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1 Introduction and Motivation

General problems in mathematical optimization are usually formulated in the
following form:

(Pap) : min f (x), s.t. h(x) = 0, g(x) ≤ 0, (1)

where the unknown x ∈ R
n is a vector, f (x) : Rn → R is the so-called “objective”

function,1 and h(x) = {hi(x)} : R
n → R

m and g(x) = {gj (x)} : R
n → R

p

are two vector-valued constraint functions. It must be emphasized that, different
from the basic concept of objectivity in continuum physics and nonlinear analysis,
the objective function used extensively in optimization literature is allowed to be
any arbitrarily given function, even the linear function. Therefore, the (Pap) is
an abstractly (or arbitrarily) proposed problem (APP). Although it enables one
to “model” a very wide range of problems, it comes at a price: many global
optimization problems are considered to be NP-hard. Without detailed information
on these arbitrarily given functions, it is impossible to have a powerful theory for
solving the artificial nonconvex problem (1).

Canonical duality-triality is a newly developed and continuously improved
methodological theory. This theory comprises mainly: 1) a canonical transformation,

1This terminology is used mainly in the English literature. The function f (x) is correctly called
the target function in all Chinese and Japanese literature.
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which is a versatile methodology that can be used to model complex systems within
a unified framework, 2) a complementary-dual principle, which can be used to
formulate a perfect dual problem with a unified analytic solution, and 3) a triality
theory, which can identify both global and local extrema and to develop effective
canonical dual algorithms for solving real-world problems in both continuous and
discrete systems. This theory was developed from Gao and Strang’s original work
on nonconvex variational/boundary-value problems in large deformation mechanics
[43]. It was shown in Gao’s book [18] and in recent articles [40, 53] that the
(external) penalty and Lagrange multiplier methods are special applications of the
canonical duality theory in convex optimization. It is now understood that this theory
reveals an intrinsic multi-scale duality pattern in complex systems, many popular
theories and methods in nonconvex analysis, global optimization, and computational
science can be unified within the framework of the canonical duality-triality theory.
Indeed, it is easy to show that the KKT theory in mathematical programming, the
semi-definite programming (SDP) method in global optimization, and the half-
quadratic regularization in information technology are naturally covered by the
canonical duality theory [39, 56, 86].

Mathematics and mechanics have been complementary partners since the New-
ton times. Many fundamental ideas, concepts, and mathematical methods exten-
sively used in calculus of variations and optimization are originally developed
from mechanics. It is known that the classical Lagrangian duality theory and the
associated Lagrange multiplier method were developed by Lagrange in analytical
mechanics [51]. The modern concepts of super-potential and sub-differential in
convex analysis were proposed by J.J. Moreau from frictional mechanics [63].
The canonical duality theory is also developed from the fundamental concepts of
objectivity and work-conjugate principle in continuum physics. The Gao-Strang gap
function discovered in finite deformation theory provides a global optimality condi-
tion for general nonconvex/nonsmooth variational analysis and global optimization.
Application of this theory to nonlinear elasticity leads to a pure complementary
energy principle which was a 50-year-old open problem [58]. Generalization to
global optimization was made in 2000 [20]. Since then, this theory has been used
successfully for solving a large class of challenging problems in multi-disciplinary
fields of applied mathematics, computational science, engineering mechanics,
operations research, and industrial and systems engineering [11–17, 22–25, 36–
38, 40, 42, 44, 45, 70, 73].

However, as V.I. Arnold indicated [2]: “In the middle of the twentieth century
it was attempted to divide physics and mathematics. The consequences turned out
to be catastrophic.” Indeed, due to the ever-increasing gap between physics and
other fields, some well-defined concepts in continuum physics, such as objectiv-
ity, Lagrangian, tensor, and fully nonlinearity, etc., have been seriously misused
in optimization, which leads to not only ridiculous arguments but also wrong
mathematical models and many artificially proposed problems. Also, the canonical
dual transformation theory and methodology have been rediscovered in different
forms by researchers from different fields. The main goal of this paper is to
bridge this gap by presenting the canonical duality theory in a systematical way
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from a unified modeling, basic assumptions to the theory, method, and general
applications. The methodology, examples, and conjectures presented in this paper
are important not only for better understanding this unconventional theory but
also for solving many challenging problems in complex systems. This paper will
bring some fundamentally new insights into multi-scale complex systems, global
optimization, and computational science.

2 Multi-Scale Modeling and Properly Posed Problems

In linguistics, a complete and grammatically correct sentence should be composed
by at least three words: subject, object, and a predicate.2 As a language of science,
the mathematics should follow this rule. Based on the canonical duality principle
[18], a unified mathematical problem for multi-scale complex systems was proposed
in [26, 28]:

(P) : min{�(χ) = G(Dχ) − F(χ) | χ ∈ Xc}, (2)

where F : Xa ⊂ X → R is a subjective function such that the external duality
relation χ∗ = ∇F(χ) = χ̄∗ is a given input (or source), its domain Xa contains only
geometrical constraints (such as boundary or initial conditions), which depends on
each given problem; D : Xa → Ga is a linear operator which links the configuration
variable χ ∈ Xa with an internal variable g = Dχ ∈ Ga at different physical
scales; G : Ga ⊂ G → R is an objective function such that the internal duality
relation g∗ = ∇G(g) is governed by the constitutive law, its domain Ga contains
only physical constraints, which depends on mathematical modeling; The feasible
set is defined by:

Xc = {χ ∈ Xa| Dχ ∈ Ga}. (3)

The predicate in (P) is the operator “−” and the difference �(χ) is called the target
function in general problems. The object and subject are in balance only at the
optimal states.

2.1 Objectivity, Isotropy, and Symmetry in Modeling

Objectivity is a central concept in our daily life, related to reality and truth.
According to Wikipedia, the objectivity in philosophy means the state or quality of

2By the facts that (object, subject) is a duality pair in a noun (or pronoun) space, which is dual to a
verb space, the multi-level duality pattern {(object, subject); predicate} is called triality, which
is essential for languages and sciences.
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being true even outside a subject’s individual biases, interpretations, feelings, and
imaginings.3 In science, the objectivity is often attributed to the property of scientific
measurement, as the accuracy of a measurement can be tested independent from the
individual scientist who first reports it.4 In continuum mechanics, the objectivity is
also called the principle of frame-indifference [65, 80], which is a basic concept
in mathematical modeling [8, 18, 60] but is still subjected to seriously study in
continuum physics [59, 64]. Let R be a special orthogonal group SO(n), i.e., R ∈ R
if and only if RT = R−1 and det R = 1. The following mathematical definition was
given in Gao’s book (Definition 6.1.2 [18]).

Definition 1 (Objectivity and Isotropy) A set Ga is said to be objective if Rg ∈ Ga

∀g ∈ Ga , ∀R ∈ R. A real-valued function G : Ga → R is said to be objective if

G(Rg) = G(g) ∀g ∈ Ga, ∀R ∈ R. (4)

A set Ga is said to be isotropic if gR ∈ Ga ∀g ∈ Ga, ∀R ∈ R. A real-valued
function G : Ga → R is said to be isotropic if

G(gR) = G(g) ∀g ∈ Ga, ∀R ∈ R. (5)

Lemma 1 A real-valued function G(g) is objective if and only if there exists a real-
valued function �(C) such that G(g) = �(gT g).

Geometrically speaking, an objective function is rotational symmetry, which
should be an SO(n)-invariant in n-dimensional Euclidean space. Physically, an
objective function doesn’t depend on observers. Because of Noether’s theorem,5

rotational symmetry of a physical system is equivalent to the angular momentum
conservation law (see Section 6.1.2 [18]). Therefore, the objectivity is essential
for any real-world mathematical models. In Euclidean space Ga ⊂ R

n, the simplest
objective function is the �2-norm ‖g‖ in R

n as we have ‖Rg‖2 = gT RT Rg =
‖g‖2 ∀R ∈ R. In continuum physics, the objectivity implies that the equilibrium
condition of angular momentum (symmetry of the Cauchy stress tensor σ = ∂G(g),
Section 6.1 [18]) holds. It was emphasized by P.G. Ciarlet that the objectivity is not
an assumption, but an axiom [8]. In Gao and Strang’s work, the internal energy
W(g) must be an objective function such that its variation (Gâteaux derivative)
σ = ∂W(g) is the so-called constitutive duality law, which depends only on the
intrinsic property of the system.

3https://en.wikipedia.org/wiki/Objectivity_(philosophy).
4https://en.wikipedia.org/wiki/Objectivity_(science).
5That is, every differentiable symmetry of the action of a physical system has a corresponding
conservation law.

https://en.wikipedia.org/wiki/Objectivity_(philosophy)
https://en.wikipedia.org/wiki/Objectivity_(science)
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2.2 Subjectivity, Symmetry Breaking, and Well-Posed Problem

Dual to the objective function that depends on modeling, the subjective function
F(χ) depends on each problem such that its variation is governed by the action-
reaction duality law: χ̄∗ = ∂F (χ) ∈ X ∗. From the point view of systems theory,
the action χ̄∗ ∈ X ∗ can be considered as the input or source of the system,
and the reaction χ ∈ X should be the output (or the configuration, the state) of
the system. A system is conservative if the action is independent of the reaction.
Therefore, the subjective function must be linear on its domain Xa and, by Riesz
representation theorem, we should have F(χ) = 〈χ , χ̄∗〉, where the bilinear form
〈χ ,χ∗〉 : X × X ∗ → R puts X and X ∗ in duality. The target function �(χ) =
G(Dχ) − F(χ) can have different physical meanings in real-world applications.
For example, in continuum mechanics the subjective function F(χ) is the external
energy, the objective function G(g) is the stored energy, then �(χ) is the total
potential energy. In this case, the minimum total potential energy principle leads
to the general variational problem (2). The criticality condition ∂�(χ) = 0 leads to
the equilibrium (Euler-Lagrange) equation:

A(χ) = D∗∂G(Dχ) = χ̄∗ (6)

where D∗ : G∗
a → X ∗ is an adjoint operator of D and A : Xc → X ∗ is called

equilibrium operator. The triality structure Se = {〈X ,X ∗〉;A} forms an elementary
system in Gao’s book (Section 4.3, [18]). This abstract form covers the most well-
known equilibrium problems in real-world applications ranging from mathematical
physics in continuous analysis to mathematical programming in discrete systems
[18, 34]. Particularly, if G(g) is quadratic such that ∂2G(g) = H, then the operator
A : Xc → X ∗ is linear and can be written in the triality form: A = D∗HD, which
appears extensively in mathematical physics, optimization, and linear systems (see
the celebrated text by Strang [77]). Clearly, any convex quadratic function G(Dχ)

is objective due to the Cholesky decomposition A = �∗� � 0.
According to the action-reaction duality in physics, if there is no action or

demand (i.e., χ̄∗ = 0), the system has no reaction (i.e., χ = 0). Dually, a real-
world problem should have at least one nontrivial solution for any given nontrivial
input.

Definition 2 (Properly and Well-Posed Problems) A problem is called properly
posed if for any given nontrivial input it has at least one nontrivial solution. It is
called well-posed if the solution is unique.

Clearly, this definition is more general than Hadamard’s well-posed problems in
dynamical systems since the continuity condition is not required. Physically speak-
ing, any real-world problems should be well-posed since all natural phenomena exist
uniquely. But practically, it is difficult to model a real-world problem precisely.
Therefore, properly posed problems are allowed for the canonical duality theory.
This definition is important for understanding the triality theory and NP-hard
problems.
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2.3 Management Optimization

In management science, the decision variable χ is simply a vector x ∈ R
n, which

could represent the products of a manufacture company. The input χ̄∗ can be
considered as market price (or demanding), denoted by f ∈ R

n. Therefore, the
subjective function 〈x, f〉 = xT f in this example is the total income of the company.
The products are produced by workers g ∈ R

m. Due to the cooperation, we have
g = Dx and D ∈ R

m×n is a matrix. Workers are paid by salary g∗ = ∂G(g),
and therefore, the objective function G(g) is the cost (in this example G is not
necessarily to be objective since the company is a man-made system). Then, the
target �(x) = G(Dx)−xT f is the total loss and the minimization problem min �(x)

leads to the equilibrium equation:

DT ∂gG(Dx) = f.

The cost function G(g) could be convex for a small company, but usually nonconvex
for big companies to allow some people having the same salaries.

If the company has to make a profit 1
2α‖x‖2, where α > 0 is a parameter, then

the target function is �(x) = G(Dx)+ 1
2α‖x‖2 −xT f and the minimization problem

min �(x) leads to:

αx = f − DT ∂gG(Dx). (7)

This is a fixed point problem. In this case, if we let ḡ = D̄x = (Dx, x) and Ḡ =
G(g) + 1

2α‖x‖2, then the fixed point problem (7) can be written in the unified form
of:

D̄T ∂ḡḠ(D̄x) = f.

This shows that the fixed point problem is a special case of the general equilibrium
equation (6), a necessary condition of the general minimization problem (Pg).

2.4 Nonconvex Analysis and Boundary-Value Problems

For static systems, the unknown of a mixed boundary-value problem is a vector-
valued function:

χ(x) ∈ Xa = {χ ∈ C[�,Rm]| χ(x) = 0 ∀x ∈ 	χ },
� ⊂ R

d , d ≤ 3, m ≥ 1, ∂� = 	χ ∪ 	t ,
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and the input is χ̄∗ = {f(x) ∀x ∈ �, t(x) ∀x ∈ 	t } [43]. In this case, the external
energy is F(χ) = 〈χ , χ̄∗〉 = ∫

�
χ · f d� + ∫

	t
χ · t d	. In nonlinear analysis, D is

a gradient-like partial differential operator and g = Dχ ∈ Ga ⊂ Lp[�;Rm×d ] is a
two-point tensor field [18] over �. The internal energy G(g) is defined by:

G(g) =
∫

�

U(x, g) d�, (8)

where U(x, g) : � × Ga → R is the stored energy density. The system is (space)
homogeneous if U = U(g). Thus, G(g) is objective if and only if U(x, g) is
objective on an objective set Ga . By the facts that g = Du is a two-point tensor,
which is not considered as a strain measure, but the (right) Cauchy-Green tensor
C = gT g is an objective strain tensor, there must exist a function �(C) such that
G(g) = �(C). In nonlinear elasticity, the function �(C) is usually convex and the
duality C∗ = ∂�(C) is invertible (i.e., Hill’s work-conjugate principle [18]). These
basic truths in continuum physics laid a foundation for the canonical duality theory.

By finite element method, the domain � is divided into m-elements {�e} such
that the unknown function is piecewisely discretized by χ(x) � Ne(x)χe ∀x ∈ �e.
Thus, the nonconvex variational problem (2) can be numerically reformulated in a
global optimization problem:

min{�(χ) = G(Dχ) − 〈χ , f〉 | χ ∈ Xc}, (9)

where χ = {χe} is the discretized unknown χ(x), D is a generalized matrix
depending on the interpolation Ne(x), and Xc is a convex constraint set including the
boundary conditions. The canonical dual finite element method was first proposed
in 1996 [11]. Applications have been given recently in engineering and sciences
[30, 45, 73].

2.5 Lagrangian Mechanics and Initial-Value Problems

In Lagrange mechanics [51, 52], the unknown χ(t) ∈ Xa ⊂ C1[I ;Rn] is a vector
field over a time domain I ⊂ R. Its components {χi(t)} (i = 1, . . . , n) are known
as the Lagrangian coordinates. Its dual variable χ̄∗ is the action vector function in
R

n, denoted by f(t). The external energy F(χ) = 〈χ , χ̄∗〉 = ∫
I
χ(t) · f(t) dt . While

the internal energy G(Dχ) is the so-called action:

G(Dχ) =
∫

I

L(t,χ , χ̇) dt, L = T (χ̇) − U(t,χ), (10)

where Dχ = {1, ∂t }χ = {χ , χ̇} is a vector-valued mapping, T is the kinetic energy
density, U is the potential density, and L = T − U is the Lagrangian density.
Together, �(χ) = G(Dχ) − F(χ) is called the total action. This standard form
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holds from the classical Newton mechanics to quantum field theory.6 Its stationary
condition leads to the well-known Euler-Lagrange equation:

A(χ) = D∗∂G(Dχ) = {−∂t , 1} · ∂L(χ , χ̇) = −∂t∂χ̇T (χ̇)− ∂χU(t,χ) = f. (11)

The system is called (time) homogeneous if L = L(χ , χ̇). In general, the kinetic
energy T must be an objective function of the velocity7 vk = ẋk(χ) of each particle
xk = xk(χ) ∈ R

3 ∀k ∈ {1, . . . , K}, while the potential density U depends on each
problem. For Newtonian mechanics, we have χ(t) = x(t) and T (v) = 1

2m‖v‖2 is
quadratic. If U = 0, the equilibrium equation A(χ) = −mẍ(t) = f includes the
Newton second law: F = mẍ and the third law: −F = f. The first law v = ẋ = v0
holds only if f = 0. In this case, the system has either a trivial solution x = 0 or
infinitely many solutions x(t) = v0t + x0, depending on the initial conditions in
Xa . This simple fact in elementary physics plays a key role in understanding the
canonical duality theory and NP-hard problems in global optimization.

By using the methods of finite difference and least squares [39, 54], the general
nonlinear dynamical system (11) can also be formulated as the same global
optimization problem (9), where χ = {χi(tk)} is the Lagrangian coordinates
χi(i = 1, . . . , n) at each discretized time tk(k = 1, . . . , m), D is a finite difference
matrix, and Xc is a convex constraint set including the initial condition [54]. By the
canonical duality theory, an intrinsic relation between chaos in nonlinear dynamics
and NP-hardness in global optimization was revealed recently in [54].

2.6 Mono-Duality and Duality Gap

Lagrangian duality was developed from Lagrange mechanics since 1788 [51], where
the kinetic energy T (v) = ∑

k
1
2mk‖vk‖2 is a quadratic (objective) function. For

convex static systems (or dynamical systems but U(χ) = 0), the stored energy
G : Ga → R is convex and its Legendre conjugate G∗(σ ) = {〈g; σ 〉 − G(g)| σ =
∂G(g)} is uniquely defined on G∗

a . Thus, by G(Dχ) = 〈Dχ; σ 〉 − G∗(σ ) the total
action or potential �(χ) can be written in the Lagrangian form8 L : Xa ×G∗

a → R:

L(χ , σ ) = 〈Dχ; σ 〉 − G∗(σ ) − 〈χ , f〉 = 〈χ , D∗σ − f〉 − G∗(σ ), (12)

where χ ∈ Xa can be viewed as a Lagrange multiplier for the equilibrium equation
D∗σ = f ∈ X ∗

a . In linear elasticity, L(χ , σ ) is the well-known Hellinger-Reissner

6See Wikipedia: https://en.wikipedia.org/wiki/Lagrangian_mechanics.
7The objectivity of T (v) is also called the isotropy in Lagrange mechanics since v is a vector (see
[52]).
8In the Physics literature, the same notation L is used for both action L(χ , χ̇) and the Lagrangian
L(χ , p) since both represent the same physical quantity.

https://en.wikipedia.org/wiki/Lagrangian_mechanics
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complementary energy [18]. Let Sc = {σ ∈ G∗
a | D∗σ = f} be the so-called statically

admissible space. Then, the Lagrangian dual of the general problem (P) is given by:

(P∗) : max{�∗(σ ) = −G∗(σ )| σ ∈ Sc}, (13)

and the saddle Lagrangian leads to a well-known min-max duality in convex (static)
systems:

min
χ∈Xc

�(χ) = min
χ∈Xa

max
σ∈G∗

a

L(χ , σ ) = max
σ∈G∗

a

min
χ∈Xa

L(χ , σ ) = max
σ∈Sc

�∗(σ ). (14)

This one-to-one duality is the so-called mono-duality in Chapter 1 [18], or the
complementary-dual variational principle in continuum physics. In finite elasticity,
the Lagrangian dual is also known as the Levison-Zubov principle. However, this
principle holds only for convex problems. In real-world problems, the stored energy
G(g) is usually nonconvex in order to model complex phenomena. Its complemen-
tary energy can’t be determined uniquely by the Legendre transformation. Although
its Fenchel conjugate G� : G∗

a → R ∪ {+∞} can be uniquely defined, the Fenchel-
Moreau dual problem:

(P�) : max{��(σ ) = −G�(σ )| σ ∈ Sc} (15)

is not considered as a complementary-dual problem due to Fenchel-Young inequal-
ity:

ga = min{�(χ)| χ ∈ Xc} ≥ max{��(σ )| σ ∈ Sc} = gp, (16)

and gap = ga − gp �= 0 is the well-known duality gap. This duality gap is intrinsic
to all Lagrange-Fenchel-Moreau types of duality problems since the linear operator
D can’t change the nonconvexity of G(Dχ). It turns out that the existence of a pure
stress σ based complementary-dual principle was a well-known debate in nonlinear
elasticity for more than fifty years [58].

Remark 1 (Equilibrium Constraints and Lagrange Multiplier Law) Strictly speak-
ing, the Lagrange multiplier method can be used mainly for equilibrium constraint
in Sc and the Lagrange multiplier must be the solution to the primal problem (see
Section 1.5.2 [18]). The equilibrium equation D∗σ = f must be an invariant under
certain coordinates transformation, say the law of angular momentum conservation,
which is guaranteed by the objectivity of the stored energy G(Dχ) in continuum
mechanics (see Definition 6.1.2, [18]), or by the isotropy of the kinetic energy T (χ̇)

in Lagrangian mechanics [52]. Specifically, the equilibrium equation for Newtonian
mechanics is an invariant under the Galilean transformation; while for Einstein’s
special relativity theory, the equilibrium equation D∗σ = f is an invariant under
the Lorentz transformation. For linear equilibrium equation, the quadratic G(g) is
naturally an objective function for convex systems. Unfortunately, since the concept
of the objectivity is misused in optimization and the notation of the Euclidian
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coordinate x = {xi} is used as the unknown, the Lagrange multiplier method
and the associated augmented methods have been mistakenly used for solving
general nonconvex optimization problems, which produces many artificial duality
gaps [53]. ♣

2.7 Bi-Duality and Conceptual Mistakes

For convex Hamiltonian systems, the action G(Dχ) in (10) is a d.c. (difference
of convex) functional and the Lagrangian has its standard form in Lagrangian
mechanics (see Section 2.5.2 [18] with q(t) = χ and p = σ ):

L(q, p) = 〈q̇; p〉 −
∫

I

[T ∗(p) + U(q)] dt − 〈q, f〉, (17)

where q ∈ Xa ⊂ C1[I,Rn] is the Lagrange coordinate and p ∈ Sa ⊂ C[I,Rn] is
the momentum. In this case, the Lagrangian is a bi-concave functional on Xa × Sa ,
but the Hamiltonian:

H(q, p) = 〈Dq; p〉 − L(q, p) =
∫

I

[T ∗(p) + U(q)] dt (18)

is convex.9 The total action and its canonical dual are [18]

�(q) = max{L(q, p)| p ∈ V∗
a } =

∫

I

[T (q̇) − U(q)] dt − 〈q, f〉 ∀q ∈ Xc (19)

�d(p) = max{L(q, p)| q ∈ Xa} =
∫

I

[U∗(ṗ) − T ∗(p)] dt ∀p ∈ Sc (20)

Clearly, both � and �d are d.c. functionals. In this case, the so-called bi-duality
was first presented in author’s book Chapter 2 [18]:

Theorem 1 (Bi-Duality Theory) For a given convex Hamiltonian system, if (q̄, p̄)

is a critical point of L(q, p) over the time interval I ⊂ R, then we have

�(q̄) = min �(q) ⇔ min �d(p) = �d(p̄) (21)

�(q̄) = max �(q) ⇔ max �d(p) = �d(p̄). (22)

The mathematical proof of this theory was given in Section 2.6 [18] for convex
Hamiltonian systems and in Corollary 5.3.6 [18] for d.c. programming problems.

9This is the reason that instead of the Lagrangian, the Hamiltonian is extensively used in dynamics.
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This bi-duality revealed not only an interesting dynamical extremum principle in
periodic motion but also an important truth in convex Hamiltonian systems.

Remark 2 (Least Action Principle and Conceptual Mistakes) The least action
principle plays a central role in physics from the classical Newtonian mechanics,
general relativity (Einstein-Hilbert action), to the modern string theory. Credit for
the formulation of this principle is commonly given to Pierre Louis Maupertuis,
who felt that “Nature is thrifty in all its actions.” It was historically called “least”
because its solution requires finding the path that has the least value [9], say Fermat’s
principle in optics. However, in Hamiltonian systems it should be accurately called
the principle of stationary action since its solution does not minimize the total
action. Actually, the validity of the least action principle has remained obscure in
physics for several centuries. As a footnote in their celebrated book (Section 1.2,
[52]), Landau and Lifshitz pointed out that the least action principle holds only
for a sufficient small time interval, not for the whole trajectory of the system.
Unfortunately, this is not true in general since the total action could be a concave
functional within a sufficient small time interval.

Theorem 1 shows that a convex Hamiltonian system is controlled by the bi-
duality, which revealed the following truths (see page 77 [18]):

The least action principle is not valid for any periodic motion.
It holds for the whole trajectory of the system if the potential U(q) = 0.

The bi-duality theory has been challenged by M.D. Voisei, C. Zălinescu, and his
former student R. Strugariu in a paper published in a dynamical systems journal
[78]. Instead of finding any possible mistakes in author’s work, they created an
artificial “Lagrangian”:

L(x, y) := −1

2
α‖x‖2 − 1

2
β‖y‖2 + 〈a, x〉〈b, y〉, (Equation (1) in [78])

and the associated “total action” f (x) as well as its “dual action” g(y):

f (x) = max{L(x, y)| y ∈ Y } = −1

2
α‖x‖2 + 1

2
β−1〈a, x〉2‖b‖2 ∀x ∈ X

g(y) = max{L(x, y)| x ∈ X} = −1

2
β‖y‖2 + 1

2
α−1〈b, y〉2‖a‖2 ∀y ∈ Y

By using these elementary functions in linear algebra, they produced a series of
strange counterexamples to against the bi-duality theory in convex Hamiltonian
systems presented by the author in Chapter 2 [18]. They claimed: “Because our
counter-examples are very simple, using quadratic functions defined on whole
Hilbert (even finite-dimensional) spaces, it is difficult to reinforce the hypotheses
of the above mentioned results in order to keep the same conclusions and not obtain
trivialities.”

Clearly, the quadratic function L(x, y) created by Zălinescu et al. is totally
irrelevant to the Lagrangian L(q, p) in Lagrangian mechanics and in Gao’s book
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[18]. Without the differential operator D = ∂t , the quadratic d.c. function f (x)

(or g(y)) is defined on one-scale space X (or Y ) and is unbounded. Therefore, its
critical point does not produce any motion. This basic mistake shows that these
people don’t have necessary knowledge not only in Lagrangian mechanics (the
time derivative D = ∂t is necessary for any dynamical systems) but also in d.c.
programming (unconstrained quadratic d.c. programming does not make any sense).
It also shows that these people even don’t know what the Lagrangian coordinate is,
otherwise, they would never use a time-independent vector x ∈ R

n as an unknown
in dynamical systems.

Moreover, since there is neither input in L(x, y) nor initial/boundary conditions
in X, all the counterexamples produced by Zălinescu et al. are simply not problems
but only artificial “models.” Since they don’t follow the basic rules in mathematical
modeling, such as the objectivity, symmetry, conservation, and constitutive laws,
etc., these artificial “models” are very strange and even ugly (see Examples 3.3, 4.2,
4.4 [78]). This type of mistakes shows that these people don’t know the difference
between the modeling and problems. ♣

3 Unified Problem and Canonical Duality-Triality Theory

In this section, we simply restrict our discussion in finite-dimensional space X . Its
element χ ∈ X could be a vector, a matrix, or a tensor.10 In this case, the linear
operator D is a generalized matrix11 D : X → G and G is a generalized matrix
space equipped with a natural norm ‖g‖. Let Xa ⊂ X be a convex subset (with
only linear constraints) and X ∗

a be its dual set such that for any given input χ̄∗ =
f ∈ X ∗

a the subjective function 〈χ , f〉 ≥ 0 ∀χ ∈ Xa . Although the objectivity is
necessary for real-world modeling, the numerical discretization of Dχ could lead
to a complicated function G(Dχ) which may not be objective in g = Dχ . Also in
operations research, many challenging problems are artificially proposed. Thus, the
objectivity required in Gao and Strang’s original work on nonlinear elasticity has
been relaxed by the canonical duality since 2000 [20].

10Tensor is a geometrical object in mathematics and physics, which is defined as a multi-
dimensional array satisfying a transformation law, see https://en.wikipedia.org/wiki/Tensor. A
tensor must be independent of a particular choice of coordinate system (frame-invariance). But,
this terminology has been also misused recent years in the optimization literature such that any
multi-dimensional array of data is called tensor [4]. This mistake has been recognized recently in
the preface of [67].
11A generalized matrix D = {Di···j

α···γ } is a multi-dimensional array but not necessary to satisfy a
transformation law, so it is not a tensor. In order to avoid confusion, it can be called a generalized
matrix, or simply gentrix.

https://en.wikipedia.org/wiki/Tensor
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3.1 Canonical Transformation and Gap Function

Definition 3 (Canonical Function and Transformation)
A real-valued function � : Ea → R is called a canonical function if its domain

Ea is convex and the duality relation ξ∗ = ∂�(ξ) : Ea → E∗
a is bijective.

For a given real-valued function G : Ga → R, if there exist a mapping ξ : Ga →
Ea and a canonical function � : Ea → R such that

G(g) = �(ξ(g)) ∀g ∈ Ga, (23)

the transformation (23) is called the canonical transformation.

The canonical function is not necessary to be convex. Actually, in many real-
world applications, �(ξ) is usually concave. For example, in differential geometry
and finite deformation theory (see [18]) the objective function G(g) is the deforma-
tion Jacobian:

G(g) =
√

det(gT g), g = ∇χ . (24)

If we chose ξ = det(gT g) as the geometrical measure, which is the third invariant of
the Riemannian metric tensor gT g and usually denoted as I3, the canonical function
�(I3) is then a concave function of the scale measure I3(g).

The canonical duality is a fundamental principle in sciences and oriental philos-
ophy, which underlies all natural phenomena. Therefore, instead of the objectivity
in continuum physics, a generalized objective function G(g) is used in the canonical
duality theory under the following assumption.

Definition 4 (Generalized Objective Function) For a given real-valued function
G : Ga → R, if there exist a measure ξ : Ga → Ea and a canonical function
� : Ea → R such that the following conditions hold:

(D1) Positivity: G(g) ≥ 0 ∀g ∈ Ga ;
(D2) Canonicality: G(g) = �(ξ(g)) ∀g ∈ Ga ,

then G : Ga → R is called to be a generalized objective function.

The canonical transformation plays an important role in mathematical modeling
and nonlinear analysis. Let � = ξ ◦ D : Xa → Ea be the so-called geometrically
admissible operator and 〈ξ ; ς〉 : E × E∗ → R be the bilinear form which puts E
and E∗ in duality. By (D2), we have Xc = {χ ∈ Xa| �(χ) ∈ Ea}. The problem (P)

can be equivalently written in the following canonical form:

(Pg) : min {�(χ) = �(�(χ)) − 〈χ , f〉| χ ∈ Xc} . (25)

By the facts that the canonical duality is a universal principle in nature, the canonical
measure �(χ) is not necessarily to be objective, and the spaces X , E could be at
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different physical scale with totally different dimensions, the canonical problem
(Pg) can be used to study general optimization problems in multi-scale complex
systems. The criticality condition of (Pg) is governed by the fundamental principle
of virtual work:

〈�t(χ)δχ; ς〉 = 〈δχ ,�∗
t (χ)ς〉 = 〈δχ , f〉 ∀δχ ∈ Xc, (26)

where �t(χ) = ∂�(χ) represents a generalized Gâteaux (or directional) derivative
of �(χ), its adjoint �∗

t is called the balance operator, ς = ξ∗(ξ) = ∂�(ξ) and
ξ∗ : Ea → E∗

a is a canonical dual (or constitutive) operator. The strong form of this
virtual work principle is called the canonical equilibrium equation:

A(χ) = �∗
t (χ)ξ∗(�(χ)) = f. (27)

A system governed by this equation is called a canonical system and is denoted as
(see Chapter 4, [18]):

Sa = {〈Xa,X ∗
a 〉, 〈Ea; E∗

a 〉; (�, ξ∗)}.

Definition 5 (Classification of Nonlinearities) The system Sa is called geometri-
cally nonlinear (resp., linear) if the geometrical operator � : Xa → Ea is nonlinear
(resp., linear); the system is called physically (or constitutively) nonlinear (resp.,
linear) if the canonical dual operator ξ∗ : Ea → E∗

a is nonlinear (resp., linear);
the system is called fully nonlinear (resp., linear) if it is both geometrically and
physically nonlinear (resp., linear).

Both geometrical and physics nonlinearities are basic concepts in nonlinear field
theory. The mathematical definition was first given by the author in 2000 under
the canonical transformation [20]. A diagrammatic representation of this canonical
system is shown in Figure 1.

This diagram shows a symmetry broken in the canonical equilibrium equation,
i.e., instead of �∗, the balance operator is �∗

t . It was discovered by Gao and Strang
[43] that by introducing a complementary operator �c(χ) = �(χ) − �t(χ)χ , this
locally broken symmetry is recovered by a so-called complementary gap function:

Fig. 1 Diagrammatic representation for a canonical system



Canonical Duality-Triality Theory: Unified Understanding for Modeling. . . 17

Gap(χ , ς) = 〈−�c(χ); ς〉, (28)

which plays a key role in global optimization and the triality theory. Clearly, if
� = D is linear, then Gap = 0. Thus, the following statement is important to
understand complexity:

Only the geometrical nonlinearity leads to nonconvexity in optimization, bifur-
cation in analysis, chaos in dynamics, and NP-hard problems in complex systems.

3.2 Complementary-Dual Principle and Analytical Solution

For a given canonical function � : Ea → R, its conjugate �∗ : E∗
a → R can be

uniquely defined by the Legendre transformation:

�∗(ς) = sta{〈ξ ; ς〉 − �(ξ)| ξ ∈ Ea}, (29)

where sta{f (χ)| χ ∈ X } stands for finding the stationary value of f (χ) on X , and
the following canonical duality relations hold on Ea × E∗

a :

ς = ∂�(ε) ⇔ ε = ∂�∗(ς) ⇔ �(ε) + �∗(ς) = 〈ε; ς〉. (30)

If the canonical function is convex and lower semicontinuous, the Gâteaux
derivative ∂ should be replaced by the sub-differential and �∗ is replaced by the
Fenchel conjugate ��(ς) = sup{〈ξ ; ς〉 − �(ξ)| ξ ∈ Ea}. In this case, (30) is
replaced by the generalized canonical duality:

ς ∈ ∂�(ε) ⇔ ε ∈ ∂��(ς) ⇔ �(ε) + ��(ς) = 〈ε; ς〉 ∀(ξ , ς) ∈ Ea × E∗
a .

(31)

If the convex set Ea contains inequality constraints, then (31) includes all the
internal KKT conditions [14, 53]. In this sense, a KKT point of the canonical form
�(χ) is a generalized critical point of �(χ).

By the complementarity �(�(χ)) = 〈�(χ); ς〉 − �∗(ς), the canonical form of
�(χ) can be equivalently written in Gao and Strang’s total complementary function
� : Xa × E∗

a → R [43]:

�(χ , ς) = 〈�(χ); ς〉 − �∗(ς) − 〈χ , f〉. (32)

Then, the canonical dual function �g : Sc → R can be obtained by the canonical
dual transformation:

�g(χ) = sta{�(χ , ς)| χ ∈ Xa} = G�
ap(ς) − �∗(ς), (33)
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where G�
ap(ς) = sta{〈�(χ); ς〉 − 〈χ , f〉| χ ∈ Xa}, which is defined on the

canonical dual feasible space Sc = {ς ∈ E∗
a | �∗

t (χ)ς = f ∀χ ∈ Xa}. Clearly,
Sc �= ∅ if (P) is properly posed.

Theorem 2 (Complementary-Dual Principle [18]) The pair (χ̄ , ς̄) is a critical
point of �(χ , ς) if and only if χ̄ is a critical point of �(χ) and ς̄ is a critical point
of �g(ς). Moreover:

�(χ̄) = �(χ̄ , ς̄) = �g(ς̄). (34)

Proof The criticality condition ∂�(χ̄ , ς̄) = 0 leads to the following canonical
equations:

�(χ̄) = ∂�∗(ς̄), �∗
t (χ̄)ς̄ = f. (35)

The theorem is proved by the canonical duality (30) and the definition of �g . �
Theorem 2 shows a one-to-one correspondence of the critical points between the

primal function and its canonical dual. In large deformation theory, this theorem
solved the fifty-year-old open problem on complementary variational principle
and is known as the Gao principle in literature [58]. In real-world applications,
the geometrical operator � is usually quadratic homogeneous, i.e., �(αχ) =
α2�(χ) ∀α ∈ R. In this case, we have [43] �t(χ)χ = 2�(χ), �c(χ) = −�(χ),
and

�(χ , ς) = Gap(χ , ς) − �∗(ς) − 〈χ , f〉 = 1

2
〈χ , G(ς)χ〉 − �∗(ς) − 〈χ , f〉, (36)

where G(ς) = ∂2
χGap(χ , ς). Then, the canonical dual function �g(ς) can be

written explicitly as:

�g(ς) = {�(χ , ς)| G(ς)χ = f ∀χ ∈ Xa} = −1

2
〈[G(ς)]+f, f〉 − �∗(ς), (37)

where G+ represents a generalized inverse of G.

Theorem 3 (Analytical Solution Form [18]) If ς̄ ∈ Sc is a critical point of
�g(ς), then:

χ̄ = [G(ς̄)]+f (38)

is a critical point of �(χ) and �(χ̄) = �(χ̄ , ς̄) = �g(ς̄). Dually, if χ̄ ∈ Xc is a
critical point of �(χ), it must be in the form of (38) for a critical point ς̄ ∈ Sc of
�g(ς).

This unified analytical solution form holds not only for general global opti-
mization problems in finite-dimensional systems [25] but also for a large class
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of nonlinear boundary-/initial-value problems in nonconvex analysis and dynamic
systems [21, 23, 54].

3.3 Triality Theory and NP-Hard Criterion

In order to study extremality property for the general problem (Pg), we need
additional assumptions for the generalized objective function G(Dχ).

Assumption 1 (Canonically Convex Function) Let G(Dχ) be a generalized
objective function, i.e., there exist a measure � : Xa → Ea and a canonical function
� : Ea → R such that G(Dχ) = �(�(χ)). We assume:

(A1) Nonlinearity: �(χ) : Xa → Ea is a quadratic measure,
(A2) Regularity: �(�(χ)) is twice continuously differentiable for all χ ∈ Xa ,
(A3) Convexity: � : Ea → R is strictly convex.

One should emphasize that although �(ξ) is required to be strictly convex on
Ea in this section, the composition �(�(χ)) is usually nonconvex on Xa due to
the geometrical nonlinearity. The canonical duality theory presented in this section
can be generalized to the problems governed by high-order nonlinear �χ) and
canonically concave function �(ξ) (see [18, 22, 46, 56]).

Definition 6 (Degenerate and Nondegenerate Critical Points, Morse Function)
Let χ̄ ∈ Xc be a critical point of a real-valued function � : Xc → R. χ̄ is called
degenerate (resp. nondegenerate) if the Hessian matrix of �(χ) is singular (resp.,
nonsingular) at χ̄ . The function � : Xc → R is called a Morse function if it has no
degenerate critical points.

Theorem 4 (Triality Theory [20]) Suppose that � : Ea → R is convex, (χ̄ , ς̄)

is a nondegenerate critical point of �(χ , ς), and Xo × So is a neighborhood12 of
(χ̄ , ς̄).

If ς̄ ∈ S+
c = {ς ∈ Sc| G(ς) � 0}, then

�(χ̄) = min
χ∈Xc

� (χ) = max
ς∈S+

c

�g (ς) = �g(ς̄). (39)

If ς̄ ∈ S−
c = {ς ∈ Sc| G(ς) ≺ 0}, then we have either

�(χ̄) = max
χ∈Xo

� (χ) = max
ς∈So

�g (ς) = �g(ς̄), (40)

or (if dim � = dim �g)

�(χ̄) = min
χ∈Xo

� (χ) = min
ς∈So

�g (ς) = �g(ς̄). (41)

12The neighborhood Xo of χ̄ means that on which, χ̄ is the only critical point (see page 140 [18]).
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The statement (39) is the so-called canonical min-max duality, which can be
proved easily by Gao and Strang’s work in 1989 [43]. Clearly, ς ∈ S+

c if and
only if Gap(χ , ς) ≥ 0 ∀χ ∈ X . This duality theory shows that the Gao-
Strang gap function provides a global optimum criterion. The statements (40) and
(41) are called the canonical double-max and double-min dualities, respectively,
which can be used to find local extremum solutions. The triality theory shows
that the nonconvex minimization problem (P) is canonically dual to the following
maximum stationary problem:

(Pd) : max sta{�g(ς)| ς ∈ S+
c }. (42)

Theorem 5 (Existence and Uniqueness Criteria [25]) For a properly posed (P),
if the canonical function � : Ea → R is convex, intS+

c �= ∅, and

lim
α→0+ �g(ςo + ας) = −∞ ∀ςo ∈ ∂S+

c , ∀ς ∈ S+
c , (43)

then (Pd) has at least one solution ς̄ ∈ S+
c and χ̄ = [G(ς̄)]+f is a solution to (P).‘

The solution is unique if H = G(ς̄) � 0.

Proof Under the required conditions, −�g : S+
c → R is convex and coercive and

intS+
c �= ∅. Therefore, (Pg) has at least one solution. If H � 0, then �g : S+

c → R

is strictly concave and (Pg) has a unique solution. �
This theorem shows that if intS+

c �= ∅ the nonconvex problem (Pg) is canonically
dual to (Pg) which can be solved easily. Otherwise, the problem (Pg) is canonically
dual to the following minimal stationary problem, i.e., to find a global minimum
stationary value of �g on Sc:

(Ps) : min sta{�g(ς)| ς ∈ Sc}, (44)

which could be really NP-hard since �g(ς) is nonconvex on the nonconvex set Sc.
Therefore, a conjecture was proposed in [24].

Conjecture 1 (Criterion of NP-Hardness) A properly posed problem (Pg) is NP-
hard only if int S+

c = ∅.

Remark 3 (History of Triality and Challenges) The triality theory was discovered
by the author during his research on post-buckling of a large deformed elastic beam
in 1996 [12], where the primal variable u(x) is a displacement vector in R

2 and ς(x)

is a canonical dual stress also in R
2. Therefore, the triality theory was correctly

proposed in nonconvex analysis, which provides for the first time a complete set
of solutions to the post-buckling problem. Physically, the global minimizer ū(x)

represents a stable buckled beam configuration (happened naturally), the local
minimizer is an unstable buckled state (happened occasionally), while the local
maximizer is the unbuckled beam state. Mathematical proof of the triality theory
was given in [18] for one-D nonconvex variational problems (Theorem 2.6.2) and
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for finite-dimensional optimization problems (Theorem 5.3.6 and Corollary 5.3.1).
In 2002, the author discovered some counterexamples to the canonical double-min
duality when dim � �= dim �g . Therefore, the triality theory was presented in an
“either-or” form since the double-max duality is always true but the double-min
duality was remarked by certain additional condition (see Remark 1 in [22] and
Remark for Theorem 3 in [23]). Recently, the author and his co-workers proved that
the canonical double-min duality holds weakly when dim � �= dim �g [6, 61]. It
was also discovered by using the canonical dual finite element method that the local
minimum solutions in nonconvex mechanics are very sensitive not only to the input
and boundary conditions of a given system but also to such artificial conditions as
the numerical discretization and computational precision, etc. The triality theory
provides a precise mathematical tool for studying and understanding complicated
natural phenomena.

The triality theory has been repeatedly challenged by M.D. Voisei and C.
Zălinescu in a set of at least 11 papers (see [29]). These papers fall into three groups.
In the first group (say [78, 83]), they oppositely choose piecewise linear functions
for G and quadratic functions for F as counterexamples to against the canonical
duality theory with six conclusions on Gao and Strang’s original work including
[83]: “About the (complementary) gap function one can conclude that it is useless at
least in the current context. The hope for reading an optimization theory with diverse
applications is ruined . . .” Clearly, they made conceptual mistakes. In the second
group, Voisei and Zălinescu chose an artificial problem with certain symmetry such
that S+

a = ∅. Such a problem can be solved easily by linear perturbation (see [62]).
The counterexamples in the third group are simply those such that dim � �= dim �g .
This type of counterexamples were first discovered by Gao in 2002 so it was
emphasized in [22, 23] that the canonical double-min duality holds under certain
additional constraints (see Remark 1 in [22] and Remark for Theorem 3 in [23]).
But neither [23] nor [22] was cited by Zălinescu and his co-authors in their papers.
Honest people can easily understand the motivation of these challenges.

The canonical duality-triality theory has been successfully used for solving a
wide class problems in both global optimization and nonconvex analysis [39],
including certain challenging problems in nonconvex analysis [19], nonlinear
PDEs [33], large deformation mechanics [27], and NP-hard integer programming
problems [24, 31]. ♣

4 Applications in Complex Systems

Applications to nonconvex constrained global optimization have been discussed
in [40, 53]. This section presents applications to two general global optimization
problems.
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4.1 Unconstrained Nonconvex Optimization Problem

(Pg) : min

{

�(χ) =
m∑

s=1

�s(�s(χ)) − 〈χ , f〉| χ ∈ Xc

}

, (45)

where the canonical measures ξ s = �s(χ) could be either a scalar or a generalized
matrix, �k(ξ k) are any given canonical functions, such as polynomial, exponential,
logarithm, and their compositions, etc. For example, if χ ∈ Xc ⊂ R

n and

G(Dχ) =
∑

i∈I

1

2
αiχ

T Qiχ +
∑

j∈J

1

2
αj

(
1

2
χT Qjχ + βj

)2

+
∑

k∈K
αk exp

(
1

2
χT Qkχ

)

+
∑

�∈L

1

2
α�χ

T Q�χ log(
1

2
χT Q�χ), (46)

where {Qs} are positive-definite matrices to allow the Cholesky decomposition
Qs = DT

s Ds for all s ∈ {I, J,K,L} and {αs, βs} are physical constants, which
could be either positive or negative under Assumption 1. This general function
includes naturally the so-called d.c. functions (i.e., difference of convex functions).
Let p = dim I, q = dim J + dimK + dimL. By using the canonical measure:

ξ = {ξs} =
{

1

2
αiχ

T Qiχ ,
1

2
χT Qrχ

}

∈ Ea = R
p × R

q
+,

where R
q
+ = {x ∈ R

q | xi ≥ 0 ∀i = 1, . . . , q}, G(g) can be written in the canonical
form:

�(ξ) =
∑

i∈I
ξi +

∑

j∈J

1

2
αj (ξj + βj )

2 +
∑

k∈K
αk exp ξk +

∑

�∈L
α�ξ� log ξ�.

Thus, ∂�(ξ) = {1, ςr } in which ς = {αj (ξj +βj ), αk exp ξk, α�(log ξ� −1)} ∈ E∗
a ,

and

E∗
a = {ς ∈ R

q | ςj ≥ −αjβj ∀j ∈ J, ςk ≥ αk ∀k ∈ K, ς� ∈ R ∀� ∈ L}.

The conjugate of � can be easily obtained as:

�∗(ς) =
∑

j∈J

(
1

2αj

ς2
j + βjςj

)

+
∑

k∈K
ςk(ln(α−1

k ςk)− 1) +
∑

�∈L
α� exp(α−1

� ς� − 1).

(47)

Since �(χ) is quadratic homogenous, the gap function and G�
ap in this case are
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Gap(χ , ς) = 1

2
χT G(ς)χ , G�

ap(ς) = 1

2
fT [G(ς)]+f,

G(ς) =
∑

i∈I
αiQi +

∑

s∈{J,K,L}
ςsQs .

Since �g(ς) = −G�
ap(ς) − �∗(ς) is concave and S+

c is a closed convex set, if for
the given physical constants and the input f such that S+

c �= ∅, the canonical dual
problem (Pg) has at least one solution ς̄ ∈ S+

c ⊂ R
q and χ̄ = [G(ς̄)]+f ∈ Xc ⊂

R
n is a global minimum solution to (P). If n � q, the problem (Pg) can be much

easier than (P).

4.2 D.C. Programming

It is known that in Euclidean space every continuous global optimization problem on
a compact set can be reformulated as a d.c. optimization problem, i.e., a nonconvex
problem which can be described in terms of d.c. functions (difference of convex
functions) and d.c. sets (difference of convex sets) [82]. By the fact that any
constraint set can be equivalently relaxed by a nonsmooth indicator function, general
nonconvex optimization problems can be written in the following standard d.c.
programming form:

min{f (x) = g(x) − h(x) | ∀x ∈ X }, (48)

where X = R
n, g(x), h(x) are convex proper lower semicontinuous functions on

R
n. A more general model is that g(x) can be an arbitrary function [82]. Clearly,

this d.c. programming problem is too abstract. Although it can be used to “model” a
very wide range of mathematical problems [47], it is impossible to have an elegant
theory and powerful algorithms for solving this problem without detailed structures
on these arbitrarily given functions. As a result of extensive studying during the last
thirty years (cf. [48, 79]), even some very simple d.c. programming problems are
considered as NP-hard [82].

Based on the canonical duality theory, a generalized d.c. programming problem
(Pdc) can be presented in a canonical d.c. minimization problem form:

(Pdc) : min

{

�(χ) = �(�(χ)) − 1

2
〈χ , Hχ〉 − 〈χ , χ̄∗〉| χ ∈ Xc

}

, (49)

where H is a given positive-definite generalized matrix.
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Since the canonical measure ξ = �(χ) ∈ Ea is nonlinear and �(ξ) is convex
on Ea , the composition �(�(χ)) has a higher-order nonlinearity than a quadratic
function. Therefore, the coercivity for the target function �(χ):

lim‖χ‖→∞ �(χ) = ∞ (50)

should be naturally satisfied for many real-world problems, which is a sufficient
condition for existence of a global minimal solution to (Pdc) (otherwise, the set
Xc should be bounded). Clearly, this generalized d.c. minimization problem can be
used to model a reasonably large class of real-world problems in multi-disciplinary
fields [34, 49].

4.3 Fixed Point Problems

Fixed point problem is a well-established subject in the area of nonlinear analysis,
which is usually formulated in the following form:

(Pfp) : x = F(x), (51)

where F : Xa → Xa is nonlinear mapping and Xa is a subset of a normed
space X . Problem (Pfp) appears extensively in engineering and sciences, such
as equilibrium problems, mathematical economics, game theory, and numerical
methods for nonlinear dynamical systems. It is realized [72] that this well-studied
field is actually a special subject of global optimization.

Lemma 2 If F is a potential operator, i.e., there exists a real-valued function
P : Xa → R such that F(x) = ∇P(x), then (Pfp) is equivalent to the following
stationary point problem:

x̄ = arg sta

{

�(x) = P(x) − 1

2
‖x‖2 | ∀x ∈ Xa

}

. (52)

Otherwise, (Pfp) is equivalent to the following global minimization problem:

x̄ = arg min

{

�(x) = 1

2
‖F(x) − x‖2 | ∀x ∈ Xa

}

. (53)

Proof First, we assume that F(x) is potential operator, then x is a stationary point
of �(x) if and only if ∇�(x) = ∇P(x) − x = 0, thus x is also a solution to (Pfp)

since F(x) = ∇P(x).
Now, we assume that F(x) is not a potential operator. By the fact that �(x) =

1
2‖F(x) − x‖2 ≥ 0 ∀x ∈ X , the vector x̄ is a global minimizer of �(x) if and only
if F(x̄) − x̄ = 0. Thus, x̄ must be a solution to (Pfp). �
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By the facts that the global minimizer of an unconstrained optimization problem
must be a stationary point, and

1

2
‖F(x)−x‖2 = P(x)− 1

2
‖x‖2, P (x) = 1

2
〈F(x), F (x)〉−〈x, F (x)〉+‖x‖2, (54)

the global minimization problem (53) is a special case of the stationary point
problem (52). Mathematically speaking, if a fixed point problem has a trivial
solution, then F(x) must be a homogeneous operator, i.e., F(0) = 0. For general
problems, F(x) should have a nonhomogeneous term f ∈ R

n. Thus, we can let
P(x) = G(Dx) − 〈x, f〉 such that D : X → G ⊂ R

m is a linear operator and
G : G → R is a generalized objective function. Thus, the fixed point problem (Pfp)

can be reformulated in the following stationary point problem:

(Pfp) : x̄ = arg sta

{

�(x) = G(Dx) − 1

2
‖x‖2 − 〈x, f〉 | ∀x ∈ Xc

}

. (55)

Clearly, the fixed point problem is actually equivalent to a d.c. programming
problem. Canonical duality theory for solving this fixed point problem is given
recently in [72].

4.4 Mixed Integer Nonlinear Programming (MINLP)

The decision variable for (MINLP) is χ = {y, z} ∈ Ya × Za , where Ya is a
continuous variable set and Za is a set of integers. It was shown in [69] that for
any given integer set Za , there exists a linear transformation Dz : Za → Z =
{±1}n. Thus, based on the unified problem (Pg), a general MINLP problem can be
proposed as:

(Pmi) : min{�(y, z) = G(Dyy, Dzz) − 〈y, s〉 − 〈z, t〉 | (y, z) ∈ Yc × Zc}, (56)

where f = (s, t) is a given input, Dχ = (Dyy, Dzz) ∈ Gy × Z is a multi-scale
operator, and

Yc = {y ∈ Ya | Dyy ∈ Gy}, Zc = {z ∈ Za| Dzz ∈ Z}.

In Ya , certain linear constraints are given. Since the set Za is bounded, by
Assumption 1 either G : Gy → R is coercive or Gy is bounded. This general
problem (Pmi) covers many real-world applications, including the so-called fixed
cost problem [41]. Let

g = �z(z) = (Dzz) ◦ (Dzz) ∈ Ez = R
n+, (57)
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where x ◦ y = {xiyi}n is the Hadamard product in R
n, the integer constraint in Z

can be relaxed by the canonical function �(g) = {0 if g ≤ e, ∞ otherwise}, where
e = {1}n. Therefore, the canonical form of (Pmi) is

min{�(y, z) = �(�(y, z)) + �(�z(z)) − 〈y, s〉 − 〈z, t〉 | y ∈ Yc}. (58)

Since the canonical function �(g) is convex, semicontinuous, its Fenchel conjugate
is

��(σ ) = sup{〈g; σ 〉 − �(g)|g ∈ R
n} = {〈e; σ 〉 if σ ≥ 0, ∞ otherwise}.

The generalized canonical duality relations (31) are σ ≥ 0 ⇔ g ≤ e ⇔
〈g − e; σ 〉 = 0. The complementarity shows that the canonical integer constraint
g = e can be relaxed by the σ > 0 in continuous space. Thus, if ξ = �(χ) is a
quadratic homogenous operator and the canonical function �(ξ) is convex on Ea ,
the canonical dual to (Pmi) is

(Pg
mi) : max

{

�g(ς , σ ) = −1

2
〈[G(ς, σ )]+f, f〉 − ��(ς) − 〈e; σ 〉| (ς , σ ) ∈ S+

c

}

,

(59)

where G(ς , σ ) depends on the quadratic operators �(χ) and �z(z), S+
c is a convex

open set:

S+
c = {(ς, σ ) ∈ E∗

a × R
n+| G(ς , σ ) � 0, σ > 0}. (60)

The canonical duality-triality theory has be used successfully for solving mixed
integer programming problems [35, 41]. Particularly, for the quadratic integer
programming problem:

(Pqi) : min

{

�(x) = 1

2
xT Qx − xT f| x ∈ {−1, 1}n

}

, (61)

we have S+
c = {σ ∈ R

n+| G(σ ) = Q + 2Diag (σ ) � 0, σ > 0} and

(Pg
qi) : max

{

�g(σ ) = −1

2
fT [G(σ )]+f − eT σ | σ ∈ S+

c

}

(62)

which can be solved easily if intS+
c �= ∅. Otherwise, (Pqi) could be NP-hard since

S+
c is an open set, which is a conjecture proposed in [24]. In this case, (Pqi) is

canonically dual to an unconstrained nonsmooth/nonconvex minimization problem
[25].



Canonical Duality-Triality Theory: Unified Understanding for Modeling. . . 27

4.5 General Knapsack Problem and Analytical Solution

Knapsack problems appear in real-world decision-making processes in a wide
variety of fields, such as finding the least wasteful way to cut raw materials,
resource allocation where there are financial constraints, selection of investments
and portfolios, selection of assets for asset-backed securitization, and generating
keys for the Merkle-Hellman and other knapsack cryptosystems. Mathematically, a
general quadratic knapsack problem can be formulated as an integer programming
problem:

(Pqk) : min

{

�qk(z) = 1

2
zT Qz − cT z| z ∈ {0, 1}n, vT z ≤ Vc

}

, (63)

where Q ∈ R
n×n is a given symmetrical, usually indefinite, matrix, c, v ∈ R

n are
two given vectors, and Vc > 0 is a design parameter.

The knapsack problem has been studied for more than a century, with early
works dating as far back as 1897. The main difficulty in this problem is the integer
constraint z ∈ {0, 1}n, so that even the most simple linear knapsack problem:

(Plk) : max
{
�lk(z) = −cT z| z ∈ {0, 1}n, vT z ≤ Vc

}
, (64)

is listed as one of Karp’s 21 NP-complete problems [50].
By the fact that α◦z2 = α◦z ∀z ∈ {0, 1}n, ∀α ∈ R

n, for any given symmetrical
Q ∈ R

n×n we can choose an α such that Qα = Q + 2Diag (α) � 0. Thus, by cα =
c + α, the problem (Pq) can be equivalently written in the so-called α-perturbation
form [25]:

(Pα) : min

{

�α(z) = 1

2
zT Qαz − cT

α z | vT z ≤ Vc, z ∈ {0, 1}n
}

. (65)

Let rank Qα = r ≤ n, there must exist (see [77]) an L ∈ R
r×n and H ∈ R

r×r

with rank L = rank H = r and H � 0 such that Qα = 4LT HL. Similar to the
α-perturbed canonical dual problem (Pg

ip) given in [25], the canonical dual problem

(Pg
q ) can be reformulated as:

(Pg
α ) : max

ζ∈S+
c

{

�g
α(σ , τ ) = −1

2
Abs[φ(σ , τ )] − 1

2
σ T H−1σ − τVb + d

}

, (66)

where Vb = Vc − 1
2

∑n
i=1 vi, d = 1

8

∑n
i=1(2αi + ∑n

j=1 Qij ) − 1
2

∑n
i=1(ci + αi),

S+
c = {ζ = (σ , τ ) ∈ R

m+1| τ ≥ 0}. (67)
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φ(σ , τ ) = c − τv − 2LT σ − 1

2
Qe, (68)

The notation Abs[φ(σ , τ )] denotes Abs[φ(σ , τ )] = ∑n
i=1 |φi(σ , τ )|.

Theorem 6 (Analytical Solution to Quadratic Knapsack Problem) For any
given Vc > 0, v, c ∈ R

n+, α ∈ R
n+ such that Qα = Q + 2Diag (α) = 4LT HL

and H � 0, if ζ̄ = {σ̄ , τ̄ } is a solution to (Pg
α ), then

z̄ = 1

2

{
φi(σ̄ , τ̄ )

|φi(σ̄ , τ̄ )| + 1

}n

(69)

is a global optimal solution to (Pα) and

�α(z̄) = min
z∈Za

�α(z) = max
ζ∈S+

c

�g
α(ζ ) = �g

α(ζ̄ ). (70)

Theorem 7 (Existence and Uniqueness Theorem to Quadratic Knapsack Prob-
lem) For any given Vc > 0, v, c ∈ R

n+, α ∈ R
n+ such that Qα = Q + 2Diag (α) =

4LT HL, H � 0, and ζ̄ = {σ̄ , τ̄ } is a solution to (Pg
α ), if

φi(σ̄ , τ̄ ) �= 0 ∀i = 1, . . . , n (71)

then the canonical dual feasible set S+
c �= ∅ and the knapsack problem (Pα) has

a unique solution. Otherwise, if φi(σ̄ , τ̄ ) = 0 for at least one i ∈ {1, . . . , n}, then
S+

c = ∅ and (Pα) has at least two solutions.

The canonical dual for the linear knapsack problem has a very simple form:

(Pg
lk) : max

τ≥0

{

�
g
lk(τ ) = −1

2

n∑

i=1

(|ci − τvi | − τvi) − τVc

}

. (72)

Corollary 1 (Analytical Solution to Linear Knapsack Problem) For any given
Vc > 0, v, c ∈ R

n+, if τ̄ > 0 is a solution to (Pg
lk), then

z̄ = 1

2

{
ci − τ̄ vi

|ci − τ̄ vi | + 1

}n

(73)

is a global optimal solution to (Pl ) and

�lk(z̄) = �
g
lk(τ̄ ) (74)

Corollary 2 (Existence and Uniqueness Theorem to Linear Knapsack Problem)
For any given v, c ∈ R

n+, if there exists a constant τc > 0 such that

ψi(τc) = τcvi − ci �= 0 ∀i = 1, . . . , n (75)
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then the knapsack problem (Plk) has a unique solution. Otherwise, if ψi(τc) = 0
for at least one i ∈ {1, . . . , n}, then (Plk) has at least two solutions.

Detailed proof of these results is given by Gao in [31].
The so-called multi-dimensional knapsack problem (MKP) is a generalization of

the linear knapsack problem, that is:

(Pmk) : max cT z, s.t. Wz ≤ ω, z ∈ {0, 1}n, (76)

where c ∈ R
n+ and ω ∈ R

m+ (m < n) are two given nonnegative vectors,

W ∈ R
m×n+ = {W = {wij } ∈ R

m×n| wij ≥ 0 ∀i = 1, . . . , m, j = 1, . . . , n}

is a given nonnegative matrix such that wij ≤ ωj ,
∑n

j=1 wij ≥ ωi . Clearly, this
problem has multi-knapsacks {ωi}m. Therefore, instead of the multi-dimensional,
the correct name for (Pmk) should be the multi-kanpsacks problem. This problem
has applications in many fields including capital budgeting problems and resource
allocation [66]. The canonical dual problem for (Pmk) is

(Pg
mk) : max

τ∈Rm+

⎧
⎨

⎩
�

g
mk(τ ) = −1

2

n∑

i=1

(|ci −
m∑

j=1

wjiτj | −
m∑

j=1

wjiτj ) − ωT τ

⎫
⎬

⎭
.

(77)

Thus, if τ̄ = {τ̄i} is a global maximizer of (Pg
mk), the analytic solution to (Pmk) is

z = 1

2

(
ci − ∑m

j=1 wji τ̄j

|ci − ∑m
j=1 wji τ̄j | + 1

)

. (78)

4.6 Bilevel Optimization and Optimal Control

Bilevel optimization appears extensively in optimal design and control of complex
systems. A general formulation of the bilevel optimization problem can be written
as follows:

(Pbo) : min {T (x, y) | x ∈ Xa, y ∈ Ya}, (79)

s.t. y ∈ arg min{�(v, x) | v ∈ Ya}, (80)

where T represents the top-level target (or leader) function, � is the lower-level
target (or follower) function. Similarly, x ∈ Xa represents upper-level decision
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vector and y ∈ Ya represents the lower-level variable. Clearly, this is a coupled
nonlinear optimization problem, which is fundamentally difficult even for convex
systems.

To solve this coupling problem numerically, an alternative iteration method can
be used [30]:

(1) For a given xk−1, solve the lower-level problem first to obtain

yk ∈ arg min{�(y, xk−1)| y ∈ Ya}. (81)

(2) Then for the fixed yk , solve the upper-level problem for

xk = arg min{T (x, yk) | x ∈ Xa}. (82)

These two single-level optimization problems can be solved by the canonical duality
theory, and the sequence {xk, yk} can converge to an optimal solution of (Pbo) under
certain conditions.

As an example, let us consider the following optimal control problem:

(Poc) : min {�(ν,χ) | ν ∈ U , χ ∈ X }, (83)

s.t. χ̇ = a(χ , ν, t) ∀t ∈ I = [to, tb], (84)

where χ(t) is the state, ν(t) is the control; X is a feasible set including the boundary
conditions: χ(to) = χo and ψ(χ(tb), tb) = 0. The upper-level target � is usually a
quadratic continuous-time cost functional:

�(ν,χ) = 1

2

∫

I

[
χT (t)Q(t)χ(t)+νT (t)R(t)ν(t)−2χT (t)P(t)ν(t)

]
dt+�b(χ(tb))

(85)

where Q(t) ∈ R
d×d , R(t) ∈ R

p×p are positive semi-definite and positive definite,
respectively, on the time domain I = [to, tb], �b(χ(tb)) = 1

2χT (tb)Qbχ(tb). New
to this cost function is the coupling term χT (t)P(t)ν(t), where P(t) ∈ R

d×p is
a given matrix function of t , which plays an important role in alternative iteration
methods for solving the general nonlinear optimal control problem (Poc).

For conservative systems, the nonlinear operator a(χ , ν, t) is a potential operator,
i.e., there exists an action (or Lagrangian) �(χ , χ̇ , ν) such that for any given control
ν(t) ∈ U the differential equation (84) can be written in the following least action
form:

χ ∈ arg min{�(χ , χ̇ , ν) | χ ∈ X } (86)

Although such a Lagrangian does not exist for dissipative systems, the least squares
method can always be used so that (84) can also be written in this minimization
form.
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In order to reformulate the challenging control problem (Poc) in function space,
the finite element method can be used such that the time domain I is divided into
n elements {Ie = [tk, tk+1} and in each Ie, the unknown fields can be numerically
discretized as:

ν(t) = Ne
u(t)ue, χ(t) = Ne

x(t)xe ∀t ∈ Ie, e = 1, . . . , n, (87)

where Ne
u(t) is an interpolation matrix for ν(t), ue = (ν(tk), ν(tk+1)) is a nodal

control vector; similarly, Ne
x(t) is an interpolation matrix for χ(t) and xe =

(χ(tk),χ(tk+1)) is a nodal state vector. Let Ua ⊂ R
p×n be an admissible nodal

control space, Xa ⊂ R
d×n be an admissible state space, u = {νk} ∈ Ua , and

x = {χk} ∈ Xa , then both the cost functional � and the action � can be numerically
written as:

�(ν,χ) ≈ �h(u, x) = 1

2
xT Qhx + 1

2
uT Rhu − xT Phu, (88)

�(χ , χ̇ , ν) ≈ �h(x, u) = G(Dx, u) − F(x, u), (89)

where G(Dx, u) and F(x, u) depend on the action �(χ , χ̇ , u),

Qh =
n∑

e=1

∫

Ie

NT
x (t)Q(t)Nx(t) dt + 1

2
NT

x (tb)QbNx(tb),

Rh =
n∑

e=1

∫

Ie

NT
u (t)R(t)Nu(t) dt,

Ph =
n∑

e=1

∫

Ie

NT
x (t)P(t)Nu(t) dt .

Therefore, the optimal control problem (Poc) can be written in a bilevel optimization
problem:

(Ph
oc) : min {�h(u, x) | u ∈ Ua, x ∈ Xa}, (90)

s.t. x ∈ arg min{�h(y, u) | y ∈ Xa} (91)

The canonical duality theory has been successfully applied for solving nonlinear
dynamical systems [54, 71] and the relation between chaos and NP-hardness was
first discovered by Latorre and Gao [54]. Combined with an alternative iteration
method, the canonical duality theory can be used to efficiently solve the general
bilevel optimization problems.
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4.7 Multi-Level Multi-Targets MINLP and Topology
Optimization

Multi-target optimization is concerned with mathematical optimization problems
involving more than one target function to be optimized simultaneously. Since the
target is a vector-valued function, it is also known as vector optimization, multi-
criteria optimization, or Pareto optimization. By the fact that the objectivity has
been misused in optimization literature, this important research area has been mis-
guidedly called multi-objective optimization. Multi-target optimization problems
appear extensively in multi-scale complex systems where optimal decisions need
to be taken in the presence of trade-offs between two or more conflicting targets.
Therefore, the multi-level optimization and MINLP problems are naturally involved
with the multi-target optimization. In real-world applications, the multi-level multi-
target mixed integer nonlinear programming (MMM) could have many different
formulations. Based on the canonical duality theory, a simple form of MMM
problems can be proposed as the following:

(P3m) : min {T (z, x̄, ȳ) | x̄ ∈ Xa, ȳ ∈ Ya, z ∈ Za}, (92)

s.t. x̄ ∈ arg min{�x(x, y, z) | x ∈ Xa}, (93)

ȳ ∈ arg min{�y(x, y, z) | y ∈ Ya}. (94)

Without loss of generality, we assume that the leader variable z ∈ Za is a discrete
vector, the follower variables x ∈ Xa and y ∈ Ya are continuous vectors; the top-
level (leader) target T : Za × Xa × Ya → R

m is a vector-valued function, which
is not necessary to be objective, while the lower-level (follower) targets �x and �y

are real-valued functions such that the follower problems can be written respectively
in the canonical form (P), where the objectivity and subjectivity are required. If we
let

u = {x, y, · · · } ∈ Ua = Xa × Ya × · · · ,

�(u, z) = {�x(u, z),�y(u, z), · · · } : Ua × Za → R
d , d ≥ 2,

then the MMM problem can be written in a general form:

(P3m) : min {T (z, u) | u ∈ Ua, z ∈ Za}, (95)

s.t. u ∈ arg min{�(v, z) | v ∈ Ua}. (96)

Clearly, the (P3m) should be one of the most challenging problems proposed so far
in global optimization even if both T and � are linear vector-valued functions.

Topology optimization is a mathematical tool that optimizes the best mass
density distribution ρ(x) within a design domain � ⊂ R

d in order to obtain the
best structural performance governed by the minimum total potential principle:
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min

{

�(u, ρ) =
∫

�

U(∇u)ρ d� −
∫

	t

uT t d	 | u ∈ U
}

(97)

where u : � → R
d is a displacement vector field, the design variable ρ(x) ∈ {0, 1}

is a discrete scalar field, which takes ρ(x) = 1 at a solid material point x ∈ � and
ρ(x) = 0 at a void point x ∈ �. By using finite element method, the design domain
� is meshed with n disjointed finite elements {�e} and let

u(x) = N(x)ue ρ(x) = ze ∈ {0, 1} ∀x ∈ �e,

the total potential energy can be numerically written as:

�(u, ρ) ≈ �h(u, z) = zT c(u) − uT f

where u = {ue} ∈ Ua ⊂ R
m is a nodal displacement vector, z ∈ Za ⊂ {0, 1}n is a

discretized design vector, and

c(u) =
{∫

�e

U(∇N(x)ue) d�

}

∈ R
n+, f =

{∫

	t e

N(x)T t(x) d	

}

∈ R
m.

Let

Za = {z ∈ {0, 1}n| vT z ≤ ω},

where v = {ve} ∈ R
n+ and ve ≥ 0 is the volume of the e-th element, and ω > 0

is the desired volume of structure. The correct mathematical problem for general
topology optimization has been proposed recently by Gao [30, 31]:

Problem 1 (Topology Optimization for General Materials) For a given external
load f and the desired volume ω > 0, to solve the bilevel MINLP problem:

(Pto) : min {T (z, u) | u ∈ Ua, z ∈ Za}, (98)

s.t. u ∈ arg min{�h(v, z) | v ∈ Ua}. (99)

The top-level target function T depends on each design problem, which could be

T1(z, u) = uT f − zT c(u), (100)

T2(z, u) = 1

2
zT Q(u)z − zT c(u). (101)

where Q(u) is a symmetrical matrix whose diagonal elements {Qii}ni=1 = 0 and
Qij (u) is the negative effect to the structure if the i-th and j -th elements are elected.
Clearly, the top-level is a linear knapsack problem for T = T1, or a quadratic



34 D. Gao

knapsack problem if T = T2. If Za = {z ∈ {0, 1}n| Wz ≤ ω}, then the top
level is a multi-knapsack problem.

In topology limit design, the top-level target could be a vector-valued function
depending on certain design parameter α, say:

T3(α, z, u) = {α, Ti(z, u)}, i = 1, 2. (102)

If α is the volume ω, then (Pto) is a topology optimization for lightweight design
problem:

Problem 2 (Topology Lightweight Design) For the given external load and ωb >

ωa > 0, to solve

(Plw) : min {T3(ω, z, u) | vT z ≤ ω, ω ∈ [ωa, ωb], u ∈ Ua, z ∈ {0, 1}n}, (103)

s.t. u ∈ arg min{�h(v, z) | v ∈ Ua}. (104)

This is a bilevel multi-target knapsack problem.
If α = −η and η > 0 is the external loading factor, then by simply choosing

T3(α, z, u) = −zT c(u) we have the following problem.

Problem 3 (Topology Limit Design) For the given external load distribution f and
the plastic yield condition in Ua , to solve

(Pld ) : max {zT c(u) | η > 0, u ∈ Ua, z ∈ Za}, (105)

s.t. u ∈ arg min{zT c(v) − η | vT f = 1, v ∈ Ua}. (106)

If α = {ω,−η}, the combination of (Plw) and (Pld ) forms a new problem:

Problem 4 (Topology Lightweight Limit Design) For the given ωb > ωa > 0,
the external load distribution f and the plastic yield condition in Ua , to solve

(Pll ) : min {ω,−zT c(u)} ∀ ω ∈ [ωa, ωb], η > 0, u ∈ Ua, z ∈ Za, (107)

s.t. u ∈ arg min{zT c(v) − η | vT f = 1, v ∈ Ua}. (108)

Due to a conflict between min ω and max{η = zT c(u)}, this MMM problem could
exist a (possibly infinite) number of Pareto optimal solutions.

The canonical duality theory is particularly useful in topology optimization
for full-stress (or plastic limit) design. In this type of problems, it is much more
convenient to use the stress as the unknown in analysis. Therefore, dual to (Pto) the
problem for full-stress design can be proposed as:

(P∗
to) : max {T ∗(z, σ ) | z ∈ Za, σ ∈ S+

a }, (109)

s.t. σ ∈ arg max{�d
h(τ , z) | τ ∈ S+

a }, (110)
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The top-level dual target T d(z, σ ) can be

T d
1 (z, σ ) = zT cd(σ ), (111)

T d
2 (z, σ ) = zT cd(σ ) + 1

2
zT Q∗(σ )z, (112)

where cd(σ ) ∈ R
n+ is a positive vector such that each of its components cd

e (σ ) is
the pure complementary energy in the e-th element �e. The feasible space S+

a is
a bounded convex set with an inequality constraint ‖σ‖g ≤ σc, where ‖σ‖g is a
generalized norm which depends on the yield condition adopted, say either Trisca
or von Mises criterion [11]. Corresponding to T3, we have

T d
3 (α∗, z, σ ) = {α∗, T d

i (z, σ )}, i = 1, 2, (113)

where α∗ could be −ω, η, or other design parameters.
For linear elastic structures, the total potential energy is a quadratic function of u:

�h(u, z) = 1

2
uT K(z)u − uT f, (114)

where K(z) = {zeKe} ∈ R
n×n is the overall stiffness matrix, obtained by assem-

bling the sub-matrix zeKe for each element �e. Accordingly, c(u) = 1
2

{
uT

e Keue

}

is the strain energy vector. In this case, the global optimal solution for the lower-
level minimization problem (99) is simply governed by a linear equilibrium equation
K(z)u = f. Then for T = T1, the bilevel knapsack problem (Pto) can be written in
the single-level reduction:

(Ple) : min
{

fT u − zT c(u) | K(z)u = f, vT z ≤ Vc, z ∈ {0, 1}n
}

. (115)

This knapsack-type problem makes a perfect sense in topology optimization, i.e.,
among all elements {�e} with the given volume vector v = {ve}, one should keep
only those who stored more strain energy density c(u). Based on the canonical dual
solution to the knapsack problem, a canonical duality algorithm (CDT) is developed
with successful applications.

In term of the stress, the full-stress design problem (P∗
f s) for linear elastic

structures can be simply given as:

(P∗
f s) : max{zT cd(σ ) | z ∈ Za, σ ∈ S+

a }, (116)

where cd(σ ) = { 1
2σ T

e Ceσ e} ∈ R
n+ is the stress energy vector, Ce is the compliance

matrix of the e-th element,

S+
a = {σ ∈ R

p| D∗σ = f, ‖σ‖g ≤ σc}, (117)
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Fig. 2 The design domain for a long cantilever beam with external load

in which σc > 0 is a material constant, and D∗ ∈ R
m×p is a balance operator

depending on the polynomial interpolation in the mixed finite element method [10,
11].

Example Let us consider the 2-D classical long cantilever beam (see Figure 2).
The correct topology optimization model for this benchmark problem should be
(Ple) [31]. We let ω = 0.4 and the pre-given domain ω0 = 1 is discretized by
nex×ney = 180×60 elements. Computational results obtained by the CDT and by
the popular methods SIMP and BESO are summarized in Figure 3, where the C =
zT c(u) is the total strain energy. The parameters used are penal = 3, rmin = 1 for
BESO and penal = 3, rmin = 1.5, f t = 1 for SIMP. Clearly, the precise solid-
void solution produced by the CDT method is much better than the approximate
results produced by other methods. In order to look the strain energy distribution
c = {ce(u)} in the optimal structure, we let nex × ney = 80 × 30. Figure 4 shows
clearly that the CDT can produce mechanically sound structure with homogeneous
distribution of strain energy density. Detailed study on canonical duality theory for
solving topology optimization problems is given recently in [30–32].

5 Symmetry, NP-Hardness, and Perturbation Methods

The concept of symmetry is closely related to the duality and, in certain sense, can be
viewed as a geometric duality. Mathematically, symmetry means invariance under
transformation. By the canonicality, the object G(g) possesses naturally certain
symmetry. If the subject F(χ) = 0, then �(χ) = G(Dχ) = �(�(χ)) and (Pg)

should have either a trivial solution or multiple solutions due to the symmetry.
In this case, �d(ς) = −�∗(ς) is concave and, by the triality theory, its critical
point ς̄ ∈ S−

c is a global maximizer, and χ̄ = [G(ς̄)]+f = 0 is the biggest local
maximizer of �(χ), while the global minimizers must be χ̄(ς̄) for those ς̄ ∈ ∂S+

c

such that
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Fig. 3 Computational results by SIMP (a), BESO (b), and CDT (c) with ω = 0.4.

�g(ς̄) = min{−�∗(ς)| det G(ς) = 0 ∀ς ∈ Sc}. (118)

Clearly, this nonconvex constrained concave minimization problem could be really
NP-hard. Therefore, many well-known NP-hard problems in computer science and
global optimization are not well-posed problems. Such as the max-cut problem,
which is a special case of quadratic integer programming problem (Pqi). Due to
the symmetry Q = QT and f = 0, its canonical dual problem has multiple solutions
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TOP: V=0.4, nex=80, ney=30, C=178.6881

BESO: V=0.4, nex=80, ney=30, C=176.4944

CDT: V=04, nex=80, ney=30, C=170.8685

(a) SIMP: C = 178.688

(b) BESO: C = 176.494

(c) CDT: C =170.869
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Fig. 4 Strain energy distributions by SIMP (a), BESO (b), and CDT (c) with ω = 0.4.

on the boundary of S+
c . The problem is considered as NP-complete even if Qij = 1

for all edges. Strictly speaking, this is not a real-world problem but only a perfect
geometrical model. Without sufficient geometrical constraints in Xa , the graph is
not physically fixed and any rigid motion is possible. However, by adding a linear
perturbation f �= 0, this problem can be solved efficiently by the canonical duality
theory [85]. Also, it was proved by the author [25, 35] that the general quadratic
integer problem (Pqi) has a unique solution as long as the input f �= 0 is big enough.
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Fig. 5 Graphs of �(x) (solid) and �g(ς) (dashed) ( α = 1, λ = 2 )

These results show that the subjective function plays an essential role for symmetry
breaking which leads to a well-posed problem. To explain the theory and understand
the NP-hard problems, let us consider a simple problem.

Example 1 (Nonconvex Minimization in R
n)

min

{

�(x) = 1

2
α(

1

2
‖x‖2 − λ)2 − xT f ∀x ∈ R

n

}

, (119)

where α, λ > 0 are given parameters. Let �(x) = 1
2‖x‖2 ∈ R, and the canonical

dual function is �d(ς) = − 1
2ς−1‖f‖2 − λς − 1

2α−1ς2, which is defined on Sc =
{ς ∈ R| ς �= −λ, ς = 0 iff f = 0}. The criticality condition ∂�d(ς) = 0 leads to
a canonical dual equation:

(α−1ς + λ)ς2 = 1

2
‖f‖2. (120)

This cubic equation has at most three real solutions satisfying ς1 ≥ 0 ≥ ς2 ≥ ς3,
and, correspondingly, {xi = f/ςi} are three critical points of �(x). By the fact
that ς1 ∈ S+

a = {ς ∈ R | ς ≥ 0}, x1 is a global minimizer of �(x). While for
ς2, ς3 ∈ S−

a = {ς ∈ R | ς < 0}, x2 and x3 are local min (for n = 1) and local max
of �(x), respectively (see Figure 5(a)).

If we let f = 0, the graph of �(x) is symmetric (i.e., the so-called double-
well potential or the Mexican hat for n = 2 [23]) with infinite number of global
minimizers satisfying ‖x‖2 = 2λ. In this case, the canonical dual �g(ς) =
− 1

2α−1ς2 − λς is strictly concave with only one critical point (local maximizer)
ς3 = −αλ < 0. The corresponding solution x3 = f/ς3 = 0 is a local maximizer.
By the canonical dual equation (120) we have ς1 = ς2 = 0 located on the boundary
of S+

a , which corresponding to the two global minimizers x1,2 = ±√
2λ for n = 1,

see Figure 1(b). If we let f = −2, then the graph of �(x) is quasi-convex with only
one critical point and (120) has only one solution ς1 ∈ S+

c (see Figure 1(c)).

This simple example reveals an important truth, i.e., the symmetry is the key that
leads to multiple solutions. Theoretically speaking, nothing is perfect in this real
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world, a perfect symmetry is not allowed for any real-world problem. Thus, any
real-world problem must be well-posed [29]. In reality, it is impossible to precisely
model any real-world problem; although most of the NP-hard problems are artificial,
they appear extensively not only in global optimization and computer science but
also in chaotic dynamical systems, decision science, and philosophy, say, the well-
known Buridan’s ass paradox in its most simple version.

Example 2 (Paradox of Buridan’s Ass and Perturbation) A donkey facing two
identical hay piles starves to death because reason provides no grounds for choosing
to eat one rather than the other.

The mathematical problem of this paradox was formulated in [31]:

max{c1z1 + c2z2| c1 = c2 = c, z1 + z2 ≤ 1, (z1, z2) ∈ {0, 1}2}. (121)

Clearly, this is a linear knapsack problem in R
2. Due to the symmetries: v1 = v2 = 1

and c1 = c2 = c, the solution to (77) is τc = c. Therefore, ψi(τc) = 0 ∀i = 1, 2
and by Theorem 2 this problem has multiple (two) solutions, which is NP-hard to
this donkey.

In order to solve such NP-hard problems, the key idea is to break the symmetry.
A linear perturbation method has been proposed by the author and his co-workers.
This method is based on a simple truth, i.e., it is impossible to have the two identical
hay piles. Thus, by adding a linear perturbation term ερ1 to the cost function to break
the symmetry, then for c = 2, ε = 0.05, the solution to (77) is τc = 2.0184. So, the
condition (75) holds for i = 1, 2 and by the canonical duality theory, the perturbed
Buridan’s ass problem has a unique solution z = (1, 0).

Perturbation method has been successfully applied for solving many challenging
problems including hard cases of trust region method [7], NP-hard problems in
integer programming [84, 85], and nonconvex constrained optimization in Euclidean
geometry [62]. By the fact that the subjective function F(χ) = 〈χ , f〉 plays a
key role in real-world problems, the following conjecture was proposed recently
[26, 28].

Conjecture 2 For any given properly posed problem (Pg) under the Assumption 1,
there exists a constant fc > 0 such that (Pg) has a unique solution in S+

c as long
as ‖f‖ ≥ fc.

This conjecture shows that any properly posed problems are not NP-hard if the
input ‖f‖ is big enough. Generally speaking, most NP-hard problems have multiple
solutions located either on the boundary or the outside of S+

c . Therefore, a quadratic
perturbation method can be suggested as:

�δk
(χ , ς) = �(χ , ς) + 1

2
δk‖χ − χk‖2

= 1

2
〈χ , Gδk

(ς)χ〉 − �∗(ς) − 〈χ , fδk
〉 + 1

2
δk〈χk,χk〉,
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where δk > 0, χk (k = 1, 2, . . . ) are perturbation parameters, Gδk
(ς) = G(ς) +

δkI, and fδk
= f + δkχk . Thus, the original canonical dual feasible space S+

c can
be enlarged to S+

δk
= {ς ∈ Sc| Gδk

(ς) � 0} such that a perturbed canonical dual
problem can be proposed as:

(Pg
k ) : max

{
min{�δk

(χ , ς)| χ ∈ Xa}| ς ∈ S+
δk

}
. (122)

Based on this problem, a canonical primal-dual algorithm has been developed with
successful applications for solving sensor network optimization problems [70] and
chaotic dynamics [54].

6 Connections with Popular Methods and Techniques

By the fact that the canonical duality-triality theory is a unified mathematical
methodology with solid foundation in physics, it is naturally connected to many
other powerful methods and techniques in different fields. This paper discusses only
two well-known methods in optimization and a so-called composite minimization
problem. Connections with other theories and methodologies can be found in
[34, 56].

6.1 Relation with SDP Programming

Now, let us show the relation between the canonical duality theory and the popular
semi-definite programming relaxation.

Theorem 8 Suppose that � : Es → R is convex and ς̄ ∈ E∗
a is a solution of the

problem:

(Psd ) : min{g + �∗(ς)} s.t.

(
G(ς) f

fT 2g

)

� 0 ∀ς ∈ E∗
a , g ∈ R, (123)

then χ = [G(ς)]+f is a global minimum solution to the nonconvex problem (P).

Proof The problem (Pd) can be equivalently written in the following problem (see
[86]):

min
{
g + �∗(ς)| g ≥ G�

ap(ς), G(ς) � 0 ∀ς ∈ E∗
a

}
. (124)

Then, by using the Schur complement lemma, this problem is equivalent to (Psd ).
The theorem is proved by the triality theory. �
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It was proved [35] that for the same problem (Pqi), if we use different
geometrical operator:

�(x) = xxT ∈ Ea = {ξ ∈ R
n×n| ξ = ξT , ξ � 0,

rank ξ = 1, ξii = 1 ∀i = 1, . . . , n},

and the associated canonical function �(ξ) = 1
2 〈ξ ; Q〉 + {0 if ξ ∈

Ea,+∞ otherwise}, where 〈ξ ; ς〉 = tr(ξT ς), we should obtain the same canonical
dual problem (Pd

qi). Particularly, if f = 0, then (Pqi) is a typical linear semi-definite
programming:

min
1

2
〈ξ ; Q〉 s.t. ξ ∈ Ea.

Since Ea is not bounded and there is no input, this problem is not properly posed,
which could have either no solution or multiple solutions for a given indefinite
Q = QT .

The SDP programming has been used for solving a canonical dual problem in
post-buckling analysis of a large deformed elastic beam [1].

6.2 Relation to Reformulation-Linearization/Convexification
Technique

The Reformulation-Linearization/Convexification Technique (RLT) proposed by H.
Sherali and C.H. Tuncbilek [75] is one well-known novel approach for efficiently
solving general polynomial programming problems. The key idea of this technique
is also to introduce a geometrically nonlinear operator ξ = �(x) such that the
higher-order polynomial object G(x) can be reduced to a lower-order polynomial
�(ξ). Particularly, for the quadratic minimization problems with linear inequality
constraints in Xa :

(Pq) : min

{

�(x) = 1

2
xT Qx − xT f| x ∈ Xa

}

, (125)

by choosing the quadratic transformation:

ξ = �(x) = x
−→⊗ x ∈ Ea ⊆ R

n×n, i.e., ξ = {ξij } = {xixj }, ∀1 ≤ i ≤ j ≤ n,

(126)

where
−→⊗ represents the Kronecker product (avoiding symmetric terms, i.e., ξij =

ξji), the quadratic object G(g) can be reformulated as the following first-level RLT
linear relaxation:
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G(x) = 1

2
xT Qx = 1

2

n∑

k=1

qkkξkk +
n−1∑

k=1

n∑

l=k+1

qklξkl = �(ξ). (127)

The linear �(ξ) can be considered as a special canonical function since ς = ∂�(ξ)

is a constant and �∗(ς) = 〈ξ ; ς〉 − �(ξ) ≡ 0 is uniquely defined. Thus, using
�(ξ) = 〈ξ ; ς〉 to replace G(x) and considering ξ as an independent variable, the
problem (Pq) can be relaxed by the following RLT linear program:

(PRLT ) : min {�(ξ) − 〈x, f〉| x ∈ Xa, ξ ∈ Ea} . (128)

Based on this RLT linear program, a branch and bound algorithm was designed [76].
It is proved that if (x̄, ξ̄) solves (PRLT ), then its objective value yields a lower bound
of (Pq) and x̄ provides an upper bound for (Pq). Moreover, if ξ̄ = �(x̄) = x̄

−→⊗ x̄,
then x̄ solves (Pq).

This technique has been significantly adapted along with supporting approx-
imation procedures to solve a variety of more general nonconvex constrained
optimization problems having polynomial or more general factorable objective and
constraint functions [74].

By the fact that for any symmetric Q, there exists D ∈ R
n×m such that Q =

DT HD with H = {hkk = ±1, hkl = 0 ∀k �= l} ∈ R
m×m, the canonicality

condition (127) can be simplified as:

G(Dx) = 1

2
(Dx)T H(Dx) = 1

2

m∑

k=1

hkkξkk = �(ξ), (129)

ξ = �(x) = (Dx)
−→⊗ (Dx) ∈ R

m×m. (130)

Clearly, if the scale m � n, the problem (PRLT ) will be much easier than the
problems using the geometrically nonlinear operator ξ = x

−→⊗ x. Moreover, if we are
using the Lagrange multiplier ς ∈ E∗

a = {ς ∈ R
m×m| 〈�(x); ς〉 ≥ 0 ∀x ∈ R

n} to
relax the ignored geometrical condition ξ = �(x) in (PRLT ), the problem (Pq) can
be equivalently relaxed as:

(Pϒ) : min
x∈Xa

min
ξ∈Ea

max
ς∈E∗

a

{ϒ(x, ξ , ς) = �(ξ) + 〈�(x) − ξ ; ς〉 − 〈x, f〉} . (131)

Thus, if (x̄, ξ̄ , ς̄) is a solution to (Pϒ), then x̄ should be a solution to (Pq). By using
the sequential canonical quadratic transformation �(x) = �p(. . . (�1(x) . . . ) (see
Chapter 4, [18]), this technique can be used for solving general global optimization
problems.
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6.3 Relation to Composite Minimization

The so-called composite minimization in optimization literature is given in the
following form [57]:

min
x

h(c(x)), (132)

where c : Rn → R
m is called the inner function, and h : Rm → R ∪ {−∞,+∞}

is called the outer function. Although there are some mathematical assumptions,
such that c(x) is smooth and h(y) may be nonsmooth but is usually convex, this
is another abstractly proposed problem. Therefore, this problem appears mainly
from numerical approximation methods, for example, the least squares method for
solving the fixed point problem (53).

In numerical analysis or matrix completion [5], the variable x is a d × n matrix
X = {xi} = {xα

i } (α = 1, . . . , d, i = 1, . . . , n). In sensor network communication
systems, the component xi ∈ R

d is the position of the i-th sensor and the well-
studied sensor localization problem is to find the sensor locations {xi} by solving
the following nonlinear system [70]:

‖xi − xj‖ = dij ∀(i, j) ∈ Ad , ‖xi − ak‖ = eik ∀(i, k) ∈ Ae (133)

where {dij } and {eik} are given distances, ak ∈ R
d (k = 1, · · · ,m) are specified

anchors, and Ad and Ae are two index sets. By the least squares method, this
problem can be formulated as a fourth-order polynomial minimization:

min

⎧
⎨

⎩
�(X) =

∑

(i,j)∈Ad

1

2
wij (‖xi − xj‖2 − dij )

2 +
∑

(i,k)∈Ae

1

2
ωik(‖xi − ak‖2 − eik)

2

⎫
⎬

⎭
,

where wij and ωik are given weights. Clearly, this is a composite minimization if
we let

c(X) = {cij (X), cik(X)}, cij = xi − xj , cik = xi − ak}, (134)

h(c) =
∑

(i,j)∈Ad

1

2
wij (‖cij‖2 − dij )

2 +
∑

(i,k)∈Ae

1

2
ωik(‖cik‖ − eik)

2. (135)

In this case, the matrix-valued function c(X) = g(X) = DX = {xi − xj , xi − ak}
is the finite difference operator in numerical analysis and h(c) = G(g) is a fourth-
order nonconvex polynomial of the linear operator g = DX.

We can also let

c(X) = {cij (X), cik(X)}, cij = ‖xi−xj‖2−dij , cik = ‖xi−ak‖2−eik, (136)
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h(c) =
∑

(i,j)∈Ad

1

2
wij c

2
ij +

∑

(i,k)∈Ae

1

2
ωikc

2
ik. (137)

In this case, �(X) = h(c(X)) is also a composite function but now c(X) = ξ(X) =
�(X) is a nonlinear operator and �(ξ) = h(ξ) is a convex function. Therefore, the
composition:

�(X) = h(c(X)) = G(DX) = �(�(X))

is indeed a canonical transformation. The sensor localization problem is considered
to be NP-hard by traditional theories and methods even if d = 1 [3]. From the
point view of the canonical duality theory, this problem has usually multiple global
minimizers due to the lacking of the subjective function. Therefore, by introducing
a linear perturbation F(X) = 〈X, T〉 = tr(XT T), the perturbed sensor localization
problem min{�(X) = �(�(X)) − F(X)} can be solved deterministically by the
canonical duality theory in polynomial time [55, 68, 70].

Generally speaking, the composite function is a special case of the canonical
transformation G(g) = �◦�(g) if h(y) = �(y) is convex, x = g, and �(x) = c(x)

as the geometrical measure. It is an objective function if c(x) = xT x. In this case,
h(c(x)) is the so-called convex composite function. In real-world applications, g(x)

could be again a composite function. For multi-scale systems, g can be defined by
(see [45]):

g(x) = (D1, D2, . . . , Dk)x = {gi (x)}, gi (x) = Dix, (138)

each gi is a geometrical measure with dimension different from other gj , j �= i.
Correspondingly:

G(Dx) = �(�(x)), �(x) = �k ◦ �k−1 ◦ · · · ◦ �1(x) (139)

is called the sequential canonical transformation (see Chapter 4, [18]). Particularly,
if every �i(ξ i−1) is a convex polynomial function of ξ i−1 = �i−1 (i =
1, . . . , k, �0 = x), the composition �(�(x)) is the canonical polynomial
function. The sequential canonical transformation for solving high-order polynomial
minimization problems have been studied in [18, 46].

7 Conclusions

Based on the necessary conditions and basic laws in physics, a unified multi-scale
global optimization problem is proposed in the canonical form:

�(χ) = G(Dχ) − F(χ) = �(�(χ)) − 〈χ , f〉. (140)
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The object G depends only on the model and G(g) ≥ 0 ∀g ∈ Ga is necessary;
G should be an objective function for physical systems, but it is not necessary
for artificial systems (such as management/manufacturing processes and numerical
simulations, etc.). The subject F depends on each properly posed problem and must
satisfy F(χ) ≥ 0 together with necessary geometrical constraints for the output χ ∈
Xa and equilibrium conditions for the input f ∈ X ∗

a . The geometrical nonlinearity of
�(χ) is necessary for nonconvexity in global optimization, bifurcation in nonlinear
analysis, chaos in dynamics, and NP-hardness in computer science.

Developed from large deformation nonconvex analysis/mechanics, the canonical
duality-triality is a precise mathematical theory with solid foundation in physics
and natural root in philosophy, so it is naturally related to the traditional theories
and powerful methods in global optimization and nonlinear analysis. By the fact
that the canonical duality is a universal law of nature, this theory can be used not
only to model real-world problems but also for solving a wide class of challenging
problems in multi-scale complex systems. The conjectures proposed in this paper
can be used for understanding and clarifying NP-hard problems.

It is author’s hope that by reading this paper, the readers can have a clear
understanding not only on the canonical duality-triality theory and its potential
applications in multi-disciplinary fields, but also on the generalized duality-triality
principle and its role in modeling/understanding real-world problems.
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