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Abstract. A challenge in ontology engineering is the mismatch in exper-
tise between the ontology engineer and domain expert, which often leads
to important constraints not being specified. Domain experts often only
focus on specifying constraints that should hold and not on specifying
constraints that could possibly be violated. In an attempt to bridge this
gap we propose the use of “perfect test data”. The generated test data is
perfect in that it satisfies all the constraints of an application domain that
are required, including ensuring that the test data violates constraints
that can be violated. In the context of Description Logic ontologies we
call this test data an “Armstrong ABox”, a notion derived from Arm-
strong relations in relational database theory. In this paper we detail the
theoretical development of Armstrong ABoxes for ALC TBoxes as well
as an algorithm for generating such Armstrong ABoxes. The proposed
algorithm is based, via the ontology completion algorithm of Baader
et al. on attribute exploration in formal concept analysis.

1 Introduction

A challenge in ontology design is to know whether all the required constraints
that correctly represent a domain of interest are specified. Any given set of
constraints over a given domain can be classified into constraints that should
hold and constraints that can possibly be violated. Ensuring that all constraints
are classified explicitly avoids the situation where omission results in a constraint
by default being classified as a constraint that can be violated.

The problem of incomplete specifications is well documented [5,6] and could
be the result of domain experts that concentrate on specifying facts that should
hold (such as “all prime numbers are integers”) and not on facts that could pos-
sibly be violated (such as “all prime numbers are odd”). The problem of incom-
plete specifications is often exacerbated by a mismatch in expertise between an
ontology engineer and domain expert. An ontology engineer usually has lim-
ited knowledge about the application domain and domain experts have limited
knowledge regarding ontology engineering. However, domain experts are often
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well versed in the data of their application domain [13]. This motivates the idea
of presenting the domain expert with “perfect test data” that satisfy the required
constraints and refute constraints that could be violated. In relational database
theory this idea of perfect test data is realized as Armstrong relations [8], which
we extend here to description logics (DLs) as Armstrong ABoxes.

Description logics (DLs) are syntactic variants of fragments of first-order logic
that are specifically designed for the conceptual representation of an application
domain in terms of concepts and relationships between concepts. A key design
goal for DLs is to ensure that the basic reasoning procedures like satisfiability
and classification are decidable. A DL ontology consists of a TBox and an ABox.
The TBox is used to define concepts and relationships between concepts and the
ABox is used to assert knowledge regarding the domain of interest [1]. In this
paper we concentrate on the DL ALC, which we define in Sect. 2.1.

Armstrong ABoxes assume that an ontology engineer has created a TBox in
collaboration with a domain expert, but it is unclear whether the TBox describes
the application domain faithfully. By generating “perfect test data” for a given
TBox, constraints that follow, as well as constraints that do not follow from
the TBox, can be made explicit through example data. The Armstrong ABox
(example data) can be reviewed to ensure the TBox is not over- or underspecified,
after which the TBox can be amended as needed: if the TBox is overspecified
constraints can be removed and if the TBox is underspecified constraints can be
added. A new Armstrong ABox can then be generated for the amended TBox,
which again can be reviewed until the TBox and Armstrong ABox accurately
specify constraints that should hold and constraints that could be violated.

Armstrong ABoxes are formalized relative to particular classes of constraints,
with each class of constraints resulting in a different Armstrong ABox formaliza-
tion. Different Armstrong ABox formalizations may need to use different algo-
rithms to generate an Armstrong ABox for the particular formalization. In pre-
vious research we have defined Armstrong ABoxes for the class of constraints
consisting of n-ary relations with uniqueness- and null-free constraints [12], of
which the practical applicability has been illustrated on RDF datasets [11]. How-
ever, this did not address the broader problem of the class of constraints that
can be formulated using the full expressivity of a given DL. The current paper
addresses this limitation by providing (1) a formalization for Armstrong ABoxes
for the class of constraints that can be formulated in ALC and (2) the algorithms
necessary for generating an Armstrong ABox for an ALC TBox.

This paper is structured as follows: In Sect. 2 we review key definitions and
results that are of importance in the development of Armstrong ABoxes, in
Sect. 3 we provide the core definitions and proofs related to Armstrong ABoxes
and Sect. 4 concludes this paper.

2 Preliminaries

We define the syntax and semantics for ALC in Sect. 2.1. The algorithm for
generating an Armstrong ABox for an ALC TBox is based on the ontology com-
pletion algorithm of Baader et al. [2] (Sect. 2.5), which is based on the attribute
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exploration algorithm of formal concept analysis (FCA) [9]. Core FCA definitions
are reviewed in Sect. 2.3 and the attribute exploration algorithm is reviewed in
Sect. 2.4. A key insight used in attribute exploration is to enumerate closed sets
in lectic order, which we review in Sect. 2.2.

2.1 Description Logics (DLs)

The syntactic building blocks for an arbitrary DL are based on the disjoint sets
NC , NR and NI , where NC is a set of concept names, NR is a set of role names
and NI is a set of individual names. Concept names represent classes of entities
(called concepts) that share common characteristics, roles names denote binary
relations (called roles) that exist between individuals and individual names are
used to refer to specific instances (called individuals) in a domain of interest [1].

ALC concept descriptions (referred to as concepts) are constructed using the
following concept constructors

C := � | A | ¬C | C1 � C2 | ∃r.C

where A is an atomic concept, C, C1 and C2 are (possibly complex) concepts
and r is a role. The constructors � and ∀, and the special concept ⊥ are defined
in terms of the others in the usual way [1].

The TBox consists of axioms C1 � C2 called general concept inclusions
(GCIs) stating that C1 is subsumed by C2. The ABox consists of assertions
C(x) and r(x1, x2) stating respectively that individual x is an instance of C and
that individuals x1 and x2 are associated via role r.

The semantics of concepts is given in terms of an interpretation I = (	I , ·I),
where 	I (the domain) is a non-empty set, and ·I (the interpretation function)
maps each concept name A ∈ NC to a set AI ⊆ 	I , each role name r ∈ NR to a
binary relation rI ⊆ 	I × 	I , and each individual name a ∈ NI to an element
aI ∈ 	I .

Given an interpretation I = (	I , ·I), the function ·I is extended to interpret
complex concepts in the following way:

�I = �I , (¬C)I = �I\CI , (C1 � C2)
I = CI

1 ∩ CI
2

(∃r.C)I = {x ∈ �I |A y exists such that (x, y) ∈ rI and y ∈ CI}

When an interpretation I satisfies a GCI or assertion α it is denoted by
I � α. Satisfaction of α is defined as follows: I � C1 � C2 iff CI

1 ⊆ CI
2 ,

I � C(x) iff xI ∈ CI , and I � r(x, y) iff (xI , yI) ∈ rI . I is a model of a TBox
T or an ABox A if it satisfies all its GCIs or assertions. In case I is a model of
both T and A, it is also called a model of the ontology (T ,A) and (T ,A) is said
to be consistent if such a model exists.

An axiom or assertion α is said to be entailed by an ontology O, written
as O � α, if every model of O is also a model of α. For a set of axioms Σ =
{σ0, . . . , σn}, we abbreviate O � σ0, . . . ,O � σn with O � Σ. If O is empty, we
abbreviate O � α as � α.
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2.2 Closed Sets in Lectic Order

A set M with n elements has 2n subsets. The set of all subsets of M is denoted
by 2M and is called the powerset of M . For S a finite set and C ⊆ 2S , C is a
set of subsets that is called a closure system on S if S ∈ C, and B1, B2 ∈ C
implies B1 ∩ B2 ∈ C [7]. A mapping function ϕ : 2S → 2S is called a closure
operator on S that assigns a closure ϕ(B) ⊆ S to each subset B ⊆ S if it is:

1. extensive: B ⊆ ϕ(B) for all B ⊆ S,
2. monotone: B1 ⊆ B2 implies ϕ(B1) ⊆ ϕ(B2), and
3. idempotent: ϕ(ϕ(B)) = ϕ(B).

A subset B ⊆ S is called a closed set w.r.t. ϕ if ϕ(B) = B [7].
To generate all ϕ-closed sets for a set M , it is necessary to generate the

closures for all A ⊆ M w.r.t. ϕ. Assuming M consists of n elements, 2n closures
will be computed. Moreover, multiple sets A ⊆ M may have the same closure.
To only generate unique closures, lookups will have to be performed 2n times. A
more efficient means to generate closures for all subsets is to generate each closure
only once. This can be achieved by generating closures in the lectic order [9].

Definition 1 [9]. Assume that M = {m1, . . . ,mn} and fix some linear order
m1 < . . . < mn on M . This order imposes a linear order on 2M , called the
lectic order, which is denoted by <: For mi ∈ M and A,B ⊆ M the order <i

is defined as

A <i B iff mi ∈ B,mi /∈ A and ∀j < i.(mj ∈ A ⇔ mj ∈ B).

The order < is the union of the orders <i, i.e.,

A < B iff A <i B for some mi ∈ M.

Definition 1 states that A is lectically smaller than B if the smallest i for
which the element mi differs between sets A and B, mi belongs to B and not
to A. Note that < extends the strict subset order because if A ⊂ B it follows
that A < B since all the elements in which sets A and B differ belong to B.
Thus ∅ is the smallest and M the largest set w.r.t. <.

All ϕ-closed sets can be generated exactly once for a set M when the closed
sets are generated in the lectic order. Given a set A ⊆ M it is possible to
determine the next closed set in the lectic order, which is shown in Proposition 1.

Proposition 1 [9]. Given a closure operator ϕ on M and a ϕ-closed set
A ⊂ M , the next ϕ-closed set following A in the lectic order is

ϕ((A ∩ {m1, . . . ,mi−1}) ∪ {mi})

where i is maximal such that A <i ϕ((A ∩ {m1, . . . ,mi−1}) ∪ {mi}).

The NextClosure algorithm (Algorithm 1) finds the next closed set in the
lectic order for a given set A ⊆ M and a closure operator ϕ. To find an m
with maximal index i it traverses M in reverse linear order. Two cases need to
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be considered: either m ∈ A or m �∈ A. If m ∈ A we can remove m from A since
it will not result in a ϕ-closed set that is different from A. If m �∈ A we calculate
B := ϕ(A ∪ {m}) and if B \ A has no element < m, we have found our next
ϕ-closed set, otherwise we continue to the next m in reverse linear order. If no
next ϕ-closed set can be found, the empty set is returned. All closed sets for M
and ϕ can be generated by iterating through closed sets using NextClosure
starting with A := ϕ(∅) and terminating when A = M .

2.3 Formal Concept Analysis (FCA)

FCA [9] is a field of applied mathematics that is based on a lattice-theoretic
formalization of the notions of concept and conceptual hierarchy.

Definition 2 [9]. A formal context is a triple K = (G,M, I), where G is a set
of objects, M is a set of attributes, and I ⊆ G × M is a relation that associates
each object g with the attributes satisfied by g. In order to express that an object
g is in relation I with an attribute m, we write gIm.

A formal context can be visualised as a crosstable, where the rows represent
the objects, and the columns represent the attributes. A cross in column m of
row g means that object g has attribute m, absence of a cross means that object
g does not have attribute m.

Let K = (G,M, I) be a formal context. For a set of objects A ⊆ G, the
intent A′ of A is the set of attributes that are satisfied by all objects in A,
which is defined as A′ := {p ∈ M |∀a ∈ A : aIp}. For a set of attributes B ⊆ M ,
the extent B′ of B is the set of objects that satisfy all attributes in B, which
is defined as B′ := {o ∈ G | ∀b ∈ B : oIb}. A formal concept of K is a pair
(A,B) with A ⊆ G, B ⊆ M , A′ = B and B′ = A. The sets A and B are called
the concept extent and the concept intent of the formal concept (A,B),
respectively [9].

For the operators ·′ and ·′′ (·′ applied twice) the following statements hold [9]:

1. A1 ⊆ A2 implies A′
2 ⊆ A′

1 (resp. B1 ⊆ B2 implies B′
2 ⊆ B′

1),
2. A1 ⊆ A′′

1 (resp. B1 ⊆ B′′
1 ), and

3. the ·′′-operator is a closure operator on both G and M and the set of concept
intents (resp. concept extents) is a closure system on M (resp. G).

A formal context can be analyzed by studying the implications between
attributes in the context, which motivates the next definition.

Definition 3 [9]. Let K = (G,M, I) be a formal context. An implication
between the attributes in M is a pair of sets L,R ⊆ M , usually written as
L → R. An implication L → R holds in K if every object of K that has all the
attributes in L also has all the attributes in R, i.e. if L′ ⊆ R′. We denote the
set of implications that hold in K by Imp(K). A subset X ⊆ M respects an
implication L → R if L � X or R ⊆ X. A subset X ⊆ M respects a set
L of implications if X respects every implication in L. An implication L → R
follows from a set of implications L if every subset X ⊆ M that respects all
implications in L also respects L → R.



216 H. Harmse et al.



Generating Armstrong ABoxes for ALC TBoxes 217

Proposition 2. If L is a set of implications over M , then Mod(L) :=
{X ⊆ M | X respects L} is a closure system on M . If L = Imp(K) for some
formal context K, then Mod(L) is the system of all concept intents.

The implication closure operator for the closure system Mod(L) is given
by L : 2M → 2M , which can be defined iteratively as

XL := X ∪
⋃

{R | L → R ∈ L, L ⊆ X}

XLL := XL ∪
⋃

{R | L → R ∈ L, L ⊆ XL}
...

From the sets XL,XLL,XLLL, . . . a set L(X) := XL...L is obtained with
L(X)L = L(X), which can be calculated by Algorithm 2. For a given set X of
attributes and a given set L of implications, it repeatedly iterates through the
implications in L, expanding X with R and removing L → R from L whenever
L ⊆ X. Once X can no longer be expanded, the algorithm terminates [9].

2.4 Attribute Exploration

Attribute exploration is used where K is not known but can become known by
posing questions to a domain expert. It is assumed that the domain expert is
able to answer whether an implication holds in K or, in case an implication does
not hold, give a counterexample of the implication. In order to make efficient use
of an expert’s time, attribute exploration uses minimal implication bases. The
set of implications L is an implication base of K if

1. L is sound for K, i.e. every implication from L holds in K,
2. L is complete for K, i.e. every implication that holds in K follows from L,

and
3. L is non-redundant for K, i.e. no implication in L follows from other impli-

cations in L.

For a given formal context K multiple implication bases can exist, of which
the simplest is the implication base consisting of all implications. But because
such an implication base can be too large to be practical, there is an interest
in implication bases with minimal cardinality. Duquenne and Guigues showed
that a minimal implication base can be constructed for every formal context.
This implication base relies on the notion of pseudo-intents, which is defined
recursively as follows – A subset of attributes L ⊆ M is called a pseudo-intent
of the context K = (G,M, I) iff (1) L �= L′′ (L is not a concept intent), and (2)
if L0 � L is a pseudo-intent and a proper subset of L, then L′′

0 ⊆ L holds [9,10].

Theorem 1 [9,10]. {L → L′′ | L is a pseudo-intent of K} is a set of implica-
tions that is a minimal implication base of K = (G,M, I), called the Duquenne-
Guigues base of K.
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Algorithm 3 details the attribute exploration algorithm. It takes as input a
set M of attributes and a context K. The implication set L is initialized as
the empty set. Based on Theorem 1 it iterates through the pseudo-intents of K

(line 3), starting from the smallest L-closed left-hand side (line 1), asking the
expert implication questions of the form L → L′′ (line 4). If the expert answers
“yes”, the implication L → L′′ is added to the implication set L and the next
closed set in the lectic order is determined (line 7). If the expert answers “no”,
the expert should provide a counterexample (line 9) with which the context K

is expanded (line 10). For this reason L is kept constant while L′′ is recalculated
(line 3). When L is not a pseudo-intent, the next L-closed set is considered
(line 13). It is proven that Algorithm 3 terminates and on termination returns
the completed context K and L, where L is a Duquenne-Guigues base of K [9].

2.5 Ontology Completion

Classical attribute exploration assumes that an expert has complete information.
I.e., the absence of a cross in a crosstable means that object g does not have
attribute m. However, in practice experts often only have partial knowledge.
This inspired the introduction of partial contexts [2,9,17,18]. The formalization
of partial contexts we will use here is based on Baader et al. [2,18].

Definition 4 [18]. A partial object description (pod) is a tuple (A,S) where
A,S ⊆ M are such that A∩S = ∅. We call such a pod a full object description
(fod) if A ∪ S = M . A set of pods is called a partial context and a set of fods
a full context.

The pod (A,S) states that the object it describes is known to satisfy all
attributes from A and to not satisfy any attribute from S. A full context coincides
with a formal context: a set of fods K corresponds to the formal context KK :=
(K,M, I), where (A,S)Im if and only if m ∈ A for all (A,S) ∈ K. A partial
context can be extended by adding new pods or extending existing pods.

Definition 5 [18]. Let L be a set of implications and K a partial context. An
implication is called undecided w.r.t. K and L if it neither follows from L nor is
refuted by K. It is decided w.r.t. K and L if it is not undecided w.r.t. K and L.

The attribute exploration of partial contexts tries to decide all undecided
implications by either adding the implication to L or extending K such that it
refutes the implication. If all implications are decided, then the goal is achieved.

Let (T ,A) be a consistent DL ontology and M a finite set of concept descrip-
tions. Any individual name a occurring in A gives rise to the partial object
description podT ,A(a,M) := (A,S) where A := {C ∈ M |T ,A � C(a)} and
S := {C ∈ M |T ,A � ¬C(a)}, and the whole ABox induces the partial context

KT ,A(M) := {podT ,A(a,M)|a is an individual name occurring in A}.
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Any element d ∈ 	I of an interpretation I gives rise to the full example

fodI(d,M) := (A,S) where A := {C ∈ M | d ∈ CI} and

S := {C ∈ M | d ∈ (¬C)I},

and the whole interpretation induces the full context KI(M) :=
{fodI(d,M) | d ∈ 	I}. Note that fodI(d,M) is indeed a fod since every d ∈ 	I

satisfies either d ∈ CI or d ∈ 	I\CI = (¬C)I .

Definition 6 [18]. The implication L → R over the attributes M is refuted
by the ontology (T ,A) if it is refuted by KT ,A(M), and it is refuted by the
interpretation I if it is refuted by KI(M). If an implication is not refuted by
I, then we say that it holds in I. The set of implications over M that hold in
I is denoted by ImpM (I). In addition, we say that L → R follows from T if
�L �T �R, where �L and �R respectively stand for the conjunctions

�
C∈L C

and
�

D∈R D, and �L �T �R is a shorthand for T � �L � �R.

Similar to attribute exploration it is sufficient to only consider implications
whose left-hand sides are L-closed with the right-hand side the largest R such
that L → R is not refuted by KT ,A(M):

Proposition 3 [18]. For a left-hand side L and a partial context KT ,A(M), the
largest right-hand side such that L → KT ,A(L) is not refuted by KT ,A(M) is

KT ,A(L) := M\
⋃

{D ∈ M | ∃a. L ⊆ {C | T ,A � C(a)} ∧ T ,A � ¬D(a)}.

The aim is for the ontology to describe an intended model. For a fixed set M of
concepts, the ontology is complete if it contains all the relevant knowledge about
implications between these concepts: if an implication holds in the intended
interpretation, then it should follow from the TBox, and if it does not hold in
the intended interpretation, then the ABox should contain a counterexample.

Definition 7 [18]. Let (T ,A) be a DL ontology, M a finite set of concept
descriptions, and I a model of (T ,A). Then (T ,A) is M -complete w.r.t. I if
the following three statements are equivalent for all implications L → R over M :

1. L → R holds in I.
2. L → R follows from T .
3. L → R is not refuted by (T ,A).

Let (T0,A0) be a DL ontology that also has I as a model. Then (T ,A) is a
completion of (T0,A0) if it is complete and extends (T0,A0), i.e., T0 ⊆ T and
A0 ⊆ A.

The attribute exploration algorithm for partial contexts can be adapted for
ontology completion [2,18] for which Proposition 4 and Theorem 2 state impor-
tant results.
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Proposition 4 [18]. Let (T ,A) := (T0,A0) be an ontology, M a finite set
of concept descriptions, and I a model of (T ,A). Then the ontology comple-
tion algorithm terminates, and upon termination outputs an ontology (T ,A) :=
(Tn,An) and a set of implications L such that

1. L is sound and complete for ImpM (I), and
2. (T ,A) := (Tn,An) refutes every implication that is refuted by I.

Theorem 2 [18]. Let (T ,A) := (T0,A0) be a ontology, M a finite set of concept
descriptions, and I a model of (T ,A) := (T0,A0), and let (T ,A) := (Tn,An)
be the knowledge base computed by the ontology completion algorithm. Then
(T ,A) := (Tn,An) is a completion of (T ,A) := (T0,A0).

3 Armstrong ABoxes

In this section we introduce Armstrong ABoxes for ALC TBoxes. The intent of
Armstrong ABoxes is to create example data that satisfy all required constraints
and violate all constraints that do not necessarily hold for a specific application
domain. In this way Armstrong ABoxes are the DL equivalent of Armstrong
relations of relational database theory.

3.1 Formal Definitions

For convenience the notation
�

Ci and
�

Dj will respectively be used as short-
hand for Ci0 � . . . � Cin and Dj0 � . . . � Djm .

To determine whether there are axioms that have been fortuitously missed,
the ontology engineer wants to add assertions to the Armstrong ABox that serve
as test data that violates these candidate axioms. This idea is motivated based
on experimental results for Armstrong relations, where it was shown that experts
more readily recognize meaningful constraints that have been missed when the
missed constraints are violated by test data [14].

Definition 8. Let T be a consistent ALC TBox and let

σ′ :=
�

Ci �
�

Dj

for which T � σ′ holds. An ABox A′ is a violating exemplar of the entailment
T � σ′ if {

(
�

Ci)(x), (¬
�

Dj)(x)
}

⊆ A′

holds for some named individual x that does not appear in any other assertions
of A′. This is denoted by A′

� σ′.

Similar to Armstrong relations, Armstrong ABoxes include assertions that
represent example data that satisfy the constraints of the TBox.
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Definition 9. Let T be a consistent ALC TBox, and let

σ :=
�

Ci �
�

Dj

for which T � σ and � σ holds. An ABox A is a satisfying exemplar of the
entailment T � σ if {

(
�

Ci)(x), (
�

Dj)(x)
}

⊆ A

holds for some named individual x that does not appear in any other assertions
of A. This is denoted by A � σ.

In general, for a given TBox T , the number of non-entailments and entail-
ments can be infinite. For this reason, similar to ontology completion, Armstrong
ABoxes consider for a TBox T a finite set M of interesting concept descriptions
for which a partial context KT ,A(M) can be constructed. The number of implica-
tions that can hold in such a context is finite. This is the reason why Definitions 8
and 9 are defined in terms of assertions contained in A and A′ respectively, rather
than assertions entailed by (T ,A) and (T ,A′) respectively.

In Sect. 3.3 a variation of ontology completion/attribute exploration will be
used to generate Armstrong ABoxes. One of the aspects in which Armstrong
ABoxes deviate from ontology completion is that for Armstrong ABoxes one
of two possibilities must hold for each implication considered: either it follows
from the TBox in which case a satisfying exemplar is added, or it does not follow
from the TBox in which case a violating exemplar is added. To ensure that every
implication not following from the TBox can indeed be refuted, we introduce the
following definition.

Definition 10. Let M be a set of concept descriptions. M is said to be per-
missible if it is finite and no concept in M is equivalent to �. Furthermore, we
define M→ to be the set of GCIs representing the finite set of all the implications
L → R over M .

Armstrong ABoxes assume that T is to the knowledge of the domain expert
an accurate representation of the application domain. As such an interpretation
I exists that is a model for T and is representative of the knowledge of the
domain expert. Hence, in accordance with Definition 7, for all implications that
hold over M it follows that L → R holds in I and L → R follows from T .

Definition 11. Let T be a consistent ALC TBox and let M be permissible. Let

Σ′ := {σ′ | T � σ′ and σ′ ∈ M→}.

Σ′ is called the candidate axiom set of T over M . Assume Σ′ = {σ′
0, . . . , σ

′
n}.

An ABox A′ is a violating exemplar of T � Σ′ if A′
� σ′

0, . . . ,A′
� σ′

n holds.
An ABox A′ is a minimal violating exemplar of T � Σ′ iff there is no ABox
A′

0 ⊂ A′ that is violating exemplar of T � Σ′.
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Definition 12. Let T be a consistent ALC TBox and let M be permissible. Let

Σ := {σ | T � σ, � σ and σ ∈ M→}.

Σ is called the entailment set of T over M . Assume Σ = {σ0, . . . , σn}. An
ABox A is a satisfying exemplar of T � Σ if A � σ0, . . . ,A � σn holds,
which is denoted by A � Σ. An ABox A is a minimal satisfying exemplar
of T � Σ iff there is no ABox A0 ⊂ A that is satisfying exemplar of T � Σ.

For the sake of brevity “over M” will sometimes be dropped with the tacit
understanding that candidate axiom- and entailment sets are per definition con-
strained to some set M of concepts that is permissible.

The notion of an Armstrong ABox can now be defined. An Armstrong ABox
is denoted by A , which is pronounced as “A-shield”.

Definition 13. Let T be a consistent ALC TBox with Σ and Σ′ respectively
the entailment- and candidate axiom sets of T . A is said to be an Armstrong
ABox for T if and only if:

1. for every σ ∈ Σ, A � σ holds,
2. for every σ′ ∈ Σ′, A � σ′ holds and
3. there is no proper subset of A such that properties (1) and (2) hold.

O = T ∪ A is called an Armstrong ontology.

3.2 Key Attributes of Armstrong ABoxes

Before it can be proved that an Armstrong ontology is consistent, some inter-
mediate results need to be proven first.

Lemma 1. Let (T ,A) be a consistent ALC ontology. Let A1 be a set of asser-
tions that is satisfiable w.r.t. T . Further assume that there is no individual x
that appears in both A and A1. Then (T ,A ∪ A1) is consistent.

Proof. Since (T ,A) is consistent and (T ,A1) is consistent, A ∪ A1 will only be
inconsistent w.r.t. T if:

1. there is a clash in A ∪ A1, or
2. A ∪ A1 is unsatisfiable w.r.t. T .

For (1) to be the reason for the inconsistency there must be an individual x
such that A ∪ A1 � C(x) and A ∪ A1 � ¬C(x), which is impossible because of
the assumption that no individuals are shared between A and A1. For (2) to be
the reason for the inconsistency, there must be some entailment T � C � D for
which there is an individual x such that A ∪ A1 � C(x) and A ∪ A1 � ¬D(x),
which is impossible because no individuals are shared between A and A1. Since
A ∪ A1 is consistent w.r.t. T the consistency of T is not affected by A ∪ A1 (see
Proposition 3.6 of [16] or p. 142 of [3]). Hence, (T ,A ∪ A1) must be consistent.
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Lemma 2. Let T be a consistent ALC TBox with Σ′ = {σ′
0, . . . , σ

′
n} the can-

didate axiom set of T . Then (T ,A′
0 ∪ . . . ∪ A′

n) is consistent where A′
0, . . . ,A′

n

are minimal violating exemplars corresponding to Σ′.

Proof. Let A′
0 =

{
(
�

Ci)(x), (¬
�

Dj)(x)
}

be a violating exemplar. Then A′
0

will only be unsatisfiable w.r.t. T if

1. (¬
�

Dj) ≡ ⊥, or
2. A′

0 � C(y) and A′
0 � ¬C(y) for a concept C and a named individual y.

(1) is in contradiction with M being permissible and (2) is in contradiction with
A′

0 being a minimal violating exemplar (Definition 11). Thus, A′
0 is satisfiable

w.r.t. T and from Lemma 1 it follows that (T ,A′
0) is consistent. The result

follows by induction over the n minimal violating exemplars using Lemma1 and
the fact that no individuals are shared between exemplars (Definition 8).

Lemma 3. Let T be a consistent ALC TBox with Σ = {σ0, . . . , σn} the entail-
ment set of T . Then (T ,A0∪. . .∪An) is consistent where A0, . . . ,An are minimal
satisfying exemplars corresponding to Σ.

Proof. Let A0 =
{

(
�

Ci)(x), (
�

Dj)(x)
}

be a satisfying exemplar. That (T ,A0)
is consistent follows from Lemma 1, the fact that M is permissible and A0 being a
minimal satisfying exemplar. The result follows by induction over the n minimal
satisfying exemplars using Lemma 1 and the fact that no individuals are shared
between exemplars (Definition 9).

From the preceding definitions it follows that an Armstrong ABox can be
derived from TBox entailments and non-entailments. Conversely, TBox entail-
ments and non-entailments can be derived from Armstrong ABoxes.

Theorem 3. Let T be a consistent ALC TBox and let O := T ∪ A . Then:

1. O is consistent,
2. σ′ ∈ Σ′ if and only if A � σ′ and
3. σ ∈ Σ if and only if A � σ.

Proof. (1) That O is consistent is an immediate consequence of Lemmas 1, 2
and 3, the fact that an Armstrong ABox is minimal (it cannot be extended to
contain assertions that clash) and Σ ∩ Σ′ = ∅.

(2) Let σ′ :=
�

Ci �
�

Dj where σ′ ∈ M→. Then A � σ′ if and only if
{(

�
Ci)(x), (¬

�
Dj)(x)} ⊆ A for some new individual x such that T � σ′ if

and only if σ′ ∈ Σ′.
(3) Let σ :=

�
Ci �

�
Dj where σ ∈ M→. Then A � σ if and only if

{(
�

Ci)(x), (
�

Dj)(x)} ⊆ A for some new individual x such that T � σ if and
only if σ ∈ Σ.
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3.3 Algorithm

The ontology completion algorithm can be adapted to generate Armstrong
ABoxes. However, there are some differences between the assumptions for ontol-
ogy completion versus for Armstrong ABoxes.

Armstrong ABoxes start with a non-empty consistent ALC TBox T which
has been constructed in collaboration with a domain expert. Moreover, the
assumption is that T is to the knowledge of the domain expert an accurate
representation of the application domain. As such an interpretation I exists
that is a model for T and is representative of the knowledge of the domain
expert. In this regard Armstrong ABoxes differ from ontology completion since
a model I of T matches the interpretation I known to the domain expert. Since
the assumption is that T is representative of the application domain, T is not
extended during the generation of an Armstrong ABox.

The main objective of Armstrong ABoxes is to generate an A corresponding
to T in accordance with Definition 13. This can be achieved by checking whether
�L �T �R follows from T , in which case a satisfying exemplar (Definition 9) is
added to A and the implication base L is extended with L → R. If �L � �R
does not follow from T , a related violating exemplar (Definition 8) is added to
A . No questions are posed to an expert during Armstrong ABox generation.

To make the correspondence between Armstrong ABoxes and partial con-
texts induced by DL ontologies explicit, assume that O = (T , ∅) represents the
TBox for which an Armstrong ABox has to be generated. This will result in the
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ontology O = (T ,A ) which has a model (Theorem 3). Assume that I is a
model of O . Then O induces the partial context

KT ,A := {podT ,A (a,M) | a is an individual name occurring in A },

where M is a set of ALC concepts that is permissible, podT ,A is defined as before
for A instead of A and podT ,A is a pod since O is consistent (Theorem 3).

Any element d ∈ 	I of an interpretation I gives rise to the full example

fodI (d,M) := (A,S) where A := {C ∈ M | d ∈ CI } and

S := {C ∈ M | d ∈ (¬C)I },

and the whole interpretation induces the full context

KI (M) := {fodI (d,M) | d ∈ 	I }.

Note that fodI (d,M) is indeed a fod since every d ∈ 	I satisfies either d ∈ CI

or d ∈ 	I \CI = (¬C)I .
For this reason many of the results of ontology completion applies directly

to Armstrong ontologies with the assumption that I = I .
Algorithm 5 generates an Armstrong ABox A , given a TBox T and M a

set of concepts that is permissible. It initializes the implication set L and the
Armstrong ABox A to be empty. L is initialized with the smallest set in the
lectic order for L(· ) and a counter is initialized that is used in creating new
individuals for which assertions are added to A (line 1).

Algorithm 4, which is called in line 3 of Algorithm 5, is introduced to simplify
dealing with exemplars. It takes as input the TBox T , the Armstrong ABox A
calculated this far, and the left-hand side L of the current implication under
consideration. In line 1 it calculates the largest R for L that is not refuted by the
partial context KT ,A(M) (Proposition 3). Line 2 checks whether the implication
is undecided in the context KT ,A. Lines 3 and 4 are introduced to simplify the
notation used in Algorithm 5.

Line 4 of Algorithm 5 ensures that only undecided implications are consid-
ered, otherwise it moves on to the next L in the lectic order under L(· )(line 13).
An implication for which the related subsumption already follows from the TBox
T , the implication is added to L and a satisfying exemplar is added to A (lines 6-
8), otherwise a violating exemplar is added to A (line 10). Since L changed in
line 6, the next L in the lectic order under L(· ) is determined (line 7).

At termination Algorithm 5 returns an Armstrong ontology and a set of impli-
cations L that is sound and complete for ImpM (I ) (Theorem 4).

Theorem 4. Let T be a consistent ALC TBox and let M be permissible. Algo-
rithm 5 terminates and upon termination it outputs the ontology (T ,A ) which
is an Armstrong ontology and a set of implications L such that

1. L is sound and complete for ImpM (I ), I a model of (T ,A ) and
2. (T ,A ) refutes every implication refuted by I .
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Proof. That Algorithm 5 terminates and upon termination it outputs the set of
implications L such that (1) and (2) holds, follows from Proposition 4.

That (T ,A ) is an Armstrong ontology follows from the following facts:

1. conditions (1) and (2) hold for the set of implications L,
2. whenever σ ∈ Σ, a corresponding satisfying exemplar is added to A (line 8),
3. for every σ′ ∈ Σ′, a violating exemplar is added to A (line 10),
4. no other other assertions are added to A , Σ ∩ Σ′ = ∅ and no variables are

shared between exemplars (lines 8 and 10).

3.4 Example

Starting with M = {Composite,Even,Odd,Prime,Square} and the TBox

T0 = {Composite � �,Even � �,Odd � �,Prime � �,Square � �},

Algorithm 5 generates no satisfying exemplars (because there are no impli-
cations that follow from T0 for KI (M)) and the violating exemplars given
in Table 1. Looking at the assertions for x1, the expert realizes that some of
these attributes will never occur together. Hence, the expert adds the axioms
{Even � ¬Odd,Composite � ¬Prime,Square � ¬Prime}. Regenerating the Arm-
strong ABox for M = {Composite,Even,Square} and

T1 = T0 ∪ {Even � ¬Odd,Composite � ¬Prime,Square � ¬Prime}

results in no satisfying exemplars and the violating exemplars given in Table 2.
Looking at the assertions for x4 in Table 2 the expert realizes that every integer
that is an Even and a Square, will necessarily be a Composite. Therefore the
expert adds the GCI Even � Square � Composite.

Generating an Armstrong ABox for T2 = T1 ∪ {Even � Square � Composite}
with M = {Composite,Even,Square} will generate the same violating exemplars
as in Table 2 except for x4 that will be generated as a satisfying exemplar {(Even�
Square)(x4),Composite(x4)}.

Generating an Armstrong ABox for T2 with M = {Composite,Odd,Square}
will result in violating exemplars similar to Table 2, except that Even will be
replaced with Odd. At this point the expert decides that T2 is sufficiently refined.
Note that T2 defines constraints that should hold while the violating exemplars
of the Armstrong ABoxes define constraints that can be violated.

3.5 Discussion

Our motivation for developing Armstrong ABoxes is to help identify ontologies
of which the specification are incomplete, based on an idea that is inspired
by Armstrong relations in relational database theory. Armstrong relations are
used to assist domain experts to remedy incomplete specifications by identifying
constraints that have been omitted, both with regard to constraints that should
hold and constraints that do not necessarily hold [14]. By generating “perfect test
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Table 1. Armstrong ABox for T0 and M = {Composite, Even, odd, Prime, Square}

Table 2. Armstrong ABox for T1 and M = {Composite, Even, Square}
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data” in an Armstrong ABox we present the ontology engineer with exemplars
that ensure that all the constraints of an application domain are specified. In
particular the test data provides exemplars that violate constraints that do not
necessarily hold.

Potential benefits of Armstrong ABoxes are that exemplars can make the
meaning of entailments and non-entailments apparent, particularly for users that
may not be well versed in DLs. Moreover, violating exemplars can alert a user
to the fact that an entailment that should not follow from the TBox, does follow
from the TBox. This can happen where A is generated for T0 after which T0

is amended resulting in T1, without regenerating A . Assuming T1 is consistent
and (T1,A ) is inconsistent, the reason for the inconsistency will be due to a
σ′ such that T0 � σ′, A � σ′ and T1 � σ′. For T0 σ′ represents a constraint
that does not hold and for T1 a constraint that does hold. The question that the
expert has to resolve is: Should σ′ hold or is it an unintended side-effect of the
changes to T0?

An advantage of Armstrong ABoxes over ontology completion is that there is
no need to reclassify the ontology because no GCIs are added when an Armstrong
ABox is generated. In the case of ontology completion the ontology has to be
reclassified every time a new GCI is added [18] but for Armstrong ABoxes the
ontology only needs to be reclassified after the expert reviewed the Armstrong
ABox and decided to add GCIs.

Armstrong ABoxes give an expert the flexibility to focus only on exemplars
of interest. Ontology completion (resp. attribute exploration) can be a time
consuming process even though it is mathematically designed to minimize the
number of questions posed to an expert. This problem is exacerbated when
experts don’t provide mathematically optimal counterexamples, which results in
the number of questions that need to be answered to reduce at a much slower
rate than what is possible through optimal counterexamples. Moreover, an expert
may not be able to provide an answer without further investigation [9,18]. Onto-
ComP, an implementation of ontology completion, deals with these challenges
by trying to find a counterexample that may already be present in the ABox
and it allows experts in certain situations to skip questions [4]. In contrast our
Armstrong ABox algorithm will by definition always provide optimal counterex-
amples (Definition 8) and because such an Armstrong ABox is generated without
expert interaction, it affords the expert the flexibility to choose which exemplars
to focus on and which to ignore.

Limitations of our Armstrong ABox algorithm include its exponential com-
plexity similar to attribute exploration/ontology completion. Less expressive DLs
with favourable reasoning complexity like FL, AL and EL are impractical given
our current formalization of violating exemplars, which requires full negation.
Moreover, ontology engineers and domain experts are likely to keep M small as
to limit the cognitive load in reviewing an Armstrong ABox. This means the
exponential complexity is likely to have a limited effect in practice, but this still
needs to be evaluated in practice.
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4 Conclusion

In order to assist with incomplete specifications when ontology engineers model
a domain of interest, we propose the use of an Armstrong ABox, a notion derived
from Armstrong relations in relational database theory. We formalized the notion
of Armstrong ABoxes for TBoxes in the ALC DL, including an algorithm for
generating such Armstrong ABoxes. The generated test data in the Armstrong
ABox could be regarded as “perfect test data” that satisfies both the constraints
of the domain that should hold, as well as constraints of the domain that do
not hold. Our approach is novel in ontology engineering even though similar
approaches have been used before in relational database specifications. Inte-
grating our approach into ontology engineering tools will facilitate in detecting
incomplete specifications.
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