
Bernd Fischer
Tarmo Uustalu (Eds.)

 123

LN
CS

 1
11

87

15th International Colloquium
Stellenbosch, South Africa, October 16–19, 2018
Proceedings

Theoretical Aspects
of Computing – ICTAC 2018

Lecture Notes in Computer Science 11187

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology Madras, Chennai, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Bernd Fischer • Tarmo Uustalu (Eds.)

Theoretical Aspects
of Computing – ICTAC 2018
15th International Colloquium
Stellenbosch, South Africa, October 16–19, 2018
Proceedings

123

Editors
Bernd Fischer
Stellenbosch University
Stellenbosch, South Africa

Tarmo Uustalu
Reykjavík University
Reykjavik, Iceland

and

Tallinn University of Technology
Tallinn, Estonia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-02507-6 ISBN 978-3-030-02508-3 (eBook)
https://doi.org/10.1007/978-3-030-02508-3

Library of Congress Control Number: 2018957486

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018
Chapter “Layer Systems for Confluence—Formalized” is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see
license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-1815-218X
http://orcid.org/0000-0002-1297-0579
http://creativecommons.org/licenses/by/4.0/

Preface

This volume is the proceedings of the 15th International Colloquium on Theoretical
Aspects of Computing, ICTAC 2018, which was held in Stellenbosch, South Africa,
during October 16–19, 2018, in colocation with the 14th African Conference on
Research in Computer Science and Applied Mathematics, CARI 2018, October 14–16,
and a jointly organized CARI/ICTAC spring school, October 12–15.

Established in 2004 by the International Institute for Software Technology of the
United Nations University (UNU-IIST), the ICTAC conference series aims at bringing
together researchers and practitioners from academia, industry, and government to
present research and exchange ideas and experience addressing challenges in both
theoretical aspects of computing and the exploitation of theory through methods and
tools for system development. ICTAC also specifically aims to promote research
cooperation between developing and industrial countries.

The topics of the conference include, but are not limited to, languages and automata;
semantics of programming languages; logic in computer science; lambda calculus, type
theory and category theory; domain-specific languages; theories of concurrency and
mobility; theories of distributed, grid and cloud computing; models of objects and
components; coordination models; models of software architectures; timed, hybrid,
embedded, and cyber-physical systems; static analysis; software verification; software
testing; program generation and transformation; model checking and automated theo-
rem proving; interactive theorem proving; certified software, formalized programming
theory.

Previous editions of ICTAC were held in Guiyang, China (2004), Hanoi, Vietnam
(2005 and 2017), Tunis, Tunisia (2006), Macau (2007), Istanbul, Turkey (2008), Kuala
Lumpur, Malaysia (2009), Natal, Brazil (2010), Johannesburg, South Africa (2011),
Bangalore, India (2012), Shanghai, China (2013), Bucharest, Romania (2014), Cali,
Colombia (2015), Taipei, Taiwan (2016). The proceedings of all these events were
published in the LNCS series.

The program of ICTAC 2018 consisted of four invited talks and 25 contributed
papers. We were proud to have as invited speakers Yves Bertot (Inria, France), Thomas
Meyer (University of Cape Town, South Africa), Gennaro Parlato (University of
Southampton, UK), and Peter Thiemann (Universität Freiburg, Germany). The talks of
Meyer and Parlato are represented in this volume by abstracts, those by Bertot and
Thiemann by an extended abstract and a paper.

The contributed papers were selected from among the 59 full submissions that we
received in response to our call. Each of those was reviewed by at least three, and on
average 3.4, Program Committee members or external reviewers. The Program Com-
mittee consisted of 28 researchers from academia and industry and from every
continent.

The CARI/ICTAC spring school program consisted of seven half-day tutorials,
taught by Yves Bertot, Vincent Cheval (Inria, France), Martin Leucker (Universität zu
Lübeck, Germany), Thomas Meyer, Ina Schaefer (Technische Universität
Braunschweig, Germany) with Loek Cleophas (Technische Universiteit Eindhoven,
The Netherlands), Peter Thiemann, and Willem Visser (Stellenbosch University, South
Africa).

We are grateful to all our invited speakers, submission authors, Program Committee
members, and external reviewers for their contributions to the program, to the Steering
Committee and especially its chair, Ana Cavalcanti, for advice, to Easychair for the
platform for Program Committee work, and to the LNCS editorial team for producing
this volume and for donating the best paper award money. We are thankful to the
Stellenbosch Institute for Advanced Study (STIAS) for lending the premises, and to
Hayley Du Plessis and Andrew Collett for administrative and technical support.
Stellenbosch University, IFIP TC6 and DEC, Inria, and their partnering French
agencies provided financial support toward the costs of the invited speakers and
tutorialists.

August 2018 Bernd Fischer
Tarmo Uustalu

VI Preface

Organization

Steering Committee

Ana Cavalcanti University of York, UK
Martin Leucker Universität zu Lübeck, Germany
Zhiming Liu Southwest University, China
Tobias Nipkow Technische Universität München, Germany
Augusto Sampaio Universidade Federal de Pernambuco, Brazil
Natarajan Shankar SRI International, USA

General Chair

Bernd Fischer Stellenbosch University, South Africa

Program Chairs

Bernd Fischer Stellenbosch University, South Africa
Tarmo Uustalu Reykjavík University, Iceland, and Tallinn University

of Technology, Estonia

Program Committee

June Andronick Data61, Australia
Éric Badouel IRISA, France
Eduardo Bonelli Universidad Nacional de Quilmes, Argentina
Ana Cavalcanti University of York, UK
Dang Van Hung VNU University of Engineering and Technology, Vietnam
Uli Fahrenberg LIX, France
Anna Lisa Ferrara University of Southampton, UK
Adrian Francalanza University of Malta, Malta
Edward Hermann

Haeusler
Pontifícia Universidade Católica do Rio de Janeiro, Brazil

Ross Horne Nanyang Technological University, Singapore
Atsushi Igarashi Kyoto University, Japan
Jan Křetinský Technische Universität München, Germany
Martin Leucker Universität zu Lübeck, Germany
Zhiming Liu Southwest University, China
Radu Mardare Aalborg University, Denmark
Tobias Nipkow Technische Universität München, Germany
Maciej Piróg University of Wrocław, Poland
Sanjiva Prasad IIT Delhi, India

Murali Krishna
Ramanathan

Uber Technologies, USA

Camilo Rueda Pontificia Universidad Javeriana Cali, Colombia
Augusto Sampaio Universidade Federal de Pernambuco, Brazil
Ina Schaefer Technische Universität Braunschweig, Germany
Natarajan Shankar SRI International, USA
Georg Struth University of Sheffield, UK
Cong Tian Xidian University, China
Lynette van Zijl Stellenbosch University, South Africa

Additional Reviewers

Abdulrazaq Abba
Antonis Achilleos
Leonardo Aniello
Jaime Arias
S. Arun-Kumar
Pranav Ashok
Duncan Attard
Mauricio Ayala-Rincón
Giorgio Bacci
Giovanni Bacci
Joffroy Beauquier
Giovanni Bernardi
Silvio Capobianco
Ian Cassar
Sheng Chen
Lukas Convent
Alejandro Díaz-Caro
Eric Fabre
Nathanaël Fijalkow
Robert Furber
Ning Ge
Jeremy Gibbons
Stéphane Graham-Lengrand
Reiko Heckel
Willem Heijltjes
Wu Hengyang
Bengt-Ove Holländer
Juliano Iyoda
Mauro Jaskelioff
Yu Jiang
Christian Johansen
Dejan Jovanovic

Karam Kharraz
Hélène Kirchner
Alexander Knüppel
Jérémy Ledent
Karoliina Lehtinen
Benjamin Martin
Tobias Meggendorfer
Carroll Morgan
Madhavan Mukund
Kedar Namjoshi
Michael Nieke
Sidney C. Nogueira
Carlos Olarte
Marcel Vinicius Medeiros Oliveira
Hugo Paquet
Mathias Ruggaard
André Pedro
Gustavo Petri
Mathias Preiner
Adrian Puerto Aubel
Karin Quaas
Andrew Reynolds
Pedro Ribeiro
James Riely
Camilo Rocha
Nelson Rosa
Martin Sachenbacher
Gerardo M. Sarria M.
Torben Scheffel
Alexander Schlie
Malte Schmitz
Sven Schuster

VIII Organization

Thomas Sewell
René Thiemann
Daniel Thoma
Thomas Thüm
Ashish Tiwari
Hazem Torfah
Szymon Toruńczyk

Dmitriy Traytel
Christian Urban
Frank Valencia
Maximilian Weininger
Pengfei Yang
Hengjun Zhao

Organizing Committee

Bernd Fischer Stellenbosch University, South Africa
Katarina Britz Stellenbosch University, South Africa
Hayley Du Plessis Stellenbosch University, South Africa

Host Institution

Stellenbosch University Computer Science Division

Sponsors

Stellenbosch University
Springer
IFIP Technical Committee 6 and Digital Equity Committee
Inria
Agence universitaire de la Francophonie (AUF)
Centre de coopération internationale en recherche agronomique pour le développement

(CIRAD)
Institut de recherche pour le développement (IRD)

Organization IX

Invited Talks (Abstracts)

What Is Knowledge Representation
and Reasoning?

Thomas Meyer

Department of Computer Science and Centre for Artificial Intelligence Research,
University of Cape Town, Private Bag X3, Rondebosch 7701, South Africa

tmeyer@cs.uct.ac.za

Artificial Intelligence (AI) is receiving lots of attention at the moment, with all kinds of
wild speculation in the media about its potential benefits. The excitement is mostly
about recent successes in the subarea of AI known as Machine Learning. The current
hype is reminiscent of the scenario about 20 years ago when logic-based AI, and more
specifically, the subarea known as Knowledge Representation, had everyone in a state
of euphoria about the future of AI.

My focus in this talk is on Knowledge Representation. I first provide an overview
of the field as a whole, followed up by a more detailed presentation about some of the
successful Knowledge Representation techniques and tools. The presentation is aug-
mented with a discussion on the strengths and limitations of the Knowledge Repre-
sentation approach to AI. Finally, I offer some thoughts on the recently revitalised
suggestion that a combination of Knowledge Representation and Machine Learning
techniques can lead to further advances in AI.

http://orcid.org/0000-0003-2204-6969

Finding Rare Concurrent Programming Bugs:
An Automatic, Symbolic, Randomized,

and Parallelizable Approach

Gennaro Parlato

School of Electronics and Computer Science,
University of Southampton, Highfield, Southampton SO17 1BJ, UK

gennaro@ecs.soton.ac.uk

Developing correct, scalable and efficient concurrent programs is a complex and dif-
ficult task, due to the large number of possible concurrent executions that need to be
taken into account. Modern multi-core processors with weak memory models and
lock-free algorithms make this task even more difficult, as they introduce additional
executions that confound the developers’ reasoning. Because of these complex inter-
actions, concurrent programs often contain bugs that are difficult to find, reproduce, and
fix. Stress testing is known to be very ineffective in detecting rare concurrency bugs as
all possible executions of the programs have to be explored explicitly. Consequently,
testing by itself is often inadequate for concurrent programs and needs to be com-
plemented by automated analysis tools that enable detection of bugs in a systematic and
symbolic way.

In the first part of the talk, I provide an overview of Lazy-CSeq, a symbolic method
based on Bounded Model Checking (BMC) and Sequentialization. Lazy-CSeq first
translates a multi-threaded C program into a nondeterministic sequential C program
that preserves reachability for all round-robin schedules with a given bound on the
number of rounds. It then reuses existing high-performance BMC tools as backends for
the sequential verification problem. This translation is carefully designed to introduce
very small memory overheads and very few sources of nondeterminism, so that it
produces tight SAT/SMT formulae, and is thus very effective in practice.

In the second part of the talk, I present Swarm-CSeq, which extends Lazy-CSeq
with a swarm-based bug-finding method. The key idea is to generate a set of simpler
program instances, each capturing a reduced set of the original programs interleavings.
These instances can then be verified independently in parallel. Our approach is
parametrizable and allows us to fine-tune the nondeterminism and randomness used for
the analysis. In our experiments, by using parallel analysis, we show that this approach
is able, even with a small number of cores, to find bugs in the hardest known con-
currency benchmarks in a matter of minutes, whereas other dynamic and static tools fail
to do so in hours.

http://orcid.org/0000-0002-8697-2980

Contents

Invited Talks (Papers)

Formal Verification of a Geometry Algorithm: A Quest for Abstract Views
and Symmetry in Coq Proofs . 3

Yves Bertot

LTL Semantic Tableaux and Alternating x-automata via Linear Factors. 11
Martin Sulzmann and Peter Thiemann

Contributed Talks

Proof Nets and the Linear Substitution Calculus . 37
Beniamino Accattoli

Modular Design of Domain-Specific Languages Using
Splittings of Catamorphisms . 62

Éric Badouel and Rodrigue Aimé Djeumen Djatcha

An Automata-Based View on Configurability and Uncertainty 80
Martin Berglund and Ina Schaefer

Formalising Boost POSIX Regular Expression Matching 99
Martin Berglund, Willem Bester, and Brink van der Merwe

Monoidal Multiplexing . 116
Apiwat Chantawibul and Paweł Sobociński

Input/Output Stochastic Automata with Urgency: Confluence
and Weak Determinism . 132

Pedro R. D’Argenio and Raúl E. Monti

Layer by Layer – Combining Monads . 153
Fredrik Dahlqvist, Louis Parlant, and Alexandra Silva

Layer Systems for Confluence—Formalized . 173
Bertram Felgenhauer and Franziska Rapp

A Metalanguage for Guarded Iteration . 191
Sergey Goncharov, Christoph Rauch, and Lutz Schröder

Generating Armstrong ABoxes for ALC TBoxes . 211
Henriette Harmse, Katarina Britz, and Aurona Gerber

Spatio-Temporal Domains: An Overview . 231
David Janin

Checking Modal Contracts for Virtually Timed Ambients 252
Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf,
and Lars Tveito

Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers. 273
Martin Jonáš and Jan Strejček

Weak Bisimulation Metrics in Models with Nondeterminism
and Continuous State Spaces . 292

Ruggero Lanotte and Simone Tini

Symbolic Computation via Program Transformation 313
Henrich Lauko, Petr Ročkai, and Jiří Barnat

Double Applicative Functors . 333
Härmel Nestra

Checking Sequence Generation for Symbolic Input/Output FSMs
by Constraint Solving . 354

Omer Nguena Timo, Alexandre Petrenko, and S. Ramesh

Explicit Auditing. 376
Wilmer Ricciotti and James Cheney

Complexity and Expressivity of Branching- and Alternating-Time
Temporal Logics with Finitely Many Variables. 396

Mikhail Rybakov and Dmitry Shkatov

Complexity Results on Register Context-Free Grammars and Register
Tree Automata . 415

Ryoma Senda, Yoshiaki Takata, and Hiroyuki Seki

Information Flow Certificates . 435
Manuel Töws and Heike Wehrheim

The Smallest FSSP Partial Solutions for One-Dimensional Ring Cellular
Automata: Symmetric and Asymmetric Synchronizers 455

Hiroshi Umeo, Naoki Kamikawa, and Gen Fujita

Convex Language Semantics for Nondeterministic Probabilistic Automata . . . 472
Gerco van Heerdt, Justin Hsu, Joël Ouaknine, and Alexandra Silva

Fast Computations on Ordered Nominal Sets . 493
David Venhoek, Joshua Moerman, and Jurriaan Rot

XVI Contents

Non-preemptive Semantics for Data-Race-Free Programs 513
Siyang Xiao, Hanru Jiang, Hongjin Liang, and Xinyu Feng

Author Index . 533

Contents XVII

Invited Talks (Papers)

Formal Verification of a Geometry
Algorithm: A Quest for Abstract Views

and Symmetry in Coq Proofs

Yves Bertot(B)

Inria Sophia Antipolis – Méditerranée and Université Côte d’Azur,
2004 route des Lucioles, 06902 Sophia Antipolis Cedex, France

yves.bertot@inria.fr

Abstract. This extended abstract is about an effort to build a formal
description of a triangulation algorithm starting with a naive description
of the algorithm where triangles, edges, and triangulations are simply
given as sets and the most complex notions are those of boundary and
separating edges. When performing proofs about this algorithm, ques-
tions of symmetry appear and this exposition attempts to give an account
of how these symmetries can be handled. All this work relies on formal
developments made with Coq and the mathematical components library.

1 Introduction

Over the years, proof assistants in higher-order logic have been advocated as
tools to improve the quality of software, with a wide range of spectacular results,
ranging from compilers, operating systems, distributed systems, and security and
cryptography primitives. There are now good reasons to believe that any kind
of software could benefit from a formal verification using a proof assistant.

Embedded software in robots or autonomous vehicles has to maintain a view
of the geometry of the world around the device. We expect this software to rely
on computational geometry. The work described in this extended abstract con-
centrates on an effort to provide a correctness proof for algorithms that construct
triangulations.

2 An Abstract Description of Triangulation

Given a set of points, a triangulating algorithm returns a collection of trian-
gles that must cover the space between these points (the convex hull), have no
overlap, and such that all the points of the input set are vertices of at least one
triangle. When the input points represent obstacles, the triangulation can help
construct safe routes between these obstacles, thanks to Delaunay triangulations
and Voronöı diagrams.

The formal verification work starts by providing a naive and abstract view
of the algorithm that is later refined into a more efficient version. Mathemati-
cal properties are proved for the naive version and then modified for successive
c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 3–10, 2018.
https://doi.org/10.1007/978-3-030-02508-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_1&domain=pdf
http://orcid.org/0000-0001-5052-3019

4 Y. Bertot

refinements. When the proof is about geometry and connected points, it is nat-
ural to expect symmetry properties to play a central role in the proofs. In this
experiment, we start with a view of triangles simply as 3-point sets. We expect
to refine this setting later into a more precise graph structure, where each trian-
gle is also equipped with a link to its neighbors and costly operations over the
whole set of triangles are replaced by low constant time operations that exploit
information that is cached in memory.

From the point of view of formal verification, the properties that need to be
verified for the naive version are the following ones: all triangles have the right
number of elements, all points inside the convex hull are in a triangle, the union
of all the triangles is exactly the input, and there is no overlap between two
triangles.

The naive algorithm relies on the notion of separating edges of a triangle
with respect to a point: for a triangle {a, b, c} and a fourth point d, the point c
is separated from d if c and d appear on different sides of the edge {a, b}. At this
point, it appears that life is much easier if we take the simplifying assumption
that three points of the input are never aligned. This assumption is often taken
in the early literature on computational geometry and we will also take it.

The point d is inside the triangle {a, b, c} exactly when no element of the
triangle is separated from the point d. When the point d is outside the triangle,
for instance when c is separated from d, the edge {a, b} will be called red. An
edge that is not red will be called blue.

Another important notion is the notion of boundary edge. An edge of the
triangulation is a 2-point subset of one of the triangles in the triangulation, a
boundary edge is an edge that belong to exactly one triangle. Boundary edges
are triangle edges, and as such they can be blue or red with respect to a new
point.

The algorithm then boils in the following few lines:
Take three points from the input: they constitute the first triangle, then take

the points one by one.

– If the new point is inside an existing triangle, then remove this triangle from
the triangulation and then add the three triangles produced by combining
the new point and all edges of the removed triangle.

– If the new point is outside, then add all triangles obtained by combining the
new point with all red boundary edges.

This algorithm terminates when all points from the input have been consumed.

3 Specifying the Correctness of the Algorithm

This algorithm is so simple that it seems proving it correct should be extremely
simple. However, geometry properties play a significant role, as is already visible
in the specification.

That the triangulation only contains 3-set seems obvious, as soon as the
input set does contain three points. When there are more than 3 points, say n

Formal Verification of a Geometry Algorithm 5

points, we can assume by induction that the triangulation of the first n-1 points
contains only-3 sets. Then, whether the new point is inside an existing triangle
or outside, the new elements of the triangulation are obtained by adding the
new point to edges of the previous triangulation. These operation always yield
3-point sets.

To verify that the union of all triangles is the input set, we need to show that
at least one triangle is created when including a new point. This is surprising
difficult, because it relies on geometry properties. If the new point is inside
an existing triangle, the algorithm obviously includes in the triangulation three
triangles that contain the new point. However, when the point is not inside a
triangle, there is no simple logical reason for which there should exist a boundary
edge that is also red. This requires an extra proof with geometrical content. Such
a proof was already formally verified by Pichardie and Bertot [17].

With respect to boundary edges, when the triangulation is well-formed, all
boundary edges should form the convex hull of the input set. In other words, for
every point inside the convex hull, all boundary edges should be blue.

4 Formal Proof

When performing the proofs, it is interesting to exploit all the symmetry that
can be found. In paper proofs, it is often enough to explicit one configuration
and state rapidly that many other configurations can be proved similarly by
symmetry.

4.1 Combinatorial Symmetries of Triangles

One example is the natural symmetry of triangles. When considering triangles,
Knuth [13] proposed that they should be viewed as ordered triplets abc, such
that one turns left when following the edges from a, b and then to c. Of course, if
one views triangles simply as sets, it does not make sense to distinguish between
oriented and non-oriented triangles. Thus, we need to add structure to the set,
which we do by giving names to the elements. Now, when giving these names,
we can do it in a way that ensures the obtained triangle to be oriented. When
doing our formalization work, it becomes natural to name t1, t2, t3 the three
points of t.

In practice, we don’t use integers for indexing the elements, because this
means we would have to give a meaning to t18. Instead, we use the type of inte-
gers smaller than 3 and we use the fact that this set can be given the structure
of a group. The mathematical component library already provides such a struc-
ture, noted ’I 3. We profit from it and call 0, 1, and −1 the three elements.
A characteristic property in our development will be that ti, ti+1, ti−1 form an
oriented triangle, of course with the convention that i+3 = i and 0−1 = 2 when
dealing with elements of ’I 3. This is a first way in which we attempt to deal
with symmetry. This is supported by the finite group concepts in the library.

6 Y. Bertot

We define a function three points that maps any set of type {set P} (this
is the mathematical components’ notation for sets of elements of P) to a function
from ’I 3 to P. This function is defined in such a way that it is injective and
its image is included in its first argument as soon as this set has at least three
points and the images of 0, 1, and −1 form an oriented triplet.

4.2 Geometric Symmetries of Triangles

Other symmetries come up when considering oriented triangles in the plane. In
his study of convex hull algorithms [13], Knuth expresses that the following 5
properties are to be expected from the orientation predicate, when the 5 points
a, b, c, d, and e are taken to be pairwise distinct, and noting simply abc to
express that one turns left when following the path from a to b and then c.

1. abc ⇒ bca
2. abc ⇒ ¬bac
3. abc ∨ bac
4. abd ∧ bcd ∧ cad ⇒ abc
5. abc ∧ abd ∧ abe ∧ acd ∧ ade ⇒ ace.

Knuth calls these properties axioms of the orientation predicate and we will
follow his steps, even though from the logical point of view, these properties
are not really axioms because we can prove them for a suitable definition of the
orientation predicate (using the points’ coordinates and determinants).

The first axiom essentially says that from the geometrical point of view,
triangles exhibit a ternary symmetry. The second one makes it slightly more
precise by expressing that not any order sequence of three points forms an ori-
ented triangle. The third one states that we are working under the assumption
that no three points in the data set are aligned. The fourth axiom expresses that
the combination of three adjacent oriented triangles lead to fourth one. It also
has a natural ternary geometric symmetry, which is perhaps easier to see in the
following drawing:

Axiom 5 describes relations of four points relative to a pivot, in this case a.
It can be summarized by the following figure, where the topmost arrow (in blue)
is a consequence of all others.

Formal Verification of a Geometry Algorithm 7

To have a symmetric collection of axioms, we would actually need a similar
statement, but with all points pivoting around b. Knuth also recognizes this need
and actually shows that the symmetric picture (an axial symmetry) is a logical
consequence of all other axioms.

Using these axioms, we should be able to prove a statement like the following
if all vertices of a triangle {c, d, e} lay on the left of a segment [a, b], then any
point f inside the triangle also lays on the left of the segment. This should also
be true when one or both of a and b is element of {c, d, e}.

A human readable form of this proof works by first studying the case the
where sets {a, b} and {c, d, e} are disjoint, noting that there should be at least
one edge of the triangle that is red with respect to both a and by supposing,
without loss of generality that this edge is [c, d]. This proof already relies on 9
uses of Knuth’s fifth axiom or its symmetric.

For a human reader, the exercise of renaming points is easily done, but for a
computer, the three points c, d, and e are not interchangeable and performing the
“without loss of generality” step requires a technical discussion with three cases
to consider, where Knuth’s fifth axiom is used once again. In total, if no step
was taken to exploit the symmetry, this means that the proof would require 28
uses of Knuth’s fifth axiom and since this proof has 5 premises, this corresponds
to a proof complexity that it really cumbersome for the human mind.

More uses of symmetry have to be summoned to treat the cases when a and
b may appear among the vertices c, d, and e, depending on whether it is a, b, or
both that belongs to the triangle when c, d, or e are all on the left of the [a, b]
segment.

4.3 Symmetries with Respect to the Convex Hull

In two dimensions, the boundary edges of the convex hull form a loop where
no edge plays a more significant role than the other. It is natural to think that
the ternary symmetry of triangles should generalize to such a loop, but with
the added ingredient that the size of the loop is an arbitrary number n, larger
than 3. To cope with this source of symmetry, we did not choose to exhibit a

8 Y. Bertot

mapping from ’I n to the type of points, but rather to indicate that there exists
a function f , such that [x; f(x)] is always a boundary edge when x is taken from
the union of the boundary edges, of the triangulation and all the other points of
the triangulation are always on the left side of the segment [x; f(x)].

To handle this point of view, the mathematical components library provides
a notion of orbit of a point for a function.

When one considers the operation of adding a new point outside the convex
hull, it is not true anymore that all boundary edges are equivalent. Some edges
are red, some edges are blue. In fact, it is possible to show that all red boundary
edges are connected together, so that there are exactly two points, which we can
call the purple points that belong to two edges of different color. The role of these
two points is symmetric, but they can be distinguished: for one of them, which
we call p1, the edge [p1, f(p1)] is a red boundary edge and [fn−1(p1), p1] is a blue
boundary edge, for the other, which we call p2, the edge [p2, f(p2)] is blue and
[fn−1(p2), p2] is red. In fact, there exists a number nr such that fnr (p1) = p2,
all segments [fk(p1), fk+1(p1)] are red boundary edges when 0 ≤ k < nr and all
segments [fk(p1), fk+1(p1) are blue when 0 ≤ nr < n.

In principle, all statements made about p1 are valid for p2, mutatis mutandi.
In practice, performing the proofs of the symmetric statement formally often
relies on copying and pasting the proofs obtained for the first case, and guessing
the right way to exploit the known symmetries, for example by replacing uses of
Knuth’s fifth axiom by its symmetric. The alternative is to make the proof only
once and make the symmetry explicit, but the last step is often as difficult as
the first one.

The existence of a cycle for the function f , so that fk+n = fk also plays
a role in the proof. Reasoning modulo n appears at several places during the
proof, but for now we have not found a satisfactory way to exploit this fact.

5 Related Work

The formal verification of computational geometry algorithms is quite rare. A
first attempt with convex hulls was provided by Pichardie and Bertot [17] where
the only data structure used was that of lists but the question of non general
positions (where points may be aligned) was also studied. Notable work is pro-
vided by Dufourd and his colleagues [1,3,5,6]. In particular, Dufourd advocated
the use of hypermaps to represent many of the data-structures of computational
geometry. In this work, we prefer to start with a much more naive data struc-
ture, closer to the mathematical perspective, which consists only of viewing the
triangulation as a set of sets. Of course, when considering optimisations of the
algorithm, where some data is pre-computed and cached in memory, it becomes
useful to have more complex data-structure, but we believe that the correspon-
dence between the naive algorithm and the clever algorithm can be described as
a form of refinement which provides good structuring principles for the whole
study and for the formal proof. In the end, the refinement will probably converge
towards the data-structure advocated by Dufourd and his colleagues. It should

Formal Verification of a Geometry Algorithm 9

be noted that the hypermap data-structure was also used by Gonthier in his
study of the four-color theorem [7], but with a different formal representation.
While Dufourd uses a list of darts and links between these darts, Gonthier has
a more generic way to represent finite sets.

The computation of convex hulls was also studied Meikle and Fleuriot, with
the focus on using Hoare logic to support the reasoning framework [16] and by
Immler in the case of zonotopes, with applications to the automatic proof of
formulas [12].

The algorithm we describe here is essentially the first phase of the one
described in Sects. 3 and 4 of Lawson’s report [14].

In the current state of our development, we benefit from the description of
finite sets and finite groups provided by the mathematical components library
[9,15]. This library was initially used for the four colour theorem [7] and further
developed for the proof of the Feit-Thompson theorem [8].

Because it deals with the relative positions of points on a sphere, it is probable
that the Flyspeck formal development also contains many of the ingredients
necessary to formalize triangulations [10]. For instance, Hales published a proof
of the Jordan Curve theorem [11] that has many similarities with the study of
convex hulls and subdivisions of the plane.

6 Conclusion

The formal proofs described in this abstract have been developed with the Coq
system [2] and the mathematical components library [15] and are available from

https://gitlab.inria.fr/bertot/triangles

This is a preliminary study of the problem of building triangulations for a variety
of purposes. The naive algorithm is unsatisfactory as it does not provide a good
way to find the triangle inside of which a new point may occur. This can be
improved by using Delaunay triangulations, as already studied formally in [6]
and a well-known algorithm of “visibility” walk in the triangulation [4], which
can be proved to have guarantees to terminate only when the triangulation
satisfies the Delaunay criterion. This is the planned future work.

Delaunay triangulations, and their dual Voronöı diagrams can be useful for
practical problems concerning the motion of a device on a plane. It will be
useful to extend this work to three dimensions and of course there already exists
triangulation algorithms in three dimensions. At first sight, the naive algorithm
described here can be used directly for arbitrary dimensions, as long the notion
of separating facet is given a suitable definition. However, it seems that the proof
done for the 2-dimensional case does not carry directly to a higher dimension d:
the boundary facets do not form a loop but a closed hyper-surface (of dimension
d−1), there is not just a pair of purple points but a collection of purple facets of
dimension d−2. Still some properties are preserved: the red facets are contiguous,
and there are probably equivalents to Knuth’s axioms for the higher dimensions.

https://gitlab.inria.fr/bertot/triangles

10 Y. Bertot

References

1. Brun, C., Dufourd, J.-F., Magaud, N.: Designing and proving correct a convex
hull algorithm with hypermaps in Coq. Comput. Geom. 45(8), 436–457 (2012).
https://doi.org/10.1016/j.comgeo.2010.06.006

2. Coq Development Team: The Coq Proof Assistant Reference Manual, Version 8.8
(2018)

3. Dehlinger, C., Dufourd, J.-F.: Formalizing generalized maps in Coq. Theor. Com-
put. Sci. 323(1–3), 351–397 (2004). https://doi.org/10.1016/j.tcs.2004.05.003

4. Devillers, O., Pion, S., Teillaud, M.: Walking in a triangulation. Int. J. Found.
Comput. Sci. 13(2), 181–199 (2002). https://doi.org/10.1142/s0129054102001047

5. Dufourd, J.-F.: An intuitionistic proof of a discrete form of the Jordan Curve the-
orem formalized in Coq with combinatorial hypermaps. J. Autom. Reason. 43(1),
19–51 (2009). https://doi.org/10.1007/s10817-009-9117-x

6. Dufourd, J.-F., Bertot, Y.: Formal study of plane delaunay triangulation. In: Kauf-
mann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 211–226. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5 16

7. Gonthier, G.: The four colour theorem: engineering of a formal proof. In: Kapur,
D. (ed.) ASCM 2007. LNCS (LNAI), vol. 5081, pp. 333–333. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87827-8 28

8. Gonthier, G., et al.: A machine-checked proof of the odd order theorem. In: Blazy,
S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 163–
179. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39634-2 14

9. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J.
Form. Reason. 3(2), 95–152 (2010). https://doi.org/10.6092/issn.1972-5787/1979

10. Hales, T., et al.: A formal proof of the Kepler conjecture. Forum Math. Pi 5, 1–29
(2017). https://doi.org/10.1017/fmp.2017.1

11. Hales, T.C.: The Jordan Curve theorem, formally and informally. Am. Math. Mon.
114(10), 882–894 (2007). http://www.jstor.org/stable/27642361

12. Immler, F.: A verified algorithm for geometric zonotope/hyperplane intersection.
In: Proceedings of 2015 Conference on Certified Programs and Proofs, CPP 2015
(Mumbai, January 2015), pp. 129–136. ACM Press, New York (2015). https://doi.
org/10.1145/2676724.2693164

13. Knuth, D.E. (ed.): Axioms and Hulls. LNCS, vol. 606. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55611-7

14. Lawson, C.L.: Software for c1 surface interpolation. JPL Publication 77–30, NASA
Jet Propulsion Laboratory (1977). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.
nasa.gov/19770025881.pdf

15. Mahboubi, A., Tassi, E.: Mathematical components (2018). https://math-comp.
github.io/mcb

16. Meikle, L.I., Fleuriot, J.D.: Mechanical theorem proving in computational geome-
try. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 1–18.
Springer, Heidelberg (2006). https://doi.org/10.1007/11615798 1

17. Pichardie, D., Bertot, Y.: Formalizing convex hull algorithms. In: Boulton, R.J.,
Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 346–361. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44755-5 24

https://doi.org/10.1016/j.comgeo.2010.06.006
https://doi.org/10.1016/j.tcs.2004.05.003
https://doi.org/10.1142/s0129054102001047
https://doi.org/10.1007/s10817-009-9117-x
https://doi.org/10.1007/978-3-642-14052-5_16
https://doi.org/10.1007/978-3-540-87827-8_28
https://doi.org/10.1007/978-3-642-39634-2_14
https://doi.org/10.6092/issn.1972-5787/1979
https://doi.org/10.1017/fmp.2017.1
http://www.jstor.org/stable/27642361
https://doi.org/10.1145/2676724.2693164
https://doi.org/10.1145/2676724.2693164
https://doi.org/10.1007/3-540-55611-7
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770025881.pdf
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19770025881.pdf
https://math-comp.github.io/mcb
https://math-comp.github.io/mcb
https://doi.org/10.1007/11615798_1
https://doi.org/10.1007/3-540-44755-5_24

LTL Semantic Tableaux and Alternating
ω-automata via Linear Factors

Martin Sulzmann1 and Peter Thiemann2(B)

1 Faculty of Computer Science and Business Information Systems,
Karlsruhe University of Applied Sciences,

Moltkestrasse 30, 76133 Karlsruhe, Germany
martin.sulzmann@hs-karlsruhe.de

2 Faculty of Engineering, University of Freiburg,
Georges-Köhler-Allee 079, 79110 Freiburg, Germany

thiemann@acm.org

Abstract. Linear Temporal Logic (LTL) is a widely used specification
framework for linear time properties of systems. The standard approach
for verifying such properties is by transforming LTL formulae to suit-
able ω-automata and then applying model checking. We revisit Vardi’s
transformation of an LTL formula to an alternating ω-automaton and
Wolper’s LTL tableau method for satisfiability checking. We observe
that both constructions effectively rely on a decomposition of formu-
lae into linear factors. Linear factors have been introduced previously by
Antimirov in the context of regular expressions. We establish the notion
of linear factors for LTL and verify essential properties such as expansion
and finiteness. Our results shed new insights on the connection between
the construction of alternating ω-automata and semantic tableaux.

1 Introduction

Linear Temporal Logic (LTL) is a widely used specification framework for linear
time properties of systems. An LTL formula describes a property of an infinite
trace of a system. Besides the usual logical connectives, LTL supports the tem-
poral operators © ϕ (ϕ holds in the next step of the trace) and ϕUψ (ϕ holds
for all steps in the trace until ψ becomes true). LTL can describe many relevant
safety and liveness properties.

The standard approach to verify a system against an LTL formula is model
checking. To this end, the verifier translates a formula into a suitable ω-automa-
ton, for example, a Büchi automaton or an alternating automaton, and applies
the model checking algorithm to the system and the automaton. This kind of
translation is widely studied because it is the enabling technology for model
checking [19,20,23]. Significant effort is spent on developing translations that
generate (mostly) deterministic automata or that minimize the number of states
in the generated automata [2,7]. Any improvement in these dimensions is valu-
able as it speeds up the model checking algorithm.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 11–34, 2018.
https://doi.org/10.1007/978-3-030-02508-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_2&domain=pdf
http://orcid.org/0000-0002-8165-3403
http://orcid.org/0000-0002-9000-1239

12 M. Sulzmann and P. Thiemann

Our paper presents a new approach to understanding and proving the cor-
rectness of Vardi’s construction of alternating automata (AA) from LTL formu-
lae [18]. Our approach is based on a novel adaptation to LTL of linear factors,
a concept arising in Antimirov’s construction of partial derivatives of regular
expressions [1]. Interestingly, a similar construction yields a new explanation for
Wolper’s construction of semantic tableaux [22] for checking satisfiability of LTL
formulae. Thus, we uncover a deep connection between these constructions.

The paper contains the following contributions.

– Definition of linear factors and partial derivatives for LTL formulae (Sect. 3).
We establish their properties and prove correctness.

– Transformation from LTL to AA based on linear factors. The resulting trans-
formation is essentially the standard LTL to AA transformation [18]; it is
correct by construction of the linear factors (Sect. 4).

– Construction of semantic tableaux to determine satisfiability of LTL formulae
using linear factors (Sect. 5). Our method corresponds closely to Wolper’s
construction and comes with a free correctness proof.

Proofs are collected in the appendix of this paper and in a preprint1.

1.1 Preliminaries

We write ω = {0, 1, 2, . . . } for the set of natural numbers with n ∈ ω and Σω for
the set of infinite words over alphabet Σ with symbols ranged over by x, y ∈ Σ.
We regard a word σ ∈ Σω as a map and write σn for the n-th symbol. We write
σ[n . . .] for the suffix of σ starting at n, that is, the function i �→ σn+i, for i ∈ ω.
We write xσ for prepending symbol x to σ, that is, (xσ)0 = x and (xσ)i+1 = σi,
for all i ∈ ω. The notation P(X) denotes the power set of X.

2 Linear Temporal Logic

Linear temporal logic (LTL) [13] enhances propositional logic with the temporal
operators © ϕ (ϕ will be true in the next step) and ϕUψ (ϕ holds until ψ
becomes true). LTL formulae ϕ,ψ are defined accordingly where we draw atomic
propositions p, q from a finite set AP.

Definition 1 (Syntax of LTL)

ϕ,ψ ::= p | tt | ¬ϕ | ϕ ∧ ψ | ©ϕ | ϕUψ

We apply standard precedence rules to parse a formula (¬, © ϕ, and other
prefix operators bind strongest; then ϕUψ and the upcoming ϕRψ operator;
then conjunction and finally disjunction with the weakest binding strength; as
the latter are associative, we do not group their operands explicitly). We use
parentheses to group subformulae explicitly.
1 https://arxiv.org/abs/1710.06678.

https://arxiv.org/abs/1710.06678

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 13

A model of an LTL formula is an infinite word σ ∈ Σω where Σ = P(AP),
that is, from now on we identify a symbol with the set of true atomic propositions.

Definition 2 (Semantics of LTL). The formula ϕ holds on word σ ∈ Σω if
the judgment σ |= ϕ is provable.

σ |= p ⇔ p ∈ σ0

σ |= tt

σ |= ¬ϕ ⇔ σ �|= ϕ

σ |= ϕ ∧ ψ ⇔ σ |= ϕ and σ |= ψ

σ |= © ϕ ⇔ σ[1 . . .] |= ϕ

σ |= ϕUψ ⇔ ∃n ∈ ω, (∀j ∈ ω, j < n ⇒ σ[j . . .] |= ϕ) and σ[n . . .] |= ψ

We say ϕ is satisfiable if there exists σ ∈ Σω such that σ |= ϕ.

Definition 3 (Standard Derived LTL Operators)

ff = ¬tt

ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) disjunction
ϕRψ = ¬(¬ϕU¬ψ) release

♦ψ = ttUψ eventually/finally
�ψ = ff Rψ always/globally

For many purposes, it is advantageous to restrict LTL formulae to positive
normal form (PNF). In PNF, negation only occurs adjacent to atomic proposi-
tions. Using the derived operators, all negations can be pushed inside by using
the de Morgan laws. Thanks to the release operator, this transformation runs in
linear time and space. The resulting grammar of formulae in PNF is as follows.

Definition 4 (Positive Normal Form)

ϕ,ψ :: = p | ¬p | tt | ff | ϕ ∧ ψ | ϕ ∨ ψ | ©ϕ | ϕUψ | ϕRψ

From now on, we assume that all LTL formulae are in PNF.
We make use of several standard equivalences in LTL.

Theorem 1 (Standard results about LTL)

1. © (ϕ ∧ ψ) ⇔ (© ϕ) ∧ (© ψ)
2. © (ϕ ∨ ψ) ⇔ (© ϕ) ∨ (© ψ)
3. ϕUψ ⇔ ψ ∨ (ϕ ∧ © (ϕUψ))
4. ϕRψ ⇔ ψ ∧ (ϕ ∨ © (ϕRψ)).

We also make use of the direct definition of a model for the release operation.

Lemma 1. σ |= ϕRψ is equivalent to one of the following:
∀n ∈ ω, σ[n . . .] |= ψ or ∃j ∈ ω, ((j < n) ∧ σ[j . . .] |= ϕ)
∀n ∈ ω, σ[n . . .] |= ψ or ∃j ∈ ω, σ[j . . .] |= ϕ and ∀i ∈ ω, i ≤ j ⇒ σ[i . . .] |= ψ.

14 M. Sulzmann and P. Thiemann

3 Linear Factors and Partial Derivatives

Antimirov [1] defines a linear factor of a regular expression as a pair of an
input symbol and a next regular expression to match the rest of the input. The
analogue for LTL is a pair 〈μ, ϕ〉 where μ is a propositional formula in monomial
form (no modalities, see Definition 5) that models the set of first symbols whereas
ϕ is a formal conjunction of temporal LTL formulae for the rest of the input.
Informally, 〈μ, ϕ〉 corresponds to μ ∧ ©ϕ. A formula always gives rise to a set
of linear factors, which is interpreted as their disjunction.

Definition 5 (Temporal Formulae, Literals and Monomials). A tempo-
ral formula does not start with a conjunction or a disjunction.

A literal � of AP is an element of AP ∪ ¬AP. Negation of negative literals
is defined by ¬(¬p) = p.

A monomial μ, ν is either ff or a set of literals of AP such that � ∈ μ implies
¬� /∈ μ. The formula associated with a monomial μ is given by

Θ(μ) =

{
ff μ = ff∧

μ μ is a set of literals.

In particular, if μ = ∅, then Θ(μ) = tt. Hence, we may write tt for the empty-
set monomial. As a monomial is represented either by ff or by a set of non-
contradictory literals, its representation is unique.

We define a smart conjunction operator on monomials that retains the mono-
mial structure.

Definition 6. Smart conjunction on monomials is defined as their union unless
their conjunction Θ(μ) ∧ Θ(ν) is equivalent to ff .

μ � ν =

⎧⎪⎨
⎪⎩

ff μ = ff ∨ ν = ff
ff ∃� ∈ μ ∪ ν. ¬� ∈ μ ∪ ν

μ ∪ ν otherwise.

Smart conjunction of monomials is correct in the sense that it produces
results equivalent to the conjunction of the associated formulae.

Lemma 2. Θ(μ) ∧ Θ(ν) ⇔ Θ(μ � ν).

We define an operator T that transforms propositional formulae consisting
of literals and temporal subformulae into sets of conjunctions. We assume that
conjunction ∧ simplifies formulae to normal form using associativity, commuta-
tivity, and idempotence. The normal form relies on a total ordering of formulae
derived from an (arbitrary, fixed) total ordering on atomic propositions.

Definition 7 (Set-Based Conjunctive Normal Form)

T (ϕ ∧ ψ) = {ϕ′ ∧ ψ′ | ϕ′ ∈ T (ϕ), ψ′ ∈ T (ψ)}
T (ϕ ∨ ψ) = T (ϕ) ∪ T (ψ)

T (ϕ) = {ϕ} ifϕ is a temporal formula

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 15

Lemma 3.
∨

T (ϕ) ⇔ ϕ.

Definition 8 (Linear Factors). The set of linear factors lf(ϕ) of an LTL
formula in PNF is defined as a set of pairs of a monomial and a PNF formula
in conjunctive normal form.

lf(�) = {〈{�}, tt〉}
lf(tt) = {〈tt, tt〉}
lf(ff) = {}
lf(ϕ ∨ ψ) = lf(ϕ) ∪ lf(ψ)
lf(ϕ ∧ ψ) = {〈μ′, ϕ′ ∧ ψ′〉 | 〈μ, ϕ′〉 ∈ lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ), μ′ = μ � ν �= ff}
lf(© ϕ) = {〈tt, ϕ′〉 | ϕ′ ∈ T (ϕ)}
lf(ϕUψ) = lf(ψ) ∪ {〈μ, ϕ′ ∧ ϕUψ〉 | 〈μ, ϕ′〉 ∈ lf(ϕ)}
lf(ϕRψ) = {〈μ′, ϕ′ ∧ ψ′〉 | 〈μ, ϕ′〉 ∈ lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ), μ′ = μ � ν �= ff}

∪ {〈ν, ψ′ ∧ ϕRψ〉 | 〈ν, ψ′〉 ∈ lf(ψ)}

By construction, the first component of a linear factor is never ff . Such pairs are
eliminated from the beginning by the tests for μ � ν �= ff .

We can obtain shortcuts for the derived operators “eventually” and “always”.

Lemma 4. lf(♦ψ) = lf(ψ) ∪ {〈tt,♦ψ〉}
lf(�ψ) = {〈ν, ψ′ ∧ �ψ〉 | 〈ν, ψ′〉 ∈ lf(ψ)}

Example 1. Consider the formula �♦ p.

lf(♦ p) = lf(p) ∪ {〈tt,♦ p〉}
= {〈p, tt〉, 〈tt,♦ p〉}

lf(�♦ p) = {〈μ, ϕ′ ∧ �♦ p〉 | 〈μ, ϕ′〉 ∈ lf(♦ p)}
= {〈μ, ϕ′ ∧ �♦ p〉 | 〈μ, ϕ′〉 ∈ {〈p, tt〉, 〈tt,♦ p〉}}
= {〈p,�♦ p〉, 〈tt,♦ p ∧ �♦ p〉}

Definition 9 (Linear Forms). A formula ϕ =
∨

i∈I bi ∧©ϕi is in linear form
if each bi is a conjunction of literals and each ϕi is a temporal formula.

The formula associated to a set of linear factors is in linear form as given by
the following mapping.

Θ({〈μi, ϕi〉 | i ∈ I}) =
∨
i∈I

(Θ(μi) ∧ ©ϕi)

Each PNF formula can be represented in linear form by applying the trans-
formation to linear factors. The expansion theorem states the correctness of this
transformation.

Theorem 2 (Expansion). For all ϕ, Θ(lf(ϕ)) ⇔ ϕ.

The partial derivative of a formula ϕ with respect to a symbol x ∈ Σ is a
set of formulae Ψ such that xσ |= ϕ if and only if σ |=

∨
Ψ . Partial derivatives

only need to be defined for formal conjunctions of temporal formulae as we can
apply the T operator first.

16 M. Sulzmann and P. Thiemann

Definition 10 (Partial Derivatives). The partial derivative of a formal con-
junction of temporal formulae with respect to a symbol x ∈ Σ is defined by

∂x(ϕ) = {ϕ′ | 〈μ, ϕ′〉 ∈ lf(ϕ), x |= μ} if ϕ is a temporal formula
∂x(tt) = {tt}

∂x(ϕ ∧ ψ) = {ϕ′ ∧ ψ′ | ϕ′ ∈ ∂x(ϕ), ψ′ ∈ ∂x(ψ)}.

Example 2. Continuing the example of �♦ p, we find for x ∈ Σ:

∂x(�♦ p) = {ϕ′ | 〈μ, ϕ′〉 ∈ lf(�♦ p), x |= μ}
= {ϕ′ | 〈μ, ϕ′〉 ∈ {〈p,�♦ p〉, 〈tt,♦ p ∧ �♦ p〉}, x |= μ}

=

{
{�♦ p,♦ p ∧ �♦ p} p ∈ x

{♦ p ∧ �♦ p} p /∈ x

As it is sufficient to define the derivative for temporal formulae, it only remains
to explore the definition of ∂x(♦ p).

∂x(♦ p) = {ϕ′ | 〈μ, ϕ′〉 ∈ lf(♦ p), x |= μ}
= {ϕ′ | 〈μ, ϕ′〉 ∈ {〈p, tt〉, 〈tt,♦ p〉}, x |= μ}

=

{
{tt,♦ p} p ∈ x

{♦ p} p /∈ x

A descendant of a formula is either the formula itself or an element of the
partial derivative of a descendant by some symbol. As in the regular expression
case, the set of descendants of a fixed LTL formula is finite. We refer to the
online version for details.

4 Alternating ω-Automata

We revisit Vardi’s construction [17] of alternating ω-automata from LTL formu-
las. The interesting observation is that the definition of the transition function
for formulae in PNF corresponds to partial derivatives.

The transition function of an alternating automaton yields a set of sets of
states, which we understand as a disjunction of conjunctions of states. The dis-
junction models the nondeterministic alternatives that the automaton can take
in a step, whereas the conjunction models states that need to succeed together.
Many presentations use positive Boolean formulae at this point, our presentation
equivalently uses the set of minimal models of such formulae.

Definition 11. A tuple A = (Q,Σ, δ, α0, F) is an alternating ω-automaton
(AA) [10] if Q is a finite set of states, Σ an alphabet, α0 ⊆ P(Q) a set of sets of
states, δ : Q×Σ → P(P(Q)) a transition function, and F ⊆ Q a set of accepting
states.

A run of A on a word σ is a digraph G = (V,E) with nodes V ⊆ Q × ω and
edges E ⊆

⋃
i∈ω Vi × Vi+1 where Vi = Q × {i}, for all i.

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 17

– {q ∈ Q | (q, 0) ∈ V } ∈ α0.
– For all i ∈ ω:

• If (q′, i + 1) ∈ Vi+1, then ((q, i), (q′, i + 1)) ∈ E, for some q ∈ Q.
• If (q, i) ∈ Vi, then {q′ ∈ Q | ((q, i), (q′, i + 1)) ∈ E} ∈ δ(q, σi).

A run G on σ is accepting if every infinite path in G visits a state in F
infinitely often (Büchi acceptance). Define the language of A as

L(A) = {σ | there exists an accepting run of A on σ}.

Definition 12 ([11,17]). The alternating ω-automaton A(ϕ) = (Q,Σ, δ,
α0, F) resulting from ϕ is defined by: the set of states Q = ∂+(ϕ), the set of ini-
tial states α0 = T (ϕ), the set of accepting states F = {tt}∪{ϕRψ | ϕRψ ∈ Q},
and the transition function δ by induction on the formula argument:

– δ(tt, x) = {{tt}}
– δ(ff , x) = {}
– δ(�, x) = {{tt}}, if x |= �
– δ(�, x) = {}, if x �|= �
– δ(ϕ ∨ ψ, x) = δ(ϕ, x) ∪ δ(ψ, x)
– δ(ϕ ∧ ψ, x) = {q1 ∪ q2 | q1 ∈ δ(ϕ, x), q2 ∈ δ(ψ, x)}
– δ(© ϕ, x) = T (ϕ)
– δ(ϕUψ, x) = δ(ψ, x) ∪ {q ∪ {ϕUψ} | q ∈ δ(ϕ, x)}
– δ(ϕRψ, x) = {q1∪q2 | q1 ∈ δ(ϕ, x), q2 ∈ δ(ψ, x)}∪{q∪{ϕRψ} | q ∈ δ(ψ, x)}

We deviate slightly from Vardi’s original definition by representing disjunction
as a set of states. For example, in his definition δ(ff , x) = ff , which is equivalent
to the empty disjunction. Another difference is that we only consider formulae
in PNF whereas Vardi covers LTL in general. Hence, Vardi’s formulation treats
negation by extending the set of states with negated subformulae. For example,
we find δ(¬ϕ, x) = δ(ϕ, x) where Φ calculates the dual of a set Φ of formulae
obtained by application of the de Morgan laws. The case for negation can be
dropped because we assume that formulae are in PNF. In exchange, we need to
state the cases for ϕ ∨ ψ and for ϕRψ which can be derived easily from Vardi’s
formulation by exploiting standard LTL equivalences.

The accepting states in Vardi’s construction are all subformulae of the form
¬(ϕUψ), but ¬(ϕUψ) = (¬ϕ)R (¬ψ), which matches our definition and others
in the literature [6].

Furthermore, our construction adds tt to the set of accepting states, which
is not present in Vardi’s paper. It turns out that tt can be eliminated from the
accepting states if we set δ(tt, x) = {}. This change transforms an infinite path
with infinitely many tt states into a finite path that terminates when truth is
established. Thus, it does not affect acceptance of the AA.

The same definition is given by Pelánek and Strejček [12] who note that the
resulting automaton is in fact a 1-weak alternating automaton. For this class of
automata there is a translation back to LTL.

We observe that the definition of the transition function in Definition 12
corresponds to the direct definition of partial derivatives in Definition 18.

18 M. Sulzmann and P. Thiemann

Lemma 5. Let A(ϕ) be the alternating ω-automaton for a formula ϕ according
to Definition 12. For each ψ ∈ Q and x ∈ Σ, we have that δ(ψ, x) = pdx(ψ).

Finally, we provide an independent correctness result for the translation from
LTL to AA that relies on the correctness of our construction of linear factors.

Theorem 3. Let ϕ be an LTL formula. Consider the alternating automaton
A(ϕ) given by

– Q = ∂+(ϕ),
– δ(ψ, x) = ∂x(ψ), for all ψ ∈ Q and x ∈ Σ,
– α0 = T (ϕ),
– F = {tt} ∪ {ϕRψ | ϕRψ ∈ Q}.

Then, L(ϕ) = L(A(ϕ)) using the Büchi acceptance condition.

5 Semantic Tableaux

We revisit Wolper’s [22] method of semantic tableaux to check satisfiability of
an LTL formula. A tableau is represented as a directed graph built where nodes
denote sets of formulae. A tableau for ϕ starts with the initial node {ϕ}. New
nodes are generated by decomposition of formulae in existing nodes. A post-
processing phase eliminates unsatisfiable nodes. The formula ϕ is satisfiable if
there is a satisfiable path in the tableau. Our contribution is an explanation of
decomposition in terms of linear factors, which obtains some of the elimination
(post-processing) steps for free.

We largely follow Wolper’s notation starting with PNF formulae. In the con-
struction of a tableau, a formula ϕ may be marked, written as ϕ∗. A formula is
elementary if it is a literal or its outermost connective is © . A node is called
a state if the node consists solely of elementary or marked formulae. A node is
called a pre-state if it is the initial node or the immediate child of a state. We
let S and Si range over sets of formulae.

Definition 13 (Wolper’s Tableau Decision Method [22]). Tableau con-
struction for ϕ starts with node S = {ϕ}. New nodes are created as follows.

– Decomposition rules: For each non-elementary unmarked ϕ ∈ S with decom-
position rule ϕ → {S1, . . . , Sk} as defined below, create k child nodes where
the ith child is of the form (S − {ϕ}) ∪ Si ∪ {ϕ∗}.

(D1) ϕ ∨ ψ → {{ϕ}, {ψ}}
(D2) ϕ ∧ ψ → {{ϕ,ψ}}
(D3) ♦ϕ → {{ϕ}, {©♦ϕ}}
(D4) �ϕ → {{ϕ,©�ϕ}}
(D5) ϕUψ → {{ψ}, {ϕ,© (ϕUψ)}}
(D6) ϕRψ → {{ψ,ϕ ∨ © (ϕRψ)}}

– Step rule: For each node S with only elementary or marked formulae, create
a child node {ϕ | ©ϕ ∈ S}. Just create an edge if the node already exists.

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 19

Elimination of (unsatisfiable) nodes proceeds as follows. A node S is elimi-
nated if one of the conditions (E1)–(E3) applies.

(E1) The node contains p and its negation.
(E2) All successors of S have been eliminated.
(E3) The node S is a pre-state and contains an (unsatisfiable) formula of the

form ♦ψ or ϕUψ such that there is no path in the tableau leading from
pre-state S to a node containing the formula ψ.

Theorem 4 (Wolper [22]). An LTL formula ϕ is satisfiable iff the initial node
generated by the tableau decision procedure is not eliminated.

We argue that marked formulae and intermediate nodes are not essential
in Wolper’s tableau construction. Marked formulae can simply be dropped and
intermediate nodes can be removed by exhaustive application of decomposition.
This optimization reduces the size of the tableau and establishes a direct con-
nection between states/pre-states and linear factors/partial derivatives.

Definition 14 (Decomposition and Elimination via Rewriting). We
define a rewrite relation among sets of sets of nodes ranged over by N .

(Dec)
“ϕ → {S1, . . . ,Sn}” ∈ {D1, . . . ,D6}

{S ∪ {ϕ}} ∪ N � {S ∪ S1} ∪ · · · ∪ {S ∪ Sn} ∪ N

(Elim)
N ′ = {S | S ∈ N ∧ (∀� ∈ S) ¬� /∈ S}

N � N ′

The premise of the (Dec) rule corresponds to one of the decomposition rules
(D1)–(D6). The (Elim) rule corresponds to the elimination rule (E1) applied
globally. We write N1 �∗ Nk for N1 � · · · � Nk where no further rewritings
are possible on Nk. We write ϕ �∗ N as a shorthand for {{ϕ}} �∗ N .

As the construction does not mark formulae, we call S a state node if S
only consists of elementary formulae. By construction, for any set of formulae S
we find that {S} �∗ N for some N which only consists of state nodes. In our
optimized Wolper-style tableau construction, each S′ ∈ N is a ‘direct’ child of
S where intermediate nodes are skipped. Rule (Elim) integrates the elimination
rule (E1) into the construction of new nodes.

The step rule is analogous to Wolper’s, except that we represent a pre-state
node with a single formula. That is, from state node S we generate the child
pre-state node {

∧
© ψ∈S ψ} whereas Wolper generates {ψ | ©ψ ∈ S}.

Definition 15 (Optimized Tableau Construction Method). We consider
tableau construction for ϕ. Let Q denote the set of pre-state formulae generated
so far and Qj ⊆ Q the set of nodes considered in the j-th construction step.

Initially, Q = Q0 = {ϕ}. Then we perform the following steps for j = 1, . . .

Decomposition: For a pre-state node {ψ} ∈ Qj, compute ψ �∗ {S1, . . . , Sn}.
Make each state node Si a child of node {ψ}.

20 M. Sulzmann and P. Thiemann

Step: For each state node Si, we build ϕi =
∧

© ϕ∈Si
ϕ where pre-state node

{ϕi} is a child of Si. We set Qj+1 = {ϕ1, . . . , ϕn} − Q and then update the
set of pre-state formulae generated so far by setting Q = Q ∪ {ϕ1, . . . , ϕn}.

Construction continues until no new children are created.

Theorem 5 (Correctness of Optimized Tableau Construction). For all
ϕ, ϕ is satisfiable iff the initial node generated by the optimized Wolper-style
tableau decision procedure is not eliminated by conditions (E2) and (E3).

It turns out that states in the optimized variant of Wolper’s tableau method
correspond to linear factors and pre-states correspond to partial derivatives.

Let S = {�1, . . . , �n,© ϕ1, . . . ,© ϕm} be a (state) node. We define [[S]] =
〈�1�. . .��n, ϕ1∧. . .∧ϕm〉 using tt for empty conjunctions. Let N = {S1, . . . , Sn}
where each Si is a state. We define [[N]] = {[[S1]], . . . , [[Sn]]}.

Lemma 6. For each ϕ �= ff , if ϕ �∗ N , then lf(ϕ) = [[N]].

Case ff is excluded because LF (ff) = {}.
Hence, any state node generated during the optimized Wolper tableau con-

struction corresponds to a linear factor. An immediate consequence is that each
pre-state corresponds to a partial derivative. Hence, we can reformulate the opti-
mized Wolper tableau construction as follows.

Theorem 6 (Tableau Construction via Linear Factors). The optimized
variant of Wolper’s tableau construction for ϕ can be obtained as follows.

1. Each formula ψ �= tt in the set of all partial derivative descendants pdΣ∗(ϕ)
corresponds to a pre-state.

2. For each ψ ∈ pdΣ∗(ϕ) where ψ �= tt, each 〈ν, ψ′〉 ∈ lf(ψ) is state where
〈ν, ψ′〉 is a child of ψ, and if ψ′ �= tt, ψ′ is a child of 〈ν, ψ′〉.

We exclude tt because Wolper’s tableau construction stops once we reach tt.
The reformulation of Wolper’s tableau construction in terms of linear factors

and partial derivatives establishes a close connection to Vardi’s construction of
an alternating ω-automaton. Each path in the tableau labeled by LF and PD
corresponds to a transition step in the automaton. The same applies to transi-
tions with one exception. In Wolper’s tableau, the state 〈�, tt〉 is considered final
whereas in Vardi’s automaton has transitions δ(�, tt) = {tt}. From Theorems 3
and 6 we obtain the following result.

Corollary 1. Vardi’s alternating ω-automaton derived from an LTL formula is
isomorphic to Wolper’s optimized LTL tableau construction assuming we ignore
transitions δ(�, tt) = {tt}.

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 21

6 Related Work and Conclusion

Numerous works study the translation of LTL to ω-automata [4,9,11,17,18] and
semantic tableaux [14,15,22]. The fact that there is a deep connection between
both constructions appears to be folklore knowledge. For example [9]: “The cen-
tral part of the automaton construction algorithm is a tableau-like procedure.”
Couvreur [4] mentions explicitly that “[his automaton construction] is also based
on tableau procedures [21,22].” To the best of our knowledge, we are the first to
establish a concise connection between the two constructions by means of linear
factors and partial derivatives, as shown in Corollary 1. Both concepts have been
studied previously in the standard regular expression setting [1] and also in the
context of ω-regular languages [16]. We show that both concepts are applicable
in the LTL setting and establish their essential properties.

Like some earlier works [4,9], our algorithm can operate on the fly and thus
avoid the construction of the full automaton if the algorithm can provide an
answer earlier. Further efficiency gains (in checking satisfiability) can be achieved
by using Tarjan’s algorithm [8] and this improvement is also compatible with
our algorithm.

Some current work is dedicated to the direct construction of deterministic
ω-automata from LTL formulae (e.g., [5]). Interestingly, that work relies on an
“after function” af which is analogous to partial derivatives. Hence, it may be
promising to further pursue our approach towards constructing deterministic
automata.

A Properties of Partial Derivatives

Our finiteness proof follows the method suggested by Broda et al. [3]. We look
at the set of iterated partial derivatives of a formula ϕ, which turns out to be
just the set of temporal subformulae of ϕ. This set is finite and closed under the
partial derivative operation. Thus, finiteness follows.

Definition 16 (Iterated Partial Derivatives)

∂+(�) = {�}
∂+(tt) = {tt}
∂+(ff) = {ff}
∂+(ϕ ∨ ψ) = ∂+(ϕ) ∪ ∂+(ψ)
∂+(ϕ ∧ ψ) = ∂+(ϕ) ∪ ∂+(ψ)
∂+(© ϕ) = {©ϕ} ∪ ∂+(ϕ)
∂+(♦ϕ) = {♦ϕ} ∪ ∂+(ϕ)
∂+(�ϕ) = {�ϕ} ∪ ∂+(ϕ)
∂+(ϕUψ) = {ϕUψ} ∪ ∂+(ψ) ∪ ∂+(ϕ)
∂+(ϕRψ) = {ϕRψ} ∪ ∂+(ψ) ∪ ∂+(ϕ)

It is trivial to see that the set ∂+(ϕ) is finite because it is a subset of the set
of subformulae of ϕ.

22 M. Sulzmann and P. Thiemann

Lemma 7 (Finiteness). For all ϕ, ∂+(ϕ) is finite.

The iterated partial derivative only consider subformulae whereas the partial
derivative elides disjunctions but returns a set of formal conjunctions. To connect
both the following definition is required.

Definition 17 (Subsets of Formal Conjunctions). For an ordered set X =
{x1, x2, . . . }, we define the set of all formal conjunctions of X as follows.

S(X) = {xi1 ∧ . . . ∧ xin | n ≥ 0, i1 < i2 < · · · < in}

We regard a subset of S(X) as a positive Boolean formula over X in conjunctive
normal form. We write tt for the empty conjunction.

Clearly, if a set of formulae Φ is finite, then so is S(Φ), where we assume an
arbitrary, but fixed total ordering on formulae.

The set of temporal subformulae of a given formula ϕ is also a formal con-
junction of subformulae.

Lemma 8. For all ϕ, T (ϕ) ⊆ S(∂+(ϕ)).

Lemma 9 (Closedness under derivation)

1. For all x ∈ Σ, ∂x(ϕ) ⊆ S(∂+(ϕ)).
2. For all ϕ′ ∈ ∂+(ϕ) and x ∈ Σ, ∂x(ϕ′) ⊆ S(∂+(ϕ)).

From Lemmas 8 and 9 it follows that the set of descendants of a fixed LTL
formula ϕ is finite. In fact, we can show that the cardinality of this set is expo-
nential in the size of ϕ. We will state this result for a more “direct” definition of
partial derivatives which does not require having to compute linear factors first.

Definition 18 (Direct Partial Derivatives). Let x ∈ Σ. Then, pdx(·) maps
LTL formulae to sets of LTL formulae and is defined as follows.

pdx(tt) = {tt}
pdx(ff) = {}
pdx(�) =

{
{tt} x |= �
{} otherwise

pdx(ϕ ∨ ψ) = pdx(ϕ) ∪ pdx(ψ)
pdx(ϕ ∧ ψ) = {ϕ′ ∧ ψ′ | ϕ′ ∈ pdx(ϕ), ψ′ ∈ pdx(ψ)}
pdx(© ϕ) = T (ϕ)
pdx(ϕUψ) = pdx(ψ) ∪ {ϕ′ ∧ ϕUψ | ϕ′ ∈ pdx(ϕ)}
pdx(ϕRψ) = {ϕ′ ∧ ψ′ | ϕ′ ∈ pdx(ϕ), ψ′ ∈ pdx(ψ)}

∪ {ψ′ ∧ ϕRψ | ψ′ ∈ pdx(ψ)}
pdx(♦ϕ) = pdx(ϕ) ∪ {♦ϕ}
pdx(�ϕ) = {ϕ′ ∧ �ϕ | ϕ′ ∈ pdx(ϕ)}

where conjunctions of temporal formulae are normalized as usual.
For w ∈ Σ∗, we define pdε(ϕ) = {ϕ} and pdxw(ϕ) =

⋃
ϕ′∈pdx(ϕ) pdw(ϕ′).

For L ⊆ Σ∗, we define pdL(ϕ) =
⋃

w∈L pdw(ϕ). We refer to the special case
pdΣ∗(ϕ) as the set of partial derivative descendants of ϕ.

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 23

Example 3. Consider the formula �♦ p. We calculate

pdp(♦ p) = {tt,♦ p}
pdp(�♦ p) = {tt ∧ �♦ p,♦ p ∧ �♦ p}

(normalize)
= {�♦ p,♦ p ∧ �♦ p}

pdp(♦ p ∧ �♦ p)
= {tt ∧ tt ∧ �♦ p,♦ p ∧ �♦ p, tt ∧ ♦ p ∧ �♦ p,♦ p ∧ ♦ p ∧ �♦ p}

(normalize)
= {�♦ p,♦ p ∧ �♦ p}

Lemma 10. For all ϕ and x ∈ Σ, ∂x(ϕ) = pdx(ϕ).

The next result follows from Theorem 2 and Lemma 10.

Lemma 11. For all ϕ, ϕ ⇔
∨

x∈Σ,ϕ′∈pdx(ϕ) x ∧ ©ϕ′.

Definition 19. The size of a temporal formula ϕ is the sum of the number of
literals, temporal and Boolean operators in ϕ.

If ϕ has size n, the number of subformulae in ϕ is bounded by O(n).

Lemma 12. For all ϕ, the cardinality of pdΣ∗(ϕ) is bounded by O(2n) where n
is the size of ϕ.

Fig. 1. Tableau before elimination: � p ∧ ♦ ¬p

24 M. Sulzmann and P. Thiemann

B Tableau Examples

Example 4. Consider � p ∧ ♦¬p. Figure 1 shows the tableau generated before
elimination. In case of decomposition, edges are annotated with the number of
the respective decomposition rule. For example, from the initial node S0 we reach
node S1 by decomposition via (D2). Node S4 consists of only elementary and
marked nodes and therefore we apply the step rule to reach node S5. The same
applies to node S3. For brevity, we ignore its child node because this node is
obviously unsatisfiable (E1). The same applies to node S7.

We consider elimination of nodes. Nodes S3, S4, S7 and S8 are states. There-
fore, S0 and S5 are pre-states. Nodes S3 and S7 can be immediately eliminated
due to E1. Node S5 contains ♦¬p. This formula is not satisfiable because there
is not path from S5 along which we reach a node which contains ¬p. Hence, we
eliminate S5 due to E3. All other nodes are eliminated due to E3. Hence, we
conclude that the formula � p ∧ ♦¬p is unsatisfiable.

Example 5. Consider � p ∧ ♦¬p. Our variant of Wolper’s tableau construction
method yields the following.

S0 = {� p ∧ ♦¬p}

decomp

��
S′
4 = {p,©� p,©♦¬p}

step

��

Node S′
4 corresponds to node S4 in Fig. 1. Nodes S1, S2, and S3 from the original

construction do not arise in our variant because we skip intermediate nodes
and eliminate aggressively during construction whereas Wolper’s construction
method gives rise S5. We avoid such intermediate nodes and immediately link
S′
4 to the initial node S0.

Example 6. Consider ¬p ∧ ©¬p ∧ q U p where

lf(¬p) = {〈¬p, tt〉}
lf(tt) = {〈tt, tt〉}
lf(©¬p) = {〈tt,¬p〉}
lf(q U p) = {〈p, tt〉, 〈q, q U p〉}
lf(¬p ∧ q U p) = {〈¬p ∧ q, q U p〉}
lf(¬p ∧ ©¬p ∧ q U p) = {〈¬p ∧ q,¬p ∧ q U p〉}

We carry out the tableau construction using linear factors notation where we
use LF to label pre-state (derivatives) to state (linear factor) relations and PD

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 25

to label state to pre-state relations.

¬p ∧ ©¬p ∧ q U p

LF

��
〈¬p ∧ q,¬p ∧ q U p〉

PD

��
¬p ∧ q U p

LF

��
〈¬p ∧ q, q U p〉

PD

��
q U p

LF�����
���

���
���

�

LF

��
〈p, tt〉 〈q, q U p〉

C Proofs

C.1 Proof of Theorem 2

Proof. Show by induction on ϕ: for all σ ∈ Σω, σ |= ϕ iff σ |= Θ(lf(ϕ)).
Case p.

Θ(lf(p)) = Θ({〈p, tt〉}) = p ∧ © tt ⇔ p

Case ¬p. Analogous.
Case tt.

Θ(lf(tt)) = Θ({〈tt, tt〉}) = tt ∧ © tt ⇔ tt

Case ff .

Θ(lf(ff)) = Θ({}) = ff

Case ϕ ∨ ψ.

Θ(lf(ϕ ∨ ψ)) = Θ(lf(ϕ) ∪ lf(ψ)) = Θ(lf(ϕ)) ∨ Θ(lf(ψ))

Now

σ |= ϕ ∨ ψ ⇔ (σ |= ϕ) ∨ (σ |= ψ)
by IH
⇔ (σ |= Θ(lf(ϕ))) ∨ (σ |= Θ(lf(ψ)))
⇔ (σ |= Θ(lf(ϕ)) ∨ Θ(lf(ψ)))

26 M. Sulzmann and P. Thiemann

Case ϕ ∧ ψ.

Θ(lf(ϕ ∧ ψ)) = Θ({〈μ � ν, ϕ′ ∧ ψ′〉 | 〈μ, ϕ′〉 ∈ lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ)})

=
∨

{(μ � ν) ∧ © (ϕ′ ∧ ψ′) | 〈μ, ϕ′〉 ∈ lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ)}

Now

σ |= ϕ ∧ ψ

⇔ (σ |= ϕ) ∧ (σ |= ψ)
by IH
⇔ (σ |= Θ(lf(ϕ))) ∧ (σ |= Θ(lf(ψ)))

⇔ (σ |=
∨

{μ ∧ ©ϕ′ | 〈μ, ϕ′〉 ∈ lf(ϕ)})

∧ (σ |=
∨

{ν ∧ ©ψ′ | 〈ν, ψ′〉 ∈ lf(ψ)})

⇔ σ |= (
∨

{μ ∧ ©ϕ′ | 〈μ, ϕ′〉 ∈ lf(ϕ)}) ∧ (
∨

{ν ∧ ©ψ′ | 〈ν, ψ′〉 ∈ lf(ψ)})

⇔ σ |= (
∨

{μ ∧ ©ϕ′ ∧ ν ∧ ©ψ′ | 〈μ, ϕ′〉 ∈ lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ)})

by Lemma 2 μ ∧ ν ⇔ Θ(μ � ν)

⇔ σ |= (
∨

{(μ � ν) ∧ ©ϕ′ ∧ ©ψ′ | 〈μ, ϕ′〉 ∈ lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ)})

⇔ σ |= (
∨

{(μ � ν) ∧ © (ϕ′ ∧ ψ′) | 〈μ, ϕ′〉 ∈ lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ)})

Case © ϕ. (using Lemma 3)

Θ(lf(© ϕ)) = Θ({〈tt, ϕ′〉 | ϕ′ ∈ T (ϕ)})

=
∨

{tt ∧ ©ϕ′ | ϕ′ ∈ T (ϕ)}

= © (
∨

T (ϕ))

⇔ © ϕ

Case ϕUψ.

Θ(ϕUψ) = Θ(lf(ψ) ∪ {〈μ, ϕ′ ∧ ϕUψ〉 | 〈μ, ϕ′〉 ∈ lf(ϕ)})

= Θ(lf(ψ)) ∨
∨

{μ ∧ © (ϕ′ ∧ ϕUψ) | 〈μ, ϕ′〉 ∈ lf(ϕ)}

⇔ Θ(lf(ψ)) ∨
∨

{μ ∧ ©ϕ′ | 〈μ, ϕ′〉 ∈ lf(ϕ)} ∧ © (ϕUψ)

⇔ Θ(lf(ψ)) ∨ (Θ(lf(ϕ)) ∧ © (ϕUψ))
by IH
⇔ ψ ∨ (ϕ ∧ © (ϕUψ))
⇔ ϕUψ

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 27

Case ϕRψ.

Θ(lf(ϕRψ)) = Θ(
{〈μ � ν, ϕ′ ∧ ψ′〉 | 〈μ, ϕ′〉 ∈ lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ)}
∪{〈ν, ψ′ ∧ ϕRψ〉 | 〈ν, ψ′〉 ∈ lf(ψ)})

=
∨

〈μ,ϕ′〉∈lf(ϕ),〈ν,ψ′〉∈lf(ψ)(Θ(μ � ν) ∧ © (ϕ′ ∧ ψ′))
∨

∨
〈ν,ψ′〉∈lf(ψ)(Θ(ν) ∧ © (ψ′ ∧ ϕRψ))

by Lemma 2 and the fact that © (ϕ ∧ ψ) ⇔ © ϕ ∧ ©ψ

⇔
∨

〈μ,ϕ′〉∈lf(ϕ),〈ν,ψ′〉∈lf(ψ)(Θ(μ) ∧ Θ(ν) ∧ ©ϕ′ ∧ ©ψ′)
∨

∨
〈ν,ψ′〉∈lf(ψ)(Θ(ν) ∧ ©ψ′ ∧ © (ϕRψ))

by repeated application of the following distributivity laws
(ϕ1 ∧ ϕ2) ∨ (ϕ1 ∧ ϕ3) ⇔ ϕ1 ∧ (ϕ2 ∨ ϕ3)
(ϕ1 ∧ ϕ2) ∨ (ϕ3 ∧ ϕ2) ⇔ (ϕ1 ∨ ϕ3) ∧ ϕ2

⇔
∨

〈ν,ψ′〉∈lf(ψ)(Θ(ν) ∧ ©ψ′)
∧(((

∨
〈μ,ϕ′〉∈lf(ϕ)(Θ(μ) ∧ ©ϕ′))) ∨ © (ϕRψ))

= Θ(lf(ψ)) ∧ (Θ(lf(ϕ)) ∨ © (ϕRψ))
by IH
⇔ ψ ∧ (ϕ ∨ © (ϕRψ))
by Theorem 1
⇔ ϕRψ

��

C.2 Proof of Lemma 7

Proof. By straightforward induction on the linear temporal formula. ��

C.3 Proof of Lemma 8

Proof. By straightforward induction on the linear temporal formula. ��

C.4 Proof of Lemma 10

Proof. By induction on ϕ.
Case ϕRψ. By definition,

∂x(ϕRψ) = {ϕ′ ∧ ψ′ | 〈μ, ϕ′〉 ∈ lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ), x |= μ � ν} (1)
∪{ψ′ ∧ ϕRψ | 〈ν, ψ′〉 ∈ lf(ψ), x |= ν} (2)

Consider (1). For μ � ν = ff , the second components of the respective
linear forms can be ignored. Hence, by IH we find that {ϕ′ ∧ ψ′ | 〈μ, ϕ′〉 ∈
lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ), x |= μ � ν} ⊆ {ϕ′ ∧ ψ′ | ϕ′ ∈ pdx(ϕ), ψ′ ∈ pdx(ψ)}. The
other direction follows as well as x |= μ and x |= ν implies that μ � ν �= ff .
Consider (2). By IH we have that {ψ′ ∧ ϕRψ | 〈ν, ψ′〉 ∈ lf(ψ), x |= ν} =
{ψ′ ∧ ϕRψ | ψ′ ∈ pdx(ψ)}. Hence, ∂x(ϕRψ) = pdx(ϕRψ).

The other cases can be proven similarly.

28 M. Sulzmann and P. Thiemann

C.5 Proof of Lemma 12

Proof. The cardinality of ∂+(ϕ) is bounded by O(n). By Lemma 9 (second part)
elements in the set of descendants are in the set S(∂+(ϕ)). The mapping S
builds all possible (conjunctive) combinations of the underlying set. Hence, the
cardinality of S(∂+(ϕ)) is bounded by O(2n) and we are done.

C.6 Proof of Lemma 9

Proof. First part. By induction on ϕ we show that {ϕ′ | 〈μ, ϕ′〉 ∈ lf(ϕ)} ⊆
S(∂+(ϕ)).

Case tt. lf(tt) = {〈tt, tt〉} and tt ∈ S(∂+(tt)).
Case �. Analogous.
Case ff . Holds vacuously.
Case ϕ ∨ ψ. Immediate by induction.
Case ϕ ∧ ψ. Immediate by induction.
Case © ϕ. lf(© ϕ) = {〈tt, ϕ′〉 | ϕ′ ∈ T (ϕ)} and by Lemma 8, T (ϕ) ⊆

S(∂+(ϕ)).
Case ϕUψ. lf(ϕUψ) = lf(ψ) ∪ {〈μ, ϕ′ ∧ ϕUψ〉 | 〈μ, ϕ′〉 ∈ lf(ϕ)}. By

induction, the second components of lf(ψ) are in S(∂+(ψ)) ⊆ S(∂+(ϕUψ)).
By induction, the second components ϕ′ of lf(ϕ) are in S(∂+(ϕ)), so that ϕ′ ∧
ϕUψ ∈ S(∂+(ϕ) ∪ {ϕUψ}) ⊆ S(∂+(ϕUψ)).

Case ϕRψ. lf(ϕRψ) = {〈μ�ν, ϕ′∧ψ′〉 | 〈μ, ϕ′〉 ∈ lf(ϕ), 〈ν, ψ′〉 ∈ lf(ψ)}∪
{〈ν, ψ′ ∧ ϕRψ〉 | 〈ν, ψ′〉 ∈ lf(ψ)}. By induction ϕ′ ∈ S(∂+(ϕ)) and ψ′ ∈
S(∂+(ψ)) so that ϕ′ ∧ ψ′ ∈ S(∂+(ϕ) ∪ ∂+(ψ)) ⊆ S(∂+(ϕRψ)). Furthermore,
ψ′ ∧ ϕRψ ∈ S(∂+(ψ) ∪ {ϕRψ}) ⊆ S(∂+(ϕRψ)).

Second part. By induction on ϕ.
Case �. If ϕ′ = � or ϕ′ = tt, then tt ∈ S(∂+(�)).
Case tt. Analogous.
Case ff . Vacuously true.
Case ϕ ∨ ψ. Immediate by induction.
Case ϕ ∧ ψ. Immediate by induction.
Case ϕUψ. By induction and the first part.
Case ϕRψ. By induction and the first part.

C.7 Proof of Theorem 3

Proof. Suppose that σ |= ϕ. Show by induction on ϕ that σ ∈ L(A(ϕ)).
Case tt. Accepted by run tt, tt, . . . which visits tt ∈ F infinitely often.
Case ff . No run.
Case p. As p ∈ σ0, σ is accepted by run p, tt, tt,
Case ¬p. Accepted by run ¬p, tt, tt,
Case ϕ ∧ ψ. By definition σ |= ϕ and σ |= ψ. By induction, there are

accepting runs α0, α1, . . . on σ in A(ϕ) and β0, β1, . . . on σ in A(ψ). But then
α0 ∧ β0, α1 ∧ β1, . . . is an accepting run on σ in A(ϕ ∧ ψ) because the state
sets of the automata are disjoint.

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 29

Case ϕ ∨ ψ. By definition σ |= ϕ or σ |= ψ. If we assume that σ |= ϕ, then
induction yields an accepting run α0, α1, . . . on σ in A(ϕ). As the initial state
of A(ϕ ∨ ψ) is chosen from {α0, β0}, for some β0, we have that α0, α1, . . . is an
accepting run on σ in A(ϕ ∨ ψ).

Case © ϕ. By definition σ[1 . . .] |= ϕ. By induction, there is an accepting
run α0, α1, . . . on σ[1 . . .] in A(ϕ) with α0 = T (ϕ). Thus, there is an accepting
run © ϕ,α0, α1, . . . on σ in A(© ϕ).

Case ϕUψ. By definition ∃n ∈ ω,∀j ∈ ω, j < n ⇒ σ[j . . .] |= ϕ and
σ[n . . .] |= ψ. By induction, there is an accepting run on σ[n . . .] in A(ψ) and,
for all 0 ≤ j < n, there are accepting runs on σ[j . . .] in A(ϕ).

We proceed by induction on n.
Subcase n = 0. In this case, there is an accepting run β0, β1, . . . on

σ[0 . . .] = σ in A(ψ) so that β0 = T (ψ). We want to show that ϕUψ, β1, . . . is
an accepting run on σ in A(ϕUψ). To see this, observe that β1 ∈ ∂σ0(β0) and
that ∂σ0(ϕUψ) = ∂σ0(β0) ∪ ∂σ0(α0) ∧ ϕUψ, where α0 = T (ϕ), which proves
the claim.

Subcase n > 0. There must be an accepting run α0, α1, . . . on σ[0 . . .] = σ
in A(ϕ) so that α0 = T (ϕ). By induction (on n) there must be an accepting
run β0, β1, . . . on σ[1 . . .] in A(ϕUψ) where β0 = ϕUψ. We need to show that
ϕUψ, α1 ∧β0, α2 ∧β1, . . . is an accepting run on σ in A(ϕUψ). By the analysis
in the base case, the automaton can step from ϕUψ to ∂σ0(α0) ∧ ϕUψ.

Case ϕRψ.
By definition, ∀n ∈ ω, (σ[n . . .] |= ψ or ∃j ∈ ω, ((j < n) ∧ σ[j . . .] |= ϕ)). By

induction, there is either an accepting run on σ[n . . .] in A(ψ), for each n ∈ ω,
or there exists some j ∈ ω such that there is an accepting run on σ[j . . .] in A(ϕ)
and for all 0 ≤ i ≤ j, there is an accepting run on σ[i . . .] in A(ψ).

If there is an accepting run πn
0 , En

0 , πn
1 , En

1 , . . . in A(ψ) on σ[n . . .] for each
n ∈ ω where πn

0 ∈ T (ψ) and πn
i+1 ∈ ∂σi+n

(πn
i), then there is an accepting run in

A(ϕRψ):
∂σ0(ϕRψ) = ∂σ0(ϕ ∧ ψ) ∪ ∂σ0(ψ) ∧ ϕRψ.
Suppose that there is either an accepting run on σ[n . . .] in A(ψ), for each

n ∈ ω. In this case, there is an accepting run in A(ϕRψ): there is infinite path
of accepting states ϕRψ, . . . and, as ψ holds at every n, every infinite path that
starts in a state in ∂σn

(ψ) visits infinitely many accepting states.
Otherwise, the run visits only finitely many states of the form ϕRψ and then

continues according to the accepting runs on ϕ and ψ starting with ∂σj
(ϕ ∧ ψ).

Furthermore, any infinite path starting at some ∂σi
(ψ)∧ϕRψ that goes through

∂σi
(ψ) visits infinitely many accepting states (for 0 ≤ i < j).
Suppose now that σ �|= ϕ and show that σ /∈ L(A(ϕ)).
σ �|= ϕ is equivalent to σ |= ¬ϕ. We prove by induction on ϕ that σ /∈

L(A(ϕ)).
Case tt. The statement σ �|= tt is contradictory.
Case ff . The statement σ �|= ff holds for all σ and the automaton A(ff) has

no transitions, so σ /∈ L(A(ff)).

30 M. Sulzmann and P. Thiemann

Case p. The statement σ �|= p is equivalent to σ |= ¬p. That is, p /∈ σ0. As
lf(p) = {〈p, tt〉}, we find that ∂σ0(p) = ∅ so that A(p) has no run on p.

Case ¬p. Similar.
Case ϕ ∧ ψ. If σ �|= ϕ ∧ ψ, then σ �|= ϕ or σ �|= ψ. If we assume that σ �|= ϕ

and appeal to induction, then either there is no run of A(ϕ) on σ: in this case,
there is no run of A(ϕ ∧ ψ) on σ, either. Alternatively, every run of A(ϕ) on σ
has a path with only finitely many accepting states. This property is inherited
by A(ϕ ∧ ψ).

Case ϕ ∨ ψ. If σ �|= ϕ ∨ ψ, then σ �|= ϕ and σ �|= ψ. By appeal to induction,
every run of A(ϕ) on σ as well as every run of A(ψ) on σ has a path with only
finitely many accepting states. Thus, every run of A(ϕ ∨ ψ) on σ will have an
infinite path with only finitely many accepting states.

Case © ϕ. If σ �|= © ϕ, then σ |= ¬ © ϕ which is equivalent to σ |= ©¬ϕ
and thus σ[1 . . .] �|= ϕ. By induction every run of A(ϕ) on σ[1 . . .] has an infinite
path with only finitely many accepting states, so has every run of A(© ϕ) on σ.

Case ϕUψ. If σ �|= ϕUψ, then it must be that σ |= (¬ϕ)R (¬ψ).
By definition, the release formula holds if

∀n ∈ ω, (σ[n . . .] �|= ψ or ∃j ∈ ω, (j < n ∧ σ[j . . .] �|= ϕ))

We obtain, by induction, for all n ∈ ω that either

1. every run of A(ψ) on σ[n . . .] has an infinite path with only finitely many
accepting states or

2. ∃j ∈ ω with j < n and every run of A(ϕ) on σ[j . . .] has an infinite path with
only finitely many accepting states.

Now we consider a run of A(ϕUψ) on σ.

∂σ0(ϕUψ) = {ϕ′ | 〈μ, ϕ′〉 ∈ lf(ϕUψ), σ0 |= μ}
= {ψ′ | 〈ν, ψ′〉 ∈ lf(ψ), σ0 |= ν}
∪ {ϕ′ ∧ ϕUψ | 〈μ, ϕ′〉 ∈ lf(ϕ), σ0 |= μ}

To be accepting, the run cannot always choose the alternative that contains
ϕUψ because that would give rise to an infinite path (ϕUψ)ω which contains
no accepting state.

Thus, any accepting run must choose the alternative containing ψ′ a deriva-
tive of ψ. Suppose this choice happens at σi. If the release formula is accepted
because case 1 holds always, then a run of A(ψ) starting at σi has an infinite
path with only finitely many accepting states. So this run cannot be accepting.

If the release formula is accepted because eventually case 2 holds, then i < j
is not possible for the same reason as just discussed. However, starting from
σj , we have a state component from A(ϕ) which has an infinite path with only
finitely many accepting states. So this run cannot be accepting, either.

Case ϕRψ. If σ �|= ϕRψ, then σ |= ¬(ϕRψ) which is equivalent to σ |=
(¬ϕ)U (¬ψ).

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 31

By definition, the until formula holds if

∃n ∈ ω, (∀j ∈ ω, j < n ⇒ σ[j . . .] �|= ϕ) and σ[n . . .] �|= ψ

We obtain, by induction, that there is some n ∈ ω such that

1. for all j ∈ ω with j < n every run of A(ϕ) on σ[j . . .] has an infinite path
with only finitely many accepting states and

2. every run of A(ψ) on σ[n . . .] has an infinite path with only finitely many
accepting states.

Now we assume that there is an accepting run of A(ϕRψ) on σ. Consider

∂σ0(ϕRψ) = ∂σ0(ϕ ∧ ψ) ∪ ∂σ0(ψ) ∧ ϕRψ

Suppose that the run always chooses the alternative containing the formula
ϕRψ. However, at σn, this formula is paired with a run of A(ψ) on σ[n . . .] which
has an infinite path with only finitely many accepting states. A contradiction.

Hence, there must be some i ∈ ω such that A(ϕRψ) chooses its next states
from ∂σi

(ϕ∧ψ). If this index i < n, then this run cannot be accepting because it
contains a run of A(ϕ) on σ[i . . .], which has an infinite path with only finitely
many accepting states. Contradiction.

On the other hand, i ≥ n is not possible either because it would contradict
case 2.

Hence, there cannot be an accepting run. ��

C.8 Proof of Theorem 5

We observe that exhaustive decomposition yields to the same set of states,
regardless of the order decomposition rules are applied.

Example 7. Consider � p ∧ ♦¬p. Starting with {{� p ∧ ♦¬p}} the following
rewrite steps can be applied. Individual rewrite steps are annotated with the
decomposition rule (number) that has been applied.

� p ∧ ♦¬p
2� {{� p,♦¬p}}
4� {{p,©� p,♦¬p}}
3� {{p,©� p,¬p}, {p,©� p,©♦¬p}}

In the final set of nodes we effectively find nodes S3 and S4 from Wolper’s tableau
construction. Intermediate nodes S1 and S2 arise in some intermediate rewrite
steps. See Fig. 1. The only difference is that marked formulae are dropped.

An interesting observation is that there is an alternative rewriting, which
reaches the same set of children.

� p ∧ ♦¬p
2� {{� p,♦¬p}}
3� {{� p,¬p}, {� p,©♦¬p}}
4� {{p,©� p,¬p}, {� p,©♦¬p}}
4� {{p,©� p,¬p}, {p,©� p,©♦¬p}}

32 M. Sulzmann and P. Thiemann

We formalize the observations made in the above example. Decomposition
yields the same set of nodes regardless of the choice of intermediate steps.

Lemma 13. The rewrite relation � is terminating and confluent.

Proof. By inspection of the decomposition rules D1–6.

Hence, our reformulation of Wolper’s tableau construction method yields the
same nodes (ignoring marked formulae and intermediate nodes).

Lemma 14. Let S be a pre-state node in Wolper’s tableau construction and S′

be a node derived from S via some (possibly repeated) decomposition steps where
S′ is a state. Then, {S} �∗ N for some N where S′′ ∈ N such that S′′ and S′

are equivalent modulo marked formulae.

Proof. No further decomposition rules can be applied to a state. The only differ-
ence between our rewriting-based formulation of Wolper’s tableau construction
is that we drop marked formulae. Hence, the result follows immediately.

Wolper’s proof does not require marked formulae nor does it make use of
intermediate nodes in any essential way. Hence, correctness of the optimized
Wolper-style tableau construction method follows from Wolper’s proof.

C.9 Proof of Lemma 6

We first state some auxiliary result.

Lemma 15. Let {S ∪ {ϕ}} ∪ N � {S ∪ S1} ∪ · · · ∪ {S ∪ Sn} ∪ N �∗ N ′

where ϕ → {S1, . . . , Sn} and {{ϕ}} �∗ {S′
1, . . . , S

′
m}. Then, {S ∪ {ϕ}} ∪ N �

{S ∪ S′
1} ∪ · · · ∪ {S ∪ S′

m} ∪ N �∗ N ′.

Proof. By induction over the length of the derivation {{ϕ}} �∗ {S′
1, . . . , S

′
m}

and the fact that the rewriting relation is terminating and confluent (Lemma 13).

Lemma 15 says that we obtain the same result if we exhaustively decompose
a single formula or apply decomposition steps that alternate among multiple for-
mulae. This observation simplifies the up-coming inductive proof of Lemma 13.

By induction on ϕ we show that if ϕ �∗ N then lf(ϕ) = [[N]].

Proof. Case ϕ ∧ ψ. By assumption ϕ ∧ ψ � {{ϕ,ψ}} �∗ N . By induction we
find that (1) lf(ϕ) = [[N1]] and (2) lf(ψ) = [[N2]] where ϕ �∗ {S1, . . . , Sn},
ψ �∗ {T1, . . . , Tm}, N1 = {S1, . . . , Sn} and N2 = {T1, . . . , Tm}. By Lemma 15,
we can conclude that ϕ ∧ ψ � {{ψ} ∪ S1, . . . , {ψ} ∪ Sn} � {S ∪ T | S ∈
{S1, . . . , Sn}, T ∈ {T1, . . . , Tm}} where N = {S ∪ T | S ∈ {S1, . . . , Sn}, T ∈
{T1, . . . , Tm}}. From this and via (1) and (2), we can derive that lf(ϕ∧ψ) = [[N]].
Elimination via (E1) is integrated as part of rewriting (see Definition 14).

Case ϕRψ. By assumption

ϕRψ � {{ψ,ϕ ∨ © (ϕRψ)}} � {{ψ,ϕ}, {ψ,© (ϕRψ)}} �∗ N .

By reasoning analogously as in case of conjunction, we find lf(ϕRψ) = [[N]]
The remaining cases follow the same pattern.

LTL Semantic Tableaux and Alternating ω-automata via Linear Factors 33

References

1. Antimirov, V.M.: Partial derivatives of regular expressions and finite automaton
constructions. Theor. Comput. Sci. 155(2), 291–319 (1996). https://doi.org/10.
1016/0304-3975(95)00182-4

2. Babiak, T., Křet́ınský, M., Řehák, V., Strejček, J.: LTL to Büchi automata trans-
lation: fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS
2012. LNCS, vol. 7214, pp. 95–109. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-28756-5 8

3. Broda, S., Machiavelo, A., Moreira, N., Reis, R.: Partial derivative automaton for
regular expressions with shuffle. In: Shallit, J., Okhotin, A. (eds.) DCFS 2015.
LNCS, vol. 9118, pp. 21–32. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-19225-3 2

4. Couvreur, J.-M.: On-the-fly verification of linear temporal logic. In: Wing, J.M.,
Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 253–271. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2 16

5. Esparza, J., Křet́ınský, J., Sickert, S.: From LTL to deterministic automata: a
safraless compositional approach. Form. Methods Syst. Des. 49(3), 219–271 (2016).
https://doi.org/10.1007/s10703-016-0259-2

6. Finkbeiner, B., Sipma, H.: Checking finite traces using alternating automata.
Form. Methods Syst. Des. 24(2), 101–127 (2004). https://doi.org/10.1023/b:form.
0000017718.28096.48

7. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 53–65. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44585-4 6

8. Geldenhuys, J., Valmari, A.: More efficient on-the-fly LTL verification with Tar-
jan’s algorithm. Theor. Comput. Sci. 345(1), 60–82 (2005). https://doi.org/10.
1016/j.tcs.2005.07.004

9. Gerth, R., Peled, D., Vardi, M.Y., Wolper, P.: Simple on-the-fly automatic ver-
ification of linear temporal logic. In: Dembinski, P., Sredniawa, M. (eds.) PSTV
1995. IFIPAICT, pp. 3–18. Springer, Boston (1996). https://doi.org/10.1007/978-
0-387-34892-6 1

10. Loding, C., Thomas, W.: Alternating automata and logics over infinite words. In:
van Leeuwen, J., Watanabe, O., Hagiya, M., Mosses, P.D., Ito, T. (eds.) TCS
2000. LNCS, vol. 1872, pp. 521–535. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-44929-9 36

11. Muller, D.E., Saoudi, A., Schupp, P.E.: Weak alternating automata give a simple
explanation of why most temporal and dynamic logics are decidable in exponential
time. In: Proceedings of 3rd Annual Symposium on Logic in Computer Science,
LICS 1999, Edinburgh, July 1988, pp. 422–427. IEEE CS Press (1988). https://
doi.org/10.1109/lics.1988.5139

12. Pelánek, R., Strejček, J.: Deeper connections between LTL and alternating
automata. In: Farré, J., Litovsky, I., Schmitz, S. (eds.) CIAA 2005. LNCS, vol. 3845,
pp. 238–249. Springer, Heidelberg (2006). https://doi.org/10.1007/11605157 20

13. Pnueli, A.: The temporal logic of programs. In: Proceedings of 18th Annual Sympo-
sium on Foundations of Computer Science, FOCS 1977, Providence, RI, October–
November 1977, pp. 46–57. IEEE CS Press (1977). https://doi.org/10.1109/sfcs.
1977.32

https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1016/0304-3975(95)00182-4
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-642-28756-5_8
https://doi.org/10.1007/978-3-319-19225-3_2
https://doi.org/10.1007/978-3-319-19225-3_2
https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/s10703-016-0259-2
https://doi.org/10.1023/b:form.0000017718.28096.48
https://doi.org/10.1023/b:form.0000017718.28096.48
https://doi.org/10.1007/3-540-44585-4_6
https://doi.org/10.1016/j.tcs.2005.07.004
https://doi.org/10.1016/j.tcs.2005.07.004
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/978-0-387-34892-6_1
https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1007/3-540-44929-9_36
https://doi.org/10.1109/lics.1988.5139
https://doi.org/10.1109/lics.1988.5139
https://doi.org/10.1007/11605157_20
https://doi.org/10.1109/sfcs.1977.32
https://doi.org/10.1109/sfcs.1977.32

34 M. Sulzmann and P. Thiemann

14. Reynolds, M.: A new rule for LTL tableaux. In: Cantone, D., Delzanno, G. (eds.)
Proceedings of 7th International Symposium on Games, Automata, Logics and
Formal Verification, GandALF 2016 (Catania, September 2016). Electronic Pro-
ceedings in Theoretical Computer Science, vol. 226, pp. 287–301. Open Public
Association, Sydney (2016). https://doi.org/10.4204/eptcs.226.20

15. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: de Swart, H.
(ed.) TABLEAUX 1998. LNCS (LNAI), vol. 1397, pp. 277–291. Springer, Heidel-
berg (1998). https://doi.org/10.1007/3-540-69778-0 28

16. Thiemann, P., Sulzmann, M.: From ω-regular expressions to Büchi automata via
partial derivatives. In: Dediu, A.-H., Formenti, E., Mart́ın-Vide, C., Truthe, B.
(eds.) LATA 2015. LNCS, vol. 8977, pp. 287–298. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-15579-1 22

17. Vardi, M.Y.: Nontraditional applications of automata theory. In: Hagiya, M.,
Mitchell, J.C. (eds.) TACS 1994. LNCS, vol. 789, pp. 575–597. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-57887-0 116

18. Vardi, M.Y.: Alternating automata: unifying truth and validity checking for tem-
poral logics. In: McCune, W. (ed.) CADE 1997. LNCS, vol. 1249, pp. 191–206.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63104-6 19

19. Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification (preliminary report). In: Proceedings of 1st Symposium on Logic in
Computer Science, LICS 1986, Cambridge, MA, June 1986, pp. 332–344. IEEE CS
Press (1986)

20. Vardi, M.Y., Wolper, P.: Reasoning about infinite computations. Inf. Comput.
115(1), 1–37 (1994). https://doi.org/10.1006/inco.1994.1092

21. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1/2), 72–99
(1983). https://doi.org/10.1016/s0019-9958(83)80051-5

22. Wolper, P.: The tableau method for temporal logic: an overview. Log. Anal.
28(110–111), 119–136 (1985). https://www.jstor.org/stable/44084125

23. Wolper, P., Vardi, M.Y., Sistla, A.P.: Reasoning about infinite computation paths
(extended abstract). In: Proceedings of 24th Annual Symposium on Foundations
of Computer Science, FOCS 1983, Tucson, AZ, November 1983, pp. 185–194. IEEE
CS Press (1983). https://doi.org/10.1109/sfcs.1983.51

https://doi.org/10.4204/eptcs.226.20
https://doi.org/10.1007/3-540-69778-0_28
https://doi.org/10.1007/978-3-319-15579-1_22
https://doi.org/10.1007/978-3-319-15579-1_22
https://doi.org/10.1007/3-540-57887-0_116
https://doi.org/10.1007/3-540-63104-6_19
https://doi.org/10.1006/inco.1994.1092
https://doi.org/10.1016/s0019-9958(83)80051-5
https://www.jstor.org/stable/44084125
https://doi.org/10.1109/sfcs.1983.51

Contributed Talks

Proof Nets and the Linear Substitution
Calculus

Beniamino Accattoli(B)

Inria Saclay and LIX, École Polytechnique,
1 rue Honoré d’Estienne d’Orves, 91120 Palaiseau, France

beniamino.accattoli@inria.fr

Abstract. Since the very beginning of the theory of linear logic it is
known how to represent the λ-calculus as linear logic proof nets. The
two systems however have different granularities, in particular proof nets
have an explicit notion of sharing—the exponentials—and a micro-step
operational semantics, while the λ-calculus has no sharing and a small-
step operational semantics. Here we show that the linear substitution
calculus, a simple refinement of the λ-calculus with sharing, is isomor-
phic to proof nets at the operational level.

Nonetheless, two different terms with sharing can still have the same
proof nets representation—a further result is the characterisation of the
equality induced by proof nets over terms with sharing. Finally, such
a detailed analysis of the relationship between terms and proof nets,
suggests a new, abstract notion of proof net, based on rewriting consid-
erations and not necessarily of a graphical nature.

1 Introduction

Girard’s seminal paper on linear logic [23] showed how to represent intuitionistic
logic—and so the λ-calculus—inside linear logic. During the nineties, Danos and
Regnier provided a detailed study of such a representation via proof nets [15–
17,41], which is nowadays a cornerstone of the field. Roughly, linear logic gives
first-class status to sharing, accounted for by the exponential layer of the logic,
and not directly visible in the λ-calculus. In turn, cut-elimination in linear logic
provides a micro-step refinement of the small-step operational semantics of the
λ-calculus, that is, β-reduction.

The Mismatch. Some of the insights provided by proof nets cannot be directly
expressed in the λ-calculus, because of the mismatch of granularities. Typically,
there is a mismatch of states: simulation of β on proofs passes through inter-
mediate states/proofs that cannot be expressed as λ-terms. The mismatch does
not allow, for instance, expressing fine strategies such as linear head evaluation
[18,35] in the λ-calculus, nor to see in which sense proof nets quotient terms, as
such a quotient concerns only the intermediate proofs. And when one starts to
have a closer look, there are other mismatches, of which the lack of sharing in
the λ-calculus is only the most macroscopic one.
c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 37–61, 2018.
https://doi.org/10.1007/978-3-030-02508-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_3&domain=pdf

38 B. Accattoli

Some minor issues are due to a mismatch of styles: the fact that terms and
proofs, despite their similarities, have different representations of variables and
notions of redexes. Typically, two occurrences of a same variable in a term are
smoothly identified by simply using the same name, while for proofs there is
an explicit rule, contraction, to identify them. Name identification is obviously
associative, commutative, and commutes with all constructors, while contrac-
tions do not have these properties for free1. For redexes, the linear logic rep-
resentation of terms has many cuts with axioms that have no counterpart on
terms. These points have been addressed in the literature, using for instance
generalised contractions or interaction nets, but they are not devoid of further
technical complications. Establishing a precise relationship between terms and
proofs and their evaluations is, in fact, a very technical affair.

A serious issue is the mismatch of operational semantics. The two systems
compute the same results, but with different rewriting rules, and linear logic is
far from having the nice rewriting properties of the λ-calculus. Typically, the
λ-calculus has a residual system [43]2, which is a strong form of confluence that
allows building its famous advanced rewriting theory, given by standardisation,
neededness, and Lévy’s optimality [33]. In the ordinary presentations of linear
logic cut-elimination is confluent but it does not admit residual systems3, and
so the advanced rewriting properties of the λ-calculus are lost. Put differently,
linear logic is a structural refinement of the λ-calculus but it is far from refining
it at the rewriting level.

A final point is the mismatch of representations: proofs in linear logic are
usually manipulated in their graphical form, that is, as proof nets, and, while
this is a handy formalism for intuitions, it is not amenable to formal reasoning—
it is not by chance that there is not a single result about proof nets formalised
in a proof assistant. And as already pointed out, the parallelism provided by
proof nets, in the case of the λ-calculus, shows up only in the nets obtained as
intermediate steps of the simulation of β, and so it cannot easily be seen on
the λ-calculus. There is a way of expressing it, known as σ-equivalence, due to
Regnier [42], but it is far from being natural.

The Linear Substitution Calculus. The linear substitution calculus (LSC) [2,8] is
a refinement of the λ-calculus with sharing, introduced by Accattoli and Kesner
as a minor variation over a calculus by Milner [39], and meant to correct all
these problems at once.

1 α-equivalence is subtle on terms, but this is an orthogonal issue, and a formal app-
roach to proof net should also deal with α-equivalence for nodes, even if this is never
done.

2 For the unacquainted reader: having a residual system means to be a well-behaved
rewriting system—related concepts are orthogonal systems, or the parallel moves or
cube properties.

3 Some presentations of proof nets (e.g. Regnier’s in [41]) solve the operational seman-
tics mismatch adapting proof nets to the λ-calculus, and do have residuals, but then
they are unable to express typical micro-step proof nets concepts such as linear head
reduction.

Proof Nets and the Linear Substitution Calculus 39

The LSC has been introduced in 2012 and then used in different settings—a
selection of relevant studies concerning cost models, standardisation, abstract
machines, intersection types, call-by-need, the π-calculus, and Lévy’s optimality
is [3,7–9,14,26,30]. The two design features of the LSC are its tight relationship
with proof nets and the fact of having a residual system. The matching with
proof nets, despite being one of the two reasons to be of the LSC, for some
reason was never developed in detail, nor published. This paper corrects the
situation, strengthening a growing body of research.

Contributions. The main result of the paper is the perfect correspondence
between the LSC and the fragment of linear logic representing the λ-calculus.
To this goal, the presentation of proof nets has to be adjusted, because the fault
for the mismatch is not always on the calculus side. To overcome the mismatch
of styles, we adopt a presentation of proof nets—already at work by the author
[5]—that intuitively corresponds to interaction nets (to work modulo cut with
axioms) with hyper-wires, that is, wires connecting more than two ports (to
have smooth contractions). Our presentation of proof nets also refines the one
in [5] with a micro-step operational semantics. Our exponential rewriting rules
are slightly different than the others in the literature, and look more as the
replication rule of the π-calculus—this is the key change for having a residual
system.

Essentially, the LSC and our proof nets presentation are isomorphic. More
precisely, our contribution is to establish the following tight correspondence:

1. Transferable syntaxes: every term translates to a proof net, and every proof
net reads back to at least one term, removing the mismatch of states. We rely
on a correctness criterion—Laurent’s one for polarised proof nets [31,32]—
to characterise proof nets and read them back. There can be many terms
mapping to the same proof net, so at this level the systems are not isomorphic.

2. Quotient : we characterise the simple equivalence ≡ on terms that is induced
by the translation to proof nets. The quotient of terms by ≡ is then isomorphic
to proof nets, refining the previous point. The characterisation of the quotient
is not usually studied in the literature on proof nets.

3. Isomorphic micro-step operational semantics: a term t and its associated
proof net P have redexes in bijection, and such a bijection is a strong bisim-
ulation: one step on one side is simulated by exactly one step on the other
side, and vice-versa, and in both cases the reducts are still related by trans-
lation and read back. Therefore, the mismatch of operational semantics also
vanishes.

The fact that the LSC has a residual system is proved in [8], and it is not
treated here. But our results allow to smoothly transfer the residual system
from the LSC to our presentation of proof nets.

These features allow to consider the LSC modulo ≡ as an algebraic—that
is, not graphical—reformulation of proof nets for the λ-calculus, providing the
strongest possible solution to the mismatch of representations. At the end of the

40 B. Accattoli

paper, we also suggest a new perspective on proof nets from a rewriting point of
view, building on our approach.

The Value of this Paper. This work is a bit more than the filling of a gap in
the literature. The development is detailed, and so necessarily technical, and
yet clean. The study of correctness and sequentialisation is stronger than in
other works in the literature, because beyond sequentialising we also characterise
the quotient—the proof of the characterisation is nonetheless pleasantly simple.
Another unusual point is the use of context nets corresponding to the contexts of
the calculus, that are needed to deal with the rules of the LSC. Less technically,
but maybe more importantly, the paper ends with the sketch of a new and
high-level rewriting perspective on proof nets.

Proofs. For lack of space, all proofs are omitted. They can be found in the
technical report [6].

1.1 Historical Perspective

The fine match between the LSC and proof nets does not come out of the blue: it
rather is the final product of a decades-long quest for a canonical decomposition
of the λ-calculus.

At the time of the introduction of linear logic, decompositions of the λ-
calculus arose also from other contexts. Abadi, Cardelli, Curien, and Lévy intro-
duced calculi with explicit substitutions [1], that are refinements of the λ-calculus
where meta-level substitution is delayed, by introducing explicit annotations, and
then computed in a micro-step fashion. A decomposition of a different nature
appeared in concurrency, with the translations of the λ-calculus to the π-calculus
[37], due to Milner.

These settings introduce an explicit treatment of sharing—called exponen-
tials in linear logic, or explicit substitutions, or replication in the π-calculus.
The first calculus of explicit substitutions suffered of a design issue, as showed
by Melliès in [36]. A turning point was the link between explicit substitutions and
linear logic proof nets by Di Cosmo and Kesner in [19]. Kesner and co-authors
then explored the connection in various directions [20,28,29]. In none of these
cases, however, do terms and proof nets behave exactly the same.

The graphical representation of λ-calculus based on linear logic in [10]
induced a further calculus with explicit substitutions, the structural λ-calculus
[11], isomorphic to their presentation of proof nets. The structural λ-calculus
corrects most mentioned mismatches, but it lacks a residual system.

Independently, Milner developed a graphical framework for concurrency,
bigraphs [38], able to represent the π-calculus and, consequently, the λ-calculus.
He extracted from it a calculus with explicit substitutions [27,39], similar in
spirit to the structural λ-calculus. Accattoli and Kesner later realised that Mil-
ner’s calculus has a residual system. In 2011-12, they started to work on the
LSC, obtained as a merge of Milner’s calculus and the structural λ-calculus.

Proof Nets and the Linear Substitution Calculus 41

At first, the LSC was seen as a minor variation over existing systems. With
time, however, a number of properties arose, and the LSC started to be used as
a sharp tool for a number of investigations. Two of them are relevant for our
story. First, the LSC also allows refining the relationship between the λ-calculus
and the π-calculus, as shown by the author in [3]. The LSC can then be taken
as the harmonious convergence and distillation of three different approaches—
linear logic, explicit substitutions, and the π-calculus—at decomposing the
λ-calculus. Second, Lévy’s optimality adapts to the LSC as shown by Baren-
baum and Bonelli in [14], confirming that the advanced rewriting theory of the
λ-calculus can indeed be lifted to the micro-step granularity via the LSC.

1.2 Related Work on Proof Nets

The relationship between λ-calculi and proof nets has been studied repeatedly,
beyond the already cited work (Danos & Regnier, Kesner & co-authors, Accattoli
& Guerrini). A nice and detailed introduction to the relationship between λ-
terms and proof nets is [24].

Laurent extends the translation to represent the λμ-calculus in [31,32]. In
this paper we use an adaptation of his correctness criterion. The translation of
differential/resource calculi has also been studied at length: Ehrhard and Regnier
[21] study the case without the promotion rule, while Vaux [46] and Tranquilli
[44,45] include promotion. Vaux also extends the relationship to the classical
case (thus encompassing a differential λμ-calculus), while Tranquilli refines the
differential calculus into a resource calculus that better matches proof nets. Vaux
and Tranquilli use interaction nets to circumvent the minor issue of cuts with
axioms.

Strategies rather than calculi are encoded in interaction nets in [34].
None of these works uses explicit substitutions, so they all suffer of the mis-

match of states. Explicit substitutions are encoded in proof nets in [22], but the
operational semantics are not isomorphic, nor correctness is studied. An abstract
machine akin to the LSC is mapped to proof nets in [40], but the focus is on
cost analyses, rather than on matching syntaxes.

Other works that connect λ-calculi and graphical formalisms with some log-
ical background are [13,25].

An ancestor of this paper is [5], that adopts essentially the same syntax for
proof nets. In that work, however, the operational semantics is small-step rather
than micro-step, there is no study of the quotient, and no use of contexts, nor
it deals with the LSC.

2 The Linear Substitution Calculus

Expressions and Terms. One of the features of the LSC is the use of contexts to
define the rewriting rules. Contexts are terms with a single occurrence of a special
constructor called hole, and often noted 〈·〉, that is a placeholder for a removed
subterm. To study the relationship with proof nets, it is necessary to represent

42 B. Accattoli

both terms and contexts, and, to reduce the number of cases in definitions and
proofs, we consider a syntactic category generalizing both. Expressions may have
0, 1, or more holes. Proof nets also require holes to carry the set Δ of variables
that can appear free in any subterm replacing the hole—e.g. Δ = {x, y, z}.
Expressions are then defined as follows:

Expressions e, f, g, h :: = x | 〈·〉Δ | λx.e | ef | e[x�f]

Terms are expressions without holes, noted t, s, u, and so on, and contexts are
expressions with exactly one hole, noted C, D, E, etc.

The construct t[x�s] is an explicit substitution, shortened ES, of s for x in
t—essentially, it is a more compact notation for let x = s in t. Both λx.t
and t[x�s] bind x in t. Meta-level, capture-avoiding substitution is rather noted
t{x/s}. On terms, we silently work modulo α-equivalence, so that for instance
(λx.((xyz)[y�x]){z/xy} = λx′.((x′y′(xy))[y′

�x′]). Applications associate to the
left. Free variables of holes are defined by fv(〈·〉Δ) := Δ, and for the other
constructors as expected. The multiplicity of a variable x in a term t, noted |t|x,
is the number of free occurrences of x in t.

Contexts. The LSC uses contexts extensively, in particular substitution contexts:

Substitution contexts L,L′, L′′ :: = 〈·〉Δ | L[x�t]

Sometimes we write CΔ for a context C whose hole 〈·〉Δ is annotated with Δ,
and we call Δ the interface of C. Note that the free variables of CΔ do not
necessarily include those in its interface Δ, because the variables in Δ can be
captured by the binders in CΔ.

The basic operation over contexts is plugging of an expression e in the hole of
the context C, that produces the expression C〈e〉. The operation is defined only
when the free variables fv(e) of e are included in the interface of the context.

Plugging of e in CΔ (assuming fv(e) ⊆ Δ)

〈e〉Δ := e (λx.C)〈e〉 := λx.C〈e〉
(Cs)〈e〉 := C〈e〉s (sC)〈e〉 := sC〈e〉

(C[x�s])〈e〉 := C〈e〉[x�s] (s[x�C])〈e〉 := s[x�C〈e〉]
An example of context is C{x,y} := λx.(y〈·〉{x,y}[z�x]), and one of plugging
is C{x,y}〈xx〉 = λx.(y(xx)[z�x]). Note the absence of side conditions in the
cases for λx.C and C[x�s]—it means that plugging in a context can capture
variables, as in the given example. Clearly, C〈e〉 is a term/context if and only if
e is a term/context. Note also that if t is a term and s is a subterm of t then
t = C〈s〉 for some context C. Such a context C is unique up to the annotation
Δ of the hole of C, which only has to satisfy fv(s) ⊆ Δ, and that can always be
satisfied by some Δ.

We also define the set cv(CΔ) of variables captured by a context CΔ:

Variables captured by a context

cv(〈·〉Δ) := ∅
cv(λx.CΔ) = cv(CΔ[x�t]) := cv(CΔ) ∪ {x}

cv(tCΔ) = cv(CΔt) = cv(t[x�CΔ]) := cv(CΔ)

Proof Nets and the Linear Substitution Calculus 43

Rewriting Rules for Terms. The rewriting rules of the LSC concern terms only.
They are unusual as they use contexts in two ways: to allow their application
anywhere in the term—and this is standard—and to define the rules at top
level—this is less common (note the substitution context L and the context C in
rules →m and →e below). We write C〈〈t〉〉 if C does not capture any free variable
of t, that is, if cv(C) ∩ fv(t) = ∅.

Rewriting rules

Multiplicative L〈λx.t〉s →m L〈t[x�s]〉
Milner exponential C〈〈x〉〉[x�s] →e C〈〈s〉〉[x�s]
Garbage collection t[x�s] →gc t if x /∈ fv(t)

Contextual closures
t →a t′

C〈t〉 →a C〈t′〉 for a ∈ {m, e, gc}

Notation →LSC := →m ∪ →e ∪ →gc

Note that in →m (resp. →e) we assume that L (resp. C) does not capture variables
in fv(s)—this is always possible by a (on-the-fly) α-renaming of L〈λx.t〉 (resp.
C〈〈x〉〉), as we work modulo α. Similarly the interface of C can always be assumed
to contain fv(s).

Structural Equivalence. The LSC is sometimes enriched with the following notion
of structural equivalence ≡ [8].

Definition 1 (Structural equivalence). Structural equivalence ≡ is defined
as the symmetric, reflexive, transitive, and contextual closure of the following
axioms:

(λy.t)[x�s] ≡λ λy.t[x�s] if y
∈ fv(s)
(t u)[x�s] ≡@l t[x�s]u ifx
∈ fv(u)

t[x�s][y�u] ≡com t[y�u][x�s] if y
∈ fv(s) andx
∈ fv(u)

Its key property is that it commutes with evaluation in the following strong
sense.

Proposition 2 (≡ is a strong bisimulation wrt →LSC [8]). Let a ∈
{m, e, gc}. If t ≡ s →a u then exists r such that t →a r ≡ u.

Essentially, ≡ never creates redexes, it can be postponed, and vanishes on
normal forms (that have no ES). We are going to prove that ≡ is exactly the
quotient induced by translation to proof nets (Theorem 17, page 15). The absence
of the axiom (t u)[x�s] ≡@r t u[x�s] if x
∈ fv(t) is correct: the two terms
do not have the same proof net representation (defined in the next section),
moreover adding this axiom to ≡ breaks Proposition 2. The extension with ≡@r

has nonetheless been studied in [12].

3 Proof Nets

Introduction. Our presentation of proof nets, similar to the one in [5], is nonstan-
dard in at least four points—we suggest to have a quick look to Fig. 3, page 12:

44 B. Accattoli

1. Hyper-graphs: we use directed hyper-graphs (for which formulas are nodes
and links—i.e. logical rules—are hyper-edges) rather than the usual graphs
with pending edges (for which formulas are edges and links are nodes). We
prefer hyper-graphs—that despite the scaring name are nothing but bipartite
graphs—because they give
(a) Contraction algebra for free: contraction is represented modulo commuta-

tivity, associativity, and permutation with box borders for free, by admit-
ting that exponential nodes can have more than one incoming link,

(b) Cut-axiom quotient for free: cut and axiom links are represented implic-
itly, collapsing them on nodes. This is analogous to what happens in
interaction nets. Intuitively, our multiplicative nodes are wires, with expo-
nential nodes being hyper -wires, i.e. wires involving an arbitrary number
of ports;

(c) Subnets as subsets: subnets can be elegantly defined as subsets of links,
which would not be possible when adopting other approaches such as gen-
eralized ?-links or a standard interaction nets formalism without hyper-
wires.

The choice of hyper-graphs, however, has various (minor) technical conse-
quences, and the formulation of some usual notions (e.g. the nesting condition
for boxes) shall be slightly different with respect to the literature.

2. Directed links and polarity : our links are directed and we apply a correct-
ness criterion based on directed paths. Be careful, however, that we do not
follow the usual premises-to-conclusions orientation for links, nor the input-
output orientation sometimes at work for λ-calculi or intuitionistic settings.
We follow, instead, the orientation induced by logical polarity according to
Laurent’s correctness criterion for polarised proof nets [31,32]. Let us point
out that Laurent defines proof nets using the premises-to-conclusions orien-
tation and then he switches to the polarised orientation for the correctness
criterion. We prefer to adopt only one orientation, the polarised one, which
we also employ to define proof nets.

3. Syntax tree: since we use proof nets to represent terms, we arrange them on
the plane according to the syntax tree of the corresponding terms, and not
according to the corresponding sequent calculus proof, analogously to the
graph rewriting literature on the λ-calculus (e.g. [47]) but in contrast to the
linear logic literature.

4. Contexts: to mimic the use of contexts in the LSC rewriting rules, we need
to have a notion of context net. Therefore, we have a special link for context
holes.

Nets. We first overview some choices and terminology.

– Hyper-graphs: nets are directed and labelled hyper-graphs G =
(nodes(G), links(G)), i.e., graphs where nodes(G) is a set of labelled nodes

Proof Nets and the Linear Substitution Calculus 45

Fig. 1. Links. (Color figure online)

and links(G) is a set of labelled and directed hyper-edges, called links, which
are edges with 0, 1, or more sources and 0, 1, or more targets4.

– Nodes: nodes are labelled with a type in {e, m}, where e stands for exponential
and m for multiplicative. If a node u has type e (resp. m) we say that it is a
e-node (resp. m-node). The label of a node is usually left implicit, as e and m
nodes are distinguished graphically, using both colours and different shapes:
e-nodes are cyan and white-filled, while m-nodes are brown and dot-like. We
come back to types below.

– Links: we consider hyper-graphs whose links are labelled from
{!, d,w,`,⊗, 〈·〉,�}, corresponding to the promotion, dereliction, weakening,
par, and tensor rules of linear logic, plus a link 〈·〉 for context holes and a
link � used for defining the correction graph—contraction is hard-coded on
nodes, as already explained. The label of a link l forces the number and the
type of the source and target nodes of l, as shown in Fig. 1 (types shall be
discussed next). Similarly to nodes, we use colours and shapes for the type of
the source/target connection of a link to a node: e-connections are blue and
dotted, while m-connections are red and solid. Our choice of shapes allows
reading the paper also if printed in black and white.

– Principal conclusions: note that every link except 〈·〉 and � has exactly one
connection with a little circle: it denotes the principal node, i.e. the node on
which the link can interact. Notice the principal node for tensor and !, which
is not misplaced.

– Typing : nets are typed using a recursive type, usually noted o = !o � o,
but that we rename m = !m � m =?m⊥ ` m because m is a mnemonic for
multiplicative. Let e :=?m⊥, where e stands for exponential. Note that m =
e⊥ � m = e`m. Links are typed using m and e, but the types are omitted by
all figures except Fig. 1 because they are represented using colours and with

4 A hyper-graph G can be understood as a bipartite graph BG, where V1(BG) is
nodes(G) and V2(BG) is links(G), and the edges are determined by the relations
being a source and being a target of a hyper-edge.

46 B. Accattoli

different shapes (m-nodes are brown and dot-like, e-nodes are white-filled cyan
circles). Let us explain the types in Fig. 1. They may be counter-intuitive at
first: note in particular the ! and ⊗ links, that have an unexpected type on
their logical conclusion—it simply has to be negated, because the expected
orientation would be the opposite one.

– More on nodes: a node is initial if it is not the target of any link; terminal if
it is not the source of any link; isolated if it is initial and terminal; internal
if it is not initial nor terminal.

– Boxes: every !-link has an associated box, i.e., a sub-hyper-graph of P (have
a look at Fig. 3), meant to be a sub-net.

– Context holes and collapsed boxes: it is natural to wonder if 〈·〉 and � links
can be merged into a single kind of link. They indeed play very similar roles,
except that they have different polarised typings, which is why we distinguish
them.

We first introduce pre-nets, and then add boxes on top of them, obtaining
nets:

Definition 3 (Pre-nets). A pre-net P is a triple (|P |, fv(P), rP), where |P | is
a hyper-graph (nodes(P), links(P)) whose nodes are labelled with either e or m
and whose hyper-edges are {!, d,w,`,⊗, 〈·〉,�}-links, and such that:

– Root: rP ∈ nodes(P) is a terminal m-node of P , called the root of P .
– Free variables: fv(P) is the set of terminal e-nodes of P , also called free

variables of P , which are targets of {d,w, 〈·〉,�}-links (i.e. they are not allowed
to be targets of ⊗-links, nor to be isolated).

– Nodes: every node has at least one incoming link and at most one outgoing
link. Moreover,

• Multiplicative: m-nodes have exactly one incoming link;
• Exponential: if an e-node has more than one incoming link then they are
d-links.

Definition 4 (Nets). A net P is a pre-net together with a function iboxP (or
simply ibox) associating to every !-link l a subset ibox(l) of links(P) \ {l} (i.e.
the links of P except l itself), called the interior of the box of l, such that ibox(l)
is a pre-net verifying (explanations follow):

– Border: the root ribox(l) is the source m-nodes of l, and any free variable of
ibox(l) is not the target of a weakening.

– Nesting: for any !-box ibox(h) if ibox(l) and ibox(h) have non-empty
intersection—that is, if ∅
= I := |ibox(l)|∩|ibox(h)|—and one is not entirely
contained in the other—that is, if |ibox(l)|
⊆ |ibox(h)|, and |ibox(h)|
⊆
|ibox(l)|—then all the nodes in I are free variables of both ibox(l) and
ibox(h).

– Internal closure:
• Contractions: if a contraction node is internal to ibox(l) then all its

premises are in ibox(l)—formally, h ∈ ibox(l) for any link h of P having
as target an internal e-node of ibox(l).

• Boxes: ibox(h) ⊆ ibox(l) for any !-link h ∈ ibox(l).

Proof Nets and the Linear Substitution Calculus 47

A net is

– a term net if it has no {〈·〉,�}-links;
– a context net if it has exactly one 〈·〉-link;
– a correction net if it has no !-links.

As for the calculus, the interface of a 〈·〉-link is the set of its free variables, and
the interface of a context net is the interface of its 〈·〉-link.
Remark 5. Comments on the definition of net:

1. Weakenings and box borders: in the border condition for nets the fact that
the free variables are not the target of a weakening means that weakenings
are assumed to be pushed out of boxes as much as possible—of course the
rewriting rules shall have to preserve this invariant.

2. Weakenings are not represented as nullary contractions: given the represen-
tation of contractions, it would be tempting to define weakenings as nullary
contractions. However, such a choice would be problematic with respect to
correctness (to be defined soon), as it would introduce many initial e-nodes
in a correct net and thus blur the distinction between the root of the net,
supposed to represent the output and to be unique (in a correct net), and
substitutions on a variable with no occurrences (i.e. weakened subterms),
that need not to be unique.

3. Internal closure wrt contractions: it is a by-product of collapsing contractions
on nodes, which is also the reason for the unusual formulation of the nesting
condition. In fact, two boxes that are intuitively disjoint can in our syntax
share free variables, because of an implicit contraction merging two of them,
as in the example in Fig. 3.

4. Boxes as nets: note that a box ibox(l) in a net P is only a pre-net, by
definition. Every box in a net P , however, inherits a net structure from P .
Indeed, one can restrict the box function iboxP of P to the !-links of ibox(l),
and see ibox(l) as a net, because all the required conditions are automatically
satisfied by the internal boxes closure and by the fact that such boxes are
boxes in P . Therefore, we freely consider boxes as nets.

5. Tensors and !-boxes: the requirements that the e-target of a ⊗-link cannot
be the free variable of a net, nor the target of more than one link force these
nodes to be sources of !-links. Therefore, every ⊗-link is paired to a !-link,
and thus a box.

6. Acyclic nesting : the fact that a !-link does not belong to its box, plus the
internal closure condition, imply that the nesting relation between boxes can-
not be cyclic, as we now show. Let l and h be !-links. If l ∈ ibox(h) then
by internal closure ibox(l) ⊆ ibox(h). It cannot then be that h ∈ ibox(l),
otherwise l would belong to its own box, because l ∈ ibox(h) ⊆ ibox(l) by
internal closure.

48 B. Accattoli

Fig. 2. Various images.

Terminology About Nets. Some further terminology and conventions:

– The level of a node/link/box is the maximum number of nested boxes in
which it is contained5 (a !-link is not contained in its own box). Note that the
level is well defined by the acyclicity of nesting just pointed out. In particular,
if a net has !-links then it has at least one !-link at level 0.

– A variable x is a e-node that is the target of a {d,w}-link—equivalently, that
is not the target of a ⊗-link.

– Two links are contracted if they share an e-target. Note that the exponential
condition states that only derelictions (i.e. d-links) can be contracted. In
particular, no link can be contracted with a weakening.

– A free weakening in a net P is a weakening whose node is a free variable of P .
– The multiplicity of a variable x in P , noted |P |x, is 0 if x is the target of a

weakening, and n ≥ 1 if it is the target of n derelictions.
– Sometimes (e.g. the bottom half of Fig. 3), the figures show a link in a box

having as target a contracted e-node x which is outside the box: in those
cases x is part of the box, it is outside of the box only in order to simplify
the representation.

Translation. Nets representing terms have the general form in Fig. 2a, also rep-
resented as in Fig. 2b. The translation · from expression to nets is in Fig. 3.

A net which is the translation of an expression is a proof net. Note the
example in Fig. 3: two different terms translate to the same proof net, showing
that proof nets quotient LSC terms.

The translation · is refined to a translation ·Δ, where Δ is a set of variables,
in order to properly handle weakenings during cut-elimination. The reason is
that an erasing step on terms simply erases a subterm, while on nets it also
introduces some weakenings: without the refinement the translation would not
be stable by reduction.

5 Here the words maximum and nested are due to the fact that the free variables of
!-boxes may belong to two not nested boxes, as in the example in Fig. 3, because of
the way we represent contraction.

Proof Nets and the Linear Substitution Calculus 49

Fig. 3. Translation of expressions to nets, plus an example of translation.

Note that in some cases there are various edges entering an e-node, that is
the way we represent contraction. In some cases the e-nodes have an incoming
connection with a perpendicular little bar: it represents an arbitrary number
(>0) of incoming connections. Structurally equivalent terms are translated to
the same proof net, see Fig. 4 at page 16.

α-Equivalence. To circumvent an explicit and formal treatment of α-equivalence
we assume that the set of e-nodes and the set of variable names for terms coin-
cide. This convention removes the need to label the free variables of tΔ with the
name of the corresponding free variables in t or Δ. Actually, before translating
a term t it is necessary to pick a well-named α-equivalent term t′, i.e. a term
such that any two different variables (bound or free) have different names.

Paths. A path τ of length k ∈ N from u to w, noted τ : u →k w, is an alternated
sequence of nodes and links u = u1, l1, . . . , lk, uk+1 = w such that link li has
source ui and target ui+1 for i ∈ {1, . . . , k}. A cycle is a path u →k u with
k > 0.

Correctness. The correctness criterion is an adaptation of Laurent’s criterion for
polarized nets, and it is the simplest known criterion for proof nets. It is based

50 B. Accattoli

on the notion of correction net, which—as usual for nets with boxes—is obtained
by collapsing boxes into generalized axiom links, i.e. our �-links (see Fig. 1).

Definition 6 (Correction net). Let P be a net. The correction net P 0 of P
is the net obtained from P by collapsing each !-box at level 0 in P into a �-link
with the same interface, by applying the rule in Fig. 2c.

Definition 7 (Correctness). A net P is correct if:

– Root: the root of P induces the only terminal m-node of P 0.
– Acyclicity: P 0 is acyclic.
– Recursive correctness: the box of every !-link at level 0 is correct.

An example of net that is not correct is in Fig. 2d: the correction net obtained
by collapsing the box indeed has a cycle.

Note that acyclicity provides an induction principle on correct nets, because
it implies that there is a maximal length for paths in the correction net associated
to the net.

Proof Nets are Correct. As usual, an easy and omitted induction on the trans-
lation shows that the translation of an expression is correct, i.e. that:

Proposition 8 (Proof nets are correct). Let e be an expression and Δ a set
of variables. Then eΔ is a correct net of free variables fv(e) ∪ Δ. Moreover,

1. if e is a term then eΔ is a term net and their variables have the same multi-
plicity, that is, |e|x = |eΔ|x for every variable x.

2. if e is a context then eΔ is a context net.

Linear Skeleton. We have the following strong structural property.

Lemma 9 (Linear skeleton). Let P be a correct net. The linear skeleton of
P 0, given by m-nodes and the red (or linear) paths between them, is a linear
order.

4 Sequentialisation and Quotient

In this section we prove the sequentialisation theorem and the fact that the
quotient induced by the translation on terms is exactly the structural equivalence
≡ of the LSC.

Subnets. The first concept that we need is the one of subnet Q of a correct
net P , that is a subset of the links of P plus some closure conditions. These
conditions avoid that Q prunes the interior of a box in P , or takes part of the
interior without taking the whole box, or takes only some of the premises of an
internal contraction.

For the sake of simplicity, in the following we specify sub-hyper-graphs of a
net by simply specifying their set of links. This is an innocent abuse, because—by
definition of (pre-)net—there cannot be isolated nodes, and so the set of nodes
is retrievable from the set of links. Similarly, the boxes of !-links are inherited
from the net.

Proof Nets and the Linear Substitution Calculus 51

Definition 10 (Subnet). Let P be a correct net. A subnet Q of P is a subset of
its links such that it is a correct net (with respect to the ibox function inherited
from P) and satisfies the following closure conditions:

– Contractions: l ∈ Q for any link l of P having as target an internal e-node
of Q.

– Box interiors: ibox(h) ⊆ Q for any !-link h ∈ Q.
– Box free variables: ibox(l) ⊆ Q if a free variable of ibox(l) is internal to Q.

Decomposing Correct Nets. Sequentialisation shall read back an expression by
progressively decomposing a correct net. We first need some terminology about
boxes.

Definition 11 (Kinds of boxes). Let P be a correct net. A !-link l of P is:

– free if it is at level 0 in P and its free variables are free variables of P .
– an argument if its e-node is the target of a ⊗-link;
– a substitution if its e-node is the target of a {w, d, 〈·〉}-link (or, equivalently,

if it is not the target of a ⊗-link).

The following lemma states that, in correct nets whose root structure is
similar to the translation of an expression, it is always possible to decompose
the net in correct subnets. The lemma does not state the correctness of the
interior of boxes because they are correct by definition of correctness.

Lemma 12 (Decomposition). Let P be a correct net.

1. Free weakening: if P has a free weakening l then links(P) \ l is a subnet of
P .

2. Root abstraction: if the root link l of P is a `-link then links(P) \ l is a
subnet of P .

3. Free substitution: if P has a free substitution l then links(P)\({l}∪ibox(l))
is a subnet of P .

4. Root application with free argument: if the root link l of P is a ⊗-link whose
argument is a free !-link h then links(P) \ ({l, h} ∪ ibox(h)) is a subnet of
P .

Definition 13 (Decomposable net). A correct net P is decomposable if it is
in one of the hypothesis of the decomposition lemma (Lemma 12), that is, if it
has a free weakening, a root abstraction, a free substitution, or a root application
with free argument.

The last bit is to prove that every correct net is decomposable, and so,
essentially corresponds to the translation of an expression.

Lemma 14 (Correct nets are decomposable). Let P be a correct net with
more than one link. Then P is decomposable.

52 B. Accattoli

We now introduce the read back of correct net as expressions, which is the
key notion for the sequentialisation theorem. Its definition relies, in turn, on the
various ways in which a correct net can be decomposed, when it has more than
one link.

Definition 15 (Read back). Let P be a correct net and e be an expression.
The relation e is a read back of P , noted P � e, is defined by induction on the
number of links in P :

– One link term net: P is a d-link of e-node x. Then P � x;
– One link context net: P is a 〈·〉-link of e-nodes Δ. Then P � 〈·〉Δ;
– Free weakening: P has a free weakening l and P \ l � e. Then P � e;
– Root abstraction: the root link l of P is a `-link of e-node x and P \ l � e.

Then P � λx.e;
– Free substitution: P has a free substitution l of e-node x, P \({l}∪ibox(l))�e,

and ibox(l) � f . Then P � e[x�f].
– Root application with free argument: the root link l of P is a ⊗-link whose

argument is a free !-link h, P \ ({l, h} ∪ ibox(h)) � e, and ibox(h) � f . Then
P � ef .

We conclude the section with the sequentialisation theorem, that relates
terms and proof nets at the static level. Its formulation is slightly stronger than
similar theorems in the literature, that usually do not provide completeness.

Theorem 16 (Sequentialisation). Let P be a correct net and Δ be the set of
e-nodes of its free weakenings.

1. Read backs exist: there exists e such that P � e with fv(e) = fv(P).
2. The read back relation is correct: for all expressions e, P � e implies eΔ = P

and fv(P) = fv(e) ∪ Δ.
3. The read back relation is complete: if eΓ = P then P �e and Γ ⊆ fv(P)∪Δ.

Quotient. Next we prove that structural equivalence on the LSC is exactly the
quotient induced by proof nets. We invite the reader to look at the proof of
the following quotient theorem. The ⇐ direction essentially follows from figure
Fig. 4, where for simplicity we have omitted the contractions of common variables
for the subnets. The ⇒ direction is the tricky point. Note that ≡-classes do not
admit canonical representantives, because the ≡com axiom is not orientable, and
so it is not possible to rely on some canonical read back. The argument at work
in the proof is however pleasantly simple.

Theorem 17 (Quotient). Let P be correct term net. Then, t = P and s = P
if and only if t ≡ s.

Proof Nets and the Linear Substitution Calculus 53

Fig. 4. Structural equivalent terms translate to the same proof nets (contractions of
common variables are omitted).

5 Contexts

This short section develops a few notions about relating contexts in the two
frameworks. We only deal with what is strictly needed to relate rewriting steps on
terms and on term nets—a more general treatment is possible, but not explored
here, for the sake of simplicity.

The plugging operation can also be done on context nets.

Definition 18 (Plugging on context nets). Let P be a context net and let Δ
be the free variables of its 〈·〉-link l. The plugging of a net Q with free variables
Γ ⊆ Δ in P is the net P 〈Q〉 obtained by

– if l is at level 0:
• Replacement: replacing l with Q;
• Weakening unused variables in the interface: adding a weakening h on

every variable x ∈ (Δ \ Γ) not shared in P (or whose only incoming link
in P is l).

– if l is in ibox(h) for a !-link h at level 0 then:
• Recursive plugging: replacing the links of ibox(h) with those in

ibox(h)〈Q〉, inheriting the boxes;
• Pushing weakenings out of the box: redefining ibox(h) as ibox(h)〈Q〉 less
its free weakenings, if any.

The next lemma relies plugging in context nets with the corresponding read
backs.

Lemma 19 (Properties of context nets plugging). Let P be a context net
of interface Δ, Q a correct net with free variables Γ ⊆ Δ. Then

54 B. Accattoli

1. Correctness: P 〈Q〉 is correct;
2. Read back: if P � CΔ and Q � e then P 〈Q〉 � CΔ〈e〉.

From the read back property, a dual property follows for the translation.

Lemma 20 (Context-free translation). Let CΔ a context, e an expression
such that fv(e) ⊆ Δ, and Γ a set of variables. Then CΔ〈e〉

Π
= CΔΓ

〈e〉 where
Π = Γ ∪ (Δ \ cv(CΔ)).

The following lemma shall be used to relate the exponential steps in the two
systems. The proof is a straightforward but tedious induction on P �CΔ, which
is omitted.

Lemma 21 (Read back and free variable occurrences). Let P � t be a
term net with a fixed read back, l be a d-link of P whose e-node x is a free
variable of P . Then for every set of variable names Δ there are a context C and
a context net Q, both of interface Δ ∪ {x}, such that

1. Net factorisation: Q〈l〉 = P ;
2. Term factorisation: C〈〈x〉〉 = t; and
3. Read back: Q � C.

6 Micro-step Operational Semantics

Here we define the rewriting rules on proof nets and prove the isomorphism of
rewriting systems with respect to the LSC. Since the rules of the LSC and those
of proof nets match perfectly, we use the same names and the same notations
for them.

The Rules. The rewriting rules are in Fig. 5. Let us explain them. First of all,
note that the notion of cut in our syntax is implicit, because cut-links are not
represented explicitly. A cut is given by a node whose incoming and outgoing
connections are principal (i.e. with a little dot on the line).

The multiplicative rule →m is nothing but the usual elimination of a multi-
plicative cut, adapted to our syntax. The matching with the rule on terms is
shown in Fig. 5.

The garbage collection rule →gc corresponds to a cut with a weakening. It is
mostly as the usual rule, the only difference is with respect to the reduct. The
box of the !-link is erased and replaced by a set of weakenings, one for every
free variable of Q—this is standard. Each one of these new weakenings is also
pushed out of all the mi boxes closing on its e-node. This is done to preserve the
invariant that weakenings are always pushed out of boxes as much as possible.
Such an invariant is also used in the rule: note that the weakening is at the same
level of Q. Last, if the weakenings created by the rule are contracted with any
other link then they are removed on the fly, because by definition weakenings
cannot be contracted.

The Milner exponential rule →e is the most unusual rule, and—to our
knowledge—it has never been considered before on proof nets. There are two

Proof Nets and the Linear Substitution Calculus 55

Fig. 5. Proof nets cut-elimination rules, plus—in the bottom-left corner—the matching
of the multiplicative rule on terms and on term nets (forgetting, for simplicity, about
the contraction of common variables for the boxes, and the fact that xj can occur in
ui for i < j).

unusual points about it. The first one is that the redex crosses box borders, as
the d-link is potentially inside many boxes, while the !-link is out of those boxes.
In the literature, this kind of rules is usually paired with a small-step operational
semantics (e.g. in [41]), that is, all the copies of the box are done in a single shot.
Here instead we employ a micro-step semantics, as also done in [4]—that paper
contains a discussion about this box-crossing principle and its impact on the
rewriting theory of proof nets.

The second unusual point is the way the cut is eliminated. Roughly, it cor-
responds to a duplication of the box (so a contraction cut-elimination) imme-
diately followed by commutation with all the boxes and opening of the box (so
a dereliction cut-elimination). We say roughly, because there is a difference: the
duplication happens also if the d-link is not contracted. Exactly as in the LSC,
indeed, the →e rule duplicates the ES even if there are no other occurrences

56 B. Accattoli

of the replaced variable. In case the d-link is not contracted, the rule puts a
weakening on the e-node source of the !-link.

The Isomorphism. Finally, we relate the evaluation of proof nets and of the LSC.

Theorem 22 (Dynamic isomorphism). Let P � t be a correct net with a
fixed read back, and a ∈ {m, e, gc}. There is a bijection φ between a-redexes of t
and P such that:

1. Terms to proof nets: given a redex R : t →a s then there exists Q such that
φ(R) : P →a Q and Q � s.

2. Proof nets to terms: given a redex R : P →a Q then there exists s such that
φ−1(R) : t →a s and Q � s.

From Theorem 22 it immediately follows that cut-elimination preserves cor-
rectness, because the reduct of a correct net is the translation of a term, and
therefore it is correct.

Corollary 23 (Preservation of correctness). Let P be a term net and
P → Q. Then Q is correct.

The perfect matching also transfers to proof nets the residual system of the
LSC defined in [8]. Finally, the dynamic isomorphism (Theorem22) combined
with the quotient theorem (Theorem 17) also provides a new proof of the strong
bisimulation property of structural equivalence (Proposition 2).

7 Abstracting Proof Nets from a Rewriting Point of View

In this section we provide a new, rewriting-based perspective on proof nets.

Cut Commutes with cut. One of the motivations for proof nets is the fact that
cut-elimination in the sequent calculus has to face commutative cut-elimination
cases. They are always a burden, but most of them are harmless. There is however
at least one very delicate case, the commutation of cut with itself, given by:

γ
:

� Γ, B

π
:

� Γ, A

θ
:

� Γ, A, B
cut� Γ, B

cut� Γ

→
π
:

� Γ, A

γ
:

� Γ, B

θ
:

� Γ, A, B
cut� Γ, A

cut� Γ

Such a commutation is delicate because it can be iterated, creating silly loops.
If one studies weak normalisation (i.e. the existence of a normalising path) then
it is enough to design a cut-elimination strategy that never commutes cut with
itself—this is what is done in the vast majority of cut-elimination theorems. But
if one is interested in strong normalisation (i.e., all paths eventually normalise),
then this is a serious issue. Morally, this is the conceptual problem behind proof
nets and also behind the design of good explicit substitution calculi—it could

Proof Nets and the Linear Substitution Calculus 57

be said that it is the rewriting issue of the Curry-Howard correspondence at the
micro-step granularity.

One way to address this problem is to introduce an equivalence relation
∼ on proofs including the commutation of cut with itself, and then to switch
to eliminate cuts modulo ∼. Rewriting modulo is a studied but technical and
subtle topic, see [43] Chapter 14.3. The problem is that cut-elimination → and ∼
in general do not interact nicely, in particular ∼ cannot be postponed, because
it creates →-redexes.

Proof nets are a different, more radical solution: a change of syntax in which
∼-classes collapse on a single object, the proof net, so that the problem of
the interaction between → and ∼ disappears. Proof nets seem, at first, elegant
objects, and certainly a brilliant solution to the problem, providing many new
intuitions about proofs. They are however heavy to manipulate formally, and it
would be often preferable to have an alternative, more traditional syntax with
similar properties.

Structural Rewriting Systems. The LSC is the prototype of a finer solution to
the problem of commuting cut with itself. In general, we said, → and ∼ do not
interact nicely. However, it is sometimes possible to redefine → so as to interact
nicely with ∼. Typically, the contextual rules of the LSC interact nicely with ≡
(≡ is the equivalence ∼ of the LSC, note in particular that axiom ≡com is exactly
commutation of cut with itself)—this is the motivation behind contextual rules,
sometimes also called at a distance. This suggests the following notion, which is
a special case of rewriting modulo an equivalence relation.

Definition 24 (Structural rewriting system). Let T be a set of objects, →
a rewriting relation and ∼ an equivalence relation over T . The triple (T,→,∼) is
a structural rewriting system (modulo) if ∼ is a strong bisimulation with respect
to →.

Note that the definition does not mention graphs. We can then see proof nets
and the LSC as instances of a single concept.

Proposition 25. Let →PN be the union of rules →m, →e, and →gc on proof
nets.

1. Proof nets with →PN are a structural rewriting sytem, by taking ∼ to be the
identity.

2. The LSC with →LSC and ≡ is a structural rewriting sytem.

Structural rewriting sytems can be exported to different settings, with no
need to bother about correctness criteria or graphical presentations, or the exis-
tence of a logical interpretation. For instance, in [3] there is a structural presen-
tation of a fragment of the π-calculus based on contextual rules, independently
of any logical interpretation.

58 B. Accattoli

8 Conclusions

This paper provides a perfect matching between the LSC and a certain presen-
tation of the fragment of linear logic representing the λ-calculus. In particular,
we prove that proof nets can be identified with the LSC up to structural equiv-
alence ≡, enabling one to reason about proof nets by means of a non-graphical
language.

We also discuss our approach with respect to the basic proof theoretical
problem of the cut rule commuting with itself. We try to suggest that the idea
behind our result goes beyond proof nets and the LSC, as it also applies to other
settings where rewriting has to interact with a notion of structural equivalence
such as the π-calculus.

Acknowledgments. To the reviewers, for useful comments. This work has been par-
tially funded by the ANR JCJC grant COCA HOLA (ANR-16-CE40-004-01).

References

1. Abadi, M., Cardelli, L., Curien, P.-L., Lévy, J.-J.: Explicit substitutions. J. Funct.
Program. 1(4), 375–416 (1991). https://doi.org/10.1017/S0956796800000186

2. Accattoli, B.: An abstract factorization theorem for explicit substitutions. In:
Tiwari, A. (ed.) Proceedings of 28th International Conference on Rewriting Tech-
niques and Applications, RTA 2012, May–June 2012, Nagoya, Leibniz International
Proceedings in Informatics, vol. 15, pp. 6–21. Dagstuhl Publishing, Saarbrücken,
Wadern (2012). https://doi.org/10.4230/lipics.rta.2012.6

3. Accattoli, B.: Evaluating functions as processes. In: Echahed, R., Plump, D. (eds.)
Proceedings of 7th International Workshop on Computing with Terms and Graphs,
TERMGRAPH 2013, March 2013, Rome, Electronic Proceedings in Theoreti-
cal Computer Science, vol. 110, pp. 41–55. Open Publishing Association, Sydney
(2013). https://doi.org/10.4204/eptcs.110.6

4. Accattoli, B.: Linear logic and strong normalization. In: van Raamsdonk, F. (ed.)
Proceedings of 29th International Conference on Rewriting Techniques and Appli-
cations, RTA 2013, June 2013, Eindhoven, Leibniz International Proceedings in
Informatics, vol. 21, pp. 39–54. Dagstuhl Publishing, Saarbrücken, Wadern (2013).
https://doi.org/10.4230/lipics.rta.2013.39

5. Accattoli, B.: Proof nets and the call-by-value λ-calculus. Theor. Comput. Sci.
606, 2–24 (2015). https://doi.org/10.1016/j.tcs.2015.08.006

6. Accattoli, B.: Proof nets and the linear substitution calculus. arXiv preprint
1808.03395 (2018). https://arxiv.org/abs/1808.03395

7. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: Pro-
ceedings of 19th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2014, Gothenburg, September 2014, pp. 363–376. ACM Press,
New York (2014). https://doi.org/10.1145/2628136.2628154

8. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardization
theorem. In: Proceedings of 41st ACM SIGPLAG-SIGACT Symposium on Princi-
ples of Programming Languages, POPL 2014, San Diego, CA, January 2014, pp.
659–670. ACM Press, New York (2014). https://doi.org/10.1145/2535838.2535886

https://doi.org/10.1017/S0956796800000186
https://doi.org/10.4230/lipics.rta.2012.6
https://doi.org/10.4204/eptcs.110.6
https://doi.org/10.4230/lipics.rta.2013.39
https://doi.org/10.1016/j.tcs.2015.08.006
https://arxiv.org/abs/1808.03395
https://doi.org/10.1145/2628136.2628154
https://doi.org/10.1145/2535838.2535886

Proof Nets and the Linear Substitution Calculus 59

9. Accattoli, B., Dal Lago, U.: (Leftmost-outermost) beta-reduction is invariant,
indeed. Log. Methods Comput. Sci. 12(1), Article 4 (2016). https://doi.org/10.
2168/lmcs-12(1:4)2016

10. Accattoli, B., Guerrini, S.: Jumping boxes. In: Grädel, E., Kahle, R. (eds.) CSL
2009. LNCS, vol. 5771, pp. 55–70. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-04027-6 7

11. Accattoli, B., Kesner, D.: The structural λ-calculus. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 381–395. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15205-4 30

12. Accattoli, B., Kesner, D.: Preservation of strong normalisation modulo permuta-
tions for the structural λ-calculus. Log. Methods Comput. Sci. 8(1), Article 28
(2012). https://doi.org/10.2168/lmcs-8(1:28)2012

13. Asperti, A., Laneve, C.: Comparing λ-calculus translations in sharing graphs. In:
Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 1–15.
Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0014041

14. Barenbaum, P., Bonelli, E.: Optimality and the linear substitution calculus. In:
Miller, D. (ed.) Proceedings of of 2nd International Conference on Formal Struc-
tures for Computation and Deduction, FSCD 2017, Oxford, September 2017. Leib-
niz International Proceedings in Informatics, vol. 84, Article 9. Dagstuhl Publish-
ing, Saarbrücken/Wadern (2017). https://doi.org/10.4230/lipics.fscd.2017.9

15. Danos, V., Regnier, L.: Proof-nets and the Hilbert space. In: Girard, J.-Y., Lafont,
Y., Regnier, L. (eds.) Advances in Linear Logic. London Mathematical Society
Lecture Note Series, vol. 222, pp. 307–328. Cambridge University Press (1995).
https://doi.org/10.1017/cbo9780511629150.016

16. Danos, V.: La Logique Linéaire appliqué à l’étude de divers processus de normali-
sation (principalement du λ-calcul). Ph.D. thesis, Université Paris 7 (1990)

17. Danos, V., Regnier, L.: Reversible, irreversible and optimal λ-machines.
Theor. Comput. Sci. 227(1–2), 79–97 (1999). https://doi.org/10.1016/s0304-
3975(99)00049-3

18. Danos, V., Regnier, L.: Head linear reduction. Technical report (2004)
19. Di Cosmo, R., Kesner, D.: Strong normalization of explicit substitutions via cut

elimination in proof nets (extended abstract). In: Proceedings of 12th Annual IEEE
Symposium on Logic in Computer Science, LICS 1997, Warsaw, June–July 1997,
pp. 35–46. IEEE CS Press, Washington, D.C. (1997). https://doi.org/10.1109/lics.
1997.614927

20. Di Cosmo, R., Kesner, D., Polonowski, E.: Proof nets and explicit substitu-
tions. Math. Struct. Comput. Sci. 13(3), 409–450 (2003). https://doi.org/10.1017/
s0960129502003791

21. Ehrhard, T., Regnier, L.: Differential interaction nets. Electron. Notes Theor. Com-
put. Sci. 123, 35–74 (2005). https://doi.org/10.1016/j.entcs.2004.06.060

22. Fernández, M., Siafakas, N.: Labelled calculi of resources. J. Log. Comput. 24(3),
591–613 (2014). https://doi.org/10.1093/logcom/exs021

23. Girard, J.-Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4

24. Guerrini, S.: Proof nets and the λ-calculus. In: Ehrhard, T., Girard, J.-Y., Ruet, P.,
Scott, P. (eds.) Linear Logic in Computer Science. London Mathematical Society
Lecture Note Series, vol. 316, pp. 65–118. Cambridge University Press (2004).
https://doi.org/10.1017/cbo9780511550850.003

https://doi.org/10.2168/lmcs-12(1:4)2016
https://doi.org/10.2168/lmcs-12(1:4)2016
https://doi.org/10.1007/978-3-642-04027-6_7
https://doi.org/10.1007/978-3-642-04027-6_7
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.2168/lmcs-8(1:28)2012
https://doi.org/10.1007/BFb0014041
https://doi.org/10.4230/lipics.fscd.2017.9
https://doi.org/10.1017/cbo9780511629150.016
https://doi.org/10.1016/s0304-3975(99)00049-3
https://doi.org/10.1016/s0304-3975(99)00049-3
https://doi.org/10.1109/lics.1997.614927
https://doi.org/10.1109/lics.1997.614927
https://doi.org/10.1017/s0960129502003791
https://doi.org/10.1017/s0960129502003791
https://doi.org/10.1016/j.entcs.2004.06.060
https://doi.org/10.1093/logcom/exs021
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1017/cbo9780511550850.003

60 B. Accattoli

25. Gundersen, T., Heijltjes, W., Parigot, M.: Atomic λ calculus: a typed λ-calculus
with explicit sharing. In: Proceedings of 28th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2013, New Orleans, LA, June 2015, pp. 311–320.
IEEE CS Press, Washington, D.C. (2013). https://doi.org/10.1109/lics.2013.37

26. Kesner, D.: Reasoning about call-by-need by means of types. In: Jacobs, B.,
Löding, C. (eds.) FoSSaCS 2016. LNCS, vol. 9634, pp. 424–441. Springer, Hei-
delberg (2016). https://doi.org/10.1007/978-3-662-49630-5 25

27. Kesner, D., Conchúirl, S.Ó.: Milner’s λ calculus with partial substitutions.
Technical report, Université Paris 7 (2008). https://www.irif.fr/∼kesner/papers/
shortpartial.pdf

28. Kesner, D., Lengrand, S.: Extending the explicit substitution paradigm. In: Giesl,
J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 407–422. Springer, Heidelberg (2005).
https://doi.org/10.1007/978-3-540-32033-3 30

29. Kesner, D., Renaud, F.: The prismoid of resources. In: Královič, R., Niwiński, D.
(eds.) MFCS 2009. LNCS, vol. 5734, pp. 464–476. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-03816-7 40

30. Kesner, D., Ventura, D.: Quantitative types for the linear substitution calculus. In:
Diaz, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS, vol. 8705, pp. 296–310.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44602-7 23

31. Laurent, O.: Étude de la polarisation en logique. Ph.D. thesis, University Aix-
Marseille II (2002)

32. Laurent, O.: Polarized proof-nets and λμ-calculus. Theor. Comput. Sci. 290(1),
161–188 (2003). https://doi.org/10.1016/s0304-3975(01)00297-3

33. Lévy, J.-J.: Réductions correctes et optimales dans le λ-calcul. Ph.D. thesis, Uni-
versity Paris VII (1978)

34. Mackie, I.: Encoding strategies in the Λ calculus with interaction nets. In: But-
terfield, A., Grelck, C., Huch, F. (eds.) IFL 2005. LNCS, vol. 4015, pp. 19–36.
Springer, Heidelberg (2006). https://doi.org/10.1007/11964681 2

35. Mascari, G., Pedicini, M.: Head linear reduction and pure proof net extrac-
tion. Theor. Comput. Sci. 135(1), 111–137 (1994). https://doi.org/10.1016/0304-
3975(94)90263-1

36. Mellies, P.-A.: Typed λ-calculi with explicit substitutions may not terminate. In:
Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 328–
334. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0014062

37. Milner, R.: Functions as processes. Math. Struct. Comput. Sci. 2(2), 119–141
(1992). https://doi.org/10.1017/s0960129500001407

38. Milner, R.: Bigraphical reactive systems. In: Larsen, K.G., Nielsen, M. (eds.) CON-
CUR 2001. LNCS, vol. 2154, pp. 16–35. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-44685-0 2

39. Milner, R.: Local bigraphs and confluence: two conjectures (extended abstract).
Electron. Notes Theor. Comput. Sci. 175(3), 65–73 (2007). https://doi.org/10.
1016/j.entcs.2006.07.035

40. Muroya, K., Ghica, D.R.: The dynamic geometry of interaction machine: a call-
by-need graph rewriter. In: Goranko, V., Dam, M. (eds.) Proceeding of 26th
EACSL Annual Conference, CSL 2017, Stockholm, August 2017. Leibniz Inter-
national Proceedings in Informatics, vol. 82, Article 32. Dagstuhl Publishing,
Saarbrücken/Wadern (2017). https://doi.org/10.4230/lipics.csl.2017.32

41. Regnier, L.: λ-calcul et réseaux. Ph.D. thesis, University Paris VII (1992)
42. Regnier, L.: Une équivalence sur les λ-termes. Theor. Comput. Sci. 126(2), 281–292

(1994). https://doi.org/10.1016/0304-3975(94)90012-4

https://doi.org/10.1109/lics.2013.37
https://doi.org/10.1007/978-3-662-49630-5_25
https://www.irif.fr/~kesner/papers/shortpartial.pdf
https://www.irif.fr/~kesner/papers/shortpartial.pdf
https://doi.org/10.1007/978-3-540-32033-3_30
https://doi.org/10.1007/978-3-642-03816-7_40
https://doi.org/10.1007/978-3-662-44602-7_23
https://doi.org/10.1016/s0304-3975(01)00297-3
https://doi.org/10.1007/11964681_2
https://doi.org/10.1016/0304-3975(94)90263-1
https://doi.org/10.1016/0304-3975(94)90263-1
https://doi.org/10.1007/BFb0014062
https://doi.org/10.1017/s0960129500001407
https://doi.org/10.1007/3-540-44685-0_2
https://doi.org/10.1007/3-540-44685-0_2
https://doi.org/10.1016/j.entcs.2006.07.035
https://doi.org/10.1016/j.entcs.2006.07.035
https://doi.org/10.4230/lipics.csl.2017.32
https://doi.org/10.1016/0304-3975(94)90012-4

Proof Nets and the Linear Substitution Calculus 61

43. Terese: Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Sci-
ence, vol. 55. Cambridge University Press, Cambridge (2003)

44. Tranquilli, P.: Nets between determinism and nondeterminism. Ph.D. thesis, Uni-
versitá degli Studi Roma Tre/University Paris Diderot (2009)

45. Tranquilli, P.: Intuitionistic differential nets and λ-calculus. Theor. Comput. Sci.
412(20), 1979–1997 (2011). https://doi.org/10.1016/j.tcs.2010.12.022

46. Vaux, L.: λ-calcul différentiel et logique classique: interactions calculatoires. Ph.D.
thesis, University Aix-Marseille II (2007)

47. Wadsworth, C.P.: Semantics and pragmatics of the λ-calculus. Ph.D. thesis, Uni-
versity of Oxford (1971)

https://doi.org/10.1016/j.tcs.2010.12.022

Modular Design of Domain-Specific
Languages Using Splittings

of Catamorphisms

Éric Badouel1(B) and Rodrigue Aimé Djeumen Djatcha2

1 Inria Rennes – Bretagne Atlantique, IRISA, Campus universitaire de Beaulieu,
35042 Rennes Cedex, France
eric.badouel@inria.fr

2 Faculty of Sciences, University of Douala, Douala, Cameroon
djeumenr@yahoo.fr

Abstract. Language oriented programming is an approach to software
composition based on domain specific languages (DSL) dedicated to spe-
cific aspects of an application domain. In order to combine such languages
we embed them into a host language (namely Haskell, a strongly typed
higher-order lazy functional language). A DSL is then given by an alge-
braic type, whose operators are the constructors of abstract syntax trees.
Such a multi-sorted signature is associated to a polynomial functor. An
algebra for this functor tells us how to interpret the programs. Using
Bekić’s Theorem we define a modular decomposition of algebras that
leads to a class of parametric multi-sorted signatures, associated with
regular functors, allowing for the modular design of DSLs.

Keywords: Abstract syntax trees · Catamorphisms
Bekić’s Theorem · Component-based design
Domain specific languages

1 Introduction

Component-based design is acknowledged as an important approach to improv-
ing the productivity in the design of complex software systems, as it allows pre-
designed components to be reused in larger systems [14]. Instead of constructing
standalone applications the focus is on the use of libraries viewed as toolboxes
for the development of software product lines dedicated to some specific appli-
cation domain. Using such “components on the shelf” improves productivity in
developing software as well as the adaptability of the produced software with
respect to changes. Thus intellectual investment is better preserved. In order to
avoid redundancies a well designed domain specific library should have generic
constituents (using parametrization, inheritance or polymorphism) and then it

This work was partially supported by ANR Headwork.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 62–79, 2018.
https://doi.org/10.1007/978-3-030-02508-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_4&domain=pdf
http://orcid.org/0000-0002-0499-5231
http://orcid.org/0000-0003-0321-8665

Modular Design of DSL Using Splittings of Catamorphisms 63

can be seen as a small programming language in itself. Language oriented pro-
gramming [5,22] is an approach to software composition based on domain specific
languages (DSL) dedicated to specific aspects of an application domain. A DSL
captures the semantics of a specific application domain by packaging reusable
domain knowledge into language features. It can be used by an expert of that
domain who is provided with familiar notations and concepts rather that con-
fronted with a general purpose programming language.

Many DSLs have been designed and used in the past decades, however their
systematic study is a more recent concern. The design and implementation of a
programming language, even a simple one, is a difficult task. One has to develop
all the tools necessary to support programming and debugging in that language:
a compiler for source text analysis, type checking, generation and optimisation of
code, handling of errors... and also related tools for the generation of documen-
tation, the integration of graphic and text editing facilities, the synchronization
of multiple partial views, etc. Language adaptivity is another concern: it is very
hard to make a change to the design of a programming language. However some
domains of expertise may evolve in time, calling for frequent redesigns of the
associated DSL: will we have to go through the process all over again every
time? Finally, it might be difficult, if not impossible, to make different DSLs
collaborate within some application even though most applications do involve
different domains of expertise.

To alleviate these difficulties Hudak [10] suggested embedding the DSL into
a chosen general-purpose host language; and coined the expression Domain-
Specific Embedded Languages (or DSEL) to qualify them. Each DSEL inherits
from the host language all parts that are not specific to the domain. It also
inherits the compiler and the various tools used as a support to programming.
Finally each DSEL is integrated into a general-purpose language, namely its
host language; and several DSELs can communicate through their common host
language. A higher-order strongly-typed lazy functional language like Haskell is
an ideal host language since it can be viewed as a DSL for denotational semantics:
a language that can be used to describe the semantics of various programming
languages and thus also to combine them.

Recent language workbenches [7] like Intentional Programming [16,21] or the
Meta Programming System [5] from JetBrains envisage a system where one could
systematically scope and design DSLs with the ability to compose a language
for a particular problem by loading DSLs as various plug-ins. Each such plug-
in would incorporate meta-programming tools allowing one to program in the
corresponding DSL (browsing, navigating and editing syntax, extracting multi-
ple views or executable code). The core of such intensional representations are
abstract syntax trees associated to a multi-sorted signature whose operators are
the basic contructions of the language. These operators are usually interpreted
as closed higher-order functions (i.e., combinators). Following the higher-order
interpretation of attribute grammars [2,6,11] we shall assume that these com-
binators derive from the semantic rules of an attribute grammar built on the
multi-sorted signature.

64 É. Badouel and R. A. Djeumen Djatcha

Combining such DSLs requires considering a global grammar such that each
DSL is associated with some subgrammar. The global grammar need not be
constructed explicitly but we should be able to evaluate its abstract syntax trees
by combining the catamorphisms of the corresponding subgrammars.

In this paper we address this problem by introducing the so-called modular
grammars. The initial algebra of the polynomial functor associated with the
operators of the language coincides with its least fixed-point. This fixed-point
can be computed by a method of substitution using Bekić’s Theorem [4]. By
doing so the system of polynomial functors is transformed into a related system
of regular functors. We introduce a splitting operation on algebras producing an
algebra for the resulting system of regular functors from an algebra of the original
system of polynomial functors. This transformation preserves the interpretation
function (catamorphism).

2 Modular Domain Specific Languages

The syntax of a DSL is given by a multi-sorted signature Σ = (S,Ω) consisting
of a set of sorts S and a set of operators ω ∈ Ω where each operator has an
arity in S∗ and a sort in S. We let Ω(s1 · · · sn, s) denote the set of operators
ω ∈ Ω with arity s1 · · · sn ∈ S∗ and sort s ∈ S. Let us first assume that each
sort appears as the sort of some operator. Then the signature can be associated
with the endofunctor F : |Set|S → |Set|S such that

F (X)s =
∐

ω∈Ω(s1···sn,s)

Xs1 × . . . × Xsn

which we may write

F (X)s = {ω(x1, . . . , xn) | ω ∈ Ω(s1 · · · sn, s), (∀1 ≤ i ≤ n) xi ∈ Xsi
}

where ω(x1, . . . , xn) is used to denote the element (x1, . . . , xn) ∈ Xs1 × . . .×Xsn

that lies in the component indexed by ω. It is a polynomial functor (a sum of
products) and it has a least fixed-point F † made of the sorted Σ-trees. We readily
show by induction that it is also the initial algebra. Hence there exists a unique
morphism of F -algebra ([ϕ])F : F † → A, called a catamorphism associated with
each F -algebra ϕ : F (A) → A. Note that such an F -algebra is nothing more
than a Σ-algebra, namely a carrier set As associated with each sort s ∈ S
together with an interpretation function ωϕ : As1 × Asn

→ As for each ω ∈
Ω(s1 · · · sn, s). And the catamorphism amounts to interpreting the tree in the
algebra by replacing each symbol ω by its interpretation ωϕ and evaluating the
resulting expression.

Sorts that are used (they appear in arities of some operator) but not defined
(they do not coincide with the sort of any operator) are called the parameters of
the signature. When parameters exists the corresponding functor is no longer an
endofunctor but has the form F : |Set|p+n → |Set|n where we have assumed an
enumeration of the sorts with parameters coming first. Since |Set|p+n ∼= |Set|p×

Modular Design of DSL Using Splittings of Catamorphisms 65

|Set|n, functor F can be viewed as a parametric endofunctor F : |Set|p →
(|Set|n → |Set|n), and we can apply the results of the above discussion to each
of the endofunctors Fζ for ζ ∈ |Set|p. We readily verify that the fixed-point
construction gives rise to a functor (the so-called type functor such that F †ζ =
(Fζ)†) and the isomorphism Fζ

(
F †ζ

) ∼= F †ζ is natural in ζ. We let inF,ζ :
Fζ

(
F †ζ

) → F †ζ and outF,ζ : F †ζ → Fζ
(
F †ζ

)
stand for the inverse bijections

associated with this isomorphism. Again a Σ-algebra is nothing more than a
map ϕ : Fζξ → ξ where ζ ∈ |Set|p and ξ ∈ |Set|n. The catamorphism ([ϕ])F,ζ :
F †ζ → ξ associated with ϕ and ζ is characterized by the identity:

([ϕ])F,ζ ◦ inF,ζ = ϕ ◦ Fζ ([ϕ])F,ζ

Haskell functions are however interpreted in the category H = DCPO⊥ of
pointed dcpos and continuous functions. Thus we should replace the category of
sets and functions in the above discussion by H. However (see [1,15]) the category
of pointed dcpos and continuous functions does not have coproducts and thus the
above functorial interpretation of a signature does not seem to be possible. The
trick used by Haskell to represent its data types is to resort to the subcategory
C = DCPO⊥! of pointed dcpos and strict continuous functions. Finite products
in C are given by the cartesian products and the finite coproduct of two dcpos is
their coalesced sum A⊕B obtained from their disjoint union by identifying their
respective least elements: ⊥A⊕B = ⊥A = ⊥B . The lifting operator (−)⊥ consists
in adding a new least element to a given dcpo: A⊥ = A
 {⊥}. Finally, we let
the sum of pointed dcpos be given by

∑
1≤i≤n Ai = (A1)⊥ ⊕ · · · ⊕ (An)⊥ or

equivalently by
∑

1≤i≤n Ai = (A1
 · · ·
 An)⊥. When this sum has only two
operands it will be written with an infix notation: A+B = (A
 B)⊥. However,
we should pay attention to the fact that this binary operation is not associative
and that the corresponding n-ary operation cannot be presented as an iterated
application of the binary one: we rather have a family of operators indexed by
non-negative integers. The unary sum coincides with the lifting operator and the
nullary sum gives 1 = ()⊥ = {⊥, ()}. With these notations the following data
type definition in Haskell

data Tree a = Node a (Forest a)

data Forest a = Leaf | Cons (Tree a) (Forest a)

is associated with the (parametric) polynomial functor F : C3 → C2 such that
F (A, T, F) = ((A × F)⊥, 1 + (T × F)). Now, by observing that C(A⊥, B) ∼=
H(A,B) we deduce that an F -algebra ϕ : Fζα → α boils down to a continu-
ous Σ-algebra in the sense that all the carrier sets are pointed dcpos and the
interpretation functions are continuous functions. Hence the constituents of an
algebra can be expressed by Haskell functions as intended.

All mentioned results holds more generally for locally continuous functors
and in particular for the class of regular functors which is the least family of
functors from Cn to Cm that contains the projections and is closed by sum,
product, composition and the formation of type functors.

66 É. Badouel and R. A. Djeumen Djatcha

In the remaining parts of this section we introduce an example that will help
us to explain our approach to modularity of domain specific languages embedded
in Haskell.

2.1 DSL Associated with an Algebra

Let us consider a toy language for assembling elementary boxes. The following
is an Haskell definition of a data structure for such boxes.

data Box = Elembox | Comp {pos :: Pos, first, second :: Box}
data Pos = Vert VPos | Hor HPos

data VPos = Left | Right

data HPos = Top | Bottom

Thus a box is either an elementary box (which we suppose has a unit size: its
depth and height is 1) or is obtained by composing two sub-boxes. Two boxes can
be composed either vertically with a left or right alignment or horizontally with a
top or bottom alignment. The corresponding signature has a unique sort (Box),
a constant standing for an elementary box and four binary operators associated
with the various ways of assembling two sub-boxes in order to obtained a new
box. The related notions of algebra and evaluation morphism can be expressed
in Haskell as follows.

data AlgBox a = AlgBox {elembox :: a, comp :: Pos -> a -> a -> a}
eval :: AlgBox a -> Box -> a

eval (AlgBox elembox comp) = f where

f Elembox = elembox

f (Comp pos box1 box2) = comp (f box1) (f box2)

Now we need to make explicit the semantic aspects attached to a box: these
are methods to extract useful information from a box. For instance we might be
interested in representing a box by the list of origins of its elementary boxes,
which of course depends on its own origin. Another property is the size of the
box given by its height and depth. Thus a semantical domain for boxes would
be an element of the following class:

data Size = Size {depth , height :: Double} deriving Show

data Point = Point {xcoord, ycoord :: Double} deriving Show

class SemBox a where

list :: a -> Point -> [Point]

size :: a -> Size

An implementation of the language of boxes is given by an algebra whose
domain of interpretation for boxes is an element of the class SemBox. One needs
to specify the computations of the attributes size and list of a given box. For
that purpose we use an attribute grammar that provides the required algebra
following the higher-order functional approach to attribute grammars introduced
in [2,6,11].

Modular Design of DSL Using Splittings of Catamorphisms 67

data SBox = SBox{list :: Point -> [Point]

,size :: Size}
instance SemBox SBox where

list = list

size = size

lang :: AlgBox SBox lang = AlgBox elembox comp where

elembox = SBox (\ pt -> [pt])(Size 1 1)

-- comp :: Pos -> SBox -> SBox -> SBox

comp pos box1 box2 = SBox list’ size’ where

list’ pt = (list box1 (pi1 pt))++(list box2 (pi2 pt))

size’ = case pos of

Vert -> Size (max d1 d2)(h1 + h2)

Hor -> Size (d1 + d2)(max h1 h2)

pi1 (Point x y) = case pos of

Vert Left -> Point x y

Vert Right -> Point (x + (max (d2-d1) 0)) y

Hor Top -> Point x y

Hor Bottom -> Point x (y + (max (h2-h1) 0))

pi2 (Point x y) = case pos of

Vert Left -> Point x (y+h1)

Vert Right -> Point (x + (max (d1-d2) 0)) (y+h1)

Hor Top -> Point (x+d1) y

Hor Bottom -> Point x (y + (max (h1-h2) 0))

Size d1 h1 = size box1

Size d2 h2 = size box2

Using the algebra lang we can define derived operators

ebox :: SBox

ebox = elembox lang

hb, ht, vl, vr :: SBox -> SBox -> SBox

hb = cmp (Hor Bottom)

ht = cmp (Hor Top)

vl = cmp (Vert Left)

vr = cmp (Vert Right)

cmp = comp lang

We can also define their extensions on non-empty lists of boxes

hb*, ht*, vl*, vr* :: [SBox] -> SBox

hb* = foldl hb

ht* = foldl ht

vl* = foldl vl

vr* = foldl vr

For instance the following expression

box :: SBox

box = hb (vl (hb ebox ebox) ebox)

(vr ebox (vl ebox (ht ebox ebox)))

68 É. Badouel and R. A. Djeumen Djatcha

is a description of the compound box displayed in Fig. 1. The shape of this
expression follows exactly the shape of the corresponding data structure of type
Box but it is an Haskell function of type SBox; thus the expression size box
returns the size of that box.

y−coord

hb

vl vr

hb vl

ht

(0,0) x−coord

Fig. 1. A language of boxes

size box = Size{depth =4, height =3}

and the expression list box (Point 0 0) returns the corresponding list of located
elementary boxes when the box is positioned at the origin.

list box (Point 0 0)= [Point{xcoord=0,ycoord=1},
Point{xcoord=1,ycoord=1}, Point{xcoord=0,ycoord=2},
Point{xcoord=3,ycoord=0}, Point{xcoord=2,ycoord=1},
Point{xcoord=2,ycoord=2}, Point{xcoord=3,ycoord=2}]

Therefore we have interpreted some static data structure as an active object
on which one may operate using the corresponding methods

ebox :: SBox
cmp :: Pos → SBox → SBox → SBox
size :: SBox → Size
list :: SBox → Point → [Point]

(together with the derived operators: hb, ht, vl, and vr and their inductive
extensions). That set of functions constitutes the interface of this embedded
tiny language with its host language (Haskell).

Note that this language contains both the interpretation functions of the
algebra (ebox and cmp) and the methods of the considered semantic domain
(size and list). The description of the datatype SBox is not exported by the
module dedicated to the language of boxes but only the functions that allows to
build such boxes (ebox and cmp) or to use them (size and list).

Modular Design of DSL Using Splittings of Catamorphisms 69

2.2 Extension of a Domain Specific Language

Now, imagine that we seek to extend this language to allow an elementary box
to contain an image

data Image = Image {image :: a -> Point -> Maybe Color,

bb:: a -> Size}

represented as a function that returns the color of the point whose coordinates
relative to the upper left corner of the image are given as arguments. This func-
tion returns the undefined value Nothing (interpreted as “transparency”) if the
coordinates exceed the bounding box of the image. However, the image itself may
contain some transparent parts. In addition we may wish to allow sub-boxes to
be centered when composed (horizontally and vertically, see Fig. 2).

Hor
Bottom

Vert
Center

Hor
Center

Hor
Top

(0,0)

ord

abs

Fig. 2. A richer language of boxes (Color figure online)

The definition of the language can be adapted as follows:

data Box = Elembox {image :: Image}
| Comp {pos :: Pos, first, second :: Box}

data Pos = Vert VPos | Hor HPos

data VPos = Left | Center | Right

data HPos = Top | Center | Bottom

class SemBox a where

list :: a -> Point -> [(Point,Image)]

size :: a -> Size

The interface of a DSL is given by its algebra. An algebra consists of the
choice of a carrier set for each sort (the semantic domains of interpretation) and
a function of interpretation for each operator. Note that the precise definitions
of the carrier sets are not made visible. They are represented as abstract data
types (given by the two functions list and size for the basic version of our
example). If we want to reuse this DSL without modifying the existing code we
should kept the carrier sets unchanged. We may associate new methods with the
carrier sets of the algebra. But we are limited in this if the carrier sets cannot
simultaneously be extended. As far as the type SBox is concerned, it is clear

70 É. Badouel and R. A. Djeumen Djatcha

that any such function should be definable directly in terms of list and size;
so these are just derived methods. Still, we may envisage adding new operators.
For instance we may add the two operators vc = Vert (Vpos Center) and hc =
Hor (Hpos Center) to allow for extra ways of combining boxes. Then we should
be able to extend the interpretation functions (elembox and comp) for handling
these new operators while preserving the existing code. This problem has been
referred to as the “expression problem” by Philip Walder:

The goal is to define a data type by cases, where one can add new cases
to the data type and new functions over the datatype, without recompiling
existing code, and while retaining static type safety.

An elegant solution to this problem has been proposed by Wouter Swierstra in
[18] using a method akin to an implementation of the visitor pattern. Nonetheless
this method is no longer applicable if we are forced to reshape the carrier sets of
the algebra, which is indeed the case for the extension considered here. We may
even face more drastic changes imposed by the introduction of new operators.
For instance the semantic representation of a box as a list of elementary boxes
(containing an image of a given size) will not allow us to add a frame (of a given
width and color) around a box using a function:

frame :: SBox → Double → Color → SBox

The only reasonable choice to interpret the corresponding boxes seems to be the
following:

class SemBox a where

at :: a -> Point -> Image

size :: a -> Size

where box ′at′ pt provides the image formed by anchoring the box at the given
point. As in the preceding case, we have no other choice than to completely
overwrite the interpretation functions elembox and comp.

3 Decomposition of Catamorphisms

3.1 Modular Grammar

The above example and discussion make it clear that a modular approach to
DSLs requires that a basic module is dedicated to a specific set of sorts. Its
interface is given by an algebra presented both by a set of interpretation functions
for the operators and by methods that allow using objects of the carrier sets of the
algebra. To be more precise let L be a language with signature Σ = (S,Ω) and
F : Cp+n → Cn be its associated polynomial functor. Suppose that n = n1 + n2

and that the sorts S2 corresponding to indices in n2 are those defined by a
particular module L2 of L. Note that S = S0
 S1
 S2 where S0, such that
|S0| = p are the parameters of the grammar and S1, such that |S1| = n1, are

Modular Design of DSL Using Splittings of Catamorphisms 71

the sorts defined by L outside the considered module. The signature of L2 is
Σ2 = (S,Ω2) where Ω2 is the set of operators in Ω whose sorts belong to S2. Its
associated polynomial functor is the composition of F with the second projection
π
(n1,n2)
2 : Cn → Cn2 , namely F2 = π

(n1,n2)
2 ◦ F : Cp+n → Cn2 . Note that the

parameters of Σ2 are the elements of S0 ∪S1. Thus the sorts defined outside the
module are extra parameters for this module. Of course a module would normally
be given on a smaller set of sorts S′′ ⊆ S because it is usually defined prior to
the language that uses it and we cannot anticipate all the potential usages of
a module. Nonetheless, and for ease of presentation we assume as above that
S′′ = S. Indeed any signature can be viewed as a signature over a larger set of
sorts where the additional sorts play the role of extra parameters, even though
the interpretation functions will not use these arguments.

In order to implement language L, assuming that its submodule L2 already
exists, we have to define the interpretation functions for the operators in Ω \Ω2,
namely to provide an algebra for the functor F1 = π

(n1,n2)
1 ◦ F : Cp+n → Cn1 .

The parameters of this polynomial functor are the elements of S0 ∪ S2. However
we should distinguish between the parameters of the overall language L whose
carrier sets ζ ∈ |C|p can be arbitrarily chosen (parametric polymorphism) from
the sorts of S2 whose value should lie in F †

2 ζα1 if α1 ∈ |C|n1 corresponds to
the carrier sets for sorts in S1. Hence the data that is needed to reconstruct the
overall language from its submodule is an algebra for the residual functor F/F2

defined in the following categorical version of Bekić’s Theorem [4].

Theorem 1. Let a locally continuous functor F : Cp+n → Cn with n = n1 + n2

be decomposed on the form F = 〈F1, F2〉 where F1 = π
(n1,n2)
1 ◦ F : Cp+n → Cn1

and F2 = π
(n1,n2)
2 ◦ F : Cp+n → Cn2 where functors π

(n1,n2)
1 : Cn → Cn1 and

π
(n1,n2)
2 : Cn → Cn2 are the two canonical projections. Then

F † ζ = H ζ × K ζ

where
F/F2 = F1 ◦

〈
idp+n1 , F

†
2

〉
: Cp+n1 → Cn1

H = (F/F2)
† : Cp → Cn1

F ′
2 = F2 ◦ (〈idp,H〉 × idn2) : Cp+n2 → Cn2

K = F ′†
2 : Cp → Cn2

and id� : C� → C� stands for the identity functor of C�.

Bekić’s Theorem corresponds to the classical method of resolution by substitu-
tion. Indeed let y, x1 and x2 be variables ranging respectively over |C|p, |C|n1

and |C|n2 . Variable x1 of system F becomes a parameter for its subsystem F2. By
solving the latter we obtain a parametric solution F †

2 : Cp+n1 → Cn2 . We substi-
tute this solution for variable x2 in the system F1 thus leading to a new system
F/F2 = F1◦

〈
idp+n1 , F

†
2

〉
: Cp+n1 → Cn1 in which variable x2 no longer appears.

Solving this new system provides us with the x1 component of the solution of the

72 É. Badouel and R. A. Djeumen Djatcha

original system thus given by H = (F/F2)
† : Cp → Cn1 . We can substitute that

value into F2 in order to derive the system F ′
2 = F2 ◦(〈idp,H〉 × idn2) : Cp+n2 →

Cn2 whose resolution gives the x2 component of the solution of the original sys-
tem. The following lemma says that the x2 component of the solution of the
original system can alternatively be obtained by substituting the x1 component
of the solution of the original system (given by H) in the parametric solution
F †
2 : Cp+n1 → Cn2 . The condition expressed by this lemma appears in several

axiomatizations of parametric fixed-point operators [17], and in particular in the
theory of traced monoidal categories [12].

Lemma 1. K ζ � F †
2 ζ (H ζ)

Proof. First notice that F ′
2ζ (Kζ) = F2ζ (Hζ) (Kζ). The initial F ′

2, ζ-algebra

inF ′
2,ζ : F2ζ (Hζ) (Kζ) → Kζ

is thus an F2-algebra with parameters ζ × Hζ. We let

ι1 =
([

inF ′
2,ζ

])
F2,ζ×Hζ

: F †
2 ζ (H ζ) → Kζ

be the corresponding catamorphism which, by definition, satisfies

ι1 ◦ inF2,ζ×Hζ = inF ′
2,ζ ◦ F2ζ (Hζ) ι1

Symmetrically, since F2ζ(Hζ)
(
F †
2 ζ (Hζ)

)
= F ′

2ζ
(
F †
2 ζ (Hζ)

)
, we deduce that

the initial F2, ζ × Hζ-algebra inF2,ζ×Hζ : F2ζ(Hζ)
(
F †
2 ζ (Hζ)

)
→ F †

2 ζ (Hζ)

is an F ′
2, ζ-algebra. Let ι2 = ([inF2,ζ×Hζ])F ′

2,ζ : Kζ → F †
2 ζ (Hζ) denote

the corresponding catamorphism which, by definition, satisfies ι2 ◦ inF ′
2,ζ =

inF2,ζ×Hζ ◦ F2ζ(Hζ)ι2 . On the one hand it follows

ι1 ◦ ι2 ◦ inF ′
2,ζ = ι1 ◦ inF2,ζ×Hζ ◦ F2ζ(Hζ)ι2

= inF ′
2,ζ ◦ F2ζ (Hζ) ι1 ◦ F2ζ(Hζ)ι2

= inF ′
2,ζ ◦ F2ζ (Hζ) (ι1 ◦ ι2)

= inF ′
2,ζ ◦ F ′

2ζ (ι1 ◦ ι2)

and thus ι1 ◦ ι2 =
([

inF ′
2,ζ

])
F ′

2,ζ
= idKζ . On the other hand

ι2 ◦ ι1 ◦ inF2,ζ×Hζ = ι2 ◦ inF ′
2,ζ ◦ F2ζ (Hζ) ι1

= inF2,ζ×Hζ ◦ F2ζ(Hζ)ι2 ◦ F2ζ (Hζ) ι1
= nF2,ζ×Hζ ◦ F2ζ(Hζ) (ι2 ◦ ι1)

and thus ι2 ◦ ι1 = ([inF2,ζ×Hζ])F2,ζ×Hζ = idF †ζ(Hζ). The pair of morphisms

ι1 : F †
2 ζ (H ζ) → Kζ and ι2 : Kζ → F †

2 ζ (Hζ) thus constitutes the required
isomorphism K ζ � F †

2 ζ (H ζ). �

Corollary 1. F † = (F/F2)
†

� F †
2

Modular Design of DSL Using Splittings of Catamorphisms 73

where operation � is given by

Definition 1. The semidirect product (or cascaded composition) of functors
H : Cp → Cn and T : Cp+n → Cm is given by

H � T = 〈H,T ◦ 〈idp,H〉〉 : Cp → Cn+m

A module should be able to import other modules. This means that we should
be able to apply a hierarchical decomposition of a signature. However, because of
the presence of the type functor F †

2 , we shall no longer stay within the frame of
polynomial functors. Nonetheless, if we start from polynomial functors all con-
structions involved in Beckić’s Theorem remain in the family of regular functors.
We thus model a modular grammar as a combination of a polynomial functor,
that describes the operators whose sorts are locally defined, and a regular functor
associated with the imported definitions.

Definition 2. A modular grammar G = (F,D) is a pair that consists of a
polynomial functor F : Cp+n+m → Cn and a regular functor D : Cp+n → Cm.
The signature Σ = (S,Ω) associated with F concretizes the sorts and operators
of the grammar where S = Sp
 Sd
 Si with |Sp| = p, |Sd| = n, and |Si| = m.
Sorts in Sp are the parameters of G. A sort is said to be defined (respectively
imported) by G if it belongs to Sd (resp. Si). The regular functor represents the
imported definitions of the grammar. The functor associated with the modular
grammar is the (regular) functor

FG = F ◦ 〈idp+n,D〉 : Cp+n → Cn

We let F (G) = F and D(G) = D denote the respective components of modular
grammar G.

The following proposition states that the family of modular grammars is
closed by the operation of decomposition of a system into a subsystem and the
corresponding residual system as described in Bekić’s Theorem.

Proposition 1. Let G = (F,D) be a modular grammar with polynomial functor
F : Cp+n+m → Cn and regular functor D : Cp+n → Cm. If n = n1 + n2 then
π
(n1,n2)
2 ◦ FG = FG2 and FG/G2 = FG/FG2 where the second projection G2 =

π
(n1,n2)
2 (G) of modular grammar G is given by

F (G2) = π
(n1,n2)
2 ◦ F (G) : C(p+n1)+n2+m → Cn2

D(G2) = D(G) : C(p+n1)+n2 → Cm

and the residual operation is defined as

F (G/G2) = π
(n1,n2)
1 ◦ F (G) : Cp+n1+(n2+m) → Cn1

D(G/G2) = F †
G2

� D(G) : Cp+n1 → Cn2+m

74 É. Badouel and R. A. Djeumen Djatcha

Fig. 3. Decomposition of modular grammars

The situation is depicted in Fig. 3 where we note that the sorts defined by
the residual grammar G/G2 (its outputs) are additional parameters for the sub-
grammar G2, whereas the outputs of G2 are additional imported sorts for G/G2.

Proof. The identity π
(n1,n2)
2 ◦ FG = F

π
(n1,n2)
2 (G)

is immediate.

FG/FG2 = π
(n1,n2)
1 ◦ FG ◦ 〈idp+n1 , F

†
G2

〉
= π

(n1,n2)
1 ◦ F (G) ◦ 〈idp+n1+n2 ,D(G)〉〈idp+n1 , F

†
G2

〉

and
FG/G2 = F (G/G2) ◦ 〈idp+n1 ,D(G/G2)〉
= π

(n1,n2)
1 ◦ F (G) ◦ 〈idp+n1 , F

†
G2

� D(G)〉
= π

(n1,n2)
1 ◦ F (G) ◦ 〈idp+n1 , 〈F †

G2
,D(G) ◦ 〈idp+n1 , F

†
G2

〉〉〉
In order to prove FG/FG2 = FG/G2 if suffices to show that

〈idp+n1+n2 ,D(G)〉〈idp+n1 , F
†
G2

〉 = 〈idp+n1 , 〈F †
G2

,D(G) ◦ 〈idp+n1 , F
†
G2

〉〉〉

These two expressions are equal because they give rise to the same results when
composed with the three projections from C(p+n1)+n2+m to Cp+n1 , Cn2 , and Cm

respectively:
πp+n1,n2,m
1 ◦ E = idp+n1

πp+n1,n2,m
2 ◦ E = F †

G2

πp+n1,n2,m
3 ◦ E = D(G) ◦ 〈idp+n1 , F

†
G2

〉
�

By Corollary 1 it follows that

Corollary 2. F †
G

=
(
F †
G/G2

)
� F †

G2

Modular Design of DSL Using Splittings of Catamorphisms 75

3.2 Decomposition of Algebras

Using Bekić’s Theorem we now define a decomposition of algebras.

Definition 3. We let F : Cp+n → Cn be a locally continuous functor with n =
n1 +n2. Let moreover Φ : Fζα1α2 → α1 ×α2 be an Fζ-algebra (ζ ∈ |C|p) on the
domain α = α1 × α2 (α1 ∈ |C|n1 , and α2 ∈ |C|n2). Φ can be decomposed into

ϕ1 = π
(n1,n2)
1 (Φ) : F1 ζ α1 α2 → α1

ϕ2 = π
(n1,n2)
2 (Φ) : F2 ζ α1 α2 → α2

The (n1, n2)-splitting of Φ is the pair consisting of the (F/F2) ζ-algebra of domain
α1

πF/F2Φ � ϕ1 ◦
(
F1 ζ α1 (|ϕ2|)F2,ζ×α1

)
: F1 ζ α1

(
F †
2 ζ α1

)
→ α1

together with the F2 (ζ × α1)-algebra of domain α2

πF2Φ � ϕ2 : F2 ζ α1 α2 → α2

The operation of decomposition of algebras is thus given as:

Split(n.m) : AlgF,ζ(α1 × α2) → (
AlgF/F2,ζ(α1)

) × (AlgF2,ζ×α1(α2))
Split(n1,n2) Φ =

(
πF/F2Φ, πF2Φ

)

Thus an algebra Φ = ϕ1×ϕ2 : Fζα1α2 → α1×α2 is decomposed into an algebra
πF2Φ = ϕ2 : F2 ζ α1 α2 → α2 for the “subsystem” F2 together with an algebra
πF/F2Φ : F/F2ζα1 → α1 for the “residual system” F/F2. The following result
shows that the catamorphism (evaluation function) associated with the algebra
Φ for the overall system can be reconstructed from the catamorphisms associated
respectively with πF2Φ and πF/F2Φ using a semidirect product operation which
we first introduce.

In Definition 1 we defined the semidirect product of two functors H : Cp →
Cn and T : Cp+n → Cm as

H � T = 〈H,T ◦ 〈idp,H〉〉 : Cp → Cn+m

By functoriality of the product and composition we deduce a related operation
of semidirect product of natural transformations η : H

·→ H ′ and τ : T
·→ T ′

where H,H ′ : Cp → Cn and T, T ′ : Cp+n → Cm given by

(η � τ)ζ = ηζ × (τζ,H′ζ ◦ Tζηζ) = ηζ × (T ′ζηζ ◦ τζ,Hζ)

Considering the special case where the target functors H ′ and T ′ are constant
functors leads us to the following definition

Definition 4. The semidirect composition of two maps f : Hζ → α and g :
Tζα → β where H : Cp → Cn and T : Cp+n → Cm is the map f � g :
(H � T) ζ → α × β given by (f � g) = f × (g ◦ Tζf).

76 É. Badouel and R. A. Djeumen Djatcha

Using this operation we can now state

Theorem 2. Up to the isomorphisms F †ζ = Hζ ×Kζ and Kζ = F †
2 ζ (Hζ) one

has
([Φ])F,ζ =

([
πF/F2Φ

])
F/F2,ζ

� ([πF2Φ])F2,ζ×α1

Lemma 2. Up to the isomorphism F †ζ = Hζ × Kζ the initial algebra inF,ζ :
Fζ

(
F †ζ

) → F †ζ decomposes to the form inF,ζ = inH,ζ × inK,ζ where inH,ζ :
F1ζ(Hζ)(Kζ) → Hζ and inK,ζ : F2ζ(Hζ)(Kζ) → Kζ are respectively given by
inH,ζ = inF/F2,ζ ◦ (F1ζ(Hζ)ι2) and inK,ζ = inF ′

2,ζ .

Proof. The initial algebra is an isomorphism and the converse also holds true
(any algebra which is an isomorphism is initial) when we have uniqueness of
fixed-point (up to isomorphism) which is indeed the case here.

inH,ζ = inF/F2,ζ ◦ (F1ζ(Hζ)ι2) : F1ζ(Hζ)(Kζ) → Hζ

and inK,ζ = inF ′
2,ζ : F2ζ(Hζ)(Kζ) → Kζ are isomorphisms and thus

inH,ζ × inK,ζ : Fζ(Hζ)(Kζ) → Hζ × Kζ

is the initial algebra of functor F . �

Corollary 3. Up to the isomorphism F †ζ = Hζ × Kζ, the two parts f : Hζ →
α1 and g : Kζ → α2 of catamorphism ([Φ])F,ζ = f × g are characterized by
f ◦ inH,ζ = ϕ1 ◦ Fζfg and g ◦ inK,ζ = ϕ2 ◦ F2ζfg.

Lemma 3. For any morphism f : Hζ → α1 one has

([ϕ2 ◦ F2ζfα2])F ′
2,ζ = ([ϕ2])F2,ζ×α1

◦
(
F †
2 ζf

)
◦ ι2 : Kζ → α2

and that morphism g(f) satisfies g(f) ◦ inK,ζ = ϕ2 ◦ (F2 ζ f g(f)).

Proof. By definition F †
2 ζf =

([
inF2,ζ×α1 ◦

(
F2 ζ f

(
F †
2 ζα1

))])

F2,ζ×Hζ
and

that morphism satisfies

F †
2 ζf ◦ inF2,ζ×Hζ = inF2,ζ×α1 ◦

(
F2 ζ f

(
F †
2 ζα1

))
◦ F2ζ (Hζ)

(
F †
2 ζf

)

It follows that

([ϕ2])F2,ζ×α1
◦

(
F †
2 ζf

)
◦ ι2 ◦ inF ′

2,ζ

= ([ϕ2])F2,ζ×α1
◦

(
F †
2 ζf

)
◦ inF2,ζ×Hζ ◦ F2ζ(Hζ)ι2

= ([ϕ2])F2,ζ×α1
◦ inF2,ζ×α1 ◦

(
F2 ζ f

(
F †
2 ζα1

))
◦ F2ζ (Hζ)

(
F †
2 ζf

)
◦

F2ζ(Hζ)ι2
= ϕ2 ◦ F2ζα1 ([ϕ2])F2,ζ×α1

◦
(
F2 ζ f

(
F †
2 ζα1

))
◦ F2ζ (Hζ)

(
F †
2 ζf ◦ ι2

)

= ϕ2 ◦ F2ζfα2 ◦ F2ζ (Hζ) ([ϕ2])F2,ζ×α1
◦ F2ζ (Hζ)

(
F †
2 ζf ◦ ι2

)

= (ϕ2 ◦ F2ζfα2) ◦ F2ζ (Hζ)
(
([ϕ2])F2,ζ×α1

◦ F †
2 ζf ◦ ι2

)

Modular Design of DSL Using Splittings of Catamorphisms 77

and thus ([ϕ2 ◦ F2ζfα2])F ′
2,ζ = ([ϕ2])F2,ζ×α1

◦
(
F †
2 ζf

)
◦ ι2 . If we let g(f) �

([ϕ2])F2,ζ×α1
◦

(
F †
2 ζf

)
◦ ι2 denote this morphism, we deduce g(f) ◦ inK,ζ =

ϕ2 ◦ F2ζfα2 ◦ F2ζ (Hζ) g(f) = ϕ2 ◦ F2 ζ f g(f) because inK,ζ = inF ′
2,ζ . �

Lemma 4. If f : Hζ → α1 and g : Kζ → α2 are, up the isomorphism
F †ζ = Hζ × Kζ, the two parts of catamorphism ([Φ])F,ζ = f × g then f =([

ϕ1 ◦ F1ζα1 ([ϕ2])F2,ζ×α1

])

F/F2,ζ
and g = ([ϕ2 ◦ F2ζfα2])F ′

2,ζ .

Proof. By Corollary 3 the two parts f : Hζ → α1 and g : Kζ → α2 of the
catamorphism ([Φ])F,ζ = f × g are characterized by f ◦ inH,ζ = ϕ1 ◦ Fζfg and

g ◦ inK,ζ = ϕ2 ◦ F2ζfg. Set f ′ =
([

ϕ1 ◦ F1ζα1 ([ϕ2])F2,ζ×α1

])

F/F2,ζ
and g′ =

g(f ′) = ([ϕ2 ◦ F2ζf ′α2])F ′
2,ζ . By the preceding lemma g′ ◦ inK,ζ = ϕ2 ◦F2 ζ f ′ g′

, moreover

f ′ ◦ inH,ζ

= f ′ ◦ inF/F2,ζ ◦ F1ζ(Hζ)ι2
= ϕ1 ◦ F1ζα1 ([ϕ2])F2,ζ×α1

◦ F1ζf ′
(
F †
2 ζf ′

)
◦ F1ζ(Hζ)ι2

= ϕ1 ◦ F1ζα1 ([ϕ2])F2,ζ×α1
◦ F1ζα1

(
F †
2 ζf ′

)
◦ F1ζf ′

(
F †
2 ζ(Hζ)

)
◦

F1ζ(Hζ)ι2
= ϕ1 ◦ F1ζα1 ([ϕ2])F2,ζ×α1

◦ F1ζα1

(
F †
2 ζf ′

)
◦ F1ζα1ι2 ◦ F1ζf ′(Kζ)

= ϕ1 ◦ F1ζα1

(
([ϕ2])F2,ζ×α1

◦ F †
2 ζf ′ ◦ ι2

)
◦ F1ζf ′(Kζ)

= ϕ1 ◦ F1ζα1g
′ ◦ F1ζf ′(Kζ)

= ϕ1 ◦ F1ζf ′g′

From which it follows that f ′ = f and g′ = g. �
Theorem 2 follows from Lemmas 3 and 4.

4 Conclusion

In this paper we relied on a modular decomposition of a (multi-sorted) signature
based on a hiearchical decomposition of its set of sorts in order to reconstruct
a language, specified by an algebra, by composition of the algebras associated
with its sublanguages. As mentioned in the introduction the global laguage would
normally be left implicit. Our result represents it as a cascaded composition of
its constituent sublanguages. This representation preserves catamorphisms. One
can then adopt an incremental approach consisting of growing a DSL by an
operation of composition of modular grammars derived from Bekić’s Theorem.
This approach differs from the solution of the “expression problem” proposed by
Swierstra in [18] which allows adding new operators for a fixed sort (or a fixed
set of sorts) and thus stays confined to a given module in our context.

We intend to apply the work presented in this paper to Guarded Attribute
Grammars [3]. It is a declarative model that describes the different ways of per-
forming a task by recursively decomposing it into more elementary subtasks.

78 É. Badouel and R. A. Djeumen Djatcha

This is formalized by the productions of an abstract context-free grammar (i.e.
a multi-sorted signature). The actual way a task is decomposed depends on
the choices made by the person to whom the task is assigned and on the data
attached to the task (inherited attributes whose values are refined over time).
Productions of the grammar are associated with guards that filter the rules
applicable in a given configuration. The evaluation of these guards is done incre-
mentally which means that a rule is allowed as soon as its guard is satisfied. This
allows the workspaces of different users to operate concurrently and in reactive
mode. The local grammar of a user specifies how he can behave in order to solve
the pending tasks in his workspace. It defines a DSL that captures the user’s
domain of expertise (his role). The lazy composition of roles is compatible with
the choice of Haskell as host language. Still, it remains to take side effects into
account, in particular for modelling user interactions. We might use the app-
roach proposed in [18] to represent the set of involved input-output actions as
a datatype in order to isolate the input-output side effects from the hiearchical
description of the system that would be specified, using the method presented
in this paper, with ordinary Haskell functions (without side effects).

As we have seen above, the splitting of algebras is an approach to modular
attribute grammars. This approach is orthogonal to, and thus can be combined
with, alternative approaches of modularity in attribute grammars [13] such as
the descriptional composition [8,9] or the composition by aspects [19,20].

Acknowledgement. We are very grateful to the reviewers for the relevance of their
comments which greatly helped us to improve the presentation of this work.

References

1. Abramsky, S., Jung, A.: Domain theory. In: Abramsky, S., Gabbay, D.M.,
Maibaum, T.S.E. (eds.) Handbook of Logic in Computer Science, Semantic Struc-
tures, vol. 3, pp. 1–168. Clarendon Press, Oxford (1994)

2. Backhouse, K.: A functional semantics of attribute grammars. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 142–157. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-46002-0 11

3. Badouel, E., Hélouët, L., Morvan, C., Kouamou, G., Nsaibirni, R.F.J.: Active
workspaces: distributed collaborative systems based on guarded attribute gram-
mars. SIGAPP Appl. Comput. Rev. 15(3), 6–34 (2015). https://doi.org/10.1145/
2695664.2695698

4. Bekić, H.: Definable operations in general algebras, and the theory of automata
and flowcharts. In: Jones, C.B. (ed.) Programming Languages and Their Definition.
LNCS, vol. 177, pp. 30–55. Springer, Heidelberg (1984). https://doi.org/10.1007/
BFb0048939

5. Dmitriev, S.: Language oriented programming: The next paradigm. http://www.
onboard.jetbrains.com/articles/04/10/lop/

6. Fokkinga, M.M., Jeuring, J., Meertens, L., Meijer, E.: A translation from attribute
grammars to catamorphisms. Squiggolist 2(1), 20–26 (1991)

7. Fowler, M.: Language workbenches: the killer-app for domain specific languages.
http://www.martinfowler.com/articles/languageWorkbench.html

https://doi.org/10.1007/3-540-46002-0_11
https://doi.org/10.1145/2695664.2695698
https://doi.org/10.1145/2695664.2695698
https://doi.org/10.1007/BFb0048939
https://doi.org/10.1007/BFb0048939
http://www.onboard.jetbrains.com/articles/04/10/lop/
http://www.onboard.jetbrains.com/articles/04/10/lop/
http://www.martinfowler.com/articles/languageWorkbench.html

Modular Design of DSL Using Splittings of Catamorphisms 79

8. Ganzinger, H., Giegerich, R.: Attribute coupled grammars. In: Proceedings of 1984
SIGPLAN Symposium on Compiler Construction, Montréal, June 1984, pp. 157–
170. ACM Press, New York (1984). https://doi.org/10.1145/502874.502890

9. Giegerich, R.: Composition and evaluation of attribute coupled grammars. Acta
Inf. 25(4), 355–423 (1988). https://doi.org/10.1007/bf02737108

10. Hudak, P.: Building domain-specific embedded languages. ACM Comput. Surv.
28(4) (1996). article 196. https://doi.org/10.1145/242224.242477

11. Johnsson, T.: Attribute grammars as a functional programming paradigm. In:
Kahn, G. (ed.) FPCA 1987. LNCS, vol. 274, pp. 154–173. Springer, Heidelberg
(1987). https://doi.org/10.1007/3-540-18317-5 10

12. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. In: Mathematical
Proceedings of the Cambridge Philosophical Society, vol. 119, no. 3, pp. 447–468
(1996). https://doi.org/10.1017/s0305004100074338

13. Kastens, U., Waite, W.M.: Modularity and reusability in attribute grammars. Acta
Inf. 31(7), 601–627 (1994). https://doi.org/10.1007/bf01177548

14. Krueger, C.W.: Software reuse. ACM Comput. Surv. 24(2), 131–183 (1992).
https://doi.org/10.1145/130844.130856

15. Plotkin, G.: Post-graduate lectures notes in advanced domain theory (incorporating
the “Pisa Notes”). University of Edinburgh (1981)

16. Simonyi, C.: The death of computer languages, the birth of intentional program-
ming. In: Randell, B. (ed.) The Future of Software: Proceedings of Joint Interna-
tional Computers Ltd. and University of Newcastle Seminar. University of New-
castle (1995). (Also as Technical report MSR-TR-95-52, Microsoft Research, Red-
mond, WA)

17. Simpson, A.K., Plotkin, G.D.: Complete axioms for categorical fixed-point oper-
ators. In: Proceedings of 15th Annual IEEE Symposium on Logic in Computer
Science, LICS 2000, Santa Barbara, CA, June 2000, pp. 30–41. IEEE CS Press,
Washington (2000). https://doi.org/10.1109/lics.2000.855753

18. Swierstra, W.: Data types à la carte. J. Funct. Program. 18(4), 423–436 (2008).
https://doi.org/10.1017/s0956796808006758

19. Van Wyk, E.: Aspects as modular language extensions. Electron. Notes
Theor. Comput. Sci. 82(3), 555–574 (2003). https://doi.org/10.1016/s1571-
0661(05)82628-3

20. Van Wyk, E.: Implementing aspect-oriented programming constructs as modular
language extensions. Sci. Comput. Program. 68(1), 38–61 (2007). https://doi.org/
10.1016/j.scico.2005.06.006

21. Van Wyk, E., de Moor, O., Sittampalam, G., Piretti, I.S., Backhouse, K.,
Kwiatkowski, P.: Intensional programming: a host of language features. Techni-
cal report PRG-RR-01-21, Oxford University Computing Laboratory (2001)

22. Ward, M.P.: Language-oriented programming. Softw. Concepts Tools 15(4), 147–
161 (1994)

https://doi.org/10.1145/502874.502890
https://doi.org/10.1007/bf02737108
https://doi.org/10.1145/242224.242477
https://doi.org/10.1007/3-540-18317-5_10
https://doi.org/10.1017/s0305004100074338
https://doi.org/10.1007/bf01177548
https://doi.org/10.1145/130844.130856
https://doi.org/10.1109/lics.2000.855753
https://doi.org/10.1017/s0956796808006758
https://doi.org/10.1016/s1571-0661(05)82628-3
https://doi.org/10.1016/s1571-0661(05)82628-3
https://doi.org/10.1016/j.scico.2005.06.006
https://doi.org/10.1016/j.scico.2005.06.006

An Automata-Based View
on Configurability and Uncertainty

Martin Berglund1(B) and Ina Schaefer2

1 Department of Information Science and Center for AI Research,
Stellenbosch University, Private Bag X1 Matieland,

Stellenbosch 7602, South Africa
pmberglund@sun.ac.za

2 Institute of Software Engineering and Automotive Informatics,
Technische Universität Braunschweig, Mühlenpfordtstr. 23,

38106 Braunschweig, Germany
i.schaefer@tu-braunschweig.de

Abstract. In this paper, we propose an automata-based method for
modeling the problem of communicating with devices operating in con-
figurations which are uncertain, but where certain information is given
about the possible space of configurations, as well as probabilities for the
various configuration choices. Drawing inspiration from feature models
for describing configurability, an extensible automata model is described,
and two decision problems modeling the question of deciding the most
likely configuration (as a set of extensions) for a given communicat-
ing device are given. A series of hardness results (the entirely general
problems both being NP-complete) and efficient algorithms for relevant
restricted cases are then given.

1 Introduction

More and more small interconnected devices, building the internet of things
(IoT) [9], collaborate to complete spatial and temporal functionality. Commu-
nication between those devices is essential. This is complicated as devices in a
neighborhood are heterogeneous and also highly configurable, and it may not
necessarily be known for certain what configuration another system is in. How-
ever, to function robustly devices should be designed to be able to communicate
independent of configuration.

In this paper, we formally capture the problem of heterogeneous devices and
uncertain configuration. This is one of the first approaches to combine config-
urability and uncertainty. We rely on the notions used in software product line
engineering [7] and represent configurability with feature models [6], considering
a simplified concept of feature models then enhanced by the addition of probabil-
ities, denoting the likelihood with which a feature is included in a configuration.
This gives us a probability distribution over the configurations of devices and
also about the possible behaviors of device variants.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 80–98, 2018.
https://doi.org/10.1007/978-3-030-02508-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_5&domain=pdf

An Automata-Based View on Configurability and Uncertainty 81

In particular, we concern ourselves with firstly the question “given the
observed behavior, what is the likeliest configuration of this device”, addition-
ally considering the symmetrical “what is the likeliest configuration capable of
handling the inputs we wish to send”. A sketch of the process a device may go
through in such circumstances is shown in Fig. 1.

Fig. 1. Schematic view of a scenario where probabilistic deduction of the likely con-
figuration of devices comes into play. The rectangles are the steps taken by the device
concerned, first listening to the communications in the network, using that information
to deduce the likeliest configurations of the peer devices (using the known information
shown in ellipsis), and then using this deduced configuration to decide how to commu-
nicate with its peers.

That is, a device in the network may use the communications it observes
happening, knowledge of the possible space of configurations (on either a device-
by-device basis or globally), and the probabilities of configurations including
certain features, to deduce the likeliest configuration of its peers. It may then
use this deduced configuration to attempt communication. We model the device
behaviors in terms of finite automata accepting languages. As a consequence, if
communication fails the device can use the results to inform another attempt at
deduction, in a process reminiscent of Angluin learning [1].

We split the problem of deduction into two cases: one where we are con-
cerned with a single sequence of inputs or outputs, for example the execution of
a sequence of instructions (here represented by a sequence of symbols), and one
case where we have a whole family of inputs/outputs, here modeled as a, possi-
bly infinite, language of such symbolic strings (specifically a regular language).
In both cases we are primarily concerned with answering what is, and how likely
is, the most likely configuration which a device can be in to understand/process
these instructions. This is computed given a probabilistic model for how likely
various features are. In this paper we give a mix of hardness results, showing
that the natural way of phrasing these problems are NP-complete in general,
and constructive algorithms which are demonstrated to be efficient in some cir-
cumstances of practical interest (while also being correct for the general case).

82 M. Berglund and I. Schaefer

This paper starts in Sect. 2 with a more concrete example to set the scene
for the model proposed, followed by basic definitions of languages and automata
used in the later modeling in Sect. 3. In Sect. 4 the problem statements and
initial hardness results for the general problems are given. The next two sections
are primarily concerned with algorithms for restricted variants of the problems,
Sect. 5 for the case where a single set of instructions is considered, and Sect. 6 for
best-effort takes on the case where a family of instructions is considered. This is
all followed by conclusions and future work in Sect. 7.

2 Motivating Example

The problems studied in this paper are well framed by a device in an IoT network
attempting to communicate with its peers without certain knowledge of the
features which they are equipped with (which may be either software features or
hardware such as sensors and actuators). It is, however, assumed that the device
knows for certain the space of possible configurations, and needs to analyze
the probability of being understood either given observations of events in the
network, or based on a family of instructions it wishes to communicate.

We capture the configurability of an IoT-device by a simplified and extended
feature model [6]. A feature represents a configuration option, and a feature
model defines the constraints between those features, i.e., which features are
mandatory, optional and alternative and which features require or exclude each
other (which we only model to a limited level here). A configuration of an IoT
device is a subset of the features from the feature model satisfying the specified
constraints. For each feature, a set of artifacts is specified capturing the semantics
of the feature. By selecting the features for a configuration, the artifacts are
assembled corresponding to the behavior of the configuration. We extend this
view by attaching a probability to each feature in an IoT device’s feature model,
corresponding to the drop of probability1 involved in assuming the existence of
that feature in a deployed variant of the system (i.e., we model the likelihood that
the system has at least a given set of features, independent of other constraints,
so a system has a 100% chance of having at least the empty set of features).
Below is given an informal example.

Example 1. As an example, consider the following simple feature model: we have
a device which as base functionality can always accept the instruction “readX”
to query the value X. Beyond this it can be configured with the features:

F1. Monitoring drops probability by 10% but permits input sequences of the
form “monitorX · getX · getX · · · · getX · unmonitorX” for any number of
“getX”.

1 The devices as eventually defined will state the “outright” probability of a feature,
e.g. feature X has a 80% chance of being included, but as this probability does
not account for how the feature may interact with other features (e.g. X cannot be
combined with Y , which is very likely) it is often better for intuition to think about
it as including feature X causing a 20% drop of probability.

An Automata-Based View on Configurability and Uncertainty 83

F2. Logging drops probability by 50% but permits input sequences of the form
“log-readX · readX”, it also cannot be combined with F1.

F3 Logging monitoring drops probability by 30% and requires F2, it permits
sequences of both the form “monitorX · getX · getX · · · · getX · unmonitorX”
and “log-monX ·monitorX · getX · getX · · · getX · unmonitorX · log-unmonX”.

The most likely configuration which would be able to handle the instruction
sequence “log-mon ·monitorX · getX ·unmonitorX · log-unmon” is a configuration
including F2 with probability 50% times F3 with probability 70% (i.e. the drop
of 30% from including F3) for a total probability of 35%. It is in this case also
the only feature selection which will accept this sequence.

The product of the probabilities of all features in a configuration gives us
the probability of the configuration in the set of all possible configurations that
are compatible with the feature model. Considering the behaviors of the config-
urations, in this way we also obtain a probability distribution over the possible
behaviors of the variants of an IoT device, or if we stick to the language-based
characterization of the IoT device behavior, we have a probability distribution
of the possible input languages.

The model can also equivalently be viewed as associating a cost to features (or
even independent probabilities and costs melded into a single weight), making
the results presented correspond to answering the question “how cheaply can
a device variant with this behavior be constructed, given this feature model”.
These costs could be either monetary, or actually simply resource constraints
(memory, storage, processing power, etc.)

Given such a framework many possible problems involving uncertainty and
variability in IoT networks can be stated. For a given IoT device d with the
output language Ld (which is known with certainty):

– Given that another IoT device b has been observed producing the output
w (i.e. this sequence has been observed as output) what is the most likely
configuration of b? Using this information, the device d can compute the input
language Lb which the configuration gives b, letting it choose instructions only
among Ld ∩ Lb when attempting to communicate.

– What is the most likely configuration which would let another IoT device b
understand the device d, i.e., what is the likeliest configuration giving b an
input language Lb such that the output language of d is fully included, having
Ld ⊆ Lb?

– Looking forward into future work, given a set of IoT devices {d1, . . . , dn},
how likely is it that a set of IoT devices of a given size understands the device
d, i.e., Ld ⊆ Ldi

for some i?

To keep matters manageable we do not consider the relation of inputs and
outputs here, conflating all questions into configuring a single automaton to
accept given strings or sublanguages. Replacing these devices with transducers,
modeling a more full behavior, is left as future work.

84 M. Berglund and I. Schaefer

3 Definitions

3.1 Basic Notation

For a set S we let 2S denote the powerset of S. For a function f we let dom(f)
denote its domain and range(f) its range. An alphabet is a finite set of symbols,
usually denoted Σ, as usual we denote by Σ∗ the set of all strings over Σ. The
empty string is denoted ε.

3.2 Automata Definitions

The automata here considered will all be accept languages which are ultimately
regular, though additional meaning and expressiveness will be achieved beyond
simple finite automata. Let us, however start by recalling the definition of finite
automata.

Definition 1. A finite automaton (FA) A is a tuple (Q,Σ, q0, δ, F) where (i) Q
is the finite set of states; (ii) Σ is the input alphabet; (iii) q0 ∈ Q is the initial
state; (iv) δ ⊆ Q × Σ × Q is the transition relation; and; (v) F ⊆ Q is the set
of final states.

We distinguish the following properties: A is deterministic (a DFA) if there
exists at most one (q, α, q′) ∈ δ for each q and α. It is otherwise non-
deterministic (an NFA). A is the (unique up to relabeling) minimal DFA if there
exists no DFA B which accepts the same language but has fewer states.

Definition 2. For an FA A = (Q,Σ, q0, δ, F) we write q
α−→A q′ if q, q′ ∈ Q,

α ∈ Σ and (q, α, q′) ∈ δ. We may elide the A subscript if obvious from context,
and if both q

α−→ q′ and q′ β−→ q′′ for q′′ ∈ Q and β ∈ Σ we may write either
q

α−→ q′ β−→ q′′, or, when the intervening state is not of interest, even q
αβ−−→ q′′.

When q
w−→ q′ we say that q′ is reachable from q on the string w ∈ Σ∗.

The language accepted by A, denoted L(A), is the set {w ∈ Σ∗ | q0
w−→A

qf for qf ∈ F}. The size of A is defined as |δ|.
With the usual finite automata out of the way we enter into the realm of

extensible automata, which act as a template from which a (possibly exponen-
tially large) family of automata can be constructed.

Definition 3. An extensible automaton A is a tuple A = (B,Δ,wt) where
(i) B = (Q,Σ, q0, δ, F) is a DFA, the base automaton;
(ii) Δ ⊆ 2Q×Σ×Q are the extension transition sets; and; (iii) wt is the weight

function, which as domain has 2Δ and has an arbitrary totally ordered (by ≤)
range. It is assumed that it can be evaluated in constant time (e.g., it is repre-
sented by a precomputed table).

Here the common case is that the weight function will model the probabilities
of the extensions, but it is left generic on the level of definitions. The extensible
automata do not have language semantics in and of themselves, rather they in
turn specify finite automata.

An Automata-Based View on Configurability and Uncertainty 85

Definition 4. For an extensible automaton A = (B,Δ,wt), taking the base
automaton B = (Q,Σ, q0, δ, F), define for each {δ1, · · · , δn} ⊆ Δ the finite
automaton

A+{δ1,...,δn} = (Q,Σ, q0, δ ∪ δ1 ∪ · · · ∪ δn, F).

Any such A+Δ′ is called a realization of A. The weight of the realization Δ′ ⊆ Δ
is wt(Δ′). If A+Δ′ is deterministic the realization is called proper.

The size of A is defined as |B| +
∑

δ∈Δ |δ|.
We call the additional sets of transitions extensions. An extension in our

model captures the realization of a feature and, hence, its behavior. In this
sense, an extension is similar to a feature module in feature-oriented program-
ming (FOP) [2]. The separation of features and their associated extensions is
a rather important distinction, as they, to make the algorithms straightforward
and efficient, are necessarily a simplification of full feature models by requiring
a one-to-one relationship between features and extensions.

Remark 1. There are three classes of weight functions which are of particular
interest: constant, propositional formulas, and probabilistic.

A constant weight function, where range(wt) = {c} for some c. This in effect
means that all realizations are equivalent, and thus the weight function plays no
real part in decision procedures for this automaton.

Propositional formulas is the case where range(wt) = {true, false}, and wt
is represented by a propositional logic formula taking the set of extensions as
variables (i.e. wt is in fact an arbitrary Boolean function over {true, false}Δ),
permits capturing any set of constraints in a feature model on the compatibility
of features and their associated extensions. Taking this view only the assignments
which evaluate to true are permissible. However, this choice of cost function is
in some cases inflexible (where there are quantitative costs) and dangerous (in
that many questions are immediately made NP-hard due to the question of
the satisfiability of the function). As such we in this paper mostly loosen the
perspective a bit.

Probabilistic weight functions are represented by a function P : Δ → [0 . . . 1],
with wt(Δ′) =

∏
δ∈Δ′ P (δ). That is, each extension (and thus its associated

feature) is assigned a probability by P , and an overall realization is the compound
probability of the extensions included. This, serving as a middle ground between
the complexities of the propositional formulas and the freedom of no weights in
the constant case, serves as the primary case for this paper.

Let us now show the simple feature model of Example 1 in the form of an
extensible automaton (where each feature corresponds to one extension).

Example 2. We can construct an extensible automaton which corresponds to the
feature model in Example 1 by taking A = (B,Δ,wt) where

– B = (Q,Σ, q0, δ, F) where Q = {q0, qf , q1, q2, q3, q3,1, q3,2, q3,3}, Σ = {readX ,
log-monX ,monitorX , getX , unmonitorX , log-unmonX}, F = {qf}, and, finally,
δ = {(q0, readX , qf)}.

86 M. Berglund and I. Schaefer

q1 q2 q3 q3,2

q3,1

q3,3

q0

qf

X

X

X

X

X

X

X

X

X

X

XXX

δ

δ

δ

Fig. 2. The extensible automaton constructed in Example 2 to model the feature model
given in Example 1. We elide the edge from q0 to qf which is in the base automaton,
instead illustrating all the transitions which can be added by the extensions δF1, δF2

and δF3 (dashed edges indicated added transitions). Note in particular how δF2 adds
edges which enable sequences associated with the feature F3, making F3 “require” F2.

– Δ = {δF1, δF2, δF3}, where

δF1 = {(q0,monitorX , q1), (q1, getX , q1), (q1, unmonitorX , qf)},
δF2 = {(q0, log-readX , q2), (q2, readX , qf), (q0,monitorX , q3),

(q0, log-monX , q3,1)}, and,
δF3 = {(q3, getX , q3), (q3, unmonitorX , qf), (q3,1,monitorX , q3,2),

(q3,2, getX , q3,2), (q3,2, unmonitorx, q3,3, (q3,3, log-monX , qf)}.

– wt(S) =
∏

δ∈S wt′(δ), where wt′(δF1) = 0.9, wt′(δF2) = 0.5, and wt′(δF3) =
0.7.

See Fig. 2 for an illustration of what this extensible automaton looks like. In
particular, an extensible automaton has no special means of making a transition
require another, but the feature model described in Example 1 has F3 require
F2, the corresponding extensions instead has δF2 add some of the transitions
required by δF3, such that adding the latter without the former achieves nothing
(meaning that the most probable realization, corresponding to the most probable
configuration, will never include F3 if F2 is not included). That is, the require-
ment is modeled by making one extension pointless without including another.
Also notice that δF1 and δF2 cannot both be added to a proper realization, as
they both add a transition on monitorX from q0.

Extensions “forbid” each other can be done in a more direct way as well
(as will be used in, e.g., Lemma 2), but much like in this example, both

An Automata-Based View on Configurability and Uncertainty 87

forbidding and requiring can often be handled by straightforward modeling on
the automaton.

To keep things general we consider one of the nice properties of probabilistic
(and constant) weight functions specifically.

Definition 5. A weight function wt, with domain 2Δ, as in Definition 3 is
monotonic, if and only if, for all Δ1,Δ2 ⊆ Δ, we have (Δ1 ⊆ Δ2) ⇒ (wt(Δ1) ≥
wt(Δ2)).

Obviously this holds for both probabilistic and constant weight functions. Note
that the reverse of the condition does not hold, as ⊆ forms a partial order where
≤ is required to be total.

4 Problem Statements and Basic Hardness

As outlined in the introduction the primary purpose of the paper is to demon-
strate the possibility of judging the probability that an agent (or device) of
some form is configured such that it understands the (potentially infinite) set of
instructions one wishes to issue to it. We phrase this as a decision problem.

Definition 6. An instance of the cost-constrained superset realization (CCSR)
problem is a tuple (L, (A,Δ,wt), c) where

– L is a language (assumed to be given as a DFA),
– (A,Δ,wt) is an extensible automaton,
– c ∈ range(wt), such that

there exists a proper realization A+Δ′ of A with L ⊆ L(A+Δ′) and a weight
greater than or equal to c.

This decision problem will be important for demonstrating hardness, when
we get to algorithms solving some variants of it they will in fact be constructive.
In many cases the language being checked will be very simple, for example when
we have a single sequence of instructions we are wishing to send.

Definition 7. The subproblem of CCSR where the language L is a singleton (i.e.
consists of a single string) is called the cost-constrained membership realization
(CCMR).

Leaving these decision problems in their raw form does, however, make them
problems quite hard, illustrating the need for additional restrictions and simpli-
fications.

Lemma 1. The CCRS and CCMR problems are NP-complete even for a con-
stant wt.

88 M. Berglund and I. Schaefer

x1 x2 x3 xn c1 c2 c3 cm qf· · · · · ·

Fig. 3. The base automaton constructed in the reduction in the proof of Lemma 1, with
a state for each variable and clause, plus an additional final state, but no transitions.

Proof. This can be established by a reduction from the, known to be NP-
complete [5], problem of deciding whether a propositional logic formula on con-
junctive normal form (cnf) is satisfiable.

Represent such a formula f over the variables x1, . . . , xn as a set of sets of
literals. That is, letting f = {c1, . . . , cn}, f represents the formula

∧n
i=1

∨
l∈ci

l.
For example (x ∨ y ∨ ¬z) ∧ (¬x ∨ z) is {{x, y,¬z}, {¬x, z}}. W.l.o.g. we assume
that each variable occurs at least once and at most three times in f .

Then construct the extensible automaton A = (B,Δ,wt) as follows.

– Let wt(Δ′) = 0 for all Δ′ ⊆ Δ.
– Let B = ({x1, . . . , xn, c1, . . . , cm, qf}, {a}, x1, ∅, {qf}). That is, the base

automaton has the form indicated in Fig. 3. Let s(q) be the next state in the
sequence x1, . . . , xn, c1, . . . , cm, qf (e.g. s(cm) = qf , s(xi) = xi+1 for i < n,
but s(xn) = c1)

– Let Δ consist of precisely the following sets: for every literal l, letting x be
the variable in l, and every C ⊆ {c ∈ {c1, . . . , cm} | l ∈ c} there is a set δl,C

in Δ, defined by δl,C = {(x, a, s(x))} ∪ {(c, a, s(c)) | c ∈ C}.
For example, if the literal ¬x2 occurs in c1 and the literal xn occurs in c3,
then B+{δ¬x2,{c1},δxn,{c3}} would exist and be of the form shown in Fig. 4.
Note that for every extension there exist an extension with any subset of the
edges outgoing from ci-labeled states, e.g. the extension δ¬x2,∅ also exists in
the above example.

x1 x2 x3 xn c1 c2 c3 c4 c5 cm qf· · · · · ·a a a a a a a a

δx1,{c2,c4} δ¬x2,{c1} δ¬xn,{c3,cm}

Fig. 4. Taking the extensible automaton constructed in the reduction in the proof of
Lemma 1 when applied to a formula where the literal x1 exists in clause 2 and 4, the
literal ¬x2 exists in clause 1, and the literal ¬xn exists in clause three and n, this
sketches the realization B+{δx1,{c2,c4},δ¬x2,{c1},δ¬xn,{c3,cm}}. The dashed edges clarify
which transitions are added by which extension.

The reduction is polynomial as there are n + m + 1 states and at most 16n
extensions (each variable and its negation, and the eight options for including
an occurrence of that literal or not).

We now argue that (an+m, (B,Δ,wt), 0) is an instance of CCMR (and thus
CCSR) if and only if f is satisfiable. Intuitively, a realization which can accept
an+m will in effect set each variable either true or false by choices of extensions

An Automata-Based View on Configurability and Uncertainty 89

needed in reading the an prefix, and the following am can only be matched if the
truth assignment satisfies every clause. That B+Δ′ will match an+m if and only
if one can select Δl1,C1 , . . . ,Δln,Cn

such that each li is a literal on the variable
xi, and C1, . . . , Cn are disjoint sets with the union equaling {c1, . . . , cm}. No
variable can repeat in the selection as it would add multiple a-labeled outgoing
edges from the corresponding state in B, making the assignment improper.

The problem is in NP as a realization can be non-deterministically chosen
and then verified in polynomial time. �

In the next section we consider a restriction which will, in a reasonably
natural way, avoid the issue highlighted by this hardness result.

5 Solving Restricted CCMR for Monotonic Weights

The nature of the reduction which is exploited to demonstrate hardness in
Lemma 1 is of a somewhat artificial flavor as it involves an unbounded num-
ber of extension combinations being able to accept a certain common prefix of
a string. That is, the first n symbols are possible to read in 2n different ways,
corresponding to setting the values of variables. In reality extensions would tend
to either involve different strings, or they would be optional for most strings.
As such we define this measure, and consider what happens to the CCSR and
CCMR problems when it is bounded.

First a small supporting definition, which will be used when dealing with
minimal realizations which can accept a given string.

Definition 8. For a set of finite sets S let ↓S ⊆ S denote the set of minimal
incomparable sets of S, that is s ∈ ↓S if and only if s ∈ S but no strict subset of
s exists in S.

Note that, obviously and quite importantly, this makes all sets in ↓S incom-
parable (i.e. for s, t ∈ ↓S either s = t or s � t and t � s). We start with some
trivial lemmas which clarify the algorithm for CCMR which follows.

Lemma 2. ↓{S ∪ X | S ∈ ↓T} = ↓{S ∪ X | S ∈ T}, for all T and X.

Proof. Trivially true as the subset relation is unchanged by adding elements on
both sides, e.g. (S ⊆ S′) ⇔ ((S ∪ X) ⊆ (S′ ∪ X)) for all S, S′ and X. �

The reason for introducing this idea of the set of minimal incomparable sets
is that it compresses the realizations we need to consider in a natural way.

Lemma 3. Let L be any language and A = (B,Δ,wt) any extensible automaton
with wt monotonic. Then for all Δ1, . . . ,Δn ⊆ Δ such that

– L ⊆ L(B+Δi
) for all i, and,

– there exists at least one Δ′ ∈ {Δ1, . . . ,Δn} such that B+Δ′ is proper,

there exists at least one Δ′′ ∈ ↓{Δ1, . . . ,Δn} such that; (i) L ⊆ L(B+Δ′′); (ii)
wt(Δ′′) ≥ wt(Δ′); (iii) B+Δ′′ is proper.

90 M. Berglund and I. Schaefer

Proof. Condition (i) holds as ↓S is a subset of S. Further, since either Δ′ itself
or a subset of it must exist in ↓{Δ1, . . . ,Δn} we have (ii) since wt is monotonic,
and (iii) since any subset of a set of extensions giving a proper realization will
give a proper realization. �
Remark 2. Obviously ↓S of a set S can be constructed in time O(n2), where
n =

∑
s∈S |s| by simply comparing all sets.

With these definitions and lemmas in hand we are ready to define the restric-
tion which will make clear the impact the number of incomparable realizations
has on the difficulty of deciding the CCMR problem.

Definition 9. The extension confusion depth of an extensible automaton A =
((Q,Σ, q0, δ, F),Δ,wt) is the smallest k ∈ N such that for all α1, . . . , αn ∈ Σ
(for n ∈ N) and q ∈ Q, we have |↓{Δ′ ⊆ Δ | q0

α1−→A+Δ′ · · · αn−−→A+Δ′ q}| ≤ k.

Remark 3. Sperner’s theorem [8] dictates that the extension confusion depth of
extensible automata is bounded by

(
|Δ|

�|Δ|/2�
)

(and this bound is tight). The
assumption this section operates under, however, is that the confusion depth
will in fact be bounded by some polynomial in |Δ|.
Example 3. The automaton in Example 2 has extension confusion depth 2, as
reaching qf on the string monitorX · getX · unmonitorX can be done with either
the realization {δF1, δF2} or the realization {δF3}, but no subset of either.

Further note that the construction in the proof of Lemma1 will produce an
extensible automaton with confusion depth at least 2n (where n is the number of
variables, as in the construction), as long as each variable occurs both negated
and non-negated in the formula. To see this, pick the state c1 and the string
an, this string reaches the state c1 by picking any realization consisting of n
extensions setting each of the variables, for 2n incomparable options.

With these definitions in hand Algorithm1 solves CCMR for monotonic
weight functions, and does so efficiently if the confusion depth is bounded.

Next to demonstrate the algorithm correct.

Theorem 1. Algorithm1 decides CCMR, for monotonic weight functions, in
time O(nmk2), where m and k is the size and extension confusion depth of the
extensible automaton, and n the length of the input string.

Proof. First we demonstrate, by induction on the iteration over the input string
happening in step 3, the following invariant: Whenever step 3.1 is reached with
α1 · · · αk already processed (for 0 ≤ k ≤ n) we have q0

α1···αk−−−−→A+Δ′ q if and
only if q ∈ dom(T) and Δ′ is a (not necessarily strict) superset of some set in
T (q). That is, T (q) is complete list of minimal incomparable realizations which
reaches q on the prefix so far processed.

This is obviously true in the base case, T (q0) = ∅, as q0 is reachable on the
empty string with no extensions, the next T is then built by in step 3.1A simply

An Automata-Based View on Configurability and Uncertainty 91

Algorithm 1. Solve-Monotonic-CCMR

Input: (i) a string α1 · · · αn; (ii) an extensible automaton A = (B, Δ,wt) with exten-
sion confusion depth k and a monotonic weight function wt, letting B = (Q, Σ, q0, δ, F);
and; (iii) a minimum weight c.

Perform steps:

1. Initialize tables T, T ′ : Q → 22Δ

to be undefined everywhere.
2. Set T (q0) := ∅.
3. For each symbol α in α1, . . . , αn, in order:

3.1 For each q ∈ dom(T):
3.1A If q

α−→B q′ set T ′(q′) := T (q).
3.1B Otherwise, iteratively, for each δ′ ∈ Δ with q

α−→A+{δ′} q′ for some q′ ∈ Q,
set

T ′(q′) :=

{ ↓(T ′(q′) ∪ {Δ′ ∪ {δ′} | Δ′ ∈ T (q)) if T ′(q′) is defined,
↓({Δ′ ∪ {δ′} | Δ′ ∈ T (q)) otherwise.

3.2 Set T := T ′ and set T ′ to be undefined everywhere.
4. For each qf ∈ F and each Δ′ ∈ T (qf):

4.1 check if A+Δ′ is a proper realization,
4.2 if wt(Δ′) ≥ c, answer “true”.

5. Otherwise answer “false”.

Algorithm 2. Construct-Monotonic-CCMR

Modifying Algorithm 1 to output the first matching (or, if desired, the greatest) real-
ization in step 4(b) yields a constructive algorithm for proper high(est)-weight (e.g.
most probable) realization, still running in O(nmk2).

pushing the realizations that work forward to the next state if it can be reached
in the base automaton, and (ignoring the use of ↓ at first) in step 3.1B adding
the extensions needed to reach a next state to the set already gathered in the
previous step (this may happen multiple times as different extensions may reach
the state at the same iteration). Using ↓ each time in step 3(a)ii. does not make
a difference from applying it once when retrieving the realizations by Lemma2
(and is important to keep the size of the sets in T small).

By the induction all final states are reachable in some realization of A on
α1 · · · αn in F ∩ dom(T) when step 4 is reached. We then need to check if any of
those realizations are proper and have a weight greater than c, but by Lemma 3,
it is then sufficient to check the minimal incomparable set of realizations which
T , by induction, contains.

The complexity O(nmk2) is incurred in step 3, for all q and at every step
|T (q)| ≤ k (by definition, as it corresponds precisely to the confusion depth of
A). That is, for each string symbol (n times), worst-case every transition in A
(m times), we, worst-case, merge two table cells (each of size at most k) in T ′

and apply ↓ (which can be done in O(k2) as noted in Remark 2). �

92 M. Berglund and I. Schaefer

Algorithm 1 is a decision procedure, but can trivially be made constructive
by the minor modification in Algorithm2. Note that the above procedure does
not work for weight functions which are not monotonic, as the ↓ applications
may then be removing the highest-weight option. For example, for full proposi-
tional formulas (see Remark 1), one will often have to track every single possible
realization, which may be exponential even with bounded confusion depth.

However, this restriction is not sufficient to make CCSR tractable, which can
be demonstrated by a slightly different reduction.

Theorem 2. CCSR is NP-complete even for extensible automata with extension
confusion depth 1 and a constant wt.

Proof. As in Lemma 1 we demonstrate this by a reduction from the satisfiability
problem for a propositional logic formula on cnf. Without loss of generality
we assume that each clause contains precisely three literals, and represent the
formula by

f = (l1,1 ∨ l1,2 ∨ l1,3) ∧ · · · ∧ (lm,1 ∨ lm,2 ∨ lm,3)

where each li,j is a literal over a variable from {x1, . . . , xn}.
Then construct the extensible automaton A = (B,Δ,wt) as follows.

– Let B = (Q, {a, x1, . . . , xn, c1, . . . , cm}, q0, ∅, {qf}) where

Q = {q0, qf , q1,1, q1,2, q1,3 . . . , qm,1, qm,2, qm,3},

that is, the base automaton contains an initial and final state, and then one
state for each literal of the formula.

– Let Δ = {δx1 , δ¬x1 , . . . , δxn
, δ¬xn

, δ1,1, . . . , δm,3} where
• δxi

= {(q0, xi, qf)} ∪ {(qi,j , a, qi,j) | literal li,j equals ¬xi in f} for each
variable xi,

• δ¬xi
= {(q0, xi, qf)} ∪ {(qi,j , a, qi,j) | literal li,j equals xi in f} for each

variable xi, and
• δi,j = {(qi,j , a, qi,j), (q0, ci, qf)} for all 1 ≤ i ≤ m and 1 ≤ j ≤ 3.

– Let wt(Δ′) = 0 for all Δ′ ⊆ Δ.

Then (({x1, x2, . . . , xn, c1, . . . , cm}, A,wt), 0) is an instance of CCSR if and
only if f is satisfiable. To see this, first note that the language L is the one
accepted by the finite automaton shown in Fig. 5(a), while a realization of the
extensible automaton A can be seen in Fig. 5(b). The example realization in
the figure corresponds to a formula where l1,2 = x1, l4,2 = x1, and l4,3 = ¬x3.
The realization shown picks extensions δ¬x1 , δx3 , δ1,3 and δ4,3. Referring to this
picture it is fairly easy to see how the reduction works: for a realization to
match all strings matched by the finite automaton in Fig. 5(a) either δxi

or δ¬xi

must be used for each xi (to add the x1 through xn transitions), but choosing
them adds an a-labeled self-loop to all states corresponding to literals which
are made unsatisfiable by the indicated truth assignment. Further a transition
must be added for each cj by picking any one of δj,1, δj,2 or δj,3, but this can
only be done if all three are not rendered unsatisfiable by the choices of truth

An Automata-Based View on Configurability and Uncertainty 93

x1

xn

cm

c1
q0 qf

x1

x3

c4

c1

· · · q4,1 q4,2 q4,3 · · ·q1,3q1,2q1,1

a a a a a

¬x1 x3

1,3

4,3

a a

Fig. 5. (a). The deterministic finite automaton constructed as the L part of a CCSR
instance constructed in the reduction in the proof of Theorem 2. (b). A realization
of the extensible automaton A as constructed by the proof of Lemma 2. Specifically
it shows the realization A+{δ¬x1 ,δx3 ,δ1,3,δ4,3} when the literal x1 is the second literal
of both the first and fourth clause, and ¬x3 is the first literal of the fourth clause
(the dashed lines indicate which extension adds which transitions). In the context of
the reduction the realization corresponds to picking x1 to be false, x3 to be true, and
satisfying clause c1 and c4 by literal l1,3 and l4,3, respectively.

assignments. In this way the extension choices perfectly mirror the satisfiability
of the formula.

Finally, A has extension confusion depth 3 (the string cj , for any 1 ≤ j ≤ m,
is matched by realizations containing one of δj,1, δj,2 and δj,3). This can be
reduced to 1 by constructing Ã by splitting qf into 2n + 3m final states, a
distinct one used by each transition going to qf in A.

The problem being in NP again follows from it being possible to simply
non-deterministically choosing and verifying a realization. �

In the next section we consider additional restrictions under which this prob-
lem is rendered tractable.

6 Solving Restricted CCSR for Monotonic Weights

The full superset problem appears to be very difficult, but we offer two straight-
forward restrictions where it is tractable. As a general scaffolding, first we con-
sider Algorithm 3, which solves the problem in nondeterministic polynomial time.
Obviously we can as before make this algorithm constructive by outputting Δ′.

Remark 4. Note that step 3.1B1 should, in practice, be performed in tandem
with checking the various conditions placed on the extension chosen (i.e. find
the transitions fulfilling the check in step 3.1B2 exist, and work from there).
These details are to some extent a matter of selection of data structures etc.,
and we simply assume that the candidates can be enumerated in linear time.

94 M. Berglund and I. Schaefer

Algorithm 3. Solve-Restricted-CCSR

Input: (i) a minimal DFA D = (Q, Σ, q0, δ, F) (representing the language L); (ii)
an extensible automaton A = (B, Δ,wt) with extension confusion depth k and a
monotonic weight function wt, letting B = (Q′, Σ, q′

0, δ
′, F ′); and; (iii) a minimum

weight c.

Perform steps:

1. Initialize the sets W := {(q0, q
′
0)} and S := ∅.

2. Initialize Δ′ := ∅.
3. For each (q, q′) ∈ W :

3.1 For each α ∈ Σ such that (q, α, p) ∈ δ for some p ∈ Q:
3.1A If (q′, α, p′) ∈ δ′ ∪ ⋃

δ′′∈Δ′ δ′′ for some p′:
3.1A1 If p ∈ F but p′ /∈ F ′ halt answering “no”.
3.1A2 Otherwise set W := W ∪ {(p, p′)} and continue in step 3.1.

3.1B Otherwise:
3.1B1 Nondeterministically choose a δ′′ ∈ Δ \ Δ′ subject to the following

checks (if no choice fulfilling all checks exists, halt answering “no”).
3.1B2 Check that (q′, α, p′) ∈ δ′′ for some p′ ∈ Q′.
3.1B3 Check that if p ∈ F then p′ ∈ F ′.
3.1B4 Check that A+Δ′∪{δ′′} is a proper realization.
3.1B5 Set W := W ∪{(p, p′)} and Δ′ := Δ′ ∪{δ′′}, and continue in step 3.1.

3.2 Set S := S ∪ {(q, q′)} and W := W \ S.
4 If wt(Δ′) ≥ c answer “yes”, otherwise answer “no”.

The way the algorithm works is very straightforward, with most of the work
hidden in the nondeterministic choice of extension to add, but as an aid to
understanding we elucidate the way it works in the following lemma.

Lemma 4. Algorithm3 decides the CCSR problem, in the cases where the weight
function is monotonic, in nondeterministic polynomial time.

Proof. (Sketch) The procedure operates by successively building up a realization,
the set Δ′, by relating the states of D to states in A+Δ

. The realization is
the smallest consistent with the state realization being attempted (which by
monotonicity is to be preferred). The set W contains all pairs of states still to
be shown to correspond between D and the current candidate realization, that
is, being in W means the algorithm has established that they are reachable on
some common string, but their outgoing transitions have not yet been checked
(initially W equals {(q0, q′

0)}, i.e. the initial states must correspond as they
are reachable on the empty string). Step 3 picks one of these pairs from W
and simulates one further step: for each alphabet symbol finding what state D
reaches, and finding either what state the current candidate realization A+Δ′

goes to on the same symbol, or finds a new extension which makes it go to some
state (or rejects if none can be found). As part of this it must also be checked
that the realization is kept proper and that any final state in D corresponds to
a final state in A+Δ′ , or the latter would necessarily fail to accept some string
in L(D). Note that it is not required that the reverse holds, as A+Δ′ is free to

An Automata-Based View on Configurability and Uncertainty 95

accept a superset of the strings in L(D) in a solution to CCSR. The pairs already
checked are recorded in S, ensuring the loop runs only a polynomial number of
steps.

The loop in step 3 only halts when W is empty, which will only happen if all
states in D have been successfully assigned to state in the realized A+Δ′ . If the
realization has sufficient weight it is the solution and we accept. �

The algorithm uses nondeterminism in the key step of picking an extension
to add, making on the order of |Δ| such choices. The nondeterminism can be
eliminated, as usual, by a deterministic search procedure, but in general this
adds a factor O(2|Δ|) to the running time (i.e. whenever a nondeterministic
choice would be made all options are attempted, checking if some alternative
answers “yes”). The exponential is base two as an extension gets considered
for addition at most once on any computation path: some extension will be
chosen, adding a transition which precludes all the other candidates in a proper
realization.

This leads to the most straightforward restriction to place on a CCSR prob-
lem to make it tractable: limiting the number of instances of nondeterminism
reachable in Algorithm 3. Let us recall some definitions to make this precise.

Definition 10. For FA A = (Q,Σ, q0, δ, F) and B = (Q′, Σ, q′
0, δ

′, F ′) the
product automaton, denoted A × B, equals (Q × Q′, (q0, q′

0), {((q, q′), α, (p, p′)) |
(q, α, p) ∈ δ, (q′, α, p′) ∈ δ′}, {(f, f ′) | f ∈ F, f ′ ∈ F ′}).

For a finite automaton A let f-prune(A) denote the automaton resulting when
removing all states (and associated transitions) from A which cannot be reached
from the initial state. Similarly, let b-prune(A) denote the automaton resulting
when removing all states q from which no final state is reachable.

The degree of nondeterminism of a finite automaton A = (Q,Σ, q0, δ, F) is
the sum

∑
q∈Q,α∈Σ max(0, |{q′ | (q, α, q′) ∈ δ}| − 1). That is, informally, the

total number of transitions making A nondeterministic.

This is sufficient to phrase the complexity of applying Algorithm3 using
deterministic search in a more refined way.

Lemma 5. For a CCSR instance (L,A = (B,Δ,wt), c), letting D be the mini-
mal DFA accepting L, evaluating Algorithm3 using deterministic search runs in
time O(nml2min(s,|Δ|)) where n is the number of states in B, m the number of
states in D, l the size of the input alphabet, and s is the degree of nondeterminism
of f-prune(D × A+Δ

).

Proof. As a first observation, when e.g. s = 0, there is only ever a single choice
in step 3.1B1 (as k choices imply a degree of nondeterminism of k − 1 in the
indicated product automaton), and thus no searching happens. In this case the
loop at step 3 will run at most nml times, and using appropriate data structures
(e.g. bit vectors for W and S) the inner steps can be performed in constant time,
giving an overall complexity of O(nml).

The 2min(s,|Δ|) factor is the actual search procedure, in that both Δ and
s bound the number of choices that can be made in step 3.1B1, and as each

96 M. Berglund and I. Schaefer

Algorithm 4. Fast-Solve-Restricted-CCSR
Taking the same inputs as Algorithm 3, perform the following precomputation step:

0. Let B = (Q × Q′) \ Q′′ where Q′′ are the states of b-prune(D × A+Δ).

That is, B consists of the states in the product automaton from which no final state is
reachable. Then, add another check before updating W in step 3.1A2 and 3.1B5:

– Check that (p, p′) /∈ B (if (p, p′) is in B, halt answering “no”).

I.e., when a state pair from B would be added to W in the algorithm (that is, the state
pair are determined to be related by the current realization) realization, we now imme-
diately reject (in the deterministic search case giving up on that path and realization,
backtracking to try other options).

extension and (nondeterministic) transition is only considered for inclusion once
along any search path (if they are not chosen when considered this means some
other extension is chosen which precludes the original extensions inclusion in a
proper realization). Note that f-prune(D × A+Δ) contains precisely the states
which will be explored as state pairs in W , as it will explore nothing that cannot
be reached from (q0, q′

0) in the product. �
Remark 5. Note that, in particular, if A+Δ

is deterministic the degree of nonde-
terminism in the product automaton is zero, making the decision procedure run
in time O(nml).

The algorithm can be modified slightly, as shown in Algorithm 4, to improve
the running times in typical cases, where relatively few of the state pairs possible
are actually useful. Obviously these changes to Algorithm 3 can only lessen the
amount of work done, in that the state pairs in B are never explored, and the
rejection of the computation path may prevent further exploration of unrelated
state pairs. It remains to argue that these shortcuts actually do not change the
outcome of the algorithm.

Lemma 6. Algorithm3 and 4 are equivalent (answer the same on all inputs).

Proof. Since D is a minimal DFA every state in D can reach some final state
(i.e. b-prune(D) = D). As such, whenever Algorithm 3 adds a state pair (q, q′)
to W there exists some string w such that q

w−→D f for some final state f in D.
However, if (q, q′) ∈ B we also know, by the construction of B in Algorithm 4,
that there is no state (f, f ′), where both f and f ′ are final, reachable from
(q, q′). This means that as the algorithm exhaustively, from this point, explores
the state pairs in W it will on every possible computation path either:

– Explore a state pair (f, p) reached when reading w from (q, q′), however, this
means that f is final but p is not, so either step 3.1A1 or 3.1B3 (depending
on whether the most recent step was taken by adding an extension or not)
will then halt answering “no”.

An Automata-Based View on Configurability and Uncertainty 97

– Explore a transition in D for some prefix of w but then fail to find a cor-
responding transition in A+Δ

, again having the computation halt answering
“no” as there is no choice possible in step 3.1B1.

As all computation paths following from adding (q, q′) ∈ B to W in Algo-
rithm3 eventually answer “no” Algorithm 4 is equivalent, as the only change is
having it answer “no” when such a state pair would be added. �

This improvement can then be used to restate Lemma 5 with a bound which
may improve many practical.

Theorem 3. For a CCSR instance (L,A = (B,Δ,wt), c), letting D be the min-
imal DFA accepting L, evaluating Algorithm4 using deterministic search runs in
time O(nml2min(s,|Δ|)) where n is the number of states in B, m the number of
states in D, l the size of the input alphabet, and s is the degree of nondeterminism
of b-prune(f-prune(D × A+Δ)).

Proof. A trivial consequence of Lemma 5 with the additional observation that
Algorithm 4 does not explore states removed by the application of b-prune, and
thus any nondeterminism incurred in those states can be disregarded. �

7 Conclusions and Future Work

Conclusions. This paper makes a first attempt to formalize the idea of uncertain
configurations of software systems in an automata-theoretic framework. The
main contributions are the extensible automata model itself, the various hardness
results establishing the baseline for what may be efficiently computed, and the
demonstration of Algorithms 2 and 4 being efficient in some interesting cases.

Related Work. From the automata perspective a key area of related work is
weighted automata [4], which in a very general way model attaching weights
to transitions. The key distinction is that for extensible automata an extension
has a “one time” weight/probability/cost, adding some set of transitions which
can then be used any number of times without any further interaction with the
weights, whereas weighted automata compute weights as the product of a path
which may include a transition weight any number of times. However, clearly an
extensible automaton can be implemented by a weighted automaton by “strat-
ifying” it: having transitions which correspond to adding an extension, going
into an independent layer of the automaton, where the extension transitions are
added. This may create an exponentially large weighted automaton, but should
still be studied, as many results can no doubt be reused.

Future Work. For future work, the associated probabilistic feature model
(sketched in Example 1) should itself be formalized to elucidate the gap with
extensible automata. The automata themselves should be extended into exten-
sible transducers, considering cases where related inputs and outputs (here
origin information [3] should likely be assumed for tractability reasons) may

98 M. Berglund and I. Schaefer

be observed. Further, the sum total probability of a string or language being
accepted should be considered, we have here considered only finding the most
likely configuration, but when multiple configurations can handle a given input
it may be more relevant to consider the aggregate probability of those configu-
rations. The weighted automaton corresponding to an extensible automaton will
likely be of great interest here.

Acknowledgements. This work is based on the research supported in part by the
National Research Foundation of South Africa (Grant Number 115007).

References

1. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

2. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented Software Product
Lines: Concepts and Implementation. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-37521-7

3. Bojańczyk, M.: Transducers with origin information. In: Esparza, J., Fraigniaud,
P., Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8573, pp. 26–37.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43951-7 3

4. Droste, M., Kuich, W., Vogler, H. (eds.): Handbook of Weighted Automata. Mono-
graphs in Theoretical Computer Science: An EATCS Series. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01492-5

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

6. Meinicke, J., Thüm, T., Schröter, R., Benduhn, F., Leich, T., Saake, G.: Mastering
Software Variability with FeatureIDE. Springer, Heidelberg (2017). https://doi.org/
10.1007/978-3-319-61443-4

7. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations Principles and Techniques. Springer, Heidelberg (2005). https://doi.org/10.
1007/3-540-28901-1

8. Sperner, E.: Ein Satz über Untermengen einer endlichen Menge. Math. Z. 27(1),
544–548 (1928). https://eudml.org/doc/167993

9. Weiser, M.: The computer for the 21st century. In: Baecker, R.M., Grudin, J., Bux-
ton, W.A.S., Greenberg, S. (eds.) Human-computer Interaction, pp. 933–940. Mor-
gan Kaufmann Publishers (1995). (Reprinted in ACM SIGMOBILE Mobile Comput.
Commun. Rev. 3(3), 3–11 (1999). https://doi.org/10.1145/329124.329126)

https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-642-37521-7
https://doi.org/10.1007/978-3-662-43951-7_3
https://doi.org/10.1007/978-3-642-01492-5
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1007/978-3-319-61443-4
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1007/3-540-28901-1
https://eudml.org/doc/167993
https://doi.org/10.1145/329124.329126

Formalising Boost POSIX Regular
Expression Matching

Martin Berglund1 , Willem Bester2(B) , and Brink van der Merwe2

1 Department of Information Science and Centre for AI Research,
University of Stellenbosch, Private Bag X1, Matieland,

7602 Stellenbosch, South Africa
pmberglund@sun.ac.za

2 Division of Computer Science, University of Stellenbosch, Private Bag X1,
Matieland, 7602 Stellenbosch, South Africa

{whkbester,abvdm}@cs.sun.ac.za

Abstract. Whereas Perl-compatible regular expression matchers typ-
ically exhibit some variation of leftmost-greedy semantics, those con-
forming to the posix standard are prescribed leftmost-longest semantics.
However, the posix standard leaves some room for interpretation, and
Fowler and Kuklewicz have done experimental work to confirm differ-
ences between various posix matchers. The Boost library has an inter-
esting take on the posix standard, where it maximises the leftmost match
not with respect to subexpressions of the regular expression pattern, but
rather, with respect to capturing groups. In our work, we provide the
first formalisation of Boost semantics, and we analyse the complexity of
regular expression matching when using Boost semantics.

Keywords: Regular expression matching · posix · Boost

1 Introduction

In his “casual stroll across the regex landscape”, Friedl [9] identifies two reg-
ular expression flavours with which the typical user must become acquainted,
namely, those that are Perl-compatible, called PCRE [1], and those that follow
the posix standard [2]. PCRE matchers follow a leftmost-greedy disambiguation
policy, but posix matchers favour the leftmost-longest match. These flavours
differ not only in terms of their syntax, but also, more crucially, in terms of
their matching semantics. The latter is particularly noteworthy where ambiguity
enters the picture, which is to say, where an input string “can be matched in
more than one way” [24].

Through the standardisation of languages such as Perl, with native support
for regular expressions, and libraries such as those defined by posix, new fea-
tures became available, but initially, without much attention to the theoretic
investigation of issues such as ambiguity. If, after the publication of Thompson’s
famous construction [25] in 1968, regular expressions were viewed as the perfect
c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 99–115, 2018.
https://doi.org/10.1007/978-3-030-02508-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_6&domain=pdf
http://orcid.org/0000-0002-3692-6994
http://orcid.org/0000-0002-0016-7623
http://orcid.org/0000-0001-5010-9934

100 M. Berglund et al.

marriage between theory and practice, then by the 1980s, the state of the art and
the state of the theory had parted ways. Since the 1990s, when the growth of the
World Wide Web led to an interest in parsing for markup languages [7], the aca-
demic community has responded with vigour, as various features and flavours of
regular expressions were studied and formalised (for example, see Kearns [12]).

To this, we now add the following contributions: We extend regular expres-
sions to capturing regular expressions, which define forest languages instead
of the usual string languages, in an effort to place the notion of parsing, as
found in implementations, on a secure theoretical footing. We go on to provide a
series of varied instructive examples, highlighting the similarities and differences
between standards, implementations, and our formalisation of matching seman-
tics. Finally, we formalise the matching semantics and investigate the matching
complexity of the Boost variant of posix regular expressions, which has not been
attempted before.

1.1 Related Work

In the documentation to their system regular expression libraries, which claim
posix-compatibility, BSD Unices like OpenBSD [4] point to the implementations
of Henry Spencer [11] as foundation. Recent versions of macOS [3], also in the
BSD family, cite in addition the TRE library [18] by Laurikari, who used the
notion of tagged automata to formalise full matching with submatch addressing
for posix [17,20]. Subsequently, Kuklewicz took issue with Laurikari’s claims
to efficiency and correctness [14,16], resulting in the Regex-TDFA library for
Haskell [13], which passes an extensive test suite [15] based on Fowler’s original
version [8].

Okui and Suzuki [22] formalised leftmost-longest semantics in terms of a strict
order based on the yield lengths of parse tree nodes, ordered lexicographically
by position strings. In contrast, Sulzmann and Lu [23], inspired by Frisch and
Cardelli’s work on the formalisation of greedy matching semantics [10], used
a different approach, that of viewing regular expressions as types, and then
treating the parse trees as values of some regular expression type, in the process
also establishing a strict order of various parse trees with respect to a particular
regular expression.

1.2 Paper Outline

The paper outline is as follows. In the next section, we state some definitions
and properties of regular expressions and formal languages. Then, in Sect. 3,
we present detailed examples, which serve to illustrate some of the issues and
complexities of posix and Boost matching. In Sect. 4, we give a formal statement
of Boost matching semantics, and also discuss the complexity of doing regular
expression macthing with Boost. We then present some experimental results,
and we end with concluding remarks.

Formalising Boost POSIX Regular Expression Matching 101

2 Preliminaries

Denote by N the set of positive integers, let N0 = N ∪ {0}, and as usual, let ≤
(<) be the natural (strict) order on N0. We use ⊥ and � to indicate undefined
values, and assume that ⊥ < n < � for all n ∈ N0. Let Σ be a finite alphabet
and ε the empty string. For any string w over Σ with Σ′ ⊆ Σ, let πΣ′(w) be
the maximal subsequence of w that contains only symbols from Σ′, and let |w|
be the length of w, which is to say, the number of symbols (from Σ) in w. In
particular, |ε| = 0.

We denote the empty set by ∅. For any set A, let P(A) be power set of A.
If g : A → B is a function, we also use g to denote the function from P(A) to
P(B) defined by mapping A′ ⊆ A to {g(a) | a ∈ A′} ⊆ B.

Next we define the notion of forests, that is, the concatenation of trees. This
is used to formalise the concept of which substring of an input string is matched
(or captured) by which subexpression of a given regular expression.

Definition 1. The set of forests over Σ and the index set I, denoted by F(Σ, I),
is defined inductively as follows. We assume (Σ∪{ε}) ⊆ F(F, I), and for f1, f2 ∈
F(Σ, I) and i ∈ I, we have that f1f2 (that is, the concatenation of f1 and f2) and
[if]i are elements in F(Σ, I). A forest language L over Σ and I is a subset of
F(Σ, I), whereas a string language over Σ is a subset of Σ∗ (where Σ∗ denotes
the set of all strings over Σ).

In the sequel, we shall assume I ⊆ N0. Note that F(Σ, I) properly contains
all strings over Σ if I is non-empty, and is otherwise precisely equal to the
set of strings over Σ. A forest can be considered either as being a string over
Σ∪{[i,]i | i ∈ I} or as a concatenation of ordered unranked trees over {ε}∪Σ∪I,
where [if]i is a tree with root node labelled by i, having the forest f of trees as
descendants.

Since standard (theoretical) regular expressions do not formalise the parsing
aspects related to regular expression matching, which is essential for our discus-
sion on Boost and posix in general, we next extend the standard definition of
regular expressions in a way suitable for our purpose.

Definition 2. The set of capturing regular expressions over a finite alphabet
Σ and an index set I, denoted by R(Σ, I), is defined inductively as follows:

1. the empty language expression ∅;
2. the empty string expression ε;
3. the symbols a ∈ Σ;
4. the concatenation, also known as the product, (r0 · r1) of r0, r1 ∈ R(Σ, I);
5. the union, also known as the sum or alternation, (r0+r1) of r0, r1 ∈ R(Σ, I);
6. the (Kleene) closure (r∗) of r ∈ R(Σ, I); and
7. the capture group (ir)i for r ∈ R(Σ, I) and i ∈ I.

Items 1 to 3 in Definition 2 are called the atoms of regular expressions. We
assume the alphabet Σ is disjoint with the symbols used to define the operations

102 M. Berglund et al.

in items 4 to 7. The parentheses around the expressions of items 4 to 6 are
optional, and if some are left out, the operator precedence, from high to low, is
(i) closure, (ii) concatenation, and (iii) union. In addition, we assume that any
concatenation r0 · r1 may be written by juxtaposition as r0r1.

Remark 1. For a Boost capturing regular expression r, it is assumed that all
opening parentheses are indexed from 1 onward, from left to right, with the
corresponding closing parentheses indexed correspondingly. A Boost matcher
will also replace r by (0r)0, before starting the matching procedure. The Boost
capturing regular expressions thus form a proper subset of R(Σ, I)—if I con-
tains enough elements to uniquely index each pair of opening and corresponding
closing parentheses.

Next we define syntactic shortcuts used in practice and also in some of our
examples.

Definition 3. For r ∈ R(Σ, I), define the following additional iterative opera-
tors:

1. the duplication (rm,n) abbreviates
(

r · · · r︸ ︷︷ ︸
m times

(r + ε) · · · (r + ε)
︸ ︷︷ ︸

n−m times

)

for m,n ∈ N0 with m ≤ n (with r0,0 denoting ε);
2. the option (r?) abbreviates (r + ε);
3. the positive closure (r+) abbreviates (rr∗).

The second parameter of duplication is optional, and here we distinguish
between two cases, namely, rm being equivalent to rm,m, and rm, being equiv-
alent to rmr∗. Again, we assume the set of symbols used to define the shortcut
iteration operators in Definition 3 is disjoint from the underlying alphabet Σ.

Definition 4. We define the following operations on forest, and thus also on
string languages:

1. the concatenation L0 · L1 = L0L1 = {w0w1 | w0 ∈ L0 and w1 ∈ L1} for two
languages L0 and L1;

2. the union L0 ∪ L1 = {w | w ∈ L0 or w ∈ L1} for two languages L0 and L1;
3. the nth power of the language L, where n ∈ N0, is

Ln =

{
{ε} ifn = 0,

L · Ln−1 otherwise; and

4. the closure L∗ =
⋃

n∈N0
Ln of the language L.

Finally, we are ready to define the forest languages described by the expres-
sions in R(Σ, I).

Formalising Boost POSIX Regular Expression Matching 103

Definition 5. The forest language described by r ∈ R(Σ, I), and denoted by
L(r), is defined inductively as follows: L(∅) = ∅, L(ε) = {ε}, L(a) = {a},
L(r0 · r1) = L(r0) · L(r1), L(r0 + r1) = L(r0) ∪ L(r1), L(r∗) = L(r)∗, and
L((ir)i) = {[i} · L(r) · {]i} where r, r0, r1 ∈ R(Σ, I) and i ∈ I.

Definition 6. We define the string language described by r ∈ R(Σ, I) to be the
set πΣ(L(r)).

Remark 2. Note if r′ is the regular expression obtained from r ∈ R(Σ, I)
by replacing all capturing parentheses by normal parentheses, then L(r′) =
πΣ(L(r)).

Definition 7. A forest disambiguation policy D(Σ, I) for R(Σ, I) is a set of
functions {dr : L(r) → L(r) | r ∈ R(Σ, I)}, such that for f, f ′ ∈ L(r), we have
πΣ(dr(f)) = πΣ(f) and πΣ(f) = πΣ(f ′) implies dr(f) = dr(f ′).

If for f ∈ L(r), we have πΣ(f) = w, we refer to f as a parse forest for w.
We can intuitively think of a regular expression matcher as not only deciding
if a given string w is in πΣ(L(r)) or not, but also, if w ∈ πΣ(L(r)), to have a
specification of which parse forest to associate with w, amongst the potentially
many possible parse forests for w. However, for efficiency reasons, greedy, Boost,
and other posix matchers do not have a forest disambiguation policy in gen-
eral, but rather a disambiguation policy on matching information derived from
parsing forests. In general, the corresponding forests can not uniquely be recon-
structed from this derived information. In Sect. 4, we provide precise details on
the structure of this derived information for Boost.

Example 1. Consider matching w = “ab” with E = /a?(ab)?b?/. The Okui–
Suzuki disambiguation policy [22], modified here in terms of notation to align
closer with our approach, first replaces E by an (almost) fully parenthesised
expression E′ = /(1a?)1(2(3(ab)?)3(4b?)4)2/, obtained by assuming concatena-
tion is right-associative, and by numbering the opening parenthesis, in order,
from left to right in E′. The following two forests are candidates for a full match:

t0 = [1a]1[2[3]3[4b]4]2 and t1 = [1]1[2[3ab]3[4]4]2.

Using the natural order on N0 for the capture indices, this yields the two vectors
〈1, 1, 0, 1〉 and 〈0, 2, 2, 0〉 of lengths of captures for t0 and t1, respectively, by
which t0 is chosen when using a lexicographic order on these two vectors.

3 Examples

At this point, it is instructive to turn to some detailed examples. In particular,
because posix [2] is a software engineering standard, its functional specification
for regular expressions is written in English, without mathematical formalisms.
As such, some parts of the specification might be open to multiple interpreta-
tions. Fowler [8] has argued that the specification is “surprisingly cavalier with
terminology”, and it is the implications of different readings of the standard that
we now examine in detail.

104 M. Berglund et al.

Remark 3. An additional concern is that posix defines two different specifica-
tions for regular expressions, namely, Basic Regular Expressions (BREs) and
Extended Regular Expressions (EREs), which although they share many simi-
larities, especially in the specifications of atoms, are incompatible. For example,
BREs supports backreferences, “operations which bind a substring to a variable,
allowing it to be matched again verbatim”, a feature that is non-regular and that
makes matching NP-complete [6]. EREs do not support backreferences, removes
the need for group and iteration bounds delimiters to be escaped, and supports
the union of subexpressions, which BREs do not. Therefore—and it also bears
mentioning that some implementers of posix regular expressions consider BREs
obsolete [3,19]—we focus exclusively on EREs.

Remark 4. The specification language for regular expression patterns in
posix differs from our Definitions 2 and 3. In particular, for the union r + s
of two expressions r and s, we would write r|s in posix, and the iterates r∗, rm,
rm,, and rm,n are written as r*, r{m}, r{m,}, and r{m,n}, respectively. Until
Sect. 5, we use the notation established in Sect. 2 exclusively.

Remark 5. In the posix standard for EREs [2, Sect. 9.4], each pair of paren-
theses, unless escaped or included in a bracket expression—where the escape
sequences “\(” and “\) match the literal opening and closing parenthesis char-
acters, and whereas the bracket expression “[(ab)]” matches any one of the
literal characters “(”, “a”, “b”, or “)”—always automatically defines a group:
They do not match literal occurrences of parentheses in the input string, but
serve to override the default operator precedence, and also, allow the matcher
to report which substring was captured (or matched) by which group. Consis-
tent with Remark 1, groups are identified by positive integers, and internally,
the matcher automatically numbers the pairs of parentheses from left to right,
starting at 1; in addition, the entire regular expression is numbered as group 0.
In our examples, we write group numbers explicitly, and depending on what is
convenient, we either state group 0 explicitly, or do not indicate it at all.

Example 2. Consider matching the input string w = “aba” with the regu-
lar expression E0 = /(1ab + ba + a)∗

1/. Matching w with E0 is ambiguous,
because two different forests in L(E0) that correspond to a full match, where the
entire input string is matched by the regular expression, are possible, namely,
f0 = [1ab]1[1a]1 and f1 = [1a]1[1ba]1. The forest f0 means the matcher used
the /ab/ subexpression of E0 for the first iteration of the star, and the /a/
subexpression for the second, whereas the forest f1 means the matcher used the
/a/ subexpression of E0 for the first iteration of the star, and the /ba/ subex-
pression for the second. The bracketed subforests in f0 and f1 indicate which
substrings were matched by group 1 during consecutive iterations. For E0, both
leftmost-greedy and leftmost-longest matchers will use the forest f0.

However, now consider matching w = “aba” with E1 = /(1a + ab + ba)∗
1/,

and note that E1 defines the same language as E0, but that the order of the
subexpressions inside the star has changed. Again, the two forests f0 and f1

Formalising Boost POSIX Regular Expression Matching 105

correspond to a full match, but now, a leftmost-greedy matcher will use f1,
whereas a leftmost-longest matcher will still use f0. �
Remark 6. It should be noted that matchers typically do not report forests, but
only substrings matched (or captured) by some subexpressions, and specifically,
in the case of a subexpression s∗, most matchers only report the last capture by
the subexpression s. Thus it is in fact only the simplicity of the previous example
that makes it possible to reverse engineer the parse forests.

Intuitively, whenever more than one match is possible for a particular subex-
pression, a greedy matcher will return the first match with respect to the order
in which this subexpression’s subexpressions are written in the regular expres-
sion. This is to say, when a subexpression admits several choices for matching
the same substring of the input string, the leftmost choice will prevail. In con-
trast, a leftmost-longest matcher must seemingly consider all possible matches
for that subexpression, starting as early as possible in the input string, where
“early” means “leftmost”, unless this choice causes the entire match to fail; if
the leftmost policy is not enough to distinguish between two submatches, we
give preference to longer submatches.

Example 3. Again, consider the input string w and the regular expressions E0

and E1 from Example 2, but now let us examine what happens when these
examples are run on Haskell’s Regex-TDFA [13] and Boost [21], which both
claim to be posix-compliant—but see Remark 7 below—and hence, where we
expect both to return [1ab]1[1a]1 for E0 as well as E1. However, whereas Regex-
TDFA returns [1ab]1[1a]1 with E0 and E1, and thus performs as expected, Boost
returns [1a]1[1ba]1, again for both E0 and E1. The disparity can be understood
by realising that Regex-TDFA maximises all captures by a starred subexpres-
sion, from left to right, based on first considering the leftmost and secondly the
length criteria, although it only reports the last match, while Boost does the
maximisation only on the last submatch. �

A case can be made that Boost is in fact posix-compliant, albeit with a
different reading than, for example, Regex-TDFA of the salient points of the
posix matching policy [2, Sect. 9.1]:

The search for a matching sequence starts at the beginning of a string
and stops when the first sequence matching the expression is found, where
“first” is defined to mean “begins earliest in the string”. If the pattern
permits a variable number of matching characters and thus there is more
than one such sequence starting at that point, the longest such sequence is
matched. . . . Consistent with the whole match being the longest of the left-
most matches, each subpattern1 from left to right shall match the longest
possible string.

1 Fowler [8] identifies the terms “subpattern” and “subexpression” as particular targets
of abuse in the posix standard, especially since they are “central to the description
of the matching algorithm”. He goes on to note that, whereas “subpattern” is used
but once, “subexpression” is used 70 times and always appears in the context of
grouping.

106 M. Berglund et al.

Posix therefore requires full matching with submatch addressing, where “the
position and extent of the substrings matched by given subexpressions must
be provided” [20]. Contrast this with the classic automata-theoretic approach,
where a matcher simply determines whether the entire input string was matched
by the regular expression or not.

Although Boost applies a leftmost-longest policy, it considers what its doc-
umentation calls “marked subexpressions” [21], instead of arbitrary subexpres-
sions, such that we now render the last quoted sentence as: “Consistent with the
whole match being the longest of the leftmost matches, each marked subpattern
from left to right shall match the longest possible string.” Thus Boost applies its
leftmost-longest disambiguation policy not by maximising arbitrary subexpres-
sions of a regular expression, but instead, by maximising marked subexpressions,
in other words, those subexpressions surrounded by parentheses. Note when a
regular expression is fully parenthesized, which is to say, when each subexpression
is immediatedly surrounded by a pair of parentheses, then all subexpressions are
marked. Since we distinguish between marked and other (that is, non-marked)
subexpressions, the formalism of Sulzmann and Lu, and Frisch and Cardelli, of
considering regular expressions as types and parse trees as values of types, is not
directly applicable in our setting.

Remark 7. Boost also supports PCRE syntax and semantics, which is, in fact,
its default mode of operation. (For detail, see the discussion after Remark 9 on
page 11.) When we refer to Boost in this and following sections, we exclusively
mean Boost in its posix mode of operation.

Example 4. Consider matching w = “aa” with E2 = /(0a∗(1a∗)1)0/ and E3 =
/(0(1a∗)1(2a∗)2)0/. Although both expressions define the same language, the
first /a∗/ subexpression is a group in E3, but not in E2. For E2, the forests
f2 = [0aa[1]1]0, f3 = [0a[1a]1]0, and f4 = [0[1aa]1]0 correspond to matching
the entire input string w, and for E3, we have the forests f5 = [0[1aa]1[2]2]0,
f6 = [0[1a]1[2a]2]0, and f7 = [0[1]1[2aa]2]0.

We consider matching with E3 first: Boost and Regex-TDFA both prefer
f5, since all non-atomic subexpressions are parenthesised, and both matchers
simply maximise the lengths of the substrings matched by the groups from left
to right. However, for E2, Regex-TDFA uses f2, because this matcher max-
imises the lengths of all subexpressions from left to right, regardless of whether
a subexpression is marked as a group. Boost, on the other hand, maximises
groups—here, first with respect to group 0, and then with respect to group 1
(which is contained in group 0). Hence, Boost prefers f4 to f2. �

Since unescaped and unbracketed parentheses always define groups, it does
not matter that parentheses might have been necessitated by issues of operator
precedence: Unlike the typical PCRE matcher or the Java regular expression
matcher, which support non-capturing groups—for which parentheses has no
other influence, save possibly changing how that abstract syntax tree of the reg-
ular expression is constructed—the user of posix-compliant matchers, including

Formalising Boost POSIX Regular Expression Matching 107

Boost, has no choice in the matter of capturing groups. However, in our theoret-
ical model of capturing regular expressions, we do in fact allow both capturing
and non-capturing groups.

Example 5. Fowler gives the example E4 = /a?(1ab)1?b?/. Arguably, here the
parentheses serve no other purpose except to delimit the subexpression to be
matched by the second option operator. The two forests f8 = [0ab]0 and f9 =
[0[1ab]1]0 correspond to a full match of the input string w = “ab”. Here, f8
represents the matcher using the first /a/ and the last /b/ subexpressions, and
f9 the case where the second option, of the /ab/ subexpression, is used. As is to
be expected for leftmost-longest semantics, Regex-TDFA returns f8, but Boost,
since it will maximise the only marked subexpression, returns f9. Contrast this
with matching the same input string w with E5 = /(1a?)1(2ab)2?(3b?)3/, where
both Regex-TDFA and Boost will prefer the forest f10 = [0[1a]1[3b]3]0 to the
forest f11 = [0[1]1[2ab]2[3]3]0. �

Example 6. Consider the regular expression E6 = /(1a + (2b∗)2)∗
1/. Since all

non-atomic subexpressions are parenthesised, for a given input string, match-
ing with both Boost and Regex-TDFA succeed on the same forests. For the
input strings w1 = “abb”, w2 = “abba”, and w3 = “abbab”, the respec-
tive forests f12 = [0[1a]1[1[2bb]2]1]0, f13 = [0[1a]1[1[2bb]2]1[1a]1]0, and f14 =
[0[1a]1[1[2bb]2]1[1a]1[1[2b]2]1]0 are preferred.

The way Boost reports the result, however, differs from Regex-TDFA. Using
Fowler’s format of reporting [8], we express the output (with grouping) of running
a matcher as a sequence of pairs, one for each group, starting at 0 for the
entire regular expression. The first element of a pair gives the start index of
the substring of the input that was matched by the group subexpression, and
the second element is the end index plus one of the substring. For f13, Boost
reports (0,4)(3,4)(1,3), but Regex-TDFA reports (0,4)(3,4)(?,?), where
(?,?) means the group subexpression did not participate in the match. �

How the information is reported depends on the implementer’s reading of
the matching function’s specification [2, “System interfaces—regcomp”], which
we summarise as: (1) If a subexpression is not contained within another subex-
pression, then if the subexpression participated in a match multiple times, the
last such match must be reported, or else, if it did not participate in a match,
then it must be reported as non-participating; (2) if a subexpression is con-
tained within another subexpression, and the outer subexpression participated
in a match, then the match or non-match of the inner subexpression must be
reported according to Rule (1), but with respect to the substring matched by the
outer subexpression and not the entire input string. “Participation” is defined
negatively: A subexpression does not participate in a match when one of the
choices in a union is not taken, or when the empty string is matched with an
iterative operator by matching zero times with the associated subexpression.

Essentially, Boost has elected to ignore Rule 2. Since group 2 is contained in
group 1, and for the last match (by Rule 1) of group 1, group 2 did not participate
in the match (by Rule 2), Regex-TDFA reported group 2 as (?,?) by Rule 2.

108 M. Berglund et al.

This can be seen in the forest f13, where the last subforest for group 1 does not
contain a subforest for group 2. Boost, on the other hand, simply returns the
last match information, regardless of whether one group is contained in another.

Incidentally, from the context in which the unqualified term “subexpression”
is used in the posix specification for reporting submatches, it is clear that this
term actually refers to parenthesised subexpressions, which is to say, groups.
Elsewhere [2, Sect. 9.4], the same term can refer to arbitrary or parenthesised
subexpressions, the latter of which is sometimes referred to by “grouping”. These
inconsistencies illustrate Fowler’s critical stance on the standard.

Example 7. To see how reporting differs for an empty match as opposed to a non-
participating subexpression, consider E7 = /(0(1a(2(3b)∗

3)2)
∗
1)0/ on input “aba”.

Both Boost and Regex-TDFA prefer the forest f15 = [0[1a[2[3b]3]2]1[1a[2]2]1]0,
but Regex-TDFA reports the match as (0,3)(2,3)(3,3)(?,?), whereas Boost
reports (0,3)(2,3)(3,3)(1,2). Note that both report an empty match for
group 2 (by having the same index for the start and end). Since the iterative star
operator is applied to group 3 inside group 2, and therefore, since the last match
for group 2 is empty, group 3 did not participate in this match. Yet, although
group 3 is inside group 2, Boost still reports the last match of group 3. �

4 Boost Semantics and Matching Algorithm

We start this section by first providing three preliminary definitions, which is
then used to formalise, in Definition 11, Boost semantics.

Definition 8. The capture history for forests is the function C : F(Σ, I)×I →
N0 × N0, defined as follows. Let f ∈ F(Σ, I), j ∈ I, and

f(j) = πΣ∪{[j ,]j}(f) = w0[jw1]j · · · w2i[jw2i+1]jw2(i+1) · · · [jw2k−1]jw2k

where wi ∈ Σ∗. Then

C(f, j) =

{
{(|w0 · · · w2i|, |w2i+1|) | 0 ≤ i < k} if [j appears in f ;
∅ otherwise.

We assume that the tuples in C(f, j) are always sorted by increasing first
index. Also, Clast(f, j) denotes the tuple in C(f, j) with largest first index if
C(f, j) is non-empty, and Clast(f, j) = (�,⊥) otherwise.

Intuitively, Definition 5 allows us to express how substrings of an input string
are captured by the capture groups of a regular expression, which is accomplished
by decorating the input string with pairs of indexed brackets to delimit the
substrings thus captured as matching proceeds. In turn, Definition 8 allows us
to extract the capture history for a particular group, which yields a (possibly
empty) set of pairs, where each pair gives the start index and the length of the
captured substring. Note that we opted to record starting indices and length for
captures in our formalisation in the previous definition, instead of starting and
ending indices as is done typically by implementations.

Formalising Boost POSIX Regular Expression Matching 109

Example 8. To illustrate the capture history, we revisit Example 5. For match-
ing the input string w = “ab” by E5 = /(1a?)1(2ab)2?(3b?)3/, we consider
the forests f10 = [0[1a]1[3b]3]0 and f11 = [0[1]1[2ab]2[3]3]0. They yield, first
for f10: C(f10, 0) = C([0ab]0) = {(0, 2)}, C(f10, 1) = C([1a]1b, 1) = {(0, 1)},
C(f10, 2) = C(ab, 2) = {(�,⊥)}, C(f10, 3) = C(a[3b]3, 3) = {(1, 1)}; and then
for f11: C(f11, 0) = C([0ab]0) = {(0, 2)}, C(f11, 1) = C([1]1ab, 1) = {(0, 0)},
C(f11, 2) = C([2ab]2, 2) = {(0, 2)}, and C(f11, 3) = C(ab[3]3, 3) = {(2, 0)}. Note
the difference between the empty captures such as C(f11, 1) and C(f11, 3), and
a capture history in which a particular subexpression did not participate, such
as C(f10, 2). �

Definition 9. The final capture history for f ∈ F(Σ, I), denoted as Cfin(f), is
the set {(j, Clast(f, j)) | j ∈ I}.
Remark 8. In the sequel, we abuse notation somewhat, and we write Cfin(f) as
a set of triplets instead of as a set of ordered pairs (of which each second element
is also a pair).

Example 9. To illustrate the final capture history, we use the forest f14 =
[0[1a]1[1[2bb]2]1[1a]1[1[2b]2]1]0 from Example 6. Recall, for this forest, we matched
the input string w3 = “abbab” by the regular expression E6 = /(1a + (2b∗)2)∗

1/.
From f14, we extract the capture histories

C(f14, 0) = C([0abbab]0, 0) = {(0, 5)},

C(f14, 1) = C([1a]1[1bb]1[1a]1[1b]1, 1) = {(0, 1), (1, 2), (3, 1), (4, 1)}, and
C(f14, 2) = C(a[2bb]2a[2b]2, 2) = {(1, 2), (4, 1)}.

Therefore, Cfin(f14) = {(0, 0, 5), (1, 4, 1), (2, 4, 1)}. �

Definition 10. We define the Boost partial order, denoted as ≺B, on {Cfin(f) |
f ∈ F(Σ, I)} as follows. Assume πΣ(f1) = πΣ(f2), then Cfin(f1) ≺B Cfin(f2) if
for the smallest element j ∈ I such that (j, s1, �1) �= (j, s2, �2), where (j, si, �i) ∈
Cfin(fi), we have s2 < s1, or s1 = s2 but �1 < �2.

Definition 11. For r ∈ R(Σ, I) and w ∈ πΣ(L(r)), the Boost captures of
matching w with r, denoted as B(r, w), is defined to be the largest element in
{Cfin(f) | f ∈ L(r), πΣ(f) = w} determined by ≺B.

Remark 9. It should be noted that ≺B is a total order on the finite set {Cfin(f) |
f ∈ L(r), πΣ(f) = w} used in the previous definition, and thus B(r, w) is well-
defined.

Example 10. To illustrate Boost partial order and captures, we continue Exam-
ple 5. We match w = “ab” with E4 = /a?(1ab)1?b?/, and we consider the
forests f8 = [0ab]0 and f9 = [0[1ab]1]0. By Definition 8, we have the cap-
ture histories C(f8, 0) = {(0, 2)}, C(f8, 1) = ∅, C(f9, 0) = {(0, 2)}, and
C(f9, 1) = {(0, 2)}, whence by Definition 9, Cfin(f8) = {(0, 0, 2), (1,�,⊥)} and
Cfin(f9) = {(0, 0, 2), (1, 0, 2)}. At j = 1, we find s8 = � and s9 = 0, so that

110 M. Berglund et al.

s9 < s8, and therefore, by Definition 10, Cfin(f8) ≺B Cfin(f9). Finally, by Defi-
nition 11, B(E4, “ab”) = {(0, 0, 2), (1, 0, 2)}.

For matching w with E5 = /(1a?)1(2ab)2?(3b?)3/, and for the forests f10 =
[0[1a]1[3b]3]0 and f11 = [0[1]1[2ab]2[3]3]0, we calculate, by way of Example 8,

Cfin(f10) = {(0, 0, 2), (1, 0, 1), (2,�,⊥), (3, 1, 1)} and
Cfin(f11) = {(0, 0, 2), (1, 0, 0), (2, 0, 2), (3, 2, 0)}.

At j = 1, we find s10 = s11 = 0, �10 = 1, and �11 = 0, so that �11 < �10.
Therefore, Cfin(f11) ≺B Cfin(f10), and B(E5, w) = Cfin(f10). �

The actual implementation of posix matching in Boost is implemented in a
very straightforward way, in that it is a small modification of another match-
ing engine. Boost contains a very complete implementation of PCRE/Java-
style semantics, implemented by depth-first backtracking search on what is in
effect an automaton constructed from the expression. See Berglund and Van
der Merwe [5] for a complete discussion both of these semantics and the details
of such search implementations, which applies fully to the PCRE-style mode in
Boost, including the potential for very poor performance for some regular expres-
sions [26] in instances where a significant amount of backtracking is necessary.
The posix mode is derived from this engine as follows:

1. Apply the PCRE-style matching engine to the input, and record the resulting
parse tree t. If the engine rejects the string then it is rejected (as the modes
agree on simple membership though not on capturing semantics2).

2. Apply the PCRE-style matching engine to the input, and each time it would
accept with a parse tree t′:
(a) if Cfin(t) ≺B Cfin(t′), set t ← t′, with ≺B defined precisely as in Defini-

tion 10,
(b) reject, as if the search had failed, causing the engine to backtrack.

3. Output the final t as the posix-style match result.

In effect the PCRE-style engine is simply made to explore every possible
parse tree by triggering its backtracking. Unfortunately there are some edge
cases where this does not quite work, as the PCRE-style engine fails to explore
some trees which are from the PCRE perspective not useful candidates, but
which are clearly more correct from a posix perspective—more on this follows
in Sect. 5—but we view these instances as plain bugs rather than as intended
semantics.

The larger issue with this implementation technique is that there may be
exponentially many parse trees, and exploring them all may cause very poor
performance. For example, with default settings, the Boost posix matcher will
refuse to attempt to match the string “aaaaaaaaaaaaa” with /(a∗)∗/, issuing a
warning that the expression should be refactored to avoid “eternal” matching;
2 The matching engine should also reject on syntax or operators not permitted, as not

all PCRE-style features make sense in the posix context. The parsing and validation
of the expression is not within the scope of this discussion however.

Formalising Boost POSIX Regular Expression Matching 111

remove one “a”, however, and the match will succeed. Again, see Weideman
et al. [26] for a full treatment of this type of matching issues. Depending on the
application, this may be a rather severe issue, but fortunately, the problem of
computing the correct Boost match does not actually require exponential time, at
least in theory (although this is not the case for current Boost implementations),
as we will see next.

Theorem 1. Boost captures B(r, w), where r ∈ R(Σ, I) and w ∈ Σ∗, can be
computed in time O(k|w||r| log |w|), where k is the number of distinct capturing
indices used in r.

Proof. Without loss of generality, assume I = {1, . . . , k}, and let T (r) be a
transducer, obtained via a modified Thompson construction, which on input w,
outputs all matching forests of w; see Berglund and Van der Merwe [5] for a
detailed description of such a construction. We associate with each i ∈ I the
sets of transitions Oi and Ci, from T (r), that outputs (i and)i, respectively.
Next, we determine the capturing information for each i ∈ I in order of priority,
so starting with i = 1, we use binary search, in conjunction with a modified
on-the-fly subset construction, on T (r), to first find the leftmost position in w
where we can use a transition, from Oi, for the last time, while matching w
from left to right with T (r). That is, the binary search proceeds by stating that
“the last leftmost position is at or to the left of position p”, then we simulate
T on w by keeping track of all states reachable, verifying this assumption. If we
succeed, we attempt a smaller p; if we fail, we attempt a larger one, until the
precise leftmost last position possible is identified. To make this more precise,
the condition is verified by up to position p simulating T , adding to each state
reached a flag annotating whether it has been reached on a path which used some
transition from O1 at least once (if the same state is reached with and without
using a transition from O1, the flag is kept). When position p is reached, all states
which have not used a transition from O1 are discarded, and the simulation of T
continues, but now no transition from O1 may be used for the remainder of w.

Once we have this first position for capture i = 1 fixed—that is, every scan
considered from here on should obey this condition on the paths they consider,
but as this only constrains the possible paths in T , it has no negative impact on
the matching performance—we again use the same search procedure to determine
the rightmost position in w where we can use a transition from C1, for the last
time, while matching w from left to right with T (r).

Combining this modified on-the-fly subset construction—which is to say,
tracking of reachable states fulfilling the additional conditions placed by the
capturing order—with binary search, allows us to determine the starting and
ending positions of the capture on index 1 in time O(|w||r| log |w|). This is the
case as |T | ∈ O(r), and checking if T matches w can be done in time O(|T ||w|),
even with the added modifications, as the restrictions only remove paths which
a full simulation would have to consider.

We now repeat this search for index i = 2, but while doing the search for
starting and ending position of this capture, we use the additional restrictions

112 M. Berglund et al.

that transitions from O1 and C1 has to be taken at the opening and closing
positions of the capture on index 1. Repeating this procedure for each index
gives us an O(k|E||w| log |w|) algorithm to compute B(w, r). �

Remark 10. Theorem 1 does establish that matching consistent with the Boost
semantics can be performed in polynomial time, which improves greatly on the
exponential worst-case of Boost itself. However, this construction is primarily
given for illustrative purposes, and it is clearly not the most efficient approach
possible: The binary search proposed to optimize the moment when the state
machine last uses the transitions corresponding to the captures can be replaced
by a more complicated but more efficient linear scan which determines the correct
placement outright. The details of such an algorithm are non-trivial, however,
so we leave the construction and correctness proof details as future work.

5 Experimental Results

To test our formalism experimentally, we developed two applications in Python:
(1) a small testing framework for existing matchers, and (2) a larger, extensible
framework that allows us, given a regular expression r ∈ R(Σ, I) and an input
string w ∈ Σ∗, to generate the forests f ∈ L(r), and then to apply the Boost or
posix disambiguation policy, for the latter of which we used the Okui–Suzuki
approach as proxy. For the sake of simplicity in the larger framework, we limited
Σ to alphabetic characters, we did not implement the more involved posix reg-
ular expression atoms such as bracket expressions and collating elements, and
beyond the barest minimum, we did not attempt to make forest generation and
matching efficient in any way.

As sanity check for both frameworks, we generated 2 930 862 simple test cases,
each containing a regular expression, an input string, and the expected output,
taken from running the Boost matcher on the expression–input pair. The regular
expressions were those consisting of the atoms a, b, and ., the operators *, +, ?,
and |, as well as parentheses, and when counting all symbols in the expression,
of all lengths up to and including 6; the input strings were all strings over the
alphabet {a, b, c} of length up to and including 6. We used the small testing
framework to run the test cases against output from the larger framework with
our Boost semantics, and all of them passed.

Our principle source for in-depth testing was the 93 examples Fowler [8]
designed specifically to tease out posix compliance: We retained the 49 ERE
examples from interpretation.dat, removing a further three for containing
bracket expressions. Of these, Boost was able to return matches, without resort-
ing to partial matching, for 37 test cases; see Remark 11 for a discussion. We also
wrote 19 additional test cases, designed to show the difference between Boost
and posix disambiguation.

The implementation of our Boost formalism passed all of our own test cases
with respect to what the Boost matcher returns. For the 37 test cases, our Boost
formalism failed two, which we now discuss.

Formalising Boost POSIX Regular Expression Matching 113

Example 11. Our formalism disagrees with the Boost matcher on Fowler’s
test case 10, matching “x” with the regular expression (.?){2}, where the
dot operator indicates a match with any character. Here, we get the forests
f16 = [0[1]1[1x]1]0 and f17 = [0[1x]1[1]1]0. From Definitions 8 and 9, we get
Cfin(f16) = {(0, 0, 1), (1, 0, 1)} and Cfin(f17) = {(0, 0, 1), (1, 1, 0)}, and hence, by
Definition 10, we have Cfin(f17) ≺B Cfin(f16), so that our formalism selects f16.
However, the Boost matcher prefers f17, which is to say, it returns (0,1)(1,1)
instead of the expected (0,1)(0,1).

Running Regex-TDFA on the same example also returns (0,1)(1,1).
Therefore, we refer to the posix standard, which specifies that duplication
“shall match what repeated consecutive occurrences” [emphasis added] would
match [2, Sect. 9.4.6]. This would seem to suggest that (.?){2} is equivalent
to the literal expansion (.?)(.?). Both Boost and Regex-TDFA now return
(0,1)(0,1)(1,1) as expected, but note that we had no choice in the second pair
of parentheses automatically defining a new group. We might now posit that (1)
Boost has the internal forest representations [0[1x]1[2]2]0 and [0[1]1[2x]2]0, (2) it
selects the former by our Boost formalism, but then (3) reports this choice as
[0[1x]1[1]1]0.

This postulation does not extend to Fowler’s test case 17, matching “xxx”
with (.?.?){3}, where Boost returns (0,3)(2,3), capturing the last “x” with
group 1—unlike Regex-TDFA, which returns (0,3)(3,3); when expanded to
(.?.?)(.?.?)(.?.?), both return (0,3)(0,2)(2,3)(3,3). Our point is this:
For sensible options of internal representation—non-capturing groups, group
number reuse and reordering—we can cook up counterexamples, so that the same
proposed representation does not work over all test cases. We believe this to be
a bug in the Boost matcher: During code inspection, we found code that limits
the forests to be explored, an optimisation that short-circuits a duplication when
it first matches an empty string, which is fine for PCRE semantics—recall that
Boost’s posix matcher is a modified PCRE engine—but prevents all possibilities
from being considered for posix semantics. �

Remark 11. In our test setup, Boost only looks for full matches, that is, where
the entire input string is matched by the regular expression. Partial matching
allows a matcher to match a substring of the input string with a regular expres-
sion. Because Boost maximises groups (as opposed to subexpressions) from left
to right, it is possible to simulate partial matching by prepending and appending
.* to the regular expressions involved (and if necessary, surrounding the orig-
inal expression with parentheses). For example, to allow Fowler’s test case 28,
matching “ababa” by (aba|a*b), to succeed, we rewrite the regular expression
as .*(aba|a*b).*. Doing so allows Boost to return the partial match for the
nine Fowler test cases that failed originally, and the results correspond to those
returned by our own Boost ordering.

The same construction does not in general return correct results for a classic
posix matcher set up to return full matches. It will match the first and last “a”
in “aba” with the first and last .* of .*(aba|a*b).*, respectively, and “b” with

114 M. Berglund et al.

group 1. A lazy star, which consumes as few symbols as possible, is necessary
for the construction to work for posix matchers [5], but is not supported by the
standard.

6 Future Work and Conclusion

Although we focused in this paper mostly on Boost semantics of regular expres-
sion matching, the overarching theme of this research is the more general notion
of providing users of matching libraries the freedom to specify their own orders
(or disambiguating policies) that can be used by more generic regular expres-
sion matching libraries. Thus, instead of being locked into the unclear semantics
provided by current greedy and posix implementations, users can then spec-
ify their own policies, such as for example longest-leftmost, instead of the cur-
rent leftmost-longest policy. Certainly, it might often be of more interest to
find a longest submatch rather than a leftmost one. Given that comparators
made generic sorting algorithms widely applicable, why not by analogy pro-
vide a generic way to specify classes of disambiguating policies to be used by a
matcher, while still keeping the matching procedure efficient?

References

1. PCRE: Perl compatible regular expressions. https://www.pcre.org/. Accessed 26
May 2018

2. Portable Operating System Interface (POSIX) Base Specifications, Issue 7. IEEE
Standard 1003.1-2017 (2017). (Revision of IEEE Standard 1003.1-2008) https://
doi.org/10.1109/ieeestd.2008.4694976

3. Regex(3) BSD Library Functions Manual, September 2011. as available on macOS
10.11.6

4. Regular expression routines: OpenBSD library functions manual, May 2016.
http://man.openbsd.org/regexec

5. Berglund, M., van der Merwe, B.: On the semantics of regular expression parsing
in the wild. Theor. Comput. Sci. 679, 69–82 (2017). https://doi.org/10.1016/j.tcs.
2016.09.006

6. Berglund, M., van der Merwe, B.: Re-examining regular expressions with backref-
erences. In: Holub, J., Žd’árek, J. (eds.) Proceedings of Prague Stringology Con-
ference, PSC 2017, Prague, August 2017, pp. 30–41. Czech Technical University
Prague (2017). http://www.stringology.org/event/2017/p04.html

7. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Inf. Com-
put. 140(2), 229–253 (1998). https://doi.org/10.1006/inco.1997.2688

8. Fowler, G.: An interpretation of the POSIX regex standard. Technical report,
AT&T Research, Florham Park, NJ (2003). http://gsf.cococlyde.org/download

9. Friedl, J.E.F.: Mastering Regular Expressions, 3rd edn. O’Reilly, Sebastopol (2006)
10. Frisch, A., Cardelli, L.: Greedy regular expression matching. In: Dı́az, J.,

Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp.
618–629. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27836-
8 53

https://www.pcre.org/
https://doi.org/10.1109/ieeestd.2008.4694976
https://doi.org/10.1109/ieeestd.2008.4694976
http://man.openbsd.org/regexec
https://doi.org/10.1016/j.tcs.2016.09.006
https://doi.org/10.1016/j.tcs.2016.09.006
http://www.stringology.org/event/2017/p04.html
https://doi.org/10.1006/inco.1997.2688
http://gsf.cococlyde.org/download
https://doi.org/10.1007/978-3-540-27836-8_53
https://doi.org/10.1007/978-3-540-27836-8_53

Formalising Boost POSIX Regular Expression Matching 115

11. Houston, G.: Henry Spencer’s regular expression libraries. Git repositories. https://
garyhouston.github.io/regex/. Accessed 26 May 2018

12. Kearns, S.M.: Extending regular expressions with context operators and parse
extraction. Softw. Pract. Exp. 21(8), 787–804 (1991). https://doi.org/10.1002/
spe.4380210803

13. Kuklewicz, C.: Regex-TDFA. https://hackage.haskell.org/package/regex-tdfa.
Accessed 26 May 2018

14. Kuklewicz, C.: Summoned: Response to blog entry on lambda the ultimate: the
programming languages weblog, February 2007. http://lambda-the-ultimate.org/
node/2064. Accessed 26 May 2018

15. Kuklewicz, C.: regex-posix-unittest (2009). https://hackage.haskell.org/package/
regex-posix-unittest. Accessed 26 May 2018

16. Kuklewicz, C.: Regex Posix. Haskell Wiki, March 2017. https://wiki.haskell.org/
Regex Posix. Accessed 26 May 2018

17. Laurikari, V.: NFAs with tagged transitions, their conversion to deterministic
automata and application to regular expressions. In: Proceedings of 7th Interna-
tional Symposium on String Processing and Information Retrieval, SPIRE 2000,
A Coruña, September 2000, pp. 181–187. IEEE (2000). https://doi.org/10.1109/
spire.2000.878194

18. Laurikari, V.: TRE: The free and portable regex matching library. Git repository.
https://github.com/laurikari/tre/. Accessed 26 May 2018

19. Laurikari, V.: TRE documentation. https://laurikari.net/tre/documentation/
regex-syntax/. Accessed 26 May 2018

20. Laurikari, V.: Efficient submatch addressing for regular expressions. Master’s the-
sis, Helsinki University of Technology, November 2001

21. Maddock, J.: Boost.Regex (2013). https://www.boost.org/doc/libs/1 67 0/libs/
regex/doc/html/index.html. Accessed 26 May 2018

22. Okui, S., Suzuki, T.: Disambiguation in regular expression matching via position
automata with augmented transitions. In: Domaratzki, M., Salomaa, K. (eds.)
CIAA 2010. LNCS, vol. 6482, pp. 231–240. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-18098-9 25

23. Sulzmann, M., Lu, K.Z.M.: POSIX regular expression parsing with derivatives. In:
Codish, M., Sumii, E. (eds.) FLOPS 2014. LNCS, vol. 8475, pp. 203–220. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-07151-0 13

24. Sulzmann, M., Lu, K.Z.M.: Derivative-based diagnosis of regular expression ambi-
guity. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 260–272.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40946-7 22

25. Thompson, K.: Programming techniques: regular expression search algorithm.
Commun. ACM 11(6), 419–422 (1968). https://doi.org/10.1145/363347.363387

26. Weideman, N., van der Merwe, B., Berglund, M., Watson, B.: Analyzing matching
time behavior of backtracking regular expression matchers by using ambiguity of
NFA. In: Han, Y.-S., Salomaa, K. (eds.) CIAA 2016. LNCS, vol. 9705, pp. 322–334.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40946-7 27

https://garyhouston.github.io/regex/
https://garyhouston.github.io/regex/
https://doi.org/10.1002/spe.4380210803
https://doi.org/10.1002/spe.4380210803
https://hackage.haskell.org/package/regex-tdfa
http://lambda-the-ultimate.org/node/2064
http://lambda-the-ultimate.org/node/2064
https://hackage.haskell.org/package/regex-posix-unittest
https://hackage.haskell.org/package/regex-posix-unittest
https://wiki.haskell.org/Regex_Posix
https://wiki.haskell.org/Regex_Posix
https://doi.org/10.1109/spire.2000.878194
https://doi.org/10.1109/spire.2000.878194
https://github.com/laurikari/tre/
https://laurikari.net/tre/documentation/regex-syntax/
https://laurikari.net/tre/documentation/regex-syntax/
https://www.boost.org/doc/libs/1_67_0/libs/regex/doc/html/index.html
https://www.boost.org/doc/libs/1_67_0/libs/regex/doc/html/index.html
https://doi.org/10.1007/978-3-642-18098-9_25
https://doi.org/10.1007/978-3-642-18098-9_25
https://doi.org/10.1007/978-3-319-07151-0_13
https://doi.org/10.1007/978-3-319-40946-7_22
https://doi.org/10.1145/363347.363387
https://doi.org/10.1007/978-3-319-40946-7_27

Monoidal Multiplexing

Apiwat Chantawibul(B) and Pawe�l Sobociński

School of Electronics and Computer Science, University of Southampton,
Southampton SO17 1BJ, UK

billiska@gmail.com, ps@ecs.soton.ac.uk

Abstract. Given a classical algebraic structure—e.g. a monoid or
group—with carrier set X, and given a positive integer n, there is a
canonical way of obtaining the same structure on carrier set Xn by defin-
ing the required operations “pointwise”. For resource-sensitive algebra
(i.e. based on mere symmetric monoidal, not cartesian structure), similar
“pointwise” operations are usually defined as a kind of syntactic sugar:
for example, given a comonoid structure on X, one obtains a comulti-
plication on X ⊗ X by tensoring two comultiplications and composing
with an appropriate permutation. This is a specific example of a general
construction that we identify and refer to as multiplexing. We obtain a
general theorem that guarantees that any equation that holds in the base
case will hold also for the multiplexed operations, thus generalising the
“pointwise” definitions of classical universal algebra.

Keywords: String diagrams · Resource sensitivity
Symmetric monoidal categories · Props

1 Introduction

In recent years there has been a significant amount of work that uses string
diagrams as a compositional syntax for various computational artefacts. A few
of the application domains are quantum foundations and quantum computing [1,
12,13], Petri nets [24,25], signal flow graphs in control theory [2,7,9,10,14],
electrical circuits [3,17,18], game theory [16] and functional programming [19,
23]. In applications, string diagrams are an intuitive, yet formal syntax and
often come equipped with an underlying algebraic theory with which one can
reason about the specific application domains using diagrammatic reasoning.
The deeper reason for this trend is that string diagrams are an appropriate
graphical representation for the arrows of symmetric monoidal categories, since
intuitive topological deformations capture the underlying algebraic laws. But
why symmetric monoidal categories?

In categorical universal algebra, following Lawvere [21], categories with finite
products are a canonical, categorical setting with which to capture the data
of any classical algebraic theory. Classical algebraic theories have an implicit
assumption that the underlying data is amenable to copying and discarding.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 116–131, 2018.
https://doi.org/10.1007/978-3-030-02508-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_7&domain=pdf

Monoidal Multiplexing 117

Mathematically, this is reflected by the characterisation of cartesian categories
as those symmetric monoidal categories where each object is equipped with
a cocommutative comonoid structure and all arrows are comonoid homomor-
phisms [11,15]. In many applications (e.g. quantum), however, data is not clas-
sical. In others (e.g. concurrency, control), it is advisable to make copying and
discarding explicit, whenever it is used. This boils down to passing from cartesian
categories (Lawvere theories) to mere symmetric monoidal categories (props).

Classical universal algebra dates back to the 1930s, and is a mature subject.
On the other hand, “resource-sensitive” universal algebra is still in a state of
flux. The upshot of this state of affairs is that the same basic constructions are
repeated in different articles, often without a clear picture of their generality. A
consolidation effort is only just beginning, e.g. by extending Lawvere’s functorial
semantics to a suitable class of props [8] and by developing a general theory of
rewriting modulo the structure of symmetric monoidal categories [4–6].

An example of a construction that appears in many of the aforementioned
applications of string diagrams is “pointwise” definitions: e.g. given an operation
such as multiplication (2 → 1), comultiplication (1 → 2), cup (0 → 2) or a cap
(2 → 0), it is common to define its n-ary version, i.e. replacing the carrier 1 by n.
For instance, two cups can be wired together appropriately to obtain a “2-cup”:

�−→

In articles, the “obvious” recursive definitions are often given explicitly. Proving
that “k-cups” behave as ordinary cups then reduces to a simple induction. This
paper is devoted to continuing the consolidation effort through a close examina-
tion of such “pointwise” definitions, which we call monoidal multiplexing.

We start with an examination of classical “pointwise” definitions. A presen-
tation of an algebraic theory is a pair (Σ,E) where Σ is a set of operations,
each with an arity, and E is a set of equations between terms constructed from
operations and variables. For a concrete example, consider the algebraic the-
ory of a monoid. Its usual presentation is Σ = {m, e}, where m has arity 2
and e arity 0. The set of equations consists of associativity (m(m(x1, x2), x3) =
m(x1,m(x2, x3)) and unitality (m(x1, e) = x1, m(e, x1) = x1). To give a model
(a concrete monoid) is to pick a carrier set X and interpretations: m : X2 → X,
e : X0 → X, satisfying the required equations, given an implicit universal quan-
tification over the variables that appear within them.

Given k ∈ N, there is a canonical way to define this structure when the
underlying carrier set is Xk: the operation m·k : (Xk)2 → Xk simply per-
forms m “pointwise” on a pair of k-tuples. So, say letting k = 3, the multiplica-
tion takes (x1, x2, x3), (y1, y2, y3) to (m(x1, y1),m(x2, y2),m(x3, y3)) with unit
(e, e, e). This idea is not specific to monoids and can be carried through similarly
for any algebraic theory, as we shall see below.

Let us come back to Lawvere theories in more detail: the data of an algebraic
theory with presentation (Σ,E) is captured by the Lawvere theory LΣ,E . This
is a category with finite products where objects are natural numbers; moreover,

118 A. Chantawibul and P. Sobociński

the categorical product of m and n is m + n. A concrete description of an arrow
m → n in LΣ,E is as an n-tuple of terms constructed from operations of Σ
and variables x1, x2, . . . xm, taken modulo the equations of E. Composition is
substitution, in the obvious way. An outcome of this is functorial semantics: a
classical model is a product-preserving functor LΣ,E → Set.

The “pointwise” construction can be explained concisely using Lawvere the-
ories. Indeed, suppose that σ ∈ Σ has arity n and consider some k ∈ N. Write
n · k for k + k + · · · + k

︸ ︷︷ ︸

n times

for the n-fold product of k in LΣ,E ; recall that in a

Lawvere theory + is the categorical product on objects. The object k is itself a
k-fold product of 1; for 1 ≤ i ≤ k, denote the ith projection πi : k → 1. Note
that as a term, πi is simply the (1-tuple containing the) ith variable πi = (xi).

Now let Πi : n·k → n = πi + πi + · · · + πi
︸ ︷︷ ︸

n times

, which—concretely—is the n-tuple

of variables (xi, xi+k, . . . , xi+(n−1)k). Together, {Π1,Π2, . . . ,Πk} is a complete
set of projections of n·k. Given this choice of projections, the pointwise definition
of σ on k-tuples is the unique arrow σ · k : n · k → k induced by the universal
property of products, where for each projection:

k
πi �� 1

n · k

σ·k

��

Πi

�� n

σ

��

The above definition does not rely on the fact that σ is in Σ, and works for any
arrow of LΣ,E . It is therefore easy to see that it defines a functor

(−) · k : LΣ,E → LΣ,E

with the heavy lifting taken care of by the fact that LΣ,E has finite products.
Now, given a model M : LΣ,E → Set, we obtain a canonical “pointwise” model
on k-tuples: M ◦ [(−) · k] : LΣ,E → Set.

Although finite products seem to play an important role in the above devel-
opment, they are in fact not necessary. To see why this is the case it is useful to
note that any Lawvere theory is in fact a prop [11]. Then, returning the concrete
example of the theory of monoids, m · 3 is the string diagram

m m m
.

Our main result is that (−) ·k defines a strict monoidal functor on any prop,
where strict refers to preservation of ⊗ on the nose. An example of this for k = 2

Monoidal Multiplexing 119

and the arrow A ⊗ B, where A : 2 → 2 and B : 2 → 2, is given below.

(

A B

)

2 = A B A B

= A A B B

=

(

A

)

2 ⊗
(

B

)

2

In order to define and reason about (−)·k without assuming that ⊗ is the cate-
gorical product, we need to carefully identify the required permutations, which
feature in the diagrams above. We rely on the fact that the initial prop is the
prop of permutations P, which can be understood as the skeletal version of the
category of finite sets and bijections. The latter category embeds faithfully in the
category of finite sets and functions, which has both products and coproducts,
and whose skeletal version can be presented as the symmetric monoidal theory
of commutative monoids CM [20]. We use the structure of CM as a useful syntax
with which to identify the required permutations.

Structure of the Paper. After recalling the necessary background definitions and
graphical conventions in Sect. 2, we develop a toolbox of permutations in Sect. 3.
We define the multiplexing operation in Sect. 4 where we prove our main result,
and conclude in Sect. 5.

2 Preliminaries

2.1 Props

Props or product and permutation categories are special cases of symmet-
ric strict monoidal categories where the objects are generated from repeated
monoidal product of a single generator object [22]. The strictness of monoidal
categories means that the coherence morphisms (associator, left unitor, and right
unitor) that mediate the different ways objects are combined with monoidal
product are trivial: they are all identities.

The effect of strictness is that objects in props can be harmlessly identified
with finite ordinals where the monoidal product on objects is addition and the
monoidal unit is 0. Morphisms between props are symmetric strict monoidal
functors, as described in Definition 2 that are, moreover, also identity-on-objects.

120 A. Chantawibul and P. Sobociński

A common use of props is as a carrier of the data of an algebraic theory. Such
“algebraic” props are often called symmetric monoidal theories. They strictly
generalise Lawvere theories, which in turn can be identified with cartesian props
where the monoidal product is also the categorical product.

2.2 Symmetric Monoidal Theory

By a symmetric monoidal theory we mean a prop that is generated from a
presentation: a pair (Σ,E) of signature set Σ and a equation set E. As opposed
to classical presentation, the elements of Σ are equipped with both arity and
coarity. A presentation of particular relevance for us is the theory of commutative
monoids, which appears at the beginning of Sect. 3.

2.3 Symmetric Monoidal Functors

Symmetric monoidal functors are structure-preserving maps between symmetric
monoidal categories. They are typically defined with extra conditions ensuring
their compatibility with the coherence conditions of monoidal categories. How-
ever, since the paper only concerns props which are symmetric strict monoidal
categories, there are no further coherence conditions that the monoidal functors
need to satisfy. The definition then reduces to:

Definition 1 (symmetric monoidal functor). Let C and D be props. A sym-
metric monoidal functor F : C → D consists of

– a functor
F : C → D

– an isomorphism
εF : 0 → F (0)

– a natural isomorphism

μF
a,b : F (a) ⊗ F (b) → F (a ⊗ b)

for all objects a, b ∈ C.

satisfying the preservation of symmetry condition:

μF
b,a ◦ σFa,Fb = F (σa,b) ◦ μF

a,b

where σ denotes the symmetry natural transformation of the props.

The strictness of symmetric monoidal functors refers to the additional property
that the preservation of symmetric monoidal structure is, in fact, on the nose.

Monoidal Multiplexing 121

Definition 2 (symmetric strict monoidal functor). A symmetric monoidal
functor F : C → D is strict if εF is the identity morphism on 0, i.e.,

0 = F (0)

and μF is the identity natural transformation, i.e.,

F (a) ⊗ F (b) = F (a ⊗ b)

thus satisfying the strict preservation of symmetry condition:

σFa,Fb = F (σa,b)

2.4 Graphical Conventions

Props admit a particularly simple and topologically intuitive string diagram-
matic notation. The objects (which, as we previously mentioned, can be con-
sidered as finite ordinals) are drawn as an ordered list of wires. We will draw a
morphism A : n → m as an A-labelled box with n strings originating from the
bottom and m strings coming out from the top. Sometimes, in specific cases such
as CM, a custom graphical notation is used instead to represent generators. The
monoidal product of two morphisms is represented by juxtaposing two diagrams
side-by-side and the composition of two morphisms is drawn by connecting the
diagrams with matching number of strings vertically, as shown below.

A ⊗ B

a+b...

c+d...

= A B

a...

c...

b...

d...

A ◦ B

a...

c...

=

B

A

a...

b...

c...

3 Permutations Structured by CM

The goal of this section is to assemble a toolbox of definitions and results about
permutations, which are needed for a proper account of multiplexing. By permu-
tations in an arbitrary prop X, we refer to the morphisms of X contained within
the image of the unique (but possibly non-faithful) morphism of props P → X

where P is the initial prop which is equivalent to the category of finite ordinals
and bijections. To manage the class of relevant permutations, we first note that
P embeds in the prop of commutative monoids CM which is also equivalent to
the category of finite ordinals and (all, i.e. possibly non-monotone) functions.

Remark 1. The embedding P → CM implies that we are able to use CM as
a “sound and complete calculus”for permutations in P—it is “sound” because
equations involving the permutations in CM are reflected in P due to faithfulness
of the embedding, and it is “complete”because equations involving permutations

122 A. Chantawibul and P. Sobociński

in P hold also in CM due to functoriality. Unlike P, CM has finite (categorical)
products and coproducts which, on objects, are the multiplication and addition
of finite ordinals respectively; this is enough structure for description of the class
of permutations of interest.

In Sect. 4, we will define the multiplexing operation on prop X by using the
aforementioned class of permutations. Given the above embedding, we are able
to do this without loss of generality.

In order to retain the “syntactic-flavour” of working with string diagrams,
we use the well-known presentation [20] of CM. The generators of CM are mul-
tiplication and unit while the commutative monoid equations are:

= , = , = .

The permutations of interest follow from the universal properties of a par-
ticular choice of products and coproducts in CM. Of course, the object part of
products and coproducts is forced on us since CM is skeletal: the only choice
is the projections and injections. In fact, these are determined by the following
two conditions, which follow from usual conventions in diagrammatic reasoning:
1. the monoidal product of CM is diagrammatically represented by juxtaposing

string diagrams side-by-side. Thus the left injection ought to “pick out” the
left hand side of the composite diagram, the right the right hand side.

2. the product is strictly right-distributive over the coproduct, i.e., the canonical
morphism:

n·k + m·k −→ (n + m)·k (SRD)

is required to be the identity. Informally, this translates to the identification
of the following two ways of grouping of identity string diagrams:

...

k

...

k

...

k

...

k

...

k

...

k

. . .

. . .

. . .

. . .

n m

=

...

k

...

k

...

k

. . .

. . .

n + m

The informal use of ellipses, as above, is part of what this work intends to
eliminate.

Coproducts and Injections. From the above conditions, the inductive char-
acterisations of projections and injections can be deduced. Fix the notation
ι1,n,m : n → n + m and ι2,n,m : m → n + m for the left and right injections,
respectively. Write σn,m : n+m → m+n for the isomorphism obtained from the
universal property (of coproducts), which coincides with the symmetry of CM:

m + n

n n + m m

σm,n

ι1,n,m

ι2,m,n

σn,m

ι2,n,m

ι1,m,n

(1)

Monoidal Multiplexing 123

The left injection can be given inductively as:

ι1,0,0 = id0,

ι1,a,b+1 = ι1,a,b ⊗ ,

ι1,1+a,b = id1 ⊗ ι1,a,b.

Products and Projections. We fix notation π1,m,n : m·n → m and π2,m,n : m·n →
n for the left and right projections, respectively. Let ρn,m : n·m → m·n be defined
by the universal property of products, as illustrated below:

m·n

n n·m m

π2,m,n π1,m,n

ρm,nρn,m

π1,n,m π2,n,m

(2)

Note that ρn,m = ρ−1
m,n. It is easy to check that ρm,n is a natural transformation

from −1·−2 : CM × CM → CM to −2·−1 : CM × CM → CM. Similarly, the
projections are natural transformations from −1·−2 : CM × CM → CM to the
two projection functors. In subsequent mentions, the subscript of these natural
transformations are omitted as they are implied by expressions of source and
target objects.

Lemma 1. The strict right-distributivity condition uniquely determines the
inductive characterisation of the left projection π1 as:

π1,0,k = id0 (3)
π1,1,1 = id1 (4)

π1,1,1+k = ◦ (id1 ⊗ π1,1,k) (5)

π1,a+b,k = π1,a,k ⊗ π1,b,k (6)

Proof. Projections given by (3), (4), and (5) are imposed by the universal prop-
erties of initial object 0 and terminal object 1. Lastly, (6) follows from fixing
identity as the canonical right-distributor in the commutative diagram defining
it as seen below:

k

a·k a·k + b·k b·k (a + b)·k

a a + b b

ι1,a·k,b·k

π2,a,k

π1,a,k

[π2,a,k,π2,b,k]

π1,a,k⊗π1,b,k

id

(strict distribution)
ι2,a·k,b·k

π1,b,k

π2,b,k

π2,a+b,k

π1,a+b,k

ι1,a,b ι2,a,b

124 A. Chantawibul and P. Sobociński

More explicitly, the derivation starts from noting that strict distribution condi-
tion equates the canonical right-distributor with identity:

id = (π1,a,k ⊗ π1,b,k, [π2,a,k, π2,b,k])

Post-composing with the first projection of (a + b)·k on both sides results in

π1,a+b,k = π1,a,k ⊗ π1,b,k

�	

3.1 Product Functor; Left and Right Multiplication

We take a closer look at the product functor that follows from our partic-
ular choice of projections and note the intuitive relationship it has with the
desired multiplexing operation on arbitrary props. The induced product functor
−1·−2 : CM×CM → CM maps (A : a′ → a,B : b′ → b) to the morphism induced
by the universal property of a·b:

a a·b b

a′ a′·b′ b′

π1 π2

A A·B
π1 π2

B

Writing ida as just a for brevity, A·B can be factorised using the universal
property of products as:

a·b′ a·b

a′·b′ a′·b

a·B

A·b′

a′·B

A·B
A·b (7)

We demonstrate in Lemma 2 that left multiplication k·(−) : CM → CM is much
easier to describe, namely as “k-fold monoidal product” and thus simple to define
in arbitrary props. The right multiplication (−)·k : CM → CM, however, is used
to define the multiplex operation in Sect. 4. To this end, we note the natural
symmetry of product ρ can be used to express right multiplication in terms of
left-multiplication instead as shown by the following commutative diagram:

b′·a a·b′ a·b b·a

b′·a′ a′·b′ a′·b b·a′

ρ a·B ρ

b′·A A·b′

a′·B

A·B

ρ

A·b
ρ

b·A (8)

A·B = ρb,a ◦ (b·A) ◦ ρa′·b ◦ (a′·B)
A·B = (a·B) ◦ ρb′,a ◦ (b′·A) ◦ ρa′·b′

The bifunctor −1·−2 : CM×CM → CM provides a useful tool for manipula-
tion of CM as a string diagram, for example:

Monoidal Multiplexing 125

() 2 ◦ 3 () = () · () = 2 () ◦ () 2

= () · () =

(Note that the diagrams are only equal w.r.t. the equational theory of CM.)
For any natural number k, the intuitive diagrammatic description of

– left multiplication k·(−) is k-fold monoidal product of the argument.
– right multiplication (−)·k is k copies of the argument ‘placed in an overlapping

cascade’.

Lemma 2. Given any A : a′ → a in CM, the left multiplication k·(−) : CM →
CM satisfies:

0·A = 0 k·A = A ⊗ (k − 1)·A

Proof. The first equation is forced by initiality of 0. The second equation follows
from strict right-distributivity (SRD) inducing a natural identity:

(1 + (k − 1))·(−) ⇒ 1·(−) ⊗ (k − 1)·(−)

3.2 Natural Permutations Structured by CM

We summarise the relationships between the natural family of permutations
structured by CM here, ready to be transferred into arbitrary props on which
multiplexing will be defined.

Let ξk,a,b : (k·a) + (k·b) → k·(a + b) be the natural isomorphism defined by
the canonical left-distribution of product over the coproduct (as opposed to the
right-distribution which is required to be identity in (SRD)). Together with the
symmetry of coproduct σ, the symmetry of product ρ, and the product functor
defined previously, we obtain the following commutative diagram:

k·(a + b) k·a + k·b k·b + k·a k·(b + a)

(a + b)·k a·k + b·k b·k + a·k (b + a)·k

ξ

k·(σ)

σ ξ

ρ

id

(σ)·k

ρ⊗ρ

σ

ρ⊗ρ

id

ρ (9)

which commutes because they are all canonical isomorphisms. In the diagram
above, we omit the arrowheads and subscripts to emphasise that these are all
isomorphisms.

Lemma 3. ξ has an inductive characterisation with base case ξ0,a,b = id0 and
inductive case as shown by the following commutative diagram:

126 A. Chantawibul and P. Sobociński

(1 + k)·(a + b) a + b + k·(a + b)

a + b + k·a + k·b

(1 + k)·a + (1 + k)·b a + k·a + b + k·b

id

ida⊗idb⊗ξk,a,b

ξ(1+k),a,b

id

ida⊗σk·a,b⊗idk·b

Proof. The lemma is a special case where n = 1 of

(n + m)·a + (n + m)·b (n + m)·(a + b) n·(a + b) + m·(a + b)

n·a + m·a + n·b + m·b n·a + n·b + m·a + m·b

ξ

id

id

ξ⊗ξ

idn·a⊗σn·b,m·a⊗idm·b

where the diagram commutes because they mediate canonical ways to distribute
(n + m)·(a + b). �	
Example 1. From the inductive definition of ξ, the string diagram of ξ3,2,2 is:

ξ3,2,2 =
ξ2,2,2 =

4 Multiplexing

We have seen in the previous section that (−)·k : CM → CM maps diagrams to
our desired “pointwise” k-fold version. To define this as a functor on an arbitrary
prop X, we define it not through the product functor (which may not exists in
X) but through repeated tensor and permutations. With Remark 1 in mind, we
abuse the notation and denote permutations in arbitrary props with the same
symbols—ξ, ρ, σ—as the corresponding permutations defined in CM.

Definition 3 (multiplexing map). For an arbitrary prop X, a morphism
A : a′ → a in X, and any natural number k, define k·(−) : X[a′, a] → X[k·a′, k·a]
by recursion as:

0·A = id0 k·A = A ⊗ (k − 1)·A.

Next, we define (−)·k : X[a′, a] → X[a′·k, a·k] as:

A·k = ρk,a ◦ (k·A) ◦ ρa′,k

where ρa,k : a·k → k·a denotes the permutation from (2). Call k·A the k-fold
monoidal product of A and A·k the k-multiplex of A.

Monoidal Multiplexing 127

Example 2. Let A : 2 → 3 be a morphism in X, then

3·A = A A A

and

A·3 = 3·A = A A A

The above defines k·(−) and (−)·k as functions on homsets. On objects, we
let [k·(−)](m) = k·m = m·k = [(−)·k](m).

Lemma 4. Both k·(−) and (−)·k strictly preserve the monoidal unit, i.e., on
objects:

0·k = 0 = k·0
Lemma 5. In the case X = CM, the definitions of k·(−) and (−)·k as defined
inductively in Definition 3 agree with their definition as a one-argument product
functor given in Sect. 3.1.

Next, we verify that both k·(−) and (−)·k (strictly) preserve composition,
i.e., are endofunctors on X as a plain category.

Lemma 6. k·(−) strictly preserves composition.

Proof. Using induction on k, the base case is derived by:

(0·A) ◦ (0·B) = id0 ◦ id0

= id0

= 0·(A ◦ B)

and the inductive case is derived by:

(k·A) ◦ (k·B) = (A ⊗ (k − 1)·A) ◦ (B ⊗ (k − 1)·B) ; distributivity
= (A ◦ B) ⊗ ((k − 1)·A) ◦ ((k − 1)·B) ; interchange law
= (A ◦ B) ⊗ ((k − 1)·(A ◦ B)) ; hypothesis
= k·(A ◦ B) ; distributivity

�	
Lemma 7. (−)·k strictly preserves composition, i.e., the following diagram
commutes in X for all A : b → a and B : b′ → b.

128 A. Chantawibul and P. Sobociński

a·k a·k

b·k

b′·k b′·k

id

A·k

id

B·k

(A◦B)·k

Proof. The following commutes by diagram pasting:

a·k k·a k·a a·k

b·k k·b

b′·k k·b′ k·b′ b′·k

ρ

id

id ρ

A·k
ρ

k·A

B·k
ρ

id

k·B
id

k·(A◦B)

ρ

(A◦B)·k

where the middle rectangle commutes by Lemma 6; the top and bottom rect-
angle commutes by (2); and other rectangles to the side commute as direct
consequences of Definition 3. �	

The next two results demonstrate a significant difference between k·(−) and
(−)·k: whereas the former preserves monoidal product only up to isomorphism,
the latter preserves it on the nose.

Lemma 8. k·(−) preserves tensor up to isomorphism via the naturality of ξ.

Proof. The proof is by induction on k, relying on the inductive characterisation of
ξ given in Lemma 3. The base case satisfies naturality condition because (0·A)⊗
(0·B) = id0 ⊗ id0 = id0 = 0·(A ⊗ B) by Definition 3.

The inductive case is given by the commutativity of the outer perimeter of

(1+k)·a+(1+k)·b (1+k)·(a+b)

a+k·a+b+k·b a+b+k·a+k·b a+b+k·(a+b)

a′+k·a′+b′+k·b′ a′+b′+k·a′+k·b′ a′+b′+k·(a′+b′)

(1+k)·a′+(1+k)·b′ (1+k)·(a′+b′)

ξ(1+k),a,b

id

ida⊗σk·a,b⊗idk·b ida⊗idb⊗ξk,a,b

id

(1+k)·A⊗(k+1)·B

ida′ ⊗σk·a′,b′ ⊗idk·b′

A⊗B⊗k·A⊗k·B
ida′ ⊗idb′ ⊗ξk,a′,b′

(1+k)·(A⊗B)

id

ξ(1+k),a′,b′
id

which is obtained by pasting commutative diagrams where the top and bottom
rectangles commute by Lemma 3; the middle-left rectangle commutes by nat-
urality of symmetry σ; and the middle-right rectangle commutes by induction
hypothesis. �	

Monoidal Multiplexing 129

Lemma 9. (−)·k strictly preserves tensor.

Proof. The lemma is represented by the front face of the following diagram

k·a + k·b k·(a + b)

a·k + b·k (a + b)·k

k·a′ + k·b′ k·(a′ + b′)

a′·k + b′·k (a′ + b′)·k

ξk,a,b

ρk,a⊗ρk,b

k·A⊗k·B

ρk,(a+b)

id

ξk,a′,b′

ρk,a′⊗ρk,b′

k·(A⊗B)

ρk,(a′+b′)
A·k⊗B·k

id

(A⊗B)·k

which commutes by diagram pasting with back face from Lemma 8, left and right
faces from Definition 3, and top and bottom faces from the left rectangle in (9).
�	
Lemma 10. (−)·k strictly preserves symmetry, i.e., the following commutes:

(b + a)·k b·k + a·k

(a + b)·k a·k + b·k

id

(σa,b)·k
id

σa·k,b·k

Proof. Directly from the commutativity of the bottom rectangle in (9). �	
Theorem 1. (−)·k is a symmetric strict monoidal functor.

Proof. Follows directly from Lemmas 4, 7, 9, and 10. �	
The fact that (−)·k : X → X is a strict monoidal functor is the main technical

result of our work and it is worthwhile to examine its significance. First, its
action on arrows gives us a concise definition of multiplexing: given an arrow
A : m → n in X, A·k is its k-multiplexed version. Moreover, functoriality means
that any equation A = B that holds for arrows in X will also hold for its k-
multiplexed variation, i.e. A·k = B·k. Finally, given a notion of model as a
symmetric monoidal functor X → C, precomposition with (−)·k yields a model
on which any algebraic structure of X is defined “pointwise”, generalising the
situation for classical models outlined in the Introduction.

5 Conclusions and Future Work

We showed that “pointwise” definitions of classical universal algebra generalise
to resource-sensitive theories. Our main result shows that this operation defines a
strict monoidal functor (−)·k on any prop X. By identifying a suitable categorical

130 A. Chantawibul and P. Sobociński

setting in which to define and reason about the required permutations, we showed
that although the similar operation on Lawvere theories seemingly requires the
presence of categorical products, they are actually not necessary.

We note that this construction can be extended to braided monoidal cate-
gories: in fact, every string diagram for symmetry drawn in this article is already
shown in compatible braiding scheme.

Our work fits into the recent trend of consolidating disparate strands of
theory and applications of string diagrams in computer science and related fields,
and through it, the crystallisation of a “resource-sensitive universal algebra”.

References

1. Abramsky, S., Coecke, B.: A categorical semantics of quantum protocols. In: Pro-
ceedings of 19th Annual IEEE Symposium on Logic in Computer Science, LICS
2004, July 2004, Turku, pp. 415–425. IEEE CS Press, Washington, DC (2004).
https://doi.org/10.1109/lics.2004.1319636

2. Baez, J.C., Erbele, J.: Categories in control. arXiv preprint 1405.6881 (2014).
https://arxiv.org/abs/1405.6881

3. Baez, J.C., Fong, B.: A compositional framework for passive linear networks. arXiv
preprint 1504.05625 (2015). https://arxiv.org/abs/1504.05625

4. Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P., Zanasi, F.: Rewriting mod-
ulo symmetric monoidal structure. In: Proceedings of 31st Annual ACM/IEEE
Symposium on Logic and Computer Science, LICS 2016, pp. 710–719. ACM Press,
New York (2016). https://doi.org/10.1145/2933575.2935316

5. Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P., Zanasi, F.: Confluence
of graph rewriting with interfaces. In: Yang, H. (ed.) ESOP 2017. LNCS, vol.
10201, pp. 141–169. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54434-1 6

6. Bonchi, F., Gadducci, F., Kissinger, A., Sobociński, P., Zanasi, F.: Rewriting with
Frobenius. In: Proceedings of 33rd Annual ACM/IEEE Symposium on Logic and
Computer Science, LICS 2018, July 2018, Oxford, pp. 165–174. ACM Press, New
York (2018). https://doi.org/10.1145/3209108.3209137

7. Bonchi, F., Holland, J., Pavlovic, D., Sobociński, P.: Refinement for signal flow
graphs. In: Meyer, R., Nestmann, U. (eds.) Proceedings of 28th International Con-
ference on Concurrency Theory, CONCUR 2017, September 2017, Berlin, Leib-
niz International Proceedings in Informatics, vol. 85, p. 24. Dagstuhl Publishing,
Saarbrücken, Wadern (2017). https://doi.org/10.4230/lipics.concur.2017.24

8. Bonchi, F., Pavlovic, D., Sobocinski, P.: Functorial semantics for relational theories.
arXiv preprint 1711.08699 (2017). https://arxiv.org/abs/1711.08699

9. Bonchi, F., Sobociński, P., Zanasi, F.: Full abstraction for signal flow graphs. In:
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, January 2015, Mumbai, pp. 515–526. ACM Press, New
York (2015). https://doi.org/10.1145/2676726.2676993

10. Bonchi, F., Sobociński, P., Zanasi, F.: The calculus of signal flow diagrams I: linear
relations on streams. Inf. Comput. 252, 2–29 (2017). https://doi.org/10.1016/j.ic.
2016.03.002

11. Bonchi, F., Sobociński, P., Zanasi, F.: Deconstructing Lawvere with distributive
laws. J. Log. Algebr. Methods Program. 95, 128–146 (2018). https://doi.org/10.
1016/j.jlamp.2017.12.002

https://doi.org/10.1109/lics.2004.1319636
https://arxiv.org/abs/1405.6881
https://arxiv.org/abs/1504.05625
https://doi.org/10.1145/2933575.2935316
https://doi.org/10.1007/978-3-662-54434-1_6
https://doi.org/10.1007/978-3-662-54434-1_6
https://doi.org/10.1145/3209108.3209137
https://doi.org/10.4230/lipics.concur.2017.24
https://arxiv.org/abs/1711.08699
https://doi.org/10.1145/2676726.2676993
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1016/j.ic.2016.03.002
https://doi.org/10.1016/j.jlamp.2017.12.002
https://doi.org/10.1016/j.jlamp.2017.12.002

Monoidal Multiplexing 131

12. Coecke, B., Duncan, R.: Interacting quantum observables. In: Aceto, L., Damg̊ard,
I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.)
ICALP 2008. LNCS, vol. 5126, pp. 298–310. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-70583-3 25

13. Coecke, B., Kissinger, A.: Picturing Quantum Processes: A First Course in Quan-
tum Theory and Diagrammatic Reasoning. Cambridge University Press, Cam-
bridge (2017). https://doi.org/10.1017/9781316219317

14. Fong, B., Rapisarda, P., Sobociński, P.: A categorical approach to open and inter-
connected dynamical systems. In: Proceedings of 31st Annual ACM/IEEE Sympo-
sium on Logic and Computer Science, LICS 2016, July 2016, New York, NY, pp.
495–504. ACM Press, New York (2016). https://doi.org/10.1145/2933575.2934556

15. Fox, T.: Coalgebras and cartesian categories. Commun. Algebr. 4(7), 665–667
(1976). https://doi.org/10.1080/00927877608822127

16. Ghani, N., Hedges, J., Winschel, V., Zahn, P.: Compositional game theory. In:
Proceedings of 33rd Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2018, July 2018, Oxford, pp. 472–481. ACM Press, New York (2018).
https://doi.org/10.1145/3209108.3209165

17. Ghica, D.R.: Diagrammatic reasoning for delay-insensitive asynchronous circuits.
In: Coecke, B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games, and
Quantum Foundations. The Many Facets of Samson Abramsky. LNCS, vol. 7860,
pp. 52–68. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38164-
5 5

18. Ghica, D.R., Jung, A.: Categorical semantics of digital circuits. In: Proceedings of
2016 Conference on Formal Methods in Computer-Aided Design, FMCAD 2016,
October 2016, Mountain View, CA, pp. 41–48. IEEE CS Press, Washington, DC
(2016). https://doi.org/10.1109/fmcad.2016.7886659

19. Hinze, R.: Kan extensions for program optimisation or : art and dan explain an old
trick. In: Gibbons, J., Nogueira, P. (eds.) MPC 2012. LNCS, vol. 7342, pp. 324–362.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31113-0 16

20. Lack, S.: Composing PROPs. Theory Appl. Categ. 13, 147–163 (2004). http://
www.tac.mta.ca/tac/volumes/13/9/13-09abs.html

21. Lawvere, F.W.: Functorial semantics of algebraic theories. Proc. Natl. Acad. Sci.
USA 50(5), 869–872 (1963). https://doi.org/10.1073/pnas.50.5.869

22. Mac Lane, S.: Categorical algebra. Bull. Am. Math. Soc. 71, 40–106 (1965).
https://doi.org/10.1090/s0002-9904-1965-11234-4

23. Piróg, M., Wu, N.: String diagrams for free monads (functional pearl). In: Proceed-
ings of 21st ACM SIGPLAN International Conference on Functional Programming,
ICFP 2016, September 2016, Nara, pp. 490–501. ACM Press, New York (2016).
https://doi.org/10.1145/2951913.2951947

24. Sobociński, P.: Representations of Petri net interactions. In: Gastin, P., Laroussinie,
F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 554–568. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15375-4 38

25. Sobociński, P.: Nets, relations and linking diagrams. In: Heckel, R., Milius, S. (eds.)
CALCO 2013. LNCS, vol. 8089, pp. 282–298. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40206-7 21

https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1017/9781316219317
https://doi.org/10.1145/2933575.2934556
https://doi.org/10.1080/00927877608822127
https://doi.org/10.1145/3209108.3209165
https://doi.org/10.1007/978-3-642-38164-5_5
https://doi.org/10.1007/978-3-642-38164-5_5
https://doi.org/10.1109/fmcad.2016.7886659
https://doi.org/10.1007/978-3-642-31113-0_16
http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html
http://www.tac.mta.ca/tac/volumes/13/9/13-09abs.html
https://doi.org/10.1073/pnas.50.5.869
https://doi.org/10.1090/s0002-9904-1965-11234-4
https://doi.org/10.1145/2951913.2951947
https://doi.org/10.1007/978-3-642-15375-4_38
https://doi.org/10.1007/978-3-642-40206-7_21
https://doi.org/10.1007/978-3-642-40206-7_21

Input/Output Stochastic Automata
with Urgency: Confluence and Weak

Determinism

Pedro R. D’Argenio1,2,3(B) and Raúl E. Monti1,2

1 Universidad Nacional de Córdoba, FAMAF, Córdoba, Argentina
{dargenio,rmonti}@famaf.unc.edu.ar

2 CONICET, Córdoba, Argentina
3 Saarland University, Department of Computer Science, Saarbrücken, Germany

Abstract. In a previous work, we introduced an input/output variant of
stochastic automata (IOSA) that, once the model is closed (i.e., all syn-
chronizations are resolved), the resulting automaton is fully stochastic,
that is, it does not contain non-deterministic choices. However, such vari-
ant is not sufficiently versatile for compositional modelling. In this article,
we extend IOSA with urgent actions. This extension greatly increases the
modularization of the models, allowing to take better advantage on com-
positionality than its predecessor. However, this extension introduces
non-determinism even in closed models. We first show that confluent
models are weakly deterministic in the sense that, regardless the reso-
lution of the non-determinism, the stochastic behaviour is the same. In
addition, we provide sufficient conditions to ensure that a network of
interacting IOSAs is confluent without the need to analyse the larger
composed IOSA.

1 Introduction

The advantages of compositional modelling complex systems can hardly be
overestimated. On the one hand, compositional modelling facilitates systematic
design, allowing the designer to focus on the construction of small models for the
components whose operational behavior is mostly well understood, and on the
synchronization between the components, which are in general quite evident. On
the other hand, it facilitates the interchange of components in a model, enables
compositional analysis, and helps on attacking the state explosion problem.

In particular we focus on modelling of stochastic system for dependability
and performance analysis, and aim to general models that require more than the
usual negative exponential distribution. Indeed, phenomena such as timeouts in
communication protocols, hard deadlines in real-time systems, human response
times or the variability of the delay of sound and video frames (so-called jitter)

This work was supported by grants ANPCyT PICT-2017-3894 (RAFTSys),
SeCyT-UNC 33620180100354CB (ARES), and the ERC Advanced Grant 695614
(POWVER).

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 132–152, 2018.
https://doi.org/10.1007/978-3-030-02508-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_8&domain=pdf

Input/Output Stochastic Automata with Urgency 133

in modern multi-media communication systems are typically described by non-
memoryless distributions such as uniform, log-normal, or Weibull distributions.

The analysis of this type of model quite often can only be performed through
discrete event simulation [22]. However, simulation requires that the model under
study is fully stochastic, that is, they should not contain non-deterministic
choices. Unfortunately, compositional modelling languages such as stochastic
process algebras with general distributions (see [5] and references therein) and
Modest [4,18,19], were designed so that the non-determinism arises naturally as
the result of composition.

Based on stochastic automata [10–12] and probabilistic I/O automata [26], we
introduced input/output stochastic automata (IOSA) [13]. IOSAs were designed
so that parallel composition works naturally and, moreover, the system becomes
fully stochastic –not containing non-determinism– when closed, i.e., when all
interactions are resolved and no input is left available in the model. IOSA splits
the set of actions into inputs and outputs and let them behave in a reactive and
generative manner respectively [17]. Thus, inputs are passive and their occur-
rence depends only on their interaction with outputs. Instead, occurrence of
outputs are governed by the expiration of a timer which is set according to a
given random variable. In addition, and not to block the occurrence of outputs,
IOSAs are required to be input enabled.

Fig. 1. A simple digital system.

We have used IOSA as input language of the
rare event simulation tool FIG [6,7] and have
experienced the limitations of the language, in
particular when transcribing models originally
given in terms of variants of dynamic fault trees
(DFT) with repairs [24]. To illustrate the prob-
lem, suppose the simple digital system of Fig. 1.
We would like to measure the average time that the output O is 1 given that
we know the distributions of the times in which the values on inputs A, B, and
C change from 0 to 1 and vice-versa. The natural modelling of such system is
to define 5 IOSA modules, three of them modelling the behaviour of the input
signals and the other two modelling the OR and AND gates. Then we compose
and synchronize the 5 modules properly. The main problem is that, while the
dynamic behaviour of the input signal modules are governed by stochastically
timed actions, the dynamic behavior of the gates are instantaneous and thus,
for instance the output D of the OR gate, may change immediately after the
arrival of signals A or B. Similar situations arise when modeling the behaviour
of DFT under complex gates like priority AND, Spares or Repair boxes. As a
consequence, we observe that the introduction of urgent actions will allow for
a direct and simple compositional modelling of situations like the one recently
described. Also, it is worth to notice that the need for instantaneous but causally
dependent synchronization have been observed in many other timed modelling
languages, notably, in Uppaal, with the introduction of committed locations,
urgent locations and urgent synchronization [2,3].

134 P. R. D’Argenio and R. E. Monti

Based on IMC [20] and, particularly, on I/O-IMC [9], in this article we
extended IOSA with urgent actions (Sect. 2). Urgent actions are also partitioned
in input and output actions and, though inputs behave reactively and passively
as before, urgent outputs are executed instantaneously as soon as the enabling
state is reached. We also give semantics to IOSA with urgent actions (from now
on, we simply call it IOSA) in terms of NLMP [14,25] (Sect. 3), and define its
parallel composition (Sect. 4).

The problem is that urgent actions on IOSA introduce non-determinism. For-
tunately, non-determinism is limited to urgent actions and, in many occasions,
it is introduced by confluent urgent output actions as a result of a parallel com-
position. Such non-determinism turns to be spurious in the sense that it does
not change the stochastic behaviour of the model. In this paper, we characterize
confluence on IOSAs (Sect. 5), define the concept of weak determinism, and show
that a confluent closed IOSA is weakly deterministic (Sect. 6). Notably, a weakly
deterministic IOSA is amenable to discrete event simulation. Milner [23] has pro-
vided a proof that confluence preserves weak determinism but it is confined to a
discrete non-probabilistic setting. A similar proof has been used by Crouzen [9]
on I/O-IMC but, though the model is stochastic, the proof is limited to discrete
non-probabilistic transitions. Contrarily, our proof has to deal with continuous
probabilities (since urgent action may sample on continuous random variables),
hence making use of the solid measure theoretical approach. In particular, we
address the complications of defining a particular form of weak transition on a
setting that is normally elusive.

Based on the work of Crouzen [9] for I/O-IMC, in Sect. 7, we provide suf-
ficient conditions to ensure that a closed IOSA is confluent and hence, weakly
deterministic. If the IOSA is the result of composing several smaller IOSAs, the
verification of the conditions is performed by inspecting the components rather
than the resulting composed IOSA.

2 Input/Output Stochastic Automata with Urgency

Stochastic automata [10,11] use continuous random variables (called clocks) to
observe the passage of time and control the occurrence of events. These variables
are set to a value according to their associated probability distribution, and, as
time evolves, they count down at the same rate. When a clock reaches zero,
it may trigger some action. This allows the modelling of systems where events
occur at random continuous time steps.

Following ideas from [26], IOSAs restrict Stochastic Automata by splitting
actions into input and output actions which will act in a reactive and generative
way respectively [17]. This splitting reflects the fact that input actions are con-
sidered to be controlled externally, while output actions are locally controlled.

Therefore, we consider the system to be input enabled. Moreover, output
actions could be stochastically controlled or instantaneous. In the first case,
output actions are controlled by the expiration of a single clock while in the
second case the output actions take place as soon as the enabling state is reached.

Input/Output Stochastic Automata with Urgency 135

We called these instantaneous actions urgent. A set of restrictions over IOSA will
ensure that, almost surely, no two non-urgent outputs are enabled at the same
time.

Definition 1. An input/output stochastic automaton with urgency (IOSA) is
a structure (S,A, C,−→, C0, s0), where S is a (denumerable) set of states, A is a
(denumerable) set of labels partitioned into disjoint sets of input labels Ai and
output labels Ao, from which a subset Au ⊆ A is marked as urgent. We consider
the distinguished silent urgent action τ ∈ Au ∩ Ao which is not amenable to syn-
chronization. C is a (finite) set of clocks such that each x ∈ C has an associated
continuous probability measure μx on R s.t. μx(R>0) = 1, −→ ⊆ S ×C×A×C×S
is a transition function, C0 is the set of clocks that are initialized in the initial
state, and s0 ∈ S is the initial state.

In addition, an IOSA with urgency should satisfy the following constraints:

(a) If s
C,a,C′
−−−−→ s′ and a ∈ Ai ∪ Au, then C = ∅.

(b) If s
C,a,C′
−−−−→ s′ and a ∈ Ao \ Au, then C is a singleton set.

(c) If s
{x},a1,C1−−−−−−→ s1 and s

{x},a2,C2−−−−−−→ s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a ∈ Ai and state s, there exists a transition s
∅,a,C−−−−→ s′.

(e) For every a ∈ Ai, if s
∅,a,C′

1−−−−→ s1 and s
∅,a,C′

2−−−−→ s2, C ′
1 = C ′

2 and s1 = s2.
(f) There exists a function active : S → 2C such that: (i) active(s0) ⊆ C0, (ii)

enabling(s) ⊆ active(s), (iii) if s is stable, active(s) = enabling(s), and (iv)

if t
C,a,C′
−−−−→ s then active(s) ⊆ (active(t) \ C) ∪ C ′.

where enabling(s) = {y | s
{y}, ,−−−−→ }, and s is stable, denoted st(s), if there is

no a ∈ Au ∩ Ao such that s
∅,a,−−−→ . (indicates the existential quantification of

a parameter.)

The occurrence of an output transition is controlled by the expiration of

clocks. If a ∈ Ao, s
C,a,C′
−−−−→ s′ indicates that there is a transition from state s

to state s′ that can be taken only when all clocks in C have expired and, when
taken, it triggers action a and sets all clocks in C ′ to a value sampled from
their associated probability distribution. Notice that if C = ∅ (which means

a ∈ Ao∩Au) s
C,a,C′
−−−−→ s′ is immediately triggered. Instead, if a ∈ Ai, s

∅,a,C′
−−−−→ s′

is only intended to take place if an external output synchronizes with it, which
means, in terms of an open system semantics, that it may take place at any
possible time.

Restrictions (a) to (e) ensure that any closed IOSA without urgent actions
is deterministic [13]. An IOSA is closed if all its synchronizations have been
resolved, that is, the IOSA resulting from a composition does not have input
actions (Ai = ∅). Restriction (a) is two-folded: on the one hand, it specifies
that output actions must occur as soon as the enabling state is reached, on the
other hand, since input actions are reactive and their time occurrence can only
depend on the interaction with an output, no clock can control their enabling.

136 P. R. D’Argenio and R. E. Monti

Restriction (b) specifies that the occurrence of a non-urgent output is locally con-
trolled by a single clock. Restriction (c) ensures that two different non-urgent
output actions leaving the same state are always controlled by different clocks
(otherwise it would introduce non-determinism). Restriction (d) ensures input
enabling. Restriction (e) determines that IOSAs are input deterministic. There-
fore, the same input action in the same state can not jump to different states,
nor set different clocks. Finally, (f) guarantees that clocks enabling some output
transition have not expired before, that is, they have not been used before by
another output transition (without being reset in between) nor inadvertently
reached zero. This is done by ensuring the existence of a function “active” that,
at each state, collects clocks that are required to be active (i.e. that have been
set but not yet expired). Notice that enabling clocks are required to be active
(conditions (f)(ii) and (f)(iii)). Also note that every clock that is active in a
state is allowed to remain active in a successor state as long as it has not been
used, and clocks that have just been set may become active in the successor
state (condition (f)(iv)).

Note that since clocks are set by sampling from a continuous random variable,
the probability that the values of two different clocks are equal is 0. This fact
along with restriction (c) and (f) guarantee that almost never two different non-
urgent output transitions are enabled at the same time.

Example 1. Figure 2 depicts three simple examples
of IOSAs. Although IOSAs are input enabled, we
have omitted self loops of input enabling transitions
for the sake of readability. In the figure, we represent
output actions suffixed by ‘!’ and by ‘!!’ when they
are urgent, and input actions suffixed by ‘?’ and by
‘??’ when they are urgent.

3 Semantics of IOSA

s0 s1 s2

I1
{x}, a!, ∅ ∅, c!!, ∅

s3 s4 s5

I2
{y}, b!, ∅ ∅, d!!, ∅

s6

s7

s8

s9

I3

∅, c??
,∅

∅, d??,∅

∅, d??, {z}

{z},
e!,∅

Fig. 2. Examples of IOSAs.

The semantics of IOSA is defined in terms
of non-deterministic labeled Markov processes
(NLMP) [14,25] which extends LMP [15] with inter-
nal non-determinism.

The foundations of NLMP is strongly rooted in measure theory, hence we
recall first some basic definitions. Given a set S and a collection Σ of subsets
of S, we call Σ a σ-algebra iff S ∈ Σ and Σ is closed under complement and
denumerable union. We call the pair (S,Σ) a measurable space. Let B(S) denote
the Borel σ-algebra on the topology S. A function μ : Σ → [0, 1] is a probability
measure if (i) μ(

⋃
i∈N

Qi) =
∑

i∈N
μ(Qi) for all countable family of pairwise

disjoint measurable sets {Qi}i∈N ⊆ Σ, and (ii) μ(S) = 1. In particular, for
s ∈ S, δs denotes the Dirac measure so that δs({s}) = 1. Let Δ(S) denote the
set of all probability measures over (S,Σ). Let (S1, Σ1) and (S2, Σ2) be two
measurable spaces. A function f : S1 → S2 is said to be measurable if for all

Input/Output Stochastic Automata with Urgency 137

Q2 ∈ Σ2, f−1(Q2) ∈ Σ1. There is a standard construction to endow Δ(S) with
a σ-algebra [16] as follows: Δ(Σ) is defined as the smallest σ-algebra containing
the sets Δq(Q) .= {μ | μ(Q) ≥ q}, with Q ∈ Σ and q ∈ [0, 1]. Finally, we
define the hit σ-algebra H(Δ(Σ)) as the minimal σ-algebra containing all sets
Hξ = {ζ ∈ Δ(Σ) | ζ ∩ ξ �= ∅} with ξ ∈ Δ(Σ).

A non-deterministic labeled Markov process (NLMP for short) is a structure
(S, Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S, and for each
label a ∈ L we have that Ta : S → Δ(Σ) is measurable from Σ to H(Δ(Σ)).

The formal semantics of an IOSA is defined by a NLMP with two classes of
transitions: one that encodes the discrete steps and contains all the probabilistic
information introduced by the sampling of clocks, and another describing the
time steps, that only records the passage of time synchronously decreasing the
value of all clocks. For simplicity, we assume that the set of clocks has a total
order and their current values follow the same order in a vector.

Definition 2. Given an IOSA I = (S,A, C,−→, C0, s0) with C = {x1, . . . , xN},
its semantics is defined by the NLMP P(I) = (S,B(S), {Ta | a ∈ L}) where

– S = (S ∪ {init}) × R
N , L = A ∪ R>0 ∪ {init}, with init /∈ S ∪ A ∪ R>0

– Tinit(init, 	v) = {δs0 ×
∏N

i=1 μxi
},

– Ta(s,	v) = {μ�v
C′,s′ | s

C,a,C′
−−−−→ s′,

∧
xi∈C 	v(i) ≤ 0}, for all a ∈ A, where μ�v

C′,s′ =
δs′ ×

∏N
i=1 μxi

with μxi
= μxi

if xi ∈ C ′ and μxi
= δ�v(i) otherwise, and

– Td(s,	v) = {δs ×
∏N

i=1 δ�v(i)−d} if there is no urgent b ∈ Ao ∩ Au for which

s
,b,−−→ and 0 < d ≤ min{	v(i) | ∃a∈Ao, C ′⊆C, s′∈S : s

{xi},a,C′
−−−−−−→ s′}, and

Td(s,	v) = ∅ otherwise, for all d ∈ R≥0.

The state space is the product space of the states of the IOSA with all
possible clock valuations. A distinguished initial state init is added to encode the
random initialization of all clocks (it would be sufficient to initialize clocks in
C0 but we decided for this simplification). Such encoding is done by transition
Tinit. The state space is structured with the usual Borel σ-algebra. The discrete
step is encoded by Ta , with a ∈ A. Notice that, at state (s,	v), the transition

s
C,a,C′
−−−−→ s′ will only take place if

∧
xi∈C 	v(i) ≤ 0, that is, if the current values

of all clocks in C are not positive. For the particular case of the input or urgent
actions this will always be true. The next actual state would be determined
randomly as follows: the symbolic state will be s′ (this corresponds to δs′ in
μ�v

C′,s′ = δs′ ×
∏N

i=1 μxi
), any clock not in C ′ preserves the current value (hence

μxi
= δ�v(i) if xi /∈ C ′), and any clock in C ′ is set randomly according to its

respective associated distribution (hence μxi
= μxi

if xi ∈ C ′). The time step
is encoded by Td(s,	v) with d ∈ R≥0. It can only take place at d units of time
if there is no output transition enabled at the current state within the next d
time units (this is verified by condition 0 < d ≤ min{	v(i) | ∃a∈Ao, C ′⊆C, s′∈S :

s
{xi},a,C′
−−−−−−→ s′}). In this case, the system remains in the same symbolic state

(this corresponds to δs in δ−d
(s,�v) = δs ×

∏N
i=1 δ�v(i)−d), and all clock values are

138 P. R. D’Argenio and R. E. Monti

Table 1. Parallel composition on IOSA

s1
C,a,C′
−−−−→1 s′

1

s1||s2 C,a,C′−−−−→ s′
1||s2

a∈(A1\A2)∪{τ} (R1)
s2

C,a,C′
−−−−→2 s′

2

s1||s2 C,a,C′−−−−→ s1||s′
2

a∈(A2\A1)∪{τ} (R2)

s1
C1,a,C

′
1−−−−−→1 s′

1 s2
C2,a,C

′
2−−−−−→2 s′

2

s1||s2 C1∪C2,a,C
′
1∪C′

2−−−−−−−−−−−→ s′
1||s′

2

a∈(A1∩A2)\{τ} (R3)

decreased by d units of time (represented by δ�v(i)−d in the same formula). Note
the difference from the timed transitions semantics of pure IOSA [13]. This is due
to the maximal progress assumption, which forces to take urgent transition as
soon as they get enabled. We encode this by not allowing to make time transitions
in presence of urgent actions, i.e. we check that there is no urgent b ∈ Ao ∩ Au

for which s
,b,−−→ . (Notice that b may be τ .) Otherwise, Td(s,	v) = ∅. Instead,

notice the patient nature of a state (s,	v) that has no output enabled. That is,
Td(s,	v) = {δs ×

∏N
i=1 δ�v(i)−d} for all d > 0 whenever there is no output action

b ∈ Ao such that s
,b,−−→ .

In a similar way to [13], it is possible to show that P(I) is indeed a NLMP,
i.e. that Ta maps into measurable sets in Δ(B(S)), and that Ta is a measurable
function for every a ∈ L.

4 Parallel Composition

In this section, we define parallel composition of IOSAs. Since outputs are
intended to be autonomous (or locally controlled), we do not allow synchro-
nization between them. Besides, we need to avoid name clashes on the clocks,
so that the intended behavior of each component is preserved and moreover, to
ensure that the resulting composed automaton is indeed an IOSA. Furthermore,
synchronizing IOSAs should agree on urgent actions in order to ensure their
immediate occurrence. Thus we require to compose only compatible IOSAs.

Definition 3. Two IOSAs I1 and I2 are compatible if they do not share syn-
chronizable output actions nor clocks, i.e. Ao

1 ∩ Ao
2 ⊆ {τ} and C1 ∩ C2 = ∅ and,

moreover, they agree on urgent actions, i.e. A1 ∩ Au
2 = A2 ∩ Au

1.

Definition 4. Given two compatible IOSAs I1 and I2, the parallel composition
I1||I2 is a new IOSA (S1 × S2,A, C,−→, C0, s

1
0||s20) where (i) Ao = Ao

1 ∪ Ao
2 (ii)

Ai = (Ai
1 ∪ Ai

2) \ Ao (iii) Au = Au
1 ∪ Au

2 (iv) C = C1 ∪ C2 (v) C0 = C1
0 ∪ C2

0 and
−→ is defined by rules in Table 1 where we write s||t instead of (s, t).

Definition 4 does not ensure a priori that the resulting structure satisfies
conditions (a)–(f) in Definition 1. This is only guaranteed by the following
proposition.

Input/Output Stochastic Automata with Urgency 139

s0||s3||s6 s1||s3||s6 s2||s3||s7

s0||s4||s6 s1||s4||s6 s2||s4||s7

s0||s5||s9 s1||s5||s9 s2||s5||s9 s2||s5||s8

{x}, a!, ∅

{y}, b!, ∅

∅, c!!, ∅

{y}, b!, ∅
{y}, b!, ∅

{x}, a!, ∅

∅, d!!, ∅

∅, c!!, ∅

∅, d!!, ∅ ∅, d!!, ∅
{x}, a!, ∅ ∅, c!!, ∅ {x}, e!, ∅

Fig. 3. IOSA resulting from the composition I1||I2||I3 of IOSAs in Fig. 2.

Proposition 1. Let I1 and I2 be two compatible IOSAs. Then I1||I2 is indeed
an IOSA.

Example 2. The result of composing I1||I2||I3 from Example 1 is depicted in
Fig. 3.

Larsen and Skou’s probabilistic bisimulation [21] has been extended to
NLMPs in [14]. It can be shown that the bisimulation equivalence is a con-
gruence for parallel composition of IOSA. In fact, this has already been shown
for IOSA without urgency in [13] and since the characteristics of urgency do
not play any role in the proof over there, the result immediately extends to our
setting. So we report the theorem and invite the reader to read the proof in [13].

Theorem 1. Let ∼ denote the bisimulation equivalence relation on NLMPs [14]
properly lifted to IOSA [13], and let I1, I ′

1, I2, I ′
2 be IOSAs such that I1 ∼ I ′

1

I2 ∼ I ′
2. Then, I1||I2 ∼ I ′

1||I ′
2.

5 Confluence

∀

∃

s s1

s2 s3

∅, a, C1

∅
, b

,C
2

∅
,b

, C
2

∅, a, C1

Fig. 4. Confluence in
IOSA.

Confluence, as studied by Milner [23], is related to a
form of weak determinism: two silent transitions tak-
ing place on an interleaving manner do not alter the
behaviour of the process regardless of which happens
first. In particular, we will eventually assume that
urgent actions in a closed IOSA are silent as they
do not delay the execution. Thus we focus on conflu-
ence of urgent actions only. The notion of confluence is
depicted in Fig. 4 and formally defined as follows.

Definition 5. An IOSA I is confluent with respect to actions a, b ∈ Au if, for
every state s ∈ S and transitions s

∅,a,C1−−−−→ s1 and s
∅,b,C2−−−−→ s2, there exists a

state s3 ∈ S such that s1
∅,b,C2−−−−→ s3 and s2

∅,a,C1−−−−→ s3. I is confluent if it is
confluent with respect to every pair of urgent actions.

140 P. R. D’Argenio and R. E. Monti

Note that we are asking that the two actions converge in a single state, which
is stronger than Milner’s strong confluence, where convergence takes place on
bisimilar but potentially different states.

Confluence is preserved by parallel composition:

Proposition 2. If both I1 and I2 are confluent w.r.t. actions a, b ∈ Au, then
so is I1||I2. Therefore, if I1 and I2 are confluent, I1||I2 is also confluent.

However, parallel composition may turn non-confluent components into a
confluent composed system.

By looking at the IOSA in Fig. 5, one can notice that the non-determinism
introduced by confluent urgent output actions is spurious in the sense that it
does not change the stochastic behaviour of the model after the output urgent
actions have been abstracted. Indeed, since time does not progress, it is the same
to sample first clock x and then clock y passing through state s1, or first y and
then x passing through s2, or even sampling both clocks simultaneously through

a transition s1
∅,τ,{x,y}−−−−−−→ s3. In any of the cases, the stochastic resolution of the

execution of a or b in the stable state s3 is the same. This could be generalized
to any number of confluent transitions.

s0

s1 s2

s3

s4 s5

∅, τ, {x} ∅, τ, {y}

∅, τ, {y} ∅, τ, {x}

{x}, a!, ∅ {y}, b!, ∅

Fig. 5. Confluence is
weakly deterministic

Thus, it will be convenient to use term rewrit-
ing techniques to collect all clocks that are active in
the convergent stable state and have been activated
through a path of urgent actions. Therefore, we recall
some basic notions of rewriting systems. An abstract
reduction system [1] is a pair (E,�), where the reduc-
tion � is a binary relation over the set E, i.e. � ⊆
E × E. We write a � b for (a, b) ∈ �. We also write
a

∗� b to denote that there is a path a0 � a1 . . . � an

with n ≥ 0, a0 = a and an = b. An element a ∈ E is
in normal form if there is no b such that a � b. We
say that b is a normal form of a if a

∗� b and b is in
normal form. A reduction system (E,�) is confluent if
for all a, b, c ∈ E a

∗� c
∗� b implies a

∗� d
∗� b for some d ∈ E. This notion of

confluence is implied by the following statement: for all a, b, c ∈ E, a � c � b
implies that either a � d � b for some d ∈ E, or a = b. A reduction system is
normalizing if every element has a normal form, and it is terminating if there
is no infinite chain a0 � a1 � · · · . A terminating reduction system is also nor-
malizing. In a confluent reduction system every element has at most one normal
form. If in addition it is also normalizing, then the normal form is unique.

We now define the abstract reduction system introduced by the urgent tran-
sitions of an IOSA.

Definition 6. Given an IOSA I = (S,A, C,−→I , C0, s0), define the abstract
reduction system UI as (S × P(C) × N0,�) where (s, C, n) � (s′, C ∪ C ′, n + 1)

if and only if there exists a ∈ Au such that s
∅,a,C′
−−−−→ s′.

Input/Output Stochastic Automata with Urgency 141

An IOSA is non-Zeno if there is no loop of urgent actions. The following
result can be straightforwardly proven.

Proposition 3. Let the IOSA I be closed and confluent. Then UI is confluent,
and hence every element has at most one normal form. Moreover, an element
(s, C, n) is in normal form iff s is stable in I. If in addition I is non-Zeno, UI
is also terminating and hence every element has a unique normal form.

6 Weak Determinism

As already shown in Fig. 5, the non-determinism introduced by confluence is
spurious. In this section, we show that closed confluent IOSAs behave determin-
istically in the sense that the stochastic behaviour of the model is the same,
regardless the way in which non-determinism is resolved. Thus, we say that a
closed IOSA is weakly deterministic if (i) almost surely at most one discrete non-
urgent transition is enabled at every time point, (ii) the election over enabled
urgent transitions does not affect the non urgent-behavior of the model, and (iii)
no non-urgent output and urgent output are enabled simultaneously. To avoid
referring explicitly to time in (i), we say instead that a closed IOSA is weakly
deterministic if it almost never reaches a state in which two different non-urgent
discrete transitions are enabled. Moreover, to ensure (ii), we define the following
weak transition.

For this definition and the rest of the section we will assume that the IOSA
is closed and all its urgent actions have been abstracted, that is, all actions in
Au have been renamed to τ .

Definition 7. For a non stable state s, and v ∈ R
N , we define (s,	v) C=⇒n μ

inductively by the following rules:

(T1)

s
∅,τ,C−−−−→ s′

st(s′)

(s,	v) C=⇒1 μ�v
C,s′

(T2)

s
∅,τ,C′
−−−−→ s′

∀	v′ ∈ R
N : ∃C ′′, μ′ : (s′, 	v′) C′′

==⇒n μ′

(s,	v) C′∪C′′
=====⇒n+1 μ̂

where μ�v
C,s is defined as in Definition 2 and μ̂ =

∫
S×RN fC′′

n dμ�v
C′,s′ , with

fC′′
n (t, 	w) = ν, if (t, 	w) C′′

==⇒n ν, and fC′′
n (t, 	w) = 0 otherwise. We define the

weak transition (s,	v) =⇒ μ if (s,	v) C=⇒n μ for some n ≥ 1 and C ⊆ C.

As given above, there is no guarantee that C=⇒n is well defined. In particu-
lar, there is no guarantee that fC′′

n is a well defined measurable function. We
postpone this to Lemma 1 below.

With this definition, we can introduce the concept of weak determinism:

Definition 8. A closed IOSA I is weakly deterministic if =⇒ is well defined in
I and, in P (I), any state (s, v) ∈ S that satisfies one of the following con-
ditions is almost never reached from any (init, v0) ∈ S: (a) s is stable and

142 P. R. D’Argenio and R. E. Monti

∪a∈A∪{init}Ta(s, v) contains at least two different probability measures, (b) s
is not stable, (s, v) =⇒ μ, (s, v) =⇒ μ′ and μ �= μ′, or (c) s is not stable and
(s, v) a−→ μ for some a ∈ Ao \ Au.

By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c) is
zero. Thus, Definition 8 states that, in a weakly deterministic IOSA, a situation
in which a non urgent output action is enabled with another output action,
being it urgent (case (c)) or non urgent (case (a)), or in which sequences of
urgent transitions lead to different stable situations (case (b)), is almost never
reached.

For the previous definition to make sense we need that P(I) satisfies time
additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].

Theorem 2. Let I be an IOSA I. Its semantics P(I) satisfies, for all (s,	v) ∈ S,
a ∈ Ao and d, d′ ∈ R>0, (i) Ta(s,	v) �= ∅ ⇒ Td(s,	v) = ∅ (maximal progress),
(ii) μ, μ′ ∈ Td(s,	v) ⇒ μ = μ′ (time determinism), and (iii) δ−d

(s,�v)∈Td(s,	v) ∧
δ−d′
(s,�v−d)∈Td′(s,	v − d) ⇐⇒ δ

−(d+d′)
(s,�v) ∈Td+d′(s,	v) (time additivity).

The next lemma states that, under the hypothesis that the IOSA is closed
and confluent, C=⇒n is well defined. Simultaneously, we prove that C=⇒n is deter-
ministic.

Lemma 1. Let I be a closed and confluent IOSA. Then, for all n ≥ 1, the
following holds:

1. If (s,	v) C=⇒n μ then there is a stable state s′ such that (i) μ = μ�v
C,s′ ,

(ii) (s, C ′,m)
∗� (s′, C ′∪C,m+n) for all C ′ ⊆ C and m ≥ 0, and (iii) if

(s,	v′) C′
==⇒n μ′ then C ′ = C and moreover, if 	v′ = 	v, also μ′ = μ; and

2. fC
n is a measurable function.

The proof of the preceding lemma uses induction on n to prove item 1 and
2 simultaneously. It makes use of the previous results on rewriting systems in
conjunction with measure theoretical tools such as Fubini’s theorem to deal with
Lebesgue integrals on product spaces. All these tools make the proof that con-
fluence preserves weak determinism radically different from those of Milner [23]
and Crouzen [9].

The following corollary follows by items 1.(ii) and 1.(iii) of Lemma 1.

Corollary 1. Let I be a closed and confluent IOSA. Then, for all (s,	v), if
(s,	v) =⇒ μ1 and (s,	v) =⇒ μ2, μ1 = μ2.

This corollary already shows that closed and confluent IOSAs satisfy part
(b) of Definition 8. In general, we can state:

Theorem 3. Every closed confluent IOSA is weakly deterministic.

Input/Output Stochastic Automata with Urgency 143

The rest of the section is devoted to discuss the proof of this theorem. From
now on, we work with the closed confluent IOSA I = (S, C,A,−→, s0, C0), with
|C| = N , and its semantics P(I) = (S,B(S), {Ta | a ∈ L}).

The idea of the proof of Theorem3 is to show that the property that all active
clocks have non-negative values and they are different from each other is almost
surely an invariant of I, and that at most one non-urgent transition is enabled
in every state satisfying such invariant. Furthermore, we want to show that, for
unstable states, active clocks have strictly positive values, which implies that
non-urgent transitions are never enabled in these states. Formally, the invariant
is the set

Inv = {(s,	v) | st(s) and ∀xi, xj ∈ active(s) : i �= j ⇒ 	v(i) �= 	v(j) ∧ 	v(i) ≥ 0}
∪ {(s,	v) | ¬st(s) and ∀xi, xj ∈ active(s) : i �= j ⇒ 	v(i) �= 	v(j)	v(i) > 0}
∪ ({init} × R

N) (1)

with active as in Definition 1. Note that its complement is:

Invc = {(s,	v) | ∃xi, xj ∈ active(s) : i �= j ∧ 	v(i) = 	v(j)}
∪ {(s,	v) | st(s) and ∃xi ∈ active(s) : 	v(i) < 0}
∪ {(s,	v) | ¬st(s) and ∃xi ∈ active(s) : 	v(i) ≤ 0} (2)

It is not difficult to show that Invc is measurable and, in consequence, so is
Inv. The following lemma states that Invc is almost never reached in one step
from a state satisfying the invariant.

Lemma 2. If (s,	v) ∈ Inv, a ∈ L, and μ ∈ Ta(s,	v), then μ(Invc) = 0.

From this lemma we have the following corollary.

Corollary 2. The set Invc is almost never reachable in P(I).

The proof of the corollary requires the definitions related to schedulers and
measures on paths in NLMPs (see [25, Chap. 7] for a formal definition of sched-
uler and probability measures on paths in NLMPs.) We omit the proof of the
corollary since it eventually boils down to an inductive application of Lemma2.

The next lemma states that any stable state in the invariant Inv has at most
one discrete transition enabled. Its proof is the same as that of [13, Lemma 20].

Lemma 3. For all (s,	v) ∈ Inv with s stable or s = init, the set
⋃

a∈A∪{init}
Ta(s,	v) is either a singleton set or the empty set.

The next lemma states that any unstable state in the invariant Inv can only
produce urgent actions.

Lemma 4. For every state (s,	v) ∈ Inv, if ¬st(s) and (s,	v) a−→ μ, then a ∈ Au.

144 P. R. D’Argenio and R. E. Monti

Proof. First recall that I is closed; hence Ai = ∅. If (s,	v) ∈ Inv and ¬st(s)
then 	vi > 0 for all xi ∈ enabling(s) ⊆ active(s). Therefore, by Definition 2,
Ta(s,	v) = ∅ if a ∈ Ao \ Au. Furthermore, for any d ∈ R>0, Td(s,	v) = ∅ since s

is not stable and hence s
,b,−−→ for some b ∈ Ao ∩ Au. �

Finally, Theorem 3 is a consequence of Lemma 3, Lemma 4, Corollary 2, and
Corollary 1.

7 Sufficient Conditions for Weak Determinism

Figure 3 shows an example in which the composed IOSA is weakly determinis-
tic despite that some of its components are not confluent. The potential non-
determinism introduced in state s1||s4||s6 is never reached since urgent actions
at states s0||s4||s6 and s1||s3||s6 prevent the execution of non urgent actions
leading to such state. We say that state s1||s4||s6 is not potentially reachable.
The concept of potentially reachable can be defined as follows.

Definition 9. Given an IOSA I, a state s is potentially reachable if there is
a path s0

,a0,−−−→ s1 . . . , sn−1
,an−1,−−−−−→ sn = s from the initial state, with n ≥ 0,

such that for all 0 ≤ i < n, if si
,b,−−→ for some b ∈ Au ∩ Ao then ai ∈ Au. In

such case we call the path plausible.

Notice that none of the paths leading to s1||s4||s6 in Fig. 3 are plausible.
Also, notice that an IOSA is bisimilar to the same IOSA when its set of states
is restricted to only potentially reachable states.

Proposition 4. Let I be a closed IOSA with set of states S and let I
be the same IOSA as I restricted to the set of states S = {s ∈ S |
is potentially reachable in I}. Then I ∼ I.

Although we have not formally introduced bisimulation, it should be clear
that both semantics are bisimilar through the identity relation since a transition

s
{x},a,C−−−−−→ s′ with s unstable does not introduce any concrete transition. (Recall

the IOSA is closed so there is no input action on I.)
For a state in a composed IOSA to be potentially reachable, necessarily

each of the component states has to be potentially reachable in its respective
component IOSA.

Lemma 5. If a state s1|| · · · ||sn is potentially reachable in I1|| · · · ||In then si

is potentially reachable in Ii for all i = 1, . . . , N .

By Theorem 3, it suffices to check whether a closed IOSA is confluent to
ensure that it is weakly deterministic. In this section, and following ideas intro-
duced in [9], we build on a theory that allows us to ensure that a closed composed
IOSA is confluent in a compositional manner, even when its components may
not be confluent. Theorem 5 provides the sufficient conditions to guarantee that

Input/Output Stochastic Automata with Urgency 145

the composed IOSA is confluent. Because of Proposition 2, it suffices to check
whether two urgent actions that are not confluent in a single component are
potentially reached. Since potential reachability depends on the composition,
the idea is to overapproximate by inspecting the components. The rest of the
section builds on concepts that are essential to construct such overapproxima-
tion.

Let uen(s) = {a ∈ Au | s
,a,−−−→ } be the set of urgent actions enabled in a

state s. We say that a set B of output urgent actions is spontaneously enabled
by a non-urgent action b if b is potentially reached and it transitions to a state
enabling all actions in B.

Definition 10. A set B ⊆ Au ∩ Ao is spontaneously enabled by a ∈ A \ Au in
I, if either B = ∅ or there are potentially reachable states s and s′ such that s

is stable, s
,a,−−−→ s′, and B ⊆ uen(s′). B is maximal if for any B′ spontaneously

enabled by b in I such that B ⊆ B′, B = B′.

A set that is spontaneously enabled in a composed IOSA, can be constructed
as the union of spontaneously enabled sets in each of the components as stated by
the following proposition. Therefore, spontaneously enabled sets in a composed
IOSA can be overapproximated by unions of spontaneously enabled sets of its
components.

Proposition 5. Let B be spontaneously enabled by action a in I1|| . . . ||In.
Then, there are B1, . . . , Bn such that each Bi is spontaneously enabled by a
in Ii, and B =

⋃n
i=1 Bi. If in addition B is maximal, there are B1, . . . , Bn such

that each Bi is maximal spontaneously enabled by a in Ii, and B ⊆
⋃n

i=1 Bi.

Proof. We only prove it for I1||I2. The generalization to any n follows easily.
Let B̄i = B ∩ Ai for i = 1, 2 and note that B = B̄1 ∪ B̄2. We show that B̄1

is spontaneously enabled by a in I1. The case of B̄2 follows similarly. Since
B is spontaneously enabled by a in I1||I2, there exist potentially reachable
states s1||s2 and s′

1||s′
2, such that s1||s2 is stable, s1||s2

,a,−−−→ s′
1||s′

2, and B ⊆
uen(s′

1||s′
2). First notice that B̄1 ⊆ uen(s1). Also, suppose B̄1 �= ∅, otherwise

B̄1 is spontaneously enabled by a trivially. Consider first the case that a ∈
A2 \ A1. By (R2), s1 = s′

1, but, since there is some b ∈ B̄1, s1
,b,−−→ and hence

s1||s2
,b,−−→ rendering s1||s2 unstable, which is a contradiction. So a ∈ A1 and

s1
,a,−−−→ s′

1. By Lemma 5, s1 and s′
1 are potentially reachable and, necessarily,

s1 is stable (otherwise s1||s2 has to be unstable as shown before). Therefore
B̄1 is spontaneously enabled by a in I1. The second part of the proposition is
immediate from the first part. �

Spontaneously enabled sets refer to sets of urgent output actions that are
enabled after some steps of execution. Urgent output actions can also be enabled
at the initial state.

Definition 11. A set B ⊆ Au ∩Ao is initial in an IOSA I if B ⊆ uen(s0), with
s0 being the initial state of I. B is maximal if B = uen(s0) ∩ Ao.

146 P. R. D’Argenio and R. E. Monti

An initial set of a composed IOSA can be constructed as the union of initial
sets of its components. In particular the maximal initial set is the union of all the
maximal sets of its components. The proof follows directly from the definition
of parallel composition taking into consideration that IOSAs are input enabled.

Proposition 6. Let B be initial in I = (I1|| . . . ||In). Then, there are
B1, . . . , B2, with Bi initial of Ii, 1 ≤ i ≤ n and B =

⋃n
i=1 Bi. Moreover,

uen(s0) ∩ Ao
I =

⋃n
i=1 uen(s0i) ∩ Ao

i .

We say that an urgent action triggers an urgent output action if the first one
enables the occurrence of the second one, which was not enabled before.

Definition 12. Let a ∈ Au and b ∈ Au ∩ Ao. a triggers b in an IOSA I if there
are potentially reachable states s1, s2, and s3 such that s1

,a,−−−→ s2
,b,−−→ s3 and,

if a �= b, b /∈ uen(s1).

Notice that, for the particular case in which a = b, b /∈ uen(s) is not required.
The following proposition states that if one action triggers another one in a
composed IOSA, then the same triggering occurs in a particular component.

Proposition 7. Let a ∈ Au and b ∈ Au∩Ao such that a triggers b in I1|| . . . ||In.
Then there is a component Ii such that b ∈ Ao

i and a triggers b in Ii.

Proof. We only prove it for I1||I2. The generalization to any n follows easily.
Because b ∈ Au ∩ Ao necessarily b ∈ Ao

1 or b ∈ Ao
2. W.l.o.g. suppose b ∈ Ao

1.

Since a triggers b in I1||I1, s1||s2
,a,−−−→ s′

1||s′
2

,b,−−→ s′′
1 ||s′′

2 with s1||s2, s′
1||s′

2, and
s′′
1 ||s′′

2 being potentially reachable.
Suppose first that a �= b. Then b /∈ uen(s1||s2). Recall that, by Lemma 5, s1,

s′
1, and s′′

1 are potentially reachable in I1. Since b ∈ Ao
1, s′

1
,b,−−→ s′′

1 . Suppose
a ∈ A2\A1. Then, necessarily, s1 = s′

1 which gives b ∈ uen(s1)∩Ao ⊆ uen(s1||s2),
yielding a contradiction. Thus, necessarily a ∈ Au

1 and hence s1
,a,−−−→ s′

1, by the
definition of parallel composition. It remains to show that b /∈ uen(s1), but this is
immediate since uen(s1) ∩ Ao ⊆ uen(s1||s2) and b /∈ uen(s1||s2). Thus a triggers
b in I1 in this case. If instead a = b, by the definition of parallel composition we
immediately have that s1

,b,−−→ s′
1

,b,−−→ s′′
1 , proving thus the proposition. �

Proposition 7 tells us that the triggering relation of a composed IOSA can
be overapproximated by the union of the triggering relations of its components.
Thus we define:

Definition 13. The approximate triggering relation of I1|| . . . ||In is defined by
� =

⋃n
i=1{(a, b) | a triggers b in Ii}. Its reflexive transitive closure �∗ is called

approximate indirect triggering relation.

The next definition characterizes all sets of urgent output actions that are
simultaneously enabled in any potentially reachable state of a given IOSA.

Input/Output Stochastic Automata with Urgency 147

Definition 14. A set B ⊆ Au ∩ Ao is an enabled set in an IOSA I if there is
a potentially reachable state s such that B ⊆ uen(s). If a ∈ B, we say that a is
enabled in s. Let ESI be the set of all enabled sets in I.

If an urgent output action is enabled in a potentially reachable state of
a IOSA, then it is either initial, spontaneously enabled, or triggered by some
action.

Theorem 4. Let b ∈ Au ∩ Ao be enabled in some potentially reachable state of
the IOSA I. Then there is a set B with b ∈ B that is either initial or spon-
taneously enabled by some action a ∈ Au, or b is triggered by some action
a ∈ Ao \ Au.

Proof. Let s be potentially reachable in I such that b ∈ uen(s) ∩ Ao. We prove
the theorem for b by induction on the plausible path σ leading to s. If |σ| = 0,
then σ = s and s is the initial state. Then the set uen(s) ∩ Ao is initial and
we are done in this case. If |σ| > 0, then σ = σ′ · (s′ ,a,−−−→ s) for some s′, a,
and plausible σ′. If a ∈ A \ Au then s′ is stable (since σ is plausible) and thus
uen(s) ∩ Ao is spontaneously enabled by a. If instead a ∈ Au, two possibilities
arise. If b /∈ uen(s′), then b is triggered by a. If b ∈ uen(s′), the conditions are
satisfied by induction since |σ′| = |σ| − 1. �

The next definition is auxiliary to prove the main theorem of this section.
It constructs a graph from a closed and composed IOSA whose vertices are sets
of urgent output actions. It has the property that, if there is a path from one
vertex to another, all actions in the second vertex are approximately indirectly
triggered by actions in the first vertex (Lemma 7). This will allow to show that
any set of simultaneously enabled urgent output actions is approximately indi-
rectly triggered by initial actions or spontaneously enabled sets (Lemma 8).

Definition 15. Let I = (I1|| . . . ||In) be a closed IOSA. The enabled graph
of I is defined by the labelled graph EGI = (V,E), where V ⊆ 2Ao∩Au

and
E ⊆ V × (Au∩Ao) × V , with V =

⋃
k≥0 Vk and E =

⋃
k≥0 Ek, and, for all

k ∈ N, Vk and Ek are inductively defined by

V0 =
⋃

a∈A{
⋃n

i=1 Bi | ∀1 ≤ i ≤ n :
Bi is spontaneously enabled by a and maximal in Ii}

∪ {
⋃n

i=1 uen(s0i) ∩ Ao
i | ∀1 ≤ i ≤ n : s0i is the initial state in Ii}

Ek = {(v, a, (v\{a}) ∪ {b | a�b}) | v ∈ Vk, a ∈ v}
Vk+1 = {v′ | v ∈ Vi, (v, v′) ∈ Ek, v′ /∈

⋃k
j=0 Vj}

Notice that V0 contains the maximal initial set of I and an overapproximation
of all its maximal spontaneously enabled sets. Notice also that, by construction,
there is a path from any vertex in V to some vertex in V0.

The set closure of V in EGI , defined by ESI = {B | B ⊆ v, v ∈ V }, turns
out to be an overapproximation of the actual set ESI of all enabled sets in I.

148 P. R. D’Argenio and R. E. Monti

Lemma 6. For any closed IOSA I = (I1|| · · · ||In), ESI ⊆ ESI .

Proof. Let B ∈ ESI . We proceed by induction on the length of the plausible
path σ that leads to the state s s.t. B ⊆ uen(s). If |σ| = 0 then s is the
initial state and thus B is initial in I. Thus, by Definition 11, Proposition 6,
and Definition 15, B ⊆ (uen(s0)∩Ao

I) = (
⋃n

i=1 uen(s0i)∩Ao
i) ∈ V0 ⊆ ESI . As a

consequence B ∈ ESI .
If |σ| > 0 then σ = σ′·(s′ ,a,−−−→ s), for some s′, a, and plausible σ′. If a ∈ A\Au

then s′ is stable (since σ is plausible) and thus B is spontaneously enabled by
a. By Proposition 5, there are B1, . . . , Bn such that each Bi is spontaneously
enabled by a and maximal in Ii, and B ⊆

⋃n
i=1 Bi. Since

⋃n
i=1 Bi ∈ V0 ⊆ ESI ,

then B ∈ ESI . If instead a ∈ Au, let B′ = {a} ∪ (B ∩ uen(s′)). Notice that
B′ ⊆ uen(s′) ∩ Ao. Since s′ is the last state on σ′ and |σ′| = |σ| − 1, B′ ∈ ESI
by induction. Hence, there is a vertex v′ ∈ V in EGI such that B′ ⊆ v and,
by Definition 15, v′ ∈ Vk for some k ≥ 0. Let v = (v′\{a}) ∪ {b | a�b}, then
(v′, a, v) ∈ Ek and hence v ∈ Vk+1. We show that B ⊆ v. Let b ∈ B. If b = a, then
a ∈ uen(s)∩Ao and hence a triggers a in I. By Proposition 7, a � a which implies
a ∈ v. Suppose, instead, that b �= a. If b ∈ uen(s′), then b ∈ B′\{a} ⊆ v′\{a} ⊆ v.
If b /∈ uen(s′), then a triggers b in I, and by Proposition 7, a � b which implies
b ∈ v. This proves B ⊆ v ∈ ESI and hence B ∈ ESI . �

The next lemma states that if there is a path from a vertex of EGI to another
vertex, every action in the second vertex is approximately indirectly triggered
by some action in the first vertex.

Lemma 7. Let I be a closed IOSA, let v, v′ ∈ V be vertices of EGI and let ρ be
a path following E from v to v′. Then for every b ∈ v′ there is an action a ∈ v
such that a �∗ b.

Proof. We proceed by induction in the length of ρ. If |ρ| = 0 then v = v′ and
the lemma holds since �∗ is reflexive. If |ρ| > 0, there is a path ρ′, v′′ ∈ V ,
and c ∈ Au ∩ Ao such that ρ = ρ′ · (v′′, c, v′). By induction, for every action
d ∈ v′′ there is some a ∈ v such that a �∗ d. Because of the definition of E
in Definition 15, either b ∈ v′′ or c � b and c ∈ v′′. The first case follows by
induction. In the second case, also by induction, a �∗ c for some a ∈ v and
hence a �∗ b. �

The next lemma states that every enabled set B in a composed IOSA is
either approximately triggered by a set of initial actions of the components of
the IOSA or by a subset of the union of spontaneously enabled sets in each
component where such sets are spontaneously enabled by the same event.

Lemma 8. Let I = (I1|| . . . ||In) be a closed IOSA and let {b1, . . . , bm} ⊆ Au ∩
Ao be enabled in I. Then, there are (not necessarily different) a1, . . . , am such
that aj �∗ bj, for all 1 ≤ j ≤ m, and either (i) {a1, . . . , am} ⊆

⋃n
i=1 uen(s0i) ∩

Ao
i , or (ii) there exists e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously

enabled by e in I1, . . . , In respectively, such that {a1, . . . , am} ⊆
⋃n

i=1 Bi.

Input/Output Stochastic Automata with Urgency 149

Proof. Because of Lemma 6 there is a vertex v of EGI such that {b1, . . . , bn} ⊆ v.
Because of the inductive construction of E and V , there is a path from some
v′ ∈ V0 to v in EGI . From Lemma 7, for each 1 ≤ j ≤ m, there is an aj ∈ v′ such
that aj �∗ bj . Because v′ ∈ V0, then either v′ =

⋃n
i=1 uen(s0i) ∩ Ao

i or there is
some e ∈ A such that v′ =

⋃n
i=1 Bi with Bi spontaneously enabled by e in Ii �

The following theorem is the main result of this section and provides sufficient
conditions to guarantee that a closed composed IOSA is confluent or, as stated
in the theorem, necessary conditions for the IOSA to be non-confluent.

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c �∗ a, d �∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Proof. Suppose I potentially reaches a non confluent state s. Then there are
necessarily a, b ∈ uen(s) that show it and hence I is not confluent w.r.t. a and b.
By Proposition 2, there is necessarily a component Ii that is not confluent w.r.t.
a and b. Since {a, b} is an enabled set in I, the rest of the theorem follows by
Lemma 8. �

Because of Proposition 4 and Theorem 3, if all potentially reachable states in
a closed IOSA I are confluent, then I is weakly deterministic. Thus, if no pair
of actions satisfying conditions in Theorem5 are found in I, then I is weakly
deterministic.

Notice that the IOSA I = I1||I2||I3 of Example 2 (see also Figs. 2 and 3) is an
example that does not meet the conditions of Theorem 5, and hence detected as
confluent. c and d are the only potential non-confluent actions, which is noticed
in state s6 of I3. The approximate indirect triggering relation can be calculated
to �∗= {(c, c), (d, d)}. Also, {c} is spontaneously enabled by a in I1 and {d} is
spontaneously enabled by b in I2. Since both sets are spontaneously enabled by
different actions and c and d are not initial, the set {c, d} does not appear in V0

of EGI which would be required to meet the conditions of the theorem.

I1

I2

I3

a? b!!

a? c!!

b??

c??

c??

b??

a!

Fig. 6. I1||I2||I3 meets conditions
in Theorem 5

Conditions in Theorem5 are not suffi-
cient and confluent IOSAs may satisfy them.
Consider the IOSAs in Fig. 6. I1||I2||I3 is
a closed IOSA with a single state and no
outgoing transition. Hence, it is confluent.
However, I3 is not confluent w.r.t. b and
c, �∗= {(b, b), (c, c)}, B1 = {b} is sponta-
neously enabled by a in I1, and B2 = {c}
is spontaneously enabled by a in I2. Hence
b, c ∈

⋃n
i=1 Bi, thus meeting the conditions of

Theorem 5.

150 P. R. D’Argenio and R. E. Monti

8 Concluding Remarks

In this article, we have extended IOSA as introduced in [13] with urgent actions.
Though such extension introduces non-determinism even if the IOSA is closed,
it does so in a limited manner. We were able to characterize when a IOSA is
weakly deterministic, which is an important concept since weakly determinis-
tic IOSAs are amenable to discrete event simulation. In particular, we showed
that closed and confluent IOSAs are weakly deterministic and provided condi-
tions to check compositionally if a closed IOSA is confluent. Open IOSAs are
naturally non-deterministic due to input enabledness: at any moment of time
either two different inputs may be enabled or an input is enabled jointly with a
possible passage of time. Thus, the property of non-determinism can only be pos-
sible in closed IOSAs. However, Theorem 5 relates open IOSAs to the concept
of weak determinism by providing sufficient properties on open IOSAs whose
composition leads to a closed weakly deterministic IOSA. In addition, we notice
that languages like Modest [4,18,19], that have been designed for compositional
modelling of complex timed and stochastic systems, embrace the concept of non-
determinism as a fundamental property. Thus, ensuring weak determinism on
Modest models using compositional tools like Theorem 5 will require significant
limitations that may easily boil down to reduce it to IOSA. Notwithstanding
this observation, we remark that some translation between IOSA and Modest is
possible through Jani [8].

Finally, we remark that, though not discussed in this paper, the conditions
provided by Theorem5, can be verified in polynomial time respect to the size of
the components and the number of actions.

References

1. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998). https://doi.org/10.1017/cbo9781139172752

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on Uppaal. In: Bernardo, M.,
Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 200–236. Springer, Hei-
delber (2004). https://doi.org/10.1007/978-3-540-30080-9 7

3. Bengtsson, J., et al.: Verification of an audio protocol with bus collision using
Uppaal. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp.
244–256. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61474-5 73

4. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.: MODEST: a com-
positional modeling formalism for hard and softly timed systems. IEEE Trans.
Softw. Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/tse.2006.104

5. Bravetti, M., D’Argenio, P.R.: Tutte le algebre insieme: concepts, discussions and
relations of stochastic process algebras with general distributions. In: Baier, C.,
Haverkort, B.R., Hermanns, H., Katoen, J.-P., Siegle, M. (eds.) Validation of
Stochastic Systems. LNCS, vol. 2925, pp. 44–88. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24611-4 2

6. Budde, C.E.: Automation of importance splitting techniques for rare event simu-
lation. Ph.D. thesis, Universidad Nacional de Córdoba (2017)

https://doi.org/10.1017/cbo9781139172752
https://doi.org/10.1007/978-3-540-30080-9_7
https://doi.org/10.1007/3-540-61474-5_73
https://doi.org/10.1109/tse.2006.104
https://doi.org/10.1007/978-3-540-24611-4_2

Input/Output Stochastic Automata with Urgency 151

7. Budde, C.E., D’Argenio, P.R., Monti, R.E.: Compositional construction of impor-
tance functions in fully automated importance splitting. In: Puliafito, A., Trivedi,
K.S., Tuffin, B., Scarpa, M., Machida, F., Alonso, J. (eds.) Proceedings of 10th EAI
International Conference on Performance Evaluation Methodologies and Tools,
VALUETOOLS 2016, October 2016, Taormina. ICST (2017). https://doi.org/10.
4108/eai.25-10-2016.2266501

8. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-54580-5 9

9. Crouzen, P.: Modularity and determinism in compositional markov models. Ph.D.
thesis, Universität des Saarlandes, Saarbrücken (2014)

10. D’Argenio, P.R.: Algebras and automata for timed and stochastic systems. Ph.D.
thesis, Universiteit Twente (1999)

11. D’Argenio, P.R., Katoen, J.P.: A theory of stochastic systems, part I: Stochastic
automata. Inf. Comput. 203(1), 1–38 (2005). https://doi.org/10.1016/j.ic.2005.07.
001

12. D’Argenio, P.R., Katoen, J., Brinksma, E.: An algebraic approach to the specifi-
cation of stochastic systems (extended abstract). In: Gries, D., de Roever, W.P.
(eds.) PROCOMET 1998. IFIP Conference Proceedings, vol. 125, pp. 126–147.
Chapman & Hall, Boca Raton (1998). https://doi.org/10.1007/978-0-387-35358-
6 12

13. D’Argenio, P.R., Lee, M.D., Monti, R.E.: Input/Output stochastic automata. In:
Fränzle, M., Markey, N. (eds.) FORMATS 2016. LNCS, vol. 9884, pp. 53–68.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44878-7 4

14. D’Argenio, P.R., Sánchez Terraf, P., Wolovick, N.: Bisimulations for non-
deterministic labelled Markov processes. Math. Struct. Comput. Sci. 22(1), 43–68
(2012). https://doi.org/10.1017/s0960129511000454

15. Desharnais, J., Edalat, A., Panangaden, P.: Bisimulation for labelled Markov pro-
cesses. Inf. Comput. 179(2), 163–193 (2002). https://doi.org/10.1006/inco.2001.
2962

16. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer,
Heidelberg (1982). https://doi.org/10.1007/BFb0092872

17. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified
models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995). https://doi.
org/10.1006/inco.1995.1123

18. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.: A compositional modelling
and analysis framework for stochastic hybrid systems. Form. Methods Syst. Des.
43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

19. Hartmanns, A.: On the analysis of stochastic timed systems. Ph.D. thesis, Saarlan-
des University, Saarbrücken (2015). http://scidok.sulb.uni-saarland.de/volltexte/
2015/6054/

20. Hermanns, H.: Interactive Markov Chains: And the Quest for Quantified Qual-
ity. LNCS, vol. 2428. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
45804-2

21. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput.
94(1), 1–28 (1991). https://doi.org/10.1016/0890-5401(91)90030-6

22. Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-
Hill Higher Education, New York City (1999)

https://doi.org/10.4108/eai.25-10-2016.2266501
https://doi.org/10.4108/eai.25-10-2016.2266501
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1016/j.ic.2005.07.001
https://doi.org/10.1016/j.ic.2005.07.001
https://doi.org/10.1007/978-0-387-35358-6_12
https://doi.org/10.1007/978-0-387-35358-6_12
https://doi.org/10.1007/978-3-319-44878-7_4
https://doi.org/10.1017/s0960129511000454
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.1006/inco.2001.2962
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1006/inco.1995.1123
https://doi.org/10.1006/inco.1995.1123
https://doi.org/10.1007/s10703-012-0167-z
http://scidok.sulb.uni-saarland.de/volltexte/2015/6054/
http://scidok.sulb.uni-saarland.de/volltexte/2015/6054/
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1007/3-540-45804-2
https://doi.org/10.1016/0890-5401(91)90030-6

152 P. R. D’Argenio and R. E. Monti

23. Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs
(1989)

24. Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in
modeling, analysis and tools. Comput. Sci. Rev. 15, 29–62 (2015). https://doi.org/
10.1016/j.cosrev.2015.03.001

25. Wolovick, N.: Continuous probability and nondeterminism in labeled transition
systems. Ph.D. thesis, Universidad Nacional de Córdoba, Argentina (2012)

26. Wu, S., Smolka, S.A., Stark, E.W.: Composition and behaviors of probabilistic I/O
automata. Theor. Comput. Sci. 176(1–2), 1–38 (1997). https://doi.org/10.1016/
S0304-3975(97)00056-X

27. Wang, Y.: Real-time behaviour of asynchronous agents. In: Baeten, J.C.M., Klop,
J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 502–520. Springer, Heidelberg
(1990). https://doi.org/10.1007/BFb0039080

https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/j.cosrev.2015.03.001
https://doi.org/10.1016/S0304-3975(97)00056-X
https://doi.org/10.1016/S0304-3975(97)00056-X
https://doi.org/10.1007/BFb0039080

Layer by Layer – Combining Monads

Fredrik Dahlqvist(B), Louis Parlant, and Alexandra Silva

Department of Computer Science, University College London,
Gower Street, London WC1E 6BT, UK

{f.dahlqvist,l.parlant,a.silva}@cs.ucl.ac.uk

Abstract. We develop a modular method to build algebraic structures.
Our approach is categorical: we describe the layers of our construct as
monads, and combine them using distributive laws.

Finding such laws is known to be difficult and our method identifies
precise sufficient conditions for two monads to distribute. We either (i)
concretely build a distributive law which then provides a monad struc-
ture to the composition of layers, or (ii) pinpoint the algebraic obstacles
to the existence of a distributive law and suggest a weakening of one
layer that ensures distributivity.

This method can be applied to a step-by-step construction of a pro-
gramming language. Our running example will involve three layers: a
basic imperative language enriched first by adding non-determinism and
then probabilistic choice. The first extension works seamlessly, but the
second encounters an obstacle, resulting in an ‘approximate’ language
very similar to the probabilistic network specification language Prob-
NetKAT.

1 Introduction

The practical objective of this paper is to provide a systematic and mod-
ular understanding of the design of recent programming languages such as
NetKAT [9] and ProbNetKAT [8,28] by re-interpreting their syntax as a layering
of monads. However, in order to solve this problem, we develop a very general
technique for building distributive laws between monads whose applicability goes
far beyond understanding the design of languages in the NetKAT family. Indeed,
the combination of monads has been an important area of research in theoreti-
cal computer science ever since Moggi developed a systematic understanding of
computational effects as monads in [25]. In this paradigm – further developed by
Plotkin, Power and others in e.g. [4,26] – the question of how to combine com-
putational effects can be treated systematically by studying the possible ways of
combining monads. This work can also be understood as a contribution to this
area of research.

Combining effects is in general a non-trivial issue, but diverse methods have
been studied in the literature. A monad transformer, as described in [4], is a

A. Silva—This work was partially supported by ERC grant ProfoundNet.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 153–172, 2018.
https://doi.org/10.1007/978-3-030-02508-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_9&domain=pdf

154 F. Dahlqvist et al.

way to enrich any theory with a specific effect. These transformers allow a step-
by-step construction of computational structures, later exploited by Hudak et
al. [20,21]. In [12], Hyland, Plotkin and Power systematized the study of effect
combinations by introducing two canonical constructions for combining monads,
which in some sense lie at the extreme ends of the collection of possible combi-
nation procedures. At one end of the spectrum they define the sum of monads
which consists in the juxtaposition of both theories with no interaction what-
soever between computational effects. At the other end of the spectrum they
define the tensor of two monads where both theories are maximally interact-
ing in the sense that “each operator of one theory commutes with each opera-
tion of the other” [12]. In [11] they combine exceptions, side-effects, interactive
input/output, non-determinism and continuations using these operations.

In some situations neither the sum nor the tensor of monads is the appropri-
ate construction, and some intermediate level of interaction is required. From the
perspective of understanding the design of recent programming languages which
use layers of non-determinism and probabilities (e.g. ProbNetKAT), there are
two reasons to consider combinations other than the sum or the tensor. First,
there is the unavoidable mathematical obstacle which arises when combining
sequential composition with non-deterministic choice (see the simple example
below), two essential features of languages in the NetKAT family. When com-
bining two monoid operations with the tensor construction, one enforces the
equation (p; q) + (r; s) = (p + r); (q + s) which means, by the Eckmann-Hilton
argument, that the two operations collapse into a single commutative operation;
clearly not the intended construction. Secondly, and much more importantly,
the intended semantics of a language may force us to consider specific and lim-
ited interactions between its operations. This is the case for languages in the
NetKAT family, where the intended trace semantics suggests distributive laws
between operations, for instance that sequential composition distributes over
non-deterministic choice (but not the converse). For this reason, the focus of
this paper will be to explicitly construct distributive laws between monads.

It is worth noting that existence of distributive laws is a subtle question and
having automatic tools to derive these is crucial in avoiding mistakes. As a simple
example in which several mistakes have appeared in the literature, consider the
composition of the powerset monad P with itself. Distributive laws of P over P

were proposed in 1993 by King [15] and in 2007 [23], with a subsequent correction
of the latter result by Manes and Mulry themselves in a follow-up paper. In 2015,
Klin and Rot made a similar claim [16], but recently Klin and Salamanca have in
fact showed that there is no distributive law of P over itself and explain carefully
why all the mistakes in the previous results were so subtle and hard to spot [17].
This example shows that this question is very technical and sometimes counter-
intuitive. Our general and modular approach provides a fine-grained method for
determining (a) if a monad combination by distributive law is possible, (b) if it is
not possible, exactly which features are broken by the extension and (c) suggests
a way to fix the composition by modifying one of our monads. In other words, this

Layer by Layer – Combining Monads 155

enables informed design choices on which features we may accept to lose in order
to achieve greater expressive power in a language through monad composition.

The original motivation for this work is very concrete and came from trying
to understand the design of ProbNetKAT, a recently introduced programming
language with non-determinism and probabilities [8,28]. The non-existence of
a distributive law between the powerset monad and the distribution monad,
first proved by Varacca [30] and discussed recently in [5], is a well known prob-
lem in semantics. As we will show, our method enables us to modularly build
ProbNetKAT based on the composition of several monads capturing the desired
algebraic features. The method derives automatically which equations have to be
dropped when adding the probabilistic layer providing a principled justification
to the work initially presented in [8,28].

A Simple Example. Let us consider a set P of atomic programs, and build
a ‘minimal’ programming language as follows. Since sequential composition is
essential to any imperative language we start by defining the syntax as:

p ::= skip | p ; p | a ∈ P (1)

and ask that the following programs be identified:

p ; skip = p = skip ; p and p ; (q ; r) = (p ; q) ; r (2)

The language defined by the operations of (1) and the equations of (2) can
equally be described as the application of the free monoid monad (−)∗ to the
set of atomic programs P. If we assign a semantics to each basic program P,
the semantics of the extended language can be defined as finite sequences (or
traces) of the basic semantics. In a next step, we might want to enrich this basic
language by adding a non-deterministic choice operation + and the constant
program abort, satisfying the equations:

abort+ p = p = p+ abort p+ p = p p+ q = q+ p p+ (q+ r) = (p+ q)+ r
(3)

The signature (abort,+) and the axioms (3) define join-semilattices, and the
monad building free semilattices is the finitary powerset monad P. To build our
language in a modular fashion we thus want to apply P on top of our previ-
ous construction and consider the programming language where the syntax and
semantics arise from P(P∗). For this purpose we combine both monads to con-
struct a new monad P(−∗) by building a distributive law (−)∗P → P(−)∗. As
explained above, this approach is semantically justified by the intended trace
semantics of the language, and will ensure that operations from the inner layer
distribute over the outer ones, i.e.

p; (q + r) = p; q + p; r (q + r); p = q; p + r; p p; abort = abort; p = abort
(4)

Our method proves and relies on the following theorem: if P preserves the struc-
ture of (−)∗-algebra defined by (1)–(2), then the composition P(−∗) has a monad
structure provided by the corresponding distributive law. Applying this theorem

156 F. Dahlqvist et al.

to our running example, the first step is to lift the signature (1), in other words to
define new canonical interpretations in P(P∗) for ; and skip. Once this lifting is
achieved, the equations in (2), arising from the inner layer, can be interpreted in
P(−∗). We need to check if they still hold: is the new interpretation of ; still asso-
ciative? To answer this question, our method makes use of categorical diagrams
to obtain precise conditions on our monadic constructs. Furthermore, in the case
where equations fail to hold, we provide a way to identify exactly what stands
in the way of monad composition. We can then offer tailor-made adjustments to
achieve the composition and obtain a ‘best approximate’ language, with slightly
modified monads.

Structure of this Paper. Section 2 presents some basic facts about monads
and distributive laws and fixes the notation. In Sect. 3 we recall the well-known
fact [24,29] that there exists a distributive law of any polynomial functor over
a monoidal Set-monad. In particular this shows that operations can be lifted
by monoidal monads. In fact, the techniques presented in this paper can be
extended beyond the monoidal case, but since we won’t need such monads in
our applications, we will focus on monoidal monads for which the lifting of oper-
ations is very straightforward. We then show in Sect. 4 when equations can also
be lifted. We isolate two conditions on the lifting monad which guarantee that
any equation can be lifted. These two conditions correspond to a monad being
affine [18] and relevant [13]. We also characterise the general form of equations
preserved by monads which only satisfy a subset of these conditions. Interest-
ingly, together with the symmetry condition (SYM) which is always satisfied by
monoidal Set-monads, we recover what are essentially the three structural laws
of classical logic (see also [13]). In Sect. 5 we show how the ∗-free fragment of
ProbNetKAT can be built in systematic way by construction distributive laws
between the three layers of the language.

2 A Primer on Monads, Algebras and Distributive Laws

Monads and (Σ,E)-Algebras. For the purposes of this paper, we will always
consider monads on Set [1,22,25]. The core language described in the introduc-
tion is defined by the signature Σ = { ; , skip} and the set E of equations given
by (2). More generally, we view programming languages as algebraic structures
defined by a signature (Σ, ar : Σ → N) and a set of equations E enforcing
program equivalence. To formalize this we first define a Σ-algebra to be a set
X together with an interpretation [[σ]] : Xar(σ) → X of each operation σ ∈ Σ.
A Σ-algebra can be conveniently represented as an algebra for the polynomial
functor HΣ =

∐
σ∈Σ(−)ar(σ) defined by the signature, i.e. as a set X together

with a map β : HΣX → X. A Σ-algebra morphism between β : HΣX → X and
γ : HΣY → Y is a map f : X → Y such that γ ◦ HΣf = f ◦ β. The category of
Σ-algebras and Σ-algebra morphisms is denoted Alg(Σ). In particular, the set
FΣX of all Σ-terms is a Σ-algebra – the free Σ-algebra over X – and FΣ is a
functor Set → Alg(Σ) forming an adjunction

FΣ � UΣ : Alg(Σ) → Set (5)

Layer by Layer – Combining Monads 157

Since it will not lead to any ambiguity we will usually overload the symbol FΣ

to also denote the monad UΣFΣ : Set → Set arising from this adjunction.
Given a Σ-algebra A, a free Σ-term s built over variables in a set V , and

a valuation map v : V → UΣA, we define the interpretation [[s]]v of s in A
recursively in the obvious manner. We say that an equation s = t between free
Σ-terms is valid in A, denoted A |= s = t, if for every valuation v : V →
UΣA, [[s]]v = [[t]]v. Given a set E of equations we define a (Σ,E)-algebra as a
Σ-algebra in which all the equations in E are valid. We denote by Alg(Σ,E)
the subcategory of Alg(Σ) consisting of (Σ,E)-algebras. There exists a functor
F : Set → Alg(Σ,E) building free (Σ,E)-algebras which is left adjoint to the
obvious forgetful functor:

F � U : Alg(Σ,E) → Set (6)

In our running example all monads arise from a finitary syntax, and thus from
an adjunction of the type (6).

Eilenberg-Moore Categories. An algebra for the monad T is a set X together
with an map α : TX → X such that the diagrams in (7) commute. A morphism

(X,α)
f→ (Y, β) of T -algebras is a morphism X

f→ Y in Set verifying β ◦ Tf =
f ◦ α.

TTX
μX ��

Tα ��
TX

α��
X

ηX ��

1 ����
���

�� TX
α��

TX
α �� X X

(7)

The category of T -algebras and T -algebra morphisms is called the Eilenberg-
Moore category of the monad T , and denoted EM(T). There is an obvious for-
getful functor UE : EM(T) → Set which sends an algebra to its carrier, it has
a left adjoint FE : Set → EM(T) which sends a set X to the free T -algebra
μX : T 2X → TX. Note that the adjunction FE � UE gives rise to the monad T .
A lifting of a functor F : Set → Set to EM(T) is a functor F̂ on EM(T) such
that UE ◦ F̂ = F ◦ UE .

Lemma 1 ([22] VI.8. Theorem1). For any adjunction of the form (6),
EM(UF) and Alg(Σ,E) are equivalent categories.

The functors connecting EM(UF) and Alg(Σ,E) are traditionally called
comparison functors, and we will denote them by M : EM(UF) → Alg(Σ,E)
and K : Alg(Σ,E) → EM(UF). Consider first the free monad FΣ for a sig-
nature Σ (i.e. the monad generated by the adjunction (5)). The comparison
functor M : Alg(Σ) → EM(FΣ) maps the free FΣ-algebra over X, that is
μFΣ

X : F2
ΣX → FΣX to the free HΣ-algebra over X which we shall denote by

αX : HΣFΣX → FΣX. It is well-known that αX is an isomorphism. Moreover,
the maps αX define a natural transformation HΣFΣ → FΣ . Similarly, in the
presence of equations, if we consider the adjunction F � U of (6) and the asso-
ciated monad T = UF, then the comparison functor M ′ : Alg(Σ,E) → EM(T)

158 F. Dahlqvist et al.

sends the free T -algebra μT
X : T 2X → TX to an HΣ-algebra which we shall

denote ρX : HΣTX → TX. Again, the maps ρX define a natural transformation
HΣT → T , but in general ρX is no longer an isomorphism: in the case of monoids
and of a set X = {x, y, z}, we have ρX(x; (y; z)) = ρX((x; y); z).

Distributive Laws. Let (S, ηS , μS) and (T, ηT , μT) be monads, a distributive
law of S over T (see [3]) is a natural transformation λ : ST → TS satisfying:

S

SηT

����
��
��
�

ηT S

���
��

��
��

ST
λ

�� TS

(DL. 1)

T

ηST

����
��
��
�

TηS

���
��

��
��

ST
λ

�� TS

(DL. 2)

STT

SμT

��

λT �� TST Tλ �� TTS

μT S

��
ST

λ
�� TS

(DL. 3)

SST

μST

��

Sλ �� STS λS �� TSS

TμS

��
ST

λ
�� TS

(DL. 4)

If λ only satisfies (DL. 2) and (DL. 4), we will say that λ is a distributive law
of the the monad S over functor T , or in the terminology of [14], an EM-law
of S over T . Dually, if λ only satisfies (DL. 1) and (DL. 3), λ is known as a
distributive law of the functor S over the monad T , or Kl-law of S over T [14].

Theorem 1. [2,3,14] EM-laws λ : SF → FS and liftings of F to EM(S) are
in one-to-one correspondence.

If there exists a distributive law λ : TS → ST of the monad T over the monad
S, then the composition of S and T also forms a monad (ST, u,m), whose unit
u and multiplication m are given by:

X
ηT

X ��
uX

��TX
ηS

T X �� STX STSTX
SλT X ��

mX

��SSTTX
μS

T T X �� STTX
SμT

X �� STX

If EM(S) � Alg(Σ,E) and EM(T) � Alg(Σ′, E′), then a distributive law
ST → TS implements the distributivity of the operations in Σ over those of Σ′.

3 Building Distributive Laws Between Monads

In this section we will show how to construct a distributive law λ : ST → TS
between monads via a monoidal structure on T .

3.1 Monoidal Monads

Let us briefly recall some relatively well-known categorical notion. A lax
monoidal functor on a monoidal category (C,⊗, I), or simply a monoidal func-
tor1, is an endofunctor F : C → C together with natural transformations
ψX,Y : FX ⊗ FY → F (X ⊗ Y) and ψ0 : I → FI satisfying the diagrams:

1 We will never consider the notion of strong monoidal functor, so this terminology
should not lead to any confusion.

Layer by Layer – Combining Monads 159

FX ⊗ I
idF X⊗ψ0

��idF X⊗ψ0
��

ρF X

��

FX ⊗ FI

ψX,I

��
FX F (X ⊗ I)

FρX		

(MF. 1)

(FX ⊗ FY) ⊗ FZ
αF X,F Y,F Z ��

ψX,Y ⊗idF Z

��

FX ⊗ (FY ⊗ FZ)

idF X⊗ψY,Z

��
F (X ⊗ Y) ⊗ FZ

ψX⊗Y,Z

��

FX ⊗ F (Y ⊗ Z)

ψX,Y ⊗Z

��
F ((X ⊗ Y) ⊗ Z)

FαX,Y,Z �� F (X ⊗ (Y ⊗ Z)))
(MF. 3)I ⊗ FX

ψ0⊗idF X��ψ0⊗idF X��

ρ′
F X

��

FI ⊗ FX

ψI,X

��
FX F (I ⊗ X)

Fρ′
X		

(MF. 2)
where α is the associator of (C,⊗, I) and ρ, ρ′ the right and left unitors respec-
tively. The diagrams (MF. 1), (MF. 2) and (MF. 3) play a key role in the lifting of
operations and equations in this section and the next. In particular they ensure
that any unital (resp. associative) operation lifts to a unital (resp. associative)
operation. We will sometimes refer to ψ as the Fubini transformation of F .

A monoidal monad T on a monoidal category is a monad whose underlying
functor is monoidal for a natural transformation ψX,Y : TX ⊗ TY → T (X ⊗ Y)
and ψ0 = ηI , the unit of the monad at I, and whose unit and multiplication are
monoidal natural transformations, that is to say:

X ⊗ Y
ηX⊗ηY��

ηX⊗Y ����
���

���
��

TX ⊗ TY

ψX,Y

��
T (X ⊗ Y)

(MM.1) T 2X ⊗ T 2Y

μX⊗μY

��

ψT X,T Y�� T (TX ⊗ TY)
TψX,Y �� TT (X ⊗ Y)

μX⊗Y

��
TX ⊗ TY

ψX,Y �� T (X ⊗ Y)

(MM.2)

Moreover, a monoidal monad is called symmetric monoidal if

TX ⊗ TY
ψX,Y ��

swapT X,T Y

��

T (X ⊗ Y)

T swapX,Y

��
TY ⊗ TX

ψY,X

�� T (Y ⊗ X)

(SYM)

where swap : (−) ⊗ (−) → (−) ⊗ (−) is the argument-swapping transformation
(natural in both arguments).

We now present a result which shows that for monoidal categories which are
sufficiently similar to (Set,×, 1), being monoidal is equivalent to being symmet-
ric monoidal. The criteria on (C,⊗, I) in the following theorem are due to [27]
and generalize the strength unicity result of [25, Proposition 3.4]. Our usage of
the concept of strength in what follows is purely technical, it is the monoidal

160 F. Dahlqvist et al.

structure which is our main object of interest. We therefore refer the reader to
e.g. [25] for the definitions of strength and commutative monad.

Theorem 2. Let T : C → C be a monad over a monoidal category (C,⊗, I)
whose tensor unit I is a separator of C (i.e. f, g : X → Y and f 	= g implies
∃x : I → X s.th. f ◦ x 	= g ◦ x) and such that for any morphism z : I → X ⊗ Y
there exist x : I → X, y → Y such that z = (x ⊗ y) ◦ ρ−1

I . Then t.f.a.e.

(i) There exists a unique natural transformation ψX,Y : TX ⊗TY → T (X ⊗Y)
making T monoidal

(ii) There exists a unique strength stX,Y : X × TY → T (X ⊗ Y) making T
commutative

(iii) There exists a unique natural transformation ψX,Y : TX ⊗TY → T (X ⊗Y)
making T symmetric monoidal.

In particular, monoidal monads on (Set,×, 1) are necessarily symmetric (and
thus commutative). As we will see in the next section (Theorem 7), this symmetry
has deep consequences: it means that a large syntactically definable class of
equations can always be lifted by monoidal monads.

3.2 Lifting Operations

First though, we show that being monoidal allows us to lift operations. The
following Theorem is well-known and can be found in e.g. [24,29].

Theorem 3. Let T : Set → Set be a monoidal monad, then for any finitary
signature Σ, there exists a distributive law λΣ : HΣT → THΣ of the polynomial
functor associated with Σ over T .

The distributive laws λΣ : HΣT → THΣ built from a monoidal structure ψ
on T in Theorem 3 have the general shape

HΣTX =
∐

s∈Σ(TX)ar(s)
∐

s∈Σ ψ
(ar(s))
X �� THΣX (8)

where ψ
(0)
X = ηT

1 , ψ
(1)
X = idX , ψ

(2)
X = ψX,X . For k ≥ 3 if we wanted to

be completely rigorous we should first give an evaluation order to the k-fold
monoidal product (TX)k – for example evaluating the products from the left,
e.g. (TX)3 := (TX ⊗ TX) ⊗ TX – and then define ψ(k) : (TX)k → T (Xk)
accordingly by repeated application of the Fubini transformation ψ – for exam-
ple defining

ψ
(3)
X = ψX⊗X,X ◦ (ψX,X × id) : (TX ⊗ TX) ⊗ TX → T ((X ⊗ X) ⊗ X)

However, we will in general be interested in a variety of evaluation orders for the
tensors (depending on circumstances), and since in Set these different evaluation

Layer by Layer – Combining Monads 161

orders are related by a combination of associators αX,Y,Z which simply re-bracket
tuples, we will abuse notation slightly and write

ψ
(k)
X : (TX)k → T (Xk)

with the understanding that ψ
(k)
X is only defined up to re-bracketing of tuples

which is quietly taking place ‘under the hood’ as called for by the particular
situation. The distributive laws defined by Theorem3 can be extended to dis-
tributive laws for the free monad associated with the signature Σ.

Proposition 1. Given a finitary signature Σ and a monad T : Set → Set,
there is a one-to-one correspondence between

(i) distributive laws λΣ : HΣT → THΣ of the polynomial functor associated
with Σ over T

(ii) distributive laws ρΣ : FΣT → TFΣ of the free monad associated with Σ over
T .

In particular, by Theorem1, the distributive law (8) also corresponds to a lifting
T̂ of T to EM(FΣ) � Alg(Σ). Explicitly, given an FΣ-algebra β : FΣX → X,
T̂ (X,β) is defined as the FΣ-algebra

FΣTX
ρΣ

X �� TFΣX
Tβ �� TX (9)

Thus whenever T is monoidal, we can ‘lift’ the operations of Σ, or, in program-
ming language terms, we can define the operations of the outer layer (T) on the
language defined by the operations of the inner layer (FΣ).

3.3 Lifting Equations

We now show how to go from a lifting of T on EM(FΣ) � Alg(Σ) to a lifting of
T on EM(S) � Alg(Σ,E). More precisely, we will now show how to ‘quotient’
the distributive law ρΣ : FΣT → TFΣ into a distributive law λ : ST → TS. Of
course this is not always possible, but in the next section we will give sufficient
conditions under which the procedure described below does work. The first step
is to define the natural transformation q : FΣ � S which quotients the free Σ-
algebras by the equations of E to build the free (Σ,E)-algebra. At each set X,
let EX denote the set of pairs (s, t) ∈ FΣX such that SX |= s = t and let π1, π2

be the obvious projections. Then q can be constructed via the coequalizers:

EX
π1 ��
π2

�� FΣX
qX �� �� SX (10)

By construction q is a component-wise regular epi monad morphism (q ◦ η = ηS

and μS ◦ qq = q ◦ μT), and it induces a functor Q : EM(S) → EM(FΣ) defined
by

Q(ξ : SX → X) = ξ ◦ qX : FΣX → X, Q(f) = f

162 F. Dahlqvist et al.

which is well defined by naturality of q. This functor describes an embedding,
in particular it is injective on objects: if Q(ξ1) = Q(ξ2) then ξ1 ◦ qX = ξ2 ◦ qX ,
and therefore ξ1 = ξ2 since qX is a (regular) epi.

Given two terms u, v ∈ FΣV , we will say that a lifting T̂ : Alg(Σ) → Alg(Σ)
preserves the equation u = v, or by a slight abuse of notation that the monad
T preserves u = v, if T̂A |= u = v whenever A |= u = v. Similarly, we will say
that T̂ sends (Σ,E)-algebras to (Σ,E)-algebras if it preserves all the equations
in E. Half of the following result can be found in [6] where a distributive law
over a functor is built in a similar way.

Lemma 2. If q : FΣ � T is a component-wise epi monad morphism, ρΣ is a
distributive law of the monad FΣ over the monad T and if there exists a natural
transformation λ : ST → TS such that the following diagram commutes

FΣT
qT �� ��

ρΣ

��

ST

λ
��

TFΣ
Tq

�� TS

(11)

then λ is a distributive law of the monad S over the monad T .

From this lemma we can give an abstract criterion which, when implemented
concretely in the next section, will allow us to go from a lifting of T on EM(FΣ) �
Alg(Σ) to a lifting of T on EM(S) � Alg(Σ,E).

Theorem 4. Suppose T, S : Set → Set are finitary monads, that T is monoidal
and that EM(S) � Alg(Σ,E), and let T̂ : Alg(Σ) → Alg(Σ) be the unique
lifting of T defined via Theorems 1, 3 and Proposition 1. If T̂ sends (Σ,E)-
algebras to (Σ,E)-algebras, then there exists a natural transformation λ : ST →
TS satisfying (11), and therefore a distributive law of S over T .

4 Checking Equation Preservation

In Sect. 3 we showed how to build a lifting of T : Set → Set to T̂ : Alg(Σ) →
Alg(Σ) using a Fubini transformation ψ via (8) and (9). In this section we
provide a sound method to ascertain whether this lifting sends (Σ,E)-algebras to
(Σ,E)-algebras, by giving sufficient conditions for the preservation of equations.
We assume throughout this section that T is monoidal, in particular T lifts to
Alg(Σ) for any finitary signature Σ. We will denote by UΣ : Alg(Σ) → Set the
obvious forgetful functor.

4.1 Residual Diagrams

We fix a finitary signature Σ and let u, v be Σ-terms over a set of variables
V . Recall that the monad T preserves the equation u = v if T̂A |= u = v

Layer by Layer – Combining Monads 163

whenever A |= u = v. If t is a Σ-term, we will denote by V ar(t) the set of
variables in t and by Arg(t) the list of arguments used in t ordered as they
appear in t. For example, the list of arguments of t = f(x1, g(x3, x2), x1) is
Arg(t) = [x1, x3, x2, x1].

Let V be a set of variables and A be a Σ-algebra with carrier A, we define
the morphism δV

A(t) : A|V | → Ak where k = |Arg(t)| as the following pairing of
projections:

if Arg(t) = [xi1 , xi2 , xi3 , . . . xik
] then δV

A(t) = 〈πi1 , πi2 , πi3 , . . . πik
〉

Intuitively, this pairing rearranges, copies and duplicates the variables used in t
to match the arguments. Next, we define σV

A(t) : Ak → A inductively by:

σV
A(x) = idA

σV
A(f(t1, . . . , ti)) = Ak σV

A(t1)×...×σV
A(ti)−−−−−−−−−−−−→ Ai fA−−→ A

With fA the interpretation of f ∈ Σ in A. Finally we define [[t]]VA as σV
A(t)◦δV

A(t).
The following lemma follows easily from the definitions.

Lemma 3. For any t ∈ FΣV , δV
A(t), σV

A(t), and thus [[t]]VA, are natural in A.

We can therefore re-interpret any term t ∈ FΣV as a natural transformation
[[t]]V : (−)(|V |)UΣ → UΣ which is itself the composition of two natural trans-
formations. The first one, δV (t) : (−)|V |UΣ → (−)kUΣ , ‘prepares’ the vari-
ables by swapping, copying and deleting them as appropriate. The second one,
σV (t) : (−)kUΣ → UΣ , performs the evaluation at each given algebra. Of course,
the usual soundness and completeness property of term functions still holds.

Lemma 4. For A a Σ-algebra and u, v ∈ FΣV , [[u]]VA = [[v]]VA iff A |= u = v.

Now consider the following diagram:

(−)(|V |)UΣ T̂

[[t]]V
T̂

δV
T̂
(t)

��

ψ
|V |
UΣ

��
r

(−)kUΣ T̂

q

σV
T̂
(t)

��

ψ
(k)
UΣ

��

UΣ T̂

UΣ idT̂

��
T (−)|V |UΣ

TδV (t)

��

T [[t]]V

��T (−)kUΣ
TσV (t)

�� UΣ T̂

(12)

Since UΣ ◦ T̂ = T ◦UΣ by definition of liftings it is clear that the vertical arrows
ψ
(|V |)
UΣ

and ψ
(k)
UΣ

are well-typed. We define Pres(T, t, V) as the outer square of
Diagram (12) and we call the left-hand square r the residual diagram R(T, t, V).
The following Lemma is at the heart of our method for building distributive laws.

164 F. Dahlqvist et al.

Lemma 5. If R(T, t, V) commutes, then Pres(T, t, V) commutes.

The following soundness theorem follows immediately from Lemma 5.

Theorem 5. If u, v ∈ FΣV are such that R(T, u, V) and R(T, v, V) commute,
then T preserves u = v.

Proof. If A |= u = v, then [[u]]VA = [[v]]VA by Lemma 4 and thus T [[u]]VA ◦ ψ
(|V |)
A =

T [[v]]VA ◦ ψ
(|V |)
A . Since R(T, u, V) and R(T, v, V) commute, so do Pres(T, u, V)

and Pres(T, v, V) by Lemma 5, and therefore [[u]]V
T̂A = [[v]]V

T̂A, that is to say

T̂A |= u = v by Lemma 4.

Therefore residual diagrams act as sufficient conditions for equation preser-
vation. Note that these diagrams only involve ψ, projections and the monad T ,
sometimes inside pairings. In other words, the actual operations of Σ appearing
in an equation have no impact on its preservation. What matters is the variable
rearrangement transformations δV (u) and δV (v), and how they interact with the
Fubini transformation ψ.

The converse of Theorem 5 does not hold. Consider the powerset monad
P and a Σ-algebra A with Σ containing a binary operation •. Clearly
P̂A |= x • x = x • x whenever A |= x • x = x • x, because the equation triv-
ially holds in any Σ-algebra. In other words, it is preserved by P. However
R(P, x • x, {x}) does not commute: provided that X has more than one element,
it is easy to see that R(P, x • x, {x}) evaluated at X is

PA

idPA ��

ΔPA �� (PA)2

−×−��
PA

P(ΔA)
�� P(A2)

where Δ is the diagonal transformation and −×− is the monoidal structure for
P which takes the Cartesian product. This diagram does not commute (in other
words P is not ‘relevant’, see below).

4.2 Examples of Residual Diagrams

We need a priori two diagrams per equation to verify preservation. However, in
many cases diagrams will be trivially commuting. For instance, associativity and
unit produce trivial diagrams. For associativity we assume a binary operation • ∈
Σ, let V = {x, y, z} and compute that δV

A(x • (y • z)) = 〈π1, π2, π3〉 : A3 → A3

which is just idA3 . It follows that R(T, x • (y • z), V) commutes since ψ3◦idTA3 =
T idA3 ◦ ψ3 which trivially holds. The argument for (x • y) • z is identical, thus
associativity is always lifted. The same argument shows that units are always
lifted as well. This is not completely surprising since we have built-in units and
associativity via Diagrams (MF. 1), (MF. 2) and (MF. 3).

Let us now consider commutativity: x • y = y • x. In this case, we put
V = {x, y} and hence δV

A(x • y) = idA and R(T, x • y, V) obviously commutes for

Layer by Layer – Combining Monads 165

the same reason as before. Similarly, it is not hard to check that R(T, y •x, V) is
just diagram (SYM), which we know holds by our assumption that T is monoidal
and Theorem 2. It follows that:

Theorem 6. Monoidal monads preserve associativity, unit and commutativity.

Some equations are not always preserved by commutative monads, we present
here two important examples.

Idempotency: x • x = x Absorption: x • 0 = 0
R(T, x • x, {x}) given by: R(T, x • 0, {x}) given by:

TA

T<π1,π1>

��

TA
id

		

<π1,π1>

��
T (A2) (TA)2

ψ
		

TA

T !
��

TA
id

		

!

��
T1 1

η1
		

(13)

These diagrams correspond to classes of monads studied in the literature.
The residual diagram for idempotency can be expressed as the equation ψA,A ◦
ΔTA = TΔA, where Δ is the diagonal operator. A monad T verifying this
condition is called relevant by Jacobs in [13]. Similarly, one easily shows that
the commutativity of the absorption diagram is equivalent to the definition of
affine monads in [13,18].

4.3 General Criteria for Equation Preservation

As shown in Lemma 5 and Theorem 5, the interaction between T and the vari-
able rearrangements operated by δV can provide a sufficient condition for the
preservation of equations. We will focus on three important types of interaction
between a monad T and rearrangement operations. First, the residual diagram
for commutativity, i.e. Diagram (SYM), which corresponds to saying that ‘T
preserves variable swapping’, i.e. that T is commutative/symmetric monoidal,
or in logical terms to the exchange rule. As we have seen, this condition must
be satisfied in order to simply lift operations, so we must take it as a basic
assumption. Second, the residual diagram for idempotency (leftmost diagram of
(13)) which corresponds to ‘T preserves variable duplications’, i.e. that T is rel-
evant, or in logical terms to the weakening rule. Finally, the residual diagram for
absorption (rightmost diagram of (13)) which corresponds to ‘T allows to drop
variables’, i.e. T is affine, or in logical terms to the contraction rule. To each of
these residual diagrams corresponds a syntactically definable class of equations
which are automatically preserved by a monad satisfying the residual diagram.

Theorem 7. Let T be a commutative monad. If V ar(u) = V ar(v) and if vari-
ables appear exactly once in u and in v, then T preserves u = v.

166 F. Dahlqvist et al.

Note that this theorem can be found in [23], where this type of equation is
called linear. Moreover, P is within the scope of this result, which generalises
one direction of Gautam’s theorem [10]. Let us now present original results by
first treating the case where variables may appear several times.

Theorem 8. Let T be a commutative relevant monad. If V ar(u) = V ar(v),
then T preserves u = v.

Commutative relevant monads seem to preserve many algebraic laws. How-
ever, in the case where both sides of the equation do not contain the same vari-
ables, for instance x • 0 = 0, Theorem 8 does not apply. Intuitively, the missing
piece is the ability to drop some of the variables in V .

Theorem 9. Let T be a commutative affine monad. If variables appear at most
once in u and in v, then T preserves u = v.

Combining the results of Theorems 8 and 9, one gets a very economical – if
very strong – criterion for the preservation of all equations.

Theorem 10. Let T be a commutative, relevant and affine monad. For all u
and v, T preserves u = v.

Examining the existence of distributive laws between algebraic theories, as
well as stating conditions on variable rearrangements, has been studied before
in terms of Lawvere Theories (see for instance [7]). Note that for T commutative
monad, being both relevant and affine (sometimes called cartesian) is equivalent
to preserving products, as seen in [18]. This confirms that such a monad T
preserves all equations of the underlying algebraic structure, in other words it
always has a distributive law with any other monad. This is however a very
strong condition. An example of this type of monad is T (X) = XY for Y an
object of Set.

4.4 Weakening the Inner Layer When Composition Fails

In the case where a residual diagram fails to commute, we cannot conclude that
the equation lifts from A to T̂A. The non-commutativity of the diagram often
provides a counter-example which shows that the equation is in fact not valid in
T̂A (this is the case of idempotency and distributivity in the next section).

However, if our aim is to build a structure combining all operations used
to define T and S, then our method can provide an answer, since it allows us
to identify precisely which equations fail to hold. Let E′ be the subset of E
containing the equations preserved by T . A new monad S′ can be derived from
signature Σ and equations E′ using an adjunction of type (6). Since E′ only
contains equations preserved by T , by Theorem 4 the composition TS′ creates a
monad, and its algebraic structure contains all the constructs derived from the
original signature Σ, as well as the new symbols arising from T .

This method for fixing a faulty monad composition follows the idea of loos-
ening the constraints of the inner layer, meaning in this case modifying S to

Layer by Layer – Combining Monads 167

construct a monad resembling TS. The best approximate language we obtain
has the desired signature, but has lost some of the laws described by S. We
illustrate this method in the following section.

5 Application

As sketched in the introduction, our method aims to incrementally build an
imperative language: starting with sequential composition, we add a layer pro-
viding non-deterministic choice, then a layer for probabilistic choice.

Adding the Non-deterministic Layer. We start with the simple program-
ming language described in the introduction by the signature (1) and Eq. (2) –
or, equivalently, by the monad (−)∗ – and let A be a set of atomic programs.
Our minimal language is thus given by A∗. Note that the free monoid is not
commutative and thus in our method it cannot be used as an outer layer, it has
to constitute the core of the language we build. More generally, our method pro-
vides a simple heuristic for compositional language building: always start with
the non-commutative monad.

We now add non-determinism via the finitary powerset monad P, which is
simply the free join semi-lattice monad. To build this extension, we want to
combine both monads to create a new monad P((−)∗). As we have shown in
Theorem 4, it suffices to build a lifting of monad P to Mon, the category of
algebras for the signature (1) and Eq. (2). For this purpose we apply the method
given in Sect. 4.

The first step is lifting P to the category of {skip, ; }-algebras, which means
lifting the operations of A∗ to P(A∗) using a Fubini map. It is well-known that the
powerset monad is commutative, and it follows in particular that there exists a
unique symmetric monoidal transformation ψ : P×P → P(−×−) which is given
by the Cartesian product: for U ∈ P(X), V ∈ P(Y), we take ψX,Y (U, V) = U×V .
Using this Fubini transformation, we can now define the interpretation in P(A∗)
of skip and ; as:

ŝkip = P(skip) ◦ η1(∗) = {ε}
;̂ = P(;) ◦ ψA∗,A∗ : (PA∗)2 → PA∗, (U, V) �→ {u ; v | u ∈ U, v ∈ V }

To check that this lifting defines a lifting on Mon, we need to check that Eq. (2)
hold in P(A∗). These equations describe associativity and unit: by Theorem6,
they are always preserved by a strong commutative monad like P.

It follows from Theorems 4 and 5 that we obtain a distributive law
λ : (P(−))∗ → P((−)∗) between monads (−)∗ and P, hence the composition
P((−)∗) is also a monad, allowing us to apply our method again and potentially
add another monadic layer. The language P(A∗) contains the lifted versions ŝkip
and ;̂ of our previous constructs as well as the new operations arising from P,
namely a non-deterministic choice operation +, which is associative, commuta-
tive and idempotent, and its unit abort. Note that since the monad structure
on P((−)∗) is defined by a distributive law of (−)∗ over P, the set of equations E

168 F. Dahlqvist et al.

is made of the Eq. (2) arising from (−)∗, the Eq. (3) arising from P, and finally
the Eq. (4) expressing distributivity of operations of (−)∗ over those of P. The
language we have built so far has the structure of an idempotent semiring.

Adding the Probabilistic Layer. We will now enrich our language further by
adding a probabilistic layer. Specifically, we will add the family of probabilistic
choice operators ⊕λ for λ ∈ [0, 1] satisfying the axioms of convex algebras, i.e.

p ⊕λ p = p p ⊕λ q = q ⊕1−λ p p ⊕λ (q ⊕τ r) = (p ⊕ λ
λ+(1−λ)τ

q) ⊕λ+(1−λ)τ r

(14)

From a monadic perspective, we want to examine the composition of monads
D(P((−)∗)). It is known (see [30]) that D does not distribute over P. We will
see that our method confirms this result.
We start by lifting the constants and operations {skip, abort, ; ,+} of P((−)∗)
by defining a Fubini map ψ : D(−) × D(−) → D(− × −). It is well-known that
D is a commutative monad and that the product of measures defines the Fubini
transformation. In the case of finitely supported distributions the product of
measures can be expressed simply as follows: given distributions μ ∈ DX, ν ∈
DY , ψ(μ, ν) is the distribution on X × Y defined on singletons (x, y) ∈ X × Y by
(ψ(μ, ν))(x, y) = μ(x)ν(y). Theorem 7 tells us that associativity, commutativity
and unit are preserved by D. It follows that the associativity of both ; and + is
preserved by the lifting operation, and the liftings of skip and abort are their
respective units. Furthermore, the lifting of + is commutative.

We know from Theorem 8 that the idempotency of + will be preserved if
D is relevant. It is easy to see that D is badly non-relevant: consider the set
X = {a, b}, a 	= b and any measure μ on X which assigns non-zero probability
to both a and b. We have:

ψ(ΔDX(μ))(a, b) = (ψ(μ, μ))(a, b)
= μ(a)μ(b) 	= 0
= μ(∅)
= μ{x ∈ X | ΔX(x) = (a, b)}
= D(ΔX)(μ)(a, b)

It follows that we cannot conclude that the lifting D̂ : Alg({skip, abort, ; ,+})
→ Alg({skip, abort, ; ,+}) defined by the product of measures following (8)
sends idempotent semirings to idempotent semirings, and therefore we cannot
conclude that D(P(−)∗) is a monad (in fact we know it isn’t). It is very telling
that idempotency also had to be dropped in the design of the probabilistic
network specification language ProbNetKAT (see [8, Lemma 1]) which is very
similar to the language we are trying to incrementally build in this Section.

Requiring that + be idempotent is an algebraic obstacle, so let us now remove
it and replace as our inner layer the monad building free idempotent semirings
– that is to say P(−)∗ – by the monad building free semirings – that is to

Layer by Layer – Combining Monads 169

say M(−)∗, where M is the multiset monad (M can also be described as the
free commutative monoid monad). Since we have already checked that the D-
liftings of binary operations preserve associativity, units and commutativity, it
only remains to check that they preserve the distributivity of ; over +. The equa-
tion for distributivity belongs to the syntactic class covered by Theorem8 since
it has the same set of variables on each side (but one of them is duplicated, so
we fall outside the scope of Theorems 7 and 9). Since we’ve just shown that D is
not relevant, it follows that we cannot lift the distributivity axioms. So we must
weaken our inner layer even further and consider a structure consisting of two
monoids, one of which is commutative. Interestingly, the failure of distributiv-
ity was also observed in the development of ProbNetKAT ([8, Lemma 4]), and
therefore should not come as a surprise.

Having removed the two distributivity axioms we are left with only the
absorption laws to check. In this case the equation has no variable duplica-
tion, but has not got the same number of variables on each side of the equation,
absorption therefore falls in the scope of Theorem 9, and we need to check if D is
affine. Since D1 � 1, it is trivial to see that η1◦! = D! and hence D is affine. By
Theorem 9, the absorption law is therefore preserved by the probabilistic exten-
sion. It follows that the probabilistic layer D can be composed with the inner
layer consisting of the signature {abort, skip, ; ,+} and the axioms

(i) p ; skip = skip ; p = p
(ii) (p ; q) ; r = p ; (q ; r)
(iii) p + abort = abort + p = p

(iv) p + q = q + p
(v) (p + q) + r = p + (q + r)
(vi) p ; abort = abort = abort ; p

i.e. two monoids, one of them commutative, with the absorption law as the
only interaction between the two operations. This structure, combined with the
axioms of convex algebras (14) and the distributivity axioms

(Dst i) p ; (q⊕λ r) = (p ; q) ⊕λ (p ; r)
(Dst ii) (q⊕λ r) ; p = (q ; p) ⊕λ (r ; p)

(Dst iii) p+(q⊕λr) = (p+q)⊕λ (p+r)
(Dst iv) (q⊕λr)+p = (q+p)⊕λ (r+p)

forms the ‘best approximate language’ combining sequential composition, non-
deterministic choice and probabilistic choice. Note that the distributive laws
above makes good semantic sense, and indeed hold for the semantics of Prob-
NetKAT. What we have built modularly in this section is essentially the ∗-free
and test-free fragment of ProbNetKAT.

6 Discussion and Future Work

We have provided a principled approach to building programming languages by
incrementally layering features on the top one another. We believe that our app-
roach is close in spirit to how programming languages are typically constructed,
that is to say by an incremental enrichment of the list of features, and to the
search for modularity initiated by foundational papers [20,25].

170 F. Dahlqvist et al.

Our method has assumed throughout that the monad for the outer layer
had to be monoidal/commutative. Our method can in fact be straightforwardly
extended to monads satisfying only (MM.1) and (MM.2). In practice however,
the generality gained in this way is very limited: only a monoidal monad will lift
an associative operation with a left and right unit, and given the importance of
sequential composition with skip, the restriction we have placed on our method
appears fairly natural and benign.

We must be careful about how layers are composed together: our approach
yields distributive interactions between them, but one might want other sorts
of interactions. Consider for example the minimal programming language P∗

described in Sect. 1, and assume that we now want to add a concurrent com-
position operation ‖ to this language with the natural axiom p ‖ skip = p =
p ‖ skip. This addition is not as simple as layering described in Sect. 5, as the
new construct has to interact with the core layer in a whole new way: skip
must be the unit of ‖ as well. In such cases our approach is not satisfactory,
and two alternative strategies present themselves to us: we can consider ‘larger’
layers, for example the combined theory of sequential composition, skip and ‖
described above as a single entity. However, the more complex an inner layer is,
the less likely it is that an outer layer with lift it in its entirety. Alternatively,
we may want to integrate our technique with Hyland and Power’s methods [12]
and combine some layers with sums and tensors, and others with distributive
laws, depending on semantic and algebraic considerations.

A comment about our ‘approximate language’ strategy is also in order. As
explained in Sect. 4, when an equation of the inner layer prevents the existence
of a distributive law we choose to remove this equation, i.e. to loosen the inner
layer. Another option is in principle possible: we could constrain the outer layer
until it becomes compatible with the inner layer. We would obtain in this case
a replacement candidate for one of our monads in order to achieve composition.
In the case of D(P(−)∗) this would be a particularly unproductive idea since the
only elements of D(P(−)∗) which satisfy the residual diagram for idempotency
are Dirac deltas, i.e. we would get back the language P(−)∗.

Another obvious avenue of research is to extend our method to programming
languages specified by more than just equations. One example is the so-called
‘exchange law’ in concurrency theory given by (p ‖ r) ; (q ‖ s) � (p ; q) ‖ (r ; s)
which involves a native pre-ordering on the collection of programs, i.e. moving
from the category of sets to the category of posets. Another example are Kozen’s
quasi-equations [19] axiomatizing the Kleene star operations, for example p ; x ≤
x ⇒ p∗ ; x ≤ x. This problem is much more difficult and involves moving away
from monads and distributive laws altogether since quasi-varieties are in general
not monadic categories.

Layer by Layer – Combining Monads 171

References

1. Awodey, S.: Category Theory. Oxford Logic Guides, vol. 49, 2nd edn. Oxford Uni-
versity Press, Oxford (2010)

2. Balan, A., Kurz, A.: On coalgebras over algebras. Theor. Comput. Sci. 412(38),
4989–5005 (2011). https://doi.org/10.1016/j.tcs.2011.03.021

3. Beck, J.: Distributive laws. In: Eckmann, B. (ed.) Seminar on Triples and Cat-
egorical Homology Theory: ETH 1966/67. LNM, vol. 80, pp. 119–140. Springer,
Heidelberg (1969). https://doi.org/10.1007/BFb0083084

4. Benton, N., Hughes, J., Moggi, E.: Monads and effects. In: Barthe, G., Dybjer, P.,
Pinto, L., Saraiva, J. (eds.) APPSEM 2000. LNCS, vol. 2395, pp. 42–122. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45699-6 2

5. Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. arXiv preprint
1707.02344 (2017). https://arxiv.org/abs/1707.02344

6. Bonsangue, M.M., Hansen, H.H., Kurz, A., Rot, J.: Presenting distributive laws.
Log. Methods. Comput. Sci. 11(3), Article no. 2 (2015). https://doi.org/10.2168/
lmcs-11(3:2)2015

7. Cheng, E.: Distributive laws for Lawvere theories. arXiv preprint 1112.3076 (2011).
https://arxiv.org/abs/1112.3076

8. Foster, N., Kozen, D., Mamouras, K., Reitblatt, M., Silva, A.: Probabilistic
NetKAT. In: Thiemann, P. (ed.) ESOP 2016. LNCS, vol. 9632, pp. 282–309.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49498-1 12

9. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic decision
procedure for NetKAT. In: Proceedings of 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2015, Mumbai, Jan-
uary 2015, pp. 343–355. ACM Press, New York (2015). https://doi.org/10.1145/
2676726.2677011

10. Gautam, N.: The validity of equations of complex algebras. Arch. Math. Log.
Grundl. 3(3–4), 117–124 (1957). https://doi.org/10.1007/bf01988052

11. Hyland, M., Levy, P., Plotkin, G., Power, J.: Combining algebraic effects with
continuations. Theor. Comput. Sci. 375(1–3), 20–40 (2007). https://doi.org/10.
1016/j.tcs.2006.12.026

12. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theor.
Comput. Sci. 357(1–3), 70–99 (2006). https://doi.org/10.1016/j.tcs.2006.03.013

13. Jacobs, B.: Semantics of weakening and contraction. Ann. Pure Appl. Log. 69(1),
73–106 (1994). https://doi.org/10.1016/0168-0072(94)90020-5

14. Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. In: Pattin-
son, D., Schröder, L. (eds.) CMCS 2012. LNCS, vol. 7399, pp. 109–129. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-32784-1 7

15. King, D.J., Wadler, P.: Combining monads. In: Launchbury, J., Sansom, P.M. (eds.)
Functional Programming, Glasgow 1992. Workshops in Computing, pp. 134–143.
Springer, London (1993). https://doi.org/10.1007/978-1-4471-3215-8 12

16. Klin, B., Rot, J.: Coalgebraic trace semantics via forgetful logics. In: Pitts, A.
(ed.) FoSSaCS 2015. LNCS, vol. 9034, pp. 151–166. Springer, Heidelberg (2015).
https://doi.org/10.1007/978-3-662-46678-0 10

17. Klin, B., Salamanca, J.: Iterated covariant powerset is not a monad. Electron.
Notes Theor. Comput. Sci. (to appear)

18. Kock, A.: Bilinearity and Cartesian closed monads. Math. Scand. 29(2), 161–174
(1972). https://doi.org/10.7146/math.scand.a-11042

https://doi.org/10.1016/j.tcs.2011.03.021
https://doi.org/10.1007/BFb0083084
https://doi.org/10.1007/3-540-45699-6_2
https://arxiv.org/abs/1707.02344
https://doi.org/10.2168/lmcs-11(3:2)2015
https://doi.org/10.2168/lmcs-11(3:2)2015
https://arxiv.org/abs/1112.3076
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1007/bf01988052
https://doi.org/10.1016/j.tcs.2006.12.026
https://doi.org/10.1016/j.tcs.2006.12.026
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1016/0168-0072(94)90020-5
https://doi.org/10.1007/978-3-642-32784-1_7
https://doi.org/10.1007/978-1-4471-3215-8_12
https://doi.org/10.1007/978-3-662-46678-0_10
https://doi.org/10.7146/math.scand.a-11042

172 F. Dahlqvist et al.

19. Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. In: Proceedings of the 6th Annual Symposium on Logic in Computer Sci-
ence, LICS 1991, Amsterdam, July 1991, pp. 214–225. IEEE CS Press, Washington,
DC (1991). https://doi.org/10.1109/lics.1991.151646

20. Liang, S., Hudak, P.: Modular denotational semantics for compiler construction. In:
Nielson, H.R. (ed.) ESOP 1996. LNCS, vol. 1058, pp. 219–234. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61055-3 39

21. Liang, S., Hudak, P., Jones, M.: Monad transformers and modular interpreters.
In: Proceedings of 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 1995, San Francisco, CA, USA, January 1995, pp.
333–343. ACM Press, New York (1995). https://doi.org/10.1145/199448.199528

22. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, vol. 5, 2nd edn. Springer, Heidelberg (1978). https://doi.org/10.1007/978-
1-4757-4721-8

23. Manes, E., Mulry, P.: Monad compositions I: general constructions and recursive
distributive laws. Theor. Appl. Categ. 18, 172–208 (2007). http://www.tac.mta.ca/
tac/volumes/18/7/18-07abs.html

24. Milius, S., Palm, T., Schwencke, D.: Complete iterativity for algebras with effects.
In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp.
34–48. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03741-2 4

25. Moggi, E.: Notions of computation and monads. Inf. Comput. 93(1), 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

26. Plotkin, G., Power, J.: Notions of computation determine monads. In: Nielsen,
M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 342–356. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45931-6 24

27. Sato, T.: The Giry monad is not strong for the canonical symmetric monoidal
closed structure on Meas. J. Pure Appl. Alg. 222(10), 2888–2896 (2017). https://
doi.org/10.1016/j.jpaa.2017.11.004

28. Smolka, S., Kumar, P., Foster, N., Kozen, D., Silva, A.: Cantor meets scott:
semantic foundations for probabilistic networks. arXiv preprint 1607.05830 (2016).
https://arxiv.org/1607.05830

29. Sokolova, A., Jacobs, B., Hasuo, I.: Generic trace semantics via coinduction. Log.
Methods Comput. Sci. 3(4), Article no. 11 (2007). https://doi.org/10.2168/lmcs-
3(4:11)2007

30. Varacca, D.: Probability, nondeterminism and concurrency: two denotational mod-
els for probabilistic computation. BRICS Dissertation Series, vol. DS-03-14. Ph.D.
thesis, Aarhus University (2003). http://www.brics.dk/DS/03/14/

https://doi.org/10.1109/lics.1991.151646
https://doi.org/10.1007/3-540-61055-3_39
https://doi.org/10.1145/199448.199528
https://doi.org/10.1007/978-1-4757-4721-8
https://doi.org/10.1007/978-1-4757-4721-8
http://www.tac.mta.ca/tac/volumes/18/7/18-07abs.html
http://www.tac.mta.ca/tac/volumes/18/7/18-07abs.html
https://doi.org/10.1007/978-3-642-03741-2_4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1016/j.jpaa.2017.11.004
https://doi.org/10.1016/j.jpaa.2017.11.004
https://arxiv.org/1607.05830
https://doi.org/10.2168/lmcs-3(4:11)2007
https://doi.org/10.2168/lmcs-3(4:11)2007
http://www.brics.dk/DS/03/14/

Layer Systems
for Confluence—Formalized

Bertram Felgenhauer1(B) and Franziska Rapp2

1 Institut für Informatik, Universität Innsbruck,
Technikerstraße 21a, 6020 Innsbruck, Austria

bertram.felgenhauer@uibk.ac.at
2 Allgemeines Rechenzentrum, Innsbruck, Austria

Abstract. Toyama’s theorem states that the union of two confluent
term rewrite systems with disjoint signatures is again confluent. This is
a fundamental result in term rewriting, and several proofs appear in the
literature. The underlying proof technique has been adapted to prove fur-
ther results like persistence of confluence (if a many-sorted term rewrite
system is confluent, then the underlying unsorted system is confluent)
or the preservation of confluence by currying.

In this paper we present a formalization of modularity and related
results in Isabelle/HOL. The formalization is based on layer systems,
which cover modularity, persistence, currying (and more) in a single
framework. The persistence result has been integrated into the certifier
CeTA and the confluence tool CSI, allowing us to check confluence proofs
based on persistent decomposition, of which modularity is a special case.

1 Introduction

Toyama’s theorem [13,17,19] states that confluence is modular, i.e., that the
union of two confluent term rewrite systems (TRSs) over disjoint signatures is
confluent if and only if the two TRSs themselves are confluent. For example,
Combinatory Logic extended with an equality test

@(@(K, x), y) → x @(@(@(S, x), y), z) → @(@(x, z),@(y, z)) e(x, x) → �

is confluent because the first two rules are orthogonal, the last rule is terminating
and has no critical pairs, and the signatures of these two sets of rules are disjoint.
As the example shows, modularity opens up a decomposition approach to proving
confluence, which is attractive, because different confluence criteria may apply
to the constituent TRSs that do not apply to their union. By adapting the
modularity proof, several other results have been proved in the literature.

– Confluence is persistent [1], i.e., a TRS is confluent if and only if it is confluent
as a many-sorted TRS. This gives rise to a decomposition technique, and fully
subsumes modularity.

This work is supported by FWF (Austrian Science Fund) project P27528.

c© The Author(s) 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 173–190, 2018.
https://doi.org/10.1007/978-3-030-02508-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_10&domain=pdf

174 B. Felgenhauer and F. Rapp

– Confluence is preserved by currying [11]. Currying is useful, for example, as
a preprocessing step for deciding ground confluence.

– The notion of modularity has been generalized as well, by weakening the
assumption that the signatures of the two TRSs are disjoint; for example,
confluence is modular for layer-preserving composable TRSs [16], and for
quasi-ground systems [12].

The list goes on. All of these proofs are based on decomposing terms into a
maximal top and remaining aliens, but with different sets of admissible tops. In
each case, confluence is established by induction on the number of nested tops in
that decomposition (the rank of a term). Layer systems [7] were introduced as an
abstraction from these proofs. A layer system L is simply the set of admissible
tops; for modularity, those are homogeneous multi-hole contexts, i.e., multi-
hole contexts whose function symbols all belong to the signature of only one
of the two given TRSs. At the heart of layer systems lies an adaptation of
the modularity proof in [17]. When establishing confluence by layer systems,
as remaining proof obligations, one has to check that a layer system satisfies
so called layer conditions, which is easier than doing a full adaptation of the
modularity proof.

Isabelle/HOL [15] is an interactive proof assistant based on higher-order logic
with a Hindley-Milner type system, extended with type classes. It follows the
LCF tradition [9] in having a trusted kernel, which ensures that theorems fol-
low from the axioms by construction. Isabelle features a structured proof lan-
guage [20]. Another useful feature are locales, which allow bundling of functions
and assumptions that are shared by several definitions and theorems. (For exam-
ple, locales are used to model groups in Isabelle/HOL). The locale mechanism
in Isabelle is quite powerful; in particular, locales can be instantiated (so Z with
addition, 0 as unit, and negation is a group) and extended (for example, the
group locale is an extension of a semigroup locale, with additional operations
(unit and inverse) and assumptions). Our main reason for using Isabelle/HOL
is the existing Isabelle Formalization of Rewriting, IsaFoR [18]. In addition to
fundamental notions of term rewriting like terms, substitutions, contexts, multi-
hole contexts, and so on, IsaFoR is also the foundation of CeTA (Certified Tool
Assertions), which can certify termination and confluence proofs, among other
things.

In this paper we describe a formalization of layer systems in Isabelle/HOL
as part of IsaFoR. In fact, the prospect of formalization was one of the selling
points of layer systems, with the idea of making large parts of the proof reusable.
Note that whereas adapting existing proofs is convenient on paper, it becomes a
burden when done in a formalization. The resulting duplication of code (that is,
theorem statements and proofs) would decrease maintainability and is therefore
best avoided. Our effort covers modularity of confluence, persistence of conflu-
ence, and preservation of confluence by currying for first order term rewrite
systems. To the best of our knowledge, this is the first time that any of these
results has been fully formalized in a proof assistant.

Layer Systems for Confluence—Formalized 175

From a practical perspective, our interest in formalization is motivated by
our work on an automated confluence prover, CSI [14]. As with all software, CSI
potentially contains bugs. In order to increase the trust in CSI, proof output in
a machine readable format is supported, which can be checked using CeTA [18].
As part of our formalization effort, we have extended CeTA with support for a
decomposition technique based on persistence of confluence, allowing CSI and
potentially other confluence tools to produce certifiable proofs using this tech-
nique. We have prepared a website with examples and information about the
used software at http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/.

For most theorems and many definitions, we provide the corresponding iden-
tifiers in the formalization; in the PDF version of this paper, they link to the
HTML version of the formalization itself. Furthermore, links to selected defined
symbols can be found on our website.

The remainder of this paper is structured as follows. We recall notations
and basic definitions in Sect. 2. Then we present the layer conditions, which are
central to our formalization, in Sect. 3. The next two sections are about persis-
tence. Section 4 uses persistence as an example to illustrate how layer systems
can be applied to obtain a confluence result, while Sect. 5 focuses on the per-
sistent decomposition. In Sect. 6, we present details of the currying application.
Finally, we conclude in Sect. 7.

2 Preliminaries

We use standard notation from term rewriting [3]. Let F be a signature and V
be a set of variables. Then T (F ,V) is the set of terms over that signature. We
denote by Pos(t) the set of positions of t. The subterm of t at position p is t|p,
and t[s]p is the result of replacing the subterm at position p in t by s. We also
write PosX(r) for the set of positions p of t such that the root symbol of t|p is
in X. If X = {x} is a singleton set, we may omit the outer curly braces and
write Posx(t). The set of variables of t is Var(t). The set of multi-hole contexts
over F and V is denoted by C(F ,V). (Multi-hole contexts are terms that may
contain occurrences of an extra constant �, representing their holes.) If C is a
multi-hole context with n holes, then C[t1, . . . , tn] denotes the term obtained by
replacing the i-th hole in C by ti for 1 � i � n. On multi-hole contexts, we
have a partial order � which is generated by � � C and closure under contexts
(D � D′ implies C[D] � C[D′]). The corresponding partial supremum operation
is denoted by �; intuitively it merges two multi-hole contexts.

A substitution σ, τ, . . . is a map from variables to terms. The result of apply-
ing the substitution σ to the term t is denoted by tσ. A term rewrite system
(TRS) R is a set of rules � → r, where � and r are terms, � is not a variable, and
Var(r) ⊆ Var(�). There is a rewrite step from s to t (s →R t) if s = s[�σ]p and
t = s[rσ]p for a position p ∈ Pos(s) and substitution σ.

Given a relation →, we write ← and →∗ for its inverse and its reflexive
transitive closure, respectively. A relation → is confluent if t ∗← s →∗ u implies

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/

176 B. Felgenhauer and F. Rapp

t →∗ · ∗← u. It is confluent on X if for all s ∈ X, t ∗← s →∗ u implies
t →∗ · ∗← u.3

3 Layer Conditions

In the layer system approach to confluence, one sets up a layer system for a TRS
R that satisfies the so-called layer conditions. These layer conditions constitute
the interface between the reusable part of the formalization and the parts that
are specific to a particular application of layer systems (e.g., modularity). Since
they are central to the formalization, we recall the basic constructions and the
layer conditions here. For full details please refer to [7].

Recall that modularity of confluence states that the union of two TRSs over
disjoint signatures is confluent if each of the two TRSs is confluent (the converse
is also true and fairly easy to prove). Modularity is proved by induction on the
rank of a term; to obtain the rank, one decomposes the term into alternating
layers of multi-hole contexts over the two signatures; the rank is the maximum
nesting depth of the resulting layers.

Example 1. Let F1 = {A,F} and F2 = {b, g}. Then rank(F(F(A))) = 1, while
rank(g(b,F(b))) = 3; the latter term is decomposed into g(b,�), F(�) and b.

Layer systems abstract from this situation by considering all possible multi-
hole contexts at the top of such a decomposition. So a layer system is a set of
multi-hole contexts, and gives rise to tops and maximal tops as follows.

Definition 2 ([7, Definition 3.1]). Let F be a signature and V be an infinite
set of variables. Let L ⊆ C(F ,V) be a set of multi-hole contexts over F . Then
L ∈ L is called a top of a context C ∈ C(F ,V) (according to L) if L � C. A top
is a max-top of C if it is maximal with respect to � among the tops of C.

We want to prove that all terms are confluent, provided that terms of rank
1 are confluent. To this end we have to impose certain restrictions on the layer
system.

– the rank must be well-defined, which is ensured if any term has a unique
max-top that is not empty (i.e., not equal to �);

– a rewrite step must span several layers (so it can be mimicked by a suitable
rank 1 term); and

– the rank must not increase by rewriting.

Example 3. We illustrate a few obstructions to proving confluence in Fig. 1. (This
example is an abridged version of [7, Example 3.4].)

3 Another reasonable definition for “→ is confluent on X” would be that →∩ (X×X)
is confluent; this is equivalent to the given definition whenever X is closed under
rewriting by →.

Layer Systems for Confluence—Formalized 177

f

c c
c g(c) f

c g

c

(a) Breaking layers.

f

c c
c g(c) f

c g

c

(b) Partial fusion.

h

c c
h(c,x) g(h(x,x))

g

h

c c

(c) Fusion from above.

f

g

c

c
c g(c) f

g

c

g

c

(d) Conspiring aliens.

Fig. 1. Undesired behavior on layers.

(a) Here, we have the rewrite step f(c, c) → f(c, g(c)), decomposed by some set
of layers L. However, the c subterm becomes two layers after the rewrite
step, increasing the rank. So rewriting a layer must again result in a layer.

(b) This is the same rewrite step as in (a). In this example, g(c) may be a layer.
However, the resulting term merges with the layer above (a phenomenon
we call fusion). In the example, the fusion is partial ; the fused context is
broken apart. This is caused by there being a layer f(�, g(�)) but no layer
f(�, g(c)).

(c) In this example, there is a root step h(c, c) → g(h(c, c)). Note that both
c constants in the result originate in the isolated c, but nevertheless, one
of them has fused with the top in the result (so the rewrite step takes
place above the point where fusion happens, hence fusion from above). In [7,
Example 3.4] we show that the TRS

f(x, x) → a f(x, g(x)) → b h(c, x) → g(h(x, x))

has a set of layers such that fusion from above is the sole reason for the
system being non-confluent despite being confluent on terms of rank 1.

(d) Finally, it may happen that a rewrite step triggers fusion in a position that
is parallel to the rewrite step. (aliens are what remains of a term after taking
away its max-top; here a rewrite step in one alien causes another alien to
fuse, hence conspiring aliens). As far as we know, this is not actually an
obstruction to confluence, but nevertheless absence of conspiring aliens is
required for our proof.

Definition 4 ([7, Definition 3.3]). Let F be a signature. A set L ⊆ C(F ,V)
of contexts is called a layer system4 if it satisfies properties (L1), (L2), and
(L3). The elements of L are called layers. A TRS R over F is weakly layered

4 In [7] we use L for layer systems. We use L here to be consistent with snippets like
Fig. 2 that are generated from our Isabelle formalization, where L is not available.

178 B. Felgenhauer and F. Rapp

(according to a layer system L) if condition (W) is satisfied for each � → r ∈ R.
It is layered (according to a layer system L) if conditions (W), (C1), and (C2)
are satisfied. The conditions are as follows.

(L1) Each term in T (F ,V) has a non-empty top.
(L2) If x ∈ V and C ∈ C(F ,V) then C[x]p ∈ L if and only if C[�]p ∈ L.
(L3) If L,N ∈ L, p ∈ PosF (L), and L|p � N is defined then L[L|p � N]p ∈ L.
(W) If M is a max-top of s, p ∈ PosF (M), and s →p,�→r t then M →p,�→r L

for some L ∈ L.
(C1) In (W) either L is a max-top of t or L = �.
(C2) If L,N ∈ L and L � N then L[N |p]p ∈ L for any p ∈ Pos�(L).

In a nutshell, (L1) and (L3) ensure that the rank is well-defined. Property (L2) is
a technical property that ensures that aliens can always be represented by suit-
able variables in the confluence proof. Condition (W) prevents breaking layers,
and together with (L3), fusion from above. The final two conditions, (C1) and
(C2), prevent fusion from above and conspiring aliens, respectively. Now, let us
formally define the rank and aliens of a term.

Definition 5 ([7, Definition 3.6]). Let t = M [t1, . . . , tn] with M the max-top
of t. We define rank(t) = 1 + max{rank(ti) | 1 � i � n}, where max(∅) = 0
(t1, . . . , tn are the aliens of t).

The main theorems of [7] are as follows (we omit [7, Theorem 4.3] because it
has yet to be formalized).

Theorem 6 ([7, Theorem 4.1]). Let R be a weakly layered TRS that is con-
fluent on terms of rank one. If R is left-linear then R is confluent.

Theorem 7 ([7, Theorem 4.6]). Let R be a layered TRS that is confluent on
terms of rank one. Then R is confluent.

Fig. 2. Definitions of the layer system sig and layer system locales in IsaFoR.

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system_sig
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system_sig

Layer Systems for Confluence—Formalized 179

layer system sig

layer system (L1),(L2),(L3)

weakly layered (W) layered (C1),(C2)

Fig. 3. Hierarchy of locales.

In Isabelle, we bundle these assumptions in locales [4]. Figure 2 shows how
the first three layer conditions have been formalized in Isabelle. (A locale is
declared using the locale keyword, followed by the locale name. It may declare
constants using fixes, and make assumptions (often about those constants) using
assumes. Furthermore, a locale may extend other locales; this is the case for
layer system, which extends layer system sig. In order to use a result from a
locale, it has to be interpreted, meaning that one provides definitions for the
types and constants that the locale depends on and prove that they satisfy the
locale assumptions.) Inside the layer system sig locale, we define T and C, the set
of terms and multi-hole contexts over F , and the concept of max-tops. In fact,
max-tops are defined separately for terms and for multi-hole contexts, because
while on paper, multi-hole contexts are just terms which may contain an extra
constant �, in IsaFoR they have their own type. In total, four locales are defined,
capturing the layer conditions, cf. Fig. 3. Note that condition (W) is not part of
the layered locale; it would be redundant because (C1) implies (W). In Isabelle
we have encoded this fact by proving that layered is a sublocale of weakly layered,
as indicated by the dashed arrow. (Basically, a locale A is a sublocale of another
locale B if the assumptions of B imply those of A.)

Within the formalization, Theorem6 is established inside the weakly layered
locale as theorem weakly layered.CR ll, whereas Theorem 7 is holds in the layered
locale as theorem layered.CR. (In fact these statements are declared as locale
assumptions; they become theorems by proving suitable sublocale relationships.
This is done in LS Left Linear.thy and LS General.thy). The proofs of these
main results correspond to Sect. 4 of [7]. The (lengthy) proof works by induc-
tion on the rank: assuming that terms of rank r are confluent, several auxiliary
results are derived, and finally, confluence of terms of rank r + 1 follows. To this
end, we use two more locales weakly layered induct and weakly layered induct dd
that capture the induction hypothesis, and an auxiliary assumption (namely
that local peaks of so called short steps are joinable in a suitable way), respec-
tively. For this use of locales it is crucial that they can be interpreted inside
of a proof, since the induction hypothesis cannot be established for arbitrary r
outside of an induction proof. This happens in the proof of the main lemma [7,
Lemma 4.27] which we give in Fig. 4. Note that it does induction on the rank
(called rk in the proof), and that it uses an interpret command to instantiate

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system_sig
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layer_system_sig
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:weakly_layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:weakly_layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:weakly_layered_cr_ll
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#layered
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Prelude.html#loc:weakly_layered_cr_ll
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Left_Linear.html
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_General.html
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Common#loc:weakly_layered_induct
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Common#loc:weakly_layered_induct_dd

180 B. Felgenhauer and F. Rapp

Fig. 4. Proof of the “Main Lemma” for layer systems [7, Lemma 4.27]

the weakly layered induct dd locale based on the induction hypothesis inside the
proof.

One major benefit of using locales is separation of concerns; thanks to the
abstraction of the layer conditions as locales, we could already work on the appli-
cations like modularity and currying before the proofs of the main results were
complete, without having to worry about working with different assumptions.
Basically, each application is an instantiation of these locales, which we could
establish independently of the main results.

4 Persistence

To give an impression of what an application of layer systems entails, let us con-
sider the case of persistence. This section overlaps with [7, Section 5.5], but here
we focus on interesting aspects in the context of our formalization. In fact, given
that the results presented here are both formalized and previously published, we
focus on ideas rather than giving full proofs.

Definition 8 (many sorted terms, persistent cr infinite vars). Let S be a set of
sorts. A many-sorted signature F associates with each function symbol f of arity
n a signature f : β1 × · · · × βn → α, where β1, . . . , βn, α ∈ S. Furthermore we
assume that there are pairwise disjoint, infinite sets of variables Vα for α ∈ S.
The sets of of terms of sort α for α ∈ S are defined inductively by

Tα ::= Vα ∪ {f(t1, . . . , tn) | f : β1 × · · · × βn → α, t1 ∈ Tβ1 , . . . , tn ∈ Tβn
}

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Common.html#lem:CR_main_lemma
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Common#loc:weakly_layered_induct_dd
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#loc:many_sorted_terms
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#loc:persistent_cr_infinite_vars

Layer Systems for Confluence—Formalized 181

A many-sorted TRS R is a TRS such that for every � → r ∈ R, �, r ∈ Tα for
some α ∈ S.

We wish to establish the following theorem using layer systems.

Theorem 9 (many-sorted persistence, CR persist). Let R be a many-
sorted TRS. We let V =

⋃
α∈S Vα. Then R is confluent on Tα for all α ∈ S

if and only if R is confluent on T (F ,V).

To this end we define a layer system L as follows.

Lα :: = V ∪ {�} ∪
{f(C1, . . . , Cn) | f : β1 × · · · × βn → α,C1 ∈ Lβ1 , . . . , Cn ∈ Lβn

}
L =

⋃

α∈S
Lα

Showing that L layers R is mostly straightforward. However, in order to show
(W) (which is a prerequisite for showing (C1)), one has to establish that if a
rewrite step is applicable to a term at a position that is part of its max-top, then
it is also applicable to the max-top itself. In order to obtain the substitution for
the second rewrite step, it is helpful to define functions that compute the max-
top:

mtα(x) = x for x ∈ V

mtα(f(t1, . . . , tn)) =

⎧
⎪⎨

⎪⎩

f(mtβ1(t1), . . . ,mtβn
(tn)) if f : β1 × · · · × βn → α

� if f : β1 × · · · × βn → α′

and α
= α′

The max-top of a term t equals mtα(t) for some α ∈ S that can be obtained by
looking at the root symbol of t.

Lemma 10 (push mt subst, push mt ctxt). The following properties hold for
mtα.

– if s ∈ Tα then mtα(sσ) = sσ′ where σ′(x) = mtα(σ(x)) for x ∈ Vα; and
– if p ∈ Pos(mtα(t)), then for some β ∈ S, all terms s satisfy mtα(t[s]p) =

mtα(t)[mtβ(s)].

Now, given a rewrite step s[�σ]p → s[rσ]p, with p ∈ PosF (mtα(s)) (as in (W)),
the lemma entails

mtα(s[�σ]p) = mtα(s)[mtβ(�σ)]p = mtα(s)[�σ′]p
→ mtα(s)[rσ′]p = mtα(s)[mtβ(rσ)]p = mtα(s[rσ]p)

where �, r ∈ Tβ ; this gives the desired rewrite step for (W). For (C1) note that
s[r]p can be a variable, in which case it is possible that mtα(s[rσ]p) = �, whereas
the max-top is larger.

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence#lem:CR_persist
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:push_mt_subst
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:push_mt_ctxt

182 B. Felgenhauer and F. Rapp

Remark 11. This idea of defining the max-top as a function is a recurring theme;
it features in the formalizations of modularity and currying as well. The main
benefit of (recursive) functions is that they come with an induction principle
that is not available for the implicit notion of a “maximal top”.

After showing that L layers R, Theorem 7 yields the following corollary.

Corollary 12 (CR on union). If R is confluent on L ∩ T (F ,V),5 then R is
confluent on T (F ,V).

Let us now sketch a proof of Theorem 9. First note that if R is a many-sorted
TRS, then the sets Tα are closed under rewriting by R; hence confluence of R
on T (F ,V) implies confluence of R on Tα for any α ∈ S. For the converse, we
want to use Corollary 12. We need to show that R is confluent on L ∩ T (F ,V).
To this end, assume that s ∈ L ∩ T (F ,V), and we have a peak t ∗← s →∗ t.
If s is a variable then s = t = u and we’re done. Otherwise, we can read off
the sort α of s from its root symbol. Note that s is not necessarily an element
of Tα, because L disregards the sorts of variables. We modify s in two steps;
first we annotate each variable with the type that is induced by its context
(i.e., if x is the i-th argument of f : β1 × · · · × βn → γ, then we replace it by
(x, βi));6 and secondly we rename the annotated variables in such a way that
each (v, β) is replaced by an element of Vβ . In this fashion, we obtain a peak
t′ ∗← s′ →∗ u′, where s′, t′, u′ ∈ Tα, and a substitution σ with s = s′σ, t = t′σ
and u = u′σ. By confluence of R on Tα, there is a valley t′ →∗ v′ ∗← u′, and
hence a corresponding valley t = t′σ →∗ v′σ ∗← u′σ = u in L ∩ T (F ,V).

5 Persistent Decomposition

Aoto and Toyama [1] pointed out that persistence gives rise to a decomposition
technique for proving confluence. The basic idea is to attach sorts to a TRS. To
obtain a decomposition, for each sort of the many-sorted TRS obtained in that
way, the set of rules that are applicable to terms of that sort is computed. By
persistence, if all of the resulting systems are confluent, the original TRS is con-
fluent as well. In [2] a refined version of the persistent decomposition is presented,
wherein only the maximal systems w.r.t. the subset relation are considered.

Example 13 ([1, Example 1]). Consider the TRS R consisting of the rules

f(x, y) → f(g(x), g(y)) F(g(x), x) → F(x, g(x))
g(x) → h(x) F(h(x), x) → F(x, h(x))

The following sort attachment makes the TRS R many-sorted:

f : 2 × 2 → 0 g : 2 → 2 h : 2 → 2 F : 2 × 2 → 1

5 Because multi-hole contexts are not terms, this is {t. mctxt of term t ∈ L} in the
formalization.

6 This annotation procedure formalizes the following sentence in the proof of [7,
Theorem 5.13]: “Note that for each p the sort of s′|p is uniquely determined by s.”.

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:CR_on_union

Layer Systems for Confluence—Formalized 183

Looking at the sorts of possible subterms of terms of sort 0 (namely 0 and 2), 1
(1 and 2) and 2 (only 2), we obtain three induced TRSs, consisting of the first
two rules, the last three rules, and only the second rule of R, respectively. The
last TRS is contained in the other two, and hence does not have to be considered.
Confluence of R follows from confluence of the two systems

g(x) → h(x) f(x, y) → f(g(x), g(y))

(which is orthogonal) and

g(x) → h(x) F(g(x), x) → F(x, g(x)) F(h(x), x) → F(x, h(x))

(which is terminating and has joinable critical pairs). Non-confluence of R would
follow if any of the three TRSs induced by the sorts 0, 1, or 2 was non-confluent.

α � α
refl

α � β β � γ

α � γ
trans

f : β1 × · · · × βn → α 1 � i � n

α � βi

arg

Fig. 5. Syntactic order on sorts.

Definition 14. Let R be a many-sorted TRS. Based on the signature, we define
an order � on sorts by the rules in Fig. 5. The TRS Rα induced by α ∈ S is
given by

Rα = {� → r | � → r ∈ R, � ∈ Tβ , α � β}

Remark 15. The notation � is justified by the fact that Tα � s � t ∈ Tβ implies
α � β. Note further that α � β implies Rα ⊇ Rβ , so the maximal induced TRSs
Rα w.r.t. subsets are induced by the maximal sorts α w.r.t. �.

Since only rules from Rα are applicable to terms in Tα, we have the following
lemma.

Lemma 16 (CR on Tα by needed rules). The system R is confluent on Tα if
and only if Rα is confluent on Tα.

We formalize the persistent decomposition result as follows.

Theorem 17 (persistent decomposition nm). Let Σ ⊆ S be a set of sorts with
the property that for each β ∈ S, either Rβ = ∅, or α ∈ Σ for some α � β.
Then R is confluent on T (F ,V) if and only if Rα is confluent on T (F ,V) for
all α ∈ Σ.

Since no proof has been given in the literature7 (as far as we know), we
include one here.
7 The proof is not difficult, but as a system description, [2] lacked space for a proof.

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:CR_on_%F0%9D%92%AF_%CE%B1_by_needed_rules
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Persistence.html#lem:persistent_decomposition

184 B. Felgenhauer and F. Rapp

Proof. First assume that Rα is confluent on T (F ,V) for all α ∈ Σ. By Theo-
rem 9, confluence of R on T (F ,V) follows if we can show that R is confluent on
Tβ for any β ∈ S. By Lemma 16, this is equivalent to Rβ being confluent on Tβ .
If Rβ = ∅, we are done. Otherwise, by assumption, there is a sort α � β such
that Rα is confluent on T (F ,V). Because Tβ is closed under rewriting by Rα,
Rα is confluent on Tβ , which implies that (Rα)β = Rβ is confluent on Tβ by
Lemma 16 and the fact that Rα is a many-sorted TRS using the same signature
as R.

For the other direction, assume that R is confluent on T (F ,V). We show that
Rα is confluent on T (F ,V) for all α ∈ S (and in particular those in Σ). Since
Rα is a many-sorted TRS, it is persistent (Theorem 9), so it suffices to show
that Rα is confluent on Tβ for all β ∈ S. So consider a peak t ∗

Rα
← s →∗

Rα
u.

We proceed by induction on s ∈ Tβ .
If s ∈ V then s = t = u and we are done. Otherwise, s = f(s1, . . . , sn) for

some f : β1 × · · · × βn → β, and s1 ∈ Tβ1 , . . . , sn ∈ Tβn
. There are two cases.

1. If α � β, then since R is confluent on Tβ , Rβ is confluent on Tβ . By Lemma 16
applied to (Rα)β = Rβ , Rα is confluent on Tβ as well.

2. If α
� β, then Rα contains no rules whose root symbol has result sort β.
Consequently there cannot be any root steps in t ∗

Rα
← s ∗

Rα
← u. Hence we

obtain t1, . . . , tn and u1, . . . , un with ti
∗

Rα
← si →∗

Rα
ui for 1 � i � n, t =

f(t1, . . . , tn), and u = f(u1, . . . , un). We conclude by the induction hypothesis
(si is confluent for 1 � i � n). ��

<crProof> or <crDisproof>

<persistentDecomposition>

<manySortedSignature>

<manySortedFunction> (0+) times
<name>

...

<args>

<sort> .. (0+) times
text

<result>

<sort>

text

<component> (1+) times; exactly 1 for <crDisproof>
<trs>

...

<crProof> or <crDisproof>

...

Fig. 6. CPF fragment for persistent decomposition proofs

We further integrated this result into CeTA. To this end, we implemented
a function that computes the maximal sorts (with respect to �) for a given
signature, a check function that checks the preconditions of Theorem17, and

Layer Systems for Confluence—Formalized 185

extended CeTA’s CPF parser with a certificate format for a persistent decompo-
sition (CPF is an XML format. The fragment for persistent decomposition is
given in Fig. 6, and may be of interest to tool authors who want to incorporate
certifiable persistent decomposition into their confluence tools).

6 Currying

Currying is the most complicated application of layer systems that we have for-
malized so far. Currying is a transformation of term rewrite systems in which
applications of n-ary functions are replaced by n applications of a single fresh
binary function symbol to a constant, thereby applying arguments to the func-
tion one by one. More formally, we introduce a fresh function symbol • to denote
application, whereas every other function symbol becomes a constant. We adopt
the convention of writing fn to denote a function symbol of arity n. Moreover,
we denote the arity of a function symbol f with respect to the signature F by
aF (f). We identify faF (f) with f .

Definition 18. Given a TRS R over a signature F , its curried version Cu(R)
consists of rules {Cu(l) → Cu(r) | � → r ∈ R}, where Cu(t) = t if t is a variable
and Cu(f(t1, . . . , tn)) = f0 •Cu(t1)• · · · •Cu(tn). Here • is a fresh left-associative
function symbol.

Currying is useful for deciding properties such as confluence [5] or termina-
tion [10]. For analyzing confluence by currying, the following result is important.

Theorem 19 (main result complete). Let R be a TRS. If R is confluent, then
Cu(R) is confluent.

This result was proved by Kahrs [11]. Rather than working directly with
Cu(R), Kahrs works with the partial parametrization of R, which is given by
PP(R) = R ∪ UF , where UF is the set of uncurrying rules for F (see Defini-
tion 20). Confluence of PP(R) and Cu(R) are closely related, cf. Lemma 21.

Definition 20. Given a signature F , the uncurrying rules UF are rules

fi(x1, . . . , xi) • xi+1 → fi+1(x1, . . . , xi+1)

for every function symbol f ∈ F and 0 � i < aF (f).

Lemma 21 ([11, Proposition 3.1]). Let R be a TRS. Then Cu(R) is conflu-
ent if PP(R) is.

Hence in order to prove Theorem 19 it suffices to prove that PP(R) is conflu-
ent. To this end, we make use of Theorem 7. Hence we need to show that PP(R)
is layered according to some set of layers L, and confluent on terms of rank one.
First of all we have to define a suitable set of layers. We choose L = L1 ∪ L2

letting V� = V ∪ {�} and

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#lem:main_result_complete

186 B. Felgenhauer and F. Rapp

L1:: = V� ∪ {fm(s1, . . . , sm) • sm+1 • · · · • sn |
f ∈ F , 0 � m � n � aF (f) and s1, . . . , sn ∈ L1}

L2 = {x • t | x ∈ V� and t ∈ L1}
This definition realizes a separation between well-formed terms (L1), whose UF -
normal form contains no • symbol, and ill-formed terms (L2), whose UF -normal
form contains exactly one • symbol at the root. As required for condition (L1),
variables and holes are treated interchangeably.

Whereas for Lemma 21 we could follow the lines of the paper proof, the
formalization of the fact that PP(R) is layered according to L turned out to
be much more tedious. As with the modularity and persistence applications, we
found it convenient to define functions that compute the max-top of a term, since
the abstract definition of max-tops in the layer framework is not really suitable
for proofs in Isabelle.

Definition 22. The following function checks whether the number of arguments
applied to the first non-• function symbol f is at most the arity aF (f) according
to the original signature F

check(t,m) =

⎧
⎪⎨

⎪⎩

false if t ∈ V
check(t1,m + 1) if t = t1 • t2

aF (f) � m + n if t = fn(t1, . . . , tn)

Let F• = F ∪ {•}. The max-top mtCu of a term t ∈ T (F•,V) with respect to L
is computed as

mtCu(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

t if t ∈ V
f(mt1(t1, 0), . . . ,mt1(tn, 0)) if t = f(t1, . . . , tn)

and (check(t, 0) or t1 ∈ V)
� • mt1(t2, 0) otherwise (in which case t = t1 • t2)

Here mt1(t,m) computes the max-top of t with respect to L1, where m is the
number of already applied arguments:

mt1(t,m) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

t if t ∈ V
mt1(t1,m + 1) • mt1(t2, 0) if t = t1 • t2 and check(t,m)
f(mt1(t1, 0), . . . ,mt1(tn, 0)) if t = f(t1, . . . , tn), f
= •

and check(t,m)
� otherwise

Note that there is some redundancy, since the check function does the same
counting several times. It turns out, however, that this redundancy simplifies
later proofs.

After proving the correctness of mt1 and mtCu, the main difficulty was the
proof of condition (C1) for L and PP(R). Similar to Lemma 10, we proved facts
about the interaction of mt1 (and hence mtCu) with contexts and substitutions,
in order to analyze a rewrite step s = C[lσ]p → C[rσ]p with p a function position
of the max-top M of s.

Layer Systems for Confluence—Formalized 187

Lemma 23 (push mt in ctxt). Let s be a term and p the hole position of context
C such that C[s]p ∈ T (F•,V) and p ∈ PosF•(mt1(C[s], j)). Then there exists
a context D and a natural number k such that mt1(C[s], j) = D[mt1(s, k)], and
mt1(C[t], j) = D[mt1(t, k)] for any term t ∈ T (F•,V) having the same number
of missing arguments as s.

Lemma 24 (push mt in subst). Let t ∈ T (F ,V). Then mt1(t ·σ, 0) = mt1(t, 0) ·
σ′ with σ′ = (λx.mt1(x, 0)) ◦ σ.

Using these two lemmas, we can obtain the desired rewrite step from M
by the following computation, where for simplicity we only consider the case
M ∈ L1 and l → r ∈ R:

M = mt(s) = mt1(C[l · σ], 0) 23= D[mt1(l · σ, k)] 24= D[mt1(l, 0) · σ′] = D[l · σ′]

→p,�→r D[r · σ′] = D[mt1(r, 0) · σ′] 24= D[mt1(r · σ, k)] 23= mt1(C[r · σ], 0)

The uses of the previous two lemmas are indicated above the equalities. Note
that the number of missing arguments of r and l are equal (namely 0), so we
can use Lemma 23 in both directions. For the same reason we must have k = 0,
because otherwise mt1(l · σ, k) = �, contradicting the fact that the rewrite step
would take place at a function position of M . Hence Lemma 24 is applicable.
Furthermore, we use mt1(l, 0) = l and mt1(r, 0) = r, using that l and r are well-
formed. At this point we have established (W). For (C1), we analyze the term
mt1(C[r · σ], 0) some more: If C = �, r is a variable and check(r · σ) is false,
mt1(C[r ·σ], 0) = �. Otherwise, the max-top of C[r ·σ] is equal to mt1(C[r ·σ], 0).

Remark 25. As an anonymous reviewer suggested, it would most likely have been
easier to use a different layer system, where each • symbol starts a new layer:

L′
1 = T (F ,V�)

L′
2 = {fm(s1, . . . , sm) • sm+1 | f ∈ F , 0 � m < aF (f) and s1, . . . , sm+1 ∈ L′

1}
L′
3 = {x • y | x, y ∈ V�} ∪

{fm(x1, . . . , xm) | f ∈ F , 0 � m < aF (f) andx1, . . . , xm ∈ V�}

This would have avoided the complications of counting the number of “miss-
ing” arguments in the check function. Unfortunately we did not find this idea
before starting our formalization. Adapting the existing formalization accord-
ingly would be a substantial effort with no obvious gain—the final result would
still be that currying preserves confluence.

7 Conclusion

We have presented a formalization of modularity, persistence, and currying, in
the Isabelle proof assistant. The formalization spans about 12k lines of theory
files and took approximately 9 person-months to develop. A breakdown of the

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#lem:push_mt_in_ctxt
http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/Lisa/LS_Currying.html#lem:push_mt_in_subst

188 B. Felgenhauer and F. Rapp

effort is given in Fig. 7. (Note that modularity is subsumed by persistence. We
formalized modularity first because it is the easiest application. Many proof
ideas for modularity carried over to the other, more difficult applications.) The
de Bruijn factor (which compares the size of the formalized proof to the paper
version) varies wildly. We believe that the main reason for this is that the level
of detail for proofs in [7] varies greatly; the core confluence proof (leading up to
Theorem 7) is carried out in much more detail than the applications, where large
parts of the proofs rely on the reader’s intuition. A second contributing factor
is that two people worked on different parts of the formalization.

As far as we know, this is the first formalization of modularity of conflu-
ence in any proof assistant. We would like to point out that even though the
confluence proof for layer systems is based on a constructive proof of modular-
ity of confluence [17], the formalized result is not constructive. This is because
Isabelle/HOL is a classical logic. Producing a constructive proof in Isabelle/HOL
would have to rely on discipline (including the avoidance of proof automation
tools like Metis that are based on Skolemization). In fact, since the proof factors
through decreasing diagrams (which were already part of the Archive of Formal
Proofs [6]), we would first need a constructive proof for confluence by decreasing
diagrams. In the end we would not reap any benefits from having a constructive
proof (namely, an executable confluence result).

We integrated the persistence result into our theorem prover CSI (which
already supported order-sorted persistence, so the main effort for extending CSI
was adding the XML output.) We present experimental results in Fig. 8. The
check mark � indicates certified strategies; CSI� and +pd� are the certified
strategies with and without persistent decomposition, respectively, while CSI
refers to the uncertified, full strategy of CSI. As can be seen from the data, we
have achieved a modest improvement in certified proofs over the Cops database
of confluence problems.8 It is worth noting that there is no progress in certified
non-confluence proofs; in fact, there is no certification gap for non-confluence
at all. For non-confluence, CSI employs tree automata [8], which (in theory,

rotcafBdsenilcipot

definitions, basic facts about layers 3.2k 20
Theorem 7 2.0k 13
modularity 0.8k 30
persistence 1.5k 55
currying 3.8k 40
executable persistence check 0.6k —

k21latot

Fig. 7. Formalization effort (dB = de Bruijn)

8 Full results are available at http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/.

http://cl-informatik.uibk.ac.at/software/lisa/ictac2018/

Layer Systems for Confluence—Formalized 189

CSI� +pd� CSI

yes 148 154 244
no 162 162 162

maybe 127 121 31

total 437 437 437

Fig. 8. Impact of persistent decomposition on certifiable proofs by CSI.

and evidently also in practice) subsume the many-sorted decomposition result,
because many-sorted terms are a regular tree language.

There are several parts of [7] that have not yet been formalized. For one,
there are two more applications of layer systems, namely modularity of layer-
preserving composable TRSs, and a modularity result for quasi-ground systems.
The bigger missing part are variable-restricted layer systems, which are the foun-
dation for a generalized persistence result with ordered sorts [7, Theorem 6.3].
Furthermore, while we have formalized preservation of confluence by currying,
this is not integrated into CeTA. As far as we know, no confluence tool currently
uses currying directly. However, currying is the basis of efficient decision pro-
cedures for ground TRSs, which are implemented in CSI, and are a target for
future formalization efforts.

References

1. Aoto, T., Toyama, Y.: Extending persistency of confluence with ordered sorts.
Technical report IS-RR-96-0025F, School of Information Science, JAIST (1996)

2. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting sys-
tems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02348-4 7

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998). https://doi.org/10.1017/cbo9781139172752

4. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Rea-
son. 52(2), 123–153 (2014). https://doi.org/10.1007/s10817-013-9284-7

5. Felgenhauer, B.: Deciding confluence of ground term rewrite systems in cubic time.
In: Tiwari, A. (ed.) Proceedings of 23rd International Conference on Rewriting
Techniques and Applications. RTA 2012, May–June 2012, Nagoya. Leibniz Inter-
national Proceedings in Informatics, vol. 15, pp. 165–175. Dagstuhl Publishing,
Saarbrücken, Wadern (2012). https://doi.org/10.4230/lipics.rta.2012.165

6. Felgenhauer, B.: Decreasing diagrams II. AFP, formal proof development (2015).
https://www.isa-afp.org/entries/Decreasing-Diagrams-II.html

7. Felgenhauer, B., Middeldorp, A., Zankl, H., van Oostrom, V.: Layer systems for
proving confluence. ACM Trans. Comput. Log. 16(2), 14 (2015). https://doi.org/
10.1145/2710017

8. Felgenhauer, B., Thiemann, R.: Reachability, confluence, and termination analysis
with state-compatible automata. Inf. Comput. 253(3), 467–483 (2017). https://
doi.org/10.1016/j.ic.2016.06.011

https://doi.org/10.1007/978-3-642-02348-4_7
https://doi.org/10.1017/cbo9781139172752
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.4230/lipics.rta.2012.165
https://www.isa-afp.org/entries/Decreasing-Diagrams-II.html
https://doi.org/10.1145/2710017
https://doi.org/10.1145/2710017
https://doi.org/10.1016/j.ic.2016.06.011
https://doi.org/10.1016/j.ic.2016.06.011

190 B. Felgenhauer and F. Rapp

9. Gordon, M.J., Milner, A.J., Wadsworth, C.P.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-09724-4

10. Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination. In:
Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol.
5330, pp. 667–681. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-89439-1 46

11. Kahrs, S.: Confluence of curried term-rewriting systems. J. Symb. Comput. 19(6),
601–623 (1995). https://doi.org/10.1006/jsco.1995.1035

12. Kitahara, A., Sakai, M., Toyama, Y.: On the modularity of confluent term rewriting
systems with shared constructors. Tech. Rep. Inf. Process. Soc. Jpn. 95(15), 11–20
(1995). (in Japanese)

13. Klop, J., Middeldorp, A., Toyama, Y., de Vrijer, R.: Modularity of confluence: a
simplified proof. Inf. Process. Lett. 49, 101–109 (1994). https://doi.org/10.1016/
0020-0190(94)90034-5

14. Nagele, J., Felgenhauer, B., Middeldorp, A.: CSI: new evidence – a progress report.
In: de Moura, L. (ed.) CADE 2017. LNCS (LNAI), vol. 10395, pp. 385–397.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63046-5 24

15. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

16. Ohlebusch, E.: Modular properties of composable term rewriting systems. Ph.D.
thesis, Universität Bielefeld (1994)

17. Oostrom, V.: Modularity of confluence. In: Armando, A., Baumgartner, P., Dowek,
G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 348–363. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71070-7 31

18. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS,
vol. 5674, pp. 452–468. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-03359-9 31

19. Toyama, Y.: On the Church-Rosser property for the direct sum of term rewriting
systems. J. ACM 34(1), 128–143 (1987). https://doi.org/10.1145/7531.7534

20. Wenzel, M.: Isar—a generic interpretative approach to readable formal proof doc-
uments. In: Bertot, Y., Dowek, G., Théry, L., Hirschowitz, A., Paulin, C. (eds.)
TPHOLs 1999. LNCS, vol. 1690, pp. 167–183. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48256-3 12

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/3-540-09724-4
https://doi.org/10.1007/978-3-540-89439-1_46
https://doi.org/10.1007/978-3-540-89439-1_46
https://doi.org/10.1006/jsco.1995.1035
https://doi.org/10.1016/0020-0190(94)90034-5
https://doi.org/10.1016/0020-0190(94)90034-5
https://doi.org/10.1007/978-3-319-63046-5_24
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/978-3-540-71070-7_31
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1007/978-3-642-03359-9_31
https://doi.org/10.1145/7531.7534
https://doi.org/10.1007/3-540-48256-3_12
https://doi.org/10.1007/3-540-48256-3_12
http://creativecommons.org/licenses/by/4.0/

A Metalanguage for Guarded Iteration

Sergey Goncharov(B), Christoph Rauch, and Lutz Schröder

Dept. Informatik, Friedrich-Alexander-Universität Erlangen-Nürnberg,
Martensstraße 3, 91058 Erlangen, Germany

{sergey.goncharov,christoph.rauch,lutz.schroeder}@fau.de

Abstract. Notions of guardedness serve to delineate admissible recur-
sive definitions in various settings in a compositional manner. In recent
work, we have introduced an axiomatic notion of guardedness in sym-
metric monoidal categories, which serves as a unifying framework for
various examples from program semantics, process algebra, and beyond.
In the present paper, we propose a generic metalanguage for guarded
iteration based on combining this notion with the fine-grain call-by-
value paradigm, which we intend as a unifying programming language
for guarded and unguarded iteration in the presence of computational
effects. We give a generic (categorical) semantics of this language over a
suitable class of strong monads supporting guarded iteration, and show
it to be in touch with the standard operational behaviour of iteration
by giving a concrete big-step operational semantics for a certain specific
instance of the metalanguage and establishing adequacy for this case.

1 Introduction

Guardedness is a recurring theme in programming and semantics, fundamentally
distinguishing the view of computations as processes unfolding in time from the
view that identifies computations with a final result they may eventually pro-
duce. Historically, the first perspective is inherent to process algebra (e.g. [27]),
where the main attribute of a process is its behaviour, while the second is inher-
ent to classical denotational semantics via domain theory [37], where the only
information properly infinite computations may communicate to the outer world
is the mere fact of their divergence. This gives rise to a distinction between inten-
sional and extensional paradigms in semantics [1].

For example, in CCS [27] a process is guarded in a variable x if every occur-
rence of x in this process is preceded by an action. One effect of this constraint
is that guarded recursive specifications can be solved uniquely, e.g. the equation
x = ā. x, whose right-hand side is guarded in x, has the infinite stream ā.ā. . . .
as its unique solution. If we view ā as an action of producing an output, we
can also view the process specified by x = ā. x as productive and the respec-
tive solution ā.ā . . . as a trace obtained by collecting its outputs. The view of
guardedness as productivity is pervasive in programming and reasoning with
coinductive types [11,14,15,20] as implemented in dependent type environments
such as Coq and Agda. Semantic models accommodate this idea in various ways,
c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 191–210, 2018.
https://doi.org/10.1007/978-3-030-02508-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_11&domain=pdf

192 S. Goncharov et al.

Fig. 1. Example of a guarded loop.

e.g. from a modal [2,29], (ultra-)metric [12,23], and a unifying topos-theoretic
perspective [5,9].

In recent work, we have proposed a new axiomatic approach to unifying
notions of guardedness [18,19], where the main idea is to provide an abstract
notion of guardedness applicable to a wide range of (mutually incompatible)
models, including, e.g., complete partial orders, complete metric spaces, and
infinite-dimensional Hilbert spaces, instead of designing a concrete model carry-
ing a specific notion of guardedness. A salient feature of axiomatic guardedness
is that it varies in a large spectrum starting from total guardedness (everything
is guarded) and ending at vacuous guardedness (very roughly, guardedness in a
variable means non-occurrence of this variable in the defining expression) with
proper examples as discussed above lying between these two extremes. The fact
that axiomatic guardedness can be varied so broadly indicates that it can be used
for bridging the gap between the intensional and extensional paradigms, which
is indeed the perspective we are pursuing here by introducing a metalanguage
for guarded iteration.

The developments in [18] are couched in terms of a special class of monoidal
categories called guarded traced symmetric monoidal categories, equipped with
a monoidal notion of guardedness and a monoidal notion of feedback allowing
only such cyclic computations that are guarded in the corresponding sense. In
the present work we explore a refinement of this notion by instantiating guarded
traces to Kleisli categories of computational monads in sense of Moggi [28], with
coproduct (inherited from the base category under fairly general assumptions)
as the monoidal structure. The feedback operation is then equivalently given by
guarded effectful iteration, i.e. a (partial) operator

f : X → T (Y + X)
f† : X → TY

(1)

to be thought of as iterating f over X until a result in Y is reached. As origi-
nally argued by Moggi, strong monads can be regarded as representing compu-
tational effects, such as nondeterminism, exceptions, or process algebra actions,
and thus the corresponding internal language of strong monads, the computa-
tional metalanguage [28], can be regarded as a generic programming language
over these effects. We extend this perspective by parametrizing such a language
with a notion of guardedness and equipping it with guarded iteration. In doing
so, we follow the approach of Geron and Levy [13] who already explored the
case of unguarded iteration by suitably extending a fine-grain call-by-value lan-
guage [24], a refined variant of Moggi’s original computational λ-calculus.

A Metalanguage for Guarded Iteration 193

A key insight we borrow from [13] is that effectful iteration can be efficiently
organized via throwing and handling exceptions (also called labels in this con-
text) in a loop, leading to a more convenient programming style in comparison
to the one directly inspired by the typing of the iteration operator (1). We show
that the exception handling metaphor seamlessly extends to the guarded case
and is compatible with the axioms of guardedness. A quick illustration is pre-
sented in Fig. 1 where the handleit command implements a loop in which the raise
command indexed with the corresponding label identifies the tail call. The print
operation acts as a guard and makes the resulting program well-typed. Apart
from this non-standard use of exceptions, they can be processed in a standard
way with the handle command.

To interpret our metalanguage we derive and explore a notion of strong
guarded iteration and give a generic (categorical) denotational semantics, for
which the main subtlety are functional abstractions of guarded morphisms. We
then define a big-step operational semantics for a concrete (simplistic) instance
of our metalanguage and show an adequacy result w.r.t. a concrete choice of the
underlying category and the strong monad.

Related Work. We have already mentioned work by Geron and Levy [13]. The
instance of operational semantics we explore here is chosen so as to give the
simplest proper example of guarded iteration, i.e. the one giving rise to infinite
traces, making the resulting semantics close to one explored in a line of work by
Nakata and Uustalu [30–33]. We regard our operational semantics as a showcase
for the denotational semantics, and do not mean to address the notorious issue
of undecidability of program termination, which is the main theme of Nakata
and Uustalu’s work. We do however regard our work as a stepping stone both
for deriving more sophisticated styles of operational semantics and for devel-
oping concrete denotational models for addressing the operational behavior as
discussed in op.cit. The guarded λ-calculus [9] is a recently introduced language
for guarded recursion (as apposed to guarded iteration), on the one hand much
more expressive than ours, but on the other hand capturing a very concrete
model, the topos of trees [5].

Plan of the Paper. In Sect. 2 we give the necessary technical preliminaries, and
discuss and complement the semantic foundations for guarded iteration [18,19].
In Sects. 3 and 4 we present our metalanguage for guarded iteration (without
functional types) and its generic denotational semantics. In Sect. 5 we identify
conditions for interpreting functional types and extend the denotational seman-
tics to this case. In Sect. 6 we consider an instance of our metalanguage (for
a specific choice of signature), give a big-step operation semantics and prove a
corresponding adequacy result. Conclusions are drawn in Sect. 7.

2 Monads for Effectful Guarded Iteration

We use the standard language of category theory [25]. Some conventions regard-
ing notation are in order. By |C| we denote the class of objects of a category C,

194 S. Goncharov et al.

and by HomC(A,B) (or Hom(A,B), if no confusion arises) the set of morphisms
f : A → B from A ∈ |C| to B ∈ |C|. We tend to omit object indices on natural
transformations.

Coproduct Summands and Distributive Categories. We call a pair σ =
〈σ1 : Y1 → X, σ2 : Y2 → X〉 of morphisms a summand of X, denoted
σ : Y1 X, if it forms a coproduct cospan, i.e. X is a coproduct of Y1 and
Y2 with σ1 and σ2 as coproduct injections. Each summand σ = 〈σ1, σ2〉 thus
determines a complement summand σ̄ = 〈σ2, σ1〉 : Y2 X. We often identify
a summand 〈σ1, σ2〉 with its first component when there is a canonically prede-
termined σ2. Summands of a given object X are naturally preordered by taking
〈σ1, σ2〉 to be smaller than 〈θ1, θ2〉 iff σ1 factors through θ1. In the presence
of an initial object ∅, with unique morphisms ! : ∅ → X, this preorder has a
greatest element 〈idX , !〉 and a least element 〈!, idX〉. By writing X1 + . . . + Xn

we designate the latter as a coproduct of the Xi and assign the canonical names
ini : Xi X1 + . . . + Xn to the corresponding summands. Dually, we write
pri : X1× . . .×Xn → Xi for canonical projections (without introducing a special
arrow notation). Note that in an extensive category [8], the second component of
any coproduct summand 〈σ1, σ2〉 is determined by the first up to isomorphism.
However, we do not generally assume extensiveness, working instead with the
weaker assumption of distributivity [10]: a category with finite products and
coproducts (including a final and an initial object) is distributive if the natural
transformation

X × Y + X × Z
[id×inl,id×inr]−−−−−−−−−→ X × (Y + Z)

is an isomorphism, whose inverse we denote by distX,Y,Z .

Strong Monads. Following Moggi [28], we identify a monad T on a category C
with the corresponding Kleisli triple (T, η, (--)�) on C consisting of an endomap T
on |C|, a |C|-indexed class of morphisms ηX : X → TX, called the unit of T,
and the Kleisli lifting maps (--)� : Hom(X,TY) → Hom(TX, TY) such that

η� = id f�η = f (f�g)� = f�g�.

These definitions imply that T is an endofunctor and η is a natural transfor-
mation. Provided that C has finite products, a monad T on C is strong if it
is equipped with a strength, i.e. a natural transformation τX,Y : X × TY →
T (X ×Y) satisfying a number of standard coherence conditions (e.g. [28]). Mor-
phisms of the form f : X → TY form the Kleisli category of T, which has
the same objects as C, units ηX : X → TX as identities, and composition
(f, g) �→ f�g, also called Kleisli composition.

In programming language semantics, both the strength τ and the distribu-
tivity transformation dist essentially serve to propagate context variables. We
often need to combine them into (T dist) τ : X ×T (Y +Z) → T (X ×Y +X ×Z).
We denote the latter transformation by δ.

A Metalanguage for Guarded Iteration 195

Fig. 2. Axioms of abstract guardedness.

Guarded Iteration. Let us fix a distributive category C and a strong monad T

on C. The monad T is (abstractly) guarded if it is equipped with a notion of
guardedness, i.e. with a relation between Kleisli morphisms f : X → TY and
summands σ : Y ′ Y closed under the rules in Fig. 2, where f : X →σ TY
denotes the fact that f and σ are in the relation in question, in which case we
also call f , σ-guarded. Let Homσ(X,Y) be the subset of Hom(X,TY) consisting
of the morphisms X →σ TY . We also write f : X →i TY for f : X →ini

TY .
More generally, we use the notation f : X →p,q,... TY to indicate guardedness
in the union of injections inp, inq, . . . where p, q, . . . are sequences over {1, 2}
identifying the corresponding coproduct summand in Y . For example, we write
f : X →12,2 T ((Y + Z) + Z) to mean that f is [in1 in2, in2]-guarded.

The axioms (trv), (sum) and (cmp) come from [19]. Here, we also add the
rule (str) stating compatibility of guardedness and strength. Note that since C
is distributive, id × σ is actually a summand.

Let us record some simple consequences of the axioms in Fig. 2.

Lemma 1. The following rules are derivable:

(iso)
f : X →σ TY ϑ : Y � Y ′

(Tϑ) f : X →ϑ σ TY ′ (wkn)
f : X →σ TY

f : X →σϑ TY

(cmp�)
f : X →σ+id T (Y + Z) g : Y → TV h : Z → TV gσ̄ : Y ′ →ϑ TV

[g, h]�f : X →ϑ TV

Definition 2 (Guarded (pre-)iterative/Elgot monads). A strong monad
T on a distributive category is guarded pre-iterative if it is equipped with a
guarded iteration operator

f : X →2 T (Y + X)
f† : X → TY

(2)

satisfying the

– fixpoint law : f† = [η, f†]�f .

We call a pre-iterative monad T guarded Elgot if it satisfies

– naturality: g�f† = ([(T inl) g, η inr]� f)† for f : X →2 T (Y + X), g : Y → TZ;

196 S. Goncharov et al.

– codiagonal: (T [id, inr] f)† = f†† for f : X →12,2 T ((Y + X) + X);
– uniformity: f h = T (id + h) g implies f† h = g† for f : X →2 T (Y + X),

g : Z →2 T (Y + Z) and h : Z → X;
– strength: τ 〈idX , f†〉 = (T (id + pr2) δ 〈idX , f〉)† for any f : X →2 T (Y + X);

and guarded iterative if f† is a unique solution of the fixpoint law (the remaining
axioms then are granted [19]).

The above axioms of iteration are standard (cf. [6]), except strength which we
need here for the semantics of computations in multivariable contexts.

The notion of (abstract) guardedness is a common generalization of various
special cases occurring in practice. Every monad can be equipped with a least
notion of guardedness, called vacuous guardedness and defined as follows: f :
X →2 T (Y + Z) iff f factors through T inl : Y → T (Y + Z). On the other
hand, the greatest notion of guardedness is total guardedness, defined by taking
f : X →2 T (Y + Z) for every f : X → T (Y + Z). This addresses total iteration
operators on T, whose existence depends on special properties of T, such as being
enriched over complete partial orders. Our motivating examples are mainly those
that lie properly between these two extreme situations, e.g. completely iterative
monads for which guardedness is defined via monad modules and the iteration
operator is partial, but uniquely satisfies the fixpoint law [26]. For illustration,
we consider several instances of guarded iteration.

Example 3. We fix the category of sets and functions Set as an ambient dis-
tributive category in the following examples.

1. (Finitely branching processes) Let TX = νγ.Pω(X+Act×γ), the final Pω(X+
Act × --)-coalgebra with Pω being the finite powerset functor. Thus, T is
equivalently described as the set of finitely branching nondeterministic trees
with edges labelled by elements of Act and with terminal nodes possibly
labelled by elements of X (otherwise regarded as nullary nondeterminism,
i.e. deadlock). Every f : X → T (Y + X) can be viewed as a family (f(x) ∈
T (Y + X))x∈X of trees whose terminal nodes are labelled in the disjoint
union of X and Y . Each tree f(x) thus can be seen as a recursive process
definition for the process name x relative to the names in X + Y . The notion
of guardedness borrowed from process algebra requires that every x′ ∈ X
occurring in f(x) must be preceded by a transition, and if this condition is
satisfied, we can calculate a unique solution f† : X → TY of the system of
definitions (f(x) : T (Y +X))x∈X . In other words, T is guarded iterative with
f : X →2 T (Y + Z) iff

out f : X → Pω((Y + Z) + Act × T (Y + Z))

factors through Pω(inl+id) where out : TX ∼= Pω(X + Act × TX) is the
canonical final coalgebra isomorphism.

2. (Countably branching processes) A variation of the previous example is
obtained by replacing finite with countable nondeterminism, i.e. by replac-
ing Pω with the countable powerset functor Pω1 . Note that in the previous

A Metalanguage for Guarded Iteration 197

example we could not extend the iteration operator to a total one, because
unguarded systems of recursive process equations may define infinitely
branching processes [4]. The monad TX = νγ.Pω1(X +Act×γ) does however
support both partial guarded iteration in the sense of the previous exam-
ple, and total iteration extending the former. Under total iteration, the fix-
points f† are no longer unique. This setup is analysed more generally in detail
in [17].

3. A very simple example of total guarded iteration is obtained from the (full)
powerset monad T = P. The corresponding Klesili category is enriched over
complete partial orders and therefore admits total iteration calculated via
least fixpoints.

4. (Complete finite traces) Let TX = P(Act� × X) be the monad obtained
from P by an obvious modification ensuring that the first elements of the
pairs from Act� × X, i.e. finite traces, are concatenated along Kleisli com-
position (c.f. [21, Theorem 12]). Like P, this monad is order-enriched and
thus supports a total iteration operator via least fixpoints (see e.g. [16]).
From this, a guarded iteration operator is obtained by restricting to the
guarded category with f : X →2 P(Act� × (Y + Z)) iff f factors through
the P(Act� × Y +Act+ × Z) → P(Act� × Y +Act� × Z) ∼= P(Act� × (Y + Z))
induced by the inclusion Act+ ↪→ Act�.

5. Finally, an example of partial guarded iteration can be obtained from Item 3
above by replacing P with the non-empty powerset monad P+. Total iteration
as defined in Item 3 does not restrict to total iteration on P+, because empty
sets can arise from solving systems not involving empty sets, e.g. η inr : 1 →
P+(1 + 1) would not have a solution in this sense. However, it is easy to see
that total iteration does restrict to guarded iteration for P with the notion
of guardedness defined as follows: f : X →2 P+(Y + Z) iff for every x, f(x)
contains at least one element from Y .

For a pre-iterative monad T, we derive a strong iteration operator :

f : W × X →2 T (Y + X)
f‡ = (T (pr2 +id) δ〈pr1, f〉)† : W × X → TY

(3)

which essentially generalizes the original operator (--)† to morphisms extended
with a context via W × --. This will become essential in Sect. 3 for the semantics
of our metalanguage.

To clarify the role of (3), we characterize it as iteration in a simple slice
category C[W] arising for every fixed W ∈ |C| as the co-Kleisli category of the
product comonad [7] W ×--, that is, |C[W]| = |C|, HomC[W](X,Y) = HomC(W ×
X,Y), identities in C[W] are projections pr2 : W × X → X, and composition of
g : W × X → Y with f : W × Y → Z is f 〈pr1, g〉 : W × X → Z.

The monad T being strong means in particular that for every W ∈ |C|, τ
yields a distributive law of the monad T over the comonad W×--, which extends T
from C to C[W] [36]. Moreover, we obtain the following properties.

Theorem 4. Let T be a strong monad on a distributive category C, and let
W ∈ |C|. Then the following hold.

198 S. Goncharov et al.

1. C[W] is distributive, and T extends to a strong monad over C[W];
2. if T is guarded pre-iterative on C then so is the extension of T to C[W] under

the same definition of guardedness and iteration defined by (3);
3. if T is guarded Elgot on C then so is the extension of T to C[W].

Proof (Sketch). The proof of Clause 1. runs along the following lines. Being a
co-Kleisli category, C[W] inherits finite products from C. Finite coproducts are
inherited thanks to C being distributive; e.g.

HomC[W](X + Y,Z) = HomC(W × (X + Y), Z) ∼= HomC(W × X + W × Y,Z)
∼= HomC(W × X,Z) × HomC(W × Y,Z)
= HomC[W](X,Z) × HomC[W](Y,Z).

Since both products and coproducts in C[W] are inherited from C, so is distribu-
tivity. The unit of the extension of T to C[W] is η pr2 : W ×X → TX where η is
the unit of T in C; similarly, the strength is τ pr2 : W × (X × TY) → T (X × Y)
where τ is the strength of T in C. The Kleisli lifting of f ∈ HomC[W](X,TY) is
f�τ where f� : T (W × X) → TY is the Kleisli lifting of f : W × X → TY in C.
The relevant laws and Clauses 2 and 3 are obtained by routine calculation.
�

3 A Metalanguage for Guarded Iteration

We proceed to define a variant of fine-grain call-by-value [24] following the ideas
from [13] on labelled iteration. For our purposes we extend the standard setup
by allowing a custom signature of operations Σ, but restrict the expressiveness
of the language being defined slightly, mainly by excluding function spaces for
the moment. The latter require some additional treatment, and we return to this
point in Sect. 5.

We fix a supply Base of base types and define (composite) types A, B by the
grammar

A,B, . . . ::= C | 0 | 1 | A + B | A × B (C ∈ Base). (4)

The signature Σ consists of two disjoint parts: a value signature Σv containing
signature symbols of the form f : A → B, and an effect signature Σc containing
signature symbols of the form f : A → B[C]. While the former symbols rep-
resent pure functions, the latter capture morphisms of type A →2 T (B + C),
in particular they carry side-effects from T . The term language over these data
is given in Fig. 3. We use a syntax inspired by Haskell’s do-notation [22]. The
metalanguage features two kinds of judgments:

Γ �v v : A and Δ | Γ �c p : A (5)

for values and computations correspondingly. These involve two kinds of con-
texts: Γ denotes the usual context of typed variables x : A, and Δ denotes the
context of typed exceptions e : Eα with E being a type from (4) and α being a tag

A Metalanguage for Guarded Iteration 199

from the two-element set {g, u} to distinguish the exceptions raised in a guarded
context (g) from those raised in an unguarded context (u) of the program code.
Let us denote by |Δ| the list of pairs e : E obtained from an exception context
Δ by removing the g and u tags. Variable and exception names are drawn from
the same infinite stock of symbols; they are required to occur non-repetitively
in Γ and in Δ separately, but the same symbol may occur in Γ and in Δ at the
same time.
Notation 5. As usual, we use the dash (--) to denote a fresh variable in
binding expressions, e.g. do -- ← p; q, and use the standard conventions of
shortening do -- ← p; q to do p; q and dox ← p; (do y ← q; r) to dox ←
p; y ← q; r. Moreover, we encode the if-then-else construct if b then p else q as
case b of inl -- �→ p; inr -- �→ q, and also use the notation

f(v)& raisee p for gcase f(v) of inlx �→ initx; inr -- �→ raisee p

whenever f : X → 0[1] ∈ Σc.
The language constructs relating to products, coproducts, and the monad struc-
ture are standard (except maybe init, which forms unique morphisms from the
null type 0 into any type A) and should be largely self-explanatory. The key
features of our metalanguage, discussed next, concern algebraic operations on
the one hand, and exception-based iteration on the other hand.

Algebraic Operations via Generic Effects. The signature symbols f : A → B[0]
from Σc have Kleisli morphisms A → TB as their intended semantics, specifi-
cally, if A = n and B = m, with n and m being identified with the corresponding
n-fold and m-fold coproducts of 1, the respective morphisms n → Tm dually cor-
respond to algebraic operations, i.e. certain natural transformations Tm → Tn,
as elaborated by Plotkin and Power [34]. In context of this duality the Kleisli
morphisms of type n → Tm are also called generic effects. Hence we regard Σc as
a stock of generic effects declared to be available to the language. The respective
algebraic operations thus become automatically available – for a brief example
consider the binary algebraic operation of nondeterministic choice ⊕ : T 2 → T 1,
which is modeled by a generic effect toss : 1 → T2 as follows:

p ⊕ q = do c ← toss; case c of inl -- �→ p; inr -- �→ q.

Exception Raising. Following [13], we involve an exception raising/handling
mechanism for organizing loops (we make the connection to exceptions more
explicit, in particular, we use the term ‘exceptions’ and not ‘labels’, as the under-
lying semantics does indeed accurately match the standard exception semantics).
A guarded exception e : Eg is raised and recorded in the exception context Δ
accordingly by the guarded case command

gcase f(v) of inlx �→ p; inr y �→ raisee q.

The f(v) part acts as a guard partitioning the control flow into the left
(unguarded) part in which a computation p is executed, and the right (guarded)
part, in which the exception e is raised. Also, we allow raising of a standard
unguarded exception e : Eu with raisee q.

200 S. Goncharov et al.

Fig. 3. Term formation rules for values (top) and computations (bottom).

(Iterated) Exception Handling. The syntax for exception handing via
handle e in p with q is meant to be understood as follows: p is a program possibly
raising the exception e and q is a handling term for it. This can be compared to
the richer exception handling syntax of Benton and Kennedy [3] whose construct
try x ⇐ p in q unless {e �→ r}e∈E we can encode as:

do z ← handle e in (dox ← p; ret inlx) with (do y ← r; ret inr y);
case z of inlx �→ q ; inr y �→ ret y

where p, q and r come from the judgments

Δ, e : Eg | Γ �c p : A, Δ | Γ, x : A �c q : B, Δ | Γ, e : E �c r : B,

and the idea is to capture the following behavior: unless p raises exception e : Eg,
the result is bound to x and passed to q (which may itself raise e), and other-
wise the exception is handled by r. An analogous encoding is already discussed
in [3] where the richer syntax is advocated and motivated by tasks in compiler
optimization, but these considerations are not relevant to our present work and
so we stick to the minimalist syntax.

A Metalanguage for Guarded Iteration 201

Fig. 4. Example: bubble sort.

Note that we restrict to handling guarded exceptions only, although a con-
struct for handling unguarded exceptions could be added without a trouble. The
side condition |Δ| = |Δ′| of the term construction rule for handle ensures that
we can raise unguarded expressions in the handling term q and those become
guarded in the resulting program. The reason for it is that the exception e being
handled occurs in a guarded context thanks to p and so any exception in q
becomes inherently guarded in this context.

The idea of the new construct handleit e = p in q is to handle the exception
in q recursively using q itself as the handling term, so that if q reraises e, handling
continues repetitively. The value p is substituted into q to initialise the iteration.

Example 6. Let us illustrate the constructs introduced in Fig. 3 by the simple
example of the familiar bubble sort algorithm in Fig. 4.

Here we assume that Base = {Nat ,Str} consists of natural numbers and
character strings correspondingly, Σv consists of the obvious operations over
natural numbers such as + : Nat × Nat → Nat (addition), − : Nat × Nat →
Nat + 1 (subtraction) and <= : Nat × Nat → 2 (comparison) where 2 = 1 + 1,
and the effect signature Σc consists of length : 1 → Nat [0], get : Nat → Nat [0],
swap : Nat × Nat → 1[0] and print : Str × Nat → 0[1]. Intuitively, one should
think of an underlying array for which length() returns its length, get yields a
value by index, and two cells of given indices can be interchanged with swap.
The operation of printing acts as a loop guard, as follows from its type profile.

4 Generic Denotational Semantics

We proceed to give a denotational semantics of the guarded metalanguage assum-
ing the following:

– a distributive category C (with initial objects);
– a strong guarded pre-iterative monad T on C.

202 S. Goncharov et al.

Supposing that every base type A ∈ Base is interpreted as an object A in |C|,
we define A for types A (see (4)) inductively by

0 = ∅, 1 = 1, A + B = A + B, A × B = A × B.

To every f : A → B ∈ Σv we associate an interpretation �f� ∈ Hom(A,B) in
C and to every f : A → B[C] ∈ Σc an interpretation �f� ∈ Hominr(A, T (B +
C)). Based on these we define the semantics of the term language from Fig. 3.
The semantics of a value judgment Γ �v p : A is a morphism �Γ �v p : A� ∈
Hom(Γ ,A), and the semantics of a computation judgment Δ | Γ �c p : A is a
morphism �Δ | Γ �c p : A� ∈ Hom! +σΔ

(Γ , T (A + Δ)) where

Γ = A1 × . . . × An for Γ = (x1 : A1, . . . , xn : An)
Δ = E1 + . . . + Em for Δ = (e1 : Eα1

1 , . . . , em : Eαm
m)

and σΔ : Δ′ Δ is the summand induced by removal of unguarded exceptions
e : Eu from Δ with Δ′ denoting the result.

The semantic assignments for computation judgments are given in Fig. 5 (we
skip the obvious standard rules for values) where ine : E → Δ is the obvious
coproduct injection of E to Δ identified by e, assoc is the associativity isomor-
phism X + (Y + Z) ∼= (X + Y) + Z, and (−)‡ is the strong iteration operator
from (3).
The correctness of our semantic assignments is established by the following claim:

Proposition 7. For every rule in Fig. 3, assuming the premises, the morphism
in the conclusion is (! +σΔ)-guarded.

Proof. For (fun), (prod), (ret), (case) and (init), the verification is straight-
forward by the axioms of guardedness in C. For (gcase) and (do), we proceed
analogously using the axioms of guardedness in C[Γ] and Theorem 4. Strong
iteration as figuring in (iter) is, by Theorem 4, the standard guarded iteration
in C[Γ], and the problem in question amounts to verifying that f† : X →σ TY
whenever f : X →σ+id T (Y + X). This is already shown in [19].

Consider the remaining rule (handle) in detail. By regarding g and h as mor-
phisms in C[Γ], we reformulate the claim as follows: assuming g : 1 →! +(σΔ+id)

T (A + (Δ + E)) and h : E → T (A + Δ), show that [η, h]� (T assoc) g : 1 →! +σΔ

T (A+Δ). Noting that (T assoc) g : 1 →(! +σΔ)+id T ((A+Δ)+E), we obtain the
goal by using (cmp�) from Proposition 1.
�

5 Functional Types

In order to interpret functional types in fine-grain call-by-value, it normally
suffices to assume existence of Kleisli exponentials, i.e. objects TBA such that
Hom(C, TBA) and Hom(C × A, TB) are naturaly isomorphic, or equivalently
that all the presheaves Hom(-- ×A, TB) : Cop → Set are representable. In order

A Metalanguage for Guarded Iteration 203

Fig. 5. Denotational semantics.

204 S. Goncharov et al.

to add functional types to our metalanguage we additionally need to assume that
all the presheaves Homσ(--, TA) : Cop → Set are representable, i.e. for every A
and σ : A′ A there is Aσ ∈ |C| such that

ξ : Hom(X,Aσ) ∼= Homσ(X,TA) (6)

naturally in X. By Yoneda lemma, this requirement is equivalent to the following.

Definition 8 (Greatest σ-algebra). Given σ : A′ A, a pair (Aσ, ισ) con-
sisting of an object Aσ ∈ |C| and a morphism ισ : Aσ →σ TA is called a greatest
σ-algebra if for every f : X →σ TA there is a unique f̂ : X → Aσ with the
property that f = ισ f̂ .

X TA

Aσ

f

f̂ ισ
By the usual arguments, (Aσ, ισ) is defined uniquely up to
isomorphism. The connection between ισ and ξ in (6) is as
follows: ισ = ξ(id : Aσ → Aσ) and ξ(f : X → Aσ) = ισ f .

It immediately follows by definition that ισ is a
monomorphism. The name ‘σ-algebra’ for (A, ισ) is justified as follows.

Proposition 9. Suppose that (A, ισ) is a greatest σ-algebra. Then there is a
unique ασ : TAσ → Aσ such that ισ ασ = ι�σ. The pair (Aσ, ασ) is a T-subalgebra
of (TA, μ).

Proof. Since ι�σ : TAσ → TA is the Kleisli composite of ισ : Aσ →σ TA and
id : TAσ → TAσ, ι�σ is σ-guarded by (cmp), so we obtain ασ such that ισασ = ι�σ
by the universal property of (Aσ, ισ). Since ι�σ = μATισ, it follows that ισ :
(Aσ, ασ) → (A,μA) is a morphism of functor algebras. Since monad algebras are
closed under taking functor subalgebras and ισ is monic as observed above, it
follows that (Aσ, ασ) is a T-subalgebra of (A,μA).
�
Proposition 10. 1. Suppose that a greatest σ-algebra (Aσ, ισ) exists. Then

(a) ισ is the greatest element in the class of all σ-guarded subobjects of TA;
(b) for every regular epic e : X → Y and every morphism f : Y → TA,

f e : X →σ TA implies that f : Y →σ TA.
2. Assuming that every morphism in C admits a factorization into a regular

epic and a monic, the converse of (1) is true: If (a) and (b) hold for (Aσ, ισ),
then (Aσ, ισ) is a greatest σ-algebra.

Proof. 1.: Part 1a is immediate; we show 1b. Given a regular epic e : X → Y
and a morphism f : Y → TA such that f e : X →σ TA, consider the diagram

Z X Y TA

Aσ

g

h e

w

f

ισ

where e is the coequalizer of h and g, and w exists uniquely by the universal
property of ισ. Since ισ w h = f e h = f e g = ισ w g and ισ is monic, w h = w g.

A Metalanguage for Guarded Iteration 205

Hence, there is u : Y → Aσ such that w = u e. Therefore we have ισ u e = ισ w =
f e. Since e is epi, this implies f = ισ u. Since ισ is σ-guarded, so is f by (cmp).

2.: Let f : X →σ TA, with factorization f = me into a mono m and a
regular epi e. By 1b, m is σ-guarded; by 1a, it follows that m, and hence f ,
factor through ισ, necessarily uniquely since ισ is monic.
�
Example 11. Let T be a strong monad on a distributive category C and let
Σ : C → C be an endofunctor such that all the fixpoints TΣX = νγ. T (X +Σγ)
exist. These extend to a strong monad TΣ , called the generalized coalgebraic
resumption monad transform of T [19]. Moreover, TΣ is guarded iterative with
f : X →σ TΣA iff out f : X → T (A + ΣTΣA) factors as T (σ̄ + id) g for some
g : X → T (A′ + ΣTΣA). Suppose that coproduct injections in C are monic
and T preserves monics. Then for every A ∈ |C| and σ there is at most one g
such that out f = T (σ̄ + id) g. This entails an isomorphism

Hom(X,T (A′ + ΣTΣA)) ∼= Homσ(X,TΣA)

obviously natural in X, from which we obtain by comparison with (6) that
Aσ = T (A′ + ΣTΣA).

Example 12. Let σ : A′′ A, whose complement is σ̄ : A′ A and let us
revisit Example 3.

1. T = νγ.Pω(-- +Act×γ) is an instance of Example 11, and thus Aσ = Pω(A′ +
Act × TA).

2. For T = νγ.Pω1(-- +Act × γ) under total guardedness, Aσ = TA indepen-
dently of σ. For the other notion of guardedness on T, Aσ is constructed in
analogy to Item 1.

3. For T = P being totally guarded, again Aσ = PA.
4. For T = P(Act� × --), it follows that Aσ = P(Act� × A′ + Act+ × A′′).
5. Finally, for T = P+, it follows by definition that Aσ = P(A′) × P+(A′′).

Assuming that greatest σ-algebras exist, we complement our metalanguage with
functional types A →Δ B where the index Δ serves to store information about
(guarded) exceptions of the curried function. Formally, these types are inter-
preted as A →Δ B = A → (B + Δ)! +σΔ

. In the term language, this is reflected
by the introduction of λ-abstraction and application, with syntax and semantics
as shown in Fig. 6, where ξ is the isomorphism from (6).

6 Operational Semantics and Adequacy

We proceed to complement our denotational semantics from Sects. 4 and 5 with
a big-step operational semantics. Following Geron and Levy [13], we choose the
simplest concrete monad T sensibly illustrating all the main features and model
it operationally. In [13] this is the maybe monad TX = X + 1 on Set, which
suffices to give a sensible account of total iteration. The +1 part is necessary for
modeling divergence. Since total iteration is still a guarded iteration, we could

206 S. Goncharov et al.

Fig. 6. Syntax (top) and semantics (bottom) of functional types.

formulate an adequate operational semantics over this monad too. To that end
we would need to assume that the only operation f : A → B[C] in Σc with
C �= 0 is some distinguished element tick : 1 → 0[1] whose denotation is the
unit of the monad (regarded as totally guarded). However, total iteration is
only a degenerate instance of guarded iteration, and therefore, here we replace
X + 1 with the guarded pre-iterative monad freely generated by an operation
put : N → 0[1] of outputting a natural number (say, to console), explicitly
(on Set): TX = (X × N�) ∪ Nω. More abstractly, TX is the final (X + N × --)-
coalgebra. The denotations in TX are of two types: pairs (x, τ) ∈ X × N� of a
value x and a finite trace τ of outputs (for terminating iteration) and infinite
traces π ∈ Nω of outputs (for non-terminating iteration).

We fix TX = (X × N�) ∪ Nω for the rest of the section. Let us spell out the
details of the structure of T, which is in fact an instance of Example 11 under
T = Σ = Id. The unit of T sends x to (x, 〈〉). Given f : X → TY , we have

f�(x, τ) =

{
(y, τ ++ τ ′) if f(x) = (y, τ ′),
τ ++ π if f(x) = π,

f�(π) = π.

for x ∈ X, τ ∈ N�, π ∈ Nω with ++ denoting concatenation of a finite trace
with a possibly infinite one. Guardedness for T is defined as follows: f : X →2

(Y + Z) × N� ∪ Nω if for every x ∈ X, either f(x) ∈ Nω or f(x) = (in1 y, τ) for
some y ∈ Y , τ ∈ N� or f(x) = (in2 z, τ) for some z ∈ Z, τ ∈ N+. Finally, given
f : X →2 T (Y + X),

f†(x) =

⎧⎪⎨
⎪⎩

(y, τ1 ++ · · · ++ τn) if f(x) = (in2 x1, τ1), . . . , f(xn) = (in1 y, τn),
τ1 ++ · · · ++ τn−1 ++ π if f(x) = (in2 x1, τ1), . . . , f(xn) = π,

τ1 ++ · · · if f(x) = (in2 x1, τ1), . . .

where the first clause addresses the situation when iteration finishes after finitely
many steps, the second one addresses the situation when we hit divergence wit-
nessed by some xn ∈ X reachable after finitely many iterations, and the third
clause addresses the remaining situation of divergence via unfolding the loop
at hand infinitely often. In the latter case, the guardedness assumption for f is

A Metalanguage for Guarded Iteration 207

Fig. 7. Operational semantics

crucial, as it ensures that each τi is nonempty, and therefore the resulting trace
τ1 ++ τ2 ++ · · · is indeed infinite.

Operationally, guardedness in the above sense is modeled by cutting the
control flow with the put command, which is the only one contributing to the
traces. Concretely, let Base = {N}, Σv = {zero : 1 → N, succ : N → N} and
Σc = {pred : N → (1+N)[0], put : N → 0[1]}. Operational semantics over these
data is given in Fig. 7. Note that the bottom rule for handleit relies on the fact
that each τi is nonempty, which can be easily established by induction.

Now we can state the main result of this section as follows.

208 S. Goncharov et al.

Theorem 13 (Adequacy). Let Δ | − �c p : B. Then,

1. If p ⇓ ret v, τ then �Δ | − �c p : B� = (in1 v, τ) ∈ (B + Δ) × N�.
2. If p ⇓ raisex v, τ and x : Eg is in Δ then �Δ | − �c p : B� = (in2 inx v, τ) ∈

(B + Δ) × N+.
3. If p ⇓ raisex v, τ and x : Eu is in Δ then �Δ | − �c p : B� = (in2 inx v, τ) ∈

(B + Δ) × N�.
4. If p ⇓ π, then �Δ | − �c p : B� = π ∈ Nω.

Proof (Idea). The proof runs analogously to [13] by showing a stronger type-
indexed property used as an induction invariant in the style of Tait [35].
�

7 Conclusions and Further Work

We have instantiated the notion of abstract guardedness [18,19] to a multi-
variable setting in the form of a metalanguage for guarded iteration, keeping
in touch with the seminal ideas of Moggi [28] and the fine-grain call-by-value
perspective [24]. As a side product, this additionally resulted in a semantically
justified unification of (guarded) iteration and exception handling, extending
previous work by Geron and Levy [13].

In future work, we aim to investigate further applications of our unifying
machinery, on the one hand for devising denotational (e.g. final coalgebra based)
models for existing operational models, and on the other hand for developing
operational accounts of phenomena whose denotational models can be taken as
input. One prospective example is suggested by work of Nakata and Uustalu [33],
who give a coinductive big-step trace semantics for a while-language. We conjec-
ture that this work has an implicit guarded iterative monad TR under the hood,
for which guardedness cannot be defined using the standard argument based on
a final coalgebra structure of the monad because TR is not a final coalgebra. The
relevant notion of guardedness is thus to be identified. Moreover, we will explore
the relation of our work to call-by-push-value languages, using in particular a
suitable notion of guardedness in Eilenberg-Moore algebras.

References

1. Abramsky, S.: Intensionality, definability and computation. In: Baltag, A., Smets,
S. (eds.) Johan van Benthem on Logic and Information Dynamics, pp. 121–142.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06025-5 5

2. Appel, A.W., Melliès, P.A., Richards, C.D., Vouillon, J.: A very modal model
of a modern, major, general type system. In: Proceedings of 34th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
2007, January 2007, Nice, pp. 109–122. ACM Press, New York (2007). https://doi.
org/10.1145/1190216.1190235

3. Benton, N., Kennedy, A.: Exceptional syntax. J. Funct. Program. 11(4), 395–410
(2001). https://doi.org/10.1017/s0956796801004099

4. Bergstra, J., Ponse, A., Smolka, S. (eds.): Handbook of Process Algebra. Elsevier,
New York City (2001). https://doi.org/10.1016/b978-0-444-82830-9.x5017-6

https://doi.org/10.1007/978-3-319-06025-5_5
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1145/1190216.1190235
https://doi.org/10.1017/s0956796801004099
https://doi.org/10.1016/b978-0-444-82830-9.x5017-6

A Metalanguage for Guarded Iteration 209

5. Birkedal, L., Møgelberg, R., Schwinghammer, J., Støvring, K.: First steps in syn-
thetic guarded domain theory: step-indexing in the topos of trees. Log. Methods
Comput. Sci. 8(4), 1 (2012). https://doi.org/10.2168/lmcs-8(4:1)2012

6. Bloom, S., Ésik, Z.: Iteration Theories: The Equational Logic of Iterative Pro-
cesses. EATCS Monographs on Theoretical Computer Science. Springer, Heidel-
berg (1993). https://doi.org/10.1007/978-3-642-78034-9

7. Brookes, S., Van Stone, K.: Monads and comonads in intensional semantics. Tech-
nical report CMU-CS-93-140, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, PA (1993)

8. Carboni, A., Lack, S., Walters, R.: Introduction to extensive and distributive cat-
egories. J. Pure. Appl. Algebra 84, 145–158 (1993). https://doi.org/10.1016/0022-
4049(93)90035-r

9. Clouston, R., Bizjak, A., Grathwohl, H.B., Birkedal, L.: The guarded lambda-
calculus: programming and reasoning with guarded recursion for coinductive types.
Log. Methods Comput. Sci. 12(3), 7 (2016). https://doi.org/10.2168/lmcs-12(3:
7)2016

10. Cockett, J.R.B.: Introduction to distributive categories. Math. Struct. Comput.
Sci. 3(3), 277–307 (1993). https://doi.org/10.1017/s0960129500000232

11. Coquand, T.: Infinite objects in type theory. In: Barendregt, H., Nipkow, T. (eds.)
TYPES 1993. LNCS, vol. 806, pp. 62–78. Springer, Heidelberg (1994). https://doi.
org/10.1007/3-540-58085-9 72

12. Escardó, M.: A metric model of PCF. Paper Presented at Workshop on Realiz-
ability Semantics and Applications, June–July 1999, Trento (1999). http://www.
cs.bham.ac.uk/∼mhe/papers/metricpcf.pdf

13. Geron, B., Levy, P.B.: Iteration and labelled iteration. Electron. Notes Theor.
Comput. Sci. 325, 127–146 (2016). https://doi.org/10.1016/j.entcs.2016.09.035

14. Giménez, E.: Codifying guarded definitions with recursive schemes. In: Dybjer, P.,
Nordström, B., Smith, J. (eds.) TYPES 1994. LNCS, vol. 996, pp. 39–59. Springer,
Heidelberg (1995). https://doi.org/10.1007/3-540-60579-7 3

15. Giménez, E.: Structural recursive definitions in type theory. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 397–408. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0055070

16. Goncharov, S., Milius, S., Rauch, C.: Complete Elgot monads and coalgebraic
resumptions. Electron. Notes Theor. Comput. Sci. 325, 147–168 (2016). https://
doi.org/10.1016/j.entcs.2016.09.036

17. Goncharov, S., Rauch, C., Schröder, L.: Unguarded recursion on coinductive
resumptions. Electron. Notes Theor. Comput. Sci. 319, 183–198 (2015). https://
doi.org/10.1016/j.entcs.2015.12.012

18. Goncharov, S., Schröder, L.: Guarded traced categories. In: Baier, C., Dal Lago,
U. (eds.) FoSSaCS 2018. LNCS, vol. 10803, pp. 313–330. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-89366-2 17

19. Goncharov, S., Schröder, L., Rauch, C., Piróg, M.: Unifying guarded and unguarded
iteration. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017. LNCS, vol.
10203, pp. 517–533. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-54458-7 30

20. Hancock, P., Setzer, A.: Guarded induction and weakly final coalgebras in depen-
dent type theory. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topol-
ogy and Analysis. Towards Practicable Foundations for Constructive Mathematics.
Oxford Logic Guides, vol. 48, pp. 115–134. Clarendon Press, Oxford (2005)

21. Hyland, M., Plotkin, G., Power, J.: Combining effects: sum and tensor. Theor.
Comput. Sci. 357(1–3), 70–99 (2006). https://doi.org/10.1016/j.tcs.2006.03.013

https://doi.org/10.2168/lmcs-8(4:1)2012
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1016/0022-4049(93)90035-r
https://doi.org/10.1016/0022-4049(93)90035-r
https://doi.org/10.2168/lmcs-12(3:7)2016
https://doi.org/10.2168/lmcs-12(3:7)2016
https://doi.org/10.1017/s0960129500000232
https://doi.org/10.1007/3-540-58085-9_72
https://doi.org/10.1007/3-540-58085-9_72
http://www.cs.bham.ac.uk/~mhe/papers/metricpcf.pdf
http://www.cs.bham.ac.uk/~mhe/papers/metricpcf.pdf
https://doi.org/10.1016/j.entcs.2016.09.035
https://doi.org/10.1007/3-540-60579-7_3
https://doi.org/10.1007/BFb0055070
https://doi.org/10.1016/j.entcs.2016.09.036
https://doi.org/10.1016/j.entcs.2016.09.036
https://doi.org/10.1016/j.entcs.2015.12.012
https://doi.org/10.1016/j.entcs.2015.12.012
https://doi.org/10.1007/978-3-319-89366-2_17
https://doi.org/10.1007/978-3-662-54458-7_30
https://doi.org/10.1007/978-3-662-54458-7_30
https://doi.org/10.1016/j.tcs.2006.03.013

210 S. Goncharov et al.

22. Jones, S.P., et al.: Haskell 98: a non-strict, purely functional language (1999)
23. Krishnaswami, K., Benton, N.: Ultrametric semantics of reactive programs. In:

Proceedings of 26th Annual IEEE Symposium on Logic in Computer Science. LICS
2011, June 2011, Toronto, ON, pp. 257–266. IEEE CS Press, Washington, DC
(2011). https://doi.org/10.1109/lics.2011.38

24. Levy, P.B., Power, J., Thielecke, H.: Modelling environments in call-by-value pro-
gramming languages. Inf. Comput. 185(2), 182–210 (2003). https://doi.org/10.
1016/s0890-5401(03)00088-9

25. Mac Lane, S.: Categories for the Working Mathematician. Graduate Texts in Math-
ematics, vol. 5. Springer, New York (1971). https://doi.org/10.1007/978-1-4612-
9839-7

26. Milius, S.: Completely iterative algebras and completely iterative monads. Inf.
Comput. 196(1), 1–41 (2005). https://doi.org/10.1016/j.ic.2004.05.003

27. Milner, R.: Communication and Concurrency. Prentice-Hall, Upper Saddle River
(1989)

28. Moggi, E.: A modular approach to denotational semantics. In: Pitt, D.H., Curien,
P.-L., Abramsky, S., Pitts, A.M., Poigné, A., Rydeheard, D.E. (eds.) CTCS 1991.
LNCS, vol. 530, pp. 138–139. Springer, Heidelberg (1991). https://doi.org/10.1007/
BFb0013462

29. Nakano, H.: A modality for recursion. In: Proceedings of 15th Annual IEEE Sym-
posium on Logic in Computer Science. LICS 2000, June 2000, Santa Barbara, CA,
pp. 255–266. IEEE CS Press, Washington, DC (2000). https://doi.org/10.1109/
lics.2000.855774

30. Nakata, K.: Resumption-based big-step and small-step interpreters for While with
interactive I/O. In: Danvy, O., Shan, C. (eds.) Proceedings of IFIP Working Con-
ference on Domain-Specific Languages. DSL 2011, Electronic Proceedings in The-
oretical Computer Science, September 2011, Bordeaux, vol. 66, pp. 226–235. Open
Publishing Association, Sydney (2011). https://doi.org/10.4204/eptcs.66.12

31. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step
semantics of While. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 488–
506. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6 26

32. Nakata, K., Uustalu, T.: Resumptions, weak bisimilarity and big-step semantics
for While with interactive I/O: an exercise in mixed induction-coinduction. In:
Aceto, L., Sobocinski, P. (eds.) Proceedings of 7th Workshop on Structural Opera-
tional Semantics. SOS 2010, Electronic Proceedings in Theoretical Computer Sci-
ence, August 2010, Paris. vol. 32, pp. 57–75. Open Publishing Association, Sydney
(2010). https://doi.org/10.4204/eptcs.32.5

33. Nakata, K., Uustalu, T.: A Hoare logic for the coinductive trace-based big-step
semantics of While. Log. Methods Comput. Sci. 11(1), 1 (2015). https://doi.org/
10.2168/lmcs-11(1:1)2015

34. Plotkin, G., Power, J.: Adequacy for algebraic effects. In: Honsell, F., Miculan,
M. (eds.) FoSSaCS 2001. LNCS, vol. 2030, pp. 1–24. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45315-6 1

35. Tait, W.W.: Intensional interpretations of functionals of finite type I. J. Symb.
Log. 32(2), 198–212 (1967). https://doi.org/10.2307/2271658

36. Turi, D., Plotkin, G.: Towards a mathematical operational semantics. In: Proceed-
ings of 12th Annual IEEE Symposium on Logic in Computer Science. LICS 1997,
June–July 1997, Warsaw, pp. 280–291. IEEE CS Press, Washington, DC (1997).
https://doi.org/10.1109/lics.1997.614955

37. Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cam-
bridge (1993)

https://doi.org/10.1109/lics.2011.38
https://doi.org/10.1016/s0890-5401(03)00088-9
https://doi.org/10.1016/s0890-5401(03)00088-9
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1007/978-1-4612-9839-7
https://doi.org/10.1016/j.ic.2004.05.003
https://doi.org/10.1007/BFb0013462
https://doi.org/10.1007/BFb0013462
https://doi.org/10.1109/lics.2000.855774
https://doi.org/10.1109/lics.2000.855774
https://doi.org/10.4204/eptcs.66.12
https://doi.org/10.1007/978-3-642-11957-6_26
https://doi.org/10.4204/eptcs.32.5
https://doi.org/10.2168/lmcs-11(1:1)2015
https://doi.org/10.2168/lmcs-11(1:1)2015
https://doi.org/10.1007/3-540-45315-6_1
https://doi.org/10.2307/2271658
https://doi.org/10.1109/lics.1997.614955

Generating Armstrong ABoxes for ALC
TBoxes

Henriette Harmse1(B), Katarina Britz2, and Aurona Gerber1

1 Department of Informatics and Centre of AI Research, University of Pretoria,
Private Bag X20, Hatfield 0028, South Africa

henrietteharmse@gmail.com, aurona.gerber@up.ac.za
2 Department of Information Science and Centre of AI Research,

Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
abritz@sun.ac.za

Abstract. A challenge in ontology engineering is the mismatch in exper-
tise between the ontology engineer and domain expert, which often leads
to important constraints not being specified. Domain experts often only
focus on specifying constraints that should hold and not on specifying
constraints that could possibly be violated. In an attempt to bridge this
gap we propose the use of “perfect test data”. The generated test data is
perfect in that it satisfies all the constraints of an application domain that
are required, including ensuring that the test data violates constraints
that can be violated. In the context of Description Logic ontologies we
call this test data an “Armstrong ABox”, a notion derived from Arm-
strong relations in relational database theory. In this paper we detail the
theoretical development of Armstrong ABoxes for ALC TBoxes as well
as an algorithm for generating such Armstrong ABoxes. The proposed
algorithm is based, via the ontology completion algorithm of Baader
et al. on attribute exploration in formal concept analysis.

1 Introduction

A challenge in ontology design is to know whether all the required constraints
that correctly represent a domain of interest are specified. Any given set of
constraints over a given domain can be classified into constraints that should
hold and constraints that can possibly be violated. Ensuring that all constraints
are classified explicitly avoids the situation where omission results in a constraint
by default being classified as a constraint that can be violated.

The problem of incomplete specifications is well documented [5,6] and could
be the result of domain experts that concentrate on specifying facts that should
hold (such as “all prime numbers are integers”) and not on facts that could pos-
sibly be violated (such as “all prime numbers are odd”). The problem of incom-
plete specifications is often exacerbated by a mismatch in expertise between an
ontology engineer and domain expert. An ontology engineer usually has lim-
ited knowledge about the application domain and domain experts have limited
knowledge regarding ontology engineering. However, domain experts are often
c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 211–230, 2018.
https://doi.org/10.1007/978-3-030-02508-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_12&domain=pdf

212 H. Harmse et al.

well versed in the data of their application domain [13]. This motivates the idea
of presenting the domain expert with “perfect test data” that satisfy the required
constraints and refute constraints that could be violated. In relational database
theory this idea of perfect test data is realized as Armstrong relations [8], which
we extend here to description logics (DLs) as Armstrong ABoxes.

Description logics (DLs) are syntactic variants of fragments of first-order logic
that are specifically designed for the conceptual representation of an application
domain in terms of concepts and relationships between concepts. A key design
goal for DLs is to ensure that the basic reasoning procedures like satisfiability
and classification are decidable. A DL ontology consists of a TBox and an ABox.
The TBox is used to define concepts and relationships between concepts and the
ABox is used to assert knowledge regarding the domain of interest [1]. In this
paper we concentrate on the DL ALC, which we define in Sect. 2.1.

Armstrong ABoxes assume that an ontology engineer has created a TBox in
collaboration with a domain expert, but it is unclear whether the TBox describes
the application domain faithfully. By generating “perfect test data” for a given
TBox, constraints that follow, as well as constraints that do not follow from
the TBox, can be made explicit through example data. The Armstrong ABox
(example data) can be reviewed to ensure the TBox is not over- or underspecified,
after which the TBox can be amended as needed: if the TBox is overspecified
constraints can be removed and if the TBox is underspecified constraints can be
added. A new Armstrong ABox can then be generated for the amended TBox,
which again can be reviewed until the TBox and Armstrong ABox accurately
specify constraints that should hold and constraints that could be violated.

Armstrong ABoxes are formalized relative to particular classes of constraints,
with each class of constraints resulting in a different Armstrong ABox formaliza-
tion. Different Armstrong ABox formalizations may need to use different algo-
rithms to generate an Armstrong ABox for the particular formalization. In pre-
vious research we have defined Armstrong ABoxes for the class of constraints
consisting of n-ary relations with uniqueness- and null-free constraints [12], of
which the practical applicability has been illustrated on RDF datasets [11]. How-
ever, this did not address the broader problem of the class of constraints that
can be formulated using the full expressivity of a given DL. The current paper
addresses this limitation by providing (1) a formalization for Armstrong ABoxes
for the class of constraints that can be formulated in ALC and (2) the algorithms
necessary for generating an Armstrong ABox for an ALC TBox.

This paper is structured as follows: In Sect. 2 we review key definitions and
results that are of importance in the development of Armstrong ABoxes, in
Sect. 3 we provide the core definitions and proofs related to Armstrong ABoxes
and Sect. 4 concludes this paper.

2 Preliminaries

We define the syntax and semantics for ALC in Sect. 2.1. The algorithm for
generating an Armstrong ABox for an ALC TBox is based on the ontology com-
pletion algorithm of Baader et al. [2] (Sect. 2.5), which is based on the attribute

Generating Armstrong ABoxes for ALC TBoxes 213

exploration algorithm of formal concept analysis (FCA) [9]. Core FCA definitions
are reviewed in Sect. 2.3 and the attribute exploration algorithm is reviewed in
Sect. 2.4. A key insight used in attribute exploration is to enumerate closed sets
in lectic order, which we review in Sect. 2.2.

2.1 Description Logics (DLs)

The syntactic building blocks for an arbitrary DL are based on the disjoint sets
NC , NR and NI , where NC is a set of concept names, NR is a set of role names
and NI is a set of individual names. Concept names represent classes of entities
(called concepts) that share common characteristics, roles names denote binary
relations (called roles) that exist between individuals and individual names are
used to refer to specific instances (called individuals) in a domain of interest [1].

ALC concept descriptions (referred to as concepts) are constructed using the
following concept constructors

C := � | A | ¬C | C1 � C2 | ∃r.C

where A is an atomic concept, C, C1 and C2 are (possibly complex) concepts
and r is a role. The constructors � and ∀, and the special concept ⊥ are defined
in terms of the others in the usual way [1].

The TBox consists of axioms C1 � C2 called general concept inclusions
(GCIs) stating that C1 is subsumed by C2. The ABox consists of assertions
C(x) and r(x1, x2) stating respectively that individual x is an instance of C and
that individuals x1 and x2 are associated via role r.

The semantics of concepts is given in terms of an interpretation I = (I , ·I),
where 	I (the domain) is a non-empty set, and ·I (the interpretation function)
maps each concept name A ∈ NC to a set AI ⊆ 	I , each role name r ∈ NR to a
binary relation rI ⊆ 	I × 	I , and each individual name a ∈ NI to an element
aI ∈ 	I .

Given an interpretation I = (I , ·I), the function ·I is extended to interpret
complex concepts in the following way:

�I = �I , (¬C)I = �I\CI , (C1 � C2)
I = CI

1 ∩ CI
2

(∃r.C)I = {x ∈ �I |A y exists such that (x, y) ∈ rI and y ∈ CI}

When an interpretation I satisfies a GCI or assertion α it is denoted by
I � α. Satisfaction of α is defined as follows: I � C1 � C2 iff CI

1 ⊆ CI
2 ,

I � C(x) iff xI ∈ CI , and I � r(x, y) iff (xI , yI) ∈ rI . I is a model of a TBox
T or an ABox A if it satisfies all its GCIs or assertions. In case I is a model of
both T and A, it is also called a model of the ontology (T ,A) and (T ,A) is said
to be consistent if such a model exists.

An axiom or assertion α is said to be entailed by an ontology O, written
as O � α, if every model of O is also a model of α. For a set of axioms Σ =
{σ0, . . . , σn}, we abbreviate O � σ0, . . . ,O � σn with O � Σ. If O is empty, we
abbreviate O � α as � α.

214 H. Harmse et al.

2.2 Closed Sets in Lectic Order

A set M with n elements has 2n subsets. The set of all subsets of M is denoted
by 2M and is called the powerset of M . For S a finite set and C ⊆ 2S , C is a
set of subsets that is called a closure system on S if S ∈ C, and B1, B2 ∈ C
implies B1 ∩ B2 ∈ C [7]. A mapping function ϕ : 2S → 2S is called a closure
operator on S that assigns a closure ϕ(B) ⊆ S to each subset B ⊆ S if it is:

1. extensive: B ⊆ ϕ(B) for all B ⊆ S,
2. monotone: B1 ⊆ B2 implies ϕ(B1) ⊆ ϕ(B2), and
3. idempotent: ϕ(ϕ(B)) = ϕ(B).

A subset B ⊆ S is called a closed set w.r.t. ϕ if ϕ(B) = B [7].
To generate all ϕ-closed sets for a set M , it is necessary to generate the

closures for all A ⊆ M w.r.t. ϕ. Assuming M consists of n elements, 2n closures
will be computed. Moreover, multiple sets A ⊆ M may have the same closure.
To only generate unique closures, lookups will have to be performed 2n times. A
more efficient means to generate closures for all subsets is to generate each closure
only once. This can be achieved by generating closures in the lectic order [9].

Definition 1 [9]. Assume that M = {m1, . . . ,mn} and fix some linear order
m1 < . . . < mn on M . This order imposes a linear order on 2M , called the
lectic order, which is denoted by <: For mi ∈ M and A,B ⊆ M the order <i

is defined as

A <i B iff mi ∈ B,mi /∈ A and ∀j < i.(mj ∈ A ⇔ mj ∈ B).

The order < is the union of the orders <i, i.e.,

A < B iff A <i B for some mi ∈ M.

Definition 1 states that A is lectically smaller than B if the smallest i for
which the element mi differs between sets A and B, mi belongs to B and not
to A. Note that < extends the strict subset order because if A ⊂ B it follows
that A < B since all the elements in which sets A and B differ belong to B.
Thus ∅ is the smallest and M the largest set w.r.t. <.

All ϕ-closed sets can be generated exactly once for a set M when the closed
sets are generated in the lectic order. Given a set A ⊆ M it is possible to
determine the next closed set in the lectic order, which is shown in Proposition 1.

Proposition 1 [9]. Given a closure operator ϕ on M and a ϕ-closed set
A ⊂ M , the next ϕ-closed set following A in the lectic order is

ϕ((A ∩ {m1, . . . ,mi−1}) ∪ {mi})

where i is maximal such that A <i ϕ((A ∩ {m1, . . . ,mi−1}) ∪ {mi}).

The NextClosure algorithm (Algorithm 1) finds the next closed set in the
lectic order for a given set A ⊆ M and a closure operator ϕ. To find an m
with maximal index i it traverses M in reverse linear order. Two cases need to

Generating Armstrong ABoxes for ALC TBoxes 215

be considered: either m ∈ A or m �∈ A. If m ∈ A we can remove m from A since
it will not result in a ϕ-closed set that is different from A. If m �∈ A we calculate
B := ϕ(A ∪ {m}) and if B \ A has no element < m, we have found our next
ϕ-closed set, otherwise we continue to the next m in reverse linear order. If no
next ϕ-closed set can be found, the empty set is returned. All closed sets for M
and ϕ can be generated by iterating through closed sets using NextClosure
starting with A := ϕ(∅) and terminating when A = M .

2.3 Formal Concept Analysis (FCA)

FCA [9] is a field of applied mathematics that is based on a lattice-theoretic
formalization of the notions of concept and conceptual hierarchy.

Definition 2 [9]. A formal context is a triple K = (G,M, I), where G is a set
of objects, M is a set of attributes, and I ⊆ G × M is a relation that associates
each object g with the attributes satisfied by g. In order to express that an object
g is in relation I with an attribute m, we write gIm.

A formal context can be visualised as a crosstable, where the rows represent
the objects, and the columns represent the attributes. A cross in column m of
row g means that object g has attribute m, absence of a cross means that object
g does not have attribute m.

Let K = (G,M, I) be a formal context. For a set of objects A ⊆ G, the
intent A′ of A is the set of attributes that are satisfied by all objects in A,
which is defined as A′ := {p ∈ M |∀a ∈ A : aIp}. For a set of attributes B ⊆ M ,
the extent B′ of B is the set of objects that satisfy all attributes in B, which
is defined as B′ := {o ∈ G | ∀b ∈ B : oIb}. A formal concept of K is a pair
(A,B) with A ⊆ G, B ⊆ M , A′ = B and B′ = A. The sets A and B are called
the concept extent and the concept intent of the formal concept (A,B),
respectively [9].

For the operators ·′ and ·′′ (·′ applied twice) the following statements hold [9]:

1. A1 ⊆ A2 implies A′
2 ⊆ A′

1 (resp. B1 ⊆ B2 implies B′
2 ⊆ B′

1),
2. A1 ⊆ A′′

1 (resp. B1 ⊆ B′′
1), and

3. the ·′′-operator is a closure operator on both G and M and the set of concept
intents (resp. concept extents) is a closure system on M (resp. G).

A formal context can be analyzed by studying the implications between
attributes in the context, which motivates the next definition.

Definition 3 [9]. Let K = (G,M, I) be a formal context. An implication
between the attributes in M is a pair of sets L,R ⊆ M , usually written as
L → R. An implication L → R holds in K if every object of K that has all the
attributes in L also has all the attributes in R, i.e. if L′ ⊆ R′. We denote the
set of implications that hold in K by Imp(K). A subset X ⊆ M respects an
implication L → R if L � X or R ⊆ X. A subset X ⊆ M respects a set
L of implications if X respects every implication in L. An implication L → R
follows from a set of implications L if every subset X ⊆ M that respects all
implications in L also respects L → R.

216 H. Harmse et al.

Generating Armstrong ABoxes for ALC TBoxes 217

Proposition 2. If L is a set of implications over M , then Mod(L) :=
{X ⊆ M | X respects L} is a closure system on M . If L = Imp(K) for some
formal context K, then Mod(L) is the system of all concept intents.

The implication closure operator for the closure system Mod(L) is given
by L : 2M → 2M , which can be defined iteratively as

XL := X ∪
⋃

{R | L → R ∈ L, L ⊆ X}

XLL := XL ∪
⋃

{R | L → R ∈ L, L ⊆ XL}
...

From the sets XL,XLL,XLLL, . . . a set L(X) := XL...L is obtained with
L(X)L = L(X), which can be calculated by Algorithm 2. For a given set X of
attributes and a given set L of implications, it repeatedly iterates through the
implications in L, expanding X with R and removing L → R from L whenever
L ⊆ X. Once X can no longer be expanded, the algorithm terminates [9].

2.4 Attribute Exploration

Attribute exploration is used where K is not known but can become known by
posing questions to a domain expert. It is assumed that the domain expert is
able to answer whether an implication holds in K or, in case an implication does
not hold, give a counterexample of the implication. In order to make efficient use
of an expert’s time, attribute exploration uses minimal implication bases. The
set of implications L is an implication base of K if

1. L is sound for K, i.e. every implication from L holds in K,
2. L is complete for K, i.e. every implication that holds in K follows from L,

and
3. L is non-redundant for K, i.e. no implication in L follows from other impli-

cations in L.

For a given formal context K multiple implication bases can exist, of which
the simplest is the implication base consisting of all implications. But because
such an implication base can be too large to be practical, there is an interest
in implication bases with minimal cardinality. Duquenne and Guigues showed
that a minimal implication base can be constructed for every formal context.
This implication base relies on the notion of pseudo-intents, which is defined
recursively as follows – A subset of attributes L ⊆ M is called a pseudo-intent
of the context K = (G,M, I) iff (1) L �= L′′ (L is not a concept intent), and (2)
if L0 � L is a pseudo-intent and a proper subset of L, then L′′

0 ⊆ L holds [9,10].

Theorem 1 [9,10]. {L → L′′ | L is a pseudo-intent of K} is a set of implica-
tions that is a minimal implication base of K = (G,M, I), called the Duquenne-
Guigues base of K.

218 H. Harmse et al.

Algorithm 3 details the attribute exploration algorithm. It takes as input a
set M of attributes and a context K. The implication set L is initialized as
the empty set. Based on Theorem 1 it iterates through the pseudo-intents of K
(line 3), starting from the smallest L-closed left-hand side (line 1), asking the
expert implication questions of the form L → L′′ (line 4). If the expert answers
“yes”, the implication L → L′′ is added to the implication set L and the next
closed set in the lectic order is determined (line 7). If the expert answers “no”,
the expert should provide a counterexample (line 9) with which the context K
is expanded (line 10). For this reason L is kept constant while L′′ is recalculated
(line 3). When L is not a pseudo-intent, the next L-closed set is considered
(line 13). It is proven that Algorithm 3 terminates and on termination returns
the completed context K and L, where L is a Duquenne-Guigues base of K [9].

2.5 Ontology Completion

Classical attribute exploration assumes that an expert has complete information.
I.e., the absence of a cross in a crosstable means that object g does not have
attribute m. However, in practice experts often only have partial knowledge.
This inspired the introduction of partial contexts [2,9,17,18]. The formalization
of partial contexts we will use here is based on Baader et al. [2,18].

Definition 4 [18]. A partial object description (pod) is a tuple (A,S) where
A,S ⊆ M are such that A∩S = ∅. We call such a pod a full object description
(fod) if A ∪ S = M . A set of pods is called a partial context and a set of fods
a full context.

The pod (A,S) states that the object it describes is known to satisfy all
attributes from A and to not satisfy any attribute from S. A full context coincides
with a formal context: a set of fods K corresponds to the formal context KK :=
(K,M, I), where (A,S)Im if and only if m ∈ A for all (A,S) ∈ K. A partial
context can be extended by adding new pods or extending existing pods.

Definition 5 [18]. Let L be a set of implications and K a partial context. An
implication is called undecided w.r.t. K and L if it neither follows from L nor is
refuted by K. It is decided w.r.t. K and L if it is not undecided w.r.t. K and L.

The attribute exploration of partial contexts tries to decide all undecided
implications by either adding the implication to L or extending K such that it
refutes the implication. If all implications are decided, then the goal is achieved.

Let (T ,A) be a consistent DL ontology and M a finite set of concept descrip-
tions. Any individual name a occurring in A gives rise to the partial object
description podT ,A(a,M) := (A,S) where A := {C ∈ M |T ,A � C(a)} and
S := {C ∈ M |T ,A � ¬C(a)}, and the whole ABox induces the partial context

KT ,A(M) := {podT ,A(a,M)|a is an individual name occurring in A}.

Generating Armstrong ABoxes for ALC TBoxes 219

Any element d ∈ 	I of an interpretation I gives rise to the full example

fodI(d,M) := (A,S) where A := {C ∈ M | d ∈ CI} and

S := {C ∈ M | d ∈ (¬C)I},

and the whole interpretation induces the full context KI(M) :=
{fodI(d,M) | d ∈ 	I}. Note that fodI(d,M) is indeed a fod since every d ∈ 	I

satisfies either d ∈ CI or d ∈ 	I\CI = (¬C)I .

Definition 6 [18]. The implication L → R over the attributes M is refuted
by the ontology (T ,A) if it is refuted by KT ,A(M), and it is refuted by the
interpretation I if it is refuted by KI(M). If an implication is not refuted by
I, then we say that it holds in I. The set of implications over M that hold in
I is denoted by ImpM (I). In addition, we say that L → R follows from T if
�L �T �R, where �L and �R respectively stand for the conjunctions

�
C∈L C

and
�

D∈R D, and �L �T �R is a shorthand for T � �L � �R.

Similar to attribute exploration it is sufficient to only consider implications
whose left-hand sides are L-closed with the right-hand side the largest R such
that L → R is not refuted by KT ,A(M):

Proposition 3 [18]. For a left-hand side L and a partial context KT ,A(M), the
largest right-hand side such that L → KT ,A(L) is not refuted by KT ,A(M) is

KT ,A(L) := M\
⋃

{D ∈ M | ∃a. L ⊆ {C | T ,A � C(a)} ∧ T ,A � ¬D(a)}.

The aim is for the ontology to describe an intended model. For a fixed set M of
concepts, the ontology is complete if it contains all the relevant knowledge about
implications between these concepts: if an implication holds in the intended
interpretation, then it should follow from the TBox, and if it does not hold in
the intended interpretation, then the ABox should contain a counterexample.

Definition 7 [18]. Let (T ,A) be a DL ontology, M a finite set of concept
descriptions, and I a model of (T ,A). Then (T ,A) is M -complete w.r.t. I if
the following three statements are equivalent for all implications L → R over M :

1. L → R holds in I.
2. L → R follows from T .
3. L → R is not refuted by (T ,A).

Let (T0,A0) be a DL ontology that also has I as a model. Then (T ,A) is a
completion of (T0,A0) if it is complete and extends (T0,A0), i.e., T0 ⊆ T and
A0 ⊆ A.

The attribute exploration algorithm for partial contexts can be adapted for
ontology completion [2,18] for which Proposition 4 and Theorem 2 state impor-
tant results.

220 H. Harmse et al.

Proposition 4 [18]. Let (T ,A) := (T0,A0) be an ontology, M a finite set
of concept descriptions, and I a model of (T ,A). Then the ontology comple-
tion algorithm terminates, and upon termination outputs an ontology (T ,A) :=
(Tn,An) and a set of implications L such that

1. L is sound and complete for ImpM (I), and
2. (T ,A) := (Tn,An) refutes every implication that is refuted by I.

Theorem 2 [18]. Let (T ,A) := (T0,A0) be a ontology, M a finite set of concept
descriptions, and I a model of (T ,A) := (T0,A0), and let (T ,A) := (Tn,An)
be the knowledge base computed by the ontology completion algorithm. Then
(T ,A) := (Tn,An) is a completion of (T ,A) := (T0,A0).

3 Armstrong ABoxes

In this section we introduce Armstrong ABoxes for ALC TBoxes. The intent of
Armstrong ABoxes is to create example data that satisfy all required constraints
and violate all constraints that do not necessarily hold for a specific application
domain. In this way Armstrong ABoxes are the DL equivalent of Armstrong
relations of relational database theory.

3.1 Formal Definitions

For convenience the notation
�

Ci and
�

Dj will respectively be used as short-
hand for Ci0 � . . . � Cin and Dj0 � . . . � Djm .

To determine whether there are axioms that have been fortuitously missed,
the ontology engineer wants to add assertions to the Armstrong ABox that serve
as test data that violates these candidate axioms. This idea is motivated based
on experimental results for Armstrong relations, where it was shown that experts
more readily recognize meaningful constraints that have been missed when the
missed constraints are violated by test data [14].

Definition 8. Let T be a consistent ALC TBox and let

σ′ :=
�

Ci �
�

Dj

for which T � σ′ holds. An ABox A′ is a violating exemplar of the entailment
T � σ′ if {

(
�

Ci)(x), (¬
�

Dj)(x)
}

⊆ A′

holds for some named individual x that does not appear in any other assertions
of A′. This is denoted by A′ � σ′.

Similar to Armstrong relations, Armstrong ABoxes include assertions that
represent example data that satisfy the constraints of the TBox.

Generating Armstrong ABoxes for ALC TBoxes 221

Definition 9. Let T be a consistent ALC TBox, and let

σ :=
�

Ci �
�

Dj

for which T � σ and � σ holds. An ABox A is a satisfying exemplar of the
entailment T � σ if {

(
�

Ci)(x), (
�

Dj)(x)
}

⊆ A

holds for some named individual x that does not appear in any other assertions
of A. This is denoted by A � σ.

In general, for a given TBox T , the number of non-entailments and entail-
ments can be infinite. For this reason, similar to ontology completion, Armstrong
ABoxes consider for a TBox T a finite set M of interesting concept descriptions
for which a partial context KT ,A(M) can be constructed. The number of implica-
tions that can hold in such a context is finite. This is the reason why Definitions 8
and 9 are defined in terms of assertions contained in A and A′ respectively, rather
than assertions entailed by (T ,A) and (T ,A′) respectively.

In Sect. 3.3 a variation of ontology completion/attribute exploration will be
used to generate Armstrong ABoxes. One of the aspects in which Armstrong
ABoxes deviate from ontology completion is that for Armstrong ABoxes one
of two possibilities must hold for each implication considered: either it follows
from the TBox in which case a satisfying exemplar is added, or it does not follow
from the TBox in which case a violating exemplar is added. To ensure that every
implication not following from the TBox can indeed be refuted, we introduce the
following definition.

Definition 10. Let M be a set of concept descriptions. M is said to be per-
missible if it is finite and no concept in M is equivalent to �. Furthermore, we
define M→ to be the set of GCIs representing the finite set of all the implications
L → R over M .

Armstrong ABoxes assume that T is to the knowledge of the domain expert
an accurate representation of the application domain. As such an interpretation
I exists that is a model for T and is representative of the knowledge of the
domain expert. Hence, in accordance with Definition 7, for all implications that
hold over M it follows that L → R holds in I and L → R follows from T .

Definition 11. Let T be a consistent ALC TBox and let M be permissible. Let

Σ′ := {σ′ | T � σ′ and σ′ ∈ M→}.

Σ′ is called the candidate axiom set of T over M . Assume Σ′ = {σ′
0, . . . , σ

′
n}.

An ABox A′ is a violating exemplar of T � Σ′ if A′ � σ′
0, . . . ,A′ � σ′

n holds.
An ABox A′ is a minimal violating exemplar of T � Σ′ iff there is no ABox
A′

0 ⊂ A′ that is violating exemplar of T � Σ′.

222 H. Harmse et al.

Definition 12. Let T be a consistent ALC TBox and let M be permissible. Let

Σ := {σ | T � σ, � σ and σ ∈ M→}.

Σ is called the entailment set of T over M . Assume Σ = {σ0, . . . , σn}. An
ABox A is a satisfying exemplar of T � Σ if A � σ0, . . . ,A � σn holds,
which is denoted by A � Σ. An ABox A is a minimal satisfying exemplar
of T � Σ iff there is no ABox A0 ⊂ A that is satisfying exemplar of T � Σ.

For the sake of brevity “over M” will sometimes be dropped with the tacit
understanding that candidate axiom- and entailment sets are per definition con-
strained to some set M of concepts that is permissible.

The notion of an Armstrong ABox can now be defined. An Armstrong ABox
is denoted by A , which is pronounced as “A-shield”.

Definition 13. Let T be a consistent ALC TBox with Σ and Σ′ respectively
the entailment- and candidate axiom sets of T . A is said to be an Armstrong
ABox for T if and only if:

1. for every σ ∈ Σ, A � σ holds,
2. for every σ′ ∈ Σ′, A � σ′ holds and
3. there is no proper subset of A such that properties (1) and (2) hold.

O = T ∪ A is called an Armstrong ontology.

3.2 Key Attributes of Armstrong ABoxes

Before it can be proved that an Armstrong ontology is consistent, some inter-
mediate results need to be proven first.

Lemma 1. Let (T ,A) be a consistent ALC ontology. Let A1 be a set of asser-
tions that is satisfiable w.r.t. T . Further assume that there is no individual x
that appears in both A and A1. Then (T ,A ∪ A1) is consistent.

Proof. Since (T ,A) is consistent and (T ,A1) is consistent, A ∪ A1 will only be
inconsistent w.r.t. T if:

1. there is a clash in A ∪ A1, or
2. A ∪ A1 is unsatisfiable w.r.t. T .

For (1) to be the reason for the inconsistency there must be an individual x
such that A ∪ A1 � C(x) and A ∪ A1 � ¬C(x), which is impossible because of
the assumption that no individuals are shared between A and A1. For (2) to be
the reason for the inconsistency, there must be some entailment T � C � D for
which there is an individual x such that A ∪ A1 � C(x) and A ∪ A1 � ¬D(x),
which is impossible because no individuals are shared between A and A1. Since
A ∪ A1 is consistent w.r.t. T the consistency of T is not affected by A ∪ A1 (see
Proposition 3.6 of [16] or p. 142 of [3]). Hence, (T ,A ∪ A1) must be consistent.

Generating Armstrong ABoxes for ALC TBoxes 223

Lemma 2. Let T be a consistent ALC TBox with Σ′ = {σ′
0, . . . , σ

′
n} the can-

didate axiom set of T . Then (T ,A′
0 ∪ . . . ∪ A′

n) is consistent where A′
0, . . . ,A′

n

are minimal violating exemplars corresponding to Σ′.

Proof. Let A′
0 =

{
(
�

Ci)(x), (¬
�

Dj)(x)
}

be a violating exemplar. Then A′
0

will only be unsatisfiable w.r.t. T if

1. (¬
�

Dj) ≡ ⊥, or
2. A′

0 � C(y) and A′
0 � ¬C(y) for a concept C and a named individual y.

(1) is in contradiction with M being permissible and (2) is in contradiction with
A′

0 being a minimal violating exemplar (Definition 11). Thus, A′
0 is satisfiable

w.r.t. T and from Lemma 1 it follows that (T ,A′
0) is consistent. The result

follows by induction over the n minimal violating exemplars using Lemma1 and
the fact that no individuals are shared between exemplars (Definition 8).

Lemma 3. Let T be a consistent ALC TBox with Σ = {σ0, . . . , σn} the entail-
ment set of T . Then (T ,A0∪. . .∪An) is consistent where A0, . . . ,An are minimal
satisfying exemplars corresponding to Σ.

Proof. Let A0 =
{

(
�

Ci)(x), (
�

Dj)(x)
}

be a satisfying exemplar. That (T ,A0)
is consistent follows from Lemma 1, the fact that M is permissible and A0 being a
minimal satisfying exemplar. The result follows by induction over the n minimal
satisfying exemplars using Lemma 1 and the fact that no individuals are shared
between exemplars (Definition 9).

From the preceding definitions it follows that an Armstrong ABox can be
derived from TBox entailments and non-entailments. Conversely, TBox entail-
ments and non-entailments can be derived from Armstrong ABoxes.

Theorem 3. Let T be a consistent ALC TBox and let O := T ∪ A . Then:

1. O is consistent,
2. σ′ ∈ Σ′ if and only if A � σ′ and
3. σ ∈ Σ if and only if A � σ.

Proof. (1) That O is consistent is an immediate consequence of Lemmas 1, 2
and 3, the fact that an Armstrong ABox is minimal (it cannot be extended to
contain assertions that clash) and Σ ∩ Σ′ = ∅.

(2) Let σ′ :=
�

Ci �
�

Dj where σ′ ∈ M→. Then A � σ′ if and only if
{(

�
Ci)(x), (¬

�
Dj)(x)} ⊆ A for some new individual x such that T � σ′ if

and only if σ′ ∈ Σ′.
(3) Let σ :=

�
Ci �

�
Dj where σ ∈ M→. Then A � σ if and only if

{(
�

Ci)(x), (
�

Dj)(x)} ⊆ A for some new individual x such that T � σ if and
only if σ ∈ Σ.

224 H. Harmse et al.

3.3 Algorithm

The ontology completion algorithm can be adapted to generate Armstrong
ABoxes. However, there are some differences between the assumptions for ontol-
ogy completion versus for Armstrong ABoxes.

Armstrong ABoxes start with a non-empty consistent ALC TBox T which
has been constructed in collaboration with a domain expert. Moreover, the
assumption is that T is to the knowledge of the domain expert an accurate
representation of the application domain. As such an interpretation I exists
that is a model for T and is representative of the knowledge of the domain
expert. In this regard Armstrong ABoxes differ from ontology completion since
a model I of T matches the interpretation I known to the domain expert. Since
the assumption is that T is representative of the application domain, T is not
extended during the generation of an Armstrong ABox.

The main objective of Armstrong ABoxes is to generate an A corresponding
to T in accordance with Definition 13. This can be achieved by checking whether
�L �T �R follows from T , in which case a satisfying exemplar (Definition 9) is
added to A and the implication base L is extended with L → R. If �L � �R
does not follow from T , a related violating exemplar (Definition 8) is added to
A . No questions are posed to an expert during Armstrong ABox generation.

To make the correspondence between Armstrong ABoxes and partial con-
texts induced by DL ontologies explicit, assume that O = (T , ∅) represents the
TBox for which an Armstrong ABox has to be generated. This will result in the

Generating Armstrong ABoxes for ALC TBoxes 225

ontology O = (T ,A) which has a model (Theorem 3). Assume that I is a
model of O . Then O induces the partial context

KT ,A := {podT ,A (a,M) | a is an individual name occurring in A },

where M is a set of ALC concepts that is permissible, podT ,A is defined as before
for A instead of A and podT ,A is a pod since O is consistent (Theorem 3).

Any element d ∈ 	I of an interpretation I gives rise to the full example

fodI (d,M) := (A,S) where A := {C ∈ M | d ∈ CI } and

S := {C ∈ M | d ∈ (¬C)I },

and the whole interpretation induces the full context

KI (M) := {fodI (d,M) | d ∈ 	I }.

Note that fodI (d,M) is indeed a fod since every d ∈ 	I satisfies either d ∈ CI

or d ∈ 	I \CI = (¬C)I .
For this reason many of the results of ontology completion applies directly

to Armstrong ontologies with the assumption that I = I .
Algorithm 5 generates an Armstrong ABox A , given a TBox T and M a

set of concepts that is permissible. It initializes the implication set L and the
Armstrong ABox A to be empty. L is initialized with the smallest set in the
lectic order for L(·) and a counter is initialized that is used in creating new
individuals for which assertions are added to A (line 1).

Algorithm 4, which is called in line 3 of Algorithm 5, is introduced to simplify
dealing with exemplars. It takes as input the TBox T , the Armstrong ABox A
calculated this far, and the left-hand side L of the current implication under
consideration. In line 1 it calculates the largest R for L that is not refuted by the
partial context KT ,A(M) (Proposition 3). Line 2 checks whether the implication
is undecided in the context KT ,A. Lines 3 and 4 are introduced to simplify the
notation used in Algorithm 5.

Line 4 of Algorithm 5 ensures that only undecided implications are consid-
ered, otherwise it moves on to the next L in the lectic order under L(·)(line 13).
An implication for which the related subsumption already follows from the TBox
T , the implication is added to L and a satisfying exemplar is added to A (lines 6-
8), otherwise a violating exemplar is added to A (line 10). Since L changed in
line 6, the next L in the lectic order under L(·) is determined (line 7).

At termination Algorithm 5 returns an Armstrong ontology and a set of impli-
cations L that is sound and complete for ImpM (I) (Theorem 4).

Theorem 4. Let T be a consistent ALC TBox and let M be permissible. Algo-
rithm 5 terminates and upon termination it outputs the ontology (T ,A) which
is an Armstrong ontology and a set of implications L such that

1. L is sound and complete for ImpM (I), I a model of (T ,A) and
2. (T ,A) refutes every implication refuted by I .

226 H. Harmse et al.

Proof. That Algorithm 5 terminates and upon termination it outputs the set of
implications L such that (1) and (2) holds, follows from Proposition 4.

That (T ,A) is an Armstrong ontology follows from the following facts:

1. conditions (1) and (2) hold for the set of implications L,
2. whenever σ ∈ Σ, a corresponding satisfying exemplar is added to A (line 8),
3. for every σ′ ∈ Σ′, a violating exemplar is added to A (line 10),
4. no other other assertions are added to A , Σ ∩ Σ′ = ∅ and no variables are

shared between exemplars (lines 8 and 10).

3.4 Example

Starting with M = {Composite,Even,Odd,Prime,Square} and the TBox

T0 = {Composite � �,Even � �,Odd � �,Prime � �,Square � �},

Algorithm 5 generates no satisfying exemplars (because there are no impli-
cations that follow from T0 for KI (M)) and the violating exemplars given
in Table 1. Looking at the assertions for x1, the expert realizes that some of
these attributes will never occur together. Hence, the expert adds the axioms
{Even � ¬Odd,Composite � ¬Prime,Square � ¬Prime}. Regenerating the Arm-
strong ABox for M = {Composite,Even,Square} and

T1 = T0 ∪ {Even � ¬Odd,Composite � ¬Prime,Square � ¬Prime}

results in no satisfying exemplars and the violating exemplars given in Table 2.
Looking at the assertions for x4 in Table 2 the expert realizes that every integer
that is an Even and a Square, will necessarily be a Composite. Therefore the
expert adds the GCI Even � Square � Composite.

Generating an Armstrong ABox for T2 = T1 ∪ {Even � Square � Composite}
with M = {Composite,Even,Square} will generate the same violating exemplars
as in Table 2 except for x4 that will be generated as a satisfying exemplar {(Even�
Square)(x4),Composite(x4)}.

Generating an Armstrong ABox for T2 with M = {Composite,Odd,Square}
will result in violating exemplars similar to Table 2, except that Even will be
replaced with Odd. At this point the expert decides that T2 is sufficiently refined.
Note that T2 defines constraints that should hold while the violating exemplars
of the Armstrong ABoxes define constraints that can be violated.

3.5 Discussion

Our motivation for developing Armstrong ABoxes is to help identify ontologies
of which the specification are incomplete, based on an idea that is inspired
by Armstrong relations in relational database theory. Armstrong relations are
used to assist domain experts to remedy incomplete specifications by identifying
constraints that have been omitted, both with regard to constraints that should
hold and constraints that do not necessarily hold [14]. By generating “perfect test

Generating Armstrong ABoxes for ALC TBoxes 227

Table 1. Armstrong ABox for T0 and M = {Composite, Even, odd, Prime, Square}

Table 2. Armstrong ABox for T1 and M = {Composite, Even, Square}

228 H. Harmse et al.

data” in an Armstrong ABox we present the ontology engineer with exemplars
that ensure that all the constraints of an application domain are specified. In
particular the test data provides exemplars that violate constraints that do not
necessarily hold.

Potential benefits of Armstrong ABoxes are that exemplars can make the
meaning of entailments and non-entailments apparent, particularly for users that
may not be well versed in DLs. Moreover, violating exemplars can alert a user
to the fact that an entailment that should not follow from the TBox, does follow
from the TBox. This can happen where A is generated for T0 after which T0

is amended resulting in T1, without regenerating A . Assuming T1 is consistent
and (T1,A) is inconsistent, the reason for the inconsistency will be due to a
σ′ such that T0 � σ′, A � σ′ and T1 � σ′. For T0 σ′ represents a constraint
that does not hold and for T1 a constraint that does hold. The question that the
expert has to resolve is: Should σ′ hold or is it an unintended side-effect of the
changes to T0?

An advantage of Armstrong ABoxes over ontology completion is that there is
no need to reclassify the ontology because no GCIs are added when an Armstrong
ABox is generated. In the case of ontology completion the ontology has to be
reclassified every time a new GCI is added [18] but for Armstrong ABoxes the
ontology only needs to be reclassified after the expert reviewed the Armstrong
ABox and decided to add GCIs.

Armstrong ABoxes give an expert the flexibility to focus only on exemplars
of interest. Ontology completion (resp. attribute exploration) can be a time
consuming process even though it is mathematically designed to minimize the
number of questions posed to an expert. This problem is exacerbated when
experts don’t provide mathematically optimal counterexamples, which results in
the number of questions that need to be answered to reduce at a much slower
rate than what is possible through optimal counterexamples. Moreover, an expert
may not be able to provide an answer without further investigation [9,18]. Onto-
ComP, an implementation of ontology completion, deals with these challenges
by trying to find a counterexample that may already be present in the ABox
and it allows experts in certain situations to skip questions [4]. In contrast our
Armstrong ABox algorithm will by definition always provide optimal counterex-
amples (Definition 8) and because such an Armstrong ABox is generated without
expert interaction, it affords the expert the flexibility to choose which exemplars
to focus on and which to ignore.

Limitations of our Armstrong ABox algorithm include its exponential com-
plexity similar to attribute exploration/ontology completion. Less expressive DLs
with favourable reasoning complexity like FL, AL and EL are impractical given
our current formalization of violating exemplars, which requires full negation.
Moreover, ontology engineers and domain experts are likely to keep M small as
to limit the cognitive load in reviewing an Armstrong ABox. This means the
exponential complexity is likely to have a limited effect in practice, but this still
needs to be evaluated in practice.

Generating Armstrong ABoxes for ALC TBoxes 229

4 Conclusion

In order to assist with incomplete specifications when ontology engineers model
a domain of interest, we propose the use of an Armstrong ABox, a notion derived
from Armstrong relations in relational database theory. We formalized the notion
of Armstrong ABoxes for TBoxes in the ALC DL, including an algorithm for
generating such Armstrong ABoxes. The generated test data in the Armstrong
ABox could be regarded as “perfect test data” that satisfies both the constraints
of the domain that should hold, as well as constraints of the domain that do
not hold. Our approach is novel in ontology engineering even though similar
approaches have been used before in relational database specifications. Inte-
grating our approach into ontology engineering tools will facilitate in detecting
incomplete specifications.

References

1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider,
P.F.: The Description Logic Handbook: Theory, Implementation and Applica-
tions. Cambridge University Press, Cambridge (2007). https://doi.org/10.1017/
cbo9780511711787

2. Baader, F., Ganter, B., Sertkaya, B., Sattler, U.: Completing description logic
knowledge bases using formal concept analysis. In: Veloso, M.M. (ed.) Proceedings
of 20th International Joint Conference on Artificial Intelligence. IJCAI 2007, Jan-
uary 2007, Hyderabad, pp. 230–235. Morgan Kaufmann Publishers (2007). http://
ijcai.org/Proceedings/07/Papers/035.pdf

3. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: van Harmelen, F., Lif-
schitz, V., Porter, B. (eds.) Handbook of Knowledge Representation. Foundations
of Articial Intelligence, vol. 3, pp. 135–179. Elsevier, Amsterdam (2008). https://
doi.org/10.1016/s1574-6526(07)03003-9

4. Baader, F., Sertkaya, B.: Usability issues in description logic knowledge base com-
pletion. In: Ferré, S., Rudolph, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548,
pp. 1–21. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01815-
2 1

5. Boehm, B., Basili, V.R.: Software defect reduction top 10 list. IEEE Comput.
34(1), 135–137 (2001). https://doi.org/10.1109/2.962984

6. Brooks, F.P.: No silver bullet: essence and accidents of software engineering. IEEE
Comput. 20(4), 10–19 (1987). https://doi.org/10.1109/mc.1987.1663532

7. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd
edn. Cambridge University Press, Cambridge (2002). https://doi.org/10.1017/
cbo9780511809088

8. Fagin, R., Vardi, M.Y.: Armstrong databases for functional and inclusion depen-
dencies. Inf. Process Lett. 16(1), 13–19 (1983). https://doi.org/10.1016/0020-
0190(83)90005-4

9. Ganter, B., Obiedkov, S.: Conceptual Exploration. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49291-8

10. Guigues, J.L., Duquenne, V.: Famille minimale d’implications informatives
résultant d’un tableau de données binaires. Math. Sci. Hum. 24(95), 5–18 (1986)

https://doi.org/10.1017/cbo9780511711787
https://doi.org/10.1017/cbo9780511711787
http://ijcai.org/Proceedings/07/Papers/035.pdf
http://ijcai.org/Proceedings/07/Papers/035.pdf
https://doi.org/10.1016/s1574-6526(07)03003-9
https://doi.org/10.1016/s1574-6526(07)03003-9
https://doi.org/10.1007/978-3-642-01815-2_1
https://doi.org/10.1007/978-3-642-01815-2_1
https://doi.org/10.1109/2.962984
https://doi.org/10.1109/mc.1987.1663532
https://doi.org/10.1017/cbo9780511809088
https://doi.org/10.1017/cbo9780511809088
https://doi.org/10.1016/0020-0190(83)90005-4
https://doi.org/10.1016/0020-0190(83)90005-4
https://doi.org/10.1007/978-3-662-49291-8

230 H. Harmse et al.

11. Harmse, H., Britz, K., Gerber, A.: Informative Armstrong RDF datasets for n-
ary relations. In: Borgo, S., Hitzler, P. (eds.) Proceedings of 10th International
Conference on Formal Ontology in Information Systems. Frontiers in Artificial
Intelligence and Applications, pp. 187–199. IOS Press (2018). https://doi.org/10.
3233/978-1-61499-910-2-187

12. Harmse, H., Britz, K., Gerber, A.: Armstrong relations for ontology design and
evaluation. In: Lenzerini, M., Peñaloza, R. (eds.) Proceedings of 29th International
Workshop on Description Logics. CEUR Workshop Proceedings, vol. 1577. CEUR-
WS.org (2016). http://ceur-ws.org/Vol-1577/paper 4.pdf

13. Konev, B., Ozaki, A., Wolter, F.: A model for learning description logic ontologies
based on exact learning. In: Schuurmans, D., Wellman, M.P. (eds.) Proceedings
of 13th AAAI Conference on Artificial Intelligence, February 2016, Phoenix, AZ,
pp. 1008–1015. AAAI Press (2016). https://www.aaai.org/ocs/index.php/AAAI/
AAAI16/paper/view/11948/11696

14. Langeveldt, W., Link, S.: Empirical evidence for the usefulness of Armstrong rela-
tions in the acquisition of meaningful functional dependencies. Inf. Syst. 35(3),
352–374 (2010). https://doi.org/10.1016/j.is.2009.11.002

15. Link, S.: Armstrong databases: validation, communication and consolidation of
conceptual models with perfect test data. In: Ghose, A., Ferrarotti, F.A. (eds.)
Proceedings of 8th Asia-Pacific Conference on Conceptual Modelling. APCCM
2012, CRPIT, January–February 2012, Melbourne, vol. 130, pp. 3–20. Australian
Computer Society (2012). https://dl.acm.org/citation.cfm?id=2523784

16. Nebel, B.: Reasoning and Revision in Hybrid Representation Systems. LNCS, vol.
422. Springer, Heidelberg (1990). https://doi.org/10.1007/bfb0016445

17. Rudolph, S.: Relational Exploration: Combining Description Logics and Formal
Concept Analysis for Knowledge Specification. Ph.D. thesis, Technische Universität
Dresden (2006)

18. Sertkaya, B.: Formal Concept Analysis Methods for Description Logics. Ph.D. the-
sis, Technische Universität Dresden (2006)

https://doi.org/10.3233/978-1-61499-910-2-187
https://doi.org/10.3233/978-1-61499-910-2-187
http://ceur-ws.org/Vol-1577/paper_4.pdf
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11948/11696
https://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11948/11696
https://doi.org/10.1016/j.is.2009.11.002
https://dl.acm.org/citation.cfm?id=2523784
https://doi.org/10.1007/bfb0016445

Spatio-Temporal Domains: An Overview

David Janin(B)

LaBRI, Bordeaux INP, Université de Bordeaux,
351 cours de la Libération, 33405 Talence Cedex, France

janin@labri.fr

Abstract. We consider the possibility of defining a general mathemat-
ical framework for the homogeneous modeling and analysis of hetero-
geneous spatio-temporal computations as they occur more and more in
modern computerized systems of systems. It appears that certain fibra-
tions of posets into posets, called here spatio-temporal domains, eventu-
ally provide a fully featured category that extends to space and time the
category of cpos and continuous functions, aka Scott Domains, used in
classical denotational semantics.

1 Introduction

Research Context. Program semantics is classically divided between two
complementary approaches: denotational semantics and operational semantics.
Denotational semantics generally refers to what the partial functions encoded by
programs are: what is the relationship between (models of) their input values (or
input memory state) and their output values (or output memory state). Opera-
tional semantics refers instead to when and where these values are read, trans-
formed and eventually produced. To some extent, operational semantics defines
effective models for implementing programs. It provides tools for analyzing the
space and time behavior of programs therefore analyzing their complexity. On
the other hand, denotational semantics provides instead methods for analyzing
the (partial) correction of programs.

This suggests that semantic features can be distributed between typical oper-
ational features (time and space values) and denotational features (other data
values). However, in many modern computerized systems such as, for instance,
interactive music or animation systems [2,3,14,18], timing or spacing informa-
tion plays a crucial rôle in the definition of system’s inputs and outputs. There,
many data values are implicitly parameterized by some space and/or time infor-
mation: think of an augmented music system taking as input the melody played
by a musician dancing on a stage. How the resulting spaced-and-timed signals
can be read, combined and transformed in both an efficient and a sound way
is one of the central questions of numerous domain specific language proposals
such as, for instance, Fran [14] for animation or Euterpea [18] for music.

Work partially supported by Inria center Bordeaux-Sud-Ouest, from 09/2016 to
02/2017, long version at https://hal.archives-ouvertes.fr/hal-01634897.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 231–251, 2018.
https://doi.org/10.1007/978-3-030-02508-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_13&domain=pdf
https://hal.archives-ouvertes.fr/hal-01634897

232 D. Janin

In all the underlying semantic models, compositionality is a key issue as it
allows efficient, structure driven, development and analysis techniques. In fact,
with compositionality, properties of complex systems/programs can be derived
from certain combinations of the properties of their (simpler) components. As
an immediate consequence, semantic models can also be studied and developed
per se, adequate (domain specific) programming languages deriving a posteriori
from the algebraic/combinatorial properties of these models.

Our Contribution. Following such a model-driven development of program-
ming language, we consider the possibility of lifting space or time information
into typical denotational models: Scott Domains. It happens that this can be
done by restricting certain constructions known in topos and fibration theory to
posets. We thus provide in this paper an elementary description of these con-
structions and illustrate their applicability by interpreting the induced algebras
in terms of typical spaced or timed programming constructs.

Detailled Structure. Technically, we define spatio-temporal domain as certain
discrete fibrations of posets into posets (Sect. 2). Simply said, elements of these
domains are (partially ordered) computation histories indexed over spacetime
scales. Relationships with other known semantic models are detailled in Sect. 3.
Spatio-temporal morphisms are defined in Sect. 4 as monotone functions between
spatio-temporal domains that uniformly act on the underlying spacetime scales.
This eventually yields a fully featured category that extends to space and time
the categories of posets/cpos/domains and monotone/continuous functions typ-
ically used in classical denotational semantics.

The proposed approach yields two layers of program constructs that have
been long identified in Globally-Asynchronous Locally-Synchronous (GALS) sys-
tem design [10,30]. More precisely, there appear:

(1) a synchronous layer of programming constructs available when components’
inputs and outputs are located and timed on the same spacetime scale and
received or produced in a synchronous way (Sect. 5),

(2) an asynchronous layer of programming constructs available when compo-
nent’s inputs and outputs are located and timed on possibly distinct space-
time scales (Sect. 6).

At the border of these two layers, when inputs and outputs are located on the
same scale but without any synchronicity assumption, we show that feedback
loop constructs are available for defining non trivial (least) fixpoints (Sect. 8),
that is, infinite signals. Continuously spaced and timed posets are also studied in
Sect. 7 where a tight relationship with various key concepts from Domain Theory
is established.

It is known that fibration theory [29] is used in denotational semantics of
higher-order dependently typed lambda calculus [20]. Restricting ourselves to
discrete fibrations over posets yields a notion of types that weakly depends on
spacetime scales (or clocks). These possibilities were already studied in lan-
guage extension proposals [11,12] of the Synchronous Programming Language

Spatio-Temporal Domains: An Overview 233

family [5,7]. Our approach provides a sound mathematical framework for the
formal study of these possible extensions.

Concrete examples are detailed throughout, illustrating most concepts and
their applicability to spacetime program’s semantics.

2 Timed Posets

Throughout this text, an arbitrary poset T may be interpreted as a spatio-
temporal scale. This means that for every element u, v ∈ T , we say that u lies
before v, or v lays after u, when u ≤ v, and that u lays beside v when u and
v are incomparable. In other words, there is the time dimension that increases
with the order, and, there is the space dimension where incomparable elements
are also related.

Having said so, throughout the rest of this presentation, a spatio-temporal
scale is simply referred to as a time scale and its elements are simply called
instants.

Definition 2.1 (Timed poset). Let T be a time scale. A poset timed over T
is a poset P equipped with a temporal projection π : P → T such that:

(IN1) if x ≤ y then π(x) ≤ π(y), i.e. the temporal projection is monotone,
(IN2) for every t ≤ π(x) there is a unique element x ↓ t ∈ P such that π(x ↓ t) =

t and x ↓ t ≤ x,

for all x, y ∈ P . The element x ↓ t is called the temporal cut, or simply the cut
of x at instant t. This situation is depicted in (1). The cut function (x, t) �→ x ↓ t
can be seen as sort of a (partial) action of the poset T over the poset P .

(IN2)(IN1)

x ↓ t

t

x

π(x)

π∃!π

≤

≤

x

π(x)

y

π(y)

π

≤

π

≤

(1)

Example 2.1 (Self-timed poset). Every poset T is a timed poset over itself with
identity id as temporal projection.

Example 2.2 (Sub-timed poset). Let P be a poset timed over T . Let X ⊆ P be
a downward closed subset of P . Let incX : X → P be the inclusion function.
Then the set X ordered as in P with π ◦ incX as temporal projection is also a
timed poset.

234 D. Janin

Example 2.3 (Timed impulses). Let T be a time scale and E a set of event values
extended into E⊥ = E∪{⊥}. The set Imp(T,E) = T ×E⊥ is turned into a timed
poset by equipping it with the temporal projection and partial order defined by
π(u, e) = u and (t, e) ≤ (t′, e′) when either (t, e) = (t′, e′) or t < t′ and e = ⊥.

An element (t, e) ∈ Imp(T,E) with e �= ⊥ is a timed impulse with value e at
instant t. Observe there are no elements strictly above (or after) such an impulse
and all elements strictly below (or before) bear no value as they are of the form
(t′,⊥) for some t′ < t. Rephrased in terms of temporal cut, for every element
(t, e) ∈ Imp(T,E) and instant t′ ≤ t, two cases are possible: either t′ = t and we
have (t, e) ↓ t′ = (t, e), or t′ < t and we have (t, e) ↓ t′ = (t′,⊥).

Example 2.4 (Timed signals). With T and E as above, a timed signal is defined
as a relation S ⊆ T × E that maps every instant t ∈ T to the set S(t) = {e ∈
E : (t, e) ∈ S} of event values received at instant t. Then a partial timed signal
is a pair (u, S) ∈ T × P(T × E) such that for all (t, e) ∈ S we have t ≤ u.

The set Sig(T,E) of partial timed signals is turned into a timed poset by
equipping it with the temporal projection defined by π(u, S) = u and the partial
order relation defined by (u, S) ≤ (u′, S′) when u ≤ u′ and S(t) = S′(t) for all
t ≤ u, for all (u, S), (u′, S′) ∈ Sig(T,E). Following [28], a pair (u, S) ∈ Sig(T,E)
represents the observation of a timed signal until the instant u. In some sense,
it is the temporal trace of some computation until that instant.

Rephrased in terms of temporal cut, for every partial signal (u, S) ∈ Sig(T,E)
and instant v ≤ u = π(u, S) we have (u, S) ↓ v = (v, S ↓ v) with S ↓ v = {(t, e) ∈
S : t ≤ v}. Such a temporal cut (u, S) ↓ v models the observation of the partial
signal (u, S) until instant v that lies before instant u.

Definition 2.2 (Local cut). Let P be a poset timed over T . For every x ∈ P ,
property (IN2) induces a (total) function cutx : ↓ π(x) → P , called local cut,
defined by cutx(u) = x ↓ u for every u ∈ T such that u ≤ π(x).

Remark 2.1. In the definition above and later in the text, we use the notation
↓ X ⊆ P for the downward closure of a subset X ⊆ P of a poset P defined
by ↓ X = {y ∈ P : ∃x ∈ X, y ≤ x} that extends to an element x ∈ P by
putting ↓ x = {y ∈ P : y ≤ x}. At first sight, this notation may clash with
our chosen notation for cuts. However, for all x ∈ P and all u ≤ π(x) we have
↓(x ↓ u) = (↓ x) ↓ u as soon as we extent the (partially defined) cut point-wise. It
follows that we can even write ↓ x ↓ u without any parenthesis with no ambiguity.

Lemma 2.1 (Local cut properties). Let x, y ∈ P and u, v ∈ T such that
u, v ≤ π(x). Then:

(1) x ≤ y if and only if π(x) ≤ π(y) and x = y ↓ π(x),
(2) u ≤ v if and only if x ↓ u ≤ x ↓ v.

In particular, the (sub)posets ↓ x ⊆ P and ↓ π(x) ⊆ T are isomorphic posets as
shown by the restriction of the cut to ↓ x and, as inverse, the temporal projection.

Spatio-Temporal Domains: An Overview 235

Corollary 2.1. An element x ∈ P is minimal (resp. minimum) in P if and
only if its temporal projection π(x) ∈ T is minimal (resp. minimum) in T . On
the other hand, maximal elements in a timed poset can have arbitrary temporal
projection as shown by timed impulse timed posets (see Example 2.3).

3 Derived Notions

We review below several notions that derive from the notion of timed posets
and that allow this notion to be related with other known concepts appearing
in computer system modeling or programming language semantics.

Temporal Coherence. The following notion is inspired by Girard’s notion of
coherent space in linear logic [16]. A similar notion, even more closely related
with timed domains, also appears in Winskel’s notion of event structures [31].

Definition 3.1. Let P be a poset timed over T . Let x, y ∈ P . We say that x
and y are coherent, a property denoted by x ¨ y, when, for every x′, y′ ∈ P such
that x′ ≤ x and y′ ≤ y, if π(x′) = π(y′) then x′ = y′, or, equivalently, for all
u ≤ π(x), π(y), x ↓ u = y ↓ u. By extension, a subset X ⊆ P is a coherent subset
when x ¨ y for all x, y ∈ X.

Lemma 3.1. Let x, y ∈ P . Then x ≤ y if and only if π(x) ≤ π(y) and x ¨ y.

In other words, coherence offers an alternative to the definition of timed poset
via an order relation.

Remark 3.1. In some sense, every coherent subset X ⊆ P can be interpreted as
the trace of a spatio-temporal computation that has been observed at the instants
π(X). The (sub)posets X and π(X) are even isomorphic via the restriction of π
to X and the downward closure ↓ X of a coherent subset is itself coherent.

Remark 3.2. The structure (P,≤, �¨) defined for every timed poset P is a special
case of an event structure [31], though dropping the finite history requirement.
The same computational interpretations are possible. Two elements x and y in
P describe concurrent computations when they are coherent and incomparable:
they can both appear in the same computation trace as suggested above.

On the other hand, two incoherent elements x and y in P describe conflict-
ing computations: they cannot appear in the same computation trace. More
precisely, by the definition of coherence, when x �¨ y there is u ∈ T in the past
of both π(x) and π(y) such that x ↓ u �= y ↓ u. This means that two distinct com-
putations occur at the same instant (and position) u, a case that is interpreted
as impossible.

Remark 3.3. Relating timed posets with event structures, one can also observe
that the equivalence induced by π, defined by x ∼π y when π(x) = π(y) for

236 D. Janin

every x, y ∈ P , essentially is a symmetry1 as recently defined by Winskel in
event structures [32].

This observation relates timed posets even more closely with the concepts
introduced by Winskel in concurrency theory. However, the notion of timed
poset is more restrictive than the notion of event structure. In a timed poset,
coherence is uniformly defined via temporal projection. In an event structure,
coherence is a given as part of the definition of that event structure.

Temporal Distance. Timed concurrent system semantics can also be modeled
by means of generalized ultrametric distance, as already developed quite in the
depth by Lee, Liu et Matsikoudis [25,26,28]. The following definition shows that
timed posets also induce such distances over their elements.

Definition 3.2. Let P be a poset timed over T . Let P↓(T) be the set of downward
closed subsets of T ordered by reverse inclusion therefore with T itself as least
element. The distance induced by π over P is the function

d : P × P → P↓(T) defined by d(x, y) = {t ∈ T : t ≤ π(x), π(y), x ↓ t = y ↓ t}

when x �= y and by d(x, y) = T when x = y.

One can easily check that d(x, y) = ↓ d(x, y) for all x, y ∈ P hence the above
definition is sound.

Lemma 3.2. The function d : P ×P → P↓(T) is a generalized ultrametric, that
is, we have:

(1) d(x, y) = T if and only if x = y (separation),
(2) d(x, y) = d(y, x) (symmetry),
(3) d(x, y) ⊇ d(x, z) ∩ d(z, y) (ultra-metric inequality),

for all x, y, z ∈ P .

Temporal Presheaves. One last connection of timed posets with an existing
notion, now complete, goes via the notion of categorical presheaves, a notion
already used in concurrency theory especially by Catani, Stark and Winskel for
modeling process calculi like CCS and the π-calculus [8,9].

Let T be a poset. A presheaf on T is a functor F : T op → Set from the
category T op, obtained from T by reversing the order relation, into the category
Set of sets and functions. Then the following lemmas state that posets timed
over T are isomorphic with what are known in category theory as the categories
of elements of presheaves over T . This shows that timed posets and presheaves
are essentially equivalent notions, an equivalence later stated as a categorical
equivalence (see Theorem 4.1 below).

1 Strictly speaking, for ∼π to be a symmetry, the timed poset P must be completed
with sorts of “passing time” elements of the form (u, x) with x ≤ (u, x) and π(u, x) =
u, defined for all x ∈ P and u ∈ T such that there is no y above x with π(y) = u.

Spatio-Temporal Domains: An Overview 237

Lemma 3.3. Let F : T op → Set be a presheaf over T . Then the set
PF = Σt∈T F (t) = {(t, x) : t ∈ T, x ∈ F (t)}, equipped with the temporal pro-
jection defined by π(u, x) = u and the order relation defined by (u, x) ≤ (v, y)
when u ≤ v and F (u ≤ v)(y) = x for all (u, x), (v, y) ∈ PF , is a timed poset,
also known as the category of elements of F .

Lemma 3.4. Let P be poset timed over T . Then the presheaf FP : T op → Set
defined by FP (t) = {x ∈ P : π(x) = t} and FP (u ≤ v)(x) = x ↓ u for all
t, u, v ∈ T with u ≤ v and x ∈ FP (v), has an its category of elements isomorphic
to P .

4 Timed Morphisms

In this section, we define a class of timed morphisms between timed posets,
called Δ-synchronous functions, as monotonic functions between timed posets
that uniformly act on their underlying time scales. Somehow generalizing the
approach of Colaço et al. [11,12], with timed posets interpreted as timed types,
this uniformity requirement allows timed morphisms types to be defined not
only as the domains and codomains of these morphisms, as in the simply-typed
definition of function types, but also as the uniform transformation of time scales
they induce.

Δ-synchronous Function. Throughout this section, let P and, resp. Q, be
two posets timed over the time scales U and, resp. V .

Definition 4.1 (Δ-synchronous functions). A function f : P → Q together
with a monotone function δ : U → V , called the temporal projection of f , is
Δ-synchronous when, as depicted in (2):

(SD1) π(f(x)) = δ ◦ π(x),
(SD2) if x ≤ y then f(x) ≤ f(y),
(SD3) f(x ↓ u) = f(x) ↓ δ(u),

for all x, y ∈ P and all u ∈ U such that u ≤ π(x).

U

V

δ (SD1) (SD2)

P
πP

P P
≤P

Q
πQ

Q Q≤Q

f f f (2)

Remark 4.1. As soon a u ≤ π(x) then, by monotonicity of δ we have
δ(u) ≤ δ ◦ π(x) hence, by (SD1), δ(u) ≤ π(f(x)) therefore property (SD3) is
sound. Property (SD2) states that Δ-synchronous functions are poset functors.
Property (SD1) formalizes the statement that they uniformly acts on the under-
lying time scales.

238 D. Janin

Example 4.1 (Self-synchronous). Every monotone increasing function δ : U → V
is a Δ-synchronous function between the self-timed posets U and V , with itself
as temporal projection.

Lemma 4.1. Under hypothesis (SD1), properties (SD2) and (SD3) are equiva-
lent.

On Coherence Preservation. It is easy to see that the Δ-synchronous image
of a coherent subset bounded above is coherent. With a view towards application,
this coherence preservation property is probably enough. Nevertheless, we show
that without the boundedness condition this is no longer true and we provide
sufficient additional conditions on time scale changes for coherence preservation.

Example 4.2. Let U = {⊥, a, b}, self-timed, with minimum element ⊥ and a and
b incomparable. Let P = U ordered the same as U but timed over V = {0, 1} by
π(⊥) = 0, π(a) = 1 and π(b) = 1. The function f : U → P defined by f(⊥) = ⊥,
f(a) = a and f(b) = b is Δ-synchronous with temporal projection δ : U → V
defined by δ(⊥) = 0, δ(a) = 1 and δ(b) = 1. Although a ¨ b in U we have
f(a) = a �¨ b = f(b) in P . The function f does not preserve coherence.

Lemma 4.2. Assume that both U and V are meet-semilattices. Let δ : U → V
be a meet-preserving function and let f : P → Q be a Δ-synchronous function
with temporal projection δ. Then f is coherence preserving. Moreover, both P
and Q are conditional meet-semilattice and the function f preserves conditional
meet, i.e. it is stable in the sense of Berry [6].

Corollary 4.1. Let Coh(P) and, resp. Coh(Q) be the set of coherent subsets
of P and, resp. of Q, ordered by inclusion. Then, equipped with the point-wise
extension of their temporal projection, they both are posets timed over P(U) and
P(V) respectively. Moreover, the function f : Coh(P) → Coh(Q) defined by
extending f point-wise is Δ-synchronous, stable, and event linear in the sense
of Girard [16], i.e. it is well-defined and we have f(X ∩ Y) = f(X) ∩ f(Y) and
f(X ∪ Y) = f(X) ∪ f(X) for all X,Y ∈ Coh(X).

Remark 4.2. In Example 4.2, both U and V are meet semi-lattices, but the
function δ : U → V is indeed not meet-preserving since, a ∧ b = ⊥ while δ(⊥) =
0 < 1 = δ(x) ∧ δ(b).

Synchronous Functions. We restrict our attention to a smaller class of timed
morphisms we call synchronous in the sense that their outputs are timed the
same way as their inputs.

Definition 4.2 (Synchronous function). A function f : P → Q, Δ-
synchronous with temporal projection δ : U → V , is a synchronous function
when U = V and δ = idU . In other words, f is synchronous when:

(SI1) π(f(x)) = π(x),
(SI2) if x ≤ y then f(x) ≤ f(y),
(SI3) f(x ↓ u) = f(x) ↓ u,

Spatio-Temporal Domains: An Overview 239

for all x ∈ P and u ∈ U such that u ≤ π(x).

Theorem 4.1. The category TPoset(T) of posets timed over T and synchronous
functions is equivalent to the category Psh(T) of presheaves over T and natural
transformations. The functor ϕ : TPoset(T) → Psh(T) defined, for every timed
poset P ∈ TPoset(T), by ϕ(P) = FP (see Lemma 3.4) and, for all synchronous
function f : P → Q in TPoset(T), by ϕ(f) = α with αt(x) = f(x) for all t ∈ T
and x ∈ FP (t), is a categorical equivalence.

This implies that the category TPoset(T) is a Grothendieck topos. In the
next section, we shall make explicit the constructions that prove it is, as a
consequence, an elementary topos.

Δ-synchronous vs Synchronous Functions. We show that every time scale
change δ induces a (simple) contravariant time scale change functor in such a
way that every Δ-synchronous function f with temporal projection δ uniquely
(and uniformly) factorizes into a synchronous function followed by a (simple)
time scale change, this functor having a (less simple) left adjoint.

Theorem 4.2 (Left Kan extension). Let δ : U → V be a monotone func-
tion. Then there are two categorical functors δ∗ : TPoset(V) → TPoset(U) and
δ! : TPoset(U) → TPoset(V) and, for every P ∈ TPoset(U) and Q ∈
TPoset(V), two Δ-synchronous functions ωQ : δ∗(Q) → Q and αP : P → δ!(P)
both with temporal projection δ, such that every Δ-synchronous f : P → Q with
temporal projection δ we both have:

(1) there is a unique synchronous function f∗ : P → δ∗(Q) such that f = ωQ◦f∗,
(2) there is a unique synchronous function f! : δ!(P) → Q such that f = f! ◦αP ,

i.e. f uniquely factorizes through αP or ωQ. In particular, there is the categorical
adjunction δ! � δ∗. The functor δ! is the left Kan extension operation along δ.
This situation is depicted in (3).

U

V

δ

P

Q

f

δ∗(Q)

ωQ

∃!f∗

δ!(P)

αP

∃!f!

(3)

Sketch of Proof (simplest case). The functor δ∗ can be defined for every
Q ∈ TPoset(V) by δ∗(Q) = {(u, y) ∈ U × Q : π(y) = δ(u)} ordered point-
wise with projection π(u, y) = u for all (u, y) ∈ δ∗(Q) and for every synchronous
function h : Q → Q′ by δ∗(h) : δ∗(Q) → DS(Q′) by δ∗(h)(u, y) = (y, h(y)) for
all (u, y) ∈ δ∗(Q). Then with ωQ : δ∗(Q) → Q simply defined by ωQ(u, y) = y
for every (u, y) ∈ δ∗(Q), for every Δ-synchronous f : P → Q with projection δ
we have f∗ : P → δ∗(Q) uniquely defined by f∗(x) = (π(x), f(x)). ��

240 D. Janin

Example 4.3 (Timed signals). Continuing examples on signals (see Example 2.4),
with P = Sig(U,A) and Q = Sig(V,B), the “lower” part of the above theorem
can defined within a slight extension of the notion signals as follows. We define
δ∗(Q) = Sig∗(δ,B) as the set of all pairs (u, Y) ∈ U × P(V × B) such that
v ≤ δ(u) for all (v, b) ∈ Y , with the cut defined by

(u, Y) ↓ u′ = (u′, {(v, b) ∈ Y : v ≤ δ(u′)})

for all (u, Y) ∈ Sig∗(δ,B) and u′ ≤ u. Then there is the Δ-synchronous func-
tion ωQ : Sig∗(δ,B) → Sig(V,B) defined by ωQ(u, Y) = (δ(u), Y) for all
(u, Y) ∈ Sig∗(δ,B) and, for every Δ-synchronous f : Sig(U,A) → Sig(V,B)
with projection δ, the synchronous function f∗ : Sig(U,A) → Sig∗(δ,B) defined
for all (u,X) ∈ Sig(U,A) by f∗(u,X) = (u, Y) when f(u,X) = (δ(u), Y) that
uniquely factorizes f as above.

For the “upper” part, one can define over Sig(U,A) the least equivalence �δ

such that (u,X) �δ (u′,X ′) whenever there is u′′ ∈ U such that u, u′ ≤ u′′,
δ(u) = δ(u′) and X ↓ u′ = X ′ ↓ u. Then, one can check if (u,X) �δ (u′,X ′) then
f(u,X) = f(u′,X ′) for any Δ-synchronous function f with temporal projection
δ. This means that Sig(U,A)/ �δ can be used for defining δ!(Q). However, in
general, it does not seem that such a quotient is itself embeddable into (a sort
of) a signal timed poset as done for the “lower” part above.

Remark 4.3. In some sense, in the above example, the function ωQ acts as a
scheduler that plans, within the time scale U , the events that will be emitted
within the time scale V . Somehow dually, in the case both δ!(Q) and αP are
definable over timed signals, for instance when δ is injective, then it can be
observed that function αP acts as a buffer that delays events timed on U until
they are necessary for computation. More general conditions under which such
an interpretation makes sense can be defined within timed signals, but we failed
yet to find any general enough to be worth being detailed.

Remark 4.4. Every choice of a time scale provides a granularity at which a sys-
tem behavior can be observed. The above result can thus be seen as a tool
box that allows the behavior of a timed system to be analyzed at various gran-
ularity. There appear some potential links with abstraction/refinement tech-
niques for system design [1] and abstract interpretation techniques for system
analysis [13].

5 More on Synchronous Functions

Theorem 4.2 shows that Δ-synchronous functions are inherently linked with syn-
chronous functions. Theorem 4.1 ensures that the category TPoset(T) of posets
timed over T and synchronous functions is a Grothendieck topos (see Theo-
rem 5.1) therefore an elementary topos. We review below the concrete construc-
tions over timed posets that derive from such a result and, with a view towards
system modeling, describe their fairly intuitive interpretation.

Spatio-Temporal Domains: An Overview 241

Lemma 5.1 (Clock ticks). Let P be a poset timed over T . Then the temporal
projection π : P → T is the unique synchronous function from P into T . In
other words, the self-timed poset T is terminal in TPoset(T).

Remark 5.1. In some sense, the time scale T , seen as a self-timed poset, can be
understood as a clock. Indeed, every synchronous function c : T → P defines a
timed constant which is produced, pieces after pieces, as time is passing. Observe
however that the existence of such a function implies that c(T) is a subset of P
isomorphic to T . There are posets timed over T with no such a subset as shown
by any strict downward closed subset of T (see Example 2.2). In other words,
timed posets may also contain timed constants in which evolution in time may
stop at some instant as if they were timed over a smaller (sub) time scale.

Definition 5.1 (Synchronous product). Let P,Q be two posets timed over
T . The synchronous product of P and Q is defined as the set P ⊗Q = {(x, y) ∈
P × Q : πP (x) = πQ(y)} ordered point-wise and equipped with the temporal
projection defined by π(x, y) = π(x) = π(y) for all (x, y) ∈ P ⊗ Q.

Example 5.1 (Timed signals). We have Sig(T,A) ⊗ Sig(T,B) ∼= Sig(T,A ⊕ B).

Lemma 5.2. Then P ⊗ Q is a timed poset over T and, with projections
p1 : P ⊗ Q → P and p2 : P ⊗ Q → Q, it is the categorical product of P
and Q in TPoset(T).

Remark 5.2. The interpretation of the above synchronous product shall be obvi-
ous. Thanks to the fact it is a categorical product, every pair of synchronous
functions f : R → P and g : R → Q uniquely factorizes through some syn-
chronous gluing f × g : R → P ⊗ Q of the functions f and g. Such a combinator
over synchronous functions could be used is an arrow programming style [19].

Remark 5.3 (On coproduct). One can check that the coproduct2 P ⊕ Q of two
timed posets with canonical injection eventually leads to the definition of cat-
egorical coproduct of P and Q in TPoset(T). Then the empty timed poset is
the initial object in TPoset(T). This shows that the category TPoset(T) is bi-
cartesian.

Such a coproduct can be used as a timed alternative. However, such an
alternative is very likely to be solved at initialization time, before any instant
in T . Indeed, as soon as T has a minimum, every coherent subset of P ⊕ Q is
necessarily either the embeddings of a coherent subsets of P or the embedding
of a coherent subset of Q. No mixed subset is coherent.

Definition 5.2 (Temporal cut of a synchronous function). Let f : P → Q
be a synchronous function on the time scale T . Let u ∈ T . The temporal cut of f
at u is the function f ↓ u : P ↓ u → Q ↓ u defined by P ↓ u = {x ∈ P : π(x) ≤ u},
Q ↓ u = {y ∈ Q : π(y) ≤ u} and (f ↓ u)(x) = f(x) for all x ∈ P ↓ u.

2 Possibly gluing minimal elements when considering the subcategory of timed posets
with a minimum elements.

242 D. Janin

Observe that both P ↓ u and Q ↓ u are downward closed hence (see Example 2.2)
they both are posets timed over T . Moroever, since f is synchronous, property
(SI1) ensures that f(x) ∈ Q ↓ u for all x ∈ P ↓ u therefore f ↓ u is a well defined
synchronous function from P ↓ u into Q ↓ u.

Definition 5.3 (Synchronous exponent). Let P and Q be two posets timed
over T . The synchronous exponent of Q by P is defined to be the set [P →T Q]
of all pairs (u, h) with u ∈ T and synchronous functions h : P ↓ u → Q ↓ u, with
temporal projection defined by π(u, h) = u and partial order defined by (u1, h1) ≤
(u2, h2) when u1 ≤ u2 and h1 = h2 ↓ u1 for all (u, h), (u1, h2), (u2, h2) ∈ [P →T

Q].

Lemma 5.3. Let P,Q,R be three posets timed over T . Then [Q →T R] is a poset
timed over T and the function eval : QR ⊗ Q → R defined by eval((u, h), y) =
h(y) for all ((u, h), y) ∈ RQ ⊗ Q therefore with π(y) = u is synchronous.

The timed poset [Q →T R] with function eval is the categorical exponent of R
by Q in TPoset(T), i.e. for all synchronous function g : P ⊗Q → R, the function
g∗ : P → RQ defined, for all x ∈ P , by g∗(x) = (π(x), λy.g(x ↓ π(y), y)) is the
unique synchronous function from P into RQ such that g(x, y) = eval(g∗(x), y)
for all (x, y) ∈ P ⊗ Q.

Remark 5.4. This result states that every synchronous function f : P → Q
can itself be represented by coherent subset {f ↓ u}u∈T of exponent QP which
can be transmitted and applied on-the-fly over the pieces {x ↓ u}u≤π(x) of an
argument x ∈ P . Then, as soon as the instant π(x) is reached, such an on-the-
fly application stops since the remaining values {f ↓ u}u	≤π(x) of the functions
cannot be synchronized with any further argument. This property could perhaps
be used designing a timed programming language where resources are indeed
freed whenever a timed (sub)computation terminates.

The following lemma comes as a complement of the construction of timed
posets from downward closed subsets of timed posets (see Example 2.2), by char-
acterizing subobjects3 of the category TPoset(T) precisely as these downward
closed subsets.

Lemma 5.4 (Timed subobjects). Let f : P → Q be a synchronous function.
Then f(P) = ↓ f(P), moreover, f is injective if and only if P � f(P) as posets.

In the category Set , there is the powerset construction P(E) of subsets of a
set E. In TPoset(T) the analogous power object is defined below.

Definition 5.4 (Synchronous power). Let P be a poset timed over T . The
synchronous power of P is defined as the set ΩP = {(u,X) ∈ T × P(P) : X =
↓ X,π(X) ≤ u} with temporal projection defined by π(u,X) = u and partial order
defined by (u,X) ≤ (v, Y) when u ≤ v and X = Y ↓ u for all (u,X), (v, Y) ∈ ΩP .
3 One can easily verify that the monomorphisms in TPoset(T) are the injective syn-

chronous functions. Then, as a consequence of the lemma, every injective syn-
chronous function f : Q → P is equivalent (as sub-object) with the inclusion syn-
chronous function incf(Q) : f(Q) → P .

Spatio-Temporal Domains: An Overview 243

Lemma 5.5. The synchronous power ΩP of a timed poset P is a poset timed
over T and the power object of P in TPoset(P).

Example 5.2 (Timed signals). Continuing Examples 2.3 and 2.4 one can show
that we have ΩImp(T,E) ∼= Sig(T,E). Indeed, every signal (u,X) ∈ Sig(T,E) is
a collection of (non trivial) timed impulses arrived before or at instant u.

Remark 5.5. The above example illustrates how power objects can be interpreted
in terms of parallelism: a computation trace in ΩP models arbitrarily many
computation traces in P that are run synchronously. Moreover, just like subsets,
two sub-traces identical at some instant are eventually merged into a single
one. Alternatively, it also makes sense to interpret traces in the power object as
pending nondeterministic choices much like in power domain constructions.

Remark 5.6. Following topos theory [4,27], the timed domain ΩT defined by
ΩT = {(u, V) ∈ T × P(T) : V = ↓ V ≤ u}, with function true : T → ΩT ,
synchronous, defined by true(t) = (t, ↓ t) for all t ∈ T is the subobject classifier in
TPoset(T). In other words, for every poset P timed over T , for every downward
closed subset X ⊆ P , there is a unique synchronous function XX : P → Ω,
the characteristic synchronous function of X, such that, given the synchronous
inclusion incX : X → P we have Xf ◦ incX = true ◦ π and this is a pullback
square, i.e. for all synchronous f : Q → P such that Xf ◦ f = true ◦ π we
necessarily have f(Q) = X therefore f uniquely factorizes through incX .

As an immediate consequence of Theorem 4.1, or gathering the results stated
in this section4, we have:

Theorem 5.1. The category TPoset(T) is an elementary topos, i.e. it is carte-
sian closed, finitely complete and has all powerobjects.

6 More on Δ-synchronous Functions

Clearly, timed posets identities are synchronous functions and every composition
of two Δ-synchronous functions is itself Δ-synchronous with temporal projection
the composition of their temporal projections. It follows that every choice of a
category C ⊆ Poset of time scales and time scale transformations yields the
category TPoset(C) of posets timed over time scales in C and Δ-synchronous
functions with temporal projections that are morphisms in C. In the most general
case, one can choose for C the category Poset .

Throughout the rest of the section, we assume that the chosen time scale
category C ⊆ Poset is cartesian closed with terminal poset {∗} ∈ C. We also
assume some time scales U and V ∈ C and some posets P and, resp., Q ∈
TPoset(C) timed over U and, resp., V .

4 additionally proving that TPoset(T) also has all equalizers, which is easy since they
are essentially defined as in Set .

244 D. Janin

Lemma 6.1 (One instant clock). Let 1 be the one element poset {∗} timed
over itself. Then 1 is the terminal element in TPoset(C).

Definition 6.1 (Asynchronous product). The asynchronous product of P
and Q is defined as the cartesian product P × Q ordered pointwise with the
temporal projection π : P × Q → U × V by π(x, y) = (π(x), π(y)).

Lemma 6.2. Then P × Q is a poset timed over U × V ∈ C. Both projections
p1 : P ×Q → P and p2 : P ×Q → Q are Δ-synchronous with temporal projection
π(p1) = p1 : U ×V → U in C and π(p2) = p2 : U ×V → V in C. Together, they
form the categorical product of P and Q in TPoset(C).

Definition 6.2 (Asynchronous exponent). The asynchronous exponent of
Q by P is defined as the set QP of Δ-synchronous function from P into Q with
temporal projections in V U ∈ C just as already defined in Definition 4.1.

Lemma 6.3. Then QP is a poset timed over V U ∈ C. The evaluation mapping
eval : QP × P → Q defined, for all f ∈ QP and x ∈ P , by eval(f, x) = f(x) is
Δ-synchronous with, thanks to (SD1), temporal projection π(eval) = eval in C.
Together, they form the exponent of Q by P in TPoset(C).

Theorem 6.1. The category TPoset(C) is cartesian closed whenever C is.

Remark 6.1. The empty poset timed over the empty time scale is the initial
object. The disjoint sum is the coproduct in TPoset(C) therefore TPoset(C)
is even bi-cartesian closed whenever C is. The next theorem generalizes such a
remark.

Definition 6.3 (Projection of diagram functor). Let G = 〈V,E, s, t〉 be a
graph with vertices V , edges E, source and target functions s, t : E → V . Let
F : G → TPoset(C) be a diagram functor5. The temporal projection of F is
defined to be the diagram functor H : G → C defined by, for all v ∈ V , the poset
H(v) is the time scale over which F (v) is timed and, for all e ∈ E, the time scale
transformation H(e) is the temporal projection π ◦ F (e) of the Δ-synchronous
function F (e).

Theorem 6.2 (Limit and colimit). A diagram functor F : G → TPoset(C)
has a limit (resp. a co-limit) in Poset(C) whenever its temporal projection
H : G → C has a limit (resp. a colimit) in C.

As a particular case, a fixpoint equation of timed posets (or, as defined below,
timed domains) has an inductive (resp. co-inductive) solution whenever the pro-
jection of this equation over time scales has an inductive (resp. co-inductive)
solution.
5 We call here a diagram functor a functor from the category freely generated by a

graph G. As such a functor is fully determined by its value on graph vertices and
edges it can simply be seen as a graph morphism from G into (the graph of) its
codomain category.

Spatio-Temporal Domains: An Overview 245

7 Timed Domains

Timed domains ought to be cpos timed over cpos with continuous projections
and cuts. Such a definition is formalized via the notion of pre-continuous timed
posets so that timed domains can precisely be defined as pre-continuous timed
posets timed over cpos.

Definition 7.1 (Pre-continous timed posets). Let P be a poset timed over
T . We say that P is a pre-continuous timed poset when

(IN3) if X is directed and
∨

π(X) is defined then so is
∨

X, for all X ⊆ P .

Remark 7.1. In general, neither Imp(T,E) nor Sig(T,E) (see Examples 2.3
and 2.4) are pre-continuous. Indeed, as soon as there is t =

∨
U with directed

U ⊆ T and t �∈ U , then, in Imp(T,E), we have {(t, e) ↓ u}u∈U = {(t,⊥) ↓ u}u∈U

therefore this set as no upper bound. A remedy to this fact is proposed below.

Example 7.1 (Observable timed signals). Let << be the relation called here way
before, defined for every instant t, u ∈ T by t << u when for every directed subset
U ⊆ X such that

∨
U = u there must exists u′ ∈ U such that t ≤ u′. Let

SigC(T,E) ⊆ Sig(T,E) be the set of timed signals (u,X) such that t << u for
all (t, e) ∈ X, i.e. every event (t, e) ∈ X is observable in the sense that it can be
observed in any series of observations performed as any (directed) set of instants
U such that

∨
U = u. Then, with the cut (u,X) ↓ u′ = (u′, {(t, e) ∈ X : t << u′})

defined for all u′ ≤ u, the resulting set of signals SigC(T,E) is a pre-continuous
timed poset though not, in general, a sub-timed poset of Sig(T,E).

Lemma 7.1. Let P be a pre-continous timed poset timed over T . Then, for
every x ∈ P the local cut cutx : ↓ π(x) → P (see Definition 2.2) is continuous.

Remark 7.2. In general, the continuity of all local cuts in a timed poset does not
imply the continuity of that timed poset as shown by the example P1 = N timed
as a timed subset of T1 = N = N ∪ {∞} self-timed.

Also, the continuity of a timed poset does not imply the continuity of its
temporal projection, as shown by the example P2 = N timed as a timed subset
of T2 = N ∪ {∞′} self-timed, with ∞′ another upper bound of N, distinct and
incomparable with ∞.

Lemma 7.2. Let P be a pre-continuous timed poset, timed over T . Assume that
T is complete. Then P is complete and its temporal projection is continuous.

Definition 7.2 (Timed domain). A timed domain is a pre-continuous timed
poset timed over a complete time scale, hence, as proved above also a complete
poset with continuous local cuts and temporal projection.

Remark 7.3. As a consequence of Lemma 7.1, a timed domain P is continu-
ous/algebraic in the sense of Scott if and only if T itself is continuous/algebraic.
Indeed, it can be shown that for all x, y ∈ P , we have x << y if and only if
π(x)<< π(u).

246 D. Janin

Lemma 7.3 (Δ-synchronous vs continuous). Let P and Q be two timed
domains. Let f : P → Q be a Δ-synchronous function with temporal projection
δ : U → V . Assume that δ is continuous. Then f is continuous.

Remark 7.4. As a special case of the above lemma every synchronous function
between timed domains is continuous.

Theorem 7.1. Let T be a cpo. Then the category TCpo(T) of timed domain
over T and, when T has a least element, the category TCpo⊥(T) of timed domain
over T with least element, with, in both cases, synchronous (and continuous)
functions between them, are topoi.

Proof (Sketch of). The proof goes by rephrasing the Scott topology in terms
of a Grothendieck topology J over posets in such a way that (the categories of
elements of the) sheaves in Sh(T, J) are the pre-continuous timed posets timed
over T . As a reminder, a subset X of a poset E is Scott closed when it is
downward closed and for every directed Y ⊆ X, if

∨
Y is defined then

∨
Y ∈ X.

Then, for every t ∈ T , we define J(t) to be the set of all downward closed subsets
U ⊆ T such that U ≤ t, i.e. U is a sieve on t, and their Scott closure U equals
↓ t.

One can easily check that J is a Grothendieck topology (see [27] p. 110).
Moreover, one can also check that a timed poset P ∈ TPoset(T) is pre-
continuous if and only if its associated presheaf FP : T op → Set (see Lemma 3.4)
is a sheaf for J (see [27] p. 121). This ensures that the categorical equivalence
between TPoset(T) and Psh(T) (see Theorem 4.1) also defines a categorical
equivalence between the subcategories TCpo(T) and Sh(T, J). It follows that
TCpo(T) is also a topos since Sh(T, J) is.

For the category TCpo⊥(T) the argument is similar, though taking instead
the topology J ′ defined from J , by letting J ′(t) = J(t) when t > ⊥ and
J ′(⊥) = {{⊥}, ∅}. This forces every sheaf in Sh(T, J ′) to be a singleton on
⊥, and therefore its category of elements to have a least element. �

Remark 7.5. The terminal object, products and exponentials in both TCpo(T)
and TCpo⊥(T) are defined just in the same way as in TPoset(T). The power
object ΩP differs from TPoset(T) by the fact that it only contains pairs of the
form (u,X) ∈ T × P(P) where X is not only downward closed but also Scott
closed. This follows from the fact that in both TCpo(T) or TCpo⊥(T), subobjects
correspond to Scott closed subsets of timed domains.

Theorem 7.2. Both categories TCpo(Cpo) of timed domains or TCpo⊥(Cpo⊥)
of timed domains with least elements, and, in both cases, Δ-synchronous func-
tions with continuous temporal projections (therefore themselves continuous) are
cartesian closed categories.

Remark 7.6. Both categories above have an initial object when extended with
the empty timed domain over the empty time scale. They also have coprod-
ucts: the disjoint sum in TCpo(Cpo) and the coalescent sum in TCpo⊥(Cpo⊥).

Spatio-Temporal Domains: An Overview 247

In other words, both (slightly extended) categories are bi-cartesian closed. More
generally, it can be shown that Theorem 6.2 still holds when restricted to the
category TCpo⊥(Cpo⊥).

8 Timed Fixpoints and Causality

In the category TCpo⊥(Cpo⊥) of timed domains with least elements, every Δ-
synchronous function has a least fixpoint. Following the footsteps of Matsikoudis
and Lee [28], we examine below the property of the induced least fixpoint oper-
ators.

Lemma 8.1. Let P ∈ TCpo⊥(Cpo⊥) be a timed domain with least element ⊥P

timed over a complete time scale T with least element ⊥T . Let f : P → P be a
Δ-synchronous function with continuous temporal projection δ : T → T . Then
both least fixpoints μP (f) ∈ P and μT (δ) ∈ T are defined. Moreover, we have
π ◦ μP (f) = μT (δ).

Example 8.1 (Timed signals). Let T = R+ be the time scale of positive reals
completed with a maximum element ∞. Let f : Sig(T,E) → Sig(T,E) defined
for all (u,X) ∈ Sig(T,E) by f(u,X) = (u+2, {(0, e0)}∪{(t+2, e) : (t, e) ∈ X})
for some fixed event value e0 ∈ E. Then f is Δ-synchronous with temporal
projection t �→ t + 2 with ∞ as least fixpoint. Then we have the least fixpoint
μ(f) = (∞, {(2 ∗ n, e0) : n ∈ N}).

Theorem 8.1. Let PP be the exponent in TCpo⊥(Cpo⊥) of the timed domain
P by itself and let TT be the exponent of the object T by itself in Cpo⊥. Then
the least-fixpoint mapping μP : PP → P is a Δ-synchronous function with con-
tinuous temporal projection π(μP) = μT : TT → T .

Remark 8.1. When computing the fixpoint of a function f the output of that
function is sort of rewired on its input. In signal processing, there is a feedback
loop. Since both inputs and outputs lie in the same timed domain, their temporal
projections lie in the same time scale and can thus be compared. By default, every
Δ-synchronous function is locally causal in the sense that, by monotonicity, for
every n ∈ ω, with xn = fn(⊥P), we have xn ≤ f(xn) and π(xn) ≤ π(f(xn)).
This suffices for Theorem 8.1 to hold. However, intuition suggests that we could
require these functions to be globally causal as defined and studied below.

Definition 8.1 (Global causality). Let P be a poset timed over T with least
element ⊥P ∈ P therefore also a least element ⊥T ∈ T . Let f : P → P be a
Δ-synchronous function with temporal projection δ : T → T . We say that f is
globally causal when π(x) ≤ π(f(x)) for every x ∈ P . Equivalently, by (SD1),
when t ≤ δ(t) for all t ∈ π(P).

Though not needed in the general case, such a notion appears when restrict-
ing to TCpo⊥(SLattice⊥) so that Δ-synchronous function preserves arbitrary
coherence (Lemma 4.2). Indeed, in SLattice⊥, the fixpoint function μT is not in
general meet-preserving hence Theorem 8.1 fails.

248 D. Janin

Theorem 8.2. In the category TCpo⊥(CSLattice⊥) of domains timed over con-
tinuous meet-semilattices and Δ-synchronous functions with meet-preserving
temporal projections, the fixpoint mapping μP : PP → P is Δ-synchronous pro-
vided we restrict ourselves to causal Δ-synchronous functions.

Remark 8.2. Despite such a result, global causality remains quite an ad hoc
restriction. We are still in need of some additional restrictions on the notion of
Δ-synchronous functions in a category TCpo⊥(C⊥) that would guarantee their
combinations to be globally causal whenever applicable. For such a purpose,
adjunctions in posets could be a direction to investigate.

9 Conclusion

Along these pages, we have detailed a possible mathematical framework for the
modeling of spatio-temporal system behaviors that extends to space and time the
classical notion of cpos and continuous functions used in denotational semantics.

Bi-cartesian closed with internal fixpoint operators, and essentially all lim-
its or co-limits that may exist in Cpo⊥, the category TCpo⊥(Cpo⊥) eventually
turned out to be a fairly general and fully featured category for defining and ana-
lyzing the behaviors of timed programs with both synchronous and asynchronous
versions of typical categorical constructs such as sum, products or exponents, as
well as, in the synchronous case, power-objects.

Technically rooted in topos and fibration theory, via the category of elements
of sheaves over certain Grothendieck topologies, the resulting definitions and
constructions have (mostly) been stated in elementary mathematical terms. This
means that, after some more polishing and more detailed application studies,
such material could even be taught to standard students in computer science
and software engineering.

With a view towards concrete applications, we have not yet developed at
all the potential offered by the left Kan extension theorem (see Theorems 4.2
and 4.3). When time scales are built from concrete numerical scales such a N, Q+

or R+, it allows us to define sound lifting of operators over these time scales such
as delays, projections, stretches, etc., into timed program constructs. This would
lead to pursuing the research program initiated by Paul Hudak for an algebraic
and programming theory of Polymorphic Temporal Media [17] and the somehow
related though earlier proposal of Functional Reactive Programming [14,15].
Links with the related ultrametric [24] or categorical models [21,22] could be
investigated.

Examples over timed signals detailed throughout suggest that timed domains
also may induce some notion of timed operational semantics, probably deeply
linked with the existing state based timed system modeling frameworks such
as IO-timed automata theory [23]. This surely necessitates focussing our atten-
tion on finite (or finitely representable) spaced and timed functions, a necessity
that may benefit from our somewhat strong restriction to timed behaviors that
uniformly act on the underlying time scales.

Spatio-Temporal Domains: An Overview 249

Acknowledgment. The author wishes to express his deep gratitude to Gordon
Plotkin and Phil Scott for their early advice to look at the notion of presheaves, to
Marek Zawadowski for his help in understanding Grothendieck topologies and sheaves,
to referees for their numerous suggestions of improvement, and to Simon Archipoff,
Michail Raskin and Bernard Serpette for many fruitful discussions on various aspects
of this work.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Design. Cambridge Uni-
versity Press, Cambridge (2010). https://doi.org/10.1017/cbo9781139195881

2. Archipoff, S., Janin, D.: Structured reactive programming with polymorphic tem-
poral tiles. In: Proceedings of 4th ACM SIGPLAN International Workshop on
Functional Art, Music, Modeling and Design FARM 2016, pp. 29–40. ACM Press,
New York (2016). https://doi.org/10.1145/2975980.2975984

3. Archipoff, S., Janin, D.: Unified media programming: an algebraic approach. In:
Proceedings of 5th ACM SIGPLAN International Workshop on Functional Art,
Music, Modeling and Design, FARM 2017, pp. 36–47. ACM Press, New York
(2017). https://doi.org/10.1145/3122938.3122943

4. Barr, M., Wells, C.: Category Theory for Computing Science, 3rd edn. Centre de
Recherche Mathématique (CRM), Montréal (1999)

5. Benveniste, A., Caspi, P., Edwards, S.A., Halbwachs, N., Le Guernic, P., De
Simone, R.: The synchronous languages twelve years later. Proc. IEEE 91(1), 64–
83 (2003)

6. Berry, G.: Stable models of typed λ-calculi. In: Ausiello, G., Böhm, C. (eds.) ICALP
1978. LNCS, vol. 62, pp. 72–89. Springer, Heidelberg (1978). https://doi.org/10.
1007/3-540-08860-1 7

7. Berry, G., Gonthier, G.: The Esterel synchronous programming language: design,
semantics, implementation. Sci. Comput. Program. 19(2), 87–152 (1992). https://
doi.org/10.1016/0167-6423(92)90005-v

8. Cattani, G.L., Stark, I., Winskel, G.: Presheaf models for the π-calculus. In: Moggi,
E., Rosolini, G. (eds.) CTCS 1997. LNCS, vol. 1290, pp. 106–126. Springer, Hei-
delberg (1997). https://doi.org/10.1007/BFb0026984

9. Cattani, G.L., Winskel, G.: Presheaf models for CCS-like languages. Theor. Com-
put. Sci. 300(1–3), 47–89 (2003). https://doi.org/10.1016/s0304-3975(01)00209-2

10. Chapiro, D.M.: Globally-asynchronous locally-synchronous systems. Ph.D. thesis,
Department of Computer Science, Stanford University (1985)

11. Colaço, J.L., Girault, A., Hamon, G., Pouzet, M.: Towards a higher-order syn-
chronous data-flow language. In: Proceedings of 4th ACM International Confer-
ence on Embedded Software, EMSOFT 2004, Pisa, Septemebr 2004, pp. 230–239.
ACM Press, New York (2004). https://doi.org/10.1145/1017753.1017792

12. Colaço, J.-L., Pouzet, M.: Clocks as first class abstract types. In: Alur, R., Lee, I.
(eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 134–155. Springer, Heidelberg (2003).
https://doi.org/10.1007/978-3-540-45212-6 10

13. Cousot, P., Cousot, R., Mauborgne, L.: Logical abstract domains and interpreta-
tions. In: Nanz, S. (ed.) The Future of Software Engineering (Meyer Festschrift),
pp. 48–71. Springer, Heidelberg (2010). https://doi.org/10.1007/BFb0026984

https://doi.org/10.1017/cbo9781139195881
https://doi.org/10.1145/2975980.2975984
https://doi.org/10.1145/3122938.3122943
https://doi.org/10.1007/3-540-08860-1_7
https://doi.org/10.1007/3-540-08860-1_7
https://doi.org/10.1016/0167-6423(92)90005-v
https://doi.org/10.1016/0167-6423(92)90005-v
https://doi.org/10.1007/BFb0026984
https://doi.org/10.1016/s0304-3975(01)00209-2
https://doi.org/10.1145/1017753.1017792
https://doi.org/10.1007/978-3-540-45212-6_10
https://doi.org/10.1007/BFb0026984

250 D. Janin

14. Elliott, C., Hudak, P.: Functional reactive animation. In: Proceedings of 2nd ACM
International Conference on Functional Programming, ICFP 1997, Amsterdam,
June 1997, pp. 263–273. ACM Press, New York (1997). https://doi.org/10.1145/
258948.258973

15. Elliott, C.M.: Push-pull functional reactive programming. In: Proceedings of 2nd
ACM SIGPLAN Symposium on Haskell, Haskell 2009, Edinburgh, September 2009,
pp. 25–36. ACM Press, New York (2009) https://doi.org/10.1145/1596638.1596643

16. Girard, J.Y.: Linear logic. Theor. Comput. Sci. 50, 1–102 (1987). https://doi.org/
10.1016/0304-3975(87)90045-4

17. Hudak, P.: A sound and complete axiomatization of polymorphic temporal media.
Technical report, RR-1259, Department of Computer Science, Yale University
(2008)

18. Hudak, P.: The Haskell School of Music: From Signals to Symphonies. Department
of Computer Science, Yale University (2013)

19. Hughes, J.: Programming with arrows. In: Vene, V., Uustalu, T. (eds.) AFP 2004.
LNCS, vol. 3622, pp. 73–129. Springer, Heidelberg (2005). https://doi.org/10.1007/
11546382 2

20. Jacobs, B.: Categorical Logic and Type Theory. Studies in Logic and the
Foundations of Mathematics, vol. 141. North Holland, Amsterdam (1999).
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-
of-mathematics/vol/141/

21. Jeffrey, A.: Functional reactive types. In: Proceedings of EACSL Annual Confer-
ence and 29th Ann ACM/IEEE Symposium on Logic in Computer Science, CSL-
LICS 2014, Vienna, July 2014, Article 54. ACM Press, New York (2014). https://
doi.org/10.1145/2603088.2603106

22. Jeltsch, W.: An abstract categorical semantics for functional reactive programming
with processes. In: Proceedings of 2014 ACM SIGPLAN Workshop on Program-
ming Languages Meets Program Verification, PLPV 2014, San Diego, CA, January
2014, pp. 47–58. ACM Press, New York (2014). https://doi.org/10.1145/2541568.
2541573

23. Kaynar, D.K., Lynch, N., Segala, R., Vaandrager, F.: The Theory of Timed I/O
Automata. Synthesis Lectures on Computer Science. Morgan & Claypool Publish-
ers (2006). https://doi.org/10.2200/s00006ed1v01y200508csl001

24. Krishnaswami, N.R.: Higher-order functional reactive programming without space-
time leaks. In: Proceedings of 18th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2013, Boston, MA, September 2013, pp. 221–232.
ACM Press, New York (2013). https://doi.org/10.1145/2500365.2500588

25. Krishnaswami, N.R., Benton, N.: Ultrametric semantics of reactive programs. In:
Proceedings of 26th Annual IEEE Symposium on Logic in Computer Science, LICS
2011, Toronto, ON, June 2011, pp. 257–266. IEEE CS Press, Washington, DC
(2011). https://doi.org/10.1109/lics.2011.38

26. Liu, X., Lee, E.A.: CPO semantics of timed interactive actor networks. Theor.
Comput. Sci. 409(1), 110–125 (2008). https://doi.org/10.1016/j.tcs.2008.08.044

27. Mac Lane, S., Moerdijk, I.: Sheaves in Geometry and Logic: A First Introduction
to Topos Theory. Universitext. U. Springer, New York (1992). https://doi.org/10.
1007/978-1-4612-0927-0

28. Matsikoudis, E., Lee, E.A.: The fixed-point theory of strictly causal functions.
Theor. Comput. Sci. 574, 39–77 (2015)

29. Streicher, T.: Fibred categories à la Jean Bénabou. Revised notes of a course on
fibred categories given at a spring school in Munich 1999 (2014)

https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/258948.258973
https://doi.org/10.1145/1596638.1596643
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1007/11546382_2
https://doi.org/10.1007/11546382_2
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/141/
https://www.sciencedirect.com/bookseries/studies-in-logic-and-the-foundations-of-mathematics/vol/141/
https://doi.org/10.1145/2603088.2603106
https://doi.org/10.1145/2603088.2603106
https://doi.org/10.1145/2541568.2541573
https://doi.org/10.1145/2541568.2541573
https://doi.org/10.2200/s00006ed1v01y200508csl001
https://doi.org/10.1145/2500365.2500588
https://doi.org/10.1109/lics.2011.38
https://doi.org/10.1016/j.tcs.2008.08.044
https://doi.org/10.1007/978-1-4612-0927-0
https://doi.org/10.1007/978-1-4612-0927-0

Spatio-Temporal Domains: An Overview 251

30. Teehan, P., Greenstreet, M.R., Lemieux, G.G.: A survey and taxonomy of GALS
design styles. IEEE Des. Test. Comput. 24(5), 418–428 (2007). https://doi.org/
10.1109/mdt.2007.151

31. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
ACPN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987). https://
doi.org/10.1007/3-540-17906-2 31

32. Winskel, G.: Events, causality and symmetry. In: Proceedings of BCS Interna-
tional Academic Conference on Visions of Computer Science, London, September
2008, pp. 111–127. Electronic Workshops in Computing. British Computer Society
(2008). https://ewic.bcs.org/content/ConWebDoc/22872

https://doi.org/10.1109/mdt.2007.151
https://doi.org/10.1109/mdt.2007.151
https://doi.org/10.1007/3-540-17906-2_31
https://doi.org/10.1007/3-540-17906-2_31
https://ewic.bcs.org/content/ConWebDoc/22872

Checking Modal Contracts for Virtually
Timed Ambients

Einar Broch Johnsen, Martin Steffen, Johanna Beate Stumpf(B),
and Lars Tveito

Inst. for informatikk, Universitetet i Oslo,
Postboks 1080, Blindern, 0316 Oslo, Norway

{einarj,msteffen,johanbst,larstvei}@ifi.uio.no

Abstract. The calculus of virtually timed ambients models timing
aspects of resource management for virtual machines. With nested virtu-
alization, virtual machines compete with other processes for the resources
of their host environment. Resource provisioning in virtually timed ambi-
ents can be formalized by extending the capabilities of mobile ambi-
ents to model the dynamic creation, migration, and destruction of vir-
tual machines. This paper introduces a logic to define modal contracts
regarding resource management for virtually timed ambients. Service-
level agreements are contracts between a service provider and a client,
specifying properties that the service should fulfill with respect to qual-
ity of service (QoS). The proposed modal logic supports QoS statements
about the resource consumption and nesting structure of a system during
the timed reduction of its processes. Besides a formal definition of the
logic, the paper provides a corresponding model checking algorithm and
its prototype implementation in rewriting logic.

1 Introduction

In cloud-computing, a service-level agreement is an official commitment or con-
tract between a cloud-service provider and a client. Service-level agreements are
offered by service providers to specify the services that should be provided to the
customer as well as properties the system has to satisfy with respect to quality of
service, such as mean time between failures, responsibility for various data rates,
resource consumption, etc. Quality of service (QoS) approaches in cloud com-
puting have recently been surveyed [1], confirming that open challenges remain
which require further research to provide trustworthy cloud computing services
that deliver appropriate QoS. This paper provides a formalization to support
QoS statements via modal contracts for virtually timed ambients.

The calculus of virtually timed ambients [22] is a calculus of explicit resource
provisioning, based on mobile ambients [10]. It can be used to model nested
virtualization in cloud systems. Virtualization technology enables the resources
of an execution environment to be represented as a software layer, a so-called
virtual machine. Nested virtualization [19] is a crucial technology to support
the heterogeneous cloud [17], as it enables virtual machines to migrate between
c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 252–272, 2018.
https://doi.org/10.1007/978-3-030-02508-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_14&domain=pdf

Checking Modal Contracts for Virtually Timed Ambients 253

different cloud providers [38]. It is also necessary to host virtual machines with
operating systems which themselves support virtualization [7], such as Microsoft
Windows 7 and Linux KVM. The time model used to realize resource provision-
ing for virtually timed ambients is called virtual time. Virtual time is provided
to a virtually timed ambient by its parental ambient, similar to the time slices
that an operating system provisions to its processes. When considering multiple
levels of nested virtualization, virtual time becomes a local notion of time which
depends on a virtually timed ambient’s position in the nesting structure. Vir-
tually timed ambients are mobile, reflecting that virtual machines may migrate
between host virtual machines. Observe that such migration affects the execu-
tion speed of processes in the migrating virtually timed ambient, as well as in
the virtually timed ambient which is left, and in the virtually timed ambient
which is entered.

This paper defines modal contracts which capture QoS statements for cloud
systems modeled in virtually timed ambients. As virtually timed ambients can
model nested virtualization in cloud systems, the modal contracts provide infor-
mation on the resource consumption and nesting structure of a system of virtu-
ally timed ambients during the timed reduction of its processes. Modal contracts
are formalized as properties in modal logic that a system has to satisfy. The
modal logic we consider combines modal logic for mobile ambients with notions
based on metric temporal logic to obtain a modal logic for virtually timed ambi-
ents. Modal logic for mobile ambients [9] enables us to make statements about
the behavior of ambient systems during their reduction. Timing constraints on
modalities are introduced in metric temporal logic [24,31,32], which is an exten-
sion of linear temporal logic.

To prove that a system satisfies a given modal contract, we define a simple
model checking algorithm. We further contribute a prototype-implementation of
the model checker in Maude [16], which is a formal specification and program-
ming system based on rewriting logic [27].

Contributions. The main contributions of this paper are the following:

– we combine modal logic for mobile ambients with notions based on metric
temporal logic in order to capture the special features of virtual time and
resource provisioning in virtually timed ambients;

– we show that the resulting logic is a conservative extension of the modal logic
for the ambient calculus, preserving satisfiability;

– we define a model checking algorithm for this modal logic, and develop a
prototype implementation in the rewriting logic system Maude; and

– we illustrate all concepts by examples.

To the best of our knowledge, this is the first implementation of modal logic
for mobile ambients in rewriting logic, and the first implementation of a model
checker for mobile ambients considering time or resources.

Paper Overview. We introduce virtually timed ambients in Sect. 2. Section 3
considers modal logic for such ambients. Section 4 introduces a model checker

254 E. B. Johnsen et al.

algorithm. Section 5 presents the implementation of the model checker in rewrit-
ing logic. We discuss related work and conclude in Sects. 6 and 7.

Table 1. Syntax of virtually timed ambients, x ∈ N0.

n name
tick virtual time slice

Timed processes:
P, Q ::= 0 inactive process

| P | Q parallel composition
| (νn)P restriction
| !C.P replication
| C.P prefixing
| n[Sched | tickx | P] virtually timed ambient

Timed capabilities:
C ::= in n enter n and adjust the local scheduler there

| out n exit n and adjust the local scheduler
on the outside

| open n open n and adjust own local scheduler
| c consume a resource

2 Virtually Timed Ambients

Virtually timed ambients [22,23] is a calculus of explicit resource provisioning,
based on mobile ambients. Mobile ambients [10] are processes with a concept of
location, arranged in a dynamically evolving hierarchy. Interpreting these loca-
tions as places of deployment, virtually timed ambients extend mobile ambients
with notions of virtual time and resource consumption. The timed behavior
depends on the one hand on the local timed behavior, and on the other hand on
the placement or deployment of the virtually timed ambient or process in the
hierarchical ambient structure. Virtually timed ambients combine timed pro-
cesses and timed capabilities with the features of mobile ambients.

Definition 1 (Virtually timed ambients). The syntax of virtually timed
ambients is given by the grammar in Table 1.

Timed processes differ from mobile ambients in that each virtually timed
ambient contains, besides possibly further (virtually timed) subambients, a local
scheduler. In the sequel, we omit the qualification “timed” or “virtually timed”,
when speaking about processes, capabilities, or ambients when the context of
virtually timed ambients is clear. In the calculus, the locations for processes,
called virtually timed ambients, are represented by names, and time slices are
written as tick. The inactive process 0 does nothing. The parallel composition
P | Q allows both processes P and Q to proceed concurrently, where the binary

Checking Modal Contracts for Virtually Timed Ambients 255

operator | is commutative and associative. The restriction operator (νn)P cre-
ates a new and unique name with process P as its scope. Replication of processes
is given as !C.P . A process P located in an virtually timed ambient named n is
written n[Sched | tickx | P], where tick0 ≡ 0. Ambients can be nested, and
the nesting structure can change dynamically, this is specified by prefixing a pro-
cess with a capability C.P . Timed capabilities extend the capabilities of mobile
ambients by including a resource consumption capability c and by giving the
opening, exiting, and entering capabilities of mobile ambients a timed interpre-
tation. These capabilities restructure the hierarchy of an ambient system, so the
behavior of local schedulers and resource consumption changes, as these depend
on the placement of the timed ambient in the hierarchy.

The semantics of virtually timed ambients is given as a reduction system. The
reduction relation P � Q for virtually timed ambients is captured by the rules in
Tables 2 and 3. The rules for structural congruence P ≡ Q are equivalent to those
for mobile ambients (and thus omitted here). The rules in Table 2 make use of
observables, also known as barbs. Barbs, originally introduced for the π-calculus
[28], capture a notion of immediate observability. In the ambient calculus, these
observations concern the presence of a top-level ambient whose name is not
restricted. Let m̃ describe a tuple of names, then the observability predicate ↓n

or “barb” is defined as follows:

Definition 2 (Barbs, from [25]). A process P strongly barbs on a name n,
written P↓n, if P ≡ (νm̃)(n[P1] | P2), where n /∈ {m̃}.

A process that does not contain ν-binders is considered to be ν-binder free.
By moving the ν-binders to the outside and only considering the inside of their
scope, we can observe the bound ambients inside the scope of the ν-binders.

Definition 3 (Timed top-level ambients). For a process P , let P↓ denote
the set of all timed top-level ambients: P↓ = {n | P ≡ (νm̃)P ′∧P ′isν-binderfree∧
P ′↓n ∧ speedn > 0}.

In a virtually timed ambient, the local scheduler is responsible for triggering
timed behavior and local resource consumption. Each time slice emitted by a
local scheduler triggers the scheduler of a subambient or is consumed by a pro-
cess as a resource in a preemptive, yet fair way, which makes system behavior
sensitive to co-located virtually timed ambients and resource consuming pro-
cesses.

Definition 4 (Local and root schedulers). Let the variables unserved and
served denote sets containing names of virtually timed ambients as well as pro-
cesses (represented directly, lacking names). A local scheduler is denoted by

Schedspeed{in, out, rest, unserved, served},

where speed ∈ Q relates externally received to internally emitted time slices;
in ∈ N records the number of received time slices; out ∈ N records the number of
time slices to be distributed for each incoming time slice, while rest ∈ N records

256 E. B. Johnsen et al.

additional distributable time slices depending on the speed; and unserved contains
local ambients with a positive speed and processes which are intended to receive
one time slice in this round of the scheduling, while served contains processes
scheduled for the next round.

Root schedulers, represented as Sched†{in, out, 0, unserved, served}, are local
schedulers which do not need an input to distribute time slices and therefore have
no defined speed.

The reduction rules for virtually timed ambients are given in Tables 2 and 3.
The timed capabilities in n, out n, and open n enable virtually timed ambients
to move in the hierarchical ambient structure. The local schedulers need to know
about the current subambients, so their lists of subambients must be adjusted
when virtually timed ambients move. Observe that without adjusting the sched-
ulers, the moving subambient would not receive time slices from the scheduler
in its new surrounding ambient. In TR-In and TR-Out, the schedulers of the
old and new surrounding ambient of the moving ambient are updated by remov-
ing and adding, respectively, the name of the moving ambient, if it has a speed
greater than zero. The scheduler of the moving subambient is also updated as
it needs to contain the barbs of the process that was hidden behind the move-
ment capability. In TR-Open, the scheduler of the opening ambient itself is
updated by removing the name of the opened ambient and adding the barbs
of the processes inside this ambient as well as the barbs of the process hidden
behind the open capability. The scheduler of the opened ambient is deleted. In
TR-Resource, the time consuming process moves into the scheduler, where it
awaits the distribution of a time slice as resource before it can continue. This
reduction can only happen in virtually timed ambients with speed greater zero,
meaning ambients which actually emit resources.

The rules in Table 3 distribute time slices via the local schedulers. We want
to enable the schedulers to distribute time slices as soon as possible. The ratio
of output time slices to input time slices is defined by the speed ∈ Q of the
scheduler. For example, for a speed of 3/2 the first incoming time slice (tick)
should trigger one outgoing time slice and the second input should trigger two,
emitting in total three time slices for two inputs. Thus, in order to implement a
simple eager scheduling strategy, we make use of the so-called Egyptian fraction
decomposition to determine the number of time slices to be distributed by the
local scheduler for each incoming time slice tick. For every rational number
q ∈ Q it holds that q = x+

∑z
y=1

1
by

for x, by ∈ N, which is solvable in polynomial
time. A greedy algorithm (e.g., [18]) additionally yields the desirable property
that a time slice is distributed as soon as possible. From this decomposition,
it follows that for each input time slice the local scheduler with speed q will
distribute x time slices, plus one additional time slice for every by-th input.

In RR-Tick, the local scheduler receives a time slice, which it registers in the
counter in. At the same time out and rest initiate the distribution of time slices
depending on the Egyptian fraction decomposition of the speed of the scheduler.
These steps of the time slice distribution are shown in the RR-Tock rules, which
allow transferring a new tick to a timed subambient or using the time slice as

Checking Modal Contracts for Virtually Timed Ambients 257

Table 2. Reduction rules for timed capabilities. A blue backdrop marks the trigger of
the reduction, red the changes in the schedulers, and green eventual constraints.

Sdlk = Schedspeedk{ink, outk, restk,Uk,Sk}, n ∈ Uk ∪ Sk

Sdlm = Schedspeedm{inm, outm, restm,Um,Sm}
Sdln = Schedspeedn{inn, outn, restn,Un,Sn}
Sdl′

k = Schedspeedk{ink, outk, restk, Uk \ {n},Sk \ {n} }
Sdl′

m = Schedspeedm{inm, outm, restm,Um,Sm ∪ {n} }, if speedn > 0 else Sdlm

Sdl′
n = Schedspeedn{inn, outn, restn,Un,Sn ∪ P↓ }

k[Sdlk | n[Sdln | in m.P | Q] | m[Sdlm | R] | U]

k[Sdl′
k | m[Sdl′

m | R | n[Sdl′
n | P | Q]] | U]

(TR-In)

Sdlk = Schedspeedk{ink, outk, restk,Uk,Sk}, n ∈ Um ∪ Sm

Sdlm = Schedspeedm{inm, outm, restm,Um,Sm}
Sdln = Schedspeedn{inn, outn, restn,Un,Sn}
Sdl′

k = Schedspeedk{ink, outk, restk,Uk,Sk ∪ {n} }, if speedn > 0 else Sdlk

Sdl′
m = Schedspeedm{inm, outm, restm, Um \ {n},Sm \ {n} }

Sdl′
n = Schedspeedn{inn, outn, restn,Un,Sn ∪ P↓ }

k[Sdlk | m[Sdlm | n[Sdln | out m.P | Q] | R] | U]

k[Sdl′
k | n[Sdl′

n | P | Q] | m[Sdl′
m | R] | U]

(TR-Out)

Sdlk = Schedspeedk{ink, outk, restk,Uk,Sk}, n ∈ Uk ∪ Sk

Sdl′
k = Schedspeedk{ink, outk, restk, Uk \ {n},Sk \ {n} ∪ P↓ ∪ R ↓ }

(TR-Open)
k[Sdlk | open n.P | n[Sdln | R] | Q] k[Sdl′

k | P | R | Q]

Sdlm = Schedspeedk{inm, outm, restm,Um,Sm}, speedm > 0

Sdl′
m = Schedspeedm{inm, outm, restm,Um,Sm ∪ {c .P} }

(TR-Resource)
m[Sdlm | c .P | R] m[Sdl′

m | R]

a resource for a consume capability, which is waiting in the scheduler. The RR-
Tock1 rules concern the number x of time slices that are given out for every
input time slice, while the RR-Tock2 rules only allow to give out a time slice if
the input step is a multiple of one of the fraction denominators by. This amounts
to a concrete implementation of a fair scheduler where progress is uniform over
the queue of timed subambients and time consuming processes. Once all waiting
subambients and processes inside the set unserved have been served one time
slice and are moved to the set served, either the rule RR-NewRound ensures

258 E. B. Johnsen et al.

Table 3. Transition system for fair, preemptive distribution of virtual time slices,
where by ∈ N. A blue backdrop marks the reduction trigger and red the changes.

Sdl = Schedspeed{in, 0, 0, ∅, ∅}, Sdl′ = Schedspeed{ in+ 1 , 0, 0, ∅, ∅}, R �≡ c .P | P ′

a[tick | Sdl | R] a[Sdl′ | R] (RR-Empty)

Sdl = Schedspeed{in, 0, 0,U,S}, U ∪ S �= ∅
Sdl′ = Schedspeed{ in+ 1, x, z ,U,S}, speed = x +

∑z
y=1

1
by
, by > 1

a[tick | Sdl | R] a[Sdl′ | R]
(RR-Tick)

Sdl = Schedspeed{in, out, rest, ∅,S }, R �≡ c .P | P ′

Sdl′ = Schedspeed{in, out, rest, S, ∅ }
a[Sdl | R] a[Sdl′ | R]

(RR-NewRound)

out > 0 , ai ∈ U, ai ≡ c .P , Sdl = Schedspeed{in, out, rest,U,S}
Sdl′ = Schedspeed{in, out − 1 , rest,U \ {ai} ∪ P↓ ,S}

a[Sdl | R] a[Sdl′ | R | P] (RR-Tock1-consume)

out > 0 , ai ∈ U, R ≡ ai[Sdlai | P ′] | P , R′ ≡ ai[Sdlai | tick | P ′] | P

Sdl = Schedspeed{in, out, rest,U,S}
Sdl′ = Schedspeed{in, out − 1 , rest,U \ {ai} ,S ∪ {ai} }

a[Sdl | R] a[Sdl′ | R′] (RR-Tock1-ambient)

rest > 0 , in mod brest = 0, ai ∈ U, ai ≡ c .P , speed = x +
∑z

y=1
1
by
, by > 1

Sdl = Schedspeed{in, out, rest,U,S}
Sdl′ = Schedspeed{in, out, rest − 1 ,U \ {ai} ∪ P↓ ,S}

a[Sdl | R] a[Sdl′ | R | P] (RR-Tock2-consume)

rest > 0 , ai ∈ U, R ≡ ai[Sdlai | P ′] | P , R′ ≡ ai[Sdlai | tick | P ′] | P

Sdl = Schedspeed{in, out, rest,U,S}, in mod brest = 0, speed = x +
∑z

y=1
1
by
, by > 1

Sdl′ = Schedspeed{in, out, rest − 1 ,U \ {ai} ,S ∪ {ai} }
a[Sdl | R] a[Sdl′ | R′] (RR-Tock2-ambient)

rest > 0 , in mod brest �= 0, speed = x +
∑z

y=1
1
by
, by > 1

Sdl = Schedspeed{in, out, rest,U,S}, Sdl′ = Schedspeed{in, out, rest − 1 ,U,S}
a[Sdl | R] a[Sdl′ | R] (RR-Tock2-no action)

Sdl† = Sched†{in, 0, 0,U,S}, Sdl†
∗ = Sched†{ in+ 1, 1 , 0,U,S}

Sdl† Sdl†
∗

(RR-Root)

Checking Modal Contracts for Virtually Timed Ambients 259

that a new round of time slice distribution can begin, or, if the queue is empty,
the rule RR-Empty is applied. This scheduling strategy ensures fairness in the
competition for resources between processes, as the rounds ensure that no process
can bypass another process more than once. The side condition R �≡ c .P | P ′ in
the rules RR-NewRound and RR-Empty ensures that all resource-consuming
processes, which are prefixed by a c capability, are included in the set to be
scheduled for the next round. The root scheduler Sched† reduces without time
slices from surrounding ambients in RR-Root.

In the sequel we will focus on a subset of the language of virtually timed ambi-
ents without replication and without restriction, denoted by VTA−. Similarly,
let MA− denote mobile ambients without replication and without restriction.

Example 1 (Virtually timed subambients, scheduling and resource consumption).
The virtually timed ambient cloud , exemplifying a cloud server, emits one time
slice for every time slice it receives, Sdlcloud = Sched1{0, 0, 0, ∅, ∅}. It contains
two tick and is entered by a virtually timed subambient vm.

cloud [Sched1{0, 0, 0, ∅, ∅} | tick | tick]
| vm[Sched3/4{0, 0, 0, ∅, ∅} |in cloud . c .P]

The ambient vm exemplifies a virtual machine containing a resource consuming
task, where Sdlvm = Sched3/4{0, 0, 0, ∅, ∅}. The Egyptian fraction decomposi-
tion of the speed yields 3/4 = 0+1/2+1/4 meaning that there is no time slice given
out for every incoming time slice, but one time slice for every second incoming
time slice, and one for every fourth. The process reduces as follows:

�cloud [Sched1{0, 0, 0, ∅, vm} | tick | tick
| vm[Sched3/4{0, 0, 0, ∅, ∅} |c .P]] (TR-In)

�cloud [Sched1{0, 0, 0, vm, ∅} | tick | tick
| vm[Sched3/4{0, 0, 0, ∅, ∅} |c .P]] (RR-NewRound)

�cloud [Sched1{0, 0, 0, vm, ∅} | tick | tick
| vm[Sched3/4{0, 0, 0, ∅, c .P} | 0]] (TR-Resource)

�cloud [Sched1{0, 0, 0, vm, ∅} | tick | tick
| vm[Sched3/4{0, 0, 0, c .P, ∅} | 0]] (RR-NewRound).

Here, the ambient vm enters the ambient cloud and is registered in the sched-
uler. Furthermore, the resource consuming process in vm is registered. In the
next steps the time slices move into the scheduler of the cloud ambient and are
distributed further down in the hierarchy.

260 E. B. Johnsen et al.

�cloud [Sched1{1, 1, 0, vm, ∅} | tick
| vm[Sched3/4{0, 0, 0, c .P, ∅} | 0]] (RR-Tick)

�cloud [Sched1{1, 0, 0, ∅, vm} | tick
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick]] (RR-Tock1-ambient)

�cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick]] (RR-NewRound)

�cloud [Sched1{2, 1, 0, vm, ∅}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick]] (RR-Tick)

�cloud [Sched1{2, 0, 0, ∅, vm}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick | tick]] (RR-Tock1-ambient)

�cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{0, 0, 0, c .P, ∅} | tick | tick]] (RR-NewRound).

Now the ambient vm can use the time signals to enable resource consumption.

�cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{1, 0, 1, c .P, ∅} | tick]] (RR-Tick)

�cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{1, 0, 0, c .P, ∅} | tick]] (RR-Tock2-no action)

�cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{2, 0, 1, c .P, ∅} | 0]] (RR-Tick)

�cloud [Sched1{2, 0, 0, vm, ∅}
| vm[Sched3/4{2, 0, 0, P↓, ∅} | P]] (RR-Tock2-consume)

Note that, as the calculus is non-deterministic, the reduction rules can be applied
in arbitrary order, making several reduction paths possible.

3 Modal Logic for Virtually Timed Ambients

To capture the distinctive features of virtual time and resource provisioning
in virtually timed ambients, the modal logic MLV TA for VTA− combines the
modal logic MLMA for mobile ambients without the composition adjunct, with
notions based on metric temporal logic [24,31,32].

The syntax of MLV TA is shown in Table 4. The sometime operator (the
name refers to sometime in the reduction) comes with a constraint giving the
maximal number of resources x ∈ N0 ∪ {∞} that a process may use inside an
ambient named n before fulfilling formula A. The somewhere operator refers to
the formula being true in a sublocation of the process and specifies the minimal
speed that the sublocation must possess relative to its surrounding ambients
as well as the maximal number of subambients in this location. To define these
operators, we adapt the sublocation relation from [9] to accommodate schedulers.

Checking Modal Contracts for Virtually Timed Ambients 261

Table 4. Logical formulas, n ∈ names, x, s ∈ N0 ∪ {∞}, speed ∈ Q

A, B:: = True True

¬A Negation

A ∨ B Disjunction

0 Void

n[A] Location

A | B Composition

∀n.A Universal quantification over names

A@n Local adjunct

c Consumption

�x@nA Sometime modality

♦(speed,s)A Somewhere modality

Definition 5 (Sublocation with schedulers). A process P ′ is a sublocation
of P , written P ↓ P ′, iff P ≡ (n[Sdl | P ′] | P ′′) for some name n, scheduler
Sdl, and process P ′′. Let P ↓∗ P ′ denote the reflexive and transitive closure of
P ↓ P ′; i.e., P ↓∗ P ′ iff P ↓ P ′ or P ↓ P ′′ and P ′′ ↓∗ P ′ for some process P ′′.

In order to capture the number of resources consumed in a given ambient,
we define a labeled reduction relation. While � refers to all reduction steps in
virtually timed ambients, we denote by tick−−� the steps of the (RR-Tick) and
(RR-Empty) rules; i.e., these labeled transitions capture the internal reductions
in the schedulers enabling the timed reduction of processes. All other reduction
steps are marked by τ−�.

Definition 6. P
tick−−� P ′ iff P | tick −→ P ′. We write tickx−−−� if x time signals

tick are used; i.e., P
tickx−−−� P ′ iff P | tick | · · · | tick −→∗ P ′, where the

number of time signals tick is x. The weak version of this reduction is defined
as P

tickx===⇒ P ′ iff P (τ−�∗ tick−−� τ−�∗
)xP ′, where τ−�∗

describes the application of
an arbitrary number of τ -steps.

The relation tickx===⇒n captures the number of resources used inside an ambient
n inside a process.

Definition 7. P
tickx===⇒n P ′ iff P �

∗ P ′ and there exists Q,Q′ such that
P ↓∗ n[Q], P ′ ↓∗ n[Q′] and Q

tickx===⇒ Q′.

We now define the notion of accumulated speed, based on the eager distri-
bution strategy for time slices. The accumulated speed accum{m}P ∈ Q in a
subambient m which is part of a process P , is the relative speed of the ambient
with respect to the scheduler of P and the siblings.

262 E. B. Johnsen et al.

Table 5. Satisfaction of logical formulas, n ∈ names, x, s ∈ N0 ∪ {∞}, speed ∈ Q

P � True

P � ¬A iff P �� A
P � A ∨ B iff P � A ∨ P � B
P � 0 iff P ≡ 0

P � n[A] iff ∃P ′ s.t. P ≡ n[P ′] ∧ P ′ � A
P � A | B iff ∃P ′, P ′′ s.t. P ≡ P ′ | P ′′ ∧ P ′ � A ∧ P ′′ � B
P � ∀n.A iff ∀m : P � A{n ← m}
P � A@n iff n[P] � A
P � c iff ∃P ′, P ′′, P ′′′ s.t. P ≡ P ′. c .P ′′ | P ′′′ ∨ P ↓∗(P ′. c .P ′′ | P ′′′)

P �
x@nA iff ∃P ′ s.t. P
ticky

===⇒n P ′ ∧ y ≤ x ∧ P ′ � A
P � ♦(speed,s)A iff ∃P ′, P ′′, n s.t. (P ≡ n[Sdl | P ′] | P ′′ ∨ P ↓∗ n[Sdl | P ′])

∧P ′ � A ∧ accum{n}P ≥ speed ∧ |USdl ∪ SSdl| ≤ s

Definition 8 (Accumulated speed). Let speedk ∈ Q and children(k) denote
the speed and number of children of a virtually timed ambient k. Let m be a
timed subambient of a process P , the name parent denoting the direct parental
ambient of m, and C the path of all parental ambients of m up to the level of P .
The accumulated speed for preemptive scheduling in a subambient m up to the
level of the process P is given by

accum{m}P = speedm · 1/children(parent) · speedparent
= speedm ·

∏

k∈C

1/children(k) ·
∏

k∈C

speedk

Schedulers distribute time slices preemptively, as child processes get one time
slice at the time in iterative rounds. Consequently, an ambient’s accumulated
speed is influenced by both the speed and the number of children n of the
parental ambient. Thus, scheduling is not only path sensitive but also sibling
sensitive.

The satisfaction relation for logical formula, defined inductively in Table 5,
can now be explained using these definitions. A process P satisfies the negation
of a formula A iff P does not satisfy A. The disjunction A ∨ B is satisfied by a
process which satisfies either A or B. A process satisfies the formula 0 (void) iff
the process is equivalent to the inactive process 0. A process P satisfies a formula
A in location n iff P is equivalent to n[P ′] and P ′ satisfies A. The composition
A | B is satisfied by a process iff the process can be split into two parallel
processes, such that one satisfies A and the other B. Universal quantification
∀n.A over names is satisfied iff A holds for all names n. A process satisfies
the local adjunct iff it satisfies the formula A in location n. The consumption
formula c is satisfied by any process which contains a consumption capability. A
process P satisfies the sometime modality iff it reduces to a process satisfying
the formula, and uses less than x resources in ambient n in the reduction. The
somewhere modality is satisfied iff there exists a sublocation of P satisfying the

Checking Modal Contracts for Virtually Timed Ambients 263

formula, the relative speed in the sublocation is greater or equal to the given
speed, and the sublocation has less than or equal to s timed subambients.

We show that MLV TA is conservative with respect to MLMA. It holds that
every process in mobile ambients has an equivalent process in virtually timed
ambients when timing aspects are ignored. We attach the names of the logics to
the satisfaction relation to distinguish the relations in the presentation.

Lemma 1 (Correspondence to untimed processes). Let A ∈ MLMA and
P ∈ MA−. If P �MLMA

A then there exists P ′ ∈ VTA− such that P ′ �MLV TA

A.

The satisfaction relation for the untimed definitions of the sometime and
somewhere modalities in MLMA is given as:

P �MLMA
�A ⇐⇒ ∃P ′ s.t. P �

∗ P ′ ∧ P ′ �MLMA
A

P �MLMA
♦A ⇐⇒ ∃P ′ s.t. P ↓∗ P ′ ∧ P ′ �MLMA

A.

These definitions correspond to timed modalities without restrictions on names
and resources.

Lemma 2 (Correspondence to untimed modalities). For all P ∈ VTA−,
A ∈ MLMA it holds that

1. P �MLMA
�A ⇐⇒ P �MLV TA

¬∀n¬(�∞@nA)
2. P �MLMA

♦A ⇐⇒ P �MLV TA
♦(0,∞)A.

Proof. Follows from the definition of the satisfaction relation.

1. P �MLV TA
¬∀n¬(�∞@nA)

⇐⇒ P ��MLVTA
∀n¬(�∞@nA)

⇐⇒ ∀m : P ��MLVTA ¬(�∞@nA){n ← m}
⇐⇒ P ��MLVTA

¬(�∞@m1A) ∧ · · · ∧ ¬(�∞@mk
A)

⇐⇒ P �MLVTA
�∞@mi

A, for any mi

⇐⇒ ∃P ′ s.t. P
ticky===⇒mi

P ′ ∧ y ≤ ∞ ∧ P ′ �MLMA
A, for any mi

⇐⇒ ∃P ′ s.t. P �
∗ P ′ ∧ P ′ �MLMA A

⇐⇒ P �MLMA
�A

2. P �MLV TA
♦(0,∞)A

⇐⇒ ∃P ′, P ′′, n s.t. (P ≡ n[Sdl | P ′] | P ′′ ∨ P ↓∗ n[Sdl | P ′])
∧ P ′ � A ∧ accum{n}P ≥ 0 ∧ |USdl ∪ SSdl| ≤ ∞

⇐⇒ ∃P ′ s.t. P ↓∗ P ′ ∧ P ′ �MLMA
A

⇐⇒ P �MLMA
♦A

264 E. B. Johnsen et al.

For all other cases, the definition of the satisfaction relation in MLMA is the
same as in MLV TA. Thus, we can translate a MLMA-formula to MLV TA by
substituting untimed with timed modalities as given above. We now prove that
MLV TA is a conservative extension of MLMA.

Theorem 1 (Conservative extension). Let A ∈ MLMA and P ∈ MA−. If
P �MLMA

A then there exists P ′ ∈ VTA− such that P ′ �MLV TA
A∗, where A∗

is the translation of A to MLV TA.

Proof. Follows from Lemmas 1 and 2 and the fact that for all other cases than
the modalities, the satisfaction relation in MLMA stays the same in MLV TA.

Example 2 (Modal contracts for virtually timed processes). Let process P consist
of a cloud ambient containing a virtual machine vm, similar to Example 1, and
a task to enter vm in order to consume a resource:

P ≡ cloud[Sdlcloud | tick | tick | vm[Sdlvm |open task] | task[in vm. c]].

This system satisfies the modal contract given by the formula �2@vm(¬c), which
expresses that after using two time slices the task can be executed. Example 1
illustrates how the time slices move from the cloud ambient into the virtual
machine. Afterwards we can observe the following reduction process inside the
cloud ambient:

vm[Sdlvm | tick | tick |open task] | task[in vm. c]
�vm[Sdlvm | tick | tick |open task | task[c]]
�vm[Sdlvm | tick | tick | c]
�vm[Sdlvm | 0]

This shows that P � �2@vm(¬c). With two time signals from the original active
level the task can be executed. Therefore, we can say that P satisfies the modal
contract stating that the system is able to execute with the use of two resources.

4 A Model Checker for Virtually Timed Ambients

To answer the question whether a process in VTA− satisfies a given formula,
we create a model checker algorithm for MLV TA. We extend the model checker
algorithm for MLMA [9] to cover the properties of virtually timed ambients.
Technically, we add c .P and tick to the prime processes and use the same notion
of normal form, where we add Norm(n[Sdl | P]) � [n[Sdl | P]]. Furthermore,
the Reachable and SubLocations routines must account for our changes to the
sometime and somewhere modalities and a Consumption routine is added to
check if the formula c holds for a process. These routines are now defined for
MLV TA.

Definition 9. Let P ∈ VTA−, then

Checking Modal Contracts for Virtually Timed Ambients 265

– Reachablex
n(P) = [P1, . . . , Pk] iff P

ticky===⇒n Pi, for all i ∈ 1, . . . , k, y ≤ x and

for all Q, if P
ticky===⇒n Q then Q ≡ Pi for some i ∈ 1, . . . , k and y ≤ x.

– SubLocations(speed,s)(P) = [P1, . . . , Pk] iff P ≡ n[Sdl | Pi] | P ′ or
P ↓∗ n[Sdl | Pi] for some n and accum{n}P ≥ speed and |SSdln ∪ TSdln | ≤ s,
for all i ∈ 1, . . . , k. And for all Q, if P ≡ n[Sdl | Q | P ′ or P ↓∗ n[Sdl | Q]
some n and accum{n}P ≥ speed and |SSdln ∪ TSdln | ≤ s, then Q ≡ Pi for
some i ∈ 1, . . . , k.

– Consumption(P) = True iff SubLocations(0,∞)(P) = [P1, . . . , Pk] and ∃P ′,
P ′′, P ′′′, Pi, i ∈ 1 . . . k such that Pi ≡ P ′. c .P ′′ | P ′′′.

The model checker algorithm for MLV TA is defined inductively as follows:

Check(P,A) : Checking whether process P satisfies formula A
Check(P,True) � True
Check(P, ¬A) � ¬Check(P, A)
Check(P, A ∨ B) � Check(P, A) ∨ Check(P, B)
Check(P,0) � if Norm(P) = [] then True else False.
Check(P, n[A]) � if Norm(P) = n[Q] for some Q then Check(Q, A) else False.
Check(P, A | B) � Let Norm(P) = [π1, . . . , πk]:

∃I, J s.t. I ∪ J = {1, . . . , k} and I ∩ J = ∅ :∨
I,J Check(

∏
i∈I πi, A) ∧ Check(

∏
j∈J πj , B)

Check(P, ∀n.A) � Let {m1, . . . , mk} = fn(P) ∪ fn(A) and m0 /∈ {m1, . . . , mk}:∧
i∈0...k Check(P, A{n ← mi})

Check(P, c) � Consumption(P)
Check(P, �x@nA) � Let Reachablexn(P) = [P1, . . . , Pk]:∨

i∈1,...,k Check(Pi, A)

Check(P, ♦(speed,s)A) � Let SubLocations(speed,s)(P) = [P1, . . . , Pk]:∨
i∈1,...,k Check(Pi, A)

Check(P, A@n) � Check(n[P], A)

As our extension only adds the simple predicate c to the model checker and
imposes discreet restrictions on the Reachable and SubLocations properties, it
follows from results in [9] and [14] (regarding the equivalence of processes and
their norms) that all recursive calls of the algorithm are on subformulas, therefore
the algorithm always terminates.

Theorem 2. For P ∈ VTA−, A ∈ MLV TA it holds that:

P � A iff Check(P,A) = True.

Example 3 (Model checking). Reconsider Example 2, where the satisfaction of
the sometime formula was demonstrated by considering the reduction. Let P =
vm[Sdlvm | tick | tick |open task] | task[in vm. c]. We will now show that

Check(P, �2@vm(¬c)) = True.

266 E. B. Johnsen et al.

It holds that

Check(P, �2@vm(¬c)) � Let Reachable2vm(P) = [P1, . . . , Pk] :
∨

i∈1,...,k

Check(Pi,¬c)

Reachable2vm(P) contains all states reachable from P with two timed
steps and arbitrary many τ -steps. This includes Pj = vm[Sdlvm |
0]. For this process it holds that Check(Pj ,¬c) � ¬Check(Pj , c) and
Check(Pj , c) � Consumption(Pj) As Consumption(Pj) = False it follows that
Check(P, �2@vm(¬c)) = True.

5 Implementation in Maude

We implement a model checker for MLV TA in the Maude [16,30] rewriting logic
system. Rewriting logic is a flexible, executable formal notation which can be
used to represent a wide range of systems and logics with low representational
distance [26]. Rewriting logic embeds membership equational logic, such that a
specification or program may contain both equations and rewrite rules. When
executing a Maude specification, rewrite steps are applied to normal forms in
the equational logic. (The Maude system assumes that the equation set is termi-
nating and confluent.) Thus, equations and rewrite rules constitute the statics
and dynamics of a specification, respectively. Both equations and rewrite rules
may be conditional, meaning that specified conditions must hold for the rule or
equation to apply.

A translation of mobile ambients to Maude was proposed in [34], motivated by
the application of the analysis tools that come with the Maude system. However,
our primary goal is to build a model checker for virtually timed ambients. Hence,
our implementation1 consists of a translation for VTA− and MLV TA to Maude,
and will use the Maude engine as the model checker.

The syntax of VTA−, given in Table 1, is represented by Maude terms, con-
structed from operators:

op zero : -> VTA [ctor] .

op _|_ : VTA VTA -> VTA [id: zero assoc comm] .

op _._ : Capability VTA -> VTA .

op _[_|_] : Name Scheduler VTA -> VTA .

The correlation between the formal definition and the Maude specification
should be clear. The operator zero represents the inactive process, and parallel
composition has the algebraic properties of being associative, commutative and
having zero as identity element. Capability prefixing is represented with a dot.
Virtually timed ambients are represented with a name followed by brackets,
1 The full source code is available at https://github.com/larstvei/Check-VTA/tree/

modal-contracts.

https://github.com/larstvei/Check-VTA/tree/modal-contracts
https://github.com/larstvei/Check-VTA/tree/modal-contracts

Checking Modal Contracts for Virtually Timed Ambients 267

containing a scheduler and a process. Here all processes are defined with the
data type VTA. The sort declarations for VTA, Capability, Name and Scheduler,
as well as syntax for names and capabilities, are omitted.

The reduction rules for timed capabilities (Table 2) are represented as rewrite
rules, which express that any term or subterm which matches the left hand side of
the rewrite relation => may be rewritten into the right hand side; this corresponds
to the reduction relation � in the calculus. Preconditions are expressed using
conditional rewrite rules, where a condition is given after the keyword if. The
TR-In rule, for instance, may be expressed in Maude as follows:

crl [in] :

K[sched SpdK {InK, OutK, RestK, UnSrvK, SrvK}

| N[sched SpdN {InN, OutN, RestN, SrvN, UnSrvN} | in(M) . P | Q]

| M[sched SpdM {InM, OutM, RestM, SrvM, UnSrvM} | R] | U]

=>

K[sched SpdK {InK, OutK, RestK, (UnSrvK \ N), (SrvK \ N)}

| M[sched SpdM {InM, OutM, RestM, SrvM, union(UnSrvM, N)} | R

| N[sched SpdN {InN, OutN, RestN, SrvN, union(UnSrvN, barb(P))}

| P | Q]] | U]

if N in union(UnSrvK, SrvK) .

The model checker algorithm Check (from Sect. 3) uses a normal form. Since
rule matching in Maude is modulo associativity, commutativity and identity (so-
called ACI-matching [16]), the satisfiability conditions of the modal logic can be
represented directly, without this normal form. This results in a compact and
flexible model checker which stays close to its mathematical formulation.

Terms representing logical formulas (defined in Table 4) are built from oper-
ator declarations in Maude and variable substitution on formulas is formalized
using recursive equations. The semantics of formulas is interpreted with regards
to the calculus of virtually timed ambients, and is formalized by defining the
satisfaction relation as an operator:

op _|=_ : VTA Formula -> Bool [frozen] .

Here, the operator declaration’s frozen attribute prevents the subterms of
a satisfaction formula from being rewritten, giving the model checker control
over the rewriting (i.e., the frozen attribute prohibits subterm matching). The
semantics of the satisfaction relations from Table 5 is expressed as a set of equa-
tions and a single rewrite rule. For formulas which only depend on the current
state of the process, the satisfaction predicate can be defined by an equation in
Maude. For example, negation is defined as follows:

eq [Negation] : P |= ~ F = not (P |= F) .

Parallel composition relies on the matching of parallel processes, and there
may be several possible solutions. Therefore, the satisfaction predicate for par-
allel processes must be defined as a rule. The rule uses reachability predicates
as conditions, which allows the Maude implementation to closely reflect the sat-
isfaction relation.

268 E. B. Johnsen et al.

crl [Parallel] : P | Q |= F | G => true

if P |= F => true /\ Q |= G => true

The sometime modality constructs formulas that depend on how a process
evolves over time. The following conditional rewrite rule captures the semantics
of a sometime formula:

crl [Sometime] : P |= <> A @ N F => true

if contains(P, N) /\

P => Q /\

distance(P, Q, N) ≤ A /\

contains(Q, N) /\

Q |= F => true .

In this rule, the terms contains and distance define the existence of the
name in the given process and the number of used resources, and are reduced by
equations. Similar to the conditions of the Parallel rule, the condition P => Q
expresses that the pattern Q is reachable from a pattern P (after substitution in
the matching) by the rewrite relation => in one or more steps. Maude will search
for a Q such that the condition holds using a breadth-first strategy. This useful
feature of Maude enables a straightforward implementation of the sometime
modality. Note that Q |= F => true is used in favor of the simpler Q |= F to
support nested modal formulas.

The execution of rewrite rules is represented in the syntax of the Maude
model checker by providing the rewriting command rewrite with satisfaction
relation containing a virtually timed ambient and a formula. The resulting
Maude program can easily be used to check modal properties for virtually timed
ambients and is demonstrated in the following example. The rewrite command
applies the defined rewrite rules to the given satisfaction relation until termi-
nation, at which point the model checker returns a result in the form of a
Bool.

Example 4 (Implementation of modal contracts for virtually timed processes). To
illustrate the model checker we implement Example 2. A root ambient contains
a virtual machine, which is entered by a request. We check if the system satisfies
the quality of service contract stating that the request can be executed after
the use of two time slices. The model checker confirms that after the use of two
time signals in the root ambient there is no consume capability left, meaning
that there exists a reduction path where at most two time signals are needed to
execute the request in the virtual machine.

6 Related Work

Virtually timed ambients are based on mobile ambients [10]. The calculus is first
described in [22]. Mobile ambients model both location mobility and nested loca-
tions, and capture processes executing at distributed locations in networks such
as the Internet. Gordon proposed a simple formalism for virtualization loosely

Checking Modal Contracts for Virtually Timed Ambients 269

based on mobile ambients in [20]. The calculus of virtually timed ambients [22,23]
stays closer to the syntax of the original mobile ambient calculus, while at the
same time including notions of time and explicit resource provisioning.

Timed process algebras which originated from ACP and CSP can be found
in, e.g., [5,6,29]. As virtually timed ambients build upon mobile ambients, we
focus the discussion of related work on the π-calculus [35], which originated from
CCS and is closely related to the ambient calculus. Timers have been studied
for both the distributed π-calculus [8,33] and for mobile ambients [3,4,15]. In
this line of work, timers, which are introduced to express the possibility of a
timeout, are controlled by a global clock. In contrast, the root schedulers in
our work recursively control local schedulers which define the execution power
of the nested virtually timed ambients. Modeling timeouts is a straightforward
extension of our work.

Modal logic for mobile ambients was introduced to describe properties of
spatial configuration and mobile computation [9] for a fragment of mobile ambi-
ents without replication and restriction on names, and features a model checker
algorithm for the given language fragment and modal logic using techniques
from [12] to establish the Reachable(P) and SubLocation(P) properties. The
complexity of model checking for mobile ambients is investigated in [13], and
shown to be PSPACE-complete. After Cardelli and Gordon’s work on logical
properties for name restriction [11], the model checker algorithm was extended
for private names [14] while preserving decidability and the complexity of the
original fragment. Further it was shown that it is not possible to extend the algo-
rithm for replication in the calculus or the local adjunct in the logic, as either of
these extensions would lead to undecidability. For simplicity, we base our logic
and model checker on the original fragment from [9]. The modal operators with
restrictions on timing in this paper borrows ideas from metric temporal logic
[24,31,32].

The Process Analysis Toolkit (PAT) [36] has been used to specify processes
in the ambient calculus as well as properties in modal logic [37], to provide a
basis for a possible model checker implementation. A model checker for ambient
logic has been implemented by separating the analysis of temporal and spatial
properties [2]: Mobile ambients are translated into Kripke structures and spatial
modalities are replaced with atomic propositions in order to reduce ambient logic
formulas to temporal logic formulas, while the analysis of temporal modalities are
handled using the NuSMV model checker. In contrast to our work, none of the
above model checkers consider notions of time or resources. We use Maude [16]
to implement our model checker, exploiting the low representational distance
which distinguishes this system [26]. The operational reduction rules for mobile
ambients as well as a type system have been implemented in Maude in [34]. In
contrast, our implementation focuses on capturing the timed reduction rules of
virtually timed ambients as well as the modal formulas to define a model checker.

270 E. B. Johnsen et al.

7 Concluding Remarks

Virtualization opens for new and interesting formal computational models. This
paper introduces modal contracts to capture quality of service properties for
virtually timed ambients, a formal model of hierarchical locations of execution.
Resource provisioning for virtually timed ambients is based on virtual time, a
local notion of time reminiscent of time slices for virtual machines in the context
of nested virtualization. These time slices are locally distributed by means of
fair, preemptive scheduling. Modal contracts are formalized as propositions in
a modal logic for virtually timed ambients which features notions from metric
temporal logic, enabling the timed behavior and resource consumption of a sys-
tem to be expressed as modal logic properties of processes. We can now prove
whether a system satisfies a certain quality of service agreement captured as a
modal contract by means of a model checking algorithm which proves that a
process satisfies a formula. We provide a proof of concept implementation of the
model checking algorithm in the Maude rewriting logic system.

To model active resource management, future work will extend the model
with constructs to support resource-aware scaling, as well as optimization strate-
gies for scaling. We are also working on extending the implementation in that
direction and intend to apply it to study corresponding examples involving
resource management and load balancing. It is also interesting to investigate
how the techniques developed here could be adapted to richer modelling lan-
guages for cloud-deployed software, such as ABS [21].

References

1. Abdelmaboud, A., Jawawi, D.N., Ghani, I., Elsafi, A., Kitchenham, B.: Quality
of service approaches in cloud computing: a systematic mapping study. J. Syst.
Softw. 101, 159–179 (2015). https://doi.org/10.1016/j.jss.2014.12.015

2. Akar, O.: Model checking of ambient calculus specifications against ambient logic
formulas. Bachelor’s thesis, Istanbul Technical University (2009)

3. Aman, B., Ciobanu, G.: Mobile ambients with timers and types. In: Jones, C.B.,
Liu, Z., Woodcock, J. (eds.) ICTAC 2007. LNCS, vol. 4711, pp. 50–63. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-75292-9 4

4. Aman, B., Ciobanu, G.: Timers and proximities for mobile ambients. In: Diekert,
V., Volkov, M.V., Voronkov, A. (eds.) CSR 2007. LNCS, vol. 4649, pp. 33–43.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74510-5 7

5. Baeten, J.C.M., Bergstra, J.A.: Real time process algebra. Form. Aspects Comput.
3(2), 142–188 (1991). https://doi.org/10.1007/bf01898401

6. Baeten, J.C.M., Middelburg, C.A.: Process Algebra with Timing. Monographs in
Theoretical Computer Science: An EATCS Series. Springer, Heidelberg (2002).
https://doi.org/10.1007/978-3-662-04995-2

7. Ben-Yehuda, M., et al.: The turtles project: design and implementation of nested
virtualization. In: Proceedings of 9th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2010, Vancouver, BC, October 2010, pp. 423–
436. USENIX Association (2010). http://www.usenix.org/events/osdi10/tech/full
papers/Ben-Yehuda.pdf

https://doi.org/10.1016/j.jss.2014.12.015
https://doi.org/10.1007/978-3-540-75292-9_4
https://doi.org/10.1007/978-3-540-74510-5_7
https://doi.org/10.1007/bf01898401
https://doi.org/10.1007/978-3-662-04995-2
http://www.usenix.org/events/osdi10/tech/full_papers/Ben-Yehuda.pdf
http://www.usenix.org/events/osdi10/tech/full_papers/Ben-Yehuda.pdf

Checking Modal Contracts for Virtually Timed Ambients 271

8. Berger, M.: Towards abstractions for distributed systems. Ph.D. thesis, Imperial
College, London (2004)

9. Cardelli, L., Gordon, A.D.: Anytime, anywhere: modal logics for mobile ambients.
In: Proceedings of 27th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2000, Boston, MA, January 2000, pp. 365–377.
ACM Press, New York (2000). https://doi.org/10.1145/325694.325742

10. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213
(2000). https://doi.org/10.1016/s0304-3975(99)00231-5

11. Cardelli, L., Gordon, A.D.: Logical properites of name restriction. In: Abramsky,
S. (ed.) TLCA 2001. LNCS, vol. 2044, pp. 46–60. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45413-6 8

12. Cardelli, L., Gordon, A.D.: Equational properties of mobile ambients. Math. Struct.
Comput. Sci. 13(3), 371–408 (2003). https://doi.org/10.1017/s0960129502003742

13. Charatonik, W., Dal Zilio, S., Gordon, A.D., Mukhopadhyay, S., Talbot, J.-M.:
The complexity of model checking mobile ambients. In: Honsell, F., Miculan, M.
(eds.) FoSSaCS 2001. LNCS, vol. 2030, pp. 152–167. Springer, Heidelberg (2001).
https://doi.org/10.1007/3-540-45315-6 10

14. Charatonik, W., Talbot, J.-M.: The decidability of model checking mobile ambi-
ents. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 339–354. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44802-0 24

15. Ciobanu, G.: Interaction in time and space. Electron. Notes Theor. Comput. Sci.
203(3), 5–18 (2008). https://doi.org/10.1016/j.entcs.2008.04.083

16. Clavel, M.: All About Maude - A High-Performance Logical Framework, How to
Specify, Program, and Verify Systems in Rewriting Logic. Programming and Soft-
ware Engineering, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-71999-1

17. Crago, S., et al.: Heterogeneous cloud computing. In: Proceedings of 2011 IEEE
International Conference on Cluster Computing, Austin, TX, September 2011, pp.
378–385. IEEE CS Press, Washington, DC (2011). https://doi.org/10.1109/cluster.
2011.49

18. Fibonacci. Greedy algorithm for Egyptian fractions. https://en.wikipedia.org/
wiki/Greedy algorithm for Egyptian fractions

19. Goldberg, R.P.: Survey of virtual machine research. IEEE Comput. 7(6), 34–45
(1974). https://doi.org/10.1109/mc.1974.6323581

20. Gordon, A.D.: V for virtual. Electron. Notes Theor. Comput. Sci. 162, 177–181
(2006). https://doi.org/10.1016/j.entcs.2006.01.030

21. Johnsen, E.B., Schlatte, R., Tapia Tarifa, S.L.: Integrating deployment architec-
tures and resource consumption in timed object-oriented models. J. Log. Algebraic
Methods Program. 84(1), 67–91 (2015). https://doi.org/10.1016/j.jlamp.2014.07.
001

22. Johnsen, E.B., Steffen, M., Stumpf, J.B.: A calculus of virtually timed ambients.
In: James, P., Roggenbach, M. (eds.) WADT 2016. LNCS, vol. 10644, pp. 88–103.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72044-9 7

23. Johnsen, E.B., Steffen, M., Stumpf, J.B.: Virtually timed ambients: a calculus of
nested virtualization. J. Log. Algebraic Methods Program. 94, 109–127 (2018).
https://doi.org/10.1016/j.jlamp.2017.10.001

24. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Syst. 2(4), 255–299 (1990). https://doi.org/10.1007/bf01995674

25. Merro, M., Zappa Nardelli, F.: Behavioral theory for mobile ambients. J. ACM
52(6), 961–1023 (2005). https://doi.org/10.1145/1101821.1101825

https://doi.org/10.1145/325694.325742
https://doi.org/10.1016/s0304-3975(99)00231-5
https://doi.org/10.1007/3-540-45413-6_8
https://doi.org/10.1017/s0960129502003742
https://doi.org/10.1007/3-540-45315-6_10
https://doi.org/10.1007/3-540-44802-0_24
https://doi.org/10.1016/j.entcs.2008.04.083
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1007/978-3-540-71999-1
https://doi.org/10.1109/cluster.2011.49
https://doi.org/10.1109/cluster.2011.49
https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions
https://en.wikipedia.org/wiki/Greedy_algorithm_for_Egyptian_fractions
https://doi.org/10.1109/mc.1974.6323581
https://doi.org/10.1016/j.entcs.2006.01.030
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1016/j.jlamp.2014.07.001
https://doi.org/10.1007/978-3-319-72044-9_7
https://doi.org/10.1016/j.jlamp.2017.10.001
https://doi.org/10.1007/bf01995674
https://doi.org/10.1145/1101821.1101825

272 E. B. Johnsen et al.

26. Meseguer, J.: Twenty years of rewriting logic. J. Log. Algebraic Program. 81(7–8),
721–781 (2012). https://doi.org/10.1016/j.jlap.2012.06.003

27. Meseguer, J., Rosu, G.: The rewriting logic semantics project. Theor. Comput. Sci.
373(3), 213–237 (2007). https://doi.org/10.1016/j.tcs.2006.12.018

28. Milner, R., Sangiorgi, D.: Barbed bisimulation. In: Kuich, W. (ed.) ICALP 1992.
LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-55719-9 114

29. Nicollin, X., Sifakis, J.: The algebra of timed processes, ATP: theory and appli-
cation. Inf. Comput. 114(1), 131–178 (1994). https://doi.org/10.1006/inco.1994.
1083

30. Ölveczky, P.C.: Designing Reliable Distributed Systems: A Formal Methods App-
roach Based on Executable Modeling in Maude. UTCS. Springer, London (2017).
https://doi.org/10.1007/978-1-4471-6687-0

31. Ouaknine, J., Worrell, J.: On the decidability and complexity of metric temporal
logic over finite words. Log. Methods Comput. Sci. 3(1), Article 8 (2007). https://
doi.org/10.2168/lmcs-3(1:8)2007

32. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In: Cassez,
F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-85778-5 1

33. Prisacariu, C., Ciobanu, G.: Timed distributed π-calculus. Technical report, FML-
05-01, Inst. of Computer Science Iasi (2005) http://iit.iit.tuiasi.ro/TR/reports/
fml1501.pdf

34. Rosa-Velardo, F., Segura, C., Verdejo, A.: Typed mobile ambients in maude. Elec-
tron. Notes Theor. Comput. Sci. 147(1), 135–161 (2006). https://doi.org/10.1016/
j.entcs.2005.06.041

35. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cam-
bridge University Press, Cambridge (2001)

36. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: towards flexible verification under
fairness. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 709–
714. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4 59

37. Sun, Y.: Toward a model checker for ambient logic using the process analysis
toolkit. MSc thesis, Bishop’s University, Sherbrooke, Quebec (2015)

38. Williams, D., Jamjoom, H., Weatherspoon, H.: The Xen-Blanket: virtualize once,
run everywhere. In: Proceedings of 7th European Conference on Computer Sys-
tems, EuroSys 2012, Bern, April 2012, pp. 113–126. ACM Press, New York (2012).
https://doi.org/10.1145/2168836.2168849

https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1016/j.tcs.2006.12.018
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1007/3-540-55719-9_114
https://doi.org/10.1006/inco.1994.1083
https://doi.org/10.1006/inco.1994.1083
https://doi.org/10.1007/978-1-4471-6687-0
https://doi.org/10.2168/lmcs-3(1:8)2007
https://doi.org/10.2168/lmcs-3(1:8)2007
https://doi.org/10.1007/978-3-540-85778-5_1
http://iit.iit.tuiasi.ro/TR/reports/fml1501.pdf
http://iit.iit.tuiasi.ro/TR/reports/fml1501.pdf
https://doi.org/10.1016/j.entcs.2005.06.041
https://doi.org/10.1016/j.entcs.2005.06.041
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1145/2168836.2168849

Abstraction of Bit-Vector Operations
for BDD-Based SMT Solvers

Martin Jonáš(B) and Jan Strejček

Faculty of Informatics, Masaryk University,
Botanicka 68á, 602 00 Brno, Czech Republic

{xjonas,strejcek}@fi.muni.cz

Abstract. bdd-based smt solvers have recently shown to be compet-
itive for solving satisfiability of quantified bit-vector formulas. How-
ever, these solvers reach their limits when the input formula contains
complicated arithmetic. Hitherto, this problem has been alleviated by
approximations reducing efficient bit-widths of bit-vector variables. In
this paper, we propose an orthogonal abstraction technique working on
the level of the individual instances of bit-vector operations. In particu-
lar, we compute only several bits of the operation result, which may be
sufficient to decide the satisfiability of the formula. Experimental results
show that our bdd-based smt solver Q3B extended with these abstrac-
tions can solve more quantified bit-vector formulas from the smt-lib
repository than state-of-the-art smt solvers Boolector, CVC4, and Z3.

1 Introduction

In the modern world, as the computer software becomes still more ubiquitous
and complex, there is an increasing need to test it and formally verify its correct-
ness. Several approaches to software verification, such as symbolic execution or
bounded model checking, rely on the ability to decide whether a given first-order
formula in a suitable logical theory is satisfiable. To this end, many of the veri-
fiers use Satisfiability Modulo Theories (smt) solvers, which can solve precisely
the task of checking satisfiability of a first-order formula in a given logical theory.
For describing software, the natural choice of a logical theory is the theory of
fixed-size bit-vectors in which the objects are vectors of bits and the operations
on them precisely reflect operations performed by computers. Moreover, in appli-
cations such as synthesis of invariants, ranking functions, or loop summaries, the
formulas in question also naturally contain quantifiers [6,7,10,12,17].

It is therefore not surprising that the development of smt solvers for quanti-
fied formulas in the theory of fixed-size bit-vectors has seen several advances in
the recent years. In particular, the support for arbitrarily quantified bit-vector
formulas has been implemented to existing solvers Z3 [18], Boolector [15], and
CVC4 [14]. Moreover, new tools that aim for precisely this theory, such as the
solver Q3B [8], were developed. Approaches of these tools fall into two categories:

The research was supported by Czech Science Foundation, grant GA18-02177S.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 273–291, 2018.
https://doi.org/10.1007/978-3-030-02508-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_15&domain=pdf

274 M. Jonáš and J. Strejček

Z3, Boolector, and CVC4 use variants of quantifier instantiation that iteratively
produces quantifier-free formulas that can be solved by a solver for quantifier-
free bit-vector formulas. On the other hand, the solver Q3B uses Binary Decision
Diagrams (bdds) to represent quantified bit-vector formulas and to decide their
satisfiability.

However, bdds have inherent limitations. For example, if a formula contains
multiplication of two variables, the bdd that represents it is guaranteed to be
exponential in size regardless the chosen order of variables. Similarly, if the
formula contains complicated arithmetic, the produced bdds tend to grow in
size very quickly. The solver Q3B tries to alleviate this problem by computing
approximations [8] of the original formula to reduce sets of values that can
be represented by the individual variables and, in turn, to reduce sizes of the
resulting bdds. In particular, if the set of possible values of all existentially
quantified variables is reduced and the formula is still satisfiable, the original
formula must have been satisfiable. Conversely, if the set of possible values of all
universally quantified variables is reduced and the formula is still unsatisfiable,
the original formula must have been unsatisfiable.

Although the approximations allowed Q3B to remain competitive with state-
of-the-art smt solvers, the approach has several drawbacks. Currently, Q3B can-
not solve satisfiability of simple formulas such as

∃x, y ((x < 2) ∧ (x > 4) ∧ (x · y = 0))) ,

∃x, y ((x � 1) · y = 1) ,

∃x, y (x > 0 ∧ x ≤ 4 ∧ y > 0 ∧ y ≤ 4 ∧ x · y = 0) ,

where all variables and constants have bit-width 32, and � denotes bit-wise shift
left. All these three formulas are unsatisfiable, but cannot be decided without
approximations, because they contain non-linear multiplication. Moreover, they
cannot be decided even with approximations, because they are unsatisfiable and
contain no universally quantified variables that could be used to approximate
the formula.

However, the three above-mentioned formulas have something in common:
only a few of the bits of the multiplication results are sufficient to decide satis-
fiability of the formulas. The first formula can be decided unsatisfiable without
computing any bits of x · y whatsoever. The second formula can be decided by
computing only the least-significant bit of (x � 1) · y because it must always be
zero. The third formula can be decided by computing 5 least-significant bits of
x · y, because they are enough to rule out all values of x and y between 1 and 4
as models.

With this in mind, we propose an improvement of bdd-based smt solvers
such as Q3B by allowing to compute only several bits of results of arithmetic
operations. To achieve this, the paper defines abstract domains in which the oper-
ations can produce do-not-know values and shows that these abstract domains
can be used to decide satisfiability of an input formula.

Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers 275

The paper is structured as follows. Section 2 provides necessary background
and notations for smt, bit-vector theory, and binary decision diagrams. Section 3
defines abstract domains for terms and formulas and shows how to use them
to decide satisfiability of a formula. Section 4 introduces specific term and for-
mula abstract domains that are used to compute only several bits from results
of arithmetic bit-vector operations. Section 5 describes our implementation of
these abstract domains in the smt solver Q3B and the following Sect. 6 provides
evaluation of this implementation both in comparison to the original Q3B and
to other state-of-the-art smt solvers.

2 Preliminaries

2.1 Bit-Vector Theory

This section briefly recalls the theory of fixed sized bit-vectors (BV or bit-vector
theory for short). In the description, we assume familiarity with standard defi-
nitions of many-sorted logic, well-sorted terms, atomic formulas, and formulas.
In the following, we denote the set of all well-sorted terms as T and the set of
all well-sorted formulas as F .

The bit-vector theory is a many-sorted first-order theory with infinitely many
sorts corresponding to bit-vectors of various lengths. The BV theory uses only
three predicates, namely equality (=), unsigned inequality of binary-encoded nat-
ural numbers (≤u), and signed inequality of integers in two’s complement rep-
resentation (≤s). The theory also contains various functions including addition
(+), multiplication (·), unsigned division (÷), unsigned remainder (%), bit-wise
and (bvand), bit-wise or (bvor), bit-wise exclusive or (bvxor), left-shift (�),
right-shift (�), concatenation (concat), and extraction of n bits starting from
position p (extractnp). The signature of BV theory also contains constants c[n]

for each bit-width n > 0 and a number 0 ≤ c ≤ 2n − 1. If a bit-width of a
constant or a variable is not specified, we suppose that it is equal to 32. We
denote set of all bit-vectors as BV and the set of all variables as vars.

For a valuation μ that assigns to each variable from vars a value in its domain,
� �µ denotes the evaluation function, which assigns to each term t the bit-vector
obtained by substituting variables in t by their values given by μ and evaluating
all functions. Similarly, the function � �µ assigns to each formula ϕ the value
obtained by substituting free variables in ϕ by values given by μ and evaluating
all functions, predicates, logic operators etc. A formula ϕ is satisfiable if �ϕ�µ = 1
for some valuation μ; it is unsatisfiable otherwise.

The precise definition of many-sorted logic can be found for example in Bar-
rett et al. [3]. The precise description of bit-vector theory and its operations can
be found for example in the paper describing complexity of quantified bit-vector
theory by Kovásznai et al. [9].

2.2 Binary Decision Diagrams

A binary decision diagram (bdd) is a data structure that can succinctly represent
Boolean functions. Formally, it is a binary directed acyclic graph that has at most

276 M. Jonáš and J. Strejček

x

y y

0 1

Fig. 1. bdd for (x xor y)

two leaves, labelled by 0 and 1, and inner nodes labelled by formal arguments of
the function. Each inner node has two children, called high and low children, that
denote values 1 and 0, respectively, of the corresponding formal argument. Given
a bdd that represents a Boolean function f , the value of f in a given assignment
can be computed by traversing the bdd as follows: start in the root node; if the
value of the argument corresponding to the current node is 1, continue to the
high child, otherwise continue to the low child; continue with the traversal until
reaching a leaf node and return its label. Given a bdd b and an assignment μ,
we denote the result of the function represented by b as �b�µ. For example, Fig. 1
shows a bdd that represents a binary function f(x, y) = (x xor y). According
to the traditional notation, the high children are marked by solid edges, the
low children are marked by dotted edges. The trivial bdds 0 and 1 represent
functions false (0) and true (1), respectively.

Alternatively, binary decision diagrams can be used to represent a set of
satisfying assignments (also called models) of a Boolean formula ϕ. Such a bdd
represents a function that has Boolean variables of the formula ϕ as formal
arguments and that evaluates to 1 in a given assignment iff the assignment is
a model of the formula ϕ. In this view, the bdd of Fig. 1 represents the set of
assignments satisfying the formula (x ∧ ¬y) ∨ (¬x ∧ y).

In this paper, we suppose that all binary decision diagrams are reduced and
ordered. A bdd is ordered if for all pairs of paths in the bdd the order of common
variables is the same. A bdd is reduced if it does not contain any inner node
with the same high and low child. It has been shown that reduced and ordered
bdds (robdds) are canonical – given a variable order, there is exactly one bdd
for each given function [5].

Binary decision diagrams can be also used to represent an arbitrary bit-vector
function, i.e., a function that assigns a bit-vector value to each assignment of
bit variables. Such a function of a bit-width k (i.e., the produced bit-vectors
have the bit-width k) can be represented by a vector of bdds b = (bi)0≤i<k.
Result of this function for an assignment μ is then the bit-vector (�bi�µ)0≤i<k.
For example, Fig. 2 shows a vector of bdds representing addition x2x1x0+y2y1y0
of two bit-vectors of size 3. In the following text, we denote the set of all bdds as
BDD and the set of all vectors of bdds as BDDvec. We use the overlined symbols
for both vectors of bdds and bit-vectors.

Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers 277

x0

y0

x1 x1

y1

x2 x2

y2 y2

10

x0

y0

x1 x1

y1 y1

10

x0

y0 y0

10

Fig. 2. Vector of bdds representing the addition x2x1x0 + y2y1y0 of two bit-vectors of
size 3. The least significant bit of the result is on the right.

2.3 Operations on Binary Decision Diagrams

It has been shown by Bryant [5] that given robdds for Boolean functions f and
g, one can compute a bdd for functions f(x)∧g(x) and f(x)∨g(x) in polynomial
time. A bdd for negation can be obtained by exchanging leaf nodes 0 and 1. Using
these operations, a bdd for an arbitrary Boolean formula can be constructed by
computing the corresponding bdds for all subformulas from the smallest ones.
Bryant has also described a function that modifies a given bdd by setting selected
variables to given values. Using this function, it is possible to eliminate variable x
from a given bdd representing f(x, y) existentially or universally by computing
the bdds for f(0, y) ∨ f(1, y) or f(0, y) ∧ f(1, y), respectively. We denote the
functions for computing conjunction, disjunction, and negation of bdds by the
infix notations &, |, and !, respectively. Using these functions, we can define
functions computing equivalence and exclusive or of two bdds with the infix
notations ↔ and xor, respectively.

Further, given two vectors of bdds that represent bit-vector functions f and
g of the same bit-width, a vector of bdds for the function f(x) + g(x), where
+ is addition of two bit-vectors, can also be computed by using the basic log-
ical operations on bdds representing the individual bits. Listing 1.1 shows a
pseudo-code of this computation, which is implemented for example in the bdd
package BuDDy1. Other arithmetical operations such as multiplication, division,
or remainder can also be computed in this way, although the algorithms are more
involved in these cases.

Finally, given two vectors of bdds that represent bit-vector functions f and
g of the same bit-width, it is also possible to compute the bdd for their equality
f(x) = g(x), the bdd for their unsigned inequality f(x) ≤u g(x), and the bdd for

1 http://sourceforge.net/projects/buddy.

http://sourceforge.net/projects/buddy

278 M. Jonáš and J. Strejček

Listing 1.1. Pseudo-codes computing operations addition (+) and equality (=) on
vectors a = (ai)0≤i<k and b = (bi)0≤i<k of bdds.

1 bvec_add(a, b)
2 {

3 result ← (0 , 0 , . . . , 0) with the bit -width k;

4 carry ← 0 ;

5 for i from 0 to k - 1 {

6 result i ← ai xor bi xor carry;
7 carry ← (ai & bi) | (carry & (ai | bi));
8 }

9 return result;
10 }

11

12 bvec_eq(a, b)
13 {

14 result ← 1 ;

15 for i from 0 to k - 1 {

16 result ← result & (ai ↔ bi);
17 }

18 return result;
19 }

their signed inequality f(x) ≤s g(x). Listing 1.1 shows a pseudo-code computing
the bdd for equality, which corresponds to the implementation in BuDDy.

Using these algorithms, it is possible to define a function t2BDDvec, which
converts a bit-vector term to the vector of bdds representing the function com-
puted by the term. Consequently, it is possible to define a function f2BDD, which
converts a bit-vector formula to the corresponding bdd.

3 Formula and Term Abstractions

Although it is often infeasible to compute functions t2BDDvec and f2BDD pre-
cisely, even an imprecise result can sometimes be enough to decide satisfiability
of the input formula as illustrated in Introduction. In this section we describe
notions of a term abstract domain, which captures an imprecise computation of
t2BDDvec, and a formula abstract domain, which captures an imprecise com-
putation of f2BDD. Generally, a term abstract domain defines a set of abstract
objects A, a function α mapping terms to these abstract objects, and an eval-
uation function � �A, which assigns to each abstract object a and a variable
assignment μ the set �a�Aµ of bit-vectors represented by a.

Definition 1 (Term abstract domain). A term abstract domain is a triple
(A,α, � �A), where A is a set of abstract objects, α : T → A is an abstraction
function, and � �A : A × BVvars → 2BV is an abstract evaluation function.

Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers 279

As an example, consider the precise bdd term abstract domain, in which the
corresponding vector of bdds is assigned to each term. In particular, the pre-
cise bdd term abstract domain is the triple (BDDvec, t2BDDvec, � �BDDvec), where
�a�BDDvecµ is the singleton set {bv} such that bv is the result of evaluation of vector
a of bdds in the assignment μ, i.e., bv = �a�µ. This abstract domain enjoys two
interesting properties: for each term and assignment, the corresponding abstract
object contains the correct result and it does not contain any incorrect result.
These properties are called completeness and soundness.

Definition 2. A term abstract domain (A,α, � �A) is complete if each term
t ∈ T and each assignment μ satisfy �t�µ ∈ �α(t)�Aµ . Conversely, it is sound if
each t and μ satisfy �α(t)�Aµ ⊆ {�t�µ}.

Similarly to the term abstract domain, the formula abstract domain defines
a set of abstract objects A, a function α mapping formulas to these abstract
objects, and an evaluation function � �A, which assigns to each abstract object
a and a variable assignment μ the set �a�Aµ ⊆ {0, 1} of truth values associated
to a.

Definition 3 (Formula abstract domain). A formula abstract domain is a
triple (A,α, � �A), where A is an arbitrary set of abstract objects, α : F → A is
an abstraction function, and � �A : A×BVvars → 2{1,0} is an abstract evaluation
function.

Definition 4. A formula abstract domain (A,α, � �A) is complete if each for-
mula ϕ ∈ F and each assignment μ satisfy �ϕ�µ ∈ �α(ϕ)�Aµ . Conversely, it is
sound if each ϕ and μ satisfy �α(ϕ)�Aµ ⊆ {�ϕ�µ}.

As in the case of terms, the precise computation of the bdd corresponding to
a formula yields a precise bdd formula abstract domain, which is complete and
sound. The precise bdd formula abstract domain is a triple (BDD, f2BDD, � �BDD),
where �a�BDDµ is the singleton set {b}, where b is the result of evaluation of the
bdd a in the assignment μ, i.e., b = �a�µ.

In the following, we weaken the precise term and formula bdd abstract
domains by dropping the requirement on the soundness, while still retaining the
requirement of completeness. As the following theorem demonstrates, such an
abstract domain can still be used for deciding satisfiability of the input formula.

Theorem 1. Let ϕ be a formula and (A,α, � �A) be a complete formula abstract
domain. If there exists an assignment μ such that �α(ϕ)�Aµ = {1}, the formula
ϕ is satisfiable. On the other hand, if all assignments μ satisfy �α(ϕ)�Aµ = {0},
the formula is unsatisfiable.

Note that for abstract domains in which abstract objects are bdds with the
standard evaluation function, the check for existence of the assignment μ from
the previous theorem is easy to implement. Such an assignment exists precisely
if the leaf node 1 is reachable from the root of the bdd. Furthermore, if the bdd
is reduced and ordered, this happens precisely if the bdd is not 0 . Conversely,
all assignments μ satisfy �α(ϕ)�Aµ = {0} iff the reduced and ordered bdd α(ϕ)
is 0 .

280 M. Jonáš and J. Strejček

Fig. 3. Truncated result of addition of two three-bit bit-vectors.

4 Truncating Formula and Term Abstract Domains

This section describes a term abstract domain and a corresponding formula
abstract domain that allow truncating results from bit-vector operations, i.e.,
computing only several bits from the result of arithmetic bit-vector operations.

In this whole section, we suppose that all formulas are in negation normal
form, i.e., logical operations are conjunctions, disjunctions, and negations and
negations are applied only on atomic subformulas. As traditional, we denote the
literal ¬(t1 = t2) as t1 �= t2.

4.1 Truncating Term Abstract Domain

We introduce the truncating term abstract domain first. It is a complete but
unsound term abstract domain, in which the terms are represented by vectors
whose elements are bdds, as in the precise term abstract domain, or do-not-know
values. The do-not-know value, denoted as ?, represents an unknown value of
the corresponding bit – it can be both 0 and 1.

For example, Fig. 3 shows the result of computing only the least-significant
bit of an addition of two bit-vectors x2x1x0 + y2y1y0. The value of this abstract
object under the assignment {x → 001, y → 100} is the set {001, 011, 101, 111},
since only the value of the least-significant bit is computed precisely.

Formally, the truncating term abstract domain is a triple

(tBDDvec, t2tBDDvec, � �tBDDvec),

where the set of abstract elements consists of vectors of bdds and ? elements

tBDDvec = {(bi)0≤i<k | k ∈ N, bi ∈ BDD ∪ {?} for all 0 ≤ i < k}

and the abstract evaluation function assigns to each b = (bi)0≤i<k ∈ tBDDvec
and an assignment μ the set of bit-vector values

�b�tBDDvecµ = {(vi)0≤i<k | if bi = ? then vi ∈ {0, 1} else vi = �bi�µ, 0 ≤ i < k}.

There are many possible implementations of the t2tBDDvec function including
the following two:

1. the number of computed bits is specified and other bits are set to ?,

Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers 281

2. the limit on bdd nodes in the result of the operation is specified and after
reaching it, the remaining bits are set to ?.

In the following, we describe only the second option as our evaluation has shown
that it outperforms the first one on the set of our benchmarks. Furthermore, it
is easy to derive the implementation of the first option based on the description
of the other option. In addition, we suppose that the limit on bdd nodes is fixed
for the given domain. In the implementation, we use multiple abstract domains
varying by the bdd node limit.

The function t2tBDDvec is computed recursively on the input term. The base
case for the variables or constants is straightforward and it is the same as in the
precise function t2BDDvec. On the other hand, the computation for bit-vector
operations differs from t2BDDvec in two important aspects:

– The operations have to work correctly with ? elements. To achieve this, we
modify the bdd operations &, |, and xor, which occurred in the computa-
tion of t2BDDvec. The handling of ? in the modified operations is similar
to the definition of logical connectives in the three-valued logic and to the
way bit-masks are computed in the smt solver mcBV [19]. The modified bdd
operations &t, |t, and xort are computed as follows:

a &t b =

⎧
⎪⎨

⎪⎩

0 if a = 0 or b = 0

a & b if a, b /∈ { 0 , ?}
? otherwise

a |t b =

⎧
⎪⎨

⎪⎩

1 if a = 1 or b = 1

a | b if a, b /∈ { 1 , ?}
? otherwise

a xort b =

{
a xor b if a �= ? and b �= ?

? otherwise

Note that ? xort ? is not 1 as each ? can represent a different value.
– Implementation of operations has to consider the given limit on the num-

ber of bdd nodes and set the bits that have not been computed precisely
to ? after the limit has been reached. The example of modification of the
original bvec add that uses the node limit is shown in the Listing 1.2. The
implementations of other operations are similar. However, they differ in the
order in which the precise bits are produced: during computation of addition
and multiplication, the first computed precise bits are the least significant
ones; during computation of division, the first computed precise bits are the
most-significant ones. Therefore if the computation of addition or multiplica-
tion reaches the bdd node limit, remaining most-significant bits are set to ?,
while for division least-significant bits are set to ?.

282 M. Jonáš and J. Strejček

Listing 1.2. Pseudo-code computing truncated addition of two tBDDvecs a = (ai)0≤i<k

and b = (bi)0≤i<k.

1 bvec_add_nodeLimit(a, b, limit)

2 {

3 result ← (0 , 0 , . . . , 0) with the bit -width k;

4 carry ← 0 ;

5 for i from 0 to k - 1 {

6 if (bddNodes(result) > limit) {

7 result i ← ?;

8 } else {

9 result i ← ai xort bi xort carry;
10 carry ← (ai &t bi) |t (carry &t (ai |t bi));
11 }

12 }

13 return result;
14 }

The set of values represented by the result of t2tBDDvec always contains the
precise result of the given term because the t2tBDDvec can only make precise
values imprecise by using ? elements. The truncating term abstract domain is
therefore complete. However, it is not sound, as the abstract object can describe
also incorrect results.

4.2 Truncating Formula Abstract Domain

We now define a formula abstract domain that uses results of truncated bit-
vector operations. Intuitively, the abstract elements in this abstract domain are
bdd pairs (bmust , bmay): the first one determines the assignments that satisfy the
formula for all possible values of ? elements, and the second one determines the
assignments that satisfy the formula for some values of ? elements.

Formally, the truncating formula abstract domain is a triple

(BDDpair, f2BDDpair, � �BDDpair),

where BDDpair = BDD × BDD and the evaluation function assigns to each pair
(bmust , bmay) ∈ BDDpair the set of Boolean values

�(bmust , bmay)�BDDpairµ = {v ∈ {0, 1} | �bmust�µ =⇒ v =⇒ �bmay�µ}.

Observe that �(bmust , bmay)�BDDpairµ is {0} when �bmust�µ = �bmay�µ = 0, it is {1}
when �bmust�µ = �bmay�µ = 1, and it is {0, 1} when �bmust�µ = 0, �bmay�µ = 1.
While the result would be ∅ in the remaining case �bmust�µ = 1, �bmay�µ = 0,
this situation never happens for the result of the defined function f2BDDpair.

The function f2BDDpair(ϕ) is defined recursively as follows.

Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers 283

1. The formula ϕ is an atomic subformula or its negation, i.e., ϕ ≡ t1 �� t2
for �� ∈ {=, �=,≤u, <u,≤s, <s}. The function f2BDDpair computes the pair
(bmust , bmay) from t2tBDDvec(t1) and t2tBDDvec(t2) using modified algo-
rithms for the corresponding operations on vectors of standard bdds. For
example, Listing 1.3 shows an algorithm for equality of t2tBDDvec(t1) and
t2tBDDvec(t2) (compare with the algorithm for equality of vectors of standard
bdds presented in Listing 1.1). In this algorithm, the value bmust becomes 0 if
there is ? in any of the input vectors, because then the arguments may differ
for some value of the ?. On the other hand, the value bmay is the conjunction
of equality of all pairs of corresponding bits that both have a known value. In
particular, construction of bmay ignores the pairs of bits containing some ? as
it could be the case that equality holds for these bits. Listing 1.3 also shows
the algorithm for computing disequality of t2tBDDvec(t1) and t2tBDDvec(t2).
The algorithms for other relational symbols are similar.

2. The formula ϕ has the form ϕ1∧ϕ2 or ϕ1∨ϕ2. Let (b1must , b
1
may) be the result

of f2BDDpair(ϕ1) and (b2must , b
2
may) be the result of f2BDDpair(ϕ2). Then we

define

f2BDDpair(ϕ1 ∧ ϕ2) = ((b1must & b2must), (b1may & b2may)),

f2BDDpair(ϕ1 ∨ ϕ2) = ((b1must | b2must), (b1may | b2may)).

3. The formula ϕ has the form ∀x. ϕ1 or ∃x. ϕ1. Let (b1must , b
1
may) be the result

of f2BDDpair(ϕ1). Then we define

f2BDDpair(∀x. ϕ1) = (bdd forall(x, b1must), bdd forall(x, b1may)),

f2BDDpair(∃x. ϕ1) = (bdd exists(x, b1must), bdd exists(x, b1may)),

where the function bdd forall(x,) eliminates the variable x universally and
bdd exists(x,) eliminates it existentially as explained in Sect. 2.3.

Example 1. Let t, r, s, u be bit-vector terms, for which we have computed only
the least-significant bit as computation of the other bits was infeasible. Formally,

t2tBDDvec(t) = (?, . . . , ?, bt), t2tBDDvec(r) = (?, . . . , ?, br),
t2tBDDvec(s) = (?, . . . , ?, bs), t2tBDDvec(u) = (?, . . . , ?, bu),

where bt, br, bs, bu are bdds.
Consider the formula t = r. The function f2BDDpair applied on this formula

returns the pair (0 , bt ↔ br). This pair says that every assignment satisfying
the formula must also satisfy the bdd bt ↔ br. Therefore, if t = r is put in
conjunction with another formula implying that bt ↔ br is equal to 0 , the
whole conjunction can be decided to be unsatisfiable.

Consider the formula s �= u. The function f2BDDpair now produces the pair
(bs xor bu, 1). Intuitively, if an assignment satisfies bs xor bu, it also satisfies the
formula s �= u, regardless the values of the remaining bits.

Finally, consider formulas t = r ∧ s �= u and t = r ∨ s �= u. The result of
f2BDDpair(t = r ∧ s �= u) is (0 , bt ↔ br), while the result of f2BDDpair(t =
r ∨ s �= u) is (bs xor bu, 1).

284 M. Jonáš and J. Strejček

Listing 1.3. Pseudo-codes computing truncated equality and truncated disequality of
two tBDDvecs a = (ai)0≤i<k and b = (bi)0≤i<k.

1 bvec_eq_trunc(a, b)
2 {

3 resultmust ← 1 ;

4 resultmay ← 1 ;

5 for i from 0 to k - 1 {

6 if (ai == ? or bi == ?) {

7 resultmust ← 0 ;

8 } else {

9 resultmust ← resultmust & (ai ↔ bi);
10 resultmay ← resultmay & (ai ↔ bi);
11 }

12 }

13 return (resultmust , resultmay);

14 }

15

16 bvec_neq_trunc(a, b)
17 {

18 resultmust ← 0 ;

19 resultmay ← 0 ;

20 for i from 0 to k - 1 {

21 if (ai == ? or bi == ?) {

22 resultmay ← 1 ;

23 } else {

24 resultmust ← resultmust | (ai xor bi);
25 resultmay ← resultmay | (ai xor bi);
26 }

27 }

28 return (resultmust , resultmay);

29 }

Similarly to the truncating term abstract domain, the truncating formula
abstract domain is also complete, as the following theorem shows.

Theorem 2. The truncating formula abstract domain is complete.

Proof. (sketch) It can be shown by induction on the structure of the formula
that if f2BDDpair(ϕ) = (bmust , bmay), then the following must hold for each
assignment μ:

�bmust�µ =⇒ �ϕ�µ and �ϕ�µ =⇒ �bmay�µ.

Therefore �ϕ�µ ∈ �f2BDDpair(ϕ)�BDDpairµ holds for each assignment μ, so the
abstract domain is indeed complete. �

Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers 285

Since the truncating formula abstract domain is complete, Theorem 1 can be
used to check satisfiability of a given formula ϕ. Consider bmust and bmay such
that

f2BDDpair(ϕ) = (bmust , bmay).

Then if bmust is not 0 , the formula ϕ is satisfiable. On the other hand, if bmay

is 0 , the formula ϕ is not satisfiable.
This satisfiability check solves the formulas mentioned in Introduction as the

motivation for the described approach. For all three of the formulas, the bmay

after computing at least 5 bits from results of the multiplication is 0 and the
formulas can be decided as unsatisfiable.

5 Implementation

We have implemented the described truncated abstract formula domain into
the smt solver Q3B, which is written in C++. The solver Q3B uses the package
cudd [16] for bdd representation and operations, and the implementation of bit-
vectors and bit-vector operations for cudd by P. Navrátil [13]. We have modified
this implementation to support ? elements and to support computing truncated
results of bit-vector operations and computing (bmust , bmay) for all bit-vector
relation operators and logical operators ∧ and ∨. The operations that introduce
? elements, when the precise result would contain too many bdd nodes, are
addition, multiplication, and division. We have selected these operations as the
original version of Q3B often has difficulties to handle them. The implementation
is available at GitHub2.

In contrast to the description of computing formula abstraction from the pre-
vious section, the implementation does not convert the formula to the negation
normal form. Instead, during the traversal of the formula, the solver maintains
the polarity of the current subformula and uses it to perform the appropriate
abstraction of atomic subformulas.

5.1 Further Optimizations

The described approach cannot solve simple formulas as x · y ≤u 2 ∧ x · y ≥u 4.
Even if the subterms x · y are computed abstractly, the information that the ?
elements in the two vectors representing the two occurrences of x · y have been
the same is lost after computing bdd pairs for x·y ≤u 2 and x·y ≥u 4. Therefore,
in the implementation, each multiplication and division is replaced by a fresh
existentially quantified variable and the constraint specifying its relation to the
multiplication or division, respectively, is added to the formula. For example,
the previous formula is transformed to the equivalent formula

∃mx,y(mx,y ≤u 2 ∧ mx,y ≥u 4 ∧ mx,y = x · y).

2 https://github.com/martinjonas/Q3B/releases/tag/ictac2018.

https://github.com/martinjonas/Q3B/releases/tag/ictac2018

286 M. Jonáš and J. Strejček

This formula is decided as unsatisfiable even if x · y is computed with arbitrar-
ily low precision. Note that the transformed formula is still not solved by the
original version of Q3B as the solver starts to build the precise bdds for all
three conjuncts. Although this particular case could be solved by computing
precise bdds for mx,y ≤u 2 ∧ mx,y ≥u 4 and not for the third conjunct as the
conjunction is already unsatisfiable, the proposed formula modification is more
general.

Similar problem arises for example in the unsatisfiable formula x · y ≤u

2 ∧ ∀z (z · y ≥u 4). This formula cannot be solved even after performing the
above-mentioned transformation. The transformation yields the formula

∃mx,y(mx,y ≤u 2 ∧ mx,y = x · y ∧ ∀z ∃mz,y (mz,y ≥u 4 ∧ mz,y = z · y)),

which can not be decided unsatisfiable even by using the abstractions, because
the solver can not infer the relationship between variables mx,y and mz,y. To
solve such formula, the implementation adds a congruence subformula stating
that x = z → mx,y = mz,y to the formula. This results in the formula

∃mx,y

(
mx,y ≤u 2 ∧ mx,y = x · y ∧
∧ ∀z ∃mz,y (mz,y ≥u 4 ∧ mz,y = z · y ∧ (x = z → mx,y = mz,y))

)
,

which can be decided unsatisfiable using the abstractions. Similarly to the pre-
vious transformation, the resulting formula is equivalent to the original one and
its unsatisfiability can not be shown by the original solver without the abstrac-
tions, because it is infeasible to compute the precise bdd for the inner quantified
subformula.

5.2 Combining Operation Abstractions and Formula
Approximations

The solver Q3B employs formula approximations, which can in some cases help
with solving input formulas with multiplication. This subsection elaborates on
the interaction of these approximations with the newly implemented operation
abstractions. Approximations of formulas are of two kinds: underapproxima-
tion and overapproximation. An underapproximation is a formula that logically
entails the input formula; therefore if an underapproximation is satisfiable, the
original formula is also satisfiable. On the other hand, an overapproximation is a
formula that is logically entailed by the input formula; if an overapproximation
is unsatisfiable, the original formula is also unsatisfiable.

The formula approximations are performed on formulas in negation normal
form by reducing the effective bit-width of selected variables by fixing some of
their bits to chosen values. The underapproximations are obtained by decreas-
ing effective bit-widths of all existentially quantified variables and the overap-
proximations are obtained by decreasing effective bit-widths of all universally
quantified variables. Q3B tries to solve the input formula by solving the orig-
inal formula, underapproximations of the formula, and overapproximations of
the formula in parallel. We have integrated the proposed operation abstractions

Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers 287

Listing 1.4. Algorithm combining operation abstractions with underapproximation.

1 solve_underapproximation (ϕ) {

2 effBW ← initialEffBW;

3 nodeLimit ← initialNodeLimit ;

4 while (true) {

5 ϕu ← underApprox(ϕ, effBW);

6 (b_must , b_may) ← solveAbstract(ϕu, nodeLimit);

7 if (b_must != 0) return SAT;

8 if (b_must == 0 and ϕ == ϕu) return UNSAT;

9 if (b_must != b_may) {

10 nodeLimit ← increaseNodeLimit(nodeLimit);

11 }

12 else if (ϕ != underApprox(ϕ, effBW)) {

13 effBW ← increaseEffBW(effBW);

14 }

15 }

16 }

into the functions for solving underapproximations and overapproximations. The
function solving the original formula can be adjusted to use operation abstrac-
tions as well, but the tool performs better if we keep this function unchanged.

Listing 1.4 shows the simplified implementation of solving underapproxima-
tions. The algorithm starts with the small initial values of the effective bit-width
effBW for existential variables and the limit nodeLimit on the number of bdd
nodes in the results of arithmetic operations. It repeatedly tries to solve the
input formula and if the result is not determined, either the effective bit-width
or the node limit is increased:

– if operation abstractions caused an imprecision, the node limit is increased;
– if the operation abstractions were precise, but the reduced effective bit-width

could have caused imprecision, the effective bit-width is increased.

Currently, the initial effective bit-width is 1 and it is increased to 2, 4, 6, 8,
The initial node limit is 1000 and the function increaseNodeLimit() multi-
plies it by 4 each time. The implementation for solving overapproximations is
analogous.

6 Experimental Evaluation

We have compared Q3B with our implementation of operation abstractions (ref-
erenced as Q3B+OA) against the original Q3B [8] and state-of-the-art smt
solvers Z3 [11], Boolector [15], and CVC4 [1]. We used Z3 in the version 4.6.0,
Boolector in the version that entered smt-comp 2017, and CVC4 in the version
presented in the paper by Niemetz et al. [14]. We evaluated all 5 solvers on
all 5151 quantified bit-vector formulas from the smt-lib repository [2] used in

288 M. Jonáš and J. Strejček

Table 1. Numbers of benchmarks solved by the individual solvers divided by the
satisfiability/unsatisfiability and the benchmark family.

benchmark family Boolector CVC4 Z3 Q3B Q3B+OA

UNSAT heizmann 14 107 21 93 94

preiner-keymaera 3919 3919 3922 3786 3906

preiner-psyco 62 62 62 45 49

preiner-scholl-smt08 71 37 68 52 69

preiner-tptp 55 56 56 56 56

preiner-ua 137 137 137 137 137

wintersteiger-fixpoint 74 75 74 75 75

wintersteiger-ranking 20 14 19 19 19

Total UNSAT 4352 4407 4359 4263 4405

SAT heizmann 17 18 13 19 20

preiner-keymaera 108 78 108 104 104

preinr-psyco 131 129 131 131 131

preiner-scholl-smt08 248 215 203 239 256

preiner-tptp 17 17 17 17 17

preiner-ua 15 14 16 16 16

wintersteiger-fixpoint 45 51 36 54 54

wintersteiger-ranking 21 32 35 40 40

Total SAT 602 554 559 620 638

Total 4954 4961 4918 4883 5043

smt-comp 2017. The used benchmarks are divided into three benchmark sets:
benchmarks from the tool Ultimate Automizer by M. Heizmann (marked as heiz-
mann), benchmarks that were created by converting integer and real arithmetic
benchmarks to bit-vectors by M. Preiner (marked as preiner), and benchmarks
from software and hardware verification by C. M. Wintersteiger (marked as win-
tersteiger). The benchmark sets preiner and wintersteiger are further divided
into smaller families of benchmarks.

All experiments were performed on a Debian machine with two six-core Intel
Xeon E5-2620 2.00 GHz processors and 128 gb of ram. Each benchmark run was
limited to use 16 gb of ram and 90 min of cpu time. All measured times are
cpu times. For reliable benchmarking we employed BenchExec [4], a tool that
allocates resources for a program execution and measures their use precisely.

Table 1 shows numbers of solved benchmarks by the individual solvers. In
total, Q3B+OA was able to solve 160 more benchmarks than the original version
of Q3B. Moreover, Q3B+OA solved more benchmarks than other state-of-the
art smt solvers: 89 more than Boolector, 82 more than CVC4, and 125 more
than Z3. We have also evaluated the effect of formula transformations described
in Subsect. 5.1. The transformations helped only in two families of benchmarks:

Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers 289

17

19

97

6

100

88

246

109

165

66

3

3

27

19

31

Q3B+OA

Q3B

Z3

CVC4

Boolector

0 100 200
Number of unsolved benchmarks (less is better)

Benchmark set
wintersteiger

preiner

heizmann

Fig. 4. The number of benchmarks unsolved by the individual solvers. The benchmarks
are divided by the source of the benchmark.

0 500 1000 1500 2000

Solved formulas

C
PU

 ti
m

e
(s

)

10
−3

10
−2

10
−1

1
10

10
2

10
3

Boolector
CVC4
Z3
Q3B
Q3B+OA

Fig. 5. Quantile plot of all solved non-trivial benchmarks from the smt-lib repository.
Trivial benchmarks are those that all solvers solved within 0.1 s. The plot shows the
number of non-trivial benchmarks (x-axis) that each solver was able to decide within
a given cpu time limit (y-axis).

in the family preiner-keymaera the optimizations were necessary to solve 116
out of 120 newly decided benchmarks; in the family wintersteiger-fixpoint the
solver Q3B+OA solved 1 benchmark less without the optimizations.

From the opposite point of view, Fig. 4 shows the number of benchmarks
unsolved by the individual solvers. This graph shows that most of the benefit

290 M. Jonáš and J. Strejček

of abstractions is on formulas from the preiner benchmark set, where expensive
operations like multiplication and division are frequently used.

Naturally, due to the repeated refinement of the abstractions, some bench-
marks may require more solving time than without abstractions. In particular,
there is one benchmark in the heizmann benchmark set that was solved by the
original Q3B but not by Q3B+OA. Although this was the only such benchmark,
the additional cost of abstractions is observable also on some benchmarks that
were decided both with and without abstractions: computing abstractions slowed
Q3B by more than 0.5 seconds on 115 benchmarks. On the other hand, there
were 96 benchmarks decided by both versions of Q3B on which the version with
abstraction was faster by more than 0.5 seconds.

To compare the solving times of all solvers, Fig. 5 shows quantile plots of
solving times of non-trivial benchmarks for the individual solvers. We have fil-
tered out 3168 trivial benchmarks, i.e., the benchmarks that were decided by all
of the solvers in less than 0.1 s.

The detailed results of the evaluation, including the raw data files and further
analyses, such as cross comparisons and scatter plots, are available at

http://fi.muni.cz/∼xstrejc/ictac2018/.

7 Conclusions

We have presented operation abstractions that allow bdd-based smt solvers to
decide a formula by computing only some bits of results of arithmetic operations.
The experimental evaluation shows that by using these abstractions, bdd-based
smt solver Q3B is able to solve more quantified bit-vector formulas from the
smt-lib repository than state-of-the-art solvers Boolector, CVC4, and Z3.

In the implemented version, the solver computes overapproximations and
underapproximations independently. It could be interesting to investigate
whether sharing of the information obtained by an overapproximation with other
parallel computations of the solver could improve the performance even more.

References

1. Barrett, C., et al.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011.
LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22110-1 14

2. Barrett, C., Fontaine, P., Tinelli, C.: The satisfiability modulo theories library
(SMT-LIB) (2016). http://www.smt-lib.org/

3. Barrett, C.W., Sebastiani, R., Seshia, S.A., Tinelli, C.: Satisfiability modulo the-
ories. In: Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.) Handbook of
Satisfiability. Frontiers in Artificial Intelligence, vol. 185, pp. 825–885. IOS Press,
Amsterdam (2009). https://doi.org/10.3233/978-1-58603-929-5-825

4. Beyer, D., Löwe, S., Wendler, P.: Benchmarking and resource measurement. In: Fis-
cher, B., Geldenhuys, J. (eds.) SPIN 2015. LNCS, vol. 9232, pp. 160–178. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-23404-5 12

http://fi.muni.cz/~xstrejc/ictac2018/
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
http://www.smt-lib.org/
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-319-23404-5_12

Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers 291

5. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. 35(8), 677–691 (1986). https://doi.org/10.1109/tc.1986.1676819

6. Cook, B., Kroening, D., Rümmer, P., Wintersteiger, C.M.: Ranking function syn-
thesis for bit-vector relations. Form. Methods Syst. Des. 43(1), 93–120 (2013).
https://doi.org/10.1007/s10703-013-0186-4

7. Gulwani, S., Srivastava, S., Venkatesan, R.: Constraint-based invariant inference
over predicate abstraction. In: Jones, N.D., Müller-Olm, M. (eds.) VMCAI 2009.
LNCS, vol. 5403, pp. 120–135. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-93900-9 13

8. Jonáš, M., Strejček, J.: Solving quantified bit-vector formulas using binary decision
diagrams. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
267–283. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 17

9. Kovásznai, G., Fröhlich, A., Biere, A.: Complexity of fixed-size bit-vector logics.
Theory Comput. Syst. 59(2), 323–376 (2016). https://doi.org/10.1007/s00224-015-
9653-1

10. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C pro-
grams for fast counterexample detection. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 381–396. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39799-8 26

11. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

12. Mrázek, J., Bauch, P., Lauko, H., Barnat, J.: SymDIVINE: tool for control-explicit
data-symbolic state space exploration. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016.
LNCS, vol. 9641, pp. 208–213. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32582-8 14

13. Navrátil, P.: Adding support for bit-vectors to BDD libraries CUDD and sylvan.
Bachelor’s thesis, Faculty of Informatics, Masaryk University, Brno (2018). https://
is.muni.cz/th/lij5a/

14. Niemetz, A., Preiner, M., Reynolds, A., Barrett, C., Tinelli, C.: On solving quan-
tified bit-vectors using invertibility conditions. arXiv preprint 1804.05025 (2018).
http://arxiv.org/abs/1804.05025

15. Preiner, M., Niemetz, A., Biere, A.: Counterexample-guided model synthesis. In:
Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 264–280.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5 15

16. Somenzi, F.: CUDD: CU decision diagram package release 3.0.0. University of
Colorado at Boulder (2015). https://github.com/ivmai/cudd

17. Srivastava, S., Gulwani, S., Foster, J.S.: From program verification to program syn-
thesis. In: Proceedings of 37th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, Madrid, January 2010, pp. 313–326. ACM
Press, New York (2010). https://doi.org/10.1145/1706299.1706337

18. Wintersteiger, C.M., Hamadi, Y., de Moura, L.M.: Efficiently solving quantified
bit-vector formulas. Form. Methods Syst. Des. 42(1), 3–23 (2013). https://doi.
org/10.1007/s10703-012-0156-2

19. Zeljić, A., Wintersteiger, C.M., Rümmer, P.: Deciding bit-vector formulas with
mcSAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
249–266. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40970-2 16

https://doi.org/10.1109/tc.1986.1676819
https://doi.org/10.1007/s10703-013-0186-4
https://doi.org/10.1007/978-3-540-93900-9_13
https://doi.org/10.1007/978-3-540-93900-9_13
https://doi.org/10.1007/978-3-319-40970-2_17
https://doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.1007/978-3-642-39799-8_26
https://doi.org/10.1007/978-3-642-39799-8_26
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-32582-8_14
https://doi.org/10.1007/978-3-319-32582-8_14
https://is.muni.cz/th/lij5a/
https://is.muni.cz/th/lij5a/
http://arxiv.org/abs/1804.05025
https://doi.org/10.1007/978-3-662-54577-5_15
https://github.com/ivmai/cudd
https://doi.org/10.1145/1706299.1706337
https://doi.org/10.1007/s10703-012-0156-2
https://doi.org/10.1007/s10703-012-0156-2
https://doi.org/10.1007/978-3-319-40970-2_16

Weak Bisimulation Metrics in Models
with Nondeterminism and Continuous

State Spaces

Ruggero Lanotte and Simone Tini(B)

Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria,
via Valleggio, 11, 22100 Como, Italy

{ruggero.lanotte,simone.tini}@uninsubria.it

Abstract. Bisimulation metrics are used to estimate the behavioural
distance between probabilistic systems. They have been defined in dis-
crete and continuous state space models. However, the weak semantics
approach, where non-observable actions are abstracted away, has been
adopted only in the discrete case. We fill this gap and provide a weak
bisimulation metric for models with continuous state spaces. A difficulty
is to provide a notion of weak transition leaving from a continuous dis-
tribution over states. Our weak bisimulation metric allows for compo-
sitional reasoning. Systems at distance zero are equated by a notion of
weak bisimulation. We apply our theory in a case study where continuous
distributions derive by the evolution of the physical environment.

Keywords: Weak bisimulation metric · Nondeterminism
Continuous state space

1 Introduction

Bisimulation metrics [8,11,31] are a successful instrument widely employed to
estimate the behavioural distance between probabilistic systems. They can be
viewed as the quantitative counterpart of the classic notion of bisimulation equiv-
alence: Given two systems, bisimulation only allows us to say whether they
behave exactly in the same way or not, whereas bisimulation metrics provide
a notion of distance quantifying their disparity. The metrics approach is more
robust than the equivalence approach, which can be clearly observed in the
specification/implementation scenario: Any tiny variation of the probabilistic
behaviour of a system implementation, which may be also due to a measurement
error, will break the equality between such an implementation and its specifi-
cation, without any further information on the distance of their behaviours.
Actually, many implementations can only approximate the specification; thus,
the verification task requires appropriate instruments to measure the quality of
the approximation.

The bisimulation metrics in [8,11,31] have been defined for both discrete and
continuous state space models. However, the weak semantics approach, where
c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 292–312, 2018.
https://doi.org/10.1007/978-3-030-02508-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_16&domain=pdf
http://orcid.org/0000-0002-3335-234X
http://orcid.org/0000-0002-3991-5123

Weak Bisimulation Metrics and Continuous State Spaces 293

non-observable actions are abstracted away, has been adopted only in the discrete
case [12]. One of the main technical difficulties to apply the weak semantic to
the continuous case is in the definition of a suitable notion of weak transition,
since this requires to lift transitions leaving from states to transitions leaving
from continuous distributions over states.

Contribution. In this paper we fill the gap and we provide a weak bisimulation
metric for models with nondeterminism and continuous state spaces. We will
prove that: (i) as any reasonable notion of symmetric distance, our weak bisim-
ulation metric is a pseudometric; (ii) our weak bisimulation metric allows for
compositional reasoning, namely the distance between the parallel compositions
S1 ‖ S2 and T1 ‖ T2 depends on distance between S1 and T1 and the distance
between S2 and T2, the intuition being that if one fixes the maximal tolerable
distance ε between the composed systems S1 ‖ S2 and T1 ‖ T2 then there are tol-
erances εi between the components Si and Ti, with i ∈ {1, 2}, ensuring that the
tolerance ε is respected; (iii) systems at distance zero are equated by a suitable
notion of weak bisimulation equivalence.

We argue that our weak bisimulation metrics is suitable to reason on cyber-
physical systems. In these systems, the description of the activity of the physical
component requires to use probability as an abstraction mechanism that allows
us to average over, thus abstracting away, the effect of inessential or unknown
details of the evolution of physical quantities which may also be impossible to
be observed in practice. These probabilities are inherently continuous. To show
how our theory can be applied, we propose Stochastic Hybrid Calculus (SHC)
as a process calculus extending Communicating Sequential Processes [19] with
both primitives to deal with discrete time, inspired by those of Timed Process
Algebra [18], and constructs to express probabilistic behaviour. In this calculus,
we adopt a notion of state, which represents the physical component of the
system, given by values of physical quantities, and a notion of process, which
specifies the cyber component, or logics (controllers, IDS, supervisors) of the
system. The logic interacts with both the physical component, by accessing the
state, and with other cyber components by channel-based communication. Then,
we provide a case study to illustrate how weak bisimulation metrics applied to
our calculus can be used to reason on cyber physical systems.

Outline. In Sect. 2 we recall the notions on probability spaces used in the fol-
lowing. In Sect. 3 we introduce SHC. In Sect. 4 we introduce weak transitions. In
Sect. 5 we define our weak bisimulation metric. In Sect. 6 we apply our theory
to a case study. Section 7 contains conclusions and discussion of related work.

2 Background on Probability Spaces

A σ-algebra over a set Ω is a family F of subsets of Ω such that: (i) Ω ∈ F ,
(ii) F is closed under complementation, (iii) F is closed under countable union.
The complement of any set A ∈ F is denoted C(A). Obviously, by (ii) and (iii)
it follows that F is closed also under countable intersection.

294 R. Lanotte and S. Tini

It is well known that for a family Φ of subsets of Ω, the smallest σ-algebra
over Ω containing Φ exists, and is unique. It is called the σ-algebra generated
by Φ. In particular, for n ∈ N

+, the Borel σ-algebra over R
n, denoted B(Rn), is

the σ-algebra generated by the open sets in R
n. A well-known result over Borel

σ-algebras is given by the following proposition.

Proposition 1. The σ-algebra generated by rectangles A × B with A ∈ B(Rn)
and B ∈ B(Rm) is equal to B(Rn+m).

A measurable space is a pair (Ω,F), with F a σ-algebra over Ω. The ele-
ments of F are called measurable sets. A sub-probability measure over (Ω,F)
is a mapping μ : F → R

≥0 such that: (i) μ(∅) = 0; (ii) μ(Ω) ≤ 1; (iii) for
every countable family of pairwise disjoint measurable sets {Ai}i∈I , we have
μ(

⋃
i∈I Ai) =

∑
i∈I μ(Ai). We use |μ| to denote μ(Ω).

We denote the set of sub-probability measures over (Ω,F) by Dsub((Ω,F)).
For μ ∈ Dsub((Ω,F)), the structure (Ω,F , μ) is called a sub-probability space.
In particular, if |μ|= 1, then μ is called a probability measure over (Ω,F) and
(Ω,F , μ) is called a probability space. The set of probability measures over (Ω,F)
is denoted by D((Ω,F)). We introduce now some notions on sub-probability
measures. Assume a measurable space (Ω,F). Then:

– For an element ω ∈ Ω, the Dirac probability measure is denoted by ω and is
defined by ω(A) = 1, if ω ∈ A, and ω(A) = 0, otherwise, for all A ∈ F .

– For a measurable set A ∈ F and a sub-probability measure μ ∈ Dsub((Ω,F)),
with μ ∩ A we denote the sub-probability measure in Dsub((Ω,F)) defined by
(μ ∩ A)(B) = μ(A ∩ B), for all B ∈ F .

– The summation of a set {μi}i∈I of sub-probability measures in Dsub((Ω,F))
with

∑
i∈I |μi |≤ 1 is the sub-probability measure

∑
i∈I μi in Dsub((Ω,F))

defined by (
∑

i∈I μi)(A) =
∑

i∈I μi(A), for all A ∈ F . The measures in the
summation may be also weighted:

∑
i∈I pi · μi denotes the sub-probability

measure defined by (
∑

i∈I pi ·μi)(A) =
∑

i∈I piμi(A), for all A ∈ F , provided
that

∑
i∈I pi |μi |≤ 1. Notice that this notation allows us to express mixed

measures having both discrete and dense parts.
– A sub-probability measure μ ∈ Dsub((Ω,F)) is called discrete if there exists

a countable set of indexes I such that μ =
∑

i∈I pi · ωi, with ωi ∈ Ω.

We need to recall also the notion of integral of a measurable function.
A function between two measurable spaces is called measurable if the preim-

age of any measurable set is a measurable set. In particular, if we consider any
measurable space (Ω,F) and the Borel space (R,B(R)), then f : Ω → R is mea-
surable if f−1(A) ∈ F for all A ∈ B(R).

For each measurable set A ∈ F , the indicator function 1A : Ω → R is defined
by 1A(ω) = 1, if ω ∈ A, and 1A(ω) = 0, otherwise. A simple function is of the
form

∑n
i=1 ci · 1Ai

, with A1 . . . , An measurable sets in F and c1, . . . , cn ∈ R
+.

Notice that such a simple function is non negative and it can be rewritten such
that A1, . . . , An is a partition of Ω. Notice also that both indicator functions and
simple functions are measurable. The following result is folklore (see, e.g. [28]).

Weak Bisimulation Metrics and Continuous State Spaces 295

Theorem 1. Given a non negative measurable function f : Ω → R
≥0, there is

a non decreasing sequence of simple functions {fi}i∈N such that f = supi∈N fi.

For a probability space (Ω,F , μ) and a simple function f =
∑n

i=1 ci · 1Ai
,

the integral of f wrt. the probability measure μ, denoted
∫

f dμ, is defined as
∫ (∑n

i=1 ci · 1Ai

)
dμ =

∑n
i=1 ci · μ(Ai)

We can extend this definition to any measurable non negative f : Ω → R
≥0 by

∫
f dμ = supi∈N

∫
fi dμ, where f = supi∈N fi and (fi)i∈N are simple functions.

Then, for an arbitrary measurable f : Ω → R, we can consider the non-negative
functions f+ = max{f, 0} and f− = −min{f, 0}, which gives f = f+ − f−. If∫

f+ dμ �= ∞ or
∫

f− dμ �= ∞, then we say that f is μ-integrable and we define
∫

f dμ =
∫

f+ dμ −
∫

f− dμ

We will use the following known properties for integrals.

Proposition 2. The following facts hold:
1 .

∫
f d(ω) = f(ω) 2 .

∫
1A dμ = μ(A)

3 .
∫

c · f dμ = c ·
∫

f dμ, forc ∈ R 4 .
∫

f d(μ1 + μ2) =
∫

f dμ1 +
∫

f dμ2

5 .
∫

f dμ +
∫

g dμ =
∫

(f + g) dμ 6 .Iff ≤ g, then
∫

f dμ ≤
∫

g dμ

3 Stochastic Hybrid Calculus

In this section, we introduce Stochastic Hybrid Calculus (SHC) as a process calcu-
lus extending Communicating Sequential Processes (CSP) [19] with both prim-
itives to deal with discrete time, inspired by those of Timed Process Algebra
(TPL) [18], and constructs to express probabilistic behaviour. The calculus is tai-
lored for specifying cyber-physical systems: we assume a notion of state, which
represents the physical component of the system, given by values of physical
quantities, sensors, actuators, etc., and a notion of process, which specifies the
cyber component, or logics (controllers, IDS, supervisors) of the system. The
logic interacts with both the physical component, by accessing the state, and
with other cyber components by channel-based communication. Typically, phys-
ical quantities can be accessed by logic only through sensors and actuators. In
order to simplify the calculus, we deliberately choose to abstract from this detail,
assuming that the logic has the ability to directly access the physical quantities.
This has no impact on the bisimulation metric theory developed in next section.

We stress that in the description of the activity of the physical component, we
use probability as an abstraction mechanism that allows us to average over, thus
abstracting away, the effect of inessential or unknown details of the evolution of
physical quantities which may also be impossible to be observed in practice.

296 R. Lanotte and S. Tini

3.1 Syntax

The syntax of SHC is given as a three levels structure: we have sequential pro-
cesses, ranged over by P,Q, . . . , networks of processes, ranged over by M,N, . . . ,
and systems, ranged over by S, T, We refer to the set of all processes, net-
works and systems with P, N and S, respectively. A system S ∈ S is a pair of
the form (N, s), where N ∈ N is a network of sequential processes in P running
in parallel and s is a state, which is a tuple in R

n for some n ∈ N
+.

Definition 1. Systems, networks and processes are defined by:

S, T ::= (M, s)
M,N ::= P | M ‖A N
P,Q ::= niln |α.

⊕
i∈I pi:Pi | if (A) {P} {Q} | [i := c]P | tick(δ).P |X | recX.P

In Definition 1 we assume a set of actions A containing: (i) a set of synchroniza-
tion actions, ranged over by a, b, used to achieve a process multi-part synchro-
nisation à la CSP [19]; (ii) the silent action τ , modelling internal computation
steps that cannot be externally observed; (iii) the timed action tick, modelling
the passage of one unit of time in a setting with a discrete notion of time [18].
Then, α, β range over untimed actions in A \ {tick}, λ ranges over the whole A,
and, finally, A,A1 range over sets of synchronization actions, namely subsets of
A \ {τ, tick}.

A process P ∈ P interacts with a portion of the physical state, represented by
a tuple in R

n. In the following description we assume that this tuple is s. Since
physical quantities accessed by P are fixed (only their values may change), the
dimension of s cannot change at runtime. Process niln has terminated its task.
We will formalise that niln requires that s has dimension n. Process α.

⊕
i∈I pi:Pi

performs the untimed action α ∈ A \ {tick} and, with probability pi, it evolves
to process Pi. If α �= τ then this computation step may serve to synchronise with
other processes, otherwise, if α = τ this is an internal computation step. Pro-
cess if (A) {P} {Q}, with A ∈ B(Rn), is the standard conditional: If s ∈ A,
then it behaves as P , otherwise as Q. Process [i := c]P sets the ith coor-
dinate of s to value c ∈ R and, then, it behaves as P . In process tick(δ).P ,
δ : Rn → D((Rn,B(Rn))) is a mapping from states to probability measures over
states. Process tick(δ).P sleeps for one unit of time, then at the next time step
it will interact with states in {s′ : s′ ∈ A} with probability (δ(s))(A), for any
measurable set A ∈ B(Rn). This models that in-between two time slots the value
of state is updated by the activity of the physical component in a probabilistic
way. In processes of the form tick(δ).P , the occurrence of P is said to be time-
guarded. X is a process variable, recX.P denotes recursion. We will consider only
time-guarded recursion, where all occurrences of the process variable X may only
occur time-guarded in P .

In network M ‖A N , networks M and N must synchronize on actions in
A (multi-part synchronisation à la CSP [19]) and also on action tick, namely
they must agree on letting the time pass [18], whereas they are autonomous in
performing the remaining actions (including the internal action τ).

Weak Bisimulation Metrics and Continuous State Spaces 297

The process variable X is bound in recX.P . This gives rise to the stan-
dard notions of free/bound process variables. We work only with closed pro-
cesses/networks/systems containing no free process variable. The semantic rules
will ensure that the absence of free variables is preserved at run-time. We write
S{P/X} for the substitution of process variable X with process P in system S.

The syntax is too permissive. We should restrict to networks running in states
of the required dimension. To this purpose, we use a function #: N → N

+∪{⊥},
with #(N) = n if N can interact with states of dimension n, and #(N) = ⊥ if N
is unable to interact with any state. We start with defining #: P → N

+ ∪ {⊥}.
We have #(P) ∈ N

+ if one of the following cases holds, otherwise #(P) = ⊥:

– #(niln) = n;
– #(α.

⊕
i∈I pi:Pi) = n if, for all i ∈ I, #(Pi) = n;

– #(if (A) {P} {Q}) = n if A ∈ B(Rn) and #(P) = #(Q) = n;
– #([i := c]P) = #(P) if i ≤ #(P) (namely the state has the i-th component);
– #(tick(δ).P) = n if δ : Rn → D((Rn,B(Rn))) and #(P) = n;
– #(recX.P) = #(P{recX.P/X}) if #(P{recX.P/X}) �= ⊥.

Then, #(M ‖A N) = #(M) + #(N), with ⊥ + n = n + ⊥ = ⊥ + ⊥ = ⊥.

Definition 2. A process P is well-formed if #(P) �= ⊥. Then, a network N is
well-formed if #(N) �= ⊥. Finally, a system S = (N, s) is well-formed if for
some n ∈ N

+ we have s ∈ R
n and #(N) = n.

For well-formed systems S1 = (N1, s1) and S2 = (N2, s2), we write S1 ‖A S2

for (N1 ‖A N2, s1 × s2), where s1 × s2 = (c1, . . . , cn, cn+1, . . . , cn+m) when s1 =
(c1, . . . , cn) and s2 = (cn+1, . . . , cn+m). Clearly, also S1 ‖A S2 is well-formed.

3.2 Probabilistic Labelled Transition Semantics

In this section, we provide the dynamics of SHC in terms of a probabilistic labelled
transition system (pLTS) [29]. Intuitively, a computation step takes a system in
S to a probability measure over a suitable σ-algebra, whose measurable sets are
sets of systems in S. We start with introducing such a σ-algebra, denoted FS. To
this purpose, we rely on the notions of dense-system, which is a set of systems
in S with the same network structure and with states giving a measurable set,
and meta-system, which is an union of dense systems.

Definition 3. The dense-system induced by a well-formed network N ∈ N and
a measurable set B ∈ B(R#(N)) is the set of systems (N,B) = {(N, s) : s ∈ B}.
Then, an at most countable union of dense systems is called a meta-system.

Interestingly, a meta-system S can be always written in form S =
⋃

N∈N(N,BN).
Indeed, if for some network N , S contains no system (N, s), then the contribution
of N to S can be represented by (N, ∅), since (N, ∅) = ∅ and (N, ∅) is a dense
system, which follows by ∅ ∈ B(R#(N)). Then, if for a countable set I, S contains
all dense systems (N,Bi) with i ∈ I, then

⋃
i∈I(N,Bi) = (N,

⋃
i∈I Bi), which is

a dense system since Bi ∈ B(R#(N)) for all i ∈ I implies
⋃

i∈I Bi ∈ B(R#(N)).
We define FS as the family containing precisely all meta-systems.

298 R. Lanotte and S. Tini

Proposition 3. The pair (S,FS) is a measurable space.

We will use A,B to range over measurable sets in B(Rn) and S, T to range
over measurable sets in FS. Then, π ranges over (sub)-probability measures over
Dsub((Rn,B(Rn))) and μ, ν over (sub)-probability measures over Dsub((S,FS)).

The notion of parallel composition can be lifted to measurable sets S =⋃
M∈N(M,BM) and T =

⋃
N∈N(N,CN) in FS as follows:

S ‖A T =
⋃

M,N∈N(M ‖A N,BM × CN)

By Proposition 1 we get that FS is closed wrt. this operation of parallel compo-
sition.

Proposition 4. If S, T ∈ FS then S ‖A T ∈ FS.

We adapt now the notion of pLTS [29] to SHC.

Definition 4. The pLTS for SHC is the triple (S,A, −→), where −→⊆ (S×A×
Dsub((S,FS))) is the transition relation derived by the transition rules in Table 1.

In the definition of the rules we use the following notations:

– For s = (c1, . . . , cn) ∈ R
n, i ∈ {1, . . . , n} and c ∈ R, we let s{c/i} denote the

tuple (c1, . . . , ci−1, c, ci+1, . . . , cn) ∈ R
n.

– For a process P ∈ P and a probability measure π ∈ D((Rn,B(Rn))), with
(P, π) we denote the probability measure over (S,FS) s.t. (P, π)(S) = π(BP),
if BP = {s : (P, s) ∈ S}.

– Given probability measures μ1, μ2 over (S,FS), we let μ1 ‖A μ2 denote the
probability measure over (S,FS) s.t. (μ1 ‖A μ2)(S1 ‖A S2) = μ1(S1) · μ2(S2).

Let us comment on the rules of Table 1. For a process P ∈ P, we get tran-
sitions from (P, s), where s ∈ R

#(P) is the component of the global state used
by P . Rule (Com) serves to model an untimed, possibly internal, computation
step by a process. (We remind that α ∈ A \ {tick}.) Rules (True) and (False)

serve to solve the conditional choice, which is an internal activity that cannot
be externally observed. Rule (Res) models the update on the ith coordinate of s.
Also this activity is internal. Rule (Del) models the passage of one unit of time.
Rule (TimeNil) states that niln does not prevent passage of time. Rule (Rec) is
the standard rule for recursion. Rule (Synch) serves to model CSP-like multi-part
synchronisation on some action a. Rule (Asynch) serves to propagate to parallel
components non-synchronising or internal actions. Its symmetric counterparts
is obvious and thus omitted from the table. Rule (TPar) is standard and states
that parallel components should agree on passage of time.

Example 1. In this example, for a bounded measurable set A ∈ B(R) and a
probability mass p ∈ (0, 1], with U(A, p) we denote the sub-probability measure
in Dsub((R,B(R))) which uniformly distributes the probability mass p on set A.
Notice that |U(A, p)|= p. Let δ : R → D((R,B(R))) be the function mapping reals

Weak Bisimulation Metrics and Continuous State Spaces 299

Table 1. Probabilistic LTS for systems (Remind that S is the Dirac measure for S).

to uniform distributions over D((R,B(R))) defined by δ(s) = U([s − 2, s + 2], 1)
for all s ∈ R. (Briefly, δ(s) is the continuous uniform distribution in [s−2, s+2].)

Consider the process P = tick(δ).P ′, with P ′ = if ([−∞,−1]) {a.nil1} {[1 :=
10] b.nil1}, the state 0 ∈ R and the system S = (P, 0). Process P starts in state
0 and sleeps for one time unit (action tick). Then, it behaves as process P ′

running in a state expressed by the dense uniform distribution in U([−2,+2], 1).

Formally, by rule (Del) we get (P, 0)
tick−−−→ (P ′,U([−2,+2], 1)). Now, if the state

is in [−2,−1] then by rule (True) the process P ′ becomes a.nil1. Otherwise, by rule
(False) P ′ becomes [1 := 10] b.nil1 and will set the (first and unique component
of the) state to 10 and becomes b.nil1. This will be formalised in Example 2.

3.3 Properties of the pLTS

We conclude this section with some properties on our pLTS that will be useful
in the following. First we show that whenever we have a transition S

λ−−→ μ,
then: (i) if λ = tick, then the underlying structure of processes in system S is
maintained; (ii) if λ �= tick, then μ is a discrete probability measure and, in
this case, all the systems in the support of μ have the same number of parallel
components of S (but may have a different process structure). Formally:

Proposition 5. Assume a well-formed system S = (M, s) with the network M

of the form M = P1 ‖A1 . . . ‖Am−1 Pm and s ∈ R
#(M). If S

λ−−→ μ, then:

– If λ = tick then μ = (Q1 ‖A1 . . . ‖Am−1 Qm, π) for suitable processes Qi and
probability measure π ∈ D((R#(M),B(R#(M)))).

– If λ �= tick then μ =
∑

i∈I pi ·μi for a finite set I and, for any i, μi = (P i
1 ‖A1

· · · ‖Am−1 P i
m, si) for suitable processes P i

1, . . . , P
i
m and si ∈ R

#(M).

300 R. Lanotte and S. Tini

Proposition 5 suggests a definition of normal form for measures in
Dsub((S,FS)).

Definition 5. A sub-probability measure μ ∈ Dsub((S,FS)) is in normal form
if μ =

∑
i∈I pi · μi for a finite set I, and there exist naturals m,n ∈ N

+ and sets
of actions A1, . . . ,Am−1 s.t. for any i, we have μi = (P i

1 ‖A1 . . . ‖Am−1 P i
m, πi),

for suitable processes P i
j and πi ∈ Dsub((Rn,B(Rn))).

Proposition 5 can be refined if we know that the action is τ .

Proposition 6. Assume a well-formed system S = (M, s) with the network M
of the form M = P1 ‖A1 . . . ‖Am−1 Pm and s = s1 × · · · × sm with si ∈ R

#(Pi).
If S

τ−−→ μ, then for some j ∈ 1 . . . m one of the following facts holds:

– Pj = τ.
⊕

i∈I pi:P i
j and μ =

∑
i∈I pi · (P1 ‖A1 . . .‖Aj−1 P i

j ‖Aj
. . .‖Am−1 Pm, s).

– Pj = if (A) {P 1
j } {P 2

j } and either μ = (P1 ‖A1. . .‖Aj−1P
1
j ‖Aj

. . .‖Am−1Pm, s),
if sj ∈ A, or μ = (P1 ‖A1 · · · ‖Aj−1 P 2

j ‖Aj
· · · ‖Am−1 Pm, s), otherwise.

– Pj = [i := c]P ′
j and μ = (P1 ‖A1 · · · ‖Aj−1 P ′

j ‖Aj
· · · ‖Am−1 Pm, s′) with s′ =

s1 × · · · × sj{c/i} × · · · × sm.

4 Weak Transitions

In this section we define the notion of weak transition S
λ̂==⇒ μ, which represents

that the sub-probability measure μ is reached from system S by action λ, possibly
preceded and followed by τ actions. Then, we will write S

λ!=⇒ μ whenever

S
λ̂==⇒ μ and no τ -transition from μ allows to reach a distribution different from

μ. Intuitively, λ̂==⇒ introduce nondeterminism since it allows that only some
processes able to perform a τ -transition perform it, whereas λ!=⇒ solve such a
nondeterminism by forcing all processes to perform their τ -transition.

In a probabilistic setting, the definition of weak transition is complicated by
the fact that (strong) transitions take processes (in our case systems) to probabil-

ity measures; consequently if we are to use weak transitions λ̂==⇒, which abstract
away from non-observable actions, then we need to generalise transitions, so that
they take (sub-)probability measures to (sub-)probability measures. An elegant
solution to this problem was proposed in [10] for discrete measures. We provide
here the necessary machinery to extend this approach to the dense case.

We proceed as follows. First, we lift transitions S
λ−−→ performed by systems

to transitions μ
λ̂−−→ performed by (sub)-probability measures over systems.

Then, for action τ we define the transition relation τ̂==⇒ over (sub)-probability

measures as the transitive and reflexive closure of
τ̂−−→. Finally, we derive a

transition S
λ̂==⇒ μ from S

τ̂==⇒ μ′, μ′ λ̂−−→ μ′′ and μ′′ τ̂==⇒ μ. In the definition
of these three transitions we assume that the left-hand-side is in normal form.

Weak Bisimulation Metrics and Continuous State Spaces 301

This is not restrictive, since S is a normal form and we will prove that transitions
take normal forms to normal forms. Moreover, we will prove also that the target

μ′ of the first transition is discrete, which allows us to define μ′ λ̂−−→ μ′′ for λ �= τ
assuming that μ′ is discrete, besides a normal form.

We define the transition μ
λ̂−−→ for a normal form μ and an action λ ∈ A

inductively wrt. the structure of μ. The base cases are μ = S and μ = (M,π).
The inductive step is μ =

∑
i∈I pi · μi.

BASE CASE μ = S. Distribution S inherits all transitions of system S. More-
over, we always have the transition S

τ̂−−→ S since abstracting from τ -actions
requires that we should not distinguish between performing τ or remaining inac-

tive. Formally, if λ = τ , then we write S
λ̂−−→ ν whenever either S

λ−−→ ν or

ν = S. Otherwise, if λ �= τ , then we write S
λ̂−−→ ν whenever S

λ−−→ ν. In case
λ �= τ , we introduce a notation to represent if S does not make the λ̂-action: We

write S
λ̂−−→� if S

λ−−→ ν does not hold for any sub-probability measure ν.

BASE CASE μ = (M,π), with M = P1 ‖A1 · · · ‖Am−1 Pm. As anticipated

above, we assume λ = τ , since we need the transition μ
λ̂−−→ with λ �= τ only if

μ is discrete. A τ̂ -transition from μ originates from τ -transitions from processes
P1, . . . , Pm (which are derived by rules (Com) with α = τ , (True), (False), (Res))
as follows. We take H ⊆ {1, . . . ,m} as an arbitrary (possibly proper) subset of
the indexes of the processes P1, . . . , Pm that are able to perform a τ -transition.
Then, for each h ∈ H we take a meta-system Sh with μ(Sh) > 0 and we let
systems in Sh inherit the τ -transition by Ph. Of course, for arbitrary h, k ∈ H
with h �= k we require that Sh ∩ Sk = ∅. Then, also all systems in any measurable
set S ⊆ C(

⋃
h∈H Sh) with μ(S) > 0 can make the τ̂ -transition, which is the

analogous of the inactivity step S
τ̂−−→ S already defined for Dirac measures.

Formally, we define the transition (M,π)
τ̂−−→ ν +

∑
h∈H νh if H ⊆ {1, . . . , m}

and there are pairwise disjoint meta-systems Sh with h ∈ H such that:

1. for each h ∈ H, Sh has the form Sh = (M,Bh), with Bh ∈ B(R#(M)) and
π(Bh) > 0, and all systems in Sh inherit the τ -transition by Ph (with the
effect described in Proposition 6). Precisely one of the following facts holds:
(a) Ph = τ.

⊕
i∈I pi:P i

h and νh has the form

νh =
∑

i∈I pi ·
(
P1 ‖A1 . . . ‖Ah−1 P i

h ‖Ah
. . . ‖Am−1 Pm, π ∩ Bh

)

(b) Ph = if (A) {P ′} {P ′′}, νh = ν′ + ν′′ and for n1 =
∑h−1

l=1 #(Pl) and
n2 =

∑m
l=h+1 #(Pl) the distributions ν′ and ν′′ have the form

ν′ =
(
P1 ‖A1 . . .‖Ah−1 P ′ ‖Ah

. . .‖Am−1 Pm, π ∩ Bh ∩ (Rn1 × A×R
n2)

)

ν′′ =
(
P1 ‖A1 . . .‖Ah−1 P ′′ ‖Ah

. . .‖Am−1 Pm, π ∩ Bh ∩ (Rn1 ×C(A)×R
n2)

)

302 R. Lanotte and S. Tini

(c) Ph = [i := c]P ′
h and the distribution νh has the form

νh = (P1 ‖A1 . . . ‖Ah−1 P ′
h ‖Ah

. . . ‖Am−1 Pm, π′)

where for n1 = (i−1)+
∑h−1

l=1 #(Pl) and n2 = #(Ph)− i+
∑m

l=h+1 #(Pl),
the distribution π′ is defined so that for all A ∈ B(R#M) we have π′(A) =
(π ∩ Bh)({s1 × R × s2 | s1 × c × s2 ∈ A ∧ s1 ∈ R

n1 ∧ s2 ∈ R
n2}).

2. ν = μ ∩ C(
⋃

h∈H Sh).

Notice that: in case 1a, π ∩ Bh is in Dsub((R#(M),B(R#(M)))); in case 1b,
both π ∩ Bh ∩ (Rn1 × A × R

n2) and π ∩ Bh ∩ (Rn1 × C(A) × R
n2) are in

Dsub((R#(M),B(R#(M)))); and, finally, in case 1c the set {s1 × R × s2|s1 ×
c × s2 ∈ A ∧ s1 ∈ R

n1 ∧ s2 ∈ R
n2}) is Borel measurable and hence π′ ∈

Dsub((R#(M),B(R#(M)))). Summarising, we can conclude that ν +
∑

h∈H νh is
well-defined, which is formally stated by the following proposition.

Proposition 7. If (M,π)
τ̂−−→ ν +

∑
h∈H νh then ν +

∑
h∈H νh is a (sub)-

probability measure. Moreover, ν +
∑

h∈H νh is in normal form.

INDUCTIVE STEP μ =
∑

i∈I pi · μi. The λ̂-transitions by μ are inherited

from those by μi. Formally, we write μ
λ̂−−→ ν if there is a set of indexes J ⊆ I s.t.:

(i) μj
λ̂−−→ νj , for all j ∈ J , (ii) μi

λ̂−−→� , for all i ∈ I \J , and (iii) ν =
∑

j∈J pj ·νj .
Note that for λ �= τ it may happen that |ν|<|μ|. As regards the notation for the

lack of λ̂-action, we write μ
λ̂−−→� if μi

λ̂−−→� for all i ∈ I.
Proposition 8 below, relying on Propositions 5 and 7, ensures that all tran-

sitions S
λ̂==⇒ μ are well defined. In detail, Proposition 8 ensures that all our

weak transitions take normal forms to normal forms, thus implying that it was
not too restrictive to define weak transitions only for normal form. Moreover,

Proposition 8.3b ensures that it was not too restrictive to define
λ̂−−→ with λ �= τ

only for discrete distributions.

Proposition 8. Assume a (sub)-probability measure μ in normal form. Then:

1. Given a transition μ
̂tick−−−→ ν, if μ is discrete then ν is in normal form.

2. Given a transition μ
â−−→ ν with a ∈ A \ {τ, tick}, if μ is discrete then ν is a

discrete (sub)-probability measure in normal form.

3. Given a transition μ
τ̂−−→ ν or μ

τ̂==⇒ ν, then:
(a) ν is in normal form.
(b) if μ is discrete then also ν is a discrete (sub-)probability measure.

Example 2. Consider the systems in Example 1. We show how the transition
(P, 0)

tick−−−→ (P ′,U([−2,+2], 1)) can be combined with two consecutive weak τ̂ -
transitions originating from the probability measure (P ′,U([−2, 2], 1) to obtain
a t̂ick-transition from (P, 0). The first of such τ̂ -transitions is derived assuming

Weak Bisimulation Metrics and Continuous State Spaces 303

that all systems in meta system S1 = (P ′, [−2, 2]) perform the τ -transition
inherited by process P ′, which, in turn, is derived from rule (True) or (False). More
precisely, systems in (P ′, [−2, 2] ∩ [−∞,−1]) inherit the τ transition derived by
rule (True) and those in (P ′, (−2, 2] ∩ (−1,∞]) inherit the τ -transition derived

by rule (False). We get (P ′,U([−2,+2], 1))
τ̂−−→ ν + ν1, with ν1 = ν′ + ν′′,

where ν = 0 is the sub-distribution assigning 0 to all measurable sets, ν′ =
(a.nil1, U([−2,−1], 1/4)) and ν′′ = ([1 := 10] b.nil1, U((−1, 2], 3/4)). Notice that:

– the sub-probability measure ν represents the systems which do not evolve. It
derives from the fact that (P ′,U([−2,+2], 1) ∩ C(S1) = 0;

– the sub-probability measure ν′ reached by exploiting rule (True) derives from
the fact that U([−2,+2], 1) ∩ [−∞,−1] is equal to U ([−2,−1], 1/4);

– the sub-probability measure ν′′ reached by exploiting rule (False) derives from
the fact that U([−2,+2], 1) ∩ (−1,∞] is equal to U ((−1, 2], 3/4).

The second τ̂ -transition is from ν′′ and is derived assuming that all systems in
meta system S ′

1 = ([1 := 10] b.nil1, (−1, 0]∪[1, 2]) make the τ -transition inherited
by process [1 := 10] b.nil1 and derived by rule (Res), and those in U ((−1, 2], 3/4)∩
C(S ′

1) make no move, which is represented by the inactivity step. We get ν′′ τ̂−−→
([1 := 10] b.nil1, U((0, 1), 1/4)) + 1/2 · (b.nil1, 10), where:

– the sub-probability measure ([1 := 10] b.nil1, U ((0, 1), 1/4)) represents systems
not evolving. It derives from U ((−1, 2], 3/4) ∩ C(S ′

1) = U ((0, 1), 1/4);
– the sub-probability measure 1/2·(b.nil1, 10) is reached by systems inheriting the

τ -step inferred from (Res) and derives from U ((−1, 2], 3/4)∩((−1, 0]∪ [1, 2]) =
U ((−1, 0] ∪ [1, 2], 1/2) and U ((−1, 0] ∪ [1, 2], 1/2) (R) = 1/2.

It is immediate that we can derive also the transition ν′ τ̂−−→ ν′ and, then,
ν′+ν′′ τ̂−−→ ν′+([1 := 10] b.nil1, U((0, 1), 1/4))+ 1/2·(b.nil1, 10). By combining the

transition (P, 0)
tick−−−→ (P ′,U([−2,+2], 1)) derived in Example 1 and the two con-

secutive τ̂ transitions derived above we get (P, 0)
̂tick===⇒ (a.nil1,U([−2,−1], 1/4))+

([1 := 10] b.nil1,U((0, 1), 1/4))+1/2(b.nil1, 10). We notice that the probability mea-
sure reached is a normal form in D((S,FS)) and is composed of a dense part
and a discrete part.

We note that, as usual, weak transitions introduce nondeterminism. For
instance, in base case μ = S, if S

τ−−→ ν, then we have both S
τ̂==⇒ S and

S
τ̂==⇒ ν. In base case μ = (M,π), the choice of the sets Sh is nondeterministic:

The systems in Sh inherit the τ -transition from one of the processes running
in parallel that is chosen nondeterministically. Clearly, in the inductive case,∑

i∈I pi · μi inherit the nondeterminism from the μi. However, since we assume
that recursion is time-guarded, we can easily define a notion of weak transi-
tion that limits such a nondeterminism by forcing all processes able to make
a τ -transition to perform it. Simply, in base case μ = S, if S

τ−−→ ν then we
consider S

τ̂==⇒ ν and not S
τ̂==⇒ S. In base case μ = (M,π), given the transition

304 R. Lanotte and S. Tini

(M,π)
τ̂−−→ ν +

∑
h∈H νh, from ν +

∑
h∈H νh we can have another τ̂ -transition

where meta-systems in νh perform τ -transitions inherited by either some Pk,
with k �= h, or by the same Ph, if Ph had two consecutive non-observable steps
derived by rules (Com), (True), (False), (Res), and, moreover, also meta-systems
in ν may inherit transitions from the processes Ph that were nondeterministically
rejected to perform an inactivity step. In words, each τ̂ -step may leave pend-
ing some τ -transitions from processes Ph, which can always been performed in
subsequent τ̂ -steps.

Formally, we define μ
λ!=⇒ ν iff μ

λ̂==⇒ ν and ν
τ̂−−→ ν′ implies ν = ν′. Notice

that, since we assume only guarded recursion, these transitions ν
τ̂−−→ ν′ derive

from inactivity steps and cannot be derived from τ -transitions by processes.

Example 3. In Example 2 we cannot label with tick! the transition (P, 0)
̂tick===⇒

(a.nil1,U([−2,−1], 1/4))+([1 := 10] b.nil1, U((0, 1), 1/4))+1/2(b.nil1, 10) since from
the sub-probability measure ([1 := 10] b.nil1, U((0, 1), 1/4)) we have the transition
([1 := 10] b.nil1,U((0, 1), 1/4)) τ̂==⇒ 1/4(b.nil1, 10). By combining this transition

with that above we get (P, 0)
̂tick===⇒ (a.nil1,U([−2,−1], 1/4))+3/4(b.nil1, 10), which

gives (P, 0) tick!==⇒ (a.nil1,U([−2,−1], 1/4)) + 3/4(b.nil1, 10).

We can state that λ!=⇒ is finite branching.

Proposition 9. There are finitely many distributions μi with S
λ!=⇒ μi. More-

over, if λ = τ , then there is only one μi with S
λ!=⇒ μi.

5 Weak Bisimulation Metrics

In this section we introduce the weak bisimilarity metric over SHC. This will
be a function d : S × S → [0, 1] such that d(S, T) measures the behavioural
disparity between S and T . Actually, d(S, T) will be the probability that S and
T are unable to mimic each other’s behaviour step by step, in the weak semantics
approach. We will prove that: (i) as any reasonable notion of symmetric distance,
d is a pseudometric; (ii) d allows for compositional reasoning; (iii) systems at
distance zero are equated by a suitable notion of weak bisimulation equivalence.

To simplify our definitions, we enrich the syntax in Definition 1 by a special
system Dead. Since Table 1 has no rule for Dead, we are sure that Dead is a
deadlocked system unable to perform any transition.

We use D to denote the class of all functions [0, 1]S×S. The class D is equipped
with the ordering � defined by d1 � d2 iff d1(S, T) ≤ d2(S, T) for all S, T ∈ S.
The structure (D,�) is a lattice, where for all D ⊆ D and S, T ∈ S we have
(
⊔

D)(S, T) = supd∈D d(S, T) and (
�

D)(S, T) = infd∈D d(S, T). The constant
function zero, which is the infimum of the lattice, will be denoted by 0.

Definition 6 (Pseudometric). A function d ∈ D is a 1-bounded pseudomet-
ric over S if for all S, T, U ∈ S we have: (1) d(S, S) = 0, (2) d(S, T) = d(T, S)
(symmetry), and (3) d(S, T) ≤ d(S,U) + d(U, T) (triangle inequality).

Weak Bisimulation Metrics and Continuous State Spaces 305

As anticipated above, we are interested in pseudometrics that assign to
S, T ∈ S a numerical value in [0, 1] that corresponds to the difference in the
probabilities of similar transitions. As a quantitative analogous of the bisimula-
tion game, the intuition is that the distance between S and T is below a given

value ε ∈ [0, 1] if each transition S
λ̂==⇒ μ is mimicked by a transition T

λ̂==⇒ ν
such that the distance between μ and ν is, in turn, below ε (and conversely). This
notion of distance between μ and ν can be obtained by lifting the notion of pseu-
dometric from S to probability measures over S. To define this lifting, we rely on
1-Lipschitz functions and Kantorovich lifting.

We recall that a function between two pseudometric spaces is called
1-Lipschitz if the distance between any two elements in the domain is not below
the distance between their images. In the following definition we implicitly con-
sider the metric over reals assigning to each pair x, y ∈ R the distance | x − y |.

Definition 7 (1-Lipschitz function). Assume a function d : S × S → R and a
measurable function f : S → R over the measurable spaces (S,FS) and (R,B(R)).
The function f is 1-Lipschitz over d iff |f(S) − f(T)| ≤ d(S, T), for all S, T ∈ S.

We can define now the Kantorovich lifting. A really intuitive explanation of
this notion requires to refer to a dual formulation based on the optimal transport
problem. We refer the interested reader to [7,9,32].

Definition 8 (Kantorovich lifting). Let d ∈ D. The Kantorovich lifting of d
is the function K(d) : D(S,FS) × D(S,FS) → [0, 1] defined as:

K(d)(μ, ν)
def
= sup

{∣
∣
∫

f dμ −
∫

f dν
∣
∣ : f : S → Ris 1 − Lipschitzover d

}

Notice that the definition above is based on the property that all 1-Lipschitz
functions f are μ- and ν-integrable, and

∫
f dμ �= ∞ �=

∫
f dν.

If d is a 1-bounded pseudometric over S then K(d) is a 1-bounded pseu-
dometric over D(S,FS) (see, e.g., [32]). It is not hard to see that function K
is monotone, namely d1 � d2 implies K(d1) � K(d2), and continuous, namely
K(

⊔
D) =

⊔
{K(d) : d ∈ D} for all D ⊆ D.

Definition 9 (Weak bisimulation metric). We say that a pseudometric
d : S × S → [0, 1] is a weak bisimulation metric if for all systems S, T ∈ S,

with d(S, T) < ε, whenever S
λ̂==⇒ μ there is a transition T

λ̂==⇒ ν such that
K(d)(μ + (1− |μ|)Dead , ν + (1− |ν|)Dead) < ε.

As in [23,25] we use Dead to ensure that d(S, T) is at least the difference of the
probability mass of μ and ν. An alternative formulation can be found in [13].

We can prove the existence of the minimal weak bisimulation metric. It will
be the least fixed point of a functional B defined over the lattice (D,�) such
that B(d)(S, T) returns the minimum possible value for d(S, T) in order to ensure
that d is a weak bisimulation metric.

306 R. Lanotte and S. Tini

Definition 10 (Bisimulation metric functional). Let B : D → D be the
functional such that for any d ∈ D and S, T ∈ S, B(d)(S, T) < ε if:

– ∀S
λ!=⇒ μ∃T

λ!=⇒ ν s.t. K(d)(μ + (1− |μ|)Dead, ν + (1− |ν|)Dead) < ε.
– ∀T

λ!=⇒ ν∃S
λ!=⇒ μ s.t. K(d)(μ + (1− |μ|)Dead, ν + (1− |ν|)Dead) < ε.

Using λ!=⇒ instead of λ̂==⇒ in definition above may seem odd. We provide an

alternative, and more classical, definition using λ̂==⇒. We will prove that the two
definitions can be used indifferently.

Definition 11 (Bisimulation metric functional - II). Let B′ : D → D be
the functional such that for any d ∈ D and S, T ∈ S, B′(d)(S, T) < ε if:

– ∀S
λ̂==⇒ μ∃T

λ̂==⇒ ν s.t. K(d)(μ + (1− |μ|)Dead, ν + (1− |ν|)Dead) < ε.

– ∀T
λ̂==⇒ ν∃S

λ̂==⇒ μ s.t. K(d)(μ + (1− |μ|)Dead, ν + (1− |ν|)Dead) < ε.

Since K is monotone, it follows that B (resp. B′) is monotone on lattice
(D,�). Furthermore, by Knaster-Tarski theorem it follows that B (resp. B′) has
a least prefixed point, which is also the least fixed point, which will be denoted
by d (resp. d′). Function d will be called the weak bisimilarity metric. We will
prove that d and d′ coincide. Since by the definition of B′ it is clear that any
1-bounded pseudometric d ∈ D is a weak bisimulation metric if and only if d is
a prefixed point of B′, if we prove also that d is a 1-bounded pseudometric then
we can conclude that d is the least weak bisimulation metric.

To prove that d is a 1-bounded pseudometric we first prove that B is Scott
continuous. (We do not claim that also B′ is.) By Kleene fixed point theorem,
this allows us to infer that d is the limit of the ascending Kleene chain 0 �
B(0) � B2(0) � Then, by a simple inductive argument one can prove
that each element of this chain is a 1-bounded pseudometric. Finally, the 1-
bounded pseudometric property for d can be easily derived. Notice that function
Bn(0) is interesting in its own since, intuitively, quantifies the discrepancy in
the behaviour of systems that accumulates in n steps. It will be denoted with
dn and called the n-weak bisimilarity metric. Having that d = limn→∞ dn not
only allows us to relate the discrepancy between systems to the discrepancies
that accumulate in n steps for all n ∈ N, but, more in general, it allows one to
prove interesting properties for d by using a simple inductive argument. Scott
continuity of B derives from continuity of K and image finiteness (Proposition 9)

(λ̂==⇒ is not image finite, thus the following result does not apply to B′).

Proposition 10. The functional B is Scott continuous, i.e. for each non
decreasing chain d0 � . . . dn � . . . in D we have B(

⊔
n∈N

dn) =
⊔

n∈N
B(dn).

Proposition 11. 1. For all n ≥ 0, dn is a 1-bounded pseudometric.
2. d is a 1-bounded pseudometric.

Weak Bisimulation Metrics and Continuous State Spaces 307

A crucial property of our pseudometrics is the possibility to reason on parallel
systems in a compositional manner. Thus, for any notion of distance d between
systems, the distance d(S1 ‖A S2, T1 ‖A T2) should depend on distances d(S1, T1)
and d(S2, T2), the intuition being that if one fixes the maximal tolerable distance
ε between the composed systems (S1 ‖A S2) and (T1 ‖A T2), then there are
tolerances εi between the components Si and Ti, i ∈ {1, 2}, ensuring that the
tolerance ε is respected. Following this intuition, several compositional criteria
for bisimulation metrics can be found in the literature. Here, we show that our
distances matches one of the most restrictive among those studied in [15,16],
namely non-expansiveness [11,12], requiring that ε ≤ ε1 + ε2.

We start with a Lemma stating that Kantorovich pseudometric preserves
non-expansiveness. This result is interesting in its own since it does not depend
on the calculus we are using, but it is a general property of pLTSs. The same
result was proved in [15], in the discrete case.

Lemma 1. Given any function d ∈ D, if for all systems S1, S2, T1, T2 ∈ S we
have d(S1 ‖A S2, T1 ‖A T2) ≤ d(S1, T1) + d(S2, T2), then for all distributions
μ1, μ2, ν1, ν2 we have K(d)(μ1 ‖A μ2, ν1 ‖A ν2) ≤ K(d)(μ1, ν1) + K(d)(μ2, ν2).

Theorem 2. Assume arbitrary systems S1, S2, T1, T2 ∈ S and a set of actions
A ⊆ A \ {tick, τ}. We have:

d(S1 ‖A S2, T1 ‖A T2) ≤ d(S1, T1) + d(S2, T2)

Now, we prove that d and d′ coincide. This confirms that d is the least
bisimulation metric. The proof exploits the non expansiveness of d.

Theorem 3. d is the least prefixed point of B′, hence d = d′.

To conclude this section, we discuss the kernel of our bisimulation metrics:
We introduce the classical notion of weak-bisimulation equivalence for SHC and
we prove that two systems are weakly bisimilar if and only if they are at distance
zero according to d.

For an equivalence relation R ⊆ S × S, we say that a measurable set S ∈ FS

is R -closed if it is the union of equivalence classes of R . Then, we say that two
probability measures μ, ν ∈ D(S,FS) are R -equivalent if for all R -closed sets
S ∈ FS we have μ(S) = ν(S).

Definition 12. A symmetric relation R ⊆ S × S is a weak bisimulation if,

whenever S RT and S
λ̂==⇒ μ, there is a transition T

λ̂==⇒ ν such that μR ν.

Given any weak bisimulation metric d ∈ D, we can prove that the pairs of
systems at distance 0 give a weak bisimulation.

Proposition 12. Given any weak bisimulation metric d ∈ D, the relation R ⊆
S × S defined as R = {(S, T) : d(S, T) = 0} is a weak bisimulation.

This result combined with the properties expressed in the definition of weak
bisimulation metrics imply that weak bisimulations are equivalences relations.

308 R. Lanotte and S. Tini

Moreover, the fact that d is the minimal weak bisimulation metric implies the
existence of the greatest weak bisimulation. Following the tradition we call it
weak bisimilarity and we denote it with ∼. Notice that ∼= {(S, T) : d(S, T) = 0}.
From compositionality of our pseudometrics (Theorem 2), we immediately derive
the congruence property of weak bisimilarity.

Corollary 1. S1 ∼ T1 and S2 ∼ T2 imply S1 ‖A S2 ∼ T1 ‖A T2.

6 Case Study

In this section, we provide a case study to illustrate how SHC can be used to
specify and reason on cyber physical systems.

We model an engine whose temperature is maintained below a given threshold
by means of a cooling system. This study was conducted in a non probabilistic
setting in [21,22] and in the discrete probabilistic setting in [27]. The logic of the
engine consists of a single process Ctrl , which models the controller activity and
runs in a state s consisting in only one component, representing the temperature.
Henceforth, s ∈ R. Process Ctrl senses the temperature of the engine at each
time interval. If the sensed temperature is above the threshold 10, the controller
activates the coolant. The cooling activity is maintained for 5 time units. After
that time, if the temperature does not drop below 10 then the system shuts down,
which is represented by the action s down; otherwise, if the sensed temperature
is not above 10, the controller turns off the cooling and moves to the next
time interval. In case of shutdown, there is a reset [1 := 0] (we note that 1
refers to the first, and unique, component of the state). The evolution of the
temperature is governed by dense uniform distributions over suitable intervals.
When the cooling is off the temperature will increase probabilistically its value
by an amount in [0.6, 1.4], hence we consider the mapping δ+ : R → D((R,B(R)))
with δ+(s) = U([s + 0.6, s + 1.4], 1), for all s ∈ R. When the cooling is on, the
temperature will decrease probabilistically its value by an amount in [0.6, 1.4],
hence we consider the mapping δ− : R → D((R,B(R))) with δ−(s) = U([s −
1.4, s − 0.6], 1), for all s ∈ R. Formally:

Ctrl = recX. if (10,+∞) {Cooling} {tick(δ+).X}
Cooling = (tick(δ−))5. if (10,∞) {s down.[1 := 0]nil1} {tick(δ+).X}

We assume an initial temperature s = 0, hence the whole engine is defined as:
Eng = (Ctrl , 0). We consider also the process NIL = (nil1, 0), which simply ticks
at each time interval (see rule (TimeNil)).

We note that when the coolant is activated, the temperature cannot be above
10 + 1.4. Then, in the worst case the cooling decreases the temperature to value
11.4 − 0.6 · 5 = 8.4. Hence the system never emits action s down. This is for-
malised in the following proposition from which we infer that Eng never per-
forms action s down, which means that the cooling system works properly, since
it is able to lead the temperature below the threshold in at most 5 time instants.

Weak Bisimulation Metrics and Continuous State Spaces 309

Proposition 13. d(Eng ,NIL) = 0.

An interesting question is if it is possible to improve the performance of
the engine, for instance by reducing the power of the cooling system in order
to save refrigerant. Assume that with such a reduced cooling power, when the
coolant is on, the temperature decreases now probabilistically its value by an
amount in [0.26, 1.06]. Formally, we consider the system Ẽng = (C̃trl , 0), where
in process C̃trl we use the mapping δ̃− instead of δ−, with δ̃−(s) = U([s −
1.06, s−0.26, 1]). Since when the coolant is activated the temperature is at most
10 + 1.4, in the worst case the cooling decreases the temperature to the value
11.4 − 0.26 · 5 = 10.1. Hence we have a dense space (10, 10.1] in which the system
can emit the action s down. This is formalized in the following proposition from
which we infer that Ẽng may shutdown.

Proposition 14. For S = ((tick(id))15 .s down.nil1, 0), we have d(S, Ẽng) < 1.

Now it becomes crucial to have an estimation on the effective difference, in
terms of behaviour, between the ideal system Eng and the system Ẽng .

Proposition 15. For all n ∈ N, we have dn(Eng , Ẽng) ≤ 1 − (1 − (1/8)5)n.

Note that after 5 tick-steps, the temperature is in (10, 10.1] only if the coolant
was activate with the temperature in (11.3, 11.4] and after k ≤ 5 tick the
temperature is in (11.3 − k · 0.26, 11.4 − k · 0.26], for all k ≤ 5. The prob-
ability that the temperature drops from (11.3 − k · 0.26, 11.4 − k · 0.26] to
(11.3 − (k + 1) · 0.26, 11.4 − (k + 1) · 0.26] is bounded by 1/8, namely the ratio
between the lengths of the intervals (11.3 − (k + 1) · 0.26, 11.4 − (k + 1) · 0.26]
and [0.26, 1.06].

Thus, the probability that the two engines exhibit a different behaviour
within n = 1000 computation steps is at most 0.03; a distance which may be
considered still acceptable in specific contexts. Notice that in the (common) log-
ics of the two engines, it is easy to see that two tick-actions are separated by at
most 1 untimed actions. Thus, 1000 computation steps means around 500 time
slots, i.e., about three hours for time slots lasting 20 s each.

7 Conclusions and Related Work

We have studied weak bisimulation metrics for models with nondeterminism and
continuous probability, thus completing the theory of weak bisimulation metrics,
which, up to now, was defined only in the discrete case. We have introduced a
calculus for modelling stochastic hybrid systems for which we provide a suitable
notion of weak transition. This is mathematically hard since it requires to lift
transitions from states to transitions from continuous distributions over states.
We have proved that our weak bisimulation metrics allows for compositional
reasoning, we have proved that systems at distance zero are equated by a suitable
notion of weak bisimulation and we have applied our theory in a case study where
continuous distributions come from the evolution of physical environment.

310 R. Lanotte and S. Tini

We plan to adopt our weak bisimulation metric for estimating cyber-physical
attacks, by extending the work [22], which deals with discrete probabilities. We
intend to generalise n-weak bisimulation metrics to focus on timed actions only,
along the line of [26].

Related Work. Several approaches have been proposed for modelling probabilis-
tic behaviour of hybrid systems using formal methods (see, e.g., [1,4,14,17,20,
30,33]). Most of these papers introduce probability in transitions relation, or
operators of probabilistic choice, or stochastic differential equations. Our calcu-
lus has several similarities with that in [33], where probabilistic choice replaces
non-deterministic choice and stochastic differential equations replace differential
equations. None of the mentioned papers introduce any notion of weak transition
nor any notion to estimate the weak behavioural distance between systems.

A notion of weak behaviour for the continuous setting was introduced in [2,3].
The idea in [2] is that a weak transition is defined as a succession of non prob-
abilistic τ -transitions followed by a probabilistic transition. In [6] measurability
properties of stochastic transition systems with non-determinism and continu-
ous state spaces are studied. To have a definition of measure on sets of paths,
they identify the class of measurable schedulers. In this setting they define also a
concept of weak transition based on measurable scheduler, but no notion to esti-
mate the weak behavioural distance is given. In [5] the authors develop a notion
of stochastic bisimulation for a category of general models for stochastic hybrid
systems or, more generally, for the category of strong Markov processes defined
on Borel spaces. Hence they consider neither weak behaviour nor behavioural
distance.

Recent applications of weak bisimulation metrics in the discrete setting can
be found in [23,24,26].

References

1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724–2734 (2008). https://doi.org/10.1016/j.automatica.2008.03.027

2. Bravetti, M.: Specification and analysis of stochastic real-time systems. Ph.D. the-
sis, Università di Bologna (2002)

3. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov pro-
cesses. Theor. Comput. Sci. 282(1), 5–32 (2002). https://doi.org/10.1016/s0304-
3975(01)00043-3

4. Bujorianu, M.L.: Extended stochastic hybrid systems and their reachability prob-
lem. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 234–249.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 16

5. Bujorianu, M.L., Lygeros, J., Bujorianu, M.C.: Bisimulation for general stochastic
hybrid systems. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp.
198–214. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31954-
2 13

https://doi.org/10.1016/j.automatica.2008.03.027
https://doi.org/10.1016/s0304-3975(01)00043-3
https://doi.org/10.1016/s0304-3975(01)00043-3
https://doi.org/10.1007/978-3-540-24743-2_16
https://doi.org/10.1007/978-3-540-31954-2_13
https://doi.org/10.1007/978-3-540-31954-2_13

Weak Bisimulation Metrics and Continuous State Spaces 311

6. Cattani, S., Segala, R., Kwiatkowska, M., Norman, G.: Stochastic transition sys-
tems for continuous state spaces and non-determinism. In: Sassone, V. (ed.) FoS-
SaCS 2005. LNCS, vol. 3441, pp. 125–139. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-31982-5 8

7. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation
metrics. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
32–46. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6 4

8. Deng, Y., Chothia, T., Palamidessi, C., Pang, J.: Metrics for action-labelled quan-
titative transition systems. Electron. Notes Theor. Comput. Sci. 153(2), 79–96
(2006). https://doi.org/10.1016/j.entcs.2005.10.033

9. Deng, Y., Du, W.: The Kantorovich metric in computer science: a brief survey.
Electron. Notes Theor. Comput. Sci. 253(3), 73–82 (2009). https://doi.org/10.
1016/j.entcs.2009.10.006

10. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Characterising testing
preorders for finite probabilistic processes. Log. Methods Comput. Sci. 4(4), Article
no. 4 (2008). https://doi.org/10.2168/lmcs-4(4:4)2008

11. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled
Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004). https://doi.org/
10.1016/j.tcs.2003.09.013

12. Desharnais, J., Jagadeesan, R., Gupta, V., Panangaden, P.: The metric analogue
of weak bisimulation for probabilistic processes. In: Proceedings of 17th Annual
IEEE Symposium on Logic in Computer Science, LICS 2002, Copenhagen, July
2002, pp. 413–422. IEEE CS Press, Washington, DC (2002). https://doi.org/10.
1109/lics.2002.1029849

13. Du, W., Deng, Y., Gebler, D.: Behavioural pseudometrics for nondeterministic
probabilistic systems. In: Fränzle, M., Kapur, D., Zhan, N. (eds.) SETTA 2016.
LNCS, vol. 9984, pp. 67–84. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-47677-3 5

14. Fränzle, M., Hahn, E.M., Hermanns, H., Wolovick, N., Zhang, L.: Measurability
and safety verification for stochastic hybrid systems. In: Proceedings of 14th ACM
International Conference on Hybrid Systems: Computation and Control, HSCC
2011, Chicago, IL, April 2011, pp. 43–52. ACM Press, New York (2011). https://
doi.org/10.1145/1967701.1967710

15. Gebler, D., Larsen, K.G., Tini, S.: Compositional bisimulation metric reasoning
with probabilistic process calculi. Log. Methods Comput. Sci. 12(4), Article no.
12 (2016). https://doi.org/10.2168/lmcs-12(4:12)2016

16. Gebler, D., Tini, S.: SOS specifications for uniformly continuous operators. J. Com-
put. Syst. Sci. 92, 113–151 (2018). https://doi.org/10.1016/j.jcss.2017.09.011

17. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.-P.: A compositional mod-
elling and analysis framework for stochastic hybrid systems. Form. Methods Syst.
Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

18. Hennessy, M., Regan, T.: A process algebra for timed systems. Inf. Comput.
117(2), 221–23 (1995). https://doi.org/10.1006/inco.1995.1041

19. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall, Englewood
Cliffs (1985)

20. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In:
Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer,
Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1 16

21. Lanotte, R., Merro, M.: A calculus of cyber-physical systems. In: Drewes, F.,
Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017. LNCS, vol. 10168, pp. 115–127.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53733-7 8

https://doi.org/10.1007/978-3-540-31982-5_8
https://doi.org/10.1007/978-3-540-31982-5_8
https://doi.org/10.1007/978-3-662-44584-6_4
https://doi.org/10.1016/j.entcs.2005.10.033
https://doi.org/10.1016/j.entcs.2009.10.006
https://doi.org/10.1016/j.entcs.2009.10.006
https://doi.org/10.2168/lmcs-4(4:4)2008
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1109/lics.2002.1029849
https://doi.org/10.1109/lics.2002.1029849
https://doi.org/10.1007/978-3-319-47677-3_5
https://doi.org/10.1007/978-3-319-47677-3_5
https://doi.org/10.1145/1967701.1967710
https://doi.org/10.1145/1967701.1967710
https://doi.org/10.2168/lmcs-12(4:12)2016
https://doi.org/10.1016/j.jcss.2017.09.011
https://doi.org/10.1007/s10703-012-0167-z
https://doi.org/10.1006/inco.1995.1041
https://doi.org/10.1007/3-540-46430-1_16
https://doi.org/10.1007/978-3-319-53733-7_8

312 R. Lanotte and S. Tini

22. Lanotte, R., Merro, M., Muradore, R., Viganò, L.: A formal approach to cyber-
physical attacks. In: Proceedings of 30th IEEE Computer Security Foundations
Symposium, CSF 2017, Santa Barbara, CA, August 2017, pp. 436–450. IEEE CS
Press, Washington, DC (2017). https://doi.org/10.1109/csf.2017.12

23. Lanotte, R., Merro, M., Tini, S.: Compositional weak metrics for group key update.
In: Larsen, K.G., Bodlaender, H.L., Raskin, J.-F. (eds.) Proceedings of 42nd Inter-
national Symposium on Mathematical Foundations of Computer Science, MFCS
2017. Leibniz International Proceedings in Informatics, Aalborg, August 2017, vol.
42, Article no. 72. Dagstuhl Publishing, Saarbrücken/Wadern (2017). https://doi.
org/10.4230/lipics.mfcs.2017.72

24. Lanotte, R., Merro, M., Tini, S.: Equational reasonings in wireless network gossip
protocols. arXiv preprint 1707.03215 (2017). https://arxiv.org/abs/1707.03215

25. Lanotte, R., Merro, M., Tini, S.: Weak simulation quasimetric in a gossip scenario.
In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 139–155.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60225-7 10

26. Lanotte, R., Merro, M., Tini, S.: Towards a formal notion of impact metric for
cyber-physical attacks. In: Furia, C.A., Winter, K. (eds.) IFM 2018. LNCS, vol.
11023, pp. 296–315. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
98938-9 17

27. Lanotte, R., Merro, M., Tini, S.: A probabilistic calculus of cyber-physical systems.
Inf. Comput. (to appear)

28. Schiller, R.L.: Measures, Integrals and Martingales. Cambridge University Press,
Cambridge (2005). https://doi.org/10.1017/cbo9780511810886

29. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, MIT, Cambridge, MA (1995)

30. Sproston, J.: Decidable model checking of probabilistic hybrid automata. In:
Joseph, M. (ed.) FTRTFT 2000. LNCS, vol. 1926, pp. 31–45. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-45352-0 5

31. van Breugel, F., Worrell, J.: A behavioural pseudometric for probabilistic transition
systems. Theor. Comput. Sci. 331(1), 115–142 (2005). https://doi.org/10.1016/j.
tcs.2004.09.035

32. Villani, C.: Optimal Transport, Old and New. Grundlehren der mathematischen
Wissenschaften, vol. 338. Springer, Heidelberg (2008). https://doi.org/10.1007/
978-3-540-71050-9

33. Wang, S., Zhan, N., Zhang, L.: A compositional modelling and verification frame-
work for stochastic hybrid systems. Form. Aspects Comput. 29(4), 751–775 (2017).
https://doi.org/10.1007/s00165-017-0421-7

https://doi.org/10.1109/csf.2017.12
https://doi.org/10.4230/lipics.mfcs.2017.72
https://doi.org/10.4230/lipics.mfcs.2017.72
https://arxiv.org/abs/1707.03215
https://doi.org/10.1007/978-3-319-60225-7_10
https://doi.org/10.1007/978-3-319-98938-9_17
https://doi.org/10.1007/978-3-319-98938-9_17
https://doi.org/10.1017/cbo9780511810886
https://doi.org/10.1007/3-540-45352-0_5
https://doi.org/10.1016/j.tcs.2004.09.035
https://doi.org/10.1016/j.tcs.2004.09.035
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/978-3-540-71050-9
https://doi.org/10.1007/s00165-017-0421-7

Symbolic Computation via Program
Transformation

Henrich Lauko(B), Petr Ročkai, and Jǐŕı Barnat

Faculty of Informatics, Masaryk University,
Botanická 68a, 602 00 Brno, Czech Republic
{xlauko1,xrockai,barnat}@fi.muni.cz

Abstract. Symbolic computation is an important approach in auto-
mated program analysis. Most state-of-the-art tools perform symbolic
computation as interpreters and directly maintain symbolic data. In this
paper, we show that it is feasible, and in fact practical, to use a compiler-
based strategy instead. Using compiler tooling, we propose and imple-
ment a transformation which takes a standard program and outputs
a program that performs a semantically equivalent, but partially sym-
bolic, computation. The transformed program maintains symbolic values
internally and operates directly on them; therefore, the program can be
processed by a tool without support for symbolic manipulation.

The main motivation for the transformation is in symbolic verifica-
tion, but there are many other possible use-cases, including test genera-
tion and concolic testing. Moreover, using the transformation simplifies
tools, since the symbolic computation is handled by the program directly.
We have implemented the transformation at the level of LLVM bitcode.
The paper includes an experimental evaluation, based on an explicit-
state software model checker as a verification backend.

1 Introduction

It is common to use symbolic methods in program analysis and verification and
related disciplines. Symbolic execution has found numerous use cases in test
generation and concolic testing and is widely deployed in practice. Likewise,
many modern software verification tools are based on bounded model checking,
which combines symbolic execution with SMT solvers to successfully attack hard
problems in their problem domain.

On one hand, multiple production-quality SMT solvers are readily available
and even provide a common interface [3]. While a certain degree of integration is
required to achieve optimal performance, solvers have attained nearly commodity
status. This is in stark contrast to symbolic interpretation, which is usually
implemented ad-hoc and is not re-usable across tools at all. The only exception
may be KLEE [10], a symbolic interpreter for LLVM bitcode [20], which is used

This work has been partially supported by the Czech Science Foundation grant
18-02177S and by Red Hat, Inc.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 313–332, 2018.
https://doi.org/10.1007/978-3-030-02508-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_17&domain=pdf

314 H. Lauko et al.

as a backend by a few analysis tools. Undoubtedly, the fact that it is based on the
(ubiquitous) LLVM intermediate language has helped it foster wider adoption.

Arguably, interpreters (virtual machines) for controlled program execution,
as required by dynamical analysis tools, are already complex enough, without
involving symbolic computation. To faithfully interpret real-world programs,
many features are required, including an efficient memory representation, sup-
port for threads, exceptions and a mechanism to deal with system calls. Com-
plexity is, however, undesirable in any system and even more so in verification
tools.

For these reasons, we propose to lift symbolic computation into a sepa-
rate, self-contained module with minimal interfaces to the rest of the verifi-
cation or analysis system (see Fig. 1). The best way to achieve this is to make it
compilation-based, that is, provide a transformation that turns ordinary (explicit)
programs into symbolic programs automatically. The transformed program only
uses explicit operations, but it uses them to manipulate symbolic expressions
and as a result can be executed using off-the-shelf components.

Fig. 1. Comparison of interpretation-based and compilation-based symbolic methods
in the context of LLVM model checking. VM stands for ‘virtual machine’, while MC
stands for ‘model checker’. The hatched boxes represent components that work with
symbolic data. In the compilation-based method, symbolic operations are instrumented
into the bitcode, and their implementation is provided in the form of a library. The
virtual machine does not need to know about symbolic values at all. The model checker,
however, extracts symbolic data and a path condition from the executed program.

The expected result is that the proposed transformation can be combined
with an existing solver and a standard explicit interpreter of LLVM bitcode.
Depending on how one combines those ingredients, one will obtain different
analysis tools. As an example, in Sect. 5.3, we use the transformation, an existing
explicit-state model checker DIVINE and an SMT solver STP [15] to build a

Symbolic Computation via Program Transformation 315

simple control-explicit, data-symbolic (CEDS) [4] model checker. Building a tool
which implements symbolic execution would be even simpler.1

1.1 Goals

Our primary goal is to design a self-contained program transformation that can
be used in conjunction with other components to piece together symbolic analysis
and verification tools. We would like the transformation to exhibit the following
properties:

1. allow mixing of explicit and symbolic computation in a single program,
2. expose a small interface to the rest of the system, and finally
3. impose minimal run-time overhead.

The first property is important because it often does not make sense to
perform all computation within a program symbolically. For instance, a symbolic
execution engine may wish to natively perform library calls requested by the
program. Therefore, it ought to be possible to request, from the outset, that a
particular value in the program is symbolic or explicit.

It is unfortunately not possible to execute the symbolised program in a con-
text that is completely unaware of symbolic computation. However, the require-
ments imposed on the execution environment can be minimised and defined
clearly (see Sect. 5.4). Finally, exploring all possible executions given a single
input sequence is already expensive and when used in the context of model
checking, we would like to incur as small a penalty as possible.

1.2 Contribution

The idea that various tasks can be shifted between compile time and run time
is as old as higher-level programming languages. In the context of verification,
there is a large variety of approaches that put different tasks at different points
between these two extremes. Symbolic computation is traditionally found near
the interpretation end of the spectrum.

Our contribution is to challenge this conventional wisdom and show that this
technique can be shifted much farther towards the compilation end. Further, by
treating symbolic computation as an abstract domain, we pave the way for other
abstract domains to be approached in this manner. Finally, all relevant source
code and benchmark data is freely available online.2

2 Related Work

Program verification techniques based on symbolic execution [18], symbolic pro-
gram code analysis [24] and symbolic approach to model checking [21] have been
the subject of extensive research.
1 In fact, any control-explicit, data-symbolic model checker already contains a subrou-

tine (in our case about 200 lines) which effectively implements a symbolic executor.
2 https://divine.fi.muni.cz/2018/sym.

https://divine.fi.muni.cz/2018/sym

316 H. Lauko et al.

As for symbolic execution, the approach most closely related to ours is rep-
resented by the KLEE symbolic execution engine [10] that performs symbolic
execution on top of LLVM IR [20]. Besides standalone usage as a symbolic execu-
tor, KLEE has become also a back-end tool for other types of analyses and for
verification. For example, the tool Symbiotic [12] combines code instrumentation
and slicing with KLEE to detect errors in C programs.

Besides symbolic execution, other forms of abstract interpretation, like pred-
icate abstraction, is often used in code analysis. The most successful approaches
are based either on counterexample-guided abstraction refinement (CEGAR) [13]
or lazy abstraction with interpolants [2], which are implemented in tools such
as BLAST [8] and CPAchecker [6]. There are numerous research results in this
direction, summarised in e.g. [7,27,28].

A verification algorithm that goes beyond static program code analysis and
combines predicate abstraction with concrete execution and dynamic analysis
has been also introduced [14]. This approach can successfully verify programs
that feature unbounded loops and recursion, unlike standard symbolic execution.

Using instrumentation (as opposed to interpretation) for symbolic verifica-
tion was proposed a few times, but the only extant implementation that works
with realistic programs is derived from the CUTE [26] family of concolic test-
ing systems, i.e. the tools CREST [9] and jCUTE [25]. In particular, CREST
uses the CIL toolkit3 to insert additional calls into the program to perform the
symbolic part of concolic execution. The approach as described in [26] is limited
to symbolic computation, unlike the present paper, which works with arbitrary
abstract domains.

A related process was proposed by Khurshid et al. [17]: in this case, hand-
annotated code was processed by Java PathFinder [16], an explicit state model
checker. Our approach, in contrast, is fully automatic and more general.

Finally, besides symbolic code analysis and symbolic execution, there are
approaches that perform symbolic model checking as such. The key differen-
tiating aspect of symbolic model checking is the ability to decide equality of
symbolically represented states. This is important in particular for verification of
parallel and reactive programs where the state space contains diamonds or loops,
respectively. The tool SymDIVINE [22] is focused on bit-precise symbolic model
checking of parallel C and C++ programs. It extends standard explicit state
space exploration with SMT machinery to handle non-deterministic data values.
As such, SymDIVINE is halfway between a symbolic executor and an explicit-
state model checker. Unlike the solution presented in this paper, SymDIVINE
does not separate the symbolic interpreter from the core of the model checker.
In general, symbolic model checking is more often used with synchronous sys-
tems, for example [11].

3 CIL is short for C Intermediate Language [23], and is a simplified subset of the C
language. The toolkit can automatically translate standard C into the intermediate
(CIL) form. The CIL form can be optionally brought into the form of three-address
code and this feature is used in CREST.

Symbolic Computation via Program Transformation 317

3 Abstraction as a Transformation

While in the present work, our main goal is to transform a concrete program
into one that performs symbolic computation, it is expedient to formulate the
problem more generally. We will think in terms of an abstraction, in the sense of
abstract interpretation, which has two main components: it affects how program
states are represented and it affects the computation of transitions between those
states. There are two levels on which the abstraction operates:

1. static, concerning syntactic constructs and the type system
2. dynamic, or semantic, which concerns actual execution and values

In the rest of this section, we will define syntactic abstraction (which cov-
ers the static aspects) as means of encoding abstract semantics into a concrete
program. While it is convenient to think of the transformed program in terms
of abstract values and abstract operations, it is also important to keep in mind
that at a lower level, each abstract value is concretely represented (encoded).
Likewise, abstract operations (instructions) are realised as sequences of concrete
instructions which operate on the concrete representation of abstract values (see
Fig. 4, left). Those considerations are at the core of the second, dynamic, aspect
of abstraction. Reflecting this structure, the program transformation therefore
proceeds in two steps:

1. the input program is (syntactically) abstracted
– concrete values are replaced with abstract values
– concrete instructions are replaced with abstract instructions

2. abstract instructions are replaced by their concrete realisation

The remainder of this section is organised as follows: in Sect. 3.1, we describe
the expected concrete semantics of the input program. Section 3.2 then intro-
duces syntactic abstraction, Sect. 3.3 deals with representation and typing of
values in the abstracted program, Sect. 3.6 goes on to describe the treatment of
instructions. Section 3.7 briefly discusses interactions of multiple domains within
a program and finally Sect. 3.8 gives an overview of relational abstract domains
that we use to perform a symbolic computation.

3.1 States and Transitions

We are interested in general programs, e.g. those written in the C programming
language. Abstraction is often described in terms of states and transitions. In
case of C programs, a state is described by the content of memory (including
registers). Transitions describe how a state changes during computation per-
formed by a given program. In this paper, we will use small-step semantics,
partly because the prototype implementation is based on LLVM,4 and in part
because it is a natural choice for describing parallel programs.
4 Programs in LLVM are in a partial SSA form, a special case of three-address code [1].

Three-address code is essentially small-step semantics in an executable form.

318 H. Lauko et al.

In this description, the transitions between program states are given by the
effect of individual instructions on program state. Which instruction is executed
and which part of the program state it affects is governed by the source state. Our
discussion of abstract transitions will therefore focus on the effects of instruc-
tions: as an example, the add instruction obtains two values of a specified bit
width from some locations in the program state, computes their sum and stores
the result to a third location.

3.2 Syntactic Abstraction

The input program is given as a collection of functions, each consisting of a con-
trol flow graph where nodes are basic blocks – each a sequence of non-branching
instructions. Memory access is always explicit: there are instructions for reading
and writing memory, but memory is never directly copied, or directly used in
computation. While this further restricts the semantics of the input program,
it is not at the expense of generality: programs can be easily put in this form,
often using commodity tools.

With these considerations in mind, the goal of what we will call syntactic
abstraction is to replace some of the concrete instructions with their abstract
counterparts. The general idea is illustrated in Fig. 2.

Fig. 2. An example of syntactic abstraction. In this example, a int and a bool repre-
sent abstract types (see also Sect. 3.3). We create the abstract value x with a lift(*)

operation to represent an arbitrary value of type int (see Sect. 3.4). Also, notice that
the concrete computation of factorial(7) remains intact.

Apart from a few special cases, an abstract instruction takes abstract values
as its inputs and produces an abstract value as its result. The specific meaning
of those abstract instructions and abstract values then defines the semantic
abstraction. The result of syntactic abstraction being performed on the program
is, therefore, that the modified program now performs abstract computation.
In other words, the transformed program directly operates on abstract states
and the effect of the program on abstract states defines the abstract transition
system.

We posit that syntactic abstraction, as explained in following sections, will
automatically lead to a good semantic abstraction – i.e. one that fits the stan-
dard definition: a set of concrete states can be mapped to an abstract state, an
abstract state can be realised as a set of concrete states and those operations
are compatible in the usual sense.

Symbolic Computation via Program Transformation 319

3.3 Abstract Values and Static Types

A distinguishing feature of the syntactic approach to abstraction is that it admits
a static type system. In other words, the variables in the program can be assigned
consistent types which respect the boundary between abstract and concrete val-
ues. While a type system is a useful consistency check, its main importance lies
in facilitating a description of how syntactic abstraction operates.5

We start by assuming existence of a set of concrete scalar types, S, and of
concrete pointer types. We define a map Γ that builds up all relevant types from
the set of scalar types. The set of all types Γ(T) derived from a set of scalars T
is defined inductively as follows:

1. T ⊆ (T), that is, each scalar type is included in Γ(T)
2. if t1, ..., tn ∈ Γ(T) then also the product type (t1, ..., tn) ∈ Γ(T), n ∈ N

3. if t1, ..., tn ∈ Γ(T) then also the disjoint union t1|t2|...|tn ∈ Γ(T), n ∈ N

4. if t ∈ Γ(T) then t∗ ∈ Γ(T) (t∗ denotes a pointer type)

In other words, the set Γ(S) describes finite (non-recursive) algebraic types
over the set of concrete scalars and pointers.

A fundamental building block of the syntactic abstraction is a bijective map
αi, defined for each abstract domain separately,6 from the set of concrete scalar
types S to the set of abstract scalar types Ai = αi(S) (we let A be the union of
all the Ai: A = A1 ∪A2 ∪ ...). Each value which exists in the abstracted program
then belongs to a type in Γ(S ∪ A) – in other words, values are built up from
concrete and abstract scalars.

In particular, this means that the abstraction works with mixed types – prod-
ucts and unions with both concrete and abstract fields. Likewise, it is possible
to form pointers to both abstract values and to mixed aggregates.

3.4 Semantic Abstraction

The maps αi and α−1
i let us move from concrete to abstract scalar types (and

back) and are strictly a syntactic construct. The semantic (dynamic) counterpart
of αi are lift i and lower i: these are not maps, but rather abstract operations
(instructions). Just as αi and α−1

i translate between concrete and abstract types,
lift i goes from concrete to abstract values and lower i the other way around.
While both the αi and lift i and lower i are defined on scalar types S and scalar
values respectively, they can be all naturally extended to the set of all types
Γ(S) (and their corresponding values).

5 Additionally, since the SSA portion of the LLVM IR is already statically typed, we
can take advantage of this existing type system in the implementation. Nonetheless,
the treatment in this section does not depend on LLVM and would be applicable to
any dataflow-oriented program representation.

6 Since multiple abstract domains can co-exist in a single program, we use the lower
index i to distinguish them.

320 H. Lauko et al.

3.5 Representation

Besides αi, there is another type map, which we will call ρi, which maps each
abstract scalar type in Ai to a concrete type in Γ(S). This is the representation
map, and describes how abstract values are represented at runtime. This is to
emphasise that abstract values are, in the end, encoded using concrete values
that belong to particular concrete types. Moreover, in general for t ∈ Γ(S),
ρi(αi(t)) �= t: the representation is unrelated to the original concrete type. An
abstract floating point number may be, for instance, represented by a concrete
pointer to a concrete aggregate made of two 32-bit integers.

Fig. 3. Freezing and thawing of values transfers them between abstract representation
and their concrete realisation. In this case, ρ sends a int to term, which realises the
term domain described in section Sect. 4. The freeze and thaw operations allow term

to be bigger than the original 4-byte integer type.

While lift i and lower i are the value-level counterparts of the map αi, we need
another pair of operations to accompany the representation map ρi. We will call
them freezei and thaw i, and they map between t ∈ Ai and ρi(t) ∈ Γ(S). The
idea is that memory manipulation (and manipulation of any concrete aggregates)
is done entirely in terms of the representation types (using frozen values), but
abstraction operations on scalar values are defined in terms of the abstract type
(i.e. thawed values). The use of freezing and thawing is illustrated in Fig. 3.

One challenge in the implementation of freezei and thaw i is that the memory
layout of a program should not change7 as a side-effect of the transformation.
This means that for many abstract domains, the freeze operation must be able
to store additional data associated with a given address, and thaw must be
able to obtain this data efficiently. While this is an implementation issue, it is
an important part of the interface between the transformed program and the
underlying execution or verification platform. However, since the program is

7 The exact layout of data (structures, arrays, dynamic memory) is normally the
responsibility of the program itself, more so in the case of intermediate or low-level
languages. For this reason, it is often the case that the program will make various
assumptions about relationships among addresses within the same memory object.
It is impractical, if not impossible, to automatically adapt the program to a different
data layout, e.g. in case the size of a scalar value would change due to abstraction.

Symbolic Computation via Program Transformation 321

transformed as a whole, there is no need to explicitly track this additional data
at runtime.8

An additional role of the freeze/thaw pair is to maintain dynamic type infor-
mation at runtime. While it is easy to assign static types to instruction operands
and results, this is not true for memory locations: different parts of the program
can load values of different static types from the same memory address. For this
reason, the type system which governs memory use must be dynamic and allow
dispatch on the runtime type of the value stored at a given memory location.

3.6 Abstract Instructions

As indicated at the start of this section, it is advantageous to formulate the
transformation in two phases, using intermediate abstract instructions. Abstract
instructions take abstract values as operands and give back abstract values as
their results. It is, however, of crucial importance that each abstract instruc-
tion can be realised as a suitable sequence of concrete instructions. This is what
makes it possible to eventually obtain an abstract program that does not actu-
ally contain any abstract instructions and execute it using standard (concrete,
explicit) methods.

In the first (abstraction) phase, concrete instructions are replaced with their
abstract versions: instruction inst with a type (t1, ..., tn) → tr is replaced with
a inst of type (α(t1), ..., α(tn)) → (tr). Additionally, lift, lower, freeze and thaw
are inserted as required.9 The implementation is free to decide which instructions
to abstract and where to insert value lifting and lowering, as long as it obeys
typing constraints. The specific approach we have taken is discussed in Sect. 3.7
and the implementation aspects are described in Sect. 5.2.

After the first phase is finished, the program may be further manipulated
in its abstract form before continuing the second phase of the abstraction. This
gives a practical, implementation-driven reason for performing the abstraction
transformation in two steps, in addition to the conceptual clarity it provides.

In the second step, all abstract operations, including lift and lower, are
realised using concrete subroutines. The realisation (implementation) of a inst
is of the type (ρ(α(t1)), ..., ρ(α(tn))) → ρ(α(tr))), clearly obviating the need for
thawing and re-freezing the value.

3.7 Abstract Domains

Necessarily, in an abstracted program, the values it manipulates will come from
at least two different domains: the concrete domain and the chosen abstract

8 The only way a value can be copied from one memory address to another is via a
load instruction followed by a store, both of which are instrumented and as such
also transfer the supplementary data.

9 For instance, concrete operands to abstract operations are lifted, arguments to nec-
essarily concrete functions (e.g. real system calls) are lowered. Memory stores are
replaced with freeze and loads with thaw.

322 H. Lauko et al.

domain, in line with the first requirement laid out in Sect. 1.1. This is because it is
usually impractical to abstract all values that appear in the program. Additional
abstract domains, therefore, do not pose any new conceptual problems.

For the sake of simplicity, we only consider instructions where all operands
come from the same domain (this holds for both the concrete and for abstract
domains). Moreover, the only instructions where the domain of the result does
not agree with the domain of the operands are cross-domain conversion opera-
tions, which take care of transitioning values from one domain to another. The
two most important instances of those operations are lift and lower10 introduced
in Sect. 3.3.

Fig. 4. Left: Domain implementation can be provided in a high-level language
(e.g. C++) and needs to provide a representation of abstract scalar values and opera-
tions on them. An abstract value (of type parity) can be even, odd or in a superposition
of those (undef – unknown). The term domain described in Sect. 4 is constructed anal-
ogously. Right: A lifter ensures that both arguments to an operation are in the same
domain.

Even though cross-domain conversions are necessary in the program, it is a
major task of the proposed transformation to minimise their number. A natural
approach that would minimise unwanted domain transitions is to propagate
abstract domains along the data flow of the program. That is, if an abstract
instruction a inst is already in the program and its result a is also used as an
operand elsewhere, we prefer to lift all the users of a into the abstract domain of
a inst (cf. Fig. 4, right), instead of lowering a into a set of concrete values. This
simple technique, which we call value propagation, forms the core of our entire
approach (see also Fig. 2). It is worth noting that this is particularly simple to
do for programs in (partial) SSA form11, although the variables which are not
part of SSA are still somewhat challenging. Those are covered by the freeze and
thaw operations, which are discussed in more detail in Sect. 5.1.
10 The names lift and lower allude to the relationship of the abstract and the concrete

domain. In applications with multiple abstract domains, it may be expedient to
include additional instructions that convert directly from one abstract domain to
another, although in theory it is always possible to go through the concrete domain.

11 Again, this is true of LLVM bitcode – it is already in a partial SSA form. This
simplifies our prototype implementation somewhat.

Symbolic Computation via Program Transformation 323

Given the above, a logical starting point is to pick an initial set of instruc-
tions that we wish to lift into an abstract domain. Those could be explicit lift
instructions placed in the program by hand, they could be picked by static anal-
ysis, or could be the result of abstraction refinement. The abstract program can
then be obtained by applying value propagation to this initial set of abstract
instructions.

3.8 Constraints and Relational Domains

The last important aspect of abstraction is its effect on control flow of the pro-
gram. It is often the case that the control flow depends on specific values of
variables via conditional branching. The condition on the branch is typically a
predicate on some value, or a relationship among multiple values that appear
in the program. If the involved values are, in fact, abstract values, it is quite
possible that both results of the predicate or comparison are admissible and that
the conditional branch can therefore go both ways. The way we deal with this
in the transformation is that the program makes a nondeterministic choice on
the direction of the branch. How this nondeterministic choice is implemented is
again deferred to the execution environment. In any case, the choice of direction
provides additional information – constraints – on the possible values of variables
(cf. Fig. 6).

We encode those constraints into assume instructions: given an abstract
value and the constraint, assume computes the constrained value. Additionally,
depending on the abstract domain, it may be desirable to constrain values other
than those directly involved in the comparison. Alternatively, relational domains
may be able to encode constraint information themselves: this is in particular
the case in the term domain which realises symbolic computation. Therefore, for
the purposes of the present paper, simply inserting a single assume instruction
on each outgoing edge of the conditional is sufficient.

3.9 Summary

In the above, we have set up abstraction in such a way that it fits into a
transformation-based approach. In particular, we have separated syntactic and
semantic abstraction and shown how the former induces the latter. The pro-
posed syntactic abstraction captures how the program is changed, while semantic
abstraction captures the dynamic (execution) aspects of abstract interpretation.

4 Symbolic Computation

Now that we have described how to perform program abstraction as a transfor-
mation, the remaining task is to re-cast symbolic computation as an abstract
domain. Fortunately, this is not very hard: the abstract values in the domain
are terms, while the abstract instructions simply construct corresponding terms
from their operands. In other words, symbolic computation is realised by a free

324 H. Lauko et al.

algebra (that is, the term algebra). The input values of the program correspond
to nullary symbols – in practice, a unique nullary symbol is created each time
the program obtains a value from its input. All the remaining values are built
up as terms of bit-vector operations and constants. We will refer to the abstract
domain thus formed as the term domain.

It is not hard to see that a program transformed this way will simply perform
part of its computation symbolically in the usual sense. Additionally, as the
computation progresses, assume instructions impose a collection of constraints
on the nullary symbols of the abstract algebra (i.e. the input values). Each
constraint takes the form of a term with a relational symbol in the root position.
These constraints become part of the abstract state, effectively ensuring that
the term domain is fully relational.12

It is a requirement of abstract interpretation that it is possible to construct
an abstract state from a set of concrete states. In the term domain this can
be achieved by assigning, to each memory location that differs in some of the
concrete states13, a fresh nullary symbol. We then impose constraints that ensure
that exactly the input set of concrete states is represented by the resulting
abstract state. For instance, if the input set of concrete states differs by the
value of a single variable a, and this variable takes values 1, 2, 3 and 4 in the 4
input states, a suitable constraint would be a ≥ 1 ∧ a ≤ 4.

In some cases, it is impossible to construct the requisite constraints using only
conjunction and relational operators. To ensure that the term domain forms a
lattice (in particular that a least upper bound always exists), it is necessary to
allow the constraints to use logical disjunction.

While the above considerations regarding constraints are an important part
of the theoretical underpinnings of the approach, it is almost always entirely
impractical to shift back and forth between concrete and abstract states. In prac-
tice, therefore, the constraints described in this section simply arise through the
assume mechanism described in Sect. 3.8. As such, the constraints that appear in
a given state form a path condition. Finally, we note that the least upper bound
of abstract states defined above corresponds to path conditions which arise from
path merging in symbolic execution.

5 Implementation

We have implemented the proposed program transformation on top of LLVM,
using its C++ API. Both the transformation and all additional code (model
checker and solver integration) was done in C++. The transformation itself is
the largest component, totalling 3200 lines of code.

12 An abstract domain is called relational when it is capable of preserving information
about relationships among various abstract values that appear in the program.

13 In the present paper, we only deal with abstract (symbolic) values. The structure of
the program state, that is, the arrangement of the program memory, is taken to be
always represented explicitly, i.e., it belongs squarely to the concrete domain.

Symbolic Computation via Program Transformation 325

5.1 Freeze and Thaw

As mentioned in Sect. 3.7, our implementation is based on the simple idea of
maximum propagation of abstract values along the data flow of the program.
While the SSA part of the algorithm is essentially trivial, storing abstract values
in program memory is slightly more challenging. The purpose of freeze and thaw
is to overcome this issue.

While the dynamic type system that freeze and thaw provide to the trans-
formed program and the ability to store additional data associated with a given
memory address are largely orthogonal at the conceptual level, they are closely
related at the level of implementation. This is because in principle, a dynamic
type system only requires that additional information is attached to values
manipulated by the program, and that this information is correctly propagated.
Since apart from memory access, the program is statically typed, it is sufficient
to perform dynamic type checks (and dispatch) when a value is thawed, while
freeze simply stores the incoming static type.

Implementation-wise, our target platform is a virtual machine with provisions
for associating user-defined metadata to arbitrary memory addresses. This makes
the implementation of freeze and thaw simple and efficient. However, in case such
a mechanism is not available, it is sufficient to implement an associative map,
using addresses as keys, inside the program.

5.2 Domains

In real-world programs, there are often variables which do not benefit from
abstraction or from symbolic treatment, and are best represented explicitly.
For this reason, the toplevel abstract domain that we use is the disjoint union
(i.e. the type-level sum) of the concrete domain and the term domain. If we
denote the concrete domain with C and the symbolic (term) domain with S, the
type toplevel type is C � S.

Since the freeze and thaw operations maintain dynamic type information in
the executing program, it is possible to quickly compute operations for which
both operands are concrete (explicit). If both operands are symbolic, a symbolic
operation is directly invoked, while in the remaining case – one symbolic and
one concrete argument – the concrete argument is lifted into the symbolic (term)
domain. The procedure is called a lifter and is automatically synthesized for each
abstract operation that appears in the program. An example of a lifter is given
in Fig. 4 (right).

It is also possible to use the domain C � (C × S), which corresponds to con-
colic execution (i.e. it maintains both a concrete and a symbolic value at the same
time). This requires the additional provision that assume instructions obtain
concrete values that satisfy the symbolic constraints on their abstract counter-
parts (an SMT solver will typically provide a model in case the assumptions were
feasible, which can then be used to reconstruct the requisite concrete values).

326 H. Lauko et al.

Fig. 5. Example of a formula tree as generated by the term domain. The boxes corre-
spond to abstract variables, while the circles are the concrete representation of terms.
Question marks denote unconstrained nullary symbols.

Fig. 6. The program on the left arises from instrumentation of conditional branching,
in this case if x < 10. The formula tree on the right includes constraints arising from
the assume instructions. Note that on any given path through the program, only one
of the subtrees rooted in y1 or y2 can exist.

5.3 Execution and Model Checking

We represent the terms described in Sect. 4 by a simple tree data structure.
The abstract instructions that correspond to operations on values construct a
tree representation of the requisite term by joining their operands to a new root
node, where only the operation in the root node depends on the specific abstract
instruction. The approach is illustrated in Figs. 5, 6 and 7.

This arrangement makes it easy to extract the terms from program state
and convert them to a form appropriate for further processing by the analysis
tool. Recall that one of the motivating applications of the proposed approach
was symbolic model checking. In this case, the state space is explored by an
explicit-state model checker and the extracted terms are converted into SMT
queries. To this end, the model checker must be slightly extended and coupled
to an SMT solver, since:

1. transitions of the program must be checked for feasibility,
2. the state equality check must compare terms semantically, not syntactically.

Of course, the hitherto extracted terms must be left out of byte-wise compar-
ison that is performed on the remaining (concrete) parts of program states. In
our case, the required changes in the model checker were quite minor, amounting
to about 1200 lines of code.

Symbolic Computation via Program Transformation 327

Fig. 7. An example of a formula tree arising from a for loop. Versions of the variable
x which exist in different iterations of the loop are distinguished by an index in the
picture.

5.4 Interfaces

One of the goals of the proposed approach was to minimise interfaces between
the abstracted program and the verification or execution environment (recall
goal 2 set in Sect. 1.1). In total, there are four interactions at play:

1. non-deterministic choice: under abstraction, conditionals in the program may
be undetermined, and both branches may need to be explored; the abstraction
uses a non-deterministic choice operator to capture this effect and defers an
exploration strategy to the verifier

2. freeze and thaw must be provided as an interface for storing abstract values
in program memory

3. enumeration of enabled (feasible) transitions must take the abstract values
into account, if required by the domain(s) used in the program

4. state equality (if applicable in the verification approach) must be extended
to take the employed abstract domains into account

The latter two points depend on the chosen abstract domains. For the term
domains, both interfaces reduce to extracting abstract values (terms) from pro-
gram state and executing an SMT query.

6 Evaluation

First of all, we have checked the performance of the transformation itself. On C
programs from the SV-COMP suite, the transformation time was negligible. On
more complex C++ programs, it took at most a few seconds, which is still fast
compared to subsequent analysis.

As described in Sect. 5, we have built a simple tool which integrates the pro-
posed transformation with an explicit-state model checker and an SMT solver.
The experimental evaluation was done using this prototype integration (denoted
‘DIVINE*’ in summary tables).

6.1 Code Complexity

One of our criteria for the approach presented in this paper was reduced code
complexity. While counting lines of code is not a very sophisticated metric, it is

328 H. Lauko et al.

a reasonably good proxy for complexity and is easily obtained.14 The results are
summarised in Table 1.

Table 1. Summary of component sizes (thousands of lines of code) in a few symbolic
verification and symbolic execution tools. Numbers in parentheses represent shared
code (i.e. code not specific to the given approach to symbolic computation).

Component DIVINE* KLEE SymDIVINE CBMC

Transformation 3.2 0 0 (22)

Virtual machine (10) 15 6 7.5

Exploration (1.5) 1.2 1 2.3

Solver integration 1.2 8 0 14

SAT solver (45) (45) (23) (5.5)

SMT solver (80) (80) (400) 16

Runtime support 1 0 0 0

Total unique 5.4 24.2 7 39.8

Total shared 136.5 125 423 27.5

6.2 Benchmarks

For benchmarking, we have used a subset of the SV-COMP [5] test cases, namely
7 categories, summarised in Table 2, along with statistics from our prototype
tool. We have only taken examples with finite state spaces since the simple
approach outlined in Sect. 5.3 cannot handle infinite recursion or infinite accu-
mulation loops. In total, we have selected 1160 SV-COMP inputs. In many cases
(especially in the array category), the benchmarks are parametric: we have
included both the original SV-COMP instance and smaller instances to check
that the approach works correctly, even if it takes a long time or exceeds the
memory limit on the instances included in SV-COMP.

In all cases, the time limit, for each test case separately, was 10 minutes (wall
time) and the memory limit was 10 GiB. The test machines were equipped with
4 Intel Xeon 5130 cores clocked at 2 GHz and 16 GiB of RAM.

In addition to the present approach, we have measured two additional tools:
CBMC 5.8 and SymDIVINE, both of which are symbolic model checkers targeting
C code. The overall results of the comparison, in terms of the number of cases
solved, are presented in Table 3.

6.3 Comparison 1: CBMC

The results from CBMC 5.8 were obtained using the tool’s default configuration.
CBMC [19] is a mature bounded model checker for C programs with a good
14 We have used the utility sloccount to get estimates of module size in terms of lines

of code.

Symbolic Computation via Program Transformation 329

track record in SV-COMP and is built around a symbolic interpreter for ‘goto
programs’, its own intermediate form, not entirely dissimilar to CIL or LLVM
in its spirit. Besides KLEE, the CBMC toolkit is among the best established
members of the interpretation-based school of symbolic computation.

Table 2. Summary of test cases from SV-COMP. The time limit was 10min and
memory limit was 10 GiB. The ‘oot/oom’ column is the number of test cases that did
not finish within the limits, while ‘solved’ are those that gave the expected result;
‘states’ gives the number of states stored, ‘search’ gives the state space exploration
time and ‘ce’ gives the counterexample generation time.

tag solved oot/oom states search ce

array 96 94 170.3k 52:00 54:15

bitvector 17 15 3166 3:12 2:33

loops 72 106 14.0k 53:52 11:40

product-lines 336 239 20.2 M 4:36:44 43:11

pthread 9 36 609.4k 3:31 0:54

recursion 47 34 3955 16:16 7:41

systemc 14 45 25.0k 3:29 1:34

total 591 569

Table 3. The number of benchmarks correctly solved by each of the evaluated tools.
The best result in each category is rendered in boldface.

tag total DIVINE* SymDIVINE CBMC

array 190 96 68 93

bitvector 32 17 9 2

loops 178 72 67 9

product-lines 575 336 411 234

pthread 45 9 0 1

recursion 81 47 43 22

systemc 59 14 27 0

total 1160 591 625 361

Besides the total number of test cases solved (within the 10 min limit), we
were interested in comparing the time required to do so. Time requirements are
summarised in Table 4.

With regards to its state space exploration strategy, CBMC can be thought
of as the middle ground between the approach taken by KLEE and that of our
proposed tool. On one hand, KLEE, being a symbolic executor, does not attempt
to identify already-visited program states. CBMC is a bounded model checker,
which means it stores a single formula representing the entire set of reachable

330 H. Lauko et al.

states. Our present approach, being based on an explicit-state model checker,
stores sets of program states and compares them for equality using an SMT
solver.

Table 4. Speed comparison: the columns ‘models2’ and ‘models1’ show the number of
models which the respective pair of tools finished in common. In most cases, CBMC
is substantially faster than the proposed approach, while SymDIVINE is significantly
slower. The time shown is a sum across all the models in a given category.

tag models1 DIVINE* CBMC models2 DIVINE* SymDIVINE

array 73 34:16 13:58 58 3:18 42:54

bitvector 2 0:37 0:01 9 0:55 2:30

loops 4 0:03 0:02 62 22:25 19:04

product-lin. 182 4:08:24 7:25 183 0:30 28:33

pthread 0 0 0 0 0 0

recursion 22 0:01 0:13 43 4:02 13:58

systemc 0 0 0 14 3:29 6:43

6.4 Comparison 2: SymDIVINE

SymDIVINE [22] is a pre-existing, interpretation-based symbolic model checker
which also works with LLVM bitcode. Similar to our approach, SymDIVINE relies
on a state equality checker, in this case based on quantified bitvector formulae.
In theory, this yields coarser state equivalence and consequently smaller state
spaces, but we could not confirm this in our set of benchmarks: the total number
of states stored across the benchmarks that finished using both tools was 802
thousand for SymDIVINE and 93 thousand with the approach described in this
paper. Additionally, QBV satisfiability queries are typically much more expen-
sive than those used by our prototype tool, which can help explain the speed
difference between the tools.

7 Conclusion

We have presented an alternate approach to symbolic execution (and abstract
interpretation in general), based on compilation-based techniques, instead of
relying on the more traditional interpreter-based approach. We have shown that
the proposed approach has important advantages and no serious drawbacks.
Most importantly, our technique is modular to a degree not possible with sym-
bolic or abstract interpreters. This makes implementation of software analysis
and verification tools based on symbolic execution almost trivial. An impor-
tant side benefit is that the approach allows for abstract domains other than
the term domain, leading to a different class of verification algorithms with a
comparatively small investment.

Symbolic Computation via Program Transformation 331

References

1. Aho, A.V.: Compilers: Principles, Techniques, and Tools. Addison-Wesley Series
in Computer Science. Pearson/Addison Wesley, Boston (2007)

2. Albarghouthi, A., Gurfinkel, A., Chechik, M.: From under-approximations to over-
approximations and back. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS,
vol. 7214, pp. 157–172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-28756-5 12

3. Barrett, C., Fontaine, P., Tinelli, C.: SMT-LIB: the satisfiability modulo theories
library. http://www.smt-lib.org/

4. Bauch, P., Havel, V., Barnat, J.: Control explicit-data symbolic model checking.
ACM Trans. Softw. Eng. Methodol. 25(2) (2016). Article no. 15. https://doi.org/
10.1145/2888393

5. Beyer, D.: Reliable and reproducible competition results with BenchExec and wit-
nesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-662-49674-9 55

6. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verifi-
cation. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp.
184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-
1 16

7. Beyer, D., Löwe, S.: Interpolation for value analysis. In: Aßmann, U., Demuth, B.,
Spitta, T., Püschel, G., Kaiser, R. (eds.) Software Engineering and Management.
Lecture Notes in Informatics, vol. 239, pp. 73–74. Gesellschaft für Informatik, Bonn
(2015). https://dl.gi.de/handle/20.500.12116/2495

8. Beyer, B., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
Blast. Int. J. Softw. Tools Technol. Transfer 9(5), 505–525 (2007). https://doi.
org/10.1007/s10009-007-0044-z

9. Burnim, J., Sen, K.: Heuristics for scalable dynamic test generation. In: Proceed-
ings of 23rd IEEE/ACM International Conference on Automated Software Engi-
neering, ASE 2008, L’Aquila, September 2008, pp. 443–446. IEEE CS Press, Wash-
ington, DC (2008). https://doi.org/10.1109/ase.2008.69

10. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic gener-
ation of high-coverage tests for complex systems programs. In: Proceedings of
8th USENIX Symposium on Operating Systems Design and Implementation, San
Diego, CA, December 2008, pp. 209–224. USENIX Association (2008). http://
www.usenix.org/events/osdi08/tech/full papers/cadar/cadar.pdf

11. Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-08867-9 22

12. Chalupa, M., Vitovská, M., Jonáš, M., Slaby, J., Strejček, J.: Symbiotic 4: beyond
reachability. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
385–389. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-
5 28

13. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS,
vol. 1855, pp. 154–169. Springer, Heidelberg (2000). https://doi.org/10.1007/
10722167 15

14. Daniel, J., Paŕızek, P.: PANDA: simultaneous predicate abstraction and concrete
execution. In: Piterman, N. (ed.) HVC 2015. LNCS, vol. 9434, pp. 87–103. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-26287-1 6

https://doi.org/10.1007/978-3-642-28756-5_12
https://doi.org/10.1007/978-3-642-28756-5_12
http://www.smt-lib.org/
https://doi.org/10.1145/2888393
https://doi.org/10.1145/2888393
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-662-49674-9_55
https://doi.org/10.1007/978-3-642-22110-1_16
https://doi.org/10.1007/978-3-642-22110-1_16
https://dl.gi.de/handle/20.500.12116/2495
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1007/s10009-007-0044-z
https://doi.org/10.1109/ase.2008.69
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar.pdf
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/978-3-662-54580-5_28
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/978-3-319-26287-1_6

332 H. Lauko et al.

15. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer, Hei-
delberg (2007). https://doi.org/10.1007/978-3-540-73368-3 52

16. Havelund, K., Pressburger, T.: Model checking JAVA programs using JAVA
PathFinder. Int. J. Softw. Tools Technol. Transfer 2(4), 366–381 (2000). https://
doi.org/10.1007/s100090050043

17. Khurshid, S., Păsăreanu, C.S., Visser, W.: Generalized symbolic execution for
model checking and testing. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS,
vol. 2619, pp. 553–568. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-36577-X 40

18. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976). https://doi.org/10.1145/360248.360252

19. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8 26

20. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis and transformation. In: Proceedings of 2nd IEEE/ACM International Sym-
posium on Code Generation and Optimization, CGO 2004, Palo Alto, CA, March
2004, pp. 75–88. IEEE CS Press, Washington, DC (2004). https://doi.org/10.1109/
cgo.2004.1281665

21. McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Boston
(1993). https://doi.org/10.1007/978-1-4615-3190-6

22. Mrázek, J., Bauch, P., Lauko, H., Barnat, J.: SymDIVINE: tool for control-explicit
data-symbolic state space exploration. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016.
LNCS, vol. 9641, pp. 208–213. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32582-8 14

23. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: intermediate language
and tools for analysis and transformation of C programs. In: Horspool, R.N. (ed.)
CC 2002. LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002). https://doi.
org/10.1007/3-540-45937-5 16

24. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer,
Heidelberg (1999). https://doi.org/10.1007/978-3-662-03811-6

25. Sen, K., Agha, G.: CUTE and jCUTE: concolic unit testing and explicit path
model-checking tools. In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144,
pp. 419–423. Springer, Heidelberg (2006). https://doi.org/10.1007/11817963 38

26. Sen, K., Marinov, D., Agha, G.: CUTE: a concolic unit testing engine for C. In:
Proceedings of Joint 10th European Software Engineering Conference and 13th
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
ESEC/FSE 2005, Lisbon, September 2005, pp. 263–272. ACM Press, New York
(2005). https://doi.org/10.1145/1081706.1081750

27. Sousa, M., Rodŕıguez, C., D’Silva, V., Kroening, D.: Abstract interpretation with
unfoldings. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10427, pp.
197–216. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63390-9 11

28. Weißenbacher, G.: Program analysis with interpolants. Ph.D. thesis, University of
Oxford (2010)

https://doi.org/10.1007/978-3-540-73368-3_52
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/s100090050043
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1007/3-540-36577-X_40
https://doi.org/10.1145/360248.360252
https://doi.org/10.1007/978-3-642-54862-8_26
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1109/cgo.2004.1281665
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-3-319-32582-8_14
https://doi.org/10.1007/978-3-319-32582-8_14
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/3-540-45937-5_16
https://doi.org/10.1007/978-3-662-03811-6
https://doi.org/10.1007/11817963_38
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1007/978-3-319-63390-9_11

Double Applicative Functors

Härmel Nestra(B)

University of Tartu, Institute of Computer Science, J. Liivi 2, 50409 Tartu, Estonia
harmel.nestra@ut.ee

Abstract. Writing easily readable parser code is a classic application
of monads in functional programming. For simpler cases, the Applica-
tive and Alternative type classes in Haskell can be used for this purpose
instead of the more powerful Monad and MonadPlus classes. Counter-
parts of all parsing expression grammar constructs except lookaheads are
expressible via the Applicative and Alternative class methods. Yet their
error handling capabilities are unsatisfactory even for simple applica-
tions. This paper proposes double applicative functors for increasing the
flexibility of error handling without full monadic power, along with an
extended set of operations, and studies relationships between mathemat-
ical laws that these operations are assumed to fulfill. Many properties of
these operations are generalizations of semantic equivalences previously
known for parsing expression grammars.

Keywords: Applicative functors · Monads · Parsing · Error handling

1 Introduction

In top-down parsing with backtracking, locating errors in the input is somewhat
challenging. This is because ordinary parse errors work as indicators of being in a
wrong branch and primarily cause taking a new one. Numerous backtrackings can
have occurred at different locations before parsing ultimately fails and there are
no trustworthy methods for telling afterwards where the input needs correction.

Parsing expression grammars (PEG) [7] specify formal languages using so-
called parsing expressions which have the following syntax as minimum:

e ::= ε | a | X | ee | e/e | !e (1)

Here, ε means the empty string, a and X stand for terminal and non-terminal
symbols, respectively, and juxtaposition refers to concatenation. The construct
with slash (/) means left-biased choice between two expressions (if the first
alternative succeeds then the second one is skipped) and the unary operator !,
called negation or negative lookahead, inverts the success/failure status of its
operand after trying it. Constructs like e? (option), e∗ (repetition), e+ (non-zero
repetition) and &e (positive lookahead) are usually added as syntactic sugar.

Well-formed PEGs can be interpreted as top-down parsers for the languages
they define, whereas negations and choices enable backtracking (recovery from
c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 333–353, 2018.
https://doi.org/10.1007/978-3-030-02508-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_18&domain=pdf
http://orcid.org/0000-0001-7050-7171

334 H. Nestra

failure). For overcoming the weakness described in the beginning, Maidl et al. [16]
proposed a labelled choice construct of the form e1 /E e2 where e1, e2 are parsing
expressions and E is any finite set of errors. By the intended semantics, if e1
fails with some error e such that e ∈ E then e2 is tried, otherwise e2 is skipped.

The library module Control .Applicative [9] of the most popular implemen-
tation, GHC, of the functional programming language Haskell [8] provides an
interface very close to the parsing expression language (1). The first paper advo-
cating it as a distinct interface was by McBride and Paterson [17]. While there
exist many more powerful parsing libraries, this interface is often the most nat-
ural choice for writing experimental parsers for simple languages because of its
maximal simplicity. It defines two type classes, Applicative and Alternative:

class Functor f ⇒ Applicative f where
pure :: a → f a
(<∗>) :: f (a → b) → f a → f b

class Applicative f ⇒ Alternative f where
(<|>) :: f a → f a → f a

(The classes have more methods; only the most important ones are listed here.)
The operators <∗> and <|> correspond to concatenation and choice, respectively.
Types of the form f a embed computations that, if successful, produce a return
value of type a. Type constructors f to be included in the classes are assumed to
be functors, whence they are called applicative functors. The method pure, cor-
responding to ε in (1), takes an operand and creates an empty computation that
succeeds with returning the operand. Return values enable a PEG-like Haskell
code to also specify parse results which are gradually composed from pieces. For
instance, the type of <∗> requires that its first argument computation, if suc-
cessful, must return a function that can be applied to the potential result of the
second one. The combined computation performs the application and returns
the obtained result.

Similarly to PEGs, the Applicative-Alternative interface does not support
different reactions to different errors. To handle errors smartly, the programmer
must use operations outside this interface, like those of the exception monad
transformer. Moreover, the interface lacks capabilities of the negation operator.

This paper studies an approach of double applicative functors to obtain higher
expressivity for error handling within an applicative-style interface. Firstly, we
introduce binary lazy choice operations to capture the power of the ternary
labelled choice of [16]. We prefer binary infix operators to ternary functions
to keep usage as familiar as possible. Distinction between errors being or not
being handled at particular choice points is made by sum types (Either e e ′

in Haskell). Secondly, we introduce an operation that allows us to reinterpret
normal values (i.e., results of successful computations) as errors and vice versa.
A counterpart of negation is obtained as a special case. Thirdly, to increase
flexibility of manipulating the numerous error types involved, we handle errors
within an applicative-style interface similar to that used for normal values.
That means, we use bifunctors applicative in both arguments, where different

Double Applicative Functors 335

functor arguments stand for error and normal value types. Hence the term double
(the word biapplicative is already used for another generalization of applicative
functors [3,12]). A toy version of such interface is presented in Sect. 2.

Applicative functors are assumed to follow four laws [17]. In Sect. 3, we intro-
duce laws for double applicative functors. In addition to carrying the classic laws
over to both normal values and errors, we observe natural requirements that
arise from coexistence of two applicative layers. We investigate the relationships
between the laws imposed on different operators and select a small set of laws
that imply all others. In Sect. 4, we prove that the laws are fulfilled by a hierarchy
of bifunctors. Section 5 refers to related work and Sect. 6 concludes.

2 A Minimal Interface of Double Applicative Functors

We will use the Bifunctor type class provided by the GHC library along with its
methods first , second and bimap. The latter method is analogous to the usual
functor map function fmap but takes two functions as arguments, one for each
functor argument. The methods first and second are special cases of bimap that
take one argument function each (corresponding to the first resp. second functor
argument), the other one is fixed to identity.

We assume the second argument type of the bifunctor to contain normal
values and the first argument type to contain error values. This idea is designated
by the type classes Dipointed , Catenative and Triable:

class Bifunctor f ⇒ Dipointed f where
raise :: e → f e a
invoke :: a → f e a

class Dipointed f ⇒ Catenative f where
(∗∗∗) :: f e (a → a ′) → f e a → f e a ′

class Dipointed f ⇒ Triable f where
(///) :: f (e → e ′) a → f e a → f e ′ a

The intended semantics of the operators ∗∗∗ and /// in parsing correspond to
that of concatenation and choice in PEGs. The type of /// mimics that of ∗∗∗
with functor arguments interchanged. The method invoke of class Dipointed , by
intention, creates an empty successful computation returning a specified normal
value (we did not choose the name return as it is in use already). Similarly, raise
creates an empty failing computation raising a specified error. Both methods
of Dipointed play the role of the method pure of the classic Applicative interface;
so the left section functors are applicative w.r.t. ∗∗∗ and invoke, whereas the right
section functors are applicative w.r.t. /// and raise. Categorically, invoke and
raise are units of the corresponding section functor each. Functors with units
(in any category) are often called pointed—hence the name Dipointed.

One can implement the optional parse, the repetition and the non-zero rep-
etition combinators in terms of these class methods. Assuming auxiliary infix
operators ∗∗> and //> to be introduced as synonyms of the second and first

336 H. Nestra

methods of the Bifunctor type class, and ⊥ standing for the Haskell variable
undefined that is used to denote values with no influence, the code looks as
follows:

opt :: Triable f ⇒ f e a → f e ′ (Maybe a)
opt p = raise ⊥ /// Just ∗∗> p /// invoke Nothing
star :: (Catenative f ,Triable f) ⇒ f e a → f e [a]
star p = raise ⊥ /// plus p /// invoke []
plus :: (Catenative f ,Triable f) ⇒ f e a → f e [a]
plus p = invoke (:) ∗∗∗ p ∗∗∗ star p

(Assume that product-like operators (∗∗∗, ∗∗>, &&&) have higher priority than
sum-like operators (/// and similar). The applicative-style methods (∗∗∗, /// etc.)
associate left.) Unlike in usual definitions of these combinators, one must add
raise ⊥ for type correctness, as /// expects functional return values in the l.h.s.

To embed selective error handling suggested in Sect. 1, we introduce the fol-
lowing class LazyTriable with two methods:

class Triable f ⇒ LazyTriable f where
(�) :: f (Either (e → e ′) e ′′) a → f (Either e e ′′) a → f (Either e ′ e ′′) a
(¦ ¦ ¦) :: f (Either (e → e ′) e ′) a → f e a → f e ′ a

The operator � takes two computations, both of which can produce errors of
two types. If an error of the second type (e ′′ in the signature) is raised by either
argument computation then the whole computation fails and raises the same
error. If it happens during the first argument computation then the second one
is skipped. In the case of errors of the first type (e → e ′ and e in the signature),
the operator � behaves like ///. The operator ¦ ¦ ¦ takes two argument computations,
only the first of which can produce errors of two types. If an error of type e → e ′

is observed then ¦ ¦ ¦ proceeds like ///, but an error of type e ′ causes the second
computation to be skipped. The semantics of the operators ///, � and ¦ ¦ ¦ differ
only by the way they handle errors; if either argument computation being run
is successful then they all stop normally and pass the result value.

The positive lookahead operator & of PEGs that runs the computation in its
argument but consumes no input is usually desugared as double negation. Using
lazy error handling, it can be defined without negation:

ignore :: (Catenative f ,LazyTriable f) ⇒ f e a → f e ()
ignore p = invoke ⊥ ∗∗∗ (Right //> p) ∗∗∗ raise (Left ⊥) ¦ ¦ ¦ invoke ()

(A literal name was chosen to meet the naming rules of Haskell.) Let &&& be an
infix operator that tries the first computation and, if successful, ignores it and
runs the other one; if either computation fails then the whole computation fails:

(&&&) :: (Catenative f ,LazyTriable f) ⇒ f e a → f e ′ b → f (Either e e ′) b
p &&& q = invoke (flip const) ∗∗∗ (Left //> ignore p) ∗∗∗ (Right //> q)

Double Applicative Functors 337

The error type of the result remembers the origin of the error (either the left-
hand or the right-hand argument). One can elegantly use &&& together with �
to select a branch from among many, according to which parse test succeeds:

raise (Left ⊥) � test1 &&& branch1 � test2 &&& branch2 � . . .

One can also define a binary branching function branch that chooses between its
second and third argument computation according to the error raised by the first
argument (either id id removes Left or Right tags from around error values):

branch :: (Catenative f ,LazyTriable f) ⇒ f e a → (f e ′ b, f e ′ b) → f e ′ b
branch p (q , r) = either id id //> (raise (Left ⊥) � p &&& q � (Right //> r))

More precisely, branch p (q , r) parses p and, if successful, also q . If p fails then r
is tried as an alternative; if q fails then computation stops with raising the same
error. This behaviour is analogous to the A[B,C] construct of gTS/GTDPL [2,4]
(that can also be defined in PEG via negation [7]); the only essential difference
is that branch cancels any input consumption performed during the test parse.

The following are “conditional” versions of optional parse, repetition and
non-zero repetition operations, useful if one needs to distinguish syntax errors
from failures arising because of wrong attempts:

condOpt :: (Catenative f ,LazyTriable f) ⇒ f e a → f e ′ b → f e ′ (Maybe b)
condOpt p q = branch p (Just ∗∗> q , invoke Nothing)
condStar :: (Catenative f ,LazyTriable f) ⇒ f e a → f e ′ b → f e ′ [b]
condStar p q = branch p (condPlus p q , invoke [])
condPlus :: (Catenative f ,LazyTriable f) ⇒ f e a → f e ′ b → f e ′ [b]
condPlus p q = invoke (:) ∗∗∗ q ∗∗∗ condStar p q

They differ from their unconditional counterparts by terminating conditions. The
general idea is to deliver control over how many times the main computation
(the second argument) is repeated to another computation (the first argument).
An error raised by the first computation signals that the job of the whole com-
putation is done and it must stop normally, while errors raised by the second
argument computation mean unexpected events and have to be passed through.

For example, code like condOpt (consumeIf isWhere) parseLocalDecl (assum-
ing that consumeIf , isWhere and parseLocalDecl have meanings suggested by
the names) may parse a local declaration block of Haskell code after having
confirmed that the next token is a where keyword. If no where keyword is rec-
ognized then parsing succeeds and consumes no input (a local declaration block
is not expected) but if a where keyword exists and parseLocalDecl fails then
the error raised passes through (a local declaration is expected but incorrect).
Similarly, condStar (consumeIf (not ◦ isCloseParen)) parseUnit parses the list of
tokens between two matching parentheses (if parseUnit parses either one token
or a whole parenthesized block). Reaching a closing parenthesis causes parsing
to stop normally while an error raised by parseUnit passes through.

338 H. Nestra

The labelled choice operator of the extended PEG of Maidl et al. [16] can
also be defined via lazy error handling as

lchoice :: (LazyTriable f) ⇒ (e → Bool) → f e a → f e a → f e a
lchoice p x y = bimap (λe → if p e then Left id else Right e) id x ¦ ¦ ¦ y

The negation operator of PEG is expressible as follows:

negation :: (Catenative f ,LazyTriable f) ⇒ f e a → f () ()
negation p = branch p (raise (), invoke ())

It tries the argument computation and inverts the success/failure status but for-
gets about result values and consumed input. Yet the result of the negated com-
putation could be useful for producing informative error messages. The frame-
work introduced so far has no means of remembering results of successful parsing
within a failing one and vice versa. To fix this, define the following class Mixable:

class (Dipointed f) ⇒ Mixable f where
mixmap :: (Either e a → Either e ′ a ′) → f e a → f e ′ a ′

The expected semantics of the method mixmap is to apply a function (the first
argument) to the result of a computation (the second argument). Thereby, errors
and normal values are wrapped with the Left and Right tag, respectively. So a
successful computation can be reinterpreted as a failure and vice versa; still
whenever the final outcome is a failure, any consumption of input during the
computation is cancelled. Using mixmap, one can define a pithier negation by

negation :: (Mixable f) ⇒ f e a → f a e
negation = mixmap (either Right Left)

(The function either Right Left replaces Left tag with Right tag and vice versa.)
We will see in Subsect. 3.3 that each of the operations � and ¦ ¦ ¦ can be defined

in terms of the other. Moreover, /// is expressible in terms of either of these two
operations, and both these operations are expressible via /// and mixmap.

3 Laws

In the rest, we shall use the standard notation of category theory instead of
Haskell function names. So, an application of a bifunctor F to functions h and f
will be denoted by F (h, f) rather than bimap h f . Thereby + and × denote
the binary sum and product functors, respectively. Injections Left and Right are
denoted by inl and inr, respectively, and h�f for arbitrary functions h : E → X
and f : A → X means the same as either h f in Haskell, i.e., the unique strict
function of type E+A → X that satisfies both (h�f)◦inl = h and (h�f)◦inr = f .
The composition operator ◦ is assigned a higher priority than other operators.

The only aims of using the notation of category theory are making formulae
shorter and improving readability. Similarly, we denote the units of a pointed

Double Applicative Functors 339

functor by η and mixmap by φ, as well as use the shorter �, /, | and � for
the operations ∗∗∗, ///, � and ¦ ¦ ¦. As usual, we ignore partiality issues (a “moral”
justification for this is given by Danielsson et al. [6]). In brief, we are working in
the category SetSetSet in general, but will occasionally exclude the empty set.

3.1 Pointed Bifunctors

The library presented in Sect. 2 suggests that pointed bifunctors F have two
units, raise : E → F (E,A) and invoke : A → F (E,A). In mathematics, it is
often easier to work equivalently with a joint unit η : E + A → F (E,A); then
raise = η◦inl and invoke = η◦inr. The only law of pointed functors is naturality:

F (h, f) ◦ η = η ◦ (h + f) (Unit-Nat)

3.2 The Mixable Operations

We choose the letter φ to denote mixmap because of its functor-like nature. So
φ : (E + A → E′ + A′) → (F (E,A) → F (E′, A′)). Functoriality would mean
preservation of identities and composition. To make mixmap applications a gen-
eralization of functor applications, we also require preservation of functor:

φ(h + f) = F (h, f) (Mixmap-Fun)

This means that mixmap applications that keep errors as errors and normal
values as normal values are equivalent to usual functor applications.

Alas, mixmaps of parsers do not always preserve composition. Indeed, con-
sider g : E + A → E′ + A′ and g′ : E′ + A′ → E′′ + A′′ such that g(inr a) = inl e
and g′(inl e) = inr a′ for some a, a′ and e. If g and g′ are separately lifted to the
parser level then the input consumption during a computation that returns a
is forgotten by φ(g) since it creates an intermediate failing computation. If the
composition g′ ◦ g is lifted to the parser level as a whole then no failure occurs
in the same circumstances, whence the input consumption remains in force.

We can trace all scenarios that sequential applications of φ might cause on
the functor E ‡ A = (E + A) + A. Normal values whose history contains at least
one reinterpretation as failure should be kept separately in the extra A on the
left, while other normal values should stay on the right. The idea is realized by
defining sep : (E+A → E′+A′) → (E ‡A → E′ ‡A′) by sep g = inl◦g� (inl+id)◦
g ◦ inr. A desired law would now state that φ(gm) ◦ . . . ◦φ(g1) = φ(g′

n) ◦ . . . ◦φ(g′
1)

whenever sep gm ◦ . . . ◦ sep g1 = sep g′
n ◦ . . . ◦ sep g′

1.
To find an equivalent law in equational form, note that all compo-

sitions of the form sep gl ◦ . . . ◦ sep g1 can be equivalently rewritten as
sep g′

2 ◦ sep g′
1 where g′

1 = (inl � id) ◦ (gl ◦ . . . ◦ g1 ◦ inl + sepgl ◦ . . . ◦ sepg1 ◦ inr)
and g′

2 = id � inr. Thus sequential applications of φ should also be
reducible to two applications. Along with naturality of the unit w.r.t.
φ and preservation of the identity, we get the following axiom set (to

340 H. Nestra

obtain Mixmap-Comp from above, use Mixmap-Fun and the rewrite
sep g′

1 = sep(inl � id) ◦ sep(gl ◦ . . . ◦ g1 ◦ inl + sepgl ◦ . . . ◦ sepg1 ◦ inr)):

φ(g) ◦ η = η ◦ g (Mixmap-UnitNat)
φ(id) = id (Mixmap-Id)

φ(g′′) ◦ φ(g′) ◦ φ(g) = φ(id � inr) ◦ φ(inl � id) ◦ F (h, f)
where h = g′′ ◦ g′ ◦ g ◦ inl, f = sep g′′ ◦ sep g′ ◦ sep g ◦ inr

(Mixmap-Comp)

Indeed these axioms imply all laws desired. Taking g′′ = g′ = g = id in Mixmap-
Comp and applying Mixmap-Id gives φ(id � inr) ◦ φ(inl � id) ◦ F (inl, inr) = id.
Substituting g′′ = g′ = id and g = h + f to Mixmap-Comp now gives Mixmap
-Fun. Furthermore, Mixmap-Comp can be generalized from 3 to l operands
by induction. The initially desired implication of φ(gm) ◦ . . . ◦ φ(g1) = φ(g′

n)
◦ . . . ◦ φ(g′

1) by sep gm ◦ . . . ◦ sep g1 = sep g′
n ◦ . . . ◦ sep g′

1 then follows directly. In
addition, Unit-Nat is implied by Mixmap-Fun and Mixmap-UnitNat.

As a corollary of the axioms, it follows that φ(g′) ◦ φ(g) = φ(g′ ◦ g) whenever
either g = g′′ � inr ◦ f or g′ = inl ◦ h � g′′, and in particular if either g or g′ is of
the form h + f . In formulae,

φ(g′) ◦ φ(g � inr ◦ f) = φ(g′ ◦ (g � inr ◦ f)) (Mixmap-Comp-RPres)
φ(inl ◦ h � g′) ◦ φ(g) = φ((inl ◦ h � g′) ◦ g) (Mixmap-Comp-LPres)

Another corollary is that φ(g′) ◦ φ(g) is equivalent to φ(g′ ◦ g) if they are com-
posed with the negation φ(inr� inl) from either the right or the left. As negation
loses all information about input consumption, the other applications of φ can
cause no extra harm. In particular, triple negation is equivalent to single nega-
tion.

Denote negation like in PEGs by !; besides negation, four other cases of φ
turn out to be particularly useful. So we have the following definitions, where
swap = inr � inl, assocr = (id + inl) � inr ◦ inr and assocl = inl ◦ inl � (inr + id):

! = φ(swap) : F (E,A) → F (A,E) (Neg-Mixmap)
turnr = φ(assocr) : F (E + E′, A) → F (E,E′ + A) (TurnR-Mixmap)
turnl = φ(assocl) : F (E,E′ + A) → F (E + E′, A) (TurnL-Mixmap)
fuser = φ(id � inr) : F (E + A,A) → F (E,A) (FuseR-Mixmap)
fusel = φ(inl � id) : F (E,E + A) → F (E,A) (FuseL-Mixmap)

Conversely, φ can be defined via fuser and fusel (an analogous definition via
turnr and turnl is possible but not needed in this work):

φ(g) = fusel ◦ fuser ◦ F (inr ◦ g ◦ inl, g ◦ inr) (Mixmap-FuseLR)

Double Applicative Functors 341

Functions fuser and fusel defined via φ satisfy the following:

F (h, f) ◦ fuser = fuser ◦ F (h + f, f) (FuseR-Nat)
F (h, f) ◦ fusel = fusel ◦ F (h, h + f) (FuseL-Nat)
fusel ◦ fuser ◦ F (inr ◦ inl, inr) = id (FuseLR-Id)
fuser ◦ fuser = fuser ◦ F (id � inr, id) (FuseR-FuseR)
fusel ◦ fusel = fusel ◦ F (id, inl � id) (FuseL-FuseL)

One can show that these five laws imply fusel◦ fuser◦F (inr, inr) = fuser and
fusel◦ fuser◦F (inr◦ inl, id) = fusel. By substituting g = id� inr and g = inl� id
into Mixmap-FuseLR one thus regains the defining equations FuseR-Mixmap
and FuseL-Mixmap, respectively. This means that if φ is given by Mixmap-
FuseLR in terms of any operations fuser and fusel that meet the five laws then
the operations fuser and fusel must have been the “correct” ones. Moreover,
the equations FuseR-Mixmap, FuseL-Mixmap and Mixmap-FuseLR establish
a one-to-one correspondence between pairs (fuser, fusel) satisfying FuseR-Nat,
FuseL-Nat, FuseLR-Id, FuseR-FuseR, FuseL-FuseL and operations φ that
satisfy Mixmap-Fun, Mixmap-Comp-RPres, Mixmap-Comp-LPres.

3.3 The Catenative, Triable and LazyTriable Class Operations

When McBride and Paterson introduced four axioms of applicative functors in
their classical paper [17], the aim was to specify the necessary properties without
referring to the functor or relying on functor laws. The functor (as it works on
morphisms) was defined in terms of the applicative operation and unit. Instead,
we assume a pointed bifunctor F being given and rely on it.

We consider seven laws about � : F (E,A → A′) × F (E,A) → F (E,A′):

η(inr f) � u = F (id, f)u (Cat-LUnit)
t � η(inr a) = F (id,T a) t (Cat-RUnit)
t � (u � v) = F (id,B) t � u � v (Cat-Assoc)
η(inl e) � u = η(inl e) (Cat-LZero)
t � η(inl e) = F (id � K e, id) (φ(inl) t) (Cat-Raise)
F (h, id) (t � u) = F (h, id) t � F (h, id)u (Cat-FunHom)
! !(! t � u) = ! t � ! !u (Cat-DblNegHom)

Here and below, T, B and K are the postfix application, function composition and
constant function combinators, respectively, known from the lambda calculus,
i.e., T = �xf � f x, B = �gfx � g (f x) and K = �xy � x. Hence B and ◦ mean the
same but their usages differ (prefix vs infix).

Given the pointed functor F and its laws, Cat-LUnit, Cat-RUnit and Cat-
Assoc together are equivalent to the four classic axioms of [17] along with the
additional assumption that the functor defined in terms of � and the unit coin-
cides with F . The law Cat-LZero is analogous to the left zero law standardly

342 H. Nestra

assumed about monads with zero. The law Cat-Raise tells that t � η(inl e)
always raises an error after running t, whereby normal result values are replaced
by e. The homomorphism law Cat-FunHom states that mapping of an error
raised by t � u is equivalent to mapping the error at any stage it occurs. The
law Cat-DblNegHom generalizes a corresponding PEG semantic equivalence.

Using Cat-LUnit, Cat-RUnit and Cat-Assoc, expressions built up from
�, η and functor mappings of normal values can be equivalently rewritten in a
canonical form consisting of a sequence of operations � with parentheses from the
left and a single functor mapping around the leftmost operand. An analogous fact
is well known about classic applicative functors; Hinze [10] describes a linear time
algorithm for this. The rewrite sequence can be straightened using two auxiliary
laws F (id, f) (t�u) = F (id,B f) t�u and t�F (id, f)u = F (id,B (T f)B) t�u.
We will call these and similar facts straightening laws. They are easily derivable
from Cat-LUnit, Cat-RUnit and Cat-Assoc.

The left zero law can be extended to φ(inl) t � u = φ(inl) t. It can be proven
using Cat-LZero, Cat-Raise and Cat-Assoc under the assumption that types
are non-empty (both sides are equal to φ(inl) t � (η(inl e) � u)).

We consider also seven laws about / : F (E → E′, A)×F (E,A) → F (E′, A),
among which all but the seventh are obtained from the corresponding laws of �
by swapping the arguments of the bifunctor F :

η(inlh) / u = F (h, id)u (Tri-LUnit)
t / η(inl e) = F (T e, id) t (Tri-RUnit)
t / (u / v) = F (B, id) t / u / v (Tri-Assoc)
η(inr a) / u = η(inr a) (Tri-LZero)
t / η(inra) = F (id,K a � id) (φ(inr) t) (Tri-Invoke)
F (id, f) (t / u) = F (id, f) t / F (id, f)u (Tri-FunHom)
turnr(turnl(t / u)) = turnr(turnl t) / turnr(turnlu) (Tri-TurnRLHom)

The composition turnr ◦ turnl forgets consumed input if the computation suc-
ceeds with a result having tag inl but otherwise works as identity. Intuitively,
Tri-TurnRLHom holds since the partition of normal values into those causing
cancellation of input consumption and the others is not affected by execution
of the operation / (the same is not true for �). The situation is more general
than in the case of double negation that always forgets consumed input. Indeed,
! !(t / u) = ! ! t / ! !u can be deduced from Tri-FunHom and Tri-TurnRLHom
since ! ◦ ! = F (id, id � id) ◦ turnr ◦ turnl ◦ F (id, inl) by mixmap laws.

The axioms imply straightening laws F (h, id) (t / u) = F (Bh, id) t / u and
t / F (h, id)u = F (B (Th)B, id) t / u and, for non-empty types, the left zero
extension law φ(inr) t / u = φ(inr) t. The proofs are symmetric to the case of �.

The operations | : F ((E → E′)+E′′, A)×F (E+E′′, A) → F (E′+E′′, A) and
� : F ((E → E′) + E′, A) × F (E,A) → F (E′, A) are discussed next. In the law
names, we distinguish them by letters W and S (from weak and strong); this is
suggested by the stronger associativity property of the second operation.

Double Applicative Functors 343

The ten laws for | are presented in lines with those considered for � and /.
Recall from Sect. 2 that the operation | behaves with “errors of the second
kind”, i.e., those of type E′′, differently from “ordinary errors”, as errors of
type E′′ must remain uncaught by the operation |. The reader may notice that
the behaviour on errors of type E′′ mimics that on normal values:

η(inl(inlh)) | u = F (h + id, id)u (WTri-LUnit)
t | η(inl(inl e)) = F (T e + id, id) t (WTri-RUnit)
t | (u | v) = F (B + id, id) t | u | v (WTri-Assoc)
η(inr a) | u = η(inr a) (WTri-LZero-R)
η(inl(inr e)) | u = η(inl(inr e)) (WTri-LZero-L)
t | η(inr a) = φ((K (inr a) � B inl inr) � inr) t (WTri-Invoke)
t | η(inl(inr e)) = F (B inr (K e � id), id) t (WTri-Raise)
F (id, f) (t | u) = F (id, f) t | F (id, f)u (WTri-FunHom-R)
F (id + f, id) (t | u) = F (id + f, id) t | F (id + f, id)u (WTri-FunHom-L)
turnr(turnl(t | u)) = turnr(turnl t) | turnr(turnlu) (WTri-TurnRLHom)

The axioms imply straightening laws F (h+ id, id) (t | u) = F (Bh+ id, id) t | u
and t | F (h + id, id)u = F (B (Th)B + id, id) t | u, and also two extended left zero
laws, φ(inr) t | u = φ(inr) t and F (inr, id) t | u = F (inr, id) t, for non-empty types.

Finally, we consider the following eight laws about �:

η(inl(inlh)) � u = F (h, id)u (STri-LUnit)
t � η(inl e) = F (T e � id, id) t (STri-RUnit)
t � (u � v) = F ((�h � Bh + h) + inr, id) t � u � v (STri-Assoc)
η(inr a) � u = η(inr a) (STri-LZero-R)
η(inl(inr e)) � u = η(inl e) (STri-LZero-L)
t � η(inra) = φ((K (inr a) � inl) � inr) t (STri-Invoke)
F (id, f) (t � u) = F (id, f) t � F (id, f)u (STri-FunHom)
turnr(turnl(t � u)) = turnr(turnl t) � turnr(turnlu) (STri-TurnRLHom)

The associativity law looks complicated in comparison to the analogous laws
imposed on the previous operations. The sophistication arises from the number
of possible error types in the first operand being different from that in the second
operand and in the result of the operation, whence rearranging of parentheses
must conform to the changed number of error types.

Like for operations � and /, the laws STri-LUnit, STri-RUnit and STri-
Assoc enable transforming expressions built up from �, η and functor mappings
of errors to equivalent canonical forms with parentheses from the left and the only
functor mapping applying to the first operand. Two straightening laws deducible
are F (h, id) (t �u) = F (Bh+h, id) t �u and t �F (h, id)u = F (B (Th)B+id, id) t �u.
Two extended left zero laws for � are φ(inr) t � u = φ(inr) t and F (inr, id) t � u = t.

344 H. Nestra

Each of the operations /, | and � is able to express the others:

t / u = F (id � id, id) (F (inl, id) t | F (inl, id)u) (Tri-WTri)
t | u = turnl(turnr t / turnru) (WTri-Tri)
t | u = F ((�h � h + id) + inr, id) t � u (WTri-STri)
t � u = F (id � id, id) (t | F (inl, id)u) (STri-WTri)
t / u = F (inl, id) t � u (Tri-STri)
t � u = fusel (turnr t / F (id, inr)u) (STri-Tri)

Thereby, STri-Tri follows directly from STri-WTri and WTri-Tri, while
Tri-STri follows directly from Tri-WTri and STri-WTri. In addition,
assume � and / being related by two De Morgan laws:

!(t / u) = ! t � !u (Tri-Cat-DeM)
!(! t � u) = ! ! t / !u (Cat-Tri-DeM)

Note that the double negation law Cat-DblNegHom can be obtained as
an easy corollary of De Morgan laws. Two homomorphisms between structures
with operations / and | related by WTri-Tri follow from Tri-FunHom and
Tri-TurnRLHom, respectively:

F (inl, id) (t / u) = F (inl, id) t | F (inl, id)u (FunInL-Hom)
turnr(t | u) = turnr t / turnru (TurnR-Hom)

Furthermore, WTri-Tri together with FunInL-Hom implies Tri-WTri,
while WTri-STri together with the straightening laws of � implies STri-WTri.
Thus if | is given in terms of either / or � then the original operation must have
been the one that the obtained operation | determines. The converses (i.e., if one
starts from | and defines a new | via either / or � then the original operation is
obtained) must be postulated if necessary.

The seven laws of / guarantee that | defined via WTri-Tri meets its ten laws.
The proofs are mostly straightforward. For establishing WTri-TurnRLHom,
first prove turnr◦ turnl◦ turnl = turnl◦F (id, swap′)◦ turnr◦ turnl◦F (id, swap′)
and turnr◦turnr◦turnl = F (id, swap′)◦turnr◦turnl◦F (id, swap′)◦turnr where
swap′ = assocr ◦ (swap + id) ◦ assocl using mixmap laws. Similarly, the eight
laws of � guarantee that | defined by WTri-STri satisfies its ten laws.

Conversely, if / and � are defined by Tri-WTri and STri-WTri via | that
meets the ten laws then one can establish all laws of / and � except associativities.
However, the law Tri-Assoc can be proven if | is given by WTri-STri via � that
satisfies at least the straightenings. We have not found any criteria succinctly
expressible in terms of | for establishing STri-Assoc.

The following theorem establishes a subset (presumably minimal) of laws
considered in this subsection that imply all others. We included laws of the

Double Applicative Functors 345

operation / as far as they imply those of the other operations since they are
probably easier to prove in practice. Associativity must be assumed for the
operation �. The unit laws of � are necessary for having straightenings that are
liable for the correct correspondence between � and |.
Theorem 1. Let F be a pointed functor. Let φ satisfy Mixmap-UnitNat,
Mixmap-Id and M ixmap-Comp and let !, turnr, turnl and fusel be given by
Neg-Mixmap, TurnR-Mixmap, TurnL-Mixmap and FuseL-Mixmap. Let
the operations �, /, | and � satisfy Cat-LUnit, Cat-RUnit, Cat-Assoc,
Cat-LZero, Cat-Raise, Cat-FunHom, Tri-LZero, Tri-Invoke, Tri-
FunHom, Tri-TurnRLHom, Tri-Cat-DeM, Cat-Tri-DeM, STri-LUnit,
STri-RUnit, STri-Assoc, WTri-Tri and WTri-STri. Then �, /, | and �
satisfy all laws mentioned above in this subsection. 	

3.4 Double Applicative Functors vs Monads

The Applicative class methods can be expressed via those of Monad [17]. Similar
relationships between double applicative functors and bifunctors that are monads
in both arguments are useful as in the bifunctor hierarchy in Sect. 4, defining �
and proving its laws via the monad level is for some instances the easiest choice.

So let F be a pointed bifunctor along with bind and catch operations, denoted
by (·)� and (·)�, of types (·)� : (A → F (E,A′)) → (F (E,A) → F (E,A′)) and
(·)� : (E → F (E′, A)) → (F (E,A) → F (E′, A)) (characters � and � were chosen
because they resemble two opposite “half-stars”). Define � and � by

t � u = (�f � F (id, f)u)� t (Cat-Bnd)

t � u = ((�h � F (h, id)u) � η ◦ inl)� t (STri-Cch)

Defining operations / and | similarly via (·)� is straightforward. What should be
the laws of � and � that would imply all laws of �, /, | and � above? In the lines
of Subsect. 3.3, we could choose the seven axioms below for (·)�:

k� ◦ η ◦ inr = k (Bnd-LUnit)

(η ◦ inr ◦ f)� = F (id, f) (Bnd-RUnit)

l� ◦ k� = (l� ◦ k)� (Bnd-Assoc)

k� ◦ η ◦ inl = η ◦ inl (Bnd-LZero)

(η ◦ inl ◦ f)� = F (id � f, id) ◦ φ(inl) (Bnd-Raise)

F (h, id) ◦ k� = (F (h, id) ◦ k)� ◦ F (h, id) (Bnd-FunHom)

! ◦ ! ◦ k� ◦ ! = (! ◦ ! ◦ k)� ◦ ! (Bnd-DblNegHom)

346 H. Nestra

The first three of them state that (·)� and η ◦ inr together make functors of the
form F (E,) monads. Similarly for (·)� we would obtain:

h� ◦ η ◦ inl = h (Cch-LUnit)

(η ◦ inl ◦ h)� = F (h, id) (Cch-RUnit)

g� ◦ h� = (g� ◦ h)� (Cch-Assoc)

h� ◦ η ◦ inr = η ◦ inr (Cch-LZero)

(η ◦ inr ◦ h)� = F (id, h � id) ◦ φ(inr) (Cch-Invoke)

F (id, f) ◦ h� = (F (id, f) ◦ h)� ◦ F (id, f) (Cch-FunHom)

turnr ◦ turnl ◦ h� = (turnr◦turnl◦h)� ◦ turnr ◦ turnl(Cch-TurnRLHom)

The first three axioms establish the monad laws for functors of the form F (, A).
Similarly to the straightening laws of lower-level operations, one can deduce

for (·)� laws F (id, f) ◦ k� = (F (id, f) ◦ k)� and k� ◦ F (id, f) = (k ◦ f)� and for
(·)� laws F (f, id) ◦ h� = (F (f, id) ◦ h)� and h� ◦ F (f, id) = (h ◦ f)�. Extended
left zero laws k� ◦ φ(inl) = φ(inl) and h� ◦ φ(inr) = φ(inr) can also be deduced,
whereby no assumption about non-emptyness is needed.

While bind of unit equals identity in the case of ordinary monads, it is rea-
sonable to require the following for our bifunctor context:

fuser = η� (FuseR-Cch)

fusel = η� (FuseL-Bnd)

Then also φ is expressible in terms of (·)� and (·)�. One can take FuseR-Cch
and FuseL-Bnd as definitions of fuser and fusel; then the laws FuseR-Nat,
FuseL-Nat, FuseR-FuseR and FuseL-FuseL are implied by the axioms of
(·)� and (·)� but FuseLR-Id must be required explicitly if needed. Together with
the straightenings, FuseL-Bnd and FuseR-Cch imply (η◦g)� = fusel◦F (id, g)
and (η ◦ g)� = fuser ◦ F (g, id); the former axioms Bnd-Raise and Cch-Invoke
can be obtained as corollaries of these equations.

We finally introduce monad level De Morgan laws connecting (·)� and (·)�:

! ◦ h� = (! ◦ h)� ◦ ! (Cch-Bnd-DeM)

! ◦ k� ◦ ! = (! ◦ k)� ◦ ! ◦ ! (Bnd-Cch-DeM)

Together the De Morgan laws imply Bnd-DblNegHom.
Note that Bnd-FunHom and Cch-FunHom along with Unit-Nat, and

Cch-TurnRLHom and Cch-Bnd-DeM along with mixmap laws, establish
that F (h, id), F (id, f), turnr ◦ turnl and ! are monad morphisms, i.e., natural
transformations that preserve both monad unit and bind.

And indeed the laws of �, /, | and � are also implied by the obtained set of
monad-level axioms. Theorem 2 ties the pieces together:

Double Applicative Functors 347

Theorem 2. Let F be a bifunctor equipped with operations η, (·)� and (·)�
and let fuser, fusel, φ, !, turnr, turnl, �, �, | and / be defined by equa-
tions FuseR-Cch, FuseL-Bnd, Mixmap-FuseLR, Neg-Mixmap, TurnR-
Mixmap, TurnL-Mixmap, Cat-Bnd, STri-Cch, WTri-STri and Tri-
WTri. If Bnd-LUnit, Bnd-RUnit, Bnd-Assoc, Bnd-LZero, Bnd-
FunHom, Cch-LUnit, Cch-RUnit, Cch-Assoc, Cch-LZero, Cch-
FunHom, Cch-TurnRLHom, Cch-Bnd-DeM, Bnd-Cch-DeM, FuseLR-Id
and M ixmap-Comp are satisfied then all laws considered so far in the paper are
valid. 	

We have considered parsing as the primary supposed application but chose
the axioms rather conservatively in this context. We finish this section with
treating some extra laws usable for a typical but not every reasonable instance.

Firstly, running a failing computation once or twice under similar conditions
can often be treated as equivalent. This is useful, for instance, in the context
of transforming parsing expressions to more efficient ones with the same result.
Denoting by W the diagonal combinator �hx � h x x, the corresponding law is:

F (h, id) t / t = F (W h, id) t (Tri-Copy)

The standard applicative functor and monad axioms do not include equations
like Tri-Copy because, in the presence of side effects, repeated computations
always differ from singleton ones. Similarly, parsing can not have a law like Tri-
Copy for the operation � as a successful parsing may consume input whence it
can not be equivalently repeated. The copy law can be stated at the monad level
as (�e � F (h e, id) t)� t = F (W h, id) t. Monads satisfying a similar law are called
idempotent1 by King and Wadler [11] and copy monads by Cockett and Lack [5]
and Uustalu and Veltri [23,24] (but [5,23,24] in addition require commutativity
of the monad).

A distributivity law between � and / would generalize Tri-Copy and extend
the similar distributivity law holding for PEGs:

F (h, id) t � u / t � v = F (W h, id) t � (u / v) (Cat-Tri-Distr)

To infer Tri-Copy from Cat-Tri-Distr, take u = v = η(inr ı) where ı is the
member of a one-element set. It may be reasonable to require distributivity at
monad level between (·)� and /, which is stronger than Cat-Tri-Distr:

k� (F (h, id) t) / l� t = (�a � k a / l a)� (F (W h, id) t) (Bnd-Tri-Distr)

In order to provide ability to perform case study, one can use the law

h1
� ◦ f = g1

� ◦ f
& h2

� ◦ f = g2
� ◦ f

=⇒ cond(p, h1, h2)� ◦ f = cond(p, g1, g2)� ◦ f
(Cch-Cond)

1 Not to be confused with the standard notion of idempotent monads defined as those
whose multiplication is an isomorphism.

348 H. Nestra

Here cond(p, k1, k2) denotes the function that works as k1 on arguments satisfying
p and as k2 elsewhere. Intuitively, this law captures determinism: its counterpart
for unary functors is valid for most well-known monads that operate with one
value simultaneously (identity, error, reader, writer, state etc.) but not for lists.
Expecting a parser monad to satisfy Cch-Cond is therefore justified if single
error values rather than assortments are thrown in the case of failures.

The law Cch-Cond is enough to establish the following derivation schema
for the operation � with any number of operands:

F (h1, id) t � u1 � . . . � ul = F (g1, id) t � v1 � . . . � vm
& F (h2, id) t � u1 � . . . � ul = F (g2, id) t � v1 � . . . � vm
=⇒ F (cond(p, h1, h2), id) t � u1 � . . . � ul = F (cond(p, g1, g2), id) t � v1 � . . . � vm

(STri-Cond)

For a concrete application, consider the labelled choice operation of Maidl
et al. [16] that can be defined in our interface as shown in Sect. 2. The authors
use finite sets of errors as labels and claim that this can be seen as syntactic
sugar; t /{e1,e2,...,el} u could be equivalently rewritten as t /e1 u /e2 . . . /en u. A
direct translation of this equivalence into our framework can be proven using
our laws if both Tri-Copy and STri-Cond are included.

The applicative functor language is known for its inability to express dynamic
control flow, meaning that control flow cannot branch on a value obtained from
a preceding computation [14,15]. Lazy error handling operations like � enable
binary (hence arbitrary finite) branching on earlier computation results. It is
even possible to define an operation that mimics monadic bind: Suppose that
B = 1 + 1 where 1 = {ı} and let bcatch : (B → F (E,A)) → (F (B, A) → F (E,A))
be given by bcatchh t = F (K inr + K (inl id), id) t � h(inl ı) � h(inr ı). The laws
considered above (inclusive of the extended left zero laws) imply monad laws for
bcatch (use STri-Cond for proving associativity). Moreover, if the operation �
is defined by STri-Cch in terms of (·)� that satisfies the monad-level laws then
bcatch works identically to (·)�. Because of its restricted type, bcatch does not
make functors of the form F (, A) monads.

4 A Hierarchy of Instances

We build a hierarchy of bifunctors F with accompanying operations that satisfy
the assumptions of Theorem 2, as well as Bnd-Tri-Distr and Cch-Cond. Thus
all laws studied in this paper hold for all top-down parsers with error handling
that are expressible in terms of these bifunctors. The hierarchy subsumes all
monads that can be constructed by applying the classic reader, writer and state
monad transformers [13,19,25] to an error monad. Here they are considered as
bifunctors with the underlying error type as the supplementary (first) parameter.

We include also construction steps that by analogy with the classic monad
transformers can be characterized as update transformations after update monads
introduced by Ahman and Uustalu [1]. The update transformation coincides
with the composition of the reader and writer transformations in the case of all

Double Applicative Functors 349

operations except � and (·)�. The state transformation is a homomorphic image
of the update transformation. These observations enable one to simplify proofs
for the state transformation considerably.

The definitions of the functors and the operations are given in Fig. 1. The
hierarchy starts from the sum functor. Let R, W, U and S denote the reader,
writer, update and state transformers, respectively; note that here they apply to
bifunctors. The definitions refer to arbitrary fixed sets R, S and monoid (W, ·, 1).
In the case of U , we assume a right action • : S×W → S of (W, ·, 1) on S, i.e., an
operation satisfying s•1 = s and s• (w ·w′) = (s•w)•w′. For brevity, we use the
section syntax of Haskell in formulas: if ⊕ is a binary operator then (a⊕) and (⊕b)
denote �b � a ⊕ b and �a � a ⊕ b, respectively. This holds for pair-forming comma
as well; so (, 1) means �a � (a, 1) etc. Also references to functors are omitted from
the formulae of η, (·)� and (·)� for brevity. Just remember that operations on the
left-hand sides belong to the new functor (i.e., RF , W F etc.) while operations
on the right-hand sides are those of the underlying functor (i.e., F).

Let the operations not defined in Fig. 1 be given by FuseR-Cch, FuseL-
Bnd, Mixmap-FuseLR, Neg-Mixmap, TurnR-Mixmap, TurnL-Mixmap,
Cat-Bnd, STri-Cch, WTri-STri and Tri-WTri uniformly for all functors.
Note that the functor U equals the composition R◦W if R = S, but the operation
(·)� of U differs from that of R◦W as in the case of U the second computation is
performed in a new state determined by the previous computation rather than
in the original state. This difference is also inherited by � via Cat-Bnd. If the
operand of (·)� is negated, the difference disappears.

Fig. 1. Hierarchy of parser bifunctors along with monad-level operations

350 H. Nestra

Theorem 3. Let “the laws” refer to all axioms required by Theorem2
along with Bnd-Tri-Distr and Cch-Cond. Then the sum functor
F = + : SetSetSet × SetSetSet → SetSetSet fulfills the laws and, whenever a bifunctor F = M :
SetSetSet × SetSetSet → SetSetSet fulfills the laws, functors F = RM , F = W M , F = U M and
F = S M fulfill the laws. 	

The proof of Theorem3 is straightforward. To obtain the laws for S as easy
corollaries from those of U , use the following correspondence between U and S:
Define monoid (W, ·, 1) by W = 1 + S where 1 = {ı}, w · inr s = inr s, w · inl ı = w
and 1 = inl ı (so-called overwrite monoid). Let retr : U M (E,A) → S M (E,A)
and sec : S M (E,A) → U M (E,A) be given by retr t = �s �M (id, id× (s•)) (t s)
and sec t = �s � M (id, id × inr) (t s). Then retr(U M (h, f) t) = S M (h, f) (retr t),
retr(η(x)) = η(x), retr(k� t) = (retr ◦ k)� (retr t) and retr(h� t) = (retr ◦ h)� (retr t),
whence retr is homomorphic w.r.t. all operations under consideration. Further-
more, we have sec(S M (h, f) t) = U M (h, f) (sec t), sec(k� t) = (sec ◦ k)� (sec t)
and sec(h� t) = (sec ◦ h)� (sec t). Moreover, retr ◦ sec = id. These equations are
enough for reducing all necessary laws of S to those of U .

Our transformations retr and sec are analogous to retr and sec between the
update and state monad used by Ahman and Uustalu [1]. The homomorphism
equations of retr for � and η imply that retr is a monad morphism in the second
parameter of the functor; similarly, retr is a monad morphism in the first functor
parameter due to the homomorphism equations for � and η. Note however that
sec(η(inr a)) �= η(inr a) because the pair component added by η obtains the form
inr s in the l.h.s. while it equals inl ı in the r.h.s. Hence sec is not a monad
morphism in the second functor parameter.2 In general also sec(φ(g)) �= φ(sec g).

5 Related Work

Applicative functors (also known as idioms) were recognized by McBride and
Paterson [17] as a useful generalization of monads with a number of applica-
tion areas, but several authors had used such interfaces for writing parsers long
before. For instance, parsing in the nhc compiler [20] was implemented in the
Applicative-Alternative programming style, and a similar interface was proposed
by Swierstra and Duponcheel [22] for creating error correcting parsers for LL(1)
grammars. Error reporting in combinator parsing is discussed in a later paper
by Swierstra [21] but only in the context of the longest valid prefix approach.

Kmett has created a Haskell library containing an implementation of biap-
plicative bifunctors [12] which differs from our double applicative functors (for
instance, Kmett’s bifunctor unit works on product type rather than sum type).

Ford [7] introduced PEGs and made intensive use of semantic equivalences
of parsing expressions. Maidl et al. [16] discussed the incapacity of PEGs to
distinguish severe errors from local failures and introduced the labelled choice
operator as a remedy for the shortcoming. With a similar aim, Mizushima

2 For similar reasons, sec of [1] is not a monad morphism though retr is (the paper
incorrectly claims both to be monad morphisms).

Double Applicative Functors 351

et al. [18] used cut operators in parsing expressions to signal that backtrack-
ing is undesired.

Update monads were introduced and recognized as a useful link between
reader, writer and state monads by Ahman and Uustalu [1]. The generalization to
transformers in our paper is straightforward and follows the classic pattern [13,
19,25]. To our knowledge, update monad transformers have not been used in
research before, but implementations in Haskell exist on the web.

6 Conclusions

We introduced a new approach to error handling in applicative style parsers and
studied the relationship between laws imposed on the parsing combinators.

Lindley et al. [15] showed that results of intermediate computations in the
case of applicative functors can influence neither the choice of the next computa-
tions nor the parameter values passed to them; in other words, both control and
data flow are static. Our approach involves operations that may skip lexically fol-
lowing computations depending on the error being raised; so it enables dynamic
control flow while keeping data flow static. In Lindley’s classification [14], this
combination is called strange because of not having occurred in the literature;
our work shows the strange combination also being reasonable.

In the case of parsing simple context-free languages, the need for dynamic
control flow appears primarily in the context of error handling, whence we did
not involve analogous operators for branching on normal values. Such operators
would be reasonable to have; although one can reflect the branching operations
defined for errors in the world of normal values via mixmap, the obtained oper-
ations would not enable accumulative input consumption.

We considered deterministic top-down parsing as the canonical application of
double applicative functors. Other applications, which we are currently not aware
of, might exist that would potentially break some of our laws. The latter seems
likely in particular because of the pervasive asymmetry between the bifunctor
arguments suggested by parsing needs but possibly undesired elsewhere.

Acknowledgement. The work was partially supported by the Estonian Research
Council under R&D project No. IUT2-1.

The author thanks Tarmo Uustalu for fruitful discussions and also the anonymous
reviewers for valuable feedback.

References

1. Ahman, D., Uustalu, T.: Update monads: cointerpreting directed containers. In:
Matthes, R., Schubert, A. (eds.) 19th International Conference on Types for Proofs
and Programs, TYPES 2013. Leibniz International Proceedings in Informatics,
Toulouse, April 2013, vol. 26, pp. 1–23. Dagstuhl Publishing, Saarbrücken/Wadern
(2014). https://doi.org/10.4230/lipics.types.2013.1

2. Aho, A.V., Ullman, J.D.: The Theory of Parsing, Translation, and Compiling. 1:
Parsing. Prentice-Hall, Englewood Cliffs (1972)

https://doi.org/10.4230/lipics.types.2013.1

352 H. Nestra

3. Bifunctors and biapplicatives. https://github.com/purescript/purescript-bifunc
tors

4. Birman, A., Ullman, J.D.: Parsing algorithms with backtrack. Inf. Control 23(1),
1–34 (1973). https://doi.org/10.1016/s0019-9958(73)90851-6

5. Cockett, J.R.B., Lack, S.: Restriction categories III: colimits, partial limits and
extensivity. Math. Struct. Comput. Sci. 17(4), 775–817 (2007). https://doi.org/
10.1017/s0960129507006056

6. Danielsson, N.A., Hughes, J., Jansson, P., Gibbons, J.: Fast and loose reasoning is
morally correct. In: Proceedings of 33rd ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2006, Charleston, SC, pp. 206–217.
ACM Press, New York (2006). https://doi.org/10.1145/1111037.1111056

7. Ford, B.: Parsing expression grammars: a recognition-based syntactic foundation.
In: Proceedings of 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2004, Venice, January 2004, pp. 111–122. ACM
Press, New York (2004). https://doi.org/10.1145/964001.964011

8. Haskell. https://www.haskell.org
9. Haskell hierarchical libraries. https://downloads.haskell.org/∼ghc/latest/docs/

html/libraries/index.html
10. Hinze, R.: Lifting operators and laws (2010). https://www.cs.ox.ac.uk/ralf.hinze/

Lifting.pdf
11. King, D.J., Wadler, P.: Combining monads. In: Launchbury, J., Sansom, P.M. (eds.)

Functional Programming, Glasgow 1992. Workshops in Computing, pp. 134–143.
Springer, London (1993). https://doi.org/10.1007/978-1-4471-3215-8 12

12. Kmett, E.: Biapplicative bifunctors. https://hackage.haskell.org/package/bifunct
ors-3.2.0.1/docs/Data-Biapplicative.html

13. Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters.
In: Conference Record of 22nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 1995, San Francisco, CA, January 1995, pp.
333–343. ACM Press, New York (1995). https://doi.org/10.1145/199448.199528

14. Lindley, S.: Algebraic effects and effect handlers for idioms and arrows. In: Pro-
ceedings of 10th ACM SIGPLAN Workshop on Generic Programming, WGP 2014,
Gothenburg, August 2014, pp. 47–58. ACM Press, New York (2014). https://doi.
org/10.1145/2633628.2633636

15. Lindley, S., Wadler, P., Yallop, J.: Idioms are oblivious, arrows are meticulous,
monads are promiscuous. Electron. Notes Theor. Comput. Sci. 229(5), 97–117
(2011). https://doi.org/10.1016/j.entcs.2011.02.018

16. Maidl, A.M., Mascarenhas, F., Medeiros, S., Ierusalimschy, R.: Error reporting
in parsing expression grammars. Sci. Comput. Program. 132, 129–140 (2016).
https://doi.org/10.1016/j.scico.2016.08.004

17. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008). https://doi.org/10.1017/s0956796807006326

18. Mizushima, K., Maeda, A., Yamaguchi, Y.: Packrat parsers can handle practi-
cal grammars in mostly constant space. In: Proceedings of 9th ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE 2010, Toronto, ON, June 2010, pp. 29–36. ACM Press, New York (2010).
https://doi.org/10.1145/1806672.1806679

19. Moggi, E.: An abstract view of programming languages. Technical report, ECS-
LFCS-90-113, University of Edinburgh (1990)

https://github.com/purescript/purescript-bifunctors
https://github.com/purescript/purescript-bifunctors
https://doi.org/10.1016/s0019-9958(73)90851-6
https://doi.org/10.1017/s0960129507006056
https://doi.org/10.1017/s0960129507006056
https://doi.org/10.1145/1111037.1111056
https://doi.org/10.1145/964001.964011
https://www.haskell.org
https://downloads.haskell.org/~ghc/latest/docs/html/libraries/index.html
https://downloads.haskell.org/~ghc/latest/docs/html/libraries/index.html
https://www.cs.ox.ac.uk/ralf.hinze/Lifting.pdf
https://www.cs.ox.ac.uk/ralf.hinze/Lifting.pdf
https://doi.org/10.1007/978-1-4471-3215-8_12
https://hackage.haskell.org/package/bifunctors-3.2.0.1/docs/Data-Biapplicative.html
https://hackage.haskell.org/package/bifunctors-3.2.0.1/docs/Data-Biapplicative.html
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/2633628.2633636
https://doi.org/10.1145/2633628.2633636
https://doi.org/10.1016/j.entcs.2011.02.018
https://doi.org/10.1016/j.scico.2016.08.004
https://doi.org/10.1017/s0956796807006326
https://doi.org/10.1145/1806672.1806679

Double Applicative Functors 353

20. Röjemo, N.: Highlights from nhc–a space-efficient Haskell compiler. In: Proceed-
ings of 7th International Conference on Functional Programming Languages and
Computer Architecture, FPCA 1995, La Jolla, CA, June 1995, pp. 282–292. ACM
Press (1995). https://doi.org/10.1145/224164.224217

21. Swierstra, S.D.: Combinator parsing: a short tutorial. In: Bove, A., Barbosa, L.S.,
Pardo, A., Pinto, J.S. (eds.) LerNet 2008. LNCS, vol. 5520, pp. 252–300. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03153-3 6

22. Swierstra, S.D., Duponcheel, L.: Deterministic, error-correcting combinator
parsers. In: Launchbury, J., Meijer, E., Sheard, T. (eds.) AFP 1996. LNCS, vol.
1129, pp. 184–207. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
61628-4 7

23. Uustalu, T., Veltri, N.: The delay monad and restriction categories. In: Hung,
D.V., Kapur, D. (eds.) ICTAC 2017. LNCS, vol. 10580, pp. 32–50. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67729-3 3

24. Uustalu, T., Veltri, N.: Partiality and container monads. In: Chang, B.-Y.E. (ed.)
APLAS 2017. LNCS, vol. 10695, pp. 406–425. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-71237-6 20

25. Wadler, P.: Comprehending monads. Math. Struct. Comput. Sci. 2(4), 461–493
(1992). https://doi.org/10.1017/s0960129500001560

https://doi.org/10.1145/224164.224217
https://doi.org/10.1007/978-3-642-03153-3_6
https://doi.org/10.1007/3-540-61628-4_7
https://doi.org/10.1007/3-540-61628-4_7
https://doi.org/10.1007/978-3-319-67729-3_3
https://doi.org/10.1007/978-3-319-71237-6_20
https://doi.org/10.1007/978-3-319-71237-6_20
https://doi.org/10.1017/s0960129500001560

Checking Sequence Generation
for Symbolic Input/Output FSMs

by Constraint Solving

Omer Nguena Timo1(B), Alexandre Petrenko1, and S. Ramesh2

1 Computer Research Institute of Montreal, CRIM, Montreal, Canada
{omer.nguena-timo,petrenko}@crim.ca
2 GM Global R&D, Warren, MI, USA

ramesh.s@gm.com

Abstract. The reset of reactive systems in testing can be impossible or
very costly, which could force testers to avoid it. In this context, testers
often want to generate a checking sequence, i.e., a unique sequence of
inputs satisfying a chosen test criterion. This paper proposes a method
for generating a checking sequence with complete fault coverage for a
given fault model of reactive systems. The systems are represented with
an extension of Finite State Machines (FSMs) with symbolic inputs and
outputs which are predicates on input and output variables having pos-
sibly infinite domains. In our setting, a checking sequence is made up
of symbolic inputs and the fault domain can represent complex faults.
The method consists in building and solving Boolean expressions to iter-
atively refine and extend a sequence of symbolic inputs. We evaluate the
efficiency of the approach with a prototype tool we have developed.

Keywords: Extended FSM · Symbolic input/output FSM
Checking sequence · Fault modeling · Fault detection
Constraint solving

1 Introduction

Model-based testing [26] has been developing for decades and is now getting
adopted in the industry. The industrial testers are concerned with the quality
of the tests and the cost of their application which also includes the cost of
resetting (re-initializing) the systems. In this paper, we consider the fault model
driven generation of tests for non-resettable systems modeled with symbolic
input/output finite state machines (SIOFSMs) and propose a method to generate
a checking sequence, i.e., a single symbolic input sequence detecting all faulty
implementations within a specified fault model.

SIOFSM [16] extends FSM with symbolic inputs and outputs; it is a restricted
type of extended FSM [18]. A symbolic input is a predicate over input variables.
A symbolic output is a predicate defining output variables with Boolean and

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 354–375, 2018.
https://doi.org/10.1007/978-3-030-02508-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_19&domain=pdf

Checking Sequence Generation for Symbolic Input/Output FSMs 355

arithmetic expressions over the input variables. SIOFSM is adequate for model-
ing both control and data specific behaviors, especially pre- and post-conditions
of state transitions.

Fault model-driven testing [15,27] focuses on detecting specific faults and
it can complement testing driven by code coverage [5,25,28]. In the theory of
testing from FSM, mutation machine [10,24] was proposed for compact repre-
sentation of fault domains, i.e., the set of possible implementations of a given
specification FSM. The mutation machine contains the specification machine and
extends it with mutated transitions modeling potential faults. Recently proposed
methods for fault model-driven testing from FSM are based on constraint solv-
ing [20,21]. The methods are aimed to generate checking experiments [6,11,16]
for an FSM, i.e., multiple input sequences for full coverage of a fault domain
for an FSM specification. The methods in [20,21] have inspired the work in [13]
on the generation of checking experiments for FSMs with symbolic inputs and
concrete outputs (SIFSMs). The work in [13] considers complex faults on sym-
bolic inputs including splitting and merging of symbolic inputs; such faults were
not considered in [23]. Experimental results [13,21] have shown the efficiency of
the methods based on constraint solving to generate checking experiments for
FSM and SIFSM. The method in [16] generates checking experiments for SIOF-
SMs. It does not consider complex mutation operations on symbolic inputs and
the experimental evaluation of the efficiency of the method was not performed.
Checking experiments are applicable provided that systems under test can be
reset prior to the application of each input sequence in a checking experiment,
which is not always possible and motivates the generation of checking sequences.

The methods in [7,9,17,22] allow generating a checking sequence to detect
all possible faulty implementations with the number of states not exceeding that
of a specification FSM. The approach in [22] consists in searching a maximal
acyclic path to a sink state of the distinguishing automaton of the specification
and mutation FSMs. Searching a maximal acyclic path is a sufficient condition
to find a checking sequence but it is not a necessary condition and the result-
ing checking sequence could be too long. No experimental evaluation of the
efficiency of the method is provided in [22]. The approach in [17] generates a
checking sequence during the inference of an FSM from input/output sequences;
it is based on building and solving Boolean formulas. Extended FSMs, including
SIOFSMs, have been increasingly used to represent embedded controllers and
systems [1,19]. Generating checking sequences for SIOFSMs is an interesting
challenge which, to the best of our knowledge, has not been addressed.

We propose a method for verifying whether an input sequence is a checking
sequence for a specification SIOFSM; then we elaborate a method for gener-
ating checking sequence. Specification and implementation SIOFSMs in a fault
model are assumed to be strongly-connected, i.e., every state is reachable from
any other state. The fault model defined by a tester may represent complex
faults on Boolean and arithmetic operations in the specification. To the best
of our knowledge, this is the first work addressing the generation of checking
sequences for SIOFSMs to detecting such complex faults. FSMs and SIFSMs have

356 O. Nguena Timo et al.

concrete outputs, while SIOFSM has symbolic ones, which significantly compli-
cates determining the distinguishability achieved by a symbolic input sequence.
This is needed to verify that an input sequence produces different output
sequences in the specification SIOFSM and any faulty implementation SIOFSM.
The proposed methods are based on constraint solving and avoid explicit enu-
meration of the implementations. The generation method iteratively refines and
extends a symbolic input sequence (starting from the empty sequence) until it
becomes a checking sequence. The paper also presents preliminary experimental
results obtained with a prototype tool we have developed.

The remaining of the paper is organized as follows. Section 2 provides the
main definitions related to SIOFSM. In Sect. 3, we elaborate Boolean formulas
for specifying a fault domain, which we use in Sect. 4 to verify, refine and gener-
ate checking sequences. Section 5 presents experimental results obtained with a
prototype tools we have developed. Section 6 summarizes our contributions and
indicates future work.

2 Definitions

2.1 Preliminaries

Let GV denote the universe of inputs that are predicates over input variables in
a fixed set V for which a decision procedure exists, excluding the predicates that
are always false. G∗

V denotes the universe of input sequences and ε denotes the
empty sequence. Let IV denote the set of all the valuations of the input variables
in the set V , called concrete inputs. A set of concrete inputs is called a symbolic
input; both, concrete and symbolic inputs are represented by predicates in GV .
Henceforth, we use set-theoretical operations on inputs. In particular, we say
that concrete input x satisfies symbolic input g if x ∈ g. We let g denote the
negation of g, i.e., x ∈ g iff x �∈ g. We also have that IV ⊆ G. A set of inputs H
is a tautology if each concrete input x ∈ IV satisfies at least one input in it, i.e.,
{x ∈ g | g ∈ H} = IV .

We define some relations between input sequences in G∗
V . Given two input

sequences α, β ∈ G∗ of the same length k, α = g1g2 . . . gk, β = g′
1g

′
2 . . . g′

k, we
let α ∩ β = g1 ∩ g′

1 . . . gk ∩ g′
k denote the sequence of intersections of inputs in

sequences α and β. The sequences α and β are compatible, if for all i = 1, . . . , k,
gi ∩ g′

i �= ∅. We say that α is a reduction of β, denoted α ⊆ β, if α = α ∩ β. If α
is a sequence of concrete inputs as well as a reduction of β then it is called an
instance of β.

We let A(O, V) denote the universe of assignments that associate valuations
of the output variables in a fixed set O with valuations of the input variables in
V . Formally, an assignment in A(O, V) is a function a : IV → IO and we write
y = a(x) whenever assignment a associates the valuation x ∈ IV to the valuation
y ∈ IO, a concrete output. An assignment can be expressed with a mapping of
every output variable to a meaningful (arithmetic, Boolean, etc.) expression
defined over the input variables. We extend the definition of an assignment to
symbolic inputs, namely a(g) = {y|y = a(x),x ∈ g}; a(g) is a symbolic output.

Checking Sequence Generation for Symbolic Input/Output FSMs 357

Notice that an input variable of which the domain is a singleton is nothing else
but a constant. Given two assignments a1, a2, we define the sets of valuations
of the input variables on which the assignments are equal eq(a1, a2) = {x ∈ IV |
a1(x) = a2(x)} and neq(a1, a2) = {x ∈ IV | a1(x) �= a2(x)} the sets of valuations
of the input variables on which the assignments are different. Both eq(a1, a2) and
neq(a1, a2) can be represented with predicates on the inputs variables in V .

2.2 FSM with Symbolic Inputs and Outputs

We consider an extension of FSM called symbolic input/output finite state
machine (SIOFSM) [16], which operates in discrete time as a synchronous
machine reading values of input variables and setting up the values of output
variables with arithmetic operations on the input variables. The sets of input
and output valuations can be infinite.

Definition 1 (Symbolic input/output finite state machine). A symbolic
input/output finite state machine (SIOFSM or machine, for short) S is a
5-tuple (S, s0, V,O, T), where S is a finite set of states with the initial state
s0, V is a finite set of input variables over which inputs are defined, O is a
finite set of output variables, V ∩ O = ∅, T ⊆ S × GV × A(O, V) × S is a finite
transition relation, (s, g, a, s′) ∈ T is a transition.

Definition 2 (Suspicious transition). Transitions from the same state with
compatible inputs are said to be suspicious.

The machine S is deterministic (DSIOFSM), if for every state s, T (s) does not
have suspicious transitions; otherwise S is a nondeterministic SIOFSM. The
machine S is complete, if for each state s, G(s) is a tautology. The machine S

is initially-connected, if for any state s ∈ S, there exists an execution to s. The
machine S is strongly-connected, if for any ordered pair of states (s, s′) ∈ S × S,
there exists an execution from s to s′.

Definition 3 (Non deterministic and deterministic execution). An exe-
cution of S from state s is a sequence e = t1t2 . . . tn of transitions (ti =
(si, gi, ai, si+1)i=1..n forming a path from s in the state transition diagram of
S. An execution with at least two suspicious transitions from an identical state
is called nondeterministic, otherwise it is deterministic.

Clearly, a DSIOFSM has only deterministic executions, while a nondeterministic
SIOFSM can have both deterministic and nondeterministic executions. We use
inp(e), src(e) and tgt(e) to denote input sequence g1g2 . . . gn, the starting state
s1 and the ending state sn+1 of an execution e as above defined, respectively. We
let Susp(e) denote the set of suspicious transitions in the execution e, Susp(s)
denote the set of all suspicious transitions in state s and Susp(S) denote the set
of all suspicious transitions of SIOFSM S.

Given two executions e and e′ such that tgt(e) = src(e′), ee′ denotes the
concatenation of e and e′; it is an execution of S from src(e) to tgt(e′).

358 O. Nguena Timo et al.

Definition 4 (Enabled and triggered executions). Let e be an execution
with input sequence g1g2 . . . gn. An input sequence α = g′

1g
′
2 . . . g′

n enables exe-
cution e if α and inp(e) are compatible. The input sequence α triggers e if α is
a reduction of the input sequence of e, i.e., α ⊆ inp(e).

Note that an input sequence triggering an execution also enables the execution;
however an input sequence enabling an execution does not necessarily trigger
the execution.

The output of an execution e enabled by α is the sequence of symbolic
outputs out(e, α) = a1(g1 ∩ g′

1)a2(g2 ∩ g′
2) . . . an(gn ∩ g′

n). We let outS(s, α) =⋃{out(e, α) | e is an execution of S in s triggered by α} denote the set of the
output sequences which can be produced by S in response to α at state s. Clearly,
outS(s, α) is the union of all symbolic output sequences which can be produced
in response to α. We let G(s) denote the set of predicates and Ω(s) denote the
set of all symbolic input sequences defined in state s, i.e., g1g2 . . . gn ∈ Ω(s) if
there is an execution e from s such that g1g2 . . . gn = inp(e). The set of concrete
output sequences which can be produced in response to the instances of α is the
set of instances of out(e, α), i.e.,

⋃

x∈α

out(e, x) = {y | y ∈ out(e, α)}.

We define distinguishability and equivalence relations between states of
SIOFSM. Intuitively, states that produce different output sequences in response
to some concrete input sequence are distinguishable.

Definition 5 (Distinguishable and equivalent states). Let p and s be the
states of two complete SIOFSMs over the same set of input and output variables
V and O. Given an input sequence α ⊆ α1 ∩ α2, such that α1 ∈ Ω(p) and
α2 ∈ Ω(s), p and s are distinguishable (with distinguishing input sequence α),
denoted p ��α s, if the sets of concrete outputs in outS(p, α) and outS(s, α) differ,
otherwise they are equivalent and we write s � p, i.e., if the sets of concrete
outputs coincide for all α ⊆ α1 ∩ α2, α1 ∈ Ω(p), and α2 ∈ Ω(s).

Given SIOFSMs M = (S, s0, V,O, T) and P = (P, p0, V,O,N), P is a subma-
chine of M if p0 = s0, P ⊆ S and N ⊆ T .

2.3 Mutation Machine and Checking Sequence

Let S = (S, s0, V,O,N) be a strongly- connected complete DSIOFSM.

Definition 6. A SIOFSM M = (S, s0, V,O, T) is a mutation machine of S, if
S is a submachine of M. Then S is called the specification machine for M.

Let P = (P, p0, V,O,D) be a submachine of mutation machine M of specification
S. We use the state equivalence relation � to define conforming submachines.

Definition 7 (Conforming submachine). Submachine P is conforming to S,
if p0 � s0, otherwise, it is nonconforming.

Checking Sequence Generation for Symbolic Input/Output FSMs 359

We say that an input sequence α detects P if p0 ��α s0; otherwise P survives
α. Submachine P is involved in an execution e of M if Susp(e) ⊆ Susp(P).
Nonconforming submachines are involved in minimal executions of M having
unexpected output sequences and called revealing executions.

Definition 8 (Revealing execution). Given an input sequence α ∈ G∗, we
say that an execution e1 of a mutation machine M from s0 is α-revealing (or
simply revealing) if there exists an execution e2 of the specification machine S

from s0 such that the sets of concrete outputs in out(e2, α) and out(e1, α) differ
and α triggers both e1 and e2 while this does not hold for any prefix of α.

We use mutation machines to compactly represent possible (faulty) imple-
mentations of a specification machine also called mutants.

Definition 9 (Mutant). Given a mutation machine M for a specification
machine S, a mutant for S is a strongly-connected complete deterministic sub-
machine of M.

Both the specification and mutation machines are defined over the same set
of states. This means that we focus on mutants having no more states than
the specification. We introduce several types of transitions in mutation machine
depending on their use in mutants or the specification.

Definition 10 (Mutated and trusted transitions). A transition of muta-
tion machine M that is called mutated if it is not also a transition of the spec-
ification S. A transition of M that is also a transition of the specification S is
trusted if it is not suspicious; otherwise it is untrusted.

Intuitively, mutated transitions are alternatives for untrusted transitions and
they represent faults. There is no alternative for trusted which appear in all the
mutants. We let Untr(M) denote the set of untrusted transitions of the mutation
machine M.

The set of all mutants in mutation machine M is called a fault domain for S,
denoted Mut(M). A subset of Mut(M) is a fault sub-domain. If M is deterministic
and complete then S is the only mutant in Mut(M). A general fault model is the
tuple 〈S,�,Mut(M)〉 following [20,21,23]. The conformance relation partitions
the set Mut(M) into conforming mutants and nonconforming ones which we
need to detect. The number of mutants in Mut(M) is bounded by the number
of deterministic complete submachines of M. A state of the mutation machine
may have suspicious transitions which must belong to different deterministic
complete submachines, which motivates the following definition.

Definition 11 (Cluster of a state and suspicious state). Given state s of
M, a subset of T (s) is called a cluster of s if it is deterministic and the inputs
of its transitions constitute a tautology. State s is said to be suspicious if it has
more than one cluster.

360 O. Nguena Timo et al.

Fig. 1. A mutation SIOFSM M1 with 16 transitions from t1 to t16, state 1 is initial.

The number of deterministic complete submachines of mutation machine M

is the product of the sizes of the clusters of the states; this is because each state
of each complete deterministic submachine has one cluster. Let Z(s) to denote
the set of all clusters of s, we have that |Mut(M)| ≤ Πs∈S |Z(s)|. We use Ssusp

to denote the set of all suspicious states of M.
Henceforth, we only consider mutation machines in which every mutated

transition belongs to a cluster and thus to at least one mutant; such machines
are called well-formed mutation machines [13].

Example 1. Figure 1 presents an example of a mutation SIOFSM M1 with 4
states and 16 transitions ranging from t1 to t16, an Integer input variable x and
Integer output variable y. The solid lines represent the non-mutated transitions
of the specification machine from t1 to t8. We let S1 be the name of the specifi-
cation machine. Machine M1 is nondeterministic and has 8 mutated transitions
including transitions from t9 to t16 represented with dashed lines. The mutated
transitions represent faults which can be introduced in implementing the speci-
fication. The input 0 ≤ x ≤ 2 of the mutated transition t9 is a reduction of the
input 0 ≤ x ≤ 3 of transition t1 of the specification; then both transitions are
suspicious. All transitions but t3 are suspicious as t3 is the only trusted transition
defined in every deterministic complete submachine of M1. States 1, 2, 3 and 4
define two, two, six and two clusters, respectively. The six clusters for states 3
are Z31 = {t5, t6}, Z32 = {t6, t13, t15}, Z33 = {t6, t13, t14}, Z34 = {t12, t13, t15},
Z35 = {t12, t13, t14}, Z36 = {t5, t12}. Mutation machine M1 is well-formed and
includes 2 × 2 × 6 × 2 = 48 complete deterministic submachines; one of them
is the specification, 12 others are not strongly-connected, e.g., the submachine
specified with {t1, t2, t3, t4, t5, t6, t8, t16} and the remaining 35 are the mutants
we have to detect.

Definition 12 (Checking sequence). A checking sequence for 〈S,�,
Mut(M)〉 is an input sequence detecting every nonconforming mutant in Mut(M).

Checking Sequence Generation for Symbolic Input/Output FSMs 361

The goal of this paper is to elaborate a method to generate a checking sequence
for a fault model. In our work, the mutated transitions in mutation machines
can be introduced by various mutation operations including, but are not lim-
ited to, changing target states, merging/splitting inputs of transitions, replacing
variables with default values, swapping occurrences of variables in inputs, substi-
tuting a variable for another, modifying arithmetic/logical operations in inputs
and outputs. Mutations of arithmetic/logical operations defining the outputs
which are not applicable to SIFSM [13] are considered in [2,3,8]. Note that
merging and splitting of inputs are not considered in [16].

In the next section, we specify with a Boolean expression the determinis-
tic complete submachines undetected by an input sequence all together avoid-
ing their enumeration; an individual submachine could then be determined by
resolving the expression and we could check if it is strongly-connected and non-
conforming, i.e., a surviving mutant.

3 Specifying Mutants Surviving an Input Sequence

A submachine of a mutation machine survives an input sequence (a test) when-
ever it does not trigger a revealing execution of the mutation machine involving
the submachine. Mutants are involved only in deterministic executions of the
mutation machine and they are detected if these executions are revealing. First
we elaborate a method for determining deterministic revealing executions of the
mutation machine an input sequence triggers; then we use the executions to
build a Boolean expression encoding mutants surviving the input sequence.

3.1 Determining Deterministic Revealing Executions

Both deterministic and nondeterministic revealing executions of a mutation
machine can be determined using a distinguishing automaton obtained by com-
posing the transitions of the specification and mutation machines as follows. The
composition differs from that in [13] and was introduced in [16].

Definition 13. Given a DSIOFSM S = (S, s0, V,O,N) and a mutation
machine M = (S, s0, V,O, T) of S, a finite automaton D = (D ∪
{∇}, d0, G,Θ,∇), where D ⊆ S × S, ∇ is an accepting (sink) state and
Θ ⊆ D × G × D is the transition relation, is the distinguishing automaton
for S and M, if it holds that d0 = (s0, s0) ∈ D is the initial state and for any
(s1, s2) ∈ D

– ((s1, s2), g1 ∩ g2 ∩ eq(a1, a2), (s′
1, s

′
2)) ∈ Θ, if there exist (s1, g1, a1, s

′
1) ∈ N ,

(s2, g2, a2, s
′
2) ∈ T , such that g1 ∩ g2 ∩ eq(a1, a2) �= ∅

– ((s1, s2), g1 ∩ g2 ∩ neq(a1, a2),∇) ∈ Θ, if there exist (s1, g1, a1, s
′
1) ∈ N ,

(s2, g2, a2, s
′
2) ∈ T , such that g1 ∩ g2 ∩ neq(a1, a2) �= ∅

An execution of D from a state d0 and ending at a sink state in ∇ is said to be
accepted. The language of D, LD is the set of input sequences labeling accepted

362 O. Nguena Timo et al.

executions of D. By definition, every β ∈ LD triggers a β-revealing execution of
M. Every execution of D is defined by an execution of the specification and an
execution of M.

Lemma 1. An execution of M is revealing if and only if it defines an accepted
execution of D.

The following lemma characterizes the inputs triggering revealing executions
of M.

Lemma 2. An input sequence α triggers a revealing execution of M if and only
if α ⊆ β for some β ∈ LD.

Each non-revealing execution of M defines an unaccepted execution of D

from d0. However an unaccepted execution of D can be defined with a revealing
execution of M, in which case the input sequences of the two defined executions
are incompatible. This situation may happen when the input of a specification’s
transition was split into two inputs of two mutated transitions.

Example 2. Consider the situation when transitions in S1 and M1 define a tran-
sition to a sink state and a transition to a non-sink state. E.g., ((4, 3), (x =
2), (4, 1)) and ((4, 3), (1 < x ≤ 3 ∧ x �= 2),∇) are two transitions of DM1 defined
with t8 and t15.

Based on Lemma 1, we can use D to enumerate all the triggered revealing as
well as non-revealing executions of M. Verifying whether an input sequence is
a checking sequence we will be interested in deterministic executions triggered
or enabled by the sequence since mutants can only be involved in deterministic
executions. Checking whether an execution of the distinguishing automaton is
defined by a deterministic execution of the mutation machine can be done by
verifying that it does not use two suspicious transitions of the mutation machine.
This verification can be performed on-the-fly by enumerating all the executions
of D for a given input sequence (test). Latter in refining an input sequence,
we will be interested in executions it enables. They can be determined with a
method similar to that for the triggered executions except that checking the
intersection of inputs is used instead of checking the inclusion.

Let α ∈ G∗ be an input sequence. We let Eα be the set of accepted deter-
ministic executions of the D triggered by a prefix of α in M and Fα be the set of
unaccepted deterministic executions triggered by α in D. This set can be used
for determining Eα↓M and Fα↓M, the set of revealing and non-revealing execu-
tions for α. Clearly, an execution of M cannot define both an execution in Eα

and an execution in Fα.

3.2 Encoding SIOFSMs Involved in Deterministic Revealing
Executions

We use Boolean expressions over the variables representing the suspicious tran-
sitions of a mutation machine M for encoding SIOFSMs involved in revealing

Checking Sequence Generation for Symbolic Input/Output FSMs 363

Procedure Build expression (Fα, β,D);

Let c+β := False;
Determine E+β and Fαβ from Fα and D;
for each d ∈ E+β↓M do

cd :=
∧

t∈Susp(d) t ;

c+β := c+β ∨ cd;

end
return (c+β , Fαβ)

Algorithm 1. Building c+β s.t. cαβ = cα ∨ c+β

executions, as we did in a previous work [13]. Each submachine of M has all the
trusted transitions of M and a unique set of suspicious transitions. Hence each
submachine can be identified by its set of suspicious transitions. We introduce
a Boolean variable for each suspicious transition in M and we refer to both a
variable and the corresponding transition with the same symbol t. A solution of
such a Boolean expression is an assignment to True or False of every variable
which makes the expression True; it can be obtained with solvers [4,12]. A solu-
tion selects (resp. excludes) transitions to which it assigns the value True (resp
False); it specifies a (possibly nondeterministic and partially specified) subma-
chine P of M if it selects a subset of Susp(M) which together with the trusted
transitions of M constitutes the submachine.

Given an execution e of a mutation machine, let ce
def=

∧
t∈Susp(e) t be the

conjunction of all the suspicious transitions in e. As usual, the disjunction over
the empty set is False and the conjunction over the empty set is True. A solu-
tion of ce selects not only all the transitions in Susp(e) but also some arbitrary
suspicious transitions not in e; this is because we assumed that every Boolean
expression is defined over the set of the variables for all the suspicious transi-
tions. Given an execution ee′ obtained by concatenating e with e′, it holds that
cee′ = ce ∧ ce′ . Let us denote by F↓M the set of executions of the mutation
machine M defining an execution in a set F of execution of D. Given an input
sequence α ∈ G∗, we define cα

def=
∨

e∈Eα↓M
ce. A submachine P of M is involved

in an execution e of a mutation machine M if and only if ce specifies P.

Lemma 3. The Boolean expression cα specifies all the submachines involved in
all revealing executions triggered by a prefix of α and detected by α.

Let α and β be two input sequences. Assuming that we want to deter-
mine Fαβ and Eαβ , given Fα, we will proceed as follows. We can determine
E+β = {ee′ | e ∈ Fα, ee′ is an accepted deterministic execution, and β′ ⊆
inp(e′) for some prefix β′ of β} and Fαβ = {ee′ | e ∈ Fα, ee′ is accepted and
unaccepted deterministic execution, β ⊆ inp(e′)}. Then Eαβ = Eα ∪ E+β . It
holds that any solution of cαβ is a solution of cα ∨ ∨

e∈E+β↓M
ce and vice versa.

Procedure Build expression in Algorithm 1 is aimed at building the expression
c+β =

∨
e∈E+β↓M

ce to be added to cα for obtaining cαβ . The inputs and the

364 O. Nguena Timo et al.

outputs of the procedure are obvious and omitted. We observe that when the
procedure is called with Fε = {ε}, it returns exactly cβ .

Lemma 4. Let α be a symbolic input sequence. A submachine is not involved
in a deterministic α-revealing execution e if and only if it is specified with ce,
where ce denotes the negation of ce.

Thus the sets of suspicious transitions in all deterministic α-revealing executions
represent all submachines detected by input sequence α and only them.

Lemma 5. Input sequence α ∈ G∗ does not detect any submachine specified
with cα.

The Boolean expression cα specifies the submachines of a mutation machine
not involved in deterministic revealing executions. These submachines exclude
suspicious transitions in the revealing executions but they also include other
transitions of the mutation machine, causing some of the specified submachines
to be nondeterministic or partially specified. To determine the deterministic
submachines (and so the mutants) undetected by an input sequence, we must
exclude the nondeterministic and partially specified submachines from the sub-
machines specified by cα, by adding a constraint that only complete deterministic
submachines should be considered.

3.3 Encoding (Un)detected Deterministic Complete Machines

The deterministic complete submachines of a mutation machine M can also be
identified with the suspicious transitions as discussed in the previous subsection.
So, we can specify them with Boolean expressions over the variables for the
suspicious transitions.

Let s be a suspicious state, Z(s) = {Z1, Z2, . . . , Zn} be the set of its clusters.
Then the conjunction of variables of a cluster Zi expresses the requirement that
all these transitions must be present together to ensure that a submachine with
the cluster Zi is complete in state s. Moreover, only one cluster in Z(s) can
be chosen in a deterministic complete submachine, therefore, the transitions are
restricted by the expressions determining clusters. Each cluster Zi is uniquely
specified by Boolean expression zi

def= (
∧

t∈Zi
t)∧ (

∨
t∈Susp(s)\Zi

t) which permits
the selection of exactly the suspicious transitions in Zi. Given Zi, Zj ∈ Z(s),
every solution of zi is not a solution of zj . Then each state s in Ssusp yields the

expression cs
def=

∨n
i=1 zi of which all the solutions determine all the clusters in

Z(s). The set of clusters specified by cs is Z(s).
The expression

∧
s∈Ssusp

cs specifies the set of clusters of suspicious states
either in the specification S or every mutant. Each such cluster in the specifica-
tion has at least one untrusted transition in Untr(S). Excluding the specification
S can be expressed with the negation of the conjunction of the variables of all
the untrusted transitions

∧
t∈Untr(S) t. Any of its solutions excludes at least one

cluster in the specification and the negation cannot specify the S. The Boolean

Checking Sequence Generation for Symbolic Input/Output FSMs 365

expression cclstr
def=

∧
s∈Ssusp

cs ∧ ∧
t∈Untr(S) t excludes nondeterministic and par-

tially specified submachines and the specification, meaning that cclstr specifies
only all deterministic submachines of M including the mutants in Mut(M). To
further exclude nondeterministic and partially specified submachines as well as
the specification from the submachines specified by cα, the Boolean expression
cclstr must be added to cα. Combining the statements above with Lemma 5, we
get Theorem 1.

Theorem 1. Input sequence α ∈ G∗ does not detect any deterministic subma-
chine of mutation machine M specified with cα ∧ cclstr.

The set of mutants Mut(M) is included in the set of deterministic complete
submachines of M, which justifies the following corollary.

Corollary 1. Input sequence α ∈ G∗ does not detect any mutant in Mut(M)
specified with cα ∧ cclstr.

Example 3. The Boolean expression specifying the clusters in state 3 of the
mutation machine in Fig. 1 is c3 =

∨
i=1..6 z3i

where z31 = t5t6t12t13t14t15 for
cluster Z31 = {t5, t6} and the others z3i

can be easily computed from the clusters
in Example 1.

4 Verification and Generation of a Checking Sequence

In this section we address two problems. The first problem is verifying whether
a given input sequence, which we call a (checking sequence) conjecture, is a
checking sequence and the second is concerned with the generation of a check-
ing sequence. Our approach to solving both problems consists in building and
resolving Boolean expressions specifying mutants surviving input sequences.

4.1 Verifying a Checking Sequence Conjecture

Let ϕ be a Boolean expression specifying a set of complete deterministic subma-
chines including a set of mutants to be detected. The set of submachines for ϕ
can always be reduced with an expression specifying submachines a given input
sequence detects.

Theorem 2. An input sequence α is a checking sequence for a set of complete
deterministic machines specified with an expression ϕ if and only if cα ∧ ϕ has
no solution or each of the machines it specifies is conforming or not strongly-
connected.

The set of complete deterministic submachines of a mutation machine M is
specified with cclstr, which leads to Corollary 2.

Corollary 2. Input sequence α is a checking sequence for Mut(M) if and only if
cα∧cclstr has no solution or each of the machines it specifies is either conforming
or not a mutant.

366 O. Nguena Timo et al.

Procedure Verify checking sequence (D, α, ϕα, Fα, β);
Inputs : D, the distinguishing automaton of M and S; α, β a prefix and a suffix

of the conjecture αβ; ϕα and Fα

Output: isAChSeq, a Boolean flag indicating whether αβ is a checking sequence
Output: ϕαβ a Boolean expression specifying the mutants undetected by αβ
Output: DP the distinguishing automaton of S and P, a mutant undetected by

αβ
Output: Fαβ the set of unaccepted deterministic executions of DP triggered by

αβ
(c+β , Fαβ) := Build expression(Fα,D, β);
Initialization: cP := False; ϕαβ := ϕα ∧ c+β ; DP := null;
repeat

isAChSeq := true;
ϕαβ := ϕαβ ∧ cP;
Generate a deterministic complete machine P by resolving ϕαβ ;
if P �= null then

isAChSeq := False;
Set DP to the distinguishing automaton of S and P ;
if P is not strongly-connected or DP has no sink state then

cP :=
∧

t∈Susp(P)

t;

Set DP := null;

end

end

until isAChSeq or DP �= null;
return (isAChSeq,DP, ϕαβ , Fαβ);

Algorithm 2. Verifying a checking sequence conjecture

Based in Theorem 2 and Corollary 2, to verify whether a conjecture is a checking
sequence for a given fault model we can iteratively exclude conforming mutants
and non-strongly-connected submachines as solutions to a Boolean expression
specifying the submachines the conjecture cannot detect, while no nonconform-
ing mutant is found. This idea is implemented in Algorithm2 with Procedure
Verify checking sequence.

Procedure Verify checking sequence is aimed at verifying whether the conjec-
ture αβ constitutes a checking sequence, assuming that we have evidence that
α is not. The evidence is expressed with a Boolean expression ϕα specifying a
non-empty set of mutants having survived α and the set Fα of unaccepted deter-
ministic executions of D triggered by α. The procedure takes also as inputs the
distinguishing automaton for the specification and mutation machines and input
sequence β. The procedure returns a Boolean flag isAChSeq indicating whether
αβ is a checking sequence, evidence for whether αβ is a checking sequence or
not and the distinguishing automaton DP for the specification and a mutant P

undetected by αβ. A call to the procedure with α = ε, Fα = {ε} and ϕα = cclstr
allows verifying whether β is a checking sequence.

Checking Sequence Generation for Symbolic Input/Output FSMs 367

Verifying the conjecture αβ, the procedure makes a call to procedure
Build expression in Algorithm 1 to compute a Boolean expression specifying the
submachines detected by αβ but not by α. The negation of the latter expression
is added to ϕα for obtaining ϕαβ specifying the next surviving submachine. Iter-
atively, the procedure uses a solver to generate a next submachine undetected
by αβ; the iteration stops when there is no surviving machine or a witness
surviving submachine is neither strongly-connected nor conforming, i.e., it is a
nonconforming mutant. The distinguishing automaton for the specification and
a conforming mutant has no sink state. On the termination, αβ is not a checking
sequence if and only if a nonconforming mutant was generated, in which case
the procedure returns the distinguishing automaton of the specification and the
mutant. Later, the automaton will serve to refine αβ and to determine a new
input sequence to be appended to the refined sequence. Indeed, an input sequence
which is not a checking sequence can always be extended to obtain a checking
sequence since the mutants and the specification are strongly-connected.

In the next section we elaborate methods for determining extension sequences
to be added to a conjecture to build a checking sequence.

4.2 Refining and Extending an Input Sequence to Detect Surviving
Mutants

A given checking sequence conjecture leaves a nonconforming mutant undetected
because it does not trigger any of the revealing executions involving the mutant,
i.e., every prefix of the conjecture is not a reduction of the input sequence of
the revealing executions involving the mutant. To obtain a checking sequence
from a conjecture, we distinguish two situations on whether or not a prefix
of conjecture is compatible with the input sequence of a revealing execution
involving an undetected mutant. In case of compatibility, the conjecture can be
reduced to an input sequence which triggers a revealing execution involving an
undetected witness mutant. The reduced conjecture will all the mutants detected
by the original conjecture as and other mutants including the witness undetected
mutant. The refinement (by reduction) process will be repeated until there is no
new undetected mutant or the length of the revealing executions involving a
surviving mutant is greater than the length of the reduced conjecture, which
corresponds to the second situation in which the reduced conjecture can be
extended.

In the second situation, a nonconforming mutant is left undetected and all
its executions enabled by the given conjecture are not revealing. Note that there
always exists at least one such execution because mutants and the specification
are complete and strongly-connected. Any of the execution enabled by the con-
jecture can be used to obtain a reduced conjecture and to determine an input
sequence for extending the reduced conjecture. The concatenation of the reduced
conjecture and the extension input sequence constitutes an extended conjecture.
The extended conjecture triggers at least one new revealing execution; so it not
only detects all the mutants detected by the given conjecture, but it also detects
all the mutants involved in the revealing executions it triggers. The reduction

368 O. Nguena Timo et al.

Procedure Refine and gen extension (α,DP);
Input : α an input sequence
Input : DP, the distinguishing automaton of M and a mutant P surviving α
Output: αref ⊆ α, a reduction of α for triggering the prefix of a revealing

execution in P

Output: β, an input sequence such that αrefβ detects a P; β = ε, if αref detects
P

if DP has an accepted execution enabled by a prefix of α then
Let e be an accepted execution of DP enabled by a prefix of α;
αref := (α[1...|e|] ∩ inp(e))α[|e| + 1...|α|] ;
β := ε

else
Let e be an unaccepted execution of DP enabled by α;
αref := α ∩ inp(e);
Let s be the last state in e;
Let β be the input sequence of a path from s to a sink state;

end
return (αref, β);

Algorithm 3. Refining a sequence and generating an extension

and extension processes can be repeated until every nonconforming mutants
is detected. Theorem 3 formalizes the discussion above and specifies a way for
reducing and extending a given input sequence to detect a mutant surviving the
given conjecture. Given an input sequence α of length |α|, we let α[i...j], with
1 ≤ i, j ≤ |α|, denote the subsequence obtained by extracting the elements in α
from position i to j.

Theorem 3. Let α be an input sequence detecting some mutants but not detect-
ing a nonconforming mutant P. Exactly one of the two following statements
holds:

– A reduction γ of a prefix of α detects P and in which case γα[|γ| + 1...|α|]
detects P and all the mutants involved in an execution in Eγα[|γ|+1...|α|] includ-
ing those detected by α.

– P survives every reduction of every prefix of α; then there is a reduction γ
of α and an input sequence β such that γβ detects P and all the mutants
involved in an execution in Eγβ including the mutants detected by α.

The mutant referenced in Theorem 3 identifies some revealing executions which
α does not trigger. A revealing execution may allow reducing and extending α.
The set of revealing executions involving the mutant can be determined with the
distinguishing automaton of the specification machine and the mutant.

Procedure Refine and gen extension in Algorithm 3 reduces and extends a
given input sequence α to detect a nonconforming mutant P for which the dis-
tinguishing automaton DP is known. The procedure returns a reduction αref of α
triggering an execution in the mutant and an input sequence β for extending the
execution to a revealing execution in P. The sequence β is empty in case a prefix

Checking Sequence Generation for Symbolic Input/Output FSMs 369

of αref triggers a revealing execution. Computing αref and β, first an execution
e from the initial to the sink state of DP enabled by a prefix of α is determined.
The intersection of inp(e) and a prefix of α is a reduction of the input of the
revealing execution defining e, so it triggers a revealing execution and detects
the mutant. Then αref is the concatenation of the intersection sequence with the
suffix of α and β is set to empty. In case none of the prefixes of α can trigger
a revealing execution in the mutant, the whole sequence α is reduced with the
input sequence of an unaccepted execution it enables in DP and β becomes the
input of an execution from the target state of the execution enabled by α but
triggered by αref.

Example 4. Let αex = (0 ≤ x ≤ 3)(x < −3)(x < −1 ∨ x > 3) be an input
sequence of length |αex| = 3. To verify whether αex is a checking sequence
for M1, we can execute Verify checking sequence(D, ε, cclstr , {ε}, αex) making
a call to Build expression(ε,D, αex) to determine the only accepted execution
αex triggers in D defined by the execution of the specification e1 = t1t3t6 and
the deterministic execution e2 = t1t3t12. All the transitions in e1 are belong
to the specification but t12 occurring in e2 is mutated. The execution of D

is accepted because the symbolic output sequences out(e1, αex) = (1 ≤ y ≤
4)(y < −4)(0 > y ∨ y > 4) and out(e1, αex) = (1 ≤ y ≤ 4)(y < −4)(2 >
y ∨ y > 6) do not have the same concrete outputs. Every mutant involved
by e2, e.g., the mutant composed of t1, t2, t3, t4, t12, t5, t7, t8 is nonconforming
and detected by αex. Such a mutant is specified with ce2 = t1t12. However
the mutant specified with Boolean expression P1 = {t9, t10, t3, t11, t12, t5, t16, t8}
specified with ce2 survives αex because αex does not trigger an execution in it,
so producing the empty output sequence different from out(e1, αex). αex does
not trigger an execution in P1 because the first input in αex is not a reduction
of the inputs of t9 and t10. At the end, Verify checking sequence returns that
αex is not a checking sequence and it also returns DP1 , ϕαex

= ce2 ∧ cclstr and
Fαex

= {e1}.
A call to Refine and gen extension(αex,DP1) refines the prefix of length two

of αex to detect P1. Execution e3 = t10t16 is a revealing execution involving P1; it
is not triggered but enabled by αex[1..2] and it is used to determine the refined
(reduced) sequence αref = (x = 3)(x < −3)(x < −1 ∨ x > 3). The inputs
in αref are obtained by intersecting the input in αex with those labeling the
accepted execution of DP1 defined with e3. At the end β = ε since a prefix of αex

detects P1.

4.3 Generating a Checking Sequence

We want to generate starting from a given input sequence a checking sequence
for a given fault model. Our method iterates three actions: verifying whether
a current input sequence is a checking sequence, refining and extending the
current input sequence by detecting a witness nonconforming mutant surviving
the current input sequence in case it is not a checking sequence. The iteration

370 O. Nguena Timo et al.

Table 1. Checking sequence generation for M1 in Fig. 1.

Stepα → β Suspicious

transitions in

revealing

executions

Witness surviving mutant

1 ε → (0 ≤ x ≤ 3)(x < −3)(x < −1 ∨ x > 3) {t1, t12} {t9, t10, t3, t11, t12, t5, t16, t8}
2 (x = 3)(x < −3)(x < −1 ∨ x > 3) → ε {t10, t16} {t9, t10, t3, t11, t12, t5, t7, t8}
3 (x = 3)(x < −3)(x < −1 ∨ x > 3) → ε {t7, t10} {t1, t2, t3, t11, t5, t6, t7, t8}
4 (x = 3)(x < −3)(x < −1 ∨ x > 3) → (−1 ≤ x ≤

3)(x < −3)(0 ≤ x ≤ 3)(−2 ≤ x)

{t16, t1, t5, t6},
{t1, t5, t6, t7, t11}

{t1, t2, t3, t11, t6, t13, t14}

5 (x = 3)(x < −3)(x < −1 ∨ x > 3)(1 < x ≤ 3 ∧ x �=
2)(x < −3)(0 ≤ x ≤ 3)(−2 ≤ x) → ε

{t1, t6, t14} {t1, t2, t3, t11, t6, t13, t15}

6 (x = 3)(x < −3)(x < −1 ∨ x > 3)(1 < x ≤ 3 ∧ x �=
2)(x < −3)(0 ≤ x ≤ 3)(−2 ≤ x) → ε

{t1, t6, t15} No surviving mutant

process terminates when the current input sequence is a checking sequence. Pro-
cedure Gen check seq in Algorithm 4 takes as inputs an initial input sequence
αinit and a fault model and generates a checking sequence α detecting all the
nonconforming mutants in the fault model. Determining the checking sequence,
the procedure performs an initialization phase followed by a computing phase.
In the initialization phase, the procedure computes the expression specifying all
the deterministic and complete submachines of the mutation machine. It also
computes the distinguishing automaton D of the specification and mutation
machines. Then it sets the prefix of the conjecture α to the empty sequence, Fα

to the singleton {ε}, ϕα to cclstr for specifying search space for the mutants and
the suffix of the conjecture β to αinit.

In the computing phase, the procedure makes a call to Ver-
ify checking sequence to verify whether αβ is a checking sequence knowing that α
is not. Verify checking sequence returns a verdict in variable isAChSeq together
with DP the distinguishing automaton of the specification and a mutant unde-
tected by αβ, the Boolean expression ϕαβ specifying the mutants undetected
by αβ, and the set Fαβ . Then the current input sequence α becomes αβ, ϕα

becomes ϕαβ . In case the current input sequence is not a checking sequence
it is reduced and the non-null extension sequence β is generated via a call to
Refine and gen extension. β can be the empty input sequence in which case ϕα is
updated to remove the detected mutants prior to the next iteration step. Another
approach would have been to remove all the new mutants detected by αref , which
requires determining all new accepted executions of D triggered by αref . In our
work, we just remove the witness mutant and the others will be detected in
the next iteration steps. When β is not empty, ϕαβ is determined at the next
iteration step. The computation phase terminates if the current input is a check-
ing sequence, i.e., ϕα specifies no submachine. This termination happens after
a finite number of iteration steps because each call to Verify checking sequence
reduces the number of machines in the finite space of undetected mutants.

Checking Sequence Generation for Symbolic Input/Output FSMs 371

Procedure Gen check seq (αinit, 〈S, 	,Mut(M)〉);
Input : αinit, an initial input sequence and 〈S, 	,Mut(M)〉, a fault model
Output: α, a checking sequence for 〈S, 	,Mut(M)〉
Compute cclstr and D the distinguishing automaton for S and M;
Initialization : α := ε β := αinit ϕα := cclstr Fα := {ε};
repeat

(isAChSeq,DP, ϕαβ , Fαβ) := Verify checking sequence(D, α, ϕα, Fα, β);
α := αβ;
ϕα := ϕαβ ;
if not (isAChSeq) then

(αref , β) := Refine and gen extension(α,DP);
α := αref ;
if β = ε then

Let e be a revealing execution triggered by α in P obtained from DP;
ϕα := ϕα ∧ ce;

end

end

until isAChSeq ;
return α is a checking sequence;

Algorithm 4. Generation of a checking sequence from an initial input
sequence αinit

Example 5. Table 1 presents data produced in executing Gen check seq to com-
pute a checking sequence for M1 from αex . The second column shows how β
extends α. The witness mutant at step i is not involved in any current set of
suspicious transitions. Each set specifies a revealing execution; such a mutant
survives αβ determined at the same step. The input sequence α extended with
β at step i + 1 detects the witness mutant at step i; they are generated using
procedure Refine and gen extension. β is ε whenever the procedure has found
a reduction of a previous input sequence detecting the witness mutant having
survived the previous input sequence. After 6 iteration steps, Gen check seq pro-
duces the checking sequence (x = 3)(x < −3)(x < −1 ∨ x > 3)(1 < x ≤ 3 ∧ x �=
2)(x < −3)(0 ≤ x ≤ 3)(−2 ≤ x) detecting all the 35 mutants in the fault
domain.

5 Prototype Tool and Experimental Results

We performed an experimental evaluation of the scalability of the proposed
method for generating checking sequences for DSIOFSM. We implemented in
JAVA a prototype tool for verifying and generating a checking sequence. The
tool is built on top of ANTLR [14] and a Z3 API [12]. In our experiments, we
used a desktop computer equipped with 3.4 Ghz Intel Core i7-3770 CPU, 16.0 GB
of RAM and Windows 7.

We used two industrial-like specification DSIOFSMs. Each DIOFSM repre-
sents an automotive HVAC system [19,21] with 13 states and 62 transitions.

372 O. Nguena Timo et al.

Table 2. Experimental results with the second SIOFSM specification

Max. number of mutants 8191 1.9E + 5 2.6E+ 7 5E+ 15

Length of check. seq. 50 42 52 133

Time (sec.) 297 266 695 3042

The first specification DIOFSM is in fact a deterministic SIFSM used in [13]
to generate checking experiments, i.e., a set of input sequences detecting all
nonconforming mutants. This experiment focuses on checking sequences which
cannot be generated by the method in [13]. The DSIFSM uses symbolic input
over 6 integer input variables and 5 Boolean input variables. All the outputs are
concrete. We added mutated transitions to the deterministic SIFSM, obtaining
a mutation SIFSM including 8191 deterministic submachines different from the
specification; 8159 submachines are mutants of the fault domain and the other
32 are not mutants because they are not strongly-connected (this was computed
by our tool). The tool has generated a checking sequence of length 49 detecting
all the nonconforming SIFSM mutants.

The second specification DSIOFSM was obtained by replacing in the SIFSM
concrete outputs with symbolic outputs using integer output variables and a
Boolean output variable. The mutation machines were obtained by adding to the
specification mutated transitions implementing different types of faults: transfer,
output, changing of arithmetic and Boolean operators in inputs and assignments.
Table 2 summarizes the results. The first row shows the numbers of complete
deterministic machines in the fault domains; we have not determined the exact
number of mutants in the fault domain. The second row shows the length of the
generated checking sequences and the third row presents the computation time.
For the SIOFSM mutation machine defining at most 8191 mutants, an execution
of the tool lasted 297 s to generate a checking sequence of length 50.

The result of the experimental evaluation indicates that the more mutants in
the fault domain, the longer are the checking sequence and the generation time.
In some situation the generation time seems to be too long, which could prevent
the application of the method. In practice, the generation of a checking sequence
can be stopped at any time since it is incremental, which will permit obtaining
a checking sequence for a fault subdomain. Then, one could generate checking
experiments [13] to detect the remaining mutants not in the fault subdomain.
Indeed, increasing the number of resets would reduce the time for detecting the
remaining mutants.

6 Conclusion

In this paper, we generalized the checking sequence construction problem from
a classical Mealy machine to a restricted type of extended FSM, SIOFSM, while
modeling a fault domain by a mutation machine instead of limiting it just by a
state number as in previous work. We elaborated a method for verifying whether

Checking Sequence Generation for Symbolic Input/Output FSMs 373

an input sequence is a checking sequence for a given fault model. Then we used it
to propose a method for generating a checking sequence by iterative extensions
of a given (possibly empty) input sequence that avoids using the reset. The
methods are based on solving Boolean expression. The novelty of the proposed
method is that it generates a checking sequence for a user defined fault model
of a finite state machine with infinite inputs and infinite outputs.

We have developed a prototype tool and used it to generate checking
sequences for examples of industrial-like systems represented with SIOFSMs.

Our current work focuses on generating checking sequences of near-to-
minimal lengths and checking sequences for timed extensions of SIOFSMs.

Acknowledgment. This work is supported in part by GM, NSERC of Canada and
MESI (Ministère de l’Économie, Science et Innovation) of Gouvernement du Québec.

References

1. Androutsopoulos, K., Clark, D., Harman, M., Hierons, R.M., Li, Z., Tratt, L.:
Amorphous slicing of extended finite state machines. IEEE Trans. Softw. Eng.
39(7), 892–909 (2013). https://doi.org/10.1109/tse.2012.72

2. Bessayah, F., Cavalli, A., Maja, W., Martins, E., Valenti, A.W.: A fault injection
tool for testing web services composition. In: Bottaci, L., Fraser, G. (eds.) TAIC
PART 2010. LNCS, vol. 6303, pp. 137–146. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-15585-7 13

3. Delamaro, M.E., Maldonado, J.C., Pasquini, A., Mathur, A.P.: Interface mutation
test adequacy criterion: an empirical evaluation. Empir. Softw. Eng. 6(2), 111–142
(2001). https://doi.org/10.1023/a:1011429104252

4. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

5. Godefroid, P., Klarlund, N., Sen, K.: DART: directed automated random testing.
ACM SIGPLAN Not. 40(6), 213–223 (2005). https://doi.org/10.1145/1064978.
1065036

6. Hennie, F.C.: Fault detecting experiments for sequential circuits. In: Proceedings
of 5th Annual Symposium on Switching Circuit Theory and Logical Design, SWCT
1964, November 1964, Princeton, NJ, pp. 95–110. IEEE CS Press, Washington, DC
(1964). https://doi.org/10.1109/swct.1964.8

7. Hierons, R.M., Jourdan, G.V., Ural, H., Yenigun, H.: Checking sequence construc-
tion using adaptive and preset distinguishing sequences. In: Proceedings of 7th
IEEE International Conference on Software Engineering and Formal Methods,
SEFM 2009, November 2009, Hanoi, pp. 157–166. IEEE CS Press, Washington
(2009). https://doi.org/10.1109/sefm.2009.12

8. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011). https://doi.org/10.1109/
tse.2010.62

9. Jourdan, G.V., Ural, H., Yenigün, H.: Reducing locating sequences for testing from
finite state machines. In: Proceedings of 31st Annual ACM Symposium on Applied
Computing, SAC 2016, April 2016, Pisa, pp. 1654–1659. ACM, New York (2016).
https://doi.org/10.1145/2851613.2851831

https://doi.org/10.1109/tse.2012.72
https://doi.org/10.1007/978-3-642-15585-7_13
https://doi.org/10.1007/978-3-642-15585-7_13
https://doi.org/10.1023/a:1011429104252
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1109/swct.1964.8
https://doi.org/10.1109/sefm.2009.12
https://doi.org/10.1109/tse.2010.62
https://doi.org/10.1109/tse.2010.62
https://doi.org/10.1145/2851613.2851831

374 O. Nguena Timo et al.

10. Koufareva, I., Petrenko, A., Yevtushenko, N.: Test generation driven by user-
defined fault models. In: Csopaki, G., Dibuz, S., Tarnay, K. (eds.) Testing of Com-
municating Systems. ITIFIP, vol. 21, pp. 215–233. Springer, Boston, MA (1999).
https://doi.org/10.1007/978-0-387-35567-2 14

11. Moore, E.F.: Gedanken-experiments on sequential machines. In: Shannon, C.,
McCarthy, J. (eds.) Automata Studies, pp. 129–153. Princeton University Press,
Princeton (1956)

12. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

13. Nguena Timo, O., Petrenko, A., Ramesh, S.: Multiple mutation testing from finite
state machines with symbolic inputs. In: Yevtushenko, N., Cavalli, A.R., Yenigün,
H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp. 108–125. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67549-7 7

14. Parr, T.: The Definitive ANTLR 4 Reference, 2nd edn. Pragmatic Bookshelf, Dallas
and Raleigh (2013)

15. Petrenko, A.: Fault model-driven test derivation from finite state models: anno-
tated bibliography. In: Cassez, F., Jard, C., Rozoy, B., Ryan, M.D. (eds.) MOVEP
2000. LNCS, vol. 2067, pp. 196–205. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45510-8 10

16. Petrenko, A.: Toward testing from finite state machines with symbolic inputs and
outputs. Softw. Syst. Model. (2017, to appear). https://doi.org/10.1007/s10270-
017-0613-x

17. Petrenko, A., Avellaneda, F., Groz, R., Oriat, C.: From passive to active FSM
inference via checking sequence construction. In: Yevtushenko, N., Cavalli, A.R.,
Yenigün, H. (eds.) ICTSS 2017. LNCS, vol. 10533, pp. 126–141. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-67549-7 8

18. Petrenko, A., Boroday, S., Groz, R.: Confirming configurations in EFSM testing.
IEEE Trans. Softw. Eng. 30(1), 29–42 (2004). https://doi.org/10.1109/tse.2004.
1265734

19. Petrenko, A., Dury, A., Ramesh, S., Mohalik, S.: A method and tool for test opti-
mization for automotive controllers. In: Workshops Proceedings of 6th IEEE Inter-
national Conference on Software Testing, Verification and Validation, ICST 2013
Workshops, March 2013, Luxembourg, pp. 198–207. IEEE CS Press, Washington,
DC (2013). https://doi.org/10.1109/icstw.2013.31

20. Petrenko, A., Nguena Timo, O., Ramesh, S.: Multiple mutation testing from FSM.
In: Albert, E., Lanese, I. (eds.) FORTE 2016. LNCS, vol. 9688, pp. 222–238.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39570-8 15

21. Petrenko, A., Nguena Timo, O., Ramesh, S.: Test generation by constraint solving
and FSM mutant killing. In: Wotawa, F., Nica, M., Kushik, N. (eds.) ICTSS 2016.
LNCS, vol. 9976, pp. 36–51. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-47443-4 3

22. Petrenko, A., Simao, A.: Generating checking sequences for user defined fault mod-
els. In: Yevtushenko, N., Cavalli, A.R., Yenigün, H. (eds.) ICTSS 2017. LNCS, vol.
10533, pp. 320–325. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
67549-7 20

23. Petrenko, A., Simao, A.: Checking experiments for finite state machines with sym-
bolic inputs. In: El-Fakih, K., Barlas, G., Yevtushenko, N. (eds.) ICTSS 2015.
LNCS, vol. 9447, pp. 3–18. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-25945-1 1

https://doi.org/10.1007/978-0-387-35567-2_14
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-67549-7_7
https://doi.org/10.1007/3-540-45510-8_10
https://doi.org/10.1007/3-540-45510-8_10
https://doi.org/10.1007/s10270-017-0613-x
https://doi.org/10.1007/s10270-017-0613-x
https://doi.org/10.1007/978-3-319-67549-7_8
https://doi.org/10.1109/tse.2004.1265734
https://doi.org/10.1109/tse.2004.1265734
https://doi.org/10.1109/icstw.2013.31
https://doi.org/10.1007/978-3-319-39570-8_15
https://doi.org/10.1007/978-3-319-47443-4_3
https://doi.org/10.1007/978-3-319-47443-4_3
https://doi.org/10.1007/978-3-319-67549-7_20
https://doi.org/10.1007/978-3-319-67549-7_20
https://doi.org/10.1007/978-3-319-25945-1_1
https://doi.org/10.1007/978-3-319-25945-1_1

Checking Sequence Generation for Symbolic Input/Output FSMs 375

24. Petrenko, A., Yevtushenko, N.: Test suite generation from a FSM with a given type
of implementation errors. In: Linn Jr., R.J., Uyar, M.Ü. (eds.) Proceedings of IFIP
TC6/WG6.1 12th International Symposium on Protocol Specification, Testing and
Verification, Lake Buena Vista, FL, June 1992. IFIP Transactions C: Communica-
tion Systems, vol. 8, pp. 229–243. North-Holland, Amsterdam (1992). https://doi.
org/10.1016/b978-0-444-89874-6.50021-0

25. Thummalapenta, S., Xie, T., Tillmann, N., de Halleux, J., Su, Z.: Synthesizing
method sequences for high-coverage testing. ACM SIGPLAN Not. 46(10), 189–
206 (2011). https://doi.org/10.1145/2076021.2048083

26. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing
approaches. Softw. Test. Verif. Reliab. 22(5), 297–312 (2012). https://doi.org/10.
1002/stvr.456

27. Yannakakis, M., Lee, D.: Testing finite state machines: fault detection. J. Comput.
Syst. Sci. 50(2), 209–227 (1995). https://doi.org/10.1006/jcss.1995.1019

28. Zhu, H., Hall, P.A.V., May, J.H.R.: Software unit test coverage and adequacy. ACM
Comput. Surv. 29(4), 366–427 (1997). https://doi.org/10.1145/267580.267590

https://doi.org/10.1016/b978-0-444-89874-6.50021-0
https://doi.org/10.1016/b978-0-444-89874-6.50021-0
https://doi.org/10.1145/2076021.2048083
https://doi.org/10.1002/stvr.456
https://doi.org/10.1002/stvr.456
https://doi.org/10.1006/jcss.1995.1019
https://doi.org/10.1145/267580.267590

Explicit Auditing

Wilmer Ricciotti(B) and James Cheney

LFCS, School of Informatics, University of Edinburgh,
10 Crichton Street, Edinburgh EH8 9AB, UK

research@wilmer-ricciotti.net, jcheney@inf.ed.ac.uk

Abstract. The Calculus of Audited Units (CAU) is a typed lambda cal-
culus resulting from a computational interpretation of Artemov’s Justifi-
cation Logic under the Curry-Howard isomorphism; it extends the simply
typed lambda calculus by providing audited types, inhabited by expres-
sions carrying a trail of their past computation history. Unlike most other
auditing techniques, CAU allows the inspection of trails at runtime as a
first-class operation, with applications in security, debugging, and trans-
parency of scientific computation.

An efficient implementation of CAU is challenging: not only do the
sizes of trails grow rapidly, but they also need to be normalized after
every beta reduction. In this paper, we study how to reduce terms more
efficiently in an untyped variant of CAU by means of explicit substi-
tutions and explicit auditing operations, finally deriving a call-by-value
abstract machine.

Keywords: Lambda calculus · Justification Logic
Audited computation · Explicit substitutions · Abstract machines

1 Introduction

Transparency is an increasing concern in computer systems: for complex systems,
whose desired behavior may be difficult to formally specify, auditing is an impor-
tant complement to traditional techniques for verification and static analysis for
security [2,6,12,16,19,27], program slicing [22,26], and provenance [21,24]. How-
ever, formal foundations of auditing as a programming language primitive are
not yet well-established: most approaches view auditing as an extra-linguistic
operation, rather than a first-class construct. Recently, however, Bavera and
Bonelli [14] introduced a calculus in which recording and analyzing audit trails
are first-class operations. They proposed a λ-calculus based on a Curry-Howard
correspondence with Justification Logic [7–10] called calculus of audited units,
or CAU. In recent work, we developed a simplified form of CAU and proved
strong normalization [25].

The type system of CAU is based on modal logic, following Pfenning and
Davies [23]: it provides a type �s�A of audited units, where s is “evidence”, or

An extended version of this paper can be found at https://arxiv.org/abs/1808.00486.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 376–395, 2018.
https://doi.org/10.1007/978-3-030-02508-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_20&domain=pdf
https://arxiv.org/abs/1808.00486

Explicit Auditing 377

the expression that was evaluated to produce the result of type A. Expressions
of this type !qM contain a value of type A along with a “trail” q explaining
how M was obtained by evaluating s. Trails are essentially (skeletons of) proofs
of reduction of terms, which can be inspected by structural recursion using a
special language construct.

To date, most work on foundations of auditing has focused on design, seman-
tics, and correctness properties, and relatively little attention has been paid to
efficient execution, while most work on auditing systems has neglected these
foundational aspects. Some work on tracing and slicing has investigated the use
of “lazy” tracing [22]; however, to the best of our knowledge there is no prior
work on how to efficiently evaluate a language such as CAU in which auditing
is a built-in operation. This is the problem studied in this paper.

A näıve approach to implementing the semantics of CAU as given by Bavera
and Bonelli runs immediately into the following problem: a CAU reduction first
performs a principal contraction (e.g. beta reduction), which typically introduces
a local trail annotation describing the reduction, that can block further beta-
reductions. The local trail annotations are then moved up to the nearest enclosing
audited unit constructor using one or more permutation reductions. For example:

!qF [(λx.M) N]
β−−→ !qF [β � M {N/x}]
τ−−−� !t(q,Q[β])F [M {N/x}]

where F [] is a bang-free evaluation context and Q[β] is a subtrail that indicates
where in context F the β-step was performed. As the size of the term being exe-
cuted (and distance between an audited unit constructor and the redexes) grows,
this evaluation strategy slows down quadratically in the worst case; eagerly mate-
rializing the traces likewise imposes additional storage cost.

While some computational overhead seems inevitable to accommodate audit-
ing, both of these costs can in principle be mitigated. Trail permutations are
computationally expensive and can often be delayed without any impact on the
final outcome. Pushing trails to the closest outer bang does not serve any real
purpose: it would be more efficient to keep the trail where it was created and
perform normalization only if and when the trail must be inspected (and this
operation does not even actually require an actual pushout of trails, because we
can reuse term structure to compute the trail structure on-the-fly).

This situation has a well-studied analogue: in the λ-calculus, it is not nec-
essarily efficient to eagerly perform all substitutions as soon as a β-reduction
happens. Instead, calculi of explicit substitutions such as Abadi et al.’s λσ [1]
have been developed in which substitutions are explicitly tracked and rewritten.
Explicit substitution calculi have been studied extensively as a bridge between
the declarative rewriting rules of λ-calculi and efficient implementations. Inspired
by this work, we hypothesize that calculi with auditing can be implemented
more efficiently by delaying the operations of trail extraction and erasure, using
explicit symbolic representations for these operations instead of performing them
eagerly.

378 W. Ricciotti and J. Cheney

Particular care must be placed in making sure that the trails we produce still
correctly describe the order in which operations were actually performed (e.g.
respecting call-by-name or call-by-value reduction): when we perform a princi-
pal contraction, pre-existing trail annotations must be recorded as history that
happened before the contraction, and not after. In the original eager reduction
style, this is trivial because we never contract terms containing trails; however,
we will show that, thanks to the explicit trail operations, correctness can be
achieved even when adopting a lazy normalization of trails.

Contributions. We study an extension of Abadi et al.’s calculus λσ [1] with
explicit auditing operations. We consider a simplified, untyped variant CAU−

of the Calculus of Audited Units (Sect. 2); this simplifies our presentation because
type information is not needed during execution. We revisit λσ in Sect. 3, extend
it to include auditing and trail inspection features, and discuss problems with
this initial, näıve approach. We address these problems by developing a new cal-
culus CAU−

σ with explicit versions of the “trail extraction” and “trail erasure”
operations (Sect. 4), and we show that it correctly refines CAU− (subject to
an obvious translation). In Sect. 5, we build on CAU−

σ to define an abstract
machine for audited computation and prove its correctness. Some proofs have
been omitted due to space constraints and are included in the extended version
of this paper.

2 The Untyped Calculus of Audited Units

The language CAU− presented here is an untyped version of the calculi λh [14]
and Ricciotti and Cheney’s λhc [25] obtained by erasing all typing informa-
tion and a few other related technicalities: this will allow us to address all the
interesting issues related to the reduction of CAU terms, but with a much less
pedantic syntax. To help us explain the details of the calculus, we adapt some
examples from our previous paper [25]; other examples are described by Bavera
and Bonelli [14].

Unlike the typed variant of the calculus, we only need one sort of variables,
denoted by the letters x, y, z The syntax of CAU− is as follows:

Terms M,N ::= x | λx.M | M N | let!(x := M,N) | !qM | q � M | ι(ϑ)
Trails q, q′ ::= r | t(q, q′) | β | β! | ti | lam(q) | app(q, q′) | let!(q, q′) | tb(ζ)

CAU− extends the pure lambda calculus with audited units !qM (colloqui-
ally, “bang M”), whose purpose is to decorate the term M with a log q of its
computation history, called trail in our terminology: when M evolves as a result
of computation, q will be updated by adding information about the reduction
rules that have been applied. The form !qM is in general not intended for use
in source programs: instead, we will write ! M for !rM , where r represents the
empty execution history (reflexivity trail).

Audited units can then be employed in larger terms by means of the “let-
bang” operator, which unpacks an audited unit and thus allows us to access
its contents. The variable declared by a let! is bound in its second argument: in

Explicit Auditing 379

essence let!(x := !qM,N) will reduce to N , where free occurrences of x have been
replaced by M ; the trail q will not be discarded, but will be used to produce a
new trail explaining this reduction.

The expression form q � M is an auxiliary, intermediate annotation of M
with partial history information which is produced during execution and will
eventually stored in the closest surrounding bang.

Example 1. In CAU− we can express history-carrying terms explicitly: for
instance, if we use n̄ to denote the Church encoding of a natural number n,
and plus or fact for lambda terms computing addition and factorial on said
representation, we can write audited units like

!q2̄ !q′ 6̄

where q is a trail representing the history of 2̄ i.e., for instance, a witness for the
computation that produced 2̄ by reducing plus 1̄ 1̄; likewise, q′ might describe
how computing fact 3̄ produced 6̄. Supposing we wish to add these two numbers
together, at the same time retaining their history, we will use the let! construct
to look inside them:

let!(x := !q2̄, let!(y := !q′ 6̄, plus x y)) −−� q′′ � 8̄

where the final trail q′′ is produced by composing q and q′; if this reduction
happens inside an external bang, q′′ will eventually be captured by it.

Trails, representing sequences of reduction steps, encode the (possibly partial)
computation history of a given subterm. The main building blocks of trails are
β (representing standard beta reduction), β! (contraction of a let-bang redex)
and ti (denoting the execution of a trail inspection). For every class of terms
we have a corresponding congruence trail (lam,app, let!, tb, the last of which
is associated with trail inspections), with the only exception of bangs, which do
not need a congruence rule because they capture all the computation happening
inside them. The syntax of trails is completed by reflexivity r (representing a
null computation history, i.e. a term that has not reduced yet) and transitivity
t (i.e. sequential composition of execution steps). As discussed by our earlier
paper [25], we omit Bavera and Bonelli’s symmetry trail form.

Example 2. We build a pair of natural numbers using Church’s encoding:

! ((λx, y, p.p x y) 2) 6 −→ !t(r,app(β ,r)) (λy, p.p 2 y) 6
−→ !t(t(r,app(β ,r)),β) λp.p 2 6

The trail for the first computation step is obtained by transitivity (trail con-
structor t) from the original trivial trail (r, i.e. reflexivity) composed with β,
which describes the reduction of the applied lambda: this subtrail is wrapped in
a congruence app because the reduction takes place deep inside the left-hand
subterm of an application (the other argument of app is reflexivity, because no
reduction takes place in the right-hand subterm).

The second beta-reduction happens at the top level and is thus not wrapped
in a congruence. It is combined with the previous trail by means of transitivity.

380 W. Ricciotti and J. Cheney

The last term form ι(ϑ), called trail inspection, will perform primitive recur-
sion on the computation history of the current audited unit. The metavariables
ϑ and ζ associated with trail inspections are trail replacements, i.e. maps asso-
ciating to each possible trail constructor, respectively, a term or a trail:

ϑ ::={M1/r,M2/t,M3/β,M4/β!,M5/ti,M6/lam,M7/app,M8/let!,M9/tb}
ζ ::={q1/r, q2/t, q3/β, q4/β!, q5/ti, q6/lam, q7/app, q8/let!, q9/tb}

When the trail constructors are irrelevant for a certain ϑ or ζ, we will omit them,
using the notations {−→

M} or {−→q }. These constructs represent (or describe) the
nine cases of a structural recursion operator over trails, which we write as qϑ.

Definition 1. The operation qϑ, which produces a term by structural recursion
on q applying the inspection branches ϑ, is defined as follows:

rϑ � ϑ(r) t(q, q′)ϑ � ϑ(t) (qϑ) (q′ϑ) βϑ � ϑ(β) β!ϑ � ϑ(β!)
tiϑ � ϑ(ti) lam(q)ϑ � ϑ(lam) (qϑ) tb({−→q })ϑ � ϑ(tb)

−−→
(qϑ)

app(q, q′)ϑ � ϑ(app) (qϑ) (q′ϑ) let!(q, q′)ϑ � ϑ(let!) (qϑ) (q′ϑ)

where the sequence
−−→
(qϑ) is obtained from −→q by pointwise recursion.

Example 3. Trail inspection can be used to count all of the contraction steps in
the history of an audited unit, by means of the following trail replacement:

ϑ+ ::={0̄/r, plus/t, 1̄/β, 1̄/β!, 1̄/ti, λx.x/lam, plus/app, plus/let!, sum/tb}

where sum is a variant of plus taking nine arguments, as required by the arity
of tb. For example, we can count the contractions in q = t(let!(β, r),β!) as:

qϑ+ = plus (plus 1̄ 0̄) 1̄

2.1 Reduction

Reduction in CAU− includes rules to contract the usual beta redexes (applied
lambda abstractions), “beta-bang” redexes, which unpack the bang term appear-
ing as the definiens of a let!, and trail inspections. These rules, which we call
principal contractions, are defined as follows:

(λx.M) N
β−−→ β � M {N/x} let!(x := !qM,N)

β−−→ β! � N {q � M/x}

!qF [ι(ϑ)]
β−−→ !qF [ti � qϑ]

Substitution M {N/x} is defined in the traditional way, avoiding variable cap-
ture. The first contraction is familiar, except for the fact that the reduct
M {N/x} has been annotated with a β trail. The second one deals with unpack-
ing a bang: from !qM we obtain q � M , which is then substituted for x in
the target term N ; the resulting term is annotated with a β! trail. The third

Explicit Auditing 381

contraction defines the result of a trail inspection ι(ϑ). Trail inspection will be
contracted by capturing the current history, as stored in the nearest enclosing
bang, and performing structural recursion on it according to the branches defined
by ϑ. The concept of “nearest enclosing bang” is made formal by contexts F in
which the hole cannot appear inside a bang (or bang-free contexts, for short):

F ::= � | λx.F | F M | M F | let!(F ,M) | let!(M,F) | q � F | ι({−→M,F ,
−→
N })

The definition of the principal contractions is completed, as usual, by a contex-
tual closure rule stating that they can appear in any context E :

E ::= � | λx.E | E M | M E | let!(E ,M) | let!(M, E) | !qE | q � E | ι({−→M, E ,
−→
N })

M
β−−→ N

E [M]
β−−→ E [N]

The principal contractions introduce local trail subterms q′ � M , which can
block other reductions. Furthermore, the rule for trail inspection assumes that
the q annotating the enclosing bang really is a complete log of the history of the
audited unit; but at the same time, it violates this invariant, because the ti trail
created after the contraction is not merged with the original history q.

For these reasons, we only want to perform principal contractions on terms
not containing local trails: after each principal contraction, we apply the follow-
ing rewrite rules, called permutation reductions, to ensure that the local trail is
moved to the nearest enclosing bang:

r � M
τ−−→ M q � (q′ � M) τ−−→ t(q, q′) � M

!q(q′ � M) τ−−→ !t(q,q′)M λx.(q � M) τ−−→ lam(q) � λx.M

(q � M) N
τ−−→ app(q, r) � M N M (q � N) τ−−→ app(r, q) � M N

let!(x := q � M,N) τ−−→ let!(q, r) � let!(x := M,N)
let!(x := M, q � N) τ−−→ let!(r, q) � let!(x := M,N)

ι({M1, . . . , q � Mi, . . . ,M9}) τ−−→ tb({r, . . . , q, . . . , r}) � ι({M1, . . . ,M9})

Moreover, the following rules are added to the τ−−→ relation to ensure conflu-
ence:

t(q, r) τ−−→ q t(r, q) τ−−→ q tb({−→r }) τ−−→ r
app(r, r) τ−−→ r lam(r) τ−−→ r let!(r, r)

τ−−→ r
t(t(q1, q2), q3)

τ−−→ t(q1, t(q2, q3))
t(lam(q), lam(q′)) τ−−→ lam(t(q, q′))

t(lam(q1), t(lam(q′
1), q))

τ−−→ t(lam(t(q1, q′
1)), q)

t(app(q1, q2),app(q′
1, q

′
2))

τ−−→ app(t(q1, q′
1), t(q2, q

′
2))

t(app(q1, q2), t(app(q′
1, q

′
2)), q)

τ−−→ t(app(t(q1, q′
1), t(q2, q

′
2)), q)

t(let!(q1, q2), let!(q′
1, q

′
2))

τ−−→ let!(t(q1, q′
1), t(q2, q

′
2))

t(let!(q1, q2), t(let!(q′
1, q

′
2)), q)

τ−−→ t(let!(t(q1, q′
1), t(q2, q

′
2)), q)

t(tb(−→q1), tb(−→q2)) τ−−→ tb(
−−−−−→
t(q1, q2))

t(tb(−→q1), t(tb(−→q2), q)) τ−−→ t(tb(
−−−−−→
t(q1, q2)), q)

382 W. Ricciotti and J. Cheney

As usual, τ−−→ is completed by a contextual closure rule. We prove

Lemma 1 ([14]). τ−−→ is terminating and confluent.

When a binary relation R−→ on terms is terminating and confluent, we will write
R(M) for the unique R-normal form of M . Since principal contractions must
be performed on τ -normal terms, it is convenient to merge contraction and

τ -normalization in a single operation, which we will denote by CAU−
−−−−−→:

M
β−−→ N

M
CAU−
−−−−−→ τ(N)

Example 4. We take again the term from Example 1 and reduce the outer let!
as follows:

! let!(x := !q2, let!(y := !q′6, plus x y))
β−−→ ! (β! � let!(y := !q′6, plus (q � 2) y))
τ−−−� !t(β!,let!(r,app(app(r,q),r))) let!(y := !q′6, plus 2 y)

This let!-reduction substitutes q � 2 for x; a β! trail is produced immediately
inside the bang, in the same position as the redex. Then, we τ -normalize the
resulting term, which results in the two trails being combined and used to anno-
tate the enclosing bang.

3 Näıve Explicit Substitutions

We seek to adapt the existing abstract machines for the efficient normalization
of lambda terms to CAU−. Generally speaking, most abstract machines act on
nameless terms, using de Bruijn’s indices [15], thus avoiding the need to perform
renaming to avoid variable capture when substituting a term into another.

Moreover, since a substitution M {N/x} requires to scan the whole term M
and is thus not a constant time operation, it is usually not executed immediately
in an eager way. The abstract machine actually manipulates closures, or pairs
of a term M and an environment s declaring lazy substitutions for each of the
free variables in M : this allows s to be applied in an incremental way, while
scanning the term M in search for a redex. In the λσ-calculus of Abadi et
al. [1], lazy substitutions and closures are manipulated explicitly, providing an
elegant bridge between the classical λ-calculus and its concrete implementation
in abstract machines. Their calculus expresses beta reduction as the rule

(λ.M) N −→ M [N]

where λ.M is a nameless abstraction à la de Bruijn, and [N] is a (suspended)
explicit substitution mapping the variable corresponding to the first dangling
index in M to N , and all the other variables to themselves. Terms in the form

Explicit Auditing 383

M [s], representing closures, are syntactically part of λσ, as opposed to substitu-
tions M {N/x}, which are meta-operations that compute a term. In this section
we formulate a first attempt at adding explicit substitutions to CAU−. We will
not prove any formal result for the moment, as our purpose is to elicit the diffi-
culties of such a task. An immediate adaptation of λσ-like explicit substitutions
yields the following syntax:

Terms M,N ::= 1 | λ.M | M N | let!(M,N) | !qM | q � M | ι(ϑ) | M [s]
Substitutions s, t ::= 〈〉 | ↑ | s ◦ t | M · s

where 1 is the first de Bruijn index, the nameless λ binds the first free index of its
argument, and similarly the nameless let! binds the first free index of its second
argument. Substitutions include the identity (or empty) substitution 〈〉, lift ↑
(which reinterprets all free indices n as their successor n + 1), the composition
s ◦ t (equivalent to the sequencing of s and t) and finally M · s (indicating a
substitution that will replace the first free index with M , and other indices n
with their predecessor n − 1 under substitution s). Trails are unchanged.

We write M [N1 · · · Nk] as syntactic sugar for M [N1 · · · Nk · 〈〉]. Then, CAU−

reductions can be expressed as follows:

(λ.M) N
β−−→ β � M [N] let!(!qM,N)

β−−→ β! � N [q � M]

!qF [ι(ϑ)]
β−−→ !qF [ti � qϑ]

(trail inspection, which does not use substitutions, is unchanged). The idea is
that explicit substitutions make reduction more efficient because their evalua-
tion does not need to be performed all at once, but can be delayed, partially
or completely; delayed explicit substitutions applied to the same term can be
merged, so that the term does not need to be scanned twice. The evaluation of
explicit substitution can be defined by the following σ-rules:

1[〈〉] σ−−→ 1 〈〉 ◦ s
σ−−→ s

1[M · s] σ−−→ M ↑ ◦ 〈〉 σ−−→ ↑
(λM)[s] σ−−→ λ(M [1 · (s ◦ ↑)]) ↑ ◦ (M · s) σ−−→ s

(M N)[s] σ−−→ M [s] N [s] (M · s) ◦ t
σ−−→ M [t] · (s ◦ t)

(!qM)[s] σ−−→ !q(M [s]) (s1 ◦ s2) ◦ s3
σ−−→ s1 ◦ (s2 ◦ s3)

let!(M,N)[s] σ−−→ let!(M,N [1 · (s ◦ ↑)]) (q � M)[s] σ−−→ q � (M [s])
ι({−→

M})[s] σ−−→ ι({
−−→
M [s]}) M [s][t] σ−−→ M [s ◦ t]

These rules are a relatively minor adaptation from those of λσ: as in that lan-
guage, σ-normal forms do not contain explicit substitutions, save for the case of
the index 1, which may be lifted multiple times, e.g.:

1[↑n] = 1[↑ ◦ · · · ◦ ↑
︸ ︷︷ ︸

n times

]

If we take 1[↑n] to represent the de Bruijn index n+1, as in λσ, σ-normal terms
coincide with a nameless representation of CAU−.

384 W. Ricciotti and J. Cheney

Fig. 1. Non-joinable reduction in CAU− with näıve explicit substitutions

The σ-rules are deferrable, in that we can perform β-reductions even if a
term is not in σ-normal form. We would like to treat the τ -rules in the same
way, perhaps performing τ -normalization only before trail inspection; however,
we can see that changing the order of τ -rules destroys confluence even when
β-redexes are triggered in the same order. Consider for example the reductions
in Fig. 1: performing a τ -step before the beta-reduction, as in the right branch,
yields the expected result. If instead we delay the τ -step, the trail q decorating
N is duplicated by beta reduction; furthermore, the order of q and β gets mixed
up: even though q records computation that happened (once) before β, the final
trail asserts that q happened (twice) after β.1 As expected, the two trails (and
consequently the terms they decorate) are not joinable.

The example shows that β-reduction on terms whose trails have not been
normalized is anachronistic. If we separated the trails stored in a term from the
underlying, trail-less term, we might be able to define a catachronistic, or time-
honoring version of β-reduction. For instance, if we write �M� for trail-erasure
and 	M
 for the trail-extraction of a term M , catachronistic beta reduction
could be written as follows:

(λ.M) N
β−−→ t((λ.M) N
 ,β) � �M� [�N�]

let!(!qM,N)
β−−→ t(let!(!qM,N)
 ,β!) � �N� [q � M]

!qF [ι(ϑ)]
β−−→ !qF [ti � q′ϑ] (where q′ = τ(t(q, 	F [ι(ϑ)]
)))

We could easily define trail erasure and extraction as operations on pure
CAU− terms (without explicit substitutions), but the cost of eagerly computing
their result would be proportional to the size of the input term; furthermore,
the extension to explicit substitutions would not be straightforward. Instead,
in the next section, we will describe an extended language to manipulate trail
projections explicitly.

1 Although the right branch describes an unfaithful account of history, it is still a
coherent one: we will explain this in more detail in the conclusions.

Explicit Auditing 385

4 The Calculus CAU−
σ

We define the untyped Calculus of Audited Units with explicit substitutions, or
CAU−

σ , as the following extension of the syntax of CAU− presented in Sect. 2:
M,N ::= 1 | λ.M | M N | let!(M,N) | !qM | q � M | ι(ϑ) | M [s] | �M�

q, q′ ::= r | t(q, q′) | β | β! | ti | lam(q) | app(q, q′) | let!(q, q′) | tb(ζ) | 	M

s, t ::= 〈〉 | ↑ | M · s | s ◦ t

CAU−
σ builds on the observations about explicit substitutions we made in

the previous section: in addition to closures M [s], it provides syntactic trail
erasures denoted by �M�; dually, the syntax of trails is extended with the explicit
trail-extraction of a term, written 	M
. In the näıve presentation, we gave a
satisfactory set of σ-rules defining the semantics of explicit substitutions, which
we keep as part of CAU−

σ . To express the semantics of explicit projections,
we provide in Fig. 2 rules stating that �·� and 	·
 commute with most term
constructors (but not with !) and are blocked by explicit substitutions. These
rules are completed by congruence rules asserting that they can be used in any
subterm or subtrail of a given term or trail.

Fig. 2. σ-reduction for explicit trail projections

The τ rules from Sect. 2 are added to CAU−
σ with the obvious adaptations.

We prove that σ and τ , together, yield a terminating and confluent rewriting
system.

Theorem 1. (σ−−→ ∪ τ−−→) is terminating and confluent.

Proof. Tools like AProVE [17] are able to prove termination automatically. Local
confluence can be proved easily by considering all possible pairs of rules: full
confluence follows as a corollary of these two results.

4.1 Beta Reduction

We replace the definition of β-reduction by the following lazy rules that use
trail-extraction and trail-erasure to ensure that the correct trails are eventually
produced:

386 W. Ricciotti and J. Cheney

(λ.M) N
Beta−−−→ t(app(lam(M
), 	N
),β) � �M� [�N�]

let!(!qM,N) Beta−−−→ t(let!(r, 	N
),β!) � �N� [q � M]

!qF [ι(ϑ)] Beta−−−→ !qF [ti � q′ϑ] (where q′ = στ(t(q, 	F [ι(ϑ)]
)))

where F specifies that the reduction cannot take place within a bang, a substi-
tution, or a trail erasure:

F ::= � | λ.F | (F N) | (M F) | let!(F , N) | let!(M,F) | q � F | ι(−→M,F ,
−→
N) | F [s]

As usual, the relation is extended to inner subterms by means of congruence
rules. However, we need to be careful: we cannot reduce within a trail-erasure,
because if we did, the newly created trail would be erroneously erased:

wrong: �(λ.M) N�
Beta−−−→ �t(app(lam(M
), 	N
),β) � �M� [�N�]�
σ−−→ ��M� [�N�]�

correct: �(λ.M) N�
σ−−−� (λ. �M�) �N�

Beta−−−→ t(app(lam(�M�
), 	�N�
),β) � �M� [�N�]

This is why we express the congruence rule by means of contexts Eσ such that
holes cannot appear within erasures (the definition also employs substitution
contexts Sσ to allow reduction within substitutions):

M
Beta−−−→ N

Eσ[M] Beta−−−→ Eσ[N]

Formally, evaluation contexts are defined as follows:

Definition 2 (evaluation context)

Eσ ::= � | λ.Eσ | (Eσ N) | (M Eσ) | let!(Eσ, N) | let!(M, Eσ) | !qEσ | q � Eσ

| ι({−→
M, Eσ,

−→
N }) | Eσ[s] | M [Sσ]

Sσ ::= Sσ ◦ t | s ◦ Sσ | Eσ · s | M · Sσ

We denote στ -equivalence (the reflexive, symmetric, and transitive closure of
στ−−→) by means of στ←−−→. As we will prove, στ -equivalent CAU−

σ terms can be
interpreted as the same CAU− term: for this reason, we define reduction in
CAU−

σ as the union of Beta−−−→ and στ←−−→:

CAU−
σ−−−−−→ := Beta−−−→ ∪ στ←−−→ (1)

Explicit Auditing 387

Fig. 3. Relativized confluence for CAU−
σ .

4.2 Properties of the Rewriting System

The main results we prove concern the relationship between CAU− and CAU−
σ :

firstly, every CAU− reduction must still be a legal reduction within CAU−
σ ; in

addition, it should be possible to interpret every CAU−
σ reduction as a CAU−

reduction over suitable στ -normal terms.

Theorem 2. If M
CAU−

−−−−−−� N , then M
CAU−

σ−−−−−−� N .

Theorem 3. If M
CAU−

σ−−−−−−� N , then στ(M)
CAU−

−−−−−−� στ(N).

Although CAU−
σ , just like CAU−, is not confluent (different reduction

strategies produce different trails, and trail inspection can be used to compute
on them, yielding different terms as well), the previous results allow us to use
Hardin’s interpretation technique [18] to prove a relativized confluence theorem:

Theorem 4. If M
CAU−

σ−−−−−−� N and M
CAU−

σ−−−−−−� R, and furthermore στ(N)
and στ(R) are joinable in CAU−, then N and R are joinable in CAU−

σ .

Proof. See Fig. 3.

While the proof of Theorem2 is not overly different from the similar proof for
the λσ-calculus, Theorem 3 is more interesting. The main challenge is to prove

that whenever M
Beta−−−→ N , we have στ(M)

CAU−
−−−−−−−� στ(N). However, when

proceeding by induction on M
Beta−−−→ N , the terms στ(M) and στ(N) are too

normalized to provide us with a good enough induction hypothesis: in particular,
we would want them to be in the form q � R even when q is reflexivity. We call
terms in this quasi-normal form focused, and prove the theorem by reasoning on
them. The details of the proof are discussed in the extended version.

388 W. Ricciotti and J. Cheney

5 A Call-by-Value Abstract Machine

In this section, we derive an abstract machine implementing a weak call-by-
value strategy. More precisely, the machine will consider subterms shaped like
q �

⌊

M [e]
⌋

, where M is a pure CAU− term with no explicit operators, and e is an
environment, i.e. an explicit substitution containing only values. In the tradition
of lazy abstract machines, values are closures (typically pairing a lambda and
an environment binding its free variables); in our case, the most natural notion
of closure also involves trail erasures and bangs:

Closures C ::=
⌊

(λM)[e]
⌋

| !qC
Values V,W ::= q � C
Environments e ::= 〈〉 | V · e

According to this definition, the most general case of closure is a telescope of
bangs, each equipped with a complete history, terminated at the innermost level
by a lambda abstraction applied to an environment and enclosed in an erasure.

!q1 · · · !qn

⌊

(λM)[e]
⌋

The environment e contains values with dangling trails, which may be captured
by bangs contained in M ; however, the erasure makes sure that none of these
trails may reach the external bangs; thus, along with giving meaning to free
variables contained in lambdas, closures serve the additional purpose of making
sure the history described by the q1, . . . , qn is complete for each bang.

The machine we describe is a variant of the SECD machine. To simplify the
description, the code and environment are not separate elements of the machine
state, but they are combined, together with a trail, as the top item of the stack.
Another major difference is that a code κ can be not only a normal term without
explicit operations, but also be a fragment of abstract syntax tree. The stack π is
a list of tuples containing a trail, a code, and an environment, and represents the
subterm currently being evaluated (the top of the stack) and the unevaluated
context, i.e. subterms whose evaluation has been deferred (the remainder of the
stack). As a pleasant side-effect of allowing fragments of the AST into the stack,
we never need to set aside the current stack into the dump: D is just a list of
values representing the evaluated context (i.e. the subterms whose evaluation
has already been completed).

Codes κ ::= M | @ | ! | let!(M) | ι
Tuples τ ::= (q|κ|e)
Stack π ::= −→τ
Dumps D ::=

−→
V

Configurations ς ::= (π,D)

The AST fragments allowed in codes include application nodes @, bang
nodes !, incomplete let bindings let!(M), and inspection nodes ι. A tuple (q|M |e)
in which the code happens to be a term can be easily interpreted as q �

⌊

M [e]
⌋

;
however, tuples whose code is an AST fragment only make sense within a certain

Explicit Auditing 389

machine state. The machine state is described by a configuration ς consisting of
a stack and a dump.

Fig. 4. Term and context configurations

A meaningful state cannot contain just any stack and dump, but must have
a certain internal coherence, which we express by means of the two judgments in
Fig. 4: in particular, the machine state must be a term configuration; this notion
is defined by the judgment ς tm, which employs a separate notion of context
configuration, described by the judgment ς ctx.

We can define the denotation of configurations by recursion on their well-
formedness judgment:

Definition 3

1. The denotation of a context configuration is defined as follows:

(ε, ε) � �
((q|M |e) :: (q′|@|〈〉) :: π,D) � (π,D)[q′ � (� (q �

⌊

M [e]
⌋

))]

((q|@|〈〉) :: π, V :: D) � (π,D)[q � (V �)]

((q| let!(M)|e) :: π,D) � (π,D)[q � let!(�,
⌊

M [1 · (e◦ ↑)]
⌋

)]

((q|!|〈〉) :: π,D) � (π,D)[q � !�]

(
−−−−−−→
(qi|Mi|ei) :: (q′|ι|〈〉) :: π,

−→
Vj :: D) � (π,D)[q′ � ι(

−→
Vj ,�,

−−−−−−−−−−→
(qi �

⌊

Mi[ei]
⌋

))]

where in the last line i + j + 1 = 9.

390 W. Ricciotti and J. Cheney

Fig. 5. Call-by-value abstract machine

2. The denotation of a term configuration is defined as follows:

T (ε, V :: ε) � V

T ((q|M |e) :: π,D) � (π,D)[q �
⌊

M [e]
⌋

]

T ((q|@|〈〉) :: π,W :: V :: D) � (π,D)[q � (V W)]

T ((q| let!(M)|e) :: π, V :: D) � (π,D)[q � let!(V,
⌊

M [1 · (e◦ ↑)])]
⌋

T ((q|!|〈〉) :: π, V :: D) � (π,D)[q � !V]

T ((q|ι|〈〉) :: π,
−→
V9 :: D) � (π,D)[q � ι(

−→
V9)]

We see immediately that the denotation of a term configuration is a CAU−
σ

term, while that of a context configuration is a CAU−
σ context (Definition 2).

The call-by-value abstract machine for CAU− is shown in Fig. 5: in this
definition we use semi-colons as a compact notation for sequences of transitivity
trails. The evaluation of a pure, closed term M , starts with an empty dump and
a stack made of a single tuple (r,M, 〈〉): this is a term configuration denoting
r �

⌊

M [〈〉]
⌋

, which is στ -equivalent to M . Final states are in the form ε, V :: ε,
which simply denotes the value V . When evaluating certain erroneous terms (e.g.
(! M) V , where function application is used on a term that is not a function),
the machine may get stuck in a non-final state; these terms are rejected by the

Fig. 6. Materialization of trails for inspection

Explicit Auditing 391

typed CAU. The advantage of our machine, compared to a naive evaluation
strategy, is that in our case all the principal reductions can be performed in
constant time, except for trail inspection which must examine a full trail, and
thus will always require a time proportional to the size of the trail.

Let us now examine the transition rules briefly. Rules 1–3 and 10 closely
match the “Split CEK” machine [3] (a simplified presentation of the SECD
machine), save for the use of the @ code to represent application nodes, while in
the Split CEK machine they are expressed implicitly by the stack structure.

Rule 1 evaluates an application by decomposing it, placing two new tuples on
the stack for the subterms, along with a third tuple for the application node; the
topmost trail remains at the application node level, and two reflexivity trails are
created for the subterms; the environment is propagated to the subterm tuples.

The idea is that when the machine reaches a state in which the term at
the top of the stack is a value (e.g. a lambda abstraction, as in rule 3), the
value is moved to the dump, and evaluation continues on the rest of the stack.
Thus when in rule 2 we evaluate an application node, the dump will contain
two items resulting from the evaluation of the two subterms of the application;
for the application to be meaningful, the left-hand subterm must have evaluated
to a term of the form λM , whereas the form of the right-hand subterm is not
important: the evaluation will then continue as usual on M under an extended
environment; the new trail will be obtained by combining the three trails from
the application node and its subexpressions, followed by a β trail representing
beta reduction.

The evaluation of let! works similarly to that of applications; however, a term
let!(M, N) is split intro M and let!(N) (rule 4), so that N is never evaluated
independently from the corresponding let! node. When in rule 5 we evaluate the
let!(N) node, the dump will contain a value corresponding to the evaluation of M
(which must have resulted in a value of the form !V): we then proceed to evaluate
N in an environment extended with V ; this step corresponds to a principal
contraction, so we update the trail accordingly, by adding β!; additionally, we
need to take into account the trails from V after substitution into N : we do this
by extending the trail with

⌈⌊

N [1 · (e◦ ↑)]
⌋

[V]
⌉

.
Bangs are managed by rules 6 and 7. To evaluate !q′M , we split it into M

and a ! node, placing the corresponding tuples on top of the stack; the original
external trail q remains with the ! node, whereas the internal trail q′ is placed
in the tuple with M ; the environment e is propagated to the body of the bang
but, since it may contain trails, we need to extend q′ with the trails resulting
from substitution into M . When in rule 7 we evaluate the ! node, the top of the
dump contains the value V resulting from the evaluation of its body: we update
the dump by combining V with the bang and proceed to evaluate the rest of the
stack.

The evaluation of trail inspections (rules 8 and 9) follows the same principle as
that of applications, with the obvious differences due to the fact that inspections
have nine subterms. The principal contraction happens in rule 9, which assumes
that the inspection branches have been evaluated to q1 � C1, . . . , q9 � C9 and put

392 W. Ricciotti and J. Cheney

on the dump: at this point we have to reconstruct and normalize the inspection
trail and apply the inspection branches. To reconstruct the inspection trail, we
combine q and the −→qi into the trail for the current subterm (q; tb(−→qi)); then we
must collect the trails in the context of the current bang, which are scattered
in the stack and dump: this is performed by the auxiliary operator I of Fig. 6,
defined by recursion on the well-formedness of the context configuration π,D;
the definition is partial, as it lacks the case for ε, ε, corresponding to an inspection
appearing outside all bangs: such terms are considered “inspection-locked” and
cannot be reduced. Due to the operator I, rule 9 is the only rule that cannot be
performed in constant time.

I returns a στ -normalized trail, which we need to apply to the branches
C1, . . . , C9; from the implementation point of view, this operation is analogous
to a substitution replacing the trail nodes (r, t,β,app, lam, . . .) with the respec-
tive Mi. Suppose that trails are represented as nested applications of dangling
de Bruijn indices from 1 to 9 (e.g. the trail app(r,β) can be represented as (1 2 3)
for app = 1, r = 2 and β = 3); then trail inspection reduction amounts to the
evaluation of a trail in an environment composed of the trail inspection branches.
To sum it up, rule 9 produces a state in which the current tuple contains:

– a trail (q; tb(−→qi); ti) (combining the trail of the inspection node, the trails of
the branches, and the trail ti denoting trail inspection

– the στ -reduced inspection “trail” (operationally, an open term with nine dan-
gling indices) which results from I((q; tb(−→qi)), π,D)

– an environment [
−−−−−→
(r � Ci)] which implements trail inspection by substituting

the inspection branches for the dangling indices in the trail.

The machine is completed by rule 10, which evaluates de Bruijn indices by
looking them up in the environment. Notice that the lookup operation e(n),
defined when the de Bruijn index n is closed by the environment e, simply
returns the n-th closure in e, but not the associated trail; the invariants of our
machine ensure that this trail is considered elsewhere (particularly in rules 5
and 6).

The following theorem states that the machine correctly implements reduc-
tion.

Theorem 5. For all valid ς, ς → ς ′ implies T (ς)
CAU−

σ−−−−−−� T (ς ′).

6 Conclusions and Future Directions

The calculus CAU−
σ which we introduced in this paper provides a finer-grained

view over the reduction of history-carrying terms, and proved an effective tool
in the study of the smarter evaluation techniques which we implemented in
an abstract machine. CAU−

σ is not limited to the call-by-value strategy used
by our machine, and in future work we plan to further our investigation of
efficient auditing to call-by-name and call-by-need. Another intriguing direction
we are exploring is to combine our approach with recent advances in explicit

Explicit Auditing 393

substitutions, such as the linear substitution calculus of Accattoli and Kesner [5],
and apply the distillation technique of Accattoli et al. [3]

In our discussion, we showed that the original definition of beta-reduction,
when applied to terms that are not in trail-normal form, creates temporally
unsound trails. We might wonder whether these anachronistic trails carry any
meaning: let us take, as an example, the reduction on the left branch of Fig. 1:

(λ.M 1 1) (q � N) −−� t(β,app(app(r, q), q)) � M N N

We know that q is the trace left behind by the reduction that led to N from the
original term, say R:

R −→ q � N

We can see that the anachronistic trail is actually consistent with the reduction
of (λ.M 1 1) R under a leftmost-outermost strategy:

(λ.M 1 1) R −→ β � M R R −−� β � M (q � N) (q � N)
−−� t(β,app(app(r, q), q)) � M N N

Under the anachronistic reduction, q acts as the witness of an original inner
redex. Through substitution within M , we get evidence that the contraction of
an inner redex can be swapped with a subsequent head reduction: this is a key
result in the proof of standardization that is usually obtained using the notion
of residual ([13], Lemma 11.4.5). Based on this remark, we conjecture that trails
might be used to provide a more insightful proof: it would thus be interesting to
see how trails relate to recent advancements in standardization [4,11,20,28].

Acknowledgments. Effort sponsored by the Air Force Office of Scientific Research,
Air Force Material Command, USAF, under grant number FA8655-13-1-3006. The U.S.
Government and University of Edinburgh are authorised to reproduce and distribute
reprints for their purposes notwithstanding any copyright notation thereon. Cheney
was also supported by ERC Consolidator Grant Skye (grant number 682315). We are
grateful to James McKinna and the anonymous reviewers for comments.

References

1. Abadi, M., Cardelli, L., Curien, P.L., Lévy, J.J.: Explicit substitutions. J. Funct.
Program. 1(4), 375–416 (1991). https://doi.org/10.1017/s0956796800000186

2. Abadi, M., Fournet, C.: Access control based on execution history. In: Proceedings
of Network and Distributed System Security Symposium, NDSS 2003, San Diego,
CA. The Internet Society (2003) http://www.isoc.org/isoc/conferences/ndss/03/
proceedings/papers/7.pdf

3. Accattoli, B., Barenbaum, P., Mazza, D.: Distilling abstract machines. In: Pro-
ceedings of 19th ACM SIGPLAN Conference on Functional Programming, ICFP
2014, Gothenburg, September 2014, pp. 363–376. ACM Press, New York (2014).
https://doi.org/10.1145/2628136.2628154

https://doi.org/10.1017/s0956796800000186
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/7.pdf
http://www.isoc.org/isoc/conferences/ndss/03/proceedings/papers/7.pdf
https://doi.org/10.1145/2628136.2628154

394 W. Ricciotti and J. Cheney

4. Accattoli, B., Bonelli, E., Kesner, D., Lombardi, C.: A nonstandard standardiza-
tion theorem. In: Proceedings of 41st Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2014, San Diego, CA, Jan-
uary 2014, pp. 659–670. ACM Press, New York (2014). https://doi.org/10.1145/
2535838.2535886

5. Accattoli, B., Kesner, D.: The structural λ-calculus. In: Dawar, A., Veith, H. (eds.)
CSL 2010. LNCS, vol. 6247, pp. 381–395. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-15205-4 30

6. Amir-Mohammadian, S., Chong, S., Skalka, C.: Correct audit logging: theory and
practice. In: Piessens, F., Viganò, L. (eds.) POST 2016. LNCS, vol. 9635, pp. 139–
162. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49635-0 8

7. Artemov, S.: Justification logic. In: Hölldobler, S., Lutz, C., Wansing, H. (eds.)
JELIA 2008. LNCS (LNAI), vol. 5293, pp. 1–4. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-87803-2 1

8. Artemov, S.: The logic of justification. Rev. Symb. Log. 1(4), 477–513 (2008).
https://doi.org/10.1017/s1755020308090060

9. Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symb. Log.
7(1), 1–36 (2001). https://doi.org/10.2307/2687821

10. Artemov, S., Bonelli, E.: The intensional lambda calculus. In: Artemov, S.N.,
Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 12–25. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-72734-7 2

11. Asperti, A., Levy, J.J.: The cost of usage in the λ-calculus. In: Proceedings of 28th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New
Orleans, LA, June 2013, pp. 293–300. IEEE CS Press, Washington, DC (2013).
https://doi.org/10.1109/lics.2013.35

12. Banerjee, A., Naumann, D.A.: History-based access control and secure information
flow. In: Barthe, G., Burdy, L., Huisman, M., Lanet, J.-L., Muntean, T. (eds.)
CASSIS 2004. LNCS, vol. 3362, pp. 27–48. Springer, Heidelberg (2005). https://
doi.org/10.1007/978-3-540-30569-9 2

13. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematic, vol. 103, 2nd edn. North-Holland, Ams-
terdam (1984). https://www.sciencedirect.com/science/bookseries/0049-237X/
103

14. Bavera, F., Bonelli, E.: Justification logic and audited computation. J. Log. Com-
put. 28(5), 909–934 (2018). https://doi.org/10.1093/logcom/exv037

15. de Bruijn, N.: Lambda-calculus notation with nameless dummies: a tool for
automatic formula manipulation with application to the Church-Rosser theo-
rem. Indagationes Math. 34(5), 381–392 (1972). https://doi.org/10.1016/1385-
7258(72)90034-0

16. Garg, D., Jia, L., Datta, A.: Policy auditing over incomplete logs: theory, imple-
mentation and applications. In: Proceedings of 18th ACM Conference on Computer
and Communications Security, CCS 2011, Chicago, IL, October 2011, pp. 151–162.
ACM Press, New York (2011). https://doi.org/10.1145/2046707.2046726

17. Giesl, J., et al.: Proving Termination of programs automatically with AProVE.
In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS (LNAI),
vol. 8562, pp. 184–191. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08587-6 13

18. Hardin, T.: Confluence results for the pure strong categorical combinatory logic
CCL: λ-calculi as subsystems of CCL. Theor. Comput. Sci. 65(3), 291–342 (1989).
https://doi.org/10.1016/0304-3975(89)90105-9

https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1145/2535838.2535886
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1007/978-3-642-15205-4_30
https://doi.org/10.1007/978-3-662-49635-0_8
https://doi.org/10.1007/978-3-540-87803-2_1
https://doi.org/10.1017/s1755020308090060
https://doi.org/10.2307/2687821
https://doi.org/10.1007/978-3-540-72734-7_2
https://doi.org/10.1109/lics.2013.35
https://doi.org/10.1007/978-3-540-30569-9_2
https://doi.org/10.1007/978-3-540-30569-9_2
https://www.sciencedirect.com/science/bookseries/0049-237X/103
https://www.sciencedirect.com/science/bookseries/0049-237X/103
https://doi.org/10.1093/logcom/exv037
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1145/2046707.2046726
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1007/978-3-319-08587-6_13
https://doi.org/10.1016/0304-3975(89)90105-9

Explicit Auditing 395

19. Jia, L., et al.: AURA: a programming language for authorization and audit. In:
Proceedings of 13th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP 2013, Victoria, BC, September 2008, pp. 27–38. ACM Press, New
York (2008). https://doi.org/10.1145/1411204.1411212

20. Kashima, R.: A proof of the standardization theorem in lambda-calculus. Tech-
nical report, Research Reports on Mathematical and Computing Science, Tokyo
Institute of Technology (2000)

21. Moreau, L.: The foundations for provenance on the web. Found. Trends Web Sci.
2(2–3), 99–241 (2010). https://doi.org/10.1561/1800000010

22. Perera, R., Acar, U.A., Cheney, J., Levy, P.B.: Functional programs that explain
their work. In: Proceedings of 17th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2012, Copenhagen, September 2002, pp. 365–376.
ACM Press, New York (2012). https://doi.org/10.1145/2364527.2364579

23. Pfenning, F., Davies, R.: A judgmental reconstruction of modal logic. Math. Struct.
Comput. Sci. 11(4), 511–540 (2001). https://doi.org/10.1017/s0960129501003322

24. Ricciotti, W.: A core calculus for provenance inspection. In: Proceedings of 19th
International Symposium on Principles and Practice of Declarative Programming,
PPDP 2017, Namur, October 2017, pp. 187–198. ACM Press, New York (2017).
https://doi.org/10.1145/3131851.3131871

25. Ricciotti, W., Cheney, J.: Strongly normalizing audited computation. In: Goranko,
V., Dam, M. (eds.) Proceedings of 26th EACSL Annual Conference, CSL 2017,
Stockholm, August 2017. Leibniz International Proceedings in Informatics, vol. 82,
Article no. 36. Schloss Dagstuhl Publishing, Saarbrücken/Wadern (2017). https://
doi.org/10.4230/lipics.csl.2017.36

26. Ricciotti, W., Stolarek, J., Perera, R., Cheney, J.: Imperative functional programs
that explain their work. Proc. ACM Program. Lang. 1(ICFP), Article no. 14
(2017). https://doi.org/10.1145/3110258

27. Vaughan, J.A., Jia, L., Mazurak, K., Zdancewic, S.: Evidence-based audit. In:
Proceedings of 21st IEEE Computer Security Foundations Symposium, CSF 2008,
Pittsburgh, PA, June 2008, pp. 177–191. IEEE CS Press, Washington, DC (2008).
https://doi.org/10.1109/csf.2008.24

28. Xi, H.: Upper bounds for standardizations and an application. J. Symb. Log. 64(1),
291–303 (1999). https://doi.org/10.2307/2586765

https://doi.org/10.1145/1411204.1411212
https://doi.org/10.1561/1800000010
https://doi.org/10.1145/2364527.2364579
https://doi.org/10.1017/s0960129501003322
https://doi.org/10.1145/3131851.3131871
https://doi.org/10.4230/lipics.csl.2017.36
https://doi.org/10.4230/lipics.csl.2017.36
https://doi.org/10.1145/3110258
https://doi.org/10.1109/csf.2008.24
https://doi.org/10.2307/2586765

Complexity and Expressivity
of Branching- and Alternating-Time
Temporal Logics with Finitely Many

Variables

Mikhail Rybakov1,2 and Dmitry Shkatov2(B)

1 Tver State University, Tver, Russia
m rybakov@mail.ru

2 University of the Witwatersrand, Johannesburg, South Africa
shkatov@gmail.com

Abstract. We show that Branching-time temporal logics CTL and
CTL∗, as well as Alternating-time temporal logics ATL and ATL∗, are
as semantically expressive in the language with a single propositional
variable as they are in the full language, i.e., with an unlimited supply of
propositional variables. It follows that satisfiability for CTL, as well as
for ATL, with a single variable is EXPTIME-complete, while satisfiabil-
ity for CTL∗, as well as for ATL∗, with a single variable is 2EXPTIME-
complete,—i.e., for these logics, the satisfiability for formulas with only
one variable is as hard as satisfiability for arbitrary formulas.

Keywords: Branching-time temporal logics
Alternating-time temporal logics · Finite-variable fragments
Computational complexity · Semantic expressivity
Satisfiability problem

1 Introduction

The propositional Branching-time temporal logics CTL [4,7] and CTL∗ [7,11]
have for a long time been used in formal specification and verification of (parallel)
non-terminating computer programs [7,25], such as (components of) operating
systems, as well as in formal specification and verification of hardware. More
recently, Alternating-time temporal logics ATL and ATL∗ [1,7] have been used
for formal specification and verification of multi-agent [35] and, more broadly,
so-called open systems, i.e., systems whose correctness depends on the actions
of external entities, such as the environment or other agents making up a multi-
agent system.

This work has been supported by Russian Foundation for Basic Research, projects
16-07-01272 and 17-03-00818.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 396–414, 2018.
https://doi.org/10.1007/978-3-030-02508-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_21&domain=pdf
http://orcid.org/0000-0002-1491-1310
http://orcid.org/0000-0002-0559-1503

Temporal Logics with Finitely Many Variables 397

Logics CTL, CTL∗, ATL, and ATL∗ have two main applications to com-
puter system design, corresponding to two different stages in the system design
process, traditionally conceived of as having specification, implementation, and
verification phases. First, the task of verifying that an implemented system con-
forms to a specification can be carried out by checking that a formula expressing
the specification is satisfied in the structure modelling the system,—for program
verification, this structure usually models execution paths of the program; this
task corresponds to the model checking problem [5] for the logic. Second, the
task of verifying that a specification of a system is satisfiable—and, thus, can
be implemented by some system—corresponds to the satisfiability problem for
the logic. Being able to check that a specification is satisfiable has the obvious
advantage of avoiding wasted effort in trying to implement unsatisfiable systems.
Moreover, an algorithm that checks for satisfiability of a formula expressing a
specification builds, explicitly or implicitly, a model for the formula, thus sup-
plying a formal model of a system conforming to the specification; this model
can subsequently be used in the implementation phase. There is hope that one
day such models can be used as part of a “push-button” procedure producing an
assuredly correct implementation from a specification model, avoiding the need
for subsequent verification altogether. Tableaux-style satisfiability-checking algo-
rithms developed for CTL in [10], for CTL∗ in [30], for ATL in [19], and for
ATL∗ in [6] all implicitly build a model for the formula whose satisfiability is
being checked.

In this paper, we are concerned with the satisfiability problem for CTL,
CTL∗, ATL, and ATL∗; clearly, the complexity of satisfiability for these logics
is of crucial importance to their applications to formal specification. It is well-
known that, for formulas that might contain contain an arbitrary number of
propositional variables, the complexity of satisfiability for all of these logics is
quite high: it is EXPTIME-complete for CTL [10,13], 2EXPTIME-complete for
CTL∗ [37], EXPTIME-complete for ATL [14,40], and 2EXPTIME-complete for
ATL∗ [34].

It has, however, been observed (see, for example, [8]) that, in practice, for-
mulas expressing formal specifications, despite being quite long and containing
deeply nested temporal operators, usually contain only a very small number
of propositional variables,—typically, two or three. The question thus arises
whether limiting the number of propositional variables allowed to be used in
the construction of formulas we take as inputs can bring down the complexity of
the satisfiability problem for CTL, CTL∗, ATL, and ATL∗. Such an effect is
not, after all, unknown in logic: examples are known of logics whose satisfiability
problem goes down from “intractable” to “tractable” once we place a limit on
the number of propositional variables allowed in the language: thus, satisfiability
for the classical propositional logic as well as the extensions of the modal logic
K5 [27], which include such logics as K45, KD45, and S5 (see also [21]), goes
down from NP-complete to polynomial-time decidable once we limit the number

398 M. Rybakov and D. Shkatov

of propositional variables in the language to an (arbitrary) finite number.1 Sim-
ilarly, as follows from [28], satisfiability for the intuitionistic propositional logic
goes down from PSPACE-complete to polynomial-time decidable if we allow only
a single propositional variable in the language.

The question of whether the complexity of satisfiability for CTL, CTL∗,
ATL, and ATL∗can be reduced by restricting the number of propositional vari-
ables allowed to be used in the formulas has not, however, been investigated in
the literature. The present paper is mostly meant to fill that gap.

A similar question has been answered in the negative for Linear-time tem-
poral logic LTL in [8], where it was shown, using a proof technique peculiar to
LTL (in particular, [8] relies on the fact that for LTL with a finite number of
propositional variables satisfiability reduces to model-checking), that a single-
variable fragment of LTL is PSPACE-complete, i.e., as computationally hard
as the entire logic [36]. It should be noted that, in this respect, LTL behaves
like most “natural” modal and temporal logics, for which the presence of even
a single variable in the language is sufficient to generate a fragment whose sat-
isfiability is as hard as satisfiability for the entire logic. The first results to this
effect have been proven in [2] for logics for reasoning about linguistic structures
and in [38] for provability logic. A general method of proving such results for
PSPACE-complete logics has been proposed in [21]; even though [21] considers
only a handful of logics, the method can be generalised to large classes of logics,
often in the language without propositional variables [3,23] (it is not, however,
applicable to LTL, as it relies on unrestricted branching in the models of the
logic, which runs contrary to the semantics of LTL,—hence the need for a dif-
ferent approach, as in [8]). In this paper, we use a suitable modification of the
technique from [21] (see [31,32]) to show that single-variable fragments of CTL,
CTL∗, ATL, and ATL∗ are as computationally hard as the entire logics; thus,
for these logics, the complexity of satisfiability cannot be reduced by restricting
the number of variables in the language.

Before doing so, a few words might be in order to explain why the technique
from [21] is not directly applicable to the logics we are considering in this paper.
The approach of [21] is to model propositional variables by (the so-called pp-like)
formulas of a single variable; to establish the PSPACE-harness results presented
in [21], a substitution is made of such pp-like formulas for propositional variables
into formulas encoding a PSPACE-hard problem. In the case of logics containing
modalities corresponding to transitive relations, such as the modal logic S4, for
such a substitution to work, the formulas into which the substitution is made
need to satisfy the property referred to in [21] as “evidence in a structure,”—a
formula is evident in a structure if it has a model satisfying the following hered-
ity condition: if a propositional variable is true at a state, it has to be true at

1 To avoid ambiguity, we emphasise that we use the standard complexity-theoretic
convention of measuring the complexity of the input as its size; in our case, this is
the length of the input formula. In other words, we do not measure the complexity of
the input according to how many distinct variables it contains; limiting the number
of variables simply provides a restriction on the languages we consider.

Temporal Logics with Finitely Many Variables 399

all the states accessible from that state. In the case of PSPACE-complete logics,
formulas satisfying the evidence condition can always be found, as the intuition-
istic logic, which is PSPACE-complete, has the heredity condition built into its
semantics. The situation is drastically different for logics that are EXPTIME-
hard, which is the case for all the logics considered in the present paper: to show
that a logic is EXPTIME-hard, one uses formulas that require for their satisfia-
bility chains of states of the length exponential in the size of the formula,—this
cannot be achieved with formulas that are evident in a structure, as by varying
the valuations of propositional variables that have to satisfy the heredity condi-
tion we can only describe chains whose length is linear in the size of the formula.
Thus, the technique from [21] is not directly applicable to EXPTIME-hard log-
ics with “transitive” modalities, as the formulas into which the substitution of
pp-like formulas needs to be made do not satisfy the condition that has to be
met for such a substitution to work. As all the logics considered in this paper do
have a “transitive” modality—namely, the temporal connective “always in the
future”, which is interpreted by the reflexive, transitive closure of the relation
corresponding to the temporal connective “at the next instance”—this limitation
prevents the technique from [21] from being directly applied to them.

In the present paper, we modify the approach of [21] by coming up with
substitutions of single-variable formulas for propositional variables that can be
made into arbitrary formulas, rather than formulas satisfying a particular prop-
erty, such as evidence in a structure. This allows us to break away from the class
PSPACE and to deal with CTL, CTL∗, ATL, and ATL∗, all of which are at
least EXPTIME-hard. A similar approach has recently been used in [31] and [32]
for some other propositional modal logics.

A by-product of our approach, and another contribution of this paper, is that
we establish that single-variable fragments of CTL, CTL∗, ATL, and ATL∗

are as semantically expressive as the entire logic, i.e., all properties that can be
specified with any formula of the logic can be specified with a formula containing
only one variable—indeed, our complexity results follow from this. In this light,
the observation cited above—that in practice most properties of interest are
expressible in these logics using only a very small number of variables—is not at
all surprising from a purely mathematical point of view, either.

The paper is structured as follows. In Sect. 2, we introduce the syntax and
semantics of CTL and CTL∗. Then, in Sect. 3, we show that CTL and CTL∗

can be polynomial-time embedded into their single-variable fragments. As a
corollary, we obtain that satisfiability for the single variable fragment of CTL
is EXPTIME-complete and satisfiability for the single variable of of CTL∗ is
2EXPTIME-complete. In Sect. 4, we introduce the syntax and semantics of ATL
and ATL∗. Then, in Sect. 5, we prove results for ATL and ATL∗ that are anal-
ogous to those proven in Sect. 3 for CTL and CTL∗. We conclude in Sect. 6
by discussing other formalisms related to the logics considered in this paper to
which our proof technique can be applied to obtain similar results.

400 M. Rybakov and D. Shkatov

2 Branching-Time Temporal Logics

We start by briefly recalling the syntax and semantics of CTL and CTL∗.
The language of CTL∗ contains a countable set Var = {p1, p2, . . .} of propo-

sitional variables, the propositional constant ⊥ (“falsehood”), the Boolean con-
nective → (“if . . . , then . . . ”), the path quantifier ∀, and temporal connectives
�(“next”) and U (“until”). The language contains two kinds of formulas: state

formulas and path formulas, so called because they are evaluated in the mod-
els at states and paths, respectively. State formulas ϕ and path formulas ϑ are
simultaneously defined by the following BNF expressions:

ϕ ::= p | ⊥ | (ϕ → ϕ) | ∀ϑ,

ϑ ::= ϕ | (ϑ → ϑ) | (ϑ Uϑ) | �ϑ,

where p ranges over Var . Other Boolean connectives are defined as follows:
¬A := (A → ⊥), (A ∧ B) := ¬(A → ¬B), (A ∨ B) := (¬A → B), and
(A ↔ B) := (A → B) ∧ (B → A), where A and B can be either state or
path formulas. We also define � := ⊥ → ⊥, ♦ϑ := (� Uϑ), �ϑ := ¬♦¬ϑ, and
∃ϑ := ¬∀¬ϑ.

Formulas are evaluated in Kripke models. A Kripke model is a tuple
M = (S,
−→, V), where S is a non-empty set (of states),
−→ is a binary (tran-
sition) relation on S that is serial (i.e., for every s ∈ S, there exists s′ ∈ S such
that s
−→ s′), and V is a (valuation) function V : Var → 2S .

An infinite sequence s0, s1, . . . of states in M such that si
−→ si+1, for every
i � 0, is called a path. Given a path π and some i � 0, we denote by π[i] the
ith element of π and by π[i,∞] the suffix of π beginning at the ith element. If
s ∈ S, we denote by Π(s) the set of all paths π such that π[0] = s.

The satisfaction relation between models M, states s, and state formulas ϕ,
as well as between models M, paths π, and path formulas ϑ, is defined as follows:

– M, s |= pi � s ∈ V (pi);
– M, s |= ⊥ never holds;
– M, s |= ϕ1 → ϕ2 � M, s |= ϕ1 implies M, s |= ϕ2;
– M, s |= ∀ϑ1 � M, π |= ϑ1 for every π ∈ Π(s).
– M, π |= ϕ1 � M, π[0] |= ϕ1;
– M, π |= ϑ1 → ϑ2 � M, π |= ϑ1 implies M, π |= ϑ2;
– M, π |= �ϑ1 � M, π[1,∞] |= ϑ1;
– M, π |= ϑ1 Uϑ2 � M, π[i,∞] |= ϑ2 for some i � 0 and M, π[j,∞] |= ϑ1 for

every j such that 0 � j < i.

A CTL∗-formula is a state formula in this language. A CTL∗-formula is sat-
isfiable if it is satisfied by some state of some model, and valid if it is satisfied
by every state of every model. Formally, by CTL∗ we mean the set of valid
CTL∗-formulas. Notice that this set is closed under uniform substitution.

Logic CTL can be thought of as a fragment of CTL∗ containing only for-
mulas where a path quantifier is always paired up with a temporal connective.

Temporal Logics with Finitely Many Variables 401

This, in particular, disallows formulas whose main sign is a temporal connec-
tive and, thus, eliminates path-formulas. Such composite “modal” operators are
∀ � (universal “next”), ∀ U (universal “until”), and ∃ U (existential “until”).
Formulas are defined by the following BNF expression:

ϕ ::= p | ⊥ | (ϕ → ϕ) | ∀ �ϕ | ∀ (ϕ Uϕ) | ∃ (ϕ Uϕ),

where p ranges over Var . We also define ¬ϕ := (ϕ → ⊥), (ϕ∧ψ) := ¬(ϕ → ¬ψ),
(ϕ ∨ ψ) := (¬ϕ → ψ), � = ⊥ → ⊥, ∃ �ϕ := ¬∀ �¬ϕ, ∃♦ϕ := ∃(� Uϕ), and
∀�ϕ := ¬∃♦¬ϕ.

The satisfaction relation between models M, states s, and formulas ϕ is
inductively defined as follows (we only list the cases for the “new” modal oper-
ators):

– M, s |= ∀ �ϕ1 � M, s′ |= ϕ1 whenever s
−→ s′;
– M, s |= ∀(ϕ1 Uϕ2) � for every path s0
−→ s1
−→ . . . with s0 = s, M, si |=

ϕ2, for some i � 0, and M, sj |= ϕ1, for every 0 � j < i;
– M, s |= ∃(ϕ1 Uϕ2) � there exists a path s0
−→ s1
−→ . . . with s0 = s, such

that M, si |= ϕ2, for some i � 0, and M, sj |= ϕ1, for every 0 � j < i.

Satisfiable and valid formulas are defined as for CTL∗. Formally, by CTL
we mean the set of valid CTL-formulas; this set is closed under substitution.

For each of the logics described above, by a variable-free fragment we mean
the subset of the logic containing only formulas without any propositional vari-
ables. Given formulas ϕ, ψ and a propositional variable p, we denote by ϕ[p/ψ]
the result of uniformly substituting ψ for p in ϕ.

3 Finite-Variable Fragments of CTL∗ and CTL

In this section, we consider the complexity of satisfiability for finite-variable frag-
ments of CTL and CTL∗, as well as semantic expressivity of those fragments.

We start by noticing that for both CTL and CTL∗ satisfiability of the
variable-free fragment is polynomial-time decidable. Indeed, it is easy to check
that, for these logics, every variable-free formula is equivalent to either ⊥ or
�. Thus, to check for satisfiability of a variable-free formula ϕ, all we need to
do is to recursively replace each subformula of ϕ by either ⊥ or �, which gives
us an algorithm that runs in time linear in the size of ϕ. Since both CTL and
CTL∗ are at least EXPTIME-hard and P = EXPTIME, variable-free fragments
of these logics cannot be as expressive as the entire logic.

We next prove that the situation changes once we allow just one variable
to be used in the construction of formulas. Then, we can express everything
we can express in the full languages of CTL and CTL∗; as a consequence, the
complexity of satisfiability becomes as hard as satisfiability for the full languages.
In what follows, we first present the proof for CTL∗, and then point out how
that work carries over to CTL.

Let ϕ be an arbitrary CTL∗-formula. Without a loss of generality we may
assume that ϕ contains propositional variables p1, . . . pn. Let pn+1 be a variable
not occurring in ϕ. First, inductively define the translation ·′ as follows:

402 M. Rybakov and D. Shkatov

pi
′ = pi, where i ∈ {1, . . . , n};

⊥′ = ⊥;
(φ → ψ)′ = φ′ → ψ′;
(∀α)′ = ∀(�pn+1 → α′);
(�α)′ = �α′;
(α Uβ)′ = α′ Uβ′.

Next, let

Θ = pn+1 ∧ ∀�(∃ �pn+1 ↔ pn+1),

and define
ϕ̂ = Θ ∧ ϕ′.

Intuitively, the translation ·′ restricts evaluation of formulas to the paths
where every state makes the variable pn+1 true, while Θ acts as a guard making
sure that all paths in a model satisfy this property. Notice that ϕ is equivalent
to ϕ̂[pn+1/�].

Lemma 1. Formula ϕ is satisfiable if, and only if, formula ϕ̂ is satisfiable.

Proof. Suppose that ϕ̂ is not satisfiable. Then, ¬ϕ̂ ∈ CTL∗ and, since CTL∗ is
closed under substitution, ¬ϕ̂[pn+1/�] ∈ CTL∗. As ϕ̂[pn+1/�] ↔ ϕ ∈ CTL∗,
so ¬ϕ ∈ CTL∗; thus, ϕ is not satisfiable.

Suppose that ϕ̂ is satisfiable. In particular, let M, s0 |= ϕ̂ for some model
M and some s0 in M. Define M′ to be the smallest submodel of M such that

– s0 is in M′;
– if x is in M′, x
−→ y, and M, y |= pn+1, then y is also in M′.

Notice that, since M, s0 |= pn+1 ∧ ∀�(∃ �pn+1 ↔ pn+1), the model M′ is serial,
as required, and that pn+1 is true at every state of M′.

We now show that M′, s0 |= ϕ. Since M, s0 |= ϕ′, it suffices to prove that,
for every state x in M′ and every state subformula ψ of ϕ, we have M, x |= ψ′

if, and only if, M′, x |= ψ; and that, for every path π in M′ and every path
subformula α of ϕ, we have M, π |= α′ if, and only if, M′, π |= α. This can be
done by simultaneous induction on ψ and α.

The base case as well as Boolean cases are straightforward.
Let ψ = ∀α, so ψ′ = ∀(�pn+1 → α′). Assume that M, x |= ∀(�pn+1 → α′).

Then, M, π |= α′, for some π ∈ Π(x) such that M, π[i] |= pn+1, for every
i � 0. By construction of M′, π is a path is M′; thus, we can apply the
inductive hypothesis to conclude that M′, π |= α. Therefore, M′, x |= ∀α,
as required. Conversely, assume that M′, x |= ∀α. Then, M′, π |= α, for some
π ∈ Π(x). Clearly, π is a path in M. Since pn+1 is true at every state in M′,
and thus, at every state in π, using the inductive hypothesis, we conclude that
M, x |= ∀(�pn+1 → α′).

The cases for the temporal connectives are straightforward.

Lemma 2. If ϕ̂ is satisfiable, then it is satisfied in a model where pn+1 is true
at every state.

Temporal Logics with Finitely Many Variables 403

Proof. If ϕ̂ is satisfiable, then, as has been shown in the proof of Lemma1, ϕ is
satisfied in a model where pn+1 is true at every state; i.e., M, s |= ϕ for some
M = (S,
−→, V) such that pn+1 is true at every state in S and some s ∈ S.
Since ϕ is equivalent to ϕ̂[pn+1/�], clearly M, s |= ϕ̂.

Next, we model all the variables of ϕ̂ by single-variable formulas A1, . . . , Am.
This is done in the following way. Consider the class M of models that, for each
m ∈ {1, . . . , n + 1}, contains a model Mm = (Sm,
−→, Vm) defined as follows:

– Sm = {rm, bm, am
1 , am

2 , . . . , am
2m};

–
−→ = {〈rm, bm〉, 〈rm, am
1 〉} ∪ {〈am

i , am
i+1〉 : 1 ≤ m ≤ 2m − 1} ∪

{〈s, s〉 : s ∈ Sm};
– s ∈ Vm(p) if, and only if, s = rm or s = am

2k, for some k ∈ {1, . . . , m}.

◦

◦

◦

◦

◦

◦

rm |= Amp

¬p

p

¬p

p

¬p am
1

am
2

am
3

am
2m

bm

�

�

�

�
�

�

�

�

...

Fig. 1. Model Mm

The model Mm is depicted in Fig. 1, where circles represent states with loops.
With every such Mm, we associate a formula Am, in the following way. First,
inductively define the sequence of formulas

χ0 = ∀� p;
χk+1 = p ∧ ∃ �(¬p ∧ ∃ �χk).

Next, for every m ∈ {1, . . . , n + 1}, let

Am = χm ∧ ∃ �∀�¬p.

Lemma 3. Let Mk ∈ M and let x be a state in Mk. Then, Mk, x |= Am if,
and only if, k = m and x = rm.

404 M. Rybakov and D. Shkatov

Proof. Straightforward.

Now, for every m ∈ {1, . . . , n + 1}, define

Bm = ∃ �Am.

Finally, let σ be a (substitution) function that, for every i ∈ {1 . . . n+1}, replaces
pi by Bi, and let

ϕ∗ = σ(ϕ̂).

Notice that the formula ϕ∗ contains only a single variable, p.

Lemma 4. Formula ϕ is satisfiable if, and only if, formula ϕ∗ is satisfiable.

Proof. Suppose that ϕ is not satisfiable. Then, in view of Lemma 1, ϕ̂ is not
satisfiable. Then, ¬ϕ̂ ∈ CTL∗ and, since CTL∗ is closed under substitution,
¬ϕ∗ ∈ CTL∗. Thus, ϕ∗ is not satisfiable.

Suppose that ϕ is satisfiable. Then, in view of Lemmas 1 and 2, ϕ̂ is satisfiable
in a model M = (S,
−→, V) where pn+1 is true at every state. We can assume
without a loss of generality that every x ∈ S is connected by some path to s.
Define model M′ as follows. Append to M all the models from M (i.e., take their
disjoint union), and for every x ∈ S, make rm, the root of Mm, accessible from
x in M′ exactly when M, x |= pm. The evaluation of p is defined as follows: for
states from each Mm ∈ M, the evaluation is the same as in Mm, and for every
x ∈ S, let x /∈ V ′(p).

We now show that M′, s |= ϕ∗. It is easy to check that M′, s |= σ(Θ). It
thus remains to show that M′, s |= σ(ϕ′). Since M, s |= ϕ′, it suffices to prove
that M, x |= ψ′ if, and only if, M′, x |= σ(ψ′), for every state x in M and every
state subformula ψ of ϕ; and that M, π |= α′ if, and only if, M′, π |= σ(α′),
for every path π in M and every path subformula α of ϕ. This can be done by
simultaneous induction on ψ and α.

Let ψ = pi, so ψ′ = pi and σ(ψ′) = Bi. Assume that M, x |= pi. Then, by
construction of M′, we have M′, x |= Bi. Conversely, assume that M′, x |= Bi.
As M′, x |= Bi implies M′, x |= ∃ �p and since M, y |= p, for every y ∈ S,
this can only happen if x
−→M′

rm, for some m ∈ {1, . . . , n + 1}. Since, then,
rm |= Ai, in view of Lemma 3, m = i, and thus, by construction of M′, we have
M, x |= pi.

The Boolean cases are straightforward.
Let ψ = ∀α, so ψ′ = ∀(�pn+1 → α′) and σ(ψ′) = ∀(�Bn+1 → σ(α′)).

Assume that M, x |= ∀(�pn+1 → α′). Then, for some π ∈ Π(x) such that
M, π[i] |= pn+1 for every i � 0, we have M, π |= α′. Clearly, π is a path in
M′, and thus, by inductive hypothesis, M′, π[i] |= Bn+1, for every i � 0, and
M′, π |= σ(α′). Hence, M′, x |= ∀(�Bn+1 → σ(α′)), as required. Conversely,
assume that M′, x |= ∀(�Bn+1 → σ(α′)). Then, for some π ∈ Π(x) such that
M′, π[i] |= Bn+1 for every i � 0, we have M′, π |= σ(α′). Since by construction
of M′, no state outside of S satisfies Bn+1, we know that π is a path in M. Thus,
we can use the inductive hypothesis to conclude that M, x |= ∀(�pn+1 → α′).

The cases for the temporal connectives are straightforward.

Temporal Logics with Finitely Many Variables 405

Lemma 4, together with the observation that the formula ϕ∗ is polynomial-
time computable from ϕ, give us the following:

Theorem 1. There exists a polynomial-time computable function e assigning to
every CTL∗-formula ϕ a single-variable formula e(ϕ) such that e(ϕ) is satisfiable
if, and only if, ϕ is satisfiable.

Theorem 2. The satisfiability problem for the single-variable fragment of
CTL∗ is 2EXPTIME-complete.

Proof. The lower bound immediately follows from Theorem1 and 2EXPTIME-
hardness of satisfiability for CTL∗ [37]. The upper bound follows from the
2EXPTIME upper bound for satisfiability for CTL∗ [37].

We now show how the argument presented above for CTL∗ can be adapted
to CTL. First, we notice that if our sole purpose were to prove that satisfiability
for the single-variable fragment of CTL is EXPTIME-complete, we would not
need to work with the entire set of connectives present in the language of CTL,—
it would suffice to work with a relatively simple fragment of CTL containing
the modal operators ∀ � and ∀�, whose satisfiability, as follows from [13], is
EXPTIME-hard. We do, however, also want to establish that the single-variable
fragment of CTL is as expressive the entire logic; therefore, we embed the entire
CTL into its single-variable fragment. To that end, we can carry out an argument
similar to the one presented above for CTL∗.

First, we define the translation ·′ as follows:

pi
′ = pi where i ∈ {1, . . . , n};

(⊥)′ = ⊥;
(φ → ψ)′ = φ′ → ψ′;
(∀ �φ)′ = ∀ �(pn+1 → φ′);
(∀ (φ Uψ))′ = ∀ (φ′ U(pn+1 ∧ ψ′));
(∃ (φ Uψ))′ = ∃ (φ′ U(pn+1 ∧ ψ′)).

Next, let

Θ = pn+1 ∧ ∀�(∃ �pn+1 ↔ pn+1).

and define
ϕ̂ = Θ ∧ ϕ′.

Intuitively, the translation ·′ restricts the evaluation of formulas to the states
where pn+1 is true. Formula Θ acts as a guard making sure that all states in a
model satisfy this property. We can then prove the analogues of Lemmas 1 and 2.

Lemma 5. Formula ϕ is satisfiable if, and only if, formula ϕ̂ is satisfiable.

Proof. Analogous to the proof of Lemma1. In the right-to-left direction, induc-
tive steps for modal connectives rely on the fact that in a submodel we con-
structed every state makes the variable pn+1 true.

406 M. Rybakov and D. Shkatov

Lemma 6. If ϕ̂ is satisfiable, then it is satisfied in a model where pn+1 is true
at every state.

Proof. Analogous to the proof of Lemma 2.

Next, we model propositional variables p1, . . . , pn+1 in the formula ϕ̂ exactly
as in the argument for CTL∗, i.e., we use formulas Am and their associated
models Mm, where m ∈ {1, . . . , n+1}. This can be done since formulas Am are,
in fact, CTL-formulas. Lemma 3 can, thus, be reused for CTL, as well.

We then define a single-variable CTL-formula ϕ∗ analogously to the way it
had been done for CTL∗:

ϕ∗ = σ(ϕ̂),

where σ is a (substitution) function that, for every i ∈ {1 . . . n + 1}, replaces pi

by Bi = ∃ �Ai. We can then prove the analogue of Lemma 4.

Lemma 7. Formula ϕ is satisfiable if, and only if, formula ϕ∗ is satisfiable.

Proof. Analogous to the proof of Lemma4. In the left-to-right direction, the
inductive steps for the modal connectives rely on the fact that the formula Bn+1

is true precisely at the states of the model that satisfies ϕ.

We, thus, obtain the following:

Theorem 3. There exists a polynomial-time computable function e assigning to
every CTL-formula ϕ a single-variable formula e(ϕ) such that e(ϕ) is satisfiable
if, and only if, ϕ is satisfiable.

Theorem 4. The satisfiability problem for the single-variable fragment of CTL
is EXPTIME-complete.

Proof. The lower bound immediately follows from Theorem3 and EXPTIME-
hardness of satisfiability for CTL [13]. The upper bound follows from the
EXPTIME upper bound for satisfiability for CTL [10].

4 Alternating-Time Temporal Logics

Alternating-time temporal logics ATL∗ and ATL can be conceived of as gener-
alisations of CTL∗ and CTL, respectively. Their models incorporate transitions
occasioned by simultaneous actions of the agents in the system rather than
abstract transitions, as in CTL∗ and CTL, and we now reason about paths
that can be forced by cooperative actions of coalitions of agents, rather than
just about all (∀) and some (∃) paths. We do not lose the ability to reason about
all and some paths in ATL∗ and ATL, however, so these logics are generalisa-
tions of CTL∗ and CTL, respectively.

The language of ATL∗ contains a non-empty, finite set AG of names of
agents (subsets of AG are called coalitions); a countable set Var = {p1, p2, . . .}
of propositional variables; the propositional constant ⊥; the Boolean connective

Temporal Logics with Finitely Many Variables 407

→; coalition quantifiers 〈〈C〉〉, for every C ⊆ AG; and temporal connectives �

(“next”), U (“until”), and � (“always in the future”). The language contains
two kinds of formulas: state formulas and path formulas. State formulas ϕ and
path formulas α are simultaneously defined by the following BNF expressions:

ϕ ::= p | ⊥ | (ϕ → ϕ) | 〈〈C〉〉ϑ,

ϑ ::= ϕ | (ϑ → ϑ) | (ϑ Uϑ) | �ϑ | �ϑ,

where C ranges over subsets of AG and p ranges over Var . Other Boolean and
temporal connectives are defined as for CTL∗.

Formulas are evaluated in concurrent game models. A concurrent game model
is a tuple M = (AG,S, Act, act, δ, V), where

– AG = {1, . . . , k} is a finite, non-empty set of agents;
– S is a non-empty set of states;
– Act is a non-empty set of actions;
– act : AG × S
→ 2Act is an action manager function assigning a non-empty

set of “available” actions to an agent at a state;
– δ is a transition function assigning to every state s ∈ S and every action

profile α = (α1, . . . , αk), where αa ∈ act(a, s), for every a ∈ AG, an outcome
state δ(s, α);

– V is a (valuation) function V : Var → 2S .

A few auxiliary notions need to be introduced for the definition of the satis-
faction relation.

A path is an infinite sequence s0, s1, . . . of states in M such that, for every
i � 0, the following holds: si+1 ∈ δ(si, α), for some action profile α. The set of
all such sequences is denoted by Sω. The notation π[i] and π[i,∞] is used as for
CTL∗. Initial segments π[0, i] of paths are called histories; a typical history is
denoted by h, and its last state, π[i], is denoted by last(h). Note that histories
are non-empty sequences of states in S; we denote the set of all such sequences
by S+.

Given s ∈ S and C ⊆ AG, a C-action at s is a tuple αC such that
αC(a) ∈ act(a, s), for every a ∈ C, and αC(a′), for every a′ /∈ C, is an unspec-
ified action of agent a′ at s (technically, a C-action might be thought of as an
equivalence class on action profiles determined by a vector of chosen actions
for every a ∈ C); we denote by act(C, s) the set of C-actions at s. An action
profile α extends a C-action αC , symbolically αC � α, if α(a) = αC(a), for
every a ∈ C. The outcome set of the C-action αC at s is the set of states
out(s, αC) = {δ(s, α) | α ∈ act(AG, s) and αC � α}.

A strategy for an agent a is a function stra(h) : S+
→ act(a, last(h)) assigning
to every history an action available to a at the last state of the history. A C-
strategy is a tuple of strategies for every a ∈ C. The function out(s, αC) can be
naturally extended to the functions out(s, strC) and out(h, strC) assigning to a

408 M. Rybakov and D. Shkatov

given state s, or more generally a given history h, and a given C-strategy the set
of states that can result from applying strC at s or h, respectively. The set of all
paths that can result when the agents in C follow the strategy strC from a given
state s is denoted by Π(s, strC) and defined as {π ∈ Sω | π[0] = s and π[j +1] ∈
out(π[0, j], strC), for every j � 0}.

The satisfaction relation between models M, states s, and state formulas ϕ,
as well as between models M, paths π, and path formulas ϑ, is defined as follows:

– M, s |= pi � s ∈ V (pi);
– M, s |= ⊥ never holds;
– M, s |= ϕ1 → ϕ2 � M, s |= ϕ1 implies M, s |= ϕ2;
– M, s |= 〈〈C〉〉ϑ1 � there exists a C-strategy strC such that M, π |= ϑ1 holds

for every π ∈ Π(s, strC);
– M, π |= ϕ1 � M, π[0] |= ϕ1;
– M, π |= ϑ1 → ϑ2 � M, π |= ϑ1 implies M, π |= ϑ2;
– M, π |= �ϑ1 � M, π[1,∞] |= ϑ1;
– M, π |= �ϑ1 � M, π[i,∞] |= ϑ1, for every i � 0;
– M, π |= ϑ1 Uϑ2 � M, π[i,∞] |= ϑ2 for some i � 0 and M, π[j,∞] |= ϑ1 for

every j such that 0 � j < i.

An ATL∗-formula is a state formula in this language. An ATL∗-formula is
satisfiable if it is satisfied by some state of some model, and valid if it is satisfied
by every state of every model. Formally, by ATL∗ we mean the set of all valid
ATL∗-formulas; notice that this set is closed under uniform substitution.

Logic ATL can be thought of as a fragment of ATL∗ containing only formulas
where a coalition quantifier is always paired up with a temporal connective.
This, as in the case of CTL, eliminates path-formulas. Such composite “modal”
operators are 〈〈C〉〉 �, 〈〈C〉〉�, and 〈〈C〉〉 U . Formulas are defined by the following
BNF expression:

ϕ ::= p | ⊥ | (ϕ → ϕ) | 〈〈C〉〉 �ϕ | 〈〈C〉〉�ϕ | 〈〈C〉〉(ϕ Uϕ),

where C ranges over subsets of AG and p ranges over Var . The other Boolean
connectives and the constant � are defined as for CTL.

The satisfaction relation between concurrent game models M, states s, and
formulas ϕ is inductively defined as follows (we only list the cases for the “new”
modal operators):

– M, s |= 〈〈C〉〉 �ϕ1 � there exists a C-action αC such that M, s′ |= ϕ1 when-
ever s′ ∈ out(s, actC);

– M, s |= 〈〈C〉〉�ϕ1 � there exists a C-strategy strC such that M, π[i] |= ϕ1

holds for all π ∈ out(s, strC) and all i � 0;
– M, s |= 〈〈C〉〉(ϕ1 Uϕ2) � there exists a C-strategy strC such that, for all

π ∈ out(s, strC), there exists i � 0 with M, π[i] |= ϕ and M, π[j] |= ϕ holds
for every j such that 0 � j < i.

Satisfiable and valid formulas are defined as for ATL∗. Formally, by ATL we
mean the set of all valid ATL∗-formulas; this set is closed under substitution.

Temporal Logics with Finitely Many Variables 409

Remark 1. We have given definitions of satisfiability and validity for ATL∗ and
ATL that assume that the set of all agents AG present in the language is “fixed in
advance”. At least two other notions of satisfiability (and, thus, validity) for these
logics have been discussed in the literature (see, e.g., [40])—i.e., satisfiability of
a formula in a model where the set of all agents coincides with the set of agents
named in the formula and satisfiability of a formula in a model where the set
of agents is any set including the agents named in the formula (in this case, it
suffices to consider all the agents named in the formula plus one extra agent).
In what follows, we explicitly consider only the notion of satisfiability for a fixed
set of agents; other notions of satisfiability can be handled in a similar way.

5 Finite-Variable Fragments of ATL∗ and ATL

We start by noticing that satisfiability for variable-free fragments of both ATL∗

and ATL is polynomial-time decidable, using the algorithm similar to the one
outlined for CTL∗ and CTL. It follows that variable-free fragments of ATL∗

and ATL cannot be as expressive as entire logics.
We also notice that, as is well-known, satisfiability for CTL∗ is polynomial-

time reducible to satisfiability for ATL∗ and satisfiability for CTL is polynomial-
time reducible to satisfiability for ATL, using the translation that replaces all
occurrences of ∀ by 〈〈∅〉〉 and all occurrences of ∃ by 〈〈AG〉〉. Thus, Theorems 2
and 4, together with the known upper bounds [14,24,34], immediately give us
the following:

Theorem 5. The satisfiability problem for the single-variable fragment of ATL∗

is 2EXPTIME-complete.

Theorem 6. The satisfiability problem for the single-variable fragment of ATL
is EXPTIME-complete.

In the rest of this section, we show that single-variable fragments of ATL∗

and ATL are as expressive as the entire logics by embedding both ATL∗ and
ATL into their single-variable fragments. The arguments closely resemble the
ones for CTL∗ and CTL, so we only provide enough detail for the reader to be
able to easily fill in the rest.

First, consider ATL∗. The translation ·′ is defined as for CTL∗, except that
the clause for ∀ is replaced by the following:

(〈〈C〉〉α)′ = 〈〈C〉〉(�pn+1 → α′).

Next, we define

Θ = pn+1 ∧ 〈〈∅〉〉�(〈〈AG〉〉 �pn+1 ↔ pn+1)

and
ϕ̂ = Θ ∧ ϕ′.

Then, we can prove the analogues of Lemmas 1 and 2.

410 M. Rybakov and D. Shkatov

We next model all the variables of ϕ̂ by single-variable formulas A′
1, . . . , A

′
m.

To that end, we use the class of concurrent game models M = {M′
1, . . . ,M

′
m}

that closely resemble models M1, . . . ,Mm used in the argument for CTL∗. For
every M′

i, with i ∈ {1, . . . , m}, the set of states and the valuation V are the
same as for Mi; in addition, whenever s
−→ s′ holds in Mi, we set δ(s, α) = s′,
for every action profile α. The actions available to an agent a at each state of Mi

are all the actions available to a at any of the states of the model M to which
we are going to attach models M′

i when proving the analogue of Lemma4, as
well as an extra action da that we need to set up transitions from the states of
M to the roots of M′

is.
With every M′

i we associate the formula A′
i. First, inductively define the

sequence of formulas

χ′
0 = 〈〈∅〉〉� p;

χ′
k+1 = p ∧ 〈〈AG〉〉 �(¬p ∧ 〈〈AG〉〉 �χk).

Next, for every m ∈ {1, . . . , n + 1}, let

A′
m = χ′

m ∧ 〈〈AG〉〉 �〈〈∅〉〉�¬p.

Lemma 8. Let M′
k ∈ M and let x be a state in M′

k. Then, M
′
k, x |= A′

m if,
and only if, k = m and x = rm.

Proof. Straightforward.

Now, for every m ∈ {1, . . . , n + 1}, define

B′
m = 〈〈AG〉〉 �A′

m.

Finally, let σ be a (substitution) function that, for every i ∈ {1, . . . , n + 1},
replaces pi by B′

i, and let
ϕ∗ = σ(ϕ̂).

This allows us to prove the analogue of Lemma4.

Lemma 9. Formula ϕ is satisfiable if, and only if, formula ϕ∗ is satisfiable.

Proof. Analogous to the proof of Lemma4. When constructing the model M′,
whenever we need to connect a state s in M to the root ri of M′

i, we make an
extra action, da, available to every agent a, and define δ(s, 〈da〉a∈AG) = ri.

Thus, we have the following:

Theorem 7. There exists a polynomial-time computable function e assigning to
every ATL∗-formula ϕ a single-variable formula e(ϕ) such that e(ϕ) is satisfiable
if, and only if, ϕ is satisfiable.

We then can adapt the argument for ATL form the one just presented in the
same way we adapted the argument for CTL from the one for CTL∗, obtaining
the following:

Theorem 8. There exists a polynomial-time computable function e assigning to
every ATL-formula ϕ a single-variable formula e(ϕ) such that e(ϕ) is satisfiable
if, and only if, ϕ is satisfiable.

Temporal Logics with Finitely Many Variables 411

6 Discussion

We have shown that logics CTL∗, CTL, ATL∗, and ATL can be polynomial-
time embedded into their single-variable fragments; i.e., their single-variable
fragments are as expressive as the entire logics. Consequently, for these log-
ics, satisfiability is as computationally hard when one considers only formulas
of one variable as when one considers arbitrary formulas. Thus, the complexity
of satisfiability for these logics cannot be reduced by restricting the number of
variables allowed in the construction of formulas.

The technique presented in this paper can be applied to many other modal
and temporal logics of computation considered in the literature. We will not here
attempt a comprehensive list, but rather mention a few examples.

The proofs presented in this paper can be extended in a rather straight-
forward way to Branching- and Alternating-time temporal-epistemic logics [18,
22,24,39], i.e., logics that enrich the logics considered in this paper with the
epistemic operators of individual, distributed, and common knowledge for the
agents. Our approach can be used to show that single-variable fragments of those
logics are as expressive as the entire logics and that, consequently, the complex-
ity of satisfiability for them is as hard (EXPTIME-hard or 2EXPTIME-hard) as
for the entire logics. Clearly, the same approach can be applied to epistemic log-
ics [12,16,20], i.e., logics containing epistemic, but not temporal, operators—such
logics are widely used for reasoning about distributed computation. Our argu-
ment also applies to logics with the so-called universal modality [15] to obtain
EXPTIME-completeness of their variable-free fragments. The technique pre-
sented here has also been recently used [31] to show that propositional dynamic
logics are as expressive in the language without propositional variables as in the
language with an infinite supply of propositional variables. Since our method is
modular in the way it tackles modalities present in the language, it naturally
lends itself to modal languages combining various modalities—a trend that has
been gaining prominence for some time now.

The technique presented in this paper can also be lifted to first-order lan-
guages to prove undecidability results about fragments of first-order modal and
related logics,—see [33].

We conclude by noticing that, while we have been able to overcome the
limitations of the technique from [21] described in the introduction, our mod-
ification thereof has limitations of its own. It is not applicable to logics whose
semantics forbids branching, such as LTL or temporal-epistemic logics of linear
time [17,22]. Our technique cannot be used, either, to show that finite-variable
fragments of logical systems that are not closed under uniform substitution—
such as public announcement logic PAL [9,29]—have the same expressive power
as the entire system. This does not preclude it from being used in establishing
complexity results for finite-variable fragments of such systems provided they
contain fragments, as is the case with PAL [26], that are closed under substitu-
tion and have the same complexity as the entire system.

412 M. Rybakov and D. Shkatov

References

1. Alur, R., Henzinger, T.A., Kuperman, O.: Alternating-time temporal logic. J. ACM
49(5), 672–713 (2002). https://doi.org/10.1145/585265.585270

2. Blackburn, P., Spaan, E.: A modal perspective on the computational complexity
of attribute value grammar. J. Log. Lang. Inf. 2, 129–169 (1993). https://doi.org/
10.1007/bf01050635

3. Chagrov, A., Rybakov, M.: How many variables does one need to prove PSPACE-
hardness of modal logics? In: Advances in Modal Logic, vol. 4, pp. 71–82. King’s
College Publications (2003)

4. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. Logics of Programs. LNCS, vol. 131, pp.
52–71. Springer, Heidelberg (1981). https://doi.org/10.1007/bfb0025774

5. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

6. David, A.: Deciding ATL∗ satisfiability by tableaux. In: Felty, A.P., Middeldorp, A.
(eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 214–228. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21401-6 14

7. Demri, S., Goranko, V., Lange, M.: Temporal Logics in Computer Science. Cam-
bridge Tracts in Theoretical Computer Science, vol. 58. Cambridge University
Press, Cambridge (2016). https://doi.org/10.1017/cbo9781139236119

8. Demri, S., Schnoebelen, P.: The complexity of propositional linear temporal logics
in simple cases. Inf. Comput. 174(1), 84–103 (2002). https://doi.org/10.1006/inco.
2001.3094

9. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Studies
In Epistemology, Logic, Methodology, and Philosophy of Science, vol. 337. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-1-4020-5839-4

10. Emerson, E.A., Halpern, J.: Decision procedures and expressiveness in temporal
logic of branching time. J. Comput. Syst. Sci. 30(1), 1–24 (1985). https://doi.org/
10.1016/0022-0000(85)90001-7

11. Emerson, E.A., Halpern, J.Y.: “Sometimes and not never” revisited: on branching
versus linear time temporal logic. J. ACM 33(1), 151–178 (1986). https://doi.org/
10.1145/4904.4999

12. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

13. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular pro-
grams. J. Comput. Syst. Sci. 18, 194–211 (1979). https://doi.org/10.1016/0022-
0000(79)90046-1

14. Goranko, V., van Drimmelen, G.: Complete axiomatization and decidability of the
alternating-time temporal logic. Theor. Comput. Sci. 353(1–3), 93–117 (2006).
https://doi.org/10.1016/j.tcs.2005.07.043

15. Goranko, V., Passy, S.: Using the universal modality: gains and questions. J. Log.
Comput. 2(1), 5–30 (1989). https://doi.org/10.1093/logcom/2.1.5

16. Goranko, V., Shkatov, D.: Tableau-based decision procedure for multi-agent epis-
temic logic with operators of common and distributed knowledge. In: Proceed-
ings of 6th IEEE International Conference on Software Engineering and Formal
Methods, SEFM 2008, Cape Town, November 2008, pp. 237–246. IEEE CS Press,
Washington, DC (2008). https://doi.org/10.1109/sefm.2008.27

https://doi.org/10.1145/585265.585270
https://doi.org/10.1007/bf01050635
https://doi.org/10.1007/bf01050635
https://doi.org/10.1007/bfb0025774
https://doi.org/10.1007/978-3-319-21401-6_14
https://doi.org/10.1017/cbo9781139236119
https://doi.org/10.1006/inco.2001.3094
https://doi.org/10.1006/inco.2001.3094
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1016/0022-0000(85)90001-7
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/0022-0000(79)90046-1
https://doi.org/10.1016/j.tcs.2005.07.043
https://doi.org/10.1093/logcom/2.1.5
https://doi.org/10.1109/sefm.2008.27

Temporal Logics with Finitely Many Variables 413

17. Goranko, V., Shkatov, D.: Tableau-based decision procedure for full coalitional
multiagent temporal-epistemic logic of linear time. In: Sierra, C., Castelfranchi,
C., Decker, K.S., Sichman, J.S. (eds.) Proceedings of 8th International Joint Con-
ference on Autonomous Agents and Multiagent Systems, AAMAS 2009, Budapest,
May 2009, vol. 2, pp. 969–976. International Federation AAMAS (2009). https://
dl.acm.org/citation.cfm?id=1558147

18. Goranko, V., Shkatov, D.: Tableau-based decision procedure for the full coali-
tional multiagent temporal-epistemic logic of branching time. In: Baldoni, M., et al.
(eds.) Proceedings of 2nd Multi-Agent Logics, Languages, and Organisations Fed-
erated Workshops, Turin, September 2009, CEUR Workshop Proceedings, vol. 494,
CEUR-WS.org (2009). http://ceur-ws.org/Vol-494/famaspaper7.pdf

19. Goranko, V., Shkatov, D.: Tableau-based decision procedures for logics of strategic
ability in multiagent systems. ACM Trans. Comput. Log. 11(1) (2009). https://
doi.org/10.1145/1614431.1614434. Article 3

20. Goranko, V., Shkatov, D.: Tableau-based procedure for deciding satisfiability in
the full coalitional multiagent epistemic logic. In: Artemov, S., Nerode, A. (eds.)
LFCS 2009. LNCS, vol. 5407, pp. 197–213. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-92687-0 14

21. Halpern, J.Y.: The effect of bounding the number of primitive propositions and
the depth of nesting on the complexity of modal logic. Artif. Intell. 75(2), 361–372
(1995). https://doi.org/10.1016/0004-3702(95)00018-a

22. Halpern, J.Y., Vardi, M.Y.: The complexity of reasoning about knowledge and
time I: lower bounds. J. Comput. Syst. Sci. 38(1), 195–237 (1989). https://doi.
org/10.1016/0022-0000(89)90039-1

23. Hemaspaandra, E.: The complexity of poor man’s logic. J. Log. Comput. 11(4),
609–622 (2001). https://doi.org/10.1093/logcom/11.4.609

24. van der Hoek, W., Wooldridge, M.: Cooperation, knowledge, and time: alternating-
time temporal epistemic logic and its applications. Studia Logica 75(1), 125–157
(2003). https://doi.org/10.1023/a:1026185103185

25. Huth, M., Ryan, M.: Logic in Computer Science: Modelling and Reasoning About
Systems, 2nd edn. Cambridge University Press, Cambridge (2004). https://doi.
org/10.1017/cbo9780511810275

26. Lutz, C.: Complexity and succinctness of public announcement logic. In:
Nakashima, H., Wellman, M.P., Weiss, G., Stone, P. (eds.) Proceedings of 5th
International Joint Conference on Autonomous Agents and Multiagent Systems,
AAMAS 2006, Hakodate, May 2006, pp. 137–143. ACM Press (2006). https://doi.
org/10.1145/1160633.1160657

27. Nagle, M.C., Thomason, S.K.: The extensions of the modal logic K5. J. Symb. Log.
50(1), 102–109 (1975). https://doi.org/10.2307/2273793

28. Nishimura, I.: On formulas of one variable in intuitionistic propositional calculus.
J. Symb. Log. 25(4), 327–331 (1960). https://doi.org/10.2307/2963526

29. Plaza, J.A.: Logics of public communications. In: Emrich, M.L., Pfeifer, M.S.,
Hadzikadic, M., Ras, Z.W. (eds.) Proceedings of 4th International Symposium on
Methodologies for Intelligent Systems: Poster Session Program, pp. 201–216, Oak
Ridge National Laboratory (1989). (Reprinted as: Synthese 158(2), 165–179 (2007).
https://doi.org/10.1007/s11229-007-9168-7)

30. Reynolds, M.: A tableau for CTL*. In: Cavalcanti, A., Dams, D.R. (eds.) FM
2009. LNCS, vol. 5850, pp. 403–418. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-05089-3 26

https://dl.acm.org/citation.cfm?id=1558147
https://dl.acm.org/citation.cfm?id=1558147
http://ceur-ws.org/Vol-494/famaspaper7.pdf
https://doi.org/10.1145/1614431.1614434
https://doi.org/10.1145/1614431.1614434
https://doi.org/10.1007/978-3-540-92687-0_14
https://doi.org/10.1007/978-3-540-92687-0_14
https://doi.org/10.1016/0004-3702(95)00018-a
https://doi.org/10.1016/0022-0000(89)90039-1
https://doi.org/10.1016/0022-0000(89)90039-1
https://doi.org/10.1093/logcom/11.4.609
https://doi.org/10.1023/a:1026185103185
https://doi.org/10.1017/cbo9780511810275
https://doi.org/10.1017/cbo9780511810275
https://doi.org/10.1145/1160633.1160657
https://doi.org/10.1145/1160633.1160657
https://doi.org/10.2307/2273793
https://doi.org/10.2307/2963526
https://doi.org/10.1007/s11229-007-9168-7
https://doi.org/10.1007/978-3-642-05089-3_26
https://doi.org/10.1007/978-3-642-05089-3_26

414 M. Rybakov and D. Shkatov

31. Rybakov, M., Shkatov, D.: Complexity and expressivity of propositional dynamic
logics with finitely many variables. Log. J. IGPL 26(5), 539–547 (2018). https://
doi.org/10.1093/jigpal/jzy014

32. Rybakov, M., Shkatov, D.: Complexity of finite-variable fragments of propositional
modal logics of symmetric frames. Log. J. IGPL (to appear). https://doi.org/10.
1093/jigpal/jzy018

33. Rybakov, M., Shkatov, D.: Undecidability of first-order modal and intuitionis-
tic logics with two variables and one monadic predicate letter. Studia Logica (to
appear). https://doi.org/10.1007/s11225-018-9815-7

34. Schewe, S.: ATL* satisfiability Is 2EXPTIME-complete. In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008. LNCS, vol. 5126, pp. 373–385. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-70583-3 31

35. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-
Theoretic, and Logical Foundations. Cambridge University Press, Cambridge
(2008). https://doi.org/10.1017/cbo9780511811654

36. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985). https://doi.org/10.1145/3828.3837

37. Vardi, M.Y., Stockmeyer, L.: Improved upper and lower bounds for modal logics of
programs (preliminary report). In: Proceedings of 17th Annual ACM Symposium
on Theory of Computing, STOC 1985, Providence, RI, May 1985, pp. 240–251.
ACM Press, New York (1985). https://doi.org/10.1145/22145.22173

38. Švejdar, V.: The decision problem of provability logic with only one atom. Arch.
Math. Log. 42(8), 763–768 (2003). https://doi.org/10.1007/s00153-003-0180-4

39. Walther, D.: ATEL with common and distributed knowledge is ExpTime-complete.
In: Schlingloff, H. (ed.) Methods for Modalities 4. Informatik-Berichte, vol. 194,
pp. 173–186. Humboldt-Universität zu Berlin (2005)

40. Walther, D., Lutz, C., Wolter, F., Wooldridge, M.: ATL satisfiability is indeed
EXPTIME-complete. J. Log. Comput. 16(6), 765–787 (2006). https://doi.org/10.
1093/logcom/exl009

https://doi.org/10.1093/jigpal/jzy014
https://doi.org/10.1093/jigpal/jzy014
https://doi.org/10.1093/jigpal/jzy018
https://doi.org/10.1093/jigpal/jzy018
https://doi.org/10.1007/s11225-018-9815-7
https://doi.org/10.1007/978-3-540-70583-3_31
https://doi.org/10.1007/978-3-540-70583-3_31
https://doi.org/10.1017/cbo9780511811654
https://doi.org/10.1145/3828.3837
https://doi.org/10.1145/22145.22173
https://doi.org/10.1007/s00153-003-0180-4
https://doi.org/10.1093/logcom/exl009
https://doi.org/10.1093/logcom/exl009

Complexity Results on Register
Context-Free Grammars and Register

Tree Automata

Ryoma Senda1(B), Yoshiaki Takata2, and Hiroyuki Seki1

1 Graduate School of Information Science, Nagoya University,
Furo-cho, Chikusa, Nagoya 464-8601, Japan

ryoma.private@sqlab.jp, seki@i.nagoya-u.ac.jp
2 Graduate School of Engineering, Kochi University of Technology,

Tosayamada, Kami City, Kochi 782-8502, Japan
takata.yoshiaki@kochi-tech.ac.jp

Abstract. Register context-free grammars (RCFG) and register tree
automata (RTA) are an extension of context-free grammars and tree
automata, respectively, to handle data values in a restricted way. RTA
are paid attention as a model of query languages for structured docu-
ments such as XML with data values. This paper investigates the compu-
tational complexity of the basic decision problems for RCFG and RTA.
We show that the membership and emptiness problems for RCFG are
EXPTIME-complete and also show how the complexity reduces by intro-
ducing subclasses of RCFG. The complexity of these problems for RTA
are also shown to be NP-complete and EXPTIME-complete.

1 Introduction

There have been studies on defining computational models having mild powers
of processing data values by extending classical models. Some of them are shown
to have the decidability on basic problems and the closure properties, including
first-order and monadic second-order logics with data equality, linear temporal
logic with freeze quantifier [7] and register automata [14]. Among them, register
automata (abbreviated as RA) is a natural extension of finite automata defined
by incorporating registers that can keep data values as well as the equality test
between an input data value and the data value kept in a register. Regular
expression was extended to regular expression with memory (REM), which have
the same expressive power as RA [18].

Recently, attention has been paid to RA as a computational model of a
query language for structured documents such as XML because a structured
document can be modeled as a tree or a graph where data values are associated
with nodes and a query on a document can be specified as the combination of a
regular pattern and a condition on data values [17,19]. For query processing and
optimization, the decidability (hopefully in polynomial time) of basic properties
of queries is desirable. The membership problem that asks for a given query q

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 415–434, 2018.
https://doi.org/10.1007/978-3-030-02508-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_22&domain=pdf

416 R. Senda et al.

and an element e in a document whether e is in the answer set of q is the most
basic problem. The satisfiability or (non)emptiness problem asking whether the
answer set of a given query is nonempty is also important because if the answer
set is empty, the query can be considered to be redundant or meaningless when
query optimization is performed. The membership and emptiness problems for
RA were already shown to be decidable [14] and their computational complexities
were also analyzed [7,22].

While RA have a power sufficient for expressing regular patterns on paths of
a tree or a graph, it cannot represent tree patterns (or patterns over branching
paths) that can be represented by some query languages such as XPath. Register
context-free grammars (RCFG) were proposed in [6] as an extension of classical
context-free grammars (CFG) in a similar way to extending FA to RA. In [6],
properties of RCFG were shown including the decidability of the membership
and emptiness problems, and the closure properties. However, the computational
complexity of these problems has not been reported yet. In parallel with this,
RA were extended to a model dealing with trees, called tree automata over
an infinite alphabet [15,23]. For uniformity, we will call the latter register tree
automata (abbreviated as RTA).

In this paper, we analyze the computational complexity of the membership
and emptiness problems for general RCFG, some subclasses of them, and RTA.
In the original definition of RCFG [6], an infinite alphabet is assumed and an
RCFG is defined as a formal system that generates finite strings over the infinite
alphabet as in the original definition of RA [14]. In a derivation, a symbol can be
loaded to a register only when the value is different from any symbol stored in
the other registers, by which the equality checking is indirectly incorporated. In
recent studies on RA [18,19], more concrete notions suitable for modeling a query
language are adopted, namely, a word is a finite string over the product of a finite
alphabet and an infinite set of data values (called data word), and the equality
check between an input data value and the data value kept in a register can be
specified as the guard condition of a transition rule. Also, different registers can
keep an identical value in general.

Following those modern notions, we first define an RCFG as a grammar that
derives a data word. In a derivation of a k-RCFG, k data values are associated
with each occurrence of a nonterminal symbol (called a register assignment) and
a production rule can be applied only when the guard condition of the rule,
which is a Boolean combination of the equality check between an input data
value and the data value in a register, is satisfied. We introduce subclasses of
RCFG, including ε-rule free RCFG, growing RCFG, and RCFG with bounded
registers.

We then show that the membership problems for general RCFG, ε-rule free
RCFG, growing RCFG, and RCFG with bounded registers are EXPTIME-
complete, PSPACE-complete, NP-complete, and solvable in P, respectively. For
example, to show the upper bound for general RCFG, we use the property that
any RCFG can be translated into a classical CFG when the number of different
data values used in the derivation is finite, which was shown in [6]. EXPTIME-
hardness is proved by a polynomial time reduction from the membership

Complexity Results on Register Context-Free Grammars 417

problem for polynomial space-bounded alternating Turing machines. We also
show that the emptiness problem for general RCFG is EXPTIME-complete and
the complexity does not decrease even if we restrict RCFG to be growing.

Finally, we analyze the computational complexity of these problems for RTA.
It is well-known that the class of tree languages accepted by tree automata
coincides with the class of derivation trees generated by CFG. The difference
of RCFG and RTA in the membership problem is that a derivation tree is not
specified as an input in the former case while a data tree is given as an input to
the problem in the latter case.

Main results of this paper is summarized in Table 1. Note that the complexity
of the membership problems is in terms of both the size of a grammar or an
automaton and that of an input word (combined complexity). The complexity of
the membership problem on the size of an input word only (data complexity) is
P for general RCFG and RTA. In application, the size of a query (a grammar or
an automaton) is usually much smaller than that of a data (an input word). It
is desirable that the data complexity is small while the combined complexity is
rather a criterion of the expressive succinctness of the query language.

Table 1. Complexity results on RCFG and RTA

General
RCFG

ε-rule free
RCFG

Growing
RCFG

RCFG w/
bounded regs

RTA

Membership EXPTIMEc PSPACEc NPc In P NPc

Emptiness EXPTIMEc EXPTIMEc EXPTIMEc In P EXPTIMEc

Related Work. Early studies on query optimization and static analysis for
structured documents used traditional models such as tree automata, two vari-
able logic and LTL. While those studies were successful, most of them neglected
data values associated with documents. Later, researchers developed richer mod-
els that can be applied to structured documents with data values, including
extensions of automata (register automata, pebble automata, data automata)
and extensions of logics (two-variable logics with data equality, LTL with freeze
quantifier). We review each of them in the following.

Register Automata and Register Context-Free Grammars: As already mentioned,
register automata (RA) was first introduced in [14] as finite-memory automata
where they show that the membership and emptiness problems are decidable,
and RA are closed under union, concatenation and Kleene-star. Later, the com-
putational complexity of the former two problems are analyzed in [7,22]. In [6],
register context-free grammars (RCFG) as well as pushdown automata over an
infinite alphabet were introduced and the equivalence of the two models as well
as the decidability results and closure properties similar to RA were shown.

Other Automata for Data Words: There are extensions of automata to deal with
data in a restricted way other than RA, namely, data automata [4] and pebble

418 R. Senda et al.

automata (PA) [20]. It is desirable for a query language to have an efficient
data complexity for the membership problem. Libkin and Vrgoč [19] argue that
register automata (RA) is the only model that has this property among the above
mentioned formalisms and adopt RA as the core computational model of their
queries on graphs with data. Neven [21] considers variations of RA and PA, either
they are one way or two ways, deterministic, nondeterministic or alternating
shows inclusion and separation relationships among these automata, FO(∼, <)
and EMSO(∼, <), and gives the answer to some open problems including the
undecidability of the universality problem for RA.

LTL with Freeze Quantifier: Linear temporal logic (LTL) was extended to LTL↓
with freeze quantifier [7,8]. A data value is bound with a variable in a formula
and is referred to later in the scope of a freeze quantifier of that variable. The
relationship among subclasses of LTL↓ and RA as well as the decidability and
complexity of the satisfiability (nonemptiness) problems are investigated [7].
Especially, they showed that the emptiness problem for (both nondeterministic
and deterministic) RA are PSPACE-complete.

Two-Variable Logics with Data Equality: First-order logic (FO) and monadic
second-order logic (MSO) are major logics for finite model theory. It is known
that two-variable FO2(<,+1) where < is the ancestor-descendant relation and
+1 is the parent-child relation is decidable and corresponds to Core XPath. The
logic was extended to those with data equality. It was shown in [3] that FO2(∼, <,
+1) with data equality ∼ is decidable on data words. Note that FO2(∼, <,+1)
is incomparable with LTL↓ of [7]. Also it was shown in [2] that FO2(∼,+1) and
existential MSO2(∼,+1) are decidable on unranked data trees.

Tree Automata and Data XPath: In [15], tree automata over infinite alphabets
are introduced as a natural extension of RA. We call them register tree automata
(RTA) in this paper. They showed that the membership and emptiness problems
for RTA are decidable and the universality and inclusion problems are undecid-
able, and also showed that a data language L is generated by an RCFG if and
only if there is an RTA that accepts a data tree language whose yield is L.
However, the complexity of those decidable problems was not shown. In con-
nection with XPath, top-down tree automata for data trees called alternating
tree register automata (ATRA) [12] which correspond to forward XPath were
introduced, and the decidability of the emptiness problems for these classes was
shown. While RTA work on ranked data trees, ATRA work on unranked data
trees. Later, [9,10] extended ATRA so that (1) they can guess a data value to
store it in a register, and also (2) they can universally quantify the data values
encountered in a given run; the emptiness for the extended ATRA was shown to
be decidable by identifying ATRA as well-structured transition systems. Also,
bottom-up tree automata for unranked data trees, which correspond to vertical
XPath were introduced and the decidability of the emptiness was shown in [11].
Since XML documents are usually modeled as unranked trees, ATRA may be
a better model for XPath than RTA. However, the complexity of the emptiness
for ATRA is not elementary and an appropriate subclass would be needed for
broader applications.

Complexity Results on Register Context-Free Grammars 419

2 Definitions

2.1 Preliminaries

A register context-free grammar was introduced in [6] as a grammar over an
infinite alphabet. We define it as a grammar over the product of a finite alphabet
and an infinite set of data values, following recent notions [18,19]. Note that these
differences are not essential.

Let N = {1, 2, . . .} and N0 = {0} ∪ N. We assume an infinite set D of data
values as well as a finite alphabet Σ. For a given k ∈ N0 specifying the number
of registers, a mapping ν : [k] → D is called an assignment (of data values to
k registers) where [k] = {1, 2, . . . , k}. We assume that a data value ⊥ ∈ D is
designated as the initial value of a register. Let Fk denote the class of assignments
to k registers. For ν, ν′ ∈ Fk, we write ν′ = ν[i ← d] if ν′(i) = d and ν′(j) = ν(j)
(j 	= i).

Let Ck denote the set of guard expressions over k registers defined by the
following syntax rules:

ψ := tt | ff | x=
i | x�=

i | ψ ∧ ψ | ψ ∨ ψ | ¬ψ

where xi ∈ {x1, . . . , xk}. The description length of guard expression ψ is defined
as

‖ψ‖ =

⎧
⎪⎪⎨

⎪⎪⎩

1 if ψ = tt or ff,
1 + log k if ψ = x=

i or x�=
i ,

1 + ‖ψ1‖ + ‖ψ2‖ if ψ = ψ1 ∧ ψ2 or ψ1 ∨ ψ2,
1 + ‖ψ1‖ if ψ = ¬ ψ1.

For d ∈ D and ν ∈ Fk, the satisfaction of ψ ∈ Ck by (d, ν) is recursively defined
as follows. Intuitively, d is a current data value in the input, ν is a current register
assignment, d, ν |= x=

i means that the data value assigned to the i-th register
by ν is equal to d and d, ν |= x�=

i means they are different.

– d, ν |= tt
– d, ν 	|= ff
– d, ν |= x=

i iff ν(i) = d

– d, ν |= x�=
i iff ν(i) 	= d

– d, ν |= ψ1 ∧ ψ2 iff d, ν |= ψ1 and d, ν |= ψ2

– d, ν |= ψ1 ∨ ψ2 iff d, ν |= ψ1 or d, ν |= ψ2

– d, ν |= ¬ψ iff d, ν 	|= ψ

where d, ν 	|= ψ holds iff d, ν |= ψ does not hold.
For a finite alphabet Σ and a set D of data values disjoint from Σ, a

data word over Σ × D is a finite sequence of elements of Σ × D and a sub-
set of (Σ × D)∗ is called a data language over Σ × D. For a data word
w = (a1, d1)(a2, d2) . . . (an, dn), a1a2 . . . an is the label of w and d1d2 . . . dn is
the data part of w. |β| denotes the cardinality of β if β is a set and the length
of β if β is a finite sequence.

420 R. Senda et al.

2.2 Register Context-Free Grammars

Let Σ be a finite alphabet, D be a set of data values such that Σ ∩ D = ∅ and
k ∈ N. A k-register context-free grammar (k-RCFG) is a triple G = (V,R, S)
where

– V is a finite set of nonterminal symbols (abbreviated as nonterminals) where
V ∩ (Σ ∪ D) = ∅,

– R is a finite set of production rules (abbreviated as rules) having either of the
following forms:

(A,ψ, i) → α, (A,ψ) → α

where A ∈ V , ψ ∈ Ck, i ∈ [k] and α ∈ (V ∪ (Σ × [k]))∗; we call (A,ψ, i) (or
(A,ψ)) the left-hand side and α the right-hand side of the rule, and,

– S ∈ V is the start symbol.

A rule whose right-hand side is ε is an ε-rule and a rule whose right-hand
side is a single nonterminal symbol is a unit rule. If R contains no ε-rule,
G is called ε-rule free. If R contains neither ε-rule nor unit rule, G is called
growing. The description length of a k-RCFG G = (V,R, S) is defined as
‖G‖ = |V | + |R|max{(|α| + 1)(log |V | + log k) + ‖ψ‖ | (A,ψ, i) → α ∈
R or (A,ψ) → α ∈ R}, where ‖ψ‖ is the description length of ψ. In this definition,
we assume that the description length of α ∈ (V ∪(Σ×[k]))∗ is |α|(log |V |+log k)
because the description length of each element of α is O(log |V | + log k) bits if
we consider |Σ| is a constant. Since the description length of the left-hand side
of a rule (A,ψ, i) → α is log |V | + ‖ψ‖ + log k, we let the description length of
this rule be (|α| + 1)(log |V | + log k) + ‖ψ‖. We assume k ≤ ‖G‖ without loss of
generality.

We define ⇒G as the smallest relation containing the instantiations of rules
in R and closed under the context as follows. For A ∈ V , ν ∈ Fk and X ∈
((V ×Fk)∪(Σ×D))∗, we say (A, ν) directly derives X, written as (A, ν) ⇒G X if
there exist d ∈ D (regarded as an input data value) and (A,ψ, i) → c1 . . . cn ∈ R
(resp. (A,ψ) → c1 . . . cn ∈ R) such that

d, ν |= ψ, X = c′
1 . . . c′

n, ν′ = ν[i ← d] (resp. ν′ = ν) where

c′
j =

{
(B, ν′) if cj = B ∈ V ,
(b, ν′(l)) if cj = (b, l) ∈ Σ × [k].

For X,Y ∈ ((V ×Fk)∪(Σ×D))∗, we also write X ⇒G Y if there are X1,X2,X3 ∈
((V ×Fk)∪ (Σ ×D))∗ such that X = X1(A, ν)X2, Y = X1X3X2 and (A, ν) ⇒G

X3.
Let ∗⇒G and +⇒G be the reflexive transitive closure and the transitive closure

of ⇒G, respectively, meaning the derivation of zero or more steps (resp. the
derivation of one or more steps). We abbreviate ⇒G, ∗⇒G and +⇒G as ⇒, ∗⇒ and
+⇒ if G is clear from the context.

We denote by ⊥ the register assignment that assigns the initial value ⊥
to every register. Figure 1 shows an example of a direct derivation from (S,⊥)

Complexity Results on Register Context-Free Grammars 421

Fig. 1. An example of derivation from (S, ⊥) using (S, tt, 1) → A(a, 1)B)

using (S, tt, 1) → A(a, 1)B. In the figure, d1 is an arbitrary data value in D and
ν1 = ⊥[1 ← d1], because the guard of the rule is tt.

We let
L(G) = {w | (S, ν0)

+⇒ w ∈ (Σ × D)∗}.

L(G) is called the data language generated by G. For example, if G is a 1-
RCFG having two rules (S, tt, 1) → (a, 1)S(a, 1) and (S, tt, 1) → ε, L(G) =
{(a, d1) . . . (a, dn)(a, dn) . . . (a, d1) | n ≥ 0}.

0-RCFG coincide with classical context-free grammars and we call a 0-RCFG
a context-free grammar (CFG).

Example 1. For a CFG G, it is well-known that if L(G) 	= ∅, then there exists a
derivation tree of some word w ∈ L(G) whose height is O(‖G‖). However, this
property does not hold for RCFG. Consider the following k-RCFG G = (V,R, S),
which satisfies L(G) = {(a,⊥)}. While ‖G‖ = O(k log k), the height of the
derivation tree of (a,⊥) is Ω(2k).

V = {A(i,b) | 1 ≤ i ≤ k, b ∈ {0, 1}}
∪ {B(i,b) | 1 ≤ i < k, b ∈ {0, 1}},

S = A(1,0),

and R consists of the following rules:

(A(k,0), tt) → (a, k),

and for 1 ≤ i < k,

(A(i,0), x
=
k ∧ x=

i) → B(i,0),

(A(i,1), x
=
k ∧ x�=

i) → B(i,1),

(B(i,0), x
�=
k , i) → A(1,0) | A(1,1),

(B(i,1), x
=
k , i) → A(i+1,0) | A(i+1,1).

The derivation of G from (S,⊥) to (a,⊥) simulates a (k − 1)-bit binary
counter. We consider that the ith bit of the binary counter is “0” (resp. “1”) if the
value of ith register is ⊥ (resp. not ⊥). The derivation keeps the value of the kth
register being ⊥. For 1 ≤ i < k and b ∈ {0, 1}, derivation (A(i,b), ν) ⇒G (B(i,b), ν)
can exist if only if the ith bit of the binary counter represented by ν equals b.
After this derivation, the ith bit is flipped by the derivation from (B(i,b), ν), and

422 R. Senda et al.

it derives (A(j,0), ν
′) and (A(j,1), ν

′) where ν′ is the updated register assignment,
and j = i + 1 if “the carry to the next bit” exists, and j = 1 otherwise. Because
(A(k,0), ν) for some ν (and (a,⊥)) can be derived only when every bit of the
binary counter becomes “1”, the derivation from (S,⊥) to (a,⊥) must pass
through the elements of {A(1,0), A(1,1)} × Fk 2k−1 times.

3 Basic Properties of RCFG

The properties of RCFG in this section were first shown in [6]. We will give
sketches of proofs to them to make this paper self-contained. We fix a finite
alphabet Σ and a set D of data values.

Proposition 2. Let G be an RCFG and D′ ⊆ D be a finite set. We can con-
struct a CFG G′ from G and D′ that satisfies L(G′) = L(G) ∩ (Σ × D′)∗.

Proof. Let G = (V,R, S) be a k-RCFG and D′ be a finite subset of D. We
construct a CFG G′ = (V ′, R′, S′) from G and D′ as follows. A nonterminal of
G′ is a nonterminal of G with k data values that represent a register assignment.
The rules of G′ are constructed accordingly. Note that whether a rule can be
applied does not depend on data values themselves but depends on the equality
among the data values given as an input or assigned to registers. By this fact,
if |D′| ≥ k + 1, then it suffices to consider data values in D′ to simulate the
derivations of G. Otherwise, i.e., |D′| ≤ k, we need k + 1 different data values
including those in D′.

– V ′ = V ×D′′k where D′′ = D′ if |D′| ≥ k+1 and D′′ is a set such that D′′ ⊇ D′

and |D′′| = k + 1 otherwise. Note that we can consider an assignment ν in
Fk to be a k-tuple over D, i.e. an element of Dk, and thus V ′ ⊆ V × Fk.

– R′ = {(A, ν) → X | (A, ν) ∈ V ′, X ∈ (V ′ ∪ (Σ × D′))∗, and (A, ν) ⇒G X}.
– S′ = (S,⊥).

We can show by induction on the length of derivations that for any X ∈ (V ′ ∪
(Σ × D′))∗, S′ ∗⇒G′ X if and only if (S,⊥) ∗⇒G X. This establishes L(G′) =
L(G) ∩ (Σ × D′)∗.

Proposition 3. If a k-RCFG G generates a data word of length n, G generates
a data word of length n that contains at most k + 1 different data values.

Proof. Let G = (V,R, S) be a k-RCFG and w ∈ L(G) with |w| = n. Also,
let d1, . . . , dk+1 ∈ D be arbitrary data values that are mutually different and
contain ⊥. Consider a direct derivation of G:

(A, ν) ⇒G X

where A ∈ V , ν ∈ Fk, X ∈ ((V × Fk) ∪ (Σ × D))∗ and ν(j) ∈ {d1, . . . , dk+1} for
every j (1 ≤ j ≤ k). We alter the direct derivation as follows: Assume that an
applied rule is (A,ψ, i) → α and the content of i-th register of ν is updated as
d, i.e., the register assignment appearing in X is ν′ = ν[i ← d]. Let ν′′ be the
register assignment as follows:

Complexity Results on Register Context-Free Grammars 423

– If there is j with 1 ≤ j ≤ k and j 	= i such that ν(j) = d, let ν′′ = ν′.
– Otherwise, there is a data value d′ ∈ {d1, . . . , dk+1} such that ν(j) 	= d′ for

every j (1 ≤ j ≤ k). Let ν′′ = ν[i ← d′].

Let X ′ be obtained from X by replacing every ν′ in X with ν′′. Then, (A, ν) ⇒G

X ′ with X ′ containing at most k+1 different data values. For a given derivation
(S,⊥) ∗⇒G w, by starting with (S,⊥) and repeating the above transformation to
each direct derivation in (S,⊥) ∗⇒G w, we obtain a desired derivation (S,⊥) ∗⇒G

w′ with |w′| = n and at most k + 1 different data values.

Proposition 4. The membership problem for RCFG is decidable.

Proof. Let G be an RCFG. It holds that w = (a1, d1) . . . (an, dn) ∈ L(G) if and
only if w ∈ L(G) ∩ (Σ × {d1, . . . , dn})∗. By Proposition 2, we can construct a
CFG G′ from G and w that generates L(G) ∩ (Σ × {d1, . . . , dn}). This implies
the decidability of the membership problem of RCFG because the membership
problem of CFG is decidable.

Proposition 5. The emptiness problem for RCFG is decidable.

Proof. For a given k-RCFG G, let Dk = {d1, . . . , dk+1} ⊆ D be an arbitrary
subset of D consisting of k +1 different data values. By Proposition 3, L(G) = ∅
if and only if L(G) ∩ (Σ × Dk)∗ = ∅. By Proposition 2, we can construct a CFG
G′ from G and Dk such that L(G′) = L(G) ∩ (Σ × Dk)∗. Hence, the emptiness
for RCFG is decidable because the emptiness for CFG is decidable.

RCFG has the following closure properties [6].

Proposition 6. The class of data languages generated by RCFG are closed
under union, concatenation and Kleene-star.

4 Upper Bounds

Lemma 7. For the CFG G′ constructed from a given k-RCFG G and a finite
set D′ ⊆ D of data values by the construction of Proposition 2, we have ‖G′‖ ∈
O(‖G‖ · |D′′|k+1k) where D′′ is a subset of data values defined in the proof of
Proposition 2.

Proof. Let G = (V,R, S) be a k-RCFG and D′ ⊆ D be a finite subset of data
values. The following properties hold on the size of the CFG G′ = (V ′, R′, S′)
constructed in the proof of Proposition 2.

|V ′| = |V × D′′k| ∈ O(‖G‖ · |D′′|k).

|R′| ≤ |R| · |D′′|k.

‖R′‖ = |R′|max{(|X| + 1)(log |V | + k log |D′′| + log |D′|) | (A, ν) → X ∈ R′}
∈ O(‖G‖ · |D′′|k · k log |D′′|).

‖S′‖ ∈ O(1).

Hence, ‖G′‖ ∈ O(‖G‖ · |D′′|k+1k) holds.

424 R. Senda et al.

Lemma 8. The membership problem for RCFG is decidable in EXPTIME.

Proof. Assume we are given a k-RCFG G and a data word w =
(a1, d1) . . . (an, dn) as an input. Consider the CFG G′ such that L(G) ∩ (Σ ×
{d1, . . . , dn})∗, which is constructed in the proof of Proposition 4. By Lemma 7,
‖G′‖ ∈ O(‖G‖ck+1k) where c = max{|w|, k +1}. Since the membership problem
for CFG is decidable in deterministic polynomial time, the problem w ∈ L(G)
for k-RCFG G is decidable in deterministic time exponential to k.

Lemma 9. The membership problem for ε-rule free RCFG is decidable in
PSPACE.

Proof. Let G = (V,R, S) be an ε-rule free k-RCFG. Because G is ε-rule free,
for any α such that S

∗⇒G α
∗⇒G w, |α| ≤ |w| holds. and the space needed for

representing α is at most ‖G‖ · k(log c) · |w| where c = max{|w|, k + 1}. We can
check whether w ∈ L(G) by nondeterministically guessing a derivation from S

to w and checking step by step whether S
∗⇒G w in polynomial space in ‖G‖,

|w|, and k.

Lemma 10. The membership problem for growing RCFG is decidable in NP.

Proof. Let G = (V,R, S) be a growing k-RCFG. Because G is a growing RCFG,
for any α, α′ such that S

∗⇒G α ⇒G α′, |α| < |α′| holds. Therefore we can check
whether w ∈ L(G) by nondeterministically guessing a derivation from S to w,
where the length of derivation is less than |w|, and checking step by step whether
S

∗⇒G w in nondeterministical polynomial time in ‖G‖, |w|, and k.

Lemma 11. The emptiness problem for RCFG is decidable in EXPTIME.

Proof. Let G be a k-RCFG and Dk = {d1, ..., dk+1} ⊆ D. Assume that we
construct the CFG G′ from G and Dk such that L(G) ∩ (Σ × Dk)∗ according
to the proof of Proposition 2. By Lemma 7, ‖G′‖ ∈ O(‖G‖ · |Dk|k+1k) holds.
Because the emptiness problem for CFG is decidable in linear time, the problem
of L(G) = ∅ for a k-RCFG is decidable in deterministic time exponential to k.

5 Lower Bounds

5.1 Alternating Turing Machine

An alternating Turing machine [5], [24, Sect. 10.3] (abbreviated as ATM) is a
tuple M = (Q,Qe, Qa, Γ,Σ, δ, q0, qacc, qrej) where

– Q is a finite set of states, Qe and Qa are the set of existential states and the
set of universal states, respectively, such that Qe ∪ Qa ∪ {qacc, qrej} = Q and
Qe, Qa, {qacc, qrej} are mutually disjoint,

Complexity Results on Register Context-Free Grammars 425

– Γ is a finite set of tape symbols containing a special symbol representing
blank, � ∈ Γ\Σ,

– Σ ⊆ Γ a set of input symbols,
– δ : Q × Γ → P(Q × Γ × {L,R}) is a state transition function where P(A)

denotes the powerset of a set A, and
– q0, qacc, qrej ∈ Q are the initial state, the accepting state and the rejecting

state, respectively.

For a state q ∈ Q, a tape content α ∈ Γ ∗ and a head position j (1 ≤ j ≤ |α|),
(q, α, j) is called an instantaneous description (abbreviated as ID) of M . For two
IDs (q, α, j), (q′, α′, j′), we say that (q, α, j) can transit to (q′, α′, j′) or (q′, α′, j′)
is a successor of (q, α, j), written as (q, α, j) → (q′, α′, j′) if

∃a, b ∈ Γ, ∃β, γ ∈ Γ ∗, |β| = j − 1, α = βaγ such that

α′ =

{
βb� if |α| = j (i.e. γ = ε) and j′ = j + 1,

βbγ otherwise,

j′ =

{
j − 1 δ(q, a) � (q′, b, L), or
j + 1 δ(q, a) � (q′, b, R).

Let ∗−→ be the reflexive transitive closure of →.
We define the accepting condition g : Q × Γ ∗ × N → {tt,ff} of M as follows.

g(q, α, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tt q = qacc

ff q = qrej
∨

(q,α,j)→(q′,α′,j′) g(q′, α′, j′) q ∈ Qe
∧

(q,α,j)→(q′,α′,j′) g(q′, α′, j′) q ∈ Qa

For an ATM M = (Q,Qe, Qa, Γ,Σ, δ, q0, qacc, qrej) and u ∈ Σ∗, if
g(q0, u, 1) = tt, then M accepts u, and if g(q0, u, 1) = ff, then M rejects u.
Let L(M) = {u ∈ Σ∗ | g(q0, u, 1) = tt}, which is the language recognized
by M . Let s : N0 → N0 be a function. If for any u ∈ Σ∗ and any (q, α, j) such
that (q0, u, 1) ∗→ (q, α, j), |α| ≤ s(|u|) holds, then we say that M is an s(n)-space
bounded ATM. If M is a p(n)-space bounded ATM for a polynomial p(n), M is a
polynomial space bounded ATM. It is well-known that APSPACE = EXPTIME
where APSPACE is the class of languages accepted by polynomial space bounded
ATM.

5.2 Membership for General RCFG

Theorem 12. The membership problem for RCFG is EXPTIME-complete.
This holds even for RCFG of which every guard expression refers to at most
two registers.

Proof. By Lemma 8, it is enough to show EXPTIME-hardness, which will
be shown by a polynomial-time reduction from the membership problem for

426 R. Senda et al.

polynomial-space bounded ATM. In the reduction, we simulate tape contents of
a given ATM M by a register assignment of the RCFG G constructed from M .
For this purpose, we encode the state transition function of M by production
rules of G.

Assume that we are given a p(n)-space bounded ATM M = (Q,Qe, Qa, Γ,Σ,
δ, q0, qacc, qrej) where p(n) is a polynomial and an input u ∈ Σ∗ to M . Then, we
construct (|Γ |+p(|u|))-RCFG G = (V,R, S) that satisfy u ∈ L(M) ⇔ ε ∈ L(G),
where

V = {T(i,j) | 1 ≤ j < i ≤ |Γ |} ∪ {T(1,0)}
∪ {Wi | 0 ≤ i ≤ |u|}
∪ {A(i,j)

q | q ∈ Q, 1 ≤ i ≤ |Γ |, 1 ≤ j ≤ p(|u|)}
∪ {B(i,j)

q | q ∈ Q, 1 ≤ i ≤ |Γ |, 1 ≤ j ≤ p(|u|)}
∪ {C(i,j,k)

q | q ∈ Q, 1 ≤ i ≤ |Γ |, 1 ≤ j ≤ p(|u|),
0 ≤ k ≤ maxq∈Q, a∈Γ |δ(q, a)|},

S = T(1,0),

and R is constructed as follows. Without loss of generality, we assume that
Γ = {1, 2, . . . , |Γ |} ⊆ N and 1 is the blank symbol of M . In the following, we
denote the ith element of a sequence α by αi (i.e., α = α1α2 . . . α|α|).

– We construct production rules that load different data values in the first |Γ |
registers. Note that we keep the initial value ⊥ in the first register. To the
ith register (i ≥ 2), a data value different from ⊥ is assigned by Rule (1),
and that data value is guaranteed to be different from the value of every jth
register (2 ≤ j < i) by Rule (2).

(T(i−1,i−2), x
�=
1 , i) → T(i,1) for 2 ≤ i ≤ |Γ |, (1)

(T(i,j−1), x
=
i ∧ x�=

j) → T(i,j) for 2 ≤ j < i ≤ |Γ |. (2)

– To express the initial tape contents u, we construct the following production
rules that load data values corresponding to the symbols in u from left to
right into (|Γ | + 1)th to (|Γ | + |u|)th registers:

(T(|Γ |,|Γ |−1), tt) → W0, (3)
(Wi−1, x

=
ui

, |Γ | + i) → Wi for 1 ≤ i ≤ |u|. (4)

– Let s(m) = −1 if m = L and s(m) = 1 if m = R. For encoding the state
transition and accepting condition of M by G, we introduce a nonterminal
symbol A

(i,j)
q for q ∈ Q, 1 ≤ i ≤ |Γ |, and 1 ≤ j ≤ p(n). A

(i,j)
q represents a

part of an ID (q, α, j) of M where i = αj , i.e. the tape symbol at the head
position. The remaining information about α of (q, α, j) will be represented by
a register assignment of G. More precisely, the content of (|Γ | + j)th register
(i.e. ν(|Γ | + j)) equals the data value ν(αj) representing the tape symbol αj

for 1 ≤ j ≤ |α| and ν(|Γ | + j) = ⊥ for |α| < j ≤ p(|u|). Let να denote such

Complexity Results on Register Context-Free Grammars 427

(q, α, j) ������ A
(αj ,j)
q Γ α1 α2 . . . α|α| ⊥ . . . ⊥

Fig. 2. The correspondence between M ’s ID and G’s nonterminal symbol and registers.

a register assignment that represents the tape contents α. We illustrate the
correspondence between an ID of M and a nonterminal symbol and a register
assignment of G in Fig. 2.

• To derive the nonterminal symbol corresponding to the initial ID of M ,
we construct the following rule:

(W|u|, tt) → A(u1,1)
q0 . (5)

• Consider A
(i,j)
q and let {(q1, b1,m1), . . . , (qt, bt,mt)} = δ(q, i). For each

a ∈ Γ and 1 ≤ k ≤ t, we construct the following rules. If q ∈ Qe, then:

(A(i,j)
q , x=

bk
, |Γ | + j) → B(a,j+s(mk))

qk
. (6)

If q ∈ Qa, then:

(A(i,j)
q , tt) → C(i,j,1)

q . . . C(i,j,t)
q , (7)

(C(i,j,k)
q , x=

bk
, |Γ | + j) → B(a,j+s(mk))

qk
. (8)

Note that if t = 0, then the right-hand side of Rule (7) is ε. We also
construct the following rule for each q′ ∈ Q, a ∈ Γ , and 1 ≤ j′ ≤ p(n):

(B(a,j′)
q′ , x=

a ∧ x=
|Γ |+j′) → A

(a,j′)
q′ . (9)

– Finally, we construct the following rules to express accepting IDs.

(A(i,j)
qacc

, tt) → ε (10)

We can show for each ID (q, α, j),

g(q, α, j) = tt iff (A(αj ,j)
q , να) ∗=⇒G ε (11)

by induction on the application number of the definition of accepting condition
for only if part and by induction on the length of the derivation for if part.

We can easily prove that (S,⊥) ∗=⇒G (A(u1,1)
q0 , νu), and moreover, if (S,⊥) ∗=⇒G

ε, then this derivation must be (S,⊥) ∗=⇒G (A(u1,1)
q0 , νu) ∗=⇒G ε. By letting

(q, α, k) = (q0, u, 1) in property (11) and by the above-mentioned fact, we obtain
u ∈ L(M) ⇔ g(q0, u, 1) = tt ⇔ ((S,⊥) ∗=⇒ ε) ⇔ ε ∈ L(G). By the definition of
G, we can say that this EXPTIME-completeness holds even for RCFG of which
every guard expression refers to at most two registers.

428 R. Senda et al.

5.3 Membership for ε-rule Free RCFG

Theorem 13. The membership problem for ε-rule free RCFG is PSPACE-
complete. This holds even for ε-rule free RCFG with guards referring to at most
two registers.

Proof. By Lemma 9, it is enough to show PSPACE-hardness. We prove it by a
polynomial-time reduction from the membership problem for polynomial-space
bounded ordinary Turing machines (TM), in a similar way as the proof of The-
orem 12. A TM can be regarded as an ATM that has no universal states, and
hence we do not need to construct ε-rules for a universal state that has no suc-
cessor (i.e. we do not need Rule (7), whose right-hand side is ε if t = 0). We
modify Rule (10), the ε-rule for the accepting state, as (A(i,j)

qacc , tt) → (a, 1). The
resultant RCFG G is ε-rule free, and we can show u ∈ L(M) ⇔ (a,⊥) ∈ L(G)
(because the data value in the first register is always ⊥).

5.4 Membership for Growing RCFG

Theorem 14. The membership problem for growing RCFG is NP-complete.
This holds even for growing RCFG in which every guard is either tt or x=

1 .

Proof. By Lemma 10, it is enough to show NP-hardness. We prove it by a
polynomial-time reduction from the satisfiability problem for 3-Conjunctive Nor-
mal Form (3CNF). Let φ = (a1 ∨ b1 ∨ c1) . . . (am ∨ bm ∨ cm) be a 3CNF over
Boolean variables y1, . . . , yn where each ai, bi, ci (1 ≤ i ≤ m) is a literal yj or
yj for some j (1 ≤ j ≤ n). For i (1 ≤ i ≤ m), we define register number rai

as
rai

= 2j if ai = yj and rai
= 2j + 1 if ai = yj . We also define the same notation

rbi and rci for bi and ci. We construct the growing (2n+1)-RCFG G = (V, S,R)
over Σ = {a} where V = {S,AP0 , . . . , APn

, AC0 , . . . , ACm
} and

R = {(S, tt, 1) → AP0(a, 1)}
∪ {(APi−1 , x

=
1 , 2i + j) → APi

(a, 1) | 1 ≤ i ≤ n, j ∈ {0, 1}}
∪ {(APn

, tt) → AC0(a, 1)}
∪ {(ACi−1 , tt) → ACi

(a, r) | 1 ≤ i ≤ m, r ∈ {rai
, rbi , rci}}

∪ {(ACm
, tt) → (a, 1)}.

The first register of the constructed RCFG G is used for keeping a data value
(possibly) different from ⊥, and we use that value and ⊥ for representing tt
and ff, respectively. G nondeterministically loads the value representing tt to
exactly one of the (2i)th and (2i + 1)th registers for each i, to encode a truth
value assignment to y1, y1, y2, y2, . . . , yn, yn. Then G outputs the value of one of
the literals ai, bi, ci for each clause ai ∨ bi ∨ ci in φ. It is not difficult to show
that φ is satisfiable if and only if (a, d)n+m+3 ∈ L(G), where d is an arbitrary
data value in D \ {⊥}. Since (a, d1)n+m+3 ∈ L(G) iff (a, d2)n+m+3 ∈ L(G) for
any d1, d2 ∈ D \ {⊥}, we can choose any d ∈ D \ {⊥} to make the input data
word for the membership problem. Hence, we have shown the NP-hardness of
the problem.

Complexity Results on Register Context-Free Grammars 429

5.5 The Emptiness Problem

Theorem 15. The emptiness problem for RCFG is EXPTIME-complete, even
if RCFG are restricted to be growing and with guards referring to at most two
registers.

Proof. By Lemma 11, it is enough to show EXPTIME-hardness. In the proof
of Theorem 12, we construct ε-rules when the state q under consideration is a
universal state that has no successor (see Rule (7)) or q is the accepting state
(see Rule (10)). We modify those production rules (7) and (10) as follows:

(A(i,j)
q , tt) → (a, 1) if δ(q, i) = ∅ and q ∈ Qa,

(A(i,j)
qacc

, tt) → (a, 1).

Also, a unit rule, say A → B (A,B ∈ V) can be replaced with A → (a, 1)B
(a ∈ Σ). With this modification, the constructed RCFG G has neither ε-rule
nor unit rule, and L(G) is nonempty iff the given ATM M accepts the input u.
Therefore, we reduced the membership problem for polynomial-space bounded
ATM to the emptiness problem for growing RCFG in polynomial time. Note
that we cannot use this construction for proving Theorem12 because the length
of a (shortest) word in L(G) is not guaranteed to be a polynomial of the sizes of
M and u. ��

As shown in Theorem 14, the membership problem for RCFG is NP-hard
even if RCFG is restricted to have guards referring to at most one register. In
contrast, the emptiness problem for RCFG with guards referring to at most one
register is in P, as shown in the next theorem.

Theorem 16. The emptiness problem for RCFG with guards referring to at
most one register is decidable in linear time.

Proof. If a guard expression ψ refers to at most one register, then for every
register assignment ν, there must be a data value d that satisfies d, ν |= ψ. That
is, regardless of ν, rule (A,ψ, i) → α or (A,ψ) → α can be applied to expanding
(A, ν).

Now, for a given RCFG G, let G′ be the CFG obtained from G by removing
the guard expression and register numbers in each production rule (e.g., replacing
(A,ψ, i) → B(a, j) with A → Ba). For a string X ∈ ((V × Fk) ∪ (Σ × D))∗,
let r(X) ∈ (V ∪ Σ)∗ be the string obtained from X by removing the register
assignments and the data values. By the discussion in the previous paragraph, if
X ⇒G Y , then r(X) ⇒G′ r(Y), and if r(X) ⇒G′ Y ′ for some Y ′, then X ⇒G Y
for some Y such that r(Y) = Y ′. Therefore L(G) 	= ∅ iff L(G′) 	= ∅. Since
‖G′‖ = O(‖G‖) and the emptiness problem for CFG is decidable in linear time,
the emptiness problem for RCFG with guards referring to at most one register
is also decidable in linear time.

430 R. Senda et al.

5.6 RCFG with Bounded Registers

Theorem 17. The membership problem and emptiness problem for RCFG with
bounded registers are in P. The data complexity of the membership problem for
general RCFG is in P.

Proof. Let G be a k-RCFG over Σ and D and G′ be the CFG constructed as
in the proof of Proposition 2 from G and a finite set D′ ⊆ D. Then ‖G′‖ =
O(‖G‖ · |D′′|k+1k) holds by Lemma 7. If k is a constant independent of the
choice of G, then ‖G′‖ is a polynomial of ‖G‖ and |D′′|. Hence, by Lemmas 8
and 11, both of the membership problem and the emptiness problem for RCFG
with bounded registers are in P. By the same reason, the data complexity of the
membership problem for general RCFG is in P.

6 Register Tree Automata

6.1 Definitions

A ranked alphabet Σ is a finite set of symbols, each of which is associated with a
nonnegative integer called a rank. Let Σn be the set of symbols having rank n in
Σ. Let TΣ be the smallest set satisfying f ∈ Σn and tj ∈ TΣ(1 ≤ j ≤ n) imply
f(t1, . . . , tn) ∈ TΣ . A member t ∈ TΣ is called a tree over Σ. The set of positions
Pos(t) of a tree t = f(t1, . . . , fn) (f ∈ Σn) is defined by Pos(t) = {ε} ∪ {jp |
p ∈ Pos(tj), 1 ≤ j ≤ n}. For t = f(t1, . . . , tn) (f ∈ Σn) and p ∈ Pos(t), the
label lab(t, p) and the subtree t|p of t at p is defined as lab(t, ε) = f , t|ε = t,
lab(t, jp) = lab(tj , p) and t|jp = tj |p (1 ≤ j ≤ n). Let D be an infinite set of
data values. A data tree over Σ and D is a pair τ = (t, δ) where t ∈ TΣ and δ
is a mapping δ : Pos(t) → D. We let Pos(τ) = Pos(t). The set of all data trees
over Σ and D is denoted as TΣ×D.

Definition 18. A k-register tree automaton (k-RTA) over a ranked alphabet Σ
and a set D of data values is a tuple A = (Q, q0, T) where Q is a finite set of
states, q0 ∈ Q is the initial state and T is a set of transition rules having one of
the following forms:

f(q, ψ, i) → (q1, . . . , qn) or f(q, ψ) → (q1, . . . , qn)

where f ∈ Σn, q ∈ Q, ψ ∈ Ck, 1 ≤ i ≤ k and qj (1 ≤ j ≤ n). When n = 1,
we omit the parentheses in the right-hand side. When n = 0, we write only the
left-hand side f(q, ψ, i) or f(q, ψ) to denote the rule. A run of A on a data tree
τ = (t, δ) is a mapping ρ : Pos(t) → Q × Fk satisfying the following condition:
For p ∈ Pos(t), if ρ(p) = (q, ν), lab(t, p) = f , and ρ(pj) = (qj , μj) for 1 ≤ j ≤ n,
then there is f(q, ψ, i) → (q1, . . . , qn) ∈ T (resp. f(q, ψ) → (q1, . . . , qn) ∈ T)
such that δ(p), ν |= ψ and νj = ν[i ← δ(p)] (resp. νj = ν) (1 ≤ j ≤ n). A
run ρ is accepting if ρ(ε) = (q0,⊥). The data tree language recognized by A is
L(A) = {τ ∈ TΣ×D | there is an accepting run of A on τ}.

Complexity Results on Register Context-Free Grammars 431

6.2 Computational Complexity

Theorem 19. The membership problem for RTA is NP-complete. This holds
even if Σ is monadic, i.e., Σ = Σ0 ∪ Σ1.

Proof. To prove an upper bound, assume we are given an RTA A and a data
tree τ = (t, δ) ∈ TΣ×D and simulate a run of A on τ . For one step transition,
A reads the data value at a node of τ and moves down. Therefore, the number
of transitions of A is exactly |t| and A will not read the data value of any node
more than once. Hence, we can decide whether τ ∈ L(A) by nondeterministically
assign a state of A to each node of τ and verify that the guessed assignment of
states constitutes an accepting run of A on τ in polynomial time.

The NP-hardness can be proved in a similar way to the proof of Theorem14.

Theorem 20. The emptiness problem for RTA is EXPTIME-complete.

Proof. To prove the theorem, it suffices to prove the following two properties
because the emptiness problem for ε-rule free RCFG is EXPTIME-complete
(Theorem 15).

– For a given ε-rule free k-RCFG G, we can construct a k-RTA AG such that
L(G) = ∅ ⇔ L(AG) = ∅ in polynomial time.

– For a given k-RTA A, we can construct an ε-rule free k-RCFG GA such that
L(A) = ∅ ⇔ L(GA) = ∅ in polynomial time.

Let G = (V,R, S) be a k-RCFG over Σ and D. We first translate G to a k-
RCFG G′ = (V ′, R′, S) such that L(G′) = L(G) and R consists of production
rules having one of the following forms:

(A,ϕ, i) → α, (A,ϕ) → α (α ∈ V +)
(A, tt) → (a, j) (a ∈ Σ, j ∈ [k])

by replacing (a, j) ∈ Σ × [k] in the right-hand side of a production rule in R
with a new nonterminal, say X, and adding a rule (X, tt) → (a, j). From G′, we
construct the following k-RTA AG = (Q, qS , T) over Σ′ and D where Σ′

n = {fn |
there is a production rule in R′ such that the length of its right-hand side is n}
and

– Q = {qc | c ∈ V ∪ Σ0}, and
– T = {fn(qA, ϕ, i) → (qB1 , qB2 , . . . , qBn

) | (A,ϕ, i) → B1B2 . . . Bn ∈ R′}
∪ {fn(qA, ϕ) → (qB1 , qB2 , . . . , qBn

) | (A,ϕ) → B1B2 . . . Bn ∈ R′}
∪ {f0(qA, tt) | (A, tt) → (a, j) ∈ R′}.

It is straightforward to check that this RTA AG has the desired property.
Next, let A = (Q, q0, T) be a k-RTA over a ranked alphabet Σ and D and

we construct k-register RCFG GA = (V,R,Aq0) where

– V = {Ac | c ∈ Q ∪ Σ0} and

432 R. Senda et al.

– R = { (Aq, ϕ, i) → Aq1Aq2 . . . Aqn |
f(q, ϕ, i) → (q1, q2, . . . , qn) ∈ T, f ∈ Σn (n ≥ 1)}

∪ { (Aq, ϕ) → Aq1Aq2 . . . Aqn |
f(q, ϕ) → (q1, q2, . . . , qn) ∈ T, f ∈ Σn (n ≥ 1)}

∪ {(Aq, ϕ, i) → c | c(q, ϕ, i) ∈ T} ∪ {(Aq, ϕ) → c | c(q, ϕ) ∈ T}.

It is also straightforward to check that this RCFG GA has the desired property
and we are done.

7 Conclusion

We have discussed the computational complexity of the membership and empti-
ness problems for RCFG and RTA. The combined complexity of the membership
problem for general RCFG is EXPTIME-complete and decreases when we con-
sider subclasses of RCFG while the data complexity is in P for general RCFG.
There is an interesting similarity of the computational hierarchies between RCFG
and multiple context-free grammars (MCFG) [13] where an MCFG is another
natural extension of CFG generating tuples of strings. The emptiness problem
for RCFG remains EXPTIME-complete even if we restrict RCFG to be grow-
ing. We also analyze how the complexity reduces when we restrict the number
of registers occurring in the guard of a production rule.

Introducing a logic such as FO(∼), EMSO(∼) and LTL↓ on data trees that
corresponds to or subsumes RCFG and RTA is a future study. Also, introducing
recursive queries such as datalog in relational databases and fixed point logics
as related logical foundations [1, Part D] [16, Chap. 10] would be an interesting
topic to be pursued.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number
JP15H02684.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

2. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable logic on
data trees and XML reasoning. J. ACM 56(3), Article no. 13 (2009). https://doi.
org/10.1145/1516512.1516515.

3. Bojańczyk, M., David, C., Muscholl, A., Schwentick, T., Segoufin, L.: Two-variable
logic on data words. ACM Trans. Comput. Log. 1(4), Article no. 27 (2011). https://
doi.org/10.1145/1970398.1970403

4. Bouyer, P.: A logical characterization of data languages. Inf. Process. Lett. 84(2),
75–85 (2002). https://doi.org/10.1016/s0020-0190(02)00229-6

5. Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–133
(1981). https://doi.org/10.1145/322234.322243

https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/1516512.1516515
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1016/s0020-0190(02)00229-6
https://doi.org/10.1145/322234.322243

Complexity Results on Register Context-Free Grammars 433

6. Cheng, E.Y.C., Kaminski, M.: Context-free languages over infinite alphabets. Acta
Inf. 35(3), 245–267 (1998). https://doi.org/10.1007/s002360050120

7. Demri, S., Lazić, R.: LTL with freeze quantifier and register automata. ACM Trans.
Comput. Log. 10(3), Article no. 16 (2009). https://doi.org/10.1145/1507244.
1507246

8. Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: decid-
ability and complexity. Inf. Comput. 205(1), 2–24 (2007). https://doi.org/10.1016/
j.ic.2006.08.003

9. Figueira, D.: Forward-XPath and extended register automata on data-trees. In:
Proceedings of 13th International Conference on Database Theory, ICDT 2010,
Lausanne, March 2010. ACM International Conference Proceedings Series, pp. 231–
241. ACM Press, New York (2010). https://doi.org/10.1145/1804669.1804699

10. Figueira, D.: Alternating register automata on finite data words and trees. Log.
Methods Comput. Sci. 8(1), Article no. 22 (2012). https://doi.org/10.2168/lmcs-
8(1:22)2012

11. Figueira, D., Segoufin, L.: Bottom-up automata on data trees and vertical XPath.
In: Schwentick, T., Dürr, C. (eds.) Proceedings of 28th International Symposium on
Theoretical Aspects of Computer Science, STACS 2011, Dortmund, March 2011.
Leibniz International Proceedings in Information, vol. 9, pp. 93–104. Dagstuhl Pub-
lishing, Saarbrücken/Wadern (2011). https://doi.org/10.4230/lipics.stacs.2011.93

12. Jurdziński, M., Lazić, R.: Alternation-free modal mu-calculus for data trees. In:
Proceedings of 22nd IEEE Symposium on Logic in Computer Science, LICS 2007,
Wroclaw, July 2007, pp. 131–140. IEEE CS Press, Washington, DC (2007). https://
doi.org/10.1109/lics.2007.11

13. Kaji, Y., Nakanishi, R., Seki, H., Kasami, T.: The computational complexity of the
universal recognition problem for parallel multiple context-free grammars. Comput.
Intell. 10(4), 440–452 (1994). https://doi.org/10.1111/j.1467-8640.1994.tb00008.x

14. Kaminski, M., Franz, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
322–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

15. Kaminski, M., Tan, T.: Tree automata over infinite alphabets. In: Avron, A.,
Dershowitz, N., Rabinovich, A. (eds.) Pillars of Computer Science. LNCS, vol.
4800, pp. 386–423. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-78127-1 21

16. Libkin, L.: Elements of Finite Model Theory. TTCS. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-662-07003-1

17. Libkin, L., Martens, W., Vrgoč, D.: Querying graphs with data. J. ACM 63(2),
Article no. 14 (2016). https://doi.org/10.1145/2850413

18. Libkin, T., Tan, T., Vrgoč, D.: Regular expressions for data words. J. Comput.
Syst. Sci. 81(7), 1278–1297 (2015). https://doi.org/10.1016/j.jcss.2015.03.005

19. Libkin, L., Vrgoč, D.: Regular path queries on graphs with data. In: Proceedings
of 15th International Conference on Database Theory, ICDT 2012, Berlin, March
2012, pp. 74–85. ACM Press, New York (2012). https://doi.org/10.1145/2274576.
2274585

20. Milo, T., Suciu, D., Vianu, V.: Type checking for XML transformers. In: Pro-
ceedings of 19th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2000, Dallas, TX, May 2000, pp. 11–22. ACM Press,
New York (2000). https://doi.org/10.1145/335168.335171

21. Neven, F., Schwentick, T., Vianu, V.: Finite state machines for strings over infinite
alphabets. ACM Trans. Comput. Log. 5(3), 403–435 (2004). https://doi.org/10.
1145/1013560.1013562

https://doi.org/10.1007/s002360050120
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1145/1507244.1507246
https://doi.org/10.1016/j.ic.2006.08.003
https://doi.org/10.1016/j.ic.2006.08.003
https://doi.org/10.1145/1804669.1804699
https://doi.org/10.2168/lmcs-8(1:22)2012
https://doi.org/10.2168/lmcs-8(1:22)2012
https://doi.org/10.4230/lipics.stacs.2011.93
https://doi.org/10.1109/lics.2007.11
https://doi.org/10.1109/lics.2007.11
https://doi.org/10.1111/j.1467-8640.1994.tb00008.x
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1007/978-3-540-78127-1_21
https://doi.org/10.1007/978-3-540-78127-1_21
https://doi.org/10.1007/978-3-662-07003-1
https://doi.org/10.1145/2850413
https://doi.org/10.1016/j.jcss.2015.03.005
https://doi.org/10.1145/2274576.2274585
https://doi.org/10.1145/2274576.2274585
https://doi.org/10.1145/335168.335171
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/1013560.1013562

434 R. Senda et al.

22. Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory
automata. Theor. Comput. Sci. 231, 297–308 (2000). https://doi.org/10.1016/
s0304-3975(99)00105-x

23. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006).
https://doi.org/10.1007/11874683 3

24. Sipser, M.: Introduction to the Theory of Computation, 3rd edn. Cengage Learning,
Boston (2013)

https://doi.org/10.1016/s0304-3975(99)00105-x
https://doi.org/10.1016/s0304-3975(99)00105-x
https://doi.org/10.1007/11874683_3

Information Flow Certificates

Manuel Töws(B) and Heike Wehrheim

Institut für Informatik, Universität Paderborn,
Warburger Straße 100, 33098 Paderborn, Germany

mtoews@mail.uni-paderborn.de, wehrheim@uni-paderborn.de

Abstract. Information flow analysis investigates the flow of data in
applications, checking in particular for flows from private sources to pub-
lic sinks. Flow- and path-sensitive analyses are, however, often too costly
to be performed every time a security-critical application is run. In this
paper, we propose a variant of proof carrying code for information flow
security. To this end, we develop information flow (IF) certificates which
get attached to programs as well as a method for IF certificate valida-
tion. We prove soundness of our technique, i.e., show it to be tamper-
free. The technique is implemented within the program analysis tool
CPAchecker. Our experiments confirm that the use of certificates pays
off for costly analysis runs.

1 Introduction

Information flow (IF) analysis [5,6,13,14,19,21,26,29,36] is concerned with the
flow of data in software applications. It investigates how information flows along
program statements and whether this flow adheres to given security policies
[17,31]. In its simplest form, information flow analysis tries to detect the flow
of information from sources classified as private to public sinks. Information
flow analysis has recently been extensively studied in the context of smartphone
apps [6,14].

A number of different approaches for IF analyses have been proposed in
the past. They range from approaches based on type systems [21,36] over
logic [5,13,26] to theorem proving [13]. Some approaches also employ a depen-
dency analysis which operates either on the control flow [5] or the program
dependence graph [19]. Information flow analyses differ in the precision in
which they can detect policy violations. While all approaches based on test-
ing [1,18,30,35] under-approximate the real flow in the program, all static anal-
ysis techniques [5,6,21,36] over-approximate flows. Static analysis techniques
moreover vary with respect to the sensitivities they incorporate into their anal-
ysis (e.g., flow-, context- or path-sensitivities). Naturally, the more precise the
analysis, the more costly in terms of runtime and memory consumption. How-
ever, in particular when downloading a new application from the Internet, it is

This work was partially supported by the German Research Foundation (DFG)
within the Collaborative Research Centre “On-The-Fly Computing” (SFB 901).

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 435–454, 2018.
https://doi.org/10.1007/978-3-030-02508-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_23&domain=pdf

436 M. Töws and H. Wehrheim

crucial to be able to ensure information flow security within a short amount of
time.

In this paper, we therefore propose a proof-carrying code (PCC) variant for
information flow. The basic idea is to have a provider of an application attach
an information flow certificate to the code. This certificate might have been
constructed via a time-consuming, precise analysis. The software consumer on
the other hand just needs to check the validity of the certificate. Certificate
validation has to be designed in such a way that it ensures tamper-free operation:
validation should detect any manipulation of code or certificate which invalidates
security.

So far, PCC techniques for information flow security have been based on
reusing computed typing information [29] or logic-based information [11,12,25].
In [29] the certificate generation process operates on linear security policies and
is build in a CEGAR-like fashion involving multiple information flow analysis
runs. For the generation they run their information flow analysis with an initial
typing as certificate. Whenever there is a violation, the violating entity will
be lifted to a higher security class and the analysis will be restarted with the
modified typing until no violation is left. This typing is the certificate for the
checking process. Their certificate checking is then mainly a sole run of the same
information flow analysis and a check whether no violation of the policy occurs.
Their focus lies clearly on keeping the certificate small.

Since information flow analysis are costly, we did not want to put the burden
of a complete information flow analysis run onto the consumer. Therefore, we aim
at just executing the information flow analysis during the certificate generation
process. For verifying the validity of a certificate, we use a more lightweight
checking procedure.

Logic-based PCC techniques for information flow security rely on check-
ing generated theorem proving results. These techniques consider constructing
COQ-proofs [11,25] or Isabelle/HOL-proofs [12] containing both the information
flow property as well as the source-code in it. The consumers task is then the
validation of those constructed proofs. The Mobius [8] project aims at providing
a proof-carrying code architecture with safety and security scenarios in mind.
The techniques they use are both type-based and logic-based where the result
are together with program transformed to COQ-proofs as certificates, which has
to be verified by the consumer.

Here, we aim at automatic certificate generation as well as validation and base
our certificates on the results of a static flow analysis taking data and control
dependencies into account. Certificates basically record the over-approximated
explicit and implicit dependencies between variables at every program location.
For such certificates, we develop a certificate checking mechanism and prove it to
be sound and relatively complete. Soundness in this context means that invalid
certificates not showing security of a program will be rejected, and relative1 com-
pleteness states that all certificates produced by our information flow analysis
will be accepted by the certificate checker.

1 Relative to the employed analysis.

Information Flow Certificates 437

We have implemented our certificate generation and checking algorithm
within the configurable analysis tool CPAchecker [10]. For the evaluation, we
have taken example programs from the annual competition on software verifica-
tion SV-COMP (see e.g. [9]) benchmark suite of C programs. The experiments
show that certificate generation in particular pays off when a costly information
flow analysis has to be carried out for a program.

The outline of the paper is as follows. In Sect. 2 we start with defining the
program model we build on. There, we also outline the information flow anal-
ysis which we employ and have introduced in previous work [34]. In Sect. 3 we
introduce the terminology for security certificates together with the soundness
and completeness proofs and the checking algorithm. In Sect. 4 we evaluate our
approach and Sect. 6 discusses related and future work and concludes.

2 Background

In this section, we formalize the basics we use later. We model a program S
as a control-flow automaton (CFA) CFAS = (L,G , cd), where L is a set of pro-
gram locations, G ⊆ L × Ops × L (for the set of operations Ops see below) is
a set of control flow edges and the mapping cd : L → 2L is an extension of the
control-flow graph that represents control dependencies (not standardly included
in control flow graphs). A control dependency states that the execution of a state-
ment in a program depends on another statement, typically a condition in an IF
or WHILE-statement: �′ ∈ cd(�) if the execution of the statement in location �
depends on the evaluation of the statement in �′. We require a pre-computation
of control dependencies, e.g. like proposed in [20,27]. As operations on the edges
in the CFA we allow for the following:

Ops ::=skip | assume(b) | x := expr

Therein, skip is an empty operation, assume(b) is an assumption corresponding
to a boolean condition b (of an IF or WHILE-statement) and x := expr is an
assignment (expr being an element of the set of expressions Expr). We let V
denote the set of variables. Locations without predecessors in the control flow
relation are initial locations init(CFAS) ⊆ L. For simplicity, we assume that
|init(CFAS)| = 1. Furthermore, we write fv(expr) ⊆ V for the set of variables
occurring in the expression expr .

The semantics of a control-flow automaton (L,G , cd) is given by a transi-
tion system T = (C ,→). In this, the set of concrete states C = L × DS consists
of two parts. Each concrete state c = (pc, ds) ∈ C represents a program posi-
tion given by a value pc ∈ L. The concrete data state ds : V → (Z ∪ B) assigns
to each variable v ∈ V a concrete integer or boolean value. For an expression
expr ∈ Expr , a concrete data value ds(expr) over ds : Expr → (Z ∪ B) can be
also naturally derived from the concrete values of the variables of fv(expr) by
considering the semantics of arithmetic and boolean expressions. Furthermore,
→ ⊆ C × G × C denotes a transition between states. We let c

g→c′ abbreviate
(c, g, c′) ∈ → and write c→c′ if there exists a g ∈ G s.t. (c, g, c′) ∈ →.

438 M. Töws and H. Wehrheim

1 v := w;

2 while (y > 1) do

3 w := x;
4 x := y;
5 y := u;
6 od

7 z := y;
8

1

2

34

5 7 8

v := w

assume(y > 1)

assume(¬(y > 1))

w := x

x := y

y := u z := y

Fig. 1. A small program snippet of a loop and its control flow automaton.

Following, we define the transitions for an edge (�, op, �′) in a CFA:
((pc, ds), (�, op, �′), (pc′, ds ′)) ∈ → if pc = � and pc′ = �′ and the following holds:

if op =̂ skip, then ds ′ = ds,

if op =̂ x := expr , then ds ′(y) =

{
ds(y) if x �= y

ds(expr) if x = y

if op =̂ assume(b), then ds(b) = true and ds ′ = ds.

We call a sequence of transitions c0
g1→c1 . . .

gn→cn in a transition system
T = (C ,→) a program path of CFAS if c0 = (�0, ·) starts in the initial loca-
tion, i.e., �0 ∈ init(CFAS). We let PathsCFAS

denote the set of all pro-
gram paths of S . The set of reachable concrete states from C ′ is defined as
ReachS := {c ∈ C | ∃c0→ . . . →c ∈ PathsS}.

Program analyses typically operate on abstractions of concrete states. We
denote the overall set of abstract states of an analysis by E . An abstract
state e ∈ E can represent several concrete states. The concretization function
[[·]] : E → 2C assigns to each abstract state its meaning – i.e. the set of concrete
states it represents. In order to show specific properties, program analyses com-
pute the set of reachable abstract states. To this end, they employ an abstract
transfer function ϕ : E × G → E . In addition, we fix an initial abstract state
e0 ∈ E abstracting the concrete states at the start location. We call (E , ϕ, e0)
an abstract analysis.

As a recurring example we use the following program snippet in Fig. 1. The
associated CFA (L,G , cd) contains the set L = {1, 2, 3, 4, 5, 7, 8} as locations and
the control flow relation according to the graph. The control dependencies are
cd := {1 �→ ∅, 2 �→ {2}, 3 �→ {2}, 4 �→ {2}, 5 �→ {2}, 7 �→ ∅, 8 �→ ∅}.

In the following, we give an abstract information flow analysis (EIF, ϕIF, e
IF
0)

(sometimes omitting the subscript when clear from the context). Its purpose
is the investigation of flows of information between program variables. We start
with formalizing the notion of non-interference. The integration of control depen-
dencies cd into the CFAS specification has the purpose of enabling the compu-
tation of non-interferences and interferences between entities (i.e., program vari-
ables). More precisely, these are functions NInf , Inf : (L × V) → 2V mapping
per location each variable to a set of variables that does not influence (NInf)
respectively does influence (Inf) its value at that location.

Information Flow Certificates 439

NInf �(v) := {v′ ∈ V | ∀p =
(
c0→ . . .

(·,·,�)→ cj

)
, p′ =

(
c′
0→ . . .

(·,·,�)→ c′
k) ∈ PathsS ;

∀v′′ ∈ V \ {v′} : (pc0 = pc′
0 ∧ c0(v′′) = c′

0(v
′′)) ⇒ cj(v) = c′

k(v)},

Inf �(v) := V \ NInf �(v).

In our previous works [33,34] we integrated an information flow analysis into
CPAchecker. The analysis is configurable in its security configuration and
can be used to over-approximate the non-interference property. On the basis of
this, we also defined two extensions which for simplicity we will not consider
in this paper: policy-dependent information flow analyses [34] and policy-driven
CEGAR refinement [33].

We shortly recap our base analysis in this subsection. It is a data flow analysis
computing analysis information of the form EIF = L → (Dp × Cn) as abstract
states. It describes a location and two sorts of information: a dependency function
from Dp = V → 2V which over-approximates the actual inferences per variable
per location, and a context function Cn = L → 2V which over-approximates the
actual additional implicit inferences caused by branching at a location. For the
initial abstract state eIF

0 each entity just depends on itself and has no implicit
inferences. Hence, eIF

0 = ({v �→ {v} | v ∈ V }, {� �→ ∅ | � ∈ L}).
In the following, we define our analysis as a standard data flow analysis by

giving the transfer (or flow) function, a join operation and an equation system.
The transfer function ϕ : EIF × G → EIF on this abstract domain states how
program statements transform analysis information. More precisely, we have
ϕ((�, dp, cn), (�, op, �1)) = (�′, dp′, cn ′) if �′ = �1 and the following holds:

if op =̂ skip, then dp′ = dp and cn ′ = cn,

if op =̂ x := expr , then cn ′ = cn and

∀v ∈ V : dp′(v) =

{
dp(fv(expr)) ∪ ⋃

�′′∈cd(�) cn(�′′) if v = x

dp(v) else,

if op =̂ assume(b); then dp′ = dp and

∀�′′ ∈ L : cn ′(�′′) =

{
cn(�′′) ∪ ⋃

v∈fv(b) dp(v) if �′′ = �

cn(�′′) else.

If two information pairs (�, dp, cn) and (�′, dp′, cn ′) flow together at join points
(i.e., where � = �′), we apply the following merge operator on the analysis infor-
mation.

(�, dp, cn) (�, dp′, cn ′) = (�, dp ∪ dp′, cn ∪ cn ′) with
∀v ∈ V : (dp ∪ dp′)(v) = dp(v) ∪ dp′(v)
∀� ∈ L : (cn ∪ cn ′)(�) = cn(�) ∪ cn ′(�)

The partial order for two information pairs (�, dp, cn) and (�′, dp′, cn ′) is given
by

(�, dp, cn) � (�′, dp′, cn ′) iff (� = �′) ∧ ∀v ∈ V : dp(v) ⊆ dp′(v)
∧ ∀�′′ ∈ L : cn(�′′) ⊆ cn ′(�′′)

440 M. Töws and H. Wehrheim

Table 1. Fixpoint computation result of IF for running example from Fig. 1. Simulta-
neously, it is the certificate.

IF� = (dp, cn) dp cn

u v w x y z 2 {1, 3, 4, 5, 7, 8}
IF1 {u} {v} {w} {x} {y} {z} ∅ ∅
IF2 {u} {w} {w, x, y, u} {x, y, u} {y, u} {z} {y, u} ∅
IF3 {u} {w} {w, x, y, u} {x, y, u} {y, u} {z} {y, u} ∅
IF4 {u} {w} {x, y, u} {x, y, u} {y, u} {z} {y, u} ∅
IF5 {u} {w} {x, y, u} {y, u} {y, u} {z} {y, u} ∅
IF7 {u} {w} {w, x, y, u} {x, y, u} {y, u} {z} {y, u} ∅
IF8 {u} {w} {w, x, y, u} {x, y, u} {y, u} {x, y, u} {y, u} ∅

The overall equation system IF� per program location � ∈ L solved by a standard
fixpoint computation is then given by:

IF� =
{

eIF
0 if � ∈ init(CFAS)⊎{ϕ(IF�∗ , (�∗, op, �)) | (�∗, op, �) ∈ G} otherwise.

The solution to the equation system gives us one abstract state per program
location. For the running example the computed fixpoint of the equation system
is given in Table 1.

This information is now used to determine whether a program is secure. The
specification of security violations, however, requires two additional inputs: a
security policy P and a security mapping SC which together form a security con-
figuration (P ,SC). A security mapping SC : V → Sec connects program entities
with security classes – denoted by the set Sec. A security policy P ⊆ Sec × 2Sec

provides the security classes with a semantics and thereby describes what flows
in the program are allowed to exist between the security classes. Technically, a
policy is a collection of pairs. The policy specifies the allowed flow of infor-
mation for each individual security class. An element (a,A) ∈ P is a secure
state. It states that an element a ∈ Sec is allowed to depend on information
equal to the security classes A ∈ 2Sec . On the contrary, an element (b,B) not
being part of a policy – i.e. (b,B) ∈ (Sec × 2Sec) \ P – is a non-secure state. To
guarantee soundness in joining, removing some security classes from the right-
hand side should not turn a secure state into a non-secure state. Hence, for
all a ∈ Sec, A ⊆ B ⊆ Sec : (a,B) ∈ P ⇒ (a,A) ∈ P must hold.

For the running example we consider a policy LHI consisting of three security
classes SecLHI = {l , h, i} which denotes low, high and internal entities. The pol-
icy allows for h and i to contain everything (i.e. for all B ⊆ SecLHI : (h, B) ∈ LHI
and (i , B) ∈ LHI). If l contains no high information it is a secure state (i.e. for
all B ⊆ SecLHI : (l , B \ {h}) ∈ LHI), otherwise it is a non-secure state (i.e. for
all B ⊆ SecLHI : (l , B ∪ {h}) �∈ LHI). Especially, h information should not be
allowed to flow into l directly or transitively via i entities.

With this at hand, we can define violations of security configurations.

Information Flow Certificates 441

Definition 1. Let T = (C ,→) be a transition system. A concrete state c =
(pc, ·) ∈ C violates a security configuration (P ,SC) iff there exists a v ∈ V
such that (SC (v),SC (Inf pc(v)) �∈ P, i.e. a non-secure state is occurring.

In the absence of violations we say the concrete state is secure. A transition
system is secure iff all of its reachable concrete states are. Analogously, a security
configuration can be violated in an abstract state.

Definition 2. Let (EIF, ·, ·) be the abstract information flow analysis. An
abstract state (�, dp, cn) ∈ EIF violates a security configuration (P ,SC) iff there
exists a v ∈ V such that (SC (v),SC (dp(v)) �∈ P.

Again, in the absence of violations we say that the abstract state is secure. A set
of abstract states is secure iff all states in the set are. The solution to IF defines
such a set of abstract states. We use this solution to derive information about
the security of the program. Next, we simply restate the soundness result from
[33]: Security of IF implies security of CFAS .

Theorem 1. Let CFAS be a program model, IF the solution to the associated
equation system and (P ,SC) be the security configuration. If IF is secure w.r.t. to
(P ,SC), then CFAS is secure w.r.t. to (P, SC).

Considering the running example and the security configuration (LHI ,SC 1)
with SC 1 = {u �→ h; v �→ i ;w �→ i ;x �→ i ; y �→ i ; z �→ l}, the result in Table 1 is
not secure since IF8 : (SC (z),SC (dp(z)) = (l , {i , h}) �∈ LHI . When changing the
security configuration to (LHI ,SC 2) with SC 2 = {u �→ h; v �→ l ;w �→ i ;x �→
i ; y �→ i ; z �→ i} the result is secure since no abstract state violates the policy.
Hence the program is secure w.r.t. (LHI ,SC 2).

3 Certification for Information Flow

Our objective now is the usage of this analysis information as a certificate in a
proof-carrying code approach. The concept of proof-carrying code dates back to
Necula [32]. The concept is generic and consists of two roles: A software producer
and a software consumer. The producer aims at selling her software to the con-
sumer and has to find a way of convincing the consumer of its quality, viz. the
holding of a property. However, the consumer should not be bothered with costly
correctness proofs. Therefore, the producer computes a proof (witness, certifi-
cate) certifying the holding of the property and ships this proof together with
the software. The consumer’s task is then simply certificate validation. A good
PCC scheme guarantees that the majority of the workload is on the producer’s
side. Jakobs and Wehrheim developed a Configurable Program Certification app-
roach (CPC) [23] for configurable program analysis frameworks and integrated
it into the tool CPAchecker. The basic idea is to reduce the consumer’s cost
of validation by omitting fixpoint computations. Our approach adapts CPC to
information flow properties.

We start by defining our notion of a certificate.

442 M. Töws and H. Wehrheim

Definition 3. A certificate Z is a set of abstract states Z ⊆ EIF.

The existence of a certificate alone is typically not enough for assuring that
the program is secure: the certificate also has to be valid. For validity, a certificate
on the one hand has to be secure w.r.t. to the given security configuration, and
on the other hand has to faithfully represent the program in that each reachable
concrete state is over-approximated by an abstract state.

Definition 4. Let Z be a certificate and CFAS the program model. We call a
certificate Z valid for the program S and a security configuration (P ,SC) iff

1. it contains one over-approximating abstract state for every reachable concrete
state: ∀(�, ds) ∈ ReachS∃dp, cn such that
– (�, dp, cn) ∈ Z ,
– ∀v ∈ V : Inf �(v) ⊆ dp(v) and

2. the certificate is secure:
∀(�, dp, cn) ∈ Z ; ∀v ∈ V : (SC (v),SC (dp(v))) ∈ P.

In a PCC context, we need a way of generating valid certificates (for the pro-
ducer) and of checking the validity of certificates (for the consumer). For certifi-
cate generation, the producer can just take the set of abstract states computed
by the data flow analysis. A secure result will always be a valid certificate.

Lemma 1. Let CFAS be a program model, IF the information flow analysis
result of S and (P ,SC) a security configuration. If IF is secure w.r.t. (P ,SC),
then IF is a certificate which is valid w.r.t. S and (P ,SC).

Proof. The first property of validity holds. In [33] we have shown that IF com-
putes abstract states that over-approximate the actual inferences in a forward
analysis. The second property of validity is trivially fulfilled, since each e ∈ IF

is secure w.r.t. to the security configuration (P ,SC). ��
Moreover, every valid certificate (not just the ones computed by the data flow
analysis) certifies security of the program.

Lemma 2. Let Z be a certificate, CFAS the program model and (P ,SC) a
security configuration. If Z is valid w.r.t. S and (P ,SC), then S is secure
w.r.t. (P ,SC).

Proof. From property 1 of validity, it follows that for each ci = (�, ds) ∈ ReachS

there is an ei = (�, dp, cn) ∈ Z that over-approximates ci. From property 2 it
follows that for all ei = (�, dp, cn) ∈ Z and for all v ∈ V (SC (v),SC (dp(v)) ∈ P
holds. Since dp(v) over-approximates Inf �(v) and we are just considering policies
for which a ∈ Sec, A ⊆ B ⊆ Sec : (a,B) ∈ P ⇒ (a,A) ∈ P holds (subsets stays
secure), this leads to v ∈ V (SC (v),SC (Inf �(v)) ∈ P . Hence, S is secure. ��
The consumer’s task is now to check whether the received certificate is valid.
Of course, such a validity check should be possible without considering concrete
states of the program. To this end, we define a coverage check function which
checks whether an abstract state is represented by the certificate.

Information Flow Certificates 443

Definition 5. Let E be the set of all abstract states. A function cover : E ×
2E → B is a coverage check if for all e ∈ E , R ⊆ E

cover(e,R) ⇒ e �
⊎

e′∈R

e′

holds.

Here, we need to define a coverage check function cover IF : EIF × 2EIF → B

for our information flow analysis. We can do so by letting

cover IF(((�, dp, cn), R)) =̂ ∃(�′, dp′, cn ′) ∈ R : (�, dp, cn) � (�′, dp′, cn ′).

Next, we show that cover IF is a coverage-check according to Definition 5.

Lemma 3. The function cover IF is a coverage check function.

Proof. By definition of cover IF. Let (�, dp, cn) ∈ EIF, R ⊆ EIF.

Let cover IF((�, dp, cn), R) = true
⇒ [∃(�′, dp′, cn ′) ∈ R : (�, dp, cn) � (�′, dp′, cn ′)]

For (�′, dp′, cn ′), (�′′, dp′′, cn ′′)′ ∈ R with �′ = �′′ it holds that (�′, dp′, cn ′)
(�′′, dp′′, cn ′′)′ is computable2. Since, ∀v ∈ V : dp′(v) ⊆ dp′(v) ∪ dp′′(v) and
∀� ∈ L : cn ′(�) ⊆ cn ′(�) ∪ cn ′′(�) it holds, that (�′, dp′, cn ′) � (�′, dp′, cn ′)
(�′′, dp′′, cn ′′). Therefore, we conclude the following:

⇒ [∃(�′, dp′, cn ′) ∈ R : (�, dp, cn) � (�′, dp′, cn ′) � ⊎
(�′′,dp′′,cn′′)∈R(�′′, dp′′, cn ′′).

��
Our certificate checking approach furthermore demands the coverage check to
be well-behaving, i.e., to be consistent with the partial order on abstract states
and to be monotonic.

Definition 6. Let cover : E × 2E → B be a coverage check. Function cover is
well-behaving if it is

1. consistent with �: ∀e ∈ E , R ⊆ E : ∃e ′ ∈ R : e � e ′ ⇒ cover(e, R), and
2. monotonic: ∀e, e ′ ∈ E , R,R′ ⊆ E :

e � e ′ ∧ R � R′ ∧cover(e ′, R) ⇒ cover(e, R′).

We next show that cover IF is indeed well-behaving.

Lemma 4. coverIF is a well-behaving coverage-function.

Proof

1. Consistent with partial order. ∀(�, dp, cn) ∈ EIF, R ⊆ EIF,∃(�′, dp′,
cn ′) ∈ R:

2 The �-operation is only defined if �′ = �′′. For the computation of the equation
system IF the evaluation order of � is not specified. Hence, it is possible that the
two listed abstract states weren’t joined directly.

444 M. Töws and H. Wehrheim

Algorithm 1. Validation algorithm for information flow certificates
Input: Program model CFAS = (L,G, cd) of S
Initial abstract state e0 ∈ EIF, transfer function ϕIF, cover function coverIF
certificate Z ⊆ EIF,
security configuration (P ,SC).
Output: Boolean value indicating whether Z is valid.

1 if (¬coverIF(e0,Z)) then
2 return false;

3 for each (�, dp, cn) ∈ Z do
4 for each (�, op, �′) ∈ G do
5 (�′, dp′, cn ′) := ϕIF((�, dp, cn), (�, op, �′));
6 if (¬coverIF((�′, dp′, cn ′),Z)) then
7 return false;

8 return [∀(�, dp, cn) ∈ Z ; ∀v ∈ V : (SC (v),SC (dp(v))) ∈ P];

Let (�, dp, cn) � (�′, dp′, cn ′) ∧ (�′, dp′, cn ′) ∈ R
Since (�′, dp′, cn ′) ∈ R it holds that

⇒ ∃(�′′, dp′′, cn ′′) ∈ R : (�, dp, cn) � (�′′, dp′′, cn ′′)
But this means according to the definition of cover IF that

⇒ cover IF((�, dp, cn), R) = true
2. Monotonic:

Let (�, dp, cn) � (�′, dp′, cn ′) ∧ R � R′ ∧ cover(e′, R)
⇒ ∃(�′′, dp′′, cn ′′) ∈ R : (�′, dp′, cn ′) � (�′′, dp′′, cn ′′)

Since R � R′ it holds that
⇒ ∃(�′′, dp′′, cn ′′) ∈ R′ : (�, dp, cn) � (�′, dp′, cn ′) � (�′′, dp′′, cn ′′)

But this means according to the definition of cover IF that
⇒ cover IF((�, dp, cn), R′) = true ��

The coverage check operator is now used within our certificate validation algo-
rithm (Algorithm 1). The algorithm is an adaption of the CCV-algorithm of
Jakobs and Wehrheim [23], tailored to our setting. Basically, the algorithm checks
validity of the certificate on the abstraction: First, it checks whether all initial
concrete states are covered (lines 1 and 2). This is done by checking for covering
of e0 which itself covers all initial states and is – via the ordering � – the mini-
mal such element. Second, the algorithm checks whether all abstract successors
(using the transfer function) are covered by the certificate (lines 3 to 7). Finally,
it examines security of the certificate (line 8).

It can be shown that Algorithm 1 accepts all secure solutions of the equations
system IF as certificate. Hence the producer can safely use such a solution as
certificate.

Lemma 5. Let IF ⊆ EIF be a solution to the equation system for a program
model CFAS and (P ,SC) a security configuration.

If IF is secure w.r.t. (P ,SC), then Algorithm1 accepts IF as certificate (i.e.,
returns true).

Information Flow Certificates 445

Proof. We first show that Algorithm 1 will not terminate in line 2 – i.e. we show
that when IF is secure w.r.t. (P ,SC), then coverIF(e0, IF) = true always in
line 1.

1. In the process of computing IF the abstract state of the initial location IF0

is set and stays equal to the initial state eIF
0 : eIF

0 = IF0. Therefore, eIF
0 � IF0

holds. But this means coverIF(e0,Z) = true.

We next show that Algorithm 1 will not terminate in line 7 – i.e. we show that
when IF is secure w.r.t. (P ,SC), then coverIF((�′, dp′, cn ′), IF) = true always in
line 6.

2. Let (�, dp, cn) ∈ IF. This means IF� = (�, dp, cn). For each g = (�, op, �′)
there has to be an abstract state IF�′ = (�′, dp′, cn ′) ∈ IF. This is the case
since the IF computes an over-approximating abstract state for all reachable
locations.
IF�′ is computed by a fixpoint computation

⊎{ϕ(IF�∗ , (�∗, op, �′)) |
(�∗, op, �′) ∈ G}. Especially, ϕ(IF�, (�, op, �′)) is contained in this join opera-
tion as operand.
For (�′, dp′, cn ′), (�′′, dp′′, cn ′′)′ ∈ EIF with �′ = �′′ it holds that (�′, dp′, cn ′)
(�′′, dp′′, cn ′′)′ is computable (See footnote 2). Since, ∀v ∈ V : dp′(v) ⊆
dp′(v) ∪ dp′′(v) and ∀� ∈ L : cn ′(�) ⊆ cn ′(�) ∪ cn ′′(�) it holds, that
(�′, dp′, cn ′) � (�′, dp′, cn ′) (�′′, dp′′, cn ′′). But this means, we can conclude
that ϕ(IF�, (�, op, �′)) � IF�′ . Hence, coverIF(ϕ(IF�, (�, op, �′)),Z) = true.

We next show that Algorithm 1 will terminate in line 8 with true – i.e. we show
that if IF is secure, then [∀(�, dp, cn) ∈ IF;∀v ∈ V : (SC (v),SC (dp(v))) ∈ P] =
true always in line 8.

3. This follows directly trivially from the definition that IF is secure.

All in all this means Algorithm 1 accepts secure solutions to the equations system
IF as certificate Z = IF. ��
Furthermore, whenever Algorithm 1 accepts a certificate, it is a valid certificate.

Lemma 6. Let Z ⊆ EIF be a certificate, CFAS a program model and (P ,SC) a
security configuration.

If Algorithm1 accepts Z , then Z is valid for S and (P ,SC).

Proof. Suppose Algorithm 1 accepts Z . This means Algorithm 1 terminates in
line 8 with true since the other return-possibilities in line 2 and 8 can only
return false. But this means Z fulfills the second property (security) according
to the valid certificate Definition 4.

Let p :=
(
c0→ . . .

(·,opn,�n)→ cn

) ∈ PathsCFAS be arbitrary but fixed. e0 =
(�0, dp0, cn0) = (�0, {v �→ {v} | v ∈ V }, {� �→ ∅ | � ∈ L}) is an over-
approximation of c0. Since the Algorithm 1 has not terminated in line 2
coverIF(e0,Z) = true holds in line 1. So there has to be an over-approximating
abstract state e = (�, dp, cn) ∈ Z s.t. e0 � e.

446 M. Töws and H. Wehrheim

Table 2. Cover-checks in the validation algorithm for the running example from Fig. 1.
If the cell is marked in gray, the set is a real subset (⊂), otherwise the sets are equal
(=).

dp cn
u v w x y z 2 {1, 3, 4, 5, 7, 8}

eIF
1 {u} {v} {w} {x} {y} {z} ∅ ∅ � IF1

φ(IF1, (1, v := w, 2) {u} {w} {w} {x} {y} {z} ∅ ∅ � IF2

φ(IF2, (2, (y > 1), 3) {u} {w} {w, x, y, u} {x, y, u} {y, u} {z} {y, u} ∅ � IF3

φ(IF3, (3, w := x, 4) {u} {w} {x, y, u} {x, y, u} {y, u} {z} {y, u} ∅ � IF4

φ(IF4, (4, x := y, 5) {u} {w} {x, y, u} {y, u} {y, u} {z} {y, u} ∅ � IF5

φ(IF5, (5, y := u, 2) {u} {w} {x, y, u} {y, u} {y, u} {z} {y, u} ∅ � IF2

φ(IF2, (2, ¬(y > 1), 7) {u} {w} {w, x, y, u} {x, y, u} {y, u} {z} {y, u} ∅ � IF7

φ(IF7, (7, z := w, 8) {u} {w} {w, x, y, u} {x, y, u} {y, u} {x, y, u} {y, u} ∅ � IF8

By now computing for each ϕ((�, dp, cn), (�, op, �′)) = (�′, dp′, cn ′) and
coverIF((�′, dp′, cn ′),Z)) = true we have transitive (since coverIF(e0,Z) = true)
an over-approximating state per ci that is covered by a more abstract state
(�′′, dp′′, cn ′′) ∈ Z in the certificate s.t. (�′, dp′, cn ′) � (�′′, dp′′, cn ′′). But this
means Z fulfills the first property (over-approximation per reachable concrete
state) according to the valid certificate Definition 4.

All in all this means Z is valid according to Definition 4. ��
We apply the validation algorithm to the certificate computed by the data-

flow analysis of our running example from the previous section. Again we consider
the first security configuration (LHI ,SC 1). First, we check whether the initial
abstract state is covered. Than per each abstract state of the certificate we check
per outgoing edge whether the resulting abstract successor state is covered in
the certificate. This is the case as stated in Table 2. For the validation we just
compute a successor abstract state once per outgoing edge and check whether
coverIF holds. In contrary to the data flow analysis on the producer side – where
we need at least 3 iterations for the fixpoint computation and that means 19
abstract states have to be computed and merged at least 12 times – we just
compute 8 abstract states and check them for covering. For all 8 rows the cover
relation holds. The second and sixth row IF2 are covered by abstract states in
the certificate which are real over-approximations. The other six rows are com-
puting the exactly same abstract states as the certificate they check for covering.
However, this certificate is not secure, since IF8 is not secure and therefore it
will be rejected in line 8 of Algorithm1. If we would check for the other security
configuration (LHI ,SC 2), the validation would succeed as expected and return
true in line 8.

However, Lemma 6 is only a one-sided implication; the other direction does
not hold. Not all valid certificates are accepted. In [23], this phenomenon is called
relative completeness of certificate validation. It occurs when a certificate over-
approximates all concrete states, but is not closed under successor computation
via the transfer function. Consider again the running example. If we replace the
first row (IF1) of Table 1 by an abstract state (Mod1 = ({v �→ V | v ∈ V }, {� �→

Information Flow Certificates 447

∅ | � ∈ L})), we get only a more over-approximating abstract state and we will
still have a valid certificate. However, the certificate will be denied at line 7 of
Algorithm 1 since the successor Mod2 = φ(Mod1, (1, v := w, 2)) = ({v �→ V | v ∈
V }, {� �→ ∅ | � ∈ L}) is not covered by IF2.

4 Experimental Results

We have integrated our approach into the configurable program analysis frame-
work CPAchecker [10] and carried out a number of experiments to see in
particular whether the security certificate pays off. Our experiments were per-
formed on a Intel(R) Core(TM)i7 4600U @ 2.10 GHz running Windows 7 with
8192 MB RAM. The installed Java version was JDK 1.8.0 77.

For the experiments we used the policy-independent analyses which we have
explained in Sect. 2. We focused on the following two research questions:

RQ1 Is the checking of a certificate faster than running a complete analysis?
RQ2 How large can certificates become?

We run a number of experiments to answer these two research questions. As
there is – to our knowledge – no established benchmark suite for non-interference
properties, we took C programs from SV-Comp 20173 as examples. Such pro-
grams typically do not come with security configurations. For the experiments,
we chose the LHI policy together with a mapping which assigns the security
class i to all variables. As a consequence, all programs are secure and thus we
could concentrate on the computation of interferences. Table 3 lists the results
for those programs where the proof generation process exceeded 10 s, i.e. which
are complex enough so that the use of certificates might potentially pay off.

Table 3 reads as follows: Each row represents a test-case with an identifier
(program name) in the first column. The second column – denoted as Loc –
gives an impression of the program size by listing the number of locations in the
control flow automaton that is generated from the program code. The next four
columns deliver statistics about the proof-generation process of the producer.
The third column – denoted as Analysis – lists how much time in seconds the
information flow analysis took. The fourth column #Computed States lists how
many abstract states were computed in total during this analysis before the
number was reduced by the join operation on abstract states to one per location.
The fifth column Writing lists how much time in seconds the writing of the
certificate took. The sixth column Size names the size of the generated certificate
in bytes. The last two columns are reserved for the proof-checking on consumer
side. The seventh column Analysis lists how much time in seconds the combined
proof reading and proof checking of the certificate took. The eighth and last
column #Computed States denotes how many abstract states were computed
during the certificate checking and checked for covering.

3 https://sv-comp.sosy-lab.org/2017/.

https://sv-comp.sosy-lab.org/2017/

448 M. Töws and H. Wehrheim

Table 3. Runtime and sizes of certificates for generation and checking.

Testcase Loc Proof-Generation Proof-Checking
Analysis #Computed Writing Size Analysis #Computed

[s] States [s] [Bytes] [s] States
minepump spec1 product21 603 13.379 22630 14.579 1372046 21.266 20385
minepump spec1 product22 609 11.814 22671 16.393 1403330 19.058 20419
minepump spec1 product41 601 13.839 22641 11.876 1332065 18.374 19623
minepump spec1 product42 607 12.246 22682 15.068 1364208 19.501 19657
minepump spec1 product43 611 21.099 28318 39.947 1701929 40.201 24589
minepump spec2 product35 614 11.867 27660 15.710 1487781 21.726 23491
minepump spec2 product36 620 14.383 27722 17.456 1505963 21.555 23536
minepump spec3 product33 595 16.784 32642 22.521 1728841 24.586 26780
minepump spec3 product34 601 15.681 32706 24.851 1750942 24.697 26820
minepump spec4 product36 607 11.472 25090 10.508 1315027 17.009 21086
minepump spec4 product41 601 16.481 29376 29.159 1666193 25.458 24564
minepump spec5 product33 607 12.916 23430 11.177 1222606 16.839 19959
minepump spec5 product34 613 11.695 23488 10.034 1244329 16.533 19995
minepump spec5 product35 617 15.927 30703 24.748 1634312 24.134 26193
minepump spec5 product36 623 15.854 30776 24.414 1657371 24.492 26241
psyco abp 1 f-u-c f-t t-no-o 550 82.752 84799 56.373 4872606 45.558 21366
psyco abp 1 t-u-c f-t t-no-o 547 69.922 84269 50.839 4764343 43.262 21362

s3 clnt 1 f-u-c t-no-o.BV.c.cil 494 48.793 37535 8.001 1219858 5.719 4930
s3 clnt 1 f-u-c t-t.cil 472 35.468 34526 7.688 1603181 7.833 4783

s3 clnt 1 t-u-c t-no-o.BV.c.cil 495 42.318 39902 7.791 1445838 6.642 5168
s3 clnt 1 t-u-c t-t.cil 472 32.837 34526 7.632 1598065 7.738 4783

s3 clnt 2 f-u-c t-no-o.BV.c.cil 484 42.671 38296 8.061 1175382 6.370 5139
s3 clnt 2 f-u-c t-t.cil 475 36.665 36340 8.730 1791864 8.862 5062

s3 clnt 2 t-u-c t-no-o.BV.c.cil 485 39.352 40011 10.736 1270027 6.794 5390
s3 clnt 2 t-u-c t-t.cil 475 37.031 36340 8.699 1929144 7.725 5062
s3 clnt 3.cil t-u-c t-t 456 21.809 35295 5.465 1112419 5.195 4790

s3 clnt 3 f-u-c t-no-o.BV.c.cil 491 55.862 40946 13.328 1342443 6.621 5394
s3 clnt 3 f-u-c t-t.cil 500 45.279 36234 11.538 2516347 9.016 4990

s3 clnt 3 t-u-c t-no-o.BV.c.cil 492 40.344 40947 13.490 1301600 9.894 5395
s3 clnt 3 t-u-c t-t.cil 493 45.051 36052 11.049 2378323 8.969 4983
s3 clnt 4 f-u-c t-t.cil 478 36.807 36363 8.732 1841811 7.722 5072
s3 clnt 4 t-u-c t-t.cil 475 36.728 36360 8.601 1749859 7.514 5069
s3 srvr 10 f-u-c f-t.cil 534 86.684 62475 18.144 3291356 26.338 9045
s3 srvr 11 f-u-c f-t.cil 542 106.699 72432 20.768 3682932 29.797 10221
s3 srvr 13 f-u-c f-t.cil 550 80.682 59833 18.074 3155530 22.003 9014
s3 srvr 14 f-u-c f-t.cil 548 88.365 63599 19.351 3429914 29.086 9573

s3 srvr 1 alt t-u-c t-no-o.BV.c.cil 544 79.062 50586 22.440 1850922 10.186 6582
s3 srvr 1 f-u-c f-t.cil 520 62.655 51428 13.352 2545039 17.732 7270
s3 srvr 1 t-u-c f-t.cil 524 59.544 49862 13.395 2507864 18.017 7914

s3 srvr 1 t-u-c t-no-o.BV.c.cil 535 70.076 47575 11.692 1667117 9.076 6496
s3 srvr 2 alt t-u-c t-no-o f-t.BV.c.cil 538 62.226 48204 15.125 1620684 10.617 6516

s3 srvr 2 f-u-c f-t.cil 520 64.390 49179 12.305 2307516 16.448 7045
s3 srvr 2 t-u-c f-t.cil 519 60.539 49178 12.428 2268504 16.541 7044

s3 srvr 2 t-u-c t-no-o f-t.BV.c.cil 538 84.643 48218 15.387 1621022 10.284 6516
s3 srvr 3 alt t-u-c t-no-o.BV.c.cil 536 72.667 47042 12.468 1556778 8.809 6404

s3 srvr 3 t-u-c f-t.cil 518 61.948 50048 12.984 2390487 16.865 7220
s3 srvr 3 t-u-c t-no-o.BV.c.cil 535 68.911 46835 12.425 1534821 8.840 6403

s3 srvr 4 t-u-c f-t.cil 519 60.241 49587 12.680 2333254 16.653 7109
s3 srvr 6 f-u-c f-t.cil 575 83.424 59646 19.155 3380035 28.363 9387
s3 srvr 6 t-u-c f-t.cil 572 79.878 58710 18.207 3259491 29.190 9191
s3 srvr 7 t-u-c f-t.cil 533 64.221 52172 14.101 2406142 20.308 7688
s3 srvr 8 t-u-c f-t.cil 539 69.548 53888 15.072 2655016 19.877 8014

Information Flow Certificates 449

Let us first consider RQ1. We expected the certificate checking to be more
efficient than applying a complete analysis despite the drawback that addition-
ally to the checking time, the time for parsing a certificate – i.e. the proof read-
ing – is added as an overhead. To better see the result, we marked those cells in
Table 3 in gray which have a smaller runtime, either the complete information
flow analysis or the certificate checking. We observe that checking is more effi-
cient only when the overall number of computed abstract states in the checking
process is significantly smaller than in the generation process. This is the case
when the analysis performs many iterations during fixpoint computation due
to loops in the program. Since fixpoints are already computed by the certifi-
cate generation, a lesser number of iterations is needed for certificate checking.
Also, joining of any of those abstract states is not involved within the certificate
checking process, thus checking is potentially faster for programs with complex
branching structure. In some cases, the two values for #Computed States differ
drastically, e.g. for s3 srvr 11 f-u-c f-t.cil 72432 states are computed compared
to 10221 states during checking which gives a reduction factor of 7. The running
time was also more efficient in the checking process with 106699 ms compared
to 29797 ms. For another entry – s3 srvr 6 f-u-c f-t.cil – we computed 59646
abstract states compared to 9387 abstract states which is roughly a reduction
factor of 6 and had more efficient runtimes with 83424 ms compared to 28363 ms.
Indeed we always observe that if we compute in the generation process clearly
more abstract states, checking is more efficient.

We conclude that the efficiency of certificate checking strongly depends on
the program structure. For programs with loops and a lot of branching certifi-
cate checking is indeed considerably faster than a complete analysis. In case
of loop-free programs certificate checking is less efficient due to the dominat-
ing overhead of parsing the certificate. Since realistic programs typically have
complex structures including loops, we conjecture that certificate checking will
pay off for larger real-world programs. However, more experiments are needed
to confirm this conjecture.

Let us now consider RQ2. We expect that the size of the certificates depends
mainly on two aspects. On the one hand on the total number of abstract states
in general, i.e. the reach-set which is computed. For our data-flow analysis this
is equal to the number of locations4. On the other hand on the total number
of computed dependencies per abstract state. In our experiments the certificate
size goes up to 4764343 bytes (≈4, 5 MB). This corresponds to approximately
8.5 KB per location which is large. The certificates are larger than the actual
original files, but in our opinion they are not so large that they become unus-
able. If the consumer has large memory storage like todays modern PCs usually
have, the advantages of faster property validation of a program outweighs the
extra certificate transfer payload. However, if we have limited end systems – like
e.g. mobile devices – storage is a more critical issue. For future experiments we
thus want to investigate the size of certificates of policy-dependent analyses and

4 Still, the number of computed states might be much larger.

450 M. Töws and H. Wehrheim

expect these to be drastically smaller than the policy-independent ones with
which we experimented here.

5 Related Work

In the area of proof-carrying code [32], the concept of using abstract reachability
graphs as certificates is not novel but is mainly used for safety trace-properties. In
several works of Albert et al. [4], they call this approach abstraction-carrying code
(ACC) and use a fixpoint computation of the abstract reachability graph as well.
In following works they present several optimizations like reduced certificates [3]
in the sense of a smallest subset of abstract states needed to restore the complete
abstract reachability graph in a single analysis run or incremental difference [2]
where the difference in the succeeding abstract states is computed.

Jakobs and Wehrheim [23] integrated configurable certification in
CPAchecker as an ACC-approach, where they integrated several optimiza-
tions as well like reduced certificates [22] and compact proof witnesses [24]. Our
approach builds upon this approach, but focuses on the hyperproperty non-
interference.

Other proof-carrying code technique resolve around checking generated the-
orem proving results. Chaieb [12] computes invariants for programs. The cor-
rectness of the invariants are transformed to Isabelle/HOL-proofs and delivered
as checkable certificates to the consumer. Loidl et al. [28] also present a PCC-
technique focused on heap consumption. They developed a certificate checking
technique that is extended with a heap consumption logic. These are transformed
to Isabelle/HOL-proofs as results that can be checked on consumer side as cer-
tificate. Bidmeshki et al. [11] consider a PCHIP framework where HDL code
is analysed and checked for security-related properties like hardware-trojans.
The theorem proofs they construct are COQ-proofs. Jin et al. [25] also consider
HDL code and construct COQ-proofs as well. They consider information flow
scenarios in circuits.

6 Conclusion

In this paper we presented a proof-carrying code technique for information flow
analysis, based on an existing data-flow analysis and on the CPC-approach of
Jakobs and Wehrheim. We proved soundness and relative completeness of our
approach. Our experiments showed that the certificate checking time often gets
smaller than the analysis time. However, it also showed that certificates only pay
off when the analysis itself is complex, i.e., typically when the fixpoint computa-
tion involves a large number of iterations. The reason for this is that certificate
checking involves certificate parsing, and certificate sizes are so far relatively
large.

Information Flow Certificates 451

Future Work. In future works we will consequently try to reduce the certifi-
cate size. This can for instance be done by using the policy-dependent analysis
instead of a policy-independent analysis, like we mentioned in the experimental
section. Also by using policy-dependent analysis results as certificate we could
modify the checking mechanism to be more efficient. For example one optimiza-
tion could be integrating checking the policy refinement relations we described
in [34] beforehand.

In this paper we tackled the problem of providing proof-carrying code mecha-
nism for non-interference. Non-interference is a so called hyperproperty [7], which
is a type of property that needs the consideration of several program paths for
property verification. The theory of hyperproperties was recently introduced.
Hyperproperties stand in contrast to trace properties which can argue about a
property by consideration of single traces. So far validation techniques for hyper-
properties –like ours as well – rely on over-approximating the hyperproperty to a
trace property – e.g. a data-flow analysis or a model-checking approach. Monitor-
ing and testing-techniques [1] based on HyperLTL are in development. HyperLTL
extends LTL to quantify over paths. So far known techniques extend modelcheck-
ing techniques for LTL in such a way that they can be used for HyperLTL to
work. Also tool implementation already exists like EAHyper [15] which checks
the satisfiability of a decidable subclass of hyperproperties or MCHyper [16], a
modelchecking approach for checking a decidable subclass of hyperproperties. In
general we plan to investigate analysis techniques for several hyperproperties in
more detail and plan to develop proof-carrying code techniques for such analyses.

References

1. Agrawal, S., Bonakdarpour, B.: Runtime verification of k-safety hyperproperties
in HyperLTL. In: Proceedings of 29th IEEE Computer Security Foundations Sym-
posium, CSF 2016, Lisbon, June/July 2016, pp. 239–252. IEEE CS Press, Wash-
ington, DC (2016). https://doi.org/10.1109/csf.2016.24

2. Albert, E., Arenas, P., Puebla, G.: An incremental approach to abstraction-
carrying code. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 377–391. Springer, Heidelberg (2006). https://doi.org/10.1007/
11916277 26

3. Albert, E., Arenas-Sánchez, P., Puebla, G., Hermenegildo, M.V.: Reduced certifi-
cates for abstraction-carrying code. In: Etalle, S., Truszczynski, M. (eds.) ICLP
2006. LNCS, vol. 4079, pp. 163–178. Springer, Heidelberg (2006). https://doi.org/
10.1007/11799573 14

4. Albert, E., Puebla, G., Hermenegildo, M.: Abstraction-carrying code. In: Baader,
F., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3452, pp. 380–397.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32275-7 25

5. Amtoft, T., Banerjee, A.: Information flow analysis in logical form. In: Giacobazzi,
R. (ed.) SAS 2004. LNCS, vol. 3148, pp. 100–115. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-27864-1 10

6. Arzt, S., et al.: FlowDroid: precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for Android apps. In: Proc. of 2014 ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, PLDI 2014, Edin-
burgh, June 2014, pp. 259–269. ACM Press, New York (2014). https://doi.org/10.
1145/2594291.2594299

https://doi.org/10.1109/csf.2016.24
https://doi.org/10.1007/11916277_26
https://doi.org/10.1007/11916277_26
https://doi.org/10.1007/11799573_14
https://doi.org/10.1007/11799573_14
https://doi.org/10.1007/978-3-540-32275-7_25
https://doi.org/10.1007/978-3-540-27864-1_10
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1145/2594291.2594299

452 M. Töws and H. Wehrheim

7. Assaf, M., Naumann, D.A., Signoles, J., Totel, E., Tronel, F.: Hypercollecting
semantics and its application to static analysis of information flow. In: Proceedings
of 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, January 2017, pp. 874–887. ACM Press, New York (2017).
https://doi.org/10.1145/3009837.3009889

8. Barthe, G., Crégut, P., Grégoire, B., Jensen, T., Pichardie, D.: The MOBIUS
proof carrying code infrastructure. In: de Boer, F.S., Bonsangue, M.M., Graf, S., de
Roever, W.-P. (eds.) FMCO 2007. LNCS, vol. 5382, pp. 1–24. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-92188-2 1

9. Beyer, D.: Software verification with validation of results. In: Legay, A., Margaria,
T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 331–349. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54580-5 20

10. Beyer, D., Henzinger, T.A., Théoduloz, G.: Configurable software verification: con-
cretizing the convergence of model checking and program analysis. In: Damm, W.,
Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 504–518. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73368-3 51

11. Bidmeshki, M., Makris, Y.: Toward automatic proof generation for information flow
policies in third-party hardware IP. In: Proceedings of 2015 IEEE International
Symposium on Hardware-Oriented Security and Trust, HOST 2015, Washington,
DC, May 2015, pp. 163–168. IEEE CS Press, Washington, DC (2015). https://doi.
org/10.1109/hst.2015.7140256

12. Chaieb, A.: Proof-producing program analysis. In: Barkaoui, K., Cavalcanti, A.,
Cerone, A. (eds.) ICTAC 2006. LNCS, vol. 4281, pp. 287–301. Springer, Heidelberg
(2006). https://doi.org/10.1007/11921240 20

13. Darvas, Á., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS,
vol. 3450, pp. 193–209. Springer, Heidelberg (2005). https://doi.org/10.1007/978-
3-540-32004-3 20

14. Enck, W., et al.: TaintDroid: an information-flow tracking system for realtime
privacy monitoring on smartphones. ACM Trans. Comput. Syst. 32(2), 5 (2014).
https://doi.org/10.1145/2619091

15. Finkbeiner, B., Hahn, C., Stenger, M.: EAHyper: satisfiability, implication, and
equivalence checking of hyperproperties. In: Majumdar, R., Kunčak, V. (eds.) CAV
2017. LNCS, vol. 10427, pp. 564–570. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-63390-9 29

16. Finkbeiner, B., Rabe, M.N., Sánchez, C.: Algorithms for model checking Hyper-
LTL and HyperCTL∗. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 30–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 3

17. Foley, S.N.: Aggregation and separation as noninterference properties. J. Comput.
Sec. 1(2), 159–188 (1992). https://doi.org/10.3233/jcs-1992-1203

18. Le Guernic, G., Banerjee, A., Jensen, T., Schmidt, D.A.: Automata-based con-
fidentiality monitoring. In: Okada, M., Satoh, I. (eds.) ASIAN 2006. LNCS, vol.
4435, pp. 75–89. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
77505-8 7

19. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive
information flow control based on program dependence graphs. Int. J. Inf. Sec.
8(6), 399–422 (2009). https://doi.org/10.1007/s10207-009-0086-1

https://doi.org/10.1145/3009837.3009889
https://doi.org/10.1007/978-3-540-92188-2_1
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-540-73368-3_51
https://doi.org/10.1109/hst.2015.7140256
https://doi.org/10.1109/hst.2015.7140256
https://doi.org/10.1007/11921240_20
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1007/978-3-540-32004-3_20
https://doi.org/10.1145/2619091
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-63390-9_29
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.1007/978-3-319-21690-4_3
https://doi.org/10.3233/jcs-1992-1203
https://doi.org/10.1007/978-3-540-77505-8_7
https://doi.org/10.1007/978-3-540-77505-8_7
https://doi.org/10.1007/s10207-009-0086-1

Information Flow Certificates 453

20. Horwitz, S., Reps, T.W.: The use of program dependence graphs in software engi-
neering. In: Proceedings of 14th International Conference on Software Engineering,
ICSE 1992, Melbourne, May 1992, pp. 392–411. ACM Press, New York (1992).
https://doi.org/10.1145/143062.143156

21. Hunt, S., Sands, D.: On flow-sensitive security types. In: Proceedings of 33rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2006, Charleston, SC, January 2006, pp. 79–90. ACM Press, New York (2006).
https://doi.org/10.1145/1111037.1111045

22. Jakobs, M.-C.: Speed up configurable certificate validation by certificate reduc-
tion and partitioning. In: Calinescu, R., Rumpe, B. (eds.) SEFM 2015. LNCS,
vol. 9276, pp. 159–174. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
22969-0 12

23. Jakobs, M., Wehrheim, H.: Certification for configurable program analysis. In:
Proceedings of 2014 International Symposium on Model Cheking for Software,
SPIN 2014, San Jose, CA, July 2014, pp. 30–39. ACM Press, New York (2014).
https://doi.org/10.1145/2632362.2632372

24. Jakobs, M.-C., Wehrheim, H.: Compact proof witnesses. In: Barrett, C., Davies,
M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 389–403. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57288-8 28

25. Jin, Y., Yang, B., Makris, Y.: Cycle-accurate information assurance by proof-
carrying based signal sensitivity tracing. In: Proceedings of 2013 International
Symposium on Hardware-Oriented Security and Trust, HOST 2013, Austin, TX,
June 2013, pp. 99–106. IEEE CS Press, Washington, DC (2013). https://doi.org/
10.1109/hst.2013.6581573

26. Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow.
Sci. Comput. Program. 37(1–3), 113–138 (2000). https://doi.org/10.1016/s0167-
6423(99)00024-6

27. Lengauer, T., Tarjan, R.E.: A fast algorithm for finding dominators in a flowgraph.
ACM Trans. Program. Lang. Syst. 1(1), 121–141 (1979). https://doi.org/10.1145/
357062.357071

28. Loidl, H., MacKenzie, K., Jost, S., Beringer, L.: A proof-carrying-code infrastruc-
ture for resources. In: Proceedings of 4th Latin-American Symposium on Depend-
able Computing, LADC 2009, João Pessoa, September 2009, pp. 127–134. IEEE
CS Press, Washington, DC (2009). https://doi.org/10.1109/ladc.2009.13

29. Lortz, S., Mantel, H., Starostin, A., Bähr, T., Schneider, D., Weber, A.: Cassandra:
towards a certifying app store for Android. In: Proceedings of 4th ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, SPSM 2014, Scotts-
dale, AZ, November 2014, pp. 93–104. ACM Press, New York (2014). https://doi.
org/10.1145/2666620.2666631

30. Magazinius, J., Russo, A., Sabelfeld, A.: On-the-fly inlining of dynamic secu-
rity monitors. Comput. Sec. 31(7), 827–843 (2012). https://doi.org/10.1016/j.cose.
2011.10.002

31. Mantel, H.: On the composition of secure systems. In: Proceedings of 2002 IEEE
Symposium on Security and Privacy, S&P 2002, Berkeley, CA, May 2002, pp. 88–
101. IEEE CS Press, Washington, DC (2002). https://doi.org/10.1109/secpri.2002.
1004364

32. Necula, G.C.: Proof-carrying code. In: Conference on Record of 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
1997, Paris, January 1997, pp. 106–119. ACM Press, New York (1997). https://
doi.org/10.1145/263699.263712

https://doi.org/10.1145/143062.143156
https://doi.org/10.1145/1111037.1111045
https://doi.org/10.1007/978-3-319-22969-0_12
https://doi.org/10.1007/978-3-319-22969-0_12
https://doi.org/10.1145/2632362.2632372
https://doi.org/10.1007/978-3-319-57288-8_28
https://doi.org/10.1109/hst.2013.6581573
https://doi.org/10.1109/hst.2013.6581573
https://doi.org/10.1016/s0167-6423(99)00024-6
https://doi.org/10.1016/s0167-6423(99)00024-6
https://doi.org/10.1145/357062.357071
https://doi.org/10.1145/357062.357071
https://doi.org/10.1109/ladc.2009.13
https://doi.org/10.1145/2666620.2666631
https://doi.org/10.1145/2666620.2666631
https://doi.org/10.1016/j.cose.2011.10.002
https://doi.org/10.1016/j.cose.2011.10.002
https://doi.org/10.1109/secpri.2002.1004364
https://doi.org/10.1109/secpri.2002.1004364
https://doi.org/10.1145/263699.263712
https://doi.org/10.1145/263699.263712

454 M. Töws and H. Wehrheim

33. Töws, M., Wehrheim, H.: A CEGAR scheme for information flow analysis. In:
Ogata, K., Lawford, M., Liu, S. (eds.) ICFEM 2016. LNCS, vol. 10009, pp. 466–
483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47846-3 29

34. Töws, M., Wehrheim, H.: Policy dependent and independent information flow anal-
yses. In: Duan, Z., Ong, L. (eds.) ICFEM 2017. LNCS, vol. 10610, pp. 362–378.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68690-5 22

35. Vachharajani, N., et al.: RIFLE: an architectural framework for user-centric
information-flow security. In: Proceedings of 37th Annual International Sympo-
sium on Microarchitecture, MICRO-37, Portland, OR, December 2004, pp. 243–
254. IEEE CS Press, Washington, DC (2004). https://doi.org/10.1109/micro.2004.
31

36. Volpano, D.M., Irvine, C.E., Smith, G.: A sound type system for secure flow analy-
sis. J. Comput. Sec. 4(2–3), 167–188 (1996). https://doi.org/10.3233/jcs-1996-42-
304

https://doi.org/10.1007/978-3-319-47846-3_29
https://doi.org/10.1007/978-3-319-68690-5_22
https://doi.org/10.1109/micro.2004.31
https://doi.org/10.1109/micro.2004.31
https://doi.org/10.3233/jcs-1996-42-304
https://doi.org/10.3233/jcs-1996-42-304

The Smallest FSSP Partial Solutions
for One-Dimensional Ring Cellular

Automata: Symmetric and Asymmetric
Synchronizers

Hiroshi Umeo(B), Naoki Kamikawa, and Gen Fujita

Osaka Electro-Communication University,
18-8 Hatsu-cho, Neyagawa-shi, Osaka 572-8530, Japan

umeo@cyt.osakac.ac.jp

Abstract. A synchronization problem in cellular automata has been
known as the Firing Squad Synchronization Problem (FSSP) since its
development, where the FSSP gives a finite-state protocol for synchroniz-
ing a large scale of cellular automata. A quest for smaller state FSSP solu-
tions has been an interesting problem for a long time. Umeo, Kamikawa
and Yunès (2009) answered partially by introducing a concept of par-
tial FSSP solutions and proposed a full list of the smallest four-state
symmetric powers-of-2 FSSP protocols that can synchronize any one-
dimensional (1D) ring cellular automata of length n = 2k for any positive
integer k ≥ 1. Afterwards, Ng (2011) also added a list of asymmetric
FSSP partial solutions, thus completing the four-state powers-of-2 FSSP
partial solutions. The number four is the lower bound in the class of
FSSP protocols. A question: are there any four-state partial solutions
other than powers-of-2? has remained open. In this paper, we answer the
question by proposing a new class of the smallest symmetric and asym-
metric four-state FSSP protocols that can synchronize any 1D ring of
length n = 2k − 1 for any positive integer k ≥ 2. We show that the class
includes a rich variety of FSSP protocols that consists of 39 symmetric
and 132 asymmetric solutions, ranging from minimum-time to linear-
time in synchronization steps. In addition, we make an investigation into
several interesting properties of these partial solutions, such as swapping
general states, reversal protocols, and a duality property between them.

1 Introduction

We study a synchronization problem that gives a finite-state protocol for syn-
chronizing a large scale of cellular automata. A synchronization problem in cel-
lular automata has been known as the Firing Squad Synchronization Problem
(FSSP) since its development, in which it was originally proposed by J. Myhill
in Moore [6] to synchronize some/all parts of self-reproducing cellular automata.
The FSSP has been studied extensively for more than fifty years in [1–12].

A minimum-time (i.e., (2n − 2)-step) FSSP algorithm was developed first
by Goto [4] for synchronizing any one-dimensional (1D) array of length n ≥ 2.
c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 455–471, 2018.
https://doi.org/10.1007/978-3-030-02508-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_24&domain=pdf

456 H. Umeo et al.

The algorithm required many thousands of internal states for its finite-state
realization. Afterwards, Waksman [11], Balzer [1], Gerken [3] and Mazoyer [5]
also developed a minimum-time FSSP algorithm and reduced the number of
states required, each with 16, 8, 7 and 6 states, respectively. On the other hand,
Balzer [1], Sanders [8] and Berthiaume et al. [2] have shown that there exists
no four-state synchronization algorithm. Thus, an existence or non-existence
of five-state FSSP protocol has been an open problem for a long time. Umeo,
Kamikawa and Yunès [9] answered partially by introducing a concept of partial
versus full FSSP solutions and proposing a full list of the smallest four-state
symmetric powers-of-2 FSSP partial protocols that can synchronize any 1D ring
cellular automata of length n = 2k for any positive integer k ≥ 1. Afterwards,
Ng [7] also added a list of asymmetric FSSP partial solutions, thus completing
the four-state powers-of-2 FSSP partial solutions. A question: are there any four-
state partial solutions other than powers-of-2? has remained open.

In this paper, we answer the question by proposing a new class of the smallest
four-state FSSP protocols that can synchronize any 1D ring of length n = 2k −1
for any positive integer k ≥ 2. We show that the class includes a rich variety
of FSSP protocols that consists of 39 symmetric and 132 asymmetric solutions,
ranging from minimum-time to linear-time in synchronization steps. In addi-
tion, we make an investigation into several interesting properties of these partial
solutions, such as swapping general states, a duality between them, inclusion of
powers-of-2 solutions, reflected solutions and so on. In Sect. 2, we give a descrip-
tion of the 1D FSSP on rings and review some basic results on ring FSSP algo-
rithms. Section 3 presents a new class the symmetric and asymmetric partial
solutions for rings. Due to the space of available, we focus our attention to the
symmetric solutions and only give an overview for the asymmetric ones. Section 4
gives a summary and discussions of the paper.

2 Firing Squad Synchronization Problem on Rings

2.1 Definition of the FSSP on Rings

The FSSP on rings is formalized in terms of the model of cellular automata.
Figure 1 shows a 1D ring cellular automaton consisting of n cells, denoted by Ci,
where 1 ≤ i ≤ n. All cells are identical finite state automata. The ring cellular
automaton operates in lock-step mode such that the next state of each cell is
determined by both its own present state and the present states of its right and
left neighbors. All cells (soldiers), except one cell, are initially in the quiescent
state at time t = 0 and have the property whereby the next state of a quiescent
cell having quiescent neighbors is the quiescent state. At time t = 0 the cell C1

(general) is in the fire-when-ready state, which is an initiation signal to the ring.
The FSSP is stated as follows: given a ring of n identical cellular automata,

including a general cell which is activated at time t = 0, we want to give the
description (state set and next-state function) of the automata so that, at some
future time, all of the cells will simultaneously and, for the first time, enter
a special firing state. The set of states and the next-state function must be

The Smallest FSSP Partial Solutions for 1D Ring Cellular Automata 457

C3 Soldiers

General

C1

C2

Cn
Cn-1

Fig. 1. One-dimensional (1D) ring cellular automaton

independent of n. Without loss of generality, we assume n ≥ 2. The tricky part
of the problem is that the same kind of soldier having a fixed number of states
must be synchronized, regardless of the length n of the ring.

A formal definition of the FSSP on rings is as follows: a cellular automaton
M is a pair M = (Q, δ), where

1. Q is a finite set of states with three distinguished states G, Q, and F. G is an
initial general state, Q is a quiescent state, and F is a firing state, respectively.

2. δ is a next-state function such that δ : Q3 → Q.
3. The quiescent state Q must satisfy the following conditions: δ(Q, Q, Q) = Q.

A ring cellular automaton Mn of length n, consisting of n copies of M, is
a 1D ring whose positions are numbered from 1 to n. Each M is referred to as
a cell and denoted by Ci, where 1 ≤ i ≤ n. We denote a state of Ci at time
(step) t by St

i, where t ≥ 0, 1 ≤ i ≤ n. A configuration of Mn at time t is a
function Ct : [1, n] → Q and denoted as St

1S
t
2 St

n. A computation of Mn is a
sequence of configurations of Mn, C0, C1, C2,, Ct, ..., where C0 is a given initial
configuration. The configuration at time t+1, Ct+1, is computed by synchronous
applications of the next-state function δ to each cell of Mn in Ct such that:

St+1
1 = δ(St

n−1, S
t
1, S

t
2), S

t+1
i = δ(St

i−1, S
t
i, S

t
i+1), for any i, 2 ≤ i ≤ n − 1, and

St+1
n = δ(St

n−1, S
t
n, St

1).

A synchronized configuration of Mn at time t is a configuration Ct, St
i = F, for

any 1 ≤ i ≤ n.
The FSSP is to obtain an M such that, for any n ≥ 2,

1. A synchronized configuration at time t = T (n), CT (n) =

n
︷ ︸︸ ︷

F, · · · , F can be

computed from an initial configuration C0 = G

n−1
︷ ︸︸ ︷

Q, · · · , Q.
2. For any t, i such that 1 ≤ t ≤ T (n) − 1, 1 ≤ i ≤ n, St

i �= F.

2.2 Full vs. Partial Solutions

One has to note that any solution in the original FSSP problem is to synchronize
any array of length n ≥ 2. We call it full solution. Berthiaume et al. [2] presented
an eight-state full solution for the ring. On the other hand, Umeo, Kamikawa,

458 H. Umeo et al.

and Yunès [9] and Ng [7] constructed a rich variety of 4-state protocols that
can synchronize some infinite set of rings, but not all. We call such protocol
partial solution. Here, we summarize recent developments on those small-state
solutions in the ring FSSP. Berthiaume, Bittner, Perkovic, Settle, and Simon [2]
gave time and state lower bounds for the ring FSSP, described in Theorems 1, 2
and 3, below.

Theorem 1. The minimum time in which the ring FSSP could occur is no
earlier than n steps for any ring of length n.

Theorem 2. There exists no 3-state full solution to the ring FSSP.

Theorem 3. There exists no 4-state, symmetric, minimal-time full solution to
the ring FSSP.

Umeo, Kamikawa, and Yunès [9] introduced a concept of partial solutions to
the FSSP, gave a state lower bound, and showed that there exist 17 symmetric
4-state partial solutions to the ring FSSP.

Theorem 4. There exists no 3-state partial solution to the ring FSSP.

Theorem 5. There exist 17 symmetric 4-state partial solutions to the ring
FSSP for the ring of length n = 2k for any positive integer k ≥ 1.

Ng [7] added a list of 80 asymmetric 4-state solutions, this completing the
powers-of-two solutions.

Theorem 6. There exist 80 asymmetric 4-state partial solutions to the ring
FSSP for the ring of length n = 2k for any positive integer k ≥ 1.

2.3 A New Quest for Four-State Partial Solutions for Rings

• Four-state ring cellular automata
Let M be a four-state ring cellular automaton M = {Q, δ}, where Q is an
internal state set Q = {A, F, G, Q} and δ is a next-state function such that
δ : Q3 → Q. Without loss of generality, we assume that Q is a quiescent state
with a property δ(Q, Q, Q) = Q, G is a general state, A is an auxiliary state and

F is the firing state, respectively. The initial configuration is G

n−1
︷ ︸︸ ︷

QQ, ..., Q for
n ≥ 2. We say that an FSSP solution is symmetric if its transition table has a
property such that δ(x, y, z) = δ(z, y, x), for any state x, y, z in Q. Otherwise,
the FSSP solution is called asymmetric.

• A computer investigation into four-state FSSP solutions for rings
Figure 2 is a four-state transition table, where a symbol • shows a possible
state in Q = {A, F, G, Q}. Note that we have totally 426 possible transition
rules. We make a computer investigation into the transition rule set that
might yield possible FSSP solutions. Our strategy is based on a backtracking
searching. A similar technique was employed first successfully in Ng [7]. Due to
the space available, we omit the details of the backtracking searching strategy.
The outline of those solutions will be described in the next section.

The Smallest FSSP Partial Solutions for 1D Ring Cellular Automata 459

Q
Right State

Q G A

Left State

Q Q

G

A

G
Right State

Q G A

Left State

Q

G

A

A
Right State

Q G A

Left State

Q

G

A

.
.

.
. .

.

..

Fig. 2. Four-state transition table

Table 1. Time complexity and number of transition rules for 39 symmetric partial
solutions

Symmetric

partial

solutions

Time complexity # of

transition

rules

RS 1 TG(n) = TA(n) = n 23

RS 2 TG(n) = TA(n) = n 23

RS 3 TG(n) = n 23

RS 4 TG(n) = n 20

RS 5 TG(n) = n 27

RS 6 TG(n) = n 24

RS 7 TG(n) = n 23

RS 8 TG(n) = TA(n) = n 24

RS 9 TG(n) = TA(n) = n 25

RS 10 TG(n) = TA(n) = n 27

RS 11 TG(n) = TA(n) = n 24

RS 12 TG(n) = n 21

RS 13 TG(n) = TA(n) = n 23

RS 14 TG(n) = TA(n) = n 23

RS 15 TG(n) = TA(n) = n 26

RS 16 TG(n) = TA(n) = n 27

RS 17 TG(n) = TA(n) = n 23

RS 18 TG(n) = TA(n) = n 22

RS 19 TG(n) = TA(n) = n 22

RS 20 TG(n) = n 26

RS 21 TG(n) = TA(n) = n 25

RS 22 TG(n) = TA(n) = n 26

RS 23 TG(n) = TA(n) = n 26

RS 24 TG(n) = n 27

RS 25 TG(n) = TA(n) = n + 1 27

RS 26 TG(n) = TA(n) = n + 1 24

RS 27 TG(n) = TA(n) = n + 1 24

RS 28 TG(n) = n + 1 22

RS 29 TG(n) = n + 1, TA(n) = n 23

RS 30 TG(n) = n + 1 25

RS 31 TG(n) = TA(n) = n + 1 24

RS 32 TG(n) = TA(n) = n + 1 25

RS 33 TG(n) = n + 1 24

RS 34 TG(n) = n + 1 22

RS 35 TG(n) = TA(n) = n + 1 24

RS 36 TG(n) = TA(n) = n + 1 24

RS 37 TG(n) = TA(n) = n + 1 24

RS 38 TG(n) = n + 2, TA(n) = n + 1 24

RS 39 TG(n) = (3n + 1)/2, TA(n) = n + 1 25

460 H. Umeo et al.

Fig. 3. Transition tables for 39 minimum-time, nearly minimum-time and non-
minimum-time symmetric solutions

The Smallest FSSP Partial Solutions for 1D Ring Cellular Automata 461

Fig. 4. Snapshots on 7 and 15 cells for symmetric solutions 2, 7, 13, 15, 20, 23, 24, 25,
30, 33, 38, and 39

Fig. 5. Synchronized configurations on 3, 7, and 15 cells with a general-state G (left)
and A (right), respectively, in the Solution 1

462 H. Umeo et al.

3 Four-State Partial Solutions

3.1 Four-State Symmetric Partial Solutions

In this section, we will establish the following theorem with a help of computer
investigation.

Theorem 7. There exist 39 symmetric 4-state partial solutions to the ring
FSSP for the ring of length n = 2k − 1 for any positive integer k ≥ 2.

Let RS i, 1 ≤ i ≤ 39 be a transition table for symmetric solutions obtained.
We refer to the ith symmetric transition table as symmetric solution i, where
1 ≤ i ≤ 39. The details are as follows:

• Symmetric Minimum-Time Solutions:
We have got 24 minimum-time symmetric partial solutions operating in
exactly T (n) = n steps. We show their transition rules RS i, 1 ≤ i ≤ 24
in Fig. 3.

• Symmetric Nearly Minimum-Time Solutions:
We have got 14 nearly minimum-time symmetric partial solutions operating
in T (n) = n+O(1) steps. Their transition rules RS i, 25 ≤ i ≤ 38 are given in
Fig. 3. Most of the solutions, that is, solutions 25–37 operate in T (n) = n+1
steps. The solution 38 operates in T (n) = n + 2 steps.

• Symmetric Non-Minimum-Time Solution:
It is seen that one non-minimum-time symmetric partial solution 39 exists.
Its time complexity is T (n) = (3n + 1)/2. The transition rule RS 39 is given
in Fig. 3.

Here, we give some snapshots on 7 and 15 cells for minimum-time, nearly
minimum-time and non-minimum-time FSSP solutions in Fig. 4, respectively.

Now, we give several interesting observations obtained for the rule set.

Observation 1 (Swapping General States)
It is noted that some solutions have a property that both of the states G and A
can be an initial general state and yield successful synchronizations from each
general state without introducing any additional transition rules.

For example, solution 1 can synchronize any ring of length n = 2k − 1, k ≥ 2

in T (n) = n steps, starting from an initial configuration G

n−1
︷ ︸︸ ︷

Q, · · · , Q and A

n−1
︷ ︸︸ ︷

Q, · · · , Q,
respectively. Let TG−RS i

(n) (or simply TG(n), if the rule number is specified)
and TA−RS i

(n) (TA(n)) be synchronization steps starting the solution RS i from
the initial general-state G and A, respectively, for rings of length n. Then, we
have TG−RS 1(n) = TA−RS 1(n) = n.

In Fig. 5, we show synchronized configurations on 3, 7, and 15 cells with a
general-state G (left) and A (right), respectively, for the solution 1. In Table 1,
we give the time complexity and number of transition rules for each symmet-
ric solution. The observation does not always hold for all symmetric rules. For

The Smallest FSSP Partial Solutions for 1D Ring Cellular Automata 463

example, the solution 3 can synchronize any ring of length n = 2k − 1, k ≥ 2 in
T (n) = n steps from the general state G, but not from the state A.

The Observation 1 yields the following duality relation among the four-state
rule sets.

Observation 2 (Duality)
Let x and y be any four-state FSSP solution for rings and x is obtained from y by
swapping the states G and A in y and vice versa. We say that the two solutions x

and y are dual concerning the states G and A. The relation is denoted as x
Dual

� y.
We have:

RS 1

Dual

� RS 14, RS 2

Dual

� RS 13,

RS 8

Dual

� RS 17, RS 9

Dual

� RS 21,

RS 10

Dual

� RS 16, RS 15

Dual

� RS 22,

RS 18

Dual

� RS 19, RS 26

Dual

� RS 37,

RS 27

Dual

� RS 36, RS 31

Dual

� RS 35.

Fig. 6. An array solution (left) converted from ring solution RS 1 and synchronized
configurations (right) on arrays consisting of 8 and 16 cells with a general-state G
(Color figure online)

Observation 3 (Converting Ring Solutions to Array Ones)
It is noted that most of the symmetric solutions presented above can be converted
into the solutions for arrays, that is, conventional 1D array with the general at
one end, without introducing any additional state. For example, Fig. 6 shows the

464 H. Umeo et al.

transition rules and snapshots on arrays consisting of 8 and 16 cells for a con-
verted solution operating in non-optimum-steps. The solution can be obtained
from the Solution 1 by adding 11 rules shown in Fig. 6 (leftmost one), illus-
trated with yellow small squares. All of the transition rules introduced newly
are involved with the left and right end states, denoted by *. The converted
4-state array protocol can synchronize any 1D array of length n = 2k with the
left-end general in 2n − 1 steps, where k is any positive integer k ≥ 1.

3.2 Four-State Asymmetric Partial Solutions

In this section we will establish the following theorem with a help of computer
investigation.

Theorem 8. There exist 132 asymmetric 4-state partial solutions to the ring
FSSP for the ring of length n = 2k − 1 for any positive integer k ≥ 2.

Let RAS i, 1 ≤ i ≤ 132 be ith transition table for asymmetric solutions
obtained in this paper. We refer to the table as asymmetric solution i, where
1 ≤ i ≤ 132. Their breakdown is as follows:

• Asymmetric Minimum-Time Solutions:
We have got 60 minimum-time asymmetric partial solutions operating in
exactly T (n) = n steps. Their transition rule sets RAS i, 1 ≤ i ≤ 60, are given
in Figs. 7 and 8.

• Asymmetric Nearly Minimum-Time Solutions:
We have got 56 nearly minimum-time asymmetric partial solutions operating
in T (n) = n + O(1) steps. Transition rule sets RAS i, 61 ≤ i ≤ 116, shown in
Figs. 8 and 9, are the nearly minimum-time solutions obtained.

• Asymmetric Non-Minimum-Time Solutions:
We have got 16 non-minimum-time asymmetric partial solutions operating in
non-minimum-steps. Their transition rules are denoted by RAS i, 117 ≤ i ≤
132. Figure 9 shows those transition rules. Each solution in RS i, 117 ≤ i ≤ 124
operates in T (n) = 3n/2 ± O(1) steps, respectively. Each solution with the
rule set RS 125 and RS 130 operates in T (n) = 2n + O(1) steps, respectively.

In Table 2 we give an overview of the time complexity and number of transi-
tion rules for each asymmetric solution. In Figs. 7, 8, and 9, we give the transition
rule for each asymmetric solution.

Table 2. Time complexity and number of transition rules for 132 asymmetric solutions

Asymmetric partial
solutions

Time complexity # of transition
rules

RAS i, 1 ≤ i ≤ 60 T (n) = n 22–26

RAS i, 61 ≤ i ≤ 116 T (n) = n+O(1) 25–27

RAS i, 117 ≤ i ≤ 124 T (n) = 3n/2 ± O(1) 24–27

RAS i, 125 ≤ i ≤ 132 T (n) = 2n+O(1) 24–27

The Smallest FSSP Partial Solutions for 1D Ring Cellular Automata 465

Fig. 7. Transition tables RAS i, 1 ≤ i ≤ 40, for minimum-time asymmetric solutions

466 H. Umeo et al.

Fig. 8. Transition tables RAS i, 41 ≤ i ≤ 80, for minimum-time and nearly-minimum-
time asymmetric solutions

The Smallest FSSP Partial Solutions for 1D Ring Cellular Automata 467

Fig. 9. Transition tables RAS i, 81 ≤ i ≤ 132, for nearly-minimum-time and non-
minimum-time asymmetric solutions

468 H. Umeo et al.

Here we give some snapshots on 7 and 15 cells for minimum-time, nearly
minimum-time and non-minimum-time FSSP solutions, respectively, in Fig. 10.

Observation 4 (Swapping General States)
It is noted that some asymmetric solutions have a property that both of the states
G and A can be an initial general state and yield successful synchronizations
from each general state without introducing any additional transition rules. For
example, asymmetric solution 1, RAS 1, can synchronize any ring of length n =

2k − 1, k ≥ 2 in T (n) = n steps, starting from an initial configuration G

n−1
︷ ︸︸ ︷

Q, · · · , Q

and A

n−1
︷ ︸︸ ︷

Q, · · · , Q, respectively and we have TG(n) = TA(n) = n.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A A G Q Q Q Q Q Q

2 Q Q Q Q Q G Q G Q G Q Q Q Q Q

3 Q Q Q Q A A Q A Q A G Q Q Q Q

4 Q Q Q G Q Q Q G Q Q Q G Q Q Q

5 Q Q A A G Q A A G Q A A G Q Q

6 Q G Q G Q Q Q G Q Q Q G Q G Q

7 A A Q A G Q A A G Q A A Q A G

8 G Q Q Q Q Q Q G Q Q Q Q Q Q G

9 A G Q Q Q Q A A G Q Q Q Q A G

10 G Q G Q Q G Q G Q G Q Q G Q G

11 A Q A G A A Q A Q A G A A Q G

12 A Q Q G G Q Q G Q Q G G Q Q G

13 A G A G A G A A G A G A G A G

14 G G G G G G G G G G G G G G G

15 A A A A A A A A A A A A A A A

16 F F F F F F F F F F F F F F F

1 2 3 4 5 6 7

0 Q Q Q G Q Q Q

1 Q Q A A G Q Q

2 Q G Q G Q G Q

3 A A Q A Q A G

4 G Q Q G Q Q G

5 A G

A

A G A G

6 G G G G G G G

7 A A A A A A A

8 F F F F F F F

Asymmetric Solution 62

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A A Q Q Q Q Q Q

2 Q Q Q Q Q G Q G Q A Q Q Q Q Q

3 Q Q Q Q G A Q A Q A A Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q A Q Q Q

5 Q Q G A A Q G A A Q G A A Q Q

6 Q G Q G Q Q Q G Q Q Q G Q A Q

7 G A Q A A Q G A A Q G A Q A A

8 G Q Q Q Q Q Q G Q Q Q Q Q Q G

9 G A Q Q Q Q G A A Q Q Q Q G A

10 G Q A Q Q G Q G Q A Q Q G Q G

11 G Q A A G A Q A Q A A G A Q A

12 G Q Q G G Q Q A Q Q G G Q Q A

13 G A G A G A G A A G A G A G A

14 G G G G G G G G G G G G G G G

15 F F F F F F F F F F F F F F F

1 2 3 4 5 6 7

0 Q Q Q G Q Q Q

1 Q Q G A A Q Q

2 Q G Q G Q A Q

3 G A Q A Q A A

4 G Q Q A Q Q G

5 G A G A A G A

6 G G G G G G G

7 F F F F F F F

Asymmetric Solution 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A G Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q

3 Q Q Q Q G A Q G Q A G Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q

5 Q Q G A G Q A G A Q G A G Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q

7 G A Q G A Q G A G Q A G Q A G

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q

9 Q Q Q Q Q Q A G A Q Q Q Q Q Q

10 Q Q Q Q Q A Q G Q A Q Q Q Q Q

11 Q Q Q Q A G Q A Q G A Q Q Q Q

12 Q Q Q A Q Q Q G Q Q Q A Q Q Q

13 Q Q A G A Q G A G Q A G A Q Q

14 Q A Q G Q Q Q A Q Q Q G Q A Q

15 A G Q A G Q A G A Q G A Q G A

16 G Q Q Q Q Q Q G Q Q Q Q Q Q Q

17 A G Q Q Q Q G A G Q Q Q Q Q G

18 A Q G Q Q G Q A Q G Q Q Q G Q

19 G Q A G G A Q G Q A G Q G A Q

20 A Q Q Q Q Q Q A Q Q Q Q Q Q Q

21 G A Q Q Q Q A G A Q Q Q Q Q A

22 G Q A Q Q A Q G Q A Q Q Q A Q

23 A Q G A A G Q A Q G A Q A G Q

24 G Q Q Q G Q Q G Q Q Q G Q Q Q

25 A G Q G A G G A G Q G A G Q G

26 A Q Q Q A Q Q A Q Q Q A Q Q Q

27 G A Q A G A A G A Q A G A Q A

28 G Q G Q G Q G G Q G Q G Q G Q

29 A Q A Q A Q A A Q A Q A Q A Q

30 G G G G G G G G G G G G G G G

31 A A A A A A A A A A A A A A A

32 F F F F F F F F F F F F F F F

1 2 3 4 5 6 7

0 Q Q Q G Q Q Q

1 Q Q G A G Q Q

2 Q G Q A Q G Q

3 G A Q G Q A G

4 Q Q Q A Q Q Q

5 Q Q A G A Q Q

6 Q A Q G Q A Q

7 A G Q A Q G A

8 G Q Q G Q Q Q

9 A G G A G Q G

10 A Q Q A Q Q Q

11 G A A G A Q A

12 G Q G G Q G Q

13 A Q A A Q A Q

14 G G G G G G G

15 A A A A A A A

16 F F F F F F F

Asymmetric Solution 132

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q

1 Q Q Q Q Q Q G A G Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q

3 Q Q Q Q G A Q G Q A G Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q

5 Q Q G A G Q A G A Q G A G Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q

7 G A Q G A Q G A G Q A G Q A G

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q A

9 A Q Q Q Q Q A G A Q Q Q Q A G

10 Q A Q Q Q A Q G Q A Q Q A Q G

11 Q G A Q A G Q A Q G A A G Q A

12 Q Q Q Q Q Q Q G Q Q Q Q Q Q G

13 G Q Q Q Q Q G A G Q Q Q Q G A

14 Q G Q Q Q G Q A Q G Q Q G Q A

15 Q A G Q G A Q G Q A G G A Q G

16 Q Q Q A Q Q Q A Q Q A Q Q Q A

17 A Q A G A Q A G A A G A Q A G

18 Q Q Q G Q Q Q G Q Q G Q Q Q G

19 G Q G A G Q G A G G A G Q G A

20 Q A Q A Q A Q A A Q A Q A Q A

21 Q G Q G Q G Q G G Q G Q G Q G

22 A A A A A A A A A A A A A A A

23 G G G G G G G G G G G G G G G

24 F F F F F F F F F F F F F F F

1 2 3 4 5 6 7

0 Q Q Q G Q Q Q

1 Q Q G A G Q Q

2 Q G Q A Q G Q

3 G A Q G Q A G

4 Q Q Q A Q Q A

5 A Q A G A A G

6 Q Q Q G Q Q G

7 G Q G A G G A

8 Q A Q A A Q A

9 Q G Q G G Q G

10 A A A A A A A

11 G G G G G G G

12 F F F F F F F

Asymmetric Solution 123

Fig. 10. Snapshots on 7 and 15 cells for asymmetric solutions 1, 62, 123, and 132

The Observation 4 yields the following duality relation among the four-state
rule sets.

The Smallest FSSP Partial Solutions for 1D Ring Cellular Automata 469

Observation 5 (Duality)
A duality relation exists among the asymmetric solutions. For example, we have:

RAS 1

Dual

� RAS 4, RAS 2

Dual

� RAS 57.

Observation 6 (Inclusion of Powers-of-2 Rule)
It is noted that some solutions can synchronize not only rings of length 2k−1, k ≥
2 but also rings of length 2k, k ≥ 1. For example, solution 130 can synchronize
any ring of length n = 2k − 1, k ≥ 2 in T (n) = 2n + 1 steps and simultaneously
the solution can synchronize any ring of length n = 2k, k ≥ 1 in T (n) = 2n − 1
steps. See the snapshots given in Fig. 11 on 7, 8, 15, and 16 cells for the solution
130. A relatively large number of solutions includes powers-of-2 solutions as a
proper subset of rules.

Now we show a one to one correspondence between 4-state asymmetric solu-
tions. First, we establish the following generic property for the asymmetric FSSP
solution for rings. Let x be any k-state transition table defined on a k-state set
Qx = {s1, s2, ..., sk} and xR be the k-state table defined on Qx such that:

xR
s�
(i, j) = xs�

(j, i), for any 1 ≤ i, j, � ≤ k.

Here xs�
(j, i) is a state on the ith row, jth column on the state transition

matrix concerning the state s� in x. The transition table xR is the reflected
table concerning the principal diagonal of the table x, which is obtained by

transposition. We describe the relation as x
Reflection

� xR. Now we have:

1 2 3 4 5 6 7

0 Q Q Q G Q Q Q

1 Q Q A G A Q Q

2 Q G Q A Q G Q

3 A G Q A Q G A

4 Q Q Q A Q Q Q

5 Q Q G A G Q Q

6 Q A Q G Q A Q

7 G A Q G Q A G

8 Q Q Q G Q Q G

9 A Q A G A A G

10 Q Q Q A Q Q A

11 G Q G A G G A

12 Q G Q G G Q G

13 G G G G G G G

14 A A A A A A A

15 F F F F F F F

1 2 3 4 5 6 7 8

0 Q Q Q G Q Q Q Q

1 Q Q A G A Q Q Q

2 Q G Q A Q G Q Q

3 A G Q A Q G A Q

4 Q Q Q A Q Q Q Q

5 Q Q G A G Q Q Q

6 Q A Q G Q A Q Q

7 G A Q G Q A G Q

8 Q Q Q G Q Q Q G

9 A Q A G A Q A G

10 Q Q Q A Q Q Q A

11 G Q G A G Q G A

12 Q G Q G Q G Q G

13 G G G G G G G G

14 A A A A A A A A

15 F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A G A Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q

3 Q Q Q Q A G Q A Q G A Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q

5 Q Q A G A Q G A G Q A G A Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q

7 A G Q A G Q A G A Q G A Q G A

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q

9 Q Q Q Q Q Q G A G Q Q Q Q Q Q

10 Q Q Q Q Q A Q G Q A Q Q Q Q Q

11 Q Q Q Q G A Q G Q A G Q Q Q Q

12 Q Q Q A Q Q Q G Q Q Q A Q Q Q

13 Q Q G A G Q A G A Q G A G Q Q

14 Q A Q G Q Q Q A Q Q Q G Q A Q

15 G A Q G A Q G A G Q A G Q A G

16 Q Q Q Q Q Q Q G Q Q Q Q Q Q G

17 A Q Q Q Q Q A G A Q Q Q Q A G

18 Q G Q Q Q G Q A Q G Q Q G Q A

19 Q G A Q A G Q A Q G A A G Q A

20 Q Q Q Q Q Q Q A Q Q Q Q Q Q A

21 G Q Q Q Q Q G A G Q Q Q Q G A

22 Q A Q Q Q A Q G Q A Q Q A Q G

23 Q A G Q G A Q G Q A G G A Q G

24 Q Q Q G Q Q Q G Q Q G Q Q Q G

25 A Q A G A Q A G A A G A Q A G

26 Q Q Q A Q Q Q A Q Q A Q Q Q A

27 G Q G A G Q G A G G A G Q G A

28 Q G Q G Q G Q G G Q G Q G Q G

29 G G G G G G G G G G G G G G G

30 A A A A A A A A A A A A A A A

31 F F F F F F F F F F F F F F F

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q Q

1 Q Q Q Q Q Q A G A Q Q Q Q Q Q Q

2 Q Q Q Q Q G Q A Q G Q Q Q Q Q Q

3 Q Q Q Q A G Q A Q G A Q Q Q Q Q

4 Q Q Q G Q Q Q A Q Q Q G Q Q Q Q

5 Q Q A G A Q G A G Q A G A Q Q Q

6 Q G Q A Q Q Q G Q Q Q A Q G Q Q

7 A G Q A G Q A G A Q G A Q G A Q

8 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q Q

9 Q Q Q Q Q Q G A G Q Q Q Q Q Q Q

10 Q Q Q Q Q A Q G Q A Q Q Q Q Q Q

11 Q Q Q Q G A Q G Q A G Q Q Q Q Q

12 Q Q Q A Q Q Q G Q Q Q A Q Q Q Q

13 Q Q G A G Q A G A Q G A G Q Q Q

14 Q A Q G Q Q Q A Q Q Q G Q A Q Q

15 G A Q G A Q G A G Q A G Q A G Q

16 Q Q Q Q Q Q Q G Q Q Q Q Q Q Q G

17 A Q Q Q Q Q A G A Q Q Q Q Q A G

18 Q G Q Q Q G Q A Q G Q Q Q G Q A

19 Q G A Q A G Q A Q G A Q A G Q A

20 Q Q Q Q Q Q Q A Q Q Q Q Q Q Q A

21 G Q Q Q Q Q G A G Q Q Q Q Q G A

22 Q A Q Q Q A Q G Q A Q Q Q A Q G

23 Q A G Q G A Q G Q A G Q G A Q G

24 Q Q Q G Q Q Q G Q Q Q G Q Q Q G

25 A Q A G A Q A G A Q A G A Q A G

26 Q Q Q A Q Q Q A Q Q Q A Q Q Q A

27 G Q G A G Q G A G Q G A G Q G A

28 Q G Q G Q G Q G Q G Q G Q G Q G

29 G G G G G G G G G G G G G G G G

30 A A A A A A A A A A A A A A A A

31 F F F F F F F F F F F F F F F F

Asymmetric Solution 130

Fig. 11. Snapshots on 7, 8, 15, and 16 cells for asymmetric solutions 130.

470 H. Umeo et al.

Theorem 9. Let x be any k-state FSSP ring solution with time complexity
Tx(n). Then, xR is also an FSSP ring solution with time complexity TxR(n) =
Tx(n).

Observation 7 (Reflection)
For every asymmetric rule in RAS i, 1 ≤ i ≤ 132, the rule has one corresponding
asymmetric rule in RAS i, 1 ≤ i ≤ 132. For example, RAS 1 is the reflected rule
of RAS 40 and vice versa:

RAS 1

Reflection

� RAS 40.

4 Summary and Discussions

A quest for the smaller state FSSP solutions has been an interesting problem for
a long time. We have answered to the question by proposing a new class of the
smallest four-state FSSP protocols that can synchronize any 1D ring of length
n = 2k − 1 for any positive integer k ≥ 2. We show that the class includes a rich
variety of FSSP protocols that consists of 39 symmetric and 132 asymmetric
solutions, ranging from minimum-time to linear-time in synchronization steps.
Some interesting properties in the structure of 4-state partial solutions have
been discussed. We strongly believe that no smallest solutions exist other than
the ones proposed for length 2k rings in Umeo, Kamikawa and Yunès [9] and
Ng [7] and for rings of length 2k −1 in this paper. A question: how many 4-state
partial solutions are there for arrays? remains open. We think that there would
be a large number of the smallest 4-state partial solutions for arrays. Its number
would be larger than several thousands. The structure of the 4-state array partial
synchronizers is far more complex than the 4-state ring partial synchronizers.

References

1. Balzer, R.: An 8-state minimal time solution to the firing squad synchroniza-
tion problem. Inf. Control 10(1), 22–42 (1967). https://doi.org/10.1016/s0019-
9958(67)90032-0

2. Berthiaume, A., Bittner, T., Perković, L., Settle, A., Simon, J.: Bounding the firing
synchronization problem on a ring. Theor. Comput. Sci. 320(2–3), 213–228 (2004).
https://doi.org/10.1016/j.tcs.2004.01.036

3. Gerken, H.D.: Über Synchronisationsprobleme bei Zellularautomaten. Diplomar-
beit, Institut für Theoretische Informatik, Technische Universität Braunschweig
(1987)

4. Goto, E.: A minimal time solution of the firing squad problem. Dittoed Course
Notes Appl. Math. 298(with an illustration in color), 52–59 (1962)

5. Mazoyer, J.: A six-state minimal time solution to the firing squad synchronization
problem. Theor. Comput. Sci. 50, 183–238 (1987)

6. Moore, E.F.: The firing squad synchronization problem. In: Moore, E.F. (ed.)
Sequential Machines, Selected Papers, pp. 213–214. Addison-Wesley, Reading
(1964)

https://doi.org/10.1016/s0019-9958(67)90032-0
https://doi.org/10.1016/s0019-9958(67)90032-0
https://doi.org/10.1016/j.tcs.2004.01.036

The Smallest FSSP Partial Solutions for 1D Ring Cellular Automata 471

7. Ng, W.L.: Partial Solutions for the Firing Squad Synchronization Problem on
Rings. ProQuest Publications, Ann Arbor (2011)

8. Sanders, P.: Massively parallel search for transition-tables of polyautomata. In:
Jesshope, C., Jossifov, V., Wilhelmi, W. (eds.) Proc. of 6th Int, Workshop on
Parallel Processing by Cellular Automata and Arrays, pp. 99–108. Akademie (1994)

9. Umeo, H., Kamikawa, N., Yunès, J.-B.: A family of smallest symmetrical four-state
firing squad synchronization protocols for ring arrays. Parallel Process. Lett. 19(2),
299–313 (2009). https://doi.org/10.1142/s0129626409000237

10. Umeo, H., Yanagihara, T.: A smallest five-state solution to the firing squad syn-
chronization problem. In: Durand-Lose, J., Margenstern, M. (eds.) MCU 2007.
LNCS, vol. 4664, pp. 291–302. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-74593-8 25

11. Waksman, A.: An optimum solution to the firing squad synchronization problem.
Inf. Control 9(1), 66–78 (1966). https://doi.org/10.1016/s0019-9958(66)90110-0

12. Yunès, J.-B.: A 4-states algebraic solution to linear cellular automata synchroniza-
tion. Inf. Process. Lett. 107(2), 71–75 (2008). https://doi.org/10.1016/j.ipl.2008.
01.009

https://doi.org/10.1142/s0129626409000237
https://doi.org/10.1007/978-3-540-74593-8_25
https://doi.org/10.1007/978-3-540-74593-8_25
https://doi.org/10.1016/s0019-9958(66)90110-0
https://doi.org/10.1016/j.ipl.2008.01.009
https://doi.org/10.1016/j.ipl.2008.01.009

Convex Language Semantics for
Nondeterministic Probabilistic Automata

Gerco van Heerdt1, Justin Hsu2(B), Joël Ouaknine3,4, and Alexandra Silva1

1 Department of Computer Science, University College London, London, UK
{g.vanheerdt,a.silva}@cs.ucl.ac.uk

2 Department of Computer Sciences, University of Wisconsin-Madison,
Madison, WI, USA

justhsu@cs.wisc.edu
3 Max Planck Institute for Software Systems, Saarbrücken, Germany
4 Department of Computer Science, Oxford University, Oxford, UK

joel@mpi-sws.org

Abstract. We explore language semantics for automata combining
probabilistic and nondeterministic behaviors. We first show that there
are precisely two natural semantics for probabilistic automata with non-
determinism. For both choices, we show that these automata are strictly
more expressive than deterministic probabilistic automata, and we prove
that the problem of checking language equivalence is undecidable by
reduction from the threshold problem. However, we provide a discounted
metric that can be computed to arbitrarily high precision.

1 Introduction

Probabilistic automata are fundamental models of randomized computation.
They have been used in the study of such topics as the semantics and correctness
of probabilistic programming languages [18,20], randomized algorithms [24,25],
and machine learning [3,26]. Removing randomness but adding nondeterminism,
nondeterministic automata are established tools for describing concurrent and
distributed systems [27].

Interest in systems that exhibit both random and nondeterministic behav-
iors goes back to Rabin’s randomized techniques to increase the efficiency of dis-
tributed algorithms in the 1970s and 1980s [24,25]. This line of research yielded
several automata models supporting both nondeterministic and probabilistic
choices [4,16,28]. Many formal techniques and tools were developed for these
models, and they have been successfully used in verification tasks [15,16,19,30],
but there are many ways of combining nondeterminism and randomization, and
there remains plenty of room for further investigation.

This work was partially supported by ERC starting grant ProFoundNet (679127),
ERC consolidator grant AVS-ISS (648701), a Leverhulme Prize (PLP-2016-129), and
an NSF grant (1637532).

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 472–492, 2018.
https://doi.org/10.1007/978-3-030-02508-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_25&domain=pdf

Convex Language Semantics for Nondeterministic Probabilistic Automata 473

In this paper we study nondeterministic probabilistic automata (NPAs) and
propose a novel probabilistic language semantics. NPAs are similar to Segala
systems [28] in that transitions can make combined nondeterministic and prob-
abilistic choices, but NPAs also have an output weight in [0, 1] for each state,
reminiscent of observations in Markov Decision Processes. This enables us to
define the expected weight associated with a word in a similar way to what one
would do for standard nondeterministic automata—the output of an NPA on an
input word can be computed in a deterministic version of the automaton, using
a careful choice of algebraic structure for the state space.

Equivalence in our semantics is language equivalence (also known as trace
equivalence), which is coarser than probabilistic bisimulation [7,9,17,32], which
distinguishes systems with different branching structure even if the total weight
assigned to a word is the same. This generalizes the classical difference between
branching and linear semantics [31] to the probabilistic setting, with different
target applications calling for different semantics.

After reviewing mathematical preliminaries in Sect. 2, we introduce the NPA
model and explore its semantics in Sect. 3. We show that there are precisely
two natural ways to define the language semantics of such systems—by either
taking the maximum or the minimum of the weights associated with the differ-
ent paths labeled by an input word. The proof of this fact relies on an abstract
view on these automata generating probabilistic languages with algebraic struc-
ture. Specifically, probabilistic languages have the structure of a convex algebra,
analogous to the join-semilattice structure of standard languages. These features
can abstractly be seen as so-called Eilenberg-Moore algebras for a monad—the
distribution and the powerset monads, respectively—which can support new
semantics and proof techniques (see, e.g., [6,7]).

In Sect. 4, we compare NPAs with standard, deterministic probabilistic
automata (DPAs) as formulated by Rabin [23]. Our semantics ensures that NPAs
recover DPAs in the special case when there is no nondeterministic choice. More
interestingly, we show that there are weighted languages accepted by NPAs that
are not accepted by any DPA. We use the theory of linear recurrence sequences
to give a separation even for weighted languages over a unary alphabet.

In Sect. 5, we turn to equivalence. We prove that language equivalence of
NPAs is undecidable by reduction from so-called threshold problems, which are
undecidable [5,12,22]. The hard instances encoding the threshold problem are
equivalences between probabilistic automata over a two-letter alphabet. Thus,
the theorem immediately implies that equivalence of NPAs is undecidable when
the alphabet size is at least two. The situation for automata over unary alpha-
bets is more subtle; in particular, the threshold problem over a unary alphabet is
not known to be undecidable. However, we give a reduction from the Positivity
problem on linear recurrence sequences, a problem where a decision procedure
would necessarily entail breakthroughs in open problems in number theory [21].
Finally, we show that despite the undecidability result we can provide a dis-
counted metric that can be computed to arbitrarily high precision.

We survey related work and conclude in Sect. 6.

474 G. van Heerdt et al.

2 Preliminaries

Before we present our main technical results, we review some necessary math-
ematical background on convex algebras, monads, probabilistic automata, and
language semantics.

2.1 Convex Algebra

A set A is a convex algebra, or a convex set, if for all n ∈ N and tuples
(pi)n

i=1 of numbers in [0, 1] summing up to 1 there is an operation denoted∑n
i=1 pi(−)i : An → A satisfying the following properties for (a1, . . . , an) ∈ An:

Projection. If pj = 1 (and hence pi = 0 for all i �= j), we have
∑n

i=1 piai = aj .
Barycenter. For any n tuples (qi,j)m

j=1 in [0, 1] summing up to 1, we have

n∑

i=1

pi

⎛

⎝
m∑

j=1

qi,jaj

⎞

⎠ =
m∑

j=1

(
n∑

i=1

piqi,j

)

aj .

Informally, a convex algebra structure gives a way to take finite convex combina-
tions of elements in a set A. Given this structure, we can define convex subsets
and generate them by elements of A.

Definition 1. A subset S ⊆ A is convex if it is closed under all convex combi-
nations. (Such a set can also be seen as a convex subalgebra.) A convex set S is
generated by a set G ⊆ A if for all s ∈ S, there exist n ∈ N, (pi)n

i=1, (gi)n
i=1 ∈ Gn

such that s =
∑

i pigi. When G is finite, we say that S is finitely generated.

We can also define morphisms between convex sets.

Definition 2. An affine map between two convex sets A and B is a function
h : A → B commuting with convex combinations:

h

(
n∑

i=1

piai

)

=
n∑

i=1

pih(ai).

2.2 Monads and Their Algebras

Our definition of language semantics will be based on the category theoretic
framework of monads and their algebras. Monads can be used to model compu-
tational side-effects such as nondeterminism and probabilistic choice. An algebra
allows us to interpret such side-effects within an object of the category.

Definition 3. A monad (T, η, μ) consists of an endofunctor T and two natural
transformations: a unit η : Id ⇒ T and a multiplication μ : TT ⇒ T , making
the following diagrams commute.

T TT

TT T

η

Tη μ

μ

TTT TT

TT T

Tμ

μ μ

μ

Convex Language Semantics for Nondeterministic Probabilistic Automata 475

When there is no risk of confusion, we identify a monad with its endofunctor.
An example of a monad in the category of sets is the triple (P, {−},

⋃
), where

P denotes the finite powerset functor sending each set to the set of its finite
subsets, {−} is the singleton operation, and

⋃
is set union.

Definition 4. An algebra for a monad (T, η, μ) is a pair (X,h) consisting of
a carrier set X and a function h : TX → X making the following diagrams
commute.

X TX

X

η

h

TTX TX

TX X

Th

μ h

h

Definition 5. A homomorphism from an algebra (X,h) to an algebra (Y, k) for
a monad T is a function f : X → Y making the diagram below commute.

TX TY

X Y

Tf

h k

f

The algebras for the finite powerset monad are precisely the join-semilattices
with bottom, and their homomorphisms are maps that preserve finite joins. The
algebras for any monad together with their homomorphisms form a category.

2.3 Distribution and Convex Powerset Monads

We will work with two monads closely associated with convex sets. In the cate-
gory of sets, the distribution monad (D, δ,m) maps a set X to the set of distribu-
tions over X with finite support. The unit δ : X → DX maps x ∈ X to the point
distribution at x. For the multiplication m : DDX → DX, let d ∈ DDX be a
finite distribution with support {d1, . . . , dn} ⊆ DX and define m(d) =

∑n
i=1 pidi,

where pi is the probability of producing di under d. The category of algebras
for the distribution monad is precisely the category of convex sets and affine
maps—we will often convert between these two representations implicitly.

In the category of convex sets, the finitely generated nonempty convex power-
set monad [7] (Pc, {−},

⋃
) maps a convex set A to the set of finitely generated

nonempty convex subsets of A.1 The convex algebra structure on PcA is given
by

∑n
i=1 piUi = {∑n

i=1 piui | ui ∈ Ui for all 1 ≤ i ≤ n} with every Ui ∈ PcA.
The unit map {−} : A → PcA maps a ∈ A to a singleton convex set {a}, and the
multiplication

⋃
: PcPcA → PcA is again the union operation, which collapses

nested convex sets.
As an example, we can consider this monad on the convex algebra [0, 1]. The

result is a finitely generated convex set.
1 In prior work [7], the monad was defined to take all convex subsets rather than
just the finitely generated ones. However, since all the monad operations preserve
finiteness of the generators, the restricted monad we consider is also well-defined.

476 G. van Heerdt et al.

Lemma 1. The convex set Pc[0, 1] is generated by its elements {0}, {1}, and
[0, 1], i.e., Conv({{0}, {1}, [0, 1]}) = Pc[0, 1].

Proof. The finitely generated nonempty convex subsets of [0, 1] are of the form
[p, q] for p, q ∈ [0, 1], and [p, q] = p{1} + (q − p)[0, 1] + (1 − q){0}. �	

To describe automata with both nondeterministic and probabilistic transi-
tions, we will work with convex powersets of distributions. The functor PcD

taking sets X to the set of finitely generated nonempty convex sets of distribu-
tions over X can be given a monad structure.

Explicitly, writing ωA : DPcA → PcA for the (affine) convex algebra structure
on PcA for any convex algebra A, the composite monad (PcD, δ̂, m̂) is given by

X

DX PcDX

δ̂
δ

{−}

PcDPcDX

PcPcDX PcDX

m̂
Pcω

⋃
(1)

For all convex sets A and finite nonempty subsets S ⊆ A, we can define the
convex closure of S (sometimes called the convex hull) Conv(S) ∈ PcA by

Conv(S) = {α(d) | d ∈ DA, supp(d) ⊆ S},

where α : DA → A is the convex algebra structure on A. Conv is in fact a natural
transformation, a fact we will use later.

Lemma 2. For all convex sets (A,α) and (B, β), affine maps f : A → B, and
finite nonempty subsets S ⊆ A, (Pcf ◦ Conv)(S) = (Conv ◦ Pf)(S).

Proof. We will first show that

{Df(d) | d ∈ DA, supp(d) ⊆ S} = {d ∈ DB | supp(d) ⊆ {f(a) | a ∈ S}} (2)

for all finite nonempty S ⊆ A. For the inclusion from left to right, note that for
each d ∈ DA such that supp(d) ⊆ S we have b ∈ supp(Df(d)) only if there exists
a ∈ S such that f(a) = b. Thus, supp(Df(d)) ⊆ {f(a) | a ∈ S}. Conversely,
consider d ∈ DB such that supp(d) ⊆ {f(a) | a ∈ S}. We define d′ ∈ DA by

d′(a) =
d(f(a))

|{a′ ∈ S | f(a′) = f(a)}| .

Then

Df(d′)(b) =
∑

a∈A,f(a)=b

d′(a) (definition ofDf)

=
∑

a∈A,f(a)=b

d(f(a))
|{a′ ∈ S | f(a′) = f(a)}| (definition of d′)

=
∑

a∈A,f(a)=b

d(b)
|{a′ ∈ S | f(a′) = b}| = d(b).

Convex Language Semantics for Nondeterministic Probabilistic Automata 477

Now we have

(Pcf ◦ Conv)(S)
= Pcf({α(d) | d ∈ DA, supp(d) ⊆ S}) (definition ofConv)
= {f(α(d)) | d ∈ DA, supp(d) ⊆ S} (definition ofPcf)
= {β(Df(d)) | d ∈ DA, supp(d) ⊆ S} (f is affine)
= {β(d) | d ∈ DB, supp(d) ⊆ {f(a) | a ∈ S}} (2)
= Conv({f(a) | a ∈ S}) (definition ofConv)
= (Conv ◦ Pf)(S) (definition ofPf). �	

2.4 Automata and Language Semantics

In this section we review the general language semantics for automata with side-
effects provided by a monad (see, e.g., [2,14,29]). This categorical framework is
the foundation of our language semantics for NPA.

Definition 6. Given a monad (T, η, μ) in the category of sets, an output set O,
and a (finite) alphabet A, a T -automaton is defined by a tuple (S, s0, γ, {τa}a∈A),
where S is the set of states, s0 ∈ S is the initial state, γ : S → O is the output
function, and τa : S → TS for a ∈ A are the transition functions.

This abstract formulation encompasses many standard notions of automata.
For instance, we recover deterministic (Moore) automata by letting T be the
identity monad; deterministic acceptors are a further specialization where the
output set is the set 2 = {0, 1}, with 0 modeling rejecting states and 1 modeling
accepting states. If we use the powerset monad, we recover nondeterministic
acceptors.

Any T -automaton can be determinized, using a categorical generalization of
the powerset construction [29].

Definition 7. Given a monad (T, η, μ) in the category of sets, an output set
O with a T -algebra structure o : TO → O, and a (finite) alphabet A, a T -
automaton (S, s0, γ, {τa}a∈A) can be determinized into the deterministic automa-
ton (TS, s′

0, γ
′, {τ ′

a}a∈A) given by s′
0 = η(s0) ∈ TS and

γ′ : TS → O τ ′
a : TS → TS

γ′ = o ◦ Tγ τ ′
a = μ ◦ Tτa.

This construction allows us to define the language semantics of any T -
automaton as the semantics of its determinization. More formally, we have the
following definition.

Definition 8. Given a monad (T, η, μ) in the category of sets, an output set O
with a T -algebra structure o : TO → O, and a (finite) alphabet A, the language
accepted by a T -automaton A = (S, s0, γ, {τa}a∈A) is the function LA : A∗ → O
given by LA = (lA ◦ η)(s0), where lA : TS → OA∗

is defined inductively by

lA(s)(ε) = (o ◦ Tγ)(s) lA(s)(av) = lA((μ ◦ Tτa)(s))(v).

478 G. van Heerdt et al.

As an example, we recover deterministic probabilistic automata (DPAs) by
taking T to be the distribution monad D and letting the output set be the
interval [0, 1]. That is, a DPA with finite2 state space S has an output function
of type S → [0, 1], and each of its transition functions is of type S → DS. To
give a semantics to such an automaton, we use the usual D-algebra structure
E : D[0, 1] → [0, 1] computing the expected weight.

More concretely, the semantics works as follows. Let (S, s0, γ, {τa}a∈A) be
a DPA. At any time while reading a word, we are in a convex combination
of states

∑n
i=1 pisi (equivalently, a distribution over states). The current out-

put is given by evaluating the sum
∑n

i=1 piγ(si). On reading a symbol a ∈ A,
we transition to the convex combination of convex combinations

∑n
i=1 piτa(si),

say
∑n

i=1 pi

∑mi

j=1 qi,jsi,j , which is collapsed to the final convex combination
∑n

i=1

∑mi

j=1 piqi,jsi,j (again, a distribution over states).

Remark 1. One may wonder if the automaton model would be more expressive
if the initial state s0 in an automaton (S, s0, γ, {τa}a∈A) would be an element of
TS rather than S. This is not the case, since we can always add a new element
to S that simulates s0 by setting its output to (o ◦ Tγ)(s0) and its transition on
a ∈ A to (μ ◦ Tτa)(s0).

For instance, DPAs allowing a distribution over states as the initial state
can be represented by an initial state distribution μ, an output vector γ, and
transitions τa. In typical presentations, μ and γ are represented as weight vectors
over states, and the τa are encoded by stochastic matrices.

3 Nondeterministic Probabilistic Automata

We work with an automaton model supporting probabilistic and nondetermin-
istic behaviors, inspired by Segala [28]. On each input letter, the automaton
can choose from a finitely generated nonempty convex set of distributions over
states. After selecting a distribution, the automaton then transitions to its next
state probabilistically. Each state has an output weight in [0, 1]. The following
formalization is an instantiation of Definition 6 with the monad PcD.

Definition 9. A nondeterministic probabilistic automaton (NPA) over a
(finite) alphabet A is defined by a tuple (S, s0, γ, {τa}a∈A), where S is a finite set
of states, s0 ∈ S is the initial state, γ : S → [0, 1] is the output function, and
τa : S → PcDS are the transition functions indexed by inputs a ∈ A.

2 All concrete automata considered in this paper will have a finite state space, but
this is not required by Definition 6. The distribution monad, for example, does not
preserve finite sets in general.

Convex Language Semantics for Nondeterministic Probabilistic Automata 479

As an example, consider the NPA below.

1

0

1 1

a, b

a

s0

1
2

1
2

a, b

s1

a

bs2

1
2

1
2 a, b

s3

(3)

States are labeled by their direct output (i.e., their weight from γ) while out-
going edges represent transitions. Additionally, we write the state name next to
each state. We only indicate a set of generators of the convex subset that a state
transitions into. If one of these generators is a distribution with nonsingleton
support, then a transition into a black dot is depicted, from which the outgoing
transitions represent the distribution. Those edges are labeled with probabilities.

Our NPAs recognize weighted languages. The rest of the section is concerned
with formally defining this semantics, based on the general framework from
Sect. 2.4.

3.1 From Convex Algebra to Language Semantics

To define language semantics for NPAs, we will use the monad structure of PcD.
To be able to use the semantics from Sect. 2.4, we need to specify a PcD-algebra
structure o : PcD[0, 1] → [0, 1]. Moreover, our model should naturally coincide
with DPAs when transitions make no nondeterministic choices, i.e., when each
transition function maps each state to a singleton distribution over states. Thus,
we require the PcD-algebra o to extend the expected weight function E, making
the diagram below commute.

D[0, 1]

PcD[0, 1] [0, 1]

{−} E

o

(4)

3.2 Characterizing the Convex Algebra on [0, 1]

While in principle there could be many different PcD-algebras on [0, 1] leading to
different language semantics for NPAs, we show that (i) each algebra extending
the D-algebra on [0, 1] is fully determined by a Pc-algebra on [0, 1], and (ii) there
are exactly two Pc-algebras on [0, 1]: the map computing the minimum and the
map computing the maximum.

Proposition 1. Any PcD-algebra on [0, 1] extending E : D[0, 1] → [0, 1] is of
the form PcD[0, 1] PcE−−→ Pc[0, 1] α−→ [0, 1], where α is a Pc-algebra.

480 G. van Heerdt et al.

Proof. Let o : PcD[0, 1] → [0, 1] be a PcD-algebra extending E. We define

α = Pc[0, 1] Pcδ−−→ PcD[0, 1] o−→ [0, 1].

Indeed, the diagram

PcD[0, 1] Pc[0, 1]

PcPcD[0, 1] PcDPcD[0, 1] PcD[0, 1]

PcPcD[0, 1]

PcD[0, 1] [0, 1]

PcE

Pc{−} (4)
Pcδ1

Pcδ

Pco

PcDo

Pcω2

3 o

⋃

o

1 naturality of δ 2 ω is a convex algebra 3 o is a PcD-algebra

commutes, so it only remains to show that α is a Pc-algebra. This can be seen
from the commutative diagrams below.

[0, 1]

D[0, 1]

Pc[0, 1] PcD[0, 1] [0, 1]

δ

{−}
2

{−}
Pcδ

1

o

1 naturality of {−}
2 o is a PcD-algebra

PcPc[0, 1] PcPcD[0, 1] Pc[0, 1]

PcDPcD[0, 1] PcD[0, 1]

PcPcD[0, 1]

Pc[0, 1] PcD[0, 1] [0, 1]

PcPcδ

PcPcδ

⋃

Pco

Pcδ2
3

Pcδ

PcDo

Pcω

4 o
⋃

Pcδ

1

o

1 naturality of
⋃

3 naturality of δ
2 ω is a convex algebra 4 o is a PcD-algebra �	

Proposition 2. The only Pc-algebras on the convex set [0, 1] are min and max.

Convex Language Semantics for Nondeterministic Probabilistic Automata 481

Proof. Let α : Pc[0, 1] → [0, 1] be a Pc-algebra. Then for any r ∈ [0, 1], α({r}) =
r, and the diagram below must commute.

PcPc[0, 1] Pc[0, 1]

Pc[0, 1] [0, 1]

Pcα

⋃
α

α

(5)

Furthermore, α is an affine map. Since Conv({{0}, {1}, [0, 1]}) = Pc[0, 1] by
Lemma 1, α({0}) = 0, and α({1}) = 1, α is completely determined by α([0, 1]).
We now calculate that

α([0, 1]) = α
(⋃

{[0, p] | p ∈ [0, 1]}
)

= (α ◦
⋃

◦ Conv)({{0}, [0, 1]})

= (α ◦ Pcα ◦ Conv)({{0}, [0, 1]}) (5)
= (α ◦ Conv ◦ Pα)({{0}, [0, 1]}) (Lemma 2)
= (α ◦ Conv)({α({0}), α([0, 1])}) (definition ofPα)
= (α ◦ Conv)({0, α([0, 1])})
= α([0, α([0, 1])])
= α(α([0, 1])[0, 1] + (1 − α([0, 1])){0})
= α([0, 1]) · α([0, 1]) + (1 − α([0, 1])) · α({0}) (α is affine)

= α([0, 1])2 + (1 − α([0, 1])) · 0

= α([0, 1])2.

Thus, we have either α([0, 1]) = 0 or α([0, 1]) = 1. Consider any finitely generated
nonempty convex subset [p, q] ⊆ [0, 1]. If α([0, 1]) = 0, then Lemma 1 gives

α([p, q]) = α(p{1} + (q − p)[0, 1] + (1 − q){0})
= p · α({1}) + (q − p) · α([0, 1]) + (1 − q) · α({0})
= p · 1 + (q − p) · 0 + (1 − q) · 0 = p = min([p, q]);

if α([0, 1]) = 1, then

α([p, q]) = α(p{1} + (q − p)[0, 1] + (1 − q){0})
= p · α({1}) + (q − p) · α([0, 1]) + (1 − q) · α({0})
= p · 1 + (q − p) · 1 + (1 − q) · 0 = q = max([p, q]).

482 G. van Heerdt et al.

We now show that min is an algebra; the case for max is analogous. We have

min

(
n∑

i=1

ri[pi, qi]

)

= min

([
n∑

i=1

ri · pi,

n∑

i=1

ri · qi

])

=
n∑

i=1

ri · pi

=
n∑

i=1

ri · min([pi, qi]),

so min is an affine map. Furthermore, clearly min({r}) = r for all r ∈ [0, 1], and
for all S ∈ PcPc[0, 1],

min
(⋃

S
)

= min({min(T) | T ∈ S}) = (min ◦ Pcmin)(S). �	

Corollary 1. The only PcD-algebras on [0, 1] extending E are PcD[0, 1] PcE−−→
Pc[0, 1] min−−→ [0, 1] and PcD[0, 1] PcE−−→ Pc[0, 1] max−−→ [0, 1].

Consider again the NPA (3). Since we can always choose to remain in the
initial state, the max semantics assigns 1 to each word for this automaton. The
min semantics is more interesting. Consider reading the word aa. On the first
a, we transition from s0 to Conv{s0,

1
2s1 + 1

2s2} ∈ PcDS. Reading the second a
gives

Conv
{
Conv

{
s0,

1
2s1 + 1

2s2
}

, 1
2{s1} + 1

2

{
1
2s1 + 1

2s2
}} ∈ PcDPcDS.

Now we first apply Pcω to eliminate the outer distribution, arriving at

Conv
{
Conv

{
s0,

1
2s1 + 1

2s2
}

,
{

3
4s1 + 1

4s2
}} ∈ PcPcDS.

Taking the union yields

Conv
{
s0,

1
2s1 + 1

2s2,
3
4s1 + 1

4s2
} ∈ PcDS,

which leads to the convex subset of distributions over outputs

Conv
{
1, 1

2 · 0 + 1
2 · 1, 3

4 · 0 + 1
4 · 1

} ∈ PcD[0, 1].

Calculating the expected weights gives Conv{1, 1
2 , 1

4} ∈ Pc[0, 1], which has a
minimum of 1

4 . One can show that on reading any word u ∈ A∗ the automaton
outputs 2−n, where n is the length of the longest sequence of a’s occurring in u.

The semantics coming from max and min are highly symmetrical; in a sense,
they are two representations of the same semantics.3 Technically, we establish
the following relation between the two semantics—this will be useful to avoid
repeating proofs twice for each property.
3 The max semantics is perhaps preferable since it recovers standard nondeterministic
finite automata when there is no probabilistic choice and the output weights are in
{0, 1}, but this is a minor point.

Convex Language Semantics for Nondeterministic Probabilistic Automata 483

Proposition 3. Consider an NPA A = (S, s0, γ, {τa}a∈A) under the min seman-
tics. Define γ′ : S → [0, 1] by γ′(s) = 1 − γ(s), and consider the NPA A′ =
(S, s0, γ

′, {τa}a∈A) under the max semantics. Then LA′(u) = 1 − LA(u) for all
u ∈ A∗.

Proof. We prove a stronger property by induction on u: for all x ∈ PcDS and
u ∈ A∗, we have lA′(x)(u) = 1 − lA(x)(u). This is sufficient because A and A′

have the same initial state. We have

lA′(x)(ε)
= (max ◦ PcE ◦ PcDγ′)(x) (Definition 8)

= (max ◦ PcE)

⎛

⎝

⎧
⎨

⎩
λp.

∑

s∈S,γ′(s)=p

d(s)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠ (definition ofPcDγ′)

= max

⎛

⎝

⎧
⎨

⎩

∑

p∈[0,1]

p
∑

s∈S,γ′(s)=p

d(s)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠ (definition ofPcE)

= max

⎛

⎝

⎧
⎨

⎩

∑

p∈[0,1]

p
∑

s∈S,γ(s)=1−p

d(s)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠ (definition of γ′)

= max

⎛

⎝

⎧
⎨

⎩

∑

p∈[0,1]

(1 − p)
∑

s∈S,γ(s)=p

d(s)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠

= max

⎛

⎝

⎧
⎨

⎩

∑

p∈[0,1]

(1 − p) · Dγ(d)(p)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠

= max

⎛

⎝

⎧
⎨

⎩
1 −

∑

p∈[0,1]

p · Dγ(d)(p)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠

= 1 − min

⎛

⎝

⎧
⎨

⎩

∑

p∈[0,1]

p · Dγ(d)(p)

∣
∣
∣
∣
∣
∣
d ∈ x

⎫
⎬

⎭

⎞

⎠

= 1 − (min ◦ PcE)({Dγ(d) | d ∈ x}) (definition ofPcE)
= 1 − (min ◦ PcE ◦ PcDγ)(x) (definition ofPcDγ′)
= 1 − lA(x)(ε) (Definition 8).

Furthermore,

lA′(x)(av) = lA′
((⋃

◦ Pcω ◦ PcDτa

)
(x)

)
(v) (Definition 8)

= 1 − lA

((⋃
◦ Pcω ◦ PcDτa

)
(x)

)
(v) (induction hypothesis)

= 1 − lA(x)(av) (Definition 8). �	

484 G. van Heerdt et al.

4 Expressive Power of NPAs

Our convex language semantics for NPAs coincides with the standard semantics
for DPAs when all convex sets in the transition functions are singleton sets. In
this section, we show that NPAs are in fact strictly more expressive than DPAs.
We give two results. First, we exhibit a concrete language over a binary alphabet
that is recognizable by a NPA, but not recognizable by any DPA. This argument
uses elementary facts about the Hankel matrix, and actually shows that NPAs
are strictly more expressive than weighted finite automata (WFAs).

Next, we separate NPAs and DPAs over a unary alphabet. This argument
is substantially more technical, relying on deeper results from number theory
about linear recurrence sequences.

4.1 Separating NPAs and DPAs: Binary Alphabet

Consider the language La : {a, b}∗ → [0, 1] by La(u) = 2−n, where n is the
length of the longest sequence of a’s occurring in u. Recall that this language is
accepted by the NPA (3) using the min algebra.

Theorem 1. NPAs are more expressive than DPAs. Specifically, there is no
DPA, or even WFA, accepting La.

Proof. Assume there exists a WFA accepting La, and let l(u) for u ∈ {a, b}∗ be
the language of the linear combination of states reached after reading the word
u. We will show that the languages l(anb) for n ∈ N are linearly independent.
Since the function that assigns to each linear combination of states its accepted
language is a linear map, this implies that the set of linear combinations of states
of the WFA is a vector space of infinite dimension, and hence the WFA cannot
exist.

The proof is by induction on a natural number m. Assume that for all natural
numbers i ≤ m the languages l(aib) are linearly independent. For all i ≤ m we
have l(aib)(am) = 2−m and l(aib)(am+1) = 2−m−1; however, l(am+1b)(am) =
l(am+1b)(am+1) = 2−m−1. If l(am+1b) is a linear combination of the languages
l(aib) for i ≤ m, then there are constants c1, . . . , cm ∈ R such that in particular

(c1 + · · · + cm)2−m = 2−m−1 and (c1 + · · · + cm)2−m−1 = 2−m−1.

These equations cannot be satisfied. Therefore, for all natural numbers i ≤ m+1
the languages l(aib) are linearly independent. We conclude by induction that for
all m ∈ N the languages l(aib) for i ≤ m are linearly independent, which implies
that all languages l(anb) for n ∈ N are linearly independent. �	

A similar argument works for NPAs under the max algebra semantics—one
can easily repeat the argument in the above theorem for the language accepted
by the NPA resulting from applying Proposition 3 to the NPA (3).

Convex Language Semantics for Nondeterministic Probabilistic Automata 485

4.2 Separating NPAs and DPAs: Unary Alphabet

We now turn to the unary case. A weighted language over a unary alphabet
can be represented by a sequence 〈ui〉 = u0, u1, . . . of real numbers. We will
give such a language that is recognizable by a NPA but not recognizable by any
WFA (and in particular, any DPA) using results on linear recurrence sequences,
an established tool for studying unary weighted languages.

We begin with some mathematical preliminaries. A sequence of real num-
bers 〈ui〉 is a linear recurrence sequence (LRS) if for some integer k ∈ N

(the order), constants u0, . . . , uk−1 ∈ R (the initial conditions), and coefficients
b0, . . . , bk−1 ∈ R, we have

un+k = bk−1un−1 + · · · + b0un

for every n ∈ N. A well-known example of an LRS is the Fibonacci sequence, an
order-2 LRS satisfying the recurrence fn+2 = fn+1 + fn. Another example of an
LRS is any constant sequence, i.e., 〈ui〉 with ui = c for all i.

Linear recurrence sequences are closed under linear combinations: for any
two LRS 〈ui〉, 〈vi〉 and constants α, β ∈ R, the sequence 〈αui + βvi〉 is again an
LRS (possibly of larger order). We will use one important theorem about LRSs.
See the monograph by Everest et al. [11] for details.

Theorem 2 Skolem-Mahler-Lech). If 〈ui〉 is an LRS, then its zero set {i ∈
N | ui = 0} is the union of a finite set along with finitely many arithmetic
progressions (i.e., sets of the form {p + kn | n ∈ N} with k �= 0).

This is a celebrated result in number theory and not at all easy to prove. To
make the connection to probabilistic and weighted automata, we will use two
results. The first proposition follows from the Cayley-Hamilton Theorem.

Proposition 4 (see, e.g., [21]). Let L be a weighted unary language recog-
nizable by a weighted automaton W . Then the sequence of weights 〈ui〉 with
ui = L(ai) is an LRS, where the order is at most the number of states in W .

While not every LRS can be recognized by a DPA, it is known that DPAs
can recognize a weighted language encoding the sign of a given LRS.

Theorem 3 (Akshay et al. [1, Theorem 3, Corollary 4]). Given any LRS
〈ui〉, there exists a stochastic matrix M such that

un ≥ 0 ⇐⇒ uT Mnv ≥ 1/4

for all n, where u = (1, 0, . . . , 0) and v = (0, 1, 0, . . . , 0). Equality holds on
the left if and only if it holds on the right. The language L(an) = uT Mnv is
recognizable by a DPA with input vector u, output vector v, and transition matrix
M (Remark 1). If the LRS is rational, M can be taken to be rational as well.

We are now ready to separate NPAs and WFAs over a unary alphabet.

486 G. van Heerdt et al.

Theorem 4. There is a language over a unary alphabet that is recognizable by
an NPA but not by any WFA (and in particular any DPA).

Proof. We will work in the complex numbers C, with i being the positive square
root of −1 as usual. Let a, b ∈ Q be nonzero such that z � a + bi is on the
unit circle in C, for instance a = 3/5, b = 4/5 so that |a + bi| = a2 + b2 = 1.
Let z̄ = a − bi denote the complex conjugate of z and let Re(z) denote the real
part of a complex number. It is possible to show that z is not a root of unity,
i.e., zk �= 1 for all k ∈ N. Let 〈xn〉 be the sequence xn � (zn + z̄n)/2 = Re(zn).
By direct calculation, this sequence has imaginary part zero and satisfies the
recurrence

xn+2 = 2axn+1 − (a2 + b2)xn

with x0 = 1 and x1 = a, so 〈xn〉 is an order-2 rational LRS. By Theorem3, there
exists a stochastic matrix M and non-negative vectors u, v such that

xn ≥ 0 ⇐⇒ uT Mnv ≥ 1/4

for all n, where equality holds on the left if and only if equality holds on the
right. Note that xn = Re(zn) �= 0 since z is not a root of unity (so in particular
zn �= ±i), hence equality never holds on the right. Letting 〈yn〉 be the sequence
yn = uT Mnv, the (unary) language with weights 〈yn〉 is recognized by the DPA
with input u, output v and transition matrix M . Furthermore, the constant
sequence 〈1/4〉 is recognizable by a DPA.

Now we define a sequence 〈wn〉 with wn = max(yn, 1/4). Since 〈yn〉 and 〈1/4〉
are recognizable by DPAs, 〈wn〉 is recognizable by an NPA whose initial state
nondeterministically chooses between the two DPAs (see Remark 1). Suppose for
the sake of contradiction that it is also recognizable by a WFA. Then 〈wn〉 is
an LRS (by Proposition 4) and hence so is 〈tn〉 with tn = wn − yn. If we now
consider the zero set

S = {n ∈ N | tn = 0}
= {n ∈ N | yn > 1/4} (yn �= 1/4)
= {n ∈ N | xn > 0} (Theorem 3)
= {n ∈ N | Re(zn) > 0} (by definition),

Theorem 2 implies that S is the union of a finite set of indices and along with
a finite number of arithmetic progressions. Note that S cannot be finite—in the
last line, zn is dense in the unit circle since z is not a root of unity—so there
must be at least one arithmetic progression {p + kn | n ∈ N}. Letting 〈rn〉 be

rn = (zp · (zk)n + z̄p · (z̄k)n)/2 = Re(zp · (zk)n) = xp+kn,

we have p + kn ∈ S, so rn > 0 for all n ∈ N, but this is impossible since it is
dense in [−1, 1] (because zk is not a root of unity for k �= 0, so zp · (zk)n is dense
in the unit circle).

Hence, the unary weighted language 〈wn〉 can be recognized by an NPA but
not by a WFA. �	

Convex Language Semantics for Nondeterministic Probabilistic Automata 487

5 Checking Language Equivalence of NPAs

Now that we have a coalgebraic model for NPA, a natural question is whether
there is a procedure to check language equivalence of NPAs. We will show that
language equivalence of NPAs is undecidable by reduction from the threshold
problem on DPAs. Nevertheless, we can define a metric on the set of languages
recognized by NPAs to measure their similarity. While this metric cannot be
computed exactly, it can be approximated to any given precision in finite time.

5.1 Undecidability and Hardness

Theorem 5. Equivalence of NPAs is undecidable when |A| ≥ 2 and the PcD-
algebra on [0, 1] extends the usual D-algebra on [0, 1].

Proof. Let X be a DPA and κ ∈ [0, 1]. We define NPAs Y and Z as follows:

Y =
κκ X

A A

A

Z = κ A

Here the node labeled X represents a copy of the automaton X—the transition
into X goes into the initial state of X. Note that the edges are labeled by A to
indicate a transition for every element of A. We see that LY (ε) = κ = LZ(ε)
and (for α either min or max, as follows from Corollary 1)

LY (av) = (α ◦ Conv)({κ,LX(v)}) LZ(av) = κ.

Thus, if α = min, then LY = LZ if and only if LX(v) ≥ κ for all v ∈ A∗; if
α = max, then LY = LZ if and only if LX(v) ≤ κ for all v ∈ A∗. Both of these
threshold problems are undecidable for alphabets of size at least 2 [5,12,22]. �	

The situation for automata over unary alphabets is more subtle; in particular,
the threshold problem is not known to be undecidable in this case. However, there
is a reduction to a long-standing open problem on LRSs.

Given an LRS 〈ui〉, the Positivity problem is to decide whether ui is non-
negative for all i ∈ N (see, e.g., [21]). While the decidability of this problem has
remained open for more than 80 years, it is known that a decision procedure
for Positivity would necessarily entail breakthroughs in open problems in num-
ber theory. That is, it would give an algorithm to compute the homogeneous
Diophantine approximation type for a class of transcendental numbers [21]. Fur-
thermore, the Positivity problem can be reduced to the threshold problem on
unary probabilistic automata. Putting everything together, we have the following
reduction.

Corollary 2. The Positivity problem for linear recurrence sequences can be
reduced to the equivalence problem of NPAs over a unary alphabet.

488 G. van Heerdt et al.

Proof. The construction in Theorem 5 shows that the lesser-than threshold prob-
lem can be reduced to the equivalence problem for NPAs with max semantics,
so we show that Positivity can be reduced to the lesser-than threshold problem
on probabilistic automata with a unary alphabet. Given any rational LRS 〈ui〉,
clearly 〈−ui〉 is an LRS as well, so by Theorem 3 there exists a rational stochastic
matrix M such that

−un > 0 ⇐⇒ uT Mnv > 1/4

for all n, where u = (1, 0, . . . , 0) and v = (0, 1, 0, . . . , 0). Taking M to be the
transition matrix, v to be the input vector, and u to be the output vector, the
probabilistic automaton corresponding to the right-hand side is a nonsatisfying
instance to the threshold problem with threshold ≤ 1/4 if and only if the 〈ui〉 is
a satisfying instance of the Positivity problem.

Applying Proposition 3 yields an analogous reduction from Positivity to the
equivalence problem of NPAs with min semantics. �	

5.2 Checking Approximate Equivalence

The previous negative results show that deciding exact equivalence of NPAs is
computationally intractable (or at least very difficult, for a unary alphabet). A
natural question is whether we might be able to check approximate equivalence.
In this section, we show how to approximate a metric on weighted languages. Our
metric will be discounted—differences in weights of longer words will contribute
less to the metric than differences in weights of shorter words.

Given c ∈ [0, 1) and two weighted languages l1, l2 : A∗ → [0, 1], we define

dc(l1, l2) =
∑

u∈A∗
|l1(u) − l2(u)| ·

(
c

|A|
)|u|

.

Suppose that l1 and l2 are recognized by given NPAs. Since dc(l1, l2) = 0 if and
only if the languages (and automata) are equivalent, we cannot hope to compute
the metric exactly. We can, however, compute the weight of any finite word under
l1 and l2. Combined with the discounting in the metric, we can approximate this
metric dc within any desired (nonzero) error.

Theorem 6. There is a procedure that given c ∈ [0, 1), κ > 0, and computable
functions l1, l2 : A∗ → [0, 1] outputs x ∈ R+ such that |dc(l1, l2) − x| ≤ κ.

Proof. Let n = �logc((1 − c) · κ)� ∈ N and define

x =
∑

u∈A∗,|u|<n

|l1(u) − l2(u)| ·
(

c

|A|
)|u|

.

Convex Language Semantics for Nondeterministic Probabilistic Automata 489

This sum is over a finite set of finite strings and the weights of l1(u) and l2(u)
can all be computed exactly, so x is computable as well. Now we can bound

|dc(l1, l2) − x| =
∑

u∈A∗,|u|≥n

|l1(u) − l2(u)| ·
(

c

|A|
)|u|

≤
∑

u∈A∗,|u|≥n

(
c

|A|
)|u|

=
∑

i∈N,i≥n

|A|i ·
(

c

|A|
)i

=
∑

i∈N,i≥n

ci =
cn

1 − c
≤ κ,

where the last step is because n ≥ logc((1 − c) · κ), and thus cn ≤ (1 − c) · κ,
noting that c ∈ [0, 1) and κ > 0. �	

We leave approximating other metrics on weighted languages—especially
nondiscounted metrics—as an intriguing open question.

6 Conclusions

We have defined a novel probabilistic language semantics for nondeterministic
probabilistic automata (NPAs). We proved that NPAs are strictly more expres-
sive than deterministic probabilistic automata, and that exact equivalence is
undecidable. We have shown how to approximate the equivalence question to
arbitrary precision using a discounted metric. There are two directions for future
work that we would like to explore. First, it would be interesting to see if different
metrics can be defined on probabilistic languages and what approximate equiv-
alence procedures they give rise to. Second, we would like to explore whether
we can extend logical characterization results in the style of Panangaden et
al. [10,13]. Finally, it would be interesting to investigate the class of languages
recognizable by our NPAs.

Related Work. There are many papers studying probabilitic automata and vari-
ants thereof. The work in our paper is closest to the work of Segala [28] in that our
automaton model has both nondeterminism and probabilistic choice. However,
we enrich the states with an output weight that is used in the definition of the
language semantics. Our language semantics is coarser than probabilistic (con-
vex) bisimilarity [28] and bisimilarity on distributions [17]. In fact, in contrast
to the hardness and undecidability results we proved for probabilistic language
equivalence, bisimilarity on distributions can be shown to be decidable [17] with
the help of convexity. The techniques we use in defining the semantics are closely
related to the recent categorical understanding of bisimilarity on distributions [7].

Acknowledgements. We thank Nathanaël Fijalkow and the anonymous reviewers
for their useful suggestions to improve the paper. The semantics studied in this paper
has been brought to our attention in personal communication by Filippo Bonchi, Ana
Sokolova, and Valeria Vignudelli. Their interest in this semantics is mostly motivated
by its relationship with trace semantics previously proposed in the literature. This is
the subject of a forthcoming publication [8].

490 G. van Heerdt et al.

References

1. Akshay, S., Antonopoulos, T., Ouaknine, J., Worrell, J.: Reachability problems
for Markov chains. Inf. Process. Lett. 115(2), 155–158 (2015). https://doi.org/10.
1016/j.ipl.2014.08.013

2. Arbib, M.A., Manes, E.G.: Fuzzy machines in a category. Bull. Aust. Math. Soc.
13(2), 169–210 (1975). https://doi.org/10.1017/s0004972700024412

3. Balle, B., Castro, J., Gavaldà, R.: Adaptively learning probabilistic deterministic
automata from data streams. Mach. Learn. 96(1–2), 99–127 (2014). https://doi.
org/10.1007/s10994-013-5408-x

4. Bernardo, M., De Nicola, R., Loreti, M.: Revisiting trace and testing equivalences
for nondeterministic and probabilistic processes. Log. Methods Comput. Sci. 10(1),
Article no. 16 (2014). https://doi.org/10.2168/lmcs-10(1:16)2014

5. Blondel, V.D., Canterini, V.: Undecidable problems for probabilistic automata of
fixed dimension. Theory Comput. Syst. 36, 231–245 (2003). https://doi.org/10.
1007/s00224-003-1061-2

6. Bonchi, F., Pous, D.: Hacking nondeterminism with induction and coinduction.
Commun. ACM 58(2), 87–95 (2015). https://doi.org/10.1145/2713167

7. Bonchi, F., Silva, A., Sokolova, A.: The power of convex algebras. In: Meyer, R.,
Nestmann, U. (eds.) Proceedings of 28th International Conference on Concurrency
Theory, CONCUR 2017, Berlin, September 2017. Leibniz International Proceedings
in Informatics, vol. 85, Article no. 23. Dagstuhl Publishing, Saarbrücken/Wadern
(2017). https://doi.org/10.4230/lipics.concur.2017.23

8. Bonchi, F., Sokolova, A., Vignudelli, V.: Trace semantics for nondeterministic prob-
abilistic automata via determinization. arXiv preprint 1808.00923 (2018). https://
arxiv.org/abs/1808.00923

9. Deng, Y., van Glabbeek, R.J., Hennessy, M., Morgan, C.: Testing finitary prob-
abilistic processes. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS,
vol. 5710, pp. 274–288. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-04081-8 19

10. Desharnais, J., Edalat, A., Panangaden, P.: A logical characterization of bisimula-
tion for labeled Markov processes. In: Proceedings of 13th Annual IEEE Sympo-
sium on Logic in Computer Science. LICS 1998, Indianapolis, IN, June 1998, pp.
478–487. IEEE CS Press, Washington, D.C. (1998). https://doi.org/10.1109/lics.
1998.705681

11. Everest, G., van der Poorten, A.J., Shparlinski, I.E., Ward, T.: Recurrence
Sequences, Mathematical surveys and monographs, vol. 104. American Mathemat-
ical Society, Providence (2003)

12. Fijalkow, N.: Undecidability results for probabilistic automata. ACM SIGLOG
News 4(4), 10–17 (2017). https://doi.org/10.1145/3157831.3157833

13. Fijalkow, N., Klin, B., Panangaden, P.: Expressiveness of probabilistic modal logics,
revisited. In: Chatzigiannakis, Y., Indyk, P., Kuhn, F., Muscholl, A. (eds.) Proc. of
44th Int. Coll. on Automata, Languages and Programming, ICALP 2017, Warsaw,
July 2017. Leibniz International Proceedings in Informatics, vol. 80, Article no.
105. Dagstuhl Publishing, Saarbrücken/Wadern (2017). https://doi.org/10.4230/
lipics.icalp.2017.105

14. Goncharov, S., Milius, S., Silva, A.: Towards a coalgebraic Chomsky hierarchy
(extended abstract). In: Dı́az, J., Lanese, I., Sangiorgi, D. (eds.) TCS 2014. LNCS,
vol. 8705, pp. 265–280. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44602-7 21

https://doi.org/10.1016/j.ipl.2014.08.013
https://doi.org/10.1016/j.ipl.2014.08.013
https://doi.org/10.1017/s0004972700024412
https://doi.org/10.1007/s10994-013-5408-x
https://doi.org/10.1007/s10994-013-5408-x
https://doi.org/10.2168/lmcs-10(1:16)2014
https://doi.org/10.1007/s00224-003-1061-2
https://doi.org/10.1007/s00224-003-1061-2
https://doi.org/10.1145/2713167
https://doi.org/10.4230/lipics.concur.2017.23
https://arxiv.org/abs/1808.00923
https://arxiv.org/abs/1808.00923
https://doi.org/10.1007/978-3-642-04081-8_19
https://doi.org/10.1007/978-3-642-04081-8_19
https://doi.org/10.1109/lics.1998.705681
https://doi.org/10.1109/lics.1998.705681
https://doi.org/10.1145/3157831.3157833
https://doi.org/10.4230/lipics.icalp.2017.105
https://doi.org/10.4230/lipics.icalp.2017.105
https://doi.org/10.1007/978-3-662-44602-7_21
https://doi.org/10.1007/978-3-662-44602-7_21

Convex Language Semantics for Nondeterministic Probabilistic Automata 491

15. Henzinger, T.A.: Quantitative reactive modeling and verification. Comput. Sci. Res.
Dev. 28(4), 331–344 (2013). https://doi.org/10.1007/s00450-013-0251-7

16. Hermanns, H., Katoen, J.: The how and why of interactive Markov chains. In: de
Boer, F.S., Bonsangue, M.M., Hallerstede, S., Leuschel, M. (eds.) FMCO 2009.
LNCS, vol. 6286, pp. 311–337. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17071-3 16

17. Hermanns, H., Krcál, J., Kret́ınský, J.: Probabilistic bisimulation: naturally on dis-
tributions. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp.
249–265. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-
6 18

18. Kozen, D.: Semantics of probabilistic programs. In: Proceedings of 20th Annual
Symposium on Foundations of Computer Science, FOCS 1979, San Juan, PR, Octo-
ber 1979, pp. 101–114. IEEE CS Press, Washington, D.C. (1979). https://doi.org/
10.1109/sfcs.1979.38

19. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

20. Legay, A., Murawski, A.S., Ouaknine, J., Worrell, J.: On automated verification
of probabilistic programs. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008.
LNCS, vol. 4963, pp. 173–187. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-78800-3 13

21. Ouaknine, J., Worrell, J.: Positivity problems for low-order linear recurrence
sequences. In: Proceedings of 25th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, OR, January 2014, pp. 366–379. SIAM (2014).
https://doi.org/10.1137/1.9781611973402

22. Paz, A.: Introduction to Probabilistic Automata. Academic Press, New
York/London (1971). https://doi.org/10.1016/c2013-0-11297-4

23. Rabin, M.O.: Probabilistic automata. Inf. Control 6(3), 230–245 (1963). https://
doi.org/10.1016/s0019-9958(63)90290-0

24. Rabin, M.O.: Probabilistic algorithms. In: Traub, J.F. (ed.) Algorithms and Com-
plexity: New Directions and Recent Results, pp. 21–39. Academic Press, New York
(1976)

25. Rabin, M.O.: N -process mutual exclusion with bounded waiting by 4 log2 N -valued
shared variable. J. Comput. Syst. Sci. 25(1), 66–75 (1982). https://doi.org/10.
1016/0022-0000(82)90010-1

26. Ron, D., Singer, Y., Tishby, N.: The power of amnesia: learning probabilistic
automata with variable memory length. Mach. Learn. 25(2), 117–149 (1996).
https://doi.org/10.1023/a:1026490906255

27. Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: towards a classi-
fication. Theor. Comput. Sci. 170(1–2), 297–348 (1996). https://doi.org/10.1016/
s0304-3975(96)80710-9

28. Segala, R.: Modeling and verification of randomized distributed real-time systems.
Ph.D. thesis, Massachusetts Institute of Technology, Cambridge (1995)

29. Silva, A., Bonchi, F., Bonsangue, M.M., Rutten, J.J.M.M.: Generalizing deter-
minization from automata to coalgebras. Log. Methods Comput. Sci. 9(1), Article
no. 9 (2013). https://doi.org/10.2168/lmcs-9(1:9)2013

https://doi.org/10.1007/s00450-013-0251-7
https://doi.org/10.1007/978-3-642-17071-3_16
https://doi.org/10.1007/978-3-642-17071-3_16
https://doi.org/10.1007/978-3-662-44584-6_18
https://doi.org/10.1007/978-3-662-44584-6_18
https://doi.org/10.1109/sfcs.1979.38
https://doi.org/10.1109/sfcs.1979.38
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-540-78800-3_13
https://doi.org/10.1007/978-3-540-78800-3_13
https://doi.org/10.1137/1.9781611973402
https://doi.org/10.1016/c2013-0-11297-4
https://doi.org/10.1016/s0019-9958(63)90290-0
https://doi.org/10.1016/s0019-9958(63)90290-0
https://doi.org/10.1016/0022-0000(82)90010-1
https://doi.org/10.1016/0022-0000(82)90010-1
https://doi.org/10.1023/a:1026490906255
https://doi.org/10.1016/s0304-3975(96)80710-9
https://doi.org/10.1016/s0304-3975(96)80710-9
https://doi.org/10.2168/lmcs-9(1:9)2013

492 G. van Heerdt et al.

30. Swaminathan, M., Katoen, J.P., Olderog, E.R.: Layered reasoning for randomized
distributed algorithms. Form. Asp. Comput. 24(4), 477–496 (2012). https://doi.
org/10.1007/s00165-012-0231-x

31. Vardi, M.Y.: Branching vs. linear time: final showdown. In: Margaria, T., Yi, W.
(eds.) TACAS 2001. LNCS, vol. 2031, pp. 1–22. Springer, Heidelberg (2001)

32. Vignudelli, V.: Behavioral equivalences for higher-order languages with probabili-
ties. Ph.D. thesis, Univ. di Bologna (2017)

https://doi.org/10.1007/s00165-012-0231-x
https://doi.org/10.1007/s00165-012-0231-x

Fast Computations on Ordered Nominal
Sets

David Venhoek, Joshua Moerman, and Jurriaan Rot(B)

Institute for Computing and Information Sciences, Radboud Universiteit,
Postbus 9010, 6500 GL Nijmegen, The Netherlands

david@venhoek.nl, {joshua.moerman,jrot}@cs.ru.nl

Abstract. We show how to compute efficiently with nominal sets over
the total order symmetry, by developing a direct representation of such
nominal sets and basic constructions thereon. In contrast to previous
approaches, we work directly at the level of orbits, which allows for an
accurate complexity analysis. The approach is implemented as the library
Ons (Ordered Nominal Sets).

Our main motivation is nominal automata, which are models for recog-
nising languages over infinite alphabets. We evaluate Ons in two applica-
tions: minimisation of automata and active automata learning. In both
cases, Ons is competitive compared to existing implementations and out-
performs them for certain classes of inputs.

1 Introduction

Automata over infinite alphabets are natural models for programs with
unbounded data domains. Such automata, often formalised as register automata,
are applied in modelling and analysis of communication protocols, hardware,
and software systems (see [4,10,15,16,22,26] and references therein). Typical
infinite alphabets include sequence numbers, timestamps, and identifiers. This
means one can model data flow in such automata beside the basic control flow
provided by ordinary automata. Recently, it has been shown in a series of papers
that such models are amenable to learning [1,6,7,11,21,29] with the verification
of (closed source) TCP implementations as a prominent example [13].

A foundational approach to infinite alphabets is provided by the notion of
nominal set, originally introduced in computer science as an elegant formalism
for name binding [14,25]. Nominal sets have been used in a variety of applications
in semantics, computation, and concurrency theory (see [24] for an overview).
Bojańczyk et al. introduce nominal automata, which allow one to model lan-
guages over infinite alphabets with different symmetries [4]. Their results are
parametric in the structure of the data values. Important examples of data
domains are ordered data values (e.g., timestamps) and data values that can
only be compared for equality (e.g., identifiers). In both data domains, nominal
automata and register automata are equally expressive [4].

Important for applications of nominal sets and automata are implementa-
tions. A couple of tools exist to compute with nominal sets. Notably, Nλ [17]
c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 493–512, 2018.
https://doi.org/10.1007/978-3-030-02508-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_26&domain=pdf

494 D. Venhoek et al.

and Lois [18,19] provide a general purpose programming language to manipulate
infinite sets.1 Both tools are based on SMT solvers and use logical formulas to
represent the infinite sets. These implementations are very flexible, and the SMT
solver does most of the heavy lifting, which makes the implementations them-
selves relatively straightforward. Unfortunately, this comes at a cost as SMT
solving is in general Pspace-hard. Since the formulas used to describe sets tend
to grow as more calculations are done, running times can become unpredictable.

In the current paper, we use a direct representation, based on symmetries and
orbits, to represent nominal sets. We focus on the total order symmetry, where
data values are rational numbers and can be compared for their order. Nominal
automata over the total order symmetry are more expressive than automata over
the equality symmetry (i.e., traditional register automata [16]). A key insight is
that the representation of nominal sets from [4] becomes rather simple in the total
order symmetry; each orbit is presented solely by a natural number, intuitively
representing the number of variables or registers.

Our main contributions include the following.

– We develop the representation theory of nominal sets over the total order
symmetry. We give concrete representations of nominal sets, their products,
and equivariant maps.

– We provide time complexity bounds for operations on nominal sets such as
intersections and membership. Using those results we give the time complexity
of Moore’s minimisation algorithm (generalised to nominal automata) and
prove that it is polynomial in the number of orbits.

– Using the representation theory, we are able to implement nominal sets in a
C++ library Ons. The library includes all the results from the representation
theory (sets, products, and maps).

– We evaluate the performance of Ons and compare it to Nλ and Lois, using
two algorithms on nominal automata: minimisation [5] and automata learn-
ing [21]. We use randomly generated automata as well as concrete, logically
structured models such as FIFO queues. For random automata, our methods
are drastically faster than the other tools. On the other hand, Lois and Nλ
are faster in minimising the structured automata as they exploit their logical
structure. In automata learning, the logical structure is not available a-priori,
and Ons is faster in most cases.

The structure of the paper is as follows. Section 2 contains background on
nominal sets and their representation. Section 3 describes the concrete repre-
sentation of nominal sets, equivariant maps and products in the total order
symmetry. Section 4 describes the implementation Ons with complexity results,
and Sect. 5 the evaluation of Ons on algorithms for nominal automata. Related
work is discussed in Sect. 6, and future work in Sect. 7.

1 Other implementations of nominal techniques that are less directly related to our
setting (Mihda, Fresh OCaml, and Nominal Isabelle) are discussed in Sect. 6.

Fast Computations on Ordered Nominal Sets 495

2 Nominal Sets

Nominal sets are infinite sets that carry certain symmetries, allowing a finite
representation in many interesting cases. We recall their formalisation in terms
of group actions, following [4,24], to which we refer for an extensive introduction.

Group Actions. Let G be a group and X be a set. A (right) G-action is a
function · : X × G → X satisfying x · 1 = x and (x · g) · h = x · (gh) for all x ∈ X
and g, h ∈ G. A set X with a G-action is called a G-set and we often write xg
instead of x · g. The orbit of an element x ∈ X is the set {xg | g ∈ G}. A G-set
is always a disjoint union of its orbits (in other words, the orbits partition the
set). We say that X is orbit-finite if it has finitely many orbits, and we denote
the number of orbits by N(X).

A map f : X → Y between G-sets is called equivariant if it preserves the
group action, i.e., for all x ∈ X and g ∈ G we have f(x)g = f(xg). If an
equivariant map f is bijective, then f is an isomorphism and we write X ∼= Y .
A subset Y ⊆ X is equivariant if the corresponding inclusion map is equivariant.
The product of two G-sets X and Y is given by the Cartesian product X×Y with
the pointwise group action on it, i.e., (x, y)g = (xg, yg). Union and intersection
of X and Y are well-defined if the two actions agree on their common elements.

Nominal Sets. A data symmetry is a pair (D, G) where D is a set and G is
a subgroup of Sym(D), the group of bijections on D. Note that the group G
naturally acts on D by defining xg = g(x). In the most studied instance, called
the equality symmetry, D is a countably infinite set and G = Sym(D). In this
paper, we will mostly focus on the total order symmetry given by D = Q and
G = {π | π ∈ Sym(Q), π is monotone}.

Let (D, G) be a data symmetry and X be a G-set. A set of data values S ⊆ D
is called a support of an element x ∈ X if for all g ∈ G with ∀s ∈ S : sg = s we
have xg = x. A G-set X is called nominal if every element x ∈ X has a finite
support.

Example 1. We list several examples for the total order symmetry. The set Q
2

is nominal as each element (q1, q2) ∈ Q
2 has the finite set {q1, q2} as its support.

The set has the following three orbits: {(q1, q2) | q1 < q2}, {(q1, q2) | q1 > q2}
and {(q1, q2) | q1 = q2}.

For a set X, the set of all subsets of size n ∈ N is denoted by Pn(X) = {Y ⊆
X | #Y = n}. The set Pn(Q) is a single-orbit nominal set for each n, with the
action defined by direct image: Y g = {yg | y ∈ Y }. The group of monotone
bijections also acts by direct image on the full power set P(Q), but this is not a
nominal set. For instance, the set Z ∈ P(Q) of integers has no finite support.

If S ⊆ D is a support of an element x ∈ X, then any set S′ ⊆ D such that
S ⊆ S′ is also a support of x. A set S ⊆ D is a least support of x ∈ X if it is a
support of x and S ⊆ S′ for any support S′ of x. The existence of least supports
is crucial for representing orbits. Unfortunately, even when elements have a finite
support, in general they do not always have a least support. A data symmetry

496 D. Venhoek et al.

(D, G) is said to admit least supports if every element of every nominal set has
a least support. Both the equality and the total order symmetry admit least
supports. (See [4] for other (counter)examples of data symmetries admitting
least supports.) Having least supports is useful for a finite representation.

Given a nominal set X, the size of the least support of an element x ∈ X is
denoted by dim(x), the dimension of x. We note that all elements in the orbit of x
have the same dimension. For an orbit-finite nominal set X, we define dim(X) =
max{dim(x) | x ∈ X}. For a single-orbit set O, observe that dim(O) = dim(x)
where x is any element x ∈ O.

2.1 Representing Nominal Orbits

We represent nominal sets as collections of single orbits. The finite representation
of single orbits is based on the theory of [4], which uses the technical notions of
restriction and extension. We only briefly report their definitions here. However,
the reader can safely move to the concrete representation theory in Sect. 3 with
only a superficial understanding of Theorem2 below.

The restriction of an element π ∈ G to a subset C ⊆ D, written as π|C , is
the restriction of the function π : D → D to the domain C. The restriction of a
group G to a subset C ⊆ D is defined as G|C = {π|C | π ∈ G, Cπ = C}. The
extension of a subgroup S ≤ G|C is defined as extG(S) = {π ∈ G | π|C ∈ S}.
For C ⊆ D and S ≤ G|C , define [C,S]ec = {{sg | s ∈ extG(S)} | g ∈ G}, i.e., the
set of right cosets of extG(S) in G. Then [C,S]ec is a single-orbit nominal set.

Using the above, we can formulate the representation theory from [4] that we
will use in the current paper. This gives a finite description for all single-orbit
nominal sets X, namely a finite set C together with some of its symmetries.

Theorem 2. Let X be a single-orbit nominal set for a data symmetry (D, G)
that admits least supports and let C ⊆ D be the least support of some element
x ∈ X. Then there exists a subgroup S ≤ G|C such that X ∼= [C,S]ec.

The proof [4] uses a bit of category theory: it establishes an equivalence of
categories between single-orbit sets and the pairs (C,S). We will not use the
language of category theory much in order to keep the paper self-contained.

3 Representation in the Total Order Symmetry

This section develops a concrete representation of nominal sets over the total
order symmetry, as well as their equivariant maps and products. It is based on
the abstract representation theory from Sect. 2.1. From now on, by nominal set
we always refer to a nominal set over the total order symmetry. Hence, our data
domain is Q and we take G to be the group of monotone bijections.

Fast Computations on Ordered Nominal Sets 497

3.1 Orbits and Nominal Sets

From the representation in Sect. 2.1, we find that any single-orbit set X can be
represented as a tuple (C,S). Our first observation is that the finite group of
‘local symmetries’, S, in this representation is always trivial, i.e., S = I, where
I = {1} is the trivial group. This follows from the following lemma and S ≤ G|C .

Lemma 3. For every finite subset C ⊂ Q, we have G|C = I.

Immediately, we see that (C,S) = (C, I), and hence that the orbit is fully rep-
resented by the set C. A further consequence of Lemma 3 is that each element
of an orbit can be uniquely identified by its least support. This leads us to the
following characterisation of [C, I]ec.

Lemma 4. Given a finite subset C ⊂ Q, we have [C, I]ec ∼= P#C(Q).

By Theorem 2 and the above lemmas, we can represent an orbit by a single
integer n, the size of the least support of its elements. This naturally extends
to (orbit-finite) nominal sets with multiple orbits by using a multiset of natural
numbers, representing the size of the least support of each of the orbits. These
multisets are formalised here as functions f : N → N.

Definition 5. Given a function f : N → N, we define a nominal set [f]o by

[f]o =
⋃

n∈N

1≤i≤f(n)

{i} × Pn(Q).

Proposition 6. For every orbit-finite nominal set X, there is a function
f : N → N such that X ∼= [f]o and the set {n | f(n) 	= 0} is finite. Further-
more, the mapping between X and f is one-to-one up to isomorphism of X
when restricting to f : N → N for which the set {n | f(n) 	= 0} is finite.

The presentation in terms of a function f : N → N enforces that there are
only finitely many orbits of any given dimension. The first part of the above
proposition generalises to arbitrary nominal sets by replacing the codomain of
f by the class of all sets and adapting Definition 5 accordingly. However, the
resulting correspondence will no longer be one-to-one.

As a brief example, let us consider the set Q×Q. The elements (a, b) split in
three orbits, one for a < b, one for a = b and one for a > b. These have dimension
2, 1 and 2 respectively, so the set Q×Q is represented by the multiset {1, 2, 2}.

3.2 Equivariant Maps

We show how to represent equivariant maps, using two basic properties. Let
f : X → Y be an equivariant map. The first property is that the direct image of
an orbit (in X) is again an orbit (in Y), that is to say, f is defined ‘orbit-wise’.
Second, equivariant maps cannot introduce new elements in the support (but
they can drop them). More precisely:

498 D. Venhoek et al.

Lemma 7. Let f : X → Y be an equivariant map, and O ⊆ X a single orbit.
The direct image f(O) = {f(x) | x ∈ O} is a single-orbit nominal set.

Lemma 8. Let f : X → Y be an equivariant map between two nominal sets X
and Y . Let x ∈ X and let C be a support of x. Then C supports f(x).

Hence, equivariant maps are fully determined by associating two pieces of
information for each orbit in the domain: the orbit on which it is mapped and a
string denoting which elements of the least support of the input are preserved.
These ingredients are formalised in the first part of the following definition.
The second part describes how these ingredients define an equivariant function.
Proposition 10 then states that every equivariant function can be described in
this way.

Definition 9. Let H = {(I1, F1, O1), . . . , (In, Fn, On)} be a finite set of tuples
where the Ii’s are disjoint single-orbit nominal sets, the Oi’s are single-orbit
nominal sets with dim(Oi) ≤ dim(Ii), and the Fi’s are bit strings of length
dim(Ii) with exactly dim(Oi) ones.

Given a set H as above, we define fH :
⋃

Ii → ⋃
Oi as the unique equivariant

function such that, given x ∈ Ii with least support C, fH(x) is the unique element
of Oi with support {C(j) | Fi(j) = 1}, where Fi(j) is the j-th bit of Fi and C(j)
is the j-th smallest element of C.

Proposition 10. For every equivariant map f : X → Y between orbit-finite
nominal sets X and Y there is a set H as in Definition 9 such that f = fH .

Consider the example function min: P3(Q) → Q which returns the smallest
element of a 3-element set. Note that both P3(Q) and Q are single orbits. Since
for the orbit P3(Q) we only keep the smallest element of the support, we can
thus represent the function min with {(P3(Q), 100,Q)}.

3.3 Products

The product X ×Y of two nominal sets is again a nominal set and hence, it can
be represented itself in terms of the dimension of each of its orbits as shown in
Sect. 3.1. However, this approach has some disadvantages.

Example 11. We start by showing that the orbit structure of products can
be non-trivial. Consider the product of X = Q and the set Y = {(a, b) ∈
Q

2 | a < b}. This product consists of five orbits, more than one might naively
expect from the fact that both sets are single-orbit:

{(a, (b, c)) | a, b, c ∈ Q, a < b < c}, {(a, (a, b)) | a, b ∈ Q, a < b},
{(b, (a, c)) | a, b, c ∈ Q, a < b < c}, {(b, (a, b)) | a, b ∈ Q, a < b},
{(c, (a, b)) | a, b, c ∈ Q, a < b < c}.

We find that this product is represented by the multiset {2, 2, 3, 3, 3}. Unfor-
tunately, this is not sufficient to accurately describe the product as it abstracts

Fast Computations on Ordered Nominal Sets 499

away from the relation between its elements with those in X and Y . In particular,
it is not possible to reconstruct the projection maps from such a representation.

The essence of our representation of products is that each orbit O in the
product X × Y is described entirely by the dimension of O together with the
two (equivariant) projections π1 : O → X and π2 : O → Y . This combination of
the orbit and the two projection maps can already be represented using Propo-
sitions 6 and 10. However, as we will see, a combined representation for this has
several advantages. For discussing such a representation, let us first introduce
what it means for tuples of a set and two functions to be isomorphic:

Definition 12. Given nominal sets X,Y,Z1 and Z2, and equivariant functions
l1 : Z1 → X, r1 : Z1 → Y , l2 : Z2 → X and r2 : Z2 → Y , we define (Z1, l1, r1) ∼=
(Z2, l2, r2) if there exists an isomorphism h : Z1 → Z2 such that l1 = l2 ◦ h and
r1 = r2 ◦ h.

Our goal is to have a representation that, for each orbit O, produces a tuple
(A, f1, f2) isomorphic to the tuple (O, π1, π2). The next lemma gives a charac-
terisation that can be used to simplify such a representation.

Lemma 13. Let X and Y be nominal sets and (x, y) ∈ X × Y . If C, Cx, and
Cy are the least supports of (x, y), x, and y respectively, then C = Cx ∪ Cy.

With Proposition 10 we represent the maps π1 and π2 by tuples (O,F1, O1)
and (O,F2, O2) respectively. Using Lemma 13 and the definitions of F1 and F2,
we see that at least one of F1(i) and F2(i) equals 1 for each i.

We can thus combine the strings F1 and F2 into a single string P ∈ {L,R,B}∗

as follows. We set P (i) = L when only F1(i) is 1, P (i) = R when only F2(i) is 1,
and P (i) = B when both are 1. The string P fully describes the strings F1 and
F2. This process for constructing the string P gives it two useful properties. The
number of Ls and Bs in the string gives the size dimension of O1. Similarly, the
number of Rs and Bs in the string gives the dimension of O2. We will call strings
with that property valid. In conclusion, to describe a single orbit of the product
X × Y , a valid string P together with the images of π1 and π2 is sufficient.

Definition 14. Let P ∈ {L,R,B}∗, and O1 ⊆ X, O2 ⊆ Y be single-orbit sets.
Given a tuple (P,O1, O2), where the string P is valid, define

[(P,O1, O2)]t = (P|P |(Q), fH1 , fH2),

where Hi = {(P|P |(Q), Fi, Oi)} and the string F1 is defined as the string P with
Ls and Bs replaced by 1s and Rs by 0s. The string F2 is similarly defined with
the roles of L and R swapped.

Proposition 15. There exists a one-to-one correspondence between the orbits
O ⊆ X × Y , and tuples (P,O1, O2) satisfying O1 ⊆ X, O2 ⊆ Y , and where P is
a valid string, such that [(P,O1, O2)]t ∼= (O, π1|O, π2|O).

From the above proposition it follows that we can generate the product X×Y
simply by enumerating all valid strings P for all pairs of orbits (O1, O2) of X
and Y . Given this, we can calculate the multiset representation of a product
from the multiset representations of both factors.

500 D. Venhoek et al.

Theorem 16. For X ∼= [f]o and Y ∼= [g]o we have X × Y ∼= [h]o, where

h(n) =
∑

0≤i,j≤n
i+j≥n

f(i)g(j)
(

n

j

)(
j

n − i

)
.

Example 17. To illustrate some aspects of the above representation, let us use
it to calculate the product of Example 11. First, we observe that both Q and
S = {(a, b) ∈ Q

2 | a < b} consist of a single orbit. Hence any orbit of the product
corresponds to a triple (P,Q, S), where the string P satisfies |P |L + |P |B =
dim(Q) = 1 and |P |R + |P |B = dim(S) = 2. We can now find the orbits of the
product Q×S by enumerating all strings satisfying these equations. This yields:

– LRR, corresponding to the orbit {(a, (b, c)) | a, b, c ∈ Q, a < b < c},
– RLR, corresponding to the orbit {(b, (a, c)) | a, b, c ∈ Q, a < b < c},
– RRL, corresponding to the orbit {(c, (a, b)) | a, b, c ∈ Q, a < b < c},
– RB, corresponding to the orbit {(b, (a, b)) | a, b ∈ Q, a < b}, and
– BR, corresponding to the orbit {(a, (a, b)) | a, b ∈ Q, a < b}.

Each product string fully describes the corresponding orbit. To illustrate, con-
sider the string BR. The corresponding bit strings for the projection functions
are F1 = 10 and F2 = 11. From the lengths of the string we conclude that the
dimension of the orbit is 2. The string F1 further tells us that the left element of
the tuple consists only of the smallest element of the support. The string F2 indi-
cates that the right element of the tuple is constructed from both elements of the
support. Combining this, we find that the orbit is {(a, (a, b)) | a, b ∈ Q, a < b}.

3.4 Summary

We summarise our concrete representation in the following table. Propositions 6,
10 and 15 correspond to the three rows in the table.

Object Representation

Single orbit O Natural number n = dim(O)

Nominal set X =
⋃

i Oi Multiset of these numbers

Map from single orbit f : O → Y The orbit f(O) and a bit string F

Equivariant map f : X → Y Set of tuples (O, F, f(O)), one for
each orbit

Orbit in a product O ⊆ X × Y The corresponding orbits of X and Y ,
and a string P relating their supports

Product X × Y Set of tuples (P, OX , OY), one for
each orbit

Notice that in the case of maps and products, the orbits are inductively
represented using the concrete representation. As a base case we can represent
single orbits by their dimension.

Fast Computations on Ordered Nominal Sets 501

4 Implementation and Complexity of ONS

The ideas outlined above have been implemented in the C++ library Ons.2

The library can represent orbit-finite nominal sets and their products, (disjoint)
unions, and maps. A full description of the possibilities is given in the documen-
tation included with Ons.

As an example, the following program computes the product from Exam-
ple 11. Initially, the program creates the nominal set A, containing the entirety
of Q. Then it creates a nominal set B, such that it consists of the orbit containing
the element (1, 2) ∈ Q×Q. For this, the library determines to which orbit of the
product Q × Q the element (1, 2) belongs, and then stores a description of the
orbit as described in Sect. 3. Note that this means that it internally never needs
to store the element used to create the orbit. The function nomset product then
uses the enumeration of product strings mentioned in Sect. 3.3 to calculate the
product of A and B. Finally, it prints a representative element for each of the
orbits in the product. These elements are constructed based on the description
of the orbits stored, filled in to make their support equal to sets of the form
{1, 2, . . . , n}.

nomset <rational > A = nomset_rationals ();

nomset <pair <rational , rational >> B({ rational (1), rational (2)});

auto AtimesB = nomset_product(A, B); // compute the product

for (auto orbit : AtimesB)

cout << orbit.getElement () << "�";

Running this gives the following output (‘/1’ signifies the denominator):

(1/1 ,(2/1 ,3/1)) (1/1 ,(1/1 ,2/1)) (2/1 ,(1/1 ,3/1))
(2/1 ,(1/1 ,2/1)) (3/1 ,(1/1 ,2/1))

Internally, orbit is implemented following the theory presented in Sect. 3,
storing the dimension of the orbit it represents. It also contains sufficient infor-
mation to reconstruct elements given their least support, such as the product
string for orbits resulting from a product. The class nomset then uses a standard
set data structure to store the collection of orbits contained in the nominal set
it represents.

In a similar way, eqimap stores equivariant maps by associating each orbit in
the domain with the image orbit and the string representing which of the least
support to keep. This is stored using a map data structure. For both nominal sets
and equivariant maps, the underlying data structure is currently implemented
using trees.

4.1 Complexity of Operations

Using the concrete representation of nominal sets, we can determine the com-
plexity of common operations. To simplify such an analysis, we will make the
following assumptions:
2 Ons can be found at https://github.com/davidv1992/ONS.

https://github.com/davidv1992/ONS

502 D. Venhoek et al.

– The comparison of two orbits takes O(1).
– Constructing an orbit from an element takes O(1).
– Checking whether an element is in an orbit takes O(1).

These assumptions are justified as each of these operations takes time propor-
tional to the size of the representation of an individual orbit, which in practice is
small and approximately constant. For instance, the orbit Pn(Q) is represented
by just the integer n and its type.

Theorem 18. If nominal sets are implemented with a tree-based set structure
(as in Ons), the complexity of the following set operations is as follows. Recall
that N(X) denotes the number of orbits of X. We use p and f to denote functions
implemented in whatever way the user wants, which we assume to take O(1) time.
The software assumes these are equivariant, but this is not verified.

Operation Complexity

Test x ∈ X O(log N(X))

Test X ⊆ Y O(min(N(X) + N(Y), N(X) log N(Y)))

Calculate X ∪ Y O(N(X) + N(Y))

Calculate X ∩ Y O(N(X) + N(Y))

Calculate {x ∈ X | p(x)} O(N(X))

Calculate {f(x) | x ∈ X} O(N(X) log N(X))

Calculate X × Y O(N(X × Y)) ⊆ O(3dim(X)+dim(Y) N(X) N(Y))

Proof. Since most parts are proven similarly, we only include proofs for the first
and last item.

Membership. To decide x ∈ X, we first construct the orbit containing x, which is
done in constant time. Then we use a logarithmic lookup to decide whether this
orbit is in our set data structure. Hence, membership checking is O(log(N(X))).

Products. Calculating the product of two nominal sets is the most complicated
construction. For each pair of orbits in the original sets X and Y , all product
orbits need to be generated. Each product orbit itself is constructed in constant
time. By generating these orbits in-order, the resulting set takes O(N(X × Y))
time to construct.

We can also give an explicit upper bound for the number of orbits in terms
of the input. Recall that orbits in a product are represented by strings of length
at most dim(X) + dim(Y). (If the string is shorter, we pad it with one of the
symbols.) Since there are three symbols (L,R and B), the product of X and
Y will have at most 3dim(X)+dim(Y) N(X)N(Y) orbits. It follows that taking
products has time complexity of O(3dim(X)+dim(Y) N(X)N(Y)). �

Fast Computations on Ordered Nominal Sets 503

5 Results and Evaluation in Automata Theory

In this section we consider applications of nominal sets to automata theory. As
mentioned in the introduction, nominal sets are used to formalise languages over
infinite alphabets. These languages naturally arise as the semantics of register
automata. The definition of register automata is not as simple as that of ordinary
finite automata. Consequently, transferring results from automata theory to this
setting often requires non-trivial proofs. Nominal automata, instead, are defined
as ordinary automata by replacing finite sets with orbit-finite nominal sets. The
theory of nominal automata is developed in [4] and it is shown that many, but
not all, algorithms from automata theory transfer to nominal automata.

As an example we consider the following language on rational numbers:

Lint = {a1b1 · · · anbn | ai, bi ∈ Q, ai < ai+1 < bi+1 < bi for all i}.

We call this language the interval language as a word w ∈ Q
∗ is in the language

when it denotes a sequence of nested intervals. This language contains arbitrarily
long words. For this language it is crucial to work with an infinite alphabet as
for each finite set C ⊂ Q, the restriction Lint ∩C∗ is just a finite language. Note
that the language is equivariant: w ∈ Lint ⇐⇒ wg ∈ Lint for any monotone
bijection g, because nested intervals are preserved by monotone maps.3 Indeed,
Lint is a nominal set, although it is not orbit-finite.

Informally, the language Lint can be accepted by the automaton depicted
in Fig. 1. Here we allow the automaton to store rational numbers and compare
them to new symbols. For example, the transition from q2 to q3 is taken if any
value c between a and b is read and then the currently stored value a is replaced
by c. For any other value read at state q2 the automaton transitions to the sink
state q4. Such a transition structure is made precise by the notion of nominal
automata.

q0 q1(a) q2(a, b) q3(a, b)

q4

a b > a

b ≤ a

a < c < b
a ← c

a < c < b
b ← c

c ≤ a c ≥ b

c ≤ a

c ≥ b

a

Fig. 1. Example automaton that accepts the language Lint.

3 The G-action on words is defined point-wise: (w1 . . . wn)g = (w1g) . . . (wng).

504 D. Venhoek et al.

Definition 19. A nominal language is an equivariant subset L ⊆ A∗ where A
is an orbit-finite nominal set.

Definition 20. A nominal deterministic finite automaton is a tuple (S,A, F, δ),
where S is an orbit-finite nominal set of states, A is an orbit-finite nominal set
of symbols, F ⊆ S is an equivariant subset of final states, and δ : S × A → S is
the equivariant transition function.

Given a state s ∈ S, we define the usual acceptance condition: a word w ∈ A∗

is accepted if w denotes a path from s to a final state.

The automaton in Fig. 1 can be formalised as a nominal deterministic finite
automaton as follows. Let S = {q0, q4} ∪ {q1(a) | a ∈ Q} ∪ {q2(a, b) | a < b ∈
Q}∪{q3(a, b) | a < b ∈ Q} be the set of states, where the group action is defined
as one would expect. The transition we described earlier can now be formally
defined as δ(q2(a, b), c) = q3(c, b) for all a < c < b ∈ Q. By defining δ on all
states accordingly and defining the final states as F = {q2(a, b) | a < b ∈ Q}, we
obtain a nominal deterministic automaton (S,Q, F, δ). The state q0 accepts the
language Lint.

Testing. We implement two algorithms on nominal automata, minimisation
and learning, to benchmark Ons. The performance of Ons is compared to two
existing libraries for computing with nominal sets, Nλ and Lois. The following
automata will be used.

Random Automata. As a primary test suite, we generate random automata as
follows. The input alphabet is always Q and the number of orbits and dimension
k of the state space S are fixed. For each orbit in the set of states, its dimension
is chosen uniformly at random between 0 and k, inclusive. Each orbit has a
probability 1

2 of consisting of accepting states.
To generate the transition function δ, we enumerate the orbits of S ×Q and

choose a target state uniformly from the orbits S with small enough dimension.
The bit string indicating which part of the support is preserved is then sampled
uniformly from all valid strings. We will denote these automata as randN(S),k.
The choices made here are arbitrary and only provide basic automata. We note
that the automata are generated orbit-wise and this may favour our tool.

Structured Automata. Besides random automata we wish to test the algo-
rithms on more structured automata. We define the following automata.

FIFO(n) Automata accepting valid traces of a finite FIFO data structure of
size n. The alphabet is defined by two orbits: {Put(a) | a ∈ Q} and
{Get(a) | a ∈ Q}.

ww(n) Automata accepting the language of words of the form ww, where
w ∈ Q

n.
Lmax The language Lmax = {wa ∈ Q

∗ | a = max(w1, . . . , wn)} where the
last symbol is the maximum of previous symbols.

Lint The language accepting a series of nested intervals, as defined above.

Fast Computations on Ordered Nominal Sets 505

In Table 1 we report the number of orbits for each automaton. The first two
classes of automata were previously used as test cases in [21]. These two classes
are also equivariant w.r.t. the equality symmetry. The extra bit of structure
allows the automata to be encoded more efficiently, as we do not need to encode
a transition for each orbit in S×A. Instead, a more symbolic encoding is possible.
Both Lois and Nλ allow to use this more symbolic representation. Our tool, Ons,
only works with nominal sets and the input data needs to be provided orbit-wise.
Where applicable, the automata listed above were generated using the same code
as used in [21], ported to the other libraries as needed.

5.1 Minimising Nominal Automata

For languages recognised by nominal DFAs, a Myhill-Nerode theorem holds
which relates states to right congruence classes [4]. This guarantees the exis-
tence of unique minimal automata. We say an automaton is minimal if its set
of states has the least number of orbits and each orbit has the smallest dimen-
sion possible.4 We generalise Moore’s minimisation algorithm to nominal DFAs
(Algorithm 1) and analyse its time complexity using the bounds from Sect. 4.

Algorithm 1. Moore’s minimisation algorithm for nominal DFAs
Require: Nominal automaton (S, A, F, δ).
1: i ← 0, ≡−1 ← S × S, ≡0 ← F × F ∪ (S\F) × (S\F)
2: while ≡i 	= ≡i−1 do
3: ≡i+1 = {(q1, q2) | (q1, q2) ∈ ≡i ∧ ∀a ∈ A, (δ(q1, a), δ(q2, a)) ∈ ≡i}
4: i ← i + 1
5: end while
6: E ← S/≡i

7: FE ← {e ∈ E | ∀s ∈ e, s ∈ F}
8: Let δE be the map such that, if s ∈ e and δ(s, a) ∈ e′, then δE(e, a) = e′.
9: return (E, A, FE , δE).

Theorem 21. The runtime complexity of Moore’s algorithm on nominal deter-
ministic automata is O(35kk N(S)3 N(A)), where k = dim(S ∪ A).

Proof. This is shown by counting operations, using the complexity results of set
operations stated in Theorem 18. We first focus on the while loop on lines 2
through 5. The runtime of an iteration of the loop is determined by line 3, as
this is the most expensive step. Since the dimensions of S and A are at most
k, computing S × S × A takes O(N(S)2 N(A)35k). Filtering S × S using that
then takes O(N(S)232k). The time to compute S ×S ×A dominates, hence each
iteration of the loop takes O(N(S)2 N(A)35k).

4 Abstractly, an automaton is minimal if it has no proper quotients. Minimal deter-
ministic automata are unique up to isomorphism.

506 D. Venhoek et al.

Next, we need to count the number of iterations of the loop. Each iteration
of the loop gives rise to a new partition, which is a refinement of the previous
partition. Furthermore, every partition generated is equivariant. Note that this
implies that each refinement of the partition does at least one of two things:
distinguish between two orbits of S previously in the same element(s) of the
partition, or distinguish between two members of the same orbit previously in
the same element of the partition. The first can happen only N(S) − 1 times,
as after that there are no more orbits lumped together. The second can only
happen dim(S) times per orbit, because each such a distinction between ele-
ments is based on splitting on the value of one of the elements of the support.
Hence, after dim(S) times on a single orbit, all elements of the support are
used up. Combining this, the longest chain of partitions of S has length at most
O(k N(S)).

Since each partition generated in the loop is unique, the loop cannot run
for more iterations than the length of the longest chain of partitions on S. It
follows that there are at most O(k N(S)) iterations of the loop, giving the loop
a complexity of O(k N(S)3 N(A)35k).

The remaining operations outside the loop have a lower complexity than
that of the loop, hence the complexity of Moore’s minimisation algorithm for a
nominal automaton is O(k N(S)3 N(A)35k).

The above theorem shows in particular that minimisation of nominal
automata is fixed-parameter tractable (FPT) with the dimension as fixed param-
eter. The complexity of Algorithm 1 for nominal automata is very similar to the
O((#S)3#A) bound given by a naive implementation of Moore’s algorithm for
ordinary DFAs. This suggest that it is possible to further optimise an implemen-
tation with similar techniques used for ordinary automata.

Implementations. We implemented the minimisation algorithm in Ons. For
Nλ and Lois we used their implementations of Moore’s minimisation algo-
rithm [17–19]. For each of the libraries, we wrote routines to read in an automa-
ton from a file and, for the structured test cases, to generate the requested
automaton. For Ons, all automata were read from file. The output of these pro-
grams was manually checked to see if the minimisation was performed correctly.

Results. The results (shown in Table 1) for random automata show a clear
advantage for Ons, which is capable of running all supplied testcases in less
than one second. This in contrast to both Lois and Nλ, which take more than
2 h on the largest random automata.

The results for structured automata show a clear effect of the extra struc-
ture. Both Nλ and Lois remain capable of minimising the automata in reason-
able amounts of time for larger sizes. In contrast, Ons benefits little from the
extra structure. Despite this, it remains viable: even for the larger cases it falls
behind significantly only for the largest FIFO automaton and the two largest
ww automata.

Fast Computations on Ordered Nominal Sets 507

Table 1. Running times for Algorithm 1 implemented in the three libraries. N(S) is
the size of the input and N(Smin) the size of the minimal automaton. For Ons, the
time used to generate the automaton is reported separately (in grey).

Type N(S) N(Smin) Ons Nλ Lois
Gen.

rand5,1 (x10) 5 n/a 0.02s n/a 0.82s 3.14s
rand10,1 (x10) 10 n/a 0.03s n/a 17.03s 1m 32s
rand10,2 (x10) 10 n/a 0.09s n/a 35m 14s > 60m
rand15,1 (x10) 15 n/a 0.04s n/a 1m 27s 10m 20s
rand15,2 (x10) 15 n/a 0.11s n/a 55m 46s > 60m
rand15,3 (x10) 15 n/a 0.46s n/a > 60m > 60m
FIFO(2) 13 6 0.01s 0.01s 1.37s 0.24s
FIFO(3) 65 19 0.38s 0.09s 11.59s 2.4s
FIFO(4) 440 94 39.11s 1.60s 1m 16s 14.95s
FIFO(5) 3686 635 > 60m 39.78s 6m 42s 1m 11s
ww(2) 8 8 0.00s 0.00s 0.14s 0.03s
ww(3) 24 24 0.19s 0.02s 0.88s 0.16s
ww(4) 112 112 26.44s 0.25s 3.41s 0.61s
ww(5) 728 728 > 60m 6.37s 10.54s 1.80s
Lmax 5 3 0.00s 0.00s 2.06s 0.03s
Lint 5 5 0.00s 0.00s 1.55s 0.03s

5.2 Learning Nominal Automata

Another application that we implemented in Ons is automata learning. The aim
of automata learning is to infer an unknown regular language L. We use the
framework of active learning as set up by Angluin [2] where a learning algorithm
can query an oracle to gather information about L. Formally, the oracle can
answer two types of queries:

1. membership queries, where a query consists of a word w ∈ A∗ and the oracle
replies whether w ∈ L, and

2. equivalence queries, where a query consists of an automaton H and the oracle
replies positively if L(H) = L or provides a counterexample if L(H) 	= L.

With these queries, the L� algorithm can learn regular languages efficiently [2].
In particular, it learns the unique minimal automaton for L using only finitely
many queries. The L� algorithm has been generalised to νL� in order to learn
nominal regular languages [21]. In particular, it learns a nominal DFA (over
an infinite alphabet) using only finitely many queries. We implement νL� in
the presented library and compare it to its previous implementation in Nλ. The
algorithm is not polynomial, unlike the minimisation algorithm described above.
However, the authors conjecture that there is a polynomial algorithm.5 For the
correctness, termination, and comparison with other learning algorithms see [21].
5 See https://joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.

html for a sketch of the polynomial algorithm.

https://joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.html
https://joshuamoerman.nl/papers/2017/17popl-learning-nominal-automata.html

508 D. Venhoek et al.

Implementations. Both implementations in Nλ and Ons are direct implemen-
tations of the pseudocode for νL� with no further optimisations. The authors of
Lois implemented νL� in their library as well.6 They reported similar perfor-
mance as the implementation in Nλ (private communication). Hence we focus
our comparison on Nλ and Ons. We use the variant of νL� where counterexam-
ples are added as columns instead of prefixes.

The implementation in Nλ has the benefit that it can work with different
symmetries. Indeed, the structured examples, FIFO and ww, are equivariant
w.r.t. the equality symmetry as well as the total order symmetry. For that rea-
son, we run the Nλ implementation using both the equality symmetry and the
total order symmetry on those languages. For the languages Lmax, Lint and the
random automata, we can only use the total order symmetry.

To run the νL� algorithm, we implement an external oracle for the member-
ship queries. This is akin to the application of learning black box systems [29].
For equivalence queries, we constructed counterexamples by hand. All imple-
mentations receive the same counterexamples. We measure CPU time instead of
real time, so that we do not account for the external oracle.

Results. The results (Table 2) for random automata show an advantage for
Ons. Additionally, we report the number of membership queries, which can vary
for each implementation as some steps in the algorithm depend on the internal
ordering of set data structures.

In contrast to the case of minimisation, the results suggest that Nλ cannot
exploit the logical structure of FIFO(n), Lmax and Lint as it is not provided a
priori. For ww(2) we inspected the output on Nλ and saw that it learned some
logical structure (e.g., it outputs {(a, b) | a 	= b} as a single object instead of
two orbits {(a, b) | a < b} and {(a, b) | b < a}). This may explain why Nλ is
still competitive. For languages which are equivariant for the equality symmetry,
the Nλ implementation using the equality symmetry can learn with much fewer
queries. This is expected as the automata themselves have fewer orbits. It is
interesting to see that these languages can be learned more efficiently by choosing
the right symmetry.

6 Related Work

As stated in the introduction, Nλ [17] and Lois [18] use first-order formulas to
represent nominal sets and use SMT solvers to manipulate them. This makes
both libraries very flexible and they indeed implement the equality symmetry
as well as the total order symmetry. As their representation is not unique, the
efficiency depends on how the logical formulas are constructed. As such, they
do not provide complexity results. In contrast, our direct representation allows
for complexity results (Sect. 4) and leads to different performance characteristics
(Sect. 5).

6 Can be found on https://github.com/eryxcc/lois/blob/master/tests/learning.cpp.

https://github.com/eryxcc/lois/blob/master/tests/learning.cpp

Fast Computations on Ordered Nominal Sets 509

Table 2. Running times and number of membership queries for the νL� algorithm. For
Nλ we used two version: Nλord uses the total order symmetry Nλeq uses the equality
symmetry.

Ons Nλord Nλeq

Model N(S) dim(S) time MQs time MQs time MQs

rand5,1 4 1 2 m 7 s 2321 39 m 51 s 1243

rand5,1 5 1 0.12 s 404 40 m 34 s 435

rand5,1 3 0 0.86 s 499 30 m 19 s 422

rand5,1 5 1 >60 m n/a >60 m n/a

rand5,1 4 1 0.08 s 387 34 m 57 s 387

FIFO(1) 3 1 0.04 s 119 3.17 s 119 1.76 s 51

FIFO(2) 6 2 1.73 s 2655 6 m 32 s 3818 40.00 s 434

FIFO(3) 19 3 46m 34 s 298400 >60 m n/a 34 m 7 s 8151

ww(1) 4 1 0.42 s 134 2.49 s 77 1.47 s 30

ww(2) 8 2 4m 26 s 3671 3 m 48 s 2140 30.58 s 237

ww(3) 24 3 >60 m n/a >60 m n/a >60 m n/a

Lmax 3 1 0.01 s 54 3.58 s 54

Lint 5 2 0.59 s 478 1 m 23 s 478

A second big difference is that both Nλ and Lois implement a “programming
paradigm” instead of just a library. This means that they overload natural pro-
gramming constructs in their host languages (Haskell and C++ respectively).
For programmers this means they can think of infinite sets without having to
know about nominal sets.

It is worth mentioning that an older (unreleased) version of Nλ implemented
nominal sets with orbits instead of SMT solvers [3]. However, instead of charac-
terising orbits (e.g., by its dimension), they represent orbits by a representative
element. The authors of Nλ have reported that the current version is faster [17].

The theoretical foundation of our work is the main representation theorem
in [4]. We improve on that by instantiating it to the total order symmetry and
distil a concrete representation of nominal sets. As far as we know, we provide
the first implementation of the representation theory in [4].

Another tool using nominal sets is Mihda [12]. Here, only the equality sym-
metry is implemented. This tool implements a translation from π-calculus to
history-dependent automata (HD-automata) with the aim of minimisation and
checking bisimilarity. The implementation in OCaml is based on named sets,
which are finite representations for nominal sets. The theory of named sets is
well-studied and has been used to model various behavioural models with local
names. For those results, the categorical equivalences between named sets, nom-
inal sets and a certain (pre)sheaf category have been exploited [8,9]. The total
order symmetry is not mentioned in their work. We do, however, believe that
similar equivalences between categories can be stated. Interestingly, the product

510 D. Venhoek et al.

of named sets is similar to our representation of products of nominal sets: pairs
of elements together with data which denotes the relation between data values.

Fresh OCaml [27] and Nominal Isabelle [28] are both specialised in name-
binding and α-conversion used in proof systems. They only use the equality
symmetry and do not provide a library for manipulating nominal sets. Hence
they are not suited for our applications.

On the theoretical side, there are many complexity results for register
automata [15,23]. In particular, we note that problems such as emptiness and
equivalence are NP-hard depending on the type of register automaton. This
does not easily compare to our complexity results for minimisation. One differ-
ence is that we use the total order symmetry, where the local symmetries are
always trivial (Lemma 3). As a consequence, all the complexity required to deal
with groups vanishes. Rather, the complexity is transferred to the input of our
algorithms, because automata over the equality symmetry require more orbits
when expressed over the total order symmetry. Another difference is that register
automata allow for duplicate values in the registers. In nominal automata, such
configurations will be encoded in different orbits. An interesting open problem
is whether equivalence of unique-valued register automata is in Ptime [23].

Orthogonal to nominal automata, there is the notion of symbolic automata
[10,20]. These automata are also defined over infinite alphabets but they use
predicates on transitions, instead of relying on symmetries. Symbolic automata
are finite state (as opposed to infinite state nominal automata) and do not allow
for storing values. However, they do allow for general predicates over an infinite
alphabet, including comparison to constants.

7 Conclusion and Future Work

We presented a concrete finite representation for nominal sets over the total
order symmetry. This allowed us to implement a library, Ons, and provide com-
plexity bounds for common operations. The experimental comparison of Ons
against existing solutions for automata minimisation and learning show that our
implementation is much faster in many instances. As such, we believe Ons is a
promising implementation of nominal techniques.

A natural direction for future work is to consider other symmetries, such as
the equality symmetry. Here, we may take inspiration from existing tools such
as Mihda (see Sect. 6). Another interesting question is whether it is possible to
translate a nominal automaton over the total order symmetry which accepts
an equality language to an automaton over the equality symmetry. This would
allow one to efficiently move between symmetries. Finally, our techniques can
potentially be applied to timed automata by exploiting the intriguing connection
between the nominal automata that we consider and timed automata [5].

Acknowledgement. We would like to thank Szymon Toruńczyk and Eryk
Kopczyński for their prompt help when using the Lois library. For general comments
and suggestions we would like to thank Ugo Montanari and Niels van der Weide. At
last, we want to thank the anonymous reviewers for their comments.

Fast Computations on Ordered Nominal Sets 511

References

1. Aarts, F., Fiterau-Brostean, P., Kuppens, H., Vaandrager, F.: Learning register
automata with fresh value generation. In: Leucker, M., Rueda, C., Valencia, F.D.
(eds.) ICTAC 2015. LNCS, vol. 9399, pp. 165–183. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-25150-9 11

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

3. Bojańczyk, M., Braud, L., Klin, B., Lasota, S.: Towards nominal computation.
In: Proceedings of 39th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2012, Philadelphia, PA, USA, pp. 401–412. ACM
Press, New York (2012). https://doi.org/10.1145/2103656.2103704

4. Bojańczyk, M., Klin, B., Lasota, S.: Automata theory in nominal sets. Log. Meth-
ods Comput. Sci. 10(3), Article no. 4 (2014). https://doi.org/10.2168/lmcs-10(3:
4)2014

5. Bojańczyk, M., Lasota, S.: A machine-independent characterization of timed lan-
guages. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP
2012. LNCS, vol. 7392, pp. 92–103. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-31585-5 12

6. Bollig, B., Habermehl, P., Leucker, M., Monmege, B.: A fresh approach to learn-
ing register automata. In: Béal, M.-P., Carton, O. (eds.) DLT 2013. LNCS, vol.
7907, pp. 118–130. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38771-5 12

7. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Asp. Comput. 28(2), 233–263 (2016). https://doi.org/10.
1007/s00165-016-0355-5

8. Ciancia, V., Kurz, A., Montanari, U.: Families of symmetries as efficient models
of resource binding. Electron. Notes Theor. Comput. Sci. 264(2), 63–81 (2010).
https://doi.org/10.1016/j.entcs.2010.07.014

9. Ciancia, V., Montanari, U.: Symmetries, local names and dynamic (de)-allocation
of names. Inf. Comput. 208(12), 1349–1367 (2010). https://doi.org/10.1016/j.ic.
2009.10.007

10. D’Antoni, L., Veanes, M.: The power of symbolic automata and transducers.
In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 47–67.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 3

11. Drews, S., D’Antoni, L.: Learning symbolic automata. In: Legay, A., Margaria, T.
(eds.) TACAS 2017. LNCS, vol. 10205, pp. 173–189. Springer, Heidelberg (2017).
https://doi.org/10.1007/978-3-662-54577-5 10

12. Ferrari, G.L., Montanari, U., Tuosto, E.: Coalgebraic minimization of HD-
automata for the π-calculus using polymorphic types. Theor. Comput. Sci. 331(2–
3), 325–365 (2005). https://doi.org/10.1016/j.tcs.2004.09.021

13. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and
model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A.
(eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-41540-6 25

14. Gabbay, M., Pitts, A.M.: A new approach to abstract syntax with variable bind-
ing. Formal Asp. Comput. 13(3–5), 341–363 (2002). https://doi.org/10.1007/
s001650200016

15. Grigore, R., Tzevelekos, N.: History-register automata. Log. Methods Comput. Sci.
12(1), Article no. 7 (2016). https://doi.org/10.2168/lmcs-12(1:7)2016

https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/2103656.2103704
https://doi.org/10.2168/lmcs-10(3:4)2014
https://doi.org/10.2168/lmcs-10(3:4)2014
https://doi.org/10.1007/978-3-642-31585-5_12
https://doi.org/10.1007/978-3-642-31585-5_12
https://doi.org/10.1007/978-3-642-38771-5_12
https://doi.org/10.1007/978-3-642-38771-5_12
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1016/j.entcs.2010.07.014
https://doi.org/10.1016/j.ic.2009.10.007
https://doi.org/10.1016/j.ic.2009.10.007
https://doi.org/10.1007/978-3-319-63387-9_3
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1016/j.tcs.2004.09.021
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1007/s001650200016
https://doi.org/10.1007/s001650200016
https://doi.org/10.2168/lmcs-12(1:7)2016

512 D. Venhoek et al.

16. Kaminski, M., Francez, N.: Finite-memory automata. Theor. Comput. Sci. 134(2),
329–363 (1994). https://doi.org/10.1016/0304-3975(94)90242-9

17. Klin, B., Szynwelski, M.: SMT solving for functional programming over infinite
structures. In: Atkey, R., Krishnaswami, N.R. (eds.) Proc. of 6th Workshop on
Mathematically Structured Functional Programming, MSFP 2016 (Eindhoven,
Apr. 2016). Electronic Proceedings in Theoretical Computer Science, vol. 207,
pp. 57–75. Open Publishing Association, Sydney (2016). https://doi.org/10.4204/
eptcs.207.3

18. Kopczynski, E., Toruńczyk, S.: LOIS: an application of SMT solvers. In: King,
T., Piskac, R. (eds.) Proceedings of 14th International Workshop on Satisfiability
Modulo Theories, SMT 2016, Coimbra, July 2016. CEUR Workshop Proceedings,
vol. 1617, pp. 51–60. CEUR-WS.org (2016). http://ceur-ws.org/Vol-1617/paper5.
pdf

19. Kopczynski, E., Toruńczyk, S.: LOIS: syntax and semantics. In: Proceedings of
44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL
2017, Paris, January 2017, pp. 586–598. ACM Press, New York (2017). https://
doi.org/10.1145/3009837.3009876

20. Maler, O., Mens, I.-E.: A generic algorithm for learning symbolic automata from
membership queries. In: Aceto, L., Bacci, G., Bacci, G., Ingólfsdóttir, A., Legay, A.,
Mardare, R. (eds.) Models, Algorithms, Logics and Tools. LNCS, vol. 10460, pp.
146–169. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63121-9 8

21. Moerman, J., Sammartino, M., Silva, A., Klin, B., Szynwelski, M.: Learning nom-
inal automata. In: Proceedings of 44th ACM SIGPLAN Symposium on Principles
of Programming Languages, POPL 2017, Paris, January 2017, pp. 613–625. ACM
Press, New York (2017). https://doi.org/10.1145/3009837.3009879

22. Montanari, U., Pistore, M.: An introduction to history dependent automata. Elec-
tron. Notes Theor. Comput. Sci. 10, 170–188 (1998). https://doi.org/10.1016/
s1571-0661(05)80696-6

23. Murawski, A.S., Ramsay, S.J., Tzevelekos, N.: Bisimilarity in fresh-register
automata. In: Proceedings of 30th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2015, Kyoto, July 2015, pp. 156–167. IEEE CS Press
(2015). https://doi.org/10.1109/lics.2015.24

24. Pitts, A.M.: Nominal Sets: Names and Symmetry in Computer Science. Cambridge
Tracts in Theoretical Computer Science, vol. 57. Cambridge University Press, Cam-
bridge (2013). https://doi.org/10.1017/cbo9781139084673

25. Pitts, A.M.: Nominal techniques. SIGLOG News 3(1), 57–72 (2016). http://doi.
acm.org/10.1145/2893582.2893594

26. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In:
Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006).
https://doi.org/10.1007/11874683 3

27. Shinwell, M.R., Pitts, A.M.: Fresh Objective Caml user manual. Technical report,
Computer Laboratory, University of Cambridge (2005)

28. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R.
(ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 38–53. Springer, Heidelberg (2005).
https://doi.org/10.1007/11532231 4

29. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://
doi.org/10.1145/2967606

https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.4204/eptcs.207.3
https://doi.org/10.4204/eptcs.207.3
http://ceur-ws.org/Vol-1617/paper5.pdf
http://ceur-ws.org/Vol-1617/paper5.pdf
https://doi.org/10.1145/3009837.3009876
https://doi.org/10.1145/3009837.3009876
https://doi.org/10.1007/978-3-319-63121-9_8
https://doi.org/10.1145/3009837.3009879
https://doi.org/10.1016/s1571-0661(05)80696-6
https://doi.org/10.1016/s1571-0661(05)80696-6
https://doi.org/10.1109/lics.2015.24
https://doi.org/10.1017/cbo9781139084673
http://doi.acm.org/10.1145/2893582.2893594
http://doi.acm.org/10.1145/2893582.2893594
https://doi.org/10.1007/11874683_3
https://doi.org/10.1007/11532231_4
https://doi.org/10.1145/2967606
https://doi.org/10.1145/2967606

Non-preemptive Semantics
for Data-Race-Free Programs

Siyang Xiao1(B), Hanru Jiang1, Hongjin Liang2, and Xinyu Feng2

1 University of Science and Technology of China, Hefei 230027, China
{yutio888,hanru219}@mail.ustc.edu.cn

2 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, China

{hongjin,xyfeng}@nju.edu.cn

Abstract. It is challenging to reason about the behaviors of concur-
rent programs because of the non-deterministic interleaving execution of
threads. To simplify the reasoning, we propose a non-preemptive seman-
tics for data-race-free (DRF) concurrent programs, where a thread yields
the control of the CPU only at certain carefully-chosen program points.
We formally prove that DRF concurrent programs behave the same in
the standard interleaving semantics and in our non-preemptive seman-
tics. We also propose a novel formulation of data-race-freedom in our
non-preemptive semantics, called NPDRF, which is proved equivalent to
the standard DRF notion in the interleaving semantics.

Keywords: Data-race-freedom · Interleaving semantics
Non-preemptive semantics

1 Introduction

Interleaving semantics has been widely used as standard operational semantics
for concurrent programs, where the execution of a thread can be preempted at
any program point and the control is switched to a different thread. Reason-
ing about multi-threaded concurrent programs in this semantics is challenging
because the number of possible interleaving executions can be exponential (with
respect to the length of the program).

On the other hand, for a large class of programs, it is a waste of effort
to enumerate and verify all the possible interleavings, because many of them
actually lead to the same result. For instance, the simple program in Fig. 1(a)
has six possible interleavings, but all of these interleavings result in the same
final state (x = r1 = 42, y = r2 = 24). Thus, to analyze the final result of the
program in Fig. 1(a), we can reason about only one interleaving instead of all the
six, which dramatically reduces the verification effort. The question is, can we

This work is supported in part by grants from National Natural Science Foundation
of China (NSFC) under Grant Nos. 61502442 and 61632005.

c© Springer Nature Switzerland AG 2018
B. Fischer and T. Uustalu (Eds.): ICTAC 2018, LNCS 11187, pp. 513–531, 2018.
https://doi.org/10.1007/978-3-030-02508-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02508-3_27&domain=pdf

514 S. Xiao et al.

x := 42; y := 24;

r1 := x; r2 := y;

(a)

x := 42; y := 24;

r1 := x; r2 := y;

〈z := x〉; 〈y := z〉;

(b)

x := 42; 〈r1 := z〉;
〈z := 1〉; if (r1=1)

r2 := x;

(c)

Fig. 1. Data-race-free programs

systematically reduce the number of interleavings without reducing the possible
behaviors of a concurrent program?

Actually it is well-known that, for data-race-free (DRF) programs, we only
need to consider interleavings at synchronization points. Informally a data race
occurs when multiple threads access the same memory location concurrently and
at least one of the accesses is a write. All the three programs in Fig. 1 are data-
race-free. Here we use the atomic statement 〈S〉 to mean that the execution
of S is atomic, i.e. it cannot be interrupted by other threads. Thus the two
accesses of z in Fig. 1(b) are well synchronized, and the program is data-race-
free. In Fig. 1(c), although both threads access the shared variable x outside of
the atomic statement, they cannot be accessed concurrently (assuming the initial
value of z is 0) because the read of x in the second thread can only be executed
(if executed at all) after the write of z, which then happens after the write of x.

Although it is a folklore theorem that the behaviors of DRF programs under
the standard interleaving semantics should be equivalent to those in some non-
preemptive semantics where a thread yields the control of the CPU at will at
certain program points, it is not obvious where these program points should
be, especially if we want to minimize such program points to reduce as many
possible interleavings as possible. And what if the language allows other effects
other than memory accesses, such as I/O operations? Would non-termination of
programs affect the choice of these program points?

For instance, a straightforward approach is to treat both the entry and the
exit of atomic blocks 〈S〉 as program points to allow interleaving (i.e. switching
between threads). But can we just use only one of them instead of both? If yes,
are the entry and the exit points equally good? It is quite interesting to see that
we can pick the exit of the block as the only switching point, and the behaviors
under preemptive semantics are still preserved. However, the entry point does
not work, which may lead to strictly less behaviors than preemptive semantics
if the program following the atomic block does not terminate.

In this paper we formally study the non-preemptive semantics of DRF pro-
grams, and discuss the possible variations of the semantics and how they affect
the equivalence with the preemptive semantics. The paper makes the following
contributions:

– We define the notion of DRF operationally based on the preemptive opera-
tional semantics.

– We propose non-preemptive semantics for DRF programs. In addition to
memory accesses, our language allows externally observable operations such

Non-preemptive Semantics for Data-Race-Free Programs 515

as I/O operations. Threads in the semantics can be preempted only at the
end of each atomic block or after the I/O operations. We discuss how non-
termination could affect the choice of switching points.

– We define the semantics equivalence based on the set of execution traces in
each semantics. Then we formally prove that our non-preemptive semantics
is equivalent to the preemptive one for DRF programs.

– We also give a new operational notion of DRF in the non-preemptive seman-
tics, which is called NPDRF. We prove that NPDRF is equivalent to the
original definition of DRF in the preemptive semantics. This allows one to
study DRF programs fully within the non-preemptive semantics.

Related Work. Non-preemptive (or cooperative) semantics has been studied
in various settings, for example in high scalability thread libraries [4,11,14], as
alternative models for structuring or reasoning about concurrency [1,6,12,15],
and in program analysis [16].

Beringer et al. [5] made a proposal of proving compilation correctness under a
cooperative setting in order to reuse the compiler correctness proofs for sequen-
tial settings. Their proposal is based on the conjecture that when the source
program is proved to be data-race-free, its behavior would be the same under
cooperative semantics. We prove this conjecture in this paper.

Ferreira et al. [8] proposed a grainless semantics relating concurrent separa-
tion logic and relaxed memory models. Their grainless semantics execute non-
atomic instructions in big steps, and cannot be interrupted by other threads,
which is similar to cooperative semantics where program sections between atomic
blocks are not interfered by other threads. They also proved DRF programs
behave the same under interleaving semantics and grainless semantics in their
setting. Our semantics and formulation of DRF are sufficiently different from
theirs. Moreover, there is no in-depth discussion on how non-termination of pro-
grams affects the choice of the switching points to minimize the interleaving.

Collingbourne et al. [7] and Kojima et al. [10] studied the equivalence between
interleaving semantics and the lock-step semantics usually used in graphics pro-
cessing units (GPUs). They found that race-free programs executed in the stan-
dard interleaving semantics and the lock-step semantics should get the same
result. However, the lock-step semantics require that each thread execute exactly
the same set of operations in parallel. It is designed specially for GPU and is
sufficiently different from the non-preemptive semantics we study here.

There has been much work formalizing DRF, e.g., DRF-0 [2] and DRF-1 [3].
Marino et al. [13] proposed a memory model called DRFx. They proposed a new
concept called region conflict freedom, which requires no conflicting memory
accesses between program sections instead of instructions, therefore enables effi-
cient SC violation detecting. Their notion of region conflict freedom is similar to
our NPDRF: regions are code snippets no larger than code snippets between crit-
ical sections, while in our NPDRF, we compare memory accesses of executions
between atomic steps. They did not have a formal operational formulation as we
do. Hower et al. [9] proposed the notion of heterogeneous-race-free (SC-HRF) for

516 S. Xiao et al.

〈x := 1〉; 〈r := x〉;
while(true) do skip; print(r);

(a)

print(1); print(0);
print(2);

(b)

print(1); print(0);
while(true) do skip; while(true) do skip;

(c)

Fig. 2. More examples about non-preemptive executions

scoped synchronization in heterogeneous systems, which is for a different setting
from ours.

Organizations. In the rest of this paper, we make some informal discussion about
non-preemptive semantics in Sect. 2. Then we introduce the basic technical set-
tings about the language and the preemptive semantics in Sect. 3. In Sect. 4, we
give the definition of our non-preemptive semantics and discuss the equivalence
of preemptive semantics and non-preemptive semantics. In Sect. 5, we discuss the
notion of data-race-freedom in our non-preemptive semantics (called NPDRF) and
the equivalence of NPDRF and DRF. Section 6 concludes this paper.

2 Informal Discussions of the Non-preemptive Semantics

In this section we informally compare the program behaviors in preemptive
semantics and non-preemptive semantics with different choices of switching
points, based on which we give a principle to ensure the semantics equivalence.

In Fig. 2(a), assuming the initial value of x is 0, the program may either print
out 1 or print out 0 in the preemptive semantics, or generate no output at all if
the scheduling is unfair. In non-preemptive semantics, if we allow switching at
the exit of atomic blocks, we can get the same set of possible behaviors. However,
if we choose the entry as the only switching point, it is impossible to print out 1.
This is because the left thread does not terminate after the write of x, so there
is no chance for the second thread to run.

Our language has the print(e) command as a representative I/O command.
When we observe program behaviors, we observe the sequences of externally
observable I/O events. To allow the non-preemptive semantics to generate the
same set of event sequences as in the preemptive semantics, we must allow switch-
ing at each I/O command. In Fig. 2(b), it would be impossible to observe the
sequence “102” if we disallow switching at each print command.

This is easy to understand if we view each print command as a write to a
shared tape1. However, it would be interesting to see what would happen if we
1 In this case, we don’t view two concurrent print commands as a data race. Instead,

we assume there is an implicit enclosing atomic block for each print(e).

Non-preemptive Semantics for Data-Race-Free Programs 517

project the whole output sequence to each thread and observe the resulting set
of subsequences instead of the whole sequence. That is, we assume each thread
has its own tape for outputs. For the program in Fig. 2(b), we can observe the
subsequence “12” for the left thread and “0” for the right, no matter we allow
switching at the print command or not.

However, the next example in Fig. 2(c) shows that, even if we only observe
thread-local output sequences, we still need to treat the print command as an
switching point, otherwise it would be impossible to see both outputs in non-
preemptive semantics.

Figure 2(a) and (c) show that non-termination of the code segment between
synchronization (or I/O) points plays an important role when we choose the
switching points. Essentially this is because, in non-preemptive semantics, non-
termination of these code segments prevents the switching from the current
thread to another. Although such code segment never accesses shared resources
in DRF programs, they should be viewed similarly as the accesses of shared
resources—they all generate external effects affecting other threads.

Based on the above discussion, we follow the principle below when deciding
switching points in our non-preemptive semantics to ensure its equivalence to
the preemptive semantics:

There must be at least one switching point between any two consecutive exter-
nally observable effects generated at runtime in the same thread.

Here externally observable effects are those that either affect behaviors of
other threads or generate externally observable events.

It is interesting to note that if a non-terminating code segment comes before
an atomic block, there is no switching point in between if we do not treat the
entry of the atomic block as an switching point. This actually does not violate the
above principle because the atomic block never gets executed if it follows a non-
terminating code segment. Therefore there are NO two consecutive externally
observable effects generated at runtime.

In the following sections we formalize the ideas in our definition of non-
preemptive semantics and prove that it preserves the behaviors of DRF programs
in preemptive semantics.

3 The Language and Preemptive Semantics

The syntax of the language is shown in Fig. 3. In the language we distinguish vari-
ables from memory cells. The whole program P consists of n sequential threads,
each with its own local variables (like thread-local registers). They communicate
through a shared heap (i.e. memory).

The arithmetic expressions e and boolean expressions b are pure in that
they do not access the heap. The commands x := [e] and [e] := e′ reads and
writes heap cells at the location e, respectively. The print(e) command generates
externally observable output of the value of e.

The atomic statement 〈S〉 executes S sequentially, which cannot be inter-
rupted by other threads. It can be viewed as a convenient abstraction for hard-
ware supported atomic operations (such as the cas instruction). Here S cannot

518 S. Xiao et al.

(Expr) e ::= x | n | e1 + e2 | e1 − e2 | . . .

(Bexp) b ::= true | false | e1 = e2 | e1 < e2 | ¬b | b1 ∧ b2 | b1 ∨ b2 | . . .

(Prim) c ::= x := e | x := [e] | [e] := e′ | print(e)
(Stmt) S ::= c | skip | S; S | 〈S〉 | if(b) S1 else S2 | while(b) do S

(Prog) P ::= S1 ‖ . . .‖Sn

Fig. 3. Syntax of the language

contain other atomic blocks or print commands. This is enforced in our opera-
tional semantics rules presented below.

The state model is defined in Fig. 4. The world W contains the program P,
the id of the current thread t and the program state σ. The state σ contains a
heap h, a mapping ls that maps each thread id to its local store s, and a binary
flag d indicating whether the current thread is executing inside an atomic block.

(World) W ::= (P, t, σ)

(ThrdId) t ∈ N

(Addr) a ∈ N

(Store) s ∈ Var → Int

(StoreList) ls ∈ ThrdID → Store

(Heap) h ∈ Addr ⇀ Int

(Bit) d ::= 0 | 1

(State) σ ::= (h, ls, d)

(LocSet) rs,ws ∈ P(Addr)

(FootPrint) δ ::= (rs,ws) emp
def= (∅, ∅)

(Label) ι ::= γ | out n

(iLabel) γ ::= τ | sw | atm

Fig. 4. Runtime constructs and footprints

Footprint-Based Semantics. Thread execution is defined as labeled transi-
tion in the form of (S, (h, s)) ι�−→

δ
(S′, (h′, s′)). Figure 5 shows selected rules for

thread-local transitions. Each step is associated with a label ι and a footprint δ.
The label contains the information about this step. There are two class of labels,
the internal labels γ and the externally observable output event (out n). An
internal label γ can record a step inside an atomic block (atm), a context switch
(sw, which is used only in the whole program transitions in Fig. 6), or a regular
silent step (τ). Note the atom rule only allows τ -steps inside the atomic block,

Non-preemptive Semantics for Data-Race-Free Programs 519

Fig. 5. Selected rules for thread-local transitions

which are converted to atm-steps looking from outside of the block. Therefore
the block 〈S〉 cannot contain other atomic blocks or print commands in S.

The footprint δ is defined as a pair (rs,ws), where rs and ws are the sets of
memory locations read or written during the transition. The record of footprint
allows us to define data-races below. When a step makes no memory accesses,
the footprint is defined as emp, where rs and ws are both empty set.

Transitions of the global configuration W are defined in the form of W
ι=⇒
δ

W ′

in Fig. 6. The thrd rule shows a step of execution outside of atomic blocks. The
flag d must be 0 in this case. It is set to 1 when executing inside the atomic block
(the atomic rule), and reset to 0 at the end (the atomic-end rule). The switch
rule says the execution of the current thread can be switched to a different one
at any time as long as the current thread is not executing an atomic block (i.e.
the bit d must be 0). Here we use the label sw to indicate this is a switch step.
Its use will be explained below.

W may also lead to abort if the execution of the current thread aborts (the
abt rule). It leads to a special configuration done if every individual thread
terminates (the done rule).

Multi-step Transitions. We use (S, (h, s)) ι�−→
δ

+(S′, (h′, s′)) to represent

multi-step transitions that the label of each transition is ι. Here δ is the accu-
mulation of the footprints generated. We may ommit the label or the footprint
when they are irrelevant in the context. Similarly ι�−→

δ

∗ represents transitions of

zero or multiple steps. In the case of zero step, δ is emp. W
ι=⇒
δ

+ W ′ and W
ι=⇒
δ

∗W ′

are similarly defined in the global semantics. In particular, W
γ
=⇒
δ

∗W ′ means only

internal labels γ are generated during the transitions. The labels in these steps
can be τ , atm or sw. Labels in different steps do not have to be the same in

520 S. Xiao et al.

P (t) = S ls(t) = s ι
= atm (S, (h, s)) ι→−�
δ

(S′, (h′, s′)) ls′ = ls[t � s′]

(P, t, (h, ls, 0)) ι=⇒
δ

(P [t � S′], t, (h′, ls′, 0))
(thrd)

P (t) = S S =〈S2〉 ∨ S =〈S2〉; S3 ls(t) = s

S2
= skip (S, (h, s)) atm→−�
δ

(S′, (h′, s′)) ls′ = ls[t � s′]

(P, t, (h, ls, d)) atm==⇒
δ

(P [t � S′], t, (h′, ls′, 1))
(atomic)

P (t) = S S = 〈skip〉 ∨ S = 〈skip〉; S2 ls(t) = s (S, (h, s)) atm→−�
emp

(S′, (h, s))

(P, t, (h, ls, d)) atm==⇒
emp

(P [t � S′], t, (h, ls, 0))
(atomic-end)

P (t) = S ls(t) = s (S, (h, s)) ι→−�
δ

abort

(P, t, (h, ls, d)) ι=⇒
δ
abort

(abt)

P (t′)
= skip

(P, t, (h, s, 0)) sw=⇒
emp

(P, t′, (h, s, 0))
(switch)

P = skip ‖ · · · ‖ skip

(P, t, σ) τ=⇒
emp

done
(done)

Fig. 6. Selected rules for global transitions

this case. We also use a natural number k as the superscript to indicate a k-step
transition.

Event Traces and Program Behaviors. The behavior of a concurrent pro-
gram is defined as an externally observable event trace B, which is a finite or
infinite sequence of output values generated in the output event (out n), with
possible ending events done or abort. An empty trace is represented as ε. Traces
are co-inductively defined in Fig. 7.

The trace ends with done or abort if the execution terminates normally
or aborts, respectively. When the program generates observable events (by the
print command), the output value is put on the trace. Co-inductively defined, a
trace can be infinite, which represents a diverging execution generating infinite
number of outputs.

We allow a trace to be finite but not end with done or abort. In this case,
after generating the last output recorded on the trace, the program runs forever
but does not generate any more observable events (called silent divergence).
Note our definition of silent divergence in the last rule in Fig. 7 requires there
must always be non-switch steps (which can be τ steps or atm steps) executing.
This prevents the execution that keeps switching between threads but does not
execute any code.

Definition of Data Races. Below we first define conflict of footprints in Def-
inition 1, which indicates conflicting accesses of shared memory. Two footprints

Non-preemptive Semantics for Data-Race-Free Programs 521

W
γ
=⇒+ abort

Etr(W,abort)

W
γ
=⇒∗ W ′ W ′ out n===⇒ W ′′ Etr(W ′′, B)

Etr(W, n ::B)

W
γ
=⇒+ done

Etr(W,done)

W
γ
=⇒∗ W ′ W ′ τ/atm

====⇒ W ′′ Etr(W ′′, ε)

Etr(W, ε)

ProgEtr((P, σ), B) iff ∃t.Etr((P, t, σ), B)

Fig. 7. Definition of event trace in preemptive semantics

δ and δ′ are conflicting, i.e. δ � δ′, if there exists a memory location in one of
them also shows up in the write set of the other.

Definition 1 (Conflicting footprints). δ � δ′ iff ((δ.rs∩δ′.ws �= ∅)∨(δ.ws∩
δ′.rs �= ∅) ∨ (δ.ws ∩ δ′.ws �= ∅)).

In Fig. 8, we define data races operationally in the preemptive semantics.
The key idea is that, during the program execution, we predict the footprints
of any two threads and see if they are conflicting. Note that we only do the
prediction at switching points. That is, footprints of threads are predicted only
when the threads can indeed be switched to run. We cannot do the prediction
when executing inside an atomic block, where switching is disallowed.

The first two rules inductively define the predicate predict(W, t, δ, d). Suppose
we execute thread t in W (which may or may not be the current thread t′) zero
or multiple steps. The accumulated footstep is δ. We let d be 1 if the predicted
steps are in an atomic block, and 0 otherwise.

Then W �=⇒ Race if there exist two threads whose predicted footprints are
conflicting, and at least one of them is not executing an atomic block. Since we
assume that atomic blocks cannot be executed at the same time, atomic blocks
that generate conflicting footprints are not considered as a data race.

We define (P, σ) �=⇒ Race if it predicts a data race after zero or multiple
steps of execution starting from a certain thread. DRF(P, σ) holds if (P, σ) never
reaches a race.

In both PREDICT-0 and PREDICRT-1 rules, the flag in W must be 0, indi-
cating the current thread t′ is not inside an atomic block (so the execution is at
a switching point). Otherwise the predict rule is able to make use of the inter-
mediate state during the execution of an atomic block that is invisible to other
threads, and predict conflicting footprints that is not possible during execution.
We can see this problem from the example program in Fig. 9. Assuming the heap
cells are initialized with 0, it is easy to see the program is race-free since the
second thread has no chance to write to the memory location 1. However, if we
permit prediction inside an atomic block, we are able to make prediction at the
program point right after the statement ([0] := 42;) in the first thread. Then
in the predicted execution the second thread can reach the first branch of the
conditional statement and write to location 1 since location 0 now contains 42.

522 S. Xiao et al.

Fig. 8. Definition of races and data-race-freedom

Fig. 9. Example of an DRF program

We can also predict that the third thread writes to location 1 as well. This kind
of conflicting footprints would never be generated during the actual execution
of the program and should not be considered as data race.

4 Non-preemptive Semantics

Below we define our non-preemptive semantics, and prove its equivalence with
preemptive semantics for DRF programs. As explained before, the key point of
non-preemptive semantics is to reduce the potential interleaving in concurrency.
It is done by limiting thread-switching to certain program points (called switch-
ing points). Thus the code fragment between switching points can be reasoned
about as sequential code, and interleaving is only considered at those switching
points.

4.1 Semantics

The non-preemptive semantics is defined in Fig. 10. We use three switching rules
in our non-preemptive semantics, i.e. the np-atom-sw rule, the out-sw rule and
the end-sw rule, to show that switching can occur only at the end of atomic
blocks, the print command, and the end of the current thread, respectively. The
other rules are similar to their counterparts in the preemptive semantics.

Non-preemptive Semantics for Data-Race-Free Programs 523

P (t) = S ls(t) = s ls′ = ls[t � s′] (S, (h, s)) τ→−�
δ

(S′, (h′, s′))

(P, t, (h, ls, 0)) : τ=⇒
δ

(P [t � S′], t, (h′, ls′, 0))
(np-thrd)

P (t) = S S = 〈Sa〉 ∨ S = 〈Sa〉; Sb Sa
= skip
ls(t) = s ls′ = ls[t � s′] (S, (h, s)) atm→−�

δ
(S′, (h′, s′))

(P, t, (h, ls, d)) : atm==⇒
δ

(P [t � S′], t, (h′, ls′, 1))
(np-atom)

P (t) = S S = 〈skip〉 ∨ S = 〈skip〉; S′′ ls(t) = s

(S, (h, s)) atm→−�
emp

(S′, (h, s)) t′ = t ∨ P (t′)
= skip

(P, t, (h, ls, d)) : sw=⇒
emp

(P [t � S′], t′, (h, ls, 0))
(np-atom-sw)

P (t) = S (S, (h, ls)) out n→−�
emp

(S′, (h, ls)) t′ = t ∨ P (t′)
= skip

(P, t, (h, ls, 0)) : out n===⇒
emp

(P [t � S′], t′, (h, ls, 0))
(out-sw)

P (t) = skip σ.d = 0 P (t′)
= skip

(P, t, σ) : sw=⇒
emp

(P, t′, σ)
(end-sw)

P = skip ‖ · · · ‖ skip

(P, t, σ) : τ=⇒
emp

done
(np-done)

P (t) = S ls(t) = s (S, (h, s)) τ→−�
emp

abort

(P, t, (h, ls, d)) : τ=⇒
emp

abort
(np-abt)

Fig. 10. Non-preemptive semantics

Event Traces in Non-preemptive Semantics. The definition of event traces
in the non-preemptive semantics is almost the same as that in preemptive seman-
tics (see Fig. 11). The last rule is simpler here because in the non-preemptive

W :
γ
=⇒+ abort

NPEtr(W,abort)

W :
γ
=⇒∗ W ′ W ′ : out n===⇒ W ′′ NPEtr(W ′′, B)

NPEtr(W, n ::B)

W :
γ
=⇒+ done

NPEtr(W,done)

W :
γ
=⇒+ W ′ NPEtr(W ′, ε)

NPEtr(W, ε)

ProgNPEtr((P, σ), B) iff ∃t.NPEtr((P, t, σ), B)

Fig. 11. Definition of ProgNPEtr((P, σ),B).

524 S. Xiao et al.

semantics every context switch is tied with a non-switch step, as explained above.
It is impossible for a program to keep switching without executing any code.

4.2 Equivalence with Preemptive Semantics

In this section we prove that, for any DRF program, it behaves the same in the
preemptive semantics as in the non-preemptive semantics. Since we define the
behavior of a program by the trace of observable events, essentially we require
the program to have the same set of event traces in both semantics. The goal is
formalized as Theorem 1. As an implicit assumption, the programs we consider
must be safe.

Since every step in the non-preemptive semantics can be easily converted
to preemptive steps, it is obvious that every event trace in the non-preemptive
semantics can be produced in the preemptive semantics.

However, it is non-trivial to prove the other direction: the preemptive seman-
tics cannot generate more event traces than the non-preemptive semantics.

The main idea of the proof is that under data-race-freedom, we can exchange
the execution orders of any τ -steps of different threads in preemptive semantics.
Note that the orders of atomic steps or print steps cannot be exchanged even
when the program is data-race-free.

Then we can fix the order of atomic steps and the print step in the preemptive
semantics and reorder all the other steps to form a non-preemptive-like execu-
tion. Recall that the non-preemptive semantics allows the threads to switch at
the print steps and at the end of atomic blocks. Thus by reordering the steps, we
can always let the program start executions in a thread until it reaches a print
or the end of an atomic block, and then switch to another thread.

In the following lemmas we describe how to exchange the execution order of
threads in preemptive semantics. For convenience, we write W i to represent a
world by setting the current thread id in W to i.

Lemma 1 says the orders of local transitions can be exchanged, as long as the
footprints are not conflicting. The reorder would not change the final state, the
labels and the generated footprints.

Lemma 1 (Reorder of thread-local transitions)
If (S1, (h, s1))

ι1�−→
δ1

(S′
1, (h

′, s′
1)) ∧ (S2, (h′, s2))

ι2�−→
δ2

(S′
2, (h

′′, s′
2)) ∧ ¬(δ1 � δ2)

then ∃h′′′. (S2, (h, s2))
ι2�−→
δ2

(S′
2, (h

′′′, s′
2)) ∧ (S1, (h′′′, s1))

ι1�−→
δ1

(S′
1, (h

′′, s′
1))

Lemma 2 says if there are two consecutive steps from two threads generating
conflicting footprints, then the predicted execution of the two threads starting
from the same state generating conflicting footprints too. That is, the prediction
would not miss the race. We need this lemma because the prediction of different
threads starts from the same state in the race rule in Fig. 8.

Lemma 2 (Lemma for conflicting thread-local transitions)
If (S1, (h, s1))

ι1�−→
δ1

(S′
1, (h

′, s′
1)) ∧ (S2, (h′, s2))

ι2�−→
δ2

(S′
2, (h

′′, s′
2)) ∧ (δ1 � δ2)

then ∃ι′2, δ
′
2, S

′′
2 , h′′′, s′′

2 . (S2, (h, s2))
ι′
2�−→

δ′
2

(S′′
2 , (h′′′, s′′

2)) ∧ (δ1 � δ′
2)

Non-preemptive Semantics for Data-Race-Free Programs 525

Lemma 3 says we can reorder consecutive τ -steps from threads i and j if
there is no data race. Lemma 4 shows the reorder of τ steps and atomic steps
from different threads. Lemma 5 reorders the internal γ-steps and a print step
from different threads. These lemmas are proved by applying Lemmas 1 and 2.

Lemma 3 (Reorder of silent steps)
For any i, j,W,W1,W

′
1,W2, δ1, δ2.

if W.σ.d = 0 ∧ W i τ=⇒
δ1

∗W1 ∧ W j
1

τ=⇒
δ2

∗W2 ∧ i �= j,

then either W �=⇒ Race

or ∃W3.W
j τ=⇒

δ2

∗W3 ∧ W i
3

τ=⇒
δ1

∗W i
2.

Lemma 4 (Reorder of silent steps and atomic steps)
For any i, j,W,W1,W2, δ1, δ2.
if W.σ.d = 0 ∧ W2.σ.d = 0 ∧ W i τ=⇒

δ1

∗W1 ∧ W j
1

atm==⇒
δ2

∗W2 ∧ i �= j,

then either W �=⇒ Race

or ∃W3.W
j atm==⇒

δ2

∗W3 ∧ W i
3

τ=⇒
δ1

∗W i
2.

Lemma 5 (Reorder of internal steps and a print step)
For any i, j,W,W1,W2, δ1, n.
if W.σ.d = 0 ∧ W i γ

=⇒
δ1

∗W1 ∧ W j
1

out n===⇒
emp

W2 ∧ i �= j,

then ∃W3.W
j out n===⇒

emp
W3 ∧ W i

3
τ=⇒
δ1

∗W i
2.

Then we can prove Theorem 1, saying that preemptive semantics and non-
preemptive semantics behave the same.

Theorem 1 (Semantics equivalence)
For any P and σ, if DRF(P, σ),
then ∀B,ProgEtr(P, σ,B) ⇐⇒ ProgNPEtr(P, σ,B).

Proof “⇐=”: As explained before, since every step in the non-preemptive seman-
tics can be easily converted to preemptive steps, it is obvious that every event
trace in the non-preemptive semantics can be produced in the preemptive
semantics.

“=⇒”: We consider the following cases of B. We need to construct a non-
preemptive execution for each case:

– case (1): B = done. We prove this case by induction on the number k of
atomic blocks.

0 : There is no atomic blocks. We prove this case by induction on the
number of threads. If there is only one thread, we are immediately done.
Otherwise, we choose any thread t to execute first and delay other threads
by exchanging their steps with the thread t by Lemma 3. Then after the
termination of the thread t, we can switch to another thread in the non-
preemptive semantics. Then by induction hypothesis we are done.

526 S. Xiao et al.

k + 1 : Let t be the first thread that is going to execute an atomic block. Then
we exchange the τ -steps from other threads with the steps of thread t by
Lemmas 3 and 4, so that we first execute thread t to the end of its atomic
block, and then switch to execute the τ -steps from other threads. In this
way we successfully reduce the number of atomic blocks by 1, and then
by induction hypothesis, we are done.

– case (2): B = abort. This case is vacant by the assumption of safety.
– case (3): B = ε. If the number of atomic blocks is finite, there must be a

point where the last atomic block ends. Then by induction on the number
of atomic blocks we can construct a non-preemptive execution to that point
by swapping other thread with the thread that is going to execute atomic
block, similarly to case (1). Then we know that there is at least one thread
t keep running forever, otherwise the program will terminate. We can let t
execute all the time by exchanging other threads with it. Then we successfully
construct a diverging execution for non-preemptive semantics.
Otherwise, there are infinite atomic blocks. The execution is a stream of
small execution sections, each consisting of several silent steps in different
threads and a single atomic block. We can exchange any silent step with the
atomic block by Lemma 4 unless the silent step is in the same thread of the
atomic block. Then we can merge the exchanged silent step part into the
following section since it contains no atomic block. Therefore the first section
consists steps of the same thread, then it can be converted to non-preemptive
execution. Then by coinduction we can construct a diverging execution for
non-preemptive semantics by converting every section to non-preemptive.

Fig. 12. Predicting race in non-preemptive semantics

Non-preemptive Semantics for Data-Race-Free Programs 527

– case (4): B = n ::B′. We prove this case by coinduction. Then we do induction
on the number of atomic blocks and by applying Lemma3 and Lemma 5,
similarly to case (1) above.

5 Data-Race-Freedom in Non-preemptive Semantics

Theorem 1 shows that we can reason about a program in non-preemptive seman-
tics instead of in preemptive semantics, as long as the program satisfies DRF in
preemptive semantics. Below we present a notion of data-race-freedom in non-
preemptive semantics (NPDRF) which is equivalent to DRF, making it possible
to reason about the program solely under non-preemptive semantics.

We define NPDRF in Fig. 12. Similar to the DRF defined in Fig. 8, we predict
the footprints of the execution (in the non-preemptive semantics now) of any two
threads and see if they are conflicting (see the np-race rule). The init-race
rule and the switch-race rule say the prediction can only be made either at
the initial program configuration, or at a switch point. This is to ensure the
prediction is made only at states from which the thread can indeed be switched
to. Otherwise the prediction may not correspond to any actual execution.

The np-predict-0 rule is similar to the predict-0 rule in Fig. 8. The tricky
part is in the np-predict-1 rule. To predict the footprints of program steps
inside atomic blocks, we need to execute the preceding silent steps as well (i.e.
the τ -steps in the np-predict-1 rule). This is because the prediction starts
only at a switching point, which must be outside of atomic blocks. Therefore we
may never reach the atomic block directly without executing the preceding code
outside of the atomic block first.

For example, in the program in Fig. 13, both the statements (〈[0] := 1〉) and
([0] := 1) writes to address 0. We can predict at the point before (〈[0] := 1〉)
to get a data race in the preemptive semantics, following the DRF definition in
Fig. 8. However, in our non-preemptive semantics, it is impossible to predict at
the program point right before (〈[0] := 1〉), which is not a switch point. Instead,
we have to do the prediction from the beginning of the left thread and execute
the preceding skip as well.

Note that the prediction will never go across a switch point (e.g. the end of
an atomic block). That’s why we only consider τ -steps and atm steps in the
np-predict-0 rule and the np-predict-1 rule.

Equivalence Between DRF and NPDRF. Below we prove that our novel
notion NPDRF under the non-preemptive semantics is equivalent to DRF in the

skip; [0] := 1
〈[0] := 1〉

Fig. 13. Example of data race

528 S. Xiao et al.

preemptive semantics. First we prove that the two different ways to predict data
races in Figs. 8 and 12 are equivalent, as shown in Lemmas 6 and 7.

Lemma 6 (Lemma for prediction and np-prediction)
For any W ,t, δ, d, if predict(W, t, δ, d), then nppredict(W, t, δ, d).

Proof. If d = 0 then it is immediate by the rules predict-0 and np-predict-0.
Otherwise d = 1. In np-predict-1 rule, zero step is acceptable for the first

part of silent steps, and the union of a footprint δ and emp is δ. Then by unfolding
the definition of predict and by np-predict-1 rule we are done.

Lemma 7 (Lemma for data race prediction)

For any k, W and W ′, if W
τ/sw
===⇒k W ′ ∧ W ′

�=⇒ Race, then W :�=⇒ Race.

Proof. By induction on k.

0 : By unfolding the definition, we know there exist t1, t2, δ1, δ2, d1 and d2
such that t1 �= t2, predict(W, t1, δ1, d1), predict(W, t2, δ2, d2), δ1 � δ2 and
d1 = 0 ∨ d2 = 0.
Then by applying Lemma 6, we can transform predict to nppredict.
By NP-RACE rule it is done.

k+1 : We know there exists W0 and δ0 such that W
τ/sw
===⇒

δ0
W0 and W0

τ/sw
===⇒k W ′.

Then from the induction hypothesis, we know W0 :�=⇒ Race. By unfolding
the definition, we know there exist t1, t2, δ1, δ2, d1 and d2 such that t1 �=
t2, predict(W, t1, δ1, d1), predict(W, t2, δ2, d2), δ1 � δ2 and d1 = 0∨d2 = 0.
Suppose the step generating δ0 is executed by the thread t0.

• If (t0 = t1 ∧ ¬(δ0 � δ2)) ∨ (t0 = t2 ∧ ¬(δ0 � δ1)), then we can merge it into
the prediction by swapping the other thread with this step.

• If (t0 �= t1 ∧ t0 �= t2 ∧ ¬(δ0 � δ1) ∧ ¬(δ0 � δ2)), then we know the step is
irrelavent and we can delay the thread t0 by swapping the two threads with
this step.

• Otherwise, (t0 = t1 ∧ δ0 � δ2) ∨ (t0 = t2 ∧ δ0 � δ1) ∨ (t0 �= t1 ∧ t0 �=
t2 ∧ (δ0 � δ1 ∨ δ0 � δ2).
Then we can predict a data race from W .
In all cases, we can predict a data race from W .

It is very important that a data race should be predicted at switching point.
Lemma 7 only concerns the equivalence of prediction. Thus we need to prove the
equivalence of data races in preemptive semantics and non-preemptive semantics
in Lemma 8.

Lemma 8 (Equivalence of data races in preemptive semantics and
non-preemptive semantics)

For any P and σ, we have ((P, σ) �=⇒ Race) ⇐⇒ ((P, σ) :�=⇒ Race).

Non-preemptive Semantics for Data-Race-Free Programs 529

Proof. “⇐=”: According to the semantics, non-preemptive steps can be con-
verted to preemptive steps directly. Then the problem is reduced to proving
that the multi-step prediction of np-predict-1 in Fig. 12 can be simulated by
the prediction in Fig. 8. Informally, we can rearrange the predicting executions
defined in Fig. 12 by making the non-conflicting steps sequentially proceeding
until the real conflicting steps, and predict in the way as in Fig. 8.

“=⇒”: After unfolding the definitions, we prove this case by induction on the
number k of event steps.

0 : By induction on the number i of atomic blocks during the execution (except
the predicted racing atomic steps).

0 : By applying Lemma7 and init-race rule.
i + 1 : Similar to the proof for Theorem1. If there is no preemptive data race

until the end of the first atomic block, then the thread of the first atomic
block can execute without being interrupted by other threads, and then
the number of atomic blocks can be reduced by 1. Afterwards we apply
the induction hypothesis and predict a non-preemptive data race either
at the end of the first atomic block (init-race rule) or a few steps later
and right after a switching point (switch-race rule). In both cases we
are done by switch-race rule.
Otherwise, there is at least one preemptive data race before the end of
first atomic block. Since data race cannot be predicted inside the atomic
block, the prediction must be made before the first atomic block. Then
by Lemma 7 we can predict a non-preemptive data race at the beginning
of the execution. Thus we are done by init-race rule.

k + 1 : We know the first thread to event step is thread m. By induction on the
number i of atomic blocks before the first event step.

0 : By applying Lemmas 3 and 5 we can let thread m execute first unless
there is a data race before the first event step, which is reduced to case
(k=0). Then the number of event steps is reduced by 1 and then by
applying induction hypothesis we can predict a non-preemptive data race
after the first event step (init-race rule) or a few steps later and right
after a switching point (switch-race rule). Then by switch-race rule
we are done.

i + 1 : If there is no preemptive data race until the end of the first atomic
block, then the thread of the first atomic block can execute without being
interrupted by other threads, and then the number of atomic blocks can be
reduced by 1. Afterwards we apply the induction hypothesis and predict
a non-preemptive data race either at the end of the first atomic block
(init-race rule) or a few steps later and right after a switching point
(switch-race rule). In both cases we are done by switch-race rule.
Otherwise, there is at least one preemptive data race before the end of
first atomic block, which is reduced to case (k = 0).

Theorem 2 (Equivalence between DRF and NPDRF)
For any P and σ, we have DRF(P, σ) ⇐⇒ NPDRF(P, σ)

Proof. By applying Lemma 8.

530 S. Xiao et al.

6 Conclusion

In this paper, we propose a formal definition of the non-preemptive semantics,
which restricts the interleavings of concurrent threads to certain carefully-chosen
program points. We prove that data-race-free programs behave the same in our
non-preemptive semantics as in the standard preemptive semantics. Here the
behaviors include termination and I/O events. Our results can be used to reduce
the complexity of reasoning about data-race-free programs.

We also define a notion of data-race-freedom in non-preemptive semantics
(called NPDRF), which is proved to be equivalent to the standard data-race-
freedom in preemptive semantics. This makes reasoning solely under our non-
preemptive semantics possible.

References

1. Abadi, M., Plotkin, G.: A model of cooperative threads. In: Proceedings of 36th
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2009, Savannah, GA, January 2009, pp. 29–40. ACM Press, New
York (2009). https://doi.org/10.1145/1480881.1480887

2. Adve, S.V., Hill, M.D.: Weak ordering: a new definition. In: Proceedings of 17th
Annual International Symposium on Computer Architecture, ISCA 1990, Seattle,
WA, June 1990, pp. 2–14. ACM Press, New York (1990). https://doi.org/10.1145/
325164.325100

3. Adve, S.V., Hill, M.D.: A unified formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993). https://doi.org/10.1109/
71.242161

4. von Behren, R., Condit, J., Zhou, F., Necula, G.C., Brewer, E.: Capriccio: scalable
threads for internet services. In: Proceedings of 19th ACM Symposium on Oper-
ating Systems Principles, SOSP 2003, Bolton Landing, NY, October 2003, pp.
268–281. ACM Press, New York (2003). https://doi.org/10.1145/945445.945471

5. Beringer, L., Stewart, G., Dockins, R., Appel, A.W.: Verified compilation for
shared-memory C. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 107–127.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 7

6. Boudol, G.: Fair cooperative multithreading. In: Caires, L., Vasconcelos, V.T.
(eds.) CONCUR 2007. LNCS, vol. 4703, pp. 272–286. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-74407-8 19

7. Collingbourne, P., Donaldson, A.F., Ketema, J., Qadeer, S.: Interleaving and lock-
step semantics for analysis and verification of GPU kernels. In: Felleisen, M., Gard-
ner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 270–289. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-37036-6 16

8. Ferreira, R., Feng, X., Shao, Z.: Parameterized memory models and concurrent
separation logic. In: Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 267–
286. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11957-6 15

9. Hower, D.R., et al.: Heterogeneous-race-free memory models. In: Architectural Sup-
port for Programming Languages and Operating Systems, ASPLOS 2014, Salt Lake
City, UT, March 2014, pp. 427–440. ACM Press (2014). https://doi.org/10.1145/
2541940.2541981

https://doi.org/10.1145/1480881.1480887
https://doi.org/10.1145/325164.325100
https://doi.org/10.1145/325164.325100
https://doi.org/10.1109/71.242161
https://doi.org/10.1109/71.242161
https://doi.org/10.1145/945445.945471
https://doi.org/10.1007/978-3-642-54833-8_7
https://doi.org/10.1007/978-3-540-74407-8_19
https://doi.org/10.1007/978-3-642-37036-6_16
https://doi.org/10.1007/978-3-642-11957-6_15
https://doi.org/10.1145/2541940.2541981
https://doi.org/10.1145/2541940.2541981

Non-preemptive Semantics for Data-Race-Free Programs 531

10. Kojima, K., Igarashi, A.: A Hoare logic for GPU kernels. ACM Trans. Comput.
Log. 18(1), Article No. 3 (2017). https://doi.org/10.1145/3001834

11. Li, P., Zdancewic, S.: Combining events and threads for scalable network services
implementation and evaluation of monadic, application-level concurrency primi-
tives. In: Proceedings of 28th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2007, San Diego, CA, June 2007, pp.
189–199. ACM Press, New York (2007). https://doi.org/10.1145/1250734.1250756

12. Loring, M.C., Marron, M., Leijen, D.: Semantics of asynchronous JavaScript. In:
Proceedings of 13th ACM SIGPLAN Int. Symposium on Dynamic Languages, DLS
2017, Vancouver, BC, October 2017, pp. 51–62. ACM Press, New York (2017).
https://doi.org/10.1145/3133841.3133846

13. Marino, D., Singh, A., Millstein, T., Musuvathi, M., Narayanasamy, S.: DRFx:
a simple and efficient memory model for concurrent programming languages. In:
Proceedings of 31st ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI 2010, Toronto, ON, June 2010, pp. 351–362. ACM
Press, New York (2010). https://doi.org/10.1145/1806596.1806636

14. Vouillon, J.: Lwt: a cooperative thread library. In: Proceedings of the of 2008 ACM
SIGPLAN Workshop on ML, ML 2008, Victoria, BC, September 2008, pp. 3–12.
ACM Press, New York (2008). https://doi.org/10.1145/1411304.1411307

15. Yi, J., Disney, T., Freund, S.N., Flanagan, C.: Cooperative types for controlling
thread interference in Java. In: Proceedings of 2012 International Symposium on
Software Testing and Analysis, ISSTA 2012, Minneapolis, MN, July 2012, pp. 232–
242. ACM Press (2012). https://doi.org/10.1145/2338965.2336781

16. Yi, J., Sadowski, C., Flanagan, C.: Cooperative reasoning for preemptive execution.
In: Proceedings of 16th ACM Symposium on Principles and Practice of Parallel
Programming, PPoPP 2011, San Antonio, TX, February 2011, pp. 147–156. ACM
Press, New York (2011). https://doi.org/10.1145/1941553.1941575

https://doi.org/10.1145/3001834
https://doi.org/10.1145/1250734.1250756
https://doi.org/10.1145/3133841.3133846
https://doi.org/10.1145/1806596.1806636
https://doi.org/10.1145/1411304.1411307
https://doi.org/10.1145/2338965.2336781
https://doi.org/10.1145/1941553.1941575

Author Index

Accattoli, Beniamino 37

Badouel, Éric 62
Barnat, Jiří 313
Berglund, Martin 80, 99
Bertot, Yves 3
Bester, Willem 99
Britz, Katarina 211

Chantawibul, Apiwat 116
Cheney, James 376

D’Argenio, Pedro R. 132
Dahlqvist, Fredrik 153
Djeumen Djatcha, Rodrigue Aimé 62

Felgenhauer, Bertram 173
Feng, Xinyu 513
Fujita, Gen 455

Gerber, Aurona 211
Goncharov, Sergey 191

Harmse, Henriette 211
Hsu, Justin 472

Janin, David 231
Jiang, Hanru 513
Johnsen, Einar Broch 252
Jonáš, Martin 273

Kamikawa, Naoki 455

Lanotte, Ruggero 292
Lauko, Henrich 313
Liang, Hongjin 513

Moerman, Joshua 493
Monti, Raúl E. 132

Nestra, Härmel 333
Nguena Timo, Omer 354

Ouaknine, Joël 472

Parlant, Louis 153
Petrenko, Alexandre 354

Ramesh, S. 354
Rapp, Franziska 173
Rauch, Christoph 191
Ricciotti, Wilmer 376
Ročkai, Petr 313
Rot, Jurriaan 493
Rybakov, Mikhail 396

Schaefer, Ina 80
Schröder, Lutz 191
Seki, Hiroyuki 415
Senda, Ryoma 415
Shkatov, Dmitry 396
Silva, Alexandra 153, 472
Sobociński, Paweł 116
Steffen, Martin 252
Strejček, Jan 273
Stumpf, Johanna Beate 252
Sulzmann, Martin 11

Takata, Yoshiaki 415
Thiemann, Peter 11
Tini, Simone 292
Töws, Manuel 435
Tveito, Lars 252

Umeo, Hiroshi 455

van der Merwe, Brink 99
van Heerdt, Gerco 472
Venhoek, David 493

Wehrheim, Heike 435

Xiao, Siyang 513

	Preface
	Organization
	Invited Talks (Abstracts)
	What Is Knowledge Representation and Reasoning?
	Finding Rare Concurrent Programming Bugs: An Automatic, Symbolic, Randomized, and Parallelizable Approach
	Contents
	Invited Talks (Papers)
	Formal Verification of a Geometry Algorithm: A Quest for Abstract Views and Symmetry in Coq Proofs
	1 Introduction
	2 An Abstract Description of Triangulation
	3 Specifying the Correctness of the Algorithm
	4 Formal Proof
	4.1 Combinatorial Symmetries of Triangles
	4.2 Geometric Symmetries of Triangles
	4.3 Symmetries with Respect to the Convex Hull

	5 Related Work
	6 Conclusion
	References

	LTL Semantic Tableaux and Alternating -automata via Linear Factors
	1 Introduction
	1.1 Preliminaries

	2 Linear Temporal Logic
	3 Linear Factors and Partial Derivatives
	4 Alternating -Automata
	5 Semantic Tableaux
	6 Related Work and Conclusion
	A Properties of Partial Derivatives
	B Tableau Examples
	C Proofs
	C.1 Proof of Theorem 2
	C.2 Proof of Lemma 7
	C.3 Proof of Lemma 8
	C.4 Proof of Lemma 10
	C.5 Proof of Lemma 12
	C.6 Proof of Lemma 9
	C.7 Proof of Theorem 3
	C.8 Proof of Theorem 5
	C.9 Proof of Lemma 6

	References

	Contributed Talks
	Proof Nets and the Linear Substitution Calculus
	1 Introduction
	1.1 Historical Perspective
	1.2 Related Work on Proof Nets

	2 The Linear Substitution Calculus
	3 Proof Nets
	4 Sequentialisation and Quotient
	5 Contexts
	6 Micro-step Operational Semantics
	7 Abstracting Proof Nets from a Rewriting Point of View
	8 Conclusions
	References

	Modular Design of Domain-Specific Languages Using Splittings of Catamorphisms
	1 Introduction
	2 Modular Domain Specific Languages
	2.1 DSL Associated with an Algebra
	2.2 Extension of a Domain Specific Language

	3 Decomposition of Catamorphisms
	3.1 Modular Grammar
	3.2 Decomposition of Algebras

	4 Conclusion
	References

	An Automata-Based View on Configurability and Uncertainty
	1 Introduction
	2 Motivating Example
	3 Definitions
	3.1 Basic Notation
	3.2 Automata Definitions

	4 Problem Statements and Basic Hardness
	5 Solving Restricted CCMR for Monotonic Weights
	6 Solving Restricted CCSR for Monotonic Weights
	7 Conclusions and Future Work
	References

	Formalising Boost POSIX Regular Expression Matching
	1 Introduction
	1.1 Related Work
	1.2 Paper Outline

	2 Preliminaries
	3 Examples
	4 Boost Semantics and Matching Algorithm
	5 Experimental Results
	6 Future Work and Conclusion
	References

	Monoidal Multiplexing
	1 Introduction
	2 Preliminaries
	2.1 Props
	2.2 Symmetric Monoidal Theory
	2.3 Symmetric Monoidal Functors
	2.4 Graphical Conventions

	3 Permutations Structured by CM
	3.1 Product Functor; Left and Right Multiplication
	3.2 Natural Permutations Structured by CM

	4 Multiplexing
	5 Conclusions and Future Work
	References

	Input/Output Stochastic Automata with Urgency: Confluence and Weak Determinism
	1 Introduction
	2 Input/Output Stochastic Automata with Urgency
	3 Semantics of IOSA
	4 Parallel Composition
	5 Confluence
	6 Weak Determinism
	7 Sufficient Conditions for Weak Determinism
	8 Concluding Remarks
	References

	Layer by Layer – Combining Monads
	1 Introduction
	2 A Primer on Monads, Algebras and Distributive Laws
	3 Building Distributive Laws Between Monads
	3.1 Monoidal Monads
	3.2 Lifting Operations
	3.3 Lifting Equations

	4 Checking Equation Preservation
	4.1 Residual Diagrams
	4.2 Examples of Residual Diagrams
	4.3 General Criteria for Equation Preservation
	4.4 Weakening the Inner Layer When Composition Fails

	5 Application
	6 Discussion and Future Work
	References

	Layer Systems for Confluence—Formalized
	1 Introduction
	2 Preliminaries
	3 Layer Conditions
	4 Persistence
	5 Persistent Decomposition
	6 Currying
	7 Conclusion
	References

	A Metalanguage for Guarded Iteration
	1 Introduction
	2 Monads for Effectful Guarded Iteration
	3 A Metalanguage for Guarded Iteration
	4 Generic Denotational Semantics
	5 Functional Types
	6 Operational Semantics and Adequacy
	7 Conclusions and Further Work
	References

	Generating Armstrong ABoxes for ALC TBoxes
	1 Introduction
	2 Preliminaries
	2.1 Description Logics (DLs)
	2.2 Closed Sets in Lectic Order
	2.3 Formal Concept Analysis (FCA)
	2.4 Attribute Exploration
	2.5 Ontology Completion

	3 Armstrong ABoxes
	3.1 Formal Definitions
	3.2 Key Attributes of Armstrong ABoxes
	3.3 Algorithm
	3.4 Example
	3.5 Discussion

	4 Conclusion
	References

	Spatio-Temporal Domains: An Overview
	1 Introduction
	2 Timed Posets
	3 Derived Notions
	4 Timed Morphisms
	5 More on Synchronous Functions
	6 More on -synchronous Functions
	7 Timed Domains
	8 Timed Fixpoints and Causality
	9 Conclusion
	References

	Checking Modal Contracts for Virtually Timed Ambients
	1 Introduction
	2 Virtually Timed Ambients
	3 Modal Logic for Virtually Timed Ambients
	4 A Model Checker for Virtually Timed Ambients
	5 Implementation in Maude
	6 Related Work
	7 Concluding Remarks
	References

	Abstraction of Bit-Vector Operations for BDD-Based SMT Solvers
	1 Introduction
	2 Preliminaries
	2.1 Bit-Vector Theory
	2.2 Binary Decision Diagrams
	2.3 Operations on Binary Decision Diagrams

	3 Formula and Term Abstractions
	4 Truncating Formula and Term Abstract Domains
	4.1 Truncating Term Abstract Domain
	4.2 Truncating Formula Abstract Domain

	5 Implementation
	5.1 Further Optimizations
	5.2 Combining Operation Abstractions and Formula Approximations

	6 Experimental Evaluation
	7 Conclusions
	References

	Weak Bisimulation Metrics in Models with Nondeterminism and Continuous State Spaces
	1 Introduction
	2 Background on Probability Spaces
	3 Stochastic Hybrid Calculus
	3.1 Syntax
	3.2 Probabilistic Labelled Transition Semantics
	3.3 Properties of the pLTS

	4 Weak Transitions
	5 Weak Bisimulation Metrics
	6 Case Study
	7 Conclusions and Related Work
	References

	Symbolic Computation via Program Transformation
	1 Introduction
	1.1 Goals
	1.2 Contribution

	2 Related Work
	3 Abstraction as a Transformation
	3.1 States and Transitions
	3.2 Syntactic Abstraction
	3.3 Abstract Values and Static Types
	3.4 Semantic Abstraction
	3.5 Representation
	3.6 Abstract Instructions
	3.7 Abstract Domains
	3.8 Constraints and Relational Domains
	3.9 Summary

	4 Symbolic Computation
	5 Implementation
	5.1 Freeze and Thaw
	5.2 Domains
	5.3 Execution and Model Checking
	5.4 Interfaces

	6 Evaluation
	6.1 Code Complexity
	6.2 Benchmarks
	6.3 Comparison 1: CBMC
	6.4 Comparison 2: SymDIVINE

	7 Conclusion
	References

	Double Applicative Functors
	1 Introduction
	2 A Minimal Interface of Double Applicative Functors
	3 Laws
	3.1 Pointed Bifunctors
	3.2 The Mixable Operations
	3.3 The Catenative, Triable and LazyTriable Class Operations
	3.4 Double Applicative Functors vs Monads

	4 A Hierarchy of Instances
	5 Related Work
	6 Conclusions
	References

	Checking Sequence Generation for Symbolic Input/Output FSMs by Constraint Solving
	1 Introduction
	2 Definitions
	2.1 Preliminaries
	2.2 FSM with Symbolic Inputs and Outputs
	2.3 Mutation Machine and Checking Sequence

	3 Specifying Mutants Surviving an Input Sequence
	3.1 Determining Deterministic Revealing Executions
	3.2 Encoding SIOFSMs Involved in Deterministic Revealing Executions
	3.3 Encoding (Un)detected Deterministic Complete Machines

	4 Verification and Generation of a Checking Sequence
	4.1 Verifying a Checking Sequence Conjecture
	4.2 Refining and Extending an Input Sequence to Detect Surviving Mutants
	4.3 Generating a Checking Sequence

	5 Prototype Tool and Experimental Results
	6 Conclusion
	References

	Explicit Auditing
	1 Introduction
	2 The Untyped Calculus of Audited Units
	2.1 Reduction

	3 Naïve Explicit Substitutions
	4 The Calculus CAU-
	4.1 Beta Reduction
	4.2 Properties of the Rewriting System

	5 A Call-by-Value Abstract Machine
	6 Conclusions and Future Directions
	References

	Complexity and Expressivity of Branching- and Alternating-Time Temporal Logics with Finitely Many Variables
	1 Introduction
	2 Branching-Time Temporal Logics
	3 Finite-Variable Fragments of CTL* and CTL
	4 Alternating-Time Temporal Logics
	5 Finite-Variable Fragments of ATL* and ATL
	6 Discussion
	References

	Complexity Results on Register Context-Free Grammars and Register Tree Automata
	1 Introduction
	2 Definitions
	2.1 Preliminaries
	2.2 Register Context-Free Grammars

	3 Basic Properties of RCFG
	4 Upper Bounds
	5 Lower Bounds
	5.1 Alternating Turing Machine
	5.2 Membership for General RCFG
	5.3 Membership for -rule Free RCFG
	5.4 Membership for Growing RCFG
	5.5 The Emptiness Problem
	5.6 RCFG with Bounded Registers

	6 Register Tree Automata
	6.1 Definitions
	6.2 Computational Complexity

	7 Conclusion
	References

	Information Flow Certificates
	1 Introduction
	2 Background
	3 Certification for Information Flow
	4 Experimental Results
	5 Related Work
	6 Conclusion
	References

	The Smallest FSSP Partial Solutionsfor One-Dimensional Ring Cellular Automata: Symmetric and Asymmetric Synchronizers
	1 Introduction
	2 Firing Squad Synchronization Problem on Rings
	2.1 Definition of the FSSP on Rings
	2.2 Full vs. Partial Solutions
	2.3 A New Quest for Four-State Partial Solutions for Rings

	3 Four-State Partial Solutions
	3.1 Four-State Symmetric Partial Solutions
	3.2 Four-State Asymmetric Partial Solutions

	4 Summary and Discussions
	References

	Convex Language Semantics for Nondeterministic Probabilistic Automata
	1 Introduction
	2 Preliminaries
	2.1 Convex Algebra
	2.2 Monads and Their Algebras
	2.3 Distribution and Convex Powerset Monads
	2.4 Automata and Language Semantics

	3 Nondeterministic Probabilistic Automata
	3.1 From Convex Algebra to Language Semantics
	3.2 Characterizing the Convex Algebra on [0, 1]

	4 Expressive Power of NPAs
	4.1 Separating NPAs and DPAs: Binary Alphabet
	4.2 Separating NPAs and DPAs: Unary Alphabet

	5 Checking Language Equivalence of NPAs
	5.1 Undecidability and Hardness
	5.2 Checking Approximate Equivalence

	6 Conclusions
	References

	Fast Computations on Ordered Nominal Sets
	1 Introduction
	2 Nominal Sets
	2.1 Representing Nominal Orbits

	3 Representation in the Total Order Symmetry
	3.1 Orbits and Nominal Sets
	3.2 Equivariant Maps
	3.3 Products
	3.4 Summary

	4 Implementation and Complexity of ONS
	4.1 Complexity of Operations

	5 Results and Evaluation in Automata Theory
	5.1 Minimising Nominal Automata
	5.2 Learning Nominal Automata

	6 Related Work
	7 Conclusion and Future Work
	References

	Non-preemptive Semantics for Data-Race-Free Programs
	1 Introduction
	2 Informal Discussions of the Non-preemptive Semantics
	3 The Language and Preemptive Semantics
	4 Non-preemptive Semantics
	4.1 Semantics
	4.2 Equivalence with Preemptive Semantics

	5 Data-Race-Freedom in Non-preemptive Semantics
	6 Conclusion
	References

	Author Index

