
Convex Language Semantics for
Nondeterministic Probabilistic Automata

Gerco van Heerdt1, Justin Hsu2(B), Joël Ouaknine3,4, and Alexandra Silva1

1 Department of Computer Science, University College London, London, UK
{g.vanheerdt,a.silva}@cs.ucl.ac.uk

2 Department of Computer Sciences, University of Wisconsin-Madison,
Madison, WI, USA

justhsu@cs.wisc.edu
3 Max Planck Institute for Software Systems, Saarbrücken, Germany
4 Department of Computer Science, Oxford University, Oxford, UK

joel@mpi-sws.org

Abstract. We explore language semantics for automata combining
probabilistic and nondeterministic behaviors. We first show that there
are precisely two natural semantics for probabilistic automata with non-
determinism. For both choices, we show that these automata are strictly
more expressive than deterministic probabilistic automata, and we prove
that the problem of checking language equivalence is undecidable by
reduction from the threshold problem. However, we provide a discounted
metric that can be computed to arbitrarily high precision.

1 Introduction

Probabilistic automata are fundamental models of randomized computation.
They have been used in the study of such topics as the semantics and correctness
of probabilistic programming languages [18,20], randomized algorithms [24,25],
and machine learning [3,26]. Removing randomness but adding nondeterminism,
nondeterministic automata are established tools for describing concurrent and
distributed systems [27].

Interest in systems that exhibit both random and nondeterministic behav-
iors goes back to Rabin’s randomized techniques to increase the efficiency of dis-
tributed algorithms in the 1970s and 1980s [24,25]. This line of research yielded
several automata models supporting both nondeterministic and probabilistic
choices [4,16,28]. Many formal techniques and tools were developed for these
models, and they have been successfully used in verification tasks [15,16,19,30],
but there are many ways of combining nondeterminism and randomization, and
there remains plenty of room for further investigation.

This work was partially supported by ERC starting grant ProFoundNet (679127),
ERC consolidator grant AVS-ISS (648701), a Leverhulme Prize (PLP-2016-129), and
an NSF grant (1637532).

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 472–492, 2018.
https://doi.org/10.1007/978-3-030-02508-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_25&domain=pdf

Convex Language Semantics for Nondeterministic Probabilistic Automata 473

In this paper we study nondeterministic probabilistic automata (NPAs) and
propose a novel probabilistic language semantics. NPAs are similar to Segala
systems [28] in that transitions can make combined nondeterministic and prob-
abilistic choices, but NPAs also have an output weight in [0, 1] for each state,
reminiscent of observations in Markov Decision Processes. This enables us to
define the expected weight associated with a word in a similar way to what one
would do for standard nondeterministic automata—the output of an NPA on an
input word can be computed in a deterministic version of the automaton, using
a careful choice of algebraic structure for the state space.

Equivalence in our semantics is language equivalence (also known as trace
equivalence), which is coarser than probabilistic bisimulation [7,9,17,32], which
distinguishes systems with different branching structure even if the total weight
assigned to a word is the same. This generalizes the classical difference between
branching and linear semantics [31] to the probabilistic setting, with different
target applications calling for different semantics.

After reviewing mathematical preliminaries in Sect. 2, we introduce the NPA
model and explore its semantics in Sect. 3. We show that there are precisely
two natural ways to define the language semantics of such systems—by either
taking the maximum or the minimum of the weights associated with the differ-
ent paths labeled by an input word. The proof of this fact relies on an abstract
view on these automata generating probabilistic languages with algebraic struc-
ture. Specifically, probabilistic languages have the structure of a convex algebra,
analogous to the join-semilattice structure of standard languages. These features
can abstractly be seen as so-called Eilenberg-Moore algebras for a monad—the
distribution and the powerset monads, respectively—which can support new
semantics and proof techniques (see, e.g., [6,7]).

In Sect. 4, we compare NPAs with standard, deterministic probabilistic
automata (DPAs) as formulated by Rabin [23]. Our semantics ensures that NPAs
recover DPAs in the special case when there is no nondeterministic choice. More
interestingly, we show that there are weighted languages accepted by NPAs that
are not accepted by any DPA. We use the theory of linear recurrence sequences
to give a separation even for weighted languages over a unary alphabet.

In Sect. 5, we turn to equivalence. We prove that language equivalence of
NPAs is undecidable by reduction from so-called threshold problems, which are
undecidable [5,12,22]. The hard instances encoding the threshold problem are
equivalences between probabilistic automata over a two-letter alphabet. Thus,
the theorem immediately implies that equivalence of NPAs is undecidable when
the alphabet size is at least two. The situation for automata over unary alpha-
bets is more subtle; in particular, the threshold problem over a unary alphabet is
not known to be undecidable. However, we give a reduction from the Positivity
problem on linear recurrence sequences, a problem where a decision procedure
would necessarily entail breakthroughs in open problems in number theory [21].
Finally, we show that despite the undecidability result we can provide a dis-
counted metric that can be computed to arbitrarily high precision.

We survey related work and conclude in Sect. 6.

474 G. van Heerdt et al.

2 Preliminaries

Before we present our main technical results, we review some necessary math-
ematical background on convex algebras, monads, probabilistic automata, and
language semantics.

2.1 Convex Algebra

A set A is a convex algebra, or a convex set, if for all n ∈ N and tuples
(pi)n

i=1 of numbers in [0, 1] summing up to 1 there is an operation denoted∑n
i=1 pi(−)i : An → A satisfying the following properties for (a1, . . . , an) ∈ An:

Projection. If pj = 1 (and hence pi = 0 for all i �= j), we have
∑n

i=1 piai = aj .
Barycenter. For any n tuples (qi,j)m

j=1 in [0, 1] summing up to 1, we have

n∑

i=1

pi

⎛

⎝
m∑

j=1

qi,jaj

⎞

⎠ =
m∑

j=1

(
n∑

i=1

piqi,j

)

aj .

Informally, a convex algebra structure gives a way to take finite convex combina-
tions of elements in a set A. Given this structure, we can define convex subsets
and generate them by elements of A.

Definition 1. A subset S ⊆ A is convex if it is closed under all convex combi-
nations. (Such a set can also be seen as a convex subalgebra.) A convex set S is
generated by a set G ⊆ A if for all s ∈ S, there exist n ∈ N, (pi)n

i=1, (gi)n
i=1 ∈ Gn

such that s =
∑

i pigi. When G is finite, we say that S is finitely generated.

We can also define morphisms between convex sets.

Definition 2. An affine map between two convex sets A and B is a function
h : A → B commuting with convex combinations:

h

(
n∑

i=1

piai

)

=
n∑

i=1

pih(ai).

2.2 Monads and Their Algebras

Our definition of language semantics will be based on the category theoretic
framework of monads and their algebras. Monads can be used to model compu-
tational side-effects such as nondeterminism and probabilistic choice. An algebra
allows us to interpret such side-effects within an object of the category.

Definition 3. A monad (T, η, μ) consists of an endofunctor T and two natural
transformations: a unit η : Id ⇒ T and a multiplication μ : TT ⇒ T , making
the following diagrams commute.

T TT

TT T

η

Tη μ

μ

TTT TT

TT T

Tμ

μ μ

μ

Convex Language Semantics for Nondeterministic Probabilistic Automata 475

When there is no risk of confusion, we identify a monad with its endofunctor.
An example of a monad in the category of sets is the triple (P, {−},

⋃
), where

P denotes the finite powerset functor sending each set to the set of its finite
subsets, {−} is the singleton operation, and

⋃
is set union.

Definition 4. An algebra for a monad (T, η, μ) is a pair (X,h) consisting of
a carrier set X and a function h : TX → X making the following diagrams
commute.

X TX

X

η

h

TTX TX

TX X

Th

μ h

h

Definition 5. A homomorphism from an algebra (X,h) to an algebra (Y, k) for
a monad T is a function f : X → Y making the diagram below commute.

TX TY

X Y

Tf

h k

f

The algebras for the finite powerset monad are precisely the join-semilattices
with bottom, and their homomorphisms are maps that preserve finite joins. The
algebras for any monad together with their homomorphisms form a category.

2.3 Distribution and Convex Powerset Monads

We will work with two monads closely associated with convex sets. In the cate-
gory of sets, the distribution monad (D, δ,m) maps a set X to the set of distribu-
tions over X with finite support. The unit δ : X → DX maps x ∈ X to the point
distribution at x. For the multiplication m : DDX → DX, let d ∈ DDX be a
finite distribution with support {d1, . . . , dn} ⊆ DX and define m(d) =

∑n
i=1 pidi,

where pi is the probability of producing di under d. The category of algebras
for the distribution monad is precisely the category of convex sets and affine
maps—we will often convert between these two representations implicitly.

In the category of convex sets, the finitely generated nonempty convex power-
set monad [7] (Pc, {−},

⋃
) maps a convex set A to the set of finitely generated

nonempty convex subsets of A.1 The convex algebra structure on PcA is given
by

∑n
i=1 piUi = {∑n

i=1 piui | ui ∈ Ui for all 1 ≤ i ≤ n} with every Ui ∈ PcA.
The unit map {−} : A → PcA maps a ∈ A to a singleton convex set {a}, and the
multiplication

⋃
: PcPcA → PcA is again the union operation, which collapses

nested convex sets.
As an example, we can consider this monad on the convex algebra [0, 1]. The

result is a finitely generated convex set.
1 In prior work [7], the monad was defined to take all convex subsets rather than
just the finitely generated ones. However, since all the monad operations preserve
finiteness of the generators, the restricted monad we consider is also well-defined.

476 G. van Heerdt et al.

Lemma 1. The convex set Pc[0, 1] is generated by its elements {0}, {1}, and
[0, 1], i.e., Conv({{0}, {1}, [0, 1]}) = Pc[0, 1].

Proof. The finitely generated nonempty convex subsets of [0, 1] are of the form
[p, q] for p, q ∈ [0, 1], and [p, q] = p{1} + (q − p)[0, 1] + (1 − q){0}. �	

To describe automata with both nondeterministic and probabilistic transi-
tions, we will work with convex powersets of distributions. The functor PcD

taking sets X to the set of finitely generated nonempty convex sets of distribu-
tions over X can be given a monad structure.

Explicitly, writing ωA : DPcA → PcA for the (affine) convex algebra structure
on PcA for any convex algebra A, the composite monad (PcD, δ̂, m̂) is given by

X

DX PcDX

δ̂
δ

{−}

PcDPcDX

PcPcDX PcDX

m̂
Pcω

⋃
(1)

For all convex sets A and finite nonempty subsets S ⊆ A, we can define the
convex closure of S (sometimes called the convex hull) Conv(S) ∈ PcA by

Conv(S) = {α(d) | d ∈ DA, supp(d) ⊆ S},

where α : DA → A is the convex algebra structure on A. Conv is in fact a natural
transformation, a fact we will use later.

Lemma 2. For all convex sets (A,α) and (B, β), affine maps f : A → B, and
finite nonempty subsets S ⊆ A, (Pcf ◦ Conv)(S) = (Conv ◦ Pf)(S).

Proof. We will first show that

{Df(d) | d ∈ DA, supp(d) ⊆ S} = {d ∈ DB | supp(d) ⊆ {f(a) | a ∈ S}} (2)

for all finite nonempty S ⊆ A. For the inclusion from left to right, note that for
each d ∈ DA such that supp(d) ⊆ S we have b ∈ supp(Df(d)) only if there exists
a ∈ S such that f(a) = b. Thus, supp(Df(d)) ⊆ {f(a) | a ∈ S}. Conversely,
consider d ∈ DB such that supp(d) ⊆ {f(a) | a ∈ S}. We define d′ ∈ DA by

d′(a) =
d(f(a))

|{a′ ∈ S | f(a′) = f(a)}| .

Then

Df(d′)(b) =
∑

a∈A,f(a)=b

d′(a) (definition ofDf)

=
∑

a∈A,f(a)=b

d(f(a))
|{a′ ∈ S | f(a′) = f(a)}| (definition of d′)

=
∑

a∈A,f(a)=b

d(b)
|{a′ ∈ S | f(a′) = b}| = d(b).

Convex Language Semantics for Nondeterministic Probabilistic Automata 477

Now we have

(Pcf ◦ Conv)(S)
= Pcf({α(d) | d ∈ DA, supp(d) ⊆ S}) (definition ofConv)
= {f(α(d)) | d ∈ DA, supp(d) ⊆ S} (definition ofPcf)
= {β(Df(d)) | d ∈ DA, supp(d) ⊆ S} (f is affine)
= {β(d) | d ∈ DB, supp(d) ⊆ {f(a) | a ∈ S}} (2)
= Conv({f(a) | a ∈ S}) (definition ofConv)
= (Conv ◦ Pf)(S) (definition ofPf). �	

2.4 Automata and Language Semantics

In this section we review the general language semantics for automata with side-
effects provided by a monad (see, e.g., [2,14,29]). This categorical framework is
the foundation of our language semantics for NPA.

Definition 6. Given a monad (T, η, μ) in the category of sets, an output set O,
and a (finite) alphabet A, a T -automaton is defined by a tuple (S, s0, γ, {τa}a∈A),
where S is the set of states, s0 ∈ S is the initial state, γ : S → O is the output
function, and τa : S → TS for a ∈ A are the transition functions.

This abstract formulation encompasses many standard notions of automata.
For instance, we recover deterministic (Moore) automata by letting T be the
identity monad; deterministic acceptors are a further specialization where the
output set is the set 2 = {0, 1}, with 0 modeling rejecting states and 1 modeling
accepting states. If we use the powerset monad, we recover nondeterministic
acceptors.

Any T -automaton can be determinized, using a categorical generalization of
the powerset construction [29].

Definition 7. Given a monad (T, η, μ) in the category of sets, an output set
O with a T -algebra structure o : TO → O, and a (finite) alphabet A, a T -
automaton (S, s0, γ, {τa}a∈A) can be determinized into the deterministic automa-
ton (TS, s′

0, γ
′, {τ ′

a}a∈A) given by s′
0 = η(s0) ∈ TS and

γ′ : TS → O τ ′
a : TS → TS

γ′ = o ◦ Tγ τ ′
a = μ ◦ Tτa.

This construction allows us to define the language semantics of any T -
automaton as the semantics of its determinization. More formally, we have the
following definition.

Definition 8. Given a monad (T, η, μ) in the category of sets, an output set O
with a T -algebra structure o : TO → O, and a (finite) alphabet A, the language
accepted by a T -automaton A = (S, s0, γ, {τa}a∈A) is the function LA : A∗ → O
given by LA = (lA ◦ η)(s0), where lA : TS → OA∗

is defined inductively by

lA(s)(ε) = (o ◦ Tγ)(s) lA(s)(av) = lA((μ ◦ Tτa)(s))(v).

478 G. van Heerdt et al.

As an example, we recover deterministic probabilistic automata (DPAs) by
taking T to be the distribution monad D and letting the output set be the
interval [0, 1]. That is, a DPA with finite2 state space S has an output function
of type S → [0, 1], and each of its transition functions is of type S → DS. To
give a semantics to such an automaton, we use the usual D-algebra structure
E : D[0, 1] → [0, 1] computing the expected weight.

More concretely, the semantics works as follows. Let (S, s0, γ, {τa}a∈A) be
a DPA. At any time while reading a word, we are in a convex combination
of states

∑n
i=1 pisi (equivalently, a distribution over states). The current out-

put is given by evaluating the sum
∑n

i=1 piγ(si). On reading a symbol a ∈ A,
we transition to the convex combination of convex combinations

∑n
i=1 piτa(si),

say
∑n

i=1 pi

∑mi

j=1 qi,jsi,j , which is collapsed to the final convex combination
∑n

i=1

∑mi

j=1 piqi,jsi,j (again, a distribution over states).

Remark 1. One may wonder if the automaton model would be more expressive
if the initial state s0 in an automaton (S, s0, γ, {τa}a∈A) would be an element of
TS rather than S. This is not the case, since we can always add a new element
to S that simulates s0 by setting its output to (o ◦ Tγ)(s0) and its transition on
a ∈ A to (μ ◦ Tτa)(s0).

For instance, DPAs allowing a distribution over states as the initial state
can be represented by an initial state distribution μ, an output vector γ, and
transitions τa. In typical presentations, μ and γ are represented as weight vectors
over states, and the τa are encoded by stochastic matrices.

3 Nondeterministic Probabilistic Automata

We work with an automaton model supporting probabilistic and nondetermin-
istic behaviors, inspired by Segala [28]. On each input letter, the automaton
can choose from a finitely generated nonempty convex set of distributions over
states. After selecting a distribution, the automaton then transitions to its next
state probabilistically. Each state has an output weight in [0, 1]. The following
formalization is an instantiation of Definition 6 with the monad PcD.

Definition 9. A nondeterministic probabilistic automaton (NPA) over a
(finite) alphabet A is defined by a tuple (S, s0, γ, {τa}a∈A), where S is a finite set
of states, s0 ∈ S is the initial state, γ : S → [0, 1] is the output function, and
τa : S → PcDS are the transition functions indexed by inputs a ∈ A.

2 All concrete automata considered in this paper will have a finite state space, but
this is not required by Definition 6. The distribution monad, for example, does not
preserve finite sets in general.

Convex Language Semantics for Nondeterministic Probabilistic Automata 479

As an example, consider the NPA below.

1

0

1 1

a, b

a

s0

1
2

1
2

a, b

s1

a

bs2

1
2

1
2 a, b

s3

(3)

States are labeled by their direct output (i.e., their weight from γ) while out-
going edges represent transitions. Additionally, we write the state name next to
each state. We only indicate a set of generators of the convex subset that a state
transitions into. If one of these generators is a distribution with nonsingleton
support, then a transition into a black dot is depicted, from which the outgoing
transitions represent the distribution. Those edges are labeled with probabilities.

Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Sect. 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of PcD.
To be able to use the semantics from Sect. 2.4, we need to specify a PcD-algebra
structure o : PcD[0, 1] → [0, 1]. Moreover, our model should naturally coincide
with DPAs when transitions make no nondeterministic choices, i.e., when each
transition function maps each state to a singleton distribution over states. Thus,
we require the PcD-algebra o to extend the expected weight function E, making
the diagram below commute.

D[0, 1]

PcD[0, 1] [0, 1]

{−} E

o

(4)

3.2 Characterizing the Convex Algebra on [0, 1]

While in principle there could be many different PcD-algebras on [0, 1] leading to
different language semantics for NPAs, we show that (i) each algebra extending
the D-algebra on [0, 1] is fully determined by a Pc-algebra on [0, 1], and (ii) there
are exactly two Pc-algebras on [0, 1]: the map computing the minimum and the
map computing the maximum.

Proposition 1. Any PcD-algebra on [0, 1] extending E : D[0, 1] → [0, 1] is of
the form PcD[0, 1] PcE−−→ Pc[0, 1] α−→ [0, 1], where α is a Pc-algebra.

480 G. van Heerdt et al.

Proof. Let o : PcD[0, 1] → [0, 1] be a PcD-algebra extending E. We define

α = Pc[0, 1] Pcδ−−→ PcD[0, 1] o−→ [0, 1].

Indeed, the diagram

PcD[0, 1] Pc[0, 1]

PcPcD[0, 1] PcDPcD[0, 1] PcD[0, 1]

PcPcD[0, 1]

PcD[0, 1] [0, 1]

PcE

Pc{−} (4)
Pcδ1

Pcδ

Pco

PcDo

Pcω2

3 o

⋃

o

1 naturality of δ 2 ω is a convex algebra 3 o is a PcD-algebra

commutes, so it only remains to show that α is a Pc-algebra. This can be seen
from the commutative diagrams below.

[0, 1]

D[0, 1]

Pc[0, 1] PcD[0, 1] [0, 1]

δ

{−}
2

{−}
Pcδ

1

o

1 naturality of {−}
2 o is a PcD-algebra

PcPc[0, 1] PcPcD[0, 1] Pc[0, 1]

PcDPcD[0, 1] PcD[0, 1]

PcPcD[0, 1]

Pc[0, 1] PcD[0, 1] [0, 1]

PcPcδ

PcPcδ

⋃

Pco

Pcδ2
3

Pcδ

PcDo

Pcω

4 o
⋃

Pcδ

1

o

1 naturality of
⋃

3 naturality of δ
2 ω is a convex algebra 4 o is a PcD-algebra �	

Proposition 2. The only Pc-algebras on the convex set [0, 1] are min and max.

Convex Language Semantics for Nondeterministic Probabilistic Automata 481

Proof. Let α : Pc[0, 1] → [0, 1] be a Pc-algebra. Then for any r ∈ [0, 1], α({r}) =
r, and the diagram below must commute.

PcPc[0, 1] Pc[0, 1]

Pc[0, 1] [0, 1]

Pcα

⋃
α

α

(5)

Furthermore, α is an affine map. Since Conv({{0}, {1}, [0, 1]}) = Pc[0, 1] by
Lemma 1, α({0}) = 0, and α({1}) = 1, α is completely determined by α([0, 1]).
We now calculate that

α([0, 1]) = α
(⋃

{[0, p] | p ∈ [0, 1]}
)

= (α ◦
⋃

◦ Conv)({{0}, [0, 1]})

= (α ◦ Pcα ◦ Conv)({{0}, [0, 1]}) (5)
= (α ◦ Conv ◦ Pα)({{0}, [0, 1]}) (Lemma 2)
= (α ◦ Conv)({α({0}), α([0, 1])}) (definition ofPα)
= (α ◦ Conv)({0, α([0, 1])})
= α([0, α([0, 1])])
= α(α([0, 1])[0, 1] + (1 − α([0, 1])){0})
= α([0, 1]) · α([0, 1]) + (1 − α([0, 1])) · α({0}) (α is affine)

= α([0, 1])2 + (1 − α([0, 1])) · 0

= α([0, 1])2.

Thus, we have either α([0, 1]) = 0 or α([0, 1]) = 1. Consider any finitely generated
nonempty convex subset [p, q] ⊆ [0, 1]. If α([0, 1]) = 0, then Lemma 1 gives

α([p, q]) = α(p{1} + (q − p)[0, 1] + (1 − q){0})
= p · α({1}) + (q − p) · α([0, 1]) + (1 − q) · α({0})
= p · 1 + (q − p) · 0 + (1 − q) · 0 = p = min([p, q]);

if α([0, 1]) = 1, then

α([p, q]) = α(p{1} + (q − p)[0, 1] + (1 − q){0})
= p · α({1}) + (q − p) · α([0, 1]) + (1 − q) · α({0})
= p · 1 + (q − p) · 1 + (1 − q) · 0 = q = max([p, q]).

482 G. van Heerdt et al.

We now show that min is an algebra; the case for max is analogous. We have

min

(
n∑

i=1

ri[pi, qi]

)

= min

([
n∑

i=1

ri · pi,

n∑

i=1

ri · qi

])

=
n∑

i=1

ri · pi

=
n∑

i=1

ri · min([pi, qi]),

so min is an affine map. Furthermore, clearly min({r}) = r for all r ∈ [0, 1], and
for all S ∈ PcPc[0, 1],

min
(⋃

S
)

= min({min(T) | T ∈ S}) = (min ◦ Pcmin)(S). �	

Corollary 1. The only PcD-algebras on [0, 1] extending E are PcD[0, 1] PcE−−→
Pc[0, 1] min−−→ [0, 1] and PcD[0, 1] PcE−−→ Pc[0, 1] max−−→ [0, 1].

Consider again the NPA (3). Since we can always choose to remain in the
initial state, the max semantics assigns 1 to each word for this automaton. The
min semantics is more interesting. Consider reading the word aa. On the first
a, we transition from s0 to Conv{s0,

1
2s1 + 1

2s2} ∈ PcDS. Reading the second a
gives

Conv
{
Conv

{
s0,

1
2s1 + 1

2s2
}

, 1
2{s1} + 1

2

{
1
2s1 + 1

2s2
}} ∈ PcDPcDS.

Now we first apply Pcω to eliminate the outer distribution, arriving at

Conv
{
Conv

{
s0,

1
2s1 + 1

2s2
}

,
{

3
4s1 + 1

4s2
}} ∈ PcPcDS.

Taking the union yields

Conv
{
s0,

1
2s1 + 1

2s2,
3
4s1 + 1

4s2
} ∈ PcDS,

which leads to the convex subset of distributions over outputs

Conv
{
1, 1

2 · 0 + 1
2 · 1, 3

4 · 0 + 1
4 · 1

} ∈ PcD[0, 1].

Calculating the expected weights gives Conv{1, 1
2 , 1

4} ∈ Pc[0, 1], which has a
minimum of 1

4 . One can show that on reading any word u ∈ A∗ the automaton
outputs 2−n, where n is the length of the longest sequence of a’s occurring in u.

The semantics coming from max and min are highly symmetrical; in a sense,
they are two representations of the same semantics.3 Technically, we establish
the following relation between the two semantics—this will be useful to avoid
repeating proofs twice for each property.
3 The max semantics is perhaps preferable since it recovers standard nondeterministic
finite automata when there is no probabilistic choice and the output weights are in
{0, 1}, but this is a minor point.

Convex Language Semantics for Nondeterministic Probabilistic Automata 483

Proposition 3. Consider an NPA A = (S, s0, γ, {τa}a∈A) under the min seman-
tics. Define γ′ : S → [0, 1] by γ′(s) = 1 − γ(s), and consider the NPA A′ =
(S, s0, γ

′, {τa}a∈A) under the max semantics. Then LA′(u) = 1 − LA(u) for all
u ∈ A∗.

Proof. We prove a stronger property by induction on u: for all x ∈ PcDS and
u ∈ A∗, we have lA′(x)(u) = 1 − lA(x)(u). This is sufficient because A and A′

have the same initial state. We have

lA′(x)(ε)
= (max ◦ PcE ◦ PcDγ′)(x) (Definition 8)

= (max ◦ PcE)

⎛

⎝

⎧
⎨

⎩
λp.

∑

s∈S,γ′(s)=p

d(s)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠ (definition ofPcDγ′)

= max

⎛

⎝

⎧
⎨

⎩

∑

p∈[0,1]

p
∑

s∈S,γ′(s)=p

d(s)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠ (definition ofPcE)

= max

⎛

⎝

⎧
⎨

⎩

∑

p∈[0,1]

p
∑

s∈S,γ(s)=1−p

d(s)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠ (definition of γ′)

= max

⎛

⎝

⎧
⎨

⎩

∑

p∈[0,1]

(1 − p)
∑

s∈S,γ(s)=p

d(s)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠

= max

⎛

⎝

⎧
⎨

⎩

∑

p∈[0,1]

(1 − p) · Dγ(d)(p)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠

= max

⎛

⎝

⎧
⎨

⎩
1 −

∑

p∈[0,1]

p · Dγ(d)(p)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠

= 1 − min

⎛

⎝

⎧
⎨

⎩

∑

p∈[0,1]

p · Dγ(d)(p)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠

= 1 − (min ◦ PcE)({Dγ(d) | d ∈ x}) (definition ofPcE)
= 1 − (min ◦ PcE ◦ PcDγ)(x) (definition ofPcDγ′)
= 1 − lA(x)(ε) (Definition 8).

Furthermore,

lA′(x)(av) = lA′
((⋃

◦ Pcω ◦ PcDτa

)
(x)

)
(v) (Definition 8)

= 1 − lA

((⋃
◦ Pcω ◦ PcDτa

)
(x)

)
(v) (induction hypothesis)

= 1 − lA(x)(av) (Definition 8). �	

484 G. van Heerdt et al.

4 Expressive Power of NPAs

Our convex language semantics for NPAs coincides with the standard semantics
for DPAs when all convex sets in the transition functions are singleton sets. In
this section, we show that NPAs are in fact strictly more expressive than DPAs.
We give two results. First, we exhibit a concrete language over a binary alphabet
that is recognizable by a NPA, but not recognizable by any DPA. This argument
uses elementary facts about the Hankel matrix, and actually shows that NPAs
are strictly more expressive than weighted finite automata (WFAs).

Next, we separate NPAs and DPAs over a unary alphabet. This argument
is substantially more technical, relying on deeper results from number theory
about linear recurrence sequences.

4.1 Separating NPAs and DPAs: Binary Alphabet

Consider the language La : {a, b}∗ → [0, 1] by La(u) = 2−n, where n is the
length of the longest sequence of a’s occurring in u. Recall that this language is
accepted by the NPA (3) using the min algebra.

Theorem 1. NPAs are more expressive than DPAs. Specifically, there is no
DPA, or even WFA, accepting La.

Proof. Assume there exists a WFA accepting La, and let l(u) for u ∈ {a, b}∗ be
the language of the linear combination of states reached after reading the word
u. We will show that the languages l(anb) for n ∈ N are linearly independent.
Since the function that assigns to each linear combination of states its accepted
language is a linear map, this implies that the set of linear combinations of states
of the WFA is a vector space of infinite dimension, and hence the WFA cannot
exist.

The proof is by induction on a natural number m. Assume that for all natural
numbers i ≤ m the languages l(aib) are linearly independent. For all i ≤ m we
have l(aib)(am) = 2−m and l(aib)(am+1) = 2−m−1; however, l(am+1b)(am) =
l(am+1b)(am+1) = 2−m−1. If l(am+1b) is a linear combination of the languages
l(aib) for i ≤ m, then there are constants c1, . . . , cm ∈ R such that in particular

(c1 + · · · + cm)2−m = 2−m−1 and (c1 + · · · + cm)2−m−1 = 2−m−1.

These equations cannot be satisfied. Therefore, for all natural numbers i ≤ m+1
the languages l(aib) are linearly independent. We conclude by induction that for
all m ∈ N the languages l(aib) for i ≤ m are linearly independent, which implies
that all languages l(anb) for n ∈ N are linearly independent. �	

A similar argument works for NPAs under the max algebra semantics—one
can easily repeat the argument in the above theorem for the language accepted
by the NPA resulting from applying Proposition 3 to the NPA (3).

Convex Language Semantics for Nondeterministic Probabilistic Automata 485

4.2 Separating NPAs and DPAs: Unary Alphabet

We now turn to the unary case. A weighted language over a unary alphabet
can be represented by a sequence 〈ui〉 = u0, u1, . . . of real numbers. We will
give such a language that is recognizable by a NPA but not recognizable by any
WFA (and in particular, any DPA) using results on linear recurrence sequences,
an established tool for studying unary weighted languages.

We begin with some mathematical preliminaries. A sequence of real num-
bers 〈ui〉 is a linear recurrence sequence (LRS) if for some integer k ∈ N

(the order), constants u0, . . . , uk−1 ∈ R (the initial conditions), and coefficients
b0, . . . , bk−1 ∈ R, we have

un+k = bk−1un−1 + · · · + b0un

for every n ∈ N. A well-known example of an LRS is the Fibonacci sequence, an
order-2 LRS satisfying the recurrence fn+2 = fn+1 + fn. Another example of an
LRS is any constant sequence, i.e., 〈ui〉 with ui = c for all i.

Linear recurrence sequences are closed under linear combinations: for any
two LRS 〈ui〉, 〈vi〉 and constants α, β ∈ R, the sequence 〈αui + βvi〉 is again an
LRS (possibly of larger order). We will use one important theorem about LRSs.
See the monograph by Everest et al. [11] for details.

Theorem 2 Skolem-Mahler-Lech). If 〈ui〉 is an LRS, then its zero set {i ∈
N | ui = 0} is the union of a finite set along with finitely many arithmetic
progressions (i.e., sets of the form {p + kn | n ∈ N} with k �= 0).

This is a celebrated result in number theory and not at all easy to prove. To
make the connection to probabilistic and weighted automata, we will use two
results. The first proposition follows from the Cayley-Hamilton Theorem.

Proposition 4 (see, e.g., [21]). Let L be a weighted unary language recog-
nizable by a weighted automaton W . Then the sequence of weights 〈ui〉 with
ui = L(ai) is an LRS, where the order is at most the number of states in W .

While not every LRS can be recognized by a DPA, it is known that DPAs
can recognize a weighted language encoding the sign of a given LRS.

Theorem 3 (Akshay et al. [1, Theorem 3, Corollary 4]). Given any LRS
〈ui〉, there exists a stochastic matrix M such that

un ≥ 0 ⇐⇒ uT Mnv ≥ 1/4

for all n, where u = (1, 0, . . . , 0) and v = (0, 1, 0, . . . , 0). Equality holds on
the left if and only if it holds on the right. The language L(an) = uT Mnv is
recognizable by a DPA with input vector u, output vector v, and transition matrix
M (Remark 1). If the LRS is rational, M can be taken to be rational as well.

We are now ready to separate NPAs and WFAs over a unary alphabet.

486 G. van Heerdt et al.

Theorem 4. There is a language over a unary alphabet that is recognizable by
an NPA but not by any WFA (and in particular any DPA).

Proof. We will work in the complex numbers C, with i being the positive square
root of −1 as usual. Let a, b ∈ Q be nonzero such that z � a + bi is on the
unit circle in C, for instance a = 3/5, b = 4/5 so that |a + bi| = a2 + b2 = 1.
Let z̄ = a − bi denote the complex conjugate of z and let Re(z) denote the real
part of a complex number. It is possible to show that z is not a root of unity,
i.e., zk �= 1 for all k ∈ N. Let 〈xn〉 be the sequence xn � (zn + z̄n)/2 = Re(zn).
By direct calculation, this sequence has imaginary part zero and satisfies the
recurrence

xn+2 = 2axn+1 − (a2 + b2)xn

with x0 = 1 and x1 = a, so 〈xn〉 is an order-2 rational LRS. By Theorem3, there
exists a stochastic matrix M and non-negative vectors u, v such that

xn ≥ 0 ⇐⇒ uT Mnv ≥ 1/4

for all n, where equality holds on the left if and only if equality holds on the
right. Note that xn = Re(zn) �= 0 since z is not a root of unity (so in particular
zn �= ±i), hence equality never holds on the right. Letting 〈yn〉 be the sequence
yn = uT Mnv, the (unary) language with weights 〈yn〉 is recognized by the DPA
with input u, output v and transition matrix M . Furthermore, the constant
sequence 〈1/4〉 is recognizable by a DPA.

Now we define a sequence 〈wn〉 with wn = max(yn, 1/4). Since 〈yn〉 and 〈1/4〉
are recognizable by DPAs, 〈wn〉 is recognizable by an NPA whose initial state
nondeterministically chooses between the two DPAs (see Remark 1). Suppose for
the sake of contradiction that it is also recognizable by a WFA. Then 〈wn〉 is
an LRS (by Proposition 4) and hence so is 〈tn〉 with tn = wn − yn. If we now
consider the zero set

S = {n ∈ N | tn = 0}
= {n ∈ N | yn > 1/4} (yn �= 1/4)
= {n ∈ N | xn > 0} (Theorem 3)
= {n ∈ N | Re(zn) > 0} (by definition),

Theorem 2 implies that S is the union of a finite set of indices and along with
a finite number of arithmetic progressions. Note that S cannot be finite—in the
last line, zn is dense in the unit circle since z is not a root of unity—so there
must be at least one arithmetic progression {p + kn | n ∈ N}. Letting 〈rn〉 be

rn = (zp · (zk)n + z̄p · (z̄k)n)/2 = Re(zp · (zk)n) = xp+kn,

we have p + kn ∈ S, so rn > 0 for all n ∈ N, but this is impossible since it is
dense in [−1, 1] (because zk is not a root of unity for k �= 0, so zp · (zk)n is dense
in the unit circle).

Hence, the unary weighted language 〈wn〉 can be recognized by an NPA but
not by a WFA. �	

Convex Language Semantics for Nondeterministic Probabilistic Automata 487

5 Checking Language Equivalence of NPAs

Now that we have a coalgebraic model for NPA, a natural question is whether
there is a procedure to check language equivalence of NPAs. We will show that
language equivalence of NPAs is undecidable by reduction from the threshold
problem on DPAs. Nevertheless, we can define a metric on the set of languages
recognized by NPAs to measure their similarity. While this metric cannot be
computed exactly, it can be approximated to any given precision in finite time.

5.1 Undecidability and Hardness

Theorem 5. Equivalence of NPAs is undecidable when |A| ≥ 2 and the PcD-
algebra on [0, 1] extends the usual D-algebra on [0, 1].

Proof. Let X be a DPA and κ ∈ [0, 1]. We define NPAs Y and Z as follows:

Y =
κκ X

A A

A

Z = κ A

Here the node labeled X represents a copy of the automaton X—the transition
into X goes into the initial state of X. Note that the edges are labeled by A to
indicate a transition for every element of A. We see that LY (ε) = κ = LZ(ε)
and (for α either min or max, as follows from Corollary 1)

LY (av) = (α ◦ Conv)({κ,LX(v)}) LZ(av) = κ.

Thus, if α = min, then LY = LZ if and only if LX(v) ≥ κ for all v ∈ A∗; if
α = max, then LY = LZ if and only if LX(v) ≤ κ for all v ∈ A∗. Both of these
threshold problems are undecidable for alphabets of size at least 2 [5,12,22]. �	

The situation for automata over unary alphabets is more subtle; in particular,
the threshold problem is not known to be undecidable in this case. However, there
is a reduction to a long-standing open problem on LRSs.

Given an LRS 〈ui〉, the Positivity problem is to decide whether ui is non-
negative for all i ∈ N (see, e.g., [21]). While the decidability of this problem has
remained open for more than 80 years, it is known that a decision procedure
for Positivity would necessarily entail breakthroughs in open problems in num-
ber theory. That is, it would give an algorithm to compute the homogeneous
Diophantine approximation type for a class of transcendental numbers [21]. Fur-
thermore, the Positivity problem can be reduced to the threshold problem on
unary probabilistic automata. Putting everything together, we have the following
reduction.

Corollary 2. The Positivity problem for linear recurrence sequences can be
reduced to the equivalence problem of NPAs over a unary alphabet.

488 G. van Heerdt et al.

Proof. The construction in Theorem 5 shows that the lesser-than threshold prob-
lem can be reduced to the equivalence problem for NPAs with max semantics,
so we show that Positivity can be reduced to the lesser-than threshold problem
on probabilistic automata with a unary alphabet. Given any rational LRS 〈ui〉,
clearly 〈−ui〉 is an LRS as well, so by Theorem 3 there exists a rational stochastic
matrix M such that

−un > 0 ⇐⇒ uT Mnv > 1/4

for all n, where u = (1, 0, . . . , 0) and v = (0, 1, 0, . . . , 0). Taking M to be the
transition matrix, v to be the input vector, and u to be the output vector, the
probabilistic automaton corresponding to the right-hand side is a nonsatisfying
instance to the threshold problem with threshold ≤ 1/4 if and only if the 〈ui〉 is
a satisfying instance of the Positivity problem.

Applying Proposition 3 yields an analogous reduction from Positivity to the
equivalence problem of NPAs with min semantics. �	

5.2 Checking Approximate Equivalence

The previous negative results show that deciding exact equivalence of NPAs is
computationally intractable (or at least very difficult, for a unary alphabet). A
natural question is whether we might be able to check approximate equivalence.
In this section, we show how to approximate a metric on weighted languages. Our
metric will be discounted—differences in weights of longer words will contribute
less to the metric than differences in weights of shorter words.

Given c ∈ [0, 1) and two weighted languages l1, l2 : A∗ → [0, 1], we define

dc(l1, l2) =
∑

u∈A∗
|l1(u) − l2(u)| ·

(
c

|A|
)|u|

.

Suppose that l1 and l2 are recognized by given NPAs. Since dc(l1, l2) = 0 if and
only if the languages (and automata) are equivalent, we cannot hope to compute
the metric exactly. We can, however, compute the weight of any finite word under
l1 and l2. Combined with the discounting in the metric, we can approximate this
metric dc within any desired (nonzero) error.

Theorem 6. There is a procedure that given c ∈ [0, 1), κ > 0, and computable
functions l1, l2 : A∗ → [0, 1] outputs x ∈ R+ such that |dc(l1, l2) − x| ≤ κ.

Proof. Let n = �logc((1 − c) · κ)� ∈ N and define

x =
∑

u∈A∗,|u|<n

|l1(u) − l2(u)| ·
(

c

|A|
)|u|

.

Convex Language Semantics for Nondeterministic Probabilistic Automata 489

This sum is over a finite set of finite strings and the weights of l1(u) and l2(u)
can all be computed exactly, so x is computable as well. Now we can bound

|dc(l1, l2) − x| =
∑

u∈A∗,|u|≥n

|l1(u) − l2(u)| ·
(

c

|A|
)|u|

≤
∑

u∈A∗,|u|≥n

(
c

|A|
)|u|

=
∑

i∈N,i≥n

|A|i ·
(

c

|A|
)i

=
∑

i∈N,i≥n

ci =
cn

1 − c
≤ κ,

where the last step is because n ≥ logc((1 − c) · κ), and thus cn ≤ (1 − c) · κ,
noting that c ∈ [0, 1) and κ > 0. �	

We leave approximating other metrics on weighted languages—especially
nondiscounted metrics—as an intriguing open question.

6 Conclusions

We have defined a novel probabilistic language semantics for nondeterministic
probabilistic automata (NPAs). We proved that NPAs are strictly more expres-
sive than deterministic probabilistic automata, and that exact equivalence is
undecidable. We have shown how to approximate the equivalence question to
arbitrary precision using a discounted metric. There are two directions for future
work that we would like to explore. First, it would be interesting to see if different
metrics can be defined on probabilistic languages and what approximate equiv-
alence procedures they give rise to. Second, we would like to explore whether
we can extend logical characterization results in the style of Panangaden et
al. [10,13]. Finally, it would be interesting to investigate the class of languages
recognizable by our NPAs.

Related Work. There are many papers studying probabilitic automata and vari-
ants thereof. The work in our paper is closest to the work of Segala [28] in that our
automaton model has both nondeterminism and probabilistic choice. However,
we enrich the states with an output weight that is used in the definition of the
language semantics. Our language semantics is coarser than probabilistic (con-
vex) bisimilarity [28] and bisimilarity on distributions [17]. In fact, in contrast
to the hardness and undecidability results we proved for probabilistic language
equivalence, bisimilarity on distributions can be shown to be decidable [17] with
the help of convexity. The techniques we use in defining the semantics are closely
related to the recent categorical understanding of bisimilarity on distributions [7].

Acknowledgements. We thank Nathanaël Fijalkow and the anonymous reviewers
for their useful suggestions to improve the paper. The semantics studied in this paper
has been brought to our attention in personal communication by Filippo Bonchi, Ana
Sokolova, and Valeria Vignudelli. Their interest in this semantics is mostly motivated
by its relationship with trace semantics previously proposed in the literature. This is
the subject of a forthcoming publication [8].

490 G. van Heerdt et al.

References

1. Akshay, S., Antonopoulos, T., Ouaknine, J., Worrell, J.: Reachability problems
for Markov chains. Inf. Process. Lett. 115(2), 155–158 (2015). https://doi.org/10.
1016/j.ipl.2014.08.013

2. Arbib, M.A., Manes, E.G.: Fuzzy machines in a category. Bull. Aust. Math. Soc.
13(2), 169–210 (1975). https://doi.org/10.1017/s0004972700024412

3. Balle, B., Castro, J., Gavaldà, R.: Adaptively learning probabilistic deterministic
automata from data streams. Mach. Learn. 96(1–2), 99–127 (2014). https://doi.
org/10.1007/s10994-013-5408-x

4. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting trace and testing equivalences
for nondeterministic and probabilistic processes. Log. Methods Comput. Sci. 10(1),
Article no. 16 (2014). https://doi.org/10.2168/lmcs-10(1:16)2014

5. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of
fixed dimension. Theory Comput. Syst. 36, 231–245 (2003). https://doi.org/10.
1007/s00224-003-1061-2

6. Bonchi, F., Pous, D.: Hacking nondeterminism with induction and coinduction.
Commun. ACM 58(2), 87–95 (2015). https://doi.org/10.1145/2713167

7. Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. In: Meyer, R.,
Nestmann, U. (eds.) Proceedings of 28th International Conference on Concurrency
Theory, CONCUR 2017, Berlin, September 2017. Leibniz International Proceedings
in Informatics, vol. 85, Article no. 23. Dagstuhl Publishing, Saarbrücken/Wadern
(2017). https://doi.org/10.4230/lipics.concur.2017.23

8. Bonchi, F., Sokolova, A., Vignudelli, V.: Trace semantics for nondeterministic prob-
abilistic automata via determinization. arXiv preprint 1808.00923 (2018). https://
arxiv.org/abs/1808.00923

9. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Testing finitary prob-
abilistic processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 274–288. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04081-8 19

10. Desharnais, J., Edalat, A., Panangaden, P.: A logical characterization of bisimula-
tion for labeled Markov processes. In: Proceedings of 13th Annual IEEE Sympo-
sium on Logic in Computer Science. LICS 1998, Indianapolis, IN, June 1998, pp.
478–487. IEEE CS Press, Washington, D.C. (1998). https://doi.org/10.1109/lics.
1998.705681

11. Everest, G., van der Poorten, A.J., Shparlinski, I.E., Ward, T.: Recurrence
Sequences, Mathematical surveys and monographs, vol. 104. American Mathemat-
ical Society, Providence (2003)

12. Fijalkow, N.: Undecidability results for probabilistic automata. ACM SIGLOG
News 4(4), 10–17 (2017). https://doi.org/10.1145/3157831.3157833

13. Fijalkow, N., Klin, B., Panangaden, P.: Expressiveness of probabilistic modal logics,
revisited. In: Chatzigiannakis, Y., Indyk, P., Kuhn, F., Muscholl, A. (eds.) Proc. of
44th Int. Coll. on Automata, Languages and Programming, ICALP 2017, Warsaw,
July 2017. Leibniz International Proceedings in Informatics, vol. 80, Article no.
105. Dagstuhl Publishing, Saarbrücken/Wadern (2017). https://doi.org/10.4230/
lipics.icalp.2017.105

14. Goncharov, S., Milius, S., Silva, A.: Towards a coalgebraic Chomsky hierarchy
(extended abstract). In: Dı́az, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 265–280. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 21

https://doi.org/10.1016/j.ipl.2014.08.013
https://doi.org/10.1016/j.ipl.2014.08.013
https://doi.org/10.1017/s0004972700024412
https://doi.org/10.1007/s10994-013-5408-x
https://doi.org/10.1007/s10994-013-5408-x
https://doi.org/10.2168/lmcs-10(1:16)2014
https://doi.org/10.1007/s00224-003-1061-2
https://doi.org/10.1007/s00224-003-1061-2
https://doi.org/10.1145/2713167
https://doi.org/10.4230/lipics.concur.2017.23
https://arxiv.org/abs/1808.00923
https://arxiv.org/abs/1808.00923
https://doi.org/10.1007/978-3-642-04081-8_19
https://doi.org/10.1007/978-3-642-04081-8_19
https://doi.org/10.1109/lics.1998.705681
https://doi.org/10.1109/lics.1998.705681
https://doi.org/10.1145/3157831.3157833
https://doi.org/10.4230/lipics.icalp.2017.105
https://doi.org/10.4230/lipics.icalp.2017.105
https://doi.org/10.1007/978-3-662-44602-7_21
https://doi.org/10.1007/978-3-662-44602-7_21

Convex Language Semantics for Nondeterministic Probabilistic Automata 491

15. Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci. Res.
Dev. 28(4), 331–344 (2013). https://doi.org/10.1007/s00450-013-0251-7

16. Hermanns, H., Katoen, J.: The how and why of interactive Markov chains. In: de
Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 311–337. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17071-3 16

17. Hermanns, H., Krcál, J., Kret́ınský, J.: Probabilistic bisimulation: naturally on dis-
tributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
249–265. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-
6 18

18. Kozen, D.: Semantics of probabilistic programs. In: Proceedings of 20th Annual
Symposium on Foundations of Computer Science, FOCS 1979, San Juan, PR, Octo-
ber 1979, pp. 101–114. IEEE CS Press, Washington, D.C. (1979). https://doi.org/
10.1109/sfcs.1979.38

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

20. Legay, A., Murawski, A.S., Ouaknine, J., Worrell, J.: On automated verification
of probabilistic programs. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 173–187. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78800-3 13

21. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence
sequences. In: Proceedings of 25th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, OR, January 2014, pp. 366–379. SIAM (2014).
https://doi.org/10.1137/1.9781611973402

22. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New
York/London (1971). https://doi.org/10.1016/c2013-0-11297-4

23. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963). https://
doi.org/10.1016/s0019-9958(63)90290-0

24. Rabin, M.O.: Probabilistic algorithms. In: Traub, J.F. (ed.) Algorithms and Com-
plexity: New Directions and Recent Results, pp. 21–39. Academic Press, New York
(1976)

25. Rabin, M.O.: N -process mutual exclusion with bounded waiting by 4 log2 N -valued
shared variable. J. Comput. Syst. Sci. 25(1), 66–75 (1982). https://doi.org/10.
1016/0022-0000(82)90010-1

26. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic
automata with variable memory length. Mach. Learn. 25(2), 117–149 (1996).
https://doi.org/10.1023/a:1026490906255

27. Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: towards a classi-
fication. Theor. Comput. Sci. 170(1–2), 297–348 (1996). https://doi.org/10.1016/
s0304-3975(96)80710-9

28. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (1995)

29. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing deter-
minization from automata to coalgebras. Log. Methods Comput. Sci. 9(1), Article
no. 9 (2013). https://doi.org/10.2168/lmcs-9(1:9)2013

https://doi.org/10.1007/s00450-013-0251-7
https://doi.org/10.1007/978-3-642-17071-3_16
https://doi.org/10.1007/978-3-642-17071-3_16
https://doi.org/10.1007/978-3-662-44584-6_18
https://doi.org/10.1007/978-3-662-44584-6_18
https://doi.org/10.1109/sfcs.1979.38
https://doi.org/10.1109/sfcs.1979.38
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-78800-3_13
https://doi.org/10.1007/978-3-540-78800-3_13
https://doi.org/10.1137/1.9781611973402
https://doi.org/10.1016/c2013-0-11297-4
https://doi.org/10.1016/s0019-9958(63)90290-0
https://doi.org/10.1016/s0019-9958(63)90290-0
https://doi.org/10.1016/0022-0000(82)90010-1
https://doi.org/10.1016/0022-0000(82)90010-1
https://doi.org/10.1023/a:1026490906255
https://doi.org/10.1016/s0304-3975(96)80710-9
https://doi.org/10.1016/s0304-3975(96)80710-9
https://doi.org/10.2168/lmcs-9(1:9)2013

492 G. van Heerdt et al.

30. Swaminathan, M., Katoen, J.P., Olderog, E.R.: Layered reasoning for randomized
distributed algorithms. Form. Asp. Comput. 24(4), 477–496 (2012). https://doi.
org/10.1007/s00165-012-0231-x

31. Vardi, M.Y.: Branching vs. linear time: final showdown. In: Margaria, T., Yi, W.
(eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001)

32. Vignudelli, V.: Behavioral equivalences for higher-order languages with probabili-
ties. Ph.D. thesis, Univ. di Bologna (2017)

https://doi.org/10.1007/s00165-012-0231-x
https://doi.org/10.1007/s00165-012-0231-x

	Convex Language Semantics for Nondeterministic Probabilistic Automata
	1 Introduction
	2 Preliminaries
	2.1 Convex Algebra
	2.2 Monads and Their Algebras
	2.3 Distribution and Convex Powerset Monads
	2.4 Automata and Language Semantics

	3 Nondeterministic Probabilistic Automata
	3.1 From Convex Algebra to Language Semantics
	3.2 Characterizing the Convex Algebra on [0, 1]

	4 Expressive Power of NPAs
	4.1 Separating NPAs and DPAs: Binary Alphabet
	4.2 Separating NPAs and DPAs: Unary Alphabet

	5 Checking Language Equivalence of NPAs
	5.1 Undecidability and Hardness
	5.2 Checking Approximate Equivalence

	6 Conclusions
	References

