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2. Bibliometric Delineation of Scientific Fields

Michel Zitt, Alain Lelu, Martine Cadot, Guillaume Cabanac

Delineation of scientific domains (fields, areas of
science) is a preliminary task in bibliometric stud-
ies at the mesolevel, far from straightforward in
domains with high multidisciplinarity, variety, and
instability. The Sect. 2.2 shows the connection of
the delineation problem to the question of dis-
ciplines versus invisible colleges, through three
combinable models: ready-made classifications of
science, classical information-retrieval searches,
mapping and clustering. They differ in the role and
modalities of supervision. The Sect. 2.3 sketches
various bibliometric techniques against the back-
ground of information retrieval (IR), data analysis,
and network theory, showing both their power
and their limitations in delineation processes. The
role andmodalities of supervision are emphasized.
The Sect. 2.4 addresses the comparison and com-
bination of bibliometric networks (actors, texts,
citations) and the various ways to hybridize. In the
Sect. 2.5, typical protocols and further questions
are proposed.
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2.1 Shaping the Landscape of Scientific Fields

Collecting literature that is both relevant and specific
to a domain is a preliminary step of many scien-
tometric studies: description of strategic fields such
as nanosciences, genomics and proteomics, environ-
mental sciences; research monitoring and international
benchmarks; science community analyses. Although
our focus here is on the intermediate levels, informally
described in such terms as areas, specialties, subfields,
fields, subdisciplines. . . this subject is connected to
general science classification and, at the other end of
the range, to narrow topic search.

In Sect. 2.2 we place delineation at the crossroads
of two concepts: the first one is disciplinarity (what
is a scientific discipline?), which crystallizes various
dimensions of scientific activity in epistemology and

sociology. The second one is invisible colleges in res-
onance with the core of bibliometrics, the study of
networks created explicitly or implicitly by publishing
actors. From this point of view, domains of science can
be viewed as a generalized form of invisible colleges,
sometimes in the form of relatively dense and segre-
gated areas—at some scale. In other cases however,
the structure is less clear and bounded, with high lev-
els of both internal diversity and external connections
and overlaps. Given a target domain, its expected diver-
sity, interdisciplinarity, and instability are challenging
issues. We outline the main approaches to delineation:
external formalized resources, such as science clas-
sifications; ad hoc information retrieval (IR) search;
network exploration resources (clustering–mapping).
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Section 2.3 is devoted to the main approaches in
domain delineation, IR search, and science clustering–
mapping, when off-the-shelf classifications are not suf-
ficient. Both take root in the information networks of
science, but start from different vantage points, with
some simplification: ex ante heavy supervision for IR
search, typically with bottom-up ad hoc queries; ex post
supervision for bibliometric mapping, with top-down
pruning. In difficult cases, these approaches appear
complementary, often within multistep protocols. As
a result of the complex structure and massive over-
laps of aspects of science, of the multiple bibliometric
networks involved, of the multiple points of view, the
frontiers are far from unique at a given scale of observa-
tion. The experts’ supervision process is a key element.
Its organization depends on the studies’ context and

demand, to reach decisions through confrontation and
negotiation, especially in high-stakes contexts. Before-
hand, we shall briefly address the toolbox of data
analysis methods for clustering–mapping purposes.

Section 2.4 focuses on the multinetwork approach
for delineation tasks, stemming from pragmatic prac-
tices of information retrieval (IR) and bibliometrics.
The main networks are actor’s graphs and other rela-
tions connected with invisible colleges based on doc-
uments and their main attributes, texts, and citations.
Other scientometric networks (teaching, funding, sci-
ence social networks, etc.) offer potential resources.
The hybridization covers a wide scope of forms. There
is a strong indication that multinetwork methods im-
prove IR performance and offer a richer substance to
experts’/users’ discussions.

2.2 Context

2.2.1 Background: Disciplinarity
and Invisible Colleges

Generally speaking there is no ground truth basis for
defining scientific domains. Given a target domain,
assigned by sponsors in broad and sometimes fuzzy
terms, delineation is the first stage of a bibliometric
study. It is tantamount to a rule of decision involv-
ing sponsors/stakeholders, scientists/experts, and bib-
liometricians on extraction of the relevant literature.
Delineation also matters as research communities are
an object of science sociology as well as a playground
for network theoreticians.

The delineation of scientific domains should be un-
derstood in the context of the structure of science and
scientific communities, especially through the game
between diversity, source of speciation, and interdisci-
plinarity drive towards reunification. Disciplinarity and
invisible colleges are two concepts from the sociology
of science that symbolize two kinds of communities,
the first one more formal and institutional, the sec-
ond one constructed on informal linkages made visible
by bibliometric analysis of science networks. The tra-
dition of epistemology has contributed to highlight
the specificity of science by contrast to other concep-
tions of knowledge. Auguste Comte proposed the first
modern classification of science and at the same time
condemned the drift of specialization [2.1], considered
a threat to a global understanding of positive science.
In reaction both to epistemology and normative Mer-
tonian tradition [2.2, 3], Kuhn emphasized the role of
central paradigms in disciplines at some point of their
evolution [2.4]. The post-Kuhnian social constructivism

proceeded along two lines—at times conflicting [2.5]—
of relativist thinking: the strong programme (see Barnes
et al. [2.6]) and the no less radical actor–network the-
ory (ANT). The first one was initiated by Barnes and
Bloor [2.7] and flourished in the science studies move-
ment [2.8, 9]. The ANT also borrowed from Serres
(translation concept [2.10]) and from the poststruc-
turalist French theory (Foucault, Derrida, Bourdieu,
Baudrillard), see [2.11–13]. These schools of thought
emphasize disciplinarity rather than unity. Lenoir notes
that [2.14, pp. 71–72, 82]:

A major consequence of [social constructivism]
has been to foreground the heterogeneity of sci-
ence. [. . . Disciplines are] crucial sites where the
skills [originating in labs] are assembled and polit-
ical institutions that demarcate areas of academic
territory, allocate privileges and responsibilities of
expertise, and structure claims on resources.

Bourdieu stressed the importance of personal rela-
tionship and shared habitus. Disciplines exhibit both
a strong intellectual structure and a strong organization.
The institutional framework, with, in most countries,
an integration of research and higher education sys-
tems, ensures evaluation and career management. Some
communities coin their own jargon, amongst signs of
differentiation, and norms and patterns. Potentially, all
dimensions of research activity (paradigms and the-
ories, classes of problems, methodology and tools,
shared vocabulary, corroboration protocols, construc-
tion of scientific facts and interpretation) appear as
discipline-informed, with particular tensions between
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superdisciplines, natural sciences and social sciences
and humanities. Scientists discuss, within their own dis-
ciplines, the subfield breakdown and the structuring role
of particular dimensions, for example research objects
in microbiology, versus integration drive [2.15, 16].

The endless process of specialization and speciation
in science, erecting barriers to the mutual understanding
of scientists, is partly counteracted by interdisciplinary
linkages which maintain and create solidarity between
neighbor or remote areas of research. Piaget [2.17]
coined the term transdisciplinarity as the new paradigm
re-engaging with unity of science. A few rearrange-
ments of large magnitude, such as the movement of
convergence between nanosciences, biomedicine, in-
formation, and cognitive sciences and technologies
(NBIC, Nanotechnology, biotechnology, information
technology, and cognitive science; concept coined by
NSF (National Science Foundation) in 2002), tend to
reunite distant areas or at least create active zones of
overlap.

In contrast with disciplinarity, the concept of invis-
ible college in its modern acceptation, popularized by
Price and Beaver [2.18] andCrane [2.19], chiefly refers
to informal communication networks, personal relation-
ship, and possibly interdisciplinary scope. These direct
linkages tend to limit the size of the colleges, although
no precise limit can be given. Science studies devote
a large literature to those informal groups, which exem-
plify how networks of actors operate at various levels
of science [2.20, 21].

Although more formal expressions emerge from the
self-organization of those microsocieties (workshops,
conferences, journals), the invisible colleges do not
claim the relative stability and the social organization
of disciplines. The various communication phenom-
ena of the colleges are revealed by sociological studies
or, more superficially but systematically, by analysis
of bibliometric networks such as coauthorship, text
relations and citations. The bibliometric hypothesis as-
sumes that the latter process mirrors essential aspects
of science: the traceable publication activity, in a broad
sense, expresses the collective behavior of scientific
communities in most relevant aspects (contents and cer-
tification, production and structure of knowledge, dif-
fusion and reward, cooperation and self-organization).
It does not follow that bibliometrics can easily opera-
tionalize all hypotheses [2.22]. Affiliations can, in the
background, connect to the layers of academic institu-
tions or corporate entities. Mentions to funding bodies
are increasingly required in articles reporting grant-
supported works. These relations, however, as well
as personal interactions, generally require extrabiblio-
metric information. Variants of the invisible colleges

in sociology of science are known as epistemic com-
munities, involving scientists and experts with shared
convictions and norms [2.8, 23] and community of prac-
tice [2.24]. The mix of behavior, stakes and power
games, in the interaction of virtual colleges and insti-
tutions, remains an appealing question. A revival of the
interest for delineation studies has been observed at the
crossroads of sociology of science and analyses of net-
works [2.25, 26].

Disciplinary views, as well as colleges revealed by
bibliometrics, lead to different partitions of literature,
depending on the vantage points. In particular, biblio-
metricians can be confronted with conflictual situations
when revealed networks and institutional normative
perceptions and claims as to the disciplinary structure
and boundaries diverge. The exercise of delineation
generally consists in reaching some form of consen-
sus, or at least a few consensual alternatives amongst
sponsors, stakeholders, experts, and scientists. The tool-
box contains information retrieval, data analysis, and
mapping. Bibliometricians act as organizers of experts’
supervision, suppliers of quantitative information, and
facilitators of negotiations (Fig. 2.1).

2.2.2 Operationalization: Three Models
of Delineation

In their review of (inter)disciplinarity issues, Sugimoto
and Weingart [2.27] stress that the rich conceptual-
ization of disciplinarity, quite elaborate in sociology
and iconic of science diversity, does not imply clear
operationalization solutions for defining fields. Sci-
entists’ claims and co-optation (“Mathematicians are
people who make theorems” with several formula-
tions, including a humoristic one by Alfréd Rényi),
university organizations and traditions, epistemology,
sociology, bibliometrics offer many entry points. The
stakes associated to disciplinary interests and funding,
for both scientists and policy makers may interfere
with definitions. Introducing the national dimension,
for example, shows that the coverage of disciplines
is perceived differently in national research systems.
Bibliometrics cannot capture the deep sociocognitive
identity of disciplines but contributes to enlighten some
of the facets that collective scientists’ behavior let
appear. The difficulty extends to multidisciplinarity
measurement.

In practice, the description of disciplines available
in scientific information systems takes the form of clas-
sification schemes at some granularity (articles, jour-
nals) from a few sources: higher education or research
organizations for management and evaluation needs (in-
ternational bodies or national institutions, for example
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Ex ante supervision
IR search

Ex post supervision
extraction on maps

Delineation solutions on
bibliometric networks

ready-made/tailor-made

Actors’ models of the domain
sponsors/stakeholders/

scientists/experts...

N

Backround relations: combination/negotiation

Delineation ways
Feedback

N

Fig. 2.1 Actors’ models/bibliometric
models. This scheme evokes the
interaction between actors’ mental or
social models of science, disciplines,
and domains on the one hand
and models from data analyses
(clustering–mapping) on bibliometric
data sources, based on different
methods and networks on the other.
The two sides are engaged separately
or together in negotiated combinations
to reach (almost) consensual views.
Two ways of domain delineation are
singled out, ad hoc IR search and
extraction from maps, with different
degrees and moments of supervision.
A third way, allowing direct IR search,
supposes permanent classification
resources

the National Center for Scientific Research (CNRS)
in France); schemes associated to databases from aca-
demic societies, generally thematic; and/or from pub-
lishers or related corporations (Elsevier, ISI/Thomson
Reuters/Clarivate Analytics) dedicated to scientific in-
formation retrieval.

We term model A the principle of these insti-
tutional science classifications, which do not chiefly
proceed from bibliometrics but from the interaction
between scientists and librarians. Subcategories and de-
rived sets offer ready-made delineation solutions. The
effect of methodological options, the social construc-
tion of disciplines by institutions or scientific societies,
with struggles for power and games of interests are un-
likely to yield convergence: the various classifications
of science available, not necessarily compatible, should
be taken with caution. Depending on the update system,
they also tend to give a cold image of science. Often
based on nonoverlapping schemes, they tend to han-
dle multidisciplinarity phenomena poorly. Resources
associated with classifications in S&T databases which
often include various nomenclatures (species, objects)
are a distinct advantage. With its limitations this model
nevertheless offers a rich substance to bibliometric
studies. Since the development of evaluative sciento-
metrics in the 1970s, in the wake of Garfield and Narin’s
works, categories are used as bases for normalization
of bibliometric measures, especially citation indicators,
but classification-free alternatives exist (Sect. 2.3.2).
The rigidity of classifications has an advantage, mak-
ing a virtue out of a necessity, the easy measure of
knowledge exchanges between categories over time.

Techniques of coclassification [2.28, 29], coindex, or
coword methods (see below) make it possible to tran-
scend the rigidity of the classification scheme.

The concept of virtual college, originally thought
of as micro- or mesoscale communities with informal
contours, exchanging in various ways, can be general-
ized to communities in science networks at any scale.
Since the 1980s, this is implicit in most bibliometric
studies [2.30]. Global models of science, either small
worlds or self-similar fractal models, are consistent
with this perspective. This scheme, termed here model
C, is the very realm of bibliometrics. Formal and insti-
tutional aspects are partly visible through bibliometric
networks but need other scientometric information on
institutional structure of science systems. Bibliometrics
and also scientometrics are blind to other networks/
relations such as interpersonal networks and to the
complete picture of science funding and science soci-
ety relations. It follows that the delineation of fields
in model A, which accounts for complex mixes non-
totally accessible to bibliometric networks, cannot be
retrieved by model C approaches. The other way round,
model C makes visible implicit structures ignored by
the panel of actors involved in model A classification
design.

For large academic disciplines, model C merely
proposes high-level groupings which might emulate the
categories disciplines from model A and share the same
label, however with a quite coarse correspondence. In
the practice of model C, large groups receive a sort
of discipline label through expert supervision. Neither
the bibliometric approach nor model A have the prop-
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erty of uniqueness. Various tests were conducted by
external bibliometricians on SCI-WoS (Science Cita-
tion Index of the Web of Science) subject categories,
and the agreement is not, usually, that good [2.31] and
the existing ready-made classifications cannot pretend
to the status of ground truth or gold standard for do-
main delineation. Depending on the organization, the
clustering–mapping operations often fulfill two needs in
bibliometric studies, first helping domain delineation,
secondly identifying subdomains/topics within the tar-
get. In the absence of ground truth, the challenge of
model C is to find trade-offs for reflecting a fractal re-
ality quite difficult to break down, since boundaries are
hardly natural except for configurations with clear lo-
cal minima. They are then subject to optimization with
partial information and negotiations [2.32, 33].

Model B based on IR search, borrows from both
A and C. In model A, the operationalization of dis-
cipline definition and classification relied on heavily
supervised schemes, aiming chiefly at information re-
trieval. Model B shares the same ground, with an ad
hoc search strategy established by bibliometricians and
experts for the needs of the study. Ad hoc search is
sometimes necessary in order to go beyond the syn-
thetic views provided by clustering and mapping, and
to address analytical questions from users (in terms of
theory, methods, objects, interpretation). The default
granularity is the document level.

Table 2.1 Typical features of the three models for delineating scientific fields

Model A Model B Model C
Ready-made breakdown and tools Ad hoc IR search Bibliometric networks

Basic concept Science classifications and nomencla-
tures

Union of queries Groupings in science networks, gener-
alizing the concept of invisible colleges

Origin Academic societies and database
providers. Originally little/no input
of bibliometrics

Publication records (e.g., article meta-
data) and possibly full text

Analysis of bibliometric networks from
any field in publication records

Structure Classification schemes, often hierar-
chical and hard breakdown (categories:
subdisciplines, fields, specialities, jour-
nals, etc.)

Categories: only when at low risk (e.g.,
core categories)

Networks and clusters/groups at
various scales (actors, topics, docu-
ments. . . )

Supervision/
expertise

Heavy ex ante embodied input by
scientists, experts, librarians

Heavy involvement of scientists, ex-
perts, librarians in conception/check of
queries

Ad hoc softer supervision at various
stages (mapping)

Data–granularity Richness of added metadata, espe-
cially keywords and indexes of objects
default granularity: category

All available information, especially
text fields, citation, authors’ affiliations
Default granularity: document

All available information, especially
text fields, citation, authors’ affiliations
Default granularity: cluster

Semantic aspects Thesauri, ontologies Structure of queries, use of ready-made
resources

Latent or explicit dimensions in net-
works

Time features Relative stability of framework, fa-
voring fixed-structure longitudinal
analysis, at the expense of tensions in
the system between updates

No structural constraint Immediacy and aptitude to dynamic
analysis of changing entities

The three models can incorporate a semantic folder.
Some indexing and classifications systems provide
elaborate structures of indexes and keywords: thesaurus
and ontologies (Sect. 2.2.4). Model B depends on ex-
pert’s competence and resources of queried databases
to coin semantically robust queries. Model C can treat
metadata of controlled language, indexes of any kind,
as well as natural language texts, and reciprocally shed
light, through data/queries treatment, on the revealed
semantic structures of universes.

Reflexivity is present under many aspects: scientists
are involved in heavy ex ante input in ready-made clas-
sifications (model A), in IR ad hoc search (model B),
and in softer ad hoc intervention on bibliometric maps
(model C). The supervision/expertise question goes
beyond within-community reflexivity, with partners as-
sociated to projects: decision-makers and stake-holders
and bibliometricians.

Table 2.1 sums up the main features of the three
models. They are just archetypes: in practice, blend-
ing is the rule. If classical disciplinary classification
schemes belong to the first model, the Science Citation
Index and variants incorporate bibliometric aspects.
Purely bibliometric classifications, if maintained and
widely available, give birth to ready-made solutions.
In the background of the three models, the progressive
rapprochement of bibliometrics and IR tools, addressed
below in Sect. 2.3 should be kept in mind.
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2.2.3 Challenges at the Mesolevel

Interdisciplinarity
Interdisciplinarity is quite an old question and rose to
the forefront in the early 1970s with an OECD (Orga-
nization for Economic Cooperation and Development)
conference devoted to the topic, which gave rise to
a wealth of literature and programs. The distinction be-
tween multi-, inter-, and transdisciplinarity formulates
various degrees of integration, see [2.5, 34]. As Choi
and Park put it [2.35]:

Multidisciplinarity draws on knowledge from dif-
ferent disciplines but stays within their boundaries.
Interdisciplinarity analyses, synthesizes and har-
monizes links between disciplines into a coordi-
nated and coherent whole.

Jahn et al. [2.36] examine two interpretations of trans-
disciplinarity in literature. Both make sense in a de-
lineation context. One privileges the science–society
relationship: integration between social sciences and
humanities (SSH) and natural sciences with the partic-
ipation of extrascientific actors, as a response to heavy
and controversial socioscientific problems such as cli-
matic change, genetically modified organisms, medical
ethics, etc. The second interpretation considers that
transdisciplinarity simply pushes the logic of interdisci-
plinarity towards integration. Russell et al. [2.37], cited
by Jahn et al. [2.36],

emphasize that where interdisciplinarity still relies
on disciplinary borders in order to define a com-
mon object of research in areas of overlap [. . . ]
between disciplines, transdisciplinarity truly trans-
gresses or transcends [them].

Klein [2.38] andMiller et al. [2.39] stress the theoretical
and problem-solving capability of the transdisciplinary
view. Many publications evoke the paradox of multi-
disciplinarity, a source of radical discoveries, laboring
however to convince evaluators in the science reward
system. Yegros-Yegros et al. [2.40] list a few controver-
sial studies on the topic, and note a specific difficulty
for distal transfers. Solomon et al. [2.41] recall that the
impact of many multidisciplinary journals is mislead-
ing in this respect, since their individual articles are not
especially multidisciplinary.

Bibliometric operationalization has to account for
those different multi/inter/transdisciplinarity forms.
Multidisciplinarity involves sustained knowledge ex-
changes in a roughly stable structure; interdisciplinar-
ity, with an organization and systematization nuance,
supposes strong exchanges creating some structural

strain, between domain overlap and autonomization of
merging fractions; transdisciplinarity paves the way for
the autonomy of the overlapping region, within the
strong interpretation involvement of SSH and possi-
bly of extrascientific considerations. Clearly model C is
apter than A to depict those forms and their transitions
when they occur, rather than waiting for the institution-
alization of the emerging structures.

Interdisciplinarity may be outlined at the individ-
ual level by copublications of scholars with different
educational or publication backgrounds, by measures
of knowledge flows (citations), contents proximity, au-
thors’ coactivity or thematic mobility—if such data
exist [2.42]. Other sources include joint programs,
joint institutions or labs claiming disciplinary affilia-
tion, generally found in metadata. Most disciplinary
databases lagged behind the Garfield SCI model as to
the integral mention of all authors’ affiliations on an
article. The large scope of bibliometric measures of
multidisciplinarity was reviewed in many articles, e.g.,
[2.27, 43].

In model A the first entry point to multidisciplinary
phenomena is the category classification schemes, with
measures of knowledge exchanges by citation flows
between categories (Pinski and Narin’s seminal work
on journal classifications [2.44], Rinia et al. [2.45]),
transposable to textual proximity (on patents [2.46]) or
authors coactivity. Despite the heavy input of experts
in science classification, the delimitation of particular
fields varies across information providers and none can
be held as a gold standard. It finds its limits in the inertia
and often the hard scheme of classes, albeit the derived
coclassification and coindex treatments noticed above
relax the constraint and instil some of the bibliometric
potential of model C.

Model C is more realistic in depicting the combi-
natory, flexible, multinetwork relationships in science
and the demography of topics. Ignoring disciplinarity
as such, it conveys a broader definition of interdisci-
plinarity, ranging from close to distant connections, the
latter loosely interpretable, in the common acceptation,
as interdisciplinary and possibly forerunners of more
integrated relations. More generally, the network per-
spective of model C builds bridges between networks
formalization and scientific communities life, leaving
open the question of how profoundly the sociocogni-
tive phenomena are captured. Data analysis methods
such as correspondence analysis (CA), latent seman-
tic analysis (LSA), latent Dirichlet allocation (LDA)
addressed below, claim light semantic capabilities at
least. Bibliometrics cannot substitute for sociological
analysis, which exploits the same tools but goes fur-
ther with specific surveys. Similarly, it is dependent
on computational linguistics and semantic analysis for
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deep investigations of the knowledge contents. Model
C is a potential competitor for offering taxonomies,
with recent advances (Sect. 2.2.4). It does not follow
that dynamics captured by this model are easy to han-
dle: for example, flow variations in a fixed structure
(A) read more conveniently than multifaceted structural
change (C).

Internal Diversity
Diversity and multidisciplinarity are two facets of
a coin. Internal diversity in a delineation process quali-
fies communities inside the target domain. Figure 2.2b,c
expresses the internal diversity of multidisciplinary do-
mains, already striking for nanosciences and massive
for proteomics (Fig. 2.2).

Internal diversity is treated in quite different ways
depending on the model. In the cluster analysis part
of model C, the balance of internal diversity and ex-
ternal connectivity (multidisciplinarity in the looser
sense) is part of the mechanism which directly or indi-
rectly rules the formation of groups, with a wide choice
of protocols. Many solutions of density measurement
are available in clustering or network analysis, with
some connections with diversity measures developed
in ecology and economics especially. The synthetic
Rao index discussed by Stirling [2.49] combines three
measures on forms/categories: variety (number of cate-
gories), balance (equality of category populations), and
disparity (distance of categories). Delineation through
mapping will use smaller scale clusters rather than at-
tempting to capture the target as a whole large-scale
cluster. There is no risk of missing large parts of the
domain, but the way the different methods conduct the
process raises questions about the homogeneity of clus-
ters obtained and the loss of weak signals especially in
hard clustering (Sect. 2.3).

In model B internal diversity, especially when gen-
erated by projected multidisciplinarity, is a threat on
recall. Entire subareas may be missed out if the diver-
sity in supervision (panels of experts) does not match
the diversity of the domain. Unseen parts will alter the
results. In contrast, on prerecognized areas, model B
can be tuned to recover weak signals.

In model A, the existence of a systemic silence risk
particularly depends on how interdisciplinary bridges
are managed.

Unsettlement
The third challenge of domain delineation lies in
the science network dynamics. Conventional model A
classifications hardly follow evolutions and need peri-
odic adjustments. The convenience of measures within
a fixed structure is paid for by structural biases. Bib-
liometric mapping can translate evolutions in cluster

or factor reconfiguration, but the handling of changes
in a robust way remains delicate (Sect. 2.3). Model B
pictures networks, but intuitively, a fast rhythm of
reconfiguration in the somewhat chaotic universe of
science networks makes it particularly difficult to set-
tle delineation on firm roots. This casts a shadow on
the time robustness of the solutions reached on one-
shot exercises, but also on the predictive value of
extrapolations on longitudinal trends. We will return
later to dynamic studies and semantic characterization
(Sect. 2.3.2). Emerging domains seldom embody insti-
tutional organization but bear bibliometric signatures
of early activity. The difficulty is to capture weak sig-
nals with a reasonable immediacy. Fast manifestations
of preferential attachment around novel publications,
whatever the measure (citations, concept markers, or
altmetric linkages) are amongst the classical alerts of
topic emergence at small scale, to confirm by later local
cluster growth.

Source Coverage
For memory’s sake, the question of data coverage is
recurrent in practical bibliometrics and is raised at
the delineation stage of any study. The literature on
the subject is abundant, conveying different points of
view: Hicks [2.50] first stressed the limitations of both
the reference database SCI and the mapping algorithm
of cocitation for research policy purposes. Moed’s re-
view [2.51, esp. Sect. 6.2.2] and Van Raan et al. [2.52]
showed the differential coverage of disciplines by jour-
nals in SCI-WoS using references to nonsource items.
Keeping pace with the growth of visible science is an-
other challenge. The latest United Nations Educational,
Scientific and Cultural Organization (UNESCO) sci-
ence report estimates that 7:8 million scientists world-
wide publish 1:3 million publications a year [2.53].
SCI-WoS producers proposed new products beginning
to fill the gap of book literature, essential to social
sciences and humanities (SSH) and conference pro-
ceedings, essential to computer science [2.54]. The
coverage of social science and humanities with issues
of publication practices and national biases was ad-
dressed in many works, e.g., [2.55–57]. This is distinct
from the within-discipline approach where an exten-
sive coverage causes instability of indicators due to tails
(language biases, national journals biases), to document
types or adaptation issues [2.58–61]. Former studies’
figures are outdated but the basic principles remain.

Extensive databases with enhanced coverage for
IR purposes (modern WoS, Scopus) might require
truncation of tails for comparative international stud-
ies. The PageRank selection tool limits the noise of
a massive extension of sources in Google. However,
Google Scholar is not considered a substitute for biblio-
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Fig. 2.2a–c Map of science and multidisciplinary projections. (a)Aworld-map-type science map from a spherical repre-
sentation [2.47]. (b) and (c) Hotspots of activity of nanoscience and proteomics projected in a fraction of a global science
map. It basically crosses the map’s holistic picture with an overlay of hits from simple term queries. After Boyack and
Klavans [2.48] J

graphic databases for common librarian tasks, but rather
a complement especially for coverage extension in long
tails [2.62] with variations amongst disciplines. The
same applies to another large bibliographic database:
the Microsoft Academic Graph [2.63–65]. The lack
of transparency in the inclusion process and the lack
of tools beyond original ranking (sorting, subject fil-
ters) are stressed by Gray et al. [2.66]. Strong concerns
with the quality of bibliographic records were also
reported [2.67, 68]. The coverage of databases has re-
cently been compared by several authors [2.69, 70],
with an extension to alternative sources such as altmet-
rics: http://mendeley.com, http://academia.edu, http://
citeulike.org, http://researchgate.com, http://wikipedia.
org, http://twitter.com, etc. [2.71, 72]. Online personal
libraries like Mendeley shed new light on knowledge
flows between disciplines through publication records
stored together [2.73]—a kind of cocitation data from
readers instead of authors. In addition, these sources,
often difficult to qualify properly [2.74], have been
addressed by altmetric studies [2.42, 75, 76]. The way
scientists and the general public communicate about
science on (social) media is field-dependent and it is
not easy for now to anticipate the complementary role
of altmetrics and traditional data in delineation of fields.
Altmetric resources can help exploratory and supervi-
sion tasks.

In emerging and multidisciplinarity topics that typi-
cally justify careful delineation, controversies and con-
flicting interests are frequent and the importance of
transdisciplinary problems makes the issues of sources
coverage, experts panel selection, and supervision orga-
nization more acute.

2.2.4 Ready-Made Classifications

Classifications
Table 2.2 presents some types of science classifica-
tions valuable in domain delineation. These coexist-
ing classification schemes reflect various perspectives,
such as cognitive, administrative, organizational, and
qualification-based rationales according to Daraio and
Glänzel [2.77] who stress the difficulties arising when
trying to harmonize them.

The first named classifications directly stem from
professional expertise of scientists and librarians (pure
model A). Some are linked to institutional or national
research systems, mainly oriented towards staff man-

agement or evaluation, or international instances (UN-
ESCO). More relevant for bibliometric uses are classi-
fications within complete information systems on S&T
literature, proceeding from a few sources: specialized
academic societies (CAS (Chemical Abstracts Service),
Inspec, Biosis, MathSciNet, Econlit, etc. which usually
extend beyond their core discipline) and/or scientific
publishers, and patent offices for technology. Classi-
fications are typically hierarchical, complemented by
metadata (keywords of various kinds, indexes from
object nomenclatures: vegetable or chemical species,
stellar objects, and so on).

Table 2.2 Science classifications

1. International classifications, often high level. OECD
high-level a.k.a. Frascati Manual. Fields of science in-
troduced in 2002. Last revision in 2007. Correspondence
table with WoS [2.78]. Six major fields were subcatego-
rized.

2. Institutional nomenclature frameworks (ex. CNRS
sectionsa). Reflects the vision of the institution and
its involvements.

3. Bibliographic databases from science societies. Involve
nomenclatures and/or classifications, with a disciplinary
focus, sometimes very large (ex. Chemical Abstracts
Service CAS). Typically based on a classical documen-
tation system, with heavy expert input. Another example
of classification in computer science: association of
computer machinery classificationb 1964–2012.

4. Alternative ISI model ISI (Institute for Scientific In-
formation)/Thomson/Thomson Reuters/Clarivate;
Scopus/SCImago Journal Rankingsc (SJR) as “a pub-
licly available portal that includes the journal and
country indicators developed from the information
contained in the Scopus database.” First used the edi-
torial entity journal as the basic molecule, and impact
as a principle of selection (see historical account by
Garfield [2.79]). Extensions at a more detailed level.
The balance expertise/bibliometrics to design subject
categories is unclear (see WoS notices on the topic
and [2.80, p. 1113]). Gives a one- or multilevel hierar-
chy of groups. The database offers both nonoverlapping
schemes (essential indicators) and overlapping schemes
(SCI-WoS).

5. Bibliometric mapping classifications, either at the jour-
nal or the document level: tailor-made maps potentially
usable as permanent resources for public purposes.

a http://www.cnrs.fr/comitenational/english/section_acc.htm
b http://www.acm.org/about/class
c http://www.scimagojr.com/aboutus.php

http://mendeley.com
http://academia.edu
http://citeulike.org
http://citeulike.org
http://researchgate.com
http://wikipedia.org
http://wikipedia.org
http://twitter.com
http://www.cnrs.fr/comitenational/english/section_acc.htm
http://www.acm.org/about/class
http://www.scimagojr.com/aboutus.php
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Bibliometrics then entered the competition for
science classifications, in contrast with the tradi-
tional documentationmodel involving heavy manpower
for indexing individual documents. The prototype is
Garfield’s SCI/WoS based on the journal molecule
and a selection tool, the impact factor [2.81, 82]. The
supervision was still heavy in the elaboration of classifi-
cation, although the journal citation report is a powerful
auxiliary for actual bibliometric classification based on
journals’ citation exchanges [2.83]. The model of ci-
tation index inspired Elsevier’s Scopus [2.84, 85]. The
Google Scholar alternative, with a larger scope of less
normalized sources, is the extreme case with very lit-
tle supervision and does not include a classification
scheme.

Following Narin’s works, several journal classi-
fications were developed (factor analysis in [2.86],
core–periphery clustering in [2.87]). Many others have
been proposed over the past decades, some with over-
lay facilities for positioning activities [2.88]. Other
proposals use prior categories and expert judgments
as seeds [2.89, 90], with reassignment of individual
papers. Boyack and Klavans, whose experience cov-
ers mapping and clustering at several granularity lev-
els (journals, papers) [2.91], recently reviewed seven
journal-level classifications (Elsevier/Scopus ASJC
(All Science Journal Classification), UCSD (Univer-
sity of California San Diego), Science-Metrix, ARC
(Australian Research Council), ECOOM (The Center
for Research and DevelopmentMonitoring), WoS (Web
of Science), NSF, JID (Journal IDentification) and ten
article-level classification (five from ISI and Center for
Research Planning (CRP), four from MapOfScience,
one from CWTS (Center for Science and Technol-
ogy Studies)) [2.92]. The latter authors privilege the
concentration of references in review articles (> 100
references) considered as gold standard literature, as an
accuracy measure (a heavy hypothesis). They conclude
in favor of paper-level (versus journal-level approaches)
and in favor of direct citations (versus cocitations or
bibliographic coupling) for long-term smoothed tax-
onomies, distinguished from current literature analysis,
for which they rank first bibliographic coupling.

Those developments mark a new turn in the compe-
tition between institutional classification and bibliomet-
ric approaches for long-term classifications of science.
It is not clear, however, whether the variety of classifi-
cations from bibliometric research, not always publicly
available, can supersede the quasistandards of SCI type
for current use in bibliometric studies. High-quality
delineation of fields cannot solely rely on journal-
level granularity, and this is still more conspicuous for
emerging and complex domains.

Semantic Resources
Science institutions and database producers have a con-
tinuous tradition of maintenance of linguistic and se-
mantic resources, in relation to document indexing. The
best known is probably the MeSH (Medical Subject
Headings; National Library of Medicine) used in Med-
line/PubMed. INSPEC, CAS, and now Public Library
of Science (PLoS) offer such resources. Controlled vo-
cabulary and indexes, archetypal tools of traditional IR
search were also the main support of new coword analy-
sis in the 1980s. A revival of controlled vocabulary and
linguistic resources is observed in recent works, asso-
ciated to the description of scholarly documents [2.93]
and bibliometric mapping [2.94]. We shall return to the
role of statistical tools in the shaping of semantic re-
sources.

2.2.5 Conclusion

Science, seen through scientific networks, is highly
connected, including long-range links reflecting inter-
disciplinary relations of many kinds. Global maps of
science, with the usual reservation on methods settings
and artifacts, display a kind of continuity of clouds
along preferential directions (Fig. 2.2c, from [2.47]).
The extension of domains has to be pragmatically lim-
ited by IR trade-off with the help, in the absence of
ground truth, of more or less heavy supervision. Three
models of delineation appear: ready-made delimitation
in databases, rather limited and rigid as is, but prone
to creative diversions from strict model A (coclassifica-
tion, etc.); model B, ad hoc search strategies combining
several types of information; model C, by extraction
of the field from a more extended map, regional or
global.

Networks of science may locally show cases of do-
mains ideal for trivial delineation: a perfect correspon-
dence between the target and ready-made categories, or
insulated continents surrounded by sea. Such domains
will not require sophisticated delineation. This is the ex-
ception not the rule.

Areas such as environmental studies, nanosciences,
biomedicine, information and cognitive sciences and
technologies (converging NBIC, concept coined by
NSF in 2002) exhibit both internal diversity and strong
multidisciplinary connections. Commissioned studies
often target emerging and/or high-tech strategic do-
mains which witness science in action prone to socio-
scientific controversies à la Latour. These areas com-
bine high levels of instability and interdisciplinarity. As
to transdisciplinarity, the question arises of whether to
include SSH and alternative sources in data sources and
panels of experts.
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2.3 Tools: Information Retrieval (IR) and Bibliometrics

This section focuses on some technical approaches to
the delineation problem: information retrieval and bib-
liometric mapping. They share the same basic objects
and networks, chiefly actors and affiliations, publica-
tion supports, textual elements, and citation relations.
Although the general principles of bibliometric rela-
tion studies are quite well established, new techniques
from data analysis and network analysis, including fast
graph clustering, open new avenues for achieving de-
lineation tasks on big data at the fine-grained level. The
quality of results remains an open issue. Domain de-
lineation confronts or combines the three approaches
previously stated: ready-made categories (model A)
are seldom sufficient; we shall envision ad hoc IR
search (model B) with an occasional complement of
ready-made categories; and bibliometric processes of
mapping/clustering along the lines of model C.

2.3.1 IR Term Search

The question of delineation spontaneously calls for a re-
sponse in terms of information-retrieval search. The
only particularity is the scale of the search or more
exactly, as mentioned before, the diversity expected
in large domains, which is particularly demanding for
the a priori framework of information search. The ver-
bal description of the domain requires, beforehand, an
intellectual model of the area. In addition to the method-
ological background brought by IR models, a broad
range of search techniques address delineation issues:

� Ready-made solutions in the most favorable cases,
with previously embodied expertise, sketched
above.� Search strategies of various levels of complexity,
also depending on the type of data, relying on ex-
pert’s sayings.� Multistep protocols: Query expansion, combination
with bibliometric mapping.

IR models are outside the scope of this chapter. In
the tools section below, we recall some of the tech-
niques shared by IR and bibliometrics, especially the
vector-space-derived models.

IR Tradeoff at the Mesolevel
The recall–precision trade-off is particularly difficult to
reach at the mesolevel of domains exhibiting high di-
versity. Generic terms (say the nano prefix if we wish to
target nanosciences and technology) present an obvious
risk to precision. A collection of narrower queries (such
as self-assembly, quantum dots, etc.) is expected to

achieve much better precision. In the simpler Boolean
model, this will privilege the union operator of subarea
descriptors (examples for nanoscience [2.33, 95, 96]).
However, nothing guarantees a goodness of coverage
of the whole area by this bottom-up process. An a pri-
ori supervision of the process by a panel of experts is
required, but the experts’ specialization bias, especially
in diverse and controversial areas, generates a risk of si-
lence. Similar risks are met in the selection of training
sets in learning processes. Another shortcoming is the
time-consuming nature of supervision, again worsened
by the diversity and multidisciplinarity of the domain.
A light mapping stage beforehand may reduce the risk
of missing subareas. As mentioned above, focused IR
searches are, in contrast, able to retrieve weak signals
lost in hard clustering.

Polyrepresentation and Pragmatism
Scientific texts contain rich information, most of it
made searchable in the digital era. Pragmatically, all
searchable parts of a bibliographic record, data or
metadata are candidates for delineating domains: word
n-grams in titles, abstracts, and full texts; authors, affil-
iations, date, journal or book, citations, acknowledge-
ments, transformed data (classification codes, index,
controlled vocabulary, related papers. . . ) depending on
the database. These various elements exhibit quite dif-
ferent properties. In theoretical terms, the variety of
networks associated to these elements are one aspect of
the polyrepresentation of scientific literature [2.97]. We
will return to this question later (Sect. 2.3.2). A specific
advantage of lexical search is the easy understanding of
queries—whereas other elements (aggregated elements
such as journals; citations) are more indirect. However,
the ambiguity of natural language reduces this advan-
tage.

Bibliometric literature is packed with examples of
pragmatic delineation of domains based on IR search.
By and large, apart from ready-made schemes when
available (indexes, classification codes), a typical ex-
ploration combines a search for specialized journals if
any, and a lexical search in complement. At times, an
author-affiliation entry is used, especially in connection
with citation data. Bradford and Lotka ranked lists are
therefore good auxiliaries, with evident precautions on
journals’ or authors’ degree of specialization.

Granularity
We noted above that some ready-made classifications
such as the SCI scheme (journals or journal issues)
are essentially based on full journals—or journal sec-
tions. These ready-made categories very seldom fit the
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needs of targeted studies. Instead, ad hoc groupings
of selected journals relatively easy to set up with the
help of experts, are a convenient starting point within
a Bradfordian logic. The journal level presents obvi-
ous advantages. Journals exhibit a relative stability in
the medium term; they are institutionalized centers of
power through gatekeeping, and a (controversial) eval-
uation entity in the impact factor tradition.

However, the journal level is problematic for
delineation studies. Journals whose specialization is
such that they indisputably belong to the target domain,
can be taken as a whole, but of course target domain
literature are rarely covered by specialized journals
only, and investigations should be extended to moder-
ately or heavily multidisciplinary sources. Conditions
of diversity and multidisciplinarity—which prevail in
the targets of studies where elaborate delineation is
worthwhile—hinders the efficiency of global Bradford/
Lotka-based selections, with problems of normalization
(refer also to [2.98]). We will return to these issues in
the Sect. 2.3.2 devoted to clustering and mapping.

To conclude, the IR resources in scientific texts, data
and metadata, suggest a polyrepresentation of scientific
information (cognitive model [2.97]), which is akin to
the multinetwork representation of the scientific uni-
verse. Ingwersen and Järvelin [2.99, p. 19] propose a ty-
pology of IR models and the perspective of the cogni-
tive actor. IR protocols generally involve multistep ap-
proaches, with various core–periphery schemes. In con-
ventional search, heavy ex ante supervision is needed
for covering the variety of domains, ideally with good
analytic/semantic capability. In the absence of a gold
standard, proxy measures of relevance are needed.

Multistep Process
Multistep processes, possibly associated with combina-
tions of various bibliometric attributes, are run-of-the-
mill procedures (for example [2.32]).

Core–periphery rationale is common, in accordance
with the selective power of concentration laws, both
in IR and bibliometrics (journal cores in [2.100], co-
citation cores in [2.101], h-core in [2.102], emerging
topics in [2.103]). For example, working on highly cited
objects—authors, journals, or articles—gives a set of
reasonable size, amenable to further expansion with en-
hanced recall. Cores inspired from the Price law on
Lotka distributions or from application of the h-index
are helpful. Proxies such as seeds obtained from initial
high-precision search stages can do as well. The core
or seed expansion process is global or cluster-based.
The risk of core–periphery schemes, by and large favor-
able to robustness, is to miss lateral or emerging signals.
This may need some input of dynamic characterization
of hotspots at the fine granularity level.

A parent method is bibliometric expansion on cita-
tions, which also uses information from a first run (set
of documents retrieved by a search formula or a prior
top cited selection, considered as the core) to enhance
the recall through the citation connections, typically
operating at the document level with or without a clus-
tering/mapping step. In this line the LexCCite approach
mentioned in Sect. 2.3 relies on a default global expan-
sion, rather than a cluster-based one, to limit the risk of
an exclusive focus on cluster-level signals that would
miss across-network bridges.

Query expansion by adaptive search is along the
same lines. Interactive retrieval with relevance feed-
back identifies the terms, isolated or associated (co-
occurrences), specifically present in the most rele-
vant documents retrieved according to various mea-
sures [2.104–106]. An efficient but heavy process con-
sists in submitting the output of a search stage to
data analysis/topic modeling, able to reconstruct the
probable structure likely to have generated the data.
By providing information on the linguistic context—
also citation, authoring context, etc.—they in turn help
to improve the search formulas by a kind of retro-
querying. This ranges from simple synonym detection
to construction of topics, orthogonal or not, suggesting
the rephrasing of queries. Variants of itemset min-
ing uncovering association rules ([2.107], with earlier
forerunners) are promising in this respect (see below).
Evaluation of output from unsupervised stages can also
call for a manual improvement of queries.

Delineation protocols may also use the seed as
a training set for learning algorithms. A difference is
that core–periphery schemes usually rely on the selec-
tive power of bibliometric laws, whereas the training
set might be extracted on various sampling methods,
provided that the seed does not miss the variety of the
target. As big data grows bigger, semisupervised ap-
proaches are gaining popularity in the machine learning
community. This recent approach should prove attrac-
tive in the bibliometrics community, as there seems to
be considerable interest in linking metadata groups and
algorithmically defined communities [2.108].

To conclude on this part, whilst typical IR search
relies on an a priori understanding of the field, mul-
tistep schemes involve stages of data analyses quite
close to bibliometric mapping practices, the topic of
the next subsection. IR and bibliometrics share roots
and features, which soften the differences: adaptive
loops, learning processes, seed-expansion, and core–
periphery schemes. Bibliographic coupling, at the very
origin of bibliometric mapping, came from the IR
community [2.109] and the cluster hypothesis about
relevant versus nonrelevant documents [2.110] voices
the common interests of IR and bibliometrics, beyond



Bibliometric Delineation of Scientific Fields 2.3 Tools: Information Retrieval (IR) and Bibliometrics 37
Part

A
|2.3

the background methodology of information models
(Boolean, vector space, or probabilistic) and general
frameworks such as the above-mentioned cognitive
model. The tightening of bibliometrics–IR relations has
been echoed in a series of workshops and in dedicated
issues of Scientometrics ([2.111, 112], see also [2.113]
for a focus on domain delineation) and in the Interna-
tional Journal on Digital Libraries [2.114].

2.3.2 Clustering and Mapping

In contrast with conventional IR search, bibliometric
mapping starts at a larger extension level than the tar-
geted domain. This broad landscape, typically built by
unsupervised methods, is scrutinized by experts to rule
out irrelevant areas. The supervision task is limited to
the postmapping stage. This is in principle less demand-
ing than the a priori conception of a search formulation
or of a training set. The default solution is a zoomable
general or regional map of science, with availability and
cost constraints. The alternative is the construction of
a limited overset including almost certainly the antic-
ipated domain, using a general search set for massive
recall, an operation much lighter than setting up a pre-
cise search formula. In terms of scale, the final result is
tantamount to the outcome of a top-down elimination
process, although the selection modalities are diverse.
There is currently great interest in delineation through
mapping. IR and mapping are complementary in vari-
ous ways. Firstly, we briefly describe the data analysis
toolbox, before addressing the main bibliometric appli-
cations and a few problematic points.

Background Toolbox
The data structure of matrices in the standard bib-
liometric model allows scholars to mobilize the large
scope of automatic clustering, factor/postfactor meth-
ods, and graph analysis. Classical methods of clustering
and factor analysis continue to be used in bibliomet-
rics, but in the last decade(s) novel methods came of
age, more computer-efficient and fit for big data, an
advantage for mapping science and delineating large
domains. Starting with bibliometric data of the stan-
dard model and some metrics of proximity or distances,
clustering and community detection methods produce
groups. Elements are mapped using various dimension
reduction algorithms. Factor methods produce groups
through clustering applied to factor loadings, with an
integrated two-dimensional (2-D) or three-dimensional
(3-D) display when just two or three factors are needed
in the analysis.

A major driving force of bibliometric methodol-
ogy is the general network theory, which took large
networks of science, especially collaboration and ci-

tation, as iconic objects [2.115–117]. Quite a few
mechanisms have been proposed to explain or generate
scale-free networks since Price’s cumulative advan-
tage model for citations [2.118] along the lines of Yule
and Simon, and later studied in new terms (preferen-
tial attachment) by Albert and Barabási [2.119], see
also [2.120]. These models have some common fea-
tures with the Watts–Strogatz small worlds model, but
also differences that are empirically testable [2.121].
Amongst other mechanisms: homophily [2.122], geo-
graphic proximity [2.123], thematic proximity inferred
from linguistic or citation proximity. Börner et al.
reviewed a few issues in science dynamics model-
ing [2.124]. Of great interest in bibliometrics and es-
pecially delineation, community detection algorithms
exhibit a general validity beyond real social networks,
and belong to the general toolbox of mathematical clus-
tering and graph theory—applicable to various markers
of scientific activity, document citations, words, altmet-
ric networks, etc., see also [2.120].

Hundreds of clustering and mapping methods have
been designed during one century of uninterrupted re-
search. This section can only provide a basic overview
of the main method families, in the perspective of
domain delineation. More comprehensive descriptions
and references, as well as a basic benchmark of vari-
ous methods, applied to a sample of textual data, can be
found in [2.125].

Clustering Methods. Although hierarchical cluster-
ing algorithms sometimes seem old-fashioned because
of their computing complexity, O.n2/ in the very best
cases, some of them show good performances for rela-
tive small universes. For large ones, they can be coupled
beforehand to data-reduction stages, classical (SAS
Fastclus O.n/), preclustering algorithms for big data
(Canopy clustering [2.126]), or sampling methods. All-
science bibliometric maps use rather faster algorithms
today, not without limitations however. Discipline-level
maps, or simply internal clustering of the domain set at
various stages of delineation may still rely on the clas-
sical techniques.

Hierarchical ascending algorithms are local, deter-
ministic and produce hard clusters, with a few ex-
ceptions (pyramidal classification), properties favorable
to dynamic representations. They do not constrain
the number of clusters and provide a multiscale view
through embedded partitions, with some indication of
robustness of forms in scale changes. Most hierarchical
descending (divisive) methods are heavier. Hierarchi-
cal methods typically rely on ultrametrics, which has
downsides, see [2.125].

Amongst popular methods in bibliometrics are as-
cending methods: single linkage, average linkage, and
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Ward. Single linkage is relatively fast and exhibits good
mathematical properties in relation to spanning trees
but produces disastrous chain effects which must be
limited in various ways. Ward and especially group
average linkage give better results. Group average link-
age, advocated for bibliometric sets by Zitt and Bassec-
oulard [2.127] and used by Boyack and Klavans in
various works [2.128], is slightly biased towards equal
variance and is not too sensitive to outliers. Ward is
biased towards equal size with a strong sensitivity to
outliers. Properties and biases were studied especially
byMilligan [2.129, 130] usingMonte Carlo techniques.

Density methods are appealing: deterministic too,
local, and as such prone to dynamic representations
of publication or citation flows. DBSCAN [2.131]
(density-based spatial clustering of applications with
noise) is the most popular to the point of becoming
synonymous with density clustering. The SAS cluster-
ing toolbox includes hierarchical methods with prior
density estimation, with good properties towards sam-
pling and the ability to capture elongated or irregular
classes. However, this property is disputable in biblio-
metric uses (Sect. 2.3.2, Shape/Properties of Clusters).
More recently, density peaks [2.132] has implemented
an original and graphical semiautomatic procedure for
determining the cluster seeds.

Not directly hierarchical is the venerable K-means
clustering family, still popular, thanks both to its ex-
cellent time/memory performance and sensitivity to
different cluster densities. A shortcoming of not be-
ing deterministic, they converge to local optima of their
objective function, depending on their random (or su-
pervised) initialization. In comparative analyses, they
are not considered too sensitive to outliers. They op-
tionally allow for soft/fuzzy clusters, and approximate
dynamic data-flow analysis.

Factor methods are basically dimension-reduction
techniques, indirectly linked to the partition problem.
A quick-and-dirty heuristics for extracting a limited
number k of dominant clusters from k factors con-
sists of assigning each entity to the factor axis which
maximizes the mode of its projection, subject to the
constraint of a common factor sign for the majority of
entities assigned to this cluster—which eliminates few
of them in practice. For a more rigorous procedure,
see the descending hierarchical clustering method Al-
ceste [2.133] in the dataspace of correspondence analy-
sis. Factor methods rely on the mathematical foundation
of singular value decomposition (SVD) of data matrices
for reducing dimensionality and filtering noise. The in-
teresting metrics used by correspondence analysis (CA
[2.134]) explains the attention over half a century from
many scholars in relation to mapping or clustering lim-
ited to a few dominant factor dimensions. Dropping this

limit, i. e., taking into account factor spaces with hun-
dreds of dimensions [2.135], latent semantic analysis
(LSA [2.136]) unleashed the potential of singular value
decomposition and fostered the integration of semantics
in textual applications, in a lighter but more convenient
form than handmade ontologies, costly to edit and up-
date.

Hybrid factor/clustering methods, sometimes
coined topic models, result in representing each cluster
as a local, oblique factor, with a progressive scale from
core elements to peripheral ones, opened to fuzzy or
overlapping interpretations or extensions. Generally
powered by the expectation maximization algorithm
(EM), they converge to local optima, too. Non-negative
matrix factorization (NMF) and self-organizing maps
(SOM) are well-known examples. Axial k-means
(AKM in [2.137]) has been used in a comparative
citations/words bibliometric context (Sect. 2.4).

Also known as topic models, the probabilistic
models try to lay solid statistical foundations for
their hybrid-looking representation: they produce ex-
plicit generative probabilistic models for the utter-
ance of topics and terms [2.138]. Probabilistic LSA
(pLSA in [2.139]) and latent Dirichlet allocation (LDA
in [2.140]) are the best-known examples, claiming good
semantic capabilities. The older fuzzy C-means method
(FCM) is akin to this family, which uses the EM scheme
for converging to local optima of their objective func-
tion.

The graph clustering family, also known as net-
work analysis, or community detection methods, does
not operate on the raw (entities � descriptors) matrix,
as the previous families do, but on the square (entities
� entities) similarity matrix, whose visual counterpart
is a graph. Most of these methods operate directly on
the graph, detecting cliques or relaxed cliques (modal
classification), e.g., Louvain [2.141], InfoMap [2.142],
and smart local moving algorithm (SLMA in [2.143]).
Some of them operate on the reduced Laplacian space
drawn from the graph (spectral clustering [2.144]).
Quite a few comparative studies are available [2.145–
147].

Note on Deep Neural Networks. While neural net-
workswere somewhat in standbymode during the 1995–
2005 decade, challenged by more manageable mathe-
matical methods, several factors like the pressure of big
data availability and progress in hardware (GPU, i. e.,
graphics processing units) triggered a renewal under the
banners deep neural nets and deep learning. Allowing
learning by backpropagation of errors in many layers
networks, they gave form to the dream of knowledge ac-
quisition by growing levels of abstraction: for images,
extraction of local features; contours, homogeneous ar-
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eas, shapes; for written language: character n-grams,
words, word n-grams, expressions/phrases, sentences.
Typically, they avoid heavy natural language processing
(NLP) preprocessing (parsing, unification, weighting,
selection. . . ). These techniques are already widely used
in supervised learning, with spectacular progress in au-
tomatic translation, face recognition, listening/oral com-
prehension, with important investment from the largest
internet-related companies (e.g., Google, Apple, Face-
book, Amazon), especially. As far as informetrics and
IR are concerned, the main domain impacted so far is
logically large-scale retrieval ([2.148] which uses a ro-
bust letter-trigram-based word-n-gram representation).
There have also been some attempts in relation to non-
supervised processes for information retrieval [2.149].

A promising technique is neural word embeddings
(NWE). Millions of texts now available online make it
possible to develop vector representations of words in
a semantic space in a more elaborate way than LSA—
amethod coined neural word embeddings. For example,
the Word2Vec algorithm [2.150] processes raw texts
so as to list billions of words-in-context occurrences
(e.g., word C previous word C next word), then factor-
ize [2.151] the word� context matrix (tens of thousands
of words, a few hundreds of thousands, or millions of
unique contexts) and extract some hundreds or thou-
sands of semantic and syntactic dimensions. We will
return later to the semantic capabilities of NWE.

Note on the Definition of Distances. Whether start-
ing from a binary presence/absence matrix or from
occurrence or co-occurrence counts, some methods em-
bed a specific weighting scheme, i. e., a metric, for
computing distances, or similarities between items.
This is the case of probabilistic models, correspondence
analysis, and axial K-means. Other methods allow for
a limited and controlled choice, as aggregative hier-
archical methods do. In the case of graph clustering
methods, the user may freely choose his preferential
distance definition prior to building the adjacency ma-
trix, which adds an extra degree of freedom beyond the
choice of the degree of nonlinearity, via a threshold
value. For word-based matrices, heavier than citation-
based ones, the methods of the k-means family also
make it possible to choose a weighting scheme (Salton’s
term frequency-inverse document frequency (TF-IDF),
Okapi BestMatch25 [2.152]).

Whereas factor/SVD methods combine the metrics
and mapping capability, e.g., two-factor planes or 3-D
displays, at the native granularity level (e.g., document
� words), other mapping algorithms may operate on
rectangular or on square (distance) matrices of ele-
ments or on groups from a clustering stage, or institu-
tional aggregates (journals). Families of mapping tech-

niques rely on various principles: equilibrium between
antagonistic forces—repulsion between nodes, attrac-
tion alongside edges (e.g., the Fruchterman and Rein-
gold algorithm [2.153], implemented in Gephi [2.154],
alone or combined with clustering (Sandia VxOrd/
DrL/OpenOrd [2.155], CWTS VOSviewer [2.143]));
optimization of diverse functions: projection stress min-
imization in the case of MDS (multidimensional scal-
ing), with Euclidean distances in the case of metric
MDS, a variant of PCA (principal component analy-
sis), and other distances or nonlinear functions of these
distances in the case of nonmetric MDS, one of the
nonlinear unfolding techniques; maximizing inertia in
the case of Correspondence analysis, minimizing edge-
cuts in a 2-D projection plane; or maximizing local edge
densities [2.156].

Itemset Techniques. Itemset techniques are used for
describing a data universe in terms of simple proce-
dures, typically Boolean queries with AND, OR, and
NOT operators. This may be used for building a stable
procedural equivalent of data, e.g., for updating a de-
lineation task (like probabilistic factor analyses). It may
also be used for query expansion, as mentioned above in
Sect. 2.3.1. The problem amounts to duplicating a ref-
erence partition in a new universe: machine learning
techniques are basically fit to this problem, and, in the
particular context of textual descriptions, itemset tech-
niques. They are akin to generating Boolean queries
with AND, OR, and NOT operators, for extracting ap-
proximations of the delineated domain, within precision
and recall limits established in the machine learning
phase [2.107, 157].

A Benchmark. To illustrate the capabilities of these
various methods with an example, in the absence of
a bibliometric dataset labeled with indisputable ground
truth classes, we turned towards a reference dataset
popular in the machine learning community, the Reuters
21 578 ModApté split (the corpus description is avail-
able online at http://www.daviddlewis.com/resources/
testcollections/rcv1/. The website http://www.cad.zju.
edu.cn/home/dengcai/Data/TextData.html has made
a preprocessed version of this corpus available to the
public, as supplementary material to [2.158]). The main
features are:

� Source: A set of short texts: newswires from
Reuters’ press.� Contents: In the six-class selection used, the number
of texts (� 7000) and terms (� 4000) is sufficient
with regards to text statistics.� Class structure considered as ground truth: Built by
experts, visually glaring in Fig. 2.3: two big classes,

http://www.daviddlewis.com/resources/testcollections/rcv1/
http://www.daviddlewis.com/resources/testcollections/rcv1/
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
http://www.cad.zju.edu.cn/home/dengcai/Data/TextData.html
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one very dense, the other not, and four small classes,
two of which are linked together. In this way, two
major problems of real-life datasets are addressed:
the imbalance between cluster sizes, and between
cluster densities.

We challenge 17 clustering/mapping methods to
retrieve this class structure. The similarity of their
cluster solution to ground truth partition is measured
by two indicators, adjusted Rand index (ARI [2.159])
and normalized mutual information (NMI [2.160]).
The results are detailed in [2.125]. Let us summa-
rize them in a user-oriented view, sorted by number of
required parameters: the lesser the better, ideally, fac-
ing a bibliometric dataset without prior knowledge, no
parameter:

� Two methods of network analysis require no in-
ternal parameterization, Louvain and InfoMap.
However, the similarity matrix generally requires
a threshold setting, here fixed to 0:1 in the cosine
intertext similarity matrix. Infomap obtains the best
result in terms of NMI (0:436 value versus 0:423),
the index considered the best match for human com-
parison criteria. This value is rather poor, and this
method does not distinguish classes 1, 2, 3, 4, and
splits class 6.

nz = 1116857
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Fig. 2.3 Benchmark structure (ground
truth). Spy plot of the cosines between
document vectors of the top six classes
Reuters ModApté split collection. The
rows and column ordering is that of
the six Reuters classes. Black pixels
mean: cosine > 0:5

� Nine methods require one parameter: The three hi-
erarchical clusterings need a level cut parameter,
possibly adjusted for 6 resulting clusters, while for
CA, NMF, AKM, pLSA (probabilistic latent se-
mantic analysis), LDA and spectral clustering, the
number of desired clusters (6) has to be specified.
As the latter group converges to local optima, we
kept the best results in terms of their own objective
function out of 20 runs. The indisputable winner
is average link clustering, in both ARI (0:62) and
NMI (0:71) terms. The lists of the four follow-
ing challengers are contrasted: with regard to ARI,
first Mac Quitty hierarchical clustering (0:50), then
LDA, AKM, CA; with regard to NMI, first AKM
(0:51), then Mac Quitty, CA, LDA. If one opti-
mizes ARI over all 20 runs with prior knowledge
of the six-clusters structure—a heroic hypothesis—,
average link clustering still performs best (with
a ten-clusters cut, ARI D 0:71, NMI D 0:64) while
the followers reach, at best, ARI D 0:55 and NMI
D 0:55.� The last group of methods (ICA (independent com-
ponent analysis), DBSCAN, FCM, affinity propa-
gation, SLMA, density peaks) require at least two
parameters, a handicap in the absence of prior
knowledge of the corpus structure. SLMA obtains
the best rating (ARI D 0:60, NMI D 0:55).
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Our general conclusion is that one must be very
cautious regarding domain delineation resulting from
one run of one method. Multiple samplings, if neces-
sary, and level cuts of average links as well as multiple
runs of LDA, AKM, and SLMA may help determine
core clusters, and possibly continuous gateways be-
tween them. Limitations of this benchmark exercise
should be kept in mind. It would benefit from tests on
different reference datasets: any method can be trapped
in particular data structures, and the results cannot be
extrapolated without caution. As advocated below, pro-
cessing multiple sources (lexical, citations, authors . . . )
and investigating the analogies and differences in their
results will always prove rewarding. A number of in-
depth benchmarking studies are found for hierarchical
clustering (Milligan [2.129, 130] not covering the last
techniques), discussing the generation of test data as
well as comparisons of algorithms. For community de-
tection, usually taken as a synonym of graph-based
clustering rather than clustering of true social (ac-
tors) communities, [2.145] ranked first Infomap, then
Louvain and Pott’s model approach [2.161]. Leskovec
et al. [2.146] studied the behavior of algorithms with in-
creasing graph size. Yang and Leskovek [2.147] reflect
on the principles of clustering outcomes compared to
institutional classifications.

Bibliometric Mapping
Classical Way. Most classical bibliometric mapping,
as well as information retrieval, relies on substantive
(feature) representations of words, word combinations,
citation, indexes, and so forth. Substantive representa-
tion implies legibility and interpretation by experts or
users, and a condition for bibliometricians or sociolo-
gists to check and possibly deconstruct the document
linkages. It contrasts with featureless machine repre-
sentation applicable for example to distances of texts
(see below). In contrast, the substantive approach is
deepened in semantic studies: ontologies and semantic
networks suppose more elaborate investigation of term
relationships. Bibliometric mapping and IR techniques
are both a client of ready-made semantic resources, and
providers of studies, supported by data analyses, likely
to help the construction of thesauri and ontologies.

The standard bibliometric model starts from the
data structure of articles, essentially a series of ba-
sic article � attributes matrices, one of these reflexive:
article � cited references, where references can also
stand as attributes. The derived article � article ma-
trices (e.g., bibliographic coupling, lexical coupling)
and elements � elements matrices (e.g., coword or
profiles, cocitation or profiles) cover a wide range of
needs. Clusters of words are candidates for concep-
tual representation, concepts which in turn can index

the documents. Likewise, clustering of cited articles
reveal intellectual structures and in turn index the cit-
ing universe. Basically, the attributes (words from title,
abstract, full text; keywords list, indexes—other fields
like authoring) are processed in bags of monoterms or
multiterms, recognized expressions or word n-grams.
Standard bibliometric treatments rarely go further, se-
mantic studies do, for example by using chain modeling
of the texts. All these forms allow for control and inter-
pretation of linguistic information.

Assuming that the final purpose is to classify or
delineate literature, the access is dual: direct classifi-
cation of articles after their profile on the structuring
elements (words, cited references), or a detour by the
structuring items: word profile (especially coword),
citation profile (cocitation), index (or class profile) in-
cluding coclassification, when applicable. The basics of
citation-based mapping were established in the 1960s
and the 1970s: bibliographic coupling [2.109], chained
citations [2.162], cocitation [2.101, 163], author coci-
tation [2.164], coclassification, etc. The lexical coun-
terpart, with its first technical foundations in Salton’s
pioneer works [2.165], was reinvested by English and
French social constructivism in the 1980s [2.166–168]
with a stress on local network measures quite in line
with the development of social network analysis in
that period [2.169]. In bibliometrics, the true metric
approach of text-based classification, Benzécri’s corre-
spondence analysis [2.134], remained confidential. For
convenience reasons, many large-scale classifications
relied on proximity indexes and MDS or hierarchical
single-linkage (ISI cocitation). We return later to word–
citation comparison and combination (Sect. 2.4).

Developments. The principles above, mutatis mutan-
dis, are kept in further developments of citation map-
ping: the approach through citation exchanges, men-
tioned in Sect. 2.2, assumes predefined entities, journals
for example. At the article level, symmetrical link-
ages between articles, or between structuring elements,
are classical: large-scale cocitation (CiteSpace [2.170]).
Glänzel and Czerwon [2.171] advocated bibliographic
coupling. As already mentioned, direct citation link-
age clustering, the first benchmark for cocitation and
coupling in Small’s princeps paper [2.101], is consid-
ered as particularly able to reflect long-period phenom-
ena [2.92, 172, 173] but not short-term evolutions. It
turns out that the time range picked and the granularity
of groupings desired might suggest the choice between
the three families of citation methods to reflect structure
and changes in science.

From the theoretical point of view, cocitation (re-
spectively coword) is semantically superior to coupling,
by visualizing the structure of the intellectual (cog-



Part
A
|2.3

42 Part A Analysis of Data Sources and Network Analysis

nitive) base, but requires a secondary assignment of
current citing literature. Coupling as such, because it
by default spares the dual analysis (the cited structure;
the lexical content), is semantically poor but biblio-
graphic coupling handles immediacy better than coci-
tation does. However, this depends on the computer
constraints and the settings: the thresholding unavoid-
able in cocitation analysis drastically reduces weak
signals that are accounted for in coupling. The depen-
dence of the maximum retrieval on the threshold of
citation and the assignment strength (number of refer-
ences), in a close field, is modeled in [2.59]. Quite a few
authors compared the methods empirically [2.128] over
a short time range, [2.173, 174]. These studies are not
always themselves comparable in their criteria, nor are
they convergent in their outcome, so that it is difficult
to come to a conclusion on this basis alone.

The new data analysis toolbox (fast graph un-
folding, topic modeling) gradually pervades large-
scale studies. From the domain delineation perspective,
a general answer in terms of single best cannot be ex-
pected. The benchmark above reminds us that classical
methods, apparently outdated in the big data era, still
prove to perform quite well. Let us recall a few issues
in clustering/mapping for bibliometric purposes, espe-
cially delineation.

A few Clustering/Mapping Issues
As other decision-support tools, maps in bibliometrics
receive contrasted interpretations. In a social construc-
tivist view, maps are mainly viewed as tools of stimu-
lation of sociocognitive analysis and also as supports
of negotiation with/amongst actors. If technicalities
are not privileged, there is clear preference for local
network maps, preferably lexical or actors-based, con-
nected to sociocognitive thinking. Bibliometricians and
librarians are keener on quantitative properties and re-
trieval performances. Expectations as to ergonomics,
granularity, robustness, clusters properties, and se-
mantic depth, largely vary depending on the type of
study.

Ergonomics. Map usage benefits from new displays
with interaction facilities. A tremendous variety of
mappingmethods is available ([2.175] although in prac-
tice a few efficient solutions prevail). The progress
in interfaces (scale zooms, bridges between attributes,
interaction with users. . . ) changed the landscape of
mapping. If adding cluster features to cluster maps
is trivial [2.176], the systematization of overlay maps
by Leydesdorff and Rafols [2.177] is quite appeal-
ing. Since delineation tasks often deal with multidis-
ciplinarity, multiassignments, and cluster expansion,
various types of cross-representations (Sect. 2.4) in-

cluding overlay maps are quite convenient tools for
discussion.

Granularity. The granularity considered here is the
smallest unit handled. Progress of data analysis allows
large-scale work with a fine granularity. Document-
level maps are now regularly proposed by Boyack and
Klavans [2.91]. The classical alternative in bibliomet-
rics uses the journal molecule instead of publications,
with the advantages and shortcomings already dis-
cussed. Delineation tasks used to be conducted at the
journal level and this convenient solution can be some-
what improved using a core–periphery scheme with
multidisciplinary qualification [2.178]. The interest of
journal granularity for delineation remains dependent
on the specialization profile at the scale considered, so
is quite field-dependent. The best fit to the journal ap-
proach is found in fields with a strong editorial focus,
such as Astrophysics, but [2.179] recalls that the gen-
eral rule is the superiority of document granularity. At
the global science level, journals or even journal cate-
gories are an option for sketching great regions [2.177],
with low precision ambitions. In favor of journals, their
persistence as institutional entities with slow demog-
raphy, facilitates longitudinal approaches, again at the
expense of precision (Sect. 2.3.2, Dynamic Clustering).
Granularity does not reduce to the question of journals
versus document level. It can also suggest method-
ological choices, e.g., the family of citation method
to select, depending on the objective, taxonomies of
disciplines or finer level research fronts in a broad
sense.

Shape/Properties of Clusters. Ex post supervision of
clusters (built by unsupervised methods) is a critical
stage of studies. Discussion on the cluster aggregate
features, or sampled articles, is much easier if clus-
ters are reasonably homogenous. Therefore, the ability
to recover clusters of any shape (elongated, noncon-
vex. . . ), which is essential in other contexts (say image
analysis), may not be desirable in bibliometric map-
ping. A few strongly linked compact clusters is eas-
ier to assess than the equivalent elongated class. The
skewness of cluster distribution is another concern,
especially in citation clustering, and the inflation of mi-
croclusters with poor connections is inconvenient—an
argument voiced in favor of a direct citation approach
for high-level taxonomies. From this point of view, the
slight tendency of average linkage towards homogene-
ity and the tendency of k-means towards size balance,
giving a moderately skewed distribution of cluster size,
may be seen as desirable biases (refer to [2.146] in the
context of community detection) with respect to fur-
ther cluster supervision. As the benchmark exercise has
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shown, this does not prevent average linkage from re-
covering heterogeneous structures.

Soft Versus Hard Clusters. For reasons of conve-
nience and computer efficiency, hard clustering is
widespread but remains a violent approximation of the
complexity and intrication of community networks and
semantic relations in scientific literature. Hard cluster-
ing is sometimes the first stage of a two-stage classifi-
cation: Cocitation analysis usually combines hard clus-
tering for cores in the cited universe, and assignment of
the citing literature is tantamount to soft clustering of
research fronts. Reciprocally, starting from hard biblio-
graphic coupling clusters makes it possible to generate
a soft image of cited clusters. The conditions of as-
signment parameters in the second stage determine the
degree of overlap. This is true also for factor analyses
more suitable for overlapping entities, especially with
oblique factors, i. e., principal axes of clusters upon
which any entity, in or out, has a projection. The query
expansion or bibliometric expansion practiced at the
cluster level also builds soft clusters from an existing
hard partition on the same data, therefore enhancing
the recall at the cluster level. More generally, the wide
development of probabilistic clustering is consistent
with fuzzy approaches of assignment of particular ar-
ticles/items.

Multilevel visualization of partitions is valuable for
discussing topic or domain borders, especially when
obtained from techniques which do not favor cluster
homogeneity, or exploring strongly multidisciplinary
phenomena. For example, assuming a strong proxim-
ity of two topics A and B, it is interesting to know
whether this proximity is localized—say to subclus-
ters A1 and B1—or distributed. Local intense linkages
may prefigure capture of a subcomponent or merge A1–
B1. Such interpretation only makes sense with robust
methodology.

In a cluster selection process for delineation, all
things being equal, soft or fuzzy clusters are allowed to
extend towards shared areas, and then slanted towards
recall at the cluster level. This applies to the boundary
clusters, with an effect on a domain’s delineation. How-
ever, bibliometric use of soft clustering remains limited
and does not usually depart from the holistic perspec-
tive (Sect. 2.3.2, Semantics, Statistics, Informatics).

Robustness and Evaluation Issues. Robustness is
an essential aspect of data analysis applied to bibliomet-
rics. Sensitivity to data issues, to the type of network,
to metrics and clustering algorithms, lead to rather dif-
ferent solutions. Ground truth or even gold standards
are generally unavailable. In empirical studies, analysts
have to get along both with biased representation of

panels and divergences of techniques, as well as sensi-
tivity to settings within one technique. We already men-
tioned general problems of bibliometric data, especially
coverage. Within a given data corpus, the skewness of
informetric distributions is a powerful foundation of ro-
bustness, but many sources of instability remain. The
particular question of time robustness is sketched later.

Sensitivity to the Network Weighting and Metrics.
For memory’s sake, some prior transformation of bib-
liometric networks is practised to compensate across-
domain differences, such as citing behavior. In such
case, the value of linkages are weighted by a function
of the number of inlinks of given groups (tantamount
to classical cited-side normalization) or the number
of outlinks. The latter is present both in influence
measures (Pinski and Narin [2.44], revival in the last
decade [2.180]) and the limit case of citing-side nor-
malization which presents original properties [2.181,
182]. Citing-side normalization of the citation network
is a limit case (removing iteration) of Pinski and Narin
influence weights [2.44]. It is strictly classification-free
if the basic normalization unit is the paper or the jour-
nal [2.181]. It exhibits interesting properties for any
basic unit making sense, e.g., domains: the dispersion
of domains’ impacts calculated this way with normal-
ization at the domain level is a measure of interdisci-
plinarity of science in a steady state system [2.183].

A major native characteristic of bibliometric net-
works is the skewness of node degree distribution
and resulting polarization: citations, Zipf–Mandelbrot
word usage, Bradford concentration—in connection
with concentration generating models recalled above in
social network theory. Concentration gives tremendous
selective power and at the same time, calls for correc-
tions in IR context for information retrieval and usage,
depending on the context. A vast choice of metrics or
quasimetrics (similarity indexes) is available, introduc-
ing weightingswith some inverse function of frequency,
especially useful in a mapping context. It is common
knowledge that various similarity indexes produce con-
trasted perspectives. Coword analysis pioneers, notably,
compared the unweighted index (raw), the asymmet-
rical (inclusion) index, the partially weighted index
(Jaccard, Ochiai among others), the strongly weighted
index (p-index or affinity amenable to a similarity).
After thresholding, the landscape of the transformed
networks is quite different: the first two indexes tend to
keep the frequent items as hubs, the last one highlights
infrequent words and associations at some risk of over-
exposure of rare forms, amongst them typing errors.

Analogous normalizations, from the abundant
repertoire of similarity indexes, are frequent for coci-
tation [2.184] and coauthorship analysis [2.185, 186].
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Clustering algorithms build on the final network in var-
ious ways. Obviously, any delineation based on such
weighted networks of structuring elements—where
skew distribution is the rule—will be quite sensi-
tive to methodology. In bibliometrics, the contrast is
extreme between steep landscapes generated by raw
measures, dominated by the centrality of hubs, and
information-driven strongly corrected configurations, at
the risk of instability and errors on very low frequen-
cies. Intermediary options are often picked, for example
Ochiai–Salton and Jaccard measure. Document cou-
pling relations, similarly, depend on the normalization
of term frequency, typically inverse frequency weight-
ing, Hellinger, etc. built-in or not in data analysis
methods (TF-IDF, �2 in correspondence analysis, etc.).

Asymmetrical Relations. Specific to citations, a com-
plete model of citation exchanges requires some native
or constructed aggregation with relatively stable entities
(authors, journals, pre-existing categories, etc.) in order
to allow both in- and out-linkages while document-
level direct citation is unidirectional—with exceptions.
Asymmetry at the journal level inspired the CHI classi-
fication of journals after their theoretical versus applied
orientation [2.44] on the hypothesis that applied science
journals tend to import knowledge and export citations,
and reciprocally for basic science journals. The same
phenomenon appears at the field level (cell biology ver-
sus medical research, for example).

The valuation of bilateral relations calls for method-
ological choices which can largely affect mapping and
delineation. Take the simplest case where i and j de-
note two aggregates (journals, domains. . . ) and assume
the ij link is normalized on the basis of the total out-
flow of i and the total inflow of j, and conversely for
the ji link. Let us calculate the bilateral link between i
and j by the arithmetic mean, the geometric mean, and
the maximum of these two unidirectional normalized
flows, a simplified variant of [2.87, 187] for the sake of
the example. Should these valued networks be used for
delineation purposes, they would tend to produce rather
different results. The multiplicative indexes trivially pe-
nalize one-way relations typical of vertical channels,
and tend to group entities with balanced relations, ei-
ther particularly integrated channels or basic science
fields with multidisciplinarity relations, or else clients
sharing methods or products. In contrast, the maxi-
mum index tends to retrieve vertical channels (say cell
biology–medical research) regardless of flows dissym-
metry. Additive indexes stand in intermediary position,
and appear as a middle-ground choice.

Semantics, Statistics, Informatics. Scientific do-
mains at the mesolevel represent a considerable amount

of data, especially in longitudinal series. The computing
requirements, even with sparse bibliometric matrixes,
are high, driving towards clustering or spectral analysis
algorithms with high efficiency. The trade-off between
computer efficiency and semantic power is far from
simple. Correspondence analysis [2.134] was amongst
the first factor technique to exhibit some semantic
power in textual applications, especially a robust capa-
bility to group quasisynonyms with the distributional
equivalence property. In its wake, postfactor analyses
keep claiming some semantic power (Sect. 2.3.2) and
built-in mapping capability. In parallel, local similar-
ity techniques associated with traditional or innovative
clustering methods from network analysis privilege the
native graph of proximity and elements/links group-
ings. In those approaches the duality (structuring ele-
ments � documents) needs assignment decisions (e.g.,
research front assigned to cocited core) with a seman-
tic dissymmetry as to the internal scrutiny of clusters:
while the detailed map of structuring elements is ap-
pealing for cluster evaluation (cited cores; within clus-
ter word-map), the document coupling map, internal to
a cluster, is hardly interpretable alone as stressed be-
fore.

Now, if word-maps present high potential for socio-
logical interpretation, mere lexical associations remain
semantically shallowwith regard to truly semantic anal-
yses. A common limitation to all these methods is
the bag of words overlooking the rank of words and
the structure of statements—the downside partly alle-
viated by multiterm treatment (noun phrases). Citations
present a fuzzier relation to semantics (Sect. 2.4) but
cocitation cores are nevertheless understandable for ex-
perts. Labels or lists of descriptors directly issued from
cocitation or coword cores, for example a ranked list
of specific terms, or indirectly rebuilt from clusters
obtained by coupling, are common but limited auxil-
iaries for evaluating clusters. Cards might be reshuffled
with new competitors to LSA such as neural word
embeddings (Sect. 2.3.2). In addition to the similarity
calculations in the word–context, useful for informa-
tion retrieval, semantic calculations on word vectors are
possible, allowing good performance in analogy tests
(i. e., “Find X so as X is to A what B is to C”) or in-
ference operations on these vectors, such as king �
man C woman ! queen. This gain in semantic pre-
cision suggests that, applied to scientific corpora—now
increasingly available in full text—it could allow in the
future for an analyst to select the semantic dimensions
relevant for delineating scientific fields and constitute
crisp or overlapping groups of articles (or parts of these)
in this subspace.

A recurrent problem of more traditional bibliomet-
ric representations, a counterpart of statistical simplic-
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ity and computer efficiency, is the holistic character of
linkages, especially if combined with hard clustering.
In document coupling techniques, either word-based
or citation-based, the standard linkage measure is the
weighted and normalized number of words shared.
In lexical coupling, an implicit hypothesis is that the
(weighted-normalized) number of shared tokens re-
flects the dominant semantic dimensions of the paper.
For example, if very few words or references refer to
methodology, this dimension will contribute less, all
things being equal, to the shaping of bibliometric simi-
larity, which can be misleading. In the opposite case, if
methodology markers prevail, a transdisciplinary cor-
pus will tend to be split between hard science literature
and soft science literature on the domain, whereas
mixed clusters would probably reflect the domain struc-
ture in a better way. Should the linkage between two
clusters need explanation, this should be inferred from
the features and given the titles of the two clusters, un-
less the technique includes indicators of contribution.
In clusters of structuring elements (word graphs, cocita-
tion cores) the relations are interpretable when zooming
in on the fine-grained networks of words or cited arti-
cles, but without semantic characterization.

In a delineation context, a minimum of semantic
break-up would make the scrutiny of the border region
easier and faster. It could especially orient discussions
on preferential extensions of a core zone towards neigh-
bor clusters with shared methodology but new objects,
shared object with new methods, etc. Ad hoc simple
characterization of vocabulary has been successfully
applied for other purposes, e.g., the level of applica-
tion of biomedical research journals [2.188]. However,
manual semantic tagging is quite intensive and field-
specific. At the document level, many natural sciences
articles can be labeled with simple semantic combina-
tions. In computational linguistics, many works since
Teufel et al. [2.189] (argumentative zoning) address
this issue of categorization of scientific discourses and
automatic annotation, applicable for example to the
summarization of scientific texts. Several proposals on
categorization of arguments have been made, many of
them at the experimental stage. Liakata et al. [2.190]
developed and automatized the core scientific concept
(CoreSC) categorization whose first layer distinguishes
11 categories: objective (hypothesis, goal, motivation,
object), approach (method, model, experiment), and
outcome (observation, result, conclusion). This line of
research is extremely promising for bibliometric stud-
ies, especially domain delineation, but remains for the
time being limited to small universes. In the mean-
time, oversimplified semantic indexing would help a lot
in qualifying interdocument or intercluster relations.
Figure 2.4 shows a fictitious configuration where doc-

uments are naively described by semantic triplets with
various degrees of kinship. The graph display could be
replaced by a superimposition of three partitions, each
one upon a different semantic dimension.

More intensive semantic mapping relies on sophis-
ticated ontologies, knowledge models, and semantic
networks. If such resources have not been established
beforehand and published, bibliometric studies cannot
generally afford such heavy developments, however
see [2.191].

Directly opposed to semantic approaches are non-
feature methods from computer science, which ignore
the substantive representations and even more so the se-
mantic content. In various IR/bibliometric applications
(disambiguation of authors and affiliations, proxim-
ity of documents, detection of plagiarism) similarity
between texts may be calculated on the basis of char-
acter n-grams [2.192] rather than feature word n-grams
which is somewhat standard. The link to the minimal
unit with semantic load, the word, is lost (almost com-
pletely for low values of n). The usual metrics can
be applied to n-grams. A more radical way using the
bit sequence representation with further compression,
is the basis of measures like normal compression dis-
tance (NCD in [2.193]). NCD is a dissimilarity measure
which is an approximation of the general Kolmogorov
information distance [2.194, 195], parametrized by the
compression algorithm. A normal compressor should
satisfy four properties:

1. Idempotence
2. Monotonicity
3. Symmetry
4. Distributivity.

From the linguistic point of view the compression
method is a black box. It nevertheless exhibits rather
good performances for calculating text similarity with
a most indirect semantic power of forms unification.
The normalized Google distance (NGD in [2.196]) is
the transposition to Google searches, at the word level,
of the NCD, keeping the feature characteristics of the
coword analysis and its semantic power. Its native ap-
plication builds on lexical associations from millions of
users.

Table 2.3 summarizes the degree of semantic ambi-
tion in the case of lexical approaches—transposable to
citation attributes.

Dynamic Clustering. The delineation process has to
face changes in the configuration of networks [2.124],
affecting the value of a delineation solution at a partic-
ular moment. Dynamic clustering is understood in two
(related) acceptations.
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Fig. 2.4 Semantic and bibliometric
linkages. This figure sketches
bibliometric holistic distance versus
decomposition into semantic links,
with the (heroic) hypothesis of tagging
with only three criteria, e.g., a D
theory–hypothesis, b D experimental
method, c D observation–test. For
example a1, a2, a3 on the figure
denote different hypotheses. The
second panel represents three kinds
of semantic relations. An article
is described by a triplet a, b, c.
For example, the documents G, I,
and J are described by the same
triplet fa1, b2, c2g. Documents G
and I, for example, are connected
by three links. The second panel
aggregates information in a single
type of linkages with varying degree
of intensity. Here the bibliometric
linkage is assumed proportional to the
number of shared semantic instances,
which is of course arbitrary. In the
real bibliometric world, the lexical
coupling linkage heavily depends on
the most developed aspect(s)

Table 2.3 Semantic interpretation potential of various approaches

Structural items metrics Document metrics
(required in delineation task)

Category Semantic interpretation versus black-box

Semantic network Indirect through indexing/
assignment to word structures

Feature Strong, feature

Word profile/coword Indirect through indexing/
assignment to word clusters

Feature Light, direct

Document profile/coupling Direct: lexical coupling Feature Indirect, through indexing/assignment/labeling
– Direct: char n-gram proximity Featureless Black-boxa

– Compression distance Featureless
and global

Black-boxa

a Clusters of documents based on nonfeature proximity can be interpreted by going back to substantive elements, e.g., their word
profile.
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A first point of view is the adaptation of algo-
rithms—and computer resources—to processing mas-
sive data streams, typically texts, an example today be-
ing online social networks. The initial k-means algo-
rithm of MacQueen [2.197] was already an online in-
cremental one, generating a cluster structure in one pass
over the dataset—the usual iterative version, which con-
verges to a solution independent of the presentation or-
der of the data vectors, is due to Forgy [2.198]. Dynamic
text stream mining is a growing topic in the machine
learning and big data mining research communities.
Changes in the cluster structure may reflect algorith-
mic artifacts as well as real phenomenona, hence ideal
methodological characteristics are a) global optimum
seeking and b) insensitivity to data ordering. An exam-
ple of an incremental hierarchical clustering method for
texts is [2.199], and a frequent itemsets dynamical clus-
tering example is [2.200].

A second point of view focuses on the domains/
topics picture and their description over time, through
cluster time series, including the issue of time robust-
ness in one-shot pictures. Again the distinction be-
tween clustering/mapping on structuring elements (e.g.,
cocited articles or lexical relations) and direct cluster-
ing of literature (e.g., bibliographic or lexical coupling),
in techniques privileging classification in one space
matters. The first family offers solutions with some
durability. The repertoire of words gradually evolves.
Change of the intellectual repertoire of cited literature,
subject to an aging process, is usually faster but, except
in emergent or revolutionary fields and in intrinsically
rapid ones (e.g., computer science), it respects a mix of
new and old literature. This gives some clue of robust-
ness, in the short term, to the cluster solutions. By and
large, in slow evolution processes, information cores
are more persistent than peripheries. In one-shot clus-
tering, working on pluri-annual window data reinforce
the robustness of the breakdown and permit the cross-
characterization of novelty (median of the cocited core)
and internal growth in the span of the window (average
date of front) [2.176]. Characterizing fine granularity
hotspots in the network, such as local preferential at-
tachment processes, may help to spot promising weak
signals. Taxonomic applications of direct citation link-
ages might still benefit more from long time window
settings. This would sketch, as noted earlier, a possible
trend towards division of tasks between direct citation,
cocitation, and bibliographic coupling in function of
targeted granularity and immediacy of results.

By construction, direct clustering of documents
over a time period (say the year) favors immediacy,
but is not prolongable without a detour by the struc-
turing elements and derived cluster labels. Another way
consists in picking a coarser granularity, especially the
journal level, at the expense of a heavy loss of precision.

Short-time changes may be addressed by projecting
a solution for a period on the reference solution of
another period, a classical process in factor analysis
applicable to other methods; an early example within
bibliometrics is found in Noyons and van Raan [2.32].

A delineation process of any kindmay be run on suc-
cessive slices of time [2.201] of different lengths, with
or without rolling averaging filters. A dynamic variant
of LDA is [2.202], in which the word distributions of
each topic varies in each time slice, where the num-
ber of clusters is fixed. Interesting historiographic in-
sights accounting for cluster demography (emergence,
death, splitting, merging. . . ) are exhibited by longitu-
dinal chaining of clusters, known since ISI’s Atlas of
Science, see [2.203–206]. The latter work is based on
lexical series. The predictive value of such series, along
with life-cycle models, remains a quite difficult issue.

Last but not least, the rendering of change is closely
linked to dynamic models of science where structure
emerges from local properties, for example in the prefer-
ential attachment model. In this view, over time, break-
throughs (scientific or technological) shape the cita-
tion profiles of followers, a common mechanism in
(co)citation bibliometrics. Local accretions around hot
papers are amongst the signs of emergence. The sym-
metrical question over whether the referencing (or lex-
ical) profile of papers has some predictive value, re-
mains open. This connects to the controversies about in-
terdisciplinary distal transfers in the discovery process,
quoted above, which echo the combinatory nature of
invention and innovation stressed by Schumpeter. The
intuitive but bold hypothesis stating that themore distant
the knowledge transfer, the more radical the discovery
or invention is, nevertheless, tricky to test (definition of
scientific or technological distance from models A or
B–C, scale issues). Attempts to characterize scientific
breakthrough and radical inventions,with an ex ante no-
tion, are found for example in [2.207], using both cita-
tions and patent classification [2.208], using changes in
forwards and backwards citation profiles [2.209], using
citation contexts of outstanding discoveries.

2.3.3 Conclusion

By and large, bibliometricmapping provides landscapes
with aggregate groups (clusters; local factors, etc.) likely
to be assessed, and implementation of multistep and
cross points of views help to distinguish cores and bor-
der regions, the latter calling for cluster evaluation, see
Sect. 2.5.2.Nomappingmethod is superior on all criteria
andmany factors are at play: the bulk of data, the type of
network, the nature of the problem, and the ergonomics
of outcomes for an easy supervision. IR search remains
an alternative or a valuable complement tomapping. The
next section focuses on hybrid techniques.
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2.4 Multiple Networks and Hybridization

This section addresses the multinetwork approaches.
We shall especially develop the combination of textual
and citation networks but most types of bibliomet-
ric (and altmetric) networks can naturally contribute
where appropriate. The forms of hybridization encom-
pass a wide scope from fully integrated approaches to
parallel schemes aiming at comparison and eventual
combination, with intermediate sequential schemes.

2.4.1 Multiple Networks

A given document may be accessed by search strate-
gies pointing at all searchable fields of data or metadata.
Modern IR, going beyond the direct query–document
similarity, integrates, with the cluster hypothesis and
later the cognitive model, the documents’ multiple
spaces and networks, including citations and collab-
orations. Bridges between lexical and citation uni-
verses were built, especially for labeling purposes (e.g.,
keyword-plus [2.210]).

Likewise, major streams of study in the sociol-
ogy of science have coined general theories accounting
for the various manifestations of scientists behavior
in communities: communication, collaboration, pub-
lication, rhetoric, citation, evaluation. The networks
of science, although diverse, originate in the same
ground. As a result, many classes of bibliometric ques-
tions (topic identification, characterization of emer-
gence, static and dynamic mapping, diffusion pro-
cesses, knowledge flows in science and more generally
in the science–technology–innovation system) can be
answered by working on different networks, with re-
spect to their specificity. The multinetwork approach to
bibliometrics, both in terms of comparison and comple-
mentarity, appears as a natural mode of thought.

With the coming of age of data representation mod-
els such as entity–relationship for relational database
management system (RDBMS) implementation and of
network analysis methods, IR scholars and bibliometri-
cians in the early 1990s found flexible tools for easy
handling of different dimensions of publication data.
In the last decades, the culture of data mining encour-
aged mixes between several networks for pragmatic
purposes [2.211]. We recall the key role of author net-
works (Sect. 2.4.2) before focusing on text and citation
networks (Sect. 2.4.3) and finally their hybridization
(Sect. 2.4.4).

2.4.2 Networks of Actors

The first analyses of scientific communities in the 1970s
led to some disappointing results as to the unambigu-

ous assignment of particular scientists to a particu-
lar group. In a short history of domain delineation
Gläser et al. [2.26] recall among others Mulkay et al.’s
work [2.9] and Verspagen and Werker findings [2.212].
The archetype is the coauthorship graph. Price and
Beaver [2.18], Beaver and Rosen [2.213], Luukkonen
et al. [2.214], Kretschmer [2.215], and Katz and Mar-
tin [2.216] laid the first layers of collaboration studies in
connection with invisible colleges. Author-based mod-
els of science are amongst the central topics in science
studies and bibliometrics. Studies on scientific collabo-
ration are out of the scope of this work, but let us recall
the macrolevel studies of the determinants of coopera-
tion in the wake of Luukkonen et al. [2.185], geographic
proximity [2.217, 218], cultural links [2.186], and indi-
vidual/collective behavior [2.219]. Those studies em-
phasize the importance of metrics and normalization
in the interpretation. At the microlevel, proposals for
mechanisms explaining the structure and dynamics of
social networks were recalled in Sect. 2.3.

Networks of actors present a major theoretical in-
terest: they stand at the crossroads of actual social
networks’ mathematical modeling and sociology of re-
search, and bridge invisible colleges with cognitive
structures [2.220]. They also show some drawbacks,
echoing the scholars’ disappointment noted above.
Communities detection in practice faces the issue of
names unification. For a long time, the problem has
been both terribly costly and time consuming for data
producers and bibliometricians, at both the institutional
level and the author level, as stressed again in the name
game project APE-INV (Academic Patenting in Europe
Project), e.g., [2.221]. Great progress is ongoing due to
the ORCID (Open Researcher and Contributor IDen-
tifier; with the unique identifier of researchers), ISNI
(International Standard Name Identifier), and GRID
(Global Research Identifier Database) initiatives among
others.

Another issue, especially for small topics detection,
is the width of the competence spectrum of productive
authors likely to produce some noise, but this short-
coming is alleviated at the level of large domains. In
this case perhaps, community detection (in a narrow
sense) has arguments to compete with citation or lexical
clustering. However, in most practical studies multi-
scale vision is required: not only does the target domain
matter, but also the subdomains. At this scale, the
polyvalence of authors limits precision. The problem
may be reduced by time-restriction filters, the link-
level technique, external information, or hybridization
with citation or word information. Similar issues appear
in author cocitation versus article cocitation [2.164,
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222]. Author cocitation opened insights in the study of
invisible colleges, with connection to researchers’ so-
ciology. Topics mapping as such is better addressed by
document-level cocitation.

The interplay of coauthorship, citation, and linguis-
tic networks as a mirror of sociocognitive activity is
increasingly gaining attention: relations between con-
tents and actors’ positions [2.223, 224], between ci-
tations and coauthorship, and any or both of these
with texts [2.220]. Is the multiple approach a step
towards more powerful models of authors and commu-
nity behavior, able to unify the diverse representations?
This unification would spread benefits over bibliometric
analysis, including delineation tasks. Nonfeature meth-
ods have not waited for unification (see below) to mix
up all types of information, but they sacrifice the sub-
stantive depth of analysis.

However, the quest for unification might be hin-
dered by the specific features of every bibliometric
network. Changing the type and parameters of the
network is like observing the universe in various wave-
lengths. The most dense objects produce various forms
of energy and tend to be retrieved albeit with diverse
volume and appearance. Less-dense objects like clouds
of various composition can be seen only in specific
parts of the spectrum. Likewise, we may conjecture
that dense and isolated objects will be retrieved from
any network fit for precise analysis [2.113], especially
words and citations and perhaps coauthorship clusters.
Sociological investigation is expected to confirm such
configurations as bounded invisible colleges. In less
dense and more connected areas, each network is likely
to produce nonsuperimposable images, with different
sensibilities. The convergences suggest strong forms
with easy sociocognitive interpretation, while the di-
vergences ask for careful tests and investigation. The
sociology of translation associated less dense areas to
emergence or ultimate evaporation phases.

2.4.3 Citations and Words

Lexical and citation characterization classically used in
bibliometrics are appropriate for clustering of themes
and mapping at various scales, on the basis of the tool-
box sketched in Sect. 2.3.

A few Analogies and Differences
General. One difference naturally lies in the nature of
the original relation: direct attributes for linguistic ele-
ments, reflexive interarticles for citations, with several
consequences. Firstly, the granularity: words are an ul-
timate attribute (in classical feature methods) whereas
cites target the full article semantic aggregate. Then,
the linguistic content of citations is not explicit, and

requires a statistical detour via the text fields and the
data model, to emerge (automatic labeling of clusters
with their specific vocabulary, citation contexts). Sec-
ondly, the time relation, not explicit in lexical relations,
directly appears in the citation link, both cited and citing
article being dated. Bibliometrics makes a large use of
this diachronic relation in immediacy–aging studies. In
contrast, the word content of an article is readily legible,
but deprived of temporal information beyond the article
date of submission/publication. Going further requires
statistical studies to date the word in terms of chrono-
logical profile of use. Longitudinal studies on words
have to rely on time statistics of use, typically with the
assumption of achronicity: constant meaning over time.
This is a bold statement in some cases. Beyond classical
dating of word or word linkages after their usage, deter-
mined by the obsolescence of topics, natural language
analysis paved the way for analyses of word transfor-
mations in a scientific context [2.225].

With respect to these constraints, a large class of
bibliometric, IR, or altmetrics issues can be addressed
by the lexical method or the (generalized) citation
method with the exception of specific direct chain-
ing [2.162]. Symmetrized relations (cocitation, cou-
pling) mitigate the diachronicity, albeit underlying time
features can be invoked if required. The reformulation
of the dynamic chaining research fronts [2.205] is em-
ulated by word-based clusters [2.202, 206]. Only the
former directly contains citing–cited information for
immediacy characterization.

Because of limitations (indexer effect) and lack of
reactivity of controlled language, modern bibliometrics
moved gradually towards natural language, building on
the increasing availability of full text resources and lex-
ical treatment. In spite of progress in computational
linguistics, the NLP remains tricky, a counterpart of
language richness and versatility. Polysemy, metonymy,
synonymy, figures of speech, metaphors, acronyms,
and disciplinary jargon are well-known linguistic traps
of linguistic difficulties that users, bibliometricians,
and retrieval specialists have to cope with. Unification
(stemming and lemmatization, synonymy detection)
also benefits from clustering techniques. Unsupervised
homonymy tracking is a more challenging problem,
since bridges in word clusters may be rooted in concept
transfers or polysemy or else simple homonymy. This
issue is somewhat alleviated in small (narrow context)
studies. If elaborate ontology or semantic networks
are seldom off-the-shelf, useful tools for term extrac-
tion, parsing, and coword exploration are available.
Stemmers (with Porter’s stemmer milestone [2.226])
or, a step further, lemmatizers are efficient with some
risk in precision. New massive techniques, such as the
above-mentioned deep learning-based or neural net-
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works or targeted methods such as neural word embed-
dings, might bypass or alleviate costly preprocessing.
Constraints of bibliometric studies dealing with large
data universes are usually incompatible with refined
semantic treatments, but the supply of large-scale sta-
tistical semantics resources might spare costly ad hoc
developments. We mentioned (Sect. 2.2.4) a possible
revival of controlled vocabulary supported by biblio-
metric treatments.

Statistical Background. The common feature is the
skewness of frequency distribution found, among other
disciplines, in information processes (Bradford–Lotka–
Zipf trilogy, see [2.227]). The classical model to fit
word distributions is the hyperbolic Zipf–Mandelbrot
model. Other Paretian distributions are also used for
citation frequency analogous to node degrees in the
native oriented graph of citations. Similar skewed dis-
tributions are found in authors’ collaboration graphs,
with a distinction between scale-free distributions and
small-world distributions (Sect. 2.3). The parameters
of citation distributions are modulated by the citation
windows, the parameters of word distribution are mod-
ulated by the type of lexical sources (title, abstract, full
text. . . ), the type of lexical unit picked, the language,
and the richness of vocabulary.

Comparing the distributions of citations and words
on the same corpus, some authors found that the lat-
ter appears more concentrated and less complex [2.33],
thus less favorable in principle to precision—without
forgetting the different granularity. Frequency weight-
ing of linkages of the native word or citation networks,
or similarity indexes with various types and degrees
of normalization, may be implemented for retrieval or
mapping purposes, for favoring information-rich ele-
ments in low and/or medium frequency. The precision
of citation approaches was underlined in comparative
retrieval tests, and especially the interest of cross-
retrieval [2.228, 229]. As to co-occurrences, coword
matrices tend to be less sparse but noisier than coci-
tations relations.

For the delineation work, the distribution of words
or citations designs the background, with implications
for interpretation, but what directly matters is the ar-
rangement of documents after their texts or their bib-
liography. For this purpose, the typical approaches are
the direct profile proximity on either type of structur-
ing elements, words or references (coupling rationale
or profile metrics in vector space), or the secondary as-
signment on prior classes of structuring elements such
as coword, cocitation, or corresponding profiles. The
distribution of node degrees in bibliographic coupling
tends to be less skewed than in the original citation
graph. Again normalization of distances or similarity

by some function of inverse frequency can reduce the
unevenness. The recall advantage of word-based tech-
niques suggested their use in the large-scale mapping of
clusters defined, beforehand, by citations [2.91]. There
is some evidence in the same direction for patent–
publication relations. Composite word–citation metrics
are addressed in Sect. 2.4.4. Technicalities involved in
term unification are also different. As information to-
kens, references are less difficult to match than natural
language elements. Keys on cited references reveal ef-
fectivity and improve with standardization of entries,
with residual difficulties in particular cases like citation
analysis of patents towards science.

Sociological Background. The textual contents of an
article and its bibliography are both the results of au-
thors’ choice in their community context. Both involve
an intricate mix of scientific and social aspects: words
and cited references are community markers and re-
flect the sociability of invisible colleges. A large body
of literature (refer to the review [2.230]) has been de-
voted to citation behavior, including Cronin’s classic
work [2.231]. Whatever their determinants can be, Mer-
ton’s rewards, Small’s symbolic beacons or concept
symbols [2.232], Gilbert’s persuasion tools [2.223] or
Latourian interests, the references mainly point towards
the thematic groups where founding fathers, gatekeep-
ers, and potential partners are found, which matters
in science mapping. On the textual side, rhetoric and
jargon expressing community habits, in addition to gen-
eral words voicing interests, rejoin focused scientific
terms—especially specific multiterms with medium
frequency—to define topics. A substantial amount of
convergence between texts and citations is therefore ex-
pected when the delineation of topics and communities
are at stake. Some degree of parallelism may be found
between relatively high frequency expressions (after fil-
tering of stop-words) and highly cited articles in generic
knowledge and multidisciplinary linkages. The mea-
sured convergence depends on the information unit and
is likely to increase with small lexical units of citation
contexts (see below).

However, the question arose as to which network is
the more appropriate for describing science, at a time
(the 1980s) where citation evaluation, indexing, and
mapping were gaining interest. The social constructivist
stream and the actor network theory mentioned above
(Sect. 2.2) favored the coword networks [2.166] against
citations to represent knowledge on a background of
actor’s interests. Texts appeared abler to depict more
completely science in action [2.233] especially in con-
troversial areas where social and cognitive aspects are
inseparable, while citations were supposed confined to
the capture of cold science with delays and incom-
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pleteness. The delay argument alone is less convincing
for bibliographic coupling. Typical cocitation research
fronts rely on a high-pass filter on citation or cocitation
scores, favoring old articles, to reduce the data volume.
Bibliographic coupling often works on the whole refer-
ence lists, letting recent and less cited references play.
A residual effect of the publication cycle of the citing
side nevertheless subsists. Similar delays may also oc-
cur in the use of new words or expressions qualifying
a scientific technique.

In its very realm, academic science, citation anal-
ysis encountered lasting problems in quite a few dis-
ciplines, especially in a fraction of SSH, because of
citation sparsity, incomplete processes of internation-
alization, and lack of coverage in databases. This ar-
gument is somewhat weakened nowadays because of
data source progress and changing behavior of scholars
confronted with science globalization and bibliomet-
ric evaluation. Citation analysis proved an appealing
tool, including for the borderlines of standard literature,
for example transfer documents (guidelines and even
magazines and newspapers) explored in biomedicine by
translational research for improving health system ser-
vices [2.234]. See also the EUSTM website at https://
eutranslationalmedicine.org.As to the coverage of tech-
nology, the transposition of citation analysis to patents
was revealed to be rather successful [2.235] competing
with lexical approaches [2.236]. It nevertheless requires
acquaintance with specific citation rules and behavior
in patent systems. The Internet produces linkages with
an exploitable analogy with citations, as the Google
search engine has demonstrated in the wake of Pinski
and Narin’s influence weights.

Citations are not without their shortcomings,
stressed in voluminous literature from various hori-
zons; see Bornmann and Daniel’s aforementioned ex-
tensive review [2.230], and for the defense, mostly,
see [2.51]. For the reason stated above, citation bi-
ases are somewhat less severe in mapping applications
than in citation evaluation (impact, composite indexes)
which concentrate controversies. Latourian citations or
rare negative citations do not add much noise to coci-
tation topics. Other downsides are more serious. The
bandwagon effect in citation behavior tends to create
spurious cliques in native cocitation networks, possibly
hindering the discriminating power of citation rela-
tions. The inflation of the number of references in au-
thors’ practice, which is a long-term trend [2.237], also
brings noise to conventional citation clustering. The
disciplinary insertion affects the number of references
(propensity to cite) justifying citing-side normalization
approaches mentioned above.

Albeit language-dependent, textual analysis is
media-free, which is valuable in fields where academic

sources with standard citation behavior are not suffi-
cient. Topics peripheral to the academic mainstream, or
demanding a mix of heterogeneous data may be con-
fined to text-based delineation.

In cases where no differential data coverage issue
is faced, differences may arise between these expres-
sions of scientists’ behavior, resulting in alternative
breakdowns into topics, independently from statistical
properties. The expectation is that citations, albeit in
a blurred and biased way, are more capable of track-
ing the intellectual inheritance. A single difference in
the semantic mix, for example different methodology
on the same category of problem, will probably better
discriminate amongst microcommunities than lexical
analysis, at least as long as those microcommunities do
not secrete specific terminology.

Let us turn towards limit cases, special forms of
particularism, especially perhaps in SSH where intel-
lectual traditions resist globalization. Words as well as
citations would distinguish between schools of thought
with opposing theories, strong community preference,
and distinct jargon: say in postwar period marginalist
versus Marxist economists. In contrast, if the linguistic
repertoire is shared by the two communities while they
diverge in the intellectual base, the outcomes of the two
approaches will be different. The reverse can be true,
with a common recognition of the intellectual base but
divergent traditions in terminology, perhaps again for
reasons of national tradition. Such configurations, rela-
tively rare, limit the generality of the conjecture stated
above about local convergence of bibliometric networks
in zones with high-gradient borders. Most of the time,
a set of clustered papers belonging to a strong overlap
of a word-based cluster and a citation-based one may
be considered as a strong form, in a rationale already
present in the first comparisons by McCain [2.228] on
term versus citation indexing. The cognitive overlaps
between information types was a keypoint in Ingwer-
sen’s model mentioned above.

Empirical Comparisons
The cross-check of cluster contents is a run-of-the-mill
operation. For example, the enhancement of cocitation
coverage by two-step expansion could be controlled by
lexical means [2.127]. A few specific comparisons of
the two mapping approaches on the same data are found
in the literature. The scale is therefore different (sub-
areas rather than a large domain) but the method can
be applied to an overset expected to contain the tar-
geted domain, as seen before. In an extensive study of
a few promising fields in the 2000s, using bibliometric
mapping, Noyons et al. [2.238, 239] warned about the
difference of concepts: publications and keywords and
concluded they were “totally different structures”.

https://eutranslationalmedicine.org
https://eutranslationalmedicine.org


Part
A
|2.4

52 Part A Analysis of Data Sources and Network Analysis

Fig. 2.5a,b Archipelago display: Nanosciences (a) and Genomics (b). Data: Reordered cross-tabulate matrix of axial
K-means clusters respectively from bibliographic and lexical coupling 50� 50). Relative overlap (z-axis) measured by
the Ochiai index. Reordering: ranks on 1-dim MDS, making the diagonal accumulation showing the visual convergence
between the two breakdowns apparent. The line is sinuous because of discrepancies between c-cluster versus w-cluster
size distribution. The visual rendering suggests superclusters at a larger scale. In the nano figure, the area of nanotubes as
a whole is retrieved by both methods, but with two different breakdowns and more discriminative power on the citation
side (after [2.113]) I

An opposite conclusion was reached by Zitt
et al. [2.240] on nanosciences and Laurens et al. [2.241]
on genomics, previously delineated as a whole by a hy-
brid sequence method. They implemented a more direct
comparison scheme on clusters respectively from bib-
liographic coupling and lexical coupling (natural lan-
guage, titles–abstracts), using the same axial k-means
method (AKM). Cross-tabulate cluster overlaps [2.242,
243] were reordered, giving a quasilandscape with
a heavy and narrow diagonal load (Fig. 2.5). This gives
evidence of a fairly good convergence of lexical and ci-
tation solutions, also confirmed by direct indicators.

On their high-level maps, Klavans and Boy-
ack [2.244] and Leydesdorff and Rafols [2.245] also
observe a reasonable degree of convergence. More gen-
eral comparisons of mapping methods including textual
are found in [2.173, 246, 247]. A recent exercise of
mapping comparing cluster methods is reported by
Velden et al. [2.248]. Most experiments, however, lack
a ground truth reference, and techniques presented as
gold standards are disputable.

More generally, suppose we built clusters of doc-
uments from several origins: lexical coupling, biblio-
graphic coupling, fronts from cocitation, author cou-
pling, etc. Those various cluster solutions may be indi-
vidually mapped. They can also be simultaneously rep-
resented using normalized overlaps between w-clusters,
c-clusters, a-clusters, with appropriate metrics. Pro-
files distance may be required to overcome the zero
overlap between hard clusters of the same family, say
w-clusters. Resulting matrices are still quite small and
amenable to MDS display.

The fact that the agreement between citation and
lexical approaches is good but not complete brings one
more argument in favor of complementarity. One thing
to keep in mind: because of the imperfect optimization
of reordering and choice of the article rather than sen-
tences or narrow contexts as the lexical unit, the global
convergence tends to be underestimated.

Complementarity
Complementarity, rather than competition, already in-
spired the citations in context researches, initiated in
cocitation studies [2.249, 250] which are a natural space
to connect referencing, intellectual base, and linguistic
aspects. In a step further than linguistic labeling entities

in (co)citation analysis, the studies of citation in con-
text range from simple context visualization in citation
engines to investigations in the dynamics of science.
They tend to reinvest research in action, associating
language and communities’ life. The linguistic and se-
mantic analysis of citation contexts contribute to topics
such as the citation types or motives [2.251], the classi-
fication and cross-analysis of the contents of the citing
or the cited documents [2.252], the fine-grained relation
of citation contexts and abstract terms [2.253], the ex-
ploration of new dimensions of scientific texts [2.254].
Some of these advances influence citation techniques
in return. An example is the improvement of cocitation
accuracy [2.255, 256].

As a result of multinetwork or polyrepresentation
hypotheses, some issues typical of one representation
can receive a solution from the other. Convergence at
the local level also creates spaces for complementarity:
synonyms of any kind, for example, tend to be retrieved
in the same citation-based clusters. Citation techniques
escape linguistic polysemy and the reverse is true, but
citation homonymy often due to matching keys, is a less
important risk.

Finally, textual information preserves its advantages
of availability, intuitiveness, and interpretation, with
easy transposition to concepts and topics. A major
shortcoming is the complexity and ambiguity of natu-
ral language, resulting in poor precision in the case of
unsupervised protocols. In spite of the composite unit
handled (the full article rather than the narrow concept),
citations are appealing for tracking intellectual influ-
ences and often less noisy, at the expense of lower recall
in weak signal configurations.

The capability of pure lexical approaches to emu-
late citation-based or hybrid approaches in challenging
topics such as the aforementioned description/anticipa-
tion of early stages of domain emergence, remains
a challenge.

2.4.4 Hybridization Modes

Looking for optimal exploitation of these contrasting
properties is the quest of hybrid techniques, in line
with pragmatic mixes of dimensions in IR-type delin-
eation for bibliometric purposes. The same pragma-
tism inspired mixed information classification of web
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sources [2.257]. The detail of the more sophisticated
techniques are not on the table: millions of Google users
benefit from hybrid IR processes every day, but in spite
of expansive literature devoted to the PageRank algo-
rithm itself starting with [2.258] and published works
on lexical/semantic processing [2.196], the detailed
combination of multinetwork operations in the search
engine is not documented. We will limit ourselves here
to quite basic combinations, readily available in biblio-
metric literature.

The scope of hybridization is quite large: words
and citations, on which we focus, may be taken either
as variants of information tokens likely to be indis-
tinctly treated under certain conditions, in a typical
informetric posture; or seen as elements of quite dif-
ferent relations with their own fundamental properties
and interpretation, suggesting their use in sequential
or parallel protocols. Parallel exploitation, particularly,
is sociology-compatible allowing for separate inter-
pretations and comparison before final combination if
necessary.

Full Hybrid
The structuring/clustering of fields using a common
metric mixing citation and term distances at the finer
grain level, from the start, is a promising path [2.259,
260]. Boyack and Klavans [2.128] on a large dataset,
observed that even a hybrid naive coupling outper-
formed pure bibliographic coupling. Statistical differ-
ences between word and citation distribution can be
reduced through a normalization of the similarity mea-
sures with different distributions ([2.261] with later
simplification in [2.262]) achieving a full and flexible
integration. Koopman et al. [2.263] established cluster
similarities using a combination of tokens, for compar-
ing clustering solutions based on direct vocabulary and
indirect vocabulary associated with authors, journals,
citation, etc.

Those developments remain within the framework
of feature methods keeping the substance of infor-
mation elements, words, and citations. In Sect. 2.3,
we mentioned purely computational methods (charac-
ter n-grams on text flow, compression) for calculating
generalized text distances regardless of linguistic fea-
tures. An option is to stay within the textual domain
(full text, abstract, title. . . ) or to enlarge to the full arti-
cle including authors, affiliations, list of references, etc.
We get a massive and blind form of hybridization, dis-
solving both terms and references into signals, ignoring
all forms of normalization including zones length (text
versus bibliography). Such black boxes are deprived
of any semantic interpretation, but in our experience
prove efficient for quick calculation of interdocument
distances.

We have seen above (Sect. 2.3.2) that deep neu-
ral networks have proven in many areas of supervised
learning, including information retrieval, their ability
to do without prior weighting of the variables. Their
unsupervised variants, building upon their success in
very constrained fields like the Go game, should be
able to do the same from an informal collection of
data—such as full hybrid data—and so an application
to domain delineation might be to consider the last
layers of a network collecting the many traces of scien-
tific activity: whatever citations, texts, and so on in the
wake of present limited attempts of hybridization. Re-
search in unsupervised deep learning, though, is still at
a preliminary stage [2.264]. There is no doubt, however,
that in the next few years progress—and controversy—
are to be expected from deep learning’s entry into the
competition. These processes, however, remain black
boxes, with quite difficult interpretations. Perhaps high-
level semantic categorization resulting from the careful
interpretation of the last layers might allow experts
to select a subset of explicit dimensions in order to
take into account the users’ expectations of a delin-
eation process. Whether this could reconcile cognitive
classification and institutional expectations, an issue
mentioned above, is another question.

Sequential Hybrid: Citations ! Terms
Sequential protocols of delineation may rely on more
iterations; we limit ourselves here to pointing out the
basic sequences. We mentioned the tradition of com-
pleting citation objects by textual tagging above. The
question of the validity of cocitation research fronts
(Sect. 2.2.3) triggered further developments in terms
of retrieval and recall rate and the means to foster it,
possibly with the help of texts. Braam et al. [2.265]
developed a systematic complementation of cocitation
cluster coverage by lexical means, a first operational
example of hybrid delineation. The citation ! text
sequence keeps being explored for other purposes,
especially in global science maps. Boyack and Kla-
vans [2.91] use textual metrics for display of cocitation
cluster relations at the large scale where citation signals
are weak.

Sequential Hybrid: Terms ! Citations
Here, the perspective is reversed. The remote ances-
tor is a classical application of citation indexing, when
title words or KeyWords PlusTM were used to query
a citation index to harvest papers on a given (set of) top-
ics. The rationale is simple: starting a multistep process
with experts’ help is easier with word queries. In a sec-
ond step, the expansion is carried out on the citation
network, where unsupervised or lightly supervised pro-
cedures are safer than on texts, with proper precautions.
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General conditions for citation analysis are required, es-
pecially not too scarce reference lists. There is some
analogy with the boomerang effect on citations [2.266].
An example of protocol is the LexCCite process ex-
plored in Laurens et al. [2.241], especially for emerging
or transverse domains, where classical methods tend to
fall short.

Quite a few options exist for expansion. If the seed
is considered globally, literature with reference combi-
nations present in the seed, but not in particular papers,
is recalled. However, unspecific cites should be ruled
out, which may require information from the whole
database. Conversely, if only combinations at the paper
level are allowed (strict bibliographic coupling), some
broad-scope literature is missed; cluster-level enrich-
ment, if a previous breakdown into clusters is available,
stands in the middle. Besides the recall-oriented aim,
these hybrid protocols may also enhance precision by
submitting the core itself to bibliographic coupling con-
straints. Along the same lines, an elaborate strategy
starting with lexical queries and query expansion, com-
pleted by journal selection and ending by collecting
citing papers, is proposed in [2.267].

Parallel Design
As described above in Sect. 2.4.3, parallel design allows
for comparison especially when metrics and clustering
methods are identical, so that the final outcomes can
be compared by factor analyses, parallel clustering–
mapping, and reordered cross-tabulations. In parallel
clustering, a similarity between clusters from different

origins is defined after their degree of overlap, and then
the intercluster matrix, of small size, is easily displayed
using an MDS-type method. The cross-tabulation for
example highlights strong relative overlaps with two
strategies in addition to choosing either the c-cluster or
the w-cluster on a topic: (a) precision-oriented: a heavy
intersection between c-cluster and w-cluster suggests
a strong form of topic, strategy possibly extended to su-
perclusters (b) recall-oriented strategy, taking the union
of c-cluster and w-cluster.

2.4.5 Conclusion

The various publication-linked networks, at least words
and citations offer globally convergent views but not
at the point that one can be happy with a single so-
lution: sociology of citing, collaborating behavior and
writing rhetorics keep some distance, and bibliometric
protocols can choose to mix up all information tokens
or to combine parallel approaches at the final stage
only. Comparison and complementarity merit further
endeavor. In practice, delineation cannot avoid super-
vision and actors’ negotiation. Protocols of experts’
guidance for evaluation purposes are desirable. Cross-
validation of parallel processes, and even in some cases
of sequential processes [2.241], may alleviate the bur-
den of multistep external validation. There are strong
indications that multinetwork methods improve recall
and offer richer substance to expert/user discussions,
but more benchmark studies against ground truth are
needed.

2.5 Delineation Schemes and Conclusion

2.5.1 Delineation Schemes

IR Search First
A scheme of a bibliometric study asking for careful de-
lineation may be as follows:

� For memory’s sake, selection of the expert/peers
panel, matching the expected variety of the domain.� Supervised IR search on specialized journals and
specific vocabulary, aiming at precision, building up
the core of the domain. Alternatively, use of cited
cores at the article or author level. The granularity
is, typically, the document level. In favorable cases,
some partial query formulas are found in the litera-
ture.� Query expansion or bibliometric expansion with
citations (the latter usually requiring lighter super-
vision). The query expansion is conducted globally

or query by query. Optionally, a round of data
analysis/clustering can suggest query rephrasing or
complementing (Fig. 2.6a,b).� Evaluation of outcomes especially on the border-
line. In multilevel processes, the border region typi-
cally stands between the high-precision cores/seeds
(or low-recall expanded set) and the high-recall
expanded set. Circles of expansion with expected
relevance indexes (example in Sect. 2.4) enlighten
decision-making, again optionally supported by the-
matic clustering/mapping.

Clustering/Mapping First
Regional overset maps are expected to contain all the
target, and the decisions on border regions are typi-
cally made at the cluster level. Granularity obviously
matters: we cannot expect that any high-level cluster-
ing of global or superlocal science will directly produce
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Fig. 2.6a–d IR search and mapping approaches. (a) IR process: bottom-up queries and expansion of individual queries.
Assumed at the paper-level. (b) Variant of (a): Expansion based on the entire set (lexical or citation-based). The border
area, to be discussed, is typically determined by the region between the high-precision seed (or a low-recall expanded set)
and a high-recall set. Circles of expansion in the border region, if indirect indicators or relevance are available, can drive
the choice of delineation. (Optional (c)) Local clustering from B data (alternatively: from A data). Clusters are helpful
for discussion but the border region and the decision tools may exist in A or B stages. The map is local and in the general
case is not superimposable to a fraction of the global map D. A discussion on global versus local mapping is found
in [2.179]. (d) Global mapping/clustering: top-down from global or overset map to the target; detection of border area
with the help of information from projection. The example in the next panel (Fig. 2.6e) assumes no external information,
it relies on clustering outcomes only to define core, periphery and outside regions J

a class retrieving the target domain as a whole. A lower-
level breakdown yielding fine-grained delineation of the
frontier will be preferred, with a number of subareas
large enough to match the diversity of the domain and
eventually increase precision, but small enough to make
cluster-level expertise feasible. Reasonably, the gran-
ularity picked fulfils two objectives, aiding the delin-
eation and preparing the study of the domain’s subareas.

In the perspective of a cluster evaluation procedure,
possibly time-consuming and costly, it is recommended
that one relies on a lightly supervised preselection of the
border region, located between the internal core, a priori
deemed in, and the external zone deemed out. Depend-
ing on the clustering–mapping protocols chosen (see
the sketch Fig. 2.6c,d), various solutions can address
this preselection, for example:

� Clustering with IR search projection. For this prese-
lection, most helpful is the simultaneous representa-
tion of a global map (or at least of an overset-map)
obtained on one criterion and cluster-level proper-
ties on another criterion. The projection of local
features over a large context is often used: in two-
step protocols, seeds for example are projected on
clusters in the expanded set [2.241] with the ra-
tio of seed articles as the indicator for delineation.
Another combination: a global map conveys a par-
ticular vision depending on the network represented
and the methodological choices made, and the hits
of an IR search on a lexical marker (with a gen-
erous setting for recall) alerts one to clusters of
interest. In Fig. 2.2 for example, the central commu-
nities might be considered as belonging to a core,
whereas distant colonies, on the borders, require
evaluation. Such cases illustrate the complemen-
tarity of IR and mapping techniques for avoiding
silence both on weak and strong signals, as men-
tioned above. An alleviated process uses the projec-
tion of specialized journal literature onto a global
map [2.177]. Such processes help pinpoint clus-
ters forming the border region as the decision area
and/or suggest journals or groups of papers as can-
didates for extending a core. Clusters may also un-

dergo a complementary stage of query expansion or
bibliometric expansion, typically transforming—in
a given universe—a hard partition into an overlap-
ping structure. For the domain delineation, only the
overlaps involving the border region will matter for
the final outcome.� Crossing methods. An alternative is the crossing
of literature sets produced by different techniques
or upon different networks. Instead of the stan-
dard core–periphery schemes, visualization may
confront cognitive viewpoints, where areas of con-
vergence (overlaps) are considered as strong forms
(another form of core) and nonoverlapping parts
as possible extensions to be validated. An example
of crossmaps was shown in Sect. 2.4. In the limit
case of Boolean formulas addressing the whole
domain to delineate, this would be equivalent to
running a word-based search AND/OR a citation-
based search. The AND clause yields the strong
form and the OR clause a possible expansion along
two branches, words and citations.
The principle can be extended in a pragmatic way,
given that (a) data analysis methods are not very ro-
bust and tend to yield quite different outcomes; (b)
data from different networks do not lead to identical
results (polyrepresentation). Therefore the combi-
nation of methods, or the combination of networks,
provides both ways to enhance precision (strong
forms where outcomes of different reliable methods
converge), and ways to enhance recall, in diver-
gence areas, at some risk.� Decision region and cluster evaluation (Fig. 2.6e):
– Evaluation at the cluster level. Again, thematic

clusters are understood here in a broad mean-
ing, whatever the data analysis method used.
As a rule, there is no ground truth making
the evaluation of recall, precision, and F-scores
or variants straightforward, so the relevance of
each cluster has to be assessed by indirect in-
dicators and/or supervision based on available
cluster data. A light manual scrutiny can rely
on cluster aggregate information such as la-
bel, pseudotitle recomposed from most specific
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e)

Fig. 2.6e IR search and mapping approaches. Evaluation
and decision on clusters in border area. Example of direct
selection of a bibliometric map on some criteria without
input of other projected information

words or phrases, a ranked list of words, specific
journals, cited authors/institutions, etc. Speci-
ficity of attributes is calculated by TF-IDF or
other indexes. Features from a previous IR or
mapping process, say ratios of expansion to
core, or results from crossmaps, are particularly
helpful. Map displays using pleasant interfaces
make the task easier.

– Evaluation at a finer granularity level. Finer-
grained information can be available from the
delineation protocol: IR projections of good
quality onto a map; cluster crossings from hy-
brid methods; combination with zones of biblio-
metric expansion, etc. In such cases the border
region may be treated at the infracluster or the
document level. In pure mapping exercises, the
cluster level may simply reveal too coarse, with
exceedingly large or heterogeneous groupings.
In this case, one has to go deeper into cluster
content, through sampling for detailed analysis
or further breakdown, at a cost.

The driving of evaluation is conditioned by the mas-
tering of methodological effects and biases, likely to

yield very different outputs. A particular attention, at
the domain level, should be brought to the tendency of
metrics and methods to favor particular semantic di-
mensions: To what extent can a domain be extended
towards its intellectual base, especially theoretical foun-
dations? Towards its tools and techniques? Towards its
objects and products? Decision rules, in absence of a IR
standard, will be based on quantitative indicators of the
process, for example the intensity of bibliometric link-
ages in expansion stages, and experts’ advices in terms
of subjective precision, recall, and their balance (tan-
tamount to variants of F-score). The convergence of
experts’ preferences, with the help of self-rating, may
be taken into account.

2.5.2 To Conclude

Delineation at the mesolevel deals with intermediary
objects. Models in Price’s tradition cast some light on
the dynamics of the whole scientific system, whereas
network theory proposes, at the microlevel, various me-
chanic models explaining emergence of mesostructures.
The connection with practical solutions for topic and
domain delineation, a rather multidisciplinary issue,
will stimulate many research projects.

In practical studies, delineation operations should
respect the proportionality principle. In simple cases,
specialized and mature fields, the domain can be de-
fined by using ready-made resources: official clas-
sifications, databases schemes. The complex cases
which typically justify scientometric field stud-
ies—multidisciplinary, generic and emerging/unsettled
domains—are precisely those where delineation and
expertise are the more challenging. Coarse-grained ap-
proaches (journal-level) are easier to implement, but
again hindered by a locally complex network and abun-
dance of nonspecific media.

Bibliometrics both exploits and feeds science clas-
sification resources, literature searching and mapping
models and human skill. Validation procedures include
cross-analyses and direct supervision. The delineation
tasks pull together multiple strands of bibliometrics and
IR. They inherit progress in data and network analy-
sis, as well as common limitations in data coverage,
robustness issues, ergonomy challenges with respect
to supervision and discussions with sponsors. Biblio-
metrics cannot pretend to operationalize in a standard
manner all questions from decision-makers nor, in cog-
nitive applications, all questions from sociologists of
science and other scholars.

Within the scope where bibliometric hypothesis ap-
plies, a horizon of delineation is the comparison and
combination of solutions from the networks which
reflect scientific activity, essentially actors and insti-



Bibliometric Delineation of Scientific Fields References 59
Part

A
|2

tutions, citations and texts. Taking advantage of all
available facets of data is a pragmatic choice, to which
the concept of polyrepresentation has given a theoret-
ical support. The cross-study of the three main uni-
verses associated to documents is also gaining attention
in bibliometrics and sociology of research, supported
by social network analysis. The theoretical profusion
around models of growth and decline of communities is
perhaps not settled now, but is very promising for un-
derstanding the invisible colleges in its various aspects.
Will this multinetwork research track converge towards
unified hypotheses? There is little doubt that progress
in this matter will enlighten the delineation issue es-
pecially in emerging areas. Meanwhile, the question
remains whether networks should be fully hybridized
with more or less radical techniques—substantive or
featureless—or various network solutions be conducted
in parallel with final synthesis. In the background, the
tremendous potential of deep learning on big science
data is likely to reshuffle the cards in retrieval and clas-
sification methods. The prospects are unclear right now,
as their lack of explainability is a serious drawback in
the bibliometric delineation context.

The management of supervision is central to the
feasibility of bibliometric studies and their delineation
tasks. Configurations are diverse, one cannot compare
simple problems requiring light supervision, with large
studies on controversial areas. In the latter case, the
operators of the study deal with a possibly complex
managerial organization, with steering committees and

expert panels mixing policy makers, stakeholders, and
scientists, possibly with multiple roles. The selection
of data sources and the methods of supervision, and
finally the perimeter of the domain, will reflect those
social stakes. The definition of fields or disciplines is
particularly sensitive to academic interests, epistemic
convictions and border issues, likely to create conflict-
ual visions, sometimes between external observers and
established players. The panel composition, to be effi-
cient, should match the diversity of the domain, both
in terms of thematic specialization and social stakes,
with possibly some help from a few high-level general-
ists. In the mediation role, bibliometrics is also a social
practice.

Bibliometric studies, if commissioned by adminis-
trations or institutions, enter a complex landscape of
decision–help procedures where quantitative proposals
are elements of discussion and decision among others.
The question is vaster, however. Gläser et al. [2.26] un-
derline the differences between operational definitions
(say method outputs), pragmatic definitions (for clients
and sponsors), and theoretical definitions (talking to
science studies) of topics or domains. The notion of
scientific domains is mobilized for a wide scope of pur-
poses, labeling, information, and evaluation in scientific
institutions, science administrations, IR databases of
any kinds, laboratory life, scientists’ self-positioning,
and last but not least the reflexive work of sciento-
metricians and social scientists on understanding the
mechanisms of scientific activity.
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