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1 Introduction

Studies of double diffusive convection in porous media play a significant role in
many areas, such as the petroleum industry, solidification of binary mixtures, and
migration of solutes in water-saturated soils. Other examples include geophysics
systems, crystal growth, electrochemistry, the migration of moisture through air
contained in fibrous insulation, the Earth’s oceans, and magma chambers. The
problem of double diffusive convection in a porous media has been presented by
Ingham and Pop [1], Nield and Bejan [2], Vafai [3, 4], and Vadasz [5]. The study
was continued by Poulikakos [6], Trevison and Bejan [7], and Momou [8] among
others. The first study of double diffusive convection in porous media was mainly
concerned with linear stability analysis and was performed by Nield [9].

The growing importance of non-Newtonian fluids with suspended particles in
modern technology and industries makes the investigation of such fluids desirable.
These fluids are applied in the extrusion of polymer fluids in industry, exotic
suspensions, fluid film lubrication, solidification of liquid crystals, cooling of
metallic plates in baths, and colloidal and suspension solutions. Non-Newtonian
stress fluids have specific features, such as the polar effect. The theory of polar fluids
and related theories are models for fluids whose microstructure is mechanically
significant. The theory for couple stress fluid was proposed by Stokes [10]; it is
a simpler polar fluid theory, that shows all the important features and effects of
such fluids that occur inside a deforming continuum. The stabilizing effect of the
couple stress parameter is reported in the works of Sharma and Thakur [11], who

K. Shakya (�)
Department of Applied Mathematics, School for Physical Sciences, Babasaheb Bhimrao
Ambedkar University, Lucknow 226025, India
e-mail: kanchan_17mayraj@rediffmail.com

© Springer Nature Switzerland AG 2019
V. K. Singh et al. (eds.), Advances in Mathematical Methods and High
Performance Computing, Advances in Mechanics and Mathematics 41,
https://doi.org/10.1007/978-3-030-02487-1_27

429

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02487-1_27&domain=pdf
mailto:kanchan_17mayraj@rediffmail.com
https://doi.org/10.1007/978-3-030-02487-1_27


430 K. Shakya

investigated thermal instability in an electrically conducting couple stress fluid with
a magnetic field. Sunil et al. [12] studied the effect of suspended particles on double
diffusive convection in a couple stress fluid-saturated porous medium, Sharma and
Sharma [13] investigated the effect of suspended particles on couple stress fluid,
heated from below, in the presence of rotation and a magnetic field. Malashetty
et al. [14] performed an analytical study of linear and nonlinear double diffusive
convection with the Soret effect in couple stress liquids. Gaikwad and Kamble [15]
analyzed the linear stability of double diffusive convection in a horizontal, sparsely
packed, rotating, anisotropic porous layer in the presence of the Soret effect.
Malashetty and Kollur [16] investigated the onset of double diffusive convection
in an anisotropic porous layer saturated with couple stress fluid. Shivakumara et al.
[17] analyzed the linear and nonlinear stability of double diffusive convection in a
couple stress fluid-saturated porous layer.

In the study of double diffusive convection in the Soret effect, in some of the
important areas of application in engineering, including geophysics, oil reservoirs,
and groundwater, researchers have developed a great interest in these type of flows.
In the presence of cross diffusion two transport properties are produced: the Soret
effect and the Dufour effect. The Soret effect describes the tendency of a solute to
diffuse under the influence of a temperature gradient. There are only a few studies
available on double diffusive convection in the presence of the Soret effect. The
diffusion material is heated unevenly. A mixture of gases or a solution is caused
by the presence of temperature gradient in the system. The effect was described by
Swiss scientist J. Soret, who was the first to study thermodiffusion (1879). Hurle
and Jakeman argue that the liquid mixture, the Dufour term, is indeed small, and
thus the Dufour effect will be negligible when compared with the Soret effect.
They conducted an experimental and theoretical study of Soret-driven thermosolutal
convection in a binary fluid mixture [18]. Malashetty et al. [19] performed an
analytical study of linear and nonlinear double diffusive convection with the Soret
effect in couple stress liquids. Rudraiah and Malashetty [20] discussed double
diffusive convection in a porous medium in the presence of the Soret and Dufour
effects. Bahloul et al. [21] studied double diffusive convection and Soret-induced
convection in a shallow horizontal porous layer analytically and numerically.
Malashetty and Biradar [22] carried out an analytical study of linear and nonlinear
double diffusive convection in a fluid-saturated porous layer with Soret and Dufour
effects. Also in another study, Bhadauria and Hashim et al. [23] performed linear
and nonlinear double diffusive convection in a saturated anisotropic porous layer
with couple stress fluid. Hill [25] showed linear and nonlinear double diffusive
convection in a saturated anisotropic porous layer with a Soret effect and an internal
heat source. Bhadauria et al. [26] studied effect of internal heating on double
diffusive convection in a couple stress fluid saturated anisotropic porous medium. A
study concerning an internal heat source in porous media was provided by Tveitereid
[24], who performed thermal convection in a horizontal porous layer with internal
heat sources. Srivastava et al. [27] performed linear and nonlinear analyses of
double diffusive convection in a porous layer with a concentration-based internal
heat source. Bhadauria [28], Horton and Rogers [29], and Lapwood [30] studied
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the effect of internal heating on double diffusive convection in a couple stress
fluid-saturated anisotropic porous medium. Govender [31] showed that the Coriolis
effect on the stability of centrifugally driven convection in a rotating anisotropic
porous layer is subject to gravity. Kapil [32] performed at the onset of convection
in a dusty couple stress fluid with variable gravity through a porous medium in
hydromagnetics.

The aim of this chapter was to study the Soret effect and an internal heat source
with a couple stress fluid. However, in the present study, stability analysis of the
Soret and internal heating effect on double diffusive convection in an anisotropic
porous layer with a couple stress fluid was performed.

1.1 Nomenclature

Table 1

Latin symbols
a wave number

C Couple stress parameter C = μc

μd2

Łe Lewis number Le = κT

κs

d height of porous layer

�g acceleration due to gravity

D Cross diffusion due to T component

Da Darcy number Da = κz

d2

RaT thermal Rayleigh number RaT = βT g�T Kzd
νκT z

RaS solutal Rayleigh number RaS = βSg�SKzd
νκT z

K permeability of porous medium Kx(ii + jj) + Kz(kk)

Kx permeability in x-direction

Kz permeability in z-direction

T temperature

�T temperature difference across the porous layer

t time

p reduced pressure

q fluid velocity(u,v,w)

Pr Prandtl number Prd = εγ νd2

κT K

Ri Internal heat source parameter Ri = Qd2

κT

Va Vadasz number Va = ( Pr

Da
)

S solute concentration

Nu Nusselt number

Sh Sherwood number

�S solute difference across the porous layer

(x,y,z) space co-ordinates

(continued)
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Table 1 (continued)

Greek symbols
βT coefficient of thermal expansion

βS coefficient of solute expansion

ξ mechanical anisotropic parameter

η thermal anisotropic parameter

κs effective concentration diffusivity

κT z effective thermal diffusivity

σ dimensionless oscillatory frequency

μ dynamic viscosity of the fluid

μc couple stress viscosity of the fluid

k porosity

γ heat capacity ratio (ρcp)m
(ρcp)f

ν kinematic viscosity (
μ
ρ0

)

ρ fluid density

Other symbols

∇2
1

∂2

∂x2 + ∂2

∂y2

∇2 ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

Subscripts
b basic state

c critical

0 reference value

Superscripts
’ perturbed quantity

* dimensionless quantity

osc oscillatory

st stationary

2 Mathematical Formulation

We consider an infinitely extended horizontal plane at z=0 and z=d a fluid-saturated
porous medium, which is heated from below and cooled from above. The Darcy
model has been employed in the momentum equation. Further, an internal heat
source term has been included in the energy equation. A cartesian frame of reference
is chosen in such a way that the origin lies on the lower plane and the z-axis is
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Fig. 1 Physical configuration of the problem

vertical upward. An adverse temperature gradient is applied across the porous layer
and the lower and upper planes are kept at temperatures T0 + �T and T0, with a
concentration S0 +�S and S0 respectively. The physical configuration of the model
is reported in the Figure 1. The governing equations are given below

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇.�q = 0,

ρ0
ε

(
∂q
∂t

) = −∇p + ρg − 1
K

(μ − μc∇2)�q,

γ ∂T
∂t

+ (�q.∇)T = ∇(κT z.∇T ) + Q(T − T0),

ε ∂S
∂t

+ (�q.∇)S = κs∇2S + D∇2T ,

ρ = ρ0[1 − βT (T − T0) + βS(S − S0)]

(1)

where the physical variables have their usual meanings as given in the nomenclature.
The externally imposed thermal and solutal boundary conditions are given by

{
T = T0 + �T, at z = 0 and T = T0, at z = d,

S = S0 + �S, at z = 0 and S = S0, at z = d,
(2)
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3 Basic State

In this state, the velocity, pressure, temperature, and density profiles are given by

�qb = 0, p = pb(z), T = Tb(z), S = Sb(z), ρ = ρb(z). (3)

Substituting Equation (3) in Equation (1), we obtain the following relations:

dpb

dz
= −ρbg, (4)

κT

d2(Tb − T0)

dz2
+ Q(Tb − T0) = 0, (5)

Ks

d2Sb

dz2
+ D

d2Tb

dz2
= 0, (6)

ρb = ρ0[1 − βT (Tb − T0) + βS(Sb − T0)]. (7)

The solution of equation (5), subject to the boundary conditions (2), is given by

Tb = T0 + �T
sin(

(√
Qd2

κT

)
(1 − z

d
))

sin
(√

Qd2

κT

) . (8)

The solution of equation (6), subject to the boundary conditions (2),

Sb = S0 + (�S + D�T

Ks

)(1 − z

d
) − D�T

Ks

sin(
(√

Qd2

κT

)
(1 − z

d
))

sin
(√

Qd2

κT

) (9)

Now, we superimpose finite amplitude perturbations on the basic state in the form:

�q = qb + q ′, T = Tb + T ′, p = pb + p′, S = Sb + S′, ρ = ρb + ρ′, (10)

Infinitesimal perturbation was applied to the basic state of the system and then the
pressure term was eliminated by taking the curl twice of Equation (1). The resulting
equations were nondimensional using the following transformations:

(x, y, z) = (x∗, y∗, z∗)d, t = t∗(γ d2

κT z

), (11)
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(u, v,w) = (u∗, v∗, w∗)(κT z

d
), T = (�T )T ∗, S = (�S)S∗

Tb, Sb in dimensionless forms are given

Tb = sin
√

Ri(1 − z)

sin
√

Ri

, (12)

Sb = SrLeRaT sin(
√

Ri(1 − z))

RaS sin
√

Ri

− (
SrLeRaT

RaS

+ 1)(1 − z)

to obtain nondimensional equation (on dropping the asterisks for simplicity), and
use the stream function u = ∂ψ

∂z
, w = − ∂ψ

∂x

1

Va

∂

∂t
∇2

1ψ + (
∂2

∂x2 + 1

ξ

∂2

∂z2 )(1 − C∇2
1 )ψ = RaT

∂T

∂x
− RaS

∂S

∂x
= 0 (13)

[ ∂

∂t
− ∂2

∂z2 − η
∂2

∂x2 − Ri

]
T − f (z)

∂ψ

∂x
− ∂(ψ, T )

∂(x, z)
= 0 (14)

[ ∂

∂t
− 1

Le

(
∂2

∂z2
+ ∂2

∂x2
)
]
S − Sr

RaT

RaS

∇2T − b(z)
∂ψ

∂x
− ∂(ψ, S)

∂(x, z)
= 0 (15)

where Va = εPr

Da
is Vadasz number, RaT = βT g�T Kzd

νκT z
is the thermal Rayleigh

number, RaS = βSg�SKzd
νκT z

is the solute Rayleigh number, Ri = Qd2

κT z
is the internal

heat source parameter, C = μC

μd2 is the couple stress fluid, Le = κT z

κS
is the Lewis

number, and χ = ε
γ

is normalized porosity. The above system will be solved by
considering stress-free and isothermal boundary conditions as given below:

w = ∂2w

∂z2 = T = S = 0 on z = 0, z = 1. (16)

4 Linear Stability Analysis

To study linear stability analysis according to solving the eigenvalue problem
defined by Equations (13)–(15) subject to the boundary condition by Equations (5),
(6), using time-dependent periodic disturbance in the horizontal plane:

(w, T , S) = (W,�, φ)exp[i(lx + my) + σ t] (17)
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where l, m are horizontal wave number and σ = σr + iσj the growth rate.
Substituting Equation (17) into the linearized equations (13)–(15), we obtain

[ σ

Va

δ2 + δ2
1(1 − Cδ2)

]
W + aRaT � − aRaSφ = 0 (18)

[σ + η1 − Ri]� − 2aFW = 0 (19)

[σ + δ2

Le

]φ − 2aBW + Srδ
2 RaT

RaS

� = 0. (20)

Where D = d/dz and a2 = l2 + m2. The boundary conditions are (17). Now
read
W= D2W = � = φ = 0 at z = 0, 1:
We assume that the solutions of equations (13)–(15) satisfying the boundary
conditions (17),
(W(z),�(z), φ(z)) = (W0,�0, φ0)sinnπz (n = 1, 2, 3, . . .)

in the form of the thermal Rayleigh number can be obtained as

RaT = Ri − (σ + η1)

2a2F

[ (δ2 + Leσ)( σ
Va

δ2 + δ2
1(1 − Cδ2)) − 2a2BLeRaS

σ + δ2 + δ2SrLe

]
(21)

where a2 = l2 + m2, δ2 = π2 + a2, δ2
1 = π2

ξ
+ a2, η1 = π2 + ηa2,

F=
∫ 1

0
dTb

dz
sin2(πz)dz, B=

∫ 1
0

dSb

dz
sin2(πz)dz, η is a representative viscosity of

the fluid. The growth rateσ is in general a complex quantity such that σ = σ + iσi .
The system with σr <0 is always stable, whereas for σr >0 it will become unstable.
For the neutral stability state σr = 0.

4.1 Stationary State

The values of the thermal Rayleigh number and the corresponding wave number of
the system for a stationary mode of convection are given below:

Rast
T = Ri − η1

2a2F

[δ2δ2
1(1 − Cδ2) − 2a2BRaSLe

δ2(1 + LeSr)

]
, (22)

It is important to note the critical wave number a = aSt
c , which is the result given

by Malashetty et al. [19]. For single component fluid, RaS = 0, i.e., in the absence
of a solute Rayleigh number, Equation (22) gives

Rast
T = (Ri − η1)δ

2
1(1 − Cδ2)

2a2F(1 + LeSr)
. (23)
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For the system without internal heating, i.e., Ri = 0,F=-1/2, we get

Rast
T = (η1)δ

2
1(1 − Cδ2)

a2(1 + LeSr)
(24)

which is the one obtained by Shivakumara et al. [17]. When C = 0 (i.e., Newtonian
fluid case), Eq. (3.11) reduces to

Rast
T = (π2 + η2a2)(a2 + π2

ξ
)

a2(1 + LeSr)
(25)

In the case of no Soret effect

Rast
T = (π2 + η2a2)(a2 + π2

ξ
)

a2
(26)

Lastly, in the case of isotropic porous medium, put η = ξ = 1

Rast
T =

(π2 + a2

a

)2
(27)

which has the critical value RaSt
c = 4π2 for aS

c t = π2 and which are the classical
results obtained by Horton and Rogers [29] and Lapwood [30].

4.2 Oscillatory State

For the corresponding wave number of the system for the oscillatory mode of
convection, we now set σ = iσi in Equation (21) and clear the complex quantities
from the denominator, to obtain

Raosc
T = �1 + iσi�2.

�1 = 1

2a2F

A1B1 + σ 2A2B2

B2
1 + σ 2B2

2

(28)

�2 = 1

2a2F

A2B1 − A1B2

B2
1 + σ 2B2

2

, (29)

where, A1 = (Ri − η1)(δ
2δ2

1(1 − Cδ2) − σ 2

Va
Leδ

2) + σ 2(Leδ
2
1(1 − Cδ2) + δ4

Va
) −

(Ri − η1)RaS2a2BLe,
A2 = (Ri − η1)(Leδ

2
1(1 − Cδ2) + δ4

Va
) − δ2δ2

1(1 − Cδ2) + σ 2

Va
Leδ

2 + RaS2a2BLe

B1 = δ2(1 + SrLe)

B2 = 1
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For oscillatory onset �2 = 0 and (σi �= 0), where σ is the oscillatory frequency,
which is not given for brevity.

We have the necessary expression for the oscillatory Rayleigh number as:

Raosc
T = �1. (30)

5 Nonlinear Stability Analysis

In this section, we study the nonlinear stability analysis using a minimal truncated
Fourier series. For simplicity, we consider only two-dimensional rolls, so that all the
physical quantities are independent of y. Consider the stream function ψ such that
u = ∂ψ

∂z
, w = −∂ψ

∂x
, then taking curl to eliminate the pressure term from Equation (1)

and then the resulting nondimensional equations by using transformation given by
Equation (11) and the following equation

( 1

Va

∂

∂t
∇12ψ + (

∂2

∂x2 + 1

χ

∂2

∂z2 )(1 − C∇12)ψ
)

+ RaT

∂T

∂x
− RaS

∂S

∂x
= 0, (31)

( ∂

∂t
− ∂2

∂z2 − η
∂2

∂x2 − Ri

)
T − f (z)

∂ψ

∂x
− ∂(ψ, T )

∂(x, z)
= 0, (32)

[ ∂

∂t
− 1

Le

(
∂2

∂z2 + ∂2

∂x2 )
]
S − ∂ψ

∂x
b(z) − ∂(ψ, S)

∂(x, z)
− Sr

RaT

RaS

∇2T = 0 (33)

It should be noted that the effect of nonlinearity is to distort the temperature and
concentration fields through the interaction of ψ and T, ψ , and S. As a result,
a component of the form sin(2πz) will be generated, where V is zonal velocity
induced by rotation. A minimal Fourier series that describes the finite amplitude
convection is given by

ψ = A1(t)sin(ax)sin(πz), (34)

T = B1(t)cos(ax)sin(πz) + B2(t)sin(2πz), (35)

S = C1(t)cos(ax)sin(πz) + C2(t)sin(2πz), (36)

where the amplitudes A1(t), B1(t), B2(t), C1(t), C2(t) are functions of time and
are to be determined. Substituting the above expressions in Equations (31)–(33)
and equating the like terms, the following set of nonlinear autonomous differential
equations were obtained
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dA1(t)

dt
= −Va

δ2 (δ12(1 + Cδ2)A1 + aRaT B1 − aRaSC1) (37)

dB1(t)

dt
= 2aFA1 − πaA1B2 + (Ri − η1)B1 (38)

dB2(t)

dt
= πa

2
A1B1 + (Ri − 4π2)B2 (39)

dC1(t)

dt
= 2aBA1 − δ2Sr

RaT

RaS

B1 − δ2 1

Le

C1 − πaA1C2 (40)

dC2(t)

dt
= π

a

2
A1C1 − 4π2Sr

RaT

RaS

B2 − 4π2

Le

C2 (41)

where A = 1 + 4cπ2. The numerical method was used to solve the above nonlinear
differential equation to find the amplitudes.

5.1 Steady Finite Amplitude Convection

For steady-state finite amplitude convection we have to set the left-hand side of the
Equations (37)–(41) to zero.

(δ12(1 + Cδ2)A1 + aRaT B1 − aRaSC1) = 0 (42)

2aFA1 − πaA1B2 + (Ri − η1)B1 = 0 (43)

πa

2
A1B1 + (Ri − 4π2)B2 = 0 (44)

2aBA1 − δ2Sr

RaT

RaS

B1 − δ2 1

Le

C1 − πaA1C2 = 0 (45)

π
a

2
A1C1 − 4π2Sr

RaT

RaS

B2 − 4π2

Le

C2 = 0 (46)

on solving for the amplitudes in terms of A1, we obtain

B1 = 4aF(z)(4π2 − Ri)A1

a2A2
1π

2 − 8π2Ri + 2R2
i + 8π2η1 − 2Riη

,
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B2 = 2a2F(z)πA2
1

a2A2
1π

2 − 8π2Ri + 2R2
i + 8π2η1 − 2Riη

,

C1 =

16
(
8A1BLeπ

2RaSRia + 2A1BLeRaSRi2a + A3
1BLeπ

2RaSa3

+A3
1FL2

eπ
2RaT sa3 − 8A1FLeπ

2RaT Sraδ2 + 2A1FLeRaT RiSraδ2

+8A1BLeπ
2RaSaη − 2A1BLeRaSRiaη1

)

RaS(A2
1L

2
ea

2 + 8δ2)(−8π2Ri + 2R2
i + A2

1π
2a2 + 8π2η1 − 2Riη1)

,

C2 =

2
(
8A2

1BL2
eπ

2RaSRia
2 + 2A2

1BL2
eRaSR2

i a
2 + A4

1BL2
eπ

2RaSa4

−8A2
1FLeπ

2RaT Sa2δ2 − 8A2
1FL2

eπ
2RaT Sa2δ2 + 2A2

1FL2
eRaT RiSa2δ2

+8A2
1BL2

eπ
2RaSa2η1 − 2A2

1BL2
eRaSRia

2η1
)

RaSπ(A2
1L

2
ea

2 + 8δ2)(−8π2Ri + 2R2
i + A2

1π
2a2 + 8π2η1 − 2Riη1)

.

To solve the above equation, a quadratic equation in
A2

1
8 is given by

a0x
2 + a1x + a2 = 0

where x=
A2

1
8 ,

a0 = L2
ea

4π2δ2
1RaS(1 + Cδ2)

a1 = 1
4δ2

1RaS(1+Cδ2)(Ri −η1)L
2
ea

2(Ri −4π2)− 1
2 (Ri −4π2)FRaT RaSL2

ea
4 −

2Lea
4π2RaS(B + LeFSr) + a2π2δ2δ2

1RaS(1 + Cδ2)

a2 = (Ri−4π2)
4 (δ2δ2

1RaS(1 + Cδ2)(Ri − η1) − 2Lea
2BRaS(Ri − η1) −

2a2δ2FRaS(LeSr + RaT ))

The required root of the above equation is

x = −a1+
√

a2
1−4aoa2

2a0

5.2 Steady Heat and Mass Transport

In the study of this type of problem, quantification of heat and mass transport is
very important in porous media. Let Nu and Sh be noted as the rate of heat and
mass transport per unit for the fluid phase.
The Nusselt number and Sherwood number are defined by

Nu = 1 +
[

∫ 2π/a

0
∂T
∂z

dx,
∫ 2π/a

0
∂Tb

∂z
dx,

]

z=0
(47)

Sh = 1 +
[

∫ 2π/a

0
∂S
∂z

dx,
∫ 2π/a

0
∂Sb

∂z
dx,

]

z=0
(48)
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substituting the value of T, Tb,S, and Sb in Equations (47)–(48),

Nu = 1 − 2πB2√
Ri cot

√
Ri

, (49)

Sh = 1 − 2πC2RaS sin
√

Ri

−SrRaT cos
√

Ri

√
Ri + sin

√
RiRaS + sin

√
RiSrRaT

substituting B2, C2 of Equations (5.1) into (49) gives

Nu, Sh (50)

6 Results and Discussion

This chapter investigates the combined effect of internal heating and the Soret effect
on stationary and oscillatory convection in a anisotropic porous medium with couple
stress fluid. In this section, we discuss the effects of the parameters in the governing
equations on the onset of double diffusive convection numerically and graphically.
The stationary and oscillatory expressions for different values of the parameters
such as the Vadasz number, the couple stress parameter, the solute Rayleigh number,
the mechanical anisotropic parameter, and the thermal anisotropic parameter are
computed, and the results are depicted in the figures. The neutral stability curves in
the (RaT ,a) plane for various parameter values are shown in Figure 2a–e. We fixed
the values for the parameters as Va = 5, C = 2, RaS = 100, Le = 20, ξ = .5,
η = .5, Sr = .05, and Ri = 2, except for the varying parameter. The effect of
the Vadasz number Ta on the neutral curves is shown in Figure 2. We find that for
fixed values of all other parameters, the minimum value of the Rayleigh number
for the oscillatory mode increases as a function of increasing Va, indicating that
the effect of the Vadasz number is to stabilize the system. In addition, the critical
wave number increases with increasing Va. We observed that by increasing the
value of internal heat source Ri , the mechanical anisotropic parameter ξ decreased
the stationary and oscillatory Rayleigh number, which means that the internal heat
source Ri , mechanical anisotropic parameter ξ destabilized. Figure 2 depicts the
effect of the couple stress parameter C on the neutral stability curves. We find
that with an increase in the value of the couple stress parameter, the value of the
Rayleigh number for both stationary and oscillatory mode is enhanced, indicating
that it stabilizes the onset of double diffusive convection and depicts the effect of
the solute Rayleigh number RaS on the stability curve for stationary and oscillatory
convection. We show that the effect of increasing RaS is to decrease the value of the
Rayleigh number for stationary and oscillatory convection and the corresponding
wave number. Thus, the solute Rayleigh number becomes unstable. We also show
that the effect of an increasing Lewis number Le and the thermal anisotropic
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Fig. 4 Variation of Nu with Rat for different values of parameters

parameter η is to increase the value of the Rayleigh number for stationary convection
and decrease the value of oscillatory convection. With regard to the corresponding
wave number, we found it unstable for the stationary and stable for the oscillatory
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modes. We find that Figures 2 and 3 show that an increase in the value of the Soret
parameter Sr decreases the Rayleigh number, indicating that the Soret parameter
destabilizes the onset of stationary and oscillatory convection.
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We use the parameter in a graph of the Nusselt and Sherwood number C = 2,
RaS = 20, Le = 2, ξ = .5, η = .5, Sr = .05, and Ri = 2, and Figures 4a and
5c show that an increase in the value of the internal Rayleigh number Ri decreases
the rate of heat and increases mass transfer. We note that the effect of increasing the
solute Rayleigh number RaS and the thermal anisotropic parameter η is to increase
the value of the Nusselt number Nu and the Sherwood number Sh, thus reducing the
heat and mass transfer. In Figures 4b and 5a, it can be found that with an increase
in the value of the Soret parameter Sr , the mechanical anisotropic parameter ξ and
then the value of the Nusselt number Nu and the Sherwood number Sh decrease;
thus, the heat and mass transfer across the porous layer also decrease.

7 Conclusions

The Soret effect and the internal heating effect on double diffusive convection in a
anisotropic porous medium saturated with a couple stress fluid that is heated and
salted from below was investigated using linear and nonlinear stability analysis.
The linear analysis is carried out using the normal mode technique. The following
conclusions were drawn:

1) The Vadasz number Va has a stabilizing effect on oscillatory convection.
2) The internal heat parameter Ri , the solute Rayleigh number Ras , the Soret

parameter Sr , and the mechanical anisotropic parameter ξ destabilize the system
in the stationary and oscillatory modes.

3) The couple stress fluid C has a stabilizing effect on both the stationary and the
oscillatory convection.

4) The normalized porosity parameter η and the Lewis number Le have a destabi-
lizing effect in the case of stationary and opposite oscillatory convection.

5) With the increasing value of the mechanical anisotropic parameter ξ , the Soret
parameter Sr then increases the value of the Nusselt number Nu, i.e., increasing
heat transfer, but increasing the value of the internal Rayleigh number Ri , and the
normalized porosity parameter η and the solutal Rayleigh number RaS decrease
the value of the Nusselt number Nu.

6) Mass transfer Sh increases with the increasing value of the internal Rayleigh
number Ri , the mechanical anisotropic parameter ξ , the Soret parameter Sr , and
decreases with the normalized porosity parameter η and the solutal Rayleigh
number RaS .
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