistical manifold admitting torsion (M, g,∇) as long as the∇∗-geodesic uniquely
exists. What is the condition under which this function is a pre-contrast function
that induces the original Riemannian metric g, dual affine connections ∇ and ∇∗?
What properties does the (canonical) pre-contrast function have in this case? These
problems are closely related to the works by [10, 11], who try to define a canonical
divergence (canonical contrast function) on a general statistical manifold beyond a
dually flat space.
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(3) The definition of pre-contrast functions from estimating functions is obtained
by replacing the score function which appears in the pre-contrast function as the
derivative of Kullback–Leibler divergence with the standardized estimating func-
tions. However, this is not the unique way to obtain a pre-contrast function from an
estimating function. For example, if we consider the β-divergence [16] (or density
power divergence [17]) as a contrast function, its first derivative is also a pre-contrast
function and takes the same form as (9) in Proposition 2. However, the estimating
function which appears in the pre-contrast function is not standardized. Although
the standardization seems to be natural, further consideration is necessary on how to
define a pre-contrast function from a given estimating function.
(4) For the example considered in Sect. 6, we can show that the pre-contrast func-
tion ρq coincides with the canonical pre-contrast function in the partially flat space
(S, g,∇,∇∗) and the generalized projection theorem (Corollary 1 in Sect. 4) can be
applied. However, its statistical meaning has not been clarified yet. Although it is
expected that the SMAT induced from an estimating function has something to do
with statistical inference based on the estimating function, the clarification on it is a
future problem.

Acknowledgements This work was supported by JSPS KAKENHI Grant Numbers JP15K00064,
JP15K04842.
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Conformal Flattening on the Probability
Simplex and Its Applications to Voronoi
Partitions and Centroids

Atsumi Ohara

Abstract A certain class of information geometric structure can be conformally
transformed to dually flat one. This paper studies the transformation on the prob-
ability simplex from a viewpoint of affine differential geometry and provides its
applications. By restricting affine immersions with certain conditions, the probabil-
ity simplex is realized to be 1-conformally flat statistical manifolds immersed in
Rn+1. Using this fact, we introduce a concept of conformal flattening for such man-
ifolds in order to obtain the corresponding dually flat statistical (Hessian) ones with
conformal divergences, and show explicit forms of potential functions and affine
coordinates. Finally, we demonstrate applications of the flattening to nonextensive
statistical physics, Voronoi partitions and weighted centroids on the probability sim-
plex with respect to geometric divergences, which are not necessarily of Bregman
type.

Keywords Conformal flattening · Affine differential geometry · Escort
probability · Geometric divergence · Conformal divergence

1 Introduction

In the theory of information geometry for statistical models, the logarithmic func-
tion is crucially significant to give a standard information geometric structure for
exponential family [1, 2]. By changing the logarithmic function to another one we
can deform the standard structure to a new one while keeping its basic property as
a statistical manifold, which consists of a pair of mutually dual affine connections
(∇,∇∗) with respect to Riemannian metric g. There exist several ways [3–6] to
introduce functions to deform a statistical manifold structure and these functions are
sometimes called embedding or representing functions.
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Affine immersion [7] can be regarded as one of possible ways. Further, Kurose
[8] has proved that 1-conformally flat statistical manifolds (See Appendix) realized
by a certain class of affine immersions can be conformally transformed to dually flat
ones, which are the most fruitful information geometric structures.

In this paper we call the transformation conformal flattening and give its explicit
formula in order to elucidate the relations between representing functions and real-
ized information geometric structures. We also discuss its applicability to compu-
tational geometric topics. These are interpreted as generalizations of the results in
[9, 10],where the arguments are limited to conformalflatteningof the alpha-geometry
[1, 2] (See also Sect. 2.4).

The paper is organized as follows: In Sect. 2 we first discuss the affine immer-
sion of the probability simplex and its geometric structure realized by the associated
geometric divergence. Next, the conformally flattening transformation is given and
the obtained dually flat structure with the associated conformal divergence is inves-
tigated. Section3 describes applications of the conformal flattening. We consider a
Voronoi partition and a weighted centroid with respect to the geometric divergence
on the probability simplex. While geometric divergences are not of Bregman type in
general, geometric properties such as conformality and projectivity are well utilized
in these topics. We also see that escort probabilities, which are interpreted as the
dual affine coordinates for the flattened geometry, play important roles. Section4
includes concluding remarks. Finally, a short review on statistical manifolds and
affine differential geometry is given in Appendix.

2 Affine Immersion of the Probability Simplex

Let Sn be the relative interior of the probability simplex, i.e.,

Sn :=
{
p = (pi)

∣∣∣∣∣pi ∈ R+,

n+1∑
i=1

pi = 1

}
,

where R+ denotes the set of positive numbers.
Consider an affine immersion [7] (f , ξ) of the simplex Sn (see also Appendix).

LetD be the canonical flat affine connection onRn+1. Further, let f be an immersion
from Sn into Rn+1 and ξ be a transversal vector field on Sn (cf. Fig. 1). For a given
affine immersion (f , ξ) of Sn, the induced torsion-free connection ∇ and the affine
fundamental form h are defined from the Gauss formula by

DX f∗(Y ) = f∗(∇X Y ) + h(X ,Y )ξ, X ,Y ∈ X (Sn), (1)

where f∗ is the differential of f and X (Sn) is the set of vector fields on Sn.
It iswell known [7, 8] that the realized geometric structure (Sn,∇, h) is a statistical

manifold if and only if (f , ξ) is nondegenerate and equiaffine, i.e., h is nondegenerate
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Fig. 1 An affine immersion
(f , ξ) from Sn to Rn+1

and DX ξ is tangent to Sn for any X ∈ X (Sn). Furthermore, the statistical manifold
(Sn,∇, h) is 1-conformally flat [8] (but not necessarily dually flat nor of constant
curvature).

Now we consider the affine immersion with the following assumptions.

Assumptions 1. The affine immersion (f , ξ) is nondegenerate and equiaffine,
2. Let {xi} be an affine coordinate system for D on Rn+1. The immersion f is given

by the component-by-component and a common representing function L, i.e.,

f : Sn � p = (pi) �→ x = (xi) ∈ Rn+1, xi = L(pi), i = 1, . . . , n + 1,

3. The representing functionL : (0, 1) → R is sign-definite (or non-zero), concave
with L′′ < 0 and strictly increasing, i.e., L′ > 0, Hence, the inverse of L denoted
by E exists, i.e., E ◦ L = id.

4. Each component of ξ satisfies ξi < 0, i = 1, . . . , n + 1 on Sn.

Remark 1 From the assumption 3, it follows that L′E′ = 1, E′ > 0 and E′′ > 0.
Regarding sign-definiteness of L, note that we can adjust L(u) to L(u) + c by a
suitable constant c without loss of generality since the resultant geometric structure
is unchanged (See Proposition1) by the adjustment. For a fixed L satisfying the
assumption 3, we can choose ξ that meets the assumptions 1 and 4. For example,
if we take ξi = −|L(pi)| then (f , ξ) is called centro-affine, which is known to be
equiaffine [7]. The assumptions 3 and 4 also assure positive definiteness of h (The
details are described in the proof of Proposition1). Hence, (f , ξ) is non-degenerate
and we can regard h as a Riemannian metric on Sn.
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2.1 Conormal Vector and the Geometric Divergence

Define a function Ψ on Rn+1 by

Ψ (x) :=
n+1∑
i=1

E(xi),

then f (Sn) immersed in Rn+1 is expressed as a level surface of Ψ (x) = 1. Denote
by Rn+1 the dual space of Rn+1 and by 〈ν, x〉 the pairing of x ∈ Rn+1 and ν ∈
Rn+1. The conormal vector [7] ν : Sn → Rn+1 for the affine immersion (f , ξ) is
defined by

〈ν(p), f∗(X )〉 = 0, ∀X ∈ TpSn, 〈ν(p), ξ(p)〉 = 1 (2)

for p ∈ Sn. Using the assumptions and noting the relations:

∂Ψ

∂xi
= E′(xi) = 1

L′(pi)
> 0, i = 1, . . . , n + 1,

we have

νi(p) := 1

Λ

∂Ψ

∂xi
= 1

Λ(p)
E′(xi) = 1

Λ(p)

1

L′(pi)
, i = 1, . . . , n + 1, (3)

where Λ is a normalizing factor defined by

Λ(p) :=
n+1∑
i=1

∂Ψ

∂xi
ξi =

n+1∑
i=1

1

L′(pi)
ξi(p). (4)

Then we can confirm (2) using the relation
∑n+1

i=1 X
i = 0 for X = (X i) ∈ X (Sn).

Note that v : Sn → Rn+1 defined by

vi(p) := Λ(p)νi(p) = 1

L′(pi)
, i = 1, . . . , n + 1,

also satisfies

〈v(p), f∗(X )〉 = 0, ∀X ∈ TpSn. (5)

Further, it follows, from (3), (4) and the assumption 4, that

Λ(p) < 0, νi(p) < 0, i = 1, . . . , n + 1,

for all p ∈ Sn.
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It is known [7] that the affine fundamental form h can be represented by

h(X ,Y ) = −〈ν∗(X ), f∗(Y )〉, X ,Y ∈ TpSn.

In our case, it is calculated via (5) as

h(X ,Y ) = −Λ−1〈v∗(X ), f∗(Y )〉 − X (Λ−1)〈v, f∗(Y )〉

= − 1

Λ

n+1∑
i=1

(
1

L′(pi)

)′
L′(pi)X iY i = 1

Λ

n+1∑
i=1

L′′(pi)
L′(pi)

X iY i.

Since h is positive definite from the assumptions 3 and 4, we can regard it as a
Riemannian metric.

Utilizing these notions from affine differential geometry, we can introduce the
function ρ on Sn × Sn, which is called a geometric divergence [8], as follows:

ρ(p, r) = 〈ν(r), f (p) − f (r)〉 =
n+1∑
i=1

νi(r)(L(pi) − L(ri))

= 1

Λ(r)

n+1∑
i=1

L(pi) − L(ri)

L′(ri)
, p, r ∈ Sn. (6)

We can easily see that ρ is a contrast function [2, 11] of the geometric structure
(Sn,∇, h) because it holds that

ρ[X |] = 0, h(X ,Y ) = −ρ[X |Y ], (7)

h(∇X Y ,Z) = −ρ[XY |Z], h(Y ,∇∗
X Z) = −ρ[Y |XZ], (8)

where ρ[X1 . . .Xk |Y1 . . . Yl] stands for

ρ[X1 . . .Xk |Y1 . . . Yl](p) := (X1)p . . . (Xk)p(Y1)r . . . (Yl)rρ(p, r)|p=r

for p, r ∈ Sn and Xi,Yj ∈ X (Sn).

2.2 Conformal Divergence and 1-Conformal Transformation

Let σ be a positive function on Sn. Associated with the geometric divergence ρ, the
conformal divergence [8] of ρ with respect to a conformal factor σ(r) is defined by

ρ̃(p, r) = σ(r)ρ(p, r), p, r ∈ Sn. (9)
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The divergence ρ̃ can be proved to be a contrast function for (Sn, ∇̃, h̃), which is
1-conformally transformed geometric structure from (Sn,∇, h), where h̃ and ∇̃ are
given by

h̃ = σh, (10)

h(∇̃X Y ,Z) = h(∇X Y ,Z) − d(ln σ)(Z)h(X ,Y ). (11)

When there exists such a positive function σ that relates (Sn,∇, h) with (Sn, ∇̃, h̃)
as in (10) and (11), they are called 1-conformally equivalent and (Sn, ∇̃, h̃) is also a
statistical manifold [8].

2.3 Main Result

Generally, the induced structure (Sn, ∇̃, h̃) from the conformal divergence ρ̃ is not
also dually flat, which is the most abundant structure in information geometry. How-
ever, by choosing the conformal factorσ carefully,we candemonstrate that (Sn, ∇̃, h̃)
is dually flat. Hereafter, we call such a transformation as conformal flattening.

Define

Z(p) :=
n+1∑
i=1

νi(p) = 1

Λ(p)

n+1∑
i=1

1

L′(pi)
,

then it is negative because each νi(p) is. The conformal divergence of ρ with respect
to the conformal factor σ(r) := −1/Z(r) is

ρ̃(p, r) = − 1

Z(r)
ρ(p, r).

Proposition 1 If the conformal factor is given by σ = −1/Z, then the statistical
manifold (Sn, ∇̃, h̃) that is 1-conformally transformed from (Sn,∇, h) via (10) and
(11) is dually flat. Further, ρ̃ is the canonical divergence where mutually dual pair
of affine coordinates (θi, ηi) and a pair of potential functions (ψ,ϕ) are explicitly
given by

θi(p) = xi(p) − xn+1(p) = L(pi) − L(pn+1), i = 1, . . . , n (12)

ηi(p) = νi(p)

Z(p)
=: Pi(p), i = 1, . . . , n, (13)

ψ(p) = −xn+1(p) = −L(pn+1), (14)

ϕ(p) = 1

Z(p)

n+1∑
i=1

νi(p)x
i(p) =

n+1∑
i=1

Pi(p)L(pi). (15)
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Proof Using given relations, we first show that the conformal divergence ρ̃ is the
canonical divergence [2] for (Sn, ∇̃, h̃):

ρ̃(p, r) = − 1

Z(r)
〈ν(r), f (p) − f (r)〉 = 〈P(r), f (r) − f (p)〉

=
n+1∑
i=1

Pi(r)(x
i(r) − xi(p))

=
n+1∑
i=1

Pi(r)x
i(r) −

n∑
i=1

Pi(r)(x
i(p) − xn+1(p)) −

(
n+1∑
i=1

Pi(r)

)
xn+1(p)

= ϕ(r) −
n∑

i=1

ηi(r)θ
i(p) + ψ(p). (16)

Next, let us confirm that ∂ψ/∂θi = ηi. Since θi(p) = L(pi) + ψ(p), i = 1, . . . , n,
we have

pi = E(θi − ψ), i = 1, . . . , n + 1,

by setting θn+1 := 0. Hence, we have

1 =
n+1∑
i=1

E(θi − ψ).

Differentiating by θj, we have

0 = ∂

∂θj

n+1∑
i=1

E(θi − ψ) =
n+1∑
i=1

E′(θi − ψ)

(
δij − ∂ψ

∂θj

)

= E′(xj) −
(

n+1∑
i=1

E′(xi)

)
∂ψ

∂θj
.

This implies that
∂ψ

∂θj
= E′(xj)∑n+1

i=1 E
′(xi)

= Pj = ηj.

Together with (16) and this relation, ϕ is confirmed to be the Legendre transform
of ψ.

The dual relation ∂ϕ/∂ηi = θi follows automatically from the property of the
Legendre transform. �

Remark 2 Since the conformal metric is h̃ = −h/Z , it is also positive definite. The
dual affine connections ∇∗ and ∇̃∗ are known to be projectively equivalent [8].
Hence, ∇∗ is projectively (or −1-conformally) flat. Further, the following corollary
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implies that the realized affine connection ∇ is also projectively equivalent to the
flat connection ∇̃ if we use the centro-affine immersion, i.e., ξi = −L(pi) [7, 8]
(See also Appendix). Note that the expressions of the dual coordinates ηi(p) = Pi(p)
can be interpreted as a generalization of the escort probability [12] because it is a
normalization of deformed probabilities 1/L′(pi) (see the following subsection).

Corollary 1 The choice of ξ does not affect the obtained dually flat structure
(Sn, ∇̃, h̃).

Proof We have the following alternative expressions of ηi = Pi with respect to L and
E:

Pi(p) = 1/L′(pi)
n+1∑
k=1

1/L′(pk)

= E′(xi)
n+1∑
i=1

E′(xi)

> 0, i = 1, . . . , n.

Hence, all the expressions in Proposition1 does not depend on ξ, and the statement
follows. �

2.4 Examples

Ex.(1) If we take L to be the logarithmic function L(t) = ln(t), the conformally
flattened geometry immediately defines the standard dually flat structure (gF,∇(1),

∇(−1)) on the simplex Sn, where gF denotes the Fisher metric. We see that −ϕ(p)
is the entropy, i.e., ϕ(p) = ∑n+1

i=1 pi ln pi and the conformal divergence is the KL
divergence (relative entropy), i.e., ρ̃(p, r) = D(KL)(r||p) = ∑n+1

i=1 ri(ln ri − ln pi).

Ex.(2) Next let the affine immersion (f , ξ) be defined by the following L and ξ:

L(t) := 1

1 − q
t1−q, xi(p) = 1

1 − q
(pi)

1−q,

and
ξi(p) = −q(1 − q)xi(p),

with 0 < q and q = 1, then it realizes the alpha-geometry [2] (Sn,∇(α), gF) with
q = (1 + α)/2. Since the immersion (f , ξ) is centro-affine and the length of ξ is
suitably scaled, (Sn,∇(α), gF ) is of constant curvature κ = (1 − α2)/4. The associ-
ated geometric divergence is the alpha-divergence, i.e.,

ρ(p, r) = D(α)(p, r) = 4

1 − α2

(
1 −

n+1∑
i=1

(pi)
(1−α)/2(ri)

(1+α)/2

)
. (17)

Following the procedure of conformal flattening described in the above, we
have [9]
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Ψ (x) =
n+1∑
i=1

((1 − q)xi)1/1−q, Λ(p) = −q, (constant)

νi(p) = −1

q
(pi)

q, − 1

Z(p)
= q∑n+1

k=1(pi)
q
,

and obtain dually flat structure (h̃, ∇̃, ∇̃∗) via the formulas in Proposition1:

ηi = (pi)q∑n+1
k=1(pk)

q
, θi = 1

1 − q
(pi)

1−q − 1

1 − q
(pn+1)

1−q = lnq(pi) − ψ(p),

ψ(p) = − lnq(pn+1), ϕ(p) = lnq

(
1

expq(Sq(p))

)
, h̃(p) = − 1

Z(p)
gF(p).

Here, lnq and Sq(p) are the q-logarithmic function and the Tsallis entropy [12],
respectively defined by

lnq(t) = t1−q − 1

1 − q
, Sq(p) =

∑n+1
i=1 (pi)q − 1

1 − q
.

3 Construction of Voronoi Partitions and Centroids with
Respect to Geometric Divergences

In the previous section we have seen that various geometric divergences ρ can be
constructed on the statistical manifold Sn by changing the representing function L
and the transversal vector field ξ.

We demonstrate interesting applications of the conformal flattening to topics
related with computational geometry, which are Voronoi partitions and centroids
for the geometric divergence on a 1-conformally flat statistical manifold. We find
that escort probabilities Pi (dual coordinates ηi) play important roles.

In this section, subscripts by Greek letters such as pλ are used to denote the λ-th
point in Sn among given ones while subscripts by Roman letters such as pi denote
the ith coordinate of a point p = (pi) ∈ Sn.

3.1 Voronoi Partitions

Let ρ be a geometric divergence defined in (6) on a 1-conformal statistical manifold
(Sn,∇, h). For given m points pλ, λ = 1, . . . ,m on Sn we define Voronoi regions
on Sn with respect to the geometric divergence ρ as follows:
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Vor(ρ)(pλ) :=
⋂
μ=λ

{r ∈ Sn|ρ(pλ, r) < ρ(pμ, r)}, λ = 1, . . . ,m.

An Voronoi partition (diagram) on Sn is a collection of the Voronoi regions and
their boundaries. For example, if we take L(t) = t1−q/(1 − q) as in Sect. 2.4, the
corresponding Voronoi partition is the one with respect to the alpha-divergence D(α)

in (17) on (Sn,∇(α), gF ) (Cf. the figures in [10]). Note that D(α) approaches the
Kullback–Leibler (KL) divergence if α → −1, and D(0) is called the Hellinger dis-
tance. Further, the partition is also equivalent to that with respect to Rényi divergence
[13] defined by

Dα(p, r) := 1

α − 1
ln

n+1∑
i=1

(pi)
α(ri)

1−α

because of their one-to-one functional relationship.
The acclaimed algorithm using projection of a convex polyhedron [14, 15] has

been known to commonly work well to construct Voronoi partitions for the KL
divergence [16–18] as well as the Euclidean distance. Furthermore, the algorithm
is generally applicable if a divergence function δ is of Bregman type [19], which is
represented by the remainder of the first order Taylor expansion of a convex potential
function in a suitable coordinate system. Geometrically speaking, this implies that

(i) the divergence δ is a canonical divergence [2] associated with a dually flat
structure, i.e, it is of Bregman type:

δ(p, r) = ψ(θ(r)) + ϕ(η(r)) −
n∑

i=1

θi(p)ηi(r)

= ϕ(η(r)) −
{

ϕ(η(p)) +
n∑

i=1

θi(p) (ηi(r) − ηi(p))

}
, (18)

θi = ∂ϕ(η)

∂ηi
, i = 1, . . . , n,

(ii) its affine coordinate system η = (ηi) is chosen to realize the corresponding
Voronoi partitions. In this coordinate system with one extra complementary
coordinate the polyhedron is expressed as the upper envelope of m hyperplanes
tangent to the potential function ϕ(η) at η(pλ), λ = 1, . . . ,m.

Unfortunately a problem for the case of our Voronoi partition is that the geometric
divergences ρ onSn is not of Bregman type generally, i.e., they cannot be represented
as a remainder of any convex potentials as in (18).

The following theorem, however, claims that the problem is resolved via Propo-
sition1. In other words, we can still apply the projection algorithm by conformally
flattening a statistical manifold (S,∇, h) to a dually flat structure (S, ∇̃, h̃) and by
invoking the conformal divergence ρ̃, which is always of Bregman type, and escort
probabilities ηi(p) = Pi(p) as a coordinate system.
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The similar result is proved in [10] for the case of theα-divergenceD(α). However,
the proof there was based on the fact that (Sn,∇(α), gF ) is a statistical manifold of
constant curvature in order to use themodified Pythagorean relation (SeeAppendix).
In the following theorem, the assumption is relaxed to a 1-conformally flat statistical
manifold (S,∇, h) and we prove with the usual Pythagorean relation on dually flat
space.

Here, we denote the space of escort distributions by En and represent the point on
En by P = (P1, . . . ,Pn) because Pn+1 = 1 − ∑n

i=1 Pi and En is also the probability
simplex.

Theorem 1 (i) The bisector of two points pλ and pμ defined by {r|ρ(pλ, r) =
ρ(pμ, r)} is a simultaneously ∇∗- and ∇̃∗-autoparallel hypersurface on Sn.

(ii) Let Hλ,λ = 1, . . . ,m be the hyperplane in En × R which is respectively tan-
gent at (P(pλ),ϕ(pλ)) to the hypersurface {(P, y) = (P(p),ϕ(p))|p ∈ Sn}. The
Voronoi partition with respect to ρ can be constructed on En by projecting the
upper envelope of all Hλ’s along the y-axis.

Proof (i) We construct a bisector for points pλ and pμ. Consider the ∇̃-geodesic γ̃
connecting pλ and pμ, and let p̄ be the midpoint on γ̃ satisfying ρ̃(pλ, p̄) = ρ̃(pμ, p̄).
Note that the point p̄ satisfies ρ(pλ, p̄) = ρ(pμ, p̄) by the conformal relation (9).
Denote by B the ∇̃∗-autoparallel hypersurface that is orthogonal to γ̃ at p̄ with
respect to the conformal metric h̃. Note that B is simultaneously ∇∗-autoparallel
because of the projective equivalence of ∇∗ and ∇̃∗ as is mentioned in Remark2.

Using these setup and the fact that (Sn, ∇̃, h̃) is dually flat, we have the following
relation from the Pythagorean theorem [2]

ρ̃(pλ, r) = ρ̃(pλ, p̄) + ρ̃(p̄, r) = ρ̃(pμ, p̄) + ρ̃(p̄, r) = ρ̃(pμ, r),

for all r ∈ B. Using the conformal relation (9) again, we have ρ(pλ, r) = ρ(pμ, r)
for all r ∈ B. Hence, B is a bisector of pλ and pμ.

(ii) Recall the conformal relation (9) betweenρ and ρ̃, thenwe see that Vor(ρ)(pλ) =
Vor(ρ̃)(pλ) holds on Sn, where

Vor(ρ̃)(pλ) :=
⋂
μ=λ

{r ∈ Sn|ρ̃(pλ, r) < ρ̃(pμ, r)}.

Proposition1 and the Legendre relations (16) imply that ρ̃(pλ, r) is represented with
the escort probabilities, i.e., the dual coordinates (Pi) = (ηi) by

ρ̃(pλ, r) = ϕ(P(r)) −
(

ϕ(P(pλ)) +
n∑

i=1

∂ϕ

∂Pi
(pλ){Pi(r) − Pi(pλ)}

)
,

By definition the hyperplane Hλ is expressed by
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Hλ =
{

(P(r), y(r))

∣∣∣∣∣ y(r) = ϕ(P(pλ)) +
n∑

i=1

∂ψ∗

∂Pi
(pλ){Pi(r) − Pi(pλ)}, r ∈ Sn

}
.

Hence, we have ρ̃(pλ, r) = ϕ(P(r)) − y(r). Thus, we see, for example, that the bisector
on En for pλ and pμ is represented as a projection of Hλ ∩ Hμ. Thus, the statement
follows. �

As a special case of the above theorem for ρ = D(α), examples of Voronoi par-
titions with respect to D(α) on usual probability simplex Sn and escort probability
simplex En are given with their figures in [10].

Remark 3 Voronoi partitions for broader class of divergences that are not necessarily
associatedwith any convexpotentials are theoretically studied [20] frommoregeneral
affine differential geometric points of views.

On the other hand, if the domain is extended from Sn to the positive orthant
Rn+1

+ , then the α-divergence there can be expressed as a Bregman divergence [1, 2,
21]. Hence, the α-geometry on Rn+1

+ is dually flat. Using this property, α-Voronoi
partitions on Rn+1

+ is discussed in [22].
However, while both of the above mentioned methods require constructions of

the convex polyhedrons in the space of dimension d = n + 2, the new one proposed
in this paper does in the space of dimension d = n + 1. Since it is known [23]
that the optimal computational time of polyhedrons depends on the dimension d by
O(m logm + m�d/2�), the new one is slightly better when n is even and m is large.

3.2 Weighted Centroids

Let pλ, λ = 1, . . . ,m be given m points on Sn and wλ > 0, λ = 1, . . . ,m be their
weights. Define the weighted ρ-centroid c(ρ) ∈ Sn by the minimizer of the following
problem:

min
p∈Sn

m∑
λ=1

wλρ(p, pλ).

Theorem 2 The weighted ρ-centroid c(ρ) for given m points p1, . . . , pm on Sn is
expressed by

Pi(c
(ρ)) = 1∑m

λ=1 wλZ(pλ)

m∑
λ=1

wλZ(pλ)Pi(pλ), i = 1, . . . , n + 1,

with weights wλ, escort probabilities P(pλ) and the conformal factors σ(pλ) =
−1/Z(pλ) > 0 for pλ, λ = 1, . . . ,m.
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Proof Denote θi(p) by θi simply. Using (9), we have

m∑
λ=1

wλρ(p, pλ) = −
m∑

λ=1

wλZ(pλ)ρ̃(p, pλ)

= −
m∑

λ=1

wλZ(pλ)

{
ψ(θ) + ψ∗(η(pλ)) −

n∑
i=1

θiηi(pλ)

}
.

Then the optimality condition is

∂

∂θi

m∑
λ=1

wλρ(p, pλ) = −
m∑

λ=1

wλZ(pλ){ηi − ηi(pλ)} = 0, i = 1, . . . , n,

where ηi = ηi(p). Thus, the statements for i = 1, . . . , n hold from ηi = Pi in Propo-
sition1. For i = n + 1, we have as follows:

Pn+1(c
(ρ)) = 1 −

n∑
i=1

Pi(c
(ρ))

= 1∑m
λ=1 wλZ(pλ)

m∑
λ=1

wλZ(pλ)

{
1 −

n∑
i=1

Pi(pλ)

}

= 1∑m
λ=1 wλZ(pλ)

m∑
λ=1

wλZ(pλ)Pn+1(pλ).

�

4 Concluding Remarks

We have realized 1-conformally flat structures (Sn,∇, h) by changing affine immer-
sions (f , ξ) or representing functions L, considered their conformal flattening and
explicitly derived the corresponding dually flat structure, i.e., mutually dual poten-
tials and affine coordinate systems.

Applications of the conformal flattening to topics in computational geometry are
also demonstrated. As a result the geometric divergence, which is not generally
of Bregman type, can be easily treated via the traditional computation algorithm.
Recently, conformal divergences for Bregman-type divergences are proposed from
different viewpoints and their properties are exploited [24, 25].

Extensions of the conformal flattening to other non-flat statistical manifolds or
families of continuous probability distributions are left in the future work. While
relations with the gradient flows (replicator flows, in a special case) on (Sn,∇, h) or
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(Sn, ∇̃, h̃) can be found in [26], searching for the other applications of the technique
would be also of interest.

Acknowledgements A. O. is partially supported by JSPS Grant-in-Aid (C) 15K04997.

Appendix: A Short Review of Statistical Manifolds
and Affine Differential Geometry

We shortly summarize the basic notions and results in information geometry [1, 2],
Hessian domain [27] and affine differential geometry [7, 8], which are used in this
paper. See for the details and proofs in the literature.

Statistical Manifolds

For a torsion-free affine connection ∇ and a pseudo-Riemannian metric g on a man-
ifold M, the triple (M,∇, g) is called a statistical (Codazzi) manifold if it admits
another torsion-free affine connection ∇∗ satisfying

X g(Y ,Z) = g(∇X Y ,Z) + g(Y ,∇∗
X Z) (19)

for arbitrary X ,Y and Z inX (M), whereX (M) is the set of all tangent vector fields
on M. We say that ∇ and ∇∗ duals of each other with respect to g, and (g,∇,∇∗)
is called dualistic structure on M.

A statistical manifold (M,∇, g) is said to be of constant curvature κ ∈ R if the
curvature tensor R of ∇ satisfies

R(X ,Y )Z = κ{g(Y ,Z)X − g(X ,Z)Y }. (20)

When the constant κ is zero, the statistical manifold is called flat, or dually flat,
because the dual curvature tensor R∗ of ∇∗ also vanishes automatically [2, 27].

For α ∈ R, statistical manifolds (M,∇, g) and (M, ∇̃, g̃) are said to be α-
conformally equivalent [8] if there exists a positive function σ on M satisfying

g̃(X ,Y ) = σg(X ,Y )

g(∇̃X Y ,Z) = g(∇X Y ,Z) − 1 + α

2
(d ln σ)(Z)g(X ,Y )

+1 − α

2
{(d ln σ)(X )g(Y ,Z) + (d ln σ)(Y )g(X ,Z)}.
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Statistical manifolds (M,∇, g) and (M, ∇̃, g̃) are α-conformally equivalent if and
only if (M,∇∗, g) and (M, ∇̃∗, g̃) are−α-conformally equivalent. In particular,−1-
conformal equivalence means projective equivalence of∇ and ∇̃, which implies that
a ∇-pregeodesic curve is simultaneously ∇̃-pregeodesic [7]. A statistical manifold
(M,∇, g) is called α-conformally flat if it is locally α-conformally equivalent to a
flat statistical manifold. It is known that a statistical manifold is of constant curvature
if and only if it is ±1-conformally flat, when dimM ≥ 3 [8].

Affine Differential Geometry

Let M be an n-dimensional manifold and consider an affine immersion [7] (f , ξ),
which is the pair of an immersion f fromM into Rn+1 and a transversal vector field
ξ along f (M). By a given affine immersion (f , ξ) of M and the usual flat affine
connectionD ofRn+1, the Gauss andWeingarten formulas are respectively obtained
as follows:

DX f∗(Y ) = f∗(∇X Y ) + h(X ,Y )ξ,

DX ξ = −f∗(SX ) + τ (X )ξ.

Here, ∇, h, S and τ are called, respectively, induced connection, affine fundamental
form, affine shape operator and transversal connection form. In this case, we say
that the affine immersion realizes (M,∇, h) in Rn+1. If h is non-degenerate (resp.
τ = 0 onM), the affine immersion (f , ξ) is called non-degenerate (resp. equiaffine).
It is known that non-degenerate and equiaffine (f , ξ) realizes a statistical manifold
(M,∇, h) by regarding h as a pseudo-Riemannian metric g.

Such a statistical manifold is characterized as follows:

Proposition 2 [8] A simply connected statistical manifold (M,∇, g) can be real-
ized by a non-degenerate and equiaffine immersion if and only if it is 1-conformally
flat.

Let a point o in Rn+1 be chosen as origin and consider an immersion f from

M to Rn+1\{o} so that ξ = −−−−→
of (p) is transversal to f (M) for p ∈ M. Such an

affine immersion (f , ξ) is called centro-affine, where the Weingarten formula is
DX ξ = −f∗(X ), or S = I and τ = 0. This implies that a centro-affine immersion, if
it is non-degenerate, realizes a statistical manifold of constant curvature because of
the Gauss equation:

R(X ,Y )Z = h(X ,Z)SX − h(X ,Z)SY .

Further, the realized affine connection ∇ is projectively flat [7].
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Denote the dual space ofRn+1 byRn+1 and the pairing of x ∈ Rn+1 and y ∈ Rn+1

by 〈y, x〉. Define a map ν : M → Rn+1\{o} as follows:

〈νp, ξp〉 = 1, 〈νp, f∗(X )〉 = 0 (∀X ∈ TpM).

Such νp is uniquely defined and is called the conormal vector.
The pair (ν,−ν) can be regarded as a centro-affine immersion from M into the

dual space Rn+1 equipped with the usual flat connection D∗. The formulas are

D∗
X (ν∗Y ) = ν(∇∗

X Y ) + h∗(X ,Y )(−ν),

D∗
X (−ν) = −ν∗(X ),

where h∗(X ,Y ) = h(SX ,Y ), and ∇∗ is dual of ∇ with respect to h. Hence, when
(f , ξ) realizes a statistical manifold (M.∇, h) with S = I , then (ν,−ν) realizes its
dual statistical manifold (M,∇∗, h) [7]. Both manifolds are of constant curvature.

For a statistical manifold (M,∇, h) realized by a non-degenerate and equiaffine
immersion (f , ξ), we can define a contrast function ρ that induces the structure
(M,∇, h)

ρ(p, q) = 〈ν(q), f (p) − f (q)〉, (p, q ∈ M).

The function ρ is called the geometric divergence of (M,∇, h) [8]. For a statistical
manifold (M, ∇̃, h̃) that is 1-conformally equivalent to (M,∇, h), one of its contrast
function is given by ρ̃(p, q) = σ(q)ρ(p, q) for a certain positive function σ. The
contrast function ρ̃ is called the conformal divergence [8].

A statistical manifold (M,∇, g) of constant curvature κ is studied from a view-
point of affine differential geometry [8]. It is known that (M,∇, g) realized in Rn+1

has the following geometric properties:

P1 For three points p, q and r in M let the ∇-geodesic connecting p and q and the
∇∗-geodesic connecting q and r are orthogonal at q. Then the followingmodified
Pythagorean relation holds:

ρ(p, r) = ρ(p, q) + ρ(q, r) − κρ(p, q)ρ(q, r),

P2 An arbitrary∇-geodesic onM is the intersection of a two-dimensional subspace
in Rn+1 and M,

P3 The volume element θ onM induced from Rn+1 satisfies ∇θ = 0,

and so on. A typical example of the statistical manifold of non-zero constant curva-
ture is the alpha-geometry (Sn,∇(α), gF), where κ = (1 − α2)/4. In this case, the
modified Pythagorean relation induces the widely-known nonextensivity relation of
Tsallis entropy [21, Remark2].
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Monte Carlo Information-Geometric
Structures

Frank Nielsen and Gaëtan Hadjeres

Abstract Exponential families andmixture families are parametric probabilitymod-
els that can be geometrically studied as smooth statistical manifolds with respect to
any statistical divergence like the Kullback–Leibler (KL) divergence or the Hellinger
divergence. When equipping a statistical manifold with the KL divergence, the
inducedmanifold structure is dually flat, and theKLdivergence between distributions
amounts to an equivalent Bregman divergence on their corresponding parameters.
In practice, the corresponding Bregman generators of mixture/exponential families
require to performdefinite integral calculus that can either be too time-consuming (for
exponentially large discrete support case) or even do not admit closed-form formula
(for continuous support case). In these cases, the dually flat construction remains
theoretical and cannot be used by information-geometric algorithms. To bypass this
problem, we consider performing stochastic Monte Carlo (MC) estimation of those
integral-based mixture/exponential family Bregman generators. We show that, under
natural assumptions, theseMC generators are almost surely Bregman generators.We
define a series of dually flat information geometries, termed Monte Carlo Informa-
tion Geometries, that increasingly-finely approximate the untractable geometry. The
advantage of this MCIG is that it allows a practical use of the Bregman algorithmic
toolbox on a wide range of probability distribution families. We demonstrate our
approach with a clustering task on a mixture family manifold. We then show how to
generate MCIG for arbitrary separable statistical divergence between distributions
belonging to a same parametric family of distributions.
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1 Introduction

We concisely describe the construction and properties of dually flat spaces [1, 8]
in Sect. 1.1, define the statistical manifolds of exponential families and mixture fam-
ilies in Sect. 1.2, and discuss about the computational tractability of Bregman algo-
rithms in dually flat spaces in Sect. 1.3.

1.1 Dually Flat Space: Bregman Geometry

A smooth (potentially asymmetric) distance D(·, ·) is called a divergence in infor-
mation geometry [1, 8], and induces a differential-geometric dualistic structure [1,
2, 8, 17]. In particular, a strictly convex and twice continuously differentiable D-
dimensional real-valued function F , termed a Bregman generator, induces a dually
connection-flat structure via a corresponding Bregman Divergence (BD) [4] BF (·, ·)
given by:

BF (θ1 : θ2) := F(θ1) − F(θ2) − 〈θ1 − θ2,∇F(θ2)〉, (1)

where 〈y, x〉 := y�x denotes the inner product, and∇F(θ) := (∂i F(θ))i denotes the
gradient vector of partial first-order derivatives with respect to vector parameter θ.
We use the standard notational convention of information geometry [1, 8]: ∂i :=: ∂

∂θi

to indicate1 a contravariant vector [18] θ = (θi )i .
The Legendre–Fenchel transformation [30] :

F∗(η) = sup
θ

{〈θ, η〉 − F(θ)}, (2)

is at the heart of the duality of flat structures by defining two global affine coordinate
systems: The primal affine θ-coordinate system and the dual affine η-coordinate sys-
tem, so that any point P of the manifoldM can either be accessed by its primal θ(P)

coordinates or equivalently by its dual η(P) coordinates. We can switch between
these two dual coordinates as follows:

1The :=: symbolmeans it is a notational convention equality, like
∑k

i=1 xi :=: x1 + . . . xk . It differs
from a := b which denotes the symbol of a quantity equality by definition.
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η = η(θ) = ∇F(θ) = (∂i F(θ))i , (3)

θ = θ(η) = ∇F∗(η) = (∂i F∗(η))i , (4)

with reciprocal gradients∇F∗ := (∇F)−1.We used the notational convention ∂i :=:
∂

∂ηi
which indicates the covariant vector [18] η = (ηi )i .
The metric tensor g of the dually flat structure (M, F) can either be expressed

using the θ- or η-coordinates using the Hessians of the potential functions [53]:

G(θ) = ∇2F(θ), (5)

G∗(η) = ∇2F∗(η). (6)

It defines a smooth bilinear form 〈v, v′〉g on M so that for two vectors v,w of a
tangent plane TP :

〈v, v′〉g = θ(v)�G(θ)θ(w), (7)

= η(v)�G∗(η)η(w), (8)

where θ(v) = (vi )i and η(v) = (vi )i denote the contravariant coefficients and covari-
ant coefficients of a vector v, respectively. That is, any vector v ∈ TP can be written
either as v =∑i v

i ei or as
∑

i vi e
∗i , where {ei }i and {e∗i }i are the dual basis [18]

of the vector space structure of TP .
Matrices G(θ) and G∗(η) are symmetric positive definite (SPD, denoted by

G(θ) 	 0 and G∗(η) 	 0), and they satisfy the Crouzeix identity [13]:

G(θ)G∗(η) = I, (9)

where I stands for the D × D identity matrix. This indicates that at each tangent
plane TP , the dual coordinate systems are biorthogonal [57] (with {ei }i and {e∗i }i
forming a dual basis [18] of the vector space structure of TP ):

〈ei , e∗ j 〉 = δ
j
i , (10)

with δ
j
i the Krönecker symbol: δ j

i = 1 if and only if (iff) i = j , and 0 otherwise. We
have:

∂ηi

∂θ j
= gi j (θ) = 〈ei , e j 〉, (11)

∂θi

∂η j
= gi j (η) = 〈e∗i , e∗ j 〉. (12)

The convex conjugate functions F(θ) and F∗(η) are called dual potential func-
tions, and define the global metric [53].
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Table 1 Overview of the dually differential-geometric structure (M, F) induced by a Bregman
generator F . Notice that if F and ∇F∗ are available in closed-form then so are ∇F and F∗

Manifold (M, F) Primal structure Dual structure

Affine coordinate system θ(·) η(·)
Conversion θ ↔ η θ(η) = ∇F∗(η) η(θ) = ∇F(θ)

Potential function F(θ) =
〈θ,∇F(θ)〉 − F∗(∇F(θ))

F∗(η) =
〈η,∇F∗(η)〉 − F(∇F∗(η))

Metric tensor g G(θ) = ∇2F(θ) G∗(η) = ∇2F∗(η)

gi j = ∂i∂ j F(θ) gi j = ∂i∂ j F∗(η)

Geodesic (λ ∈ [0, 1]) γ(P, Q) := {(PQ)λ =
(1 − λ)θ(P) + λθ(Q)}λ

γ∗(P, Q) := {(PQ)∗λ =
(1 − λ)η(P) + λη(Q)}λ

Table 1 summarizes the differential-geometric structures of dually flat spaces.
Since Bregman divergences are canonical divergences2 of dually flat spaces [1], the
geometry of dually flat spaces is also referred to the Bregman geometry [15] in the
literature.

Definition 1 (Bregman generator) A Bregman generator is a strictly convex and
twice continuously differentiable real-valued function F : R

D → R.

Let us cite the following well-known properties of Bregman generators [4]:

Property 1 (Bregman generators are equivalent up to modulo affine terms) The
Bregman generator F2(θ) = F1(θ) + 〈a, θ〉 + b (with a ∈ R

D and b ∈ R) yields the
same Bregman divergence as the Bregman divergence induced by F1, BF2(θ1 : θ2) =
BF1(θ1 : θ2), and therefore the same dually flat space (M, F2) ∼= (M, F1).

Property 2 (Linearity rule of Bregman generators) Let F1, F2 be two Bregman gen-
erators and λ1,λ2 > 0. Then Bλ1F1+λ2F2(θ : θ′) = λ1BF1(θ : θ′) + λ2BF2(θ : θ′).

In practice, the algorithmic toolbox in dually flat spaces (e.g., clustering [4], min-
imum enclosing balls [39], hypothesis testing [31] and Chernoff information [32],
Voronoi diagrams [6, 34], proximity data-structures [45, 46], etc.) can be used when-
ever the dual Legendre convex conjugates F and F∗ are both available in closed-form
(see Type 1 of Table 4). In that case, both the primal γ(P, Q) := {(PQ)λ}λ and dual
γ∗(P, Q) := {(PQ)∗λ}λ geodesics are available in closed form. These dual geodesics
can either be expressed using the θ or η-coordinate systems as follows:

(PQ)λ =
{

θ((PQ)λ) = θ(P) + λ(θ(Q) − θ(P)),

η((PQ)λ) = ∇F(θ((PQ)λ)) = ∇F(∇F∗(η(P)) + λ(∇F∗(η(Q)) − ∇F∗(η(P)))),

(13)

2That is, we can associate to any dually flat manifold a divergence that amounts to a Bregman
divergence [1].



Monte Carlo Information-Geometric Structures 73

Table 2 Some fundamental Bregman clustering algorithms [4, 22, 41] (of the Bregman algorithmic
toolbox) that illustrate which closed-form are required to be run in practice

Algorithm F(θ) η(θ) = ∇F(θ) θ(η) = ∇F∗(η) F∗(η)

Right-sided Bregman clustering � � × ×
Left-sided Bregman clustering × × � �
Symmetrized Bregman centroid � � � �
Mixed Bregman clustering � � � �
Maximum Likelihood Estimator for EFs × × � ×
Bregman soft clustering (≡ EM) × � � �

(PQ)∗λ =
{

η((PQ)∗λ) = η(P) + λ(η(Q) − η(P)),

θ((PQ)∗λ) = ∇F∗(η((PQ)∗λ)) = ∇F∗(∇F(θ(P)) + λ(∇F(θ(Q)) − ∇F(θ(P))))

(14)
That is, the primal geodesic corresponds to a straight line in the primal coordinate
system while the dual geodesic is a straight line in the dual coordinate system.
However, in many interesting cases, the convex generator F or its dual F∗ (or both)
are not available in closed form or are computationally intractable, and the above
Bregman toolbox cannot be used. Table 2 summarizes the closed-form formulas
required to execute some fundamental clustering algorithms [4, 22, 41] in a Bregman
geometry.

Let us notice that so far the points P ∈ M in the dually flat manifold have no
particular meaning, and that the dually flat space structure is generic, not necessar-
ily related to a statistical flat manifold. We shall now quickly review the dualistic
structure of statistical manifolds [24].

1.2 Geometry of Statistical Manifolds

Let I1(x; y) denote a scalar divergence. A statistical divergence between two prob-
ability distributions P and Q, with Radon-Nikodym derivatives p(x) and q(x) with
respect to (w.r.t.) a base measure μ defined on the support X , is defined as:

I (P : Q) =
∫

x∈X
I1 (p(x) : q(x)) dμ(x). (15)

A statistical divergence is a measure of dissimilarity/discrimination that satisfies
I (P : Q) ≥ 0 with equality iff. P = Q (a.e., reflexivity property) . For example, the
Kullback–Leibler divergence is a statistical divergence:

KL(P : Q) :=
∫

x∈X
kl(p(x) : q(x))dμ(x), (16)
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with corresponding scalar divergence:

kl(x : y) := x log
x

y
. (17)

The KL divergence between P and Q is also called the relative entropy [11]
because it is the difference of the cross-entropy h×(P : Q) between P and Q with
the Shannon entropy h(P) of P:

KL(P : Q) = h×(P : Q) − h(P), (18)

h×(P : Q) :=
∫

x∈X
p(x) log

1

q(x)
dμ(x), (19)

h(P) :=
∫

x∈X
p(x) log

1

p(x)
dμ(x) = h×(P : P). (20)

Thuswedistinguish a statistical divergence fromaparameter divergence by stating
that a statistical divergence is a separable divergence that is the definite integral on
the support of a scalar divergence.

In information geometry [1, 8], we equip a probability manifoldM = {p(x; θ) :
θ ∈ Θ} with a metric tensor g (for measuring angles between vectors and lengths
of vectors in tangent planes) and a pair of dual torsion-free connections ∇ and ∇∗
(for defining parallel transports and geodesics) that are defined by their Christoffel
symbolsΓi jk andΓ ∗

i jk . These geometric structures (M, D) := (M, gD,∇D,∇∗
D) can

be induced by any smooth C∞ divergence D(· : ·) [1, 2, 8, 17] as follows:

gi j (x) = ∂2

∂xi∂x j
D(x : y)

∣
∣
∣
∣
y=x

, (21)

Γi jk(x) = − ∂3

∂xi∂x j∂yk
D(x : y)

∣
∣
∣
∣
y=x

. (22)

The dual divergence D∗(p : q) := D(q : p) highlights the reference duality [57],
and the dual connection∇∗ is induced by the dual divergence D∗(· : ·) (∇∗ is defined
by Γ ∗

i jk(x) = − ∂3

∂xi∂x j∂yk
D∗(x : y)

∣
∣
∣
y=x

). Observe that the metric tensor is self-dual:

g∗ = g.
Let us give some examples of parametric probability families and their statistical

manifolds induced by the Kullback–Leibler divergence.

1.2.1 Exponential Family Manifold (EFM)

We start by a definition:

Definition 2 (Exponential family) Let μ be a prescribed base measure and t (x) a
sufficient statistic vector. We can build a corresponding exponential family:
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Et,μ := {p(x; θ) ∝ exp(〈t (x), θ〉)}θ, (23)

where p(x; θ) := dP(θ)
dμ (x).

The densities are normalized by the cumulant function F :

F(θ) := log

(∫

x∈X
exp(〈t (x), θ〉)dμ(x)

)

, (24)

so that:
p(x; θ) = exp(〈t (x), θ〉 − F(θ)). (25)

The function F is a Bregman generator on the natural parameter space:

Θ :=
{

θ :
∫

x∈X
exp(〈t (x), θ〉)dμ(x) < ∞

}

. (26)

If we add an extra carrier term k(x) and consider the measure ν(x) := μ(x)
exp(k(x)) , we

get the generic form of an exponential family [36]:

Et,k,ν := {p(x; θ) ∝ exp(〈t (x), θ〉 + k(x)) : θ ∈ Θ} . (27)

We call the function F the Exponential Family Bregman Generator, or EFBG for
short in the remainder.

It turns out that (Et,μ,KL,∇KL,∇∗
KL)

∼= (M, F) (meaning the information-
geometric structure of the statistical manifold is isomorphic to the information-
geometry of a dually flat manifold) so that:

KL(p(x; θ1) : p(x; θ2) = BF (θ2 : θ1), (28)

= BF∗(η1 : η2), (29)

with η = Ep(x;θ)[t (x)] the dual parameter called the expectation parameter or
moment parameter.

1.2.2 Mixture Family Manifold (MFM)

Another important type of families of probability distributions are the mixture
families:

Definition 3 (Mixture family) Given a set of k prescribed statistical distributions
p0(x), . . . , pk−1(x), all sharing the same support X (say, R), a mixture family M
of order D = k − 1 consists of all strictly convex combinations of these component
distributions [43, 44]:
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M :=
{

m(x; η) =
k−1∑

i=1

ηi pi (x) +
(

1 −
k−1∑

i=1

ηi

)

p0(x) : ηi > 0,
k−1∑

i=1

ηi < 1

}

.

(30)

It shall be understood from the context that M is a shorthand forMp0(x),...,pD .
It turns out that (M,KL,∇KL,∇∗

KL)
∼= (M,G) so that:

KL(m(x; η) : m(x; η′)) = BG(η : η′), (31)

for the Bregman generator being the Shannon negative entropy (also called Shannon
information):

G(η) = −h(m(x; η)) =
∫

x∈X
m(x; η) logm(x; η)dμ(x). (32)

We call function G the Mixture Family Bregman Generator, or MFBG for short in
the remainder.

For a mixture family, we prefer to use the notation η instead of θ for indexing
the distribution parameters as it is customary in textbooks of information geometry
[1, 8]. One reason comes from the fact that the KL divergence between two mixtures
amounts to a BD on their respective parameters (Eq. 31) while the KL divergence
between exponential family distributions is equivalent to a BD on the swapped order
of their respective parameters (Eq. 28), see [3, 19]. Thus in order to get the same
order of arguments for the KL between two exponential family distributions, we need
to use the dual Bregman divergence on the dual η parameter, see Eq. 29.

1.2.3 Cauchy Family Manifold (CFM)

This example is only given to emphasize that probability families may neither be
exponential nor mixture families [28].

A Cauchy distribution has probability density defined on the support X = R by:

p(x;μ,σ) = 1

πσ
(
1 + ( x−μ

σ

)2
) . (33)

The space of all Cauchy distributions:

C = {p(x;μ,σ) : μ ∈ R,σ > 0}. (34)

is a location-scale family [23]. It is not an exponential family nor a mixture family.
Table 3 compares the dually flat structures of mixture families with exponential

families. In information geometry, (Et,k,μ,KL,∇KL,∇∗
KL) = (Et,k,μ, g,∇e,∇m) and

(M,KL,∇KL,∇∗
KL) = (M, g,∇m,∇e) where g is the Fisher information metric
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Table 3 Characteristics of the dually flat geometries of Exponential Families (EFs) and Mixture
Families (MFs)

Exponential Family Mixture Family

Density p(x; θ) =
exp(〈θ, x〉 − F(θ))

m(x; η) =∑k−1
i=1 ηi fi (x) + c(x)

fi (x) = pi (x) − p0(x)

Family/Manifold M = {p(x; θ) : θ ∈
Θ◦}

M = {m(x; η) : η ∈ H◦}

Convex function
(≡ ax + b)

F : cumulant F∗: negative entropy

Dual coordinates moment η = E[t (x)] θi = h×(p0 : m) − h×(pi : m)

Fisher Information
g = (gi j )i j

gi j (θ) = ∂i∂ j F(θ) gi j (η) = ∫X fi (x) f j (x)
m(x;η)

dμ(x)

g = Var[t (X)]
gi j (η) = −∂i∂ j h(η)

Christoffel symbol Γi j,k = 1
2∂i∂ j∂k F(θ) Γi j,k = − 1

2

∫
X

fi (x) f j (x) fk (x)
m2(x;η)

dμ(x)

Entropy −F∗(η) −F∗(η)

Kullback–Leibler
divergence

BF (θ2 : θ1) BF∗ (η1 : η2)

= BF∗ (η1 : η2) = BF (θ2 : θ1)

tensor and ∇e and ∇m are the exponential and mixture connections, respectively.
These connections are dual to each others, see [8].

1.3 Computational Tractability of Dually Flat Statistical
Manifolds

The previous section explained the dually flat structures (i.e., Bregman geometry)
of the exponential family manifold and of the mixture family manifold. However
these geometries may be purely theoretical as the Bregman generator F may not be
available in closed form so that the Bregman toolbox cannot be used in practice.
This work tackles this problem faced in exponential and mixture family manifolds
by proposing the novel framework of Monte Carlo Information Geometry (MCIG).
MCIG approximates the untractable Bregman geometry by considering the Monte
Carlo stochastic integration of the definite integral-based ideal Bregman generator.

But first, let us quickly review the five types of tractability of Bregman geometry
in the context of statistical manifolds by giving an illustrating family example for
each type:

Type 1. F and ∇F∗ are both available in closed-form, and so are ∇F and
F∗. For example, this is the case of the the Gaussian exponential family. The
normal distribution [36] has sufficient statistic vector t (x) = (x, x2) so that its
log-normalizer is
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F(θ) = log

(∫ +∞

−∞
exp(θ1x + θ2x

2)dx

)

. (35)

Since
∫∞
−∞ exp(θ1x + θ2x2) =

√
π

−θ2
exp(− θ21

4θ2
) for θ2 < 0, we find:

F(θ) = log

(∫

exp(θ1x + θ2x
2)dx

)

= − θ21
4θ2

+ 1

2
log

π

−θ2
. (36)

This is in accordance with the direct canonical decomposition [36] of the den-
sity p(x; θ) = exp(〈t (x), θ〉 − F(θ)) of the normal density p(x;μ,σ) = 1√

2πσ

exp(− (x−μ)2

2σ2 ).

Remark 1 When F(θ) can be expressed using the canonical decomposition of expo-
nential families, this means that the definite integral log(

∫
exp(〈t (x), θ〉 + k(x))dx)

is available in closed form, and vice-versa.

Type 2. F is available in closed form (and so is ∇F) but ∇F∗ is not available in
closed form (and therefore F∗ is not available too). This is for example the Beta
exponential family. ABeta distributionBe(α,β) has density on support x ∈ (0, 1):

p(x;α,β) = 1

B(α,β)
xα−1(1 − x)β−1, (37)

where B(α,β) = Γ (α)Γ (β)

Γ (α+β)
, and (α > 0,β > 0) are the shape parameters. The

Beta family of distributions is an exponential family with θ = (α,β), t (x) =
(log(x), log(1 − x)), k(x) = − log(x) − log(1 − x) and F(θ) = log B(θ1, θ2) =
logΓ (θ1) + logΓ (θ2) − logΓ (θ1 + θ2). Note that we could also have chosen
θ = (α − 1,β − 1) and k(x) = 0. Thus ∇F(θ) = (ψ(θ1) − ψ(θ1 + θ2),ψ(θ2) −
ψ(θ1 + θ2)) where ψ(x) = Γ ′(x)

Γ (x) is the digamma function. Inverting the gradient

∇F(θ) = η to get η = ∇F∗(θ) is not available in closed-form.3

Type 3. This type of families has discrete support X and thus requires an expo-
nential time to compute the log-normalizer. For example, consider the Ising mod-
els [5, 9, 21]: Let G = (V, E) be an undirected graph of |V | nodes and |E | edges.
Each node v ∈ V is associated with a binary random variable xv ∈ {0, 1}. The
probability of an Ising model is defined as follows:

p(x; θ) = exp

⎛

⎝
∑

v∈V
θvxv +

∑

(v,w)∈E
θvwxvxw − F(θ)

⎞

⎠ . (38)

3To see this, consider the digamma difference property: fΔ(θ) = ψ(θ) − ψ(θ + Δ) =
−∑Δ−1

i=0
1

x+i for Δ ∈ N. We cannot invert fΔ(θ) since it involves solving the root of a high-degree
polynomial.
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The vector t (x) = (. . . , xv, . . . , xvw, . . .) of sufficient statistics is D-dimensional
with D = |V | + |E |. The log-normalizer is:

F(θ) = log

⎛

⎝
∑

(xv)v∈{0,1}|V |

⎛

⎝exp
∑

v∈V
θvxv +

∑

(v,w)∈E
θvwxvxw

⎞

⎠

⎞

⎠ . (39)

It requires to sum up 2|V | terms.
Type 4. This type of families has a Bregman generator which is not available
in closed-form. For example, this is the case of the Polynomial Exponential Fam-
ily [10, 42] (PEF) which are helpful to model a multimodal distribution (instead
of using a statistical mixture). Consider the following vector of sufficient statistics
t (x) = (x, x2, . . . , xD) for defining an exponential family:

Et (x),μ =
{

p(x; θ) = exp

(
D∑

i=1

θi x
i − F(θ)

)

: θ ∈ Θ

}

. (40)

(Beware that here, xi = Pow(x, i) := x × · · · × x︸ ︷︷ ︸
i times

denotes the i th power of x

(monomial of degree i), and not a contravariant coefficient of a vector x .)
In general, the definite integral of the cumulant function (the Exponential Family
BregmanGenerator, EFBG) of Eq. 24 does not admit a closed form, but is analytic.
For example, choosing t (x) = x8, we have:

F(θ) = log
∫ ∞

−∞
exp(θx8)dx = log 2 + logΓ (9/8) − 1

8
log(−θ), (41)

for θ < 0. But
∫∞
−∞ exp(−x8 − x4 − x2)dx � 1.295 is not available in closed

form.
Type 5. This last category is even more challenging from a computational point
of view because of log-sum terms. For example, the mixture family. As already
stated, the negative Shannon entropy (i.e., theMixture Family BregmanGenerator,
MFBG) is not available in closed form for statistical mixture models [43]. It is in
fact even worse, as the Shannon entropy of mixtures is not analytic [56].

This paper considers approximating the computationally untractable generators
of statistical exponential/mixture families (type 4 and type 5) using stochastic Monte
Carlo approximations.

In [12], Critchley et al. take a different approach of the computational tractability
by discretizing the supportX into a finite number of bins, and considering the corre-
sponding discrete distribution. However, this approach does not scale well with the
dimension of the support. Our Monte Carlo Information Geometry scales to arbi-
trary high dimensions because it relies on the fact that the Monte Carlo stochastic
estimator is independent of the dimension [52].
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1.4 Paper Organization

In Sect. 2, we consider the MCIG structure of mixture families: Namely, Sect. 2.1
considers first the uni-order families to illustrate the basic principle. It is followed by
the general case in Sect. 2.2. Similarly, Sect. 3 handles the exponential family case
by first explaining the uni-order case in Sect. 3.1 before tackling the general case
in Sect. 3.2. Sect. 4 presents an application of the computationally-friendly MCIG
structures for clustering distributions in dually flat statistical mixture manifolds. In
Sect. 5, we show how to construct non-flat MCIG structures of a parametric family
of distributions given by a statistical separable divergence. Finally, we conclude and
discuss several perspectives in Sect. 6.

2 Monte Carlo Information Geometry of Mixture Families

Recall the definition of a statistical mixture model (Definition 3): Given a set of k
prescribed statistical distributions p0(x), . . . , pk−1(x), all sharing the same support
X , amixture familyMof order D = k − 1consists in all strictly convex combinations
of the pi (x)’s [43]:

M :=
{

m(x; η) =
k−1∑

i=1

ηi pi (x) +
(

1 −
k−1∑

i=1

ηi

)

p0(x) : ηi > 0,
k−1∑

i=1

ηi < 1

}

.

(42)
The differential-geometric structure ofM is well studied in information geome-

try [1, 8] (although much less than for the exponential families), where it is known
that:

KL(m(x; η) : m(x; η′)) = BG(η : η′), (43)

for the Bregman generator being the Shannon negative entropy (MFBG):

G(η) = −h(m(x; η)) =
∫

x∈X
m(x; η) logm(x; η)dμ(x). (44)

The negative entropy G(η) = ∫x∈X m(x; η) logm(x; η)dμ(x) is a smooth and
strictly convex function which induces a dually flat structure with Legendre convex
conjugate:

F(θ) = G∗(θ) = −
∫

x∈X
p0(x) logm(x; η)dμ(x) = h×(p0(x) : m(x; η)), (45)

interpretable as the cross-entropy of p0(x) with the mixture m(x; η) [43].
Notice that the component distributions may be heterogeneous like p0(x) being a

fixed Cauchy distribution, p1(x) being a fixed Gaussian distribution, p2(x) a Laplace
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distribution, etc. Except for the case of the finite categorical distributions (that are
both interpretable as either amixture family and an exponential family, see [1]),G(η)

provably does not admit a closed form [56] (i.e., meaning that the definite integral of
Eq. 32 does not admit a simple formula using common standard functions). Thus the
dually-flat geometry (M,G) is a theoretical construction which cannot be explicitly
used by Bregman algorithms.

One way to tackle the lack of closed form in Eq. 32, is to approximate the definite
integrals whenever they are used by using Monte Carlo stochastic integration. How-
ever, this is computationally very expensive, and, even worse, it cannot guarantee
that the overall computation is consistent.

Let us briefly explain themeaning of consistency:We can estimate theKLbetween
two distributions p and q by drawing m variates x1, . . . , xm ∼ p(x), and use the
following MC KL estimator:

K̂Lm(p : q) := 1

m

m∑

i=1

log
p(xi )

q(xi )
. (46)

Now, suppose we have KL(p : q) ≤ KL(q : r), then their MC estimates may not
satisfy K̂Lm(p : q) < K̂Lm(q : r) (since each timeweevaluate a K̂Lm wedrawdiffer-
ent samples). Thus when running a KL/Bregman algorithm, the more MC stochastic
approximations of integrals are performed in the algorithm, the less likely is the out-
put consistent. For example, consider computing the Bregman Voronoi diagram [34]
of a set of nmixtures belonging to amixture familymanifold (say, with D = 2) using
the algorithm explained in [34]: Since we use for each BD calculation or predicate
evaluation relying on F or F∗ stochastic Monte Carlo integral approximations, this
MC algorithm may likely not deliver a proper combinatorial structure of the Voronoi
diagram: The Voronoi structure is likely to be inconsistent.

Let us now show howMonte Carlo Information Geometry (MCIG) approximates
this computationally untractable (M,G) geometric structure by defining a consistent
and computationally-friendly dually-flat information geometry (M, G̃S) for a finite
number m of identically and independently distributed (iid) random samples S.

2.1 MCIG of Order-1 Mixture Family

In order to highlight the principle of MCIGs, let us first consider a mixture family
of order D = 1. That is, we consider a set of mixtures of k = 2 components with
density:

m(x; η) = η p1(x) + (1 − η)p0(x) = p0(x) + η(p1(x) − p0(x)), (47)
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Fig. 1 Example of a mixture family of order D = 1 (k = 2): p0(x) ∼ Gaussian(−2, 1) (red) and
p1(x) ∼ Laplace(2, 1) (green). The two mixtures arem1(x) = m(x; η1) (black) with η1 = 0.7 and
m2(x) = m(x; η2) (grey) with η2 = 0.2.Weighted component distributions are displayed in dashed

with parameter η ranging in (0, 1). The two prescribed component densities p0(x)
and p1(x) (with respect to a base measure μ, say the Lebesgue measure) are defined
on a common support X . Densities p0(x) and p1(x) are assumed to be linearly
independent [8].

Figure 1 displays an example of uni-order mixture family with heterogeneous
components: p0(x) is chosen as a Gaussian distribution while p1(x) is taken as
a Laplace distribution. A mixture m(x; η) of M is visualized as a point P (here,
one-dimensional) with η(P) = η.

Let S = {x1, . . . , xm} denote a iid sample from a fixed proposal distribution q(x)
(with q(x) > 0 for x ∈ X , and q(x) independent of η).We approximate the Bregman
generator G(η) using Monte Carlo stochastic integration with importance sampling
as follows:

G(η) � G̃S(η) := 1

m

m∑

i=1

1

q(xi )
m(xi ; η) logm(xi ; η). (48)

Let us prove that the Monte Carlo function G̃S(η) is a proper Bregman gen-
erator. That is, that G̃S(η) is strictly convex and twice continuously differentiable
(Definition 1).
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Write for short mx(η) := m(x; η) so that G(η) = ∫x∈X mx (η) logmx (η)dμ(x)
is approximated by 1

m

∑m
i=1

1
q(xi )

mxi (η) logmxi (η). Since 1
m

1
q(xi )

> 0, it suffices to
prove that the function gx (η) = mx(η) logmx (η) is strictly convex wrt parameter η.
Then we shall conclude that G̃S(η) is strictly convex because it is a finite positively
weighted sum of strictly convex functions.

Let us write the first and second derivatives of gx (η) as follows:

gx (η)′ = mx (η)′(logmx (η) + 1), (49)

gx (η)′′ = mx (η)′′(logmx (η) + 1) + (mx (η)′)2

mx(η)
. (50)

Since m ′
x(η) = p1(x) − p0(x) and m ′′

x(η) = 0, we get:

gx (η)′′ = (p1(x) − p0(x))2

mx(η)
. (51)

Thus it follows that:

G̃ ′′
S(η) = 1

m

m∑

i=1

1

q(xi )

(p1(xi ) − p0(xi ))2

m(xi ; η)
≥ 0. (52)

It is strictly convex provided that there exists at least one xi such that p1(xi ) �= p0(xi ).
Let D ⊂ X denote the degenerate set D = {x ∈ X : p1(x) = p0(x)}. For exam-

ple, if p0(x) and p1(x) are two distinct univariate normal distributions, then |D| = 2
(roots of a quadratic equation), and

μq(D) :=
∫

x∈X
1[p0(x)=p1(x)]q(x)dμ(x) = 0. (53)

Assumption 1 (AMF1D)We assume that p0(x) and p1(x) are linearly independent
(non-singular statistical model, see [8]), and that μq(D) = 0.

Lemma 1 (Monte Carlo Mixture Family Function is a Bregman generator) The
Monte Carlo Mixture Family Function (MCMFF) F̃S(θ) is a Bregman generator
almost surely.

Proof When there exists a sample x ∈ S with two distinct densities p0(x) and p1(x),
we have (p1(xi ) − p0(xi ))2 > 0 and therefore G̃ ′′

S(η) > 0. The probability to get a
degenerate sample is almost zero.

To recap, the MCMFF of the MCIG of uni-order family has the following
characteristics:
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Fig. 2 A series GS(η) of Bregman Monte Carlo Mixture Family generators (for m =
|S| ∈ {10, 100, 1000, 10000}) approximating the untractable ideal negentropy generator G(η) =
−h(m(x; η)) (red) of a mixture family with prescribed Gaussian distributions m(x; η) = (1 −
η)p(x; 0, 3) + η p(x; 2, 1) for the proposal distribution q(x) = m(x; 1

2 )

Monte Carlo Mixture Family Generator 1D:

G̃S(η) = 1

m

m∑

i=1

1

q(xi )
m(xi ; η) logm(xi ; η), (54)

G̃ ′
S(η) = θ = 1

m

m∑

i=1

1

q(xi )
(p1(xi ) − p0(xi ))(1 + logm(xi ; η)), (55)

G̃ ′′
S(η) = 1

m

m∑

i=1

1

q(xi )

(p1(xi ) − p0(xi ))2

m(xi ; η)
. (56)

Note that (G∗)′ and G∗ may be calculated numerically but not in closed-form.We
may also MC approximate ∇G∗ since θ = (h×(p0 : m) − h×(pi : m))i .

Thus we change from type 5 to type 2 the computational tractability of mixtures
by adopting the MCIG approximation.

Figure 2 displays a series of Bregmanmixture familyMC generators for a mixture
family for different values of |S| = m.

As we increase the sample size of S, the MCMFF Bregman generator tends to
the ideal mixture family Bregman generator.
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Fig. 3 The Monte Carlo Mixture Family Generator Ĝ10 (MCMFG) considered as a random vari-
able: Here, we show five realizations (i.e., S1, . . . ,S5) of the randomized generator form = 5. The
ideal generator is plot in thick red

Theorem 1 (Consistency of MCIG) Almost surely, limm→∞(M, G̃S) = (M,G)

when μq(D) = 0.

Proof It suffices to prove that limm→∞ G̃S(η) = G(η). The general theory of Monte
Carlo stochastic integration yields a consistent estimator provided that the following
variance is bounded

Varq

[
m(x; η) logm(x; η)

q(x)

]

< ∞. (57)

For example, when m(x; η) is a mixture of prescribed isotropic gaussians (say,
from a KDE), and q(x) is also an isotropic Gaussian, the variance is bounded. Note
that q is the proposal density wrt the base measure μ.

In practice, the proposal distribution q(x) can be chosen as the uniform mixture
of the fixed component distributions:

q(x) = 1

m

D∑

i=0

pi (x). (58)

Notice that the Monte Carlo Mixture Family Function is a random variable (r.v.
for short) estimator itself by considering a vector of iid variables instead of a sample
variate: Ĝm(η). Figure 3 displays five realizations of the random variable Ĝm(η) for
m = 10.
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Fig. 4 Example of a mixture family of order D = 2 (k = 3): p0(x) ∼ Gaussian(−2, 1) (red),
p1(x) ∼ Laplace(0, 1) (blue) and p2(x) ∼ Cauchy(2, 1) (green). The two mixtures are m1(x) =
m(x; η1) (black) with η1 = (0.3, 0.5) and m2(x) = m(x; η) (gray) with η = (0.1, 0.4)

2.2 General D-Order Mixture Case

Here, we consider statistical mixtures with k = D + 1 > 2 prescribed distributions
p0(x), . . . , pD(x). The component distributions are linearly independent so that they
define a non-singular statistical model [8].

We further strengthen conditions on the prescribed distributions as follows:

Assumption 2 (AMF)We assume that the linearly independent prescribed distribu-
tions further satisfy:

supB∈B

⎧
⎨

⎩
μq(B) : ∃λ �= (0),

∑

i �= j

λi
(
pi |B − p j

∣
∣
B

) = 0

⎫
⎬

⎭
= 0, ∀ j, (59)

where the supremum is over all subsets B of the σ-algebra B of the probability space
with support X and measure μ, with pi |B denoting the restriction of pi to subset
B. In other words, we impose that the components (pi )i still constitute an affinely
independent family when restricted to any subset of positive measure.

For example, Figure 4 displays two mixture distributions belonging to a 2D mixture
family with Gaussian, Laplace and Cauchy component distributions.

Recall that the mixture family Monte Carlo generator is:
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G̃S(η) = 1

m

m∑

i=1

1

q(xi )
m(xi ; η) logm(xi ; η). (60)

In order to prove that G is strictly convex, we shall prove that ∇2G̃S(η) 	 0
almost surely. It suffices to consider the basic Hessian matrix ∇2gx = (∂i∂ jgx (η))i j
of gx (η) = mx (η) logmx (η). We have the partial first derivatives:

∂igx (η) = (pi (x) − p0(x))(1 + logm(x; η)), (61)

and the partial second derivatives:

∂i∂ jgx (η) = (pi (x) − p0(x))(p j (x) − p0(x))

m(x; η)
, (62)

so that

∂i∂ j G̃S(η) = 1

m

m∑

l=1

1

q(xl)

(pi (xl) − p0(xl))(p j (xl) − p0(xl))

m(xl; η)
. (63)

Theorem 2 (Monte Carlo Mixture Family Function is a Bregman generator) The
Monte Carlo multivariate function G̃S(η) is always convex and twice continuously
differentiable, and strictly convex almost surely.

Proof Consider the D-dimensional vector:

vl =

⎡

⎢
⎢
⎣

p1(xl )−p0(xl )√
q(xl )m(xl ;η)

...
pD(xl )−p0(xl )√
q(xl )m(xl ;η)

⎤

⎥
⎥
⎦ . (64)

Then we rewrite the Monte Carlo generator G̃S(η) as:

∂i∂ j G̃S(η) = 1

m

m∑

l=1

vlv
�
l . (65)

Since vlv
�
l is always a symmetric positive semidefinite matrix of rank one, we

conclude that G̃S(η) is a symmetric positive semidefinite matrix whenm < D (rank
deficient) and a symmetric positive definite matrix (full rank) almost surely when
m ≥ D.
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3 Monte Carlo Information Geometry of Exponential
Families

We follow the same outline as for mixture familes: Sect. 3.1 first describes the uni-
variate case. It is then followed by the general multivariate case in Sect. 3.1.

3.1 MCIG of Order-1 Exponential Family

We consider the order-1 exponential family of parametric densities with respect to a
base measure μ:

E := {p(x; θ) = exp(t (x)θ − F(θ) + k(x)) : θ ∈ Θ} , (66)

whereΘ is the natural parameter space, such that the log-normalizer/cumulant func-
tion [1] is

F(θ) = log

(∫

exp(t (x)θ + k(x))dμ(x)

)

. (67)

The sufficient statistic function t (x) and 1 are linearly independent [8].
WeperformMonteCarlo stochastic integrationby sampling a setS = {x1, . . . , xm}

of m iid variates from a proposal distribution q(x) to get:

F(θ) � F̃†
S(θ) := log

(
1

m

m∑

i=1

1

q(xi )
exp(t (xi )θ + k(xi ))

)

. (68)

Without loss of generality, assume that x1 is the element that minimizes the suf-
ficient statistic t (x) among the elements of S, so that ai = t (xi ) − t (x1) ≥ 0 for all
xi ∈ S.

Let us factorize 1
q(x1)

exp(t (x1)θ + k(x1)) in Eq. 68 and remove an affine term

from the generator F̃S(θ) to get the equivalent generator (see Property 1):

F̃†
S (θ) ≡ F̃S (θ), (69)

F̃S (θ) = log

(

1 +
m∑

i=2

exp((t (xi ) − t (x1))θ + k(xi ) − k(x1) − log q(xi ) + log q(x1))

)

, (70)

= log

(

1 +
m∑

i=2

exp(aiθ + bi )

)

, (71)

:= lse+
0 (a2θ + b2, . . . , amθ + bm), (72)
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lse(x, y) = log(exp(x) + exp(y))
lse+0 (x, y) = log(1 + exp(x) + exp(y))

Fig. 5 Graph plots of the lse and lse+
0 functions: The lse function (violet) is only convex while the

lse+
0 function (green) is always guaranteed to be strictly convex

with a2, . . . , am > 0 and bi = k(xi ) − k(x1) − log q(xi ) + log q(x1). Function
lse+

0 (x1, . . . , xm) = lse(0, x1, . . . , xm) is the log-sum-exp function [20, 47]
lse(x1, . . . , xm) = log

∑n
i=1 exp(xi ) with an additional argument set to zero.

Let us notice that the lse+
0 function is always strictly convexwhile the lse function

is only convex4 [7], p. 74. Figure 5 displays the graph plots of the lse and lse+
0

functions. Let us clarify this point with a usual exponential family: The binomial
family. The binomial distribution is a categorical distribution with D = 1 (and 2
bins). We have F(θ) = log(1 + exp(θ)) = lse(0, θ) := lse+

0 (θ). We check the strict
convexity of F(θ): F ′(θ) = eθ

1+eθ and F ′′(θ) = eθ

(1+eθ)2
> 0.

We write for short lse+
0 (x) = lse+

0 (x1, . . . , xd) for a d-dimensional vector x .

Theorem 3 (lse+
0 is a Bregman generator)Multivariate function lse+

0 (x) is a Breg-
man generator.

Proof is deferred to Appendix 7.

Lemma 2 (UnivariateMonte Carlo Exponential Family Function is a Bregman gen-
erator) Almost surely, the univariate function F̃S(θ) is a Bregman generator.

Proof The first derivative is:

η = F̃ ′
S(θ) =

∑m
i=2 ai exp(aiθ + bi )

1 +∑m
i=2 exp(aiθ + bi )

≥ 0, (73)

4Function lse can be interpreted as a vector function, and is C2, convex but not strictly con-
vex on R

m . For example, lse is affine on lines since lse(x + λ1) = lse(x) + λ (or equivalently
lse(x1, . . . , xm) = λ + lse(x1 − λ, . . . , xm − λ)). It is affine only on lines passing through the ori-
gin.
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and is strictly greater than 0 when there exists at least two elements with distinct
sufficient statistics (i.e., t (xi ) �= t (x j )) so that at least one ai > 0.

The second derivative is:

F̃ ′′
S (θ) =

(∑m
i=2 a

2
i exp(ai θ + bi )

) (
1 +∑m

i=2 exp(ai θ + bi )
)− (∑m

i=2 ai exp(ai θ + bi )
)2

(1 +∑m
i=2 exp(ai θ + bi ))2

=:Num
Den

(74)

For each value of θ ∈ Θ , we shall prove that F̃ ′′
S(θ) > 0. Let ci = ci (θ) =

exp(aiθ + bi ) > 0 for short (θ being fixed, we omit it in the ci notation in the calculus
derivation). Consider the numerator Num since the denominator Den is a non-zero
square, hence strictly positive. We have:

Num >

(
m∑

i=2

a2i ci

)(
m∑

i=2

ci

)

−
(

m∑

i=2

aici

)2

, (75)

Num >
∑

i j

a2i ci c j −
∑

i

a2i c
2
i − 2

∑

i< j

aia j ci c j , (76)

Num >
∑

i= j

a2i c
2
i +

∑

i �= j

a2i ci c j −
∑

i

a2i c
2
i − 2

∑

i< j

aia j ci c j , (77)

Num >
∑

i< j

a2i ci c j +
∑

i> j

a2i ci c j − 2
∑

i< j

aia j ci c j , (78)

Num >
∑

i< j

a2i ci c j +
∑

i< j

a2j ci c j − 2
∑

i< j

aia j ci c j , (79)

Num >
∑

i< j

(a2i + a2j − 2aia j )ci c j , (80)

Num >
∑

i< j

(ai − a j )
2ci c j > 0. (81)

Therefore the numerator is strictly positive if at least two ai ’s are distinct.

Thus we add the following assumption:

Assumption 3 (AEF1D) For all y ∈ dom(t), Eq [1t (x)=y] = 0.

To recap, the MCEFF of the MCIG of uni-order family has the following
characteristics:
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Monte Carlo Mixture Family Generator 1D:

F̃S (θ) = lse+
0 (a2θ + b2, . . . , amθ + bm), (82)

ai = t (xi ) − t (x1), (83)
bi = k(xi ) − k(x1) − log q(xi ) + log q(x1), (84)

F̃ ′
S (θ) =

∑m
i=2 ai exp(aiθ + bi )

1 +∑m
i=2 exp(aiθ + bi )

=:η, (85)

F̃ ′′
S (θ) =

(∑m
i=2 a

2
i exp(aiθ + bi )

) (
1 +∑m

i=2 exp(aiθ + bi )
)− (∑m

i=2 ai exp(aiθ + bi )
)2

(1 +∑m
i=2 exp(aiθ + bi ))2

(86)

3.2 The general D-Order Case

The difference of sufficient statistics ai = t (xi ) − t (x1) is now a vector of
dimension D:

ai =
⎡

⎢
⎣

a1i
...

aD
i

⎤

⎥
⎦ . (87)

We replace the scalar multiplication aiθ by an inner product 〈ai , θ〉 in Eq. 72, and
let ci (θ) = exp(〈ai , θ〉 + bi ) with bi = k(xi ) − k(x1) − log q(xi ) + log q(x1). Then
the Monte Carlo Exponential Family Function (MCEFF) writes concisely as:

F̃S(θ) = log

(

1 +
m∑

l=2

cl(θ)

)

, (88)

:= lse+
0 (c2(θ), . . . , cm(θ)), (89)

Theorem 4 (Monte Carlo Exponential Family Function is a Bregman Generator)
Almost surely, the function F̃S(θ) is a proper Bregman generator.

Proof We have the gradient of first-order partial derivatives:

ηi = ∂i F̃S(θ) =
∑m

l=2 a
i
l cl(θ)

1 +∑m
l=2 cl(θ)

, (90)

and the Hessian matrix of second-order partial derivatives:
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∂i∂ j F̃S(θ) = (
∑m

l=2 a
i
l a

j
l cl (θ))(1 +∑m

l=2 cl(θ)) − (
∑m

l=2 a
i
l cl (θ))(

∑m
l=2 a

j
l cl (θ))

(1 +∑m
l=2 cl(θ))

2 =:Num
Den

.

(91)

Let us prove that the Hessian matrix ∇2 F̃S(θ) = (∂i∂ j F̃S(θ))i j is always sym-
metric positive semi-definite, and symmetric positive definite almost surely.

Indeed, we have:

Num =
∑

k

aika
j
k ck

︸ ︷︷ ︸
:=D

+
∑

k,l

aika
j
k ckcl −

∑

k,l

aikcka
j
l cl

︸ ︷︷ ︸
:=E

. (92)

Let us rewrite D as D = CA�AwithC = diag(c1, . . . , cD). It follows that matrix
D is symmetric positive definite. Let us prove that matrix E is also SPD:

E
�=
∑

k<l

aika
j
k ckcl +

∑

l<k

aik z
j
k ckcl −

∑

k<l

aika
j
l ckcl −

∑

l<k

aika
j
l ckcl , (93)

��=
∑

k<l

(
aika

j
k + ail a

j
l − aika

j
l − ail a

j
k

)
ckcl , (94)

=
∑

k<l

(aik − ail )(a
j
k − a j

l )ckcl . (95)

�: The terms l = k vanish
��: After a change of variable l ↔ k in the second and fourth sums of Eq. 93.

Thus Eq. 95 can be rewritten as (ak − al)(ak − al)�ckcl where ak =
⎡

⎢
⎣

a1k
...

aD
k

⎤

⎥
⎦. It

follows that E is a positivelyweighted sumof rank-1 symmetric positive semi-definite
matrices, and is therefore symmetric positive semi-definite.

We want yT Ey > 0 for all y �= 0 ∈ R
D . Suppose that there exists y �= 0 ∈ R

D

such that yT Ey = 0. Noting that aik − ail = ti (xk) − ti (xl), we can write this as

∑

k<l

⎛

⎝
∑

i

yi ci (ti (xk) − ti (xl))
∑

j

y j c j (t j (xk) − t j (xl))

⎞

⎠ = 0, (96)

which implies

∑

i

yi ci (ti (xk) − ti (xl))
∑

j

y j c j
(
t j (xk) − t j (xl)

) = 0, ∀k < l, (97)
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since each of these terms is non negative. In particular, we have the existence of a
y �= 0 ∈ R

D such that

∑

i

yi ti (xk) =
∑

i

yi ti (xl), ∀y �= 0, ∀k < l. (98)

Toget almost surely aMonteCarloBregmangenerator,we introduce the following
assumption:

Assumption 4 (AEF) The sufficient statistics (ti ) verify that for all λ �= 0 and all
y ∈ dom(

∑
i λi ti ):

Eq
[
1∑

i λi ti (x)=y
] = 0.

4 Application to Clustering

In this section, we demonstrate the practical use of MCIG to cluster a set of mixtures
in Sect. 4.1, and consider in Sect. 4.2 parallel calculations/aggregations of Monte
Carlo Exponential/Mixture Functions.

4.1 Clustering Mixtures on the Mixture Family Manifold

Consider clustering a set of n mixturesm(x; η1), . . . ,m(x; ηn) of the mixture family
manifold. Prior work considered clustering the mixture components (e.g., Gaussian
components) to simplifymixtures by using the Bregman k-means [14, 37]. This prior
work can be interpreted as a Gaussian component quantization procedure.

Here, we address the different problem of clustering the mixtures themselves, not
their components.

Since KL(m(x; ηi ) : m(x; η j )) = BG(ηi : η j ) for G(η) = −h(m(x; η)) (Shan-
non information), we may approximate the KL divergence from the MC Bregman
Divergence (MCBD) G̃S as follows:

KL(m(x; ηi ) : m(x; η j )) = BG(ηi : η j ), (99)

� BG̃S (ηi : η j ). (100)

One advantage of using a MCIG is that all divergence computations BG̃S per-
formed during the execution of a Bregman algorithm are consistent by reusing the
same variates of S. In particular, this also guarantees to always have nonnegative
estimated KL divergences.

The traditional way to MC estimate the KL divergence is to consider the MC
stochastic integration of the extended Kullback–Leibler divergence [4]:
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êKLm(p : q) := 1

m

m∑

i=1

(

log
p(xi )

q(xi )
+ q(xi )

p(xi )
− 1

)

, (101)

for x1, . . . , xm ∼ p(x). Indeed, if we just used the MC KL estimator:

K̂Lm(p : q) := 1

m

m∑

i=1

log
p(xi )

q(xi )
, (102)

we may endup with negative values to our estimated KL, depending on the sample
variates! This never happens for eKL which is a statistical divergence for the scalar
divergence ekl(p : q) = p log p

q + q − p ≥ 0.
Bregman k-means [4, 22] can be applied using either the sided or their sym-

metrized centroid [40]: The right-sided centroid is always the center of mass of
the parameters. The left-sided centroid requires to compute F ′(θ) and its reciprocal
inverse function (F ′(θ))−1 (wlog, assuming D = 1 for simplicity5). Although F ′(θ)
is available in closed form (and define the dual parameter θ):

G̃ ′
S(η) = 1

m

m∑

i=1

1

q(xi )
(p1(xi ) − p0(x)) (1 + logm(x; η)) = θ, (103)

the dual parameter of (M,G) cannot be written as a simple function η = F∗′(η).
Notice that θ = G̃ ′

S(η) is an increasing function of η and that the inverting operation
can be performed numerically. Indeed, we can compute η = (G̃ ′

S)−1(θ) = G̃∗
S(θ)

using a numerical scheme (e.g., bisection search).
The symmetric Jeffreys divergence is:

J (m(x; ηi ) : m(x; η j )) = KL(m(x; ηi ) : m(x; η j )) + KL(m(x; η j ) : m(x; ηi )), (104)
= BG(ηi : η j ) + BG(η j : ηi ), (105)
= BG(ηi : η j ) + BG∗ (θi : θ j ), (106)
= 〈Δθi j , Δηi j 〉, (107)

where Δθi j = θi − θ j and Δηi j = ηi − η j .
We may approximate the J divergence by considering the Monte Carlo Bregman

generator in Eq. 105:

J (m(x; ηi ) : m(x; η j )) � BG̃S (ηi : η j ) + BG̃S (η j : ηi ). (108)

We can then apply the technique of mixed Bregman clustering [49] that considers
two centers per cluster. Moreover a fast probabilistic initialization, called mixed
Bregman k-means++ [49], allows one to guarantee a good initialization with high
probability (without computing centroids but requiring to compute divergences).

5Otherwise, we need to consider monotone operator theory [25] to invert ∇F(θ).
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Another technique to bypass the computation of the gradient ∇G̃S in the BD
consists in taking the scaled skew α-Jensen divergence [35] for an infinitesimal
value of α. Indeed, we have the α-Jensen divergence defined by:

Jα
F (p : q) = (1 − α)F(p) + αF(q) − F((1 − α)p + αq), (109)

and asymptotically this skewed Jensen divergences yield the sided Bregman diver-
gences [35] as follows:

lim
α→0+

Jα
F (p : q)

α
= BF (q : p), (110)

lim
α→1−

Jα
F (p : q)

1 − α
= BF (p : q), (111)

Thus we have for small values of α > 0 (say, α = 0.001):

J (m(x; ηi ) : m(x; η j )) = BG(ηi : η j ) + BG(η j : ηi ), (112)

� 1

α
Jα
G̃S

(ηi : η j ) + 1

1 − α
J 1−α

G̃S
(ηi : η j ). (113)

The last equation Eq.113 is the symmetrized skew Jensen divergence studied
in [29].

Figure 6 plots the result of a 2-cluster clustering wrt the Jeffreys’ divergence for
a set of n = 8 mixtures.

4.2 Parallelizing Information Geometry

We can distribute the Monte Carlo information geometry either on a multicore
machine with l cores with shared memory or on a cluster of l machines with dis-
tributed memory, or even consider hybrid architectures.

Let (M, F̃S1), . . . , (M, F̃Sl )be a set of l information-geometricmanifolds obtained
from iid sample sets S1, . . . ,Sl . Let ⊕s

i=1Si be a partition of S.

4.2.1 Multicore Architectures

On a multicore architecture, we may evaluate the mixture family Bregman diver-
gence BG̃S (η : η′) by evaluating BG̃Si

(θ : θ′), and using the compositionality rule of
Bregman generators in BDs (Property 2) with:

G̃S(θ) =
l∑

i=1

|Si |
|S| G̃Si (η). (114)



96 F. Nielsen and G. Hadjeres

 0

 0.05

 0.1

 0.15

 0.2

 0.25

-4 -2  0  2  4

Fig. 6 Clustering a set of n = 8 statistical mixtures of order D = 2 with K = 2 clusters: Each
mixture is represented by a 2D point on the mixture family manifold. The Kullback–Leibler diver-
gence is equivalent to an integral-based Bregman divergence that is computationally untractable:
The Bregman generator is stochastically approximated by Monte Carlo sampling

That is, G̃S(η) is the arithmetic weighted mean of the mixture sub-generators.
For the exponential families, recall that we have:

F̃S(θ) = log

(
s∑

i=1

|Si |
|S| exp(F̃Si )

)

. (115)

That is, F̃S(θ) can be interpreted as an exponential mean (quasi-arithmetic mean,
called f -mean [35] for the monotonically increasing function f (x) = exp(x)) of the
sub-generators. Thuswe can perform the computation of theMCBregman generators
on multi-core architectures easily with a MapReduce strategy [33].

Fact 1 (MapReduce evaluation of MC Bregman generators) The MCMF or MCEF
functions can be computed in parallel using a quasi-arithmetic mean MapReduce
operation.

4.2.2 Cluster Architectures

Since theMCBregman generators can be interpreted as random variables G̃m(θ) and
F̃m(θ), we may obtain robust estimate [51] by carrying the calculations on l MCIGs
on a cluster architecture, and then integrate those l geometries.
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Given a sequence of matching parameters θ1 ∈ (M, F̃s1), . . . , θl ∈ (M, F̃sl ), we
aggregate these parameters by doing the KL-averaging method [26]. This amounts
to compute a sided centroid for θ.

5 Information-Geometric Structures Induced by Statistical
Separable Divergences

In this section, we consider Monte Carlo sampling to define a (tractable) statistical
divergence that approximates another (untractable) statistical divergence, and uses
this MC statistical divergence to define an information-geometric manifold.

The core structure of information geometry [1] is a manifold M equipped with a
pair of dual connections, ∇ and ∇∗ coupled to the metric tensor g: (M, g,∇,∇∗). In
terms of differential geometry, the definition of this coupling is expressed as

X〈Y, Z〉g = 〈∇XY, Z〉g + 〈Y,∇∗
X Z〉g, (116)

where X,Y and Z are smooth vector fields on M . The coupling of connections to the
metric tensor means that the dual parallel transport is compatible with the metric:

〈u, v〉c(0) =
〈 ∇∏

c(0)→c(t)

u,

∇∗
∏

c(0)→c(t)

v

〉

c(t)

, (117)

where c is a smooth curve (parallel transport is path dependent, except for dually
flat connections). The notation

∏∇
c(0)→c(t) u means that vector u ∈ Tc(0) = Tp is par-

allel transported along smooth curve c to tangent plane Tc(t) with respect to the
affine connection ∇. From this (M, g,∇,∇∗) structure, a statistical manifold [24]
(M, g,C) can be defined, where C(X,Y, Z) = 〈∇XY − ∇∗

XY, Z〉 is a totally sym-
metric cubic tensor, termed the Amari–Chentsov cubic tensor. It follows a one-
parameter family of dual connections [1] (with ∇0 being the Levi-Civita metric con-
nection): (M, g,∇−α,∇α) so that if connection ∇α has constant curvature κ then
its dual connection has also the same curvature. Furthermore, one can build [1, 16,
17] a pair of dual connections coupled to a metric from any smooth divergence D:
(M, Dg, D∇, D∇∗). Figure 7 summarizes the fundamental structures of parametric
information geometry and their relationships.

Let us consider a separable statistical divergence:

D[p : q] :=
∫

d(p(x) : q(x))dμ(x), (118)

whered(x : y) is a scalar divergence. For example, the f -divergences [1] are obtained
for i f (x : y) = x f (x/y):
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Riemannian Manifolds
(M, g) = (M, g, LC∇)

Smooth Manifolds

Conjugate Connection Manifolds
(M, g,∇,∇∗)

(M, g, C = Γ∗ − Γ)

Distance = Non-metric divergence Distance = Metric geodesic length

g = Fisherg
Fishergij = E[∂il∂j l]

Spherical Manifold Hyperbolic Manifold

Self-dual Manifold

Dually flat Manifolds
(M,F, F ∗)

(Hessian Manifolds)
Dual Legendre potentials

Bregman Pythagorean theorem

Divergence Manifold
(M,Dg, D∇, D∇∗ = D∗∇)
D∇ − flat ⇔ D∇∗ − flat

f -divergences Bregman divergence

Expected Manifold
(M, Fisherg,∇−α,∇α)

α-geometry

Multinomial
family

LC∇ = ∇+∇∗
2

Euclidean Manifold

Location-scale
family

Location
family

Parametric
families

Fisher-Riemannian
Manifold

KL∗ on exponential families
KL on mixture families
Conformal divergences on deformed families
Etc.

Cubic skewness tensor
Cijk = E[∂il∂j l∂kl]
αC = ∇αFisherg

∇α = 1+α
2 ∇ + 1−α

2 ∇∗

Γ±α = Γ̄ ∓ α
2 C

(M, g,∇−α,∇α)
(M, g, αC)

canonical
divergence

I[pθ : p
θ′ ] = D(θ : θ′)

Fig. 7 The web of fundamental information-geometric structures. An arrow a → b means that
geometric structure b is a special case of the (meta-)structure a

I f [p : q] :=
∫

p(x) f

(
p(x)

q(x)

)

dμ(x) =
∫

i f (p(x) : q(x))dμ(x), (119)

The f -divergences are the only statistical separable divergences that satisfy the
information monotonicity property [1]. On a parametric family of distributions {pθ},
the statistical f -divergences amount to equivalent parameter divergences:

D f (θ1 : θ2) := I f [pθ1 : pθ2 ] (120)

The information-geometric structure induced by this (parameter) divergence is
(M, D f g, D f ∇, D f ∇∗), and the dual connections correspond to the expected α-
connections[1] for f -divergences.

Itmay happen that D f , althoughwell-defined,may not be available in closed form.
In that case, we approximate the divergence by Monte Carlo stochastic integration
by drawing a set Sm = {x1, . . . , xm} of m iid variates from pθ1 :

D̃Sm (θ1 : θ2) := 1

m

m∑

i=1

1

pθ1(xi )
d(pθ1(xi ) : pθ2(xi )). (121)

We need to assert that D̃Sm is a smooth divergence: The smoothness of the
divergence D̃Sm follows from the smoothness divergence of the corresponding
scalar divergence d. Then we need to guarantee that D̃Sm (θ1 : θ2) = 0 iff θ1 = θ2.
Since d(pθ1(x) : pθ2(x)) = 0 if and only if pθ1(x) = pθ2(x), we need to assert that
with high probability pθ1(x) �= pθ2(x) when θ1 �= θ2. Let I = maxθ1,θ2 μ({pθ1(x) =
pθ2(x), x ∈ X }). When I = 0, then almost surely D̃S is a divergence. This condition
holds when the probability densities intersect in at most a finite number of points. It
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follows the corresponding information-geometric structure (M, D̃Sm g, D̃Sm ∇, D̃Sm ∇∗)
(with its associated one-family of α-connections) such that asymptotically, we have:

lim
m→∞(M, D̃Sm g, D̃Sm ∇, D̃Sm ∇∗) = (M, Dg, D∇, D∇∗), (122)

as desired.
Let us quickly report two examples to illustrate these divergence-based sequences

of information-geometric structures:

• Polynomial Exponential Families (PEFs) of order D with the γ-divergences [50]:
Let us notice that we do not need to normalize the PEF distributions in order
to sample variates, and that the γ-divergence Dγ is a projective divergence [48]
(invariant by positive rescaling of the distributions) which tends to the KL diver-
gence when γ → 0. Since the densities of any two distinct PEF distributions of
order D intersect in at most D + 1 points, we check that I = 0. Thus for γ → 0
andm → ∞, we tend to a dually flat manifold. As an application, we can consider
clustering these PEFs on a MCIG manifold.

• Consider a mixture family {mη(x) = (1 − η)p1(x) + η p2(x), η ∈ (0, 1)} of order
D = 1 for the two mixture component distributions p1 and p2, linearly indepen-
dent. We have mη1(x) = mη2(x) iff p1(x) = p2(x) (holds only for this particular
case of D = 1). Assume I = 0 for the component distributions, then we obtain
a sequence of Monte Carlo information-geometric structures that tend asymptoti-
cally to the dually flat mixture manifold.

In the later case, we consider the MCIG manifold for a 1D mixture manifold
with respect to an arbitrary divergence. Notice that the divergence-based MCIG for
the exponential/mixture manifold may not be flat for KL. In Sect. 2.2, we took the
different approach of approximating the negative differential entropy via Monte-
Carlo, ensuring that all sequence of MCIG manifolds are dually flat.

6 Conclusion and Perspectives

In this work, we proposed a new type of randomized information-geometric structure
to cope with computationally untractable information-geometric structures (types 4
and 5 in the classification of Table 4): Namely, the Monte Carlo Information Geom-
etry [38] (MCIG). MCIG performs stochastic integration of the ideal but computa-
tionally intractable definite integral-based Bregman generator (e.g. Eq. 32 for mix-
ture family) for mixture family and Eq. 24 for exponential family). We proved that
the MC Bregman generators for the mixture family and the exponential family are
almost surely strictly convex and differentiable (Theorem 2 and Theorem 4, respec-
tively), and therefore yield a computationally tractable information-geometric struc-
ture (Type 2 in the classification of Table 4). Thuswe can get a series of consistent and
computationally-friendly information-geometric structures that tend asymptotically
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Table 4 A smooth and strictly convex function F induces a dually flat structure: We classify those
structures according to their computational tractability properties

Type F ∇F∗ Example

Type 1 Closed-form Closed-form Gaussian (exponential) family

Type 2 Closed-form Not closed-form Beta (exponential) family

Type 3 Comp. intractable Not closed-form Ising family [54]

Type 4 Not closed-form Not closed-form Polynomial exponential family [42]

Type 5 Not analytic Not analytic Mixture family

to the untractable ideal information geometry. We have demonstrated the usefulness
of our technique for a basic Bregman k-means clustering technique: Clustering sta-
tistical mixtures on a mixture family manifold. Although the MCIG structures are
computationally convenient, we do not have in closed-form ∇F∗ (nor F∗) because
our Bregman generators are the sum of basic generators whose gradients are the sum
of elementary gradients that cannot be inverted easily.6 This step requires a numerical
or symbolic technique [25].

We note that in the recent work of [27], Matsuzoe et al. defined a sequence of
statistical manifolds relying on a sequential structure of escort expectations for non-
exponential type statistical models.

Codes for reproducible results are available at:

https://franknielsen.github.io/MCIG/

7 Function lse+0 (x) is a Bregman Generator

We give the proof of Theorem 3:

Proof Since lse+
0 (x1, . . . , xd) = log

(
1 +∑d

i=1 exp(xi )
)
is twice continuously dif-

ferentiable, it suffices to prove that ∇2lse+
0 (x) 	 0. We have:

∂i lse
+
0 (x) = exi

1 +∑k e
xk

, (123)

∂ j∂i lse
+
0 (x)

j �=i= −exi ex j

(1 +∑k e
xk )2

, (124)

∂i∂i lse
+
0 (x) = exi (1 +∑k e

xk ) − exi ex j

(1 +∑k e
xk )2

. (125)

6The Legendre conjugate of an infimal convolution of elementary functions is the sum of the
elementary conjugate functions.

https://franknielsen.github.io/MCIG/
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It follows that the Hessian (∂ j∂i lse
+
0 (x))i j is a diagonally dominant matrix since:

exi

(

1 +
∑

k

exk

)

= exi + exi
∑

k

exk >
∑

j �=i

∣
∣−exi ex j

∣
∣ = exi

∑

j �=i

ex j . (126)

To conclude that theHessianmatrix is SPD,we useGershgorin circle theorem [55]
to bound the spectrum of a square matrix: The eigenvalues of the Hessian matrix are
thus real and fall inside a disk of center (exi (1 +∑k e

xk ))i and radius exi
∑

j �=i e
x j .

Therefore all eigenvalues are positive, and the Hessian matrix is positive definite.

For x = (x1, . . . , xd) ∈ R
d , we have:

∇lse(x) = σ(x), (127)

where σ(x) is the softmax function:

σ(x) :=
(

exi
∑d

k=1 e
xk

)

i∈{1,...,d}
. (128)

By analogy, we may define for x ∈ R
d :

σ+
0 (x) :=

(
exi

1 +∑k e
xk

)

i∈{1,...,d}
, (129)

so that ∇lse+
0 (x) = σ+

0 (x).
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Information Geometry in Portfolio
Theory

Ting-Kam Leonard Wong

Abstract We review some recent developments in stochastic portfolio theory moti-
vated by information geometry, present illustrative examples and an extension of
functional portfolio generation. Several problems are suggested for further study.

1 Introduction

In the first chapter of their influential monograph [1, p.1] Amari and Nagaoka
explained the key idea of information geometry as follows:

Information geometry ... allow[s] us to take problems from a variety of fields: statistics,
information theory, and control theory; visualize them geometrically; and from this develop
novel tools with which to extend and advance these fields.

In this chapter we show that this principle can be fruitfully applied to financial
problems. We review some recent development in the field of stochastic portfolio
theory (SPT) motivated by information geometry, present illustrative examples and
an extension of functional portfolio generation (announced in [2] which is an early
version of this paper), and suggest several problems for further study. It is hoped
that the materials will be of interest to researchers in both information geometry and
mathematical finance. The topics discussed are heavily influenced by the author’s
research interests. Other financial applications of information geometry are briefly
reviewed in Sect. 1.2.
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1.1 Main Ideas: Market Diversity and Volatility

To set the stage let us consider a universe of stocks represented by a capitalization-
weighted index. A typical example is the S&P 500 Index which includes a significant
portion of the US stock market. In a capitalization-weighted index, the influence of
a stock is proportional to its market capitalization. Following the standard set up of
stochastic portfolio theory (see for example [3, 4]), if we let Xi (t) > 0 be the market
capitalization of stock i at time t , then

μi (t) := Xi (t)

X1(t) + · · · + Xn(t)
(1)

is themarket weight of the stock. Throughout this chapter we let time be discrete. Let
n ≥ 2 be the number of stocks in the market. The vector μ(t) = (μ1(t), . . . , μn(t))
takes values in the open unit simplex Δn given by

Δn := {p = (p1, . . . , pn) ∈ (0, 1)n : p1 + · · · + pn = 1}.

Its closure in R
n is denoted by Δn . The vector μ(t) may also be regarded as the

portfolio weights of the market portfolio.
A major objective of SPT is to construct investment strategies that beat the market

under realistic conditions on market behaviors. These portfolios are called relative
arbitrageswith respect to the market portfolio. For more details about this important
problem see for example [3–5] and their references. As a simple example, Fig. 1
plots the path of {μ(t)} for a hypothetical 3-stock market consisting of the US stocks
Ford, IBM and Walmart. It should not be surprising that the relative performance of
portfolios with respect to the market can be analyzed using appropriate geometries
on the simplex.1

Regarding the market as a process in the simplex Δn , there are two natural quan-
tities an investor may want to keep track of: diversity and volatility. Diversity refers
to the degree of capital concentration in the equity market. For example, in Fig. 1,
the market moves towards the vertex representing Walmart and thus becomes more
concentrated. According to [6], many mutual funds tend to overweight small stocks
and underweight large stocks (relative to the market index), so the change in market
diversity is a significant predictor of their relative performance. To quantify diversity
one introduces a positive concave function Φ : Δn → (0,∞), and we say that the
market is more diverse whenΦ(μ(t)) is large. Typical examples include the Shannon
entropy

Φ(p) = −
n∑

j=1

p j log p j

1In practice the number of stocks changes with time, and the market capitalization may fluctuate
due to public offerings and other events. For simplicity these complications are neglected here.
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Fig. 1 Left: Monthly prices of the stocks (regarded as the capitalization and normalized to be 1
from January 1990). Right: Path of the market weight vector μ(t) in the simplex Δ3

Fig. 2 Left: Change in market diversity measured by ϕ. The dashed curves represent level sets of
ϕ. Right: Market volatility can be measured by the L-divergence D [· | ·]

as well as the λ-diversity function

Φ(p) =
⎛

⎝
n∑

j=1

(p j )
λ

⎞

⎠
1/λ

, (2)

where 0 < λ < 1 is a parameter. More examples of measures of diversity can be
found in [3, Chapter 3]. Note that we allow Φ to be asymmetric, so it can attain its
maximum value at a point other than the barycenter e := (

1
n , . . . ,

1
n

)
. As it turns out,

it is mathematically more convenient to consider its logarithm ϕ := logΦ. Since
eϕ = Φ is concave, we say that ϕ is exponentially concave. We remark that ϕ, being
the logarithm of a concave function, is itself a concave function. Given ϕ, the time
series of {ϕ(μ(t))} is an indicator of market diversity (see Fig. 2 (left)).
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The volatility of themarketweightμ(t) refers to the volatility of the stocks relative
to each other. Anticipating the use of information geometry, note that the Euclidean
quadratic variation (in discrete time) given by

t−1∑

s=0

|μ(s + 1) − μ(s)|2 (3)

may not be appropriate because the Euclidean norm on the simplex may not have a
financial meaning (see however Example 3). In particular, the same displacement
v = μ(s + 1) − μ(s) (approximated by a tangent vector) should have different
norms on different portions of the simplex. Depending on the application, market
volatility along a path should be quantified by a sum like

t−1∑

s=0

D [μ(s + 1) | μ(s)] ,

where D [· | ·] : Δn × Δn → [0,∞) is possibly asymmetric in its arguments. In
information geometry we say that D [· | ·] a divergence (a rigorous definition is
given in Definition 5). Intuitively, the asymmetry of D [· | ·] reflects the effect of
time: the time-reversed path μ̃(t) = μ(T − t) probably has different impacts on the
portfolio.

The main idea of this chapter is the following. A differentiable, exponentially
concave function ϕ : Δn → R defines an L-divergence (L stands for logarithmic)

D(1) [q | p] := log (1 + ∇ϕ(p) · (q − p)) − (ϕ(q) − ϕ(p)) ≥ 0, p, q ∈ Δn,

(4)
which can be used to quantify market volatility. (The superscript will become clear
in Definition 1.) An important example of L-divergence is the excess growth rate
(also known as the diversification return [7]) defined for a fixed portfolio vector
π ∈ Δn by

Tπ [q | p] := log

(
n∑

i=1

πi
qi
pi

)
−

n∑

i=1

πi log
qi
pi

. (5)

The corresponding exponentially concave function is ϕ(p) = ∑n
i=1 πi log pi . Note

that the L-divergence is different from the classical Bregman divergence of a concave
function:

D(0) [q | p] := ∇ϕ(p) · (q − p) − (ϕ(q) − ϕ(p)) . (6)

The most important example of Bregman divergence is the relative entropy

H (q | p) :=
n∑

i=1

qi log
qi
pi

, (7)
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where the potential function ϕ is the Shannon entropy. Comparing (5) and (7), we
see that the excess growth rate involves a nonlinear transformation of an integral,
whereas the relative entropy is itself an integral. In Example 2we show that the Rényi
entropy generates the Rényi divergence in the sense of L-divergence and is related
to the diversity function (2).

In Sect. 3, we will show that the L-divergence determines uniquely an investment
strategy, called a multiplicatively generated portfolio, whose performance V (t) rel-
ative to the market has the pathwise decomposition

log V (t) − log V (0) = ϕ(μ(t)) − ϕ(μ(0)) +
t−1∑

s=0

D(1) [μ(s + 1) | μ(s)] . (8)

From this decomposition, as long as ϕ(μ(t)) remains bounded and the cumula-
tive volatility grows at a steady rate, the portfolio will outperform the market in the
long run (see Proposition 1). Furthermore, the dualistic geometry induced by the
L-divergence (in the sense of [8, 9]; also see [10]) has interesting financial applica-
tions (see Sect. 5.2). In a continuous time framework and without using geometric
concepts, these portfolios were first introduced by Fernholz [3, 11]. Here we adopt
the discrete time, geometric approach established in [12, 13].

Following [2, 14], in Sect. 4 we will generalize the portfolio construction using
the L(α)-divergence:

Definition 1 (L(α)-divergence) Let ϕ : Δn → ∞ be differentiable and
α-exponentially concave, i.e, eαϕ is concave. The L(α)-divergence of ϕ is defined
for p, q ∈ Δn by

D(α) [q | p] := 1

α
log (1 + α∇ϕ(p) · (q − p)) − (ϕ(q) − ϕ(p)) , (9)

Our framework covers also the additively generated portfolio introduced recently
in [15]. Note that the L-divergence is the L(1)-divergence, and the Bregman diver-
gence is equal to D(α) as α ↓ 0, so we will also call it the L(0)-divergence. Using
obvious notations, we have the identity

D(α)
ϕ [· | ·] ≡ 1

α
D(1)

αϕ [· | ·] . (10)

According to the results obtained recently in [14], it appears that the L(α)-divergence
is the canonical interpolation between theBregman divergence and the L-divergence,
and plays a fundamental role in information geometry.

1.2 Financial Applications of Information Geometry

Instead of conducting an extensive literature review, we content with giving a sample
of other financial applications of information geometry. There are mainly two (over-
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lapping) directions: (i) geometries on the state space of financial dynamics, and (ii)
optimization using information-geometric quantities such as entropy and divergence.

Regarding the first direction, the paper [16] identifies a yield curve with a distri-
bution function and studies its corresponding dynamics using the Fisher information
metric. In option pricing, [17] applies Tsallis’s deformed exponentials and general-
ized the Black-Scholes model to fat-tailed distributions. Though not directly related
to finance, the paper [18] generalizes the concept of multiplicatively generated port-
folio map (see Sect. 3) to a large class of optimal transport problems. The recent work
[19] applies the Fisher metric in the study of systemic risk.

On the other hand, divergences are frequently useful as objective/cost functionals.
In [20, 21], the authors generalize Markowitz’s mean-variance model to a mean-
divergence model, and show that the resulting portfolios have superior performance.
Optimization of probabilistic functionals under a divergence constraint is studied
[22] and applied to model risk.

1.3 Outline of the Paper

In Sect. 2 we present the market model and introduce two ways of representing a
trading strategy and the associated value process. Section 3 reviews known results
about multiplicatively generated portfolios with an emphasis on ideas and clarity.
Motivated by these results and the recently introduced additively generated portfolio,
in Sect. 4 we introduce a general framework for functional portfolio generation,
where the L(α)-divergence arises naturally. Further properties of the L-divergence
are discussed in Sect. 5 and several related problems are stated.

2 The Market Model

We work under the discrete time, pathwise setting used in our previous papers [12,
23, 24]. Let n ≥ 2, the number of stocks in the market, be fixed. The data of our
model is a sequence {μ(t) = (μ1(t), . . . , μn(t))}∞t=0 with values in the open unit
simplex Δn . We regard μ(t) as the vector of market weights at time t . At this point
we do not impose any condition on the sequence {μ(t)}∞t=0. In Proposition 1 we will
give examples of path properties that lead to relative arbitrages.

We consider self-financing trading strategies in this market model. Let us express
a strategy in terms of the number of shares held at each point in time. Furthermore,
we use the market portfolio as the numéraire (i.e., unit of price). This means that the
(relative) value of stock i is simply the market weight μi (t). We assume that trading
is frictionless.

Definition 2 (Self-financed trading strategy) A self-financing trading strategy is a
sequence η = {η(t)}∞t=0, with values in R

n , such that the self-financing identity
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n∑

i=1

ηi (t)μi (t + 1) ≡
n∑

i=1

ηi (t + 1)μi (t + 1) (11)

holds for all time t . We always assume η is adapted in the sense that for each t ≥ 0,
η(t) is a deterministic function of {μ(s)}0≤s≤t . The (relative) value process of η is
defined by

Vη(t) = Vη(0) +
t−1∑

s=0

η(s) · (μ(s + 1) − μ(s)), (12)

where Vη(0) := η(0) · μ(0) and a · b is the Euclidean inner product.

In this paper all trading strategies are self-financed. Also, we only study the value
of portfolios relative to the market portfolio, so for simplicity wemay omit the words
‘self-financed’ and ‘relative’. By the identity (11), the value (12) of the portfolio is
equal to

Vη(t) = η(t) · μ(t).

Note that because we allow both long and short positions in the portfolio, the value
Vη(t) may take negative values. The self-financing identity (11) means that all
changes in the portfolio value are due to price changes (but not addition or with-
drawal of capital).

If the portfolio value Vη(t) is strictly positive for all t , we may define the portfolio
weight vector at time t by

π(t) = (π1(t), . . . , πn(t)) =
(

η1(t)μ1(t)

Vη(t)
, . . . ,

ηn(t)μn(t)

Vη(t)

)
. (13)

The components of π(t) represent the percentages of current capital invested in each
of the stocks; clearly

∑n
i=1 πi (t) ≡ 1. In this case, the value Vη(t) can be expressed

multiplicatively in the form

Vη(t) = Vη(0)
t−1∏

s=0

(
π(s) · μ(s + 1)

μ(s)

)
, (14)

where μ(s+1)
μ(s) =

(
μi (s+1)
μi (s)

)

1≤i≤n
is the vector of componentwise ratios. Compare this

with the additive representation (12). If πi (t) ≥ 0 for all i and t , we say that the
portfolio is all-long. It is clear that an adaptive sequence (in the sense of Definition 2)
of portfolio weight vectors defines a self-financing all-long trading strategy for each
initial value. The market portfolio corresponds to π(t) ≡ μ(t).
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3 Multiplicatively Generated Portfolio

In this section we review the definition and main results of multiplicative functional
generation using the approach of [12]. For simplicity of exposition we assume that
the generating functions are smooth.

3.1 Pathwise Decomposition and Relative Arbitrage

Definition 3 (Multiplicatively generated portfolio) Let ϕ : Δn → R be smooth and
exponentially concave, to be called a generating function. Given ϕ, we define a
mapping π : Δn → Δn , called the portfolio map, by

π i (p) = pi
(
1 + Dei−pϕ(p)

)
, i = 1, . . . , n, (15)

where (e1, . . . , en) is the standard Euclidean basis and Dei−p is the directional deriva-
tive along the tangent vector ei − p. It defines an all-long trading strategy η such
that the portfolio weight at time t is

π(t) =
(

η1(t)μ1(t)

Vη(t)
, . . . ,

ηn(t)μn(t)

Vη(t)

)
= π(μ(t)). (16)

We say that η (and π ) are generated multiplicatively by ϕ.

Here is a geometric interpretation of the formula (15). Consider the graph of the
positive concave function Φ = eϕ . Given p ∈ Δn , let the tangent hyperplane to Φ at
p be given by q 
→ ∑n

i=1 ciqi (see Fig. 3). We have

ci = Φ(p) + Dei−pΦ(p) = Φ(p)
(
1 + Dei−pϕ(p)

)
.

Since
∑n

i=1 pi (ei − p) = 0, the portfolio vector π(p) is given by

π i (p) = ci pi
c1 p1 + · · · + cn pn

, i = 1, . . . , n. (17)

In particular, π(p) is an element of the closed simplex Δn (so the portfolio is all-
long), and the weight ratio π i (p)/pi is proportional to ci . We say that the trading
strategy is generatedmultiplicatively because the generating function ϕ specifies the
weight ratios through its derivatives.

The following is the main result about multiplicatively generated portfolios. As
this result is fundamental let us give a complete proof which also motivates the
definition of the L-divergence. We also note that this proof is more transparent than
the original proof (see [3, Theorem 3.1.5] which is formulated in continuous time).
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Fig. 3 Geometric
interpretation of
multiplicatively generated
portfolio

Theorem 1 (Multiplicative decomposition [11, 12]) Let η be the trading strategy
generated multiplicatively by the exponentially concave function ϕ as in Definition 3.
Then the value process of η satisfies the decomposition

log Vη(t) − log Vη(0) = ϕ(μ(t)) − ϕ(μ(0)) +
t−1∑

s=0

D(1) [μ(s + 1) | μ(s)] , (18)

where D(1) [· | ·] is the L(1)-divergence of ϕ defined by (4).

Proof Using the multiplicative representation (14), we have

Vη(s + 1)

Vη(s)
=

n∑

i=1

π i (μ(s))
μi (s + 1)

μi (s)
.

From (15), we have
π i (μ(s))

μi (s)
= 1 + Dei−μ(s)ϕ(μ(s)),

so we get the useful identity

Vη(s + 1)

Vη(s)
= 1 +

n∑

i=1

μi (s + 1)Dei−μ(s)ϕ(μ(s))

= 1 + Dμ(s+1)−μ(s)ϕ(μ(s))

= 1 + ∇ϕ(μ(s)) · (μ(s + 1) − μ(s)).

(19)
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Here we think of the gradient∇ϕ(μ(s)) as operating on tangent vectors ofΔn . Finan-
cially, (19) says that the relative return (Vη(s + 1) − Vη(s))/Vη(s) of the portfolio
is nothing but the directional derivative of ϕ.

By the concavity of Φ = eϕ , for any p, q ∈ Δn we have

Φ(p) + ∇Φ(p) · (q − p) ≥ Φ(q).

Rewriting the inequality in terms of ϕ and taking logarithm on both sides, we have

D(1)[q | p] = log (1 + ∇ϕ(p) · (q − p)) − (ϕ(q) − ϕ(p)) ≥ 0.

Taking logarithm on both sides of (19) and rearranging, we get

log Vη(s + 1) − log Vη(s) = ϕ(μ(s + 1)) − ϕ(μ(s)) + D(1)[μ(s + 1)|μ(s)].

Summing over time gives the decomposition (18).

From (18), the performance of the portfolio relative to themarket can be attributed
to two quantities. The first is the change in the market diversity ϕ(μ). It depends only
on the beginning location μ(0) and the current location μ(t) of the market. Note that
a change in ϕ(μ(t)) is only caused by the component of market movement along
the direction of ∇ϕ(μ(t)) which is perpendicular to the level set of ϕ. In particular,
displacement along the same level set is not visible in this first term. The second
term in (18) measures the volatility of the market, as it travels from μ(0) to μ(t), by
the sum of D(1) [μ(s + 1) | μ(s)] over time. Intuitively, the functionally generated
trading strategy η outperforms the market if and only if the volatility is greater than
the change in market diversity. In SPT, this decomposition allows one to formulate
conditions underwhich relative arbitrage (with respect to themarket portfolio) exists.
Here is the simplest version of this idea:

Proposition 1 (Relative arbitrage) Fix a smooth, exponentially concave function
ϕ : Δn → R. Let M > 0 be a constant and let T > 0 be a finite time horizon. We say
that amarketweight sequence {μ(t)}∞t=0 satisfies propertyP ifϕ(μ(t)) − ϕ(μ(0)) >

−M for all t and
∑T−1

s=0 D(1)[μ(s + 1)|μ(s)] > M, whereD(1) is the L(1)-divergence
of ϕ. Then there exists an all-long trading strategy η such that Vη(T )/Vη(0) > 1 (i.e.,
the strategy outperforms the market over the horizon [0, T ]) for all market weight
sequences satisfying propertyP .

Proof Let η be the trading strategy generated multiplicatively by ϕ. By Theorem 1,
if the market weight sequence satisfies propertyP , we have

log Vη(T ) − log Vη(0) = ϕ(μ(t)) − ϕ(μ(0)) +
t−1∑

s=0

D(1) [μ(s + 1) | μ(s)]

> −M + M = 0.



Information Geometry in Portfolio Theory 115

Fig. 4 Capital distribution
of the Russel 1000 Index in
June 2015 (taken from [25])
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The proof of Proposition 1 is almost trivial because we already have the concept
of multiplicatively generated portfolio. Without knowing this construction, it is not
immediate why a relative arbitrage exists and how it is constructed. The usefulness
of this result comes from the following observations (see [3]). Consider the capital
distribution of the market defined by the reversed order statistics of the components
of μ(t):

μ(1)(t) ≥ μ(2)(t) ≥ · · · ≥ μ(n)(t).

Empirically, it is found that if one plots logμ(k)(t) against log k (log of the rank),
one gets an approximately linear curve (except the tail) which is relatively stable over
time (see Fig. 4). This means that the capital distribution has an approximate Pareto
distribution, and themarket diversityϕ(μ(t)) ismean-reverting forϕ suitably chosen.
On the other hand, for a typicalϕ themarket volatility

∑T−1
s=0 D[μ(s + 1)|μ(s)] grows

roughly linearly in time [26]. Thus, it appears that the market satisfies the conditions
of (1).

The stability of the capital distribution has inspired many works on the construc-
tion and analysis ofmarketmodels that exhibit such behaviors.Mathematically, these
are systems of Brownian particles (representing the market capitalizations) where
the drift and volatility coefficients depend on their relative rankings, and so they are
called rank-based models. For more details we refer the reader to the papers [27–33]
and their references.

Proposition 1 only addresses long term relative arbitrages. In practice, short term
relative arbitrages are much more relevant and interesting. Naturally their construc-
tions require more work and conditions (see for example [25, 34–36]). In particular,
the paper [5] proves that market volatility alone does not imply the existence of short
term relative arbitrage (this problem had been open in SPT for more than 10 years).
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3.2 Examples

We give some examples of exponentially concave functions on Δn , the portfolios
they generate as well as the corresponding L(1)-divergences.

Example 1 (Constant-weighted portfolio) Fix a probability vector π ∈ Δn and con-
sider the function

ϕ(p) =
n∑

j=1

π j log p j .

It is exponentially concave since Φ = eϕ = (p1)
π1 · · · (pn)πn , the geometric mean

with weights π1, . . . , πn , is concave on Δn . This function generates the constant-
weighted portfolio π(p) ≡ π , and the L(1)-divergence is the excess growth rate
Tπ [q | p] given by (5). We also observe that

ϕ(μ(t)) − ϕ(μ(0)) =
n∑

j=1

π j log
π j

μ j (0)
−

n∑

j=1

π j log
π j

μ j (t)

= H (π | μ(0)) − H (π | μ(t))

is the negative of the change in the relative entropy H (π | ·). In [23], we call the
decomposition (18) for this portfolio the energy-entropy decomposition.

Example 2 (Diversity-weighted portfolio) For λ ∈ (0, 1) fixed, let ϕ be the function

ϕ(p) = 1

λ
log

n∑

j=1

(p j )
λ,

which is the logarithm of the function Φ given by (2). Then ϕ is exponentially
concave and generates the diversity-weighted portfolio where

π i (p) = (pi )λ∑n
j=1(p j )λ

, i = 1, . . . , n. (20)

Note that this portfolio interpolates between the equal-weighted portfolio π(p) ≡ e
(when λ ↓ 0) and the market portfolio π(p) ≡ p (when λ ↑ 1). See [37] where the
diversity-weighted portfolio is studied for negative values of λ. We remark that these
cover, except for the log case, portfolios constructed using Tukey’s transformation
ladder; for more details see [38] where an extensive empirical study is given.

For λ ∈ (0, 1) fixed, let p(λ) ∈ Δn be given by π(p) as in (20). In information
geometry, p(λ) is called the λ-escort distribution corresponding to the distribution
p (see [10, Section 4.3]). Using this terminology we may interpret the portfolio in
terms of the Rényi entropy and divergence.
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Proposition 2 Let 0 < λ < 1. For p ∈ Δn, we have

ϕ(p) = 1

λ
log

⎛

⎝
n∑

j=1

(p j )
λ

⎞

⎠ = (α − 1)Hα(p(λ)),

where α := 1
λ

∈ (1,∞), p(λ) is the λ-escort distribution corresponding to p, and

Hα(r) := 1

1 − α
log

⎛

⎝
n∑

j=1

(r j )
α

⎞

⎠

is the Rényi entropy of order α.
Moreover, the L(1)-divergence of ϕ is given by

D(1)[q | p] = (α − 1)Dα(q(λ)||p(λ)), (21)

where Dα(·||·) is the Rényi divergence of order α defined by

Dα(p||q) := 1

α − 1
log

⎛

⎝
n∑

j=1

(p j )
α(q j )

1−α

⎞

⎠ . (22)

Proof This is a direct computation and we only give the proof of the first statement.
Using the fact that p = (

p(λ)
)(1/λ)

, we have

1

λ
log

(
n∑

i=1

pλ
j

)
= 1

λ
log

⎛

⎜⎜⎝
n∑

i=1

⎛

⎜⎝

(
p(λ)
i

)1/λ

∑n
j=1

(
p(λ)
j

)1/λ

⎞

⎟⎠

λ
⎞

⎟⎟⎠

= − log

⎛

⎝
n∑

j=1

(
p(λ)
j

) 1
λ

⎞

⎠

= (α − 1)
1

1 − α
log

⎛

⎝
n∑

j=1

(
p(λ)
j

)α

⎞

⎠ ,

which is α − 1 times the Rényi entropy.

Corollary 1 Let λ ∈ (0, 1) andα := 1
λ

∈ (1,∞). The relative value of the diversity-
weighted portfolio with parameter λ satisfies

log Vη(t)Vη(0)

= (α − 1)

[
Hα

(
μ(λ)(t)

)− Hα

(
μ(λ)(0)

)+
t−1∑

s=0

Dα

(
μ(λ)(t + 1)

∣∣∣∣μ(λ)(t)
)
]

.
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Consider a portfolio manager who tries to optimize over the parameter λ of a
diversity-weighted portfolio. By Corollary 1, this means comparing the dynamics
of the market weight μ(t) using different λ-escort geometries of the simplex. In
particular, it is well-known that the Rényi divergence satisfies

Dα (r + tv||r) = α

2
t2‖v‖2r + O(|t |3), t → 0, (23)

where ‖v‖2r := ∑n
i=1 v2

i /ri is the Fisher information metric at the point r . This geo-
metric viewpoint may lead to new statistical methods and algorithms. In this regard,
let us mention the recent work [39] which studies the dynamics of market diversity
in the context of large rank-based models, as well as the paper [40] which proposes
a model for predicting change in market diversity. More generally, optimization of
functionally generated portfolio amounts to finding the geometry in which μ(t) has
the least change in diversity and has the greatest cumulated volatility.

3.3 Multiplicative Cyclical Monotonicity

In this subsection we provide a financial argument, given in [12], that motivates the
definition of multiplicatively generated portfolio.

Let us restrict to all-long trading strategies defined by portfoliomaps, i.e., the port-
folio weights satisfies π(t) = π(μ(t)) where π : Δn → Δn is a fixed deterministic
function. When is π able to profit frommarket volatility? Intuitively it should satisfy
the following property. Let O be a (small) neighborhood in the simplex Δn , and
supposeμ(t) ∈ O for all t . From the discussion in Sect. 1.1 the capital distribution is
stable. Then, we expect that the portfolio will outperform the market asymptotically
as long as there is enough volatility. Specifically, it should outperform the market
whenever it is periodic. This idea leads to the following definition.

Definition 4 (multiplicative cyclical monotonicity (MCM)) A portfolio map π :
Δn → Δn is multiplicatively cyclical monotone if for any integer m ≥ 0 and any
cycle {μ(t)}mt=0 with μ(0) = μ(m) we have Vη(m) ≥ 1, i.e.,

m−1∏

t=0

(
π(μ(t)) · μ(t + 1)

μ(t)

)
≥ 1. (24)

In [12] we observed that this property characterizes the multiplicatively generated
portfolio. The following result is themultiplicative analogueofRockafellar’s theorem
which characterizes the subdifferentials of convex functions in terms of cyclical
monotonicity [41, Section 24].

Theorem 2 Suppose the portfolio mapπ : Δn → Δn is continuous. Then it is multi-
plicatively cyclical monotone if and only if there exists a differentiable, exponentially
concave function ϕ : Δn → R which generates π in the sense of (15).
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Proof Let us provide a sketch of proof to illustrate the main idea. Continuity of π is
included here only to simplify the statement (in the general case ϕ is not necessarily
differentiable and we need to use supergradients). Suppose π is generated by ϕ.
Consider a market weight sequence with μ(m) = μ(0). By the decomposition (18),
we have

log Vη(m) − log Vη(0) =
m−1∑

t=0

D(1) [μ(t + 1) | μ(t)] ≥ 0.

Thus Vη(m) ≥ 1 and π is MCM.
Conversely, suppose that π is MCM. Consider the function ϕ defined by

ϕ(p) = ϕ(p0) + inf
{
log Vη(t) − log Vη(0)

}

= ϕ(p0) + inf

{
t−1∑

s=0

log

(
n∑

i=1

π i (μ(s))
μi (s + 1)

μi (s)

)}
,

where p0 ∈ Δn is fixed, ϕ(p0) ∈ R is arbitrary, and the infimum is taken over t ≥ 0
and all market weight sequences {μ(s)}ts=0 for which μ(0) = p0 and μ(t) = p.
Then it can be shown that ϕ is differentiable, exponentially concave, and generates
the given portfolio map π . It can also be shown that the function ϕ is unique up to
an additive constant.

Using this characterization, in [12] we introduced a Monge-Kantorovich optimal
transport problem and showed that the optimal coupling can be represented using
exponentially concave functions and the portfolios they generate.

4 Generalized Functional Portfolio Generation

4.1 Motivations

As it turns out, Theorem 1 is not the only way to generate a portfolio such that a
pathwise decomposition holds. In [15] Karatzas and Ruf introduced a novel additive
generation and used it to construct relative arbitrages (see [42] for another extension
involving an additional finite variation process). The following result uses the termi-
nology of [43, Section 3.3] and adapts the construction to our discrete time setting.
We omit the proof as it is contained (in the limit) in Theorem 5 below.

Theorem 3 (Additively generated portfolio [15]) Let ϕ : Δn → (0,∞) be a smooth
concave function and let v0 ∈ R be an initial portfolio value. Then there is a self-
financing trading strategy η satisfying Vη(0) = v0 and

ηi (t) = Dei−μ(t)ϕ(μ(t)) + Vη(t), i = 1, . . . , n. (25)
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Its relative value satisfies the decomposition

Vη(t) − Vη(0) = ϕ(μ(t)) − ϕ(μ(0)) +
t−1∑

s=0

D(0) [μ(t + 1) | μ(t)] , (26)

where D(0)[·|·] is the Bregman (or L(0)) divergence of ϕ as in (6). We call η the
strategy generated additively by ϕ.

Note that the additively generated portfolio involves a concave rather than expo-
nentially concave function.

Example 3 Consider the function

ϕ(p) = −1

2
|p|2 = −1

2

(
p21 + · · · + p2n

)
.

It generates the trading strategy η(t) given by ηi (t) = |p|2 − pi + Vη(t). It is inter-
esting to note that the Bregman divergence of ϕ is half of the squared Euclidean
distance:

D(0) [q | p] = 1

2
|p − q|2.

Thus the squared Euclidean distance indeed has a financial meaning for this specific
trading strategy.

Observe that both the multiplicative and additive decompositions (18) and (26)
can be written in the form

g(Vη(t)) − g(Vη(0)) = ϕ(μ(t)) − ϕ(μ(0)) + D [μ(t + 1) | μ(t)] , (27)

where g, ϕ and D [· | ·] are suitable functions:
• (Multiplicative generation) g(x) = log x and D [· | ·] is the L(1)-divergence of the
exponentially concave function ϕ.

• (Additive generation) g(x) = x and D [· | ·] is the L(0)-divergence of the concave
function ϕ.

It is natural to ask if there exist other portfolio constructions that admit pathwise
decompositions of the form (27). To formulate this question rigorously we introduce
the general concept of divergence.

Definition 5 (Divergence on Δn) A divergence on Δn is a non-negative functional
D [· | ·] : Δn × Δn → [0,∞) satisfying the following conditions:

(i) D [q | p] = 0 if and only if p = q.
(ii) It admits a quadratic approximation of the form

D [p + Δp | p] = 1

2

n∑

i, j=1

gi j (p)ΔpiΔp j + O(|Δp|3) (28)
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as |Δp| → 0, and thematrixG(p) = (
gi j (p)

)
varies smoothly in p and is strictly

positive definite in the sense that

n∑

i, j=1

gi j (p)viv j > 0 (29)

for all vectors v ∈ R
n that are tangent to Δn , i.e., v1 + · · · + vn = 0.

If condition (i) is dropped and in (29) we do not strict inequality, we call D [· | ·] a
pseudo-divergence.

Example 4 Let Hessϕ denote the Euclidean Hessian of ϕ. If α > 0 and ϕ is
α-exponentially concave, then its L(α)-divergence satisfies

D(α) [p + Δp | p]
= −1

2
(Δp)

(
Hessϕ(p) + α(∇ϕ(p))(∇ϕ(p))

)
(Δp) + O(|Δp|3). (30)

If ϕ is concave, then its L(0)-divergence satisfies

D(0) [p + Δp | p] = −1

2
(Δp) Hessϕ(p)(Δp) + O(|Δp|3).

It is easy to verify that the corresponding matrixG(p) is semi-positive definite. They
become true divergences if Hess eαϕ and Hessϕ respectively are strictly positive
definite.

Definition 6 (General functional portfolio construction) Letη = {η(t)}∞t=0 be a self-
financing trading strategywhose relative value process is {Vη(t)}, and letϕ, g : Δn →
R be functions on Δn where g is strictly increasing. We say that η is generated by
ϕ with scale function g if there exists a pseudo-divergence D[· : ·] on Δn such that
(27) holds for all market sequences {μ(t)}∞t=0.

In this section we will introduce a new (α,C)-generation, and, after giving an
empirical example, show that it characterizes all functional portfolio generation in
the sense of Definition 6. For expositional convenience we always assume that the
generating function is smooth. Extension of this construction to continuous time is
left for future research.

4.2 A New Functional Portfolio Generation

Theorem 4 ((α,C)-generation) Let α > 0 and C ≥ 0 be fixed parameters, and let
ϕ : Δn → R be smooth and α-exponentially concave. Then, for any given initial
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value v0 ∈ R, there exists a unique self-financing trading strategy η(t) such that
Vη(0) = v0 and

ηi (t) = α(C + Vη(t))Dei−μ(t)ϕ(μ(t)) + Vη(t), i = 1, . . . , n, (31)

for all t . We call η the strategy which is (α,C)-generated by ϕ.

Proof We will prove by induction on T ≥ 0 that the statement holds on the time
interval [0, T ]. Consider T = 0. Let Vη(0) = v0. If we define

ηi (0) = α(C + v0)Dei−μ(0)ϕ(μ(t)) + v0,

then, since
∑n

i=1 μi (ei − μ) = 0, we have

η(0) · μ(0) = α(C + v0)

n∑

i=1

μi (0)Dei−μ(0)ϕ(μ(t)) +
n∑

i=1

μi (0)v0 = v0.

Thus there is a unique strategy η which satisfies (31) at time 0.
Suppose by the induction hypothesis that the statement holds up to time T . Then

η(T ) and Vη(T ) are uniquely defined, and the portfolio value at time T + 1 is given
uniquely by

Vη(T + 1) := Vη(T ) + η(T ) · (μ(T + 1) − μ(T )). (32)

Thus there is a unique vector η(T + 1) satisfying (31).
It remains to show that the strategy is self-financing at time T + 1, i.e., η(T ) ·

μ(T + 1) = η(T + 1) · μ(T + 1) (see (11)). Using (31), we have

η(T + 1) · μ(T + 1) =
n∑

i=1

μi (T + 1)α(C + Vη(T + 1))Dei−μ(T+1)ϕ(μ(T + 1))

+
n∑

i=1

μi (T + 1)Vη(T + 1)

= Vη(T + 1) (since
n∑

i=1

μi (T + 1)Dei−μ(T+1) = 0)

= Vη(T ) + η(T ) · (μ(T + 1) − μ(T )) (by (32))

= η(T ) · μ(T ) + η(T ) · (μ(T + 1) − μ(T ))

= η(T ) · μ(T + 1).

In the second last equality we used the self-financing property up to time T . This
proves that the strategy is uniquely defined at all times.

In Theorem 5 we show that this trading strategy corresponds to the scale function
given by



Information Geometry in Portfolio Theory 123

g(x) = 1

α
log(C + x). (33)

Moreover, in Sect. 4.4 we show that up to an additive constant this function (together
with g(x) = x) is the most general scale function. Comparing (31) with (15) and
(25), we see that multiplicative generation corresponds to the caseC = 0 and α = 1,
and additive generation corresponds to the limit when α = 1

C → 0.
The trading strategy η given by (31) can be interpreted as follows.

Lemma 1 (Portfolio weight of η) Let π(α) be the portfolio process generated mul-
tiplicatively by the 1-exponentially concave function αϕ. If Vη(t) > 0, the portfolio
weight vector π(t) of the (α,C)-generated trading strategy η is given by

π(t) =
(

η1(t)μ1(t)

Vη(t)
, . . . ,

ηn(t)μn(t)

Vη(t)

)
= C + Vη(t)

Vη(t)
π(α)(t) − C

Vη(t)
μ(t). (34)

In particular, η(t) longs the multiplicatively generated portfolio π(α) and shorts the
market portfolio with weights depending on Vη(t) and C.

Proof Direct computation using (31).

By increasing C , we may construct portfolios that are more aggressive than the
multiplicatively generated portfolio. Note that we keep the parameter α so that we
can generate different portfolios with the same generating function ϕ (as long as eαϕ

is concave).
Next we show that the new portfolio generation admits a pathwise decomposition

for the portfolio value.

Theorem 5 (Pathwise decomposition) Consider an (α,C)-generated trading strat-
egy η as in Theorem 4. If Vη(·) > −C, then the value process satisfies the pathwise
decomposition

1

α
log

C + Vη(t)

C + Vη(0)
= ϕ(μ(t)) − ϕ(μ(0)) +

t−1∑

s=0

D(α) [μ(s + 1) | μ(s)] , (35)

where D(α) is the L(α)-divergence of ϕ.

Proof The proof is similar to that of Theorem 1. By (31), for each time t we have

1

α
log(C + Vη(t + 1)) − 1

α
log(C + Vη(t))

= 1

α
log

C + Vη(t) + α(C + Vη(t))∇ϕ(μ(t)) · (μ(t + 1) − μ(t))

C + Vη(t)

= 1

α
log (1 + α∇ϕ(μ(t)) · (μ(t + 1) − μ(t)))

= ϕ(μ(t + 1)) − ϕ(μ(t)) + D(α) [μ(t + 1) | μ(t)] .

(36)
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This yields the desired decomposition. The condition Vη(·) > −C is imposed so that
the logarithms make sense.

4.3 An Empirical Example

Consider a smooth and exponentially concave function ϕ. It is α-exponentially con-
cave for all 0 < α ≤ 1 and is concave (which corresponds to the case α ↓ 0). Thus
both the additive and multiplicatively generated portfolios are well-defined. Unfor-
tunately, while the L(α)-divergence is a natural interpolation, there does not seem to
be a canonical choice for the constant C that connects the two basic cases.

In this example we consider instead the parameterized family {η(α)}0≤α≤1 where
η(α) is the trading strategy (α, 1

α
)-generated by ϕ (so when α = 0 it is the additively

generated portfolio), and compare their empirical performance. We set Vη(α) (0) = 1
for all α. Note that η(1) is not the multiplicatively generated portfolio as it also shorts
the market portfolio.

Consider as in Fig. 1 the (beginning) monthly stock prices of the US companies
Ford,Walmart and IBM from January 1990 (t = 0) to September 2017 (t = 332).We
normalize the prices so that at t = 0 the market weight is at the barycenter

(
1
3 ,

1
3 ,

1
3

)
.

The path of the market weight μ(t) in the simplex Δ3 is plotted in Fig. 1 (right).
We consider the 1-exponentially concave function

ϕ(p) =
3∑

i=1

1

3
log pi (37)

whichgeneratesmultiplicatively the equal-weightedportfolioπ(p) ≡ e = (
1
3 ,

1
3 ,

1
3

)
.

By (31), for each α ∈ [0, 1] the trading strategy is given by

η
(α)
i (t) = (

1 + αVη(t)
) ( 1

3μi (t)
− 1

)
+ Vη(t).

In terms of portfolio weights, we have

π(α)(t) = 1 + αVη(t)

Vη(t)
e − 1 + αVη(t) − Vη(t)

Vη(t)
μ(t).

Thus the portfolio longs more and more the equal-weighted portfolio as α increases.
The corresponding L(α)-divergence is given by

D(α) [q | p] = 1

α
log

(
1 + α

n∑

i=1

1

npi
(qi − pi )

)
−

n∑

i=1

1

n
log

qi
pi

.
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Fig. 5 Time series of the
relative portfolio value
Vη(α) (t), from α = 0
(yellow) to α = 1 (red). The
value of the equal-weighted
portfolio is shown in black

1990 1995 2000 2005 2010 2015
1.

0
1.

5
2.

0
2.

5

The relative values of the simulated portfolios are plotted in Fig. 5. At the end of
the period the portfolio value is increasing in α, and the additive portfolio (α = 0)
has the smallest value. It is interesting to note that the reverse is true at the begin-
ning. Note that the values fluctuate widely in the period 2008–2009 corresponding to
the financial crisis. For comparison, we also simulate the multiplicatively generated
equal-weighted portfolio (i.e., (α,C) = (1, 0)) and plot the result in Fig. 5. Surpris-
ingly the additive and multiplicative portfolios have similar behaviors here. In this
period, shorting the market by using a positive value for C gives significant advan-
tage over both the additive and multiplicative portfolios. Dynamic optimization over
our extended functionally generated portfolios is an interesting problem.

4.4 Characterizing Functional Portfolio Generation

Now we show that our (α,C)-generation is the most general one. Throughout this
subsection we let η be a functionally generated trading strategy as in Definition 6.We
assume that the scale function g is smooth and g′(x) > 0 for all x . We also require
that the domain of g contains the positive real line (0,∞). Furthermore, we assume
that ϕ is smooth, and η is non-trivial in the sense that for all t ≥ 0 and all market
weight paths {μ(s)}ts=0 up to time t , the profit-or-loss

Vη(t + 1) − Vη(t) = η(t) · (μ(t + 1) − μ(t))

is not identically zero as a function of μ(t + 1) ∈ Δn . For technical reasons we also
assume that for any x > 0, there exists t ≥ 0 and a sequence {μ(s)}ts=0 such that
Vη(t) = x .

Theorem 6 Under the above conditions, the scale function has one of the following
forms. Either

g(x) = c1x + c2 (38)

where c1 > 0 and c2 ∈ R, or
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g(x) = c2 log(c1 + x) + c3 (39)

where c1 ≥ 0, c2 > 0 and c3 ∈ R. In the first case ϕ is concave and η is additively
generated by ϕ, whereas in the second case ϕ isα-exponentially concave with c2 = 1

α

and η is (α, c1)-generated by ϕ. The corresponding pseudo-divergence is the L(α)-
divergence of ϕ.

Note that in (38) and (39) the additive constants are irrelevant and may be dis-
carded. We will prove Theorem 6 with several lemmas. First we observe that the
decomposition (27) already implies a formula of the trading strategy.

Lemma 2 For any t and any tangent vector v of Δn (i.e., v1 + · · · + vn = 0) we
have

η(t) · v = 1

g′(Vη(t))
∇ϕ(μ(t)) · v. (40)

In particular, for each i = 1, . . . , n we have

ηi (t) = 1

g′(Vη(t))
Dei−μ(t)ϕ(μ(t)) + Vη(t). (41)

Proof From (27) we have the identity

g(Vη(t + 1)) − g(Vη(t)) = ϕ(μ(t + 1)) − ϕ(μ(t)) + D [μ(t + 1) | μ(t)] (42)

which holds for all values of μ(t + 1). Write

Vη(t + 1) = Vη(t) + η(t) · (μ(t + 1) − μ(t))

and let μ(t + 1) − μ(t) = δv, δ > 0 sufficiently small, and compute the first order
approximation of both sides of (42). SinceD [· | ·] is a pseudo-divergence, by (28) its
first order approximation vanishes. Evaluating the derivatives and dividing by δ > 0,
we obtain (40).

Letting v = ei − μ(t) in (41) for i = 1, . . . , n, we get the formula (41).

Observe that (40) reduces to (25) when g(x) = x , and to (15) when g(x) = log x .
Also, we note that η(t) depends only on μ(t) and the current portfolio value Vη(t).
Putting v = μ(t + 1) − μ(t) in (40), we have

Vη(t + 1) − Vη(t) = 1

g′(Vη(t))
∇ϕ(μ(t)) · (μ(t + 1) − μ(t)). (43)

Consider the expression



Information Geometry in Portfolio Theory 127

g(Vη(t + 1)) − g(Vη(t))

= g
(
Vη(t) + [

Vη(t + 1) − Vη(t)
])− g(Vη(t))

= g

(
Vη(t) + 1

g′(Vη)
∇ϕ(μ(t)) · (μ(t + 1) − μ(t))

)
− g(Vη(t)).

(44)

By (27), this equals

ϕ(μ(t + 1)) − ϕ(μ(t)) + D[μ(t + 1)|μ(t)],

which is a function of μ(t) and μ(t + 1) only. Thus, the expression in (44) does not
depend on the current portfolio value Vη(t). From this observation we will derive a
differential equation satisfied by g.

Lemma 3 The scale function g satisfies the third order nonlinear ODE

g′g′′′ = 2(g′′)2 (45)

on the positive real line (0,∞).

Proof Given x > 0, write x = Vη(t) for some t ≥ 0 and market sequence {μ(s)}ts=0.
Let δ = ∇ϕ(μ(t)) · (μ(t + 1) − μ(t)). From (44), for any δ, the expression

g(x + 1

g′(x)
δ) − g(x) (46)

does not depend on x .
Differentiating (46) with respect to x , we have

g′(x + 1

g′(x)
δ)

(
1 − δ

g′′(x)
(g′(x))2

)
− g′(x) = 0.

Next we differentiate with respect to δ (since η is assumed to be non-trivial, this can
be done by varying μ(t + 1)):

g′′(x + 1

g′(x)
δ)

1

g′(x)

(
1 − δ

g′′(x)
(g′(x))2

)
+ g′(x + 1

g′(x)
δ)

−g′′(x)
(g′(x))2

= 0.

Differentiating one more time with respect to δ, we have

g′′′(x + 1

g′(x)
δ)

1

(g′(x))2

(
1 − δ

g′′(x)
(g′(x))2

)

+ g′′(x + 1

g′(x)
δ)

−g′′(x)
(g′(x))3

− g′′(x + 1
g′(x) δ)g

′′(x)
(g′(x))3

= 0.
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Setting δ = 0, we get g′′′(x)
(g′(x))2 − 2 (g′′(x))2

(g′(x))3 = 0 which gives the ODE (45). (Note that
we assumed that g′(x) > 0 for all x .)

With the differential equation in hand, it is not difficult to find the general solu-
tions. They can be verified using direct substitution and the local uniqueness of the
autonomous equation.

Lemma 4 All solutions to the ODE (45) can be written in the form

g(x) = c0 + c1x or g(x) = c2 log(c1 + x) + c3, (47)

where the ci ’s are real constants. The constraints on the constants stated in Theorem6
follow from our assumptions of g.

Now we are ready to complete the proof of Theorem 6. By Lemma 4, the scale
function (up to an additive constant which is irrelevant) has the form (38) or (39).
Consider the second case (the first case is similar). Then by (43), (44) and the third
equality of (36) (which does not depend on α-exponential concavity of ϕ), for any
p = μ(s) and q = μ(s + 1), we have

D [q | p] = 1

α
log (1 + α∇ϕ(p) · (q − p)) − (ϕ(q) − ϕ(p))

which is exactly the expression of the L(α)-divergence. By assumption D [· | ·] is
a pseudo-divergence so it is non-negative for all p, q. It is easy to check that this
implies that ϕ is α-exponentially concave, and so η is the (α, c1)-generated trading
strategy.

5 Further Properties of L-divergence

In this section we gather some further properties of L-divergence and describe some
related problems. For simplicity we focus on the L(1)-divergence, and refer the reader
to [14] for a systematic study of the L(α)-divergence. We always assume that the
generating functions are smooth. It is clear that some of the problems make sense on
domains other than the unit simplex.

5.1 Interpolation and Comparison

If ϕ(0) and ϕ(1) are exponentially concave functions on Δn , by the inequality of the
arithmetic and geometric means, we have that

ϕ(λ) := (1 − λ)ϕ(0) + λϕ(1)
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is exponentially concave for any 0 < λ < 1. If π (0) and π (1) are the portfolio maps
generated multplicatively by ϕ(0) and ϕ(1) respectively, then ϕ(λ) generates the port-
folio map

π (λ)(·) ≡ (1 − λ)π (0)(·) + λπ (1)(·),

which is a constant-weighted portfolio of π (0) and π (1) [24, Lemma 4.4]. Thus,
the spaces of exponentially concave functions and MCM portfolio maps (see
Definition 3) are convex. Moreover, the L-divergence D(1) [· | ·] is concave in the
function ϕ. In [13], this interpolation provides a new displacement interpolation for
a logarithmic optimal transport problem.

Let Dϕ and Dψ be the L-divergences generated respectively by the exponentially
concave functions ϕ and ψ , we say that Dψ dominates Dϕ if

D(1)
ψ [q | p] ≥ D(1)

ϕ [q | p] (48)

for all p, q ∈ Δn . Financially, this means that the portfolio generated by ψ captures
more volatility than the one generated by ϕ. An interesting problem is to find the
maximal elements in this partial order, and the following result is obtained in [24]
using the relative convexity lemma in [44].

Theorem 7 Suppose ϕ is symmetric, i.e., ϕ(p1, . . . , pn) = ϕ(pσ(1), . . . , pσ(n)) for
any permutation σ of the coordinates. If

∫ 1

0
e−2ϕ((1−t)e1+te)dt = ∞,

then Dϕ is maximal in the partial order (48): if Dϕ is dominated by Dψ , then ϕ − ψ

is constant on Δn and Dψ ≡ Dϕ .

As an example, the function ϕ(p) = 1
n

∑n
i=1 log pi (which generates the equal-

weighted portfolio) is maximal. Another example is ϕ(p) = log
(−∑n

i=1 pi log pi
)
,

the logarithm of the Shannon entropy.
Note that Theorem 7 is concerned with the global properties of the generating

function. One can also study maximal exponentially concave functions over a local
neighborhood; this idea is used in [18] to construct short term relative arbitrages.

5.2 Dualistic Geometry and the Generalized Pythagorean
Theorem

Consider the L(1)-divergence D [· | ·] of an exponentially concave function ϕ on the
simplex Δn . It defines a Riemannian metric g (as in (30)) and a dual pair of torsion-
free affine connections (∇,∇∗) (see [10, Chapter 6]). In [13] this geometry is derived
and many interesting properties are shown. It generalizes the dually flat geometry of
Bregman divergence (a unified framework is established recently in [14]).
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Fig. 6 Generalized
Pythagorean theorem for
L-divergence

As before we let p denote a generic element of Δn . Now we regard this a global
coordinate system of the manifold M = Δn , and call it the primal coordinate system.
Let π be the portfolio map generated by ϕ. It defines a dual coordinate system

p∗ :=
(

π1(p)/p1∑n
j=1 π j (p)/p j

, . . . ,
πn(p)/pn∑n
j=1 π j (p)/p j

)

which also takes values in the unit simplex. The main properties of the geometry
are summarized in the following theorem, and we refer the reader to [13, 14] for
further properties related to the geodesic equations, gradient flows and connections
with optimal transport.

Theorem 8 [13] Consider the dualistic geometry induced by D [· | ·].
(i) The trace of a primal geodesic is a straight line under the primal coordinate

system.
(ii) The trace of a dual geodesic is a straight line under the dual coordinate system.
(iii) The geometry has constant (primal and dual) sectional curvature −1 (when

n ≥ 3) with respect to the induced Riemannian metric.

In particular, the induced geometry is dually projectively flat but not flat. Further-
more, the L(1)-divergence satisfies a generalized Pythagorean theorem.

Theorem 9 (Generalized Pythagorean theorem) Given (p, q, r) ∈ (Δn)
3, consider

the dual geodesic joining q and p and the primal geodesic joining q and r. Consider
the Riemannian angle between the geodesics at q. Then the difference

D [q | p] + D [r | q] − D [r | p] (49)

is positive, zero or negative depending on whether the angle is less than, equal to,
or greater than 90 degrees (see Fig.6).

Further properties of the Pythagorean theorem can be studied. To give a flavor we
present an interesting result for the excess growth rate Tπ [· | ·] defined by (5).
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Fig. 7 The level sets of the
map q 
→ Tπ [q | p] +
Tπ [r | q] − Tπ [r | p]
where p and r are fixed.
Here π = e is the
equal-weighted portfolio

Proposition 3 Consider the excess growth rate Tπ [· | ·] for a fixed portfolio weight
vector π ∈ Δn. For p, r ∈ Δn fixed, the mapping

q ∈ Δn 
→ f (q) := Tπ [q | p] + Tπ [r | q] − Tπ [r | p] (50)

is quasiconvex, i.e, the sublevel sets {q : f (q) ≤ λ} are convex (see Fig.7).
Proof It suffices to show that the map

g(x) := log

(
π · x

p

)
+ log

(
π · r

x

)

is quasiconvex on Δn . We will use the following characterization of quasiconvex
functions (see [45, Section 3.4.3]): g is quasiconvex if and only if

g(y) ≤ g(x) ⇒ ∇g(x) · (y − x) ≤ 0. (51)

for any x and y.
Let x, y ∈ Δn be such that g(y) ≤ g(x). We have

∂i g(x) =
πi
pi

π · x
p

+
−πi ri

x2i

π · r
x

.

After some simplifications, we have
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∇g(x) · (y − x) =
n∑

i=1

(
πi
pi

π · x
p

+
−πi ri

x2i

π · r
x

)
(yi − xi )

= π · y
p

π · x
p

−
∑n

i=1 πi
ri
xi

yi
xi

π · r
x

.

(52)

Since g(y) ≤ g(x), we have
π · x

p

π · x
p

≤ π · r
x

π · r
y

.

Substituting this into (52), we get

∇g(x) · (y − x) ≤ π · r
x

π · r
y

−
∑n

i=1 πi
ri
xi

yi
xi

π · r
x

= 1
(
π · r

x

) (
π · r

y

)

⎡

⎣
(
π · r

x

)2 −
n∑

i, j=1

πiπ j ri r j
1

xi x j

y j
x j

xi
yi

⎤

⎦

= 1
(
π · r

x

) (
π · r

y

)
n∑

i, j=1

πi ri
xi

π j r j
x j

(
1 − xi

yi

y j
x j

)
.

(53)

Let A = ∑n
i=1

πi ri
xi

and let αi = πi ri
xi

/A. Note that α is a probability vector. Now we
may write (53) in the form

C

⎛

⎝1 −
n∑

i, j=1

αiα j
xi
yi

y j
x j

⎞

⎠ ,

where C > 0 is a constant. Let X and Y be independent and identically distributed
random variables such that

P

(
X = xi

yi

)
= P

(
Y = xi

yi

)
= αi , i = 1, . . . , n.

By Jensen’s inequality, we have

n∑

i, j=1

αiα j
xi
yi

y j
x j

= E

[
X · 1

Y

]
= E[X ]E

[
1

Y

]
≥ E[X ] 1

E[X ] = 1.

Thus ∇g(x) · (y − x) ≤ 0 and we have proved that g is quasiconvex.
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Fig. 8 Relative performance
of the portfolio V1
(rebalanced every month)
versus V2 (rebalanced every
two months)
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5.3 Optimal Rebalancing Frequency

Finally we mention a practical problem related to the L-divergence. The generalized
Pythagorean theorem gives a geometric way to study the rebalancing frequency of
a functionally generated portfolio. To give a simple example, consider the empirical
example as in Fig. 1 and the equal-weighted portfolio π(p) ≡ e = (

1
3 ,

1
3 ,

1
3

)
.

Consider two ways of implementing this portfolio: (i) rebalance every month;
(ii) rebalance every two months. If V1 and V2 denote respectively the values of
these implementations, Fig. 8 plots the time series of the relative performance
log V1(t)/V2(t). For this data set, rebalancing every month boost the return by about
10% in log scale. Using the decomposition (18), we see that if T is the terminal time,
then

log
V1(T )

V2(T )

=
∑

k

(D [μ(2k + 1) | μ(2k)] + D [μ(2k + 1) | μ(2k + 2)] − D [μ(2k + 2) | μ(k)]) .

By Theorem 9, the sign of each term is determined by the Riemannian angle of the
geodesic triangle. This angle summarizes in a single number the correlation among
the stock returns that is relevant to the rebalancing frequency. Further work should
study the joint relationship between the angle and the size of the geodesic triangle
which determines the magnitude of (49).

In practice trading incurs transaction costs which have been neglected so far.
Transaction costs create a drag of the portfolio value. A common setting is that
the transaction cost is proportional, i.e., we pay a fixed percentage of the value
exchanged. In our model, the transaction cost may be approximated by a functional
C [q | p] ≥ 0 where p and q are the beginning and ending market weights of the
holding period (Fig. 9). Since the transaction cost is proportional, the cost is of linear
order when q ≈ p. On the other hand, the L-divergence is approximately quadratic
when q ≈ p. Thus the net difference D [q | p] − C [q | p] is negative when q is
sufficiently close to p. Financially, this means that the investor should not rebalance
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Fig. 9 Left: Transaction costC [q | p]. Middle: The L-divergenceD [q | p]. Right: The difference
D − C. In these figures n = 2 and the x and y-axes are the first coordinates of p and q respectively

too often – at least when the increments of the market weights are ‘small’. We end
this paper with the following problem:

Problem 1 Design a robust strategy for rebalancing a given trading strategy.
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Generalising Frailty Assumptions
in Survival Analysis: A Geometric
Approach

Vahed Maroufy and Paul Marriott

Abstract This paper uses InformationGeometry in a practical and important applied
statistical context: Cox regression in survival analysis. We explore the geometry of
the corresponding model space including its potentially complex boundary. The
exact manner that frailty terms in Cox’s hazard model are specified has important
implications for modelling. For example, it is very common to assume a gamma
frailty for reasons of mathematical tractability and convenience. In this paper, we
examine if there is a cost to having the gamma as a default option, without further
scientific justification. We take a geometric approach to understanding the effect
of precise model specification. We use a new, highly flexible but statistically well-
behaved, way of specifying the frailty to calibrate modelling assumptions that are
very commonly used in practice. We show that the gamma frailty assumption has
the effect of considerably under-estimating standard errors when compared to our
more general assumptions and, potentially, introducing bias. We comment on the
implications of this. The survival times of adult acute myeloid leukaemia patients in
northwest England are analyzed.

1 Introduction

One of the key insights of Information Geometry is the duality which links the
exponential and mixture affine structures, [10]. Finite dimensional affine structures
in the first are exponential families and affine structures in the second determine
identification conditions in mixture models, [22]. This paper takes this fundamental
insight and explores its implications in a practical and important applied statistical
context.
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The motivating example of this paper is a study of the factors which affect the
survival times of adult acute myeloid leukaemia patients. This is an example of a
problem in lifetime data analysis, [20]. One of the most popular tools here is Cox’s
proportional hazard model, [9]. This models the time dependent hazard function, for
subject i with covariates Xi, as a product

hi(t) = h0(t) exp{Xiβ},
where h0(t) is the time dependent baseline hazard common to all subjects. Thiswill be
treated as a non-parametric nuisance function. The second term is a time independent
function of the explanatory variables, which is modelled parametrically. Under the
proportional hazard assumption the interest parameters can be estimate using a partial
likelihood.Often though there are unmeasured individual level covariateswhich need
to be taken into account in the analysis. This is commonly done by adding subject
level terms θi in the adapted hazard given by (1). Since this will give a parameter for
each subject it is convenient to treat these as unobserved random effects, or frailties,
and simply estimate parameters associated with the distribution of these terms.

This means that we work by mixing over different hazard functions and the key
model choice issue is the specification of the frailty distribution. It is here that Infor-
mation Geometry plays a role through consideration of the fundamental mixture
geometry and its impact on inference of the parameters of interest. In particular we
use tools associated with the local mixture model, see [2, 22]. Of special geometric
interest is the potentially complex boundary that these models can have. For example
[24] shows that local mixture models can have boundaries which are boundaries of
polytopes or can be a non-smooth union of a finite number of smooth components.

Frailty models have been studied by many researchers; for example, [6, 12, 15,
19]. Various hazardmodels, includingCox’s regressionmodel, have been generalised
by assuming a random frailty variable. The frailty model is commonly chosen to
return a tractable marginal likelihood function; hence, gamma, inverse Gaussian and
positive stable distributions with closed-form Laplace transformations are regular
choices [7, p.77]. In [16] a discrete mixture model is form a gamma and an Inverse
Gaussian, leading to a three-parameter model, is considered for the frailty. Among
these the gamma is the most popular model choice, [19, 27, 28].

The goal of this paper is to investigate what might be the cost of specifying a
particular parametric form, specifically the gamma, for the frailty distribution when
this choice has beenmade purely formathematical convenience.Model uncertainty is
a critical problem in applied statistics, and – as we do here – its analysis can be treated
in a geometric way. The use of geometry in the area is not new, for example the paper
[8] provides an intriguing solution by proposing the ‘double the variance’ method for
addressing the possibility of undetectably small departures from the model. Much
more detail on the geometry of model specification can be found in [4].

We investigate the choice of a gamma frailty by calibrating it to a much more
general space of mixtures, which can be used as a bench-marking tool. We use the
excellent study of [13] to illustrate these effects in a real context.We show thatmaking
the gamma frailty assumption can have the effect of considerably under-estimating
standard errors and its potential misspecification gives rise to important biases.
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In general with mixture models, and specifically with the frailty models consid-
ered here, the analyst has to balance flexibility with inferential and computational
tractability. In this paper we use the recently defined discrete mixture of local mixture
models, introduced in [25], to achieve the calibration. This new model generates a
finite dimensional and suitably parameterized space as a high quality approximation
to a general mixture model with unknown mixing mechanism. The model is always
identifiable and estimable, and its geometric and inferential properties allow for fast
and efficient estimation algorithms. These properties make it suitable as a calibration
tool, and we are currently exploring using it as a frailty model in its own right.

Notation, motivation and the main results of the paper, including our proposed
method are presented in Sect. 2. Section3 looks at the calibration, with Sect. 3.1
showing a simulation study, illustrating that the local mixture method returns similar
biases, but larger – often more than double – standard deviations for the estimates
compared to the Expected-Maximization method of [19] where a gamma frailty is
assumed. This shows the considerable impact that fixing on a particular parametric
form has on inference, and clearly illustrates that the reduction in standard error
may be just an artefact of modelling choice rather than being real. In Sect. 3.2, the
survival time of 1043 adults acute myeloid leukemia patients, recorded between
1982 and 1998 in northwest England, is analyzed, again with important differences
in inferential conclusions being found. The paper closes with a short discussion in
Sect. 4.

2 Methodology

Throughout this section, we follow the notation and definitions in [12, 20]. Let
(T 0

i ,Ci), for i = 1, . . . , n, be the failure time and censoring time of the ith individual,
and also let X be the n × p design matrix of the covariate vectors. Define Ti =
min(T 0

i ,Ci) and δi = I(T 0
i < Ci), where I(·) is an indicator function. In addition,

associatedwith the ith individual, an unobservable covariate θi , the frailty, is assumed,
where θi’s follow some distribution, Q. Adapting the proportional hazard model of
[9] for the ith individual, conditional on the frailty θi, the hazard function is,

hi(t) = θi h0(t) exp{Xiβ}, (1)

where h0(t) is the base hazard function, Xi is the ith row of X and β = (β0, . . . ,

βp−1)
T is a p-vector of regression coefficients. The cumulative hazard and survival

functions are, respectively, defined asHi(t) = ∫ t
0 hi(u) du, and Si(t) = exp{−Hi(t)},

with the base cumulative hazard function H0(t). We also assume that the frailty
θ is independent of X , and further that, given X and θ , censoring is independent
and noninformative for θ and (h0, β), see [12]. The full likelihood function for the
parameter vector (β,H0) is written as
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L(β,H0,Q) =
n∏

i=1

∫ [(
θ h0(Ti) e

Xiβ
)δi exp

{−θ H0(Ti) e
Xiβ

}]
dQ(θ). (2)

In a similar way to a general mixture model problem, frailty survival models with
an unknown frailty distribution, suffer from identification and estimability issues.
Although, when all the covariates variables are continuous with a continuous distri-
bution, [11], show that, given the distribution of the time duration variable, all the
three multiplicative factors are, at least formally, identified. This theoretical result
does not solve the identifiability issue in the general sense. For instance, when there
is a discrete covariate then identifiability requires the corresponding regression coef-
ficient to be limited to a known compact set [14, Ch.2].

2.1 Local and Global Mixture Models

To allow full generality of the mixture structure it is tempting to only restrict Q to
be a finite discrete distribution with an unknown number of components., i.e.

Q(θ) =
N∑

i=1

ρiδθi (θ),

where δ is the indicator function, and
∑N

i=1 ρi = 1 and ρi > 0. Indeed, as shown by
[21], the non-parametric maximum likelihood estimate of Q lies in such a family.
In that case the perturbation space would be ‘parameterised’ by N , the number of
components, (θ1, . . . , θN ), the components, and (ρ1, . . . , ρN ), the mixing weights.
However, this parameterization has many problems in implementation. Specifically,
it is poorly identified and has complex boundaries. A key problem is that mixture
components may be too close to one another to be resolved with a given set of data
and so the order of the finite mixture is essentially not estimable, see [25].

The case where there is a single set of closely grouped components – or the much
more general situationwhereQ is any small-variance distribution – is exactly the case
which motivated the design of the local mixture model (LMM), see [1, 22]. The key
idea is, essentially, to replace the unknown number of clustered mixing components
with a fixed number of low order moments parameterised in an inferentially ‘nice’
way. The geometric intuition is that for a local perturbation all the mixing component
distributions will lie close to a low dimensional linear (affine) space. This space
is spanned by derivatives of the prior and parameterised with a small number of
identified parameters.

Definition 1 For a density function, f (y; θ), belonging to the exponential family,
the local mixture model of order k, centred at ϑ , is defined as

gϑ(y; λ) = f (y;ϑ) +
∑k

j=1
λj f

(j)(y;ϑ), (3)
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where λ := (λ1, . . . , λk) ∈ Λϑ , f (j)(y;ϑ) = ∂ j f (y;θ)

∂θ j |θ=ϑ . The parameter space, Λϑ ,
is defined by

Λϑ := {λ | gϑ(y; λ) ≥ 0, ∀y}

is convex with a boundary determined by the non-negativity of (3). The structure
of this boundary is the union of smooth manifolds and is studied in [24]. Also
(3) is parameter invariant, and mean parameter is chosen only because of its clear
interpretation, see [22].

In [25], local mixtures are generalised to discrete mixtures of local mixture models.
In Definition1 the point ϑ is fixed, selected by the analyst. This has the natural
generalisation to have a set of possible centres, ϑ1, . . . ϑL, selected independently of
the data. This gives rise to the following.

Definition 2 The discrete mixture of local mixture models is defined by

g(y;ϑ, λ) =
∑L

l=1
ρl gϑl (y; λl), (4)

where λ = (λ1, . . . , λL), ϑ = (ϑ1, . . . , ϑL), ρl ≥ 0 and
∑L

l=1 ρl = 1.

The model selection task with such models is to select k,L and ϑ1, . . . ϑL to bal-
ance estimability with the quality of approximation to a completely general mixture.
We use the results of [25, Section2.1] which show, for a given value of k, how
to select the points ϑ1 < · · · < ϑL to have a uniform L1-bound on the difference
between g(y;ϑ, λ) and any mixture with mixing distribution Q whose support lies
in a compact region containing {ϑ1, . . . , ϑL}.

We emphasis, before we show some of the details in an example, that in this paper,
we are using the LMM structure as a calibration tool in order to evaluate the effect
of selecting a particular parametric frailty model. We are generating a rich, but well
behaved, class of mixtures which subsume the gamma assumption.

Example 1 To illustrate the flexibility of this framework, Fig. 1 shows some dis-
crete mixtures of local mixture models for the exponential distribution on both the
density and hazard scales. Using the methods of [25, Section2.1] some straight-
forward numerical analysis shows that selecting points, in the rate parametrisa-
tion, at ϑ1 = 0.5, ϑ2 = 1, ϑ3 = 2 and ϑ4 = 3.5 and fixing k = 4 gives excellent
L1-approximations for all mixtures Q with support in [0.3, 5]. In the figure Model
1 is the unmixed exponential model, Model 2 is a single component local mixture
centered at ϑ2 = 1, Models 3 and 4 are two components mixtures of local mixture
centred at (1, 3.5) and (0.5, 1), respectively.

In [25] it was shown that an adaptation of the EM algorithm works well for fitting
a finite mixture of local mixtures. We only consider here local mixture models of
order k = 4. Increasing this degree – while mathematically possible – only adds a
small marginal improvement to the local modelling performance, [23], at the cost of
extra parameters.
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Fig. 1 The flexibility of the model class: a four models on a density scale, b the same models’
hazard functions

The key, novel, issue in the estimation is to deal with the fact that the parameter
space, Λϑ , has a complex boundary. For this paper, for the Cox model, we need
to consider the case where f (y; θ) = θ exp(−θy) and then the parameter space is
characterized as the set of all λ’s such that, for all y > 0,

ϑλ4y
4 − (4λ4 + ϑλ3)y

3 + (3λ3 + ϑλ2)y
2 − (2λ2 + ϑλ1)y + λ1 + ϑ ≥ 0. (5)

The boundary is characterised as being the cases where (5) has only repeated positive
roots, and it can be shown, by direct calculation, that the parameter space is the union
of smooth manifolds. This characterisation allows explicit parameterisations of the
componentmanifolds to be computed and these are exploited in the numerical studies
of this paper. See Appendix for details.

A cost of this boundary is that the maximum likelihood estimate may not exist
in the regular sense as a turning point. Furthermore, asymptotic approximations in
sample size, similar to that of [29], ultimately break down close to the boundary,
irregardless of their order. In [3] a diagnostic approach is proposed which identifies
when a first order asymptotic is appropriate, depending on the square distance of the
MLE from the boundary, measured using the Fisher information.

3 Application to Frailty Modelling

In this section, we investigate the size of the effect on inference associated with fixing
on aparticular frailty distribution by comparing a standard gamma frailtymodel to our
more general local mixture approach. In cases where the only reason for selecting a
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gamma frailty was convenience we argue differences, such as a reduction in standard
error, are artefacts of model choice and not real.

In order to investigate the best possible case for the gamma frailty assumption we
simulate, in Sect. 3.1, from that frailty distribution, andwe onlymake the comparison
to a one component local mixture with k = 4. With these restrictions we see that
standard errors associated with the gamma assumption are considerably smaller than
those of the LMM. Furthermore, in the real data example of Sect. 3.2, it turns out that
the k = 4, one component local mixture is the appropriate choice for that data and we
find important inferential differences which might be due to either misspecification
bias, or artificially reduced standard errors, in the gamma based model.

Intuitively, for any fixed ϑ , the finite dimensional parameter vector λ represents
the frailty distribution through its central moments. Local mixing also can be seen as
a mechanism that extends a parametric model to a larger and more flexible space of
densities which has nice geometric and inferential properties, allowing calibration
of a particular parametric assumption. Substituting the local mixture expansion of
Eq. (3) we obtain

l(β,H0, λ) =
∑n

i=1
(δi[log h0(Ti) + Xiβ] + log f (Ti, β, ϑ))

+
∑n

i=1
log

(

1 +
∑k

j=1
λj Aj(δi, yi)

)

, λ ∈ Λϑ (6)

in which Aj(δi, yi) = f (j)(Ti,β,ϑ)

f (Ti,β,ϑ)
, and yi = H0(Ti)eXiβ . We maximize Eq. (6) when

estimating β, where H0 and λ are considered as nuisance parameters. Thus, a profile
likelihood optimization method is employed. That is, we first maximize for λ over
Λϑ to obtain λ̂ and impute Ĥ0 forH0, then maximize lp(β) = l(β, Ĥ0, λ̂) to estimate
β.

To impute h0(t) and H0(t) we use the arguments in [12] to provide a recursive
estimate of the cumulative hazard function using the fact that for two consecutive
failure times, T(i) and T(i+1), we haveH0(T(i+1)) = H0(T(i)) + ΔHi. Substituting this
recursive equation into the log-likelihood function in (6), considering the conventions
in [5] and taking partial derivative with respect to ΔHi, we obtain

∂l

∂ΔHi
= 1

ΔHi
−

n∑

�=i

eX�β + P′(eXiβ[H0(T(i)) + ΔHi])
P(eXiβ[H0(T(i)) + ΔHi]) , (7)

which is a function of just ΔHi when Ĥ0(T(i)) is given at time T(i+1), P(·) is a
polynomial of degree four with its coefficients linear functions of (λ1, λ2, λ3, λ4)

and P′(·) is its derivative with respect to ΔHi. When the denominator is not zero,
Eq. (7) is a polynomial of degree five which can be solved numerically forΔHi. Note
that when there is no frailty factor – that is λ = (0, 0, 0, 0) – then the last term in
Eq. (7) is zero, and the estimate of the cumulative hazard function reduces to the
form in [18] which is the estimate in [19] with ω̂ = 1.
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Table 1 Bias and standard errors of coefficient estimates, when frailty is generated from ( 1
η
, η).

LMM is the local mixture method; Gamma the Expectation–Maximization method for the gamma
frailty

Gamma LMM

n η β bias std bias std

200 0.5 log 3 −0.057 0.18 −0.048 0.43

200 0.7 log 3 −0.056 0.21 −0.038 0.40

200 1 log 3 −0.117 0.22 −0.094 0.41

3.1 Simulation Study

In this section, a simulation study illustrates the effect of making the gamma frailty
assumption when compared to the much richer local mixture method. We adapt the
method in [19], which assumes a gamma model with mean 1 and variance η for the
frailty, and apply the Expectation–Maximization algorithm.

We letC = 0.01, τ = 4.6 andwe follow a similar set-up as found in [17]. For each
individual the event time is T = [− log(1 − U ){θ exp{βX }}−1]−1/τC−1, where X ∼
N (0, 1), U ∼ uniform[0, 1]. The censoring distribution is N (100, 15), and frailty is
assumed to follow a gamma distribution with mean 1 and variance η. Table1 shows
the bias and standard error for the estimates of the regression coefficient using both
methods for three different values of η. It is clear that the localmixturemethod, which
does not use any information about the frailty model, returns very similar biases as
the Expectation–Maximization method for the gamma frailty. However, the standard
deviation for the estimates in the local mixture method are almost twice as large as
these for the Expectation–Maximization method.

Similar simulation studies are presented in Tables2 and 3 where the frailty is
generated from different models than the gamma distribution discussed above. In
Table2, the frailty is generated from uniform distributions with means set to one and
different variances. The standard deviation for the LMM model is twice as large as
that for Gammamodel, similar to that in Table1. In addition, since the gammamodel
is now misspecification, as the variation of the frailty gets larger, the LMM slightly
beats the Gamma approach with respect to estimation bias.

Table3 considers two different models for the frailty: the Inverse Gaussian and
Inverse Gamma models. All have their mean set to one but with different variances.
Although the LMM model still returns a bigger standard deviation, it is no longer
twice as big as that for the Gamma model.

The results in Tables1, 2 and 3 conveys three important messages. First, without
assuming any specific model form for the unobserved frailty, our methodology does
equally well in terms of the bias of estimation. Second, our method automatically
addresses the possibility of departures from the gamma assumption by returning a
bigger standard deviation, double in some cases.We argue that the apparent reduction
of standard error, associated with the gamma, is an artifact of model choice which
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Table 2 Bias and standard errors of coefficient estimates, when frailty is generated from uni-
form U (1 − η, 1 + η) distributions. LMM is the local mixture method; Gamma the Expectation–
Maximization method for the gamma frailty

Gamma LMM

n η β bias std bias std

200 0.5 log 3 0.003 0.104 0.02 0.205

200 0.7 log 3 0.067 0.113 0.011 0.237

200 1 log 3 −0.23 0.144 −0.18 0.264

Table 3 Bias and standard errors of coefficient estimates, when frailty is generated from Inverse-
gamma and Inverse-Gaussian. LMM is the local mixture method; Gamma the Expectation–
Maximization method for the gamma frailty

Gamma LMM

n Model (mean, var) β bias std bias std

200 IGamma(3, 2) (1, 1) log 3 −0.106 0.112 −0.094 0.172

200 IGamma(2, 1) (1, 2) log 3 0.179 0.110 0.156 0.166

200 IGauss(1, 0.5) (1, 0.5) log 3 −0.130 0.115 −0.115 0.151

200 IGauss(1, 1) (1, 1) log 3 −0.198 0.104 −0.181 0.161

can only be justified if there were good, extra-data, reasons for trusting the gamma
assumption. Third, in the case of model misspecification, the LMM dominates the
Gamma model, as amount of frailty gets larger.

3.2 Data Example

We compare the two methods in the context of a study of the survival time of 1043
adult acutemyeloid leukemia patients, recorded between 1982 and 1998 in northwest
England [13]. In this example 16% of the survival times are censored and complete
information is available for four covariates; age, sex, white blood cell count (WBC),
and a measure of deprivation for the enumeration district of residence (Dep). [13],
studied the data to investigate possible spatial variation in the survival time assuming
a gamma marginal frailty with covariance structure for the frailty among the 24
districts. Although they find some indication of spatial variation between the districts,
their analysis illustrates that, assuming covariance structure in the frailty variable
does not affect the inference on the regression coefficients, and differences in the
coefficient estimates are not significantly bigger than one standard deviation. The
estimates and standard errors of the regression coefficients, (β1, . . . , β4), based on
the independent gamma frailty are shown in the first two rows of Table4. The frailty
variance is estimated as η̂ = 0.772, indicating the existence of unobserved variation
in the patients’ survival time.
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Table 4 Estimates and standard errors for covariate coefficient are presented. LMM, the local
mixture method; Gamma; the estimates in Henderson et al. (2002) for the gamma frailty. Std are
the associated standard errors for the gamma model

Age Sex WBC Dep

Gamma 0.0470 0.0563 0.0057 0.0547

Std 0.0045 0.0505 0.0008 0.0187

LMM 0.0422 0.0156 0.0114 0.0306

Applying the localmixturemethodwe obtain λ̂ = (−0.687, 0.017, 0.056, 0.023),
also reflecting the existence of some unobserved variation. Furthermore, λ̂ lie in the
relative interior of Λϑ , indicating that the one component local mixture is adequate.
We note that if this estimate were to lay on the boundary the one component LMM
approximation used here might still be a good L1 approximation but perhaps poor in
a KL-divergence sense. If this were to happen we would recommend trying a larger
number of components.

The estimates for (β1, . . . , β4), using the LMM approach, are shown in the third
row of Table4. Comparing the differences between the estimates with the standard
errors, we realize that all differences are inside the one standard deviation bound
except for β3, the coefficient for WBC, where the ratio is 7.125. This important
difference in the estimate is interpreted as the result of a possible misspecification
of the frailty model when a gamma distribution is imposed. It could be due to either
misspecification bias or an under estimate of the standard error in the gamma frailty
model. We note that our simulation results point to the fact that the bias in the LMM
might be expected to be small when there is, in fact, a gamma frailty.

4 Discussion

In the context of frailty survival analysis, this paper applies an approximation of a
general mixture model – with a completely unspecified mixing mechanism – by a
novel family of models, the discrete mixture of local mixture models. These models
are built in a geometrically and inferentially convenient way and have many advan-
tages compared to finite mixture models. We do this to generate a calibration tool
with which we can evaluate the effect of specifying a particular choice of frailty
model. These geometric properties lead to inferential properties such as concavity
of the log-likelihood function, identifiability and orthogonality in parametrization.

Our novel, highly flexible, but inferentially well-behaved, family gives a way of
calibrating the effect of making a closed form parametric assumption on the frailty
term. We see considerable differences in both the simulation and real data examples.
Hence we conclude that making the gamma frailty assumption can have the effect
of considerably under-estimating standard errors.
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We note that, in this manuscript, we only use a one component LMM for the
simulation and data example, and work under the assumption that the frailty is only
a small component of the total variation. Nevertheless, the theory is quite general
and allows for all mixing distributions in principle. For example we have recently
applied it to an analysis of robustness in Bayesian conjugate and sparsity priors [26].
To apply Definition2 here to its full potential, requires finding a good estimator for
the cumulative hazard function and this is still an open problem.

Appendix

For the exponential distribution, the density of a single component local mixture has
the form

{
ϑλ4y

4 − (4λ4 + ϑλ3)y
3 + (3λ3 + ϑλ2)y

2 − (2λ2 + ϑλ1)y + λ1 + ϑ
}
exp(−ϑy),

(8)
which is a density when the polynomial is non-negative for all y > 0. It will lie on
the boundary of the parameter space when all the positive roots of the polynomial
are of order 2 or 4 and λ4 > 0. Polynomials of this form can be written as

{
a(y − r)2(y2 + 2by + c)

}
, (9)

then the roots of (y2 + 2by + c) must be repeated when they are positive, and a, b, c
and r satisfy

ϑ5 − ϑ4ar2c − (2ar2b − 2arc)ϑ3 − (2ac + 2ar2 − 8arb)ϑ2 − (12ab − 12ar)ϑ − 24a = 0.
(10)

This follows since a density integrates to one. Comparing (8) with (9) and imposing
(10) results in an explicit parameterisation of the boundary in terms of b, c and
r. The Jacobean of this has full rank as long as r �= 0,−b ± √

b2 − c. So, under
these conditions the boundary is a smooth manifold. In the singular case where
r = −b ± √

b2 − c, since roots must have even order, we have r = −b and b < 0.
This singular set is given by a one dimensional manifold, again with an explicit
parameterisation.
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Some Universal Insights on Divergences
for Statistics, Machine Learning and
Artificial Intelligence

Michel Broniatowski and Wolfgang Stummer

Abstract Dissimilarity quantifiers such as divergences (e.g.Kullback–Leibler infor-
mation, relative entropy) and distances between probability distributions are widely
used in statistics, machine learning, information theory and adjacent artificial intelli-
gence (AI). Within these fields, in contrast, some applications deal with divergences
between other-type real-valued functions and vectors. For a broad readership, we
present a correspondingly unifying framework which – by its nature as a “struc-
ture on structures” – also qualifies as a basis for similarity-based multistage AI and
more humanlike (robustly generalizing) machine learning. Furthermore, we discuss
some specificalities, subtleties as well as pitfalls when e.g. one “moves away” from
the probability context. Several subcases and examples are given, including a new
approach to obtain parameter estimators in continuous models which is based on
noisy divergence minimization.

1 Outline

The goals formulated in the abstract are achieved in the following way and order:
to address a wide audience, throughout the paper (with a few connection-indicative
exceptions) we entirely formulate and investigate divergences and distances between
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functions, even for the probability context. In Sect. 2, we provide some non-technical
background and overview of some of their principally possible usabilities for tasks
in data analytics such as statistics, machine learning, and artificial intelligence (AI).
Furthermore, we indicate some connections with geometry and information. There-
after, in Sect. 3 we introduce a new structured framework (toolkit) of divergences
between functions, and discuss their building-blocks, boundary behaviour, as well
as their identifiability properties. Several subcases, running examples, technical sub-
tleties of practical importance, etc. are illuminated, too. Finally, we study diver-
gences between “entirely different functions” which e.g. appear in the frequent sit-
uation when for data-derived discrete functions one wants to find a closest possi-
ble continuous-function model (cf. Sect. 4); several corresponding noisy minimum-
divergence procedures are compared – for the first time within a unifying framework
– and new methods are derived too.

2 Some General Motivations and Uses of Divergences

2.1 Quantification of Proximity

As a starting motivation, it is basic knowledge that there are numerous ways of
evaluating the proximity d(p, q) of two real numbers p and q of primary interest.
For instance, to quantify that p and q nearly coincide one could use the difference
d(1)(p, q) := p − q ≈ 0 or the fraction d(2)(p, q) := p

q ≈ 1, scaled (e.g. magnify-

ing, zooming-in) versions d(3)
m (p, q) := m · (p − q) ≈ 0 or d(4)

m (p, q) := m · p
q ≈ 1

with “scale” m of secondary (auxiliary) interest, as well as more flexible hybrids
d(5)
m1,m2,m3

(p, q) := m3 · ( p
m1

− q
m2

) ≈ 0 where mi may also take one of the values

p, q. All these “dissimilarities” d( j)(·, ·) can principally take any sign and they are
asymmetric which is consistent with the – in many applications required – desire that
one of the two primary-interest numbers (say p) plays a distinct role; moreover, the
involved divisions cause technical care if one principally allows for (convergence to)
zero-valued numbers. Amore sophisticated, nonlinear alternative to d(1)(·, ·) is given
by the dissimilarity d(6)

φ (p, q) := φ(p) − (φ(q) + φ′(q) · (p − q)) where φ(·) is a
strictly convex, differentiable function and thus d(6)

φ (p, q) quantifies the difference

betweenφ(p) and the value at p of the tangent line taken atφ(q). Notice that d(6)
φ (·, ·)

is generally still asymmetric but always stays nonnegative independently of the pos-
sible signs of the “generator” φ and the signs of p,q. In contrast, as a nonlinear alter-
native to d(4)

m (·, ·) one can construct from φ the dissimilarity d(7)
φ (p, q) := q · φ

( p
q

)

(where m = q) which is also asymmetric but can become negative depending on the
signs of p, q, φ. More generally, one often wants to work with dissimilarities d(·, ·)
having the properties
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(D1) d(p, q) � 0 for all p, q (nonnegativity),
(D2) d(p, q) = 0 if and only if p = q (reflexivity; identity of indiscernibles1),

and such d(·, ·) is then called a divergence (or disparity, contrast function). Loosely
speaking, the divergence d(p, q) of p and q can be interpreted as a kind of “directed
distance from p to q”.2 As already indicated above, the underlying directness turns
out to be especially useful in contexts where the first component (point), say p,
is always/principally of “more importance” or of “higher attention” than the second
component, say q; this is nothing unusual, since after all, one of ourmost fundamental
daily-life constituents – namely time – is directed (and therefore also time-dependent
quantities)! Moreover, as a further analogue consider the “way/path-length” d(p, q)

a taxi would travel from point p to point q in parts of a city with at least one
one-way street. Along the latter, there automatically exist points p �= q such that
d(p, q) �= d(q, p); this non-equality may even hold for all p �= q if the street pattern
is irregular enough; the same holds on similar systems of connected “one-way loops”,
directed graphs, etc. However, sometimes the application context demands for the
usage of a dissimilarity d(·, ·) satisfying (D1), (D2) and
(D3) d(p, q) = d(q, p) for all p, q (symmetry),

and such d(·, ·) is denoted as a distance; notice that we don’t assume that the
triangle inequality holds. Hence, we regard a distance as a symmetric diver-
gence. Moreover, a distance d(·, ·) can be constructed from a divergence d̃(·, ·)
e.g. by means of either the three “symmetrizing operations” d(p, q) := d̃(p, q) +
d̃(q, p), d(p, q) := min{d̃(p, q), d̃(q, p)}, d(p, q) := max{d̃(p, q), d̃(q, p)} for
all p and q.

In many real-life applications, the numbers p, q of primary interest as well as
the scaling numbers mi of secondary interest are typically replaced by real-valued
functions x → p(x), x → q(x), x → mi (x), where x ∈ X is taken from some
underlying set X . To address the entire functions as objects we use the abbrevi-
ations P := {

p(x)
}
x∈X , Q := {

q(x)
}
x∈X , Mi := {

mi (x)
}
x∈X , and alternatively

sometimes also p(·), q(·), mi (·). This is conform with the high-level data process-
ing paradigms in “functional programming” and “symbolic computation”, where
functions are basically treated as whole entities, too.

Depending on the nature of the data-analytical task, the function P of primary
interest may stem either from a hypothetical model, or its analogue derived from
observed/measured data, or its analogue derived from artificial computer-generated
(simulated) data; the same holds for Q where “cross-over constellations” (w.r.t. to
the origin of P) are possible.

The basic underlying set (space) X respectively the function argument x can
play different roles, depending on the application context. For instance, if X ⊂ N

is a subset of the integers N then x ∈ X may be an index and p(x) may describe
the x th real-valued data-point. Accordingly, P is then a s-dimensional vector where
s is the total number of elements inX with eventually allowing for s = ∞. In other

1See e.g. Weller-Fahy et al. [93].
2Alternatively, one can think of d(p, q) as degree of proximity from p to q.
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situations, x itself may be a data point of arbitrary nature (i.e. X can be any set)
and p(x) a real value attributed to x ; this p(x) may be of direct or of indirect use.
The latter holds for instance in cases where p(·) is a density function (onX ) which
roughly serves as a “basis” for the operationalized calculation of the “local aggre-
gations over all3 A ⊂ X ” in the sense of A → ∑

x∈A p(x) or A → ∫
A p(x) dλ̃(x)

subject to some “integrator” λ̃(·) (including classical Riemann integrals dλ̃(x) =
dx); as examples for nonnegative densities p(·) � 0 one can take “classical” (volu-
metric,weights-concerning) inertial-mass densities, population densities, probability
densities, whereas densities p(·) with possible negative values can occur in electro-
magnetism (charge densities, polarization densities), in other fields of contemporary
physics (negative inertial-mass respectively gravitational-mass densities) as well as
in the field of acoustic metamaterials (effective density), to name but a few.

Especially when used as a set of possible states/data configurations (rather than
indices),X can be of arbitrary complexity. For instance, each x itself may be a real-
valued continuous function on a time interval [0, T ] (i.e. x : [0, T ] →] − ∞,∞[)
which describes the scenario of the overall time-evolution of a quantity of inter-
est (e.g. of a time-varying quantity in an deterministic production process of one
machine, of the return on a stock, of a neural spike train). Accordingly, one can take
e.g. X = C

([0, T ], ] − ∞,∞[) to be the set of all such continuous functions, and
e.g. p(·) a density thereupon (which is then a function on functions). Other kinds of
functional data analytics can be covered in an analogous fashion.

To proceed with the proximity-quantification of the primary-interest functions
P := {

p(x)
}
x∈X , Q := {

q(x)
}
x∈X , in accordancewith the above-mentioned inves-

tigations one can deal with the pointwise dissimilarities/divergences
d( j)

φ (p(x), q(x)), d(5)
m1(x),m2(x),m3(x)

(p(x), q(x)) for fixed x ∈ X , but in many con-
texts it is crucial to take “summarizing” dissimilarities/divergences

D( j)
φ (P, Q) :=

∑

x∈X
d( j)
φ (p(x), q(x)) · λ(x) or D( j)

φ (P, Q) :=
∫

X

d( j)
φ (p(x), q(x)) dλ(x)

subject to some weight-type “summator”/“integrator” λ(·) (including classical
Riemann integrals); analogously, one can deal with
D(5)

φ,M1,M2,M3
(P, Q) := ∑

x∈X d(5)
m1(x),m2(x),m3(x)

(p(x), q(x)) · λ(x) or

D(5)
φ,M1,M2,M3

(P, Q) := ∫
X d(5)

m1(x),m2(x),m3(x)
(p(x), q(x)) dλ(x). Notice that the

requirements (D1), (D2) respectively (D3) carry principally over in a straightfor-
wardmanner also to these pointwise and aggregated dissimilarities between the func-
tions (rather than real points), and accordingly one calls them (pointwise/aggregated)
divergences respectively distances, too.

3Measurable.
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2.2 Divergences and Geometry

There are several ways how pointwise dissimilarities d(·, ·) respectively aggregated
dissimilarities D(·, ·) between two functions P := {

p(x)
}
x∈X and

Q := {
q(x)

}
x∈X can be connected with geometric issues. To start with an “all-

encompassing view”, following the lines of e.g. Birkhoff [14] and Millmann and
Parker [50], one can build from any set S , whose elements can be interpreted as
“points”, together with a collection L of non-empty subsets of S , interpreted as
“lines” (as a manifestation of a principle sort of structural connectivity between
points), and an arbitrary distance d(·, ·) onS × S , an axiomatic constructive frame-
work of geometry which can be of far-reaching nature; therein, d(·, ·) plays basically
the role of a marked ruler. Accordingly, each triplet (S ,L , d(·, ·)) forms a dis-
tinct “quantitative geometric system”; the most prominent classical case is certainly
S = R

2 withL as the collection of all vertical and non-vertical lines, equippedwith
the Euclidean distance d(·, ·), hence generating the usual Euclidean geometry in the
two-dimensional space. In the case that d(·, ·) is only an asymmetric divergence but
not a distance anymore, we propose that some of the outcoming geometric building
blocks have to be interpreted in a direction-based way (e.g. the use of d(·, ·) as a
marked directed ruler, the construction of points of equal divergence from a center
viewed as distorted directed spheres, etc.). For d(·, ·) one takesS ⊂ R whereas for
D(·, ·) one has to work withS being a family of real-valued functions on X .

Secondly, from any distance d(·, ·) on a “sufficiently rich” set S and a finite
number of (fixed or adaptively flexible) distinct “reference points” si (i = 1, . . . , n)
one can construct the corresponding Voronoi cells V (si ) by

V (si ) := {z ∈ S : d(z, si ) � d(z, s j ) for all j = 1, . . . , n }.

This produces a tesselation (tiling) of S which is very useful for classification
purposes. Of course, the geometric shape of these tesselations is of fundamental
importance. In the case that d(·, ·) is only an asymmetric divergence but not a distance
anymore, then V (si ) has to be interpreted as a directed Voronoi cell and then there
is also the “reversely directed” alternative

Ṽ (si ) := {z ∈ S : d(si , z) � d(s j , z) for all j = 1, . . . , n }.

Recent applications where S ⊂ R
d and d(·, ·) is a Bregman divergence or a more

general conformal divergence, can be found e.g. in Boissonnat et al. [15], Nock et
al. [64] (and the references therein), where they also deal with the corresponding
adaption of k-nearest neighbour classification methods.

Thirdly, consider a “specific framework” where the functions P := P̃θ1 :={
p̃θ1(x)

}
x∈X and Q := P̃θ2 := {

p̃θ2(x)
}
x∈X depend on some parameters θ1 ∈ Θ ,

θ2 ∈ Θ , which reflect the strive for a complexity-reducing representation of “oth-
erwise intrinsically complicated” functions P , Q. The way of dependence of the
function (say) p̃θ(·) on the underlying parameter θ from an appropriate space Θ
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of e.g. manifold type, may show up directly e.g. via its operation/functioning as
a relevant system-indicator, or it may be manifested implicitly e.g. such that p̃θ(·)
is the solution of an optimization problem with θ-involving constraints. In such
a framework, one can induce divergences D(P̃θ1 , P̃θ2) =: f (θ1, θ2) and – under
sufficiently smooth dependence – study their corresponding differential-geometric
behaviour of f (·, ·) on Θ . An example is provided by the Kullback–Leibler diver-
gence between two distributions of the same exponential family of distributions,
which defines a Bregman divergence on the parameter space. This and related issues
are subsumed in the research field of “information geometry”; for comprehensive
overviews see e.g. Amari [3], Amari [1], Ay et al. [8]. Moreover, for recent con-
nections between divergence-based information geometry and optimal transport the
reader is e.g. referred to Pal and Wong [66, 67], Karakida and Amari [34], Amari et
al. [2], Peyre and Cuturi [71], and the literature therein.

Further relations of divergences with other approaches to geometry can be over-
viewed e.g. from the wide-range-covering research-article collections in Nielsen and
Bhatia [58], Nielsen and Barbaresco [55–57]. Finally, geometry also enters as a tool
for visualizing quantitative effects on divergences.

2.3 Divergences and Uncertainty in Data

In general, data-uncertainty (including “deficiencies” like data incompleteness, fak-
ery, unreliability, faultiness, vagueness, etc.) can enter the framework in various dif-
ferent ways. For instance, in situations where x ∈ X plays the role of an index (e.g.
X = {1, 2, . . . , s}) and p(x) describes the x th real-valued data-point, the uncer-
tainty is typically4 incorporated by adding a random argument ω ∈ Ω to end up
with the “vectors” P(ω) := {

p(x,ω)
}
x∈X , Q(ω) := {

q(x,ω)
}
x∈X of random data

points. Accordingly, one ends up with random-variable-type pointwise divergences
ω → d( j)

φ (p(x,ω), q(x,ω)), ω → d(5)
m1(x),m2(x),m3(x)

(p(x,ω), q(x,ω)) (x ∈ X ) as
well as with the random-variable-type “summarizing” divergences
ω → D( j)

φ (P(ω), Q(ω)) := ∑
x∈X d( j)

φ (p(x,ω), q(x,ω)) · λ(x) respectively

ω → D( j)
φ (P(ω), Q(ω)) := ∫

X d( j)
φ (p(x,ω), q(x,ω)) dλ(x), as well as with

ω → D(5)
φ,M1,M2,M3

(P(ω), Q(ω)) := ∑
x∈X d(5)

m1(x),m2(x),m3(x)
(p(x,ω), q(x,ω)) ·

λ(x), resp. ω → D(5)
φ,M1,M2,M3

(P(ω), Q(ω)) := ∫
X d(5)

m1(x),m2(x),m3(x)
(p(x,ω),

q(x,ω))dλ(x). More generally, one can allow for random scalesm1(x,ω),m2(x,ω),
m3(x,ω).

In other situations with finitely-many-elements carrying X , the state x may e.g.
describe a possible outcome Y (ω) of an uncertainty-prone observation of a quantity
Y of interest and p(x), q(x) represent the corresponding probability mass functions
(“discrete density functions”) at x under two alternative probability mechanisms Pr ,
P̃r (i.e. p(x) = Pr [{ω ∈ Ω : Y (ω) = x}], q(x) = P̃r [{ω ∈ Ω : Y (ω) = x}]); as

4In a probabilistic approach rather than a chaos-theoretic approach.
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already indicated above, P := {
p(x)

}
x∈X respectively Q := {

q(x)
}
x∈X serve then

as a kind of “basis” for the computation of the probabilities
∑

x∈A p(x) respectively∑
x∈A q(x) that an arbitrary event {ω ∈ Ω : Y (ω) ∈ A} (A ⊂ X ) occurs. Accord-

ingly, the pointwise divergences d( j)
φ (p(x), q(x)), d(5)

m1(x),m2(x),m3(x)
(p(x), q(x)) (x ∈

X ), and the aggregated divergences D( j)
φ (P, Q) := ∑

x∈X d( j)
φ (p(x), q(x)),

D(5)
φ,M1,M2,M3

(P, Q) := ∑
x∈X d(5)

m1(x),m2(x),m3(x)
(p(x), q(x)), D(5)

φ,M1,M2,M3
(P, Q) :=

∫
X d(5)

m1(x),m2(x),m3(x)
(p(x), q(x)) dλ(x) can then be regarded as (nonnegative, reflex-

ive) dissimilarities between the two alternative uncertainty-quantification-bases P
and Q. Analogously, when e.g. X = R

n is the n-dimensional Euclidean space and
P , Q are classical probability density functions interpreted roughly via p(x)dx =
Pr [{ω ∈ Ω : Y (ω) ∈ [x, x + dx[}, q(x)dx = P̃r [{ω ∈ Ω : Y (ω) ∈ [x, x + dx[},
then d( j)

φ (p(x), q(x)), d(5)
m1(x),m2(x),m3(x)

(p(x), q(x)) (x ∈ X ), D( j)
φ (P, Q) :=

∫
X d( j)

φ (p(x), q(x)) dx , D(5)
φ,M1,M2,M3

(P, Q) := ∫
X d(5)

m1(x),m2(x),m3(x)
(p(x), q(x)) dx

serve as dissimilarities between the two alternative uncertainty-quantification-bases
P , Q.

Let us finally mention that in concrete applications, the “degree” of intrinsic data-
uncertainty may be zero (deterministic), low (e.g. small random data contamination
and small random deviations from a “basically” deterministic system, slightly noisy
data, measurement errors) or high (forecast of the price of a stock in one year from
now). Furthermore, the data may contain “high unusualnesses” (“surprising obser-
vations”) such as outliers and inliers. All this should be taken into account when
choosing or even designing the right type of divergence which have different sensi-
tivity to such issues (see e.g. Kißlinger and Stummer [37] and the references therein).

2.4 Divergences, Information and Model Uncertainty

In the main spirit of this book on geometric structures of information, let us also
connect the latter with dissimilarities in a wide sense which is appropriate enough
for our ambitions of universal modeling. In correspondingly adapting some con-
ception e.g. of Buckland [20] to our above-mentioned investigations, in the fol-
lowing we regard a density function (say) p(·) as a fundamental basis of informa-
tion understood as quantified real – respectively hypothetical – knowledge which
can be communicated about some particular (family of) subjects or (family of)
events; according to this information-as-knowledge point of view, pointwise dissim-
ilarities/divergences/distances d(p(x), q(x)) (x ∈ X ) respectively aggregated dis-
similarities/divergences/distances D(P, Q) quantify the proximity between the two
information-bases P := {

p(x)
}
x∈X and Q := {

q(x)
}
x∈X in a directed/nonnegative

directed/nonnegative symmetric way. Hence, d(·, ·) respectively D(·, ·) themselves
can be seen as a higher-level information on pairs of information bases.
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Divergences can be used for the quantification of information-concerning issues
for model uncertainty (model risk) and exploratory model search in various dif-
ferent ways. For instance, suppose that we search for (respectively learn to under-
stand) a true unknown density function Qtrue := {

qtrue(x)
}
x∈X of an underlying

data-generating mechanism of interest, which is often supposed to be a member
of a prefixed class P of “hypothetical model-candidate density functions”; fre-
quently, this task is (e.g. for the sake of fast tractability) simplified to a setup of
finding the true unknown parameter θ = θ0 – and hence Qtrue = Qθ0 – within a
parametric family P := {Qθ}θ∈Θ . Let us first consider the case where the data-
generating mechanism of interest Qtrue is purely deterministic and hence also
all the candidates Q ∈ P are (taken to be) not of probability-density-function
type. Although one has no intrinsic data-uncertainty, one faces another type of
knowledge-lack calledmodel-uncertainty. Then, one standard goal is to “track down”
(respectively learn to understand) this true unknown Qtrue respectively Qθ0 by col-
lecting and purpose-appropriately postprocessing some corresponding data obser-
vations. Accordingly, one attempts to design a density-function-construction rule
(mechanism, algorithm) data → Pdata := {

pdata(x)
}
x∈X to produce data-derived

information-basis-type replica of a “comparable principal form” as the anticipated
Qtrue. This rule should theoretically guarantee that Pdata converges – with rea-
sonable “operational” speed – to Qtrue as the number Ndata of data grows, which
particularly implies that (say) D(Pdata, Qtrue) for some prefixed aggregated diver-
gence D(·, ·) becomes close to zero “fast enough”. On these grounds, one reasonable
strategy to down-narrow the true unknown data-generating mechanism Qtrue is to
take a prefixed class Phyp of hypothetical density-function models and compute
in f odeg := infQ∈P hyp D(Pdata, Q) which in the light of the previous discussions
can be interpreted as an “unnormalized degree of informative evidence of Qtrue being
a member of Phyp”, or from a reversed point of view, as an “unnormalized degree
of goodness of approximation (respectively fit) of the data-derived density function
Pdata through/by means of Phyp”. Within this current paradigm, if in f odeg is too
large (to be specified in a context-dependent, appropriately quantified sense by tak-
ing into account the size of Ndata), then one has to repeat the same procedure with

a different class P̃hyp; on the other hand, if (and roughly only if) in f odeg is small

enough then Q̂data := arg infQ∈P hyp D(Pdata, Q) (which may not be unique) is “the
most reasonable” approximation. This procedure is repeated recursively as soon as
new data points are observed.

In contrast to the last paragraph, let us now cope with the case where the true
unknown data-generating mechanism of interest is prone to uncertainties (i.e. is
random, noisy, risk-prone) and hence Qtrue as well as all the candidates Q ∈ P
are of probability-density-function type. Even more, the data-derived information-
basis-type replicaω → data(ω) → Pdata(ω) := {

pdata(ω)(x)
}
x∈X of Qtrue is now a

density-function-valued (!) randomvariable; notice that in an above-mentioned “full-
scenario” time-evolutionary context, this becomes a density-function-on-functions-
valued random variable. Correspondingly, the above-
mentioned procedure for the deterministic case has to be adapted and the notions
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of convergence and smallness have to be stochastified, which leads to the need of
considerably more advanced techniques.

Another field of applying divergences to a context of synchronous model and
data uncertainty is Bayesian sequential updating. In such a “doubly uncertain”
framework, one deals with a parametric context of probability density functions
Qtrue = Qθ0 , P := {Qθ}θ∈Θ where the uncertain knowledge about the parame-
ter θ (to be learnt) is operationalized by replacing it with a random variable ϑ
on Θ . Based on both (i) an initial prior distribution Prior1[·] := Pr [ϑ ∈ · ] of
ϑ (with probability density function pdf θ → prior1(θ)) and (ii) observed data
data1(ω), . . . , dataNdata (ω) of number Ndata , a posterior distribution Post1[·,ω] :=
Pr [ϑ ∈ · | data1(ω), . . . , dataNdata (ω); prior [·] ] of ϑ (with pdf θ → post1(θ,ω))
is determined with (amongst other things) the help of the well-known Bayes for-
mula. This procedure is repeated recursively with new incoming data input (block)
dataNdata+1, where the new prior distribution Prior2[·,ω] := Post1[·,ω] is chosen
as the old posterior and the new posterior distribution is Post2[·,ω] := Pr [ϑ ∈ ·
| data1, . . . , dataNdata , dataNdata+1; Prior2[·,ω] ] (with pdf θ → post2(θ,ω)), etc.
The corresponding (say) aggregated divergence D(P(ω), Q(ω)) between the
probability-density-valued random variablesω → P(ω) := {

prior2(θ,ω)
}

θ∈Θ
, and

ω → Q(ω) := {
post2(θ,ω)

}
θ∈Θ

serves as “degree of informativity of the new data-
point observation on the learning of the true unknown θ0”.

As another application in a “doubly uncertain” framework, divergences D(P, Q)

appear also in a dichotomous Bayesian testing problem between the two alternative
probability densities functions P and Q, where D(P, Q) represents an appropriate
average (over prior probabilities) of the corresponding difference between the prior
Bayes risk (prior minimal mean decision loss) and the posterior Bayes risk (posterior
minimal mean decision loss). This, together with non-averaging versions and an
interpretation of D(P, Q) as a (weighted-average) statistical information measure in
the sense of De Groot [29] can be found e.g. in Österreicher and Vajda [65]; see also
Stummer [78–80], Liese and Vajda [42], Reid and Williamson [73]. In contrast of
this employment of D(P, Q) as quantifier of “decision risk reduction” respectively
“model risk reduction” respectively “information gain”, a different use of divergences
D(P, Q) in a “double uncertain” general Bayesian context of dichotomous loss-
dependent decisions between arbitrary probability density functions P and Q can be
found in Stummer and Vajda [81], where they achieve Dφα

(P, Q) (for some power
functions φα cf. (5)) as upper and lower bound of the Bayes risk (minimal mean
decision loss) itself and also give applications to decisionmaking of time-continuous,
non-stationary financial stochastic processes.

Divergences can be also employed to detect distributional changes in streams
(respectively clouds) (data j ) j∈τ of uncertain (random, noisy, risk-prone) data
indexed by j from an arbitrary countable set τ (e.g. the integers, an undirected
graph); a survey together with some general framework can be found in Kißlinger
and Stummer [38]: the basic idea is to pick out two5 non-identical, purpose-
appropriately chosen subcollections respectively sample patterns (e.g. windows)

5Where one of them may e.g. stem from training data.
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dataone(ω) := (datas1(ω), . . . , datasN1 (ω)), datatwo(ω) :=
(datat1(ω), . . . , datatN2 (ω)), and tobuild from themdata-derivedprobability-density
functions ω → dataone(ω) → Pdataone(ω) := {

pdataone(ω)(x)
}
x∈X ,

ω → datatwo(ω) → Pdatatwo(ω) := {
pdatatwo(ω)(x)

}
x∈X . If a correspondingly cho-

sen (say) aggregated divergence D
(
Pdataone(ω), Pdatatwo(ω)

)
– which plays the role

of a condensed change-score – is “significantly large” in the sense that it is large
enough – compared to some sound threshold which within the model reflects the
desired “degree of confidential plausibility” – then there is strong indication of a dis-
tributional change which we then “believe in”. Notice that both components of the
divergence D(·, ·) are now probability-density-function-valued random variables.
The sound threshold can e.g. be derived from advanced random asymptotic theory.

From the above discussion it is clear that divergence-based model-uncertainty
methods are useful tools in concrete applications for machine learning and artificial
intelligence, see e.g. Collins et al. [25],Murata et al. [54], Banerjee et al. [9], Tsuda et
al. [87], Cesa-Bianchi and Lugosi [21], Nock and Nielsen [63], Sugiyama et al. [85],
Wu et al. [94], Nock et al. [62], Nielsen et al. [60], respectively Minka [51], Cooper
et al. [26], Lizier [46], Zhang et al. [96], Chhogyal [22], Cliff et al. [23, 24].

3 General Framework

For the rest of this paper, we shall use the following

Main (i.e. non-locally used) Notation and Symbols

R, N, Rd Set of real respectively integer numbers respectively d-dimensional vectors
Θ , θ Set of parameters, see p. 188
1 Function with constant value 1
1A(z) = δz [A] Indicator function on the set A evaluated at data point z, which

is equal to Dirac’s one-point distribution on z evaluated at A
#A Number of elements in set A
X ;X# Space/set where data can take values in; space/set of countable size
F System of admissible events/data-collections (σ-algebra) onX
λ Reference measure/integrator/summator, see p. 160 & Sect. 3.1 on p. 165
λ-a.a. λ-almost all, see p. 160
λL Lebesgue measure (“Riemann-type” integrator), see p. 160, & Sect. 3.1
λ# Counting measure (“classical summator”), see p. 160 & Sect. 3.1 on p. 165
P := {

p(x)
}
x∈X Function from which the divergence/dissimilarity is measured from, see p. 160

Q := {
q(x)

}
x∈X Function to which the divergence/dissimilarity is measured to, see p. 160

Mi := {
mi (x)

}
x∈X Scaling function (i = 1, 2) respec. aggregation function (i = 3), see p. 161,

(1) and paragraph (I1) thereafter, as well as Sect. 3.3 on p. 170
p(·), q(·), mi (·), Alternative representations of P , Q, Mi

R := {
r(x)

}
x∈X Function used for the aggregation function m3(·), see Sect. 3.3.1 on p. 171

Wi Connector function of the form Wi := {
wi (x, y, z)

}
x,y,z∈...

, for adaptive

scaling and aggregation functions mi (x) = wi (x, p(x), q(x)) (i = 1, 2, 3),
see e.g. Assumption 2 on p. 163 and Sect. 3.3.1.3 on p. 181
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P,Q,Mi ,Wi Functions with p(x) � 0, q(x) � 0,mi (x) � 0,wi (x) � 0 for λ-a.a. x ∈ X
Qχ := {

qχ(x)
}
x∈X Function for the aggregation function m3(·), see Sect. 4.2 on p. 184, (73)

⇀P, ⇀Q λ-probability density functions (incl. probability mass functions for λ = λ#),
i.e. for which ⇀p(x) � 0, ⇀q(x) � 0 for λ-a.a. x ∈ X and

∫
X

⇀p(x) dλ(x) = 1,
see Remark 2 on p. 172

⇀Qθ := {
⇀qθ(x)

}
x∈X λ-probab. density function which depends on a parameter θ ∈ Θ , see p. 188

R
( P
M1

)
Range (image) of the function

{ p(x)
m1(x)

}
x∈X , see paragraph (I2) on p. 161

R(Y1, . . . , YN ) Range (image) of the random variables Y1, . . . , YN , see p. 182
⇀̃Qθ := {

⇀̃qθ(x)
}
x∈X λ-probab. density function (modification of ⇀Qθ) defined by

⇀̃qθ(x) := ⇀qθ(x) · (1 − 1R (Y1(ω),...,YN (ω))(x)), see p. 191
φ := {

φ(t)
}
t∈]a,b[ Divergence generator, a convex real-valued function on ]a, b[, see p. 161, (1)

and paragraph (I2), as well as Sect. 3.2 on p. 165
Φ(]a, b[); Class of all such φ, see paragraph (I2) on p. 161
φ := {

φ(t)
}
t∈[a,b] Continuous extension of φ on [a, b], with φ(t) = φ(t) for all t ∈]a, b[, see (I2)

φ′+,c(t) c-weighted mixture of left-hand and right-hand derivative of φ at t, see (I2)
ΦC1 (]a, b[) Subclass of everywhere continuously differentiable φ, with

derivative φ′(t) (being equal to φ′+,c(t) for all c ∈ [0, 1]), see (I2) on p. 161
φα α-power-function type divergence generator, see (5) on p. 166, (14), (18), (19)
φT V Generator of total variation distance, see (31) on p. 169
φie Divergence generator with interesting effects, see (35) on p. 170
ψφ,c Function given by ψφ,c(s, t) := φ(s) − φ(t) − φ′+,c(t) · (s − t) � 0, see (I2)
ψφ,c Bivariate extension of ψφ,c , see (I2) on p. 161∫
X . . .,

∑
X . . . Integral/sum over extension of integrand/summand . . ., see (I2) & (2) on p. 165

Dc
φ,M1,M2,M 3,λ

(P, Q) Divergence between two functions P (scaled by M1) and Q (scaled by M2),
generated by φ and weight c, and aggregated byM3 and λ, see (1) on p. 161

Dφ,M1,M2,M 3,λ(P, Q) As above, but with φ ∈ ΦC1 (]a, b[) and obsolete c, see Sect. 3.2 on p. 165
Dλ(P, Q) General λ-aggregated divergence, see p. 189, respectively pseudo-divergence,

see Definition 2 on p. 195
DM ,λ(

⇀P,
⇀Q) Pointwise decomposable pseudo-divergence, scaled byM

and aggregated byM and λ, see Sect. 4.6 on p. 200
NN0, NN1 Nonnegativity setup 0 respectively 1, see p. 166 resp. p. 171
PR ·λ, QR ·λ, MR ·λ Measures with λ-densities p(·) · r(·), q(·) · r(·),m(·) · r(·),

see Remark 2 on p. 171
⇀P

1 ·λ
, ⇀Q

1 ·λ
Probability measures (distributions) with λ-densities ⇀p(·), ⇀q(·), see Remark 2

Qλ2
Θ , ⇀Q

1 ·λ2

θ Class of probability measures with λ2-densities ⇀qθ(·) with parameter θ ∈ Θ ,
see p. 188

⇀P
emp
N , ⇀P

emp
N , ⇀pemp

N (·) Data-derived empirical (probability) distribution, and probability mass
function (λ#-density) thereof, see Remark 2 on p. 172

⇀P
emp(ω)

N , ⇀P
emp(ω)

N Data-derived “extended” empirical (probability) distribution, and
probability mass function thereof, see (85) on p. 190 and thereafter

DPD, CASD Density-power divergences (see p. 174), Csiszar–Ali–Silvey divergences (see p. 177)
�i1, φ∗(0), �i2, �i3 Certain limits, see (50), (71), (72)
P ⊥ Q The functionsP,Q are “essentially different”, see (64) to (66) and thereafter
P �⊥ Q Negation ofP ⊥ Q, see p. 192
P ∼ Q The functionsP,Q are “equivalent” (concerning zeros), see (80)
P � Q Negation ofP ∼ Q, see p. 195
θ̂N ,Dλ2

Minimum-divergence estimator (“approximator”) of the true unknown
parameter θ0, based on N data observations, see (82) on p. 189
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θ̂N ,Dλ#
, θ̂N ,Dλ Certain minimum-divergence estimators, see (83), (86)

θ̂N ,decDλ , θ̂N ,decD⇀
Qτ ,λ

Certain minimum-divergence estimators, see (107), (123)

θ̂N ,supD φ,λ
Certain minimum-divergence estimator, see (135)

Pλ Certain class of nonnegative, mutually equivalent functions, see p. 194
Pλ�, P̃λ Certain classes of nonnegative functions, see p. 194
Pλ

Θ ,Pλ⊥
emp ,P

λ
Θ,emp Certain classes of nonnegative functions, see p. 195

D0,D1, ρQ Functionals and mapping for decomposable pseudo-divergences,
see Definition 3 on p. 195

ψdec , ψ0, ψ1, ρ Mappings for pointwise decomposable pseudo-divergences,
see Definition 3 on p. 196

h0, h1, h2 Mappings for pointwise decomposable pseudo-divergences,
see Definition 3 on p. 196

ψdec
m Perspective function of ψdec , see (120)

New Divergence Toolkit

In the above Sect. 2, we have motivated that for many different tasks within a broad
spectrum of situations, it is useful to employ divergences as “directed distances”,
including distances as their symmetric special case. For the rest of the paper, we
shall only deal with aggregated forms of divergences, and thus drop the attribute
“aggregated” from now on. In the following, we present a fairly universal, flexible,
multi-component system of divergences by adapting and widening the concept of
scaled Bregman divergences of Stummer [81] and Stummer andVajda [84] to the cur-
rent context of arbitrary (measurable) functions. To begin with, let us assume that the
modeled respectively observed (random) data take values in a state spaceX (with at
least two distinct values), equippedwith a systemF of admissible events (σ-algebra)
and a σ-finite measure λ (e.g. the Lebesgue measure, the counting measure, etc.).
Furthermore, we suppose that x → p(x) ∈ [−∞,∞] and x → q(x) ∈ [−∞,∞]
are (correspondingly measurable) functions onX which satisfy p(x) ∈] − ∞,∞[,
q(x) ∈] − ∞,∞[ for λ-almost all (abbreviated as λ-a.a.) x ∈ X .6 To address the
entire functions as objects we write P := {

p(x)
}
x∈X , Q := {

q(x)
}
x∈X and alter-

natively sometimes also p(·), q(·). To better highlight the very important special case
of λ-probability density functions – where p(x) � 0, q(x) � 0 for λ-a.a. x ∈ X and∫
X p(x) dλ(x) = 1,

∫
X q(x) dλ(x) = 1 – we use the notation ⇀P, ⇀p, ⇀Q, ⇀q instead of

P , p, Q, q (where⇀· · · symbolizes a lying 1). For instance, if λ = λL is the Lebesgue
measure on the s-dimensional Euclidean space X = R

s , then ⇀P, ⇀Q are “classical”
(e.g. Gaussian) probability density functions. In contrast, in the discrete setupwhere
the state space (i.e. the set of all possible data points)X = X# has countably many
elements and λ := λ# is the counting measure (i.e., λ#[{x}] = 1 for all x ∈ X#),
then ⇀P, ⇀Q are probability mass functions and (say) ⇀p(x) can be interpreted as prob-
ability that the data point x is taken by the underlying random (uncertainty-prone)
mechanism. If p(x) � 0, q(x) � 0 for λ-a.a. x ∈ X (but not necessarily with the
restrictions

∫
X p(x) dλ(x) = 1 = ∫

X q(x) dλ(x)) then we writeP,Q,p,q instead
of P , p, Q, q.

6This means that there exists a N ∈ F with λ[N ] = 0 (where the empty set N = ∅ is allowed) such
that for all x ∈ X \{N } (say) p(x) ∈] − ∞,∞[ holds.
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Back to generality, we quantify the dissimilarity between the two functions P ,Q
in terms of divergences Dc

β(P, Q) with β = (φ, M1, M2,M3,λ), defined by

0 � Dc
φ,M1,M2,M3,λ

(P, Q)

:= ∫
X

[
φ
( p(x)
m1(x)

) − φ
( q(x)
m2(x)

) − φ′+,c

( q(x)
m2(x)

) · ( p(x)
m1(x)

− q(x)
m2(x)

)] · m3(x) dλ(x) (1)

(see Stummer [81], Stummer and Vajda [84] for the case c = 1,m1(x) = m2(x) =
m3(x)). Here, we use:

(I1) (measurable) scaling functions m1 : X → [−∞,∞] and m2 : X →
[−∞,∞] as well as a nonnegative (measurable) aggregating function m3 :
X → [0,∞] such that m1(x) ∈] − ∞,∞[, m2(x) ∈] − ∞,∞[, m3(x) ∈
[0,∞[ for λ-a.a. x ∈ X .7 In accordance with the above notation, we use the
symbols Mi := {

mi (x)
}
x∈X respectivelymi (·) to refer to the entire functions,

and Mi, mi(·) when they are nonnegative as well as ⇀Mi , ⇀mi (·) when they
manifest λ-probability density functions. Furthermore, let us emphasize that
we allow for / cover adaptive situations in the sense that all three functions
m1(x), m2(x), m3(x) (evaluated at x) may also depend on p(x) and q(x).

(I2) the so-called “divergence-generator” φ which is a continuous, convex (finite)
function φ : E →] − ∞,∞[ on some appropriately chosen open interval
E =]a, b[ such that [a, b] covers (at least) the union R

(
P
M1

) ∪ R
( Q
M2

)
of

both ranges R
(

P
M1

)
of

{ p(x)
m1(x)

}
x∈X and R

( Q
M2

)
of

{ q(x)
m2(x)

}
x∈X ; for instance,

E =]0, 1[, E =]0,∞[ or E =] − ∞,∞[; the class of all such functions
will be denoted by Φ(]a, b[). Furthermore, we assume that φ is contin-
uously extended to φ : [a, b] → [−∞,∞] by setting φ(t) := φ(t) for t ∈
]a, b[ as well as φ(a) := limt↓a φ(t), φ(b) := limt↑b φ(t) on the two bound-
ary points t = a and t = b. The latter two are the only points at which
infinite values may appear. Moreover, for any fixed c ∈ [0, 1] the (finite)
function φ′+,c :]a, b[→] − ∞,∞[ is well-defined by φ′+,c(t) := c · φ′+(t) +
(1 − c) · φ′−(t), where φ′+(t) denotes the (always finite) right-hand derivative
of φ at the point t ∈]a, b[ and φ′−(t) the (always finite) left-hand deriva-
tive of φ at t ∈]a, b[. If φ ∈ Φ(]a, b[) is also continuously differentiable
– which we denote by φ ∈ ΦC1(]a, b[) – then for all c ∈ [0, 1] one gets
φ′+,c(t) = φ′(t) (t ∈]a, b[) and in such a situationwe always suppress the obso-
lete indices c, + in the corresponding expressions. We also employ the con-
tinuous continuation φ′+,c : [a, b] → [−∞,∞] given by φ′+,c(t) := φ′+,c(t)

(t ∈]a, b[), φ′+,c(a) := limt↓a φ′+,c(t), φ′+,c(b) := limt↑b φ′+,c(t). To explain
the precise meaning of (1), we also make use of the (finite, nonnegative)
function ψφ,c :]a, b[×]a, b[→ [0,∞[ given by ψφ,c(s, t) := φ(s) − φ(t) −
φ′+,c(t) · (s − t) � 0 (s, t ∈]a, b[). To extend this to a lower semi-continuous

7As an example, let X = R, λ = λL be the Lebesgue measure (and hence, except for rare
cases, the integral turns into a Riemann integral) and ⇀m1(x) := 1

2 · x−1/2 · 1[0,1](x) � 0; since∫
X

⇀m1(x) dλ(x) = 1 this qualifies as a probability density and thus is a possible candidate for
⇀m1(x) = ⇀q(x) in Sect. 3.3.1.2 below.
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function ψφ,c : [a, b] × [a, b] → [0,∞] we proceed as follows: firstly, we set
ψφ,c(s, t) := ψφ,c(s, t) for all s, t ∈]a, b[. Moreover, since for fixed t ∈]a, b[,
the function s → ψφ,c(s, t) is convex and continuous, the limit ψφ,c(a, t) :=
lims→a ψφ,c(s, t) always exists and (in order to avoid overlines in (1)) will
be interpreted/abbreviated asφ(a) − φ(t) − φ′+,c(t) · (a − t). Analogously, for
fixed t ∈]a, b[we setψφ,c(b, t) := lims→b ψφ,c(s, t)with corresponding short-
hand notation φ(b) − φ(t) − φ′+,c(t) · (b − t). Furthermore, for fixed s ∈]a, b[
we interpret φ(s) − φ(a) − φ′+,c(a) · (s − a) as

ψφ,c(s, a) := {
φ(s) − φ′+,c(a) · s + lim

t→a

(
t · φ′+,c(a) − φ(t)

)} · 1]−∞,∞[
(
φ′+,c(a)

)

+ ∞ · 1{−∞}
(
φ′+,c(a)

)
,

where the involved limit always exists but may be infinite. Analogously, for
fixed s ∈]a, b[ we interpret φ(s) − φ(b) − φ′+,c(b) · (s − b) as

ψφ,c(s, b) :={
φ(s) − φ′+,c(b) · s + lim

t→b

(
t · φ′+,c(b) − φ(t)

)} · 1]−∞,∞[
(
φ′+,c(b)

)

+ ∞ · 1{+∞}
(
φ′+,c(b)

)
,

where again the involved limit always exists but may be infinite. Finally,
we always set ψφ,c(a, a) := 0, ψφ,c(b, b) := 0, and ψφ,c(a, b) := lims→a ψφ,c

(s, b), ψφ,c(b, a) := lims→b ψφ,c(s, a). Notice that ψφ,c(·, ·) is lower semi-
continuous but not necessarily continuous. Since ratios are ultimately involved,
we also consistently takeψφ,c

(
0
0 ,

0
0

) := 0. Taking all this into account, we inter-

pret Dc
φ,M1,M2,M3,λ

(P, Q) as
∫
X ψφ,c

( p(x)
m1(x)

,
q(x)
m2(x)

)
m3(x) dλ(x) at first glance

(see further investigations in Assumption 2 below), and use the (in lengthy
examples) less clumsy notation

∫
X ψφ,c

( p(x)
m1(x)

,
q(x)
m2(x)

)
m3(x) dλ(x) as a short-

cut for the implicitly involved boundary behaviour. �
Notice that despite of the “difference-structure” in the integrand of (1), the split-
ting of the integral into differences of several “autonomous” integrals may not
always be feasible due to the possible appearance of differences between infinite
integral values. Furthermore, there is non-uniqueness in the construction (1); for
instance, one (formally) gets Dc

φ,M1,M2,M3,λ
(P, Q) = Dc

φ̃,M1,M2,M3,λ
(P, Q) for any

φ̃(t) := φ(t) + c1 + c2 · t (t ∈ E) with c1, c2 ∈ R. Moreover, there exist “essen-
tially different” pairs (φ,M) and (φ̆, M̆) (where φ(t) − φ̆(t) is nonlinear in t) for
which Dc

φ,M,M,M,λ(P, Q) = Dc
φ̆,M̆,M̆,M̆,λ

(P, Q) (see e.g. [37]). Let us alsomention
that we could further generalize (1) by adapting the divergence concept of Stummer
and Kißlinger [82] who also deal even with non-convex non-concave divergence
generators φ; for the sake of brevity, this is omitted here.

Notice that by construction we obtain the following important assertion:
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Theorem 1 Let φ ∈ Φ(]a, b[) and c ∈ [0, 1]. Then there holds
Dc

φ,M1,M2,M3,λ
(P, Q) � 0 with equality if p(x)

m1(x)
= q(x)

m2(x)
for λ-almost all x ∈ X .

Depending on the concrete situation, Dc
φ,M1,M2,M3,λ

(P, Q) may take infinite value.

To get “sharp identifiability” (i.e. reflexivity) one needs further assumptions on
φ ∈ Φ(]a, b[), c ∈ [0, 1]. As a motivation, consider the case where m3(x) ≡ 1
and φ ∈ Φ(]a, b[) is affine linear on the whole interval ]a, b[, and hence its exten-
sion φ is affine-linear on [a, b]. Accordingly, one gets for the integrand-builder
ψφ,c(s, t) ≡ 0 and hence Dc

φ,M1,M2,M3,λ
(P, Q) = ∫

X ψφ,c
( p(x)
m1(x)

,
q(x)
m2(x)

)
dλ(x) = 0

even in cases where p(x)
m1(x)

�= q(x)
m2(x)

for λ-a.a. x ∈ X . In order to avoid such and
similar phenomena, we use the following set of requirements:

Assumption 2 Let c ∈ [0, 1], φ ∈ Φ(]a, b[) and R
(

P
M1

) ∪ R
( Q
M2

) ⊂ [a, b]. The
aggregation function is supposed to be of the form m3(x) = w3

(
x, p(x)

m1(x)
,

q(x)
m2(x)

)

for some (measur.) function w3 : X × [a, b] × [a, b] → [0,∞]. Moreover, for all
s ∈ R

(
P
M1

)
, all t ∈ R

( Q
M2

)
and λ-a.a. x ∈ X , let the following conditions hold:

(a) φ is strictly convex at t ;
(b) if φ is differentiable at t and s �= t , then φ is not affine-linear on the interval

[min(s, t),max(s, t)] (i.e. between t and s);
(c) if φ is not differentiable at t , s > t and φ is affine linear on [t, s], then we

exclude c = 1 for the (“globally/universally chosen”) subderivative φ′+,c(·) =
c · φ′+(·) + (1 − c) · φ′−(·);

(d) if φ is not differentiable at t , s < t and φ is affine linear on [s, t], then we exclude
c = 0 for φ′+,c(·);

(e) w3(x, s, t) < ∞;
(f) w3(x, s, t) > 0 if s �= t ;
(g) w3(x, a, a) · ψφ,c(a, a) := 0 by convention (even in cases where the function

w3(x, ·, ·) · ψφ,c(·, ·) is not continuous on the boundary point (a, a));
(h) w3(x, b, b) · ψφ,c(b, b) := 0 by convention (even in cases where the function

w3(x, ·, ·) · ψφ,c(·, ·) is not continuous on the boundary point (b, b));
(i) w3(x, a, t) · ψφ,c(a, t) > 0, where w3(x, a, t) · ψφ,c(a, t) := lims→a w3

(x, s, t) · ψφ,c(s, t) if this limit exists, and otherwise we set by convention
w3(x, a, t) · ψφ,c(a, t) := 1 (or any other strictly positive constant);

(j) w3(x, b, t) · ψφ,c(b, t) > 0, where w3(x, b, t) · ψφ,c(b, t) is analogous to (i);
(k) w3(x, s, a) · ψφ,c(s, a) > 0, where w3(x, s, a) · ψφ,c(s, a) := limt→a w3

(x, s, t) · ψφ,c(s, t) if this limit exists, and otherwise we set by convention
w3(x, s, a) · ψφ,c(s, a) := 1 (or any other strictly positive constant);

(l) w3(x, s, b) · ψφ,c(s, b) > 0, where w3(x, s, b) · ψφ,c(s, b) is analogous to (k);
(m) w3(x, a, b) · ψφ,c(a, b) > 0, where w3(x, a, b) · ψφ,c(a, b) := lims→a w3

(x, s, b) · ψφ,c(s, b) if this limit exists, and otherwise we set by convention
w3(x, a, b) · ψφ,c(a, b) := 1 (or any other strictly positive constant);

(n) w3(x, b, a) · ψφ,c(b, a) > 0, where w3(x, b, a) · ψφ,c(b, a) := lims→b w3

(x, s, a) · ψφ,c(s, a) if this limit exists, and otherwise we set by convention
w3(x, b, a) · ψφ,c(b, a) := 1 (or any other strictly positive constant). �
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Under Assumption 2, we always interpret the corresponding divergence

Dc
φ,M1,M2,M3,λ

(P, Q) := Dc
φ,M1,M2,W3,λ

(P, Q) :=

:=
∫

X
w3

(
x,

p(x)

m1(x)
,
q(x)

m2(x)

) · [
φ
( p(x)

m1(x)

) − φ
( q(x)

m2(x)

)

−φ′
+,c

( q(x)

m2(x)

) · ( p(x)

m1(x)
− q(x)

m2(x)

)]
dλ(x)

as
∫
X w3 · ψφ,c

(
x, p(x)

m1(x)
,

q(x)
m2(x)

)
dλ(x), where w3 · ψφ,c(x, s, t) denotes the exten-

sion of the functionX ×]a, b[×]a, b[� (x, s, t) → w3(x, s, t) · ψφ,c(s, t) onX ×
[a, b] × [a, b] according to the conditions (g) to (n) above.

Remark 1 (a) We could even work with a weaker assumption obtained by replacing
s with p(x)

m1(x)
as well as t with q(x)

m2(x)
and by requiring that then the correspondingly

plugged-in conditions (a) to (n) hold for λ-a.a. x ∈ X .
(b) Notice that our above context subsumes aggregation functions of the form
m3(x) = w̃3(x, p(x), q(x),m1(x),m2(x)) with w̃3(x, z1, z2, z3, z4) having appro-
priately imbeddable behaviour in its arguments x, z1, z2, z3, z4, the outcoming ratios
z1
z3
, z2
z4
and possible boundary values thereof. �

The following requirement is stronger than the “model-individual/dependent”
Assumption 2 but is more “universally applicable” (amongst all models such that
R

(
P
M1

) ∪ R
( Q
M2

) ⊂ [a, b], take e.g. E =]a, b[ as E =]0,∞[ or E =] − ∞,∞[):
Assumption 3 Let c ∈ [0, 1], φ ∈ Φ(]a, b[) on some fixed ]a, b[ ∈ ] − ∞,+∞[
such that ]a, b[ ⊃ R

(
P
M1

) ∪ R
( Q
M2

)
. The aggregation function is of the formm3(x) =

w3
(
x, p(x)

m1(x)
,

q(x)
m2(x)

)
for some (measurable) function w3 : X × [a, b] × [a, b] →

[0,∞]. Furthermore, for all s ∈]a, b[, t ∈]a, b[ and λ-a.a. x ∈ X , the conditions
(a) to (n) of Assumption 2 hold.

Important examples in connectionwith theAssumptions 2, 3will be given in Sect. 3.2
(for φ) and Sect. 3.3 (for m1, m2, w3) below. With these assumptions at hand, we
obtain the following non-negativity and reflexivity assertions:

Theorem 4 Let the Assumption 2 be satisfied. Then there holds:
(1) Dc

φ,M1,M2,M3,λ
(P, Q) � 0. Depending on the concrete situation,

Dc
φ,M1,M2,M3,λ

(P, Q) may take infinite value.

(2) Dc
φ,M1,M2,M3,λ

(P, Q) = 0 if and only if
p(x)

m1(x)
= q(x)

m2(x)
forλ-a.a. x ∈ X .

Theorem 4 – whose proof will be given in the appendix – says that
Dc

φ,M1,M2,M3,λ
(P, Q) is indeed a “proper” divergence under the Assumption 2.

Hence, the latter will be assumed for the rest of the paper, unless stated otherwise: for
instance, we shall sometimes work with the stronger Assumption 3; thus, for more
comfortable reference, we state explicitly
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Corollary 1 Under the more universally applicable Assumption 3, the Assertions
(1) and (2) of Theorem 4 hold.

Under some non-obvious additional constraints on the functions P , Q it may
be possible to show the Assertions (1), (2) of Theorem 4 by even dropping the
purely generator-concerning Assumptions 2(b) to (d); see e.g. Sect. 3.3.1.2 below.
In the following, we discuss several important features and special cases of β =
(φ, M1, M2,M3,λ) in a well-structured way. Let us start with the latter.

3.1 The Reference Measure λ

In (1), λ can be interpreted as a “governer” upon the principle aggregation struc-
ture, whereas the “aggregation function” m3 tunes the fine aggregation details.
For instance, if one chooses λ = λL as the Lebesgue measure on X ⊂ R, then
the integral in (1) turns out to be of Lebesgue-type and (with some rare excep-
tions) consequently of Riemann-type. In contrast, in the discrete setup where
X := X# has countably many elements and is equipped with the counting measure
λ := λ# := ∑

z∈X #
δz (where δz is Dirac’s one-point distribution δz[A] := 1A(z),

and thus λ#[{z}] = 1 for all z ∈ X#) then (1) simplifies to

0 � Dc
φ,M1,M2,M3,λ#

(P, Q)

:= ∑
z∈X

[
φ
( p(z)
m1(z)

) − φ
( q(z)
m2(z)

) − φ′+,c

( q(z)
m2(z)

) · ( p(z)
m1(z)

− q(z)
m2(z)

)] · m3(z) , (2)

which we interpret as
∑

z∈X ψφ,c
( p(z)
m1(z)

,
q(z)
m2(z)

) · m3(z) with the same conventions

and limits as in the paragraph right after (1); if X# = {z0} for arbitrary z0 ∈ X̃ , we
obtain the corresponding one-point divergence over any space X̃ .

3.2 The Divergence Generator φ

We continue with the inspection of interesting special cases of
β = (φ, M1, M2,M3,λ) by dealingwith the first component. For this, letΦC1(]a, b[)
be the class of all functions φ ∈ Φ(]a, b[)which are also continuously differentiable
on E =]a, b[. For divergence generator φ ∈ ΦC1(]a, b[), the formula (1) becomes
(recall that we suppress the obsolete c and subderivative index +)

0 � Dφ,M1,M2,M3,λ(P, Q)

:= ∫
X

[
φ
( p(x)
m1(x)

) − φ
( q(x)
m2(x)

) − φ′( q(x)
m2(x)

) · ( p(x)
m1(x)

− q(x)
m2(x)

)] · m3(x) dλ(x) , (3)

whereas (2) turns into
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0 � Dφ,M1,M2,M3,λ# (P, Q)

:= ∑
x∈X

[
φ
( p(x)
m1(x)

) − φ
( q(x)
m2(x)

) − φ′( q(x)
m2(x)

) · ( p(x)
m1(x)

− q(x)
m2(x)

)] · m3(x).

Formally, by defining the integral functional gφ,M3,λ(ξ) := ∫
X φ(ξ(x)) · m3(x)

dλ(x) and plugging in e.g. gφ,M3,λ

(
P
M1

) = ∫
X φ

( p(x)
m1(x)

) · m3(x) dλ(x), the diver-
gence in (3) can be interpreted as

0 � Dφ,M1,M2,M3,λ(P, Q)

= gφ,M3,λ

(
P
M1

) − gφ,M3,λ

( Q
M2

) − g′
φ,M3,λ

( Q
M2

, P
M1

− Q
M2

)
(4)

where g′
φ,M3,λ

(
η, · ) denotes the corresponding directional derivate at η = Q

M2
. If one

has a “nonnegativity-setup” (NN0) in the sense that for all x ∈ X there holds p(x)
m1(x)

�
0 and q(x)

m2(x)
� 0 (but not necessarily p(x) � 0, q(x) � 0, m1(x) � 0, m2(x) � 0)

then one can take a = 0, b = ∞, i.e. E =]0,∞[, and employ the strictly convex
power functions

φ̃(t) := φ̃α(t) := tα−1
α(α−1) ∈] − ∞,∞[, t ∈]0,∞[, α ∈ R\{0, 1} ,

φ(t) := φα(t) := φ̃α(t) − φ̃′
α(1) · (t − 1) = tα−1

α(α−1) − t−1
α−1 ∈ [0,∞[, t ∈]0,∞[,

α ∈ R\{0, 1} , (5)

which satisfy (with the notations introduced in the paragraph right after (1))

φα(1) = 0, φ′
α(t) = tα−1−1

α−1 , φ′
α(1) = 0, φ′′

α(t) = tα−2 > 0, t ∈]0, ∞[, (6)

φα(0) := limt↓0 φα(t) = 1
α · 1]0,1]∪]1,∞[(α) + ∞ · 1]−∞,0[(α),

φα(∞) := lim
t↑∞ φα(t) = ∞, (7)

φ′
α(0) := limt↓0 φ′

α(t) = 1
1−α · 1]1,∞[(α) − ∞ · 1]−∞,0[∪]0,1[(α),

φ′
α(∞) := limt↑∞ φ′

α(t) = ∞ · 1]1,∞[(α) + 1
1−α · 1]−∞,0[∪]0,1[(α) = limt↑∞ φα(t)

t , (8)

ψφα (s, t) = 1
α·(α−1) ·

[
sα + (α − 1) · tα − α · s · tα−1

]
, s, t ∈]0, ∞[, (9)

ψφα (0, t) = tα
α · 1]0,1[∪]1,∞[(α) + ∞ · 1]−∞,0[(α), t ∈]0, ∞[, (10)

ψφα (∞, t) = ∞, t ∈]0, ∞[,
lims→∞ 1

s · ψφα (s, 1) = 1
1−α · 1]−∞,0[∪]0,1[(α) + ∞ · 1]1,∞[(α),

ψφα (s, 0) = sα
α·(α−1) · 1]1,∞[(α) + ∞ · 1]−∞,0[∪]0,1[(α), s ∈]0, ∞[, (11)

ψφα (s, ∞) = sα
α·(α−1) · 1]−∞,0[(α) + ∞ · 1]0,1[∪]1,∞[(α), s ∈]0, ∞[,

ψφα (0, 0) := 0 (which is unequal to limt→0 lims→0 ψφα (s, t) forα < 0

and which is unequal to lim
s→0

lim
t→0

ψφα (s, t) forα > 1),

ψφα (∞, ∞) := 0 (which is unequal to limt→∞ lims→∞ ψφα (s, t) forα ∈ R\{0, 1}
and which is unequal to lim

s→∞ lim
t→∞ ψφα (s, t) forα ∈]0, 1[∪]1,∞[),

ψφα (0, ∞) := lims→0 limt→∞ ψφα (s, t) = ∞ (12)
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(which coincides with lim
t→∞ lim

s→0
ψφα (s, t) forα ∈ R\{0, 1}),

ψφα (∞, 0) := lims→∞ limt→0 ψφα (s, t) = ∞ (13)
(which coincides with lim

t→0
lim
s→∞ ψφα (s, t) forα ∈ R\{0, 1}).

The perhaps most important special case is α = 2, for which (5) turns into

φ2(t) := (t−1)2

2 , t ∈]0,∞[= E, (14)

having for s, t ∈]0,∞[ the properties (cf. (7)–(13))

φ2(1) = 0, φ′
2(1) = 0, φ2(0) = 1

2 , φ2(∞) = ∞, φ′
2(0) = − 1

2 ,

φ′
2(∞) = ∞ = limt↑∞ φ2(t)

t ,ψφ2(s, t) = (s−t)2

2 , (15)

ψφ2(0, t) = t2

2 , ψφ2(∞, t) = ∞, lims→∞ 1
s · ψφ2(s, 1) = ∞,

ψφ2(s, 0) = s2

2 , ψφ2(s,∞) = ∞, ψφ2(0, 0) := 0, (16)

ψφ2(∞,∞) := 0, ψφ2(0,∞) = ∞, ψφ2(∞, 0) = ∞.

Also notice that the divergence-generator φ2 of (14) can be trivially extended to

φ̄2(t) := (t−1)2

2 , t ∈] − ∞,∞[= Ē, (17)

which is useful in a general setup (GS)where for all x ∈ X onehas p(x)
m1(x)

∈ [−∞,∞]
and q(x)

m2(x)
∈ [−∞,∞]. Convex extensions to ]a,∞[with a ∈] − ∞, 0[ can be easily

done by the shift φ̄α(t) := φα(t − a).
Further examples of everywhere strictly convex differentiable divergence gen-

erators φ ∈ ΦC1(]a, b[) for the “nonnegativity-setup” (NN0) (i.e. a = 0, b = ∞,
E =]0,∞[) can be obtained by taking the α-limits

φ̃1(t) := limα→1 φα(t) = t · log t ∈ [−e−1, ∞[, t ∈]0, ∞[,
φ1(t) := limα→1 φα(t) = φ̃1(t) − φ̃′

1(1) · (t − 1) = t · log t + 1 − t ∈ [0, ∞[, t ∈]0, ∞[, (18)
φ̃0(t) := limα→0 φα(t) = − log t ∈] − ∞, ∞[, t ∈]0, ∞[,
φ0(t) := limα→0 φα(t) = φ̃0(t) − φ̃′

0(1) · (t − 1) = − log t + t − 1 ∈ [0, ∞[, t ∈]0, ∞[, (19)

which satisfy
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φ1(1) = 0, φ′
1(t) = log t, φ′

1(1) = 0, φ′′
1(t) = t−1 > 0, t ∈]0,∞[,

φ1(0) := limt↓0 φ1(t) = 1, φ1(∞) := limt↑∞ φ1(t) = ∞, (20)

φ′
1(0) := limt↓0 φ′

1(t) = −∞, φ′
1(∞) := limt↑∞ φ′

1(t) = +∞ = limt↑∞ φ1(t)
t , (21)

ψφ1 (s, t) = s · log ( s
t

) + t − s, s, t ∈]0,∞[, (22)

ψφ1 (0, t) = t, ψφ1 (∞, t) = ∞, lims→∞ 1
s · ψφ1 (s, 1) = ∞, t ∈]0,∞[, (23)

ψφ1 (s, 0) = ∞, ψφ1 (s,∞) = ∞, s ∈]0,∞[, (24)
ψφ1 (0, 0) := 0 (which coincides with limt→0 lims→0 ψφ1 (s, t)

but which does not coincide with lim
s→0

lim
t→0

ψφ1 (s, t) = ∞),

ψφ1 (∞,∞) := 0 (which does not coincide with

lim
t→∞ lim

s→∞ ψφ1 (s, t) = lim
s→∞ lim

t→∞ ψφ1 (s, t) = ∞,

ψφ1 (0,∞) := lims→0 limt→∞ ψφ1 (s, t) = ∞
(which coincides with lim

t→∞ lim
s→0

ψφ1 (s, t)),

ψφ1 (∞, 0) := lims→∞ limt→0 ψφ1 (s, t) = ∞
(which coincides with lim

t→0
lim
s→∞ ψφ1 (s, t)),

as well as

φ0(1) = 0, φ′
0(t) = 1 − 1

t , φ′
0(1) = 0, φ′′

0(t) = t−2 > 0, t ∈]0,∞[, (25)
φ0(0) := limt↓0 φ0(t) = ∞, φ0(∞) := limt↑∞ φ0(t) = ∞, (26)

φ′
0(0) := limt↓0 φ′

0(t) = −∞, φ′
0(∞) := limt↑∞ φ′

0(t) = 1 = limt↑∞ φ0(t)
t , (27)

ψφ0 (s, t) = − log
( s
t

) + s
t − 1, s, t ∈]0,∞[, (28)

ψφ0 (0, t) = ∞, ψφ0 (∞, t) = ∞, lims→∞ 1
s · ψφ0 (s, 1) = 1, t ∈]0,∞[, (29)

ψφ0 (s, 0) = ∞, ψφ0 (s,∞) = ∞, s ∈]0,∞[, (30)
ψφ0 (0, 0) := 0 (which does not coincide with

lim
t→0

lim
s→0

ψφ0 (s, t) = lim
s→0

lim
t→0

ψφ0 (s, t) = ∞),

ψφ0 (∞,∞) := 0 (which does not coincide with

lim
t→∞ lim

s→∞ ψφ0 (s, t) = lim
s→∞ lim

t→∞ ψφ0 (s, t) = ∞),

ψφ0 (0,∞) := lims→0 limt→∞ ψφ0 (s, t) = ∞
(which coincides with lim

t→∞ lim
s→0

ψφ0 (s, t)),

ψφ0 (∞, 0) := lims→∞ limt→0 ψφ0 (s, t) = ∞
(which coincides with lim

t→0
lim
s→∞ ψφ0 (s, t)).

An important, but (in our context) technically delicate, convex divergence generator
is φT V (t) := |t − 1| which is non-differentiable at t = 1; the latter is also the only
point of strict convexity. Further properties are for arbitrarily fixed s, t ∈]0,∞[,
c ∈ [0, 1] (if not stated otherwise)
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φT V (1) = 0, φT V (0) = 1, φT V (∞) = ∞, (31)

φ′
T V,+,c(t) = 1]1,∞[(t) + (2c − 1) · 1{1}(t) − 1]0,1[(t),

φ′
T V,+,1(t) = 1[1,∞[(t) − 1]0,1[(t),

φ′
T V,+, 12

(t) = 1]1,∞[(t) − 1]0,1[(t) = sgn(t − 1) · 1]0,∞[(t),

φ′
T V,+,c(1) = 2c − 1, φ′

T V,+,1(1) = 1, φ′
T V,+, 12

(1) = 0, (32)

φ′
T V,+,c(0) = limt→0 φ′

T V,+,c(t) = −1, φ′
T V,+,c(∞) = limt→∞ φ′

T V,+,c(t) = 1,

ψφT V ,c(s, t) = 1]0,1[(t) · 2(s − 1) · 1]1,∞[(s) + 1]1,∞[(t) · 2(1 − s) · 1]0,1](s)

+ 1{1}(t) ·
[
2(1 − c) · (s − 1) · 1]1,∞[(s) + 2c · (1 − s) · 1]0,1](s)

]
,

ψφT V , 12
(s, 1) = |s − 1|, (33)

ψφT V ,c(0, t) = lims→0 ψφT V ,c(s, t) = 2 · 1]1,∞[(t) + 2c · 1{1}(t),
ψφT V ,c(∞, t) = lims→∞ ψφT V ,c(s, t) = ∞ · 1]0,1[(t) + ∞ · 1{1}(t) · 1[0,1[(c),
lims→∞ 1

s · ψφT V ,c(s, 1) = 2(1 − c), (34)

ψφT V ,c(s, 0) = limt→0 ψφT V ,c(s, t) = 2(s − 1) · 1]1,∞[(s),
ψφT V ,c(s,∞) = limt→∞ ψφT V ,c(s, t) = 2(1 − s) · 1]0,1](s),
ψφT V ,c(0, 0) := 0 (which coincides with both limt→0 lims→0 ψφT V ,c(s, t)

and lim
s→0

lim
t→0

ψφT V ,c(s, t)),

ψφT V ,c(∞,∞) := 0 (which coincides with both limt→∞ lims→∞ ψφT V ,c(s, t)

and lim
s→∞ lim

t→∞ ψφT V ,c(s, t)),

ψφT V ,c(0,∞) := lims→0 limt→∞ ψφT V ,c(s, t) = 2

(which coincides with lim
t→∞ lim

s→0
ψφT V ,c(s, t)),

ψφT V ,c(∞, 0) := lims→∞ limt→0 ψφT V ,c(s, t) = ∞
(which coincides with lim

t→0
lim
s→∞ ψφT V ,c(s, t)).

In particular, one sees from Assumption 2(a) that – in our context – φT V can only be
potentially applied if q(x)

m2(x)
= 1 for λ-a.a. x ∈ X and from Assumption 2(c), (d) that

we generally have to exclude c = 1 and c = 0 for φ′+,c(·) (i.e. we choose c ∈]0, 1[);
as already mentioned above, under some non-obvious additional constraints on the
functions P , Q it may be possible to drop the Assumptions 2(c), (d), see for instance
Sect. 3.3.1.2 below.

Another interesting and technically delicate example is the divergence generator
φie(t) := t − 1 + (1−t)3

3 · 1[0,1](t)which is convex, twice continuously differentiable,
strictly convex at any point t ∈]0, 1] and affine-linear on [1,∞[. More detailed, one
obtains for arbitrarily fixed s, t ∈]0,∞[ (if not stated otherwise):
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φie(1) = 0, φie(0) = − 2
3 , φie(∞) = ∞, (35)

φ′
ie(t) = 1 − (1 − t)2 · 1]0,1[(t),

φ′
ie(1) = 1, φ′

ie(0) = limt→0 φ′
ie(t) = 0, φ′

ie(∞) = limt→∞ φ′
ie(t) = 1,

φ′′
ie(t) = 2(1 − t) · 1]0,1[(t), φ′′

ie(1) = 0,

ψφie (s, t) = (1−s)3

3 · 1]0,1[(s) + (1 − t)2 ·
[
2
3 · (1 − t) + (s − 1)

]
· 1]0,1[(t),

ψφie (s, 1) = (1−s)3

3 · 1]0,1[(s),

ψφie (0, t) = lims→0 ψφie (s, t) = 1
3 · 1[1,∞[(t) + 1

3 ·
[
1 − (1 − t)2 · (1 − 2t)

]
· 1]0,1[(t),

ψφie (∞, t) = lims→∞ ψφie (s, t) = ∞ · 1]0,1[(t),
lims→∞ 1

s · ψφie (s, 1) = 0,

ψφie (s, 0) = limt→0 ψφie (s, t) = (
s − 1

3

) · 1[1,∞[(s) + s2 · (1 − s
3

) · 1]0,1[(s),

ψφie (s,∞) = limt→∞ ψφie (s, t) = (1−s)3

3 · 1]0,1[(s),
ψφie (0, 0) := 0 (which coincides with both limt→0 lims→0 ψφie (s, t)

and lim
s→0

lim
t→0

ψφie (s, t)),

ψφie (∞,∞) := 0 (which coincides with both limt→∞ lims→∞ ψφie (s, t)

and lim
s→∞ lim

t→∞ ψφie (s, t)),

ψφie (0,∞) := lims→0 limt→∞ ψφie (s, t) = 1
3

(which coincides with lim
t→∞ lim

s→0
ψφie (s, t)),

ψφie (∞, 0) := lims→∞ limt→0 ψφie (s, t) = ∞
(which coincides with lim

t→0
lim
s→∞ ψφie (s, t)).

In particular, one sees from the Assumptions 2(a), (b) that – in our context – φie can
only be potentially applied in the following two disjoint situations:

(i) q(x)
m2(x)

< 1 for λ-a.a. x ∈ X ;

(i i) q(x)
m2(x)

= 1 and p(x)
m1(x)

� 1 for λ-a.a. x ∈ X .

As already mentioned above, under some non-obvious additional constraints on
the functions P , Q it may be possible to drop Assumption 2(b) and consequently (ii)
can then be replaced by
(̃i i) q(x)

m2(x)
= 1 for λ-a.a. x ∈ X ;

see for instance Sect. 3.3.1.2 below.

3.3 The Scaling and the Aggregation Functions m1, m2,m3

In the above two Sects. 3.1 and 3.2, we have illuminated details of the choices of
the first and the last component of β = (φ, M1, M2,M3,λ). Let us now discuss the
principal roles as well as examples of m1, m2, m3, which widen considerably the
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divergence-modeling flexibility and thus bring in a broad spectrum of goal-oriented
situation-based applicability. To start with, recall that in accordance with (1), the
aggregation function m3 tunes the fine aggregation details (whereas λ can be inter-
preted as a “governer” upon the basic/principle aggregation structure); furthermore,
the function m1(·) scales the function p(·) and m2(·) the function q(·). From a
modeling perspective, these two scaling functions can e.g. be “purely direct” in the
sense that m1(x), m2(x) are chosen to directly reflect some dependence on the data-
reflecting state x ∈ X (independent of the choice of P ,Q), or “purely adaptive” in
the sense that m1(x) = w1(p(x), q(x)), m2(x) = w2(p(x), q(x)) for some appro-
priate (measurable) “connector functions” w1, w2 on the productR(P) × R(Q) of
the ranges of

{
p(x)

}
x∈X and

{
q(x)

}
x∈X , or “hybrids” m1(x) = w1(x, p(x), q(x))

m2(x) = w2(x, p(x), q(x)). Also recall that in consistency with Assumption 2 we
always assume m3(x) = w3

(
x, p(x)

m1(x)
,

q(x)
m2(x)

)
for some (measurable) function w3 :

X × [a, b] × [a, b] → [0,∞].Whenever applicable and insightfulness-enhancing,
we use the notation Dc

φ,W1,W2,W3,λ
(P, Q) instead of Dc

φ,M1,M2,M3,λ
(P, Q).

Let us start with the following important sub-setup:

3.3.1 m1(x) = m2(x) := m(x), m3(x) = r(x) · m(x) ∈ [0,∞] for Some
(meas.) Function r : X → R Satisfying r(x) ∈] − ∞, 0[∪]0,∞[
for λ−a.a. x ∈ X

As an interpretation, here the scaling functions are strongly coupled with the aggre-
gation function; in order to avoid “case-overlapping”, we assume that the function
r(·) does not (explicitly) depend on the functions m(·), p(·) and q(·) (i.e. it is not of
the form r(·) = h(·,m(·), p(·), q(·)) ). From (1) one can deduce

0 � Dc
φ,M,M,R·M,λ(P, Q)

:= ∫
X

[
φ
( p(x)
m(x)

) − φ
( q(x)
m(x)

) − φ′+,c

( q(x)
m(x)

) · ( p(x)
m(x) − q(x)

m(x)

)] · m(x) · r(x) dλ(x) , (36)

which for the discrete setup (X ,λ) = (X#,λ#) (recall λ#[{x}] = 1 for all x ∈ X#)
simplifies to

0 � Dc
φ,M,M,R·M,λ#

(P, Q)

= ∑
x∈X

[
φ
( p(x)
m(x)

) − φ
( q(x)
m(x)

) − φ′+,c

( q(x)
m(x)

) · ( p(x)
m(x) − q(x)

m(x)

)] · m(x) · r(x) . (37)

Remark 2 (a) If one has a “nonnegativity-setup” (NN1) in the sense that for λ-
almost all x ∈ X there holds m(x) � 0, r(x) � 0, p(x) � 0, q(x) � 0, then (36)
(and hence also (37)) can be interpreted as scaledBregman divergence Bφ

(
P,Q |M)

between the two nonnegative measures P,Q (on (X ,F )) defined by P[•] :=
PR·λ[•] := ∫

• p(x) · r(x) dλ(x) andQ[•] := QR·λ[•] := ∫
• q(x) · r(x) dλ(x),with

scaling by the nonnegative measure M[•] := MR·λ[•] := ∫
• m(x) · r(x) dλ(x).
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(b) In a context of r(x) ≡ 1 and “λ-probability-densities” ⇀p, ⇀q on general state

space X , then ⇀P
1·λ[•] := ∫

•
⇀p(x) dλ(x) and ⇀Q

1·λ[•] := ∫
•

⇀q(x) dλ(x) are proba-
bility measures (where 1 stands for the function with constant value 1). Accord-
ingly, (36) (and hence also (37)) can be interpreted as scaled Bregman divergence

Bφ

(⇀P
1·λ

,
⇀Q

1·λ |M1·λ) which has been first defined in Stummer [81], Stummer and
Vajda [84], see also Kisslinger and Stummer [35–37] for the “purely adaptive” case
m(x) = w

(
⇀p(x), ⇀q(x)

)
and indications on non-probability measures. For instance,

if Y is a random variable taking values in the discrete space X#, then (with a slight

abuse of notation8) ⇀q(x) = ⇀Q
1·λ# [Y = x]may be its probability mass function under

a hypothetical/candidate law ⇀Q
1·λ#

, and ⇀p(x) = 1
N · #{i ∈ {1, . . . , N } : Yi = x} =:

⇀p
emp
N (x) is the probability mass function of the corresponding data-derived “empiri-

cal distribution” ⇀P
1·λ# [•] := ⇀P

emp

N [•] := 1
N · ∑N

i=1 δYi [•] of an N -size independent
and identically distributed (i.i.d.) sample Y1, . . . ,YN of Y which is nothing but the
probability distribution reflecting the underlying (normalized) histogram. Typically,
for small respectively medium sample size N one gets ⇀p

emp
N (x) = 0 for some states

x ∈ X which are feasible but “not yet” observed; amongst other things, this explains
why density-zeros play an important role especially in statistics and information the-
ory. This concludes the current Remark 2. �

In the following, we illuminate two important special cases of the scaling (and
aggregation-part) function m(·), namely m(x) := 1 and m(x) := q(x):

3.3.1.1 m1(x) = m2(x) := 1, m3(x) = r(x) for Some (Measurable) Function
r : X → [0,∞] Satisfying r(x) ∈]0,∞[ for λ−a.a. x ∈ X

Accordingly, (36) turns into

0 � Dc
φ,1,1,R·1,λ(P, Q)

:= ∫
X

[
φ
(
p(x)

) − φ
(
q(x)

) − φ′+,c

(
q(x)

) · (
p(x) − q(x)

)] · r(x) dλ(x) , (38)

which for the discrete setup (X ,λ) = (X#,λ#) becomes9

0 � Dc
φ,1,1,R·1,λ#

(P, Q)

:=
∑

x∈X

[
φ
(
p(x)

) − φ
(
q(x)

) − φ′
+,c

(
q(x)

) · (
p(x) − q(x)

)] · r(x) (39)

8Respectively working with canonical space representation and Y := id.
9As a side remark, let us mention here that in the special case of continuously differentiable strictly
log-convex divergence generatorφ, one can construct divergenceswhich are tighter than (38) respec-
tively (39), see Stummer and Kißlinger [82]; in a finite discrete space and for differentiable expo-
nentially concave divergence generator φ, a similar tightening (called L-divergence) can be found
in Pal and Wong [66, 67].
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Notice that for r(x) ≡ 1, the divergences (38) and (39) are “consistent extensions”
of themotivating pointwise dissimilarity d(6)

φ (·, ·) from Sect. 2. A special case of (38)
is e.g. the rho-tau divergence (cf. Lemma 1 of Zhang and Naudts [95]).
Let us exemplarily illuminate the special case φ = φα together with p(x) � 0,
q(x) � 0, forλ-almost all x ∈ X which bymeans of (9), (22), (28) turns (38) into the
“explicit-boundary” version (of the corresponding “implicit-boundary-describing”∫

. . .)10

0 � Dφα,1,1,R·1,λ(P,Q)

= ∫
X

r(x)
α·(α−1) · [

p(x)α + (α − 1) · q(x)α − α · p(x) · q(x)α−1] dλ(x) (40)

= ∫
X

r(x)
α·(α−1) · [

p(x)α + (α − 1) · q(x)α − α · p(x) · q(x)α−1] · 1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+ ∫
X r(x) · [ p(x)α

α · (α−1) · 1]1,∞[(α) + ∞ · 1]−∞,0[∪]0,1[(α)
] · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)
dλ(x)

+ ∫
X r(x) · [q(x)α

α · 1]0,1[∪]1,∞[(α) + ∞ · 1]−∞,0[(α)
] · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
dλ(x) ,

for α ∈ R\{0, 1}, (41)
0 � Dφ1,1,1,R·1,λ(P,Q)

= ∫
X r(x) · [

p(x) · log (p(x)
q(x)

) + q(x) − p(x)
] · 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+ ∫
X r(x) · ∞ · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)
dλ(x)

+ ∫
X r(x) · q(x) · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
dλ(x) (42)

0 � Dφ0,1,1,R·1,λ(P,Q)

= ∫
X r(x) ·

[
− log

(p(x)
q(x)

) + p(x)
q(x) − 1

]
· 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+ ∫
X r(x) · ∞ · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)
dλ(x)

+ ∫
X r(x) · ∞ · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
dλ(x) , (43)

where we have employed (10), (11) (23), (24), (29), (30); notice that
Dφ1,1,1,R·1,λ(P,Q) is a generalized version of the Kullback–Leibler information
divergence (resp. of the relative entropy). According to the above calculations, one
should excludeα � 0 wheneverp(x) = 0 for all x in some Awith λ[A] > 0, respec-
tively α � 1 whenever q(x) = 0 for all x in some Ã with λ[ Ã] > 0 (a refined alter-
native forα = 1 is given in Sect. 3.3.1.2 below). As far as splitting of the first integral
e.g. in (42) resp. (43) is concerned, notice that the integral (PR·λ − QR·λ)[X ] :=
∫
X

[
q(x) − p(x)

] · r(x) dλ(x) resp.
∫
X

[
p(x)
q(x) − 1

]
· r(x) dλ(x)may be finite even

in caseswherePR·λ[X ] = ∫
X p(x) · r(x) dλ(x) = ∞ andQR·λ[X ] = ∫

X q(x) ·
r(x) dλ(x) = ∞ (especially in case of unbounded data space (e.g.X = R) when an
additive constant is involved and r(·) is bounded from above); furthermore, there are
situationswherePR·λ[X ] = QR·λ[X ] < ∞ and thus (PR·λ − QR·λ)[X ] = 0 but
∫
X

[
p(x)
q(x) − 1

]
· r(x) dλ(x) = ∞. For α = 2, we obtain from (41) and (15) to (16)

10The first resp. second resp. third integral in (41) can be interpreted as divergence-contribution of
the function-(support-)overlap resp. of one part of the function-nonoverlap (e.g. describing “extreme
outliers”) resp. of the other part of the function-nonoverlap (e.g. describing “extreme inliers”).
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0 � Dφ2,1,1,R·1,λ(P,Q) = ∫
X

r(x)
2 · [

p(x) − q(x)
]2
dλ(x) , (44)

where we can exceptionally drop the non-negativity constraintsp(x) � 0,q(x) � 0.
As for interpretation, (44) is nothing but half of the r(·)-weighted squared L2(λ)-
distance between p(·) and q(·).

In the special sub-setup of r(x) ≡ 1 and “λ-probability-densities” ⇀p ⇀q on data
space X (cf. Remark 2(b)), we can deduce from (41)–(43) the divergences

Dφα,1,1,1·1,λ(
⇀P,

⇀Q) (45)

which for the choice α > 0 can be interpreted as “order−α” density-power diver-
gences DPD of Basu et al. [10] between the two corresponding probability measures
⇀P

1·λ
and ⇀Q

1·λ
; for their statistical applications see e.g. Basu et al. [12], Ghosh and

Basu [30, 31] and the references therein, and for generalα ∈ R see e.g. Stummer and
Vajda [84]. In particular, the case α = 1 corresponding divergence in (45) is called
“Kullback–Leibler information divergence” between ⇀P and ⇀Q, and is also known
under the name “relative entropy”. For α = 2, we derive Dφ2,1,1,R·1,λ(

⇀P,
⇀Q) from

(44) with r(x) = 1 which is nothing but half of the squared L2-distance between the
two “λ-probability-densities” ⇀p and ⇀q.

For the special discrete setup (X ,λ) = (X#,λ#) (recall λ#[{x}] = 1 for all x ∈
X#), the divergences (41)–(44) simplify to

0 � Dφα,1 ,1 ,R ·1 ,λ(P,Q)

= ∑
x∈X

r(x)
α·(α−1) · [(p(x)

)α + (α − 1) · (q(x)
)α − α · p(x) · (q(x)

)α−1]

·1]0,∞[
(
p(x) · q(x)

)

+ ∑
x∈X r(x) · [ p (x)α

α·(α−1) · 1]1,∞[(α) + ∞ · 1]−∞,0[∪]0,1[(α)
] · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)

+ ∑
x∈X r(x) · [ q(x)α

α · 1]0,1[∪]1,∞[(α) + ∞ · 1]−∞,0[(α)
] · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
,

for α ∈ R\{0, 1},(46)
0 � Dφ1,1 ,1 ,R ·1 ,λ(P,Q)

= ∑
x∈X r(x) · [

p(x) · log ( p (x)
q(x)

) + q(x) − p(x)
] · 1]0,∞[

(
p(x) · q(x)

)

+ ∑
x∈X r(x) · ∞ · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)

+ ∑
x∈X r(x) · q(x) · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
,

0 � Dφ0,1 ,1 ,R ·1 ,λ(P,Q)

= ∑
x∈X r(x) · [ − log

( p (x)
q(x)

) + p (x)
q(x) − 1

] · 1]0,∞[
(
p(x) · q(x)

)

+ ∑
x∈X r(x) · ∞ · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)

+ ∑
x∈X r(x) · ∞ · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
,

0 � Dφ2,1 ,1 ,R ·1 ,λ# (P,Q) = ∑
x∈X

r(x)
2 · [

p(x) − q(x)
]2

.



Some Universal Insights on Divergences for Statistics … 175

Hence, as above, one should exclude α � 0 whenever p(x) = 0 for all x in some
A with λ[A] > 0, respectively α � 1 whenever q(x) = 0 for all x in some Ã with
λ[ Ã] > 0 (a refined alternative for α = 1 is given in Sect. 3.3.1.2 below).

In particular, take the probability context of Remark 2(b), with discrete random

variable Y , hypothetical probability mass function q(x) := ⇀q(x) = ⇀Q
1·λ# [Y = x],

and data-derived probability mass function (relative frequency) p(x) := ⇀p
emp
N (x) =

1
N · #{i ∈ {1, . . . , N } : Yi = x}with sample size N . For r(x) ≡ 1, the corresponding

sample-size-weighted divergences 2N · Dφα,1,1,1,λ# (
⇀
P
emp

N ,
⇀Q) (for α ∈ R) can be

used as goodness-of-fit test statistics; see e.g. Kisslinger and Stummer [37] for their
limit behaviour as the sample size N tends to infinity.

3.3.1.2 m1(x) = m2(x) := q(x), m3(x) = r(x) · q(x) ∈ [0,∞] for Some (meas.)
Function r : X → R Satisfying r(x) ∈] − ∞, 0[∪]0,∞[ for λ−a.a. x ∈ X

In such a set-up, the divergence (36) becomes

0 � Dc
φ,Q,Q,R·Q,λ(P, Q)

= ∫
X

[
φ
( p(x)
q(x)

) − φ
(
1
) − φ′+,c

(
1
) · ( p(x)

q(x) − 1
)] · q(x) · r(x) dλ(x) (47)

= ∫
X

[
q(x) · φ

( p(x)
q(x)

) − q(x) · φ
(
1
) − φ′+,c

(
1
) · (

p(x) − q(x)
)] · r(x) dλ(x) , (48)

where in accordancewith the descriptions right after (1)we require thatφ :]a, b[→ R

is convex and strictly convex at 1 ∈]a, b[ and incorporate the zeros of p(·), q(·), r(·)
by the appropriate limits and conventions. In the following, we demonstrate this
in a non-negativity set-up where for λ-almost all x ∈ X one has r(x) ∈]0,∞[ as
well as p(x) ∈ [0,∞[, q(x) ∈ [0,∞[, and hence E =]a, b[=]0,∞[. In order to
achieve a reflexivity result in the spirit of Theorem 4, we have to check for – respec-
tively analogously adapt most of – the points in Assumption 2: to begin with, the
weightw(x, s, t) evaluated at s := p(x), t := q(x) has to be substituted/replaced by
w̃(x, t̃) := r(x) · t̃ evaluated at t̃ = q(x), and the dissimilarity ψφ,c(s, t) has to be

substituted/replaced by ˜̃ψφ,c (̃s, t̃) := ψφ,c
(
s̃
t̃
, 1

)
with the plug-in s̃ = p(x). Putting

things together, instead of the integrand-generating term w(x, s, t) · ψφ,c(s, t) we

have to inspect the boundary behaviour of w̃(x, t̃) · ˜̃ψφ,c (̃s, t̃) being explicitly given
(with a slight abuse of notation) by the function ψ̃φ,c :]0,∞[3→ [0,∞[ in

ψ̃φ,c
(
r, s̃, t̃

) := r · t̃ · ψφ,c
(
s̃
t̃
, 1

) = r · t̃ · [
φ
(
s̃
t̃

) − φ(1) − φ′+,c(1) · (
s̃
t̃
− 1

)]

= r · t̃ · [
φ
(
s̃·r
t̃ ·r

) − φ(1) − φ′+,c(1) · (
s̃·r
t̃ ·r − 1

)] = r · t̃ · ψφ,c
(
s̃·r
t̃ ·r , 1

)
. (49)

Since the general right-hand-derivative concerning assumption t ∈ R
( Q
M2

)
has s̃

t̃ = 1
as its analogue, we require that the convex function φ :]0,∞[→] − ∞,∞[ is strictly
convex (only) at 1 in conformity with Assumption 2(a) (which is also employed in
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Assumption 3); for the sake of brevity we use the short-hand notation 2(a) etc. in the
following discussion. We shall not need 2(b) to 2(d) in the prevailing context, so that
the above-mentioned generatorφT V (t) := |t − 1| is allowed for achieving reflexivity
(for reasons which will become clear in the proof of Theorem 5 in the appendix).
The analogue of 2(e) is r(x) · t̃ < ∞ which is always (almost surely) automatically
satisfied (a.a.sat.), whereas 2(f) converts to “r(x) · t̃ > 0 for all s̃ �= t̃” which is also
a.a.sat. except for the case t̃ = 0 which will be below incorporated in combination
with ψφ,c-multiplication (cf. (50)). For the derivation of the analogue of 2(k) we
observe that for fixed r > 0, s̃ > 0 the function t̃ → ψ̃φ,c

(
r, s̃, t̃

)
is (the r -fold of)

the perspective function (at s̃) of the convex function ψφ,c
(·, 1) and thus convex with

existing limit

�i1 := r · 0 · ψφ,c
(
s̃
0 , 1

) := limt→0 ψ̃φ,c
(
r, s̃, t̃

) =
= −r · s̃ · φ′+,c(1) + r · s̃ · limt̃→0

[
t̃
s̃ · φ

(
s̃
t̃

)] = r · s̃ · (φ∗(0) − φ′+,c(1)) � 0 , (50)

where φ∗(0) := limu→0 u · φ
(
1
u

) = limv→∞ φ(v)

v
exists but may be infinite (recall

that φ′+,c(1) is finite). Notice that in contrast to 2(k) we need not assume �i1 > 0
(and thus do not exclude φT V ). To convert 2(i), we employ the fact that for fixed
r > 0, t̃ > 0 the function s̃ → ψ̃φ,c

(
r, s̃, t̃

)
is convex with existing limit

r · t̃ · ψφ,c
(0
t̃
, 1

) := lim
s→0

ψ̃φ,c
(
r, s̃, t̃

) = r · t̃ · (φ(0) + φ′
+,c(1) − φ(1)) > 0 ,

where φ(0) := limu→0 φ(u) exists but may be infinite. To achieve the analogue of
2(g), let us first remark that for fixed r > 0 the function (̃s, t̃) → ψ̃φ,c

(
r, s̃, t̃

)
may

not be continuous at (̃s, t̃) = (0, 0), but due to the very nature of a divergence we
make the 2(g)-conform convention of setting

r · 0 · ψφ,c
(
0
0 , 1

) := ψ̃φ,c
(
r, 0, 0

) := 0

(notice that e.g. the power function φ−1 of (5) with index α = −1 obeys
limt̃→0 ψ̃φ−1

(
r, t̃, t̃

) = 0 �= r
2 = limt̃→0 ψ̃φ−1

(
r, t̃2, t̃

)
). The analogues of the remain-

ingAssumptions 2(h),(j),(�),(m),(n) are (almost surely) obsolete because of our basic
(almost surely) finiteness requirements. Summing up, with the above-mentioned lim-
its and conventions we write (47) explicitly as



Some Universal Insights on Divergences for Statistics … 177

0 � Dc
φ,Q,Q,R·Q,λ(P,Q)

= ∫
X r(x) · [

q(x) · φ
(p(x)
q(x)

) − q(x) · φ
(
1
) − φ′+,c

(
1
) · (

p(x) − q(x)
)]

·1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+[
φ∗(0) − φ′+,c(1)

] · ∫
X r(x) · p(x) · 1]0,∞[

(
p(x)

) · 1{0}
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x) · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
dλ(x)

= ∫
X r(x) ·

[
q(x) · φ

(p(x)
q(x)

) − q(x) · φ
(
1
) − φ′+,c

(
1
) · (

p(x) − q(x)
)]

·1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+[
φ∗(0) − φ′+,c(1)

] · ∫
X r(x) · p(x) · 1{0}

(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x) · 1{0}

(
p(x)

)
dλ(x) . (51)

In case of QR·λ[X ] := ∫
X q(x) · r(x) dλ(x) < ∞, the divergence (51) becomes

0 � Dc
φ,Q ,Q ,R ·Q ,λ(P,Q)

= ∫
X r(x) ·

[
q(x) · φ

( p (x)
q(x)

) − φ′+,c

(
1
) · (

p(x) − q(x)
)] · 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+[
φ∗(0) − φ′+,c(1)

] · ∫X r(x) · p(x) · 1{0}
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1)

] · ∫
X r(x) · q(x) · 1{0}

(
p(x)

)
dλ(x) − φ(1) · ∫

X r(x) · q(x) dλ(x) .

(52)

Moreover, in case of φ
(
1
) = 0 and (PR·λ − QR·λ)[X ] = ∫

X

(
p(x) − q(x)

) ·
r(x) dλ(x) ∈] − ∞,∞[ (but not necessarily PR·λ[X ] = ∫

X p(x) · r(x) dλ(x) <

∞, QR·λ[X ] = ∫
X q(x) · r(x) dλ(x) < ∞), the divergence (51) turns into

0 � Dc
φ,Q ,Q ,R ·Q ,λ(P,Q) = ∫

X r(x) · q(x) · φ
( p (x)
q(x)

) · 1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+φ∗(0) · ∫
X r(x) · p(x) · 1{0}

(
q(x)

)
dλ(x) + φ(0) · ∫

X r(x) · q(x) · 1{0}
(
p(x)

)
dλ(x)

−φ′+,c

(
1
) · ∫

X r(x) · (p(x) − q(x)
)
dλ(x) . (53)

Let us remark that (53) can be interpreted as φ-divergence Dc
φ

(
μ, ν

)
between the

two nonnegative measures μ, ν (on (X ,F )) (cf. Stummer and Vajda [83]), where
μ[•] := PR·λ[•] and ν[•] := QR·λ[•]. In the following, we briefly discuss two
important sub-cases. First, in the “λ-probability-densities” context of Remark 2(b)
one has for generalX the manifestation p(x) := ⇀p(x) � 0, q(x) := ⇀q(x) � 0, and
under the constraintφ(1) = 0 the corresponding divergence Dc

φ,
⇀
Q,

⇀
Q,R·⇀Q,λ

(
⇀
P,

⇀
Q) turns

out to be the (r-)“localφ-divergence ofAvlogiaris et al. [6, 7]; in case of r(x) ≡ 1 this
reduces – due to the fact

∫
X

(
⇀p(x) − ⇀q(x)

)
dλ(x) = 0 – to the classical Csiszar-Ali-

Silvey φ-divergence CASD ([4, 27], see also e.g. Liese and Vajda [41], Vajda [89])
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0 � Dc

φ,
⇀
Q,

⇀
Q,1·⇀Q,λ

(
⇀
P,

⇀
Q) = ∫

X
⇀q(x) · φ

(⇀p(x)
⇀q(x)

) · 1]0,∞[
(

⇀p(x) · ⇀q(x)
)
dλ(x)

+φ∗(0) · ∫
X

⇀p(x) · 1{0}
(

⇀q(x)
)
dλ(x) + φ(0) · ∫

X
⇀q(x) · 1{0}

(
⇀p(x)

)
dλ(x)

−φ′+,c

(
1
) · ∫

X

(
⇀p(x) − ⇀q(x)

)
dλ(x)

= ∫
X

⇀q(x) · φ
(⇀p(x)

⇀q(x)

) · 1]0,∞[
(

⇀p(x) · ⇀q(x)
)
dλ(x)

+φ∗(0) · P1·λ[⇀q(x) = 0] + φ(0) · Q1·λ[⇀p(x) = 0] ; (54)

if φ(1) �= 0 then one has to additionally subtract φ(1) (cf. the corresponding special
case of (52)). In particular, for the special sub-setup where for λ-almost all x ∈ X
there holds p(x) := ⇀p(x) > 0, q(x) := ⇀q(x) > 0, r(x) ≡ 1 , φ(1) = 0, one ends up
with the reduced Csiszar-Ali-Silvey divergence

0 � Dc

φ,
⇀
Q,

⇀
Q,1·⇀Q,λ

(
⇀
P,

⇀
Q) = ∫

X
⇀q(x) · φ

(⇀p(x)
⇀q(x)

)
dλ(x)

which can be interpreted as a “consistent extension” of the motivating pointwise
dissimilarity d(7)

φ (·, ·) from the introductory Sect. 2; notice the fundamental struc-

tural difference to the divergence (38) which reflects d(6)
φ (·, ·). For comprehensive

treatments of statistical applications of CASD, the reader is referred to Liese and
Vajda [41], Read and Cressie [72], Vajda [89], Pardo [68], Liese and Miescke [40],
Basu et al. [13].

Returning to the general divergence setup (51), we derive the reflexivity result (to
be proved in the appendix):

Theorem 5 Let c ∈ [0, 1], r(x) ∈]0,∞[ for λ-a.a. x ∈ X , R
(
P
Q

) ∪ {1} ⊂ [a, b],
and φ ∈ Φ(]a, b[) be strictly convex at t = 1. Moreover, suppose that

∫
X

(
p(x) − q(x)

) · r(x) dλ(x) = 0 (55)

(but not necessarily
∫
X p(x) · r(x) dλ(x) < ∞,

∫
X q(x) · r(x) dλ(x) < ∞).

Then:
(1) Dc

φ,Q,Q,R·Q,λ(P,Q) � 0. Depending on the concrete situation,
Dc

φ,Q,Q,R·Q,λ(P,Q) may take infinite value.

(2) Dc
φ,Q,Q,R·Q,λ(P,Q) = 0 if and only if p(x) = q(x) forλ-a.a. x ∈ X . (56)

Remark 3 (a) In the context of non-negative measures, the special case c = 1 –
together with

∫
X p(x) · r(x) dλ(x) < ∞,

∫
X q(x) · r(x) dλ(x) < ∞ – of

Theorem 5 was first achieved by Stummer and Vajda [83].
(b) Assumption (55) is always automatically satisfied if one has coincidence of
finite total masses in the sense of PR·λ[X ] = ∫

X p(x) · r(x) dλ(x) = ∫
X q(x) ·

r(x) dλ(x) = QR·λ[X ] < ∞. For r(x) ≡ 1 this is always satisfied forλ-probability

densities p(x) := ⇀p(x), q(x) := ⇀q(x), since ⇀P
1·λ[X ] = ⇀Q

1·λ[X ] = 1.
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(c)Notice that in contrast to Theorem4, the generator-concerningAssumptions 2(b)–
(d) are replaced by the “model-concerning” constraint (55). This opens the gate for
the use of the generators φie and φT V for cases where (55) is satisfied. For the latter,
we obtain with c = 1

2 explicitly from (49) and (33)

ψ̃φT V , 12

(
r, s̃, t̃

) := r · t̃ · ψφT V , 12

( s̃
t̃
, 1

) = r · t̃ · ∣∣ s̃
t̃

− 1
∣∣ = r · ∣∣̃s − t̃

∣∣,

and hence from (51) together with φT V (1) = 0, φT V (0) = 1 (cf. (31)), φ′
T V,+, 12

(1) =
0 (cf. (32)), φ∗

T V (0) = lims→∞ 1
s · ψφT V , 12

(s, 1) = 1 (cf. (34)) we get

0 � Dc
φ,Q,Q,R·Q,λ(P,Q) = ∫

X r(x) · ∣∣p(x) − q(x)
∣
∣ dλ(x) (57)

which is nothing but the (possibly infinite) r(·)-weighted L1-distance between the
functions x → p(x) and x → q(x).

(d) In the light of (52), Theorem 4 (adapted to the current context) and Theorem 5,
let us indicate that if one wants to use Ξ := ∫

X q(x) · φ
(p(x)
q(x)

) · r(x) dλ(x) (with
appropriate zero-conventions) as a divergence, then one should either employ gener-
ators φ satisfying φ(1) = φ′+,c(1) = 0, or employ models fulfilling the assumption
(56) together with generatorsφ satisfyingφ(1) = 0. On the other hand, if this integral
Ξ appears in your application context “naturally”, then one should be aware that Ξ
may become negative depending on the involved set-up; for a counter-example, see
Stummer and Vajda [83]. This concludes Remark 3.

As an important example, we illuminate the special case φ = φα with α ∈ R\{0, 1}
(cf. (5)) under the constraint (PR·λ − QR·λ)[X ] = ∫

X

(
p(x) − q(x)

) · r(x) dλ(x)
∈] − ∞,∞[. Accordingly, the “implicit-boundary-describing” divergence (48) resp.
the corresponding “explicit-boundary” version (53) turn into the generalized power
divergences of order α (cf. Stummer and Vajda [83] for r(x) ≡ 1)11

0 � Dφα,Q,Q,R·Q,λ(P,Q)

= ∫
X

1
α·(α−1) ·

[(p(x)
q(x)

)α − α · p(x)
q(x) + α − 1

]
· q(x) · r(x) dλ(x) (58)

= 1
α·(α−1) · ∫

X r(x) · q(x) ·
[(p(x)

q(x)

)α − α · p(x)
q(x) + α − 1

]
· 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+φ∗
α(0) · ∫

X r(x) · p(x) · 1{0}
(
q(x)

)
dλ(x) + φα(0) · ∫

X r(x) · q(x) · 1{0}
(
p(x)

)
dλ(x)

= 1
α·(α−1)

∫
X r(x) ·

[
p(x)α · q(x)1−α − q(x)

]
· 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+ 1
1−α · ∫

X r(x) · (p(x) − q(x)) dλ(x) + ∞ · 1]1,∞[(α) · ∫
X r(x) · p(x) · 1{0}

(
q(x)

)
dλ(x)

+( 1
α·(1−α)

· 1]0,1]∪]1,∞[(α) + ∞ · 1]−∞,0[(α)
) · ∫

X r(x) · q(x) · 1{0}
(
p(x)

)
dλ(x),

11This can be interpreted analogously as in footnote 10.
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where we have employed (8) and (7); especially, one gets for α = 2

0 � Dφ2,Q,Q,R·Q,λ(P,Q) = ∫
X

1
2 · (p(x)−q(x))2

q(x) · r(x) dλ(x)

= 1
2

∫
X r(x) · (p(x)−q(x))2

q(x) · 1[0,∞[(p(x)) · 1]0,∞[(q(x)) dλ(x)

+∞ · ∫
X r(x) · p(x) · 1{0}

(
q(x)

)
dλ(x)

which is called Pearsons’s chisquare divergence. Under the same constraint (PR·λ −
QR·λ)[X ] ∈] − ∞,∞[, the case α = 1 leads by (18)–(22) to the generalized
Kullback–Leibler divergence (generalized relative entropy)

0 � Dφ1,Q,Q,R·Q,λ(P,Q) = ∫
X

[
p(x)
q(x) · log (p(x)

q(x)

) + 1 − p(x)
q(x)

]
· q(x) · r(x) dλ(x)

= ∫
X r(x) · p(x) · log (p(x)

q(x)

) · 1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+ ∫
X r(x) · (q(x) − p(x)) dλ(x) + ∞ · ∫

X r(x) · p(x) · 1{0}
(
q(x)

)
dλ(x)

(which equals (42)), and for α = 0 one gets from (19), (25)–(27) the generalized
reverse Kullback–Leibler divergence (generalized reverse relative entropy)

0 � Dφ0,Q,Q,R·Q,λ(P,Q) = ∫
X

[ − log
(p(x)
q(x)

) + p(x)
q(x) − 1

] · q(x) · r(x) dλ(x)

= ∫
X r(x) · q(x) · log (q(x)

p(x)

) · 1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+ ∫
X r(x) · (p(x) − q(x)) dλ(x) + ∞ · ∫

X r(x) · q(x) · 1{0}
(
p(x)

)
dλ(x).

Notice that instead of the limit in (50) one could also use the convention r · 0 ·
ψφ

(
s
0 , 1

) := ψ̃φ

(
r, s, 0

) := 0; in the context of λ-probability densities, one then ends
up with divergence by Rüschendorf [75].

For the discrete setup (X ,λ) = (X#,λ#), the divergence in (51) simplifies to

0 � Dc
φ,Q,Q,R·Q,λ#

(P,Q)

= ∑
x∈X r(x) · [

q(x) · φ
(p(x)
q(x)

) − q(x) · φ
(
1
) − φ′+,c

(
1
) · (

p(x) − q(x)
)]

·1]0,∞[
(
p(x) · q(x)

)

+[
φ∗(0) − φ′+,c(1)

] · ∑
x∈X r(x) · p(x) · 1{0}

(
q(x)

)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∑
x∈X r(x) · q(x) · 1{0}

(
p(x)

)
(59)

which in case of φ(1) = φ′+,c(1) = 0 – respectively φ(1) = 0 and (55) – turns into

0 � Dc
φ,Q ,Q ,R ·Q ,λ#

(P,Q) = ∑
x∈X r(x) · q(x) · φ( p (x)

q(x)

) · 1]0,∞[
(
p(x) · q(x)

)

+φ∗(0) · ∑
x∈X r(x) · p(x) · 1{0}

(
q(x)

) + φ(0) · ∑
x∈X r(x) · q(x) · 1{0}

(
p(x)

)
. (60)
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3.3.1.3 m1(x) = m2(x) := w(p(x),q(x)), m3(x) = r(x) · w(p(x),q(x)) ∈ [0,∞[
for Some (Measurable) Functions w : R(P) × R(Q) → R and r : X → R

Such a choice extends the context of the previous Sect. 3.3.1.2 where the “connector
function” w took the simple form w(u, v) = v, as well as the setup of Sect. 3.3.1.1
dealing with constant w(u, v) ≡ 1. This introduces a wide flexibility with diver-
gences of the form

0 � Dc
φ,W (P,Q),W (P,Q),R·W (P,Q),λ(P, Q)

:= ∫
X

[
φ
( p(x)

w(p(x),q(x))

) − φ
( q(x)

w(p(x),q(x))

)

−φ′+,c

( q(x)
w(p(x),q(x))

) · ( p(x)
w(p(x),q(x)) − q(x)

w(p(x),q(x))

)] · w(p(x), q(x)) · r(x) dλ(x),(61)

which for the discrete setup (X ,λ) = (X#,λ#) (recall λ#[{x}] = 1 for all x ∈ X#)
simplifies to

0 � Dc
φ,W (P,Q),W (P,Q),R·W (P,Q),λ#

(P, Q) = ∑
x∈X

[
φ
( p(x)

w(p(x),q(x))

) − φ
( q(x)

w(p(x),q(x))

)

−φ′+,c

( q(x)
w(p(x),q(x))

) · ( p(x)
w(p(x),q(x)) − q(x)

w(p(x),q(x))

)] · w(p(x), q(x)) · r(x) . (62)

A detailed discussion of this wide class of divergences (61),(62) is beyond the scope
of this paper. For the λ-probability density context (and an indication for more gen-
eral functions), see the comprehensive paper of Kisslinger and Stummer [37] and the
references therein. Finally, by appropriate choices ofw(·, ·)we can even derive diver-
gences of the form (60) but with non-convex non-concave φ: see e.g. the “perturbed”
power divergences of Roensch and Stummer [74].

3.3.2 Global Scaling and Aggregation, and Other Paradigms

Our universal framework also contains, as special cases, scaling and aggregation
functions of the form mi (x) := m�,i (x) · Hi

(
(mg,i (z))z∈X

)
for some (meas., pos-

sibly nonnegative) functions ml,i : X �→ R, mg,i : X �→ R and some nonzero
scalar functionals Hi thereupon (i = 1, 2, 3, x ∈ X ). Accordingly, the compo-
nents Hi

(
. . .

)
can be viewed as “global tunings”, and may depend adaptively

on the primary-interest functions P and Q, i.e. mg,i (z) = wg,i (x, p(x), q(x)). For
instance, in a finite discrete setup (X#,λ#) with strictly convex and differentiable
φ, m1(x) ≡ m2(x) ≡ 1, m3(x) = Hi

(
(wg,3(q(x)))z∈X

)
this reduces to the confor-

mal divergences of Nock et al. [64] (they also indicate the extension to equal non-
unity scaling m1(x) ≡ m2(x)), for which the subcase wg,3(q(x)) := (

φ′ (q(x))
)2
,

H3
((
h(x)

)
x∈X

) := (
1 + ∑

x∈X h(x)
)−1/2

leads to the total Bregman divergences
ofLiu et al. [44, 45],Vemuri et al. [91]. In contrast,Nock et al. [62] usem1(x) ≡ m1 =
H1

(
(p(x))z∈X

)
, m2(x) ≡ m1 = H1

(
(q(x))z∈X

)
, m3(x) ≡ 1. A more detailed dis-

cussion can be found in Stummer andKißlinger [82] and Roensch and Stummer [74],
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where they also give versions for nonconvex nonconcave divergence generators. Let
us finally mention that for the construction of divergence families, there are other
recent paradigms which are essentially different to (1), e.g. by means of measuring
the tightness of inequalities (cf. Nielsen et al. [60, 61]), respectively of comparative
convexity (cf. Nielsen et al. [59]).

4 Divergences for Essentially Different Functions

4.1 Motivation

Especially in divergence-based statistics, one is often faced with the situation where
the functions p(·) and q(·) are of “essentially different nature”. For instance,
consider the situation where the uncertainty-prone data-generating mechanism is
a random variable Y taking values in X = R having a “classical” (e.g. Gaus-
sian) probability density ⇀q(·) with respect to the one-dimensional Lebesque mea-

sure λL , i.e. Pr [Y ∈ • ] := ⇀Q
1·λL [•] := ∫

•
⇀q(x) dλL(x) where the latter is almost

always a Riemann integral (i.e. dλL(x) = dx); notice that we have set r(x) ≡
1 (x ∈ R). As already indicated above, under independent and identically dis-
tributed (i.i.d.) data observations Y1, . . . ,YN of Y one often builds the correspond-
ing “empirical distribution” ⇀P

emp

N [•] := 1
N · ∑N

i=1 δYi [•] which is nothing but the
probability distribution reflecting the underlying (normalized) histogram. By rewrit-

ing ⇀P
1·λ# [•] := ⇀P

emp

N [•] = ∫
•

⇀p(x) dλ#(x) with empirical probability mass func-
tion ⇀p(x) := 1

N · #{i ∈ {1, . . . , N } : Yi = x} =: ⇀p
emp
N (x) one encounters some basic

problems for a straightforward application of divergence concepts: the two aggre-
gating measures λL and λ# do not coincide and actually they are of “essentially
different” nature; moreover, ⇀p(·) is nonzero only on the range R(Y1, . . . ,YN ) =
{z1, . . . , zs} of distinguishable points z1, . . . , zs (s � N ) occupied by Y1, . . . ,YN .
In particular, one has λL [{z1, . . . , zs}] = 0. Accordingly, building a “non-coarsely
discriminating” dissimilarity/divergence D(

⇀P,
⇀Q) between such type of functions

⇀P := {
⇀p(x)

}
x∈X and ⇀Q := {

⇀q(x)
}
x∈X , is a task like “comparing apples with

pears”. There are several solutions to tackle this. To begin with, in the following
we take the “encompassing” approach of quantifying their dissimilarity by means of
their common superordinate characteristics as “fruits”. Put in mathematical terms,
we choose e.g. X = R, λ = λL + λ# and work with the particular representations
⇀p(x) := ⇀̃p(x) · 1{z1,...,zs }(x) with ⇀̃p(x) > 0 for λ-almost all x ∈ {z1, . . . , zs} as well
as ⇀q(x) := ⇀̃q(x) · 1 Ã\{z1,...,zs }(x) with

⇀̃q(x) > 0 for λ-almost all x ∈ Ã\{z1, . . . , zs}
with some large enough (measurable) subset Ã of X = R such that

1 =
∫

X

⇀p(x) dλ#(x) =
∫

X

⇀p(x) dλ(x) and 1 =
∫

X

⇀q(x) dλL (x) =
∫

X

⇀q(x) dλ(x) (63)
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hold. In fact,with these choices one gets Pr [Y ∈ • ] = ∫
•

⇀q(x) dλ(x) and⇀P
emp

N [•] =∫
•

⇀p(x) dλ(x), as well as

p(x) · q(x) = 0 forλ-almost all x ∈ X , (64)

p(x) · 1{0}
(
q(x)

) = p(x) forλ-almost all x ∈ X , (65)

q(x) · 1{0}
(
p(x)

) = q(x) forλ-almost all x ∈ X (66)

for the special choices p(x) = ⇀p(x) and q(x) = ⇀q(x). By means of these and (63),
the divergence (51) simplifies to

Dc

φ,
⇀
Q,

⇀
Q,1·⇀Q,λ

(
⇀P,

⇀Q) = φ∗(0) + φ(0) − φ(1) > 0. (67)

Since for arbitrary space X (and not only R) and any aggregator λ thereupon,
the formula (67) holds for all functions ⇀P := {

⇀p(x)
}
x∈X , ⇀Q := {

⇀q(x)
}
x∈X which

satisfy (63) as well as (64)–(66) for λ-almost all x ∈ X , and since φ∗(0) + φ(0) −
φ(1) is just a constant (whichmay be infinite), these divergences Dc

φ,
⇀
Q,

⇀
Q,1·⇀Q,λ

(
⇀P,

⇀Q)

are not suitable for discriminating between such “essentially different” (basically
orthogonal) λ-probability densities ⇀P and ⇀Q. More generally, under the validity of
(64)–(66) for λ-almost all x ∈ X – which we denote byP ⊥ Q and which basically
amounts to pair of functions of the type

p(x) := p̃(x) · 1A(x) with p̃(x) > 0 forλ-almost all x ∈ A, (68)

q(x) := q̃(x) · 1B\A(x) with q̃(x) > 0 forλ-almost all x ∈ B\A, (69)

with some (measurable) subsets Ã ⊂ B of X – the divergence (51) turns into

Dc
φ,Q,Q,R·Q,λ(P,Q) = [

φ∗(0) − φ′+,c(1)
] · ∫

X r(x) · p(x) dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x) dλ(x) > 0 (70)

which now depends on P and Q, in a rudimentary “weighted-total-mass” way.
Inspired by this, we specify a statistically interesting divergence subclass:

Definition 1 We say that a divergence (respectively dissimilarity respectively dis-
tance)12 D(·, ·) is encompassing for a class P̃ of functions if

• for arbitrarily fixed Q := {
q(x)

}
x∈X ∈ P̃ the function P := {

p(x)
}
x∈X →

D(P, Q) is non-constant on the subfamily of all P ∈ P̃ with P ⊥ Q, and
• for arbitrarily fixed P ∈ P̃ the function Q → D(P, Q) is non-constant on the
subfamily of all Q ∈ P̃ with Q ⊥ P .

Accordingly, due to (67) the prominently used divergences Dc

φ,
⇀
Q,

⇀
Q,1·⇀Q,λ

(
⇀P,

⇀Q) are

not encompassing for the class of P̃ of all λ-probability densities; more gener-

12i.e. the properties (D1) and (D2) (respectively (D2) respectively (D1), (D2) and (D3)) are satisfied.
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ally, because of (70) the divergences Dc
φ,Q,Q,R·Q,λ(P,Q) are in general encom-

passing for the class of P̃ of all λ-probability densities, but not for P̃ := {P̃ :={
p̃(x)

}
x∈X | ∫

X r(x) · p̃(x) dλ(x) = c̃ } for any fixed c̃.

4.2 m1(x) = m2(x) := q(x),
m3(x) = r(x) · q(x)χ∈ [0,∞] for Some χ > 1 and
Some (Measurable) Function r : X → [0,∞[

In the following, we propose a new way of repairing the above-mentioned encom-
passing-concerning deficiency for λ-probability density functions, by introducing
a new divergence in terms of choosing a generator φ :]0,∞[→ R which is con-
vex and strictly convex at 1, the scaling function m1(x) = m2(x) := q(x) as in
the non-negativity set-up of Sect. 3.3.1.2, but the more general aggregation func-
tionm3(x) = r(x) · q(x)χ ∈ [0,∞[ for some power χ > 1 and some (measurable)
function r : X → [0,∞[ which satisfies r(x) ∈]0,∞[ for λ-almost all x ∈ X . To
incorporate the zeros ofp(·),q(·), r(·)by appropriate limits and conventions,wepro-
ceed analogously to Sect. 3.3.1.2. Accordingly, we inspect the boundary behaviour
of the function ψ̃φ,c :]0,∞[3→ [0,∞[ given by

ψ̃φ,c
(
r, s̃, t̃

) := r · t̃χ · ψφ,c
(
s̃
t̃ , 1

) = r · t̃χ · [
φ
(
s̃
t̃

) − φ(1) − φ′+,c(1) · (
s̃
t̃ − 1

)]

= r · t̃χ · [
φ
(
s̃·r
t̃ ·r

) − φ(1) − φ′+,c(1) · (
s̃·r
t̃ ·r − 1

)] = r · t̃χ · ψφ,c
(
s̃·r
t̃ ·r , 1

)
.

As in Sect. 3.3.1.2, the Assumption 2(a) is conformly satisfied, for which we use the
short-hand notation 2(a) etc. in the following discussion. Moreover, we require the
validity of 2(b)–2(d) at the point t = 1. The analogue of 2(e) is r(x) · t̃χ < ∞which
is always (almost surely) automatically satisfied (a.a.sat.), whereas 2(f) converts to
“r(x) · t̃χ > 0 for all s̃ �= t̃” which is also a.a.sat. except for the case t̃ = 0 which
will be incorporated below. For the derivation of the analogue of 2(k) we observe
that for fixed r > 0, s̃ > 0

�i2 := r · 0χ · ψφ,c
(
s̃
0 , 1

) := limt→0 ψ̃φ,c
(
r, s̃, t̃

) =
= r · s̃χ · limt̃→0

[
t̃χ

s̃χ · φ
(
s̃
t̃

)] = r · s̃χ · φ∗
χ(0) � 0, (71)

where φ∗
χ(0) := limu→0 uχ−1 · u · φ

(
1
u

) = limv→∞ φ(v)

vχ exists but may be infinite.
To convert 2(i), we employ the fact that for fixed r > 0, t̃ > 0 the function s̃ →
ψ̃φ,c

(
r, s̃, t̃

)
is convex with existing limit

�i3 := r · t̃χ · ψφ,c
(0
t̃
, 1

) := lim
s→0

ψ̃φ,c
(
r, s̃, t̃

)

= r · t̃χ · (φ(0) + φ′
+,c(1) − φ(1)) > 0. (72)
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To achieve the analogue of 2(g), let us first remark that for fixed r > 0 the function
(̃s, t̃) → ψ̃φ,c

(
r, s̃, t̃

)
may not be continuous at (̃s, t̃) = (0, 0), but due to the very

nature of a divergence we make the 2(g)-conform convention of setting

r · 0χ · ψφ,c
(
0
0 , 1

) := ψ̃φ,c
(
r, 0, 0

) := 0 .

The analogues of the Assumptions 2(h), (j), (�), (m), (n) are obsolete because of
our basic finiteness requirements. Putting together all the building-blocks, with the
above-mentioned limits and conventions we obtain the divergence

0 � Dc
φ,Q,Q,R·Qχ,λ(P,Q)

:= ∫
X r(x) ·

[
q(x)χ · φ

(p(x)
q(x)

) − q(x)χ · φ
(
1
) − φ′+,c

(
1
) · (

p(x) · q(x)χ−1 − q(x)χ
)]

dλ(x)

:= ∫
X r(x) ·

[
q(x)χ · φ

(p(x)
q(x)

) − q(x)χ · φ
(
1
) − φ′+,c

(
1
) · (

p(x) · q(x)χ−1 − q(x)χ
)]

·1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+φ∗
χ(0) · ∫

X r(x) · p(x)χ · 1]0,∞[
(
p(x)

) · 1{0}
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x)χ · 1]0,∞[

(
q(x)

) · 1{0}
(
p(x)

)
dλ(x)

= ∫
X r(x) ·

[
q(x)χ · φ

(p(x)
q(x)

) − q(x)χ · φ
(
1
) − φ′+,c

(
1
) · (

p(x) · q(x)χ−1 − q(x)χ
)]

·1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+φ∗
χ(0) · ∫

X r(x) · p(x)χ · 1{0}
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x)χ · 1{0}

(
p(x)

)
dλ(x) . (73)

In case ofQR·λ
χ [X ] := ∫

X q(x)χ · r(x) dλ(x) < ∞, the divergence (73) becomes

0 � Dc
φ,Q,Q,R·Qχ,λ(P,Q)

= ∫
X r(x) ·

[
q(x)χ · φ

(p(x)
q(x)

) − φ′+,c

(
1
) · (

p(x) · q(x)χ−1 − q(x)χ
)]

·1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+φ∗
χ(0) · ∫

X r(x) · p(x)χ · 1{0}
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1)

] · ∫
X r(x) · q(x)χ · 1{0}

(
p(x)

)
dλ(x)

−φ(1) · ∫
X r(x) · q(x)χ dλ(x) . (74)

Moreover, in case of φ
(
1
) = 0 and

∫
X

(
p(x) · q(x)χ−1 − q(x)χ

) · r(x) dλ(x) ∈
[0,∞[ (but not necessarily

∫
X p(x) · q(x)χ−1 · r(x) dλ(x) < ∞,

∫
X q(x)χ ·

r(x) dλ(x) < ∞), the divergence (73) turns into

0 � Dc
φ,Q,Q,R·Qχ,λ(P,Q) = ∫

X r(x) · q(x)χ · φ
(p(x)
q(x)

) · 1]0,∞[
(
p(x) · q(x)

)
dλ(x)

+φ∗
χ(0) · ∫

X r(x) · p(x)χ · 1{0}
(
q(x)

)
dλ(x) + φ(0) · ∫

X r(x) · q(x)χ · 1{0}
(
p(x)

)
dλ(x)

−φ′+,c
(
1
) · ∫

X

(
p(x) · q(x)χ−1 − q(x)χ

) · r(x) dλ(x) .



186 M. Broniatowski and W. Stummer

In contrast to the case χ = 1 where for λ-probability-density functions ⇀p, ⇀q, the
divergence (53) was further simplified due to

∫
X

(
⇀p(x) − ⇀q(x)

)
dλ(x) = 0, for the

current setup χ > 1 the latter has no impact for further simplification. However, in
general, for the new divergence defined by (73) one gets for any P ⊥ Q from (68),
(69), (64)–(66) the expression

0 � Dc
φ,Q,Q,R·Qχ,λ(P,Q)

= φ∗
χ(0) · ∫

X r(x) · p(x)χ dλ(x) + [
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x)χ dλ(x) (75)

which is encompassing for the class of λ-probability functions. By inspection of the
above calculations, one can even relax the assumptions away from convexity:

Theorem 6 Letχ > 1, c ∈ [0, 1],φ :]0,∞[→ R such that bothφ′+,c(1)andφ(0) :=
lims→0 φ(s) exist and ψφ,c(s, 1) = φ(s) − φ(1) − φ′+,c(1) · (s − 1) � 0 for all s >

0. Moreover, assume thatψφ,c(s, 1) = 0 if and only if s = 1. Furthermore, let the lim-
its �i2 � 0 defined by (71) and �i3 � 0 defined by (72) exist and satisfy �i2 + �i3 > 0.
Then one gets for the divergence defined by (73):
(1) Dc

φ,Q,Q,R·Qχ,λ(P,Q) � 0. Depending on the concrete situation,
Dc

φ,Q,Q,R·Qχ,λ(P,Q) may take infinite value.

(2) Dc
φ,Q,Q,R·Qχ,λ(P,Q) = 0 if and only if p(x) = q(x) forλ-a.a. x ∈ X .

(3) For P ⊥ Q, the representation (75) holds.

Remark 4 (1) As seen above, if the generator φ is in Φ(]0,∞[) and satisfies the
Assumptions 2(a)–(d) for t = 1, then the requirements on φ in Theorem 6 are auto-
matically satisfied. The case χ = 1 has already been covered by Theorem 5.
(2) For practical purposes, it is sometimes useful to work with a sub-setup of choices
χ > 1, c ∈ [0, 1] and φ such that �i2 ∈]0,∞[ and/or �i3 ∈]0,∞[. �

Let us give some examples. To begin with, for α ∈ R\{0, 1} take the power
functions φ(t) := φα(t) := tα−1

α(α−1) − t−1
α−1 ∈ [0,∞[, t ∈]0,∞[, with the proper-

tiesφα(1) = 0,φ′
α(1) = 0 (cf. (6)) andφα(0) := limt↓0 φα(t) = 1

α
· 1]0,1]∪]1,∞[(α) +

∞ · 1]−∞,0[(α). Then, for arbitrary χ ∈ R one gets the representation

0 � Dφα,Q,Q,R·Qχ,λ(P,Q)

:= ∫
X r(x) ·

[
q(x)χ · φα

(p(x)
q(x)

) − q(x)χ · φα
(
1
) − φ′

α

(
1
) · (

p(x) · q(x)χ−1 − q(x)χ
)]

dλ(x)

(76)

= ∫
X

[
φα

( p(x)
wχ̃(p(x),q(x))

) − φα
( q(x)
wχ̃(p(x),q(x))

)

−φ′
α

( q(x)
wχ̃(p(x),q(x))

) · ( p(x)
wχ̃(p(x),q(x)) − q(x)

wχ̃(p(x),q(x))

)] · wχ̃(p(x),q(x)) · r(x) dλ(x)

= Dφα,Qχ̃,Qχ̃,R·Qχ̃,λ(P,Q) (77)

with the adaptive scaling/aggregation function wχ̃(u, v) = vχ̃ and χ̃ := 1 + χ−1
1−α

;
in other words, the divergence (76) can be seen as a particularly adaptively scaled
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Bregman divergence of non-negative functions in the sense of Kißlinger and Stum-
mer [37], from which their robustness and non-singularity-asymptotical-statistics
properties can be derived as a special case (for the probability setup ⇀P, ⇀Q, r(x) ≡ 1,
and beyond). From (77), it is immediate to see that the case χ = 1 corresponds
to the generalized power divergences (58) of order α ∈ R\{0, 1}, whereas χ = α
corresponds to the unscaled divergences (40), i.e.

0 � Dφα,Q,Q,R·Qα,λ(P,Q) = Dφα,1,1,R·1,λ(P,Q) (78)

= ∫
X

r(x)
α·(α−1) ·

[
p(x)α + (α − 1) · q(x)α − α · p(x) · q(x)α−1

]
dλ(x) (c f. (40))

which forα > 1, r(x) ≡ 1,p = ⇀p, q = ⇀q is a multiple of theα-order density-power
divergences DPD used by Basu et al. [10]; as a side remark, in the latter setup our
divergence (77) manifests a smooth interconnection between PD and DPD which
differs from that of Patra et al. [70], Ghosh et al. [32].

For (76), let us shortly inspect the corresponding �i2 from (71) as well as �i3 from
(72). Only forα ∈]0, 1[∪]1,∞[, one gets finite �i3 = r t̃χ

α
∈]0,∞[ for allχ ∈ R, r >

0, t̃ > 0. Additionally, one obtains finite �i2 only for χ = 1, α ∈]0, 1[ where �i2 =
r s̃
1−α

(PD case), respectively for χ > 1, α ∈]0, 1[∪]1,χ[ where �i2 = 0, respectively
for α = χ > 1 where �i2 = r s̃α

α·(α−1) (DPD case), for all r > 0, s̃ > 0.
Another interesting example for the divergence Dc

φ,Q,Q,R·Qχ,λ(P,Q) in (73) is
given for α ∈ R\{0, 1} by the generators

φ(t) := ˜̃φα(t) := (α−1)·tα−α·tα−1+1
α·(α−1) , t > 0, ˜̃φα(1) = 0, ˜̃φ′

α(1) = 0,

for which t → ˜̃φα(t) = ˜̃φα(t) − ˜̃φα(0) − ˜̃φ′
α(1) · (t − 1) = ψφα

(t, 1) is strictly
decreasing on ]0, 1[ and strictly increasing on ]1,∞[. Hence, the corresponding

assumptions of Theorem 6 are satisfied. Beyond this, notice that ˜̃φα(·) is strictly con-
vex on ]0,∞[ if α ∈]1, 2], respectively strictly convex on ]1 − 1

α−1 ,∞[ and strictly
concave on ]0, 1 − 1

α−1 [ if α > 2, respectively strictly convex on ]0, 1 + 1
1−α

[ and
strictly concave on ]1 + 1

1−α
,∞[ if α ∈] − ∞, 0[∪]0, 1[. Furthermore, the corre-

sponding �i3 is finite only for α > 1, namely �i3 = r t̃χ

α·(α−1) ∈]0,∞[ for all χ ∈ R,
r > 0, t̃ > 0. Additionally, if α > 1 one gets finite �i2 only for χ > α > 1 where
�i2 = 0, respectively forα = χ > 1where �i2 = r s̃α

α
for all r > 0, s̃ > 0. Notice that

for χ = α > 1, the limits �i2, �i3 for the cases φα and ˜̃φα are asymmetric. Indeed,
by straightforward calculations one can easily see that

0 � D˜̃φα,Q,Q,R·Qα,λ
(P,Q) = Dφα,1,1,R·1,λ(Q,P)

= ∫
X

r(x)
α·(α−1) ·

[(
q(x)

)α + (α − 1) · (
p(x)

)α − α · q(x) · (p(x)
)α−1

]
dλ(x) (79)

which is the “reversion” of the divergence (40).
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4.3 Minimum Divergences - The Encompassing Method

So far, we have almost entirely dealt with aggregated divergences between functions
P := {

p(x)
}
x∈X , Q := {

q(x)
}
x∈X under the same aggregator (measure) λ. On the

other hand, in Sect. 4.1 we have already encountered an important statistical situation
where two aggregatorsλ1 andλ2 come into play. Let us now investigate such a context
in more detail. To achieve this, for the rest of this paper we confine ourselves to the
following probabilistic setup: the modeled respectively observed (random) data take
values in a state spaceX (with at least twodistinct values), equippedwith a systemF
of admissible events (σ-algebra) and two σ-finite measures λ1 and λ2. Furthermore,
let ⇀P := {

⇀p
}
x∈X , ⇀Q := {

⇀q
}
x∈X such that ⇀p(x) � 0 for λ1-a.a. x ∈ X , ⇀q(x) � 0

for λ2-a.a. x ∈ X ,
∫
X

⇀p(x) dλ1(x) = 1, and
∫
X

⇀q(x) dλ2(x) = 1; in other words,
⇀P is a λ1-probability density function and

⇀Q is a λ2-probability density function; the

two corresponding probability measures are denoted by ⇀P
1·λ1 [•] := ∫

•
⇀p(x) dλ1(x)

and ⇀Q
1·λ2 [•] := ∫

•
⇀q(x) dλ2(x). Notice that we henceforth assume r(x) = 1 for all

x ∈ X .
More specific, we deal with a parametric framework of double uncertainty in

the data and in the model (cf. Sect. 2.4). The former is described by a random vari-

able Y taking values in the space X and by its probability law ⇀Q
1·λ2

θ0
[•] which (as

far as model risk is concerned) is supposed to be unknown but belong to a class

Qλ2
Θ = {⇀Q1·λ2

θ [•] : θ ∈ Θ} of probability measures on (X ,F ) indexed by a set
of parameters Θ ⊂ R

d (the non-parametric case works basically in analogous way,

withmore sophisticated technicalities). Accordingly, all Pr [Y ∈ • | θ] = ⇀Q
1·λ2

θ [•] =∫
•

⇀qθ(x) dλ2(x) (θ ∈ Θ) are principal model-candidate laws, with θ0 to be found out
(approximately andwith high confidence) by N concrete data observations described
by the independent and identically distributed random variables Y1, . . . YN . Further-
more, we assume that the true unknown parameter θ0 (to be learnt) is identifiable
and that the family Qλ2

Θ is (measure-theoretically) equivalent in the sense

⇀Q
1·λ2

θ �= ⇀Q
1·λ2

θ0
and ⇀Q

1·λ2

θ ∼ ⇀Q
1·λ2

θ0
for all θ, θ0 ∈ Θ with θ �= θ0. (80)

As usual, the equivalence ⇀Q
1·λ2 ∼ Á⇀Q

1·λ2

means that for λ2-a.a. x ∈ X there holds
the density-function-relation: ⇀q(x) = 0 if and only if Ê⇀q(x) = 0; this implies in par-
ticular that ⇀q(x) · 1{0}

(
Ê⇀q(x)

) = 0 and Ê⇀q(x) · 1{0}
(

⇀q(x)
) = 0 for λ2-a.a. x ∈ X , and

by cutting off “datapoints/states of zero contributions” one can then even take X

small enough such that ⇀q(x) · Ê⇀q(x) > 0 (and hence, 1]0,∞[
(

⇀q(x) · Ê⇀q(x)
) = 1) for

λ2-a.a. x ∈ X . Clearly, since any λ2-aggregated divergence Dλ2(·, ·) satisfies (the
aggregated version of) the axioms (D1) and (D2), and since θ0 is identifiable, one
gets immediately in terms of the corresponding λ2-probability density functions
⇀Qθ := {

⇀qθ(x)
}
x∈X
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θ0 = argminθ∈Θ Dλ2

(⇀Qθ0 ,
⇀Qθ

)
for every θ0 ∈ Θ. (81)

Inspired by this, one major idea of tracking down (respectively, learning) the true

unknown θ0 is to replace ⇀Q
1·λ2

θ0
by a data-observation-derived – and thus noisy

– probability law ω → ⇀P
obs(ω);1·λ1

N [•] := ∫
•

⇀pY1(ω),...,YN (ω)(x) dλ1(x) where the λ1-

probability density function ⇀P
obs(ω)

N := {
⇀pY1(ω),...,YN (ω)(x)

}
x∈X depends, as indexed,

on the outcome of the observations Y1(ω), . . . ,YN (ω). If ⇀P
obs(ω);1·λ1

N converges in

distribution to ⇀Q
1·λ2

θ0
as N tends to infinity, then one intuitively expects to obtain the

so-called minimum-divergence estimator (“approximator”)

θ̂N (ω) := θ̂N ,Dλ2
(ω) := arginfθ∈Θ Dλ2

(⇀P
obs(ω)

N ,
⇀Qθ

)
(82)

which estimates θ0 consistently in the usual sense of the convergence θn → θ0 for
n → ∞. However, by the nature of our divergence construction, the method (82)
makes principal sense only if the two aggregators λ1 and λ2 coincide (and if (82)
is analytically respectively computationally solvable)! Remark that the minimum
distance estimator (82) depends on the choice of the divergence Dλ2(·, ·).
Subsetup 1. For instance, if by nature the set X of all possible data points has
only countably many elements, say X = X# = {z1, . . . zs} (where s is an inte-
ger larger than one or infinity), then a natural model-concerning aggregator is
the counting measure λ2 := λ# (recall λ#[{x}] = 1 for all x ∈ X ), and hence
⇀Q

1·λ2

θ [•] = ∑
x∈• ⇀qθ(x) = ∑

x∈X 1•(x) · ⇀qθ(x) (where • stands for any arbitrary
subset of X ). In such a context, a popular choice for the data-observation-derived

probability law is the so-called “empirical distribution” ω → ⇀P
obs(ω);1·λ1

N [•] =
∫
•

⇀pY1(ω),...,YN (ω)(x) dλ1(x) := ∑
x∈• ⇀p

emp(ω)

N (x) =: ⇀P
emp(ω)

N [•], where λ1 := λ# =
λ2 and ⇀p

emp(ω)

N (x) := 1
N · #{i ∈ {1, . . . , N } : Yi (ω) = x} is the total number of

x-observations divided by the total number N of observations. In other words,
⇀P

obs(ω);1·λ1

N [•] := ⇀P
emp(ω)

N [•] := 1
N · ∑N

i=1 δYi (ω)[•], where δz[•] is the correspond-
ing Dirac (resp. one-point) distribution given by δz[A] := 1A(z). Hence, in such a
set-up it makes sense to solve the noisy minimization problem

θ̂N (ω) := θ̂N ,Dλ#
(ω) := arginfθ∈Θ Dλ#

(⇀P
emp(ω)

N ,
⇀Qθ

)
(83)

where ⇀P
emp(ω)

N := {
⇀p
emp
N (x)

}
x∈X and Dλ# (·, ·) is the discrete version of any of the

divergences above. Notice that – at least for small enough number N of observa-
tions – for some x ∈ X with λ#[{x}] > 0 one has ⇀p

emp
N (x) = 0 but ⇀qθ(x) > 0 (i.e.

an “extreme inlier”), and hence, ⇀qθ(x) · 1{0}
(

⇀p
emp
N (x)

)
> 0; this must be taken into
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account in the calculation of the explicit forms of the corresponding divergences.13

By the assumed convergence, this effect disappears as N becomes large enough. �
Subsetup 2. Consider the “crossover case” where X is uncountable (e.g. X = R)
and the familyQλ2

Θ is assumed to be continuous (nonatomic) in the sense

0 = ⇀Q
1·λ2
θ [{z}] = Pr [Y ∈ {z} | θ] = ∫

X 1{z}(x) · ⇀qθ(x) dλ2(x) for all z ∈ X , θ ∈ Θ (84)

(e.g. ⇀qθ(·) are Gaussian densities with mean θ and variance 1), and the data-
observation-derived probability law is the “extended” empirical distribution

ω → ⇀P
obs(ω);1·λ1

N [•] = ∫
•

⇀pY1(ω),...,YN (ω)(x) dλ1(x)

:= ∑
x∈• ⇀p

emp(ω)

N (x) · 1R (Y1(ω),...,YN (ω))(x) =: ⇀P
emp(ω)

N [•] , (85)

where the extension on X is accomplished by attributing zeros to all x outside the
finite range R(Y1(ω), . . . ,YN (ω)) = {z1(ω), . . . , zs(ω)} of distinguishable points
z1(ω), . . . , zs(ω) (s � N ) occupied by the observations Y1(ω), . . . , YN (ω); notice
that the involved counting measure given by
λ1[•] := ∑

z∈X 1R (Y1(ω),...,YN (ω))(z) · δz[•] puts 1 to each data-point zwhich has been
observed. Because λ1 and λ2 are now essentially different, the minimum-divergence
method (82) can not be applied directly (by taking either λ := λ1 or λ := λ2), despite

of ⇀P
emp(ω)

N converging in distribution to ⇀Q
1·λ2

θ0
as N tends to infinity. �

There are several ways to circumvent the problem in Subsetup 2. In the following,
we discuss in more detail our abovementioned new encompassing approach:

(Enc1) take the encompassing aggregator λ := λ1 + λ2 and the imbedding
⇀P

emp(ω)

N := {
⇀p
emp(ω)

N (x)
}
x∈X with ⇀p

emp(ω)

N (x) := ⇀p
emp(ω)

N (x) ·
1R (Y1(ω),...,YN (ω))(x);

(Enc2) choose a “sufficiently discriminating” (e.g. encompassing) divergence
Dλ(·, ·) from above and evaluate them with the density-functions obtained
in (Enc1);

(Enc3) solve the corresponding noisy minimization problem

θ̂N (ω) := θ̂N ,Dλ
(ω) := arginfθ∈Θ Dλ

(⇀P
emp(ω)

N ,
q⇀Qθ

)
(86)

for
q⇀Qθ := ⇀Qθ respectively

q⇀Qθ := ⇀̃Qθ (to be defined right below);

(Enc4) compute the noisy minimal distance Dλ

(⇀P
emp(ω)

N ,
q⇀Qθ

)
> 0 as an indicator

of “goodness of fit” (goodness of noisy approximation”);

13E.g. applying the divergence (46) for α ∈ R\{0, 1}, the sum-entry r(x) · ⇀qθ(x)
α

α appears, which
can be viewed as penalty for the cell x being empty of data observations (“intrinsic empty-cell-
penalty”); for divergence (60), the penalty is φ(0) · r(x) · ⇀qθ(x).
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(Enc5) investigate sound statistical properties of the outcoming estimator θ̂N (ω), e.g.
show probabilistic convergence (as N tends to infinity) to the true unknown
parameter θ0, compute the corresponding convergence speed, analyze its
robustness against data-contamination, etc.

Typically, for fixed N the step (Enc3) is not straightforward to solve, and conse-
quently, the tasks described in the unavoidable step (Enc4) become even much more
complicated; a detailed discussion of both is – for the sake of brevity – beyond the
scope of this paper. As far as (Enc1) is concerned, things are non-trivial due to the
generally well-known fact that “continuous” densities are only almost-surely unique.
Indeed, consider e.g. the case where the θ-family of functions ⇀Qθ := {

⇀qθ(x)
}
x∈X

satisfies

⇀qθ(x) > 0 for all x ∈ X and ⇀Q
1 ·λ2

θ [X ] = ∫
X

⇀qθ(x) dλ2(x) = 1 for all θ ∈ Θ (87)

and the alternative θ-family of functions ⇀̃Qθ := {
⇀̃qθ(x)

}
x∈X defined by ⇀̃qθ(x) :=

⇀qθ(x) · (1 − 1R (Y1(ω),...,YN (ω))(x)); for the latter, one obtains

⇀̃Q
1 ·λ2

θ [X ] = ∫
X

⇀̃qθ(x) dλ2(x) = ∫
X

⇀̃qθ(x) d(λ1 + λ2)(x) = 1 for all θ ∈ Θ. (88)

Furthermore, due to (85) one has

1 = ⇀P
emp(ω)
N [X ] = ∫

X
⇀p
emp(ω)
N (x) dλ1(x) = ∫

X
⇀p
emp(ω)
N (x) d(λ1 + λ2)(x) (89)

and the validity of (64)–(66) with p(x) := ⇀p
emp(ω)

N (x), q(x) := ⇀̃qθ(x) and λ = λ1 +
λ2; in other words, there holds the singularity (measure-theoretical orthogonality)
⇀P

emp(ω)

N ⊥ ⇀̃Qθ for all θ ∈ Θ . Accordingly, for the step (Enc2) one can e.g. take
directly the (family of) encompassing divergences Dc

φ,Q,Q,R·Qχ,λ(P,Q) of (73) for

P := ⇀P
emp(ω)

N ,Q := ⇀̃Qθ, λ := λ1 + λ2, r(x) ≡ 1, and apply (75) to get

0 � Dc
φ,Q,Q,1·Qχ,λ(P,Q) = φ∗

χ(0) · ∑
x∈R (Y1(ω),...,YN (ω))

(
⇀p
emp(ω)

N (x)
)χ

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X

(
⇀qθ(x)

)χ
dλ2(x) ; (90)

hence, the corresponding solution of (Enc3) does not depend on the data-observa-
tions Y1(ω), . . . ,YN (ω), and thus is “statistically non-relevant”. As an important
remark for the rest of this paper, let us mention that – only – in situations where

no observations are taken into account, then ⇀̃Qθ = ⇀Qθ,R(Y1, . . . ,YN ) = ∅, and λ1

collapses to the “zero aggregator” (i.e. λ1[•] ≡ 0).

In contrast, let us replace the alternative θ-family ⇀̃Qθ by the original
⇀Qθ, on which

λ1 acts differently. In fact, instead of (88) there holds
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1 = ⇀Q
1·λ2

θ [X ] = ∫
X

⇀qθ(x) dλ2(x) <
∫
X

⇀qθ(x) d(λ1 + λ2)(x)

= 1 + ∑
x∈R (Y1(ω),...,YN (ω))

⇀qθ(x) for all θ ∈ Θ ; (91)

moreover, one has for all θ ∈ Θ the non-singularity ⇀P
emp(ω)

N �⊥ ⇀Qθ but

1{0}
(

⇀qθ(x)
) = 0 for all x ∈ X , (92)

1{0}
(

⇀p
emp(ω)

N (x)
) = 1 − 1R (Y1(ω),...,YN (ω))(x) for all x ∈ X , (93)

1]0,∞[
(

⇀p
emp(ω)

N (x) · ⇀qθ(x)
) = 1R (Y1(ω),...,YN (ω))(x) for all x ∈ X . (94)

Correspondingly, for the step (Enc2) one can e.g. take directly the (family of) encom-

passing divergences Dc
φ,Q,Q,R·Qχ,λ(P,Q) of (73) for P := ⇀P

emp(ω)

N , Q := ⇀Qθ,
λ := λ1 + λ2, r(x) ≡ 1; the corresponding solution of the noisy minimization prob-
lem (Enc3) generally does depend on the data-observations Y1(ω), . . . , YN (ω),
as required. Let us demonstrate this exemplarily for the special subsetup where
φ : [0,∞[→ [0,∞[ is continuous (e.g. strictly convex on ]0,∞[), differentiable at
1, φ(1) = φ′(1) = 0, φ(t) ∈]0,∞[ for all t ∈ [0, 1[∪[1,∞[, χ > 1, r(x) ≡ 1, and∫
X

⇀qθ(x)
χ dλ2(x) ∈]0,∞[ for all θ ∈ Θ . Then, for each fixed θ ∈ Θ we derive from

(73) and (92)–(94) the divergence

0 < D
φ,

⇀
Qθ,

⇀
Qθ,1·⇀Q

χ

θ ,λ1+λ2

(⇀P
emp(ω)

N ,
⇀Qθ

)

= ∫
X

⇀qθ(x)
χ · φ

(⇀p
emp(ω)

N (x)
⇀qθ(x)

) · 1]0,∞[
(

⇀p
emp(ω)

N (x) · ⇀qθ(x)
)
d(λ1 + λ2)(x)

+φ(0) · ∫
X

⇀qθ(x)
χ · 1{0}

(
⇀p
emp(ω)

N (x)
)
d(λ1 + λ2)(x)

=
∑

x∈R (Y1(ω),...,YN (ω))

⇀qθ(x)
χ · φ

(⇀p
emp(ω)

N (x)
⇀qθ(x)

) + φ(0) ·
∫

X

⇀qθ(x)
χ dλ2(x) < ∞ .

(95)

When choosing this divergence (95) in step (Enc2), we call the solution θ̂N (ω) of the
corresponding noisy minimization problem (86) of step (Enc3) a minimum (φ,χ)-
divergence estimator of the true unknown parameter θ0; in ML and AI contexts,
the pair (φ,χ) may be regarded as “hyperparameter”. Exemplarily, for the power
functions φ := φα (cf. (5)) with α = χ > 1, we obtain from (95) (see also (78),
(41)) the divergence

]0,∞[� D
φα,

⇀
Qθ,

⇀
Qθ,1·⇀Q

α

θ ,λ1+λ2

(⇀P
emp(ω)

N ,
⇀Qθ

) = 1
α

· ∫
X

⇀qθ(x)
α dλ2(x)

+∑
x∈R (Y1(ω),...,YN (ω))

[ (
⇀p

emp(ω)

N (x))α

α·(α−1) − ⇀p
emp(ω)

N (x) · ⇀qθ(x)
α−1

α−1 + ⇀qθ(x)
α

α

]

= 1
α

· ∫
X

⇀qθ(x)
α dλ2(x)

+ 1
N

∑N
i=1

[ (
⇀p

emp(ω)

N (Yi (ω)))α−1

α·(α−1) − ⇀qθ(Yi (ω))α−1

α−1 + ⇀qθ(Yi (ω))α

α·⇀pemp(ω)

N (Yi (ω))

]
, (96)
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where for the last equality we have used the representation

∑
x∈X ⇀p

emp(ω)

N (x) · 1R (Y1(ω),...,YN (ω))(x) · δx [•] = 1
N · ∑N

i=1 δYi (ω)[•] ; (97)

notice that ⇀p
emp(ω)

N (Yi (ω)) = #{ j ∈ {1, . . . , N } : Y j (ω) = Yi (ω)}/N . Clearly, the
outcoming minimum (φ,χ)-divergence estimator of (95) (and in particular, the
minimum (φα,α)-divergence estimator of (96)) depends on the data observations
Y1(ω), . . . ,YN (ω), where for technical reasons as e.g. existence and uniqueness – as
well as for the tasks (Enc4), (Enc5) – some further assumptions are generally needed;
for the sake of brevity, corresponding details will appear in a forthcoming paper.

4.4 Minimum Divergences - Grouping and Smoothing

Next, we briefly indicate two other ways to circumvent the problem described in
Subsetup 2 of Sect. 4.3, with continuous (nonatomic) Qλ2

Θ and λ2 from (84):

(GR) grouping (partitioning, quantization) of data: convert14 everything into a
purely discrete context, by subdividing the data-point-setX = ⋃s

j=1 A j into
countably many – (say) s ∈ N ∪ {∞}\{1} – (measurable) disjoint classes
A1, . . . , As with the property λ2[A j ] > 0 (“essential partition”); proceed as in
Subsetup 1 of Sect. 4.3, with X new := {A1, . . . , As} instead of {z1, . . . , zs},
and thus the i th data observation Yi (ω) and the corresponding running variable
x) manifest (only) the corresponding class-membership. For the subcase of
Csiszar-Ali-Slivey divergences and adjacently related divergences, thorough
statistical investigations (such as efficiency, robustness, types of grouping,
grouping-error sensitivity, etc.) of the corresponding minimum-divergence-
estimation can be found e.g. in Victoria-Feser and Ronchetti [92], Menendez
et al. [47–49], Morales et al. [52, 53], Lin and He [43].

(SM) smoothing of the empirical density function: convert everything to a purely
continuous context, by keeping the original data-point-set X and by “con-
tinuously modifying” (e.g. with the help of kernels) the empirical density
⇀p
emp
N (·) to a function ⇀p

emp,smo
N (·) � 0 such that

∫
X

⇀p
emp,smo
N (x) dλ2(x) = 1

and that for all θ ∈ Θ there holds: ⇀p
emp,smo
N (x) = 0 if and only if ⇀qθ(x) = 0

(in addition to (80)). For the subcase of Csiszar-Ali-Slivey divergences,
thorough statistical investigations (such as efficiency, robustness, informa-
tion loss, etc.) of the corresponding minimum-divergence-estimation can be
found e.g. in Basu and Lindsay [11], Park and Basu [69], Chapter 3 of
Basu et al. [13], Kuchibhotla and Basu [39], Al Mohamad [5], and the ref-
erences therein. Due to the “curse of dimensionality”, such a solution can-
not be applied successfully in a large-dimension setting, as required in the

14In several situations, such a conversion can appear in a natural way; e.g. an institution may
generate/collect data of “continuous value” but mask them for external data analysts to group-
frequencies, for reasons of confidentiality (information asymmetry).
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so called “big data” paradigm. For instance (in preparation for divergence
valuation), take X = R

d , λ2 to be the d−dimensional Lebesgue measure
and ⇀p

emp,smo
N (x) := 1

N

∑N
i=1 K (x,Yi , hn) = ∫

X K (x, y, hn) d
⇀P

emp

N (y)where
K (·, ·, ·) is an appropriate smooth kernel function with “bandwidth” hn , e.g.

K (x, y, hn) := 1
hn
ÁK

(
x−y
hn

)
with appropriate nonnegative function ÁK (·) satis-

fying
∫

Rd
ÁK (y) dλ2(y) = 1. Since such kernel smoothers KS use local averag-

ing, and for large d most neighborhoods tend to be empty of data observations
(because data often “live” on lower-dimensional manifolds, sparsity of data), a
typical KS technique (choosing concrete kernels and bandwidths, etc.) needs
then a huge amount N of data to provide a reasonable accuracy; for d = 8
one may need N to be 1 million. For background details, the reader is e.g.
referred to DasGupta [28], Scott and Wand [77], Chapter 7 of Scott [76] and
the references therein.

For the sake of brevity, a detailed discussion of (GR) and (SM) is beyond the scope
of this paper.

4.5 Minimum Divergences - The Decomposability Method

Let us discuss yet another strategy to circumvent the problem described in Subsetup
2 of Sect. 4.3. As a motivation, for a divergence of the form

0 � Dλ(P,Q) = ∫
X f1(x) · 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+ ∫
X f2(x) · 1{0}

(
p(x)

) · 1]0,∞[(q(x)) dλ(x)

+ ∫
X f3(x) · 1{0}

(
q(x)

) · 1]0,∞[(p(x)) dλ(x) (98)

with f1(x) � 0, f2(x) � 0, f3(x) � 0, and an “adjacent” dissimilarity

D̃λ(P,Q) = ∫
X f1(x) · 1]0,∞[

(
p(x) · q(x)

)
dλ(x)

+ ∫
X g2(x)) · 1{0}

(
p(x)

) · 1]0,∞[(q(x)) dλ(x)

+ ∫
X g3(x)) · 1{0}

(
q(x)

) · 1]0,∞[(p(x)) dλ(x), (99)

there holds Dλ(P,Q) = D̃λ(P,Q) for all equivalent P ∼ Q (where for both, the
second and third integral become zero), but (in case that g2(·), g3(·) differ sufficiently
enough from f2(·), f3(·)) one gets Dλ(P,Q) �= D̃λ(P,Q) forP ⊥ Q and even for
P � Q; in the latter two cases, depending on the signs of g2(·), g3(·), D̃λ(P,Q)

may even become negative.

Such issues are of importance for our current problemwhere e.g.P := ⇀P
emp(ω)

N ⊥
⇀̃Qθ =: Q. For further illuminations, and for the sake of a compact presentation, we
use henceforth the notationsPλ for an arbitrarily fixed class of nonnegative,mutually
equivalent functions (i.e. P1 ∼ P2 for all P1 ∈ Pλ, P2 ∈ Pλ), and Pλ� for a
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corresponding class of nonnegative (not necessarily mutually equivalent) functions
such that P1 � P2 for all Pλ

1 ∈ Pλ, P2 ∈ Pλ�. Furthermore, we employ P̃λ :=
Pλ ∪ Pλ� and specify:

Definition 2 We say that a function Dλ : P̃λ ⊗ Pλ → R is a pseudo-divergence
on P̃λ × Pλ, if its restriction toPλ ∪ Pλ is a divergence, i.e.

Dλ(P,Q) � 0 for all P ∈ Pλ,Q ∈ Pλ, and (100)

Dλ(P,Q) = 0 if and only if P = Q ∈ Pλ .

If also Dλ(P,Q) > 0 for all P ∈ Pλ�,Q ∈ Pλ, then Dλ(·, ·) is a divergence.
As for interpretation, a pseudo-divergence Dλ(·, ·) acts like a divergence if both
arguments are fromPλ, but only like a dissimilarity if the first argument is fromPλ�

and thus is “quite different” from the second argument. In the following, we often
use pseudo-divergences for our noisy minimum-distance-estimation problem – cf.

(81), (82) – by taking λ = λ1 + λ2,Pλ := Pλ
Θ := (⇀̃Qθ

)
θ∈Θ

:= ({
⇀̃qθ(x)

}
x∈X

)
θ∈Θ

(cf. (87), (88)), andPλ� := Pλ⊥
emp := (⇀P

emp(ω)

N

)
N∈N

= ({
⇀p
emp(ω)

N (x)
}
x∈X

)
N∈N

(cf.
(85), (Enc1)) covering all numbers N of data observations (sample sizes), and the
according P̃λ := Pλ

Θ,emp = Pλ
Θ ∪ Pλ⊥

emp; notice that by construction we have even
the function-class-relationship ⊥ which is stronger than �. In such a setup, we

have seen that for the choice P := ⇀P
emp(ω)

N ,Q := ⇀̃Qθ the divergence Dc
φ,Q,Q,1·Qχ,λ

(P,Q) > 0 of (90) is unpleasant for (Enc3) since the solution does not depend on the
data-observations Y1(ω), . . . , YN (ω); also recall the special case of power functions
φ := φα (cf. (5)) with α = χ > 1 which amounts to the unscaled divergences (78),
(40) and thus to (41). In (95), for general φ we have repaired this deficiency by

replacingQ := ⇀̃Qθ withQ := ⇀Qθ, at the cost of getting total mass larger than 1 but
by keeping the strict positivity of the involved divergence; especially for φ := φα,
the divergence (41) has then amounted to (96).

In contrast, let us show another method to repair the (Enc3)-deficiency of (41),

by sticking to Q := ⇀̃Qθ but changing the basically underlying divergence. In fact,
we deal with the even more general

Definition 3 (a) We say that a pseudo-divergence Dλ : P̃λ ⊗ Pλ → R is decom-
posable if there exist functionals D0 : P̃λ �→ R, D1 : Q �→ R and a (measurable)
mapping ρQ : X �→ R (for each Q ∈ Pλ) such that15

15In an encompassing way, the part (a) reflects a measure-theoretic “plug-in” version of decom-
posable pseudo-divergences D : (Pmeas,λ1 ∪ Pmeas,λ2 ) ⊗ Pmeas,λ1 �→ R, where Pmeas,λ1 is
a family of mutually equivalent nonnegative measures of the form P[•] := P1 ·λ1 [•] :=
∫
• p(x) dλ1(x), Pmeas,λ2 is a family of nonnegative measures of the form P[•] := P

1 ·λ2 [•] :=∫
• q(x) dλ2(x) such that any P ∈ Pmeas,λ1 is not equivalent to any P ∈ Pmeas,λ2 , and (101)
is replaced with D(P,Q) = D0(P) + D1(Q) + ∫

X ρQ(x) dP(x) for all P ∈ P ∈ Pmeas,λ1 ∪
Pmeas,λ2 ,Q ∈ Pmeas,λ2 ; cf. Vajda [90], Broniatowski and Vajda [18], Broniatowski et al. [19];
part (b) is new.
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Dλ(P,Q) = D0(P) + D1(Q) + ∫
X ρQ (x) · p(x) dλ(x) for all P ∈ P̃λ,Q ∈ Pλ.

(101)

(b) We say that a pseudo-divergence Dλ : P̃λ ⊗ Pλ → R is pointwise decompos-
able if it is of the form Dλ(P,Q) = ∫

X ψdec(p(x),q(x)) dλ(x) for some (measur-
able) mapping ψdec : [0,∞[×[0,∞[�→ R with representation

ψdec(s, t) := ψ0
(
s + h0(x, s) · 1{0}(t)

) · 1]c0,∞[(s) · 1]c0,∞[(t)
+ψ1

(
t + h1(x) · 1{0}(t)

) · 1]c1,∞[(t)
+ρ

(
t + h2(x) · 1{0}(t)

) · s for all (s, t) ∈ [0,∞[×[0,∞[\{(0, 0)} , (102)

ψdec(0, 0) := 0,

with constants c0, c1, c0 ∈ {0, 1}, and (measurable) mappings ψ0,ψ1, ρ : [0,∞[�→
R, h1, h2 : X �→ [0,∞[, h0 : X × [0,∞[�→ R, such that

ψdec(s, t) = ψ0(s) + ψ1(t) + ρ(t) · s � 0 for all (s, t) ∈]0,∞[×]0,∞[ , (103)

ψdec(s, t) = 0 if and only if s = t , (104)

s + h0(x, s) � 0 for all s ∈ [0,∞[ andλ-almost all x ∈ X .

Remark 5 (a) Any pointwise decomposable pseudo-divergence is decomposable,
under the additional assumption that the integral

∫
X . . . dλ(x) can be split into three

appropriate parts.
(b) For use in (Enc3), D1(·) and ρQ(·) should be non-constant.
(c) In the Definitions 2 and 3 we have put the “extension-role” to the first component
P; of course, everything can be worked out analogously for the second component
Q by using (pseudo-)divergences Dλ : Pλ × P̃λ → R.
(d) We could even extend (102) for bivariate functions h1(x, s), h2(x, s). �

Notice that from (102) one obtains the boundary behaviour

R � ψdec(s, 0) = ψ0(s + h0(x, s)) · qc0 + ψ1(h1(x)) · qc1 + ρ(h2(x)) · s for all s > 0, (105)
R � ψdec(0, t) = ψ0(0) · qc0 + ψ1(t) for all t > 0 , (106)

with qc0 := 1]c0,∞[(0), qc1 := 1]c1,∞[(0), qc0 := 1]c0,∞[(0). Notice that ψdec(s, 0) of
(105) does generally not coincide with the eventually existent “(103)-limit”
limt→0[ψ0(s) + ψ1(t) + ρ(t) · s] (s > 0), which reflects a possibly “non-smooth
boundary behaviour” (also recall (98), (99)). Moreover, when choosing a decompos-
able pseudo-divergence (101) in step (Enc2), we operationalize the solution θ̂N (ω)

of the corresponding noisy minimization problem (86) of step (Enc3) as follows:



Some Universal Insights on Divergences for Statistics … 197

Definition 4 (a) We say that a functional TDλ
: Pλ

Θ,emp �→ Θ generates a minimum
decomposable pseudo-divergence estimator (briefly, min−decDλ-estimator)

θ̂N ,decDλ
(ω) := TDλ

(⇀P
emp(ω)

N

)
for ⇀P

emp(ω)

N ∈ Pλ⊥
emp (107)

of the true unknown parameter θ0, if Dλ(·, ·) : Pλ
Θ,emp ⊗ Pλ

Θ �→ R is a decompos-
able pseudo-divergence and

TDλ

(⇀P
) = arginfθ∈Θ

[
D1(⇀Qθ) + ∫

X ρ⇀
Qθ

(x) · ⇀p(x) dλ(x)
]
for all ⇀P ∈ Pλ

Θ,emp.

(108)

(b) If Dλ(·, ·) is a pointwise decomposable pseudo-divergence we replace (108) by

TDλ

(⇀P
) = arginfθ∈Θ

∫
X ψdec(⇀p(x), ⇀̃qθ(x)) dλ(x) for all ⇀P ∈ Pλ

Θ,emp ,

but do not introduce a new notion (also recall that λ = λ2 and ⇀̃qθ(·) = ⇀qθ(·) for the
case of no observations, e.g. if ⇀P ∈ Pλ2

Θ ).

To proceed, let us point out that by (107) and (97) every min−decDλ-estimator
rewrites straightforwardly as

θ̂N ,decDλ
(ω) = arginfθ∈Θ

[
D1(

⇀Qθ) + 1
N

∑N
i=1 ρ⇀

Qθ

(Yi (ω))
]

(109)

and is Fisher consistent in the sense that

TD(
⇀Qθ0) = arginfθ∈Θ D(

⇀Qθ0 ,
⇀Qθ) = θ0 for all θ0 ∈ Θ . (110)

Furthermore, the criterion to be minimized in (109) is of the form

θ �→ D1(
⇀Qθ) + 1

N

∑N
i=1 ρ⇀

Qθ

(Yi (ω))

which e.g. for the task (Enc5) opens the possibility to apply themethods of the asymp-
totic theory of so-called M-estimators (cf. e.g. Hampel et al. [33], van der Vaart and
Wellner [88], Liese and Mieske [40]). The concept of min−decDλ-estimators (101)
were introduced in Vajda [90], Broniatowski and Vajda [18] within the probability-
law-restriction of the non-encompassing, “plug-in” context of footnote 15.

In the following, we demonstrate that our new concept of pointwise decompos-
ability defined by (102) is very useful and flexible for creating new min−decDλ-
estimators and imbedding existing ones. In fact, since in our current statistics-ML-AI
context we have chosen λ[•] := λ1[•] + λ2[•] with
λ1[•] := ∑

z∈X 1R (Y1(ω),...,YN (ω))(z) · δz[•] and λ2[•] stemming from (87), we have

seen that P := ⇀P
emp(ω)

N ⊥ ⇀̃Qθ =: ⇀Q for all θ ∈ Θ . Hence, from (102), (105), (106)
we obtain
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Dλ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= ∫

X ψdec
(

⇀p
emp(ω)

N (x), ⇀̃qθ(x)
)
dλ(x)

= ∫
X

[
ψ0(0) · qc0 + ψ1

(
⇀̃qθ(x)

)]
· 1{0}(⇀p

emp(ω)

N (x)) d(λ1 + λ2)(x)

+ ∫
X

[
ψ0

(
⇀p
emp(ω)

N (x) + h0
(
x, ⇀p

emp(ω)

N (x)
))

· qc0
+ψ1(h1(x)) · qc1 + ρ(h2(x)) · ⇀p

emp(ω)

N (x)
]

· 1{0}(⇀̃qθ(x)) d(λ1 + λ2)(x)

= ∫
X

[
ψ0(0) · qc0 + ψ1

(
⇀qθ(x)

)]
dλ2(x) + ∑

x∈X
[
ψ0

(
⇀p
emp(ω)

N (x)

+h0
(
x, ⇀p

emp(ω)

N (x)
))

· qc0
+ψ1(h1(x)) · qc1 + ρ(h2(x)) · ⇀p

emp(ω)

N (x)
]

· 1R (Y1(ω),...,YN (ω))(x)

= ∫
X

[
ψ0(0) · qc0 + ψ1

(
⇀qθ(x)

)]
dλ2(x) + 1

N

∑N
i=1 ρ(h2(Yi (ω)))

+ 1
N

∑N
i=1

ψ0

(
⇀p

emp(ω)

N (Yi (ω))+h0
(
Yi (ω),

⇀p
emp(ω)

N (Yi (ω))

))
·qc0+ψ1(h1(Yi (ω)))·qc1

⇀p
emp(ω)

N (Yi (ω))
, (111)

where we have employed (97); recall that ⇀p
emp(ω)

N (Yi (ω)) = #{ j ∈ {1, . . . , N } :
Y j (ω) = Yi (ω)}/N . Hence, we always choose D1(

⇀Q) = D1(
⇀̃Qθ) = ∫

X

[
ψ0(0) +

ψ1
(

⇀̃qθ(x)
)]

dλ2(x) = ∫
X

[
ψ0(0) + ψ1

(
⇀qθ(x)

)]
dλ2(x) = D1(

⇀Qθ). Notice that

the functions h0, h1, h2 may depend on the parameter θ. Indeed, for h0(x, s) ≡ 0,
h1(x) ≡ 0, h2(x) = ⇀qθ(x) ( �= ⇀̃qθ(x)), the pseudo-divergence (111) turns into

Dλ

(
⇀P
emp(ω)
N ,

⇀̃Qθ

)
= ∫

X

[
ψ0(0) · qc0 + ψ1

(
⇀qθ(x)

)]
dλ2(x) + 1

N
∑N

i=1 ρ
(

⇀qθ(Yi (ω))
)

+ 1
N

∑N
i=1

ψ0
(

⇀p
emp(ω)
N (Yi (ω))

)
· qc0+ψ1(0)· qc1

⇀p
emp(ω)
N (Yi (ω))

, (112)

whereas for h0(x, s) ≡ 0, h1(x) = ⇀qθ(x), h2(x) = ⇀qθ(x), (111) becomes

Dλ

(⇀P
emp(ω)

N ,
⇀̃Qθ

)
= ∫

X

[
ψ0(0) · qc0 + ψ1

(
⇀qθ(x)

)]
dλ2(x)

+ 1
N

∑N
i=1

[
ρ
(

⇀qθ(Yi (ω))
)

+ qc1·ψ1(
⇀qθ(Yi (ω)))

⇀p
emp(ω)

N (Yi (ω))

]
+ 1

N

∑N
i=1

ψ0

(
⇀p

emp(ω)

N (Yi (ω))

)
·qc0

⇀p
emp(ω)

N (Yi (ω))
. (113)

The last sum in (112) respectively (113) is the desiredD0(
⇀P

emp(ω)

N ). As an example,
let us take c0 = c1 = c0 = −1 (and hence, qc0 = qc1 = qc0 = 1) and for α > 1 the
power functions φ(t) := φα(t) := tα−α·t+α−1

α·(α−1) (t ∈]0,∞[) of (6), for which by (9)
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and (103) one derives immediately the decomposition ψ0(t) := ψ0
α(t) := tα

α(α−1) >

0,ψ1(t) := ψ1
α(t) := tα

α
> 0, ρ(t) := ρα(t) := − tα−1

α−1 < 0 (t ∈]0,∞[). Accordingly,
(111) simplifies to

Dλ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
:= Dλ,α

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)

= 1
α

∫
X

⇀qθ(x)
α dλ2(x) − 1

N ·(α−1)

∑N
i=1

(
h2(Yi (ω))

)α−1

+ 1
N

∑N
i=1

(
⇀p

emp(ω)

N (Yi (ω))+h0

(
Yi (ω),

⇀p
emp(ω)

N (Yi (ω))

))α

+(α−1)·
(
h1(Yi (ω))

)α

α·(α−1)·⇀pemp(ω)

N (Yi (ω))
, (114)

and in particular the special case (112) turns into

Dλ,α

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= 1

α

∫
X

⇀qθ(x)
α dλ2(x) − 1

N ·(α−1)

∑N
i=1

(
⇀qθ(Yi (ω))

)α−1

+ 1
N ·α·(α−1)

∑N
i=1

(
⇀p
emp(ω)

N (Yi (ω))
)α−1

, (115)

whereas the special case (113) simplifies to

0 < Dλ,α

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= 1

α

∫
X

⇀qθ(x)
α dλ2(x)

+ 1
N

∑N
i=1

[
(

⇀qθ(Yi (ω))

)α

α·⇀pemp(ω)

N (Yi (ω))
−

(
⇀qθ(Yi (ω))

)α−1

α−1

]
+ 1

N

∑N
i=1

(
⇀p

emp(ω)

N (Yi (ω))

)α−1

α·(α−1) . (116)

Notice that (116) coincides with (96), but both were derived within quite different
frameworks: to obtain (116) we have used the concept of decomposable pseudo-
divergences (which may generally become negative at the boundary) together with
⇀Q := ⇀̃Qθ which leads to total mass of 1 (cf. (88)); on the other hand, for estab-
lishing (96) we have employed the concept of divergences (which are generally
always strictly positive at the boundary) together with ⇀Q := ⇀Qθ which amounts to
total mass greater than 1 (cf. (91)). Moreover, choosing h0(x, s) ≡ 0, h1(x) ≡ 0,
h2(x) ≡ 0 in (114) gives exactly the divergence (90) for the current generator
φ(t) := φα(t) with α > 1; recall that the latter has been a starting motivation for
the search of repairs. For c0 = c1 = c0 = −1 and the limit case α → 1 one gets
φ(t) := φ1(t) := t · log t + 1 − t (t ∈]0,∞[) of (18), forwhich by (22) and (103)we
obtain the decomposition ψ0(t) := ψ0

1(t) := t · log t − t , ψ1(t) := ψ1
1(t) := t > 0,

ρ(t) := ρ1(t) := − log t . Accordingly, (111) simplifies to
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Dλ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
:= Dλ,1

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)

= 1 − 1
N

∑N
i=1 log

(
h2(Yi (ω))

)

+ 1
N

∑N
i=1

ψ0
1

(
⇀p

emp(ω)

N (Yi (ω))+h0

(
Yi (ω),

⇀p
emp(ω)

N (Yi (ω))

))
+h1(Yi (ω))

⇀p
emp(ω)

N (Yi (ω))
, (117)

and in particular the special case (112) turns into

Dλ,1

(
⇀P
emp(ω)
N ,

⇀̃Qθ

)
= 1

N

N∑

i=1

log
(

⇀p
emp(ω)
N (Yi (ω))

)
− 1

N

N∑

i=1

log
(

⇀qθ(Yi (ω))
)
, (118)

whereas the special case (113) becomes

0 < Dλ,1

(
⇀P
emp(ω)
N ,

⇀̃Qθ

)
= 1

N
∑N

i=1 log
(

⇀p
emp(ω)
N (Yi (ω))

)
− 1

N
∑N

i=1 log
(

⇀qθ(Yi (ω))
)

+ 1
N

∑N
i=1

⇀qθ(Yi (ω))

⇀p
emp(ω)
N (Yi (ω))

. (119)

To end up this subsection, let us briefly indicate that choosing in step (Enc2) a decom-
posable pseudo-divergence of the form (respectively) (111)–(119), and in the course
of (Enc3) minimize this over θ ∈ Θ , we end up at the corresponding min−decDλ-
estimator (109). For the special case (118) (i.e. α = 1) this leads to the omnipresent,
celebrated maximum-likelihood-estimator (MLE) which is known to be efficient but
not robust. The particular choice (115) for α > 1 gives the density-power diver-
gence estimator DPDE of Basu et al. [10], where α = 2 amounts to the (squared)
L2-estimator which is robust but not efficient (see e.g. Hampel et al. [33] ); accord-
ingly, taking α ∈]1, 2[ builds a smooth bridge between the robustness and efficiency.
The reversed version of the DPDE can be analogously imbedded in our context, by

employing our new approach with φ(t) := ˜̃φα(t) (cf. (79)).

4.6 Minimum Divergences - Generalized Subdivergence
Method

One can flexibilize some of the methods of the previous Sect. 4.5, by employing an
additional (a.s.) strictly positive density function M to define a pseudo-divergence
DM,λ : P̃λ ⊗ Pλ → R of the form DM,λ(P,Q) =∫
X ψdec

( p(x)
m(x) ,

q(x)
m(x)

) · m(x) dλ(x) for some (measurable) mapping

ψdec : [0,∞[×[0,∞[�→ R with representation
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ψdec(s, t) := ψ0
(
s + h0(x, s) · 1{0}(t)

)
· 1]c0,∞[(s) · 1]c0,∞[(t)

+ψ1
(
t + h1(x) · 1{0}(t)

)
· 1]c1,∞[(t)

+ρ
(
t + h2(x) · 1{0}(t)

)
· s for all (s, t) ∈ [0, ∞[×[0, ∞[\{(0, 0)} , (c f.(102))

ψdec(0, 0) := 0.

It is straightforward to see that DM,λ(·, ·) is a pointwise decomposable pseudo-
divergence in the sense of Definition 3(b), and one gets for fixed m > 0

ψdec
m (s, t) := m · ψdec

(
s
m , t

m

)
= m · ψ0

(
s
m

)
+ m · ψ1

(
t
m

)
+ ρ

(
t
m

)
· s � 0

for all (s, t) ∈]0,∞[×]0,∞[ , (120)

ψdec
m (s, t) = 0 if and only if s = t ,

s
m + h0

(
x, s

m

)
� 0 for all s ∈ [0,∞[ andλ-almost all x ∈ X ,

R � ψdec
m (s, 0) = m · ψ0

(
s
m + h0

(
x, s

m

))
· qc0 + m · ψ1(h1(x)) · qc1 + ρ(h2(x)) · s

for all s > 0 , (121)

R � ψdec
m (0, t) = m · ψ0(0) · qc0 + m · ψ1

(
t
m

)
for all t > 0 . (122)

For each class-family memberM := ⇀Qτ with arbitrarily fixed τ ∈ Θ , we can apply
Definition 4 to Dλ(·, ·) := D⇀

Qτ ,λ
(·, ·), and arrive at the correspondingmin−decD⇀

Qτ ,λ
-

estimators

θ̂N ,decD⇀
Qτ ,λ

(ω) := TD⇀
Qτ ,λ

(⇀P
emp(ω)

N

)
for ⇀P

emp(ω)

N ∈ Pλ⊥
emp (123)

of the true unknown parameter θ0. Hence, analogously to the derivation of (111), we
obtain from (102), (121), (122) for each τ ∈ Θ

D⇀
Q τ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= ∫

X ψdec
( ⇀p

emp(ω)
N (x)
⇀q τ (x)

,
⇀̃q θ(x)
⇀q τ (x)

)
· ⇀qτ (x) dλ(x)

= ∫
X ψ1

( ⇀q θ(x)
⇀q τ (x)

)
· ⇀qτ (x) dλ2(x) + ∑

x∈X
[

⇀qτ (x) · ψ0
( ⇀p

emp(ω)
N (x)
⇀q τ (x)

+ h0
(
x,

⇀p
emp(ω)
N (x)
⇀q τ (x)

))
· qc0

+ ⇀qτ (x) · ψ1(h1(x)) · qc1 + ρ(h2(x)) · ⇀pemp(ω)
N (x)

]
· 1R (Y1(ω),...,YN (ω))(x) + ψ0(0) · qc0

= ∫
X ψ1

( ⇀q θ(x)
⇀q τ (x)

)
· ⇀qτ (x) dλ2(x) + 1

N

∑N
i=1 ρ(h2(Yi (ω))) + ψ0(0) · qc0

+ 1
N

∑N
i=1

ψ0
(

⇀p
emp(ω)
N (Yi (ω))
⇀qτ (Yi (ω))

+h0

(
Yi (ω),

⇀p
emp(ω)
N (Yi (ω))
⇀qτ (Yi (ω))

))
· qc0+ψ1(h1(Yi (ω)))· qc1

⇀p
emp(ω)
N (Yi (ω))

· ⇀qτ (Yi (ω)) . (124)
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Just as in the derivation of (112) respectively (113), reasonable choices for the

“boundary-functions” in (124) are h0(x, s) ≡ 0, h1(x) ≡ 0, h2(x) = ⇀qθ(x)
⇀qτ (x)

, respec-

tively h0(x, s) ≡ 0, h1(x) ≡ ⇀qθ(x)
⇀qτ (x)

, h2(x) = ⇀qθ(x)
⇀qτ (x)

. As for example, consider for all

θ0, θ, τ ∈ Θ the scaled Bregman divergences in the sense of Stummer [81], Stummer
and Vajda [84] (cf. Remark (2)(b)), for which we get from (36) with r(x) ≡ 1

0 � Dc

φ,
⇀
Qτ ,

⇀
Qτ ,1·⇀Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ)

:= ∫
X

[
φ
(⇀qθ0

(x)
⇀qτ (x)

) − φ
( ⇀qθ(x)

⇀qτ (x)

) − φ′+,c

( ⇀qθ(x)
⇀qτ (x)

) · (⇀qθ0
(x)

⇀qτ (x)
− ⇀qθ(x)

⇀qτ (x)

)] · ⇀qτ (x) dλ2(x) ,

=: D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) , (125)

from which – together with (120) – one can identify immediately the point-
wise decomposabilitywithψ0(s) := ψ0

φ(s) := φ(s),ψ1(t) := ψ1
φ(t) := t · φ′+,c(t) −

φ(t), ρ(t) := ρφ(t) := −φ′+,c(t); by plugging this into (124), one obtains the objec-

tive D
φ,

⇀
Qτ ,λ2

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
, which in the course of (Enc3) should be – for fixed

τ ∈ Θ – minimized over θ ∈ Θ in order to obtain the corresponding τ -individual”

min−decD
φ,

⇀
Qτ ,λ

-estimator θ̂N ,τ (ω) := arginfθ∈Θ D
φ,

⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
. Recall

that this choice can be motivated by 0 = minθ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) and θ0 =
argminθ∈ΘD

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ). Furthermore, onegets even 0 = minθ∈Θ minτ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ), θ0 = argminθ∈Θ minτ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ), and in case of

maxτ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) < ∞ also 0 = minθ∈Θ maxτ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ),

θ0 = argminθ∈Θ maxτ∈Θ D
φ,

⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ). This suggests the alternative,

“τ -uniform” estimators θ̂N (ω) := argminθ∈Θ minτ∈Θ D
φ,

⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
,

respectively θ̂N (ω) := argminθ∈Θ maxτ∈Θ D
φ,

⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
. As a side remark,

let us mention that in general, (say) minτ∈Θ D
φ,

⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
is not necessarily

decomposable anymore, and therefore the standard theory of M-estimators is not
applicable to this class of estimators.
With our approach, we can generate numerous further estimators of the true unknown
parameter θ0, by permuting the positions – but not the roles (!) – of the parameters
(θ0, θ, τ ) in the (pseudo-)divergences of the above investigations. For the sake of
brevity, we only sketch two further cases; the full variety will appear elsewhere. To
start with, consider the adaptively scaled and aggregated divergence
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0 � Drev

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) := Dc

φ,
⇀
Q

2

θ0
/
⇀
Qτ ,

⇀
Q

2

θ /
⇀
Qτ ,1·⇀Qθ0

,λ2

(
⇀Qθ0 ,

⇀Qθ)

:= ∫
X

[
φ

(
⇀qθ0

(x)
⇀
qθ0

(x)2

⇀
qτ (x)

)
− φ

(
⇀qθ(x)
⇀
qθ (x)2

⇀
qτ (x)

)
− φ′+,c

(
⇀qθ(x)
⇀
qθ (x)2

⇀
qτ (x)

)
·
((

⇀qθ0
(x)

⇀
qθ0

(x)2

⇀
qτ (x)

)
−

(
⇀qθ(x)
⇀
qθ (x)2

⇀
qτ (x)

))]

·⇀qτ (x) dλ2(x)

= ∫
X

[
φ
( ⇀qτ (x)

⇀qθ0
(x)

) − φ
(⇀qτ (x)

⇀qθ(x)

) − φ′+,c

(⇀qτ (x)
⇀qθ(x)

) · ( ⇀qτ (x)
⇀qθ0

(x)
− ⇀qτ (x)

⇀qθ(x)

)] · ⇀qθ0(x) dλ2(x)

=: ∫
X

[
ψ0,rev

⇀qτ (x)
(⇀qθ0(x)) + ψ1,rev

⇀qτ (x)
(⇀qθ(x)) + ρrev⇀qτ (x)

(⇀qθ(x)) · ⇀qθ0(x)
]
dλ2(x)

(indeed, by Theorem 4 and (80) this is zero if and only if θ = θ0). By means of
the involved mappings ψ0(s) := ψ0,rev

m (s) := s · φ(ms ), ψ1(t) := ψ1,rev
m (t) := −m ·

φ′+,c(
m
t ), ρ(t) := ρrevm (t) := m

t · φ′+,c(
m
t ) − φ(mt ) =: φ�(mt ) (s, t,m > 0), the prop-

erties (103), (104) are applicable and thus Drev

φ,
⇀
Qτ ,λ2

(·, ·) can be extended to a point-

wise decomposable pseudo-divergence on P̃λ ⊗ Pλ by using (102) with appro-
priate functions h0,h1,h2 and constants c0,c1,c0. Furthermore, by minimizing over
θ ∈ Θ the objective (111) with these choicesψ0,rev

m (·),ψ1,rev
m (·), ρrevm (·), in the course

of (Enc3) we end up at the corresponding min−decDrev

φ,
⇀
Qτ ,λ

-estimator. In particular,

the corresponding special case h0(x, s) ≡ 0, h1(x) ≡ 1, h2(x) = ⇀qθ(x) ( �= ⇀̃qθ(x))
leads to the objective (cf. (112) but with ψ1(1) instead of ψ1(0))

Drev

φ,
⇀
Qτ ,λ2

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= φ∗(0) · qc0 − ∫

X
⇀qτ (x) · φ′+,c

(⇀qτ (x)
⇀qθ(x)

)
dλ2(x)

+ 1
N

∑N
i=1 φ�

(⇀qτ (Yi (ω))
⇀qθ(Yi (ω))

)

+ 1
N

∑N
i=1

[
φ
( ⇀qτ (Yi (ω))

⇀p
emp(ω)

N (Yi (ω))

)
· qc0 − ⇀qτ (Yi (ω))·φ′+,c(

⇀qτ (Yi (ω)))

⇀p
emp(ω)

N (Yi (ω))
· qc1

]

to be minimized over θ. As a second possibility to permutate the positions of the
parameters (θ0, θ, τ ), let us consider

0 � Dc

φ,
⇀
Q θ ,

⇀
Q θ ,1 ·⇀Q θ ,λ2

(
⇀Qθ0 ,

⇀Qτ )

:= ∫
X

[
φ
( ⇀qθ0

(x)
⇀q θ(x)

) − φ
( ⇀q τ (x)

⇀qθ(x)

) − φ′+,c

( ⇀q τ (x)
⇀qθ(x)

) · ( ⇀qθ0
(x)

⇀qθ(x)
− ⇀q τ (x)

⇀qθ(x)

)] · ⇀qθ(x) dλ2(x) ; (126)

this is a pointwise decomposable divergence between⇀Qθ0 and
⇀Qτ , but it is not a diver-

gence – yet still a nonnegative and obviously not pointwise decomposable functional
– between ⇀Qθ0 and

⇀Qθ. Indeed, for θ = θ0 �= τ one obtains Dc

φ,
⇀
Qθ0

,
⇀
Qθ0

,1·⇀Qθ0
,λ2

(
⇀Qθ0 ,

⇀Qτ ) > 0. Notice that from (126) one gets
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∫
X φ

(⇀qθ0
(x)

⇀qθ(x)

) · ⇀qθ(x) dλ2(x) �
∫
X

{[
φ
(⇀qτ (x)

⇀qθ(x)

) − φ′+,c

(⇀qτ (x)
⇀qθ(x)

) · ⇀qτ (x)
⇀qθ(x)

]
· ⇀qθ(x)

+φ′+,c

(⇀qτ (x)
⇀qθ(x)

) · ⇀qθ0(x)
}
dλ2(x) =: D c

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) , (127)

provided that the integral on the right-hand side exists and is finite. If moreover
φ(1) = 0, then by (54) the inequality (127) rewrites as

Dc
φ,λ2

(
⇀Qθ0 ,

⇀Qθ) := Dc

φ,
⇀
Qθ,

⇀
Qθ,1·⇀Qθ,λ

(
⇀Qθ0 ,

⇀Qθ) � Dc

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) (128)

with (for fixed θ) equality if and only if θ0 = τ ; this implies that

Dc
φ,λ2

(
⇀Qθ0 ,

⇀Qθ) = maxτ∈Θ D c

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) (129)

= maxτ∈Θ

∫
X

[
ψ1,sub

⇀qτ (x)
(⇀qθ(x)) + ρsub⇀qτ (x)

(⇀qθ(x)) · ⇀qθ0(x)
]
dλ2(x) (130)

withψ0(s) := ψ0,sub
m (s) ≡ 0,ψ1(t) := ψ1,sub

m (t) := t · φ(mt ) − m · φ′+,c(
m
t ), ρ(t) :=

ρsubm (t) := φ′+,c(
m
t ) (s, t,m > 0). In other words, this means that the Csiszar-Ali-

Silvey divergence CASD Dc
φ,λ2

(
⇀Qθ0 ,

⇀Qθ) can be represented as the τ -maximum over
– not necessarily nonnegative – pointwise decomposable (in the sense of (103), (104))
functionals D c

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ) between
⇀Qθ0 and

⇀Qθ. Furthermore, from Theorem 5

and (130) we arrive at

0 = minθ∈Θ Dc
φ,λ2

(
⇀Qθ0 ,

⇀Qθ) = minθ∈Θ maxτ∈Θ D c

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ)

= minθ∈Θ maxτ∈Θ

∫
X

[
ψ1,sub

⇀qτ (x)
(⇀qθ(x)) + ρsub⇀qτ (x)

(⇀qθ(x)) · ⇀qθ0(x)
]
dλ2(x) ,

θ0 = argminθ∈Θ maxτ∈Θ D c

φ,
⇀
Qτ ,λ2

(
⇀Qθ0 ,

⇀Qθ). (131)

Accordingly, in analogy to the spirit of (81), (82), (86), respectively Definition 4
and (110), in order to achieve an estimator of the true unknown parameter θ0 we
first extend the “pure parametric case” D c

φ,
⇀
Qτ ,λ2

: Pλ
Θ ⊗ Pλ

Θ �→ R to a singularity-

covering functional D c

φ,
⇀
Qτ ,λ

: Pλ
Θ,emp ⊗ Pλ

Θ �→ R, although it is not a pseudo-

divergence anymore; indeed, by employing the reduced form of (102) we take

Dc

φ,
⇀
Q τ ,λ

(
⇀P,

⇀Q) := ∫
X

[
ψ1,sub

⇀q τ (x)

(
⇀q(x) + h1(x) · 1{0}(⇀q(x))

)
· 1]c1,∞[(⇀q(x))

+ρsub⇀q τ (x)

(
⇀q(x) + h2(x) · 1{0}(⇀q(x))

)
· ⇀p(x)

]
dλ(x) for all ⇀P ∈ Pλ

Θ,emp,
⇀Q ∈ Pλ

Θ . (132)

Hence, analogously to the derivation of (111), we obtain from (132)
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supτ∈Θ D c

φ,
⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
= supτ∈Θ

∫
X ψ1,sub

⇀qτ (x)

(
⇀qθ(x)

)
dλ2(x)

+∑
x∈X

[
ψ1,sub

⇀qτ (x)

(
h1(x)

)
· qc1 + ρsub⇀qτ (x)

(h2(x)) · ⇀p
emp(ω)

N (x)
]

· 1R (Y1(ω),...,YN (ω))(x)

= supτ∈Θ

∫
X

[
⇀qθ(x) · φ

(⇀qτ (x)
⇀qθ(x)

)
− ⇀qτ (x) · φ′+,c

(⇀qτ (x)
⇀qθ(x)

)]
dλ2(x) (133)

+ 1
N

∑N
i=1 φ′+,c

(⇀qτ (Yi (ω))

h2(Yi (ω))

)

+ 1
N

∑N
i=1

h1(Yi (ω))·φ
(

⇀
qτ (Yi (ω))

h1(Yi (ω))

)
−⇀qτ (Yi (ω))·φ′+,c

(
⇀
qτ (Yi (ω))

h1(Yi (ω))

)

⇀p
emp(ω)

N (Yi (ω))
· qc1 (134)

to be minimized over θ ∈ Θ . In the view of (131), we can estimate (respectively
learn) the true unknown parameter θ0 by the estimator

θ̂N ,supDφ,λ
(ω) := arginfθ∈Θ supτ∈Θ D c

φ,
⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
for ⇀P

emp(ω)

N ∈ Pλ⊥
emp ,

(135)

which under appropriate technical assumptions (integrability, etc.) exists, is finite,
unique, and Fisher consistent; moreover, this method can be straightforwardly
extended to non-parametric setups. Similarly to the derivation of (112) respectively
(113), reasonable choices for the “boundary-functions” in (134) are h2(x) := ⇀qθ(x)
togetherwith h1(x) ≡ 1 respectively h1(x) := ⇀qθ(x) (where the nominator in the last
sum becomes −⇀qτ (Yi (ω)) · φ′+,c(1))). In the special case with c1 = 0 = qc1 – where
the choice of h1(·) is irrelevant – and h2(x) := ⇀qθ(x), the estimator θ̂N ,supDφ,λ

(ω)

was first proposed independently by Liese and Vajda [42] under the name modified
φ-divergence estimator and Broniatowski and Keziou [16, 17] under the name min-
imum dual φ-divergence estimator ; furthermore, within this special-case setup, Bro-
niatowski and Keziou [17] also introduced for each fixed θ ∈ Θ the related, so-called

dual φ-divergence estimator θ̂N ,θ,Dφ,λ
(ω) := argsupτ∈Θ D c

φ,
⇀
Qτ ,λ

(
⇀P

emp(ω)

N ,
⇀̃Qθ

)
. The

latter four references also work within a nonparametric framework. Let us also
mention that by (128) and (129), θ̂N ,Dφ,λ

(ω) can be interpreted as maximum sub-
φ-divergence estimator, whereas θ̂N ,supDφ,λ

(ω) can be viewed as minimum super-φ-
divergence estimator (cf. Vajda [90], Broniatowski andVajda [18] for the probability-
measure-theoretic context of footnote 15).

Remark 6 Making use of the escort parameter τ proves to be useful in statistical
inference under the model; its use under misspecification has been considered in
Toma and Broniatowski [86], Al Mohamad [5], for Csiszar-Ali-Silvey divergences.

As a final example, consider c1 = 0, h2(x) := ⇀qθ(x), and φ(t) := t log t + 1 − t , for
which we can deduce

θ̂N ,supDφ,λ
(ω) = θ̂N ,θ,Dφ,λ

(ω) = argsupξ∈Θ
1
N

∑N
i=1 log

(
⇀qξ(Yi (ω))

)
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for all θ ∈ Θ , i.e. in this case all maximum sub-φ-divergence estimators and the min-
imum super-φ-divergence estimator exceptionally coincide, and give the celebrated
maximum-likelihood estimator.

5 Conclusions

Motivated by fields of applications from statistics, machine learning, artificial intel-
ligence and information geometry, we presented for a wide audience a new unifying
framework of divergences between functions. Within this, we illuminated several
important subcases – such as scaled Bregman divergences and Csiszar-Ali-Silvey
φ-divergences – as well as involved subtleties and pitfalls. For the often desired task
of finding the “continuous” model with best divergence-proximity to the observed
“discrete” data, we summarized existing and also derived new approaches. As far as
potential future studies is concerned, the kind of universal nature of our introduced
toolkit suggests quite a lot of possibilities for further adjacent developments and
concrete applications.
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Appendix: Proofs

Proof of Theorem 4. Assertion (1) and the “if-part” of (2) follow immediately from
Theorem1which uses less restrictive assumptions. In order to show the “only-if” part
of (2) (and the “if-part” of (2) in an alternativeway), one can use the straightforwardly
provable fact that the Assumption 2 implies

w3 · ψφ,c(x, s, t) = 0 if and only if s = t (136)

for all s ∈ R
(

P
M1

)
, all t ∈ R

( Q
M2

)
and λ-a.a. x ∈ X . To proceed, assume that

Dc
φ,M1,M2,M3,λ

(P, Q) = 0, which by the non-negativity ofw3 · ψφ,c(·, ·) implies that

w3 · ψφ,c
( p(x)
m1(x)

,
q(x)
m2(x)

) = 0 for λ-a.a. x ∈ X . From this and the “only-if” part of

(136), we obtain the identity p(x)
m1(x)

= q(x)
m2(x)

forλ-a.a. x ∈ X . �
Proof of Theorem 5. Consistently with Theorem 1 (and our adaptions) the “if-part”
follows from (51). By our above investigations on the adaptions of theAssumptions 2
to the current context, it remains to investigate the “only-if” part (2) for the following
four cases (recall that φ is strictly convex at t = 1):
(ia) φ is differentiable at t = 1 (hence, c is obsolete and φ′+,c(1) collapses to φ′(1))
and the function φ is affine linear on [1, s] for some s ∈ R

(
P
Q

)\[a, 1];
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(ib) φ is differentiable at t = 1, and the function φ is affine linear on [s, 1] for some
s ∈ R

(
P
Q

)\[1, b];
(i i) φ is not differentiable at t = 1, c = 1, and the function φ is affine linear on [1, s]
for some s ∈ R

(
P
Q

)\[a, 1];
(i i i) φ is not differentiable at t = 1, c = 0, and the function φ is affine linear on
[s, 1] for some s ∈ R

(
P
Q

)\[1, b].
It is easy to see from the strict convexity at 1 that for (ii) one has φ(0) + φ′+,1(1) −
φ(1) > 0, whereas for (iii) one gets φ∗(0) − φ′+,0(1) > 0; furthermore, for (ia) there
holds φ(0) + φ′(1) − φ(1) > 0 and for (ib) φ∗(0) − φ′(1) > 0. Let us first examine
the situations (ia) respectively (ii) under the assumptive constraint Dc

φ,Q,Q,R·Q,λ

(P,Q) = 0with c = 1 respectively (in case of differentiability) obsolete c, forwhich
we can deduce from (51)

0 = Dc
φ,Q ,Q ,R ·Q ,λ(P,Q)

�
∫
X r(x) · [q(x) · φ( p (x)

q(x)

) − q(x) · φ
(
1
) − φ′+,c

(
1
) · (p(x) − q(x)

)]

·1]0,∞[
(
p(x)

) · 1]p (x),∞[
(
q(x)

)
dλ(x)

+[
φ(0) + φ′+,c(1) − φ(1)

] · ∫
X r(x) · q(x) · 1{0}

(
p(x)

) · 1]p (x),∞[
(
q(x)

)
dλ(x) � 0,

and hence
∫
X 1]p(x),∞[

(
q(x)

) · r(x) dλ(x) = 0. From this and (55) we obtain

0 = ∫
X

(
p(x) − q(x)

) · r(x) dλ(x) = ∫
X

(
p(x) − q(x)

) · 1]q(x),∞[
(
p(x)

) · r(x) dλ(x)

and therefore
∫
X 1]q(x),∞[

(
p(x)

) · r(x) dλ(x) = 0. Since for λ-a.a. x ∈ X we have
r(x) > 0, we arrive at p(x) = q(x) for λ-a.a. x ∈ X . The remaining cases (ib)
respectively (iii) can be treated analogously. �
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Information-Theoretic Matrix
Inequalities and Diffusion Processes on
Unimodular Lie Groups

Gregory S. Chirikjian

Abstract Unimodular Lie groups admit natural generalizations of many of the core
concepts on which classical information-theoretic inequalities are built. Specifically,
they have the properties of shift-invariant integration, an associative convolution
operator, well-defined diffusion processes, and concepts of Entropy, Fisher informa-
tion, Gaussian distribution, and Fourier transform. Equipped with these definitions,
it is shown that many inequalities from classical information theory generalize to
this setting. Moreover, viewing the Fourier transform for noncommutative unimodu-
lar Lie groups as a matrix-valued function, relationships between trace inequalities,
diffusion processes, and convolution are examined.

Keywords Haar measure · Convolution · Group theory · Harmonic analysis ·
Diffusion processes · Inequalities

1 Introduction

This paper explores aspects of information-theoretic inequalities that naturally extend
from R

n to an arbitrary unimodular Lie group. The exposition is mostly a condensed
summary of material that can be found in [1, 2], but also presents some new inequal-
ities. The motivations for investigating such inequalities are twofold: (1) physical
information-processing agents (such as mobile robots or microscopic organisms)
often have configuration spaces with Lie-group structure, and their localization in
the world is therefore inextricably connected to both information theory and geome-
try; (2) Due to the identical form of the entropy functional in continuous information
theory and in statistical mechanics, results from one field carry over to the other, and
so it becomes possible to make statements about the statistical mechanical entropy of
passive objects such as DNA and loops in proteins using the results of Lie-theoretic
information theory.
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1.1 Mathematical Preliminaries

A unimodular Lie group, (G, ◦), is one which possesses a bi-invariant integration
measure. That is, it is possible to construct a measure μ and associated volume
element dg

.= dμ(g) around each g ∈ G such that given any function f : G → C

whose measure

μ( f ) =
∫
G
f (g) dg

exists, the following invariance properties will hold

∫
G
f (g) dg =

∫
G
f (g−1) dg =

∫
G
f (h ◦ g) dg =

∫
G
f (g ◦ h) dg (1)

for arbitrary h ∈ G. Here, of course, g−1 is the inverse of g ∈ G, which is the unique
element such that

g ◦ g−1 = g−1 ◦ g = e

with e being the identity element, which for every g ∈ G satisfies

g ◦ e = e ◦ g = g .

This is the unique element of G with such properties.
The equalities in (1) are analogous to the properties of the Lebesgue integral

∫
Rn

f (x) dx =
∫
Rn

f (−x) dx =
∫
Rn

f (y + x) dx =
∫
Rn

f (x + y) dx .

All compact Lie groups are unimodular, as are all nilpotent and semisimple Lie
groups. When referring to Lie groups in this paper, the discussion is restricted to
matrix Lie groups with elements that are square matrices, and group operation, ◦,
being matrix multiplication and the identity element is the identity matrix in the case
of a matrix Lie group. In this context, the set of n × n unitary matrices, U (n), and
all of its subgroups are compact Lie groups. An example of a noncompact semi-
simple Lie group is the much-studied SL(2, R) consisting of all 2 × 2 matrices with
real entries and unit determinant [3–6]. And an example of a nilpotent group is the
Heisenberg group, H(3), consisting of matrices of the form

H(α,β, γ) =
⎛
⎝ 1 α β
0 1 γ
0 0 1

⎞
⎠

where α,β, γ ∈ R. Probability distributions, harmonic analysis, and diffusion pro-
cesses on this group have been studied in detail [7, 8].
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As a nontrivial example of a noncompact unimodular Lie group that arises fre-
quently in engineering applications, and which is neither semisimple nor nilpotent,
consider the Special Euclidean group, SE(n), which consists of elements of the form
g = (R, t) ∈ SO(n) × R

n with the semi-direct product group law

(R1, t1) ◦ (R2, t2) = (R1R2, R1t2 + t1).

Here Ri ∈ SO(n), the special orthogonal group consisting of n × n rotationmatrices,
and the resulting semi-direct product group is denoted as

SE(n) = R
n

� SO(n) .

Building on the classic works of Miller [9, 10] and Vilenkin [11–13], the author has
published extensively on harmonic analysis and diffusion processes on this group
in the context of applications in robotics and polymer science [14–16]. Detailed
treatment of these topics can be found in [1, 2], and a recent concise summary can be
found in [17]. In order to avoid repetition, examples in the present paper are instead
illustrated withH(3) and SO(3), though the general formulation is kept abstract and
general, in the spirit of [18–25].

In the context of unimodular Lie groups, it then makes sense to consider proba-
bility density functions, i.e., f : G → R with the properties

f (g) ≥ 0 and
∫
G
f (g) dg = 1.

Moreover, the concept of entropy of a pdf is simply

S( f )
.= −

∫
G
f (g) log f (g) dg , (2)

and an entropy power is

N ( f )
.= 1

2πe
exp

(
2

dim(G)
S( f )

)
.

For unimodular Lie groups, a well-defined concept of convolution of functions in
(L1 ∩ L2)(G) exists:

( f1 ∗ f2)(g)
.=
∫
G
f1(h) f2(h

−1 ◦ g) dh . (3)

This inherits the associative property from G:

(( f1 ∗ f2) ∗ f3)(g) = ( f1 ∗ ( f2 ∗ f3))(g) .
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Moreover, for broad classes of unimodular Lie groups, including all compact Lie
groups and group extensions such as SE(n), it is possible to define a concept of
Fourier transform. This is based on the concept of an irreducible unitary representa-
tion (IUR) of G. An IUR is a unitary operator (which can be thought of as a square
matrix of either finite or infinite dimension) with the properties

U (g1 ◦ g2,λ) = U (g1,λ)U (g2,λ) and U (g−1,λ) = U ∗(g,λ)

where λ can be thought of as a frequency parameter and ∗ denotes the Hermitian
conjugate. The space of all Λ values is called the unitary dual of G. In the case when
G is Abelian, the unitary dual is also a group. In the case of compact Lie groups,Λ is a
discrete space with countable elements. In the case of some noncompact unimodular
Lie groups the space Λ has been fully characterized, and its description can be a
quite complicated requiring a combination of continuous and discrete parameters.

Within this context the Fourier transform is defined as

f̂ (λ) =
∫
G
f (g)U (g−1,λ) dg .

As with classical Fourier analysis, there is a convolution theorem

̂( f1 ∗ f2)(λ) = f̂2(λ) f̂1(λ)

and a reconstruction formula

f (g) =
∫

Λ

tr
[
f̂ (λ)U (g,λ)

]
dλ .

Combining the above gives

( f1 ∗ f2)(e) =
∫

Λ

tr
[
f̂2(λ) f̂1(λ)

]
dλ = ( f2 ∗ f1)(e) .

Moreover, the Plancherel equality gives

∫
G
f1(g) f2(g) dg =

∫
Λ

tr
[
f̂1(λ) f̂ ∗

2 (λ)
]
dλ .

When f1 = f2 = f , this becomes the familiar form of Parseval’s equality

∫
G

| f (g)|2 dg =
∫

Λ

∥∥∥ f̂ (λ)

∥∥∥2
HS

dλ ,

where ‖A‖2HS = tr(AA∗) is the familiar Hilbert-Schmidt norm.
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In the context of Lie groups there are also natural generalizations of the concept
of partial derivatives. Namely, if X ∈ G (the Lie algebra corresponding to the Lie
group G), then a (left-invariant) directional derivative of f (g) is computed as

(X̃ f )(g)
.= d

dt
f
(
g ◦ et X

)∣∣∣∣
t=0

.

If {Ei } is a basis for G, then (Ẽi f )(g) can be thought of as partial derivatives, and
the derivative in the direction X =∑i xi Ei can be written as

(X̃ f )(g) =
∑
i

xi (Ẽi f )(g) .

Making a choice {Ei } and defining an inner product by imposing orthonormality
conditions (Ei , E j ) = δi j in effect fixes a metric for G, which can be transported by
left or right action to define a metric on G.

Operational properties of the Fourier transform include

̂
(X̃ f )(λ) = u(X,λ) f̂ (λ)

where

u(X,λ)
.= d

dt
U (et X ,λ)

∣∣∣∣
t=0

.

This matrix function is linear in X , and so

u

(∑
i

xi Ei ,λ

)
=
∑
i

xi u(Ei ,λ) .

The concept of a Fisher information matrix with elements

Fi j ( f )
.=
∫
G

(Ẽi f )(g)(Ẽ j f )(g)

f (g)
dg

and a diffusion process on G can be described with an equation of the form1

∂ f

∂t
= −

dim(G)∑
i=1

hi Ẽi f + 1

2

dim(G)∑
i, j=1

Di j Ẽi Ẽ j f . (4)

1The diffusion coefficients are Di j and the drift coefficients are hi . When hi = 0 for all i ∈
{1, . . . , dim(G)} the diffusion process is called driftless.
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With all of this in mind, it becomes possible to explore generalizations of inequal-
ities from classical information theory. Two major hindrances to trivially extending
these inequalities to the noncommutative case are: (1) for general functions on G,

( f1 ∗ f2)(g) 	= ( f2 ∗ f1)(g) ;

and, (2) unlike in the case of R
n where the Gaussian distribution is simultaneously

(a) the maximal entropy distribution subject to covariance constraints, (b) is closed
under convolution and conditioning, and (c) solves the Euclidean-space version of
(4), these attributes cannot in general be simultaneously satisfied for more general
Lie groups. For example, the Entropy-Power Inequality (EPI) is not even true for the
circle group R/Z ∼= SO(2).

This paper summarizes what is already known, introduces some new results, and
poses some questions for future exploration. For additional background on convolu-
tion, entropy, and Fourier analysis (in the Euclidean on Lie group cases), see [26–38].

1.2 Structure of the Paper

Section2 explains how to compute the integration measure for unimodular Lie
groups. Section3 reviews the concept of functions of positive type on unimodu-
lar Lie groups, and the resulting properties of Fourier matrices for such functions.
Section4 explains why trace inequalities are significant in the harmonic analysis of
diffusion processes on noncommutative unimodular Lie groups, and reviews some of
the most well-known trace inequalities and various conjectures put forth in the litera-
ture. Section5 reviews howFisher information arises in quantifying entropy increases
under diffusion and reviews a generalization the de Bruijn identity, which is shown
to hold for unimodular Lie groups in general. This too involves trace inequalities.
Section6 reviews definitions of mean of covariance of probability densities on uni-
modular Lie groups, and how the propagate under convolution. Section7 illustrates
the theory with specific examples (SO(3) as an example of compact Lie groups
and the Heisenberg group H(3) as an example of a noncommutative noncompact
unimodular Lie group.)

2 Explicit Computation of the Bi-invariant Integration
Measure

This section explains how to compute the bi-invariant integration measure for a
unimodular Lie group, summarizing the discussion in [1, 2].

To begin, an inner product (·, ·) between arbitrary elements of the Lie algebra,
Y =∑i yi Ei and Z =∑ j z j E j , can be defined such that
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(Y, Z)
.=

n∑
i=1

yi zi where (Ei , E j ) = δi j . (5)

The basis {Ei } is then orthonormal with respect to this inner product. The definition
of the inner product together with the constraint of orthonormality of a particular
choice of basis {Ei } in (5) defines a metric tensor for the Lie group.

Let q = [q1, . . . , qn]T be a column vector of local coordinates. Then g(t) =
g̃(q(t)) is a curve in G where g̃ : R

n → G is the local parametrization of the Lie
groupG. Henceforth the tilde will be dropped since it will be clear from the argument
whether the function g(t) or g(q) is being referred to. The right-Jacobian matrix2 for
an n-dimensional Lie group parameterized with local coordinates q1, . . . , qn is the
matrix Jr (q) that relates rates of change q̇ to g−1ġ, and likewise for Jl(q) and ġg−1,
where a dot denotes d/dt . Specifically,

ġg−1 =
∑
j

ωl
j E j and ωl = Jl(q)q̇

and
g−1ġ =

∑
j

ωr
j E j and ωr = Jr (q)q̇.

In other words,

(ġg−1, Ek) =
⎛
⎝∑

j

ωl
j E j , Ek

⎞
⎠ =

∑
j

ωl
j

(
E j , Ek

) =
∑
j

ωl
jδ jk = ωl

k .

The scalarsωl
k can be stacked in an array to form the column vectorωl = [ωl

1,ω
l
2, . . . ,

ωl
n]T . Analogous calculations follow for the “r” case. This whole process is abbre-

viated with the “∨” operation as

(
ġg−1

)∨ = ωl and
(
g−1ġ

)∨ = ωr . (6)

Given an orthogonal basis E1, . . . , En for the Lie algebra, projecting the left and
right tangent operators onto this basis yields elements of the right- and left-Jacobian
matrices3:

2Here ‘right’ and ‘left’ respectively refer to differentiation appearing on the right or left side in
calculations. As such a ‘right’ quantity denoted with a subscript r is left invariant, and a ‘left’
quantity denoted with a subscript l is right invariant.
3The ‘l’ and ‘r’ convention used here for Jacobians and for vector fields is opposite that used in the
mathematics literature. The reason for the choice made here is to emphasize the location of the “the
most informative part” of the expression. In Jacobians, this is the location of the partial derivatives.
In vector fields this is where the components defining the field appear.
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(Jr )i j =
(

g−1 ∂g

∂q j
, Ei

)
and (Jl)i j =

(
∂g

∂q j
g−1, Ei

)
. (7)

In terms of the ∨ operation this is written as

(
g−1 ∂g

∂q j

)∨
= Jr (q) e j and

(
∂g

∂q j
g−1

)∨
= Jl(q) e j .

Asanother abuse of notation, the distinction between J (q) and J (g(q)) can be blurred
in both the left and right cases. Again, it is clear which is being referred to from the
argument of these matrix-valued functions.

Note that Jr (h ◦ g) = Jr (g) and Jl(g ◦ h) = Jl(g). For unimodular Lie groups,

| det(Jr )(q)| = | det(Jl)(q)| and dg = | det(Jr,l)(q)| dq . (8)

This dg has the bi-invariance property, and is called the Haar measure. Examples of
how this looks in different coordinates are given forH(3) and SO(3) in Sect. 7. In the
compact case, it is always possible to find a constant c to normalize as d ′g .= c · dg
such that

∫
G d ′g = 1.

3 Functions of Positive Type

In harmonic analysis, a function ϕ : G → C is called a function of positive type if
for every ci ∈ C and every gi , g j ∈ G and any n ∈ Z>0 the inequality

n∑
i, j=1

ci c j ϕ(gi ◦ g−1
j ) ≥ 0 .

In some texts, such functions are also called positive definite, whereas in others that
term is used only when the inequality above excludes equality except when all values
of ci are zero. Here a function of positive type will be taken to be one for which the
matrixM = [mi j ]with entriesmi j

.= ϕ(gi ◦ g−1
j ) is Hermitian positive semi-definite

(which can be shown to be equivalent to the above expression), and a positive definite
function is one for which M is positive definite.

Some well-known properties of functions of positive type include [19, 21, 23]:

ϕ(e) = ϕ(e) ≥ 0

|ϕ(g)| ≤ ϕ(e)

ϕ(g−1) = ϕ(g) .

Moreover, if ϕ1 and ϕ2 are two such functions, then so are ϕi , ϕ1 · ϕ2, as are linear
combinations of the form a1ϕ1 + a2ϕ2 where ai ∈ R>0.
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Clearly, if ϕ is a function constructed as

ϕ(g;λ)
.= tr

[
A∗U (g,λ)A

]

when A is positive definite, then

n∑
i, j=1

ci c j ϕ(gi ◦ g−1
j ) =

n∑
i, j=1

ci c j tr
[
A∗U (gi ◦ g−1

j ,λ)A
]

=
∥∥∥∥∥A∗

n∑
i=1

U (gi ,λ)

∥∥∥∥∥
2

HS

≥ 0

because
U (gi ◦ g−1

j ,λ) = U (gi ,λ)U ∗(g j ,λ) .

And hence ϕ(g;λ) is a function of positive type. Moreover, by the same reasoning,
if f (g) is any functions for which f̂ (λ) is a Hermitian positive definite matrix, then
f (g)will be a positive definite function. And, according to Hewitt and Ross [21, 23]
(p. 683 Lemma D.12), if A and B are both positive definite matrices, then so is their
product. This has implications regarding the positivity of the convolution of positive
functions on a group.

In particular, if ρt (g) = ρ(g; t) is the solution to a driftless diffusion equation with
Dirac-delta initial conditions, then the Fourier-space solution is written as

ρ̂(λ; t) = exp

⎡
⎣1

2

dim(G)∑
i, j=1

Di ju(Ei ,λ)u(E j ,λ)

⎤
⎦ ,

which is Hermitian positive definite, and hence ρt (g) is a real-valued positive definite
function for each value of t ∈ R≥0. Moreover,4

ρt (g) = ρt (g
−1) .

It is not difficult to show that given two symmetric functions, ρ1(g)
.= ρt1(g; D1)

and ρ2(g)
.= ρt2(g; D2), that

(ρ1 ∗ ρ2)(g) = (ρ2 ∗ ρ1)(g
−1) .

Though this does not imply that (ρ1 ∗ ρ2)(g) is symmetric, it is easy to show that
(ρ1 ∗ ρ2 ∗ ρ1)(g) is symmetric.

Moreover, if f : G → R≥0 is a pdf which is not symmetric, it is not difficult to
show that

4Here the dependence on D = [Di j ] has been suppressed, but really ρt (g) = ρt (g; D).
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f ′(g)
.= f (g) + f (g−1)

2

and

f ′′(g)
.= f (g) f (g−1)

( f ∗ f )(e)

are symmetric pdfs.
For any positive definite symmetric pdf, the Fourier transform is a positive definite

Hermitian matrix because

ρ̂(λ) =
∫
G

ρ(g)U (g−1,λ) dg =
∫
G

ρ(g−1)U (g−1,λ) dg

=
∫
G

ρ(g)U (g,λ) dg =
∫
G

ρ(g)U ∗(g−1,λ) dg = ρ̂∗(λ) .

From positive definiteness, it is possible to write

ρ̂(λ) = exp H(λ)

where H is Hermitian, though not necessarily positive definite.
Moreover, every special unitary matrix can be expressed as the exponential of a

skew-Hermitian matrix, and even more than that, if g = exp X , then the IUR matrix
U (g,λ) can be computed as

U (g,λ) = exp Z(log(g),λ)

where

Z(X,λ) =
dim(G)∑
i=1

xiu(Ei ,λ) = −Z∗(X,λ) .

In analogy with the way that the exponential map for a matrix Lie group is simply
the matrix exponential defined by the Taylor series, here and throughout this work
the logarithm is the matrix logarithm defined by its Taylor series.

In this light, the Fourier inversion formula has in it the evaluation of

tr
[
exp H exp Z

]
,

and the evaluation of (ρ1 ∗ ρ2)(e) has in it

tr
[
exp H1 exp H2

]
.

Also, in the evaluation of probability densities for diffusion processes with drift, it
is desirable to find approximations of the form
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tr
[
exp(H + Z)

] ≈ tr
[
exp H ′ exp Z ′)

]
.

For these reasons, there are connections betweenharmonic analysis on unimodular
Lie groups and trace inequalities.

4 Trace Inequalities

In the Fourier reconstruction formula for a diffusion process on a Lie group, the
trace of the product of exponentials of two matrices is computed. It is therefore
relevant to consider: (1) when can the product of two exponentials be simplified;
(2) even when the product cannot be simplified, it would be useful to determine
when the trace operation has the effect of simplifying the result. For example, if
A and B are bandlimited matrices and tr(eAeB) ≈ tr(exp(A + B)) then computing
the eigenvalues of A + B, exponentiating each eigenvalue, and summing potentially
could be much faster than directly exponentiating the matrices, and then taking the
trace of the product. The statements that follow therefore may have some relevance
to the rapid evaluation of the Fourier inversion formula for diffusion processes on
Lie groups. Other matrix inequalities that may be applicable to extend the current
analysis include [39–52].

4.1 Generalized Golden–Thompson Inequalities

For n × n Hermitian matrices A and B, theGolden–Thompson inequality [53–55] is

ϕ(eAeB) ≥ ϕ(eA+B) (9)

where ϕ is one of a large number of so-called spectral functions. For the case when
ϕ(·) = tr(·) (which is the case of primary interest in this chapter) this was proven in
[54], and generalized in [56].

The Thompson Conjecture [57]: If H and K are Hermitian matrices, there exist
unitary matrices U and V dependent on H and K such that

eiHeiK = ei(UHU ∗+V KV ∗). (10)

The So-Thompson Conjecture [58]: If H and K are Hermitian matrices, there exist
unitary matrices U and V dependent on H and K such that

eH/2eK eH/2 = eUHU ∗+V KV ∗
. (11)

Interestingly, such conjectures have been proven [59] using techniques associated
with random walks on symmetric space of Lie groups [60], thereby bringing the
problem back to the domain of interest in this chapter.
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In [61], Cohen et al. prove that spectral matrix functions,5 ϕ : C
n×n → C (includ-

ing the trace) satisfy the inequality

ϕ(e(A+A∗)/2e(B+B∗)/2) ≥ |ϕ(eA+B)| (12)

when the following condition holds:

ϕ([XX∗]s) ≥ |ϕ(X2s)| ∀ X ∈ C
n×n for s = 1, 2, . . .

An interesting corollary to (12) is that if A is skew-Hermitian, and B ∈ C
n×n ,

then [61]:
ϕ(e(B+B∗)/2) ≥ |ϕ(eA+B)|. (13)

Bernstein proved the following general statement for A ∈ C
n×n [62]:

tr(eA
∗
eA) ≤ tr(eA

∗+A) (14)

Inequalities involving functions of products of exponentials have a long history
(see e.g., [63, 64]) and remain an area of active investigation. A few recent papers
include [65–67].

4.2 Matrix Inequalities from Systems Theory

Another sort of matrix inequality that may be useful would be extensions of results
that comes from systems theory. For example, it is known that if A, B ∈ R

n×n and
B = BT > 0 then [68]

λn( Â)tr(B) ≤ tr(AB) ≤ λ1( Â)tr(B) (15)

where Â = (A + AT )/2 and the eigenvalues are ordered asλ1 ≥ λ2 ≥ · · · ≥ λn > 0.
This has been tightened by Fang et al. [69]:

λn( Â)tr(B) − λn(B)[nλn( Â) − tr(A)] ≤ tr(AB) ≤ λ1( Â)tr(B) − λn(B)[nλ1( Â) − tr(A)]
(16)

Additional modifications have been made by Park [70].
Under the same conditions on A and B, Komaroff and Lasserre independently

derived the inequality [71, 72]:

n∑
i=1

λi ( Â)λn−i+1(B) ≤ tr(AB) ≤
n∑

i=1

λi ( Â)λi (B) (17)

5These are functions that depend only the eigenvalues of a matrix, and are therefore invariant under
similarity transformations.
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and Lasserre tightened this with the result [73]:

f (−ε) ≤ tr(AB) ≤ f (ε) ∀ ε > 0 (18)

where

f (ε)
.= 1

ε

n∑
i=1

[λi (B + ε Â)λi (B) − tr(B2)].

Apparently,when A ∈ C
n×n and B = B∗ ∈ C

n×n (17) holdswith the substitutions
AT → A∗ and tr(AB) → Re[tr(AB)] [74]. Generalized formulas for products of
arbitrary real matrices have been made recently [74–76].

4.3 Classical Matrix Inequalities

In a sense, inequalities of the form in the previous section can be traced back to work
done as early as the 1930s. Mirsky [77] attributes the following result for arbitrary
A, B ∈ C

n×n to a 1937 paper by John von Neumann:

|tr(AB)| ≤
n∑

i=1

μi (A)μi (B) (19)

where μ1(A) ≥ μ2(A) ≥ · · · ≥ μn(A) are the singular values of A.
Hoffman and Wieland [78] states that for n × n normal matrices A and B (i.e.,

A∗A = AA∗ and B∗B = BB∗) permutations π,σ ∈ �n can be found such that

n∑
i=1

|λi (A) − λπ(i)|2 ≤ ‖A − B‖2 ≤
n∑

i=1

|λi (A) − λσ(i)|2 (20)

where ‖A‖2 = tr(AA∗) is the Frobenius norm. For generalizations see [79]. In par-
ticular, Richter [80] and Mirsky [81] have shown that if A and B are both n × n
Hermitian matrices,

n∑
i=1

λi (A)λn+1−i (B) ≤ tr(AB) ≤
n∑

i=1

λi (A)λi (B) (21)

and Marcus [82] showed that for normal matrices A and B, there exist permutations
π and σ for which

n∑
i=1

λi (A)λπ(i)(B) ≤ Re[tr(AB)] ≤
n∑

i=1

λi (A)λσ(i)(B) (22)
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4.4 The Arithmetic-Mean-Geometric-Mean (AM-GM)
Inequality

The arithmetic-geometric-mean inequality states that the arithmetic mean of a set
of positive real numbers is always less than the geometric mean of the same set of
numbers:

1

n

n∑
i=1

λi ≥
n∏

i=1

λ
1
n
i . (23)

This fact can be used to derive many useful inequalities. For example, Steele [83]
uses the AM-GM inequality to derive a reverse Cauchy-Schwarz inequality of the
form (

n∑
k=1

a2k

) 1
2
(

n∑
k=1

b2k

) 1
2

≤ m + M

2
√
mM

n∑
k=1

akbk (24)

where {ak}, {bk} ⊂ R>0 and 0 < m ≤ ak/bk ≤ M < ∞ for all k ∈ {1, . . . , n}.
It is no coincidence that the numbers in (23) are denoted as λi because when they

are interpreted as the eigenvalues of a positive definite Hermitian matrix, A = A∗ >

0, and so
1

n
tr(A) ≥ |A| 1

n . (25)

This is useful for bounding the trace of the matrix exponential of a not-necessarily-
positive-definite Hermitian matrix, H = H∗, since A = exp H = A∗ > 0 can be
substituted into (25). The determinant-trace equality for the matrix exponential
det(exp(H)) = etr(H) then gives | exp H | 1

n = |etr(H)| 1
n and so

1

n
tr(exp H) ≥ etr(H)/n. (26)

Though (25) is more fundamental than (26), the latter is directly useful in studying
properties of diffusion processes on Lie groups.

It is also interesting to note that (25) generalizes in several ways. For example, if

μp(λ1, . . . ,λn)
.=
(
1

n

n∑
i=1

λ
p
i

) 1
p

then the AM-GM inequality can be stated as

lim
p→0

μp(λ1, . . . ,λn) ≤ μ1(λ1, . . . ,λn)

and more generally,
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μp(λ1, . . . ,λn) ≤ μq(λ1, . . . ,λn) p < q. (27)

For each fixed choice of λ1, . . . ,λn , the function f : R → R≥0 defined by f (p) =
μp(λ1, . . . ,λn) is an increasing function.

When p = −1, the harmonic mean

μ−1(λ1, . . . ,λn) = n ·
[

n∑
i=1

1

λi

]−1

results, and (27) for p = −1 and q = 0 implies that

n ·
[

n∑
i=1

1

λi

]−1

≤
[

n∏
i=1

λi

] 1
n

.

The implication of this for positive definite Hermitian matrices is that

n · tr[A−1] ≤ [detA] 1
n ⇐⇒ trA ≤ 1

n
[detA]− 1

n . (28)

One generalization of (23) is the weighted AM-GM inequality

1

α

n∑
i=1

αiλi ≥
(

n∏
i=1

λαi
i

) 1
α

where α =
n∑

i=1

αi , αi ∈ R>0. (29)

Another generalization is Ky Fan’s inequality [84]:

1
n

∑n
i=1 λi

1
n

∑n
i=1(1 − λi )

≥
∏n

i=1 λ
1
n
i∏n

i=1(1 − λi )
1
n

(30)

which holds for 0 ≤ λi ≤ 1
2 . If the numbers λi are viewed as the eigenvalues of a

matrix, A, then Ky Fan’s inequality can be written as

trA

tr(I − A)
≥ |A| 1

n

|I − A| 1
n

or trA ≥ n

1 + |A|− 1
n |I − A| 1

n

. (31)

Of course this statement should then be restricted to those matrices that have real
eigenvalues that obey 0 ≤ λi (A) ≤ 1

2 .
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4.5 Consequences for Harmonic Analysis and Diffusion
Processes

If ρD(k) (g, t) denotes the solution to the driftless diffusion equation on G with diffu-
sion coefficients D(k)

i j , subject to initial conditions ρD(k) (g, 0) = δ(g), then from the
Golden–Thompson inequality

(ρD(1) ∗ ρD(2) )(e; t) ≥ ρD(1)+D(2) (e; t) . (32)

Alternatively, using the fact that B
1
2 AB

1
2 is Hermitian positive definite whenever A

and B are, the trace of the product tr[AB] = tr[B 1
2 AB] can be bounded using (25),

resulting in
1

n
tr(AB) ≥ |A| 1

n |B| 1
n . (33)

This can then be used to bound (ρD(1) ∗ ρD(2) )(e; t) from below as well. But it can also
be used in a different way. Given a diffusion with drift, the Fourier matrices will be
of the form exp(H + Z)where H = H∗ and Z = −Z∗. Then the convolution of two
diffusions with drifts being the negative of each other will be exp(H + Z) exp(H −
Z), which is Hermitian, and hence

1

n
tr(exp(H + Z) exp(H − Z)) ≥ | exp(H + Z)| 1

n | exp(H − Z)| 1
n . (34)

Then from the determinant-trace equality, we can simplify

| exp(H + Z)| = etr(H+Z) and | exp(H − Z)| = etr(H−Z) ,

thereby giving that

1

n
tr(exp(H + Z) exp(H − Z)) ≥ e

2
n tr(H). (35)

These will be demonstrated in Sect. 7.
In the case when G = R

n , covariances add under convolution and for a diffusion
Σ(k) = D(k)t , and so

(ρD(1) ∗ ρD(2) )(0; t) = 1

(2πt)n/2
∣∣D(1) + D(2)

∣∣ 12 = ρD(1)+D(2) (0; t) .

This begs the question of how to define and propagate covariances on a unimod-
ular Lie group, and what relationships may exist with Fisher information. Inequal-
ities relating Fisher information and entropy are reviewed in Sect. 5, followed by
definitions of covariance in Sect. 6 and the relationship be Fisher information and
covariance.
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5 Inequalities Involving Fisher Information and Diffusion
Processes

This section connects trace inequalities with Fisher information and the rate of
entropy increase under a diffusion process. The results presented here are an abridged
version of those presented in [2].

5.1 Rate of Increase of Entropy Under Diffusion

The entropy of a pdf on a Lie group is defined in (2) If f (g, t) is a pdf that satisfies
a diffusion equation (regardless of the details of the initial conditions) then some
interesting properties of S f (t) can be studied. In particular, if Ṡ f = dS f /dt , then
differentiating under the integral sign gives

Ṡ f = −
∫
G

{
∂ f

∂t
log f + ∂ f

∂t

}
dg.

But from the properties of a diffusion equation,

∫
G

∂ f

∂t
dg = d

dt

∫
G
f (g, t) dg = 0,

and so the second term in the above braces integrates to zero.
Substitution of

∂ f

∂t
= 1

2

n∑
i, j=1

Di j Ẽ
r
i Ẽ

r
j f −

n∑
k=1

hk Ẽ
r
k f

into the integral for Ṡ f gives

Ṡ f = −
∫
G

⎧⎨
⎩
1

2

n∑
i, j=1

Di j Ẽ
r
i Ẽ

r
j f −

n∑
k=1

hk Ẽ
r
k f

⎫⎬
⎭ log f dg

= − 1

2

n∑
i, j=1

Di j

∫
G

(Ẽr
i Ẽ

r
j f ) log f dg −

n∑
k=1

hk

∫
G

(Ẽr
k f ) log f dg

= 1

2

n∑
i, j=1

Di j

∫
G

(Ẽr
j f )(Ẽ

r
i log f ) dg +

n∑
k=1

hk

∫
G

f (Ẽr
k log f ) dg

= 1

2

n∑
i, j=1

Di j

∫
G

1

f
(Ẽr

j f )(Ẽ
r
i f ) dg +

n∑
k=1

hk

∫
G
Ẽr
k f dg

= 1

2

n∑
i, j=1

Di j

∫
G

1

f
(Ẽr

j f )(Ẽ
r
i f ) dg

≥ 0
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5.2 The Generalized de Briujn Identity

This section generalizes the de Bruijn identity, in which entropy rates are related to
Fisher information.

Theorem 1 Let fD,h,t (g) = f (g, t; D,h) denote the solution of the diffusion equa-
tion (4) with constant h = [h1, . . . , hn]T subject to the initial condition f (g, 0;
D,h) = δ(g). Then for any well-behaved pdf α(g),

d

dt
S(α ∗ fD,h,t ) = 1

2
tr[DFr (α ∗ fD,h,t )]. (36)

Proof It is easy to see that the solution of the diffusion equation

∂ρ

∂t
= 1

2

n∑
i, j=1

Di j Ẽ
r
i Ẽ

r
jρ −

n∑
k=1

hk Ẽ
r
kρ (37)

subject to the initial conditions ρ(g, 0) = α(g) is simply ρ(g, t) = (α ∗ fD,h,t)(g).
This followsbecause all derivatives “pass through” the convolution integral forρ(g, t)
and act on fD,h,t (g).

Taking the time derivative of S(ρ(g, t)) gives

d

dt
S(ρ) = − d

dt

∫
G

ρ(g, t) log ρ(g, t) dg = −
∫
G

{
∂ρ

∂t
log ρ + ∂ρ

∂t

}
dg. (38)

Using (37), the partial with respect to time can be replaced with Lie derivatives. But

∫
G
Ẽr
kρ dg =

∫
G
Ẽr
i Ẽ

r
jρ dg = 0,

so the second term on the right side of (38) completely disappears. Using the
integration-by-parts formula6

∫
G
f1 Ẽ

r
k f2 dg = −

∫
G
f2 Ẽ

r
k f1 dg,

with f1 = log ρ and f2 = ρ then gives

6There are no surface terms because, like the circle and real line, each coordinate in the integral
either wraps around or goes to infinity.
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d

dt
S(α ∗ fD,h,t ) = 1

2

n∑
i, j=1

Di j

∫
G

1

α ∗ fD,h,t
Ẽr

j (α ∗ fD,h,t )Ẽ
r
i (α ∗ fD,h,t ) dg

= 1

2

n∑
i, j=1

Di j F
r
i j (α ∗ fD,h,t ) = 1

2
tr
[
D Fr (α ∗ fD,h,t )

]
.

The implication of this is that

S(α ∗ fD,h,t2) − S(α ∗ fD,h,t1) = 1

2

∫ t2

t1

tr
[
DFr (α ∗ fD,h,t )

]
dt.

6 Mean, Covariance, and their Propagation Under
Convolution

This section reviews concepts of mean and covariance for unimodular matrix Lie
groups, and how they propagate under convolution. In these definitions, the concepts
of Lie-theoretic exponential and logarithm play central roles. For a matrix Lie group,
G, with corresponding Lie algebra, G, the exponential map

exp : G −→ G

simply can be viewed as the matrix exponential defined by the Taylor series. In gen-
eral, thismap is neither surjective nor injective. However, it is possible to characterize
the largest path-connected subset G◦ ⊂ G for which the image G◦ .= exp (G◦) ⊂ G
has a well-defined inverse map

log : G◦ −→ G .

This is also simply the matrix logarithm defined by its Taylor series.
For SO(3), SE(2), and SE(3) which are three of the most common unimodular

matrix Lie groups encountered in applications, the exponential map is surjective and
G and G◦ differ only by a set of measure zero.

In what follows, it is assumed that all probability density functions f : G −→
R≥0 are either supported in G◦, or that

∫
G
f (g) dg = ε +

∫
G◦

f (g) dg

where ε is an inconsequential probability. With this in mind, it becomes possible to
blur the difference between G and G◦.
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6.1 Defining Mean

At least three different definitions for the mean of a pdf on a unimodular Lie group
exist in the literature. The definitions reviewed here are all in the context of matrix-
Lie-theoretic language which grew out of the author’s applied work [85, 86]. For
similar definitions expressed in differential-geometric terms see [87–89].

Directly generalizing the definition

m =
∫
Rn

x f (x) dx

to a Lie group is problematic because
∫
G g f (g) dg is not an element of the group.

However, it is possible to define m0 ∈ G such that

logm0 =
∫
G
log g f (g) dg .

Alternatively, ∫
Rn

(x − m) f (x) dx = 0

generalizes to searching for m1 ∈ G such that

∫
G
log
(
m−1

1 ◦ g
)
f (g) dg = O.

Thirdly,

m = argmin
y ∈ R

n

∫
Rn

(x − y)2 f (x) dx

generalizes as

m2 = argmin
h ∈ G

∫
G

∥∥log (h−1 ◦ g
)∥∥2 f (g) dg .

In general, no two ofm0,m1, andm2 are equal. However, in practice for distributions
that are concentrated, they are quite close to each other. That said, if f (g) = ρ(g)

is a symmetric function, then all three reduce to the identity element, and hence are
equal in this special case.

Thoughm0 seems simple and straight forward, it has the undesirable property that
shifting a symmetric pdf as ρ(μ−1 ◦ g) does not automatically shift the mean from
e to μ. m2 has the problem that the norm ‖ · ‖ requires a choice of metric, and for
noncompact unimodular Lie groups, a bi-invariant metric generally does not exist.
Therefore, conjugating by an arbitrary a ∈ G a symmetric pdf as ρ(a−1 ◦ g ◦ a),
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which in the Euclidean setting would leave the mean fixed at e, results in a change
to the value of the mean m2 which depends on a.

In contrast, the mean m1 shifts naturally with shifts of the pdf because

∫
G
log
(
m−1

1 ◦ g
)

ρ(μ−1 ◦ g) dg =
∫
G
log
(
m−1

1 ◦ μ ◦ h
)

ρ(h)dh.

hence m−1
1 ◦ μ = e, or m1 = μ. Under conjugation of the pdf, the appearance of log

linearly in the definition of m1 means that

∫
G
log
(
m−1

1 ◦ g
)
ρ(a−1 ◦ g ◦ a) dg =

∫
G
log
(
m−1

1 ◦ a ◦ h ◦ a−1
)
ρ(h) dh = O

can be written as
∫
G
a−1 log

(
m−1

1 ◦ a ◦ h ◦ a−1
)
a ρ(h) dh = a−1

O a = O.

But since
a−1 log(g) a = log(a−1 ◦ g ◦ a) ,

then the meanm1 of the conjugated pdf will be the conjugated mean. The implication
of this general result in the special case when ρ is symmetric is

a−1 ◦ m−1
1 ◦ a = e =⇒ m1 = e,

giving the desirable property of invariance of themean of a symmetric function under
conjugation.

For these reasons, m1 is chosen here (and in the author’s previous work) as the
best definition of the mean, and this is what will be used henceforth, and denoted as
μ. The value of μ can be obtained numerically with an iterative procedure using m0

as the initial starting point.

6.2 Defining Covariance

Previously the concepts of log : G◦ → G and∨ : G → R
n where defined. The com-

position of these maps is defined as

log∨ G◦ → R
n .

That is, for any g ∈ G◦, log∨(g) ∈ R
n .

One way to define the covariance of pdf on a unimodular Lie group G is [1, 2,
85, 86]
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Σ
.=
∫
G
log∨(μ−1 ◦ g)[log∨(μ−1 ◦ g)]T f (g) dg . (39)

This definition is natural as a generalization of the concept of covariance in Euclidean
space when the pdf of interest is relatively concentrated. Then, for example, a Gaus-
sian distribution can be defined as

f (g;μ,Σ)
.= 1

(2π)d/2|Σ | 1
2

exp

(
−1

2
[log∨(μ−1 ◦ g)]TΣ−1 log∨(μ−1 ◦ g)

)
.

This definition makes sense when the tails decay to negligible values inside a ball
around μ for which the exponential and logarithm maps form a bijective pair. Oth-
erwise, the topological properties of G become relevant.

Alternative definitions of scalar variance can be found in [2, 20, 90]. If the covari-
ance as defined in (39) has been computed for pdfs f1 and f2, a convenient and accu-
rate approximation for the covariance of f1 ∗ f2 is known [1, 86]. This is known as
a covariance propagation formula. In contrast, the scalar definitions in [20, 90] have
exact propagation formulas, but these quantities do not have the form or properties
that are usually associated with covariance of pdfs on Euclidean space.

An altogether different way to define covariance that does not involve any approx-
imation is to recognize that for a Gaussian distribution with the mean serving as the
statistic, the Cramér-Rao Bound becomes the equality

Σgaussian = F−1
gaussian , (40)

and since a Gaussian distribution with μ = e solves a driftless diffusion equation
subject to Dirac delta initial conditions, it is possible to define a kind of covari-
ance for such processes by computing the Fisher information and using (40). By
generalization, an alternative definition of covariance can be taken as

Σ ′ .= F−1 .

The exact properties of this definition under convolution are unknown.
The covariance propagation formula for (39) involves the concept of the adjoint

matrix, Ad(g). This concept is reviewed in the following section.

6.3 The Adjoint Operators ad and Ad

Given X,Y ∈ G, “little ad” operator is defined as

adY (X)
.= [Y, X ] = Y X − XY ,

and “big Ad” is
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Adg(X)
.= gXg−1 .

Here “ad” is short for “adjoint”. Both of these are linear in X . That is, for arbitrary
c1, c2 ∈ R and X1, X2 ∈ R

n×n

adY (c1X1 + c2X2) = c1adY (X1) + c2adY (X2)

and
Adg(c1X1 + c2X2) = c1Adg(X1) + c2Adg(X2) .

Sometimes Adg is written as Ad(g) and adY is written as ad(Y ). It turns out that
these are related as

Ad(exp(Y )) = exp(ad(Y )).

By introducing a basis for the Lie algebra of a Lie group, it is possible to express
the Ad and ad operators as square matrices of the same dimension as the group.
The distinction between operators and matrices can sometimes be confusing, which
is why, for example, the matrices of ad(X) and Ad(A) are written as [ad(X)] and
[Ad(A)] in [1, 2] where

[ad(X)]i j = (Ei , ad(X)E j ) and [Ad(A)]i j = (Ei , Ad(A)E j )

computed using the inner product (·, ·).

6.4 Covariance Propagation

Given two pdfs with mean and covariance specified, i.e., f(μi ,Σi )(g) for i = 1, 2, one
would like to be able to write expressions for μ3,Σ3 such that

f(μ1,Σ1) ∗ f(μ2,Σ2) = f(μ3,Σ3).

In the case when G = R
n , the result is simplym3 = m1 + m2, and Σ3 = Σ1 + Σ2.

This result is nonparametric. That is, it does not require the pdfs to have a specific
form, such as a Gaussian.

For general unimodular Lie groups, there is no simple exact formula. However,
when the pdfs are concentrated, i.e., both ‖Σi‖ are small, then it is possible to write
[85]

μ3 ≈ μ1 ◦ μ2 and Σ3 ≈ Σ
μ2
1 + Σ2.

where
Σ

μ2
1

.= [Adμ−1
2

]Σ1[Adμ−1
2

]T .

A higher-order approximation of the form [86]
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Σ3 ≈ Σ
μ2
1 + Σ2 + Φ(Σ

μ2
1 ,Σ2) (41)

is also possible, but inmany applicationsΦ(Σ
μ2
1 ,Σ2) is negligible because it depends

quadratically on the elements of Σ
μ2
1 and Σ2.

If f(μ,Σ)(g) = f (g;μ,Σ) denotes a Gaussian distribution in exponential coordi-
nates on a d-dimensional Lie group, it will be of the form

f (g;μ,Σ) = 1

(2π)d/2|Σi | 1
2

exp

(
−1

2
[log∨(μ−1 ◦ g)]TΣ−1 log∨(μ−1 ◦ g)

)
.

Then
f(μ1,Σ1) ∗ f(μ2,Σ2) ≈ f(μ3,Σ3) . (42)

The quality of these approximations, as well as those that are even more accurate,
have been studied in [1]. This is also a nonparametric result.

In the casewhen the distributions aremore spread out, it is possible to compute the
covariance in a different way using the group Fourier transform using the convolution
theorem. For example, if Σi = D(i)t and

f(μi ,Σi )(g)
.= ρΣi (μ

−1
i ◦ g; t) ,

and since

f̂i (λ) = U (μi ,λ) exp

⎛
⎝∑

j,k

σ(i)
jk E j Ek

⎞
⎠ ,

from the convolution theorem it is possible to write the Fourier version of (42) as

U (μ2, λ) exp

⎛
⎝∑

j,k

σ
(2)
jk E j Ek

⎞
⎠U (μ1, λ) exp

⎛
⎝∑

j,k

σ
(1)
jk E j Ek

⎞
⎠ ≈ U (μ3,λ) exp

⎛
⎝∑

j,k

σ
(3)
jk E j Ek

⎞
⎠ .

which can then be substituted in the reconstruction formula to reproduce (42), which
produces an approximate expression involving traces, which is of a different type
than the trace inequalities studied previously in the literature.

7 Examples

This section illustrates ideas presented earlier in this paper on the Heisenberg and
rotation groups.
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7.1 The Heisenberg Group, H(3)

The Heisenberg group, H(3), is defined by elements of the form

g(α,β, γ) =
⎛
⎝ 1 α β
0 1 γ
0 0 1

⎞
⎠ where α,β, γ ∈ R (43)

and the operation of matrix multiplication. Therefore, the group law can be viewed
in terms of parameters as

g(α1,β1, γ1)g(α2,β2, γ2) = g(α1 + α2,β1 + β2 + α1γ2, γ1 + γ2).

The identity element is the identity matrix g(0, 0, 0), and the inverse of an arbitrary
element g(α,β, γ) is

g−1(α,β, γ) = g(−α,αγ − β,−γ).

7.1.1 Lie Algebra and Exponential Map

Basis elements for the Lie algebra are

E1 =
⎛
⎝ 0 1 0
0 0 0
0 0 0

⎞
⎠ ; E2 =

⎛
⎝0 0 1
0 0 0
0 0 0

⎞
⎠ ; E3 =

⎛
⎝ 0 0 0
0 0 1
0 0 0

⎞
⎠ . (44)

A linear mapping between the Lie algebra spanned by this basis with R
3 is defined

by E∨
i = ei .

The Lie bracket is defined as [Ei , E j ] = Ei E j − E j Ei = −[E j , Ei ], and so, as
is always the case, [Ei , Ei ] = O. For these particular basis elements,

[E1, E2] = [E2, E3] = O and [E1, E3] = E2.

In addition, all double brackets involving the first two listed above are also zero,

[Ei , [E1, E2]] = [Ei , [E2, E3]] = O for i = 1, 2, 3

From these, and the bilinearity of the Lie bracket, it follows that for arbitrary

X =
∑
i

xi Ei and Y =
∑
j

x j E j

that
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[X,Y ] =
∑
i, j

xi y j [Ei , E j ] = (x1y3 − x3y1)E2 . (45)

If the inner product for the Lie algebra spanned by these basis elements is defined
as (X,Y ) = tr(XY T ), then this basis is orthonormal: (Ei , E j ) = δi j .

The group H(3) is nilpotent because (x1E1 + x2E2 + x3E3)
n = 0 for all n ≥ 3.

As a result, the matrix exponential is a polynomial in the coordinates {xi }:

exp

⎛
⎝0 x1 x2
0 0 x3
0 0 0

⎞
⎠ = g(x1, x2 + 1

2
x1x3, x3). (46)

The parametrization in (43) can be viewed as the following product of exponentials:

g(α,β, γ) = g(0,β, 0)g(0, 0, γ)g(α, 0, 0) = exp(βE2) exp(γE3) exp(αE1).

The logarithm is obtained by solving for each xi as a function of α,β, γ. By
inspection this is x1 = α, x3 = γ and x2 = β − αγ/2. Therefore,

log g(α,β, γ) =
⎛
⎝0 α β − αγ/2
0 0 γ
0 0 0

⎞
⎠ .

7.1.2 Adjoint Matrices for H(3)

The adjoint matrix, defined by [Ad(g)]x = (gXg−1)∨, is computed by evaluating

⎛
⎝ 1 α β
0 1 γ
0 0 1

⎞
⎠
⎛
⎝0 x1 x2
0 0 x3
0 0 0

⎞
⎠
⎛
⎝ 1 −α αγ − β
0 1 −γ
0 0 1

⎞
⎠ =

⎛
⎝ 0 x1 −γx1 + x2 + αx3
0 0 x3
0 0 0

⎞
⎠ .

Therefore,

(gXg−1)∨ =
⎛
⎝ x1

−γx1 + x2 + αx3
x3

⎞
⎠ and [Ad(g(α, β, γ))] =

⎛
⎝ 1 0 0

−γ 1 α
0 0 1

⎞
⎠ .

The fact that det[Ad(g)] = 1 for all g ∈ G indicates that this group is unimodular.
This fact is independent of the parametrization. It can also be shown that for X =∑3

i=1 xi Ei that

[Ad(exp X)] =
⎛
⎝ 1 0 0

−x3 1 x1
0 0 1

⎞
⎠ . (47)
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7.2 Bi-invariant Integration Measure

The Jacobian matrices for this group can be computed in either parametrization. In
terms of α,β, γ,

∂g

∂α
= E1; ∂g

∂β
= E2; ∂g

∂γ
= E3.

A straightforward calculation then gives

g−1 ∂g

∂α
= E1; g−1 ∂g

∂β
= E2; g−1 ∂g

∂γ
= E3 − αE2.

Therefore

Jr (α,β, γ) =
⎛
⎝ 1 0 0
0 1 −α
0 0 1

⎞
⎠ and Jl(α,β, γ) =

⎛
⎝ 1 0 0

−γ 1 0
0 0 1

⎞
⎠ (48)

Then |Jl(α,β, γ)| = |Jr (α,β, γ)| = 1 and bi-invariant integration measure
expressed in these coordinates is simply

dg = dαdβdγ .

In exponential coordinates

Jr (x) =
⎛
⎝ 1 0 0
x3/2 1 −x1/2
0 0 1

⎞
⎠ and Jl(x) =

⎛
⎝ 1 0 0

−x3/2 1 x1/2
0 0 1

⎞
⎠ (49)

and
dg = dx1dx2dx3 .

7.3 Covariance Propagation and the EPI for H(3)

From (45)the only nonzero term in the second-order covariance propagation formula
from [1, 86] is

1

4
[X,Y ]∨ ([X,Y ]∨)T = 1

4
(x1y3 − x3y1)

2e2eT2 .

Hence, for H(3), the second-order term in (41), which results from integrating the
above as was done in [86], becomes
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Φ(Σ
μ2
1 ,Σ2) = ae2eT2

where

a = 1

4

(
σ(1)
11 σ(2)

33 − σ(1)
13 σ(2)

31 − σ(1)
31 σ(2)

13 + +σ(1)
33 σ(2)

11

)
≥ 0

with σ(1)
i j = eTi Σ

μ2
1 e j and σ(2)

i j = eTi Σ2e j .
Moreover, from the matrix identity for A = AT > 0,

det(A + uvT ) = (1 + vT A−1u) det A ,

it follows that

det(Σ(1∗2)) = det(Σμ2
1 + Σ2 + ae2e

T
2 ) = (1 + aeT2 (Σ

μ2
1 + Σ2)

−1e2) det(Σ
μ2
1 + Σ2) ,

where Σ
μ2
1 = Adμ−1

2
Σ1AdT

μ−1
2
. Consequently, from the Euclidean EPI and the uni-

modularity of G, which implies that

det(Σμ2
1 ) = det(Σ1) ,

it is not difficult to see that

det(Σ(1∗2))
1

dim (G) ≥ det(Σμ2
1 + Σ2)

1
dim (G) ≥ det(Σ1)

1
dim (G) + det(Σ2)

1
dim (G).

That is, the entropy power inequality for pdfs from diffusion processes on H(3)
follows in the small time limit from the classical EPI, and it is less restrictive than
in the Euclidean case.

7.4 The Case of SO(3)

The group of rotations of three-dimensional space has elements that are 3 × 3 special
orthogonal matrices, i.e., those satisfying

RRT = I and det(R) = +1 .

That is, they satisfy RRT = I and det R = +1. It is easy to see that closure of these
properties under multiplication is satisfied because

(R1R2)
T (R1R2) = RT

2 R
T
1 R1R2 = RT

2 R2 = I

and
det(R1R2) = det(R1) det(R2) = 1 · 1 = 1.
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7.4.1 The Lie Algebra

The Lie algebra so(3) consists of skew-symmetric matrices of the form

X =
⎛
⎝ 0 −x3 x2

x3 0 −x1
−x2 x1 0

⎞
⎠ =

3∑
i=1

xi Ei . (50)

Every such matrix can be associated with a vector x by making the identification

E∨
i = ei ⇐⇒ Ei = êi .

For SO(3) the adjoint matrices are

[Ad(R)] = R and [ad(X)] = X.

Furthermore,
[X,Y ]∨ = x × y.

7.4.2 Exponential and Logarithm

It is well known that the exponential map exp : so(3) → SO(3) is related to Euler’s
Theorem as

R = exp(θN ) = I + sin θ N + (1 − cos θ) N 2 ,

where θ ∈ [0,π] is the angle of rotation around the axis n ∈ S2, with N being the
associated skew-symmetric matrix. Then X = θN and x = θn. It is convenient to
limit θ ∈ [0,π] and to allow n to take any value in the unit sphere, S2. Moreover,

tr(R) = 1 + 2 cos θ and N = R − RT

2 sin θ
.

Then, since

θ = cos−1

[
tr(R) − 1

2

]
and sin(cos−1 a) =

√
1 − a2 ,

it follows that sin θ can be written explicitly in terms of R as

sin θ =
√
1 − (tr(R) − 1)2

4
=
√
3

4
− (tr(R))2

4
+ 2tr(R)

4
.

Since X = θN = log R, it follows that
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log(R) =
cos−1

[
tr(R)−1

2

]
(R − RT )√

3 − (tr(R))2 + 2tr(R)
. (51)

This expression breaks down when θ = π, which defines a set of measure zero, and
hence is inconsequential when evaluating the logarithm under an integral.

7.4.3 Invariant Integration Measure

Two common ways to parameterize rotations are using the matrix exponential R =
exp X and using Euler angles such as R = R3(α)R1(β)R3(γ) where 0 ≤ α, γ ≤ 2π
and 0 ≤ β ≤ π.

Relatively simple analytical expressions were derived by Park [91] for the Jaco-
bian Jl when R = exp X as

Jl(x) = I + 1 − cos ‖x‖
‖x‖2 X + ‖x‖ − sin ‖x‖

‖x‖3 X2 (52)

The corresponding Jacobian Jr and its inverse are [1, 2]

Jr (x) = I − 1 − cos ‖x‖
‖x‖2 X + ‖x‖ − sin ‖x‖

‖x‖3 X2

In terms of ZXZ Euler angles,

Jl(α,β, γ) = [e3, R3(α)e1, R3(α)R1(β)e3] =
⎛
⎝ 0 cosα sinα sin β
0 sinα − cosα sin β
1 0 cosβ

⎞
⎠ . (53)

and

Jr = RT Jl = [R3(−γ)R1(−β)e3, R3(−γ)e1, e3] =
⎛
⎝ sin β sin γ cos γ 0
sin β cos γ − sin γ 0

cosβ 0 1

⎞
⎠ .

(54)
From this we see that

dR = 2(1 − cos ‖x‖)
‖x‖2 dx1dx2dx3 = sin β dαdβdγ .

From these it can be shown that
∫
SO(3)

dR = 8π2 .
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7.4.4 Fourier Series

For SO(3), irreducible unitary representations (IURs) [1] are enumerated by l ∈
Z≥0, and for any R, A ∈ SO(3) these (2l + 1) × (2l + 1) IUR matrices have the
fundamental properties

Ul(RA) = Ul(R)Ul(A) and Ul(RT ) = Ul(R)∗

where ∗ is the Hermitian conjugate of a matrix. The explicit forms of these matrices
when R is expressed in Euler angles are well known in Physics as the Wigner-D
functions [92–96]

For functions f ∈ L2(SO(3)), the Fourier coefficients are computed as

f̂ lmn =
∫
SO(3)

f (A)Ul
mn(A

−1) d A . (55)

The following orthogonality relation holds

∫
SO(3)

Ul
mn(A)Us

pq(A) d A = 1

2l + 1
δlsδmpδnq (56)

where d A is scaled so that
∫
SO(3) d A = 1. The Fourier series on SO(3) has the form

f (A) =
∞∑
l=0

(2l + 1)
l∑

m=−l

l∑
n=−l

f̂ lmnU
l
nm(A) , (57)

which results from the completeness relation

∞∑
l=0

(2l + 1)
l∑

m=−l

l∑
n=−l

U l
mn(R

−1)Ul
nm(A) = δ(R−1A) . (58)

Another way to write (57) is

f (A) =
∞∑
l=0

(2l + 1)trace
[
f̂ l U l(A)

]
. (59)
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7.5 Diffusions on SO(3)

A diffusion process on SO(3) commonly encountered in applications is of the form

∂ f

∂t
= 1

2

3∑
i, j=1

Di j Ẽi Ẽ j f +
3∑

k=1

dk Ẽk f . (60)

By expanding the PDF in the PDE in (60) into a Fourier series on SO(3), the
solution can be obtained once we know how the differential operators X R

i transform
the matrix elements Ul

m,n(A). Explicitly,

Ẽ1U
l
mn = 1

2
cl−nU

l
m,n−1 − 1

2
clnU

l
m,n+1; (61)

Ẽ2U
l
mn = 1

2
icl−nU

l
m,n−1 + 1

2
iclnU

l
m,n+1; (62)

Ẽ3U
l
mn = −inUl

mn; (63)

where cln = √
(l − n)(l + n + 1) for l ≥ |n| and cln = 0 otherwise. From this defini-

tion it is clear that ckk = 0, cl−(n+1) = cln, c
l
n−1 = cl−n, and cln−2 = cl−n+1.

By repeated application of these rules, it can be shown that [1]

F
⎛
⎝1

2

3∑
i, j=1

Di j Ẽi Ẽ j f +
3∑

i=1

di Ẽi f

⎞
⎠

l

mn

=
min(l,m+2)∑

k=max(−l,m−2)

Al
m,k f̂

l
k,n,

where

Al
m,m+2 =

[
(D11 − D22)

8
+ i

4
D12

]
clm+1c

l
−m−1;

Al
m,m+1 =

[
(2m + 1)

4
(D23 − i D13) + 1

2
(d1 + id2)

]
cl−m−1;

Al
m,m =

[
− (D11 + D22)

8
(cl−mc

l
m−1 + clmc

l
−m−1) − D33m2

2
− id3m

]
;

Al
m,m−1 =

[
(2m − 1)

4
(D23 + i D13) + 1

2
(−d1 + id2)

]
clm−1;

Al
m,m−2 =

[
(D11 − D22)

8
− i

4
D12

]
cl−m+1c

l
m−1;

Hence, application of the SO(3)-Fourier transform to (60) and corresponding
initial conditions reduces (60) to a set of linear time-invariant ODEs of the form
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d f̂ l

dL
= Al f̂ l with f̂ l(0) = I2l+1. (64)

Here I2l+1 is the (2l + 1) × (2l + 1) identity matrix and the banded matrix Al are
of the following form for l = 0, 1, 2, 3:

A0 = A0
0,0 = 0; A1 =

⎛
⎜⎝
A1−1,−1 A1−1,0 A1−1,1

A1
0,−1 A1

0,0 A1
0,1

A1
1,−1 A1

1,0 A1
1,1

⎞
⎟⎠ ;

A2 =

⎛
⎜⎜⎜⎜⎜⎝

A2−2,−2 A2−2,−1 A2−2,0 0 0

A2−1,−2 A2−1,−1 A2−1,0 A2−1,1 0

A2
0,−2 A2

0,−1 A2
0,0 A2

0,1 A2
0,2

0 A2
1,−1 A2

1,0 A2
1,1 A2

1,2

0 0 A2
2,0 A2

2,1 A2
2,2

⎞
⎟⎟⎟⎟⎟⎠

;

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A3−3,−3 A3−3,−2 A3−3,−1 0 0 0 0

A3−2,−3 A3−2,−2 A3−2,−1 A3−2,0 0 0 0
A3−1,−3 A3−1,−2 A3−1,−1 A3−1,0 A3−1,1 0 0

0 A3
0,−2 A3

0,−1 A3
0,0 A3

0,1 A3
0,2 0

0 0 A3
1,−1 A3

1,0 A3
1,1 A3

1,2 A3
1,3

0 0 0 A3
2,0 A3

2,1 A3
2,2 A3

2,3

0 0 0 0 A3
3,1 A3

3,2 A3
3,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The solution to (64) is then of the form of a matrix exponential:

f̂ l(L) = eLA
l
. (65)

SinceAl is a band-diagonalmatrix for l > 1, thematrix exponential can be calculated
much more efficiently (either numerically or symbolically) for large values of l than
for general matrices of dimension (2l + 1) × (2l + 1).

Given the explicit forms provided above, (32)–(35) can be verified.

7.5.1 Lack of an Entropy-Power Inequality

For all unimodularLie groups, theEPI holds for concentratedGaussianpdfs forwhich
the first-order covariance propagation formula from [85] holds by application of the
Euclidean EPI to Gaussians. However, for compact Lie groups (including the circle
and n-torus) the EPI always breaks down. For example, the uniform distribution on
the circle, ρ(θ) = 1/2π, has entropy S(ρ) = log(1/2π). But since this distribution
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is stable under convolution, we have that S(ρ ∗ ρ) = S(ρ) and so the EPI cannot
hold since N (ρ ∗ ρ) = N (ρ) < 2 · N (ρ) . Similarly, unlike for H(3), the EPI does
not hold for SO(3).

8 Conclusions

Many inequalities of information theory that are based on probability densities on
Euclidean space extend to the case of probabilities on Lie groups. In addition to
reviewing appropriate concepts of integration, convolution, partial derivative, Fourier
transform, covariance, and diffusion processes on unimodular Lie groups, this paper
also presents some new inequalities that extend to this setting those known in the
classical Abelian case.
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Warped Riemannian Metrics
for Location-Scale Models

Salem Said, Lionel Bombrun and Yannick Berthoumieu

Abstract The present contribution shows that warped Riemannian metrics, a class
of Riemannianmetrics which play a prominent role in Riemannian geometry, are also
of fundamental importance in information geometry. Precisely, the starting point is
a new theorem, which states that the Rao–Fisher information metric of any location-
scale model, defined on a Riemannian manifold, is a warped Riemannian metric,
whenever this model is invariant under the action of some Lie group. This theorem
is a valuable tool in finding the expression of the Rao–Fisher information metric of
location-scale models defined on high-dimensional Riemannian manifolds. Indeed,
a warped Riemannian metric is fully determined by only two functions of a single
variable, irrespective of the dimension of the underlying Riemannianmanifold. Start-
ing from this theorem, several original results are obtained. The expression of the
Rao–Fisher information metric of the Riemannian Gaussian model is provided, for
the first time in the literature. A generalised definition of the Mahalanobis distance is
introduced, which is applicable to any location-scale model defined on a Riemannian
manifold. The solution of the geodesic equation, as well as an explicit construction of
Riemannian Brownian motion, are obtained, for any Rao–Fisher information metric
defined in terms of warped Riemannianmetrics. Finally, using amixture of analytical
and numerical computations, it is shown that the parameter space of the von Mises–
Fisher model of n-dimensional directional data, when equipped with its Rao–Fisher
information metric, becomes a Hadamard manifold, a simply-connected complete
Riemannian manifold of negative sectional curvature, for n = 2, . . . , 8. Hopefully,
in upcoming work, this will be proved for any value of n.
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1 Introduction

Warped Riemannian metrics are a class of Riemannian metrics which arise through-
out Riemannian geometry [11, 40]. For example, the Riemannian metrics of sur-
faces of revolution, and of spaces of constant curvature (when restricted to polar
coordinate charts), are warped Riemannian metrics. Closely similar to warped Rie-
mannian metrics, warped semi-Riemannian metrics are very important in theoretical
physics. Indeed, many gravitational models are given by warped semi-Riemannian
metrics [38]. The present contribution shows that warped metrics, in addition to their
well-known role in geometry and physics, play a fundamental role in information
geometry, and have a strong potential for applications in statistical inference and
statistical learning.

A unified definition of warped Riemannian metrics was first formulated in [11].
Here, only a special case of this definition is required. Precisely, let M be a complete
Riemannian manifold, with length element ds2M , and consider the product manifold
M = M × (0 ,∞), equipped with the length element ds2M

ds2M(z) = dr2 + β2(r) ds2M(x) for z = (x, r) ∈ M (1a)

where β2(r) is a strictly positive function. Then, the length element ds2M defines
a warped Riemannian metric on M. In Riemannian geometry, the coordinate r is
a distance function, measuring the distance to some point or hypersurface [40]. In
physics, r is replaced by the time t , and dr2 is replaced by −dt2 in formula (1a)
(this is the meaning of “semi-Riemannian”) [38]. In any case, the coordinate x can
be thought of as a spatial coordinate which determines a position in M .

The intuition behind the present contribution is that warped Riemannian metrics
are natural candidates for Riemannian metrics on location-scale models. Indeed, ifP
is a location-scale model on M , with location parameter x̄ ∈ M and scale parameter
σ > 0, then the parameter space of P is exactly M = M × (0 ,∞) with its points
z = (x̄,σ). Thus, a warped Riemannian metric onM can be defined using (1a), after
introducing a new scale parameter r = r(σ) and setting x = x̄ .

As it turns out, this intuition is far from arbitrary. The main new result in the
present contribution, Theorem 1 of Sect. 3, states that the Rao–Fisher information
metric of any location-scale model is a warped Riemannian metric, whenever this
model is invariant under the action of some Lie group. Roughly, Theorem 1 states
that if M is a Riemannian symmetric space under the transitive action of a Lie group
of isometries G, and if each probability density p(x | x̄,σ), belonging to the model
P , verifies the invariance condition

p( g · x | g · x̄ ,σ) = p(x |x̄,σ) for all g ∈ G (1b)

where g · x denotes the action of g ∈ G on x ∈ M , then the Rao–Fisher information
metric of the model P is a warped Riemannian metric.
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A technical requirement for Theorem 1 is that the Riemannian symmetric space
M should be irreducible. The meaning of this requirement, and the fact that it can
be relaxed in certain cases, are discussed in Remarks 4 and 5 of Sect. 3. The proof
of Theorem 1 is given in Appendix A.

A fundamental idea of information geometry is that the parameter space of a sta-
tistical model P should be considered as a Riemannian manifold [3, 15]. According
to [7, 15], the unique way of doing so is by turning Fisher’s information matrix into
a Riemannian metric, the Rao–Fisher information metric. In this connection, Theo-
rem 1 shows that, when the statistical model P is a location-scale model which is
invariant under the action of a Lie group, information geometry inevitably leads to
the study of warped Riemannian metrics.

In addition to stating and proving Theorem 1, the present contribution aims to
explore its implications, with regard to the Riemannian geometry of location-scale
models, and to lay the foundation for its applications in statistical inference and
statistical learning.

To begin, Sect. 4 applies Theorem 1 to two location-scale models, the von Mises–
Fishermodel of directional data[16, 33], and the RiemannianGaussianmodel of data
in spaces of covariance matrices [14, 41, 42]. This leads to the analytic expression
of the Rao–Fisher information metric of each one of these two models. Precisely, the
Rao–Fisher information metric of the von Mises–Fisher model is given in Proposi-
tion 2, and that of the Riemannian Gaussian model is given in Proposition 3. The
result of Proposition 2 is essentially already contained in [33], (see p. 199), but
Proposition 3 is new in the literature.

Finding the analytic expression of the Rao–Fisher information metric, or equiv-
alently of Fisher’s information matrix, of a location-scale model P defined on a
high-dimensional non-trivial manifold M , is a very difficult task when attempted
by direct calculation. Propositions 2 and 3 show that this task is greatly simplified
by Theorem 1. Precisely, if the dimension of M is d, then the dimension of the
parameter space M = M × (0 ,∞) is d + 1. Therefore, a priori, the expression
of the Rao–Fisher information metric involves (d + 1)(d + 2)/2 functions of both
parameters x̄ and σ of the model P . Instead of so many functions of both x̄ and σ,
Theorem 1 reduces the expression of the Rao–Fisher information metric to only two
functions of σ alone. In the notation of (1a), these two functions are α(σ) = dr/dσ
and β(σ) = β(r(σ)).

Section 5 builds on Theorem 1 to introduce a general definition of the Maha-
lanobis distance, applicable to any location-scale model P defined on a manifold M .
Precisely, assume that the model P verifies the conditions of Theorem 1, so its Rao–
Fisher information metric is a warped Riemannian metric. Then, the generalised
Mahalanobis distance is defined as the Riemannian distance on M which is induced
by the restriction of the Rao–Fisher information metric to M . The expression of the
generalised Mahalanobis distance is given in Propositions 4 and 5. It was recently
applied to visual content classification in [10].

ThegeneralisedMahalanobis distance includes the classicalMahalanobis distance
as a special case. Precisely, assume P is the isotropic normal model defined on
M = R

d , so each density p(x | x̄,σ) is a d-variate normal density with mean x̄ and
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covariance matrix σ2 times the identity. Then, P verifies the invariance condition
(1b) under the action of the group G of translations in Rd . Therefore, by Theorem 1,
its Rao–Fisher information metric is a warped Riemannian metric. This metric is
already known in the literature, in terms of the length element [8, 9]

ds2M(z) = 2d

σ2
dσ2 + 1

σ2
‖dx̄‖2 for z = (x̄,σ) ∈ M (1c)

where ‖dx̄‖2 denotes the Euclidean length element on R
d . Now, the restriction of

this Rao–Fisher information metric to M = R
d is given by the second term in (1c),

which is clearly the Euclidean length element divided by σ2, and corresponds to the
classical Mahalanobis distance [36] — note that (1c) is brought into the form (1a)
by letting r(σ) = (2d)1/2 log(σ).

Section 6 illustrates the results of Sects. 4 and 5, by applying them to the special
case of the Riemannian Gaussian model defined on M = Pn , the space of n × n
real covariance matrices. In particular, it gives directly applicable expressions of
the Rao–Fisher information metric, and of the generalised Mahalanobis distance,
corresponding to this model. As it turns out, the generalised Mahalanobis distance
defines a whole new family of affine-invariant distances on Pn , in addition to the
usual affine-invariant distance, which was introduced to the information science
community in [39].

Section 7 provides the solution of the geodesic equation of any of the Rao–Fisher
information metrics arising from Theorem 1. The main result is Proposition 6, which
states that the solution of this equation, for given initial conditions, reduces to the
solution of a one-dimensional second-order differential equation. This implies that
geodesics with given initial conditions can be constructed at a reasonable numerical
cost, which opens the possibility, with regard to future work, of a practical implemen-
tation of Riemannian line-search optimisation algorithms, which find the extrema of
cost functions by searching for them along geodesics [1, 32].

Section 8 is a follow up to Sect. 7, focusing on the construction of Riemannian
Brownian motion, instead of the solution of the geodesic equation. The main result
is Proposition 7, which states that the construction of Riemannian Brownian motion
reduces to the solution of a one-dimensional stochastic differential equation. This
implies that Brownian paths can be constructed at a reasonable computational cost,
which opens the possibility of a practical implementation of Riemannian stochastic
search algorithms, which have the ability to avoid local minima and saddle points [5].

Section 9 is motivated by the special case of the isotropic normal model, with its
Rao–Fisher information metric given by (1c). It is well-known that, after a trivial
change of coordinates, the length element (1c) coincides with the length element of
the Poincaré half-space model of hyperbolic geometry [8, 9]. This means that the
parameter space of the isotropic normal model, when equipped with its Rao–Fisher
information metric, becomes a space of constant negative curvature, and in partic-
ular a Hadamard manifold, a simply-connected complete Riemannian manifold of
negative sectional curvature [13, 40]. One cannot but wonder whether other location-
scale models also give rise to Hadamard manifolds in this way. This is investigated
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using Propositions 2 and 6, for the case of the von Mises–Fisher model. A mixture
of analytical and numerical computations leads to a surprising new observation: the
parameter space of the von Mises–Fisher model of n-dimensional directional data,
when equipped with its Rao–Fisher information metric, becomes a Hadamard mani-
fold, for n = 2, . . . , 8. Ongoing research warrants the conjecture that this is true for
any value of n, but this is yet to be proved.

Theorem 1, the main new result in the present contribution, has many potential
applications, which will be developed in future work. Indeed, this theorem can pro-
vide the expression of the Rao–Fisher information metric, or equivalently of Fisher’s
information matrix, of a location-scale model, even if this model is defined on a
high-dimensional non-trivial manifold. By doing so, it unlocks access to the many
applications which require this expression, both in statistical inference and in statis-
tical learning. In statistical inference, the expression of the Rao–Fisher information
metric allows the computation of the Cramér-Rao lower bound, and the construction
of asymptotic chi-squared statistics [30, 48]. In statistical learning, it allows the prac-
tical implementation of the natural gradient algorithm, which has the advantages of
full reparameterisation invariance, of asymptotic efficiency of its stochastic version,
and of the linear rate of convergence of its deterministic version [2, 12, 35].

A first step, towards developing the applications of Theorem 1, was recently taken
in [50]. Using the expression of the Rao–Fisher information metric of the Rieman-
nian Gaussian model, this derived and successfully implemented the natural gradient
algorithm, for the problem of on-line learning of an unknown probability density, on
the space Pn of n × n real covariance matrices. Future work will focus on extending
this algorithm to more problems of statistical learning, including problems of on-
line classification and regression in the space Pn , and in other spaces of covariance
matrices. In addition to its use in deriving the natural gradient algorithm for prob-
lems of statistical learning, the expression of the Rao–Fisher information metric of
the Riemannian Gaussian model can be used in deriving so-called natural evolution-
ary strategies, for black-box optimisation in spaces of covariance matrices. These
would generalize currently existing natural evolutionary strategies, mostly restricted
to black-box optimisation in Euclidean space [37, 47].

The following Sect. 2 provides background onwarpedRiemannianmetrics.While
the present introduction expressed Riemannianmetrics using length elements, Sect. 2
will use scalar products on the tangent space.

2 Background on Warped Riemannian Metrics

Assume M is a complete Riemannian manifold with Riemannian metric Q, and
consider the manifoldM = M × (0 ,∞). A warped Riemannian metric I onM is
given in the following way [11, 38, 40]. Let α and β be positive functions, defined
on (0 ,∞). Then, for z = (x,σ) ∈ M, let the scalar product Iz on the tangent space
TzM be defined by
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Iz(U,U ) = (α(σ) uσ)2 + β2(σ) Qx(u, u) U ∈ TzM (2a)

whereU = uσ ∂σ + u with uσ ∈ R and u ∈ TxM . The functionsα and β are part of
the definition of the warped metric I . Once these functions are fixed, it is possible to
introduce a change of coordinates r = r(σ) which eliminates α from (2a). Precisely,
if dr/dσ = α(σ) then

Iz(U,U ) = u2r + β2(r) Qx(u, u) (2b)

where U = ur ∂r + u and β(r) = β(σ(r)).
The coordinate r will be called vertical distance. This is not a standard terminol-

ogy, but is suggested as part of the following geometric picture. For z = (x,σ) ∈ M,
think of x as a horizontal coordinate, and of σ as a vertical coordinate. Accordingly,
the points z0 = (x,σ0) and z1 = (x,σ1) lie on the same vertical line. It can be shown
from (2b) that the Riemannian distance between z0 and z1 is

d(z0, z1) = r(σ1) − r(σ0) where σ0 < σ1 (3a)

Precisely, d(z0, z1) is the Riemannian distance induced by the warped Riemannian
metric I .

The vertical distance r can be used to express a necessary and sufficient condition
for completeness of the manifoldM, equipped with the warped Riemannian metric
I . Namely, M is a complete Riemannian manifold, if and only if

lim
σ→∞ r(σ) − r(σ0) = ∞ and lim

σ→0
r(σ1) − r(σ) = ∞ (3b)

where σ0 and σ1 are arbitrary. This condition is a special case of Lemma 7.2 in [11].
Let KM and KM denote the sectional curvatures of M and M , respectively.

The relation between these two is given by the curvature equations of Riemannian
geometry [18, 40]. These are,

Gauss equation : KM
z (u, v) = β−2 KM

x (u, v) − (β−1∂rβ
)2

(4a)

Jacobi equation : KM
z (u, ∂r ) = −β−1 ∂ 2

r β (4b)

for u, v ∈ TxM . Here, the notations KM
z and KM

x mean that KM is computed at
z, and KM is computed at x , where z = (x,σ). Equation (4) are a special case of
Lemma 7.4 in [11].

Note, as a corollary of these equations, that M has negative sectional curvature
KM < 0, if M has negative sectional curvature KM < 0 and β is a strictly convex
function of r .

Remark 1 Equation (2) contain an abuse of notation. Namely, u denotes a tangent
vector to M at x , and a tangent vector toM at z, at the same time. In the mathemat-
ical literature (for example, in [11, 38]), one writes dπz(U ) instead of u, using the
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derivative dπ of the projectionmapping π(z) = x , and this eliminates any ambiguity.
In the present contribution, a deliberate choice is made to use a lighter, though not
entirely correct, notation. �

Remark 2 Consider the proof of Eq. (3). For (3a), let γ(t) and c(t) be curves con-
necting z0 = (x,σ0) and z1 = (x,σ1). Assume these are parameterised by t ∈ [0, 1]
as follows,

γ(t) :
{
xγ(t)= x (constant)
rγ(t)= r(σ0) + t (r(σ1) − r(σ0))

}
; c(t) :

{
xc(t)
rc(t)

}

If L(γ) and L(c) denote the lengths of these curves, then from (2b),

L(c) =
∫ 1

0

(
(ṙc)

2 + β2 Q(ẋc, ẋc)
)1/2

dt ≥
∫ 1

0
ṙc dt = r(σ1) − r(σ0) = L(γ)

where the dot denotes differentiation with respect to t , and the inequality is strict
unless γ = c. This shows that γ(t) is the unique length-minimising geodesic con-
necting z0 and z1. Thus, d(z0, z1) = L(γ), and this gives (3a). For (3b), note that
Lemma 7.2 in [11] states that M is complete, if and only if (0 ,∞) is complete
when equipped with the distance d(0,∞)(σ0 ,σ1) = |r(σ1) − r(σ0)|. However, this is
equivalent to (3b). �

Remark 3 For each σ ∈ (0 ,∞), the manifoldM can be embedded into themanifold
M, in the form of the hypersurface Mσ = M × {σ}. Through this embedding, the
warped Riemannian metric I of M induces a Riemannian metric Qσ on M . By
definition, this metric Qσ is obtained by the restriction of I to the tangent vectors of
Mσ [18, 40]. It follows from (2) that

Qσ
x (u, u) = β2(σ) Qx (u, u) (5)

The induced metric Qσ will be called an extrinsic metric on M , since it comes from
the ambient spaceM. By (5), the extrinsic metric Qσ is equal to a scaled version of
the Riemannian metric Q of M , with scaling factor β(σ). �

3 Connection with Location-Scale Models

This section establishes the connection between warped Riemannian metrics and
location-scalemodels. Themain result is Theorem1,which states that theRao–Fisher
information metric of any location-scale model is a warped Riemannian metric,
whenever this model is invariant under the action of some Lie group.

To state this theorem, assume M is an irreducible Riemannian symmetric space,
with invariant Riemannian metric Q, under the transitive action of a Lie group of
isometries G [22]. Consider a location-scale model P defined on M ,
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P = { p(x |x̄,σ) ; x̄ ∈ M , σ ∈ (0 ,∞)} (6)

To each point z = (x̄,σ) in the parameter space M = M × (0 ,∞), this model
associates a probability density p(x |x̄,σ) on M , which has a location parameter x̄
and a scale parameter σ. Precisely, p(x |x̄,σ) is a probability density with respect to
the invariant Riemannian volume element of M .

The condition that the model P is invariant under the action of the Lie group G
means that,

p( g · x | g · x̄ ,σ) = p(x |x̄,σ) for all g ∈ G (7)

where g · x denotes the action of g ∈ G on x ∈ M .
TheRao–Fisher informationmetric of the location-scalemodelP is a Riemannian

metric I on the parameter space M of this model [3]. It is defined as follows, for
z = (x̄,σ) ∈ M and U ∈ TzM,

Iz(U,U ) = Ez
[
( d�(z)U )2

]
(8)

where Ez denotes expectation with respect to the probability density p(x |z) =
p(x |x̄,σ), and �(z) is the log-likelihood function, given by �(z)(x) = log p(x |z).

In the following statement,∇x̄ �(z) denotes the Riemannian gradient of �(z), taken
with respect to x̄ ∈ M , while the value of σ is fixed.

Theorem 1 If condition (7) is verified, then the Rao–Fisher information metric I of
(8) is a warped Riemannian metric given by (2a), where

α2(σ) = Ez (∂σ�(z))2 β2(σ) = Ez Q (∇x̄ �(z) ,∇x̄ �(z) ) /dim M (9)

The expectations appearing in (9) do not depend on x̄, so α(σ) and β(σ) are well-
defined functions of σ.

Remark 4 Recall the definition of an irreducible Riemannian symmetric space [22].
A Riemannian manifold M , whose group of isometries is denoted G, is called a
Riemannian symmetric space, if for each x̄ ∈ M there exists an isometry sx̄ ∈ G,
whose effect is to fix x̄ and reverse the geodesic curves passing through x̄ . Further, M
is called irreducible if it verifies the following condition. Let Kx̄ be the subgroup ofG
which consists of those elements k such that k · x̄ = x̄ . For each k ∈ Kx̄ , its derivative
dkx̄ is a linear mapping of Tx̄M . The mapping k �→ dkx̄ is a representation of Kx̄ in
Tx̄M , called the isotropy representation, and M is called an irreducible Riemannian
symmetric space if the isotropy representation is irreducible. That is, if the isotropy
representation has no invariant subspaces in Tx̄M , except {0} and Tx̄M . Irreducible
Riemannian symmetric spaces are classified in [22] (Table I, p. 346 and Table II,
p. 354). They include spaces of constant curvature, such as spheres and hyperbolic
spaces, as well as spaces of positive definite matrices which have determinant equal
to 1, and whose entries are real or complex numbers, or quaternions. �
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Remark 5 It is sometimes possible to apply Theorem 1, even when the Riemannian
symmetric space M is not irreducible. For example, in Sect. 4.2, Theorem 1 will be
used to find the expression of the Rao–Fisher information metric of the Riemannian
Gaussian model [14, 41, 42]. For this model, when M is not irreducible, the Rao–
Fisher information metric turns out to be a so-called multiply-warped Riemannian
metric, rather than a warped Riemannian metric. The concrete case of M = Pn , the
space of n × n real covariance matrices, is detailed in Sect. 6. �

Proof of Theorem 1 Recall the expression U = uσ ∂σ + u with uσ ∈ R and u ∈
Tx̄M . Since the Rao–Fisher information metric I is bilinear and symmetric,

Iz(U,U ) = Iz(∂σ, ∂σ) u2σ + 2Iz(∂σ, u) uσ + Iz(u, u)

It is possible to show the following,

Iz(∂σ, ∂σ) = α2(σ) (10a)

Iz(∂σ, u) = 0 (10b)

Iz(u, u) = β2(σ) Qx̄(u, u) (10c)

where α2(σ) and β2(σ) are given by (9).
Proof of (10a): this is immediate from (8). Indeed,

Iz(∂σ, ∂σ) = Ez
[
( d�(z) ∂σ )2

] = Ez
[
(∂σ�(z))2

]

Proof of (10b): this is carried out inAppendixA, using the fact thatM is aRiemannian
symmetric space.
Proof of (10c): this is carried out in Appendix A, using the fact that M is irreducible,
by an application of Schur’s lemma from the theory of group representations [27].

The fact that the expectations appearing in (9) do not depend on x̄ is also proved
in Appendix A. Throughout the proof of the theorem, the following identity is used,
which is equivalent to condition (7). For any real-valued function f on M ,

Eg·z f = Ez ( f ◦ g) (11)

Here, g · z = ( g · x̄,σ), and f ◦ g is the function ( f ◦ g)(x) = f (g · x), for g ∈ G
and z = (x̄,σ). �

4 Examples: von Mises–Fisher and Riemannian Gaussian

This section applies Theorem 1 to finding the expression of the Rao–Fisher infor-
mation metric of two location-scale models. These are the von Mises–Fisher model,
which is widely used in the study of directional data [16, 33], and the Riemannian
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Gaussian model, recently introduced in the study of data with values in spaces of
covariance matrices [14, 41, 42].

The application of Theorem 1 to these twomodels is encapsulated in the following
Proposition 1. Precisely, both of these models are of a common exponential form,
which can be described as follows. Let M be an irreducible Riemannian symmetric
space, as in Sect. 3. In the notation of (6), consider a location-scale model P defined
on M , by

p(x |x̄,σ) = exp [ η(σ) D(x, x̄) − ψ(η(σ))] (12a)

where η(σ) is a certain parameter, to be called the natural parameter, and where
D : M × M → R verifies the condition,

D( g · x , g · x̄) = D(x , x̄) for all g ∈ G (12b)

There is no need to assume that the function D is positive.

Proposition 1 If the model P is given by Eq. (12), then the Rao–Fisher information
metric I of this model is a warped Riemannian metric,

Iz(U,U ) = ψ′′(η) u2η + β2(η) Qx̄(u, u) (13a)

where U = uη ∂η + u with uη ∈ R and u ∈ Tx̄M, and where

β2(η) = η2
Ez Q (∇x̄ D,∇x̄ D ) /dim M (13b)

Proof For a modelP defined by (12a), condition (12b) is equivalent to condition (7).
Therefore, by application of Theorem 1, it follows that I is a warped Riemannian
metric, of the form (2a),

Iz(U,U ) = (α(σ) uσ)
2 + β2(σ) Qx̄(u, u) (14a)

where α2(σ) and β2(σ) are given by (9). Consider the first term in (14a). By the
change of coordinates formula [29], uσ = σ′(η) uη, where the prime denotes differ-
entiation with respect to η. It follows that

(α(σ) uσ)2 = α2(σ)
(
σ′(η)
)2

u2η (14b)

However, by (9),

α2(σ)
(
σ′(η)
)2 = Ez

(
∂σ�(z)σ′(η)

)2 = Ez
(
∂η�(z)

)2
(14c)

Here, the log-likelihood �(z) is found from (12a),

�(z)(x) = η(σ) D(x, x̄) − ψ(η(σ)) (14d)
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Therefore, the last expression in (14c) is

Ez
(
∂η�(z)

)2 = −Ez ∂2
η�(z) = ψ′′(η) (14e)

where the first equality is the same as in [3], (see p. 28). Now, (14b) and (14c) imply

(α(σ) uσ)
2 = ψ′′(η) u2η (14f)

Replacing this in (14a), and writing β(η) = β(σ(η)), gives

Iz(U,U ) = ψ′′(η) u2η + β2(η) Qx̄(u, u) (14g)

which is the same as (13a). To prove the proposition, it remains to show that β2(η)

is given by (13b). To do so, note that it follows from (14d),

∇x̄ �(z) = ∇x̄ [ η(σ) D(x, x̄) − ψ(η(σ))] = η(σ)∇x̄ D(x, x̄)

Replacing this in (9) gives,

β2(η) = Ez Q (∇x̄ �(z) ,∇x̄ �(z) ) /dim M = η2
Ez Q (∇x̄ D,∇x̄ D ) /dim M

and this is the same as (13b). �

4.1 The von Mises–Fisher Model

The von Mises–Fisher model is a mainstay of directional statistics [16, 33]. In the
notation of (12), this model corresponds to M = Sn−1, the unit sphere in R

n , and
to G = O(n), the group of n × n real orthogonal matrices, which acts on R

n by
rotations. Then, the expressions appearing in (12a) are

D(x, x̄) = 〈x, x̄〉 ψ(η) = ν log(2π) + log
(
η1−ν Iν−1(η)

)
(15)

for η ∈ [ 0 ,∞). Here, 〈x, x̄〉 denotes the Euclidean scalar product in R
n , so that

condition (12b) is clearly verified, and Iν−1 denotes the modified Bessel function
of order ν − 1, where ν = n/2. The natural parameter η and the scale parameter σ
should be considered identical, in the sense that η(σ) = σ, as long as σ ∈ (0 ,∞).
However, η takes on the additional value η = 0, which requires a special treatment.

Remark 6 The parameter space of the von Mises–Fisher model will be identified
with the space R

n . This is done by mapping each couple (x̄, η) to the point z =
η x̄ in R

n . This mapping defines a diffeomorphism from the set of couples (x̄, η)

where η ∈ (0 ,∞), to the open subsetRn − {0} ⊂ R
n . On the other hand, it maps all

couples (x̄, η = 0), to the same point z = 0 ∈ R
n . Note that each couple (x̄, η)where
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η ∈ (0 ,∞) defines a distinct von Mises–Fisher distribution, which is a unimodal
distribution with its mode at x̄ . On the other hand, all couples (x̄, η = 0) define
the same von Mises–Fisher distribution, which is the uniform distribution on Sn−1.
Therefore, it is correct to map all of these couples to the same point z = 0. �
Proposition 1 will only provide the Rao–Fisher information metric of the vonMises–
Fisher model on the subset Rn − {0} of the parameter space R

n . Therefore, it is
necessary to verify that this metric has a well-defined limit at the point z = 0. This
is carried out in Proposition 2 below. In the statement of this proposition, a tangent
vector U ∈ TzRn , at a point z ∈ R

n − {0}, is written in the form

U = uη x̄ + η u (16a)

where z = η x̄ , and where uη ∈ R and u ∈ Tx̄ Sn−1 . Here, uη and u are unique, for a
given U . Precisely,

uη = 〈U, x̄〉 u = 1

η
[U − 〈U, x̄〉 x̄ ] (16b)

as follows since x̄ and u are orthogonal.

Proposition 2 The Rao–Fisher information metric I of the vonMises–Fisher model
is a well-defined Riemannian metric on the parameter space Rn. On R

n − {0}, it is
a warped Riemannian metric of the form (13a), where

ψ′′(η) = 1

n
+ n − 1

n

Iν+1(η)

Iν−1(η)
− I 2ν (η)

I 2ν−1(η)
(17a)

β2(η) = η2

n

(
1 + Iν+1(η)

Iν−1(η)

)
(17b)

and it extends smoothly to the value,

I0(U,U ) = 1

n
‖U‖2 (17c)

at the point z = 0. Here, ‖ · ‖ denotes the Euclidean norm.

Proof The Rao–Fisher information metric I on Rn − {0} is given by Proposition 1.
This proposition applies because M = Sn−1 is an irreducible Riemannian symmetric
space [22] (Table II, p. 354). Accordingly, for any point z ∈ R

n − {0}, the metric Iz
is given by (13a). Formulae (17) are proved as follows.
Proof of (17a): this is carried out in Appendix B, using the derivative and recurrence
relations of modified Bessel functions [46].
Proof of (17b): this follows from (13b) and (15). By (15),

∇x̄ D(x, x̄) = x − 〈x, x̄〉 x̄



Warped Riemannian Metrics for Location-Scale Models 263

which is just the orthogonal projection of x onto the tangent space Tx̄ Sn−1 . Replacing
in (13b) gives

β2(η) = η2

n − 1
Ez ‖∇x̄ D‖2 = η2

n − 1
Ez
(
1 − 〈x, x̄〉2 ) (18a)

Here, in the first equality, n − 1 appears because dim Sn−1 = n − 1. The second
equality follows by Pythagoras’ theorem,

‖ x − 〈x, x̄〉 x̄ ‖2 = ‖ x ‖2 − ‖ 〈x, x̄〉 x̄ ‖2 = 1 − 〈x, x̄〉2

since x and x̄ belong to the unit sphere Sn−1 . Formula (17b) is derived from (18a)
in Appendix B, using the derivative and recurrence relations of modified Bessel
functions [46].
Proof of (17c): for any point z ∈ R

n − {0}, the metric Iz is given by (13a). This reads

Iz(U,U ) = ψ′′(η) u2η + β2(η) ‖u‖2 (18b)

Consider the limit of this expression at the point z = 0. In (17a) and (17b), this
corresponds to the limit at η = 0. This can be evaluated using the power series
development of modified Bessel functions [46]. When replaced in (17a) and (17b),
this gives the following developments,

ψ′′(η) = 1

n
− 12

n2(n + 2)

(η
2

)2 + O
(
η4)

β2(η) = 4

n

(η
2

)2 + O
(
η4
)

which immediately imply that

lim
η→0

ψ′′(η) = 1

n
(18c)

lim
η→0

β2(η) = 0 (18d)

Replacing (18c) and (18d) in (18b) gives,

lim
z→0

Iz(U,U ) = 1

n
u2η (18e)

Note that, from (16a),
‖U‖2 = u2η + η2 ‖u‖2

by Pythagoras’ theorem, since x̄ and u are orthogonal. At the point z = 0, one has
η = 0, so that
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‖U‖2z=0 = u2η

This shows that (18e) is the same as

lim
z→0

Iz(U,U ) = 1

n
‖U‖2 (18f)

This limit does not depend on the path along which z tends to z = 0. Therefore, Iz
extends smoothly to I0 , which is given by (17c), at the point z = 0. This shows that
I is a well-defined Riemannian metric throughout the parameter space Rn . �

4.2 The Riemannian Gaussian Model

The Riemannian Gaussian model was recently introduced as a means of describing
unimodal populations of covariance matrices [14, 41, 42]. This model can be defined
on any Riemannian symmetric space of non-positive sectional curvature. Let M be
such a symmetric space and denote G its group of isometries. Then, the expressions
appearing in (12a) are

D(x, x̄) = d 2(x, x̄) η(σ) = − 1

2σ2
(19)

where d(x, x̄) denotes the Riemannian distance in M , and condition (12b) is verified
since each isometry g ∈ G preserves this Riemannian distance. The function ψ(η)

is a strictly convex function of η ∈ (−∞ , 0), which can be expressed by means of
a multiple integral [42], (see Proposition 1 in this reference). Precisely, ψ(η) is the
cumulant generating function of the squared Riemannian distance d 2(x, x̄).

Proposition 1 cannot be applied directly to the Riemannian Gaussian model (19).
This is because, in most cases of interest, the Riemannian symmetric space M is not
irreducible. In such cases, before applying Proposition 1, it is necessary to introduce
the De Rham decomposition theorem [22, 40].

Remark 7 Assume the Riemannian symmetric space M is moreover simply-
connected. Then, the De Rham decomposition theorem implies that M is a Rie-
mannian product of irreducible Riemannian symmetric spaces [22] (Proposition 5.5,
p. 310). Precisely, M = M1 × · · · × Mr where each Mq is an irreducible Rieman-
nian symmetric space, and theRiemannianmetric and distance ofM can be expressed
as follows,

Q(u, u) =
r∑

q=1

Q(uq , uq) (20a)

d 2(x, y) =
r∑

q=1

d 2(xq , yq) (20b)
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where x, y ∈ M are written x = (x1 , . . . , xr ) and y = (y1 , . . . , yr ) with xq , yq ∈
Mq , and where u ∈ TxM is written u = u1 + · · · + ur with uq ∈ Txq Mq naturally
identified with an element of TxM . Since M has non-positive sectional curvature,
eachMq is either a Euclidean space, or a so-called space of non-compact type, having
negative sectional curvature [22]. A concrete example of theDeRhamdecomposition
is treated in Sect. 6, where M = Pn is the space of n × n real covariance matrices.�
The following Proposition 3 gives the Rao–Fisher information metric of the Rie-
mannian Gaussian model. Since this model is, in general, defined on a Riemannian
symmetric spaceM which is not irreducible, theRao–Fisher informationmetric turns
out to be a multiply-warped Riemannian metric, rather than a warped Riemannian
metric.

Remark 8 In the notation of (20), a multiply-warped Riemannian metric I is a Rie-
mannian metric defined onM = M × (0 ,∞), in the following way [17, 45]

Iz(U,U ) = (α(σ) uσ)
2 +

r∑

q=1

β2
q(σ) Qx̄ (uq , uq) (21)

for z = (x̄,σ) and U ∈ TzM, where U = uσ ∂σ + u with uσ ∈ R and u ∈ Tx̄M .
Here, the functions α and βq are positive functions defined on (0 ,∞). �

Proposition 3 The Rao–Fisher information metric of the Riemannian Gaussian
model is amultiply-warpedRiemannianmetric. In termsof x̄ ∈ M andη = − 1/2σ2 ,
this metric has the following expression

Iz(U,U ) = ψ′′(η) u2η +
r∑

q=1

(
4η2ψ′

q(η)/dim Mq
)
Qx̄ (uq , uq) (22)

where U = uη ∂η + u, and where ψq(η) is the cumulant generating function of the
squared Riemannian distance d 2(xq , x̄q).

Proof Assume first that the Riemannian symmetric space M is irreducible, so that
Proposition 1 applies directly, and the Rao–Fisher information metric is given by
(13a),

Iz(U,U ) = ψ′′(η) u2η + β2(η) Qx̄(u, u) (23a)

To obtain β2(η), replace into (13b) the fact that

∇x̄ D(x, x̄) = −2 exp−1
x̄ (x) Q (∇x̄ D,∇x̄ D ) = 4 d 2(x, x̄)

where exp denotes the Riemannian exponential mapping, corresponding to the Rie-
mannian metric Q of M [13], (see p. 407). It then follows from (13b) that,

β2(η) = 4η2
Ez d

2(x, x̄)/dim M = 4η2 ψ′(η)/dim M (23b)
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where the second equality holds since ψ(η) is the cumulant generating function
(log-moment generating function) of d 2(x, x̄). From (23a) and (23b),

Iz(U,U ) = ψ′′(η) u2η + (4η2ψ′(η)/dim M
)
Qx̄ (u, u) (23c)

which is the same as (22) with r = 1. This proves the proposition in the special
case where M is irreducible. For the general case where M is not irreducible, write
U = uη ∂η + u, with u = u1 + · · · + ur as in Remark 7. It is possible to prove
that,

q �= p :Iz(u p , uq) = 0 (24a)

u = u p :Iz(U,U ) = ψ′′(η) u2η + (4η2ψ′
p(η)/dim Mp

)
Qx̄ (u p , u p) (24b)

Then, since the Rao–Fisher information metric I is bilinear and symmetric, (22)
follows immediately, and the proposition is proved in the general case.

Proof of identities (24): this is carried out using the following properties (25). Note
first that the probability density function of the Riemannian Gaussian model is given
by (12a) and (19),

p(x |x̄,σ) = exp
[
η(σ) d 2(x, x̄) − ψ(η(σ))

]
(25a)

By substituting (20b) in this expression, it is seen that

p(x |x̄,σ) =
r∏

q=1

exp
[
η(σ) d 2(xq , x̄q) − ψq(η(σ))

] =
r∏

q=1

p(xq |x̄q ,σ) (25b)

where ψq(η) is the cumulant generating function of d 2(xq , x̄q), as stated after (22).
The last equality shows that (xq ; q = 1, . . . , r) are independent, and that each xq has
a Riemannian Gaussian density on the irreducible Riemannian symmetric space Mq ,
with parameters zq = (x̄q ,σ). Now, identities (24) can be obtained from definition
(8) of the Rao–Fisher information metric. To apply this definition, note from (25b),
that the log-likelihood function �(z) can be written,

�(z)(x) = log p(x |z) =
r∑

q=1

�(zq)(xq) where �(zq)(xq) = log p(xq |zq) (25c)

Proof of (24a): recall the polarisation identity, from elementary linear algebra [28],
(see p. 29),

Iz(u p , uq) = 1

4
Iz(u p + uq , u p + uq) − 1

4
Iz(u p − uq , u p − uq)

By replacing (8) into this identity, it can be seen that,
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Iz(u p , uq) = Ez
( (
d�(z) u p

) (
d�(z) uq

) )
(26)

Using (25c), it is then possible to write

Iz(u p , uq) = Ez
( (
d�(z p) u p

) (
d�(zq) uq

) ) = Ez p

(
d�(z p) u p

)
Ezq

(
d�(zq) uq

)

Here, the first equality follows from (26), since u p ∈ Tx̄p Mp and uq ∈ Tx̄q Mq , and
the second equality holds since xp and xq are independent. Now, each one of the two
expectations appearing on the right-hand side is equal to zero, since the expectation
of the derivative of the log-likelihood must be zero [3], (see p. 28). This shows that
(24a) holds. �

Proof of (24b): the condition u = u p implies U = uη ∂η + u p . Replacing this in
(8), it follows using (25c),

Iz(U,U ) = Ez

⎛

⎝
r∑

q=1

d�(zq)U

⎞

⎠

2

= Ez

⎛

⎝
r∑

q=1

uη ∂η�(zq) + d�(z p) u p

⎞

⎠

2

(27a)

where the second equality holds since u p ∈ Tx̄p Mp . Since the xq are independent,
it is clear from (25c) that the �(zq) are independent. Accordingly, by expanding the
right-hand side of (27a),

Iz(U,U ) =
∑

q �=p

u2η Ezq

(
∂η�(zq)

)2 + Ez p

(
d�(z p)U

)2
(27b)

Applying (14e) from the proof of Proposition 1 to each term in the sum over q �= p,
it follows that

Iz(U,U ) =
∑

q �=p

ψ′′
q (η) u2η + Ez p

(
d�(z p)U

)2
(27c)

By (8), the expectation appearing in the second term is given by the Rao–Fisher
informationmetric of theRiemannianGaussianmodel on the irreducibleRiemannian
symmetric space Mp . This can be replaced from (23c), so that

Iz(U,U ) =∑q �=p ψ′′
q (η) u2η + ψ′′

p(η) u2η + (4η2ψ′
p(η)/dim Mp

)
Qx̄ (u p , u p)

=∑q ψ′′
q (η) u2η + (4η2ψ′

p(η)/dim Mp
)
Qx̄ (u p , u p)

This immediately yields (24b), upon noting from (25a) and (25b) that ψ(η) =
∑

q ψq(η) . �
Now, since identities (24) have been proved, (22) follows from the fact that the
Rao–Fisher information metric I is bilinear and symmetric. �
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5 The Generalised Mahalanobis Distance

This section builds on Remark 3, made at the end of Sect. 2, in order to generalise
the definition of the classical Mahalanobis distance, to the context of a location-scale
model P defined on a Riemannian symmetric space M .

To begin, assume that, as in Theorem 1, the Riemannian symmetric space M is
irreducible and the location-scale model P verifies condition (7). Then, according
to Theorem 1, the Rao–Fisher information metric I of the model P is a warped
Riemannian metric on the parameter space M.

Recall from Remark 3 that this warped Riemannian metric I induces an extrinsic
Riemannian metric Qσ on M , for each σ ∈ (0 ,∞). The generalised Mahalanobis
distance is defined to be the Riemannian distance on M which is induced by the
extrinsic Riemannian metric Qσ. The generalised Mahalanobis distance between x̄
and ȳ in M is denoted d(x̄, ȳ |σ). It is given by the following Proposition 4. The
proof of Proposition 4 is omitted, since it is elementary.

Proposition 4 The generalised Mahalanobis distance d(x̄, ȳ |σ) between x̄ and ȳ
in M is given by

d(x̄, ȳ |σ) = β(σ) d(x̄, ȳ) (28)

where the function β(σ) is given by (9), and where d(x̄, ȳ) denotes the Riemannian
distance in M.

Remark 9 The generalisedMahalanobis distance (28) reduces to the classicalMaha-
lanobis distance, when P is the isotropic normal model on M = R

d . In this case,
the Rao–Fisher metric I is given by (1c) in the introduction, so that β(σ) = 1/σ.
Replacing this in (28) yields

d(x̄, ȳ |σ) = 1

σ
‖x̄ − ȳ‖ (29)

where ‖x̄ − ȳ‖ is the Euclidean distance in M = R
d . Now, (29) is the classical

Mahalanobis distance [36]. �

Expression (28) of the generalised Mahalanobis distance is valid only under the
assumption that the Riemannian symmetric space M is irreducible. This assumption
does not hold, when the model P is the Riemannian Gaussian model studied in
Sect. 4.2. For this model, an alternative expression of the generalised Mahalanobis
distance is given in Proposition 5 below.

As in Sect. 4.2, let P be the Riemannian Gaussian model on a Riemannian sym-
metric space M , where M is simply-connected and has non-positive sectional cur-
vature. Proposition 3 states that the Rao–Fisher information metric I of the model
P is a multiply-warped Riemannian metric on the parameter space M. For each
σ ∈ (0 ,∞), this multiply-warped Riemannian metric I induces an extrinsic Rie-
mannian metric Qσ on M . Precisely, Qσ can be obtained from (22) of Proposition 3,
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Qσ
x̄ (u, u) =

r∑

q=1

β2
q(σ) Qx̄(uq , uq) β2

q(σ) = 4η2ψ′
q(η)/dim Mq (30)

The generalisedMahalanobis distance d(x̄, ȳ |σ) is theRiemannian distance between
x̄ and ȳ in M , induced by this extrinsic Riemannian metric Qσ.

Proposition 5 When P is the Riemannian Gaussian model, the generalised Maha-
lanobis distance d(x̄, ȳ |σ) between x̄ and ȳ in M is given by

d2(x̄, ȳ |σ) =
r∑

q=1

β2
q(σ) d 2(x̄q , ȳq) (31)

where the notation is that of (20b).

Proof The proof hinges on the fact that the extrinsic Riemannianmetric Qσ of (30) is
an invariant Riemannian metric on M . In other words, if G is the group of isometries
of M , then

Qσ
g·x̄ (dgx̄ u, dgx̄ u) = Qσ

x̄ (u, u) for all g ∈ G (32a)

where dgx̄ is the derivative of the isometry g at the point x̄ . The proof of (32a)
is not detailed here. It follows since the Riemannian metric Q is also an invariant
Riemannian metric on M , so that Q also verifies (32a), and since Qσ is related to
Q by (30). A general result in [22] (Corollary 4.3, p. 182), states that all invariant
Riemannian metrics on M have the same geodesics. In particular, the metrics Qσ

and Q have the same geodesics, and therefore the same Riemannian exponential
mapping exp. To find the generalised Mahalanobis distance between x̄ and ȳ in M ,
let u = exp−1

x̄ (ȳ), and note that

d2(x̄, ȳ |σ) = Qσ
x̄ (u, u) =

r∑

q=1

β2
q(σ) Qx̄(uq , uq) (32b)

where the second equality follows from (30). Now, to prove (31) it is enough to prove
that

Qx̄ (uq , uq) = d 2(x̄q , ȳq) (32c)

Indeed, (31) is then obtained by replacing (32c) into (32b). The proof of (32c) follows
by writing, as in (32b),

d2(x̄, ȳ) = Qx̄ (u, u) =
r∑

q=1

Qx̄ (uq , uq) =
r∑

q=1

d 2(x̄q , ȳq) (32d)

where the second equality follows from (20a), and the third equality follows from
(20b). Since (32d) is an identity which holds for arbitrary x̄ = (x̄1 , . . . , x̄r ) and
ȳ = (ȳ1 , . . . , ȳr ), it follows that (32c) must hold true, as required. �
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Remark 10 The generalised Mahalanobis distance, whether given by (28) or by
(31), has interesting properties, both geometric and statistical. From the geometric
viewpoint, it is an invariant Riemannian distance on M ,

d(g · x̄, g · ȳ |σ) = d(x̄, ȳ |σ) for all g ∈ G (33)

while, from the statistical viewpoint, just like the classical Mahalanobis distance,
it can be used to build asymptotic chi-squared statistics, for hypothesis testing or
classification [10]. This statistical aspect of the generalised Mahalanobis distance
will be developed in future work. �

6 A Concrete Example for the Riemannian Gaussian Model

The aim of this section is to illustrate the geometric concepts involved in Proposi-
tions 3 and 5, by applying these concepts to the concrete example of the Riemannian
Gaussian model defined on M = Pn , the space of n × n real covariance matrices.

The space Pn is a Riemannian symmetric space, which is simply-connected and
has non-positive sectional curvature [22, 44]. It is usually equipped with its affine-
invariant Riemannian metric [6, 44],

Qx̄ (u, u) = tr
[
x̄−1u
]2

x̄ ∈ Pn , u ∈ Tx̄Pn (34a)

This metric is invariant under the action of the group of isometries G = GL(n,R)

on Pn , which is given by affine transformations,

g · x̄ = g x̄ gt (34b)

where t denotes the transpose. Moreover, this metric induces a Riemannian distance
on Pn , which is given by,

d2(x̄, ȳ) = tr
[
log
(
x̄−1/2 ȳ x̄−1/2

)]2
(34c)

This distance is also invariant under the action of the group GL(n,R) on Pn . In
other words : d(g · x̄, g · ȳ) = d(x̄, ȳ).

The Riemannian Gaussian model on Pn is given by the probability density func-
tion [14, 41]

p(x |x̄,σ) = Z−1(σ) exp

[
−d2(x, x̄)

2σ2

]
(35a)

which is a probability density function with respect to the invariant volume element
associated to the Riemannian metric (34a). The normalising factor Z(σ) can be
expressed as a multiple integral [41], (see Proposition 4 in this reference),
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Z(σ) = Cn

∫

Rn

e− ‖r‖2/2σ2
∏

i< j

sinh
(|ri − r j |/2

)
dr1 . . . drn (35b)

where Cn is a numerical constant which only depends on n, and the integration vari-
able is denoted r = (r1 , . . . , rn) ∈ R

n . If η(σ) = −1/2σ2 , then ψ(η) = log Z(σ)

is a strictly convex function of η ∈ (−∞ , 0).
With (34) and (35) in mind, consider the application of Proposition 3 to the

Riemannian Gaussian model on Pn . This will lead to the expression of the Rao–
Fisher information metric I of this model.

De Rham decomposition of Pn : recall first that Proposition 3 uses the De Rham
decomposition, introduced in Remark 7. For the Riemannian symmetric space Pn ,
the De Rham decomposition states that Pn is a Riemannian product of irreducible
Riemannian symmetric spaces Pn = R × SPn , where SPn is the set of s̄ ∈ Pn such
that det(s̄) = 1. The identification of Pn with R × SPn is obtained by identifying
each x̄ ∈ Pn with a couple (τ̄ , s̄), where τ̄ ∈ R and s̄ ∈ SPn are given by

τ̄ = log det(x̄) s̄ = e− τ̄/n x̄ (36a)

Note that the spacesR and SPn are indeed irreducible Riemannian symmetric spaces.
This is clear for R, which is one-dimensional and cannot be decomposed into a
product of lower-dimensional spaces. The fact that SPn is irreducible can be found
in [22], (Table II, p. 354). It will be convenient to write x̄ = (x̄1, x̄2) where x̄1 = τ̄
and x̄2 = s̄. If u ∈ Tx̄Pn , then u = u1 + u2 ,

u1 = 1

n
tr(x̄−1u) x̄ u2 = u − 1

n
tr(x̄−1u) x̄ (36b)

Here, u1 ∈ Tx̄1R, where Tx̄1R ⊂ Tx̄Pn is the one-dimensional subspace consisting
of symmetric matrices v of the form v = t x̄ with t any real number. On the other
hand, u2 ∈ Tx̄2 SPn , where Tx̄2 SPn ⊂ Tx̄Pn is the subspace consisting of symmetric
matrices v which satisfy tr(x̄−1v) = 0. Using (36a) and (36b), (20a) and (20b) of
Remark 7 can be written down,

Qx̄ (u, u) = Qx̄ (u1 , u1) + Qx̄ (u2 , u2) (36c)

d2(x̄, ȳ) = 1

n
|x̄1 − ȳ1|2 + d2(x̄2 , ȳ2) (36d)

where Qx̄ is the affine-invariant metric (34a) and d(x̄, ȳ) or d(x̄2 , ȳ2) is the Rieman-
nian distance (34c). The proof of formulae (36c) and (36d) is a direct calculation,
and is not detailed here.

The Rao–Fisher metric I : according to (22) of Proposition 3, the Rao–Fisher
information metric I of the Riemannian Gaussian model on Pn is given by,
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Iz(U,U ) = ψ′′(η) u2η + 4η2ψ′
1(η)

dimR
Qx̄ (u1 , u1) + 4η2ψ′

2(η)

dim SPn
Qx̄ (u2 , u2) (37a)

for z = (x̄,σ) in the parameter space M = Pn × (0 ,∞), and for U = uη ∂η + u
where u = u1 + u2 is given by (36b). Indeed, (37a) results from (22), by putting
r = 2, as well as M1 = R and M2 = SPn . The functions appearing in (37a) are
ψ(η) = log Z(σ) with Z(σ) given by (35b), and, as shown in Remark 11 below,

ψ1(η) = 1

2
log(2πn) − 1

2
log (−2η) ψ2(η) = ψ(η) − ψ1(η) (37b)

Moreover, dimR = 1anddim SPn = dimPn − 1 = n(n + 1)/2 − 1.Replacing into
(37a) gives,

Iz(U,U ) = ψ′′(η) u2η − 2η Qx̄ (u1 , u1) + 8η2ψ′
2(η)

n2 + n − 2
Qx̄ (u2 , u2) (37c)

This expression of the Rao–Fisher information metric of the Riemannian Gaussian
model onPn can be computed directly from (34a), (36b) and (37b), once the function
ψ(η) is known. This function ψ(η) has been tabulated for values of n up to n = 50,
using a Monte Carlo method which was developed specifically for the evaluation of
(35b) [49].

Remark 11 Assume x follows the Riemannian Gaussian probability density (35a)
on Pn . If x = (x1 , x2) where x1 ∈ R and x2 ∈ SPn , then the densities of x1 and x2
can be found by replacing (36d) into (35a). Precisely, this gives

p(x |x̄,σ) ∝ exp

[
−|x1 − x̄1|2

2nσ2

]
× exp

[
−d2(x2 , x̄2)

2σ2

]

It follows from this decomposition that x1 and x2 are independent, and that x1 fol-
lows a univariate normal distribution of mean x̄1 and of variance nσ2. In particular,
the moment generating function ψ1(η) of the squared distance |x1 − x̄1|2 has the
expression stated in (37b). �

The generalised Mahalanobis distance on Pn : applying Proposition 5will yield
the expression of the generalisedMahalanobis distance onPn . The Rao–Fisher infor-
mation metric I as given by (37c) induces an extrinsic Riemannian metric Qσ on
Pn , for each σ ∈ (0 ,∞),

Qσ
x̄ (u, u) = − 2η Qx̄ (u1 , u1) + 8η2ψ′

2(η)

n2 + n − 2
Qx̄ (u2 , u2) η = − 1

2σ2
(38a)

The generalised Mahalanobis distance on Pn is the Riemannian distance induced on
Pn by the extrinsic Riemannian metric Qσ . If the generalised Mahalanobis distance
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between x̄ and ȳ in Pn is denoted d(x̄, ȳ |σ), then (31) of Proposition 5, along with
(38a), imply

d2(x̄, ȳ |σ) = |x̄1 − ȳ1|2
nσ2

+ 4ψ′
2

(
(−2σ2)−1

)

(n2 + n − 2)σ4
d2(x̄2 , ȳ2) (38b)

This distance can be computed directly from (34c), (36a) and (37b), once the function
ψ(η) has been tabulated using the Monte Carlo method of [49], or computed in any
other way.

Affine invariance of the generalised Mahalanobis distance: the affine-invariant
Riemannian metric Q of (34a) is well-known to the information science community,
having been introduced in [39]. Besides the metric Q, a whole new family of affine-
invariant Riemannian metrics Qσ is provided by (38a). Indeed, to say that Q is
affine-invariant means that it is invariant under affine transformations (34b). In other
words

Qg·x̄(dgx̄ u, dgx̄ u) = Qx̄ (u, u) for all g ∈ GL(n,R) (39a)

where dgx̄ denotes the derivative of the affine transformation (34b) at the point
x̄ ∈ Pn . On the other hand, a direct verification shows that each one of the metrics
Qσ also verifies (39a), so that

Qσ
g·x̄ (dgx̄ u, dgx̄ u) = Qσ

x̄ (u, u) for all g ∈ GL(n,R) (39b)

This means that each one of the metrics Qσ is an affine-invariant Riemannian metric,
as claimed. Furthermore, the fact that the metric Qσ is invariant under affine trans-
formations implies that the generalised Mahalanobis distance (38b) is also invariant
under these transformations,

d(g · x̄, g · ȳ |σ) = d(x̄, ȳ |σ) for all g ∈ GL(n,R) (39c)

This is because the generalised Mahalanobis distance (38b) is the Riemannian dis-
tance induced on Pn by Qσ .

7 The Solution of the Geodesic Equation

The present section provides the solution of the geodesic equation of a multiply-
warped Riemannian metric. The main result is the following Proposition 6. This
proposition shows that the solution of the geodesic equation of a multiply-warped
Riemannian metric, for given initial conditions, reduces to the solution of a
one-dimensional second-order differential equation. As stated in Remark 8, warped
Riemannian metrics are a special case of multiply-warped Riemannian metrics.
Therefore, Proposition 6 also applies to the solution of the geodesic equation of
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a warped Riemannian metric. This special case of warped Riemannian metrics was
treated separately in [38].

Let I be a multiply-warped Riemannian metric defined on M = M × (0 ,∞),
in the notation of (21),

Iz(U,U ) = (α(σ) uσ)
2 +

r∑

q=1

β2
q(σ) Qx̄ (uq , uq) (40)

for z = (x̄,σ) and U ∈ TzM, with u = uσ ∂σ + u and u = u1 + · · · + ur . As in
(2b) of Sect. 2, introduce the vertical distance coordinate r , which is defined by
dr/dσ = α(σ).

Proposition 6 Let γ(t) be a geodesic of the multiply-warped Riemannian metric
I , with initial conditions γ(0) = z and γ̇(0) = U, and let γ(t) = (x̄(t),σ(t)) and
r(t) = r(σ(t)). Then, r(t) verifies the second-order differential equation

r̈ = −1

2

d

dr
V (r) V (r) =

r∑

q=1

β2
q(r(0))

β2
q(r)

Iz(uq , uq) (41a)

and x̄(t) is given by

x̄(t) = expx̄

⎡

⎣
r∑

q=1

(∫ t

0

β2
q(r(0))

β2
q(r(s))

ds

)

uq

⎤

⎦ (41b)

where exp denotes the Riemannian exponential mapping of the metric Q on M.

Proof The proof is given in Appendix C. It is a generalisation of the proof dealing
with the special case of warped Riemannian metrics, which can be found in [38]
(Proposition 38, p. 208). �

Proposition 6 shows that the main difficulty, involved in computing a geodesic γ(t)
of the multiply-warped Riemannian metric I , lies in the solution of the second order
differential equation (41a). Indeed, once this equation is solved, computing γ(t)
essentially reduces to an application of exp, which is the Riemannian exponential
mapping of the metric Q on M . In the context of the present contribution, Q is an
invariant metric on M , where M is a Riemannian symmetric space. Therefore, exp
has a straightforward expression [22] (Theorem 3.3, p. 173). In particular, for the
examples treated in Sect. 4, the expression of exp is well-known in the literature.
For the von Mises–Fisher model, this expression is elementary, since geodesics on
a sphere in Euclidean space are the great circles on this sphere. For the Riemannian
Gaussian model, when this model is defined on the space M = Pn of n × n real
covariance matrices, the expression of exp is widely used in the literature, as found
in [39].
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Remark 12 The differential equation (41a) is the equation of motion of a one-
dimensional conservative mechanical system. As such, its solution can be carried
out by quadrature [21], (see p. 11). Precisely,

t = ±
∫ r(t)

r(0)

dr√
E − V (r)

(42a)

where the total energy E is a conserved quantity, in the sense that Ė = 0, and it
can be shown that E = Iz(U,U ). Recalling that dr/dσ = α(σ), this integral can be
written

t = ±
∫ σ(t)

σ(0)

α(σ)√
E − V (σ)

dσ V (σ) = V (r(σ)) (42b)

Here, if t is interpreted as time, then the integral on the right-hand side gives the time
necessary to go from σ(0) to σ(t). In particular, replacing σ(t) by ∞ and by 0 gives
the two quantities

t∞ =
∫ ∞

σ(0)

α(σ)√
E − V (σ)

dσ t0 =
∫ σ(0)

0

α(σ)√
E − V (σ)

dσ (42c)

where t∞ is the time necessary for σ(t) to reach the value σ = ∞, and t0 is the time
necessary for σ(t) to reach the value σ = 0. Since M = M × (0 ,∞), these two
values σ = ∞ and σ = 0 are excluded fromM. Therefore, the geodesic γ(t) cannot
be extended beyond the time t = min(t∞, t0), as it would then escape from M. �

Remark 13 A vertical geodesic is a geodesic γ(t) for which γ̇(0) = U with U =
uσ ∂σ . This means that all the uq are zero. In (41a), this implies that V (r) = 0, so
that r̈ = 0 and r(t) is an affine function of t . In (41b), this implies that x̄(t) = x̄ is
constant. In Remark 2 of Sect. 2, it was shown that a vertical geodesic is a unique
length-minimising geodesic. For a vertical geodesic, (42c) reads

t∞ = 1√
E

∫ ∞

σ(0)
α(σ) dσ t0 = 1√

E

∫ σ(0)

0
α(σ) dσ (43a)

These formulae provide another way of understanding conditions (3b) from Sect. 2.
Precisely, since dr/dσ = α(σ), it is clear that t∞ and t0 are given by

t∞ = 1√
E

lim
σ→∞ r(σ) − r(σ(0)) t0 = 1√

E
lim
σ→0

r(σ(0)) − r(σ) (43b)

Thus, the first condition in (3b) is equivalent to t∞ = ∞, which means that σ(t)
cannot reach the value σ = ∞ within a finite time, and the second condition in (3b)
is equivalent to t0 = ∞, which means that σ(t) cannot reach the value σ = 0 within
a finite time. �
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8 The Construction of Riemannian Brownian Motion

The present section provides an explicit construction of the Riemannian Brownian
motion associated to any multiply-warped Riemannian metric. The main result is
the following Proposition 7, which shows that this construction reduces to the solu-
tion of a one-dimensional stochastic differential equation. This is in analogy with
Proposition 6 of the previous section.

Let I be a multiply-warped Riemannian metric onM = M × (0 ,∞), given by
(40). Recall that a Riemannian Brownianmotion associated to I is a diffusion process
z inM which satisfies the identity, see [23, 24],

d f (z(t)) = 1

2
ΔM f (z(t)) + dm f (t) (44a)

for each smooth function f onM, whereΔM is the Laplace–Beltrami operator of I ,
and wherem f is a local martingale with respect to the augmented natural filtration of
z. In other words, z is a Riemannian Brownian motion associated to I , if z solves the
martingale problem associated to (1/2)ΔM . The Laplace–Beltrami operator ΔM is
given by the following formula, which will be proved in Appendix D,

ΔM f = 1

G
∂r (G ∂r f ) +

r∑

q=1

1

β2
q(r)

ΔMq f (44b)

where G = G(r) is given by G =∏r
q=1 β

dimMq
q . Equation (44a) defines a Rieman-

nian Brownian motion process z, associated to the multiply-warped Riemannian
metric I , through its relationship to the Laplace–Beltrami operator ΔM . On the
other hand, the following Proposition 7 shows how such a Riemannian Brownian
motion process may be constructed explicitly.

Proposition 7 Let z be a stochastic process with values in M, and write z(t) =
(x̄(t),σ(t))where x̄(t) = (x̄1(t) , . . . , x̄r (t))and x̄q(t) ∈ Mq .Let r and (θ1 , . . . , θr )
be independent diffusion processes, where r is a one-dimensional diffusion process,
which satisfies the stochastic differential equation

dr(t) = 1

2

∂rG

G
(r(t))dt + dw(t) (45a)

withw a standard Brownian motion, and where θq is a Riemannian Brownian motion
in Mq . If each x̄q is a time-changed version of θq ,

x̄q(t) = (θq ◦ τq
)
(t) τq(t) =

∫ t

0

ds

β2
q(r(s))

(45b)

and ifσ(t) = σ(r(t)), then theprocess z is aRiemannianBrownianmotionassociated
to the multiply-warped Riemannian metric I given by (40).
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Proof The proof of this proposition is given in Appendix D. �

Remark 14 The above Proposition 7 can be used for numerical simulation of a
Riemannian Brownian motion z associated to a multiply-warped Riemannian metric
I . According to Proposition 7, to simulate z, it is enough to simulate the solution r of
the one-dimensional stochastic differential equation (45a), and then to independently
simulate each θq as a Riemannian Brownian motion in the Riemannian symmetric
spaceMq . To simulate the solution r of (45a), it is enough to use any of the numerical
schemes described in [26]. On the other hand, Riemannian Brownian motion in a
symmetric space can be simulated using Lie group stochastic exponentials [4, 20,
31]. A detailed description of these methods falls outside the present scope, and is
reserved for future work. �

9 Surprising Observation: Hadamard Manifolds

In Sect. 2, the completeness and curvature of a warped Riemannian metric I were
characterised by Formulae (3b) and (4), respectively. Here, based on Sect. 4.1, these
formulae will be applied to the case where I is the Rao–Fisher information metric of
the vonMises–Fisher model defined on Sn−1. Precisely, this application is carried out
using a mixture of analytical and numerical computations, for the von Mises–Fisher
model defined on Sn−1 where n = 2, . . . , 8. The result is a surprising observation: the
parameter space of the vonMises–Fisher model, when equipped with the Rao–Fisher
information metric I , becomes a Hadamard manifold, a simply-connected complete
Riemannianmanifold of negative sectional curvature [13, 40]. Since this observation
is true for several values of n, it gives rise to a family of Hadamard manifolds. Part of
this claim can be proved for any value of n = 2, . . . , as in the following proposition.

Proposition 8 For any value of n = 2, . . . , the parameter space of the von Mises–
Fisher model defined on Sn−1 is a simply-connected manifold, which moreover
becomes a complete Riemannianmanifold when equippedwith the Rao–Fisher infor-
mation metric I .

Proof Recall fromRemark 6 that the parameter space of the vonMises–Fishermodel
defined on Sn−1 is identified with R

n . Of course, Rn is a simply-connected mani-
fold [43]. Thus, to prove the proposition, it remains to prove that the parameter space
R

n becomes a complete Riemannian manifold when equipped with the Rao–Fisher
information metric I . This will be done by proving that all geodesics of the metric I
which pass through the point z = 0 inRn can be extended indefinitely. Then, a corol-
lary of the Hopf–Rinow theorem [13] (Corollary I.7.2, p. 29) implies the required
completeness of the parameter space Rn .

First, note that the geodesics of the metric I which pass through the point z = 0
are exactly the radial straight lines in R

n . Indeed, according to Remark 6, if γ(t)
is a geodesic of I where γ(t) = (x̄(t), η(t)), then γ(t) is identified with the curve
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z(t) = η(t) x̄(t) in R
n . Moreover, by Proposition 2, the restriction of I to R

n − {0}
is a warped Riemannian metric of the general form (13a). Then, by Remark 13,
the vertical geodesics γ(t) of this warped Riemannian metric are parameterised by
r(t) = affine function of t and x̄(t) = x̄ = constant, where r is the vertical distance
coordinate. Therefore, each vertical geodesic γ(t) can be parameterised by η(t) =
η(r(t)) and x̄(t) = x̄ = constant. This is identified with the curve z(t) = η(t) x̄ ,
which is a radial straight line in R

n , in the direction x̄ . It remains to note that the
geodesics of themetric I are just the geodesics of its restriction toRn − {0}, extended
by continuity whenever they reach the point z = 0.

Let z(t) = η(t) x̄ describe a geodesic of the metric I , as just explained. To say
that this geodesic can be extended indefinitely is equivalent to saying that η(t) cannot
reach the value η = ∞within a finite time. For the vonMises–Fisher model, η(σ) =
σ as long as σ ∈ (0 ,∞). Therefore, according to Remark 13, by evaluating the two
conditions (3b), it is possible to know whether η(t) can reach the two values η = ∞
and η = 0 within a finite time. These conditions now read

lim
η→∞ r(η) − r(η0)

?= ∞ and lim
η→0

r(η1) − r(η)
?= ∞

where η0 and η1 are arbitrary. By (13a), r(η) is defined by dr/dη = (ψ′′(η)
)1/2

.
Therefore, the two conditions in (3b) are identical to

∫ ∞

η0

(
ψ′′(η)

)1/2
dη

?= ∞ and
∫ η1

0

(
ψ′′(η)

)1/2
dη

?= ∞ (46a)

where ψ′′(η) is given by (17a). For the first integral, recall the asymptotic expansion
ofmodified Bessel functions at η = ∞ [46], (Sect. 7.23, p. 203. This formula appears
with the wrong sign for the second term in parentheses, in [33]),

Iν(η) = eη

√
2πη

(
1 − 4ν2 − 1

8η
+ (4ν2 − 1)(4ν2 − 32)

2!(8η)2

)
+ O
(
η−3 )

Using this asymptotic expansion, it follows by performing some direct calculations,
and recalling that ν = n/2,

Iν+1(η)

Iν−1(η)
=1 − n

η
+ n(n−1)

2η2 + O
(
η−3
)

I 2ν (η)

I 2ν−1(η)
=1 − n−1

η
+ (n−1)(n−2)

2η2 + O
(
η−3
)

Replacing these expressions into (17a) immediately gives

ψ′′(η) = n − 1

2η2
+ O
(
η−3
)

(46b)
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Since n > 1, this implies that the first integral in (46a) is divergent, as required.
The second integral in (46a) is actually convergent. Indeed, ψ′′(η) is a continuous
function in the neighborhood of η = 0, as seen in the proof of Proposition 2, for the
limit (18c). Thus, the first condition in (3b) is verified, while the second condition
is not verified. This means that η(t) cannot reach the value η = ∞ within a finite
time, but that it can reach the value η = 0 within a finite time. The first of these
two statements shows that the geodesic described by z(t) can indeed be extended
indefinitely. Now, any geodesic of the metric I which passes through the point z = 0
is described by some z(t) of this form. �

The idea behind the proof of the completeness part of Proposition 8 can be
summarised as follows. The restriction of the Rao–Fisher information metric I to
R

n − {0} is a warped Riemannian metric. Thus, as stated in Sect. 2, Rn − {0} will
be a complete Riemannian manifold, when equipped with this warped Riemannian
metric, if and only if the two conditions in (3b) are verified. Once these conditions
are evaluated, it turns out the first one is verified, but the second one is not. Thus,
R

n − {0} is not a complete Riemannian manifold. However, this is only due to the
fact that the point z = 0 is excluded. Once this point is included, the parameter space
R

n is obtained, and this is a complete Riemannian manifold, when equipped with
the Rao–Fisher information metric I . Precisely, a vertical geodesic in R

n − {0} can
reach the point z = 0 within a finite time, but then all it does is pass through this
point, and immediately return to R

n − {0}. However, this vertical geodesic cannot
escape to infinity within a finite time.

Proposition 8 established that the parameter space R
n of the von Mises–Fisher

model is a simply-connected complete Riemannian manifold, for any value of n.
To show that this parameter space is a Hadamard manifold, it remains to show that
it has negative sectional curvature. This is done using numerical computation, for
n = 2, . . . , 8 .

Precisely, let Kz denote the sectional curvature of Rn at a point z ∈ R
n , with

respect to the Rao–Fisher information metric I . Since, according to Proposition 2,
I is a warped Riemannian metric, the sectional curvature Kz can be computed from
formulae (4). To evaluate formula (4a), the Gauss equation, it is enough to note that
for the von Mises–Fisher model, KM is a constant equal to +1. Indeed, KM is the
sectional curvature of the unit sphere Sn−1. Then, formula (4a) reads

Kz(u, v) = 1

β2
−
(

∂rβ

β

)2
u, v ∈ Tx̄ S

n−1 (47a)

where z = η x̄ . On the other hand, formula (4b), the Jacobi equation, can be copied
directly,

Kz(u, ∂r ) = −∂2
r β

β
(47b)

Here, β(η) is given by (17b) of Proposition 2, and r is the vertical distance coordinate
defined by dr/dη = (ψ′′(η)

)1/2
. In each one of formulae (47), the right-hand side
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Fig. 1 Sectional curvature of the parameter space of the von Mises–Fisher model (Ks(η) solid
line, Kr (η) dotted line, n = 3 black, n = 4 blue, n = 5 red)

is a real-valued function of η, independent of the vectors u, v. This will be denoted
in the following way

Kz(u, v) = Ks(η) Kz(u, ∂r ) = Kr (η) (48)

Precisely, Ks(η) is the sectional curvature of any section (u, v) tangent to the surface
of a sphere centred at z = 0 and with Euclidean radius η. On the other hand, Kr (η)

is the sectional curvature of a radial section (u, ∂r ). In the following, Ks(η) will be
called the surface curvature, and Kr (η) will be called the radial curvature.

Formulae (47)were computed numerically for n = 2, . . . , 8. It was systematically
found that the sectional curvatures Ks(η) and Kr (η) are negative for all values of η.
From these numerical results, it can be concluded with certainty that the sectional
curvature of Rn , with respect to the Rao–Fisher information metric I , is negative,
when n ranges from n = 2 to n = 8. Figure 1 gives a graphic representation for
n = 3, 4, 5. The sectional curvatures Ks(η) and Kr (η) behave in the same way, for
all considered values of n. Precisely, they are equal to zero at η = 0, and decrease to
a limiting negative value, as η becomes large. This limiting value, denoted Ks(∞)

and Kr (∞), for Ks(η) and Kr (η), respectively, is given in the following Table 1.
Remarkably, it appears from this table that Ks(∞) and Kr (∞) have the same first
two digits after the decimal point.

Remark 15 Based on Proposition 8, and on the numerical results reported here, it
has been found that the parameter spaceRn of the von Mises–Fisher model becomes
a Hadamard manifold, when equipped with the Rao–Fisher information metric I ,
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Table 1 Limiting value of the surface and radial curvatures

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8

Ks(∞) −0.50 −0.25 −0.16 −0.12 − 0.10 −0.08 −0.07

Kr (∞) −0.50 −0.25 −0.16 −0.12 −0.10 −0.08 −0.07

for n = 2, . . . , 8. Indeed, Proposition 8 shows that this parameter space is a simply-
connected complete Riemannian manifold, for any value of n = 2, . . . , while the
numerical results of Fig. 1 and Table 1 show that it has negative sectional curvature.
Hopefully, future work will provide a mathematical proof of the proposition that the
sectional curvature of the parameter space R

n is negative for n = 2, . . . , without
restriction. �

Remark 16 Preliminary results from ongoing research indicate that the Rieman-
nian Gaussian model, which was studied in Sect. 4.2, when defined on M = Hn−1,
the (n − 1)-dimensional hyperbolic space, has similar properties to the von Mises–
Fisher model, with regard to sectional curvature. Indeed, numerical computations
show the sectional curvature of its parameter spaceM = Hn−1 × (0 ,∞), equipped
with the Rao–Fisher information metric I , is negative for n = 3, 4, 5. These numer-
ical computations were carried out using formulae (4), for the sectional curvature of
a warped Riemannian metric. This is justified because the hyperbolic space Hn−1

is an irreducible Riemannian symmetric space, since it is a space of constant nega-
tive curvature, so the Rao–Fisher information metric (22) is a warped Riemannian
metric. �

Conclusion

The aim of the present contribution was to reveal a common geometric structure,
shared by all location-scale models which are invariant under the action of some Lie
group. Precisely, all of these location-scale models have a Rao–Fisher information
metricwhich is awarped (eventually,multiply-warped)Riemannianmetric. This pro-
vides a unified geometric framework for the study of a wide variety of location-scale
models: von Mises–Fisher, and Riemannian Gaussian models, detailed in the above,
or elliptically contoured distribution, generalised Wishart, and hyperboloid models,
amongmany additional models. For such location-scalemodels, the rich yet tractable
geometry of warped Riemannian metrics can be used to understand and solve impor-
tant computational and theoretical problems. For example, future work will be able
to address computational problems such as on-line estimation of mixture models
on manifolds, regression between manifold-valued data sets, or black-box optimisa-
tion on manifolds. High-dimensional computations, with big data sets, as involved
in these problems, are greatly simplified by the introduction of warped metrics,
which afford exact computation of Riemannian gradients, Hessians, and geodesics,
with a computational complexity largely independent of dimension. In particular, this
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means that exploiting the natural gradient algorithm, even with manifold-valued data
and parameters, will be greatly streamlined. On the theoretical side, the connection
between location-scale models and warped Riemannian metrics raises exciting new
questions. Based on the theoretical and numerical results obtained above, it seems
justified to make the conjecture that the parameter space of any invariant location-
scale model, defined on a simply-connected symmetric space, turns into a Hadamard
manifold, a simply-connected complete Riemannian manifold of negative curvature,
when equippedwith itsRao–Fisher informationmetric. Futureworkwill focus on this
conjecture, which seems to convey both geometric and statistical insight. Roughly,
the fundamental example of a location-scale model is the isotropic normal model,
whose parameter space turns into a space of constant negative curvature, indeed a
Hadamard manifold, when equipped with its Rao–Fisher information metric. On the
other hand, it is known to statisticians that any sufficiently regular location-scale
model is locally normal, which means it is locally “similar” to an isotropic normal
model. The question is then to know how this local statistical similarity translates
into local geometric similarity. A glimpse of this statistical-geometric equivalence is
seen from Table 1 in Sect. 9. For the von Mises–Fisher model, as η goes to infinity,
the model converges to an isotropic normal model (see [33]). In this limit, it is seen
in Table 1, that the two sectional curvatures Ks(η) and Kr (η) become equal, which
means all sectional curvatures are equal, exactly as in a space of constant curvature.
Intuitively, as the von Mises–Fisher model converges to an isotropic normal model,
its geometry converges to that of a space of constant negative curvature.

Appendix A – Proof of Theorem 1

In order to complete the proof of Theorem 1, the following proposition is needed.
The notation is that of Remark 4 and of (11).

Proposition 9 Assume condition (7) holds. Then,

∂σ�(z) ◦ g = ∂σ�(g−1 · z) ∇x̄ �(z) ◦ g = dgx̄ ∇x̄ �(g−1 · z) (49a)

In particular, if g = sx̄ ,

∂σ�(z) ◦ sx̄ = ∂σ�(z) ∇x̄ �(z) ◦ sx̄ = −∇x̄ �(z) (49b)

Proof Note that (49b) follows from (49a), by the definition of the geodesic-reversing
isometry sx̄ [22]. Indeed, sx̄ · x̄ = x̄ so s−1

x̄ · z = z. Moreover, dsx̄ = −Id, as a linear
mapping of Tx̄M , where Id denotes the identity. To prove (49a), note that

(∂σ�(z) ◦ g) (x) = ∂σ log p(g · x |z) = ∂σ log p(x |g−1 · z) (50a)

where the second equality follows from condition (7). However,



Warped Riemannian Metrics for Location-Scale Models 283

∂σ log p(x |g−1 · z) = ∂σ�(g−1 · z)(x) (50b)

Replacing (50b) in (50a) gives,

(∂σ�(z) ◦ g) (x) = ∂σ�(g−1 · z)(x)

which is the first part of (49a). For the second part, a similar reasoning can be applied.
Precisely, using condition (7), it follows,

(d�(z) ◦ g) (x) = d log p(g · x |z) = d log p(x |g−1 · z) = d�(g)(z)(x) (51a)

where d�(z) denotes the derivative of �(z)with respect to x̄ , and �(g)(z) = �(g−1 · z),
so (51a) implies that,

d�(z) ◦ g = d�(g)(z) (51b)

By the chain rule [29], for u ∈ Tx̄M ,

d�(g)(z)
∣∣
x̄ u = d�(g−1 · z) dg−1

x̄ u

Replacing in (51b),
d�(z) ◦ g|x̄ = d�(g−1 · z) dg−1

x̄ (51c)

The second part of (49a) can now be obtained as follows. By the definition of the
Riemannian gradient [40],

Q (∇x̄ �(z) ◦ g , u) = d�(z) ◦ g|x̄ u = d�(g−1 · z) dg−1
x̄ u (52a)

where the second equality follows from (51c). However,

d�(g−1 · z) dg−1
x̄ u = Q

(∇x̄ �(g−1 · z), dg−1
x̄ u
)

Since g is an isometry of M , its derivative dgx̄ preserves the Riemannian metric Q.
Therefore,

Q
(∇x̄ �(g−1 · z), dg−1

x̄ u
) = Q

(
dgx̄ ∇x̄ �(g−1 · z), u) (52b)

Replacing (52b) in (52a) gives,

Q (∇x̄ �(z) ◦ g , u) = Q
(
dgx̄ ∇x̄ �(g−1 · z), u)

To finish the proof, it is enough to note that the vector u is arbitrary. �
Proof of (10b): recall the polarisation identity, from elementary linear algebra [28],
(see p. 29),

Iz(∂σ, u) = 1

4
Iz(∂σ + u, ∂σ + u) − 1

4
Iz(∂σ − u, ∂σ − u)
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by replacing (8) into this identity, it can be seen that,

Iz(∂σ, u) = Ez ((∂σ�(z)) (d�(z) u))

Then, by recalling the definition of the Riemannian gradient [40],

Iz(∂σ, u) = Ez ((∂σ�(z)) Q (∇x̄ �(z), u)) (53a)

Denote the function under the expectation by f , and apply (11) with g = sx̄ . Then,

Ez f = Esx̄ ·z f = Ez ( f ◦ sx̄ ) (53b)

since sx̄ · z = z. Note that (10b) amounts to saying that Ez f = 0. To prove this, note
that

f ◦ sx̄ = (∂σ�(z) ◦ sx̄ ) Q (∇x̄�(z) ◦ sx̄ , u) = −∂σ�(z)Q (∇x̄�(z), u) = − f (53c)

where the second equality follows from (49b). Replacing in (53b) shows that
Ez f = 0. �
Proof of (10c): the idea is to apply Schur’s lemma to Iz(u, u), considered as a
symmetric bilinear form on Tx̄M . First, it is shown that this symmetric bilinear form
is invariant under the isotropy representation. That is,

Iz(u, u) = Iz (dkx̄ u , dkx̄ u) for all k ∈ Kx̄ (54a)

This is done using (11). Note from (8),

Iz(u, u) = Ez
[
( Q (∇x̄ �(z), u))2

]
(54b)

Denote the function under the expectation by f . By (11),

Ez f = Ek−1·z f = Ez
(
f ◦ k−1

)
(54c)

since k−1 · z = z for k ∈ Kx̄ . To find f ◦ k−1, note that,

Q
(∇x̄ �(z) ◦ k−1, u

) = Q
(
dk−1

x̄ ∇x̄ �(z), u
) = Q (∇x̄ �(z), dkx̄ u)

where the first equality follows from (49a) and the fact that k · x̄ = x̄ , and the second
equality from the fact that dkx̄ preserves the Riemannian metric Q. Now, by (54b)
and (54c),

Iz(u, u) = Ez f = Ez
(
f ◦ k−1

) = Ez (Q (∇x̄�(z), dkx̄ u))2 = Iz (dkx̄ u , dkx̄ u)

and this proves (54a).
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Recall Schur’s lemma, ([27], p. 240). Applied to (54a), this lemma implies that
there exists some multiplicative factor β2, such that

Iz(u, u) = β2 Qx̄ (u, u) (55a)

It remains to show that β2 is given by (9). Taking the trace of (55a),

tr Iz = β2 tr Qx̄ = β2 dim M (55b)

If e1 , . . . , ed is an orthonormal basis of Tx̄M , then by (54b),

tr Iz = Ez

d∑

i=1

(Q (∇x̄ �(z), ei ))
2 = Ez Q (∇x̄�(z),∇x̄�(z)) (55c)

Thus, (55b) and (55c) show that β2 is given by (9). �
To complete the proof of Theorem 1, it remains to show that the expectations appear-
ing in (9) do not depend on x̄ .

For the first expectation, giving α2(σ), note that,

Eg·z (∂σ�(g · z))2 = Ez (∂σ�(g · z) ◦ g)2 = Ez (∂σ�(z))2 (56)

where the first equality follows from (11) and the second equality follows from (49a).
Thus, this expectation has the same value, whether computed at g · z = (g · x̄,σ),
or at z = (x̄,σ). Therefore, it does not depend on x̄ , since the action of G on M is
transitive.

For the second expectation, giving β2(σ), note that by (11),

Eg·z Q (∇x̄ �(g · z) ,∇x̄ �(g · z) ) = Ez Q (∇x̄ �(g · z) ◦ g ,∇x̄ �(g · z) ◦ g ) (57a)

On the other hand, by (49a),

∇x̄ �(g · z) ◦ g = dgx̄ ∇x̄ �(z)

Moreover, since dgx̄ preserves the Riemannian metric Q,

Q(∇x̄ �(g · z) ◦ g ,∇x̄ �(g · z) ◦ g) = Q(dgx̄ ∇x̄ �(z) , dgx̄∇x̄ �(z))
= Q(∇x̄ �(z) ,∇x̄ �(z))

Replacing in (57a) gives

Eg·z Q (∇x̄ �(g · z) ,∇x̄ �(g · z) ) = Ez Q(∇x̄ �(z) ,∇x̄ �(z)) (57b)

so this expectation has the same value, at g · z and at z. By the same argument made
after (56), it does not depend on x̄ . �
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Proof of (11): let dv denote the invariant Riemannian volume element of M , and
note that,

Eg· z f =
∫

M
f (x) p(x |g · z) dv(x) =

∫

M
f (x) p(g−1 ·x |z) dv(x) (58a)

where the second equality follows from (7). Introduce the variable y = g−1 · x . Since
the volume element dv is invariant,

∫

M
f (x) p(g−1 · x |z) dv(x) =

∫

M
f (g · y) p(y|z) dv(y) (58b)

The last integral is the same as Ez ( f ◦ g). Therefore, (11) follows from (58a) and
(58b). �

Appendix B – Proof of Proposition 2

It remains to prove (17a) and (17b). To do so, introduce the following notation, using
(15),

t = 〈x, x̄〉 Z(η) = eψ(η) = (2π)ν η1−ν Iν−1(η) (59a)

Then, Z(η) is the moment generating function of t , so

Ez(t) = Z ′(η)

Z(η)
and Ez

(
t2
) = Z ′′(η)

Z(η)
(59b)

where the prime denotes differentiation with respect to η. Recall the derivative and
recurrence relations of modified Bessel functions [46],

(
η−a Ia(η)

)′ = η−a Ia+1(η) Ia−1(η) − Ia+1(η) = 2a

η
Ia(η) (60)

where a is any complex number. By applying these relations to (59b), it is possible
to show, through a direct calculation,

Ez(t) = Iν(η)

Iν−1(η)
(61a)

Ez
(
t2
) = 1

n
+ n − 1

n

Iν+1(η)

Iν−1(η)
(61b)

Formulae (61) will provide the proof of (17a) and (17b).
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Proof of (17a): since ψ(η) is the cumulant generating function of t ,

ψ′′(η) = Varz(t) = Ez
(
t2
)− Ez (t)2 (62a)

where Var denotes the variance. Now, (17a) follows immediately by replacing from
(61) into the right-hand side. �
Proof of (17b): recall from (18a),

β2(η) = η2

n − 1
Ez
(
1 − t2

)
(62b)

However, from (61b),

Ez
(
1 − t2

) = n − 1

n

(
1 + Iν+1(η)

Iν−1(η)

)
(62c)

Now, (17b) follows by replacing (62c) into (62b). �
Proof of (61a): using the derivative relation of modified Bessel functions, which is
the first relation in (60), with a = ν − 1, it follows that

Z ′(η) = (2π)ν η1−ν Iν(η) (63a)

Now, Formula (61a) follows by replacing this into (59b) and using (59a). �
Proof of (61b): write (63a) in the form

Z ′(η) = (2π)ν η
(
η−ν Iν(η)

)

By the product rule

Z ′′(η) = (2π)ν η−ν Iν(η) + (2π)ν η
(
η−ν Iν(η)

)′

The derivative in the second term can be evaluated from the derivative relation of
modified Bessel functions, with a = ν. Then,

Z ′′(η) = (2π)ν η−ν Iν(η) + (2π)ν η1−ν Iν+1(η)

Rearrange this formula as

Z ′′(η) = (2π)ν η1−ν
(
η−1 Iν(η) + Iν+1(η)

)

By the recurrence relation of modified Bessel functions, which is the second relation
in (60), with a = ν, it then follows
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Z ′′(η) = (2π)ν η1−ν

(
1

2ν
Iν−1(η) − 1

2ν
Iν+1(η) + Iν+1(η)

)

Recalling that 2ν = n, this can be written,

Z ′′(η) = (2π)ν η1−ν

(
1

n
Iν−1(η) + n − 1

n
Iν+1(η)

)
(63b)

Now, Formula (61b) follows by replacing this into (59b) and using (59a). �

Appendix C – Proof of Proposition 6

The setting and notations are the same as in Sect. 7, except for the fact that x̄ is written
as x , without the bar, in order to avoid notations such as ˙̄x or ¨̄x . This being said, let
∇̃ and ∇ denote the Levi-Civita connections of the Riemannian metrics I and Q,
respectively. Thus, ∇̃ is a connection on the tangent bundle of the manifoldM, and
∇ is a connection on the tangent bundle of the manifold M [13, 40]. Introduce the
shape operator S : TxM → TxM , which is given as in [40],

S(u) = ∇̃u ∂r u ∈ TxM (64)

for any x ∈ M . The following identities can be found in [40] (Sect. 2.4, p. 41),

∇̃∂r ∂r = 0 (65a)

∇̃∂r X = S(X) (65b)

∇̃X Y = ∇X Y − I (S(X),Y ) ∂r (65c)

for any vector fields X and Y on M . Using these identities, it is possible to write the
geodesic equation of the Riemannian metric I , in terms of the shape operator S. This
is given in the following proposition.

Proposition 10 Let γ(t) be a curve in M , with γ(t) = (x(t),σ(t)) and let r(t) =
r(σ(t)). The curve γ(t) is a geodesic of the Riemannian metric I if and only if it
satisfies the geodesic equation

r̈ = I (S(ẋ), ẋ) (66a)

ẍ = −2 ṙ S(ẋ) (66b)

where ẍ = ∇ẋ ẋ is the acceleration of the curve x(t) in M.

The shape operator S moreover admits a simple expression, which can be derived
from expression (40) of the Riemannian metric I , using the fact that ∇̃ is a metric
connection [13] (Theorem I.5.1, p. 16).
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Proposition 11 In the notation of (40), the shape operator S is given by

S(u) =
r∑

q=1

∂r βq(r)

βq(r)
uq (67)

In other words, the decomposition u = u1 + · · · + ur provides a block-
diagonalisation of S, where each block is a multiple of identity.

Combining Propositions 10 and 11, the geodesic equation (66) takes on a new form.
Precisely, replacing (67) into (66) gives the following equations

r̈ =
r∑

q=1

βq(r)∂rβq(r) Q(ẋq , ẋq) (68a)

ẍq = −2 ṙ
∂r βq(r)

βq(r)
ẋq (68b)

where ẋ = ẋ1 + · · · + ẋr and ẍ = ẍ1 + · · · + ẍr . The proof of Proposition 6 can
be obtained directly from Eq. (68), using the following conservation laws.

Proposition 12 Each one of the following quantities Cq is a conserved quantity,

Cq = β4
q(r) Q(ẋq , ẋq) for q = 1 , . . . , r (69)

In other words, Cq remains constant when evaluated along any geodesic γ(t) of the
Riemannian metric I .

For now, assume that Propositions 10–12 are true. To prove Proposition 6, note
the following.
Proof of (41a): it is enough to show that the right-hand side of (41a) is the same as
the right-hand side of (68a). To do so, note from (41a) and (69) that

V (r) =
r∑

q=1

β2
q(r(0))

β2
q(r)

Iz(uq , uq) =
r∑

q=1

Cq

β2
q(r)

(70a)

Indeed, since ẋq(0) = uq and since Cq is a conserved quantity

β2
q(r(0)) Iz(uq , uq) = β4

q(r) Q(ẋq , ẋq)
∣∣
t=0

= Cq

Now, replacing the derivative of (70a) into the right-hand side of (41a) directly leads
to the right-hand side of (68a). �
Proof of (41b): recall from Remark 7 that M is the Riemannian product of the Mq .
Therefore, the Riemannian exponential mapping of M is also the product of the
Riemannian exponential mappings of the Mq . Precisely, (41b) is equivalent to
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xq(t) = expxq (0)

[(∫ t

0

β2
q(r(0))

β2
q(r(s))

ds

)

uq

]

for q = 1 , . . . , r (70b)

This means that the curve xq(t) in Mq is a reparameterised geodesic
(
δq ◦ F

)
(t)

where δq(t) is the geodesic given by δq(t) = exp(t uq) and F(t) is the integral inside
the parentheses in (70b). To prove (41b), it is sufficient to prove that (70b) solves
Eq. (68b). Using the chain rule, (70b) implies that

ẍq = Ḟ 2
(
δ̈q ◦ F

) + F ′′ (δ̇q ◦ F
) = Ḟ 2

(
δ̈q ◦ F

) + F ′′

F ′ ẋq = F ′′

F ′ ẋq (70c)

where the third equality follows because δq is a geodesic, and therefore its accelera-
tion δ̈q is zero. By replacing the definition of the function F(t), it is seen that (70c)
is the same as (68b). It follows that (70b) solves (68b), as required. �
Proof of Proposition 10: recall the geodesic equation is ∇̃γ̇ γ̇ = 0, which means
that the velocity γ̇(t) is self-parallel [13, 40]. Here, the velocity γ̇(t) is given by
γ̇(t) = ṙ ∂r + ẋ . Accordingly, the left-hand side of the geodesic equation is

∇̃γ̇ γ̇ = ∇̃γ̇ ṙ ∂r + ∇̃γ̇ ẋ = r̈ ∂r + ṙ ∇̃γ̇ ∂r + ∇̃γ̇ ẋ (71a)

where the second equality follows by the product rule for the covariant derivative
[13, 40]. The second and third terms on the right-hand side of (71a) can be written
in terms of the shape operator S. Precisely, for the second term,

∇̃γ̇ ∂r = ṙ ∇̃∂r ∂r + ∇̃ẋ ∂r = S(ẋ) (71b)

where the second equality follows from (64) and (65a). Moreover, for the third term,

∇̃γ̇ ẋ = ṙ ∇̃∂r ẋ + ∇̃ẋ ẋ = ṙ S(ẋ) + ẍ − I (S(ẋ), ẋ) ∂r (71c)

where the second equality follows from (65b) and (65c). Replacing (71b) and (71c)
into (71a), the left-hand side of the geodesic equation becomes

∇̃γ̇ γ̇ = ( r̈ − I (S(ẋ), ẋ) ) ∂r + ( ẍ + 2ṙ S(ẋ) )

Setting this equal to zero immediately gives Eq. (66). �
Proof of Proposition 11 : recall the shape operator S is symmetric, since it is essen-
tially the Riemannian Hessian of r [40] (Sect. 2.4, p. 41). Therefore, it is enough
to evaluate I (S(u), u) for u ∈ TxM . Let X by a vector field on M , with X (x) = u.
Then,

I (S(u), u) = I (S(X), X) = I
(

∇̃∂r X , X
)

(72a)
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where the second equality follows from (65b). Using the fact that ∇̃ is a metric
connection [13] (Theorem I.5.1, p. 16), the right-hand side can be written as

I
(

∇̃∂r X , X
)

= 1

2
∂r I (X, X) = 1

2
∂r

r∑

q=1

β2
q(r) Qx(uq , uq) (72b)

where the second equality follows from (40). It remains to note that

1

2
∂r β2

q(r) Qx(uq , uq) = ∂r βq(r)

βq(r)
Iz(uq , uq)

Accordingly, (72a) and (72b) imply

I (S(u), u) = I

⎛

⎝
r∑

q=1

∂r βq(r)

βq(r)
uq , uq

⎞

⎠ = I

⎛

⎝
r∑

q=1

∂r βq(r)

βq(r)
uq , u

⎞

⎠ (72c)

and (67) follows from the fact that S is symmetric. �
Proof of Proposition 12: to say that Cq is a conserved quantity means that Ċq = 0.
From (69),

Ċq = 4ṙ β3
q(r) ∂rβq(r) Q(ẋq ẋq) + β4

q(r)
d

dt
Q(ẋq ẋq) (73a)

The last derivative can be expressed as

d

dt
Q(ẋq ẋq) = 2 Q(ẍq , ẋq) = −4ṙ

∂rβq(r)

βq(r)
Q(ẋq , ẋq) (73b)

where the second equality follows from (68b). By replacing (73b) into (73a), it
follows immediately that Ċq = 0. �

Appendix D – Proof of Proposition 7

The proof of Formula (44b), for the Laplace–Beltrami operator ΔM , will introduce
some useful notation.

Proof of Formula (44b): for any smooth function f onM, it follows from (40) that
the Riemannian gradient ∇̃ f of f , with respect to the multiply-warped Riemannian
metric I , is given by

∇̃ f = (∂r f ) ∂r +
r∑

q=1

β−2
q (r)∇x̄q f (74a)
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where∇x̄q f is theRiemannian gradient of f with respect to x̄q ∈ Mq , computedwith
all other arguments of f being fixed. Expression (74a) can be verified by checking
that

d f U = I (∇̃ f,U )

for any tangent vector U to M. This follows directly from (40) and (74a). Now, by
definition of the Laplace–Beltrami operator [34], (see p. 443),

ΔM f = div ∇̃ f (74b)

where the divergence div V of a vector field V on M is found from

LV vol = (div V ) vol (74c)

with the notationL for the Lie derivative, and vol for the Riemannian volume element
of the metric I . This last formula can be applied along with the following expression
of vol, which follows from (40),

vol = G(r) dr
∧

q

volq(x̄q) (74d)

where the function G(r) was defined after (44b), and where ∧ denotes the exterior
product, and volq is the Riemannian volume of Mq . From (74c) and (74d), applying
the product formula of the Lie derivative [34] (Theorem 7.4.8, p. 414),

div V = 1

G
∂r (G Vr ) +

r∑

q=1

divMq Vq (74e)

whereV = Vr ∂r + ∑q Vq with eachVq tangent toMq , andwhere divMq Vq denotes
the divergence of Vq with respect to x̄q ∈ Mq . Formula (44b) follows directly from
(74a), (74b) and (74e). Indeed, for the vector field V = ∇̃ f ,

Vr = ∂r f Vq = β−2
q (r)∇x̄q f

as can be seen from (74a). �
For the proof of Proposition 7, assume the process z is a Riemannian Brownian

motion associated to I . Write z(t) = (x̄(t),σ(t)) where x̄(t) = (x̄1(t) , . . . , x̄r (t))
and each x̄q(t) belongs toMq . The proof consists in showing that the joint distribution
of the processes r(t) = r(σ(t)) and x̄q(t) is the same as described in Proposition 7.
This is done through the following steps.

Step 1 – r(t) verifies (45a): recall that, for any smooth function f onM, the process
z verifies (44a). If f = r , then by (44a) and (44b)
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dr(t) = 1

2
ΔMr(t)dt + dmr (t) = 1

2

∂rG

G
(r(t))dt + dmr (t) (75)

To prove that r(t) verifies (45a), it is enough to prove that dmr (t) = dw(t) where w

is a standard Brownian motion. Note that dr2(t) can be computed in two ways. The
first way, by Itô’s formula and (75)

dr2 = rΔMr(t)dt + 2r(t)dmr (t) + d[mr ](t)

where [mr ](t) is the quadratic variation process of the local martingale mr (t) [25]
(Theorem 17.16, p. 339). The second way, by (44a) with f = r2,

dr2 =
(
I (∇̃r, ∇̃r) + rΔMr(t)

)
dt + dmr2(t)dt

= (1 + rΔMr(t)) dt + dmr2(t)dt

where the second line follows from (40) because ∇̃r = ∂r . By equating these two
expressions of dr2(t) , it follows that dt − d[mr ](t) is the differential of a continuous
local martingale of finite variation, and therefore identically zero [25] (Proposition
17.2, p. 330). In other words, d[mr ](t) = dt and Lévy’s characterisation implies that
dmr (t) = dw(t), where w is a standard Brownian motion [25] (Theorem 18.3, p.
352). �
Step 2 – x̄q(t) verifies (45b): if f is a smooth function onM, such that f (z) = f (x̄q),
then by (44a) and (44b)

d f (x̄q(t)) = 1

2
β−2
q (r(t))ΔMq f (x̄q(t)) dt + dm f (t) (76)

Define lq(t) to be the inverse of the time change process τq(t) defined in (45b), and
let θq(t) = (x̄q ◦ lq

)
(t). By applying the time change lq(t) to (76)

d f (θq(t)) = 1

2
ΔMq f (θq(t)) dt + d(m f ◦ lq)(t)

where the first term on the right-hand side is obtained by replacing from the defi-
nition of τq(t) in (45b). Recall that a time change of a local martingale is a local
martingale [25] (Theorem 17.24, p. 344). Therefore, m f ◦ lq is a local martingale,
so θq solves the martingale problem associated to (1/2)ΔMq . This means that θq is
a Riemannian Brownian motion in Mq . �
Step 3 – r(t) and θq(t) are independent: it is required to prove that the processes
r(t) and θ1(t) , . . . , θr (t) are jointly independent. A detailed proof is given only of
the fact that r(t) and θq(t) are independent, for any fixed q. The complete proof is
obtained by repeating similar arguments.
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The following proof is modeled on [23] (Example 3.3.3, p. 84). Let
(
ξi (t) ;

i = 1 , . . . , dim Mq
)
be the stochastic anti-development of x̄q(t). Precisely [19]

(Definition 8.23, p. 119)

dξi (t) = Q
(
ei , dx̄q(t)

) = β−2
q (r(t)) I

(
ei , dz(t)

)
(77a)

where the ei form a parallel orthonormal moving frame above the stochastic process
x̄q(t) in Mq . On the other hand, it is possible to write, using Itô’s formula [19]
(Proposition 7.34, p. 109)

dr(t) = I (∂r , dz(t)) + 1

2
ΔMr(t) dt (77b)

Let [ξi , r ] denote the quadratic covariation of ξi and r . From [19] (Proposition 5.18,
p. 63), since z is a Riemannian Brownian motion, it follows from (77a) and (77b)
that

d[ξi , r ](t) = β−2
q (r(t)) I (ei , ∂r )(z(t)) dt = 0 (77c)

as ei and∂r are orthogonalwith respect to I . Thismeans that (ξi (t)) and r(t)have zero
quadratic covariation, and therefore (ξi (t)) andw(t) have zero quadratic covariation.
It follows as in [23] (Lemma 3.3.4, p. 85), that r(t) and θq(t) are independent. �
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Clustering in Hilbert’s Projective
Geometry: The Case Studies
of the Probability Simplex
and the Elliptope of Correlation Matrices

Frank Nielsen and Ke Sun

Abstract Clustering categorical distributions in the probability simplex is a
fundamental taskmet in many applications dealing with normalized histograms. Tra-
ditionally, differential-geometric structures of the probability simplex have been used
either by (i) setting the Riemannian metric tensor to the Fisher information matrix
of the categorical distributions, or (ii) defining the dualistic information-geometric
structure induced by a smooth dissimilarity measure, the Kullback–Leibler diver-
gence. In this work, we introduce for this clustering task a novel computationally-
friendly framework for modeling the probability simplex termed Hilbert simplex
geometry. In the Hilbert simplex geometry, the distance function is described by a
polytope. We discuss the pros and cons of those different statistical modelings, and
benchmark experimentally these geometries for center-based k-means and k-center
clusterings. Furthermore, since a canonical Hilbert metric distance can be defined
on any bounded convex subset of the Euclidean space, we also consider Hilbert’s
projective geometry of the elliptope of correlation matrices and study its clustering
performances.
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Fig. 1 Categorical datasets modeled by a generative statistical mixture model of multinoulli distri-
butions can be visualized as a weighted set of normalized histograms or equivalently by a weighted
point set encoding multinoulli distributions in the probability simplex Δd (here, d = 2 for trinoulli
distributions — trinomial distributions with a single trial)

1 Introduction and Motivation

The categorical distributions and multinomial distributions are important probability
distributions often met in data analysis [1], text mining [2], computer vision [3]
and machine learning [4]. A multinomial distribution over a set X = {e0, . . . , ed}
of outcomes (e.g., the d + 1 distinct colored faces of a die) is defined as follows:
Let λi

p > 0 denote the probability that outcome ei occurs for i ∈ {0, . . . , d} (with
∑d

i=0 λi
p = 1). Denote bym the total number of events, withmi reporting the number

of outcome ei . Then the probability Pr(X0 = m0, . . . , Xd = md) that a multinomial
random variable X = (X0, . . . , Xd) ∼ Mult(p = (λ0

p, . . . , λ
d
p),m) (where Xi count

the number of events ei , and
∑d

i=0 mi = m) is given by the following probability
mass function (pmf):

Pr(X0 = m0, . . . , Xd = md) = m!
∏d

i=0 mi !
d∏

i=0

(
λi
p

)mi
.

The multinomial distribution is called a binomial distribution when d = 1 (e.g., coin
tossing), a Bernoulli distribution when m = 1, and a “multinoulli distribution” (or
categorical distribution) whenm = 1 and d > 1. Themultinomial distribution is also
called a generalized Bernoulli distribution. A random variable X following a multi-
noulli distribution is denoted by X = (X0, . . . , Xd) ∼ Mult(p = (λ0

p, . . . , λ
d
p)). The

multinomial/multinoulli distribution provides an important feature representation in
machine learning that is often met in applications [5–7] as normalized histograms
(with non-empty bins) as illustrated in Fig. 1.
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(a) k = 3 clusters

(b) k = 5 clusters

Fig. 2 Visualizing some k-center clustering results on a toy dataset in the space of trinomials Δ2

for the considered four types of distances (and underlying geometries): Fisher-Hotelling-Raometric
distance (Riemannian geometry), Kullback–Leibler non-metric divergence (information geometry),
Hilbert metric distance (Hilbert projective geometry), and total variation/L1 metric distance (norm
geometry). Observe that the L1 balls have hexagonal shapes on the probability simplex (intersection
of a rotated cube with the plane HΔd ). The color density maps indicate the distance from any point
to its nearest cluster center

A multinomial distribution p ∈ Δd can be thought as a point lying in the proba-
bility simplex Δd (standard simplex) with coordinates p = (λ0

p, . . . , λ
d
p) such that

λi
p = Pr(X = ei ) > 0 and

∑d
i=0 λi

p = 1. The open probability simplex Δd can be

embedded in R
d+1 on the hyperplane HΔd : ∑d

i=0 x
i = 1. Notice that observations

with D categorical attributes can be clustered using k-mode [8] with respect to
the Hamming distance. Here, we consider the different task of clustering a set
Λ = {p1, . . . , pn} of n categorical/multinomial distributions in Δd [5] using center-
based k-means++ or k-center clustering algorithms [9, 10], which rely on a dissimi-
larity measure (loosely called distance or divergence when smooth) between any two
categorical distributions. In this work, we mainly consider four distances with their
underlying geometries: (1) Fisher-Hotelling-Rao distance ρFHR (spherical geome-
try), (2) Kullback–Leibler divergence ρIG (dually flat geometry), (3) Hilbert distance
ρHG (generalize Klein’s hyperbolic geometry), and (4) the total variation/L1 distance
(norm geometry). The geometric structures of spaces are necessary in algorithms, for
example, to define midpoint distributions. Figure 2 displays the k-center clustering
results obtained with these four geometries as well as the L1 distance ρL1 normed
geometry on toy synthetic datasets in Δ2. We shall now explain the Hilbert sim-
plex geometry applied to the probability simplex, describe how to perform k-center
clustering in Hilbert geometry, and report experimental results that demonstrate the
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superiority of the Hilbert geometry when clustering multinomials and correlation
matrices.

The rest of this paper is organized as follows: Sect. 2 formally introduces the dis-
tance measures in Δd . Section 3 introduces how to efficiently compute the Hilbert
distance. Section 4 presents algorithms for Hilbert minimax centers and Hilbert
center-based clustering. Section 5 performs an empirical study of clustering multi-
nomial distributions, comparing Riemannian geometry, information geometry, and
Hilbert geometry. Section6presents a seconduse case ofHilbert geometry inmachine
learning: clustering correlation matrices in the elliptope [11]. Finally, Sect. 7 con-
cludes this work by summarizing the pros and cons of each geometry. Although
some contents require prior knowledge on geometric structures, we will present the
detailed algorithms so that the general audience can still benefit from this work.

2 Four Distances with their Underlying Geometries

2.1 Fisher-Hotelling-Rao Riemannian Geometry

The Rao distance between two multinomial distributions is [6, 12]:

ρFHR(p, q) = 2 arccos

(
d∑

i=0

√
λi
pλ

i
q

)

. (1)

It is a Riemannian metric length distance (satisfying the symmetric and triangu-
lar inequality axioms) obtained by setting the metric tensor g to the Fisher infor-
mation matrix (FIM) I (p) = (gi j (p))d×d with respect to the coordinate system
(λ1

p, . . . , λ
d
p), where

gi j (p) = δi j

λi
p

+ 1

λ0
p

.

We term this geometry the Fisher-Hotelling-Rao (FHR) geometry [13–16]. The met-
ric tensor g allows one to define an inner product on each tangent plane Tp of the
probability simplex manifold: 〈u, v〉p = u�g(p)v. When g is everywhere the iden-
tity matrix, we recover the Euclidean (Riemannian) geometry with the inner product
being the scalar product: 〈u, v〉 = u�v. The geodesics γ (p, q;α) are defined by the
Levi-Civita metric connection [17, 18] that is derived from the metric tensor. The
FHR manifold can be embedded in the positive orthant of an Euclidean d-sphere
in R

d+1 by using the square root representation λ �→ √
λ [12]. Therefore the FHR

manifold modeling of Δd has constant positive curvature: It is a spherical geometry
restricted to the positive orthant with the metric distance measuring the arc length
on a great circle.
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2.2 Information Geometry

A divergence D is a smooth C3 differentiable dissimilarity measure [19] that allows
to define a dual structure in Information Geometry (IG), see [17, 18, 20]. A f -
divergence is defined for a strictly convex function f with f (1) = 0 by:

I f (p : q) =
d∑

i=0

λi
p f

(
λi
q

λi
p

)

≥ f (1) = 0.

It is a separable divergence since the d-variate divergence can be written as a sum
of d univariate (scalar) divergences: I f (p : q) =∑d

i=0 I f (λ
i
p : λi

q). The class of
f -divergences plays an essential role in information theory since they are prov-
ably the only separable divergences that satisfy the information monotonicity prop-
erty [17, 21] (for d ≥ 2). That is, by coarse-graining the histograms, we obtain lower-
dimensional multinomials, say p′ and q ′, such that 0 ≤ I f (p′ : q ′) ≤ I f (p : q) [17].
The Kullback–Leibler (KL) divergence ρIG is a f -divergence obtained for the func-
tional generator f (u) = − log u:

ρIG(p, q) =
d∑

i=0

λi
p log

λi
p

λi
q

. (2)

It is an asymmetric non-metric distance:ρIG(p, q) = ρIG(q, p). In differential geom-
etry, the structure of a manifold is defined by two independent components:

1. A metric tensor g that allows to define an inner product 〈·, ·〉p at each tangent
space (for measuring vector lengths and angles between vectors);

2. A connection∇ that defines parallel transport
∏

c
∇ , i.e., a way to move a tangent

vector from one tangent plane Tp to any other one Tq along a smooth curve c,
with c(0) = p and c(1) = q.

In FHR geometry, the implicitly-used connection is called the Levi-Civita con-
nection that is induced by the metric g: ∇LC = ∇(g). It is a metric connection
since it ensures that 〈u, v〉p = 〈∏∇LC

c(t) u,
∏∇LC

c(t) v〉c(t) for t ∈ [0, 1]. The underlying
information-geometric structure of KL is characterized by a pair of dual connec-
tions [17] ∇ = ∇(−1) (mixture connection) and ∇∗ = ∇(1) (exponential connection)
that induces a corresponding pair of dual geodesics (technically, ±1-autoparallel
curves, [18]). Those connections are said flat as they define two dual global affine
coordinate systems θ and η on which the θ - and η-geodesics are (Euclidean)
straight line segments, respectively. For multinomials, the expectation parameters
are: η = (λ1, . . . , λd) and they one-to-one correspond to the natural parameters:

θ =
(
log λ1

λ0 , . . . , log λd

λ0

)
∈ R

d . Thus in IG, we have two kinds of midpoint multino-

mials of p and q, depending on whether we perform the (linear) interpolation on the
θ - or the η-geodesics. Informally speaking, the dual connections ∇(±1) are said cou-
pled to the FIM since we have ∇+∇∗

2 = ∇(g) = ∇LC. Those dual (torsion-free affine)
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connections are not metric connections but enjoy the following metric-compatibility
property when used together as follows: 〈u, v〉p = 〈∏c(t)u,

∏∗
c(t)v〉c(t) (for t ∈

[0, 1]), where ∏ :=∏∇ and
∏∗ :=∏∇∗

are the corresponding induced dual par-
allel transports. The geometry of f -divergences [19] is the α-geometry (for α =
3 + 2 f ′′′(1)) with the dual ±α-connections, where ∇(α) = 1+α

2 ∇∗ + 1−α
2 ∇. The

Levi-Civita metric connection is ∇LC = ∇(0). More generally, it was shown how to
build a dual information-geometric structure for any divergence [19]. For example,
we can build a dual structure from the symmetric Cauchy–Schwarz divergence [22]:

ρCS(p, q) = − log
〈λp, λq〉

√〈λp, λp〉〈λq , λq〉
. (3)

2.3 Hilbert Simplex Geometry

InHilbert geometry (HG),we are given a bounded convex domainC (here,C = Δd ),
and the distance between any two points M , M ′ of C is defined [23] as follows:
Consider the two intersection points AA′ of the line (MM ′) with C , and order them
on the line so that we have A, M, M ′, A′. Then the Hilbert metric distance [24] is
defined by:

ρHG(M, M ′) =
{∣
∣
∣log |A′M ||AM ′|

|A′M ′||AM |
∣
∣
∣ , M = M ′,

0 M = M ′.
(4)

It is also called the Hilbert cross-ratio metric distance [25, 26]. Notice that we take
the absolute value of the logarithm since theHilbert distance is a signed distance [27].
WhenC is the unit ball, HG lets us recover theKlein hyperbolic geometry [26].When
C is a quadric bounded convex domain, we obtain the Cayley–Klein hyperbolic
geometry [28] which can be studied with the Riemannian structure and the corre-
sponding metric distance called the curved Mahalanobis distances [29, 30]. Cayley–
Klein hyperbolic geometries have negative curvature. Elements on the boundary are
called ideal elements [31].

In Hilbert geometry, the geodesics are straight Euclidean lines making them con-
venient for computation. Furthermore, the domain boundary ∂C needs not to be
smooth: One may also consider bounded polytopes [32]. This is particularly inter-
esting formodelingΔd , the d-dimensional open standard simplex.We call this geom-
etry the Hilbert simplex geometry [33]. In Fig. 3, we show that the Hilbert distance
between twomultinomial distributions p (M) and q (M ′) can be computed by finding
the two intersection points of the line (1 − t)p + tq with ∂Δd , denoted as t0 ≤ 0
and t1 ≥ 1. Then

ρHG(p, q) =
∣
∣
∣
∣log

(1 − t0)t1
(−t0)(t1 − 1)

∣
∣
∣
∣ = log

(

1 − 1

t0

)

− log

(

1 − 1

t1

)

.
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t0

A 0
M(p) 1

M ′(q) t1

A′

p(t) = (1− t)p+ tq

Fig. 3 Computing the Hilbert metric distance for trinomials on the 2D probability simplex as the
logarithm of the cross ratio (M, M ′; A, A′) of the four collinear points A, M, M ′ and A′

Fig. 4 Balls in the Hilbert simplex geometry Δ2 have polygonal Euclidean shapes of constant
combinatorial complexity. At infinitesimal scale, the balls have hexagonal shapes, showing that the
Hilbert geometry is not Riemannian

The shape of balls in polytope-domain HG is Euclidean polytopes1 [26], as
depicted in Fig. 4. Furthermore, the Euclidean shape of the balls does not change
with the radius. Hilbert balls have hexagons shapes in 2D [34], rhombic dodecahe-
dra shapes in 3D, and are polytopes [26] with d(d + 1) facets in dimension d. When
the polytope domain is not a simplex, the combinatorial complexity of balls depends
on the center location [34], see Fig. 5. The HG of the probability simplex yields a
non-Riemannian geometry, because, at an infinitesimal radius, the balls are poly-
topes and not ellipsoids (corresponding to squared Mahalanobis distance balls used
to visualize metric tensors [35]). The isometries in Hilbert polyhedral geometries are
studied in [36]. In Appendix 9, we recall that any Hilbert geometry induces a Finsle-
rian structure that becomes Riemannian iff the boundary is an ellipsoid (yielding the
hyperbolic Cayley–Klein geometries [27]). Notice that in Hilbert simplex/polytope
geometry, the geodesics are not unique (see Figure 2 of [25]).

1To contrast with this result, let us mention that infinitesimal small balls in Riemannian geometry
have Euclidean ellipsoidal shapes (visualized as Tissot’s indicatrix in cartography).
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Fig. 5 Hilbert balls in quadrangle domains have combinatorial complexity depending on the center
location

2.4 L1-Norm Geometry

The Total Variation (TV) metric distance between two multinomials p and q is
defined by:

TV(p, q) = 1

2

d∑

i=0

|λi
p − λi

q |.

It is a statistical f -divergence obtained for the generator f (u) = 1
2 |u − 1|. The L1-

norm induced distance ρL1 (L1) is defined by:

ρL1(p, q) = ‖λp − λq‖1 =
d∑

i=0

|λi
p − λi

q | = 2TV(p, q).

Therefore the distance ρL1 satisfies information monotonicity (for coarse-grained
histograms p′ and q ′ of ΔD′

with D′ < D):

0 ≤ ρL1(p
′, q ′) ≤ ρL1(p, q).

For trinomials, the ρL1 distance is given by:

ρL1(p, q) = |λ0
p − λ0

q | + |λ1
p − λ1

q | + |λ0
q − λ0

p + λ1
q − λ1

p|.

The L1 distance function is a polytopal distance function described by the dual
polytope Z of the d-dimensional cube called the standard (or regular) d-cross-
polytope [37], the orthoplex [38] or the d-cocube [39]: The cross-polytope Z
can be obtained as the convex hull of the 2d unit standard base vectors ±ei for
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Table 1 Comparing the geometric modelings of the probability simplex Δd

Riemannian Geometry Information Rie. Geo. Non-Rie. Hilbert Geo.

Structure (Δd , g,∇LC = ∇(g)) (Δd , g,∇(α),∇(−α)) (Δd , ρ)

Levi-Civita ∇LC = ∇(0) Dual connections ∇(±α) so Connection of Rd

that ∇(α)+∇(−α)

2 = ∇(0)

Distance Rao distance (metric) α-divergence (non-metric) Hilbert distance (metric)

KL or reverse KL for
α = ±1

Property Invariant to
reparameterization

Information monotonicity Isometric to a normed
space

Calculation Closed-form Closed-form Easy (Algorithm1)

Geodesic Shortest path Straight either in θ/η Straight

Smoothness Manifold Manifold Non-manifold

Curvature Positive Dually flat Negative

i ∈ {0, . . . , d − 1}. The cross-polytope is one of the three regular polytopes in dimen-
sion d ≥ 4 (with the hypercubes and simplices): It has 2d vertices and 2d facets.
Therefore the L1 balls on the hyperplane HΔd supporting the probability simplex
is the intersection of a (d + 1)-cross-polytope with d-dimensional hyperplane HΔd .
Thus the “multinomial ball” BallL1(p, r) of center p and radius r is defined by
BallL1(p, r) = (λp ⊕ rZ ) ∩ HΔd . In 2D, the shape of L1 trinomial balls is that of a
regular octahedron (twelve edges and eight faces) cut by the 2D plane HΔ2 : Trino-
mial balls have hexagonal shapes as illustrated in Fig. 2 (for ρL1). In 3D, trinomial
balls are Archimedean solid cuboctahedra, and in arbitrary dimension, the shapes are
polytopeswith d(d + 1) vertices [40]. Let us note in passing, that in 3D, the L1 multi-
nomial cuboctahedron ball has the dual shape of the Hilbert rhombic dodecahedron
ball.

Table 1 summarizes the characteristics of the threemain geometries: FHR, IG, and
HG. Let us conclude this introduction by mentioning the Cramér–Rao lower bound
and its relationship with information geometry [41]: Consider an unbiased estimator
θ̂ = T (X) of a parameter θ estimated from measurements distributed according
to a smooth density p(x; θ) (i.e., X ∼ p(x; θ)). The Cramér–Rao Lower Bound
(CRLB) states that the variance of T (X) is greater or equal to the inverse of the FIM
I (θ): Vθ [T (X)] � I −1(θ). For regular parametric families {p(x; θ)}θ , the FIM
is a positive-definite matrix and defines a metric tensor, called the Fisher metric in
Riemannian geometry. The FIM is the cornerstone of information geometry [17] but
requires the differentiability of the probability density function (pdf).

A better lower bound that does not require the pdf differentiability is the
Hammersley–Chapman–Robbins Lower Bound [42, 43] (HCRLB):

Vθ [T (X)] ≥ sup
Δ

Δ2

Eθ

[(
p(x;θ+Δ)−p(x;θ)

p(x;θ)

)2
] . (5)
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By introducing the χ2-divergence, χ2(P : Q) = ∫
(
dP−dQ

dQ

)2
dQ, we rewrite the

HCRLB using the χ2-divergence in the denominator as follows:

Vθ [T (X)] ≥ sup
Δ

Δ2

χ2(P(x; θ + Δ) : P(x; θ))
. (6)

Note that theFIM is not defined for non-differentiable pdfs, and therefore theCramér–
Rao lower bound does not exist in that case.

3 Computing Hilbert Distance in Δd

Let us start with the simplest case: The 1D probability simplex Δ1, the space of
Bernoulli distributions. Any Bernoulli distribution can be represented by the activa-
tion probability of the random bit x : λ = p(x = 1) ∈ Δ1, corresponding to a point in
the intervalΔ1 = (0, 1). Wewrite the Bernoulli manifold as an exponential family as

p(x) = exp (xθ − F(θ)) , x ∈ {0, 1},

where F(θ) = log(1 + exp(θ)). Therefore λ = exp(θ)

1+exp(θ)
and θ = log λ

1−λ
.

3.1 1D Probability Simplex of Bernoulli Distributions

By definition, the Hilbert distance has the closed form:

ρHG(p, q) =
∣
∣
∣
∣log

λq(1 − λp)

λp(1 − λq)

∣
∣
∣
∣ =
∣
∣
∣
∣log

λp

1 − λp
− log

λq

1 − λq

∣
∣
∣
∣ .

Note that θp = log λp

1−λp
is the canonical parameter of the Bernoulli distribution.

The FIM of the Bernoulli manifold in the λ-coordinates is given by: g = 1
λ

+
1

1−λ
= 1

λ(1−λ)
. The FHR distance is obtained by integration as:

ρFHR(p, q) = 2 arccos
(√

λpλq +√(1 − λp)(1 − λq)
)

.

Notice that ρFHR(p, q) has finite values on ∂Δ1.
The KL divergence of the ±1-geometry is:

ρIG(p, q) = λp log
λp

λq
+ (1 − λp) log

1 − λp

1 − λq
.

The KL divergence belongs to the family of α-divergences [17].
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Fig. 6 Calculating the two
intersection points x(t0) and
x(t1) of the line (pq) with
the boundary of the
probability simplex Δd : For
each facet f\i , we calculate
the intersection point of line
x(t) = (1 − t)p + tq with
the d-dimensional
hyperplane H\i supporting
the facet f\i

3.2 Arbitrary Dimension Case

Given p, q ∈ Δd , we first need to compute the intersection of line (pq) with the
border of the d-dimensional probability simplex to get the two intersection points p′
and q ′ so that p′, p, q, q ′ are ordered on (pq). Once this is done, we simply apply
the formula in Eq. 4 to get the Hilbert distance.

A d-dimensional simplex consists of d + 1 vertices with their corresponding (d −
1)-dimensional facets. For theprobability simplexΔd , let ei = (0, . . . , 0

︸ ︷︷ ︸
i

, 1, 0, . . . , 0)

denote the d + 1 vertices of the standard simplex embedded in the hyperplane
HΔ :∑d

i=0 λi = 1 in Rd+1. Let f\ j denote the simplex facets that is the convex hull
of all vertices except e j : f\ j = hull(e0, . . . , e j−1, e j+1, . . . , ed). Let H\ j denote the
hyperplane supporting this facet, which is the affine hull f\ j = affine(e0, . . . , e j−1,

e j+1, . . . , ed).
To compute the two intersection points of (pq)withΔd , a naive algorithm consists

in computing the unique intersection point r j of the line (pq) with each hyperplane
H\ j ( j = 0, . . . , d) and checking whether r j belongs to f\ j .

Amuchmore efficient implementation given byAlgorithm(1) calculates the inter-
section point of the line x(t) = (1 − t)p + tq with each H\ j ( j = 0, . . . , d). These
intersection points are represented using the coordinate t . For example, x(0) = p and
x(1) = q. Due to convexity, any intersection point with H\ j must satisfy either t ≤ 0
or t ≥ 1. Then, the two intersection points with ∂Δd are obtained by t0 = max{t :
∃ j, x(t) ∈ H\ j and t ≤ 0} and t1 = min{t : ∃ j, x(t) ∈ H\ j and t ≥ 1}. Figure 6
illustrates this calculation method. This algorithm only requires O(d) time and O(1)
memory.
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Lemma 1 The Hilbert distance in the probability simplex can be computed in opti-
mal Θ(d) time.

Algorithm 1: Computing the Hilbert distance

Data: Two points p = (λ0p, . . . , λ
d
p), q = (λ0q , . . . , λ

d
q ) in the d-dimensional simplex Δd

Result: Their Hilbert distance ρHG(p, q)

1 begin
2 t0 ← −∞; t1 ← +∞;
3 for i = 0 . . . d do
4 if λip = λiq then
5 t ← λip/(λ

i
p − λiq );

6 if t0 < t ≤ 0 then
7 t0 ← t ;
8 else if 1 ≤ t < t1 then
9 t1 ← t ;

10 if t0 = −∞ or t1 = +∞ then
11 Output ρHG(p, q) = 0;
12 else if t0 = 0 or t1 = 1 then
13 Output ρHG(p, q) = ∞;
14 else

15 Output ρHG(p, q) =
∣
∣
∣log(1 − 1

t0
) − log(1 − 1

t1
)

∣
∣
∣;

Once an arbitrary distance ρ is chosen, we can define a ball centered at c and of
radius r as Bρ(c, r) = {x : ρ(c, x) ≤ r}. Figure 4 displays the hexagonal shapes of
the Hilbert balls for various center locations in Δ2.

Theorem 1 (Balls in a simplicialHilbert geometry [26])Aball in theHilbert simplex
geometry has a Euclidean polytope shape with d(d + 1) facets.

Note that when the domain is not simplicial, the Hilbert balls can have varying
combinatorial complexity depending on the center location. In 2D, the Hilbert ball
can have s ∼ 2s edges inclusively, where s is the number of edges of the boundary
of the Hilbert domain ∂C .

Since a Riemannian geometry is locally defined by ametric tensor, at infinitesimal
scales, Riemannian balls have Mahalanobis smooth ellipsoidal shapes: Bρ(c, r) =
{x : (x − c)�g(c)(x − c) ≤ r2}. This property allows one to visualize Riemannian
metric tensors [35]. Thus we conclude that:

Lemma 2 ([26]) Hilbert simplex geometry is a non-manifold metric length space.

As a remark, let us notice that slicing a simplex with a hyperplane does not always
produce a lower-dimensional simplex. For example, slicing a tetrahedron by a plane
yields either a triangle or a quadrilateral. Thus the restriction of a d-dimensional ball
B in a Hilbert simplex geometry Δd to a hyperplane H is a (d − 1)-dimensional
ball B ′ = B ∩ H of varying combinatorial complexity, corresponding to a ball in the
induced Hilbert sub-geometry in the convex sub-domain H ∩ Δd .
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3.3 Visualizing Distance Profiles

Figure 7 displays the distance profile from any point in the probability simplex to
a fixed reference point (trinomial) based on the following common distance mea-
sures [18]: Euclidean (metric) distance, Cauchy–Schwarz (CS) divergence, Hellinger
(metric) distance, Fisher-Rao (metric) distance, KL divergence and Hilbert simpli-
cial (metric) distance. The Euclidean and Cauchy–Schwarz divergence are clipped
toΔ2. The Cauchy–Schwarz distance is projective so that ρCS(λp, λ′q) = ρCS(p, q)

for any λ, λ′ > 0 [44].

4 Center-Based Clustering

We concentrate on comparing the efficiency of Hilbert simplex geometry for clus-
tering multinomials. We shall compare the experimental results of k-means++ and
k-center multinomial clustering for the three distances: Rao and Hilbert metric dis-
tances, and KL divergence. We describe how to adapt those clustering algorithms to
the Hilbert distance.

4.1 k-means++ Clustering

The celebrated k-means clustering [45] minimizes the sum of within-cluster vari-
ances, where each cluster has a center representative element. When dealing with
k = 1 cluster, the center (also called centroid or cluster prototype) is the center of
mass defined as the minimizer of

ED(Λ, c) = 1

n

n∑

i=1

D(pi : c),

where D(· : ·) is a dissimilarity measure. For an arbitrary D, the centroid c may not
be available in closed form. Nevertheless, using a generalization of the k-means++
initialization [9] (picking randomly seeds), one can bypass the centroid computation,
and yet guarantee probabilistically a good clustering.

Let C = {c1, . . . , ck} denote the set of k cluster centers. Then the generalized
k-means energy to be minimized is defined by:

ED(Λ,C) = 1

n

n∑

i=1

min
j∈{1,...,k} D(pi : c j ).



310 F. Nielsen and K. Sun

(a) Reference point (3/7,3/7,1/7)

(b) Reference point (5/7,1/7,1/7)

Fig. 7 Acomparison of different distancemeasures onΔ2. The distance ismeasured from∀p ∈ Δ2

to a fixed reference point (the black dot). Lighter color means shorter distance. Darker color means
longer distance. The contours show equal distance curves with a precision step of 0.2
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By defining the distance D(p,C) = min j∈{1,...,k} D(p : c j ) of a point to a set, we can
rewrite the objective function as ED(Λ,C) = 1

n

∑n
i=1 D(pi ,C). Let E∗

D(Λ, k) =
minC : |C |=k ED(Λ,C) denote the global minimum of ED(Λ,C) wrt some given Λ

and k.
The k-means++ seeding proceeds for an arbitrary divergence D as follows: Pick

uniformly at random at first seed c1, and then iteratively choose the (k − 1) remaining
seeds according to the following probability distribution:

Pr(c j = pi ) = D(pi , {c1, . . . , c j−1})
∑n

i=1 D(pi , {c1, . . . , c j−1}) (2 ≤ j ≤ k).

Since its inception (2007), this k-means++ seeding has been extensively studied [46].
We state the general theorem established by [47]:

Theorem 2 (Generalized k-means++ performance, [47]) Let κ1 and κ2 be two con-
stants such that κ1 defines the quasi-triangular inequality property:

D(x : z) ≤ κ1 (D(x : y) + D(y : z)) , ∀x, y, z ∈ Δd ,

and κ2 handles the symmetry inequality:

D(x : y) ≤ κ2D(y : x), ∀x, y ∈ Δd .

Then the generalized k-means++ seeding guarantees with high probability a con-
figuration C of cluster centers such that:

ED(Λ,C) ≤ 2κ2
1 (1 + κ2)(2 + log k)E∗

D(Λ, k). (7)

The ratio ED(Λ,C)

E∗
D(Λ,k) is called the competitive factor. The seminal result of ordinary

k-means++ was shown [9] to be 8(2 + log k)-competitive. When evaluating κ1, one
has to note that squared metric distances are not metric because they do not satisfy
the triangular inequality. For example, the squared Euclidean distance is not a metric
but it satisfies the 2-quasi-triangular inequality with κ1 = 2.

We state the following general performance theorem:

Theorem 3 (k-means++performance in ametric space) In anymetric space (X , d),
the k-means++ wrt the squared metric distance d2 is 16(2 + log k)-competitive.

Proof Since a metric distance is symmetric, it follows that κ2 = 1. Consider the
quasi-triangular inequality property for the squared non-metric dissimilarity d2:

d(p, q) ≤ d(p, q) + d(q, r),

d2(p, q) ≤ (d(p, q) + d(q, r))2,

d2(p, q) ≤ d2(p, q) + d2(q, r) + 2d(p, q)d(q, r).



312 F. Nielsen and K. Sun

Let us apply the inequality of arithmetic and geometric means2:

√
d2(p, q)d2(q, r) ≤ d2(p, q) + d2(q, r)

2
.

Thus we have

d2(p, q) ≤ d2(p, q) + d2(q, r) + 2d(p, q)d(q, r) ≤ 2(d2(p, q) + d2(q, r)).

That is, the squared metric distance satisfies the 2-approximate triangle inequality,
and κ1 = 2. The result is straightforward from Theorem 2.

Theorem 4 (k-means++ performance in a normed space) In any normed space
(X , ‖ · ‖), the k-means++ with D(x : y) = ‖x − y‖2 is 16(2 + log k)-competitive.

Proof In any normed space (X , ‖ · ‖), we have both ‖x − y‖ = ‖y − x‖ and the
triangle inequality:

‖x − z‖ ≤ ‖x − y‖ + ‖y − z‖.

The proof is very similar to the proof of Theorem 3 and is omitted.

Since any inner product space (X , 〈·, ·〉) has an induced norm ‖x‖ = √〈x, x〉,
we have the following corollary.

Corollary 1 In any inner product space (X , 〈·, ·〉), the k-means++ with D(x :
y) = 〈x − y, x − y〉 is 16(2 + log k)-competitive.

We need to report a bound for the squared Hilbert symmetric distance (κ2 = 1).
In [26] (Theorem 3.3), it was shown that Hilbert geometry of a bounded convex
domainC is isometric to a normedvector space iffC is an open simplex: (Δd , ρHG) �
(V d , ‖ · ‖NH), where ‖ · ‖NH is the corresponding norm. Therefore κ1 = 2. We write
“NH” for short for this equivalent normed Hilbert geometry. Appendix 8 recalls the
construction due to [25], and shows the squared Hilbert distance fails the triangle
inequality and it is not a distance induced by an inner product.

As an empirical study, we randomly generate n = 106 tuples (x, y, z) based on
the uniform distribution in Δd . For each tuple (x, y, z), we evaluate the ratio

κ1 = D(x : z)
D(x : y) + D(y : z) .

Figure 8 shows the statistics for four different choices of D: (1) D(x : y) =
ρ2
FHR(x, y); (2) D(x : y) = 1

2KL(x : y) + 1
2KL(y : x); (3) D(x : y) = ρ2

HG(x, y);
(4) D(x : y) = ρ2

L1(x, y). We find experimentally that κ1 is upper bounded by 2 for
ρ2
FHR, ρ

2
HG and ρ2

L1, while the average κ1 value is smaller than 0.5. For all the com-
pared distances, κ2 = 1. ThereforeρFHR andρHG have better k-means++performance
guarantee as compared to ρIG.

2For positive values a and b, the arithmetic-geometric mean inequality states that
√
ab ≤ a+b

2 .
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Fig. 8 The maximum, mean, standard deviation, and minimum of κ1 on 106 randomly generated
tuples (x, y, z) in Δd for d = 1, . . . , 10

(a) k = 3 clusters

(b) k = 5 clusters

Fig. 9 k-Means++ clustering results on a toy dataset in the space of trinomials Δ2. The color
density maps indicate the distance from any point to its nearest cluster center

We get by applying Theorem 4:

Corollary 2 (k-means++ in Hilbert simplex geometry) The k-means++ seeding in
a Hilbert simplex geometry in fixed dimension is 16(2 + log k)-competitive.

Figure 9 displays the clustering results of k-means++ in Hilbert simplex geometry
as compared to the other geometries for k ∈ {3, 5}.

The KL divergence can be interpreted as a separable Bregman divergence [48].
TheBregman k-means++performance has been studied in [48, 49], and a competitive
factor of O( 1

μ
) is reported using the notion of Bregman μ-similarity (that is suited

for data-sets on a compact domain).
In [50], spherical k-means++ is studied wrt the distance dS(x, y) = 1 − 〈x, y〉

for any pair of points x, y on the unit sphere. Since 〈x, y〉 = ‖x‖2‖y‖2 cos(θx,y) =



314 F. Nielsen and K. Sun

cos(θx,y), we have dS(x, y) = 1 − cos(θx,y), where θx,y denotes the angle between
a pair of unit vectors x and y. This distance is called the cosine distance since it
amounts to one minus the cosine similarity. Notice that the cosine distance is related
to the squared Euclidean distance via the identity: dS(x, y) = 1

2‖x − y‖2. The cosine
distance is different from the spherical distance that relies on the arccos function.

Since divergences may be asymmetric, one can further consider mixed diver-
gence M(p : q : r) = λD(p : q) + (1 − λ)D(q : r) for λ ∈ [0, 1], and extend the
k-means++ seeding procedure and analysis [51].

For a given data set, we can compute κ1 or κ2 by inspecting triples and pairs of
points, and get data-dependent competitive factor improving the bounds mentioned
above.

4.2 k-Center Clustering

Let Λ be a finite point set. The cost function for a k-center clustering with centers C
(|C | = k) is:

fD(Λ,C) = max
pi∈Λ

min
c j∈C

D(pi : c j ).

The farthest first traversal heuristic [10] has a guaranteed approximation factor of 2
for any metric distance (see Algorithm3).

In order to use the k-center clustering algorithm described in Algorithm2, we
need to be able to compute the 1-center (or minimax center) for the Hilbert sim-
plex geometry, that is the Minimum Enclosing Ball (MEB, also called the Smallest
Enclosing Ball, SEB).

Algorithm 2: k-Center clustering
Data: A set of points p1, . . . , pn ∈ Δd . A distance measure ρ on Δd . The maximum number

k of clusters. The maximum number T of iterations.
Result: A clustering scheme assigning each pi a label li ∈ {1, . . . , k}

1 begin
2 Randomly pick k cluster centers c1, . . . , ck using the kmeans++ heuristic;
3 for t = 1, . . . , T do
4 for i = 1, . . . , n do
5 li ← argminkl=1 ρ(pi , cl );

6 for l = 1, . . . , k do
7 cl ← argminc maxi :li=l ρ(pi , c);

8 Output {li }ni=1;
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Algorithm 3: A 2-approximation of the k-center clustering for any metric dis-
tance ρ.
Data: A set Λ; a number k of clusters; a metric distance ρ.
Result: A 2-approximation of the k-center clustering

1 begin
2 c1 ← ARandomPointOf(Λ);
3 C ← {c1};
4 for i = 2, . . . , k do
5 ci ← argmaxp∈Λ ρ(p,C);
6 C ← C ∪ {ci };
7 Output C ;

We may consider the SEB equivalently either in Δd or in the normed space V d .
In both spaces, the shapes of the balls are convex. Let Λ = {p1, . . . , pn} denote the
point set in Δd , and V = {v1, . . . , vn} the equivalent point set in the normed vector
space (following the mapping explained in Appendix 8). Then the SEBs BHG(Λ) in
Δd and BNH(V ) in V d have respectively radii r∗

HG and r∗
NH defined by:

r∗
HG = min

c∈Δd
max

i∈{1,...,n} ρHG(pi , c),

r∗
NH = min

v∈V d
max

i∈{1,...,n} ‖vi − v‖NH.

The SEB in the normed vector space (V d , ‖ · ‖NH) amounts to find the minimum
covering norm polytope of a finite point set. This problem has been well-studied
in computational geometry [52–54]. By considering the equivalent Hilbert norm
polytope with d(d + 1) facets, we state the result of [54]:

Theorem 5 (SEB in Hilbert polytope normed space, [54]) A (1 + ε)-approximation
of the SEB in V d can be computed in O(d3 n

ε
) time.

We shall now report two algorithms for computing the SEBs: One exact algorithm
in V d that does not scale well in high dimensions, and one approximation in Δd that
works well for large dimensions.

4.2.1 Exact Smallest Enclosing Ball in a Hilbert Simplex Geometry

Given a finite point set {p1, . . . , pn} ∈ Δd , the SEB in Hilbert simplex geometry is
centered at

c∗ = argminc∈Δd max
i∈{1,...,n} ρHG(c, xi ),

with radius
r∗ = min

c∈Δd
max

i∈{1,...,n} ρHG(c, xi ).
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Fig. 10 Computing the SEB in Hilbert simplex geometry amounts to compute the SEB in the
corresponding normed vector space

An equivalent problem is to find the SEB in the isometric normed vector space
V d via the mapping reported in Appendix 8. Each simplex point pi corresponds to
a point vi in the V d .

Figure 10 displays some examples of the exact smallest enclosing balls in the
Hilbert simplex geometry and in the corresponding normed vector space.

To compute the SEB, one may also consider the generic LP-type randomized
algorithm [55].We notice that an enclosing ball for a point set in general has a number
k of points on the border of the ball, with 2 ≤ k ≤ d(d+1)

2 . Let D = d(d+1)
2 denote the

varying size of the combinatorial basis, then we can apply the LP-type framework
(we check the axioms of locality and monotonicity, [56]) to solve efficiently the
SEBs.

Theorem 6 (Smallest Enclosing Hilbert Ball is LP-type, [56, 57]) The smallest
enclosing Hilbert ball amounts to find the smallest enclosing ball in a vector space
with respect to a polytope norm that can be solved using a LP-type randomized
algorithm.

The Enclosing Ball Decision Problem (EBDP, [58]) asks for a given value r ,
whether r ≥ r∗ or not. Thedecisionproblemamounts tofindwhether a set {r BV + vi }
of translates can be stabbed by a point [58]: That is, whether∩n

i=1(r BV + vi ) is empty
or not. Since these translates are polytopes with d(d + 1) facets, this can be solved
in linear time using Linear Programming.

Theorem 7 (Enclosing Hilbert Ball Decision Problem) The decision problem to test
whether r ≥ r∗ or not can be solved by Linear Programming.
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This yields a simple scheme to approximate the optimal value r∗: Let r0 =
maxi∈{2,...,n} ‖vi − v1‖NH. Then r∗ ∈ [ r02 , r0] = [a0, b0]. At stage i , perform a
dichotomic search on [ai , bi ] by answering the decision problem for ri+1 = ai+bi

2 ,
and update the radius range accordingly [58].

However, the LP-type randomized algorithm or the decision problem-based algo-
rithm do not scale well in high dimensions. Next, we introduce a simple approxi-
mation algorithm that relies on the fact that the line segment [pq] is a geodesic in
Hilbert simplex geometry. (Geodesics are not unique. See Figure 2 of [25].)

4.2.2 Geodesic Bisection Approximation Heuristic

In Riemannian geometry, the 1-center can be arbitrarily finely approximated by a
simple geodesic bisection algorithm [59, 60]. This algorithm can be extended to HG
straightforwardly as detailed in Algorithm4.

Algorithm 4: Geodesic walk for approximating the Hilbert minimax center,
generalizing [60]

Data: A set of points p1, . . . , pn ∈ Δd . The maximum number T of iterations.
Result: c ≈ argminc maxi ρHG(pi , c)

1 begin
2 c0 ← ARandomPointOf({p1, . . . , pn});
3 for t = 1, . . . , T do
4 p ← argmaxpi ρHG(pi , ct−1);
5 ct ← ct−1#

ρ

1/(t+1) p;

6 Output cT ;

The algorithm first picks up a point c0 at random from Λ as the initial center, then
computes the farthest point p (with respect to the distance ρ), and then walk on the
geodesic from c0 to p by a certain amount to define c1, etc. For an arbitrary distance
ρ, we define the operator #ρ

α as follows:

p#ρ
αq = v = γ (p, q, α), ρ(p : v) = αρ(p : q),

where γ (p, q, α) is the geodesic passing through p and q, and parameterized by
α (0 ≤ α ≤ 1). When the equations of the geodesics are explicitly known, we can
either get a closed form solution for #ρ

α or perform a bisection search to find v′ such
that ρ(p : v′) ≈ αρ(p : q). See [61] for an extension and analysis in hyperbolic
geometry. See Fig. 11 to get an intuitive idea on the experimental convergence rate
of Algorithm 4. See Fig. 12 for visualizations of centers wrt different geometries.

Furthermore, this iterative algorithm implies a core-set [62] (namely, the set of
farthest points visited during the geodesic walks) that is useful for clustering large
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Fig. 11 Convergence rate of Algorithm4 measured by the Hilbert distance between the current
minimax center and the true center (left) or their Hilbert distance divided by the Hilbert radius of
the dataset (right). The plot is based on 100 random points in Δ9/Δ255

data-sets [63]. See [52] for core-set results on containment problems wrt a convex
homothetic object (the equivalent Hilbert polytope norm in our case).

A simple algorithm dubbedMinCon [53] can find an approximation of the Min-
imum Enclosing Polytope. The algorithm induces a core-set of size O( 1

ε2
) although

the theorem is challenged in [52].
Thus by combining the k-center seeding [10] with the Lloyd-like batched iter-

ations, we get an efficient k-center clustering algorithm for the FHR and Hilbert
metric geometries. When dealing with the Kullback–Leibler divergence, we use the
fact that KL is a Bregman divergence, and use the 1-center algorithm ([64, 65] for
approximation in any dimension, or [55] which is exact but limited to small dimen-
sions).

Since Hilbert simplex geometry is isomorphic to a normed vector space [26] with
a polytope norm with d(d + 1) facets, the Voronoi diagram in Hilbert geometry of
Δd amounts to compute a Voronoi diagram wrt a polytope norm [66–68].

5 Experiments

We generate a dataset consisting of a set of clusters in a high dimensional statistical
simplex Δd . Each cluster is generated independently as follows. We first pick a
random center c = (λ0

c, . . . , λ
d
c ) based on the uniform distribution on Δd . Then any

random sample p = (λ0, . . . , λd) associated with c is independently generated by
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Fig. 12 The
Riemannian/IG/Hilbert/L1
minimax centers of three
point clouds in Δ2 based on
Algorithm4. The color maps
show the distance from
∀p ∈ Δ2 to the
corresponding center
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λi = exp(log λi
c + σεi )

∑d
i=0 exp(log λi

c + σεi )
,

where σ > 0 is a noise level parameter, and each εi follows independently a stan-
dard Gaussian distribution (generator 1) or the Student’s t-distribution with five
degrees of freedom (generator 2). Let σ = 0, we get λi = λi

c. Therefore p is ran-
domly distributed around c. We repeat generating random samples for each cluster
center, andmake sure that different clusters have almost the same number of samples.
Then we perform clustering based on the configurations n ∈ {50, 100}, d ∈ {9, 255},
σ ∈ {0.5, 0.9}, ρ ∈ {ρFHR, ρIG, ρHG, ρEUC, ρL1}. For simplicity, the number of clus-
ters k is set to the ground truth. For each configuration, we repeat the clustering
experiment based on 300 different random datasets. The performance is measured
by the normalized mutual information (NMI), which is a scalar indicator in the range
[0, 1] (the larger the better).

The results of k-means++ and k-centers are shown in Tables 2 and 3, respectively.
The large variance of NMI is because that each experiment is performed on random
datasets wrt different random seeds. Generally, the performance deteriorates as we
increase the number of clusters, increase the noise level or decrease the dimension-
ality, which have the same effect to reduce the inter-cluster gap.

The key comparison is the three columns ρFHR, ρHG and ρIG, as they are based
on exactly the same algorithm with the only difference being the underlying geom-
etry. We see clearly that in general, their clustering performance presents the order
HG > FHR > IG. The performance of HG is superior to the other two geometries,
especiallywhen the noise level is large. Intuitively, theHilbert balls aremore compact
in size and therefore can better capture the clustering structure (see Fig. 2).

The column ρEUC is based on the Euclidean enclosing ball. It shows the worst
scores because the intrinsic geometry of the probability simplex is far from the
Euclidean geometry.

6 Hilbert’s Projective Geometry of the Space
of Correlation Matrices

In this section,we present theHilbert’s projective geometry to the space of correlation
matrices

C d = {Cd×d : C � 0;Cii = 1,∀i} .

If C1,C2 ∈ C , then (1 − λ)C1 + λC2 ∈ C for 0 < λ < 1. Therefore C is a convex
set, known as an elliptope [11] embedded in the p.s.d. cone. See Fig. 13 for an
intuitive view of C3, where the coordinate system (x, y, z) is the off-diagonal entries
of C ∈ C3.

In order to compute the Hilbert distance ρHG(C1,C2), we need to compute the
intersection of the line (C1,C2) with ∂C , denoted as C ′

1 and C
′
2, then we have
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Table 2 k-means++ clustering accuracy in NMI on randomly generated datasets based on different
geometries. The table shows the mean and standard deviation after 300 independent runs for each
configuration. ρ is the distance measure. n is the sample size. d is the dimensionality of Δd . σ is
noise level

k n d σ ρFHR ρIG ρHG ρEUC ρL1

3 50 9 0.5 0.76 ± 0.22 0.76 ± 0.24 0.81± 0.22 0.64 ± 0.23 0.70 ± 0.22

0.9 0.44 ± 0.20 0.44 ± 0.20 0.57± 0.22 0.31 ± 0.17 0.38 ± 0.18

255 0.5 0.80 ± 0.24 0.81 ± 0.24 0.88± 0.21 0.74 ± 0.25 0.79 ± 0.24

0.9 0.65 ± 0.27 0.66 ± 0.28 0.72± 0.27 0.46 ± 0.24 0.63 ± 0.27

100 9 0.5 0.76 ± 0.22 0.76 ± 0.21 0.82± 0.22 0.60 ± 0.21 0.69 ± 0.23

0.9 0.42 ± 0.19 0.41 ± 0.18 0.54± 0.22 0.27 ± 0.14 0.34 ± 0.16

255 0.5 0.82 ± 0.23 0.82 ± 0.24 0.89± 0.20 0.74 ± 0.24 0.80 ± 0.25

0.9 0.66 ± 0.26 0.66 ± 0.28 0.72± 0.26 0.45 ± 0.25 0.64 ± 0.27

5 50 9 0.5 0.75 ± 0.14 0.74 ± 0.15 0.81± 0.13 0.61 ± 0.13 0.68 ± 0.13

0.9 0.44 ± 0.13 0.42 ± 0.13 0.55± 0.15 0.31 ± 0.11 0.36 ± 0.12

255 0.5 0.83 ± 0.15 0.83 ± 0.15 0.88± 0.14 0.77 ± 0.16 0.82 ± 0.15

0.9 0.71 ± 0.17 0.70 ± 0.19 0.75± 0.17 0.50 ± 0.17 0.68 ± 0.18

100 9 0.5 0.74 ± 0.13 0.74 ± 0.14 0.80± 0.14 0.60 ± 0.13 0.67 ± 0.13

0.9 0.42 ± 0.11 0.40 ± 0.12 0.55± 0.15 0.29 ± 0.09 0.35 ± 0.11

255 0.5 0.83 ± 0.14 0.83 ± 0.15 0.88± 0.13 0.77 ± 0.15 0.81 ± 0.15

0.9 0.69 ± 0.18 0.69 ± 0.18 0.73± 0.17 0.48 ± 0.17 0.67 ± 0.18

(a) Generator 1

k n d σ ρFHR ρIG ρHG ρEUC ρL1

3 50 9 0.5 0.62 ± 0.22 0.60 ± 0.22 0.71± 0.23 0.45 ± 0.20 0.54 ± 0.22

0.9 0.29 ± 0.17 0.27 ± 0.16 0.39± 0.19 0.17 ± 0.13 0.25 ± 0.15

255 0.5 0.70 ± 0.25 0.69 ± 0.26 0.74± 0.25 0.37 ± 0.29 0.70 ± 0.26

0.9 0.42± 0.25 0.35 ± 0.20 0.40 ± 0.19 0.03 ± 0.08 0.44± 0.26
100 9 0.5 0.63 ± 0.22 0.61 ± 0.22 0.71± 0.22 0.46 ± 0.19 0.56 ± 0.20

0.9 0.29 ± 0.15 0.26 ± 0.14 0.38± 0.20 0.18 ± 0.12 0.24 ± 0.14

255 0.5 0.71 ± 0.26 0.69 ± 0.27 0.75± 0.25 0.31 ± 0.28 0.70 ± 0.27

0.9 0.41 ± 0.26 0.33 ± 0.20 0.38 ± 0.18 0.02 ± 0.06 0.43± 0.26
5 50 9 0.5 0.64 ± 0.15 0.61 ± 0.14 0.70± 0.14 0.48 ± 0.14 0.57 ± 0.15

0.9 0.31 ± 0.12 0.29 ± 0.12 0.41± 0.15 0.20 ± 0.09 0.26 ± 0.10

255 0.5 0.74 ± 0.17 0.72 ± 0.17 0.77± 0.16 0.41 ± 0.20 0.74 ± 0.17

0.9 0.44 ± 0.17 0.37 ± 0.16 0.44 ± 0.15 0.04 ± 0.06 0.47± 0.17
100 9 0.5 0.62 ± 0.14 0.61 ± 0.14 0.71± 0.14 0.46 ± 0.13 0.54 ± 0.14

0.9 0.30 ± 0.10 0.27 ± 0.11 0.40± 0.13 0.19 ± 0.08 0.25 ± 0.09

255 0.5 0.73 ± 0.18 0.70 ± 0.18 0.75± 0.16 0.37 ± 0.20 0.73 ± 0.17

0.9 0.43 ± 0.16 0.35 ± 0.14 0.41 ± 0.12 0.03 ± 0.06 0.46± 0.18

(b) Generator 2
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Table 3 k-center clustering accuracy in NMI on randomly generated datasets based on different
geometries. The table shows the mean and standard deviation after 300 independent runs for each
configuration. ρ is the distancemeasure. n is the sample size. d is the dimensionality of the statistical
simplex. σ is noise level

k n d σ ρFHR ρIG ρHG ρEUC ρL1

3 50 9 0.5 0.87 ± 0.19 0.85 ± 0.19 0.92± 0.16 0.72 ± 0.22 0.80 ± 0.20

0.9 0.54 ± 0.21 0.51 ± 0.21 0.70± 0.23 0.36 ± 0.17 0.44 ± 0.19

255 0.5 0.93 ± 0.16 0.92 ± 0.18 0.95± 0.14 0.89 ± 0.18 0.90 ± 0.19

0.9 0.76 ± 0.24 0.72 ± 0.26 0.82± 0.24 0.50 ± 0.28 0.76 ± 0.25

100 9 0.5 0.88 ± 0.17 0.86 ± 0.18 0.93± 0.14 0.70 ± 0.20 0.80 ± 0.20

0.9 0.53 ± 0.20 0.49 ± 0.19 0.70± 0.22 0.33 ± 0.14 0.41 ± 0.18

255 0.5 0.93 ± 0.16 0.92 ± 0.17 0.95± 0.13 0.88 ± 0.19 0.93 ± 0.16

0.9 0.81 ± 0.22 0.75 ± 0.24 0.83± 0.22 0.47 ± 0.28 0.79 ± 0.22

5 50 9 0.5 0.82 ± 0.13 0.81 ± 0.13 0.89± 0.12 0.67 ± 0.13 0.75 ± 0.13

0.9 0.50 ± 0.13 0.47 ± 0.13 0.66± 0.15 0.34 ± 0.11 0.40 ± 0.12

255 0.5 0.92± 0.11 0.91± 0.12 0.93± 0.11 0.87 ± 0.13 0.92± 0.12
0.9 0.77 ± 0.15 0.71 ± 0.17 0.85± 0.17 0.54 ± 0.19 0.74 ± 0.16

100 9 0.5 0.83 ± 0.12 0.81 ± 0.13 0.89± 0.11 0.67 ± 0.11 0.76 ± 0.13

0.9 0.48 ± 0.12 0.46 ± 0.12 0.66± 0.15 0.33 ± 0.09 0.39 ± 0.10

255 0.5 0.93± 0.10 0.92± 0.11 0.94± 0.09 0.89 ± 0.11 0.92 ± 0.11

0.9 0.81 ± 0.14 0.74 ± 0.15 0.84± 0.16 0.52 ± 0.19 0.79 ± 0.14

(a) Generator 1

k n d σ ρFHR ρIG ρHG ρEUC ρL1

3 50 9 0.5 0.68 ± 0.22 0.67 ± 0.22 0.80± 0.20 0.48 ± 0.22 0.60 ± 0.22

0.9 0.32 ± 0.18 0.29 ± 0.17 0.45± 0.21 0.20 ± 0.14 0.26 ± 0.15

255 0.5 0.79 ± 0.24 0.75 ± 0.24 0.82± 0.22 0.13 ± 0.23 0.81± 0.24
0.9 0.35 ± 0.27 0.35 ± 0.21 0.42± 0.19 0.00 ± 0.02 0.32 ± 0.30

100 9 0.5 0.66 ± 0.22 0.65 ± 0.22 0.79± 0.21 0.45 ± 0.19 0.59 ± 0.20

0.9 0.30 ± 0.16 0.28 ± 0.14 0.42± 0.19 0.20 ± 0.12 0.26 ± 0.14

255 0.5 0.78 ± 0.25 0.76 ± 0.24 0.82± 0.21 0.05 ± 0.14 0.77 ± 0.27

0.9 0.29 ± 0.28 0.29 ± 0.20 0.39± 0.20 0.00 ± 0.02 0.22 ± 0.25

5 50 9 0.5 0.69 ± 0.14 0.66 ± 0.14 0.77± 0.13 0.50 ± 0.13 0.61 ± 0.14

0.9 0.34 ± 0.12 0.30 ± 0.12 0.46± 0.15 0.22 ± 0.09 0.28 ± 0.10

255 0.5 0.80± 0.15 0.76 ± 0.15 0.82± 0.14 0.24 ± 0.23 0.81± 0.14
0.9 0.42 ± 0.21 0.38 ± 0.16 0.46± 0.15 0.00 ± 0.02 0.39 ± 0.22

100 9 0.5 0.66 ± 0.13 0.64 ± 0.14 0.77± 0.14 0.47 ± 0.13 0.57 ± 0.13

0.9 0.31 ± 0.11 0.28 ± 0.10 0.44± 0.13 0.21 ± 0.08 0.25 ± 0.09

255 0.5 0.80± 0.16 0.76 ± 0.15 0.82± 0.13 0.12 ± 0.17 0.81± 0.16
0.9 0.32 ± 0.19 0.30 ± 0.15 0.41± 0.13 0.00 ± 0.01 0.26 ± 0.18

(b) Generator 2
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Fig. 13 The elliptope C3 (two different perspectives)

ρHG(C1,C2) =
∣
∣
∣
∣log

‖C1 − C ′
2‖‖C ′

1 − C2‖
‖C1 − C ′

1‖‖C2 − C ′
2‖
∣
∣
∣
∣ .

Unfortunately there is no closed form solution of C ′
1 and C ′

2. Instead, we apply a
binary searching algorithm. Note a necessary condition for C ∈ C is that C has
a positive spectrum. If C has at least one non-positive eigenvalue, then C /∈ C . To
determine whether a givenC is inside the elliptope requires a spectral decomposition
of C . Therefore the computation of C ′

1 and C
′
2 is in general expensive.

We compare the Hilbert elliptope geometry with commonly used distance mea-
sures including the L2 distance ρEUC, L1 distance ρL1, and the square root of the
log-det divergence

ρLD(C1,C2) = tr(C1C
−1
2 ) − log |C1C

−1
2 | − d.

Due to the high computational complexity,we only investigate k-means++ clustering.
The investigated dataset consists of 100matrices forming 3 clusters inC3 with almost
identical size. Each cluster is independently generated according to

P ∼ W −1(I3×3, ν1),

Ci ∼ W −1(P, ν2),

whereW −1(A, ν) denotes the inverseWishart distribution with scale matrix A and ν

degrees of freedom, and Ci is a point in the cluster associated with P . Table 4 shows
the k-means++ clustering performance in terms of NMI. Again Hilbert geometry is
favorable as compared to alternatives, showing that the good performance of Hilbert
clustering is generalizable.
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Table 4 NMI (mean±std) of k-means++ clustering based on different distance measures in the
elliptope (500 independent runs)

ν1 ν2 ρHG ρEUC ρL1 ρLD

4 10 0.62± 0.22 0.57±0.21 0.56±0.22 0.58±0.22

4 30 0.85± 0.18 0.80±0.20 0.81±0.19 0.82±0.20

4 50 0.89± 0.17 0.87±0.17 0.86±0.18 0.88±0.18

5 10 0.50± 0.21 0.49±0.21 0.48±0.20 0.47±0.21

5 30 0.77± 0.20 0.75±0.21 0.75±0.21 0.75±0.21

5 50 0.84± 0.19 0.82±0.19 0.82±0.20 0.84± 0.18

7 Conclusion

We introduced the Hilbert projective metric distance and its underlying non-
Riemannian geometry formodeling the space ofmultinomials or the open probability
simplex. We compared experimentally in simulated clustering tasks this geometry
with the traditional differential geometricmodelings (either the Fisher-Hotelling-Rao
metric connection or the dually coupled non-metric affine connections of information
geometry [17]).

The main feature of Hilbert geometry (HG) is that it is a metric non-manifold
geometry, where geodesics are straight (Euclidean) line segments. This makes this
geometry computationally attractive. In simplex domains, theHilbert balls have fixed
combinatorial (Euclidean) polytope structures, and HG is known to be isometric to
a normed space [25, 69]. This latter isometry allows one to generalize easily the
standard proofs of clustering (e.g., k-means or k-center). We demonstrated it for the
k-means++ competitive performance analysis and for the convergence of the 1-center
heuristic [60] (smallest enclosing Hilbert ball allows one to implement efficiently the
k-center clustering). Our experimental k-means++ or k-center comparisons of HG
algorithms with the manifold modeling approach yield superior performance. This
may be intuitively explained by the sharpness of Hilbert balls as compared to the
FHR/IG ball profiles.

Chentsov [70] defined statistical invariance on a probability manifold under
Markov morphisms and proved that the Fisher Information Metric is the unique
Riemannian metric (up to rescaling) for multinomials. However, this does not rule
out that other distances (with underlying geometric structures) may be used to model
statistical manifolds (e.g., Finsler statistical manifolds [71, 72], or the total variation
distance— the onlymetric f -divergence [73]). Defining statistical invariance related
to geometry is the cornerstone problem of information geometry that can be tackled
from many directions (see [74] and references therein for a short review).

In this paper,we introducedHilbert geometries inmachine learning by considering
clustering tasks in the probability simplex and in the correlation elliptope.Acanonical
Hilbertmetric distance can be defined on any bounded convex subset of the Euclidean
space with the key property that geodesics are straight Euclidean line segments thus



Clustering in Hilbert’s Projective Geometry … 325

making this geometry well-suited for fast and exact computations. Thus we may
consider clustering in other bounded convex subsets like the simplotopes [75].

One future direction is to consider theHilbertmetric for regularization and sparsity
in machine learning (due to its equivalence with a polytope normed distance).

Our Python codes are freely available online for reproducible research:
https://www.lix.polytechnique.fr/~nielsen/HSG/

8 Isometry of Hilbert Simplex Geometry to a Normed
Vector Space

Consider the Hilbert simplex metric space (Δd , ρHG) where Δd denotes the d-
dimensional open probability simplex and ρHG the Hilbert cross-ratio metric. Let
us recall the isometry ([25], 1991) of the open standard simplex to a normed vector
space (V d , ‖ · ‖NH). Let V d = {v ∈ R

d+1 : ∑i v
i = 0} denote the d-dimensional

vector space sitting in R
d+1. Map a point p = (λ0, . . . , λd) ∈ Δd to a point v(x) =

(v0, . . . , vd) ∈ V d as follows:

vi = 1

d + 1

⎛

⎝d log λi −
∑

j =i

log λ j

⎞

⎠ = log λi − 1

d + 1

∑

j

log λ j .

We define the corresponding norm ‖ · ‖NH in V d by considering the shape of its
unit ball BV = {v ∈ V d : |vi − v j | ≤ 1,∀i = j}. The unit ball BV is a symmetric
convex set containing the origin in its interior, and thus yields a polytope norm ‖ · ‖NH
(Hilbert norm) with 2

(d+1
2

) = d(d + 1) facets. Reciprocally, let us notice that a norm
induces a unit ball centered at the origin that is convex and symmetric around the
origin.

The distance in the normed vector space between v ∈ V d and v′ ∈ V d is defined
by:

ρV (v, v′) = ‖v − v′‖NH = inf
{
τ : v′ ∈ τ(BV ⊕ {v})} ,

where A ⊕ B = {a + b : a ∈ A, b ∈ B} is the Minkowski sum.
The reverse map from the normed space V d to the probability simplexΔd is given

by:

λi = exp(vi )
∑

j exp(v
j )

.

Thus we have (Δd , ρHG) ∼= (V d , ‖ · ‖NH). In 1D, (V 1, ‖ · ‖NH) is isometric to the
Euclidean line.

Note that computing the distance in the normed vector space requires naively
O(d2) time.

https://www.lix.polytechnique.fr/~nielsen/HSG/
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Unfortunately, the norm ‖ · ‖NH does not satisfy the parallelogram law.3 Notice
that a norm satisfying the parallelogram law can be associated with an inner product
via the polarization identity. Thus the isometry of the Hilbert geometry to a normed
vector space is not equipped with an inner product. However, all norms in a finite
dimensional space are equivalent. This implies that in finite dimension, (Δd , ρHG)

is quasi-isometric to the Euclidean space R
d . An example of Hilbert geometry in

infinite dimension is reported in [25]. Hilbert spaces are not CAT spaces except when
C is an ellipsoid [76].

9 Hilbert Geometry with Finslerian/Riemannian
Structures

In a Riemannian geometry, each tangent plane TpM of a d-dimensional manifold
M is equivalent to R

d : TpM � R
d . The inner product at each tangent plane TpM

can be visualized by an ellipsoid shape, a convex symmetric object centered at point
p. In a Finslerian geometry, a norm ‖ · ‖p is defined in each tangent plane TpM ,
and this norm is visualized as a symmetric convex object with non-empty interior.
Finslerian geometry thus generalizes Riemannian geometry by taking into account
generic symmetric convex objects instead of ellipsoids for inducing norms at each
tangent plane. Any Hilbert geometry induced by a compact convex domain C can
be expressed by an equivalent Finslerian geometry by defining the norm in Tp at p
as follows [76]:

‖v‖p = FC (p, v) = ‖v‖
2

(
1

pp+ + 1

pp−

)

,

where FC is the Finsler metric, ‖ · ‖ is an arbitrary norm on Rd , and p+ and p− are
the intersection points of the line passing through p with direction v:

p+ = p + t+v, p− = p + t−v.

A geodesic γ in a Finslerian geometry satisfies:

dC (γ (t1), γ (t2)) =
∫ t2

t1

FC (γ (t), γ̇ (t))dt.

In TpM , a ball of center c and radius r is defined by:

B(c, r) = {v : FC (c, v) ≤ r}.

3Consider A = (1/3, 1/3, 1/3), B = (1/6, 1/2, 1/3), C = (1/6, 2/3, 1/6) and D =
(1/3, 1/2, 1/6). Then 2AB2 + 2BC2 = 4.34 but AC2 + BD2 = 3.84362411135.



Clustering in Hilbert’s Projective Geometry … 327

Thus any Hilbert geometry induces an equivalent Finslerian geometry, and since
Finslerian geometries include Riemannian geometries, one may wonder which
Hilbert geometries induce Riemannian structures? The only Riemannian geometries
induced by Hilbert geometries are the hyperbolic Cayley–Klein geometries [27, 29,
30] with the domain C being an ellipsoid. The Finslerian modeling of information
geometry has been studied in [71, 72].

There is not a canonical way of defining measures in a Hilbert geometry since
Hilbert geometries are Finslerian but not necessary Riemannian geometries [76]. The
Busemann measure is defined according to the Lebesgue measure λ of Rd : Let Bp

denote the unit ball wrt. to the Finsler norm at point p ∈ C , and Be the Euclidean
unit ball. Then the Busemann measure for a Borel set B is defined by [76]:

μC (B) =
∫

B

λ(Be)

λ(Bp)
dλ(p).

The existence and uniqueness of center points of a probability measure in Finsler
geometry have been investigated in [77].

10 Bounding Hilbert Norm with Other Norms

Let us show that ‖v‖NH ≤ βd,c‖v‖c, where ‖ · ‖c is any norm. Let v =∑d
i=0 ei xi ,

where {ei } is a basis of Rd+1. We have:

‖v‖c ≤
d∑

i=0

|xi |‖ei‖c ≤ ‖x‖2
√
√
√
√

d∑

i=0

‖ei‖2c
︸ ︷︷ ︸

βd

,

where the first inequality comes from the triangle inequality, and the second inequal-
ity is from the Cauchy–Schwarz inequality. Thus we have:

‖v‖NH ≤ βd‖x‖2,

with βd = √
d + 1 since ‖ei‖NH ≤ 1.

Let αd,c = min{v : ‖v‖c=1} ‖v‖NH. Consider u = v
‖v‖c . Then ‖u‖c = 1 so that

‖v‖NH ≥ αd,c‖v‖c. To find αd , we consider the unit �2 ball in V d , and find the
smallest λ > 0 so that λBV fully contains the Euclidean ball (Fig. 14).

Therefore, we have overall:

αd‖x‖2 ≤ ‖v‖NH ≤ √
d + 1‖x‖2

In general, note that we may consider two arbitrary norms ‖ · ‖l and ‖ · ‖u so that:
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Fig. 14 Polytope balls BV
and the Euclidean unit ball
BE . From the figure the
smallest polytope ball has
radius ≈ 1.5

αd,l‖x‖l ≤ ‖v‖NH ≤ βd,u‖x‖u .

11 Funk Directed Metrics and Funk Balls

The Funk metric [78] wrt a convex domain C is defined by

FC (x, y) = log

(‖x − a‖
‖y − a‖

)

,

where a is the intersection of the domain boundary and the affine ray R(x, y) starting
from x and passing through y. Correspondingly, the reverse Funk metric is

FC (y, x) = log

(‖y − b‖
‖x − b‖

)

,

where b is the intersection of R(y, x) with the boundary. The Funk metric is not a
metric distance.

The Hilbert metric is simply the arithmetic symmetrization:

HC (x, y) = FC (x, y) + FC (y, x)

2
.

It is interesting to explore clustering based on the Funk geometry, which we leave
as a future work.
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Jean-Louis Koszul and the Elementary
Structures of Information Geometry

Frédéric Barbaresco

Abstract This paper is a scientific exegesis and admiration of Jean-Louis Koszul’s
works on homogeneous bounded domains that have appeared over time as elementary
structures of Information Geometry. Koszul has introduced fundamental tools to
characterize the geometry of sharp convex cones, as Koszul-Vinberg characteristic
Function, Koszul Forms, and affine representation of Lie Algebra and Lie Group.
The 2nd Koszul form is an extension of classical Fisher metric. Koszul theory of
hessian structures and Koszul forms could be considered as main foundation and
pillars of Information Geometry.

Keywords Koszul-Vinberg characteristic function · Koszul forms
Affine representation of lie algebra and lie group
Homogeneous bounded domains

1 Preamble

«La Physique mathématique, en incorporant à sa base la notion de groupe, marque la supré-
matie rationnelle…Chaque géométrie – et sans doute plus généralement chaque organisation
mathématique de l’expérience – est caractérisée par un groupe spécial de transformations…
Le groupe apporte la preuve d’une mathématique fermée sur elle-même. Sa découverte clôt
l’ère des conventions, plus ou moins indépendantes, plus ou moins cohérentes» - Gaston
Bachelard, Le nouvel esprit scientifique, 1934

In this article, I will pay tribute to a part of Professor Jean-Louis Koszul’s work
and fundamental and deep contributions of this great algebraist and geometer in
the field of Information Geometry, which have many applications in the domain
of applied mathematics, and in the emerging applications of Artificial Intelligence
where the most efficient and robust algorithms are based on the natural gradient of
the information geometry deduced from the Fisher matrix, as Yann Ollivier recently
showed [1, 2].
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After the seminal papers of Fréchet [3], Rao [4] and Chentsov [5], many mathe-
maticians and physicists have studied Information Geometry. One can quote inmath-
ematics, the works of Amari [6, 7] in the 80 s, which does not refer to the Koszul
publications of the 50s and 60s where Koszul introduced the elementary structures
of the Hessian geometries, and generalized the Fisher metric for homogeneous con-
vex domains. In the physical field, many physicists have also addressed Information
Geometry, without references to Koszul. Weinhold [8] in 1976 and Ruppeiner [9]
in 1979 empirically introduced the inverse dual metric defined by the Hessian of
Entropy, or Ingarden [10, 11] in 1981 in Statistical Physics. Mrugala [12, 13] in
1978, and Janyszek [14] in 1989, tried to geometrize Thermodynamics by jointly
addressing Information Geometry and Contact Geometry. All these authors were
not familiar with Representations Theory introduced by Kirillov, and more particu-
larly the affine representation of Lie groups and Lie algebras, used and developed
by Koszul in mathematics and by Souriau in statistical mechanics [79–84]. It thus
appears that the first foundations of the information geometry goes back to Fréchet’s
paper of 1943 [3] (and his Lecture given during the winter of 1939 at the Institut
Henri Poincaré), who first introduced the Clairaut(-Legendre) equation (fundamental
equation in Information Geometry between dual potentials) and Fisher metric as the
Hessian of a convex function. This Fréchet’s seminal work was followed by Koszul’s
50’s papers [15, 16] which introduced new forms that generalize Fisher metric for
sharp convex cones. It was not until 1969 that Souriau completed this extension in
the framework of the Lie Group Thermodynamics with a cohomological definition
of Fisher metric [17]. This last extension was developed by Koszul at the beginning
of 80’s in his Lecture “Introduction to Symplectic Geometry” [18]. I will conclude
this survey bymaking reference to Balian [19], who has developed during 80’s Infor-
mation Geometry in Quantum Physics with a Quantum Fisher metric given by Von
Neumann Entropy hessian [20].

Inspired by the Frenchmathematical tradition, and the teachings of hismaster Elie
Cartan (Koszul was PhD student of Henri Cartan but was greatly influenced by Elie
Cartan), Jean-Louis Koszul was a real “avant-garde”, if we take the definition given
by Clausewitz«An avant-garde is a group of units intended to move in front of the
army to: explore the terrain to avoid surprises, quickly occupy the strong positions
of the battlefield (high points), screen and contain the enemy the time the army can
deploy”. Indeed, Jean-Louis Koszul was a pioneer, who explored and cleared many
areas of mathematics, detailed in the book “Selected papers of JLKoszul” [21].What
I will expose, in this paper, is therefore only one part of his work which concerns
homogeneous bounded domains geometry, from seminal Elie Cartan’s earlier work
on symmetric bounded domains. In a letter fromAndréWeil to Henri Cartan, cited in
the proceedings of the conference “Elie Cartan and today’s mathematics” in 1984, it
says “As to the symmetrical spaces, and more particularly to the symmetric bounded
domains at the birth of which you contributed, I have kept alive the memory of
the satisfaction I felt in finding some incarnations in Siegel from his first works on
quadratic forms, and later to convince Siegel of the value of your father’s ideas on
the subject”. At this 1984 conference, two disciples of Elie Cartan gave a conference,
Jean-Louis Koszul [22] and Jean-Marie Souriau (Fig. 1).
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Fig. 1 (on the left) Jean-Louis Koszul student at ENS ULM in 1940, (on the right) Jean-Louis
Koszul at GSI’13 “Geometric Science of Information” conference at the École des Mines de Paris
August 2013

In the book “Selected papers of JL Koszul” [21], Koszul summarizes the work,
I will detail in the following: “It is with the problem of the determination of the
homogeneous bounded domains posed by E. Cartan around 1935 that are related
[my papers]. The idea of approaching the question through invariant Hermitian
forms already appears explicitly in Cartan. This leads to an algebraic approach
which constitutes the essence of Cartan’s work and which, with the Lie J-algebras,
was pushed much further by the Russian School [23–36]. It is the work of Piatetski
Shapiro on the Siegel domains, then those of E.B. Vinberg on the homogeneous cones
that led me to the study of the affine transformation groups of the locally flat manifolds
and in particular to the convexity criteria related to invariant forms”. In particular,
J.L. Koszul source of inspiration is given in this last sentence of Elie Cartan’s 1935
article [37]:

“It is clear that if one could demonstrate that all homogeneous domains whose
form Φ � ∑

i, j

∂2 log K (z,z∗)
∂zi ∂z∗

j
dzi dz∗

j is positive definite are symmetric, the whole theory

of homogeneous bounded domains would be elucidated. This is a problem of Hermi-
tian geometry certainly very interesting”. It was not until 1953 that the classification
of non-Riemannian symmetric spaces has been achieved byMarcel Berger [38]. The
work of Koszul has also been extended and deepened by one of his student Jacques
Vey in [39, 40]. Jacques Vey has transposed the notion of hyperbolicity, developed
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Fig. 2 (on the left) Professor Elie Cartan, (on the right) the Cartan family

by W. Kaup for Riemann surfaces, into the category of differentiable manifolds with
flat linear connection (locally flat manifolds), which makes it possible to completely
characterize the locally flat manifolds admitting as universal covering a convex open
sharp cone of Rn, which had been studied by Koszul in [41]. The links between
Koszul’s work and those of Ernest B. Vinberg [23–30] were recently developed
at the conference “Transformation groups 2017” in Moscow dedicated to the 80th

anniversary of Professor EB Vinberg, in Dmitri Alekseevsky’s talk on “Vinberg’s
theory of homogeneous convex cones: developments and applications” [42]. Koszul
and Vinberg are actually associated with the concept of Koszul-Vinberg’s charac-
teristic function on convex cones, which I will develop later in the paper. Koszul
introduced the so-called “Koszul forms” and a canonical metric given by the Hessian
of the opposite of the logarithm of this Koszul-Vinberg characteristic function, from
which I will show the links with Fisher’s metric in Information Geometry, and its
extension (Fig. 2).

Professor Koszul’s main papers, which form the elementary structures of infor-
mation geometry, are as follows:

• «Sur la forme hermitienne canonique des espaces homogènes complexes» [15]
of 1955:Koszul considers theHermitian structure of a homogeneousG/Bmanifold
(G related Lie group and B a closed subgroup of G, associated, up to a constant
factor, to the single invariant G, and to the invariant complex structure by the
operations of G). Koszul says “The interest of this form for the determination of
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homogeneous bounded domains has been emphasized by Elie Cartan: a necessary
condition for G/B to be a bounded domain is indeed that this form is positive
definite”. Koszul calculated this canonical form from infinitesimal data Lie algebra
of G, the sub-algebra corresponding to B and an endomorphism algebra defining
the invariant complex structure of G/B. The results obtained by Koszul proved
that the homogeneous bounded domains whose group of automorphisms is semi-
simple are bounded symmetric domains in the sense of Elie Cartan. Koszul also
refers to André Lichnerowicz’s work on Kählerian homogeneous spaces [43]. In
this seminal paper, Koszul also introduced a left invariant form of degree 1 on G:
�(X) � T rg/b[ad(J X)− J.ad(X )] ∀X ∈ g with J an endomorphism of the Lie
algebra space and the trace T rg/b[.] corresponding to that of the endomorphism
g/b. The Kähler form of the canonical Hermitian form is given by the differential
of −1/4�(X) of this form of degree 1.

• «Exposés sur les espaces homogènes symétriques» [16] of 1959 is a Lecture
written as part of a seminar held in September and October 1958 at the University
of Sao Paulo, which details the determination of homogeneous bounded domains.
He returned to [15] and showed that any symmetric bounded domain is a direct
product of irreducible symmetric bounded domains, determined by Elie Cartan
(4 classes corresponding to classical groups and 2 exceptional domains). For the
study of irreducible symmetric bounded domains, Koszul refered to Elie Cartan,
Carl-Ludwig Siegel and Loo-Keng Hua. Koszul illustrated the subject with two
particular cases, the half-plane ofPoincaré and the half-space ofSiegel, and showed
thatwith its trace formula of endomorphism g/b, he found that the canonicalKähler
hermitian form and the associated metrics are the same as those introduced by
Henri Poincaré and Carl-Ludwig Siegel [44] (who introduced them as invariant
metric under action of the automorphisms of these spaces).

• «Domaines bornées homogènes et orbites de groupes de transformations
affines» [45] of 1961 is written by Koszul at the Institute for Advanced Study
at Princeton during a stay funded by the National Science Foundation. On a com-
plex homogeneous space, an invariant volume defines with the complex structure
the canonical invariant Hermitian form introduced in [15]. If the homogeneous
space is holomorphically isomorphic to a bounded domain of a space Cn, this Her-
mitian form is positive definite because it coincides with the Bergmann metric of
the domain. Koszul demonstrated in this article the reciprocal of this proposition
for a class of complex homogeneous spaces. This class consists of some open orbits
of complex affine transformation groups and contains all homogeneous bounded
domains. Koszul addressed again the problem of knowing if a complex homoge-
neous space, whose canonical Hermitian form is positive definite is isomorphic
to a bounded domain, but via the study of the invariant bilinear form defined on a
real homogeneous space by an invariant volume and an invariant flat connection.
Koszul demonstrated that if this bilinear form is positive definite then the homo-
geneous space with its flat connection is isomorphic to a convex open domain
containing no straight line in a real vector space and extended it to the initial prob-
lem for the complex homogeneous spaces obtained in defining a complex structure
in the variety of vectors of a real homogeneous space provided with an invariant
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flat connection. It is in this article that Koszul used the affine representation of Lie
groups and algebras. By studying the open orbits of the affine representations, he
introduced an affine representation of G, written (f,q), and the following equation
setting f the linear representation of the Lie algebra g of G, defined by f and q the
restriction to g and the differential of q (f and q are differential respectively of f
and q):

f (X )q(Y ) − f (Y )q(X ) � q([X,Y ]) ∀X,Y ∈ g

with f : g → gl(E) and q : g �→ E

• «Ouverts convexes homogènes des espaces affines» [46] of 1962. Koszul is inter-
ested in this paper by the structure of the convex open non-degenerate � (with no
straight line) and homogeneous (the group of affine transformations of E leaving
stable� operates transitively in�) in a real affine space of finite dimension.Koszul
demonstrated that they can be all deduced from non-degenerate and homogeneous
convex open cones built in [45]. He used for this the properties of the group of
affine transformations leaving stable a non-degenerate convex open domain and
an homogeneous domain.

• «Variétés localement plates et convexité» [41] of 1965. Koszul established the
following theorem: let M be a locally related differentiable manifold. If the uni-
versal covering of M is isomorphic as a flat manifold with a convex open domain
containing no straight line in a real affine space, then there exists on M a closed
differential form α such that Dα (D linear covariant derivative of zero torsion) is
positive definite in all respects and which is invariant under every automorphism
of M. If G is a group of automorphisms of M such that G\M is quasi-compact and
if there exists on M a closed 1-differential form α invariant by G and such that Dα
is positive definite at any point, then the universal covering of M is isomorphic as
a flat manifold with a convex open domain that does not contain a straight line in
a real affine space.

• «Lectures onGroups ofTransformations» [47] of 1965.This is lecture notes given
byKoszul at Bombay “Tata Institute of Fundamental Research “ on transformation
groups. In particular in Chap. 6, Koszul studied discrete linear groups acting on
convex open cones in vector spaces based on the work of C.L. Siegel (work on
quadratic forms [48]). Koszul usedwhat Iwill call in the followingKoszul-Vinberg
characteristic function on convex sharp cone.

• «Déformations des variétés localement plates» [49] of 1968. Koszul provided
other proofs of theorems introduced in [41]. Koszul considered related differ-
entiable manifolds of dimension n and TM the fibered space of M. The linear
connections on M constitute a subspace of the space of the differentiable appli-
cations of the TMxTM fiber product in the space T(TM) of the TM vectors. Any
locally flat connection D (the curvature and the torsion are zero) defines a locally
flat connection on the covering of M, and is hyperbolic when universal covering
of M, with this connection, is isomorphic to a sharp convex open domain (without
straight lines) in Rn. Koszul showed that, if M is a compact manifold, for a locally
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flat connection onM to be hyperbolic, it is necessary and sufficient that there exists
a closed differential form of degree 1 on M whose covariant differential is positive
definite.

• «TrajectoiresConvexes deGroupesAffinesUnimodulaires» [50] in 1970 .Koszul
demonstrated that a convex sharp open domain inRn that admits a unimodular tran-
sitive group of affine automorphisms is an auto-dual cone. This is amore geometric
demonstration of the results shown by Ernest Vinberg [29] on the automorphisms
of convex cones.

The elementary geometric structures discovered by Jean-Louis Koszul are the
foundations of InformationGeometry. These links were first established by Professor
Hirohiko Shima [51–56]. These links were particularly crystallized in Shima book
2007 “The Geometry of Hessian Structures” [57], which is dedicated to Professor
Koszul. The origin of this work followed the visit of Koszul in Japan in 1964, for
a mission coordinated with the French government. Koszul taught lectures on the
theory of flat manifolds at Osaka University. Hirohiko Shima was then a student and
attended these lectures with the teachers Matsushima and Murakami. This lecture
was at the origin of the notion of Hessian structures and the beginning of the works
of Hirohiko Shima. Henri Cartan noted concerning Koszul’s ties with Japan, “Koszul
has attracted eminent mathematicians from abroad to Strasbourg and Grenoble. I
would like to mention in particular the links he has established with representatives
of the Japanese School of Differential Geometry”. Shima’s book [57] is a systematic
introduction to the theory ofHessian structures (provided by a pair of a flat connection
D and an Hessian metric g). Koszul studied flat manifolds with a closed 1-form α,
such that Dα be positive definite, where Dα is a hessian metric. However, not all
Hessian metrics are globally of the form g�Dα. Shima introduces the notion of
Codazzi structure for a pair (D,g), with D a torsion-free connection, which verifies
theCodazzi equation (DX g)(Y, Z) � (DY g)(X, Z ). AHessian structure is aCodazzi
structure forwhich connectionD is flat. This is an extension ofRiemannian geometry.
It is then possible to define a connection D’ and a dual Codazzi structure (D’,g)
with D′ � ∇ − D where ∇ is the Levi-Civita connection. For a hessian structure
(D, g) with g � Ddϕ, the dual Codazzi structure

(
D′, g

)
is also a Hessian structure

and g � D′dϕ′, where ϕ′ is the Legendre transform of ϕ : ϕ′ � ∑

i
x i ∂ϕ

∂xi − ϕ.

Shima observed that Information Geometry framework could be introduced by dual
connections, and not only foundedonFréchet, Rao andChentsovworks [5].Ahessian
structure (D, g) is of Koszul type, if there is a closed 1-form ω as g � Dω. Using D
and the volume element of g, Koszul introduced a 2nd form, which plays a similar
role to the Ricci tensor for a Kählerian metric. Let υ be the volume element of g,
we define a closed 1-form α such that DXυ � α(X )υ and a symmetric bilinear form
γ � Dα. In the following, α and γ forms are called 1st and 2nd form of Koszul
for Hessian structure (D, g). We can consider the forms associated with the Hessian
dual structure (D′, g) by α′ � −α and γ ′ � γ −2∇α. In the case of a homogeneous
regular convex cone �, with D the canonical flat connection of the ambient vector
space, the Koszul forms α and γ for the canonical Hessian structure (D, g � Ddψ)
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Fig. 3 From left to right, Jean-LouisKoszul, Hirohiko Shima andMichelNguiffoBoyomatGSI’13
(Geometric Science of Information) conference at the École des Mines of Paris in August 2013

are given by α � d logψ and γ � g. The volume element υ determined by g is
invariant under the action of the group of automorphisms G of �.

Jean-Louis Koszul attended the 1st GSI “Geometric Science of Information” con-
ference in August 2013 at the Ecole des Mines in Paris, where he attended the
presentation of Hirohiko Shima, given for his honor on the topic “Geometry of Hes-
sian Structures “ [58]. In the photo below, we can see from left to right, Jean-Louis
Koszul, Hirohiko Shima and Michel Nguiffo Boyom. Professor Michel Boyom has
extensively studied and developed, at the University of Montpellier, Koszul mod-
els [59–66] in relation to symplectic flat affine manifolds and to the cohomology of
Koszul-Vinberg algebras (KVCohomology). Professor Boyomwith his PhD student
Byande [67, 68] have explored other links with Information Geometry. André Lich-
nerowicz worked in parallel on a closed topic about homogeneous Kähler manifolds
[69] (Fig. 3).

2 Biographical Reminder of Jean-Louis Koszul Scientific
Life

Jean Louis André Stanislas Koszul born in Strasbourg in 1921, is the child of a family
of four (with three older sisters, Marie Andrée, Antoinette and Jeanne). He is the
son of André Koszul (born in Roubaix on November 19th 1878, professor at the
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Strasbourg university), and Marie Fontaine (born in Lyon on June 19th 1887), who
was a friend of Henri Cartan’s mother. Henri Cartan writes on this friendship “My
mother in her youth, had been a close friend of the one who was to become Jean-
Louis Koszul’s mother” [70]. His paternal grandparents were Julien Stanislas Koszul
and Hélène Ludivine Rosalie Marie Salomé. He attended high school in Fustel-de-
Coulanges in Strasbourg and the Faculty of Science in Strasbourg and in Paris. He
entered ENS Ulm in the class of 1940 and defended his thesis with Henri Cartan.
Henri Cartan noted “This promotion included other mathematicians like Belgodère
or Godement, and also physicists and some chemists, like Marc Julia and Raimond
Castaing” [70] (for the anecdote, the maiden name of my wife Anne, is Belgodère,
with a filial link with Paul Belgodère of the Koszul ENS promotion). Jean-Louis
Koszul married on July 17th 1948 with Denise Reyss-Brion, student of ENS Sèvres,
entered in 1941. They have three children, Michel (married to Christine Duchemin),
Anne (wife of Stanislas Crouzier) and Bertrand. He then taught in Strasbourg and
was appointed Associate Professor at the University of Strasbourg in 1949, and
had for colleagues R. Thom, M. Berger and B. Malgrange. He was promoted to
professor status in 1956. He became a member of Bourbaki with the 2nd generation,
J. Dixmier, R. Godement, S. Eilenberg, P. Samuel, J. P. Serre and L. Schwartz. Henri
Cartan remarked in [70] “In the vehement discussions within Bourbaki, Koszul was
not one of those who spoke loudly; but we learned to listen to him because we knew
that if he opened his mouth he had something to say”. About this Koszul’s period at
Strasbourg University, Pierre Cartier [71] said “When I arrived in Strasbourg, Koszul
was returning from a year spent in Institute for Advanced Studies in Princeton, and he
was after the departure of Ehresman and Lichnerowicz to Paris the paternal figure of
the Department of Mathematics (despite his young age). I am not sure of his intimate
convictions, but he represented for me a typical figure of this Alsatian Protestantism,
which I frequented at the time. He shared the seriousness, the honesty, the common
sense and the balance. In particular, he knew how to resist the academic attraction
of Paris. He left us after 2 years to go to Grenoble, in a maneuver uncommon at the
time of exchange of positions with Georges Reeb”. He became Senior Lecturer at the
University of Grenoble in 1963, and then an honorary professor at the Joseph Fourier
University [72] and integrated in Fourier Institute led by C. Chabauty. During this
period, B. Malgrange [73] remembered Koszul seminar on “algebra and geometry”
with his three students J. Vey, D. Luna and J. Helmstetter. In Grenoble, he practiced
mountaineering and was a member of the French Alpine Club. Koszul was awarded
by Jaffré Prize in 1975 and was elected correspondent at the Academy of Sciences
on January 28th 1980. Koszul was one of the CIRM conference center founder at
Luminy. The following year, hewas elected to theAcademy of São Paulo. Jean-Louis
Koszul died on January 12th 2018, at the age of 97.

As early as 1947, Jean-Louis Koszul published three articles in CRAS of the
Academy of Sciences, on the Betti number of a simple compact Lie group, on coho-
mology rings, generalizing ideas of Jean-Leray, and finally on the homology of
homogeneous spaces. Koszul’s thesis, defended in June 10th 1949 under the direc-
tion of Henri Cartan, dealt with the homology and cohomology of Lie algebras [74].
The jury was composed of M. Denjoy (President), J. Leray, P. Dubreil and H. Cartan.
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Fig. 4 Cover page of
Koszul’s PhD report
defended June 10th 1949
with a Jury composed of
Professors Arnaud Denjoy,
Henri Cartan, Paul Dubreil
and Jean Leray, published in
[74]

Under the title “Works of Koszul I, II and III”, Henri Cartan reported Koszul’s PhD
results to Bourbaki seminar [75–77]. See also, André Haefliger paper [78] (Fig. 4).

In 1987, an International Symposium on Geometry was held in Grenoble in honor
of Jean-Louis Koszul, whose proceedingswere published in “les Annales de l’Institut
Fourier”, Volume 37, No. 4. This conference began with a presentation by Henri
Cartan, who remembered the mention given to Koszul for his aggregation [70]:
“Distinguished Spirit; he is successful in his problems. Should beware, orally, of
overly systematic trends. A little less subtle complications, baroque ideas, a little
more common sense and balance would be desirable”. About his supervision of
Koszul’s PhD, Henri Cartan writed “Why did he turn to guide him (so-called)? Is it
because he found inspiration in Elie Cartan’s work on the topology of Lie groups?
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Perhaps he was surprised to note that mathematical knowledge is not necessarily
transmitted by descent. In any case, he helped me to better know what my father
had brought to the theory” [70]. On the work of Koszul algebrisation, Henri Cartan
notes “ Koszul was the first to give a precise algebraic formalization of the situation
studied by Leray in his 1946 publication, which became the theory of the spectral
sequence. It took a good deal of insight to unravel what lay behind Leray’s study.
In this respect, Koszul’s Note in the July 1947 CRAS is of historical significance.”
[70]. From June 26th to July 2nd 1947, CNRS, received an International conference
in Paris, on “Algebraic Topology”. This was the first postwar international diffusion
of Leray’s ideas. Koszul writes about this lecture “I can still see Leray putting his
chalk at the end of his talk by saying (modestly?) that he definitely did not understand
anything about Algebraic Topology”. In writing his lectures at the Collège de France,
Leray adopted the algebraic presentation of the spectral suite elaborated by Koszul.
As early as 1950, J.P. Serre used the term “Leray-Koszul suite”. Speaking of Leray,
Koszul wrote “around 1955 I remember asking him what had put him on the path
of what he called the ring of homology of a representation in his Notes to the CRAS
of 1946. His answer was Künneth’s theorem; I could not find out more”. The sheaf
theory, introduced by Jean-Leray, followed in 1947, at the same time as the spectral
sequences.

In 1950, Koszul published an important book of 62 pages entitled “Homology
and Cohomology of Lie Algebras” [74] based on his PhD work, in which he studied
the links between homology and cohomology (with real coefficients) of a compact
connected Lie group and purely algebraic problems of Lie algebra. Koszul then gave
a lecture in São Paulo on the topic “sheaves and cohomology”. The superb lecture
notes were published in 1957 and dealt with the cohomology of Čech with coeffi-
cients in a sheaf. In the autumn of 1958, he again organized a series of seminars in
São Paulo, this time on symmetric spaces [16]. R. Bott commented on these seminars
“very pleasant. The pace is fast, and the considerable material is covered elegantly.
In addition to the more or less standard theorems on symmetric spaces, the author
discusses the geometry of geodesics, Bergmann’s metrics, and finally studies the
bounded domains with many details”. In the mid-1960s, Koszul taught at the Tata
Institute in Bombay on transformation groups [47] and on fiber bundles and differ-
ential geometry. The second lecture dealt with the theory of connections and the
lecture notes were published in 1965. In 1986 he published “Introduction to sym-
plectic geometry” [18] following a Chinese course in China (with the agreement of
Jean-Louis Koszul given in 2017, this lecture given at the University of Nanjing will
be translated into English by Springer and will be published in 2018). This book
takes up and develops works of Jean-Marie Souriau [17, 79] on homogeneous sym-
plectic manifolds and the affine representation of Lie algebras and Lie groups in
geometric mechanics (another fundamental source of Information Geometry struc-
tures extended on homogeneous varieties [80–84]). Chuan YuMa writes in a review,
on this latest book inChinese, that “This work coincided with developments in the field
of analytical mechanics. Many new ideas have also been derived using a wide variety
of notions of modern algebra, differential geometry, Lie groups, functional analysis,
differentiable manifolds, and representation theory. [Koszul’s book] emphasizes the
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differential-geometric and topological properties of symplectic manifolds. It gives a
modern treatment of the subject that is useful for beginners as well as for experts”.

In 1994, in [21], a comment by Koszul explains the problems he was preoccupied
with when he invented what is now called the “Koszul complex”. This was introduced
to define a theory of cohomology for Lie algebras and proved to be a general structure
useful in homological algebra.

3 Koszul-Vinberg Characteristic Function, Koszul Forms
and Maximum Entropy Density

Through the study of the geometry of bounded homogeneous domains initiated by
Elie Cartan [37, 85], Jean-Louis Koszul discovered that the elementary structures
are associated with Hessian manifolds on sharp convex cones [15, 16, 41, 45–47, 49,
50]. In 1935, Elie Cartan proved in [37] that the symmetric homogeneous irreducible
bounded domains could be reduced to 6 classes, 4 canonicalmodels and 2 exceptional
cases. Ilya Piatetski-Shapiro [31–35], after Luogeng Hua [86], extended Siegel’s
description [44, 48] to other symmetric spaces, and showed by a counterexample
that Elie Cartan’s conjecture, that all transitive domains are symmetrical, was false.
At the same time, Ernest B. Vinberg [23–30] worked on the theory of homogeneous
convex cones and the construction of Siegel domains [44, 48]. More recently, the
classical complex symmetric spaceswere studied by F. Berezin [87, 88] in the context
of quantification. In parallel, O.S. Rothaus [89] and Piatetski-Shapiro [31–35] with
Karpelevitch, explored the underlying geometry of these complexes homogeneous
fields, and more particularly the fibration areas on the components of the shilov
boundary. In Italy, I note the work of E. Vessentini [90] and U. Sampieri [91, 92].
The Siegel domains, which fit into these classes of structures, nowadays play an
important role in the processing of radar spatio-temporal signals and, more broadly,
in learning from structured covariance matrices.

Jean-Louis Koszul and Ernest B. Vinberg have introduced a hessian metric invari-
ant by the group of linear automorphisms on a sharp convex cone� through a func-
tion, called characteristic function ψ . In the following � is a sharp convex cone in
a vector space E of finite size on R (a convex cone is sharp if there is no straight
lines). In dual space E∗ of E,�∗ is the set of linear strictly positive forms on�−{0}
. �∗, dual cone of �, is also a sharp convex cone. If ξ ∈ �∗, then intersection
�∩ {x ∈ E/〈x, ξ 〉 � 1} is bounded. G � Aut(�) is the group of linear transforma-
tion from E that preserves � (group of automorphisms). G � Aut(�) acts on �*
such that, ∀g ∈ G � Aut(�),∀ξ ∈ E∗ then ḡ.ξ � ξ ◦ g−1. Koszul introduce an
integral, of Laplace kind, on sharp dual convex cone, as:
Koszul-Vinberg Characteristic definition:
Let dξ Lebesque measure on E∗, following integral:
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ψ�(x) �
∫

�∗

e−〈ξ,x〉dξ ∀x ∈ � (1)

with �* the dual cone, is analytical function on �, with ψ�(x) ∈ ]0,+∞[, called
Koszul-Vinberg characteristic function of cone �.

Nota: the logarithm of the characteristic function is called«barrier function» for
convex optimization algorithms. Yurii Nesterov and Arkadii Nemirovskii [93]
have proved in modern theory of« interior point » , using function �(x) �
log(voln{s ∈ �∗/〈s, x〉 ≤ 1}), that all convex cones in Rn have a self-dual barrier,
linked with Koszul characteristic function.

Koszul-Vinberg Characteristic function has the following properties:

• Bergman kernel of�+ i Rn+1 is written K�(Re(z)) up to a constant. K� is defined
by integral:

K�(x) �
∫

�∗

e−〈ξ,x〉ψ�∗ (ξ )−1dξ (2)

• ψ� is an analytical function defined in the interior of � and ψ�(x) → +∞ when
x → ∂�. If g ∈ Aut(�) thenψ�(gx) � |det g|−1ψ�(x) and as t I ∈ G � Aut(�)
for all t > 0, we have:

ψ�(t x) � ψ�(x)/tn (3)

• ψ� is strictly log convex, such that φ�(x) � log(ψ�(x)) is strictly convex.

From this characteristic function, Koszul introduced two forms:
1st Koszul form α : Differential 1-form

α � dφ� � d logψ� � dψ�/ψ� (4)

is invariant with respect to all automorphisms G � Aut(�) of �. If x ∈ � and
u ∈ E then:

〈αx , u〉 � −
∫

�∗

〈ξ, u〉.e−〈ξ,x〉dξ andαx ∈ −�∗ (5)

and
2nd Koszul form γ: Differential symmetric 2-form

γ � Dα � Dd logψ� (6)

is a bilinear symmetric positive definite form invariant with respect to the action of
G � Aut(�) and Dα > 0
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Positivity is given by Schwarz inequality and:

Dd logψ�(u, v) �
∫

�∗

〈ξ, u〉〈ξ, v〉e−〈ξ,u〉dξ (7)

Koszul has proved that from this 2nd form, we can introduce an invariant Rie-
mannian metric with respect to the action of cone automorphisms:
Koszul Metric: Dα defines a Riemannian invariant structure by Aut(�), and the
Riemannian metric is given by:

g � Dd logψ� (8)

(Dd logψ(x))(u) � 1

ψ(u)2

⎡

⎣
∫

�∗

F(ξ )2dξ.
∫

�∗

G(ξ )2dξ −
⎛

⎝
∫

�∗

F(ξ ).G(ξ )dξ

⎞

⎠

2⎤

⎦ > 0

with F(ξ ) � e− 1
2 〈x,y〉 and G(ξ ) � e− 1

2 〈x,ξ 〉〈u, ξ 〉 (9)

The positivity could be proved by using Schwarz inequality, and the follow-
ing properties for the derivative given by d logψ � dψ

ψ
and Dd logψ �

Ddψ
ψ

−
(

dψ
ψ

)2
where (dψ(x))(u) � − ∫

�∗
e−〈x,ξ 〉〈u, ξ 〉dξ and (Ddψ(x))(u) �

− ∫

�∗
e−〈x,ξ 〉〈u, ξ 〉2dξ .

Koszul uses this diffeomorphism to define dual coordinates:

x∗ � −αx � −d logψ�(x) (10)

with 〈d f (x), u〉 � Du f (x) � d
dt

∣
∣
t�0

f (x + tu). When the cone � is symmetric, the
map x �→ x∗ � −αx is a bijection and an isometry with only one fixed point (the
manifold is a symmetric Riemannian space given by its isometry):

(x∗)∗ � x,
〈
x, x∗〉 − n etψ�(x)ψ�∗ (x∗) � cste (11)

x∗ is characterized by x∗ � arg min{ψ(y)/y ∈ �∗, 〈x, y〉 � n} and x∗ is the gravity
center of the transverse cut {y ∈ �∗, 〈x, y〉 � n} of �∗:

x∗ �
∫

�∗

ξ.e−〈ξ,x〉dξ/
∫

�∗

e−〈ξ,x〉dξ

and
〈−x∗, h

〉 � dh logψ�(x) � −
∫

�∗

〈ξ, h〉e−〈ξ,x〉dξ/
∫

�∗

e−〈ξ,x〉dξ (12)

In [94–97], Misha Gromov was interested by these structures. If we set �(x) �
− logψ�(x), Gromov has observed that x∗ − d�(x) is an injection where the image
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Fig. 5 Legendre transform and Plücker geometry

closure is equal to the convex envelop of the support and the volume of this envelop
is the n-dimensionnel volume defined by the integral of hessian determinant of this
function, �(x), where the map � �→ M(�) � ∫

�

det(Hess(�(x))).dx obeys a non-

trivial inequality given by Brunn-Minkowsky:

[M(�1 +�2)]
1/2 ≥ [M(�1)]

1/n + [M(�2)]
1/n (13)

These relations appear also in statistical physics. As the physicist Jean-Marie
Souriau [17, 80–84, 98] did, it is indeed possible to define the concept of Shan-
non’s Entropy via the Lengendre transform associated with the opposite of the loga-
rithm of this Koszul-Vinberg characteristic function. Taking up the seminal ideas of
François Massieu [99–102] in Thermodynamics (classmate of the Corps des Mines,
it is François Massieu who influenced Henri Poincaré [103] who introduced the
characteristic function in Probability, with a Laplace transform, and not a Fourier
transform as did then Paul Levy), which were recently developed by Roger Balian in
Quantum Physics [19, 20, 104–111], replacing Shannon Entropy by von Neumann
Entropy. I will also note the work of Jean-Leray on the extensions of the Laplace
transform in [112]. Starting from the characteristic function of Koszul-Vinberg, it is
thus possible to introduce an entropy of Koszul defined as the Legendre transform
of this function, which is the opposite of the logarithm of the characteristic function
of Koszul-Vinberg (a logarithm lies the characteristic function of Massieu and the
characteristic function of Koszul or Poincaré). Starting from the Koszul function, its
Legendre transform gives a dual potential function in the dual coordinate system.x∗
(Fig. 5):

�∗(x∗) � 〈
x, x∗〉 −�(x) with x∗ � Dx� and x � Dx∗�∗ where�(x) � − logψ�(x) (14)

Concerning the Legendre transform [113], Darboux gives in his book an interpre-
tation of Chasles: “What comes back according to a remark of M. Chasles, to replace
the surface with its polar reciprocal with respect to a paraboloid”. We have the same
reference to polar reciprocal in “Lessons on the calculus of variations” by Jacques
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Fig. 6 Legendre-Clairaut equation in 1943 Fréchet’s paper

Hadamard, written by Maurice Fréchet (student of Hadamard), with references to
M.E. Vessiot, which uses the “figuratrice”, as polar reciprocal of the “figurative”.

It is possible to express this Legendre transform only from the dual coordinate
system x∗, using that x � Dx∗�∗. We then obtain the Clairaut equation:

�∗(x∗) − 〈
(Dx�)−1(x∗), x∗〉 −�

[
(Dx�)−1(x∗)

]∀x∗ ∈ {Dx�(x)/x ∈ �} (15)

This equation was discovered by Maurice Fréchet in his 1943 paper [3] (see also
in the appendix), in which he introduced for the first time the bound on the variance of
any statistical estimator via the Fisher matrix, wrongly attributed to Cramer and Rao
[4]. Fréchet was looking for “distinguished densities” [98], densities whose covari-
ance matrix of the estimator of these parameters reaches this bound. Fréchet there
showed that these densities were expressed while using this characteristic function
�(x), and that these densities belong to the exponential densities family (Fig. 6).

Apparently, this discovery by Fréchet dates from winter of 1939, because Fréchet
writes at the bottom of the page [3] “The content of this dissertation formed part of
our mathematical statistics Lecture at the Institut Henri Poincaré during the winter
of 1939–1940. It is one of the chapters of the second edition (in preparation) of our ‘
Lessons in Mathematical Statistics’, the first of which is ‘Introduction: Preliminary
Lecture on the Probability Calculation’ (119 pages in quarto, typed in) has just
been published at the University Documentation Center, Tournaments and Constans.
Paris”. More details are given in appendix.

More recently Muriel Casalis [114, 115], the PhD student of Gérard Letac [116],
has studied in her PhD, invariance of probability densities with respect to the affine
group, and the links with densities of exponential families.

To make the link between the characteristic function of Koszul-Vinberg and
Entropy of Shannon, we will detail the formulas of Koszul in the following devel-
opments. Using the fact that −〈ξ, x〉 � log e−〈ξ,x〉, we can write:

−〈
x∗, x

〉 �
∫

�∗

log e−〈ξ,x〉.e−〈ξ,x〉dξ/
∫

�∗

e−〈ξ,x〉dξ (16)

and then developing the Legendre transform to make appear the density of maximum
entropy in �∗(x∗), and also the Shannon entropy:
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�∗(x∗) � 〈
x, x∗〉 −�(x) � −

∫

�∗
log e−〈ξ,x〉.e−〈ξ,x〉dξ/

∫

�∗
e−〈ξ,x〉dξ + log

∫

�∗
e−〈ξ,x〉dξ

�∗(x∗) �
⎡

⎣

⎛

⎝
∫

�∗
e−〈ξ,x〉dξ

⎞

⎠. log
∫

�∗
e−〈ξ,x〉dξ −

∫

�∗
log e−〈ξ,x〉.e−〈ξ,x〉dξ

⎤

⎦/

∫

�∗
e−〈ξ,x〉dξ

�∗(x∗) �
⎡

⎢
⎣log

∫

�∗
e−〈ξ,x〉dξ −

∫

�∗
log e−〈ξ,x〉. e−〈ξ,x〉

∫

�∗
e−〈ξ,x〉dξ dξ

⎤

⎥
⎦

�∗(x∗) �
⎡

⎢
⎣log

∫

�∗
e−〈ξ,x〉dξ .

⎛

⎜
⎝

∫

�∗

e−〈ξ,x〉
∫

�∗
e−〈ξ,x〉dξ dξ

⎞

⎟
⎠ −

∫

�∗
log e−〈ξ,x〉. e−〈ξ,x〉

∫

�∗
e−〈ξ,x〉dξ dξ

⎤

⎥
⎦

with
∫

�∗

e−〈ξ,x〉
∫

�∗
e−〈ξ,x〉dξ dξ � 1

�∗(x∗) �
⎡

⎢
⎣−

∫

�∗

e−〈ξ,x〉
∫

�∗
e−〈ξ,x〉dξ . log

⎛

⎜
⎝

e−〈ξ,x〉
∫

�∗
e−〈ξ,x〉dξ

⎞

⎟
⎠dξ

⎤

⎥
⎦ (17)

In this last equation, px (ξ ) � e−〈ξ,x〉/
∫

Ω∗
e−〈ξ,x〉dξ plays the role of maximum

entropy density as introduced by Jaynes [117–119] (also called, Gibbs density in
Thermodynamics). I call the associated entropy, Koszul Entropy:

�∗ � −
∫

�∗

px (ξ ) log px (ξ )dξ (18)

with

px (ξ ) � e−〈ξ,x〉/
∫

Ω∗
e−〈ξ,x〉dξ � e

−〈x,ξ 〉−log
∫

Ω∗
e−〈ξ,x〉dξ

� e−〈x,ξ 〉+Φ(x)and x∗ �
∫

�∗
ξ.px (ξ )dξ

(19)

This Koszul density px (ξ ) � e−〈ξ,x〉
∫

Ω∗
e−〈ξ,x〉dξ help us to develop the log likelihood:

log px (ξ ) � −〈x, ξ 〉 − log
∫

Ω∗

e−〈ξ,x〉dξ � −〈x, ξ 〉 +Φ(x) (20)

and deduce from the expectation:

Eξ

[− log px (ξ )
] � 〈

x, x∗〉 −Φ(x) (21)

We also obtain the equation about normalization:
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�(x) � − log
∫

�∗
e−〈ξ,x〉dξ � − log

∫

�∗
e−[�∗(ξ )+�(x)]dξ � �(x) − log

∫

�∗
e−�∗(ξ )dξ

⇒
∫

�∗
e−�∗(ξ )dξ � 1 (22)

But we have to make appear the variable x∗ in �∗(x∗). We have then to write:

log px (ξ ) � log e−〈x,ξ 〉+�(x) � log e−�∗(ξ ) � −�∗(ξ )

⇒ �∗ � −
∫

�∗

px (ξ ) log px (ξ )dξ �
∫

�∗

�∗(ξ )px (ξ )dξ � �∗(x∗) (23)

Last equality is true, if we have:

∫

�∗

�∗(ξ )px (ξ )dξ −�∗
⎛

⎝
∫

�∗

ξ.px (ξ )dξ

⎞

⎠with x∗ �
∫

�∗

ξ.px (ξ )dξ (24)

This last relation is associated to classical Jensen inequality. Equality is obtained
for Maximum Entropy density for x∗ � Dx� [120]:

Legendre - Moreau Transform: �∗(x∗) � Sup
x

[〈
x, x∗〉 −�(x)

]

⇒
⎧
⎨

⎩

�∗(x∗) ≥ 〈x, x∗〉 −�(x)

�∗(x∗) ≥ ∫

�∗
�∗(ξ )px (ξ )dξ ⇒

⎧
⎨

⎩

�∗(x∗) ≥ E
[
�

∗
(ξ )

]

equality if x∗ � d�
dx

(25)

We obtain for the maximum entropy density, the equality:

E
[
�∗(ξ )

] � �∗(E[ξ ]), ξ ∈ �∗ (26)

To make the link between this Koszul model and maximum entropy density
[121–123] introduced by Jaynes [117–119], I use previous notation and I look for the
density px (ξ ) that is the solution to this maximum entropy variational problem. Find
the density that maximizes the Shannon entropy with constraint on normalization
and on the knowledge of first moment:

Max
px (.)

⎡

⎣−
∫

�∗

px (ξ ) log px (ξ )dξ

⎤

⎦ such that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫

�∗

px (ξ )dξ � 1

∫

�∗

ξ.px (ξ )dξ � x∗
(27)
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If we consider the density qx (ξ ) � e−〈ξ,x〉/
∫

Ω∗
e−〈ξ,x〉dξ � e

−〈x,ξ 〉−log
∫

Ω∗
e−〈ξ,x〉dξ

such that:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫

Ω∗
qx (ξ ).dξ � ∫

Ω∗
e−〈ξ,x〉dξ/

∫

Ω∗
e−〈ξ,x〉dξ � 1

log qx (ξ ) � log e
−〈x,ξ 〉−log

∫

Ω∗
e−〈ξ,x〉dξ � −〈x, ξ 〉 − log

∫

�∗
e−〈x,ξ 〉dξ

(28)

By using the inequality log x ≥ (
1 − x−1

)
with equality if x � 1, we can then

write that:

−
∫

�∗

px (ξ ) log
px (ξ )

qx (ξ )
dξ ≤ −

∫

�∗

px (ξ )

(

1 − qx (ξ )

px (ξ )

)

dξ (29)

We develop the right term of the equation:
∫

�∗

px (ξ )

(

1 − qx (ξ )

px (ξ )

)

dξ �
∫

�∗

px (ξ )dξ −
∫

�∗

qx (ξ )dξ � 0 (30)

knowing that
∫

�∗
px (ξ )dξ � ∫

�∗
qx (ξ )dξ � 1, we can deduce that:

−
∫

�∗
px (ξ ) log

px (ξ )

qx (ξ )
dξ ≤ 0 ⇒ −

∫

�∗
px (ξ ) log px (ξ )dξ ≤ −

∫

�∗
px (ξ ) log qx (ξ )dξ (31)

We have then to develop the right term by using previous expression of qx (ξ ):

−
∫

�∗

px (ξ ) log px (ξ )dξ ≤ −
∫

�∗

px (ξ )

⎡

⎣−〈x, ξ 〉 − log
∫

�∗

e−〈x,ξ 〉dξ

⎤

⎦dξ (32)

−
∫

�∗

px (ξ ) logpx (ξ )dξ ≤
〈

x,
∫

�∗

ξ.px (ξ )dξ

〉

+ log
∫

�∗

e−〈x,ξ 〉dξ (33)

If we use that x∗ � ∫

�∗
ξ.px (ξ )dξ and �(x) � − log

∫

�∗
e−〈x,ξ 〉dξ , then we obtain

that the density qx (ξ ) � e−〈ξ,x〉/
∫

Ω∗
e−〈ξ,x〉dξ � e

−〈x,ξ 〉−log
∫

Ω∗
e−〈ξ,x〉dξ

is the maximum

entropy density constrained by
∫

�∗
px (ξ )dξ and

∫

�∗
ξ.px (ξ )dξ � x∗:

−
∫

�∗

px (ξ ) log px (ξ )dξ ≤ 〈
x, x∗〉 −�(x) (34)
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−
∫

�∗

px (ξ ) log px (ξ )dξ ≤ �∗(x∗) (35)

In the following, we will write x∗ � ξ̂ , to give to this variable the link with
momentum ξ̂ � ∫

�∗
ξ.pξ̂ (ξ )dξ . To express the density with respect to the 1st moment

as variable, we have to inverse ξ̂ � (x) � d�(x)
dx , by writting x � −1(ξ̂ ) the

inverse function (given by Legendre transform):

pξ̂ (ξ ) � e
−
〈
ξ,−1(ξ̂ )

〉

∫

Ω∗
e
−
〈
ξ,−1(ξ̂ )

〉

dξ
with ξ̂ �

∫

�∗

ξ.pξ̂ (ξ )dξ and�(x) � − log
∫

�∗

e−〈x,ξ 〉dξ

(36)

We find finally the Maximum entropy density parametrized by 1st moment ξ̂ .

4 Links Between Koszul-Vinberg Characteristic Function,
Koszul Forms and Information Geometry

Koszul Hessian Geometry Structure is the key tool to define elementary struc-
tures of Information Geometry, that appears as one particular case of more gen-
eral framework studied by Koszul. In the Koszul-Vinberg Characteristic function
ψ�(x) � ∫

�∗
e−〈x,ξ 〉dξ, ∀x ∈ �where� is a sharp convex cone and�* its dual cone,

the duality bracket< .,. >has to be defined. I will introduce it by using Cartan-Killing
form 〈x, y〉 � −B(x, θ (y)) with B(., .) killing form and θ (.) Cartan involution. The
inner product is then invariant with respect to automorphims of cone �. Koszul-
Vinberg characteristic function could be developed as [124]:

ψ�(x + λu) � ψ�(x) − λ
〈
x∗ + u

〉
+
λ2

2
〈K (x)u, u〉 + . . . (37)

with x∗ � d�(x)
dx ,�(x) � − logψ�(x) and K (x) � d2�(x)

dx2

In the following developments, I will write β, previous variable written x , because
in thermodynamics, this variable corresponds to the Planck temperature, classically
β � 1

T . The variable β will be the dual variable of ξ̂ .
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pξ̂ (ξ ) � e
−
〈
−1(ξ̂ ),ξ

〉

∫

�∗
e
−
〈
−1(ξ̂ ),ξ

〉

.dξ
ξ̂ � (β) � ∂�(β)

∂β
with�(β) � − logψ�(β)

ψ�(β) �
∫

�∗

e−〈β,ξ 〉dξ, S(ξ̂ ) � −
∫

�∗

pξ̂ (ξ ) log pξ̂ (ξ ).dξ andβ � −1(ξ̂ )

S(ξ̂ ) �
〈
ξ̂ , β

〉
−�(β) (38)

Inversion of the function (.) is given by β � −1(ξ̂ ) is achieved by Legendre
transform using relation between Entropy S(ξ̂ ) and the function �(β) (opposite of
the logarithm of the Koszul-Vinberg characteristic function):

S(ξ̂ ) �
〈
β, ξ̂

〉
−�(β)

with �(β) � − log
∫

�∗

e−〈ξ,β〉dξ ∀β ∈ � and ∀ξ, ξ̂ ∈ �∗ (39)

We will prove that the 2nd Koszul form − ∂2�(β)
∂β2 is linked with Fisher Metric of

Information Geometry:

I (β) � −E

[
∂2 log pβ(ξ )

∂β2

]

(40)

To compute the Fisher metric I (β), we use the following relations between vari-
able

⎧
⎪⎨

⎪⎩

log pξ̂ (ξ ) � −〈ξ, β〉 +�(β)

S(
�

ξ ) � − ∫

�∗
pξ̂ (ξ ). log pξ̂ (ξ ).dξ � −E

[
log pξ̂ (ξ )

]

⇒ S(
�

ξ ) � 〈E[ξ ], β〉 −�(β) �
〈
ξ̂ , β

〉
−�(β) (41)

We can observe that the logarithm of the density is affine with respect to the
variable β, and that the Fisher matrix is given by the hessian. We can then deduce
that the Fisher Metric is given by the hessian.

I (β) � −E

[
∂2 log pβ (ξ )

∂β2

]

� −E

[
∂2(−〈ξ, β〉 +�(β))

∂β2

]

� − ∂2�(β)

∂β2
� ∂2 logψΩ (β)

∂β2
(42)

We can also identify the Fisher metric as a variance:

logΨΩ (β) � log
∫

Ω∗
e−〈ξ,β〉dξ ⇒ ∂ logΨΩ (β)

∂β
� − 1

∫

Ω∗
e−〈ξ,β〉dξ

∫

Ω∗
ξ.e−〈ξ,β〉dξ (43)
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∂2 logΨΩ (β)

∂β2 � − 1
(
∫

Ω∗
e−〈ξ,β〉dξ

)2

⎡

⎢
⎣−

∫

Ω∗
ξ2.e−〈ξ,β〉dξ.

∫

Ω∗
e−〈ξ,β〉dξ +

⎛

⎝
∫

Ω∗
ξ2.e−〈ξ,β〉dξ

⎞

⎠

2
⎤

⎥
⎦ (44)

∂2 logΨΩ (β)

∂β2 �
∫

Ω∗
ξ2.

e−〈ξ,β〉
∫

Ω∗
e−〈ξ,β〉dξ

dξ −
⎛

⎜
⎝

∫

Ω∗
ξ.

e−〈ξ,β〉
∫

Ω∗
e−〈ξ,β〉dξ

dξ

⎞

⎟
⎠

2

�
∫

Ω∗
ξ2.pβ (ξ )dξ −

⎛

⎝
∫

Ω∗
ξ.pβ (ξ )dξ

⎞

⎠

2

(45)

I (β) � −Eξ

[
∂2 log pβ (ξ )

∂β2

]

� ∂2 logψ�(β)

∂β2 � Eξ

[
ξ2
] − Eξ

[
ξ2
] � V ar (ξ ) (46)

In 1977, Crouzeix [125, 126] has identified the following relation between both

hessian of entropy and characteristic function ∂2�
∂β2 �

[
∂2S
∂ξ̂ 2

]−1
giving a relation

between the dual metrics with respect to their dual coordinate systems. The met-
ric could be given by Fisher metric or given by the hessian of Entropy S:

ds2g � dβT I (β)dβ �
∑

i j

gi j dβi dβ j with gi j � [I (β)]i j (47)

Thanks to Crouzeix relation [125] [126], we observe that 2 geodesic distances
given by hessian of dual potential functions in dual coordinates systems, are equal:

ds2h � d ξ̂ T

[
∂2S(ξ̂ )

∂ξ̂ 2

]

d ξ̂ �
∑

i j

hi j d ξ̂i d ξ̂ j with hi j �
[
∂2S(ξ̂ )

∂ξ̂ 2

]

i j

(48)

ds2h � ds2g (49)

One can ask oneself the question of what is the most natural product of duality.
This question has been treated by Elie Cartan in his thesis in 1894, by introducing
a form called Cartan-Killing form, a symmetric bilinear form naturally associated
with any Lie algebra. This form of Cartan-Killing is defined via the endomorphism
adx of Lie algebra g via the Lie bracket:

adx (y) � [x, y] (50)

The trace of the composition of these 2 endomorphisms defines this bilinear form
by:

B(x, y) � T r
(
adx ady

)
(51)

The Cartan-Killing form is symmetric:

B(x, y) � B(y, x) (52)
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and verify associativity property:

B([x, y], z) � B(x, [y, z]) (53)

given by:

B([x, y], z) � T r
(
ad[x,y]adz

) � T r
([

adx , ady
]
adz

)

� T r
(
adx

[
ady, adz

]) � B(x, [y, z]) (54)

Elie Cartan proved that if g is a semi-simple Lie algebra (the form of Killing is
non-degenerate) then any symmetric bilinear form is a scalar multiple of the Cartan-
Killing form. TheCartan-Killing form is invariant under the action of automorphisms
σ ∈ Aut(g) of the algebra g:

B(σ (x), σ (y)) � B(x, y) (55)

This invariance is deduced from:
{
σ [x, y] � [σ (x), σ (y)]

z � σ (y)
⇒ σ

[
x, σ−1(z)

] � [σ (x), z]

bywritting adσ (x) � σ ◦ adx ◦ σ−1 (56)

Then, we can write:

B(σ (x), σ (y)) � T r
(
adσ (x)adσ (y)

) � T r
(
σ ◦ adx ady ◦ σ−1

)
� T r

(
adx ady

) � B(a, y) (57)

Cartan has introduced this natural inner product that is invariant by the automor-
phisms of the Lie algebra, from this Cartan-Killing form:

〈x, y〉 � −B(x, θ (y)) (58)

with θ ∈ g the Cartan involution (an involution on the Lie algebra g is an automor-
phism θ such that the square is equal to identity).

I summarize all these relations of information geometry from the characteristic
function of Koszul-Vinberg, and the duality given via the Cartan-Killing form, as
described in the figure below (Fig. 7):

Thanks to the expression of the characteristic function of Koszul-Vinberg and
the Cartan-Killing form, one can express the maximum Entropy density in a very
general way. For example, by applying these formulas to the cone � (self-dual:
�∗ � �) symmetric positive definite matrices Sym+(n), Cartan-Killing form gives
us the product of duality:

〈η, ξ 〉 � T r (ηT ξ ). ∀η, ξ ∈ Sym+(n) � {
ξ/ξ T � ξ, ξ > 0

}
(59)



356 F. Barbaresco

Fig. 7 Relations between cartan-killing form, koszul-vinberg characteristic function, potentials
and dual coordinates, and metrics of information geometry

The maximum entropy density is given by:

ψ�(β) �
∫

�∗

e−〈β,ξ 〉dξ � det(β)−
n+1
2 ψ�(Id )

and ξ̂ � ∂�(β)

∂β
� ∂(− logψ�(β))

∂β
� n + 1

2
β−1 (60)

From which, I can deduce the final expression:

pξ̂ (ξ ) � e
−
〈
−1(ξ̂ ),ξ

〉
+�

(
−1(ξ̂ )

)

� ψ�(Id).
[
det

(
αξ̂−1

)]
.e

−T r
(
αξ̂−1ξ

)

with α � n + 1

2
(61)

We can apply this approach for multivariate Gaussian densities. In the case of
multivariate Gaussian densities, as noted by Souriau [17, 79], the classical Gibbs
expression can be rewritten by modifying the coordinate system and defining a new
duality product [80–84, 98]. The multivariate Gaussian density is classically written
with the following coordinate system (m, R), with m the mean vector, and R the
covariance matrix of the vector z:

pξ̂ (ξ ) � 1

(2π)n/2 det(R)1/2
e− 1

2 (z−m)T R−1(z−m) with

{
m � E(z)

R � E
[
(z − m)(z − m)T

]

(62)



Jean-Louis Koszul and the Elementary Structures … 357

By developing the term in the exponential:

1

2
(z − m)T R−1(z − m) � 1

2

[
zT R−1z − mT R−1z − zT R−1m + mT R−1m

]

� 1

2
zT R−1z − mT R−1z +

1

2
mT R−1m (63)

I can write this density as a Gibbs density by introducing a new duality bracket
between

(
z, zzT

)
and

(−R−1m, 1
2 R−1

)
:

pξ̂ (ξ ) � 1

(2π)n/2 det(R)1/2e
1
2 mT R−1m

e−[−mT R−1z+ 1
2 zT R−1z] � 1

Z
e−〈ξ,β〉

ξ �
[

z

zzT

]

and β �
⎡

⎣
−R−1m
1
2 R−1

⎤

⎦ �
[

a
H

]

with 〈ξ, β〉 � aT z + zT H z � T r
[
zaT + H T zzT

]
(64)

We can then write the density in Koszul form:

pξ̂ (ξ ) � 1
∫

�∗
e−〈ξ,β〉.dξ

e−〈ξ,β〉 � 1

Z
e−〈ξ,β〉

with log(Z) � n log(2π ) +
1

2
log det(R) +

1

2
mT R−1m

ξ �
[

z

zzT

]

,ξ̂ � E[ξ ] �
[

E[z]

E
[
zzT

]

]

�
[

m

R + mmT

]

,β �
[

a
H

]

�
⎡

⎣
−R−1m
1
2 R−1

⎤

⎦

with 〈ξ, β〉 � T r
[
zaT + H T zzT

]

R � E
[
(z − m)(z − m)T

] � E
[
zzT − mzT − zmT + mmT

] � E
[
zzT

] − mmT

(65)

We are then able to compute the Koszul-Vinberg characteristic function whose
opposite of the logarithm provides the potential function:

ψ�(β) �
∫

�∗

e−〈ξ,β〉.dξ

and �(β) � − logψ�(β) � 1

2

[−T r
[
H−1aaT

]
+ log

[
(2)n det H

] − n log(2π)
]

(66)

that verifies the following relation given by Koszul and linked with 1st Koszul form:
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∂�(β)

∂β
� ∂

[− logψ�(β)
]

∂β
�
∫

�∗

ξ
e−〈ξ,β〉

∫

�∗
e−〈ξ,β〉.dξ

�
∫

�∗

ξ.pξ̂ (ξ ).dξ � ξ̂

∂�(β)

∂β
�
⎡

⎣
∂�(β)
∂α

∂�(β)
∂H

⎤

⎦ �
[

m

R + mmT

]

� ξ̂ (67)

The 2nd dual potential is given by the Legendre transform of �(β):

S(ξ̂ ) �
〈
ξ̂ , β

〉
−�(β) with

∂�(β)

∂β
� ξ̂ and

∂S(ξ̂ )

∂ξ̂
� β

S
(
ξ̂
)

� −
∫

�∗

e−〈ξ,β〉
∫

�∗
e−〈ξ,β〉.dξ

log
e−〈ξ,β〉

∫

�∗
e−〈ξ,β〉.dξ

.dξ � −
∫

�∗

pξ̂ (ξ ) logpξ̂ (ξ ).dξ (68)

that is explicitly identified with the classical Shannon Entropy:

S(ξ̂ ) � −
∫

�∗

pξ̂ (ξ ) log pξ̂ (ξ ).dξ

� 1

2

[
log(2)n det

[
H−1

]
+ n log(2π.e)

] � 1

2

[
log det[R] + n log(2π.e)

]
(69)

The Fisher metric of Information Geometry is given by the hessian of the opposite
of the logarithm of the Koszul-Vinberg characteristic function:

ds2g � dβT I (β)dβ �
∑

i j

gi j dβi dβ j

with gi j � [I (β)]i j and I (β) � −Eξ

[
∂2 log pβ(ξ )

∂β2

]

� ∂2 logψ�(β)

∂β2
(70)

Then, for the multivariate Gaussian density, we have the following Fisher metric:

ds2 �
∑

i j

gi j dθi dθ j � dmT R−1dm +
1

2
T r

[(
R−1d R

)2]
(71)

Geodesic equations are given by Euler-Lagrange equations:

n∑

i�1

gik θ̈i +
n∑

i, j�1

�i jk θ̇i θ̇ j � 0, k � 1, . . . , n

with Γi jk � 1

2

[
∂g jk

∂θi
+
∂g jk

∂θ j
+
∂gi j

∂θk

]

(72)

that can be reduced to the equations:
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{
R̈ + ṁṁT − Ṙ R−1 Ṙ � 0

m̈ − Ṙ R−1ṁ � 0
(73)

I use a result of Souriau [17] that the component of«moment map»are constants
(geometrization of EmmyNoether theorem), to identify the following constants [83]:

d�R

dt
�
⎡

⎣
d(R−1 Ṙ+R−1ṁmT )

dt
d(R−1ṁ)

dt

0 0

⎤

⎦ � 0

⇒
{

R−1 Ṙ + R−1ṁmT � B � cste

R−1ṁ � b � cste
(74)

with �R the moment map introduced by Souriau [17]. This moment map could be
computed if we consider the following Lie group acting in case of Gaussian densities:

[
Y
1

]

�
[

R1/2 m
0 1

][
X
1

]

�
[

R1/2X + m
1

]

,

⎧
⎪⎪⎨

⎪⎪⎩

(m, R) ∈ Rn×Sym+(n)

M �
[

R1/2 m
0 1

]

∈ Ga f f

X ≈ ℵ(0, I ) → Y ≈ ℵ(m, R) (75)

R1/2, square root of R, is given by Cholesky decomposition of R. R1/2 is the Lie
group of triangular matrix with positive elements on the diagonal. Euler-Poincaré
equations, reduced equations from Euler-Lagrange equations, are then given by:

{
ṁ � Rb

Ṙ � R(B − bmT )
(76)

Geodesic distance between multivariate Gaussian density is then obtained by
“geodesic shooting” method that will provide iteratively the final solution from the
tangent vector at the initial point:

(
R−1(0)ṁ(0), R−1(0)

(
Ṙ(0) + ṁ(0)m(0)T

)) � (b, B) ∈ Rn×Sym+(n) (77)

From which, we then deduce the distance:

d �
√

ṁ(0)T R−1(0)ṁ(0) +
1

2
T r

[(
R−1(0)Ṙ(0)

)2]
(78)

Geodesic shooting is obtained by using equations established by Eriksen [127,
128] for “exponential map” using the following change of variables:
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{
�(t) � R−1(t)

δ(t) � R−1(t)m(t)
⇒

⎧
⎪⎪⎨

⎪⎪⎩

�̇ � −B� + bmT

δ̇ � −Bδ +
(
1 + δT�−1δ

)
b

�(0) � Ip, δ(0) � 0

with

{
�̇(0) � −B

δ̇(0) � b

(79)

The method based on geodesic shooting consists in iteratively approaching the
solution by geodesic shooting in direction

(
δ̇(0), �̇(0)

)
, using the following expo-

nential map (Fig. 8):

�(t) � exp(t A) �
∞∑

n�0

(t A)n

n!
�
⎛

⎜
⎝

� δ �

δT ε γ T

�T γ �

⎞

⎟
⎠

with A �
⎛

⎜
⎝

−B b 0

bT 0 −bT

0 −b B

⎞

⎟
⎠ (80)

The principle of geodesic shooting is the following. We consider one geodesic
χ between θ0 and θ1 with an initial tangent vector V from the origin, and assume
that V is modified by W , with respect to V + W . Variation of final point θ1 could be
obtained by Jacobi vector field J (0) � 0 and J̇ (0) � W :

J (t) � d

dα
expθ0 (t(V + αW ))|α�0 (81)

Fig. 8 Principle of geodesic shooting in the direction of the initial vector V0 at the origin and
correction by W0
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5 Koszul’s Study of Homogeneous Bounded Domains
and Affine Representations of Lie Groups and Lie
Algebras

Jean-Louis Koszul [15, 16, 41, 45–47, 49, 50] and his student Jacques Vey [39, 40]
introduced new theorems with more general extension than previous results:

Koszul theorem [50]: Let Ω be a sharp convex open in an affine space of E of
finite dimension on R. If a unimodular Lie group of affine transformations operates
transitively on �, � is a cone.

Koszul-Vey Theorem [40]: Let M a hessian connected manifold associated with the
hessian metric g. Assume that M has a closed 1-form α such that Dα � g and that
there is a group G of affine automorphisms of M preserving α, then:

• If M/G is almost compact, then the manifold, universal covering of M , is affinely
isomorphic to a convex domain of an affine space containing no straight line.

• If M/G is compact, then � is a sharp convex cone.

Jean-Louis Koszul developed his theory, studying the homogeneous domains, in
particular the homogeneous symmetric bounded domains of Siegel, which we note
DS [44, 48]. He has proved that there is a subgroup G in the group of complex affine
automorphisms of these domains (Iwasawa subgroup), so that G acts on DS in a
merely transitive way. The Lie algebra g of G has a structure which is an algebraic
translation of the Kähler structure DS.

Koszul considered onG/B an invariant complex structure tensor I . All the invariant
volumes on G/B, equal up to a constant factor, define with the complex structure the
same invariant Hermitian form on G/B, called Hermitian canonical form, denoted
h. Let E be a differentiable fiber space of base M and let p be the projection of E
on M, such that p∗((pX). f ) � X.(p∗ f ). The projection p : E → M defines an
injective homomorphism p∗ of the space of differential forms of M in the space
of the differential forms of E such that for any form α of degree n on M and any
sequence of n projectable vectors fields, we have p∗(α(pX1, pX2, . . . , pXn)) �
(p∗α)(X1, X2, . . . , Xn). Let I be the tensor of an almost complex structure on the
basis M, there exists on E a tensor J of type (1,1) and only one which possesses
the following properties p(J X) � I (pX) and J 2X � −X mod h, X ∈ g for any
vector field X on E. Let G be a connected Lie group and B a closed subgroup of G,
we note g the Lie algebra left invariant vector fields on G and b sub-algebra of g
corresponding to B. The canonical mapping of G on G/B is denoted p (defining E as
before). We assume that there exists on G/B an invariant volume by G, which consist
in assuming that, for all s ∈ B, the automorphism X → Xs of g defines by passing
to the quotient an automorphism of determinant 1 in g/b. Let r be the dimension
of G/B and (Xi )1≤i≤m a base of g such that Xi ∈ b, for r ≤ i ≤ m. Let (ξi )1≤i≤m

the base of the space of differential forms of degree 1 left invariant on G such that
ξi
(
X j

) � δi j . If ω is an invariant volume on G/B, then � � p∗ω is equal, up to a
constant factor, to ξ1 ∧ ξ2 ∧ . . . ∧ ξr . We will assume the base

(
X j

)
chosen so that
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this factor is equal to 1, let � � ξ1 ∧ ξ2 ∧ . . . ∧ ξr . For any vector field that can be
projected X on G, we have:

p∗(div(pX ))� � p∗((div(pX ))ω) � p∗((pX )ω) � X� �
r∑

j�1

ξ j ([X j , X ])�

(82)

p∗(div(pX )) �
r∑

j�1

ξ j ([X j , X ]) (83)

These elements being defined, Koszul calculates the Hermitian canonical form of
G/B, denoted h, more particularly η � p∗h on G. Let X and Y both right invariant
vector fields on G. They are projectable and the fields pX and pY are conformal
vector fields on G/B such that div(pX) � div(pY ) � 0, because the volume and
the complex structure of G/B are invariant under G. As a result, if κ is the Kähler
form of h and if α � p∗κ , then:

4α(X,Y ) � 4p∗(κ(pX, pY )) � p∗div(I [pX, pY ]) (84)

and as p(J [X,Y ]) � I [pX, pY ], we obtain:

4α(X,Y ) � p∗div(J [X,Y ]) �
2n∑

i�1

ξi ([Xi , J [X,Y ]]) (85)

X and Y are two left invariant vectors fields on G. X ‘ and Y’ right invariant vectors
fields coinciding with X and Y at the point e, neutral element of G. If T � [

X ′,Y ′]

is tight invariant vectors fields which coincide with −[X,Y ] on e, then:

[X, J T ] � J [X, [X,Y ]] − [X, J [X,Y ]] at point e (86)

At point e, we have the equality:

4α(X,Y ) �
2n∑

i�1

ξi ([J [X,Y ], Xi ] − J [[X,Y ], Xi ]) (87)

As the form α is invariant on the left by G, this equality is verified for all points.
For any endomorphism  of the space g such that b ⊂ b, we denote by T rb the
trace of the restriction of  to b and by T rg/b the trace of the endomorphism of
g/b deduced from  by passage to the quotient, with T r � T rb + T rg/b. We
have:

Trg/b �
2n∑

i�1

ξi (Xi ) (88)
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Whatever X ∈ g and s ∈ B, we have J (Xs) − (J X)s ∈ b. If ad(Y ) is the
endomorphism of g defined by ad(Y ).Z � [Y, Z ], we have (Jad(Y )− ad(Y )J )g ⊂
b for all Y ∈ b. We can deduce, for all X ∈ g, the endomorphism ad(J X)− Jad(X )
leaves steady the subspace b. Koszul defines a linear form � on the space g by
defining:

�(X ) � T rg/b(ad(J X ) − Jad(X )) ,∀X ∈ g (89)

Koszul has finally obtained the following fundamental theorem:
Theorem of Koszul [15]:
The Kähler form of the Hermitian canonical form has for image by p∗ the differ-

ential of the form − 1
4�(X ) � − 1

4T rg/b(ad(J X)− Jad(X )),∀X ∈ g
Koszul note that the form � is independent of the choice of the tensor J . It is

determined by the invariant complex structure of G/B. The form � is right invariant
by B. For all s ∈ B, note the endomorphism r (s) : X → Xs of g. Since J (Xs) �
(J X )s mod b and that T rg/bad(Y ) � 0, we have:

�(Xs) � T rg/b(ad((J X )s) − Jad(Xs)), ∀X ∈ g ,∀Y ∈ b (90)

�(Xs) � T rg/b(r (s)ad(J X )r (s)−1 − Jr (s)ad(X )r (s)−1) (91)

�(Xs) � �(X ) + T rg/b((J − r (s)−1 Jr (s))ad(X )), ∀X ∈ g, s ∈ B (92)

As
(
J − r (s)−1 Jr (s)

)
maps g in b, we get �(Xs) � �(X ). The form � is not

zero on b. This is not the image by p∗ of a differential form of G/B. However, the
right invariance of � on B is translated, infinitesimally by the relation:

�([b, g]) � (0) (93)

Koszul proved that the canonical hermitian form h of a homogeneous Kähler
manifold G/B has the following expression:

η(X,Y ) � 1

2
Ψ ([J X,Y ])

with

{
Ψ ([X,Y ]) � Ψ ([J X, JY ])

η([J X, JY ]) � η(X,Y )
∀X,Y ∈ g (94)

To do, the link with the first chapters, I can summarize the main result of Koszul
that there is an integrable structure almost complex J on g, and for l ∈ g∗ defined
by a positive J -invariant inner product on g:

〈X,Y 〉l � 〈[J X,Y ], l〉 (95)

Koszul has proposed as admissible form, l ∈ g∗, the form ξ :
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�(X ) � 〈X, ξ 〉 � Tr [ad(J X ) − J.ad(X )] ∀X ∈ g (96)

Koszul proved that 〈X,Y 〉ξ coincides, up to a positive multiplicative constant;
with the real part of the Hermitian inner product obtained by the Bergman metric
of symmetric homogeneous bounded domains DS by identifying g with the tangent
space of DS. �(X) is the restriction to g of a differential form � of degree 1, with
left invariance on G. This form is fully defined by the invariant complex structure
of G/B. This form is invariant to the choice of J . This form is invariant on the right
by B. We have �([X,Y ]) � 0 with X ∈ g,Y ∈ b. The exterior differential d� of
� is the inverse image by the projection G → G/B of degree 2 form Ω . This form
� is, up to a constant, the Kähler form h, defined by the canonical Hermitian form
of G/B: h(π.X, π.Y ) � 1

2 (d�)(X, J.Y ),∀X,Y ∈ G as it is proved in Bourbaki
seminar by Koszul in [129].

The 1st Koszul form is then given by:

α � −1

4
d�(X) (97)

We can illustrate this structure for the simplest example of DS, the Poincaré upper
half-plane V � {z � x + iy/y > 0}which is isomorphic to the open zz∗ < 1, which
is a bounded domain. The group G of transformations z → az + b with a and b real
values with a > 0 is simply transitive in V . We identify G and V by the application
passing from s ∈ G an element to the image i � √−1 by s.

Let’s define vector fields X � y d
dx and Y � y d

dy which generate the vector space
of left invariant vectors fields on G, and J an almost complex structure on V defined
by J X � Y . As [X,Y ] � −Y and ad(Y ).Z � [Y, Z ] then:

{
T r [ad(J X ) − Jad(X )] � 2

T r [ad(JY ) − Jad(Y )] � 0
(98)

The Koszul forms and the Koszul metric are respectively given by:

�(X ) � 2
dx

y
⇒ α � −1

4
d� � −1

2

dx ∧ dy

y2
⇒ ds2 � dx2 + dy2

2y2
(99)

I note that α � − 1
4d�(X) is indeed the Kähler form of Poincaré’s metric, which

is invariant by the automorphisms of the upper half-plane.
The following example concerns V � {Z � X + iY/X,Y ∈ Sym(p),Y > 0}

the upper half-space of Siegel (which is the most natural extension of the Poincaré
half-plane) with:

{
SZ � (AZ + B)D−1

AT D � I, BT D � DT B
with S �

(
A B
0 D

)

and J �
(
0 I
−I 0

)

(100)

We can then compute Koszul forms and the metric:
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�(d X + idY ) � 3p + 1

2
T r (Y −1d X )

⇒
⎧
⎨

⎩

α � − 1
4d� � 3p+1

8 T r
(
Y −1d Z ∧ Y −1d Z̄

)

ds2 � (3p+1)
8 T r

(
Y −1d ZY −1d Z̄

) (101)

We recover Carl-Ludwig Siegel metric for the upper half space.
More recent development on Kähler manifolds are described in [130] et [131].
Koszul studied symmetric homogeneous spaces and defines the relation between

invariant flat affine connections and the affine representations of Lie algebras and
invariant Hessian metrics characterized by affine representations of Lie algebras.
Koszul provides a correspondence between symmetric homogeneous spaces with
invariant Hessian structures using affine representations of Lie algebras, and proves
that a symmetric homogeneous space simply connected with an invariant Hessian
structure is a direct product of a Euclidean space and of a homogeneous dual-cone.
Let G be a connected Lie group and G/K a homogeneous space over which G acts
effectively. Koszul gives a bijective correspondence between all planarG -invariantes
connections on G/K and all of a certain class of affine representations of the Lie
algebra of G. The main theorem of Koszul is:

Koszul’s theorem: Let G/K be a homogeneous space of a connected Lie group
G and be g and k the Lie algebras of G and K , assuming that G/K has G-invariant
connection, then admits an affine representation (f, q) on the vector space E. Con-
versely, assume that G is simply connected and has an affine representation, then
G/K admits a flat G-invariant connection.

In the foregoing, the basic tool studied by Koszul is the affine representation of
Lie algebra and Lie group. To study these structures, Koszul introduced the following
developments.

Let� a convex domain on Rn without any straight lines, and an associated convex
cone V (�) � {(λx, x) ∈ Rn×R/x ∈ �, λ ∈ R+}, then there exist an affine embed-
ding:

" : x ∈ � �→
[

x
1

]

∈ V (�) (102)

If we consider η the group of homomorphism of A(n, R) in GL(n + 1, R) given
by:

s ∈ A(n, R) �→
[
f(s) q(s)

0 1

]

∈ GL(n + 1, R) (103)

and the affine representation of Lie algebra:
[

f q

0 0

]

(104)
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with A(n, R) the group of all affine representations of Rn . We have η(G(�)) ⊂
G(V (�)) and the pair (η, ") of homomorphism η : (G(Ω) → G(V (Ω)) and the
application " : � → V (�) is equivariant.

If we observe Koszul affine representations of Lie algebra and Lie group, we have
to consider G a convex Lie group and E a real or complex vector space of finite size,
Koszul has introduced an affine representation of G in E such that:

E → E

a �→ sa ∀s ∈ G (105)

is an affine representation. We set A(E) the set of all affine transformation of a real
vector space E , a Lie group called affine representation group of E . The set GL(E)
of all regular linear representation of E , a sub-group of A(E).

We define a linear representation of G in GL(E):

f : G → GL(E)

s �→ f(s)a � sa − so ∀a ∈ E (106)

and a map from G to E :

q : G → E

s �→ q(s)so ∀s ∈ G (107)

then, we have ∀s, t ∈ G:

f(s)q(t) + q(s) � q(st) (108)

deduced from f(s)q(t) + q(s) � sq(t) − sq + so � sq(t) � sto � q(st).
Inversely, if a map q from G to E and a linear representation f from G to GL(E)

verifying previous equation, then we can define an affine representation from G in
E , written by (f,q):

A f f (s) : a �→ sa � f(s)a + q(s)∀s ∈ G,∀a ∈ E (109)

The condition f(s)q(t) + q(s) � q(st) is equal to the request that the following
mapping is an homomorphism:

A f f : s ∈ G �→ A f f (s) ∈ A(E) (110)

We write f the affine representation of Lie algebra g of G, defined by f and q the
restriction to g to the differential of q ( f and q differential of f and q respectively),
Koszul proved the following equation:

f (X )q(Y ) − f (Y )q(X ) � q([X,Y ])∀X,Y ∈ g

with f : g → gl(E) and q : g �→ E (111)
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where gl(E) the set of all linear endomorphisms of E , Lie algebra of GL(E).
We use the assumption that:

q(AdsY ) � dq
(
s.etY .s−1

)

dt

∣
∣
∣
∣
∣
t�0

� f(s) f (Y )q(s−1) + f(s)q(Y ) (112)

We then obtain:

q([X,Y ]) � dq
(

Adet X Y
)

dt

∣
∣
∣
∣
∣
t�0

� f (X )q(Y )q(e) + f(e) f (Y )(−q(X )) + f (X )q(Y ) (113)

where e is neutral element of G. Since f(e) is identity map and q(e) � 0, we have
the equality:

f (X )q(Y ) − f (Y )q(X ) � q([X,Y ]) (114)

A pair ( f, q) of linear representation of f of a Lie algebra g on E and a linear
map q from g in E is an affine representation of g in E , if it satisfy:

f (X )q(Y ) − f (Y )q(X ) � q([X,Y ]) (115)

Inversely, if we assume that g has an affine representation ( f, q) on E , by using
the coordinate systems {x1, . . . , xn} on E , we can express the affine map v �→
f (X )v + q(Y ) by a matrix representation of size (n + 1) × (n + 1):

a f f (X ) �
[

f (X ) q(X )

0 0

]

(116)

where f (X ) is a matrix of size n × n and q(X ) a vector of size n.
X �→ a f f (X ) is an injective homomorphism of Lie algebra g in Lie algebra of

matrices (n + 1) × (n + 1), gl(n + 1, R):
∣
∣
∣
∣
∣

g → gl(n + 1, R)

X �→ a f f (X )
(117)

If we note ga f f � a f f (g), we write Ga f f linear Lie sub-group of GL(n + 1, R)
generated by ga f f . One element of s ∈ Ga f f could be expressed by:

A f f (s) �
[
f(s) q(s)

0 1

]

(118)

Let Ma f f the orbit of Ga f f from the origin o, then Ma f f � q(Ga f f ) � Ga f f /Ka f f

where Ka f f � {s ∈ Ga f f /q(s) � 0} � K er (q).
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We can give as example the following case. Let� a convex domain in Rn without
any straight line, we define the cone V (�) in Rn+1 � Rn × R by V (�) � {(λx, x) ∈
Rn × R/x ∈ �, λ ∈ R+}. Then, there is an affine embedding:

" : x ∈ � �→
[

x
1

]

∈ V (�) (119)

If we consider η the group of homomorphisms of A(n, R) in GL(n + 1, R) given
by:

s ∈ A(n, R) �→
[
f(s) q(s)

0 1

]

∈ GL(n + 1, R) (120)

with A(n, R) the group of all affine transformations in Rn . We have η(G(�)) ⊂
G(V (�)) and the pair (η, ") of homomorphism η : G(�) → G(V (�)) and the map
" : � → V (�) are equivariant:

" ◦ s � η(s) ◦ " and d" ◦ s � η(s) ◦ d" (121)

6 Koszul Lecture on Geometric and Analytics Mechanics,
Related to Geometric Theory of Heat (Souriau’s Lie
Group Thermodynamics) and Theory of Information
(Information Geometry)

Before that Professor Koszul passed away in January 2018, he gave his agreement to
his book “Introduction to Symplectic Geometry” translation fromChinese to English
by SPRINGER [18]. This Koszul’s book translation genesis dates back to 2013. We
had contacted Professor Jean-LouisKoszul, to deeper understand hiswork in the field
of homogeneous bounded domains within the framework of Information Geometry.
Professor Michel Boyom succeeded to convince Jean-Louis Koszul to answer pos-
itively to our invitation to attend the 1st GSI “Geometric Science of Information”
conference in August 2013 at Ecole desMines ParisTech in Paris, andmore especialy
to attend the talk of Hirohiko Shima, given for his honor on the topic “Geometry of
Hessian Structures” (Fig. 9).

I was more particularly interested by Koszul’s work developed in the
paper«Domaines bornées homogènes et orbites de groupes de transformations
affines » [45] of 1961, written by Koszul at the Institute for Advanced Studies at
Princeton during a stay funded by the National Science Foundation. Koszul proved
in this paper that on a complex homogeneous space, an invariant volume defines with
the complex structure the canonical invariant Hermitian form introduced in [15]. It
is in this article that Koszul uses the affine representation of Lie groups and Lie
algebras.
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Fig. 9 Jean-Louis Koszul and Hirihiko Shima at GSI’13 “Geometric Science of Information” con-
ference in Ecole des Mines ParisTech in Paris, October 2013

The use by Koszul of the affine representation of Lie groups and Lie algebras
drew our attention, especially on the links of his approach with the similar one used
by Jean-Marie Souriau in geometric mechanics in the framework of homogeneous
symplectic manifolds. I have then looked for links between Koszul and Souriau
works. I finally discovered, that in 1986, Koszul published this book “Introduction
to symplectic geometry” following a Chinese course in China. I also observed that
this book takes up and develops works of Jean-Marie Souriau on homogeneous
symplectic manifolds and the affine representation of Lie algebras and Lie groups
in geometric mechanics.

I have then exchanged e-mails with Professor Koszul on Souriau works and on
genesis of thisBook. InMay2015, questioningKoszul onSouriauworkonGeometric
Mechanics and on Lie Group Thermodynamics, Koszul answered me “[A l’époque
où Souriau développait sa théorie, l’establishment avait tendance à ne pas y voir
des avancées importantes. Je l’ai entendu exposer ses idées sur la thermodynamique
mais je n’ai pas du tout réalisé à l’époque que la géométrie hessienne était en jeu.]
At the time when Souriau was developing his theory, the establishment tended not to
see significant progress. I heard him explaining his ideas on thermodynamics but I
did not realize at the time that Hessian geometry was at stake“. In September 2016,
I asked him the origins of Lie Group and Lie Algebra Affine representation. Koszul
informed me that he attended Elie Cartan Lecture, where he presented seminal work
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on this topic: “[Il y a là bien des choses que je voudrais comprendre (trop peut-être
!), ne serait-ce que la relation entre ce que j’ai fait et les travaux de Souriau. Détecter
l’origine d’une notion ou la première apparition d’un résultat est souvent difficile.
Je ne suis certainement pas le premier à avoir utilisé des représentations affines de
groupes ou d’algèbres de Lie. On peut effectivement imaginer que cela se trouve
chez Elie Cartan, mais je ne puis rien dire de précis. A propos d’Elie Cartan: je n’ai
pas été son élève. C’est Henri Cartan qui a été mon maître pendant mes années de
thèse. En 1941 ou 42 j’ai entendu une brève série de conférences données par Elie
à l’Ecole Normale et ce sont des travaux d’Elie qui ont été le point de départ de
mon travail de thèse.] There are many things that I would like to understand (too
much perhaps!), If only the relationship between what I did and the work of Souriau.
Detecting the origin of a notion or the first appearance of a result is often difficult.
I am certainly not the first to have used affine representations of Lie groups or Lie
algebras. We can imagine that it is at Elie Cartan, but I cannot say anything specific.
About Elie Cartan: I was not his student. It was Henri Cartan who was my master
during my years of thesis. In 1941 or 42, I heard a brief series of lectures given by
Elie at the Ecole Normale and it was Elie’s work that was the starting point of my
thesis work”.

After discovering the existence of this Koszul’s book, written in Chinese based
on a course given at Nankin, on “Introduction to Symplectic Geometry”, where he
made reference to Souriau’s book and developed his main tools, I started to discuss
its content. In January 2017, Koszul wrote me, with the usual humility “[Ce petit
fascicule d’introduction à la géométrie symplectique a été rédigé par un assistant
de Nankin qui avait suivi mon cours. Il n’y a pas eu de version initiale en français.]
This small introductory booklet on symplectic geometry was written by a Nanjing
assistant who had taken my course. There was no initial version in French “. I asked
him if he had personal archive of this course, he answered “[Je n’ai pas conservé de
notes préparatoires à ce cours. Dites-moi à quelle adresse je puis vous envoyer un
exemplaire du texte chinois.] I have not kept any preparatory notes for this course.
Tell me where I can send you a copy of the Chinese text. “. Professor Koszul then
sent me his last copy of this book in Chinese, a small green book (Fig. 10).

I was not able to read the Chinese text, but I have observed in Chap. 4 “Symplectic
G-spaces” and in Chap. 5 “Poisson Manifolds”, that their equations content new
original developments of Souriau work on moment map and affine representation
of Lie Group and Lie Algebra. More especially, Koszul considered equivariance of
moment map, where I recover Souriau theorem. Koszul shows that when (M; ω) is a
connected Hamiltonian G-space andμ a moment map of the action of G, there exists
an affine action of G on g* (dual Lie algebra), whose linear part is the coadjoint
action, for which the moment μ is equivariant. Koszul developed Souriau idea that
this affine action is obtained by modifying the coadjoint action by means of a closed
cochain (called cocycle by Souriau), and that (M; ω) is a G-Poisson space making
reference to Souriau’s book for more details.

About collaboration between Koszul and Souriau and another potential Lecture
on Symplectic Geometry in Toulouse, Koszul informed me in February 2017 that:
“[J’ai plus d’une fois rencontré Souriau lors de colloques, mais nous n’avons jamais
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Fig. 10 Original small
green Koszul’s book
“Introduction to symplectic
geometry” in Chinese

collaboré. Pour ce qui est de cette allusion à un “cours” donné à Toulouse, il y
erreur. J’y ai peut être fait un exposé en 81, mais rien d’autre.] I have met Souriau
more than once at conferences, but we have never collaborated. As for this allusion
to a “course” given in Toulouse, there is error. I could have made a presentation
in 81, but nothing else. “. Koszul admitted that he had no direct collaboration with
Souriau: “[Je ne crois pas avoir jamais parlé de ses travaux avec Souriau. Du reste
j’avoue ne pas en avoir bien mesuré l’importance à l’époque] I do not think I ever
talked about his work with Souriau. For the rest, I admit that I did not have a good
idea of the importance at the time”.

Considering the importance of this book for different communities, I tried to
find an editor for its translation in English. By chance, I met Catriona Byrne from
SPRINGER, when I gave a talk at IHES, invited by Pierre Cartier, on Koszul and
Souriau works application in Radar. With help of Michel Boyom, we have convinced
Professor Koszul to translate this book, proposing to contextualize this book with
regard to the contemporary research trends in Geometric Mechanics, Lie Groups
Thermodynamics and Geometric Science of Information. Professors Marle and
Boyom accepted to check the translation and help me to write the forewords.
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In the historical Foreword of this book, Koszul write “The development of ana-
lytical mechanics provided the basic concepts of symplectic structures. The term
symplectic structure is due largely to analytical mechanics. But in this book, the
applications of symplectic structure theory to mechanics is not discussed in any
detail”. Koszul considers in this book purely algebraic and geometric developments
of Geometric/Analytic Mechanics developed during the 60th, more especially Jean-
Marie Souriau works detailed in Chaps. 4 and 5. The originality of this book lies in
the fact that Koszul develops newpoints of view, and demonstrations not considered
initially by Souriau and Geometrical Mechanics community.

Jean-Marie Souriau was the Creator of a new discipline called “Mécanique
Géométrique (Geometric Mechanics)”. Souriau observed that the collection of
motions of a dynamical system is a manifold with an antisymmetric flat tensor that
is a symplectic form where the structure contains all the pertinent information on
the state of the system (positions, velocities, forces, etc.). Souriau said: “[Ce que
Lagrange a vu, que n’a pas vu Laplace, c’était la structure symplectique] What
Lagrange saw, that Laplace didn’t see, was the symplectic structure”. Using the sym-
metries of a symplectic manifold, Souriau introduced a mapping which he called the
“moment map”, which takes its values in a space attached to the group of symmetries
(in the dual space of its Lie algebra). Souriau associated to this moment map, the
notion of symplectic cohomology, linked to the fact that such a moment is defined
up to an additive constant that brings into play an algebraic mechanism (called
cohomology). Souriau proved that the moment map is a constant of the motion, and
provided geometric generalization of Emmy Noether invariant theorem (invariants
of E. Noether theorem are the components of the moment map). Souriau has defined
in a geometrically way the Noetherian symmetries using the Lagrange-Souriau
2 form with the application map. Influenced by François Gallissot (Souriau and
Galissot both attended ICM’54 in Moscow, and should have exchanged during this
conference), Souriau has introduced in Mechanics the Lagrange 2-form, recovering
seminal Lagrange ideas. Motivated by variational principles in a coordinate free for-
mulation, inspired by Henri Poincaré and Elie Cartan who introduced a differential
1-form instead of the Lagrangian, Souriau introduced the Lagrange 2-form as the
exterior differential of the Poincaré-Cartan 1-form, and obtained the phase space as
a symplectic manifold. Souriau proposed to consider this Lagrange 2-form as the
fundamental structure for Lagrangian system and not the classical Lagrangian func-
tion or the Poincaré-Cartan 1-form. This 2-form is called Lagrange-Souriau 2 form,
and is the exterior derivative of the Lepage form (the Poincaré-Cartan form is a first
order Lepage form). This structure is developed in Koszul book, where the authors
shows that when (M; ω) is an exact symplectic manifold (when there exists a 1-form
α on M such that ω�– dα), and that a symplectic action leaves not only ω, but α
invariant, this action is strongly Hamiltonian ((M; ω) is a g-Poisson space). Koszul
shows that a symplectic action of a Lie algebra g on an exact symplectic manifold
(M;ω�– dα) that leaves invariant not only ω, but also α, is strongly Hamiltionian.

In this Book in Chap. 4, Koszul calls symplectic G-space a symplectic manifold
(M; ω) on which a Lie group G acts by a symplectic action (an action which leaves
unchanged the symplectic formω). Koszul then introduces and develop properties of
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the moment map μ (Souriau’s invention) of a Hamiltonian action of the Lie algebra
g. Koszul also defines the Souriau 2-cocycle, considering that the difference of two
moments of the same Hamiltonian action is a locally constant application on M,
showing that when μ is a moment map, for every pair (a;b) of elements of g, the
function cμ(a, b) � {〈μ, a〉, 〈μ, b〉} − 〈μ, {a, b}〉 is locally constant on M, defining
an antisymmetric bilinear application of gxg in H0(M; R) which verifies Jacobi’s
identity. This is the 2-cocycle introduced by Jean-Marie Souriau in Geometric
Mechanics, that will play a fundamental role in Souriau Lie Groups Thermody-
namics to define an extension of the Fisher Metric from Information Geometry
(what I will call Fisher-Souriau metric in the following).

To highlight the importance of this Koszul book, we will illustrate the links of the
detailed tools, includingdemonstrations or originalKoszul extensions,withSouriau’s
Lie Groups Thermodynamics, whose applications range from statistical physics to
machine learning in Artificial Intelligence. In 1970, Souriau introduced the concept
of co-adjoint action of a group on its momentum space, based on the orbit method
works, that allows to define physical observables like energy, heat and momentum
or moment as pure geometrical objects. In a first step to establish new foundations
of thermodynamics, Souriau has defined a Gibbs canonical ensemble on a symplec-
tic manifold M for a Lie group action on M. In classical statistical mechanics, a
state is given by the solution of Liouville equation on the phase space, the partition
function. As symplectic manifolds have a completely continuous measure, invari-
ant by diffeomorphisms (the Liouville measure λ), Souriau has proved that when
statistical states are Gibbs states (as generalized by Souriau), they are the product
of the Liouville measure by the scalar function given by the generalized partition
function e�(β)−〈β,U (ξ )〉 defined by the energy U (defined in the dual of the Lie algebra
of this dynamical group) and the geometric temperature β, where� is a normalizing
constant such the mass of probability is equal to 1, �(β) � − log

∫

M
e−〈β,U (ξ )〉dλ.

Jean-Marie Souriau then generalizes the Gibbs equilibrium state to all symplectic
manifolds that have a dynamical group. Souriau has observed that if we apply this
theory for Galileo, the symmetry will be broken. For each temperature β, element
of the Lie algebra g, Souriau has introduced a tensor ̃β , equal to the sum of the
cocycle ̃ and the heat coboundary (with [.,.] Lie bracket):

̃β(Z1, Z2) � ̃(Z1, Z2) + 〈Q, adZ1(Z2)〉 (122)

This tensor ̃β has the following properties: ̃(X,Y ) � 〈(X ),Y 〉 where the
map  is the symplectic one-cocycle of the Lie algebra g with values in g∗ , with
(X ) � Teθ (X (e)) where θ the one-cocycle of the Lie group G. ̃(X,Y ) is constant
on M and the map ̃(X,Y ) : g×g → � is a skew-symmetric bilinear form, and is
called the symplectic two-cocycle of Lie algebra g associated to the moment map J ,
with the following properties:

̃(X,Y ) � J[X,Y ] − {JX , JY }with J theMomentMap (123)
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̃([X,Y ], Z ) + ̃([Y, Z ], X ) + ̃([Z , X ],Y ) � 0 (124)

where JX linear application from g to differential function on M : g →
C∞(M, R), X → JX and the associated differentiable application J , called moment
map:

J : M → g∗, x �→ J (x) such that JX (x) � 〈J (x), X〉, X ∈ g (125)

The geometric temperature, element of the algebra g, is in the kernel of the tensor
̃β :

β ∈ K er ̃β such that ̃β(β, β) � 0, ∀β ∈ g (126)

The following symmetric tensor gβ([β, Z1], [β, Z2]) � ̃β(Z1, [β, Z2]), defined
on all values of adβ (.) � [β, .] is positive definite, and defines extension of classical
Fisher metric in Information Geometry (as hessian of the logarithm of partition
function):

gβ([β, Z1], Z2) � ̃β(Z1, Z2), ∀Z1 ∈ g,∀Z2 ∈ Im
(
adβ (.)

)
(127)

With gβ(Z1, Z2) ≥ 0, ∀Z1, Z2 ∈ Im
(
adβ (.)

)
(128)

These equations are universal, because they are not dependent on the sym-
plectic manifold but only on the dynamical group G, the symplectic two-cocycle
, the temperature β and the heat Q. Souriau called it “Lie groups thermody-
namics”.

This antisymmetric bilinear map (127) and (128), with definition (122) and
(123) is exactly equal to the mathematical object introduced in Chap. 4 of Koszul’s
book by:

cμ(a, b) � {〈μ, a〉, 〈μ, b〉} − {μ, 〈a, b〉} (129)

In this book, Koszul has studied this antisymmetric bilinear map considering the
following developments. For anymomentmapμ, Koszul defines the skew symmetric
bilinear form cμ(a, b) on Lie algebra by:

cμ(a, b) � 〈
dθμ(a), b

〉
, a, b ∈ g (130)

Koszul observes that if we use:

θμ(st) � μ(st x) − Ad∗
stμ(x) � θμ(s) + Ad∗

s μ(t x) − Ad∗
s Ad∗

t μ(x) � θμ(s) + Ad∗
s θμ(t)

by developing dμ(ax) �t adaμ(x) + dθμ(a), x ∈ M, a ∈ g, he obtains:

〈dμ(ax), b〉 � 〈μ(x), [a, b]〉 + 〈dθμ(a), b
〉 � {〈μ, a〉, 〈μ, b〉}(x), x ∈ M, a, b ∈ g

(131)
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We have then:

cμ(a, b) � {〈μ, a〉, 〈μ, b〉} − 〈μ, [a, b]〉 � 〈
dθμ(a), b

〉
, a, b ∈ g (132)

and the property:

cμ([a, b], c) + cμ([b, c], a) + cμ([c, a], b) � 0, a, b, c ∈ g (133)

Koszul concludes by observing that if the moment map is transform asμ′ � μ+φ
then we have:

cμ′(a, b) � cμ(a, b) − 〈φ, [a, b]〉 (134)

Finally using cμ(a, b) � {〈μ, a〉, 〈μ, b〉} − 〈μ, [a, b]〉 � 〈
dθμ(a), b

〉
, a, b ∈ g,

koszul highlights the property that:

{
μ∗(a), μ∗(b)

} � {〈μ, a〉, 〈μ, b〉} � μ∗([a, b] + cμ(a, b)
) � μ∗{a, b}cμ (135)

In Chap. 4, Koszul introduces the equivariance of the moment map μ. Based on
the definitions of the adjoint and coadjoint representations of a Lie group or a Lie
algebra, Koszul proves that when (M; ω) is a connected Hamiltonian G-space and
μ : M → g∗ a moment of the action of G, there exists an affine action of G on g*,
whose linear part is the coadjoint action, for which the momentμ is equivariant. This
affine action is obtained by modifying the coadjoint action by means of a cocycle.
This notion is also developed in Chap. 5 for Poisson manifolds. Defining classical
operation Adsa � sas−1, s ∈ G, a ∈ g, adab � [a, b], a ∈ g, b ∈ g and coadjoint
action given by Ad∗

s �t Ads−1 , s ∈ G with classical properties:

Adexp a � exp(−ada), a ∈ g or Ad∗
exp a � expt (ada), a ∈ g (136)

Koszul considers:

x �→ sx, x ∈ M, μ : M → g∗ (137)

From which, he obtains:

〈dμ(v), a〉 � ω(ax, v) (138)

Koszul then study μ ◦ sM − Ad∗
s ◦ μ : M → g∗, and develops:

d
〈
Ad∗

s ◦ μ, a
〉 � 〈

Ad∗
s dμ, a

〉 � 〈dμ, Ads−1a〉 (139)

〈dμ(v), Ads−1a〉 � ω(s−1asx, v) � ω(asx, sv) � 〈dμ(sv), a〉 � (d〈μ ◦ sM , a〉)(v)
(140)



376 F. Barbaresco

d
〈
Ad∗

s ◦ μ, a
〉 � d〈μ ◦ sM , a〉 and then proves that d

〈
μ ◦ sM − Ad∗

s ◦ μ, a
〉 � 0

(141)

Koszul considers the cocycle given by θμ(s) � μ(sx) − Ad∗
s μ(x), s ∈ G, and

observes that:

θμ(st) � θμ(s) − Ad∗
s θμ(t), s, t ∈ G (142)

From this action of the group on dual Lie algebra:

G × g∗ → g∗, (s, ξ ) �→ sξ � Ad∗
s ξ + θμ(s) (143)

Koszul introduces the following properties:

μ(sx) � sμ(x) � Ad∗
s μ(x) + θμ(s),∀s ∈ G, x ∈ M (144)

G × g∗ → g∗, (e, ξ ) �→ eξ � Ad∗
e ξ + θμ(e) � ξ + μ(x) − μ(x) � ξ (145)

(s1s2)ξ � Ad∗
s1s2ξ + θμ(s1s2) � Ad∗

s1 Ad∗
s2ξ + θμ(s1) + Ad∗

s1θμ(s2)

(s1s2)ξ � Ad∗
s1 (Ad∗

s2ξ + θμ(s2)) + θμ(s1) � s1(s2ξ ),∀s1, s2 ∈ G, ξ ∈ g∗ (146)

This Koszul study of the moment mapµ equivariance, and the existence of an
affine action of G on g*, whose linear part is the coadjoint action, for which the
moment µ is equivariant, is at the cornerstone of Souriau Theory of Geometric
Mechanics and Lie Groups Thermodynamics. I illustrate this importance by
giving Souriau theorem for Lie Groups Thermodynamics, and the link with,
what I call, Souriau-Fisher metric (a covariant definition of Fisher metric):

Theorem (Souriau Theorem of Lie Group Thermodynamics). Let � be the
largest open proper subset of g, Lie algebra of G, such that

∫

M
e−〈β,U (ξ )〉dλ and

∫

M
ξ.e−〈β,U (ξ )〉dλ are convergent integrals, this set � is convex and is invariant under

every transformation Adg(.). Then, the fundamental equations of Lie group thermo-
dynamics are given by the action of the group:

Action of Lie group on Lie algebra : β → Adg(β) (147)

Characteristic f unction a f ter Lie group action : � → �− 〈
θ (g−1), β

〉

(148)

I nvariance of entropy wi th respect to action of Lie group : s → s (149)

Action of Lie group on geometric heat : Q → a(g, Q) � Ad∗
g (Q) + θ (g)

(150)
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Fig. 11 Broken symmetry on geometric heat Q due to adjoint action of the group on temperature
β as an element of the Lie algebra

Fig. 12 Global Souriau scheme of Lie group thermodynamics, with entropy s(Q), geometric heat
Q element of dual Lie algebra and geometric temperature β element of Lie algebra

Souriau equations of Lie group thermodynamics, related to the moment map μ
equivariance, and the existence of an affine action of G on g*, whose linear part is
the coadjoint action, for which the moment μ is equivariant, are summarized in the
following figures (Figs. 11 and 12).
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I finally observe that the Koszul antisymmetric bilinear map cμ(a, b) �
{〈μ, a〉, 〈μ, b〉}−〈μ, {a, b}〉 is equal to Souriau Riemannian metric, introduced by
mean of symplectic cocycle. I have observed that this metric is a generalization of
the Fisher metric from Information Geometry, that I call the Souriau-Fisher metric,
defined as a hessian of the partition function logarithm gβ � − ∂2�

∂β2 � ∂2 logψ�

∂β2 as in
classical information geometry. This new definition of Fisher metric has the property
to be covariant under the action of the group G. I have established the equality of two
terms, between Souriau definition based on Lie group cocycle  and parameterized
by “geometric heat” Q (element of dual Lie algebra) and “geometric temperature” β
(element of Lie algebra) and hessian of characteristic function�(β) � − log��(β)
with respect to the variable β:

gβ([β, Z1], [β, Z2]) � 〈(Z1), [β, Z2]〉 + 〈Q, [Z1, [β, Z2]]〉 � ∂2 logψ�

∂β2
(151)

If we differentiate this relation of Souriau theorem Q(Adg(β)) � Ad∗
g (Q) + θ (g),

this relation occurs:

∂Q

∂β
(−[Z1, β], .) � ̃(Z1[β, .]) +

〈
Q, Adz1 ([β, .])

〉 � ̃β(Z1, [β, .]) (152)

−∂Q

∂β
([Z1, β], Z2.) � ̃(Z1, [β, Z2]) +

〈
Q, Ad.z1 ([β, Z2])

〉 � ̃β(Z1, [β, Z2])

(153)

⇒ −∂Q

∂β
� gβ([β, Z1], [β, Z2]) (154)

The Souriau Fisher metric I (β) � − ∂2�(β)
∂β2 � − ∂Q

∂β
has been considered by

Souriau as a generalization of “heat capacity”. Souriau called it the “geometric
capacity” and is also equal to “geometric susceptibility”.

7 Conclusion

The community of “Geometric Science of Information” (GSI) has lost a mathe-
matician of great value, who informed his views by the depth of his knowledge of
the elementary structures of hessian geometry and bounded homogeneous domains.
His modesty was inversely proportional to his talent. Professor Koszul built in over
60 years of mathematical career, in the silence of his passions, an immense work,
whichmakes him one of the great mathematicians of the XX’s century, whose impor-
tance will only affirm with the time. In this troubled time and rapid transformation
of society and science, the example of Professor Koszul must be regarded as a model
for future generations, to avoid them the trap of fleeting glories and recognitions too
fast acquired. The work of Professor Koszul is also a proof of fidelity to his masters
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Fig. 13 (on the left) Jean-Louis Koszul at Grenoble in December 1993, (on the right) last interview
of Jean-Louis Koszul in 2016 for 50th birthday of Institut Joseph Fourier in Grenoble

and in the first place to Prof. Elie Cartan, who inspired him throughout his life. Henri
Cartan writes on this subject “I do not forget the homage he paid to Elie Cartan’s
work in Differential Geometry during the celebration, in Bucharest, in 1969, of the
centenary of his birth. It is not a coincidence that this centenary was also celebrated
in Grenoble the same year. As always, Koszul spoke with the discretion and tact that
we know him, and that we love so much at home”. I will conclude by quoting Jorge
Luis Borges “Forgetfulness and memory are also inventive” (Brodie’s report). Our
generation and previous one have forgotten ormisunderstood the depth of thework of
Jean-Louis Koszul and Elie Cartan on the study of bounded homogeneous domains.
It is our responsibility to correct this omission, and to make it the new inspiration
for the Geometric Science of Information. I will conclude by requesting you to lis-
ten to the last interview of Jean-Louis Koszul for 50th birthday of Joseph Fourier
Institute [72], especially when Koszul he is passionate by “conifers and cedars trees
planted by Claude Chabauty”, or by the “pretty catalpa tree”whichwas at the Fourier
Institute and destroyed by wind, “the tree with parentheses” he says, to which he
seemed to be sentimentally attached. He also regrets that the Institute did not use
the 1% artistic fund for the art mosaic project in the library. In this Koszul family
of mathematicians, musicians, and Scientifics, there was a constant recollection of
“beauty” and “truth”. Our society no longer cares about timeless “beauty”. We have
then to extase ourself with Jean-Louis Koszul by observing beautiful “Catalpa tree”
with “Parenthese Mushroom”, before there is no longer people to contemplate them
(Fig. 13).

“Seul la nuit avec un livre éclairé par une chandelle – livre et chandelle, double îlot de
lumière, contre les doubles ténèbres de l’esprit et de la nuit. J’étudie ! Je ne suis que le
sujet du verbe étudier. Penser je n’ose. Avant de penser, il faut étudier. Seuls les philosophes
pensent avant d’étudier.» - Gaston Bachelard, La flamme d’une chandelle, 1961



380 F. Barbaresco

Appendix

Clairaut(-Legendre) Equation of Maurice Fréchet associated to “distinguished
functions” as fundamental equation of Information geometry

Before Rao [4, 124], in 1943,Maurice Fréchet [3] wrote a seminal paper introduc-
ing what was then called the Cramer-Rao bound. This paper contains in fact much
more that this important discovery. In particular, Maurice Fréchet introduces more
general notions relative to “distinguished functions”, densities with estimator reach-
ing the bound, defined with a function, solution of Clairaut’s equation. The solutions
“envelope of the Clairaut’s equation” are equivalents to standard Legendre transform
without convexity constraints but only smoothness assumption. This Fréchet’s anal-
ysis can be revisited on the basis of Jean-Louis Koszul’s works as seminal foundation
of “Information Geometry”.

I will use Maurice Fréchet notations, to consider the estimator:

T � H(X1, . . . , Xn) (155)

and the random variable

A(X ) � ∂ log pθ (X )

∂θ
(156)

that are associated to:

U �
∑

i

A(Xi ) (157)

The normalizing constraint
+∞∫

−∞
pθ (x)dx � 1 implies

that:
+∞∫

−∞
. . .

+∞∫

−∞

∏

i
pθ (xi )dxi � 1

If we consider the derivative if this last expression with respect to θ , then
+∞∫

−∞
. . .

+∞∫

−∞

[
∑

i
A(xi )

]
∏

i
pθ (xi )dxi � 0 gives:

Eθ [U ] � 0 (158)

Similarly, if we assume that Eθ [T ] � θ , then
+∞∫

−∞
. . .

+∞∫

−∞
H(x1, . . . , xn)

∏

i
pθ (xi )dxi � θ , and we obtain by derivation with

respect to θ :

E[(T − θ)U ] � 1 (159)

But as E[T ] � θ and E[U ] � 0, we immediatly deduce that:
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E[(T − E[T ])(U − E[U ])] � 1 (160)

From Schwarz inequality, we can develop the following relations:

[E(Z T )]2 ≤ E
[
Z2
]
E
[
T 2

]

1 ≤ E
[
(T − E[T ])2

]
E
[
(U − E[U ])2

] � (σTσU )
2 (161)

U being the summation of independent variables, Bienaymé equality could be
applied:

(σU )
2 �

∑

i

[
σA(Xi )

]2 � n(σA)
2 (162)

From which, Fréchet deduced the bound, rediscoved by Cramer and Rao 2 years
later:

(σT )
2 ≥ 1

n(σA)
2 (163)

Fréchet observed that it is a remarkable inequality where the second member is
independent of the choice of the function H defining the “empirical value” T , where
the first member can be taken to any empirical value T � H(X1, . . . , Xn) subject to
the unique condition Eθ [T ] � θ regardless is θ .

The classic condition that the Schwarz inequality becomes an equality helps us
to determine when σT reaches its lower bound 1√

nσn
.

The previous inequality becomes an equality if there are two numbersα and β (not
randomand not both zero) such thatα

(
H ′ − θ

)
+βU � 0,with H ′ particular function

among eligible H as we have the equality. This equality is rewritten H ′ � θ + λ′U
with λ′ a non-random number.

If we use the previous equation, then:

E[(T − E[T ])(U − E[U ])] � 1 ⇒ E
[(

H ′ − θ
)
U
] � λ′Eθ

[
U 2] � 1 (164)

We obtain:

U �
∑

i

A(Xi ) ⇒ λ′nEθ

[
A2] � 1 (165)

From which we obtain λ′ and the form of the associated estimator H ′:

λ′ � 1

nE
[
A2
] ⇒ H ′ � θ +

1

nE
[
A2
]
∑

i

∂ log pθ (Xi )

∂θ
(166)

It is therefore deduced that the estimator that reaches the terminal is of the form:
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H ′ � θ +

∑

i

∂ log pθ (Xi )
∂θ

n
+∞∫

−∞

[
∂pθ (x)
∂θ

]2
dx

pθ (x)

(167)

with E
[
H ′] � θ + λ′E[U ] � θ .

H ′ would be one of the eligible functions, if H ′ would be independent of θ .
Indeed, if we consider:

Eθ0

[
H ′] � θ0, E

[(
H ′ − θ0

)2
]

≤ Eθ0

[
(H − θ0)

2
] ∀H such that Eθ0 [H ] � θ0

(168)

H � θ0 satisfies the equation and inequality shows that it is almost certainly equal
to θ0. So to look for θ0, we should know beforehand θ0.

At this stage, Fréchet looked for “distinguished functions” (“densités distinguées”
in French), as any probability density pθ (x) such that the function:

h(x) � θ +
∂ log pθ (x)

∂θ

+∞∫

−∞

[
∂pθ (x)
∂θ

]2
dx

pθ (x)

(169)

is independant of θ . The objective of Fréchet is then to determine the minimizing
function T � H ′(X1, . . . , Xn) that reaches the bound. By deduction from previous
relations, we have:

λ(θ )
∂ log pθ (x)

∂θ
� h(x) − θ (170)

But as λ(θ ) > 0, we can consider 1
λ(θ) as the second derivative of a function

�(θ ) such that:

∂ log pθ (x)

∂θ
� ∂2�(θ )

∂θ2
[h(x) − θ ] (171)

from which we deduce that:

"(x) � log pθ (x) − ∂�(θ )

∂θ
[h(x) − θ] −�(θ ) (172)

Is an independant quantity of θ . A distinguished function will be then given by:

pθ (x) � e
∂�(θ )
∂θ

[h(x)−θ ]+�(θ)+"(x) (173)

with the normalizing constraint
+∞∫

−∞
pθ (x)dx � 1.
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These two conditions are sufficient. Indeed, reciprocally, let three functions�(θ ),
h(x) et "(x) that we have, for any θ :

+∞∫

−∞
e
∂�(θ )
∂θ

[h(x)−θ ]+�(θ)+"(x)dx � 1 (174)

Then the function is distinguished:

θ +
∂ log pθ (x)

∂θ

+∞∫

−∞

[
∂pθ (x)
∂θ

]2
dx

pθ (x)

� θ + λ(x)
∂2�(θ )

∂θ2
[h(x) − θ] (175)

If λ(x) ∂
2�(θ)
∂θ2

� 1, when

1

λ(x)
�

+∞∫

−∞

[
∂ log pθ (x)

∂θ

]2
pθ (x)dx � (σA)

2 (176)

The function is reduced to h(x) and then is not dependent of θ .
We have then the following relation:

1

λ(x)
�

+∞∫

−∞

(
∂2�(θ )

∂θ2

)2

[h(x) − θ ]2e
∂�(θ )
∂θ

(h(x)−θ)+�(θ)+"(x)dx (177)

The relation is valid for any θ , we can derive the previous expression from θ :

+∞∫

−∞
e
∂�(θ )
∂θ

(h(x)−θ)+�(θ)+"(x)

(
∂2�(θ )

∂θ2

)

[h(x) − θ ]dx � 0 (178)

We can divide by ∂2�(θ)
∂θ2

because it doesn’t depend on x .
If we derive again with respect to θ , we will have:

+∞∫

−∞
e
∂�(θ)
∂θ

(h(x)−θ)+�(θ)+"(x)

(
∂2�(θ )

∂θ2

)

[h(x) − θ ]2dx �
+∞∫

−∞
e
∂�(θ)
∂θ

(h(x)−θ)+�(θ)+"(x)dx � 1

(179)

Combining this relation with that of 1
λ(x) , we can deduce that λ(x)

∂2�(θ)
∂θ2

� 1 and

as λ(x) > 0 then ∂2�(θ)
∂θ2

> 0.
Fréchet emphasizes at this step, another way to approach the problem. We can

select arbitrarily h(x) and l(x) and then �(θ ) is determined by:
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+∞∫

−∞
e
∂�(θ )
∂θ

[h(x)−θ ]+�(θ)+"(x)dx � 1 (180)

That could be rewritten:

eθ.
∂�(θ )
∂θ

−�(θ) �
+∞∫

−∞
e
∂�(θ )
∂θ

h(x)+"(x)dx (181)

If we then fixed arbitrarily h(x) and l(x) and let s an arbitrary variable, the fol-
lowing function will be an explicit positive function given by e�(s):

+∞∫

−∞
es.h(x)+"(x)dx � e�(s) (182)

Fréchet obtained finally the function �(θ ) as solution of the equation:

�(θ ) � θ.
∂�(θ )

∂θ
−�

(
∂�(θ )

∂θ

)

(183)

Fréchet noted that this is the Alexis Clairaut Equation.
The case ∂�(θ)

∂θ
� cste would reduce the density to a function that would be

independent of θ , and so�(θ ) is given by a singular solution of this Clairaut equation,
that is unique and could be computed by eliminating the variable s between:

� � θ.s −�(s) and θ � ∂�(s)

∂s
(184)

Or between:

eθ.s−�(θ) �
+∞∫

−∞
es.h(x)+"(x)dx and

+∞∫

−∞
es.h(x)+"(x)[h(x) − θ ]dx � 0 (185)

�(θ ) � − log
+∞∫

−∞
es.h(x)+"(x)dx + θ.s where s is induced implicitly through the

constraint given by the integral
+∞∫

−∞
es.h(x)+"(x)[h(x) − θ]dx � 0.

When we known the distinguished function, H ′ is among functions
H (X1, . . . , Xn) verifying Eθ [H ] � θ and such that σH reaches for each value of θ ,
an absolute minimum, equal to 1√

nσA
. For the previous equation:
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h(x) � θ +
∂ log pθ (x)

∂θ

+∞∫

−∞

[
∂pθ (x)
∂θ

]2
dx

pθ (x)

(186)

We can rewrite the estimator as:

H ′(X1, . . . , Xn) � 1

n
[h(X1) + . . . + h(Xn)] (187)

and compute the associated empirical value:

t � H ′(x1, . . . , xn) � 1

n

∑

i

h(xi ) � θ + λ(θ )
∑

i

∂ log pθ (xi )

∂θ
(188)

If we take θ � t , we have as λ(θ ) > 0:

∑

i

∂ log pt (xi )

∂t
� 0 (189)

When pθ (x) is a distinguished function, the empirical value t of θ corresponding
to a sample x1, . . . , xn is a root of previous equation in t . This equation has a root
and only one when X is a distinguished variable. Indeed, as we have:

pθ (x) � e
∂�(θ )
∂θ

[h(x)−θ ]+�(θ)+"(x) (190)

∑

i

∂ log pt (xi )

∂t
� ∂2�(t)

∂t2

⎡

⎣

∑

i
h(xi )

n
− t

⎤

⎦with
∂2�(t)

∂t2
> 0 (191)

We can then recover the unique root: t �
∑

i
h(xi )

n .
This function T ≡ H ′(X1, . . . , Xn) � 1

n

∑

i
h(Xi ) can have an arbitrary form, that

is a sum of functions of each only one of the quantities and it is even the arithmetic
average of N values of a same auxiliary random variable Y � h(X ). The dispersion
is given by:

(
σTn

)2 � 1

n(σA)
2 � 1

n
+∞∫

−∞

[
∂pθ (x)
∂θ

]2
dx

pθ (x)

� 1

n ∂2�(θ)
∂θ2

(192)

and Tn follows the probability density:

pθ (t) � √
n

1

σA

√
2π

e
− n(t−θ)2

2.σ2A with (σA)
2 � ∂2�(θ )

∂θ2
(193)
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• Clairaut Equation and Legendre Transform

To summarize, Fréchet paper novelty, I have just observed that Fréchet intro-
duced distinguished functions depending on a function�(θ ), solution of the Clairaut
equation:

�(θ ) � θ.
∂�(θ )

∂θ
−�

(
∂�(θ )

∂θ

)

(194)

Or given by the Legendre Transform:

� � θ.s −�(s) and θ � ∂�(s)

∂s
(195)

Fréchet also observed that this function �(θ ) could be rewritten:

�(θ ) � − log
+∞∫

−∞
es.h(x)+"(x)dx + θ.s where s is induced implicitly by the con-

straints given by integral
+∞∫

−∞
es.h(x)+"(x)[h(x) − θ ]dx � 0.

This equation is the fundamental equation of Information Geometry.
The “Legendre” transform was introduced by Adrien-Marie Legendre in 1787 to

solve a minimal surface problem Gaspard Monge in 1784. Using a result of Jean
Baptiste Meusnier, a student of Monge, it solves the problem by a change of variable
corresponding to the transform which now entitled with his name. Legendre wrote:
“I have just arrived by a change of variables that can be useful in other occasions.”
About this transformation, Darboux in his book gives an interpretation of Chasles:
“This comes after a comment by Mr. Chasles, to substitute its polar reciprocal on
the surface compared to a paraboloïd.” The equation of Clairaut was introduced
40 years earlier in 1734 by Alexis Clairaut. Solutions “envelope of the Clairaut
equation” are equivalent to the Legendre transformwith unconditional convexity, but
only under differentiability constraint. Indeed, for a non-convex function, Legendre
transformation is not defined where the Hessian of the function is canceled, so that
the equation of Clairaut only make the hypothesis of differentiability. The portion
of the strictly convex function g in Clairaut equation y = px – g (p) to the function
f giving the envelope solutions by the formula y = f (x) is precisely the Legendre
transformation. The approach of Fréchet may be reconsidered in a more general
context on the basis of the work of Jean-Louis Koszul.
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