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Preface

Mathematics and Computer Science stimulate and inspire each other since the
formation of the latter in the last century. Mathematical thinking can be traced
back to ancient times where nothing like a computer existed. Nevertheless, people
were interested in counting, measuring, and comparing objects. Therefore, not
only different types of numbers evolved but also the desire of calculating hidden
properties of things and processes. This led to algorithms, one of the sources and
research objects of nowadays Computer Science.

The increasing power offered by High-Performance Computing (HPC) within
the last decades had and has a big impact on the applicability and the design
of mathematical algorithms. Existing algorithms could be successfully applied to
more and more complex problems from natural and engineering sciences. This
has brought new insight into the nature of these problems. Moreover, new ideas
for understanding and improving the mathematical methods have been born. Last
but not the least, due to these advances, the mathematical modeling of real-world
problems has made significant progress. The latter is one of the most important
means to combine the chances of HPC with the developments in mathematics
and mathematical methods in order to satisfy the increasing needs coming from
applications in a variety of fields.

Therefore, we think that it is really worthwhile to demonstrate recent advances
in applied mathematics and HPC. The articles in this book show that today’s and
tomorrow’s computational power can be used efficiently if models, methods, and
mathematical foundation fit together. It is even foreseen that, due to the expected
end of Moore’s law, software and mathematical methods will gain more importance.

Many of the articles in the book are devoted to applied problems from biology,
chemistry, computational mechanics, environmental sciences, mechanical engineer-
ing, operations research, physiology, and several other fields. Frequently, modeling
is based on partial differential equations. Further models are related to approxi-
mation and optimization. Several articles provide new insights into challenges and
developments of high performance and scientific computing. Of course, most of
the articles cannot be assigned to one particular type of research. Rather, several
aspects of computing, modeling, algorithms, and theory are successfully combined.

v



vi Preface

Therefore, the assignment of the 33 articles to the 3 parts of the book should be
understood as a first orientation. We hope that the reader will find interesting and
inspiring articles and that the book will well serve practitioners and researches as
well as beginners and experts.

Our sincere thanks go to all authors who submitted a manuscript. Moreover,
the work of the reviewers is greatly acknowledged. Last but not the least, the
editors would like to express their thanks to Marc Strauss, the Editorial Director,
and his team at Springer for their professional support. David Gao’s work has
been supported by the US Air Force Office of Scientific Research under the grants
FA2386-16-1-4082 and FA9550-17-1-0151.

Ghaziabad, India Vinai K. Singh
Ballarat, VIC, Australia David Gao
Dresden, Germany Andreas Fischer
April 2018
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Part I
Mathematical Modeling, Applications,

and Theoretical Foundations



Canonical Duality-Triality Theory:
Unified Understanding for Modeling,
Problems, and NP-Hardness in Global
Optimization of Multi-Scale Systems

David Gao

1 Introduction and Motivation

General problems in mathematical optimization are usually formulated in the
following form:

(Pap) : min f (x), s.t. h(x) = 0, g(x) ≤ 0, (1)

where the unknown x ∈ R
n is a vector, f (x) : Rn → R is the so-called “objective”

function,1 and h(x) = {hi(x)} : R
n → R

m and g(x) = {gj (x)} : R
n → R

p

are two vector-valued constraint functions. It must be emphasized that, different
from the basic concept of objectivity in continuum physics and nonlinear analysis,
the objective function used extensively in optimization literature is allowed to be
any arbitrarily given function, even the linear function. Therefore, the (Pap) is
an abstractly (or arbitrarily) proposed problem (APP). Although it enables one
to “model” a very wide range of problems, it comes at a price: many global
optimization problems are considered to be NP-hard. Without detailed information
on these arbitrarily given functions, it is impossible to have a powerful theory for
solving the artificial nonconvex problem (1).

Canonical duality-triality is a newly developed and continuously improved
methodological theory. This theory comprises mainly: 1) a canonical transformation,

1This terminology is used mainly in the English literature. The function f (x) is correctly called
the target function in all Chinese and Japanese literature.

D. Gao (�)
School of Science and Technology, Federation University Australia, Mt Helen, VIC 3353,
Australia
e-mail: d.gao@federation.edu.au

© Springer Nature Switzerland AG 2019
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4 D. Gao

which is a versatile methodology that can be used to model complex systems within
a unified framework, 2) a complementary-dual principle, which can be used to
formulate a perfect dual problem with a unified analytic solution, and 3) a triality
theory, which can identify both global and local extrema and to develop effective
canonical dual algorithms for solving real-world problems in both continuous and
discrete systems. This theory was developed from Gao and Strang’s original work
on nonconvex variational/boundary-value problems in large deformation mechanics
[43]. It was shown in Gao’s book [18] and in recent articles [40, 53] that the
(external) penalty and Lagrange multiplier methods are special applications of the
canonical duality theory in convex optimization. It is now understood that this theory
reveals an intrinsic multi-scale duality pattern in complex systems, many popular
theories and methods in nonconvex analysis, global optimization, and computational
science can be unified within the framework of the canonical duality-triality theory.
Indeed, it is easy to show that the KKT theory in mathematical programming, the
semi-definite programming (SDP) method in global optimization, and the half-
quadratic regularization in information technology are naturally covered by the
canonical duality theory [39, 56, 86].

Mathematics and mechanics have been complementary partners since the New-
ton times. Many fundamental ideas, concepts, and mathematical methods exten-
sively used in calculus of variations and optimization are originally developed
from mechanics. It is known that the classical Lagrangian duality theory and the
associated Lagrange multiplier method were developed by Lagrange in analytical
mechanics [51]. The modern concepts of super-potential and sub-differential in
convex analysis were proposed by J.J. Moreau from frictional mechanics [63].
The canonical duality theory is also developed from the fundamental concepts of
objectivity and work-conjugate principle in continuum physics. The Gao-Strang gap
function discovered in finite deformation theory provides a global optimality condi-
tion for general nonconvex/nonsmooth variational analysis and global optimization.
Application of this theory to nonlinear elasticity leads to a pure complementary
energy principle which was a 50-year-old open problem [58]. Generalization to
global optimization was made in 2000 [20]. Since then, this theory has been used
successfully for solving a large class of challenging problems in multi-disciplinary
fields of applied mathematics, computational science, engineering mechanics,
operations research, and industrial and systems engineering [11–17, 22–25, 36–
38, 40, 42, 44, 45, 70, 73].

However, as V.I. Arnold indicated [2]: “In the middle of the twentieth century
it was attempted to divide physics and mathematics. The consequences turned out
to be catastrophic.” Indeed, due to the ever-increasing gap between physics and
other fields, some well-defined concepts in continuum physics, such as objectiv-
ity, Lagrangian, tensor, and fully nonlinearity, etc., have been seriously misused
in optimization, which leads to not only ridiculous arguments but also wrong
mathematical models and many artificially proposed problems. Also, the canonical
dual transformation theory and methodology have been rediscovered in different
forms by researchers from different fields. The main goal of this paper is to
bridge this gap by presenting the canonical duality theory in a systematical way
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from a unified modeling, basic assumptions to the theory, method, and general
applications. The methodology, examples, and conjectures presented in this paper
are important not only for better understanding this unconventional theory but
also for solving many challenging problems in complex systems. This paper will
bring some fundamentally new insights into multi-scale complex systems, global
optimization, and computational science.

2 Multi-Scale Modeling and Properly Posed Problems

In linguistics, a complete and grammatically correct sentence should be composed
by at least three words: subject, object, and a predicate.2 As a language of science,
the mathematics should follow this rule. Based on the canonical duality principle
[18], a unified mathematical problem for multi-scale complex systems was proposed
in [26, 28]:

(P) : min{�(χ) = G(Dχ) − F(χ) | χ ∈ Xc}, (2)

where F : Xa ⊂ X → R is a subjective function such that the external duality
relation χ∗ = ∇F(χ) = χ̄∗ is a given input (or source), its domain Xa contains only
geometrical constraints (such as boundary or initial conditions), which depends on
each given problem; D : Xa → Ga is a linear operator which links the configuration
variable χ ∈ Xa with an internal variable g = Dχ ∈ Ga at different physical
scales; G : Ga ⊂ G → R is an objective function such that the internal duality
relation g∗ = ∇G(g) is governed by the constitutive law, its domain Ga contains
only physical constraints, which depends on mathematical modeling; The feasible
set is defined by:

Xc = {χ ∈ Xa| Dχ ∈ Ga}. (3)

The predicate in (P) is the operator “−” and the difference �(χ) is called the target
function in general problems. The object and subject are in balance only at the
optimal states.

2.1 Objectivity, Isotropy, and Symmetry in Modeling

Objectivity is a central concept in our daily life, related to reality and truth.
According to Wikipedia, the objectivity in philosophy means the state or quality of

2By the facts that (object, subject) is a duality pair in a noun (or pronoun) space, which is dual to a
verb space, the multi-level duality pattern {(object, subject);predicate} is called triality, which
is essential for languages and sciences.
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being true even outside a subject’s individual biases, interpretations, feelings, and
imaginings.3 In science, the objectivity is often attributed to the property of scientific
measurement, as the accuracy of a measurement can be tested independent from the
individual scientist who first reports it.4 In continuum mechanics, the objectivity is
also called the principle of frame-indifference [65, 80], which is a basic concept
in mathematical modeling [8, 18, 60] but is still subjected to seriously study in
continuum physics [59, 64]. Let R be a special orthogonal group SO(n), i.e., R ∈ R
if and only if RT = R−1 and det R = 1. The following mathematical definition was
given in Gao’s book (Definition 6.1.2 [18]).

Definition 1 (Objectivity and Isotropy) A set Ga is said to be objective if Rg ∈ Ga

∀g ∈ Ga , ∀R ∈ R. A real-valued function G : Ga → R is said to be objective if

G(Rg) = G(g) ∀g ∈ Ga, ∀R ∈ R. (4)

A set Ga is said to be isotropic if gR ∈ Ga ∀g ∈ Ga, ∀R ∈ R. A real-valued
function G : Ga → R is said to be isotropic if

G(gR) = G(g) ∀g ∈ Ga, ∀R ∈ R. (5)

Lemma 1 A real-valued function G(g) is objective if and only if there exists a real-
valued function �(C) such that G(g) = �(gT g).

Geometrically speaking, an objective function is rotational symmetry, which
should be an SO(n)-invariant in n-dimensional Euclidean space. Physically, an
objective function doesn’t depend on observers. Because of Noether’s theorem,5

rotational symmetry of a physical system is equivalent to the angular momentum
conservation law (see Section 6.1.2 [18]). Therefore, the objectivity is essential
for any real-world mathematical models. In Euclidean space Ga ⊂ R

n, the simplest
objective function is the �2-norm ‖g‖ in R

n as we have ‖Rg‖2 = gT RT Rg =
‖g‖2 ∀R ∈ R. In continuum physics, the objectivity implies that the equilibrium
condition of angular momentum (symmetry of the Cauchy stress tensor σ = ∂G(g),
Section 6.1 [18]) holds. It was emphasized by P.G. Ciarlet that the objectivity is not
an assumption, but an axiom [8]. In Gao and Strang’s work, the internal energy
W(g) must be an objective function such that its variation (Gâteaux derivative)
σ = ∂W(g) is the so-called constitutive duality law, which depends only on the
intrinsic property of the system.

3https://en.wikipedia.org/wiki/Objectivity_(philosophy).
4https://en.wikipedia.org/wiki/Objectivity_(science).
5That is, every differentiable symmetry of the action of a physical system has a corresponding
conservation law.

https://en.wikipedia.org/wiki/Objectivity_(philosophy)
https://en.wikipedia.org/wiki/Objectivity_(science)
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2.2 Subjectivity, Symmetry Breaking, and Well-Posed Problem

Dual to the objective function that depends on modeling, the subjective function
F(χ) depends on each problem such that its variation is governed by the action-
reaction duality law: χ̄∗ = ∂F (χ) ∈ X ∗. From the point view of systems theory,
the action χ̄∗ ∈ X ∗ can be considered as the input or source of the system,
and the reaction χ ∈ X should be the output (or the configuration, the state) of
the system. A system is conservative if the action is independent of the reaction.
Therefore, the subjective function must be linear on its domain Xa and, by Riesz
representation theorem, we should have F(χ) = 〈χ , χ̄∗〉, where the bilinear form
〈χ ,χ∗〉 : X × X ∗ → R puts X and X ∗ in duality. The target function �(χ) =
G(Dχ) − F(χ) can have different physical meanings in real-world applications.
For example, in continuum mechanics the subjective function F(χ) is the external
energy, the objective function G(g) is the stored energy, then �(χ) is the total
potential energy. In this case, the minimum total potential energy principle leads
to the general variational problem (2). The criticality condition ∂�(χ) = 0 leads to
the equilibrium (Euler-Lagrange) equation:

A(χ) = D∗∂G(Dχ) = χ̄∗ (6)

where D∗ : G∗
a → X ∗ is an adjoint operator of D and A : Xc → X ∗ is called

equilibrium operator. The triality structure Se = {〈X ,X ∗〉;A} forms an elementary
system in Gao’s book (Section 4.3, [18]). This abstract form covers the most well-
known equilibrium problems in real-world applications ranging from mathematical
physics in continuous analysis to mathematical programming in discrete systems
[18, 34]. Particularly, if G(g) is quadratic such that ∂2G(g) = H, then the operator
A : Xc → X ∗ is linear and can be written in the triality form: A = D∗HD, which
appears extensively in mathematical physics, optimization, and linear systems (see
the celebrated text by Strang [77]). Clearly, any convex quadratic function G(Dχ)

is objective due to the Cholesky decomposition A = �∗� � 0.
According to the action-reaction duality in physics, if there is no action or

demand (i.e., χ̄∗ = 0), the system has no reaction (i.e., χ = 0). Dually, a real-
world problem should have at least one nontrivial solution for any given nontrivial
input.

Definition 2 (Properly and Well-Posed Problems) A problem is called properly
posed if for any given nontrivial input it has at least one nontrivial solution. It is
called well-posed if the solution is unique.

Clearly, this definition is more general than Hadamard’s well-posed problems in
dynamical systems since the continuity condition is not required. Physically speak-
ing, any real-world problems should be well-posed since all natural phenomena exist
uniquely. But practically, it is difficult to model a real-world problem precisely.
Therefore, properly posed problems are allowed for the canonical duality theory.
This definition is important for understanding the triality theory and NP-hard
problems.
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2.3 Management Optimization

In management science, the decision variable χ is simply a vector x ∈ R
n, which

could represent the products of a manufacture company. The input χ̄∗ can be
considered as market price (or demanding), denoted by f ∈ R

n. Therefore, the
subjective function 〈x, f〉 = xT f in this example is the total income of the company.
The products are produced by workers g ∈ R

m. Due to the cooperation, we have
g = Dx and D ∈ R

m×n is a matrix. Workers are paid by salary g∗ = ∂G(g),
and therefore, the objective function G(g) is the cost (in this example G is not
necessarily to be objective since the company is a man-made system). Then, the
target �(x) = G(Dx)−xT f is the total loss and the minimization problem min�(x)
leads to the equilibrium equation:

DT ∂gG(Dx) = f.

The cost function G(g) could be convex for a small company, but usually nonconvex
for big companies to allow some people having the same salaries.

If the company has to make a profit 1
2α‖x‖2, where α > 0 is a parameter, then

the target function is �(x) = G(Dx)+ 1
2α‖x‖2 −xT f and the minimization problem

min�(x) leads to:

αx = f − DT ∂gG(Dx). (7)

This is a fixed point problem. In this case, if we let ḡ = D̄x = (Dx, x) and Ḡ =
G(g) + 1

2α‖x‖2, then the fixed point problem (7) can be written in the unified form
of:

D̄T ∂ḡḠ(D̄x) = f.

This shows that the fixed point problem is a special case of the general equilibrium
equation (6), a necessary condition of the general minimization problem (Pg).

2.4 Nonconvex Analysis and Boundary-Value Problems

For static systems, the unknown of a mixed boundary-value problem is a vector-
valued function:

χ(x) ∈ Xa = {χ ∈ C[�,Rm]| χ(x) = 0 ∀x ∈ 	χ },
� ⊂ R

d , d ≤ 3, m ≥ 1, ∂� = 	χ ∪ 	t ,
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and the input is χ̄∗ = {f(x) ∀x ∈ �, t(x) ∀x ∈ 	t } [43]. In this case, the external
energy is F(χ) = 〈χ , χ̄∗〉 = ∫

�
χ · f d� + ∫

	t
χ · t d	. In nonlinear analysis, D is

a gradient-like partial differential operator and g = Dχ ∈ Ga ⊂ Lp[�;Rm×d ] is a
two-point tensor field [18] over �. The internal energy G(g) is defined by:

G(g) =
∫

�

U(x, g) d�, (8)

where U(x, g) : � × Ga → R is the stored energy density. The system is (space)
homogeneous if U = U(g). Thus, G(g) is objective if and only if U(x, g) is
objective on an objective set Ga . By the facts that g = Du is a two-point tensor,
which is not considered as a strain measure, but the (right) Cauchy-Green tensor
C = gT g is an objective strain tensor, there must exist a function �(C) such that
G(g) = �(C). In nonlinear elasticity, the function �(C) is usually convex and the
duality C∗ = ∂�(C) is invertible (i.e., Hill’s work-conjugate principle [18]). These
basic truths in continuum physics laid a foundation for the canonical duality theory.

By finite element method, the domain � is divided into m-elements {�e} such
that the unknown function is piecewisely discretized by χ(x) � Ne(x)χe ∀x ∈ �e.
Thus, the nonconvex variational problem (2) can be numerically reformulated in a
global optimization problem:

min{�(χ) = G(Dχ) − 〈χ , f〉 | χ ∈ Xc}, (9)

where χ = {χe} is the discretized unknown χ(x), D is a generalized matrix
depending on the interpolation Ne(x), and Xc is a convex constraint set including the
boundary conditions. The canonical dual finite element method was first proposed
in 1996 [11]. Applications have been given recently in engineering and sciences
[30, 45, 73].

2.5 Lagrangian Mechanics and Initial-Value Problems

In Lagrange mechanics [51, 52], the unknown χ(t) ∈ Xa ⊂ C1[I ;Rn] is a vector
field over a time domain I ⊂ R. Its components {χi(t)} (i = 1, . . . , n) are known
as the Lagrangian coordinates. Its dual variable χ̄∗ is the action vector function in
R
n, denoted by f(t). The external energy F(χ) = 〈χ , χ̄∗〉 = ∫

I
χ(t) · f(t) dt . While

the internal energy G(Dχ) is the so-called action:

G(Dχ) =
∫

I

L(t,χ , χ̇) dt, L = T (χ̇) − U(t,χ), (10)

where Dχ = {1, ∂t }χ = {χ , χ̇} is a vector-valued mapping, T is the kinetic energy
density, U is the potential density, and L = T − U is the Lagrangian density.
Together, �(χ) = G(Dχ) − F(χ) is called the total action. This standard form
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holds from the classical Newton mechanics to quantum field theory.6 Its stationary
condition leads to the well-known Euler-Lagrange equation:

A(χ) = D∗∂G(Dχ) = {−∂t , 1} · ∂L(χ , χ̇) = −∂t∂χ̇T (χ̇)− ∂χU(t,χ) = f. (11)

The system is called (time) homogeneous if L = L(χ , χ̇). In general, the kinetic
energy T must be an objective function of the velocity7 vk = ẋk(χ) of each particle
xk = xk(χ) ∈ R

3 ∀k ∈ {1, . . . , K}, while the potential density U depends on each
problem. For Newtonian mechanics, we have χ(t) = x(t) and T (v) = 1

2m‖v‖2 is
quadratic. If U = 0, the equilibrium equation A(χ) = −mẍ(t) = f includes the
Newton second law: F = mẍ and the third law: −F = f. The first law v = ẋ = v0
holds only if f = 0. In this case, the system has either a trivial solution x = 0 or
infinitely many solutions x(t) = v0t + x0, depending on the initial conditions in
Xa . This simple fact in elementary physics plays a key role in understanding the
canonical duality theory and NP-hard problems in global optimization.

By using the methods of finite difference and least squares [39, 54], the general
nonlinear dynamical system (11) can also be formulated as the same global
optimization problem (9), where χ = {χi(tk)} is the Lagrangian coordinates
χi(i = 1, . . . , n) at each discretized time tk(k = 1, . . . , m), D is a finite difference
matrix, and Xc is a convex constraint set including the initial condition [54]. By the
canonical duality theory, an intrinsic relation between chaos in nonlinear dynamics
and NP-hardness in global optimization was revealed recently in [54].

2.6 Mono-Duality and Duality Gap

Lagrangian duality was developed from Lagrange mechanics since 1788 [51], where
the kinetic energy T (v) = ∑

k
1
2mk‖vk‖2 is a quadratic (objective) function. For

convex static systems (or dynamical systems but U(χ) = 0), the stored energy
G : Ga → R is convex and its Legendre conjugate G∗(σ ) = {〈g; σ 〉 − G(g)| σ =
∂G(g)} is uniquely defined on G∗

a . Thus, by G(Dχ) = 〈Dχ; σ 〉 − G∗(σ ) the total
action or potential �(χ) can be written in the Lagrangian form8 L : Xa ×G∗

a → R:

L(χ , σ ) = 〈Dχ; σ 〉 − G∗(σ ) − 〈χ , f〉 = 〈χ ,D∗σ − f〉 − G∗(σ ), (12)

where χ ∈ Xa can be viewed as a Lagrange multiplier for the equilibrium equation
D∗σ = f ∈ X ∗

a . In linear elasticity, L(χ , σ ) is the well-known Hellinger-Reissner

6See Wikipedia: https://en.wikipedia.org/wiki/Lagrangian_mechanics.
7The objectivity of T (v) is also called the isotropy in Lagrange mechanics since v is a vector (see
[52]).
8In the Physics literature, the same notation L is used for both action L(χ , χ̇) and the Lagrangian
L(χ ,p) since both represent the same physical quantity.

https://en.wikipedia.org/wiki/Lagrangian_mechanics
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complementary energy [18]. Let Sc = {σ ∈ G∗
a | D∗σ = f} be the so-called statically

admissible space. Then, the Lagrangian dual of the general problem (P) is given by:

(P∗) : max{�∗(σ ) = −G∗(σ )| σ ∈ Sc}, (13)

and the saddle Lagrangian leads to a well-known min-max duality in convex (static)
systems:

min
χ∈Xc

�(χ) = min
χ∈Xa

max
σ∈G∗

a

L(χ , σ ) = max
σ∈G∗

a

min
χ∈Xa

L(χ , σ ) = max
σ∈Sc

�∗(σ ). (14)

This one-to-one duality is the so-called mono-duality in Chapter 1 [18], or the
complementary-dual variational principle in continuum physics. In finite elasticity,
the Lagrangian dual is also known as the Levison-Zubov principle. However, this
principle holds only for convex problems. In real-world problems, the stored energy
G(g) is usually nonconvex in order to model complex phenomena. Its complemen-
tary energy can’t be determined uniquely by the Legendre transformation. Although
its Fenchel conjugate G� : G∗

a → R ∪ {+∞} can be uniquely defined, the Fenchel-
Moreau dual problem:

(P�) : max{��(σ ) = −G�(σ )| σ ∈ Sc} (15)

is not considered as a complementary-dual problem due to Fenchel-Young inequal-
ity:

ga = min{�(χ)| χ ∈ Xc} ≥ max{��(σ )| σ ∈ Sc} = gp, (16)

and gap = ga − gp �= 0 is the well-known duality gap. This duality gap is intrinsic
to all Lagrange-Fenchel-Moreau types of duality problems since the linear operator
D can’t change the nonconvexity of G(Dχ). It turns out that the existence of a pure
stress σ based complementary-dual principle was a well-known debate in nonlinear
elasticity for more than fifty years [58].

Remark 1 (Equilibrium Constraints and Lagrange Multiplier Law) Strictly speak-
ing, the Lagrange multiplier method can be used mainly for equilibrium constraint
in Sc and the Lagrange multiplier must be the solution to the primal problem (see
Section 1.5.2 [18]). The equilibrium equation D∗σ = f must be an invariant under
certain coordinates transformation, say the law of angular momentum conservation,
which is guaranteed by the objectivity of the stored energy G(Dχ) in continuum
mechanics (see Definition 6.1.2, [18]), or by the isotropy of the kinetic energy T (χ̇)

in Lagrangian mechanics [52]. Specifically, the equilibrium equation for Newtonian
mechanics is an invariant under the Galilean transformation; while for Einstein’s
special relativity theory, the equilibrium equation D∗σ = f is an invariant under
the Lorentz transformation. For linear equilibrium equation, the quadratic G(g) is
naturally an objective function for convex systems. Unfortunately, since the concept
of the objectivity is misused in optimization and the notation of the Euclidian
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coordinate x = {xi} is used as the unknown, the Lagrange multiplier method
and the associated augmented methods have been mistakenly used for solving
general nonconvex optimization problems, which produces many artificial duality
gaps [53]. ♣

2.7 Bi-Duality and Conceptual Mistakes

For convex Hamiltonian systems, the action G(Dχ) in (10) is a d.c. (difference
of convex) functional and the Lagrangian has its standard form in Lagrangian
mechanics (see Section 2.5.2 [18] with q(t) = χ and p = σ ):

L(q,p) = 〈q̇; p〉 −
∫

I

[T ∗(p) + U(q)] dt − 〈q, f〉, (17)

where q ∈ Xa ⊂ C1[I,Rn] is the Lagrange coordinate and p ∈ Sa ⊂ C[I,Rn] is
the momentum. In this case, the Lagrangian is a bi-concave functional on Xa × Sa ,
but the Hamiltonian:

H(q,p) = 〈Dq; p〉 − L(q,p) =
∫

I

[T ∗(p) + U(q)] dt (18)

is convex.9 The total action and its canonical dual are [18]

�(q) = max{L(q,p)| p ∈ V∗
a } =

∫

I

[T (q̇) − U(q)] dt − 〈q, f〉 ∀q ∈ Xc (19)

�d(p) = max{L(q,p)| q ∈ Xa} =
∫

I

[U∗(ṗ) − T ∗(p)] dt ∀p ∈ Sc (20)

Clearly, both � and �d are d.c. functionals. In this case, the so-called bi-duality
was first presented in author’s book Chapter 2 [18]:

Theorem 1 (Bi-Duality Theory) For a given convex Hamiltonian system, if (q̄, p̄)
is a critical point of L(q,p) over the time interval I ⊂ R, then we have

�(q̄) = min�(q) ⇔ min�d(p) = �d(p̄) (21)

�(q̄) = max�(q) ⇔ max�d(p) = �d(p̄). (22)

The mathematical proof of this theory was given in Section 2.6 [18] for convex
Hamiltonian systems and in Corollary 5.3.6 [18] for d.c. programming problems.

9This is the reason that instead of the Lagrangian, the Hamiltonian is extensively used in dynamics.
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This bi-duality revealed not only an interesting dynamical extremum principle in
periodic motion but also an important truth in convex Hamiltonian systems.

Remark 2 (Least Action Principle and Conceptual Mistakes) The least action
principle plays a central role in physics from the classical Newtonian mechanics,
general relativity (Einstein-Hilbert action), to the modern string theory. Credit for
the formulation of this principle is commonly given to Pierre Louis Maupertuis,
who felt that “Nature is thrifty in all its actions.” It was historically called “least”
because its solution requires finding the path that has the least value [9], say Fermat’s
principle in optics. However, in Hamiltonian systems it should be accurately called
the principle of stationary action since its solution does not minimize the total
action. Actually, the validity of the least action principle has remained obscure in
physics for several centuries. As a footnote in their celebrated book (Section 1.2,
[52]), Landau and Lifshitz pointed out that the least action principle holds only
for a sufficient small time interval, not for the whole trajectory of the system.
Unfortunately, this is not true in general since the total action could be a concave
functional within a sufficient small time interval.

Theorem 1 shows that a convex Hamiltonian system is controlled by the bi-
duality, which revealed the following truths (see page 77 [18]):

The least action principle is not valid for any periodic motion.
It holds for the whole trajectory of the system if the potential U(q) = 0.

The bi-duality theory has been challenged by M.D. Voisei, C. Zălinescu, and his
former student R. Strugariu in a paper published in a dynamical systems journal
[78]. Instead of finding any possible mistakes in author’s work, they created an
artificial “Lagrangian”:

L(x, y) := −1

2
α‖x‖2 − 1

2
β‖y‖2 + 〈a, x〉〈b, y〉, (Equation (1) in [78])

and the associated “total action” f (x) as well as its “dual action” g(y):

f (x) = max{L(x, y)| y ∈ Y } = −1

2
α‖x‖2 + 1

2
β−1〈a, x〉2‖b‖2 ∀x ∈ X

g(y) = max{L(x, y)| x ∈ X} = −1

2
β‖y‖2 + 1

2
α−1〈b, y〉2‖a‖2 ∀y ∈ Y

By using these elementary functions in linear algebra, they produced a series of
strange counterexamples to against the bi-duality theory in convex Hamiltonian
systems presented by the author in Chapter 2 [18]. They claimed: “Because our
counter-examples are very simple, using quadratic functions defined on whole
Hilbert (even finite-dimensional) spaces, it is difficult to reinforce the hypotheses
of the above mentioned results in order to keep the same conclusions and not obtain
trivialities.”

Clearly, the quadratic function L(x, y) created by Zălinescu et al. is totally
irrelevant to the Lagrangian L(q,p) in Lagrangian mechanics and in Gao’s book



14 D. Gao

[18]. Without the differential operator D = ∂t , the quadratic d.c. function f (x)

(or g(y)) is defined on one-scale space X (or Y ) and is unbounded. Therefore, its
critical point does not produce any motion. This basic mistake shows that these
people don’t have necessary knowledge not only in Lagrangian mechanics (the
time derivative D = ∂t is necessary for any dynamical systems) but also in d.c.
programming (unconstrained quadratic d.c. programming does not make any sense).
It also shows that these people even don’t know what the Lagrangian coordinate is,
otherwise, they would never use a time-independent vector x ∈ R

n as an unknown
in dynamical systems.

Moreover, since there is neither input in L(x, y) nor initial/boundary conditions
in X, all the counterexamples produced by Zălinescu et al. are simply not problems
but only artificial “models.” Since they don’t follow the basic rules in mathematical
modeling, such as the objectivity, symmetry, conservation, and constitutive laws,
etc., these artificial “models” are very strange and even ugly (see Examples 3.3, 4.2,
4.4 [78]). This type of mistakes shows that these people don’t know the difference
between the modeling and problems. ♣

3 Unified Problem and Canonical Duality-Triality Theory

In this section, we simply restrict our discussion in finite-dimensional space X . Its
element χ ∈ X could be a vector, a matrix, or a tensor.10 In this case, the linear
operator D is a generalized matrix11 D : X → G and G is a generalized matrix
space equipped with a natural norm ‖g‖. Let Xa ⊂ X be a convex subset (with
only linear constraints) and X ∗

a be its dual set such that for any given input χ̄∗ =
f ∈ X ∗

a the subjective function 〈χ , f〉 ≥ 0 ∀χ ∈ Xa . Although the objectivity is
necessary for real-world modeling, the numerical discretization of Dχ could lead
to a complicated function G(Dχ) which may not be objective in g = Dχ . Also in
operations research, many challenging problems are artificially proposed. Thus, the
objectivity required in Gao and Strang’s original work on nonlinear elasticity has
been relaxed by the canonical duality since 2000 [20].

10Tensor is a geometrical object in mathematics and physics, which is defined as a multi-
dimensional array satisfying a transformation law, see https://en.wikipedia.org/wiki/Tensor. A
tensor must be independent of a particular choice of coordinate system (frame-invariance). But,
this terminology has been also misused recent years in the optimization literature such that any
multi-dimensional array of data is called tensor [4]. This mistake has been recognized recently in
the preface of [67].
11A generalized matrix D = {Di···j

α···γ } is a multi-dimensional array but not necessary to satisfy a
transformation law, so it is not a tensor. In order to avoid confusion, it can be called a generalized
matrix, or simply gentrix.

https://en.wikipedia.org/wiki/Tensor
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3.1 Canonical Transformation and Gap Function

Definition 3 (Canonical Function and Transformation)
A real-valued function � : Ea → R is called a canonical function if its domain

Ea is convex and the duality relation ξ∗ = ∂�(ξ) : Ea → E∗
a is bijective.

For a given real-valued function G : Ga → R, if there exist a mapping ξ : Ga →
Ea and a canonical function � : Ea → R such that

G(g) = �(ξ(g)) ∀g ∈ Ga, (23)

the transformation (23) is called the canonical transformation.

The canonical function is not necessary to be convex. Actually, in many real-
world applications, �(ξ) is usually concave. For example, in differential geometry
and finite deformation theory (see [18]) the objective function G(g) is the deforma-
tion Jacobian:

G(g) =
√

det(gT g), g = ∇χ . (24)

If we chose ξ = det(gT g) as the geometrical measure, which is the third invariant of
the Riemannian metric tensor gT g and usually denoted as I3, the canonical function
�(I3) is then a concave function of the scale measure I3(g).

The canonical duality is a fundamental principle in sciences and oriental philos-
ophy, which underlies all natural phenomena. Therefore, instead of the objectivity
in continuum physics, a generalized objective function G(g) is used in the canonical
duality theory under the following assumption.

Definition 4 (Generalized Objective Function) For a given real-valued function
G : Ga → R, if there exist a measure ξ : Ga → Ea and a canonical function
� : Ea → R such that the following conditions hold:

(D1) Positivity: G(g) ≥ 0 ∀g ∈ Ga ;
(D2) Canonicality: G(g) = �(ξ(g)) ∀g ∈ Ga ,

then G : Ga → R is called to be a generalized objective function.

The canonical transformation plays an important role in mathematical modeling
and nonlinear analysis. Let � = ξ ◦ D : Xa → Ea be the so-called geometrically
admissible operator and 〈ξ ; ς〉 : E × E∗ → R be the bilinear form which puts E
and E∗ in duality. By (D2), we have Xc = {χ ∈ Xa| �(χ) ∈ Ea}. The problem (P)

can be equivalently written in the following canonical form:

(Pg) : min {�(χ) = �(�(χ)) − 〈χ , f〉| χ ∈ Xc} . (25)

By the facts that the canonical duality is a universal principle in nature, the canonical
measure �(χ) is not necessarily to be objective, and the spaces X , E could be at
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different physical scale with totally different dimensions, the canonical problem
(Pg) can be used to study general optimization problems in multi-scale complex
systems. The criticality condition of (Pg) is governed by the fundamental principle
of virtual work:

〈�t(χ)δχ; ς〉 = 〈δχ ,�∗
t (χ)ς〉 = 〈δχ , f〉 ∀δχ ∈ Xc, (26)

where �t(χ) = ∂�(χ) represents a generalized Gâteaux (or directional) derivative
of �(χ), its adjoint �∗

t is called the balance operator, ς = ξ∗(ξ) = ∂�(ξ) and
ξ∗ : Ea → E∗

a is a canonical dual (or constitutive) operator. The strong form of this
virtual work principle is called the canonical equilibrium equation:

A(χ) = �∗
t (χ)ξ

∗(�(χ)) = f. (27)

A system governed by this equation is called a canonical system and is denoted as
(see Chapter 4, [18]):

Sa = {〈Xa,X ∗
a 〉, 〈Ea; E∗

a 〉; (�, ξ∗)}.

Definition 5 (Classification of Nonlinearities) The system Sa is called geometri-
cally nonlinear (resp., linear) if the geometrical operator � : Xa → Ea is nonlinear
(resp., linear); the system is called physically (or constitutively) nonlinear (resp.,
linear) if the canonical dual operator ξ∗ : Ea → E∗

a is nonlinear (resp., linear);
the system is called fully nonlinear (resp., linear) if it is both geometrically and
physically nonlinear (resp., linear).

Both geometrical and physics nonlinearities are basic concepts in nonlinear field
theory. The mathematical definition was first given by the author in 2000 under
the canonical transformation [20]. A diagrammatic representation of this canonical
system is shown in Figure 1.

This diagram shows a symmetry broken in the canonical equilibrium equation,
i.e., instead of �∗, the balance operator is �∗

t . It was discovered by Gao and Strang
[43] that by introducing a complementary operator �c(χ) = �(χ) − �t(χ)χ , this
locally broken symmetry is recovered by a so-called complementary gap function:

Fig. 1 Diagrammatic representation for a canonical system
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Gap(χ , ς) = 〈−�c(χ); ς〉, (28)

which plays a key role in global optimization and the triality theory. Clearly, if
� = D is linear, then Gap = 0. Thus, the following statement is important to
understand complexity:

Only the geometrical nonlinearity leads to nonconvexity in optimization, bifur-
cation in analysis, chaos in dynamics, and NP-hard problems in complex systems.

3.2 Complementary-Dual Principle and Analytical Solution

For a given canonical function � : Ea → R, its conjugate �∗ : E∗
a → R can be

uniquely defined by the Legendre transformation:

�∗(ς) = sta{〈ξ ; ς〉 − �(ξ)| ξ ∈ Ea}, (29)

where sta{f (χ)| χ ∈ X } stands for finding the stationary value of f (χ) on X , and
the following canonical duality relations hold on Ea × E∗

a :

ς = ∂�(ε) ⇔ ε = ∂�∗(ς) ⇔ �(ε) + �∗(ς) = 〈ε; ς〉. (30)

If the canonical function is convex and lower semicontinuous, the Gâteaux
derivative ∂ should be replaced by the sub-differential and �∗ is replaced by the
Fenchel conjugate ��(ς) = sup{〈ξ ; ς〉 − �(ξ)| ξ ∈ Ea}. In this case, (30) is
replaced by the generalized canonical duality:

ς ∈ ∂�(ε) ⇔ ε ∈ ∂��(ς) ⇔ �(ε) + ��(ς) = 〈ε; ς〉 ∀(ξ , ς) ∈ Ea × E∗
a .

(31)

If the convex set Ea contains inequality constraints, then (31) includes all the
internal KKT conditions [14, 53]. In this sense, a KKT point of the canonical form
�(χ) is a generalized critical point of �(χ).

By the complementarity �(�(χ)) = 〈�(χ); ς〉 − �∗(ς), the canonical form of
�(χ) can be equivalently written in Gao and Strang’s total complementary function
� : Xa × E∗

a → R [43]:

�(χ , ς) = 〈�(χ); ς〉 − �∗(ς) − 〈χ , f〉. (32)

Then, the canonical dual function �g : Sc → R can be obtained by the canonical
dual transformation:

�g(χ) = sta{�(χ , ς)| χ ∈ Xa} = G�
ap(ς) − �∗(ς), (33)
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where G�
ap(ς) = sta{〈�(χ); ς〉 − 〈χ , f〉| χ ∈ Xa}, which is defined on the

canonical dual feasible space Sc = {ς ∈ E∗
a | �∗

t (χ)ς = f ∀χ ∈ Xa}. Clearly,
Sc �= ∅ if (P) is properly posed.

Theorem 2 (Complementary-Dual Principle [18]) The pair (χ̄ , ς̄) is a critical
point of �(χ , ς) if and only if χ̄ is a critical point of �(χ) and ς̄ is a critical point
of �g(ς). Moreover:

�(χ̄) = �(χ̄ , ς̄) = �g(ς̄). (34)

Proof The criticality condition ∂�(χ̄ , ς̄) = 0 leads to the following canonical
equations:

�(χ̄) = ∂�∗(ς̄), �∗
t (χ̄)ς̄ = f. (35)

The theorem is proved by the canonical duality (30) and the definition of �g . �
Theorem 2 shows a one-to-one correspondence of the critical points between the

primal function and its canonical dual. In large deformation theory, this theorem
solved the fifty-year-old open problem on complementary variational principle
and is known as the Gao principle in literature [58]. In real-world applications,
the geometrical operator � is usually quadratic homogeneous, i.e., �(αχ) =
α2�(χ) ∀α ∈ R. In this case, we have [43] �t(χ)χ = 2�(χ), �c(χ) = −�(χ),
and

�(χ , ς) = Gap(χ , ς) − �∗(ς) − 〈χ , f〉 = 1

2
〈χ ,G(ς)χ〉 − �∗(ς) − 〈χ , f〉, (36)

where G(ς) = ∂2
χGap(χ , ς). Then, the canonical dual function �g(ς) can be

written explicitly as:

�g(ς) = {�(χ , ς)| G(ς)χ = f ∀χ ∈ Xa} = −1

2
〈[G(ς)]+f, f〉 − �∗(ς), (37)

where G+ represents a generalized inverse of G.

Theorem 3 (Analytical Solution Form [18]) If ς̄ ∈ Sc is a critical point of
�g(ς), then:

χ̄ = [G(ς̄)]+f (38)

is a critical point of �(χ) and �(χ̄) = �(χ̄ , ς̄) = �g(ς̄). Dually, if χ̄ ∈ Xc is a
critical point of �(χ), it must be in the form of (38) for a critical point ς̄ ∈ Sc of
�g(ς).

This unified analytical solution form holds not only for general global opti-
mization problems in finite-dimensional systems [25] but also for a large class
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of nonlinear boundary-/initial-value problems in nonconvex analysis and dynamic
systems [21, 23, 54].

3.3 Triality Theory and NP-Hard Criterion

In order to study extremality property for the general problem (Pg), we need
additional assumptions for the generalized objective function G(Dχ).

Assumption 1 (Canonically Convex Function) Let G(Dχ) be a generalized
objective function, i.e., there exist a measure � : Xa → Ea and a canonical function
� : Ea → R such that G(Dχ) = �(�(χ)). We assume:

(A1) Nonlinearity: �(χ) : Xa → Ea is a quadratic measure,
(A2) Regularity: �(�(χ)) is twice continuously differentiable for all χ ∈ Xa ,
(A3) Convexity: � : Ea → R is strictly convex.

One should emphasize that although �(ξ) is required to be strictly convex on
Ea in this section, the composition �(�(χ)) is usually nonconvex on Xa due to
the geometrical nonlinearity. The canonical duality theory presented in this section
can be generalized to the problems governed by high-order nonlinear �χ) and
canonically concave function �(ξ) (see [18, 22, 46, 56]).

Definition 6 (Degenerate and Nondegenerate Critical Points, Morse Function)
Let χ̄ ∈ Xc be a critical point of a real-valued function � : Xc → R. χ̄ is called
degenerate (resp. nondegenerate) if the Hessian matrix of �(χ) is singular (resp.,
nonsingular) at χ̄ . The function � : Xc → R is called a Morse function if it has no
degenerate critical points.

Theorem 4 (Triality Theory [20]) Suppose that � : Ea → R is convex, (χ̄ , ς̄)

is a nondegenerate critical point of �(χ , ς), and Xo × So is a neighborhood12 of
(χ̄ , ς̄).

If ς̄ ∈ S+
c = {ς ∈ Sc| G(ς) � 0}, then

�(χ̄) = min
χ∈Xc

� (χ) = max
ς∈S+

c

�g (ς) = �g(ς̄). (39)

If ς̄ ∈ S−
c = {ς ∈ Sc| G(ς) ≺ 0}, then we have either

�(χ̄) = max
χ∈Xo

� (χ) = max
ς∈So

�g (ς) = �g(ς̄), (40)

or (if dim� = dim�g)

�(χ̄) = min
χ∈Xo

� (χ) = min
ς∈So

�g (ς) = �g(ς̄). (41)

12The neighborhood Xo of χ̄ means that on which, χ̄ is the only critical point (see page 140 [18]).
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The statement (39) is the so-called canonical min-max duality, which can be
proved easily by Gao and Strang’s work in 1989 [43]. Clearly, ς ∈ S+

c if and
only if Gap(χ , ς) ≥ 0 ∀χ ∈ X . This duality theory shows that the Gao-
Strang gap function provides a global optimum criterion. The statements (40) and
(41) are called the canonical double-max and double-min dualities, respectively,
which can be used to find local extremum solutions. The triality theory shows
that the nonconvex minimization problem (P) is canonically dual to the following
maximum stationary problem:

(Pd) : max sta{�g(ς)| ς ∈ S+
c }. (42)

Theorem 5 (Existence and Uniqueness Criteria [25]) For a properly posed (P),
if the canonical function � : Ea → R is convex, intS+

c �= ∅, and

lim
α→0+ �g(ςo + ας) = −∞ ∀ςo ∈ ∂S+

c , ∀ς ∈ S+
c , (43)

then (Pd) has at least one solution ς̄ ∈ S+
c and χ̄ = [G(ς̄)]+f is a solution to (P).‘

The solution is unique if H = G(ς̄) � 0.

Proof Under the required conditions, −�g : S+
c → R is convex and coercive and

intS+
c �= ∅. Therefore, (Pg) has at least one solution. If H � 0, then �g : S+

c → R

is strictly concave and (Pg) has a unique solution. �
This theorem shows that if intS+

c �= ∅ the nonconvex problem (Pg) is canonically
dual to (Pg) which can be solved easily. Otherwise, the problem (Pg) is canonically
dual to the following minimal stationary problem, i.e., to find a global minimum
stationary value of �g on Sc:

(Ps) : min sta{�g(ς)| ς ∈ Sc}, (44)

which could be really NP-hard since �g(ς) is nonconvex on the nonconvex set Sc.
Therefore, a conjecture was proposed in [24].

Conjecture 1 (Criterion of NP-Hardness) A properly posed problem (Pg) is NP-
hard only if int S+

c = ∅.

Remark 3 (History of Triality and Challenges) The triality theory was discovered
by the author during his research on post-buckling of a large deformed elastic beam
in 1996 [12], where the primal variable u(x) is a displacement vector in R

2 and ς(x)
is a canonical dual stress also in R

2. Therefore, the triality theory was correctly
proposed in nonconvex analysis, which provides for the first time a complete set
of solutions to the post-buckling problem. Physically, the global minimizer ū(x)
represents a stable buckled beam configuration (happened naturally), the local
minimizer is an unstable buckled state (happened occasionally), while the local
maximizer is the unbuckled beam state. Mathematical proof of the triality theory
was given in [18] for one-D nonconvex variational problems (Theorem 2.6.2) and
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for finite-dimensional optimization problems (Theorem 5.3.6 and Corollary 5.3.1).
In 2002, the author discovered some counterexamples to the canonical double-min
duality when dim� �= dim�g . Therefore, the triality theory was presented in an
“either-or” form since the double-max duality is always true but the double-min
duality was remarked by certain additional condition (see Remark 1 in [22] and
Remark for Theorem 3 in [23]). Recently, the author and his co-workers proved that
the canonical double-min duality holds weakly when dim� �= dim�g [6, 61]. It
was also discovered by using the canonical dual finite element method that the local
minimum solutions in nonconvex mechanics are very sensitive not only to the input
and boundary conditions of a given system but also to such artificial conditions as
the numerical discretization and computational precision, etc. The triality theory
provides a precise mathematical tool for studying and understanding complicated
natural phenomena.

The triality theory has been repeatedly challenged by M.D. Voisei and C.
Zălinescu in a set of at least 11 papers (see [29]). These papers fall into three groups.
In the first group (say [78, 83]), they oppositely choose piecewise linear functions
for G and quadratic functions for F as counterexamples to against the canonical
duality theory with six conclusions on Gao and Strang’s original work including
[83]: “About the (complementary) gap function one can conclude that it is useless at
least in the current context. The hope for reading an optimization theory with diverse
applications is ruined . . .” Clearly, they made conceptual mistakes. In the second
group, Voisei and Zălinescu chose an artificial problem with certain symmetry such
that S+

a = ∅. Such a problem can be solved easily by linear perturbation (see [62]).
The counterexamples in the third group are simply those such that dim� �= dim�g .
This type of counterexamples were first discovered by Gao in 2002 so it was
emphasized in [22, 23] that the canonical double-min duality holds under certain
additional constraints (see Remark 1 in [22] and Remark for Theorem 3 in [23]).
But neither [23] nor [22] was cited by Zălinescu and his co-authors in their papers.
Honest people can easily understand the motivation of these challenges.

The canonical duality-triality theory has been successfully used for solving a
wide class problems in both global optimization and nonconvex analysis [39],
including certain challenging problems in nonconvex analysis [19], nonlinear
PDEs [33], large deformation mechanics [27], and NP-hard integer programming
problems [24, 31]. ♣

4 Applications in Complex Systems

Applications to nonconvex constrained global optimization have been discussed
in [40, 53]. This section presents applications to two general global optimization
problems.
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4.1 Unconstrained Nonconvex Optimization Problem

(Pg) : min

{

�(χ) =
m∑

s=1

�s(�s(χ)) − 〈χ , f〉| χ ∈ Xc

}

, (45)

where the canonical measures ξ s = �s(χ) could be either a scalar or a generalized
matrix, �k(ξ k) are any given canonical functions, such as polynomial, exponential,
logarithm, and their compositions, etc. For example, if χ ∈ Xc ⊂ R

n and

G(Dχ) =
∑

i∈I

1

2
αiχ

T Qiχ +
∑

j∈J

1

2
αj

(
1

2
χT Qjχ + βj

)2

+
∑

k∈K
αk exp

(
1

2
χT Qkχ

)

+
∑

�∈L

1

2
α�χ

T Q�χ log(
1

2
χT Q�χ), (46)

where {Qs} are positive-definite matrices to allow the Cholesky decomposition
Qs = DT

s Ds for all s ∈ {I, J,K,L} and {αs, βs} are physical constants, which
could be either positive or negative under Assumption 1. This general function
includes naturally the so-called d.c. functions (i.e., difference of convex functions).
Let p = dim I, q = dim J + dimK + dimL. By using the canonical measure:

ξ = {ξs} =
{

1

2
αiχ

T Qiχ ,
1

2
χT Qrχ

}

∈ Ea = R
p × R

q
+,

where R
q
+ = {x ∈ R

q | xi ≥ 0 ∀i = 1, . . . , q}, G(g) can be written in the canonical
form:

�(ξ) =
∑

i∈I
ξi +

∑

j∈J

1

2
αj (ξj + βj )

2 +
∑

k∈K
αk exp ξk +

∑

�∈L
α�ξ� log ξ�.

Thus, ∂�(ξ) = {1, ςr } in which ς = {αj (ξj +βj ), αk exp ξk, α�(log ξ� −1)} ∈ E∗
a ,

and

E∗
a = {ς ∈ R

q | ςj ≥ −αjβj ∀j ∈ J, ςk ≥ αk ∀k ∈ K, ς� ∈ R ∀� ∈ L}.

The conjugate of � can be easily obtained as:

�∗(ς) =
∑

j∈J

(
1

2αj
ς2
j + βjςj

)

+
∑

k∈K
ςk(ln(α

−1
k ςk)− 1) +

∑

�∈L
α� exp(α−1

� ς� − 1).

(47)
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Since �(χ) is quadratic homogenous, the gap function and G�
ap in this case are

Gap(χ , ς) = 1

2
χT G(ς)χ , G�

ap(ς) = 1

2
fT [G(ς)]+f,

G(ς) =
∑

i∈I
αiQi +

∑

s∈{J,K,L}
ςsQs .

Since �g(ς) = −G�
ap(ς) − �∗(ς) is concave and S+

c is a closed convex set, if for
the given physical constants and the input f such that S+

c �= ∅, the canonical dual
problem (Pg) has at least one solution ς̄ ∈ S+

c ⊂ R
q and χ̄ = [G(ς̄)]+f ∈ Xc ⊂

R
n is a global minimum solution to (P). If n � q, the problem (Pg) can be much

easier than (P).

4.2 D.C. Programming

It is known that in Euclidean space every continuous global optimization problem on
a compact set can be reformulated as a d.c. optimization problem, i.e., a nonconvex
problem which can be described in terms of d.c. functions (difference of convex
functions) and d.c. sets (difference of convex sets) [82]. By the fact that any
constraint set can be equivalently relaxed by a nonsmooth indicator function, general
nonconvex optimization problems can be written in the following standard d.c.
programming form:

min{f (x) = g(x) − h(x) | ∀x ∈ X }, (48)

where X = R
n, g(x), h(x) are convex proper lower semicontinuous functions on

R
n. A more general model is that g(x) can be an arbitrary function [82]. Clearly,

this d.c. programming problem is too abstract. Although it can be used to “model” a
very wide range of mathematical problems [47], it is impossible to have an elegant
theory and powerful algorithms for solving this problem without detailed structures
on these arbitrarily given functions. As a result of extensive studying during the last
thirty years (cf. [48, 79]), even some very simple d.c. programming problems are
considered as NP-hard [82].

Based on the canonical duality theory, a generalized d.c. programming problem
(Pdc) can be presented in a canonical d.c. minimization problem form:

(Pdc) : min

{

�(χ) = �(�(χ)) − 1

2
〈χ ,Hχ〉 − 〈χ , χ̄∗〉| χ ∈ Xc

}

, (49)

where H is a given positive-definite generalized matrix.
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Since the canonical measure ξ = �(χ) ∈ Ea is nonlinear and �(ξ) is convex
on Ea , the composition �(�(χ)) has a higher-order nonlinearity than a quadratic
function. Therefore, the coercivity for the target function �(χ):

lim‖χ‖→∞�(χ) = ∞ (50)

should be naturally satisfied for many real-world problems, which is a sufficient
condition for existence of a global minimal solution to (Pdc) (otherwise, the set
Xc should be bounded). Clearly, this generalized d.c. minimization problem can be
used to model a reasonably large class of real-world problems in multi-disciplinary
fields [34, 49].

4.3 Fixed Point Problems

Fixed point problem is a well-established subject in the area of nonlinear analysis,
which is usually formulated in the following form:

(Pfp) : x = F(x), (51)

where F : Xa → Xa is nonlinear mapping and Xa is a subset of a normed
space X . Problem (Pfp) appears extensively in engineering and sciences, such
as equilibrium problems, mathematical economics, game theory, and numerical
methods for nonlinear dynamical systems. It is realized [72] that this well-studied
field is actually a special subject of global optimization.

Lemma 2 If F is a potential operator, i.e., there exists a real-valued function
P : Xa → R such that F(x) = ∇P(x), then (Pfp) is equivalent to the following
stationary point problem:

x̄ = arg sta

{

�(x) = P(x) − 1

2
‖x‖2 | ∀x ∈ Xa

}

. (52)

Otherwise, (Pfp) is equivalent to the following global minimization problem:

x̄ = arg min

{

�(x) = 1

2
‖F(x) − x‖2 | ∀x ∈ Xa

}

. (53)

Proof First, we assume that F(x) is potential operator, then x is a stationary point
of �(x) if and only if ∇�(x) = ∇P(x) − x = 0, thus x is also a solution to (Pfp)

since F(x) = ∇P(x).
Now, we assume that F(x) is not a potential operator. By the fact that �(x) =

1
2 ‖F(x) − x‖2 ≥ 0 ∀x ∈ X , the vector x̄ is a global minimizer of �(x) if and only
if F(x̄) − x̄ = 0. Thus, x̄ must be a solution to (Pfp). �
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By the facts that the global minimizer of an unconstrained optimization problem
must be a stationary point, and

1

2
‖F(x)−x‖2 = P(x)− 1

2
‖x‖2, P (x) = 1

2
〈F(x), F (x)〉−〈x, F (x)〉+‖x‖2, (54)

the global minimization problem (53) is a special case of the stationary point
problem (52). Mathematically speaking, if a fixed point problem has a trivial
solution, then F(x) must be a homogeneous operator, i.e., F(0) = 0. For general
problems, F(x) should have a nonhomogeneous term f ∈ R

n. Thus, we can let
P(x) = G(Dx) − 〈x, f〉 such that D : X → G ⊂ R

m is a linear operator and
G : G → R is a generalized objective function. Thus, the fixed point problem (Pfp)

can be reformulated in the following stationary point problem:

(Pfp) : x̄ = arg sta

{

�(x) = G(Dx) − 1

2
‖x‖2 − 〈x, f〉 | ∀x ∈ Xc

}

. (55)

Clearly, the fixed point problem is actually equivalent to a d.c. programming
problem. Canonical duality theory for solving this fixed point problem is given
recently in [72].

4.4 Mixed Integer Nonlinear Programming (MINLP)

The decision variable for (MINLP) is χ = {y, z} ∈ Ya × Za , where Ya is a
continuous variable set and Za is a set of integers. It was shown in [69] that for
any given integer set Za , there exists a linear transformation Dz : Za → Z =
{±1}n. Thus, based on the unified problem (Pg), a general MINLP problem can be
proposed as:

(Pmi) : min{�(y, z) = G(Dyy,Dzz) − 〈y, s〉 − 〈z, t〉 | (y, z) ∈ Yc × Zc}, (56)

where f = (s, t) is a given input, Dχ = (Dyy, Dzz) ∈ Gy × Z is a multi-scale
operator, and

Yc = {y ∈ Ya | Dyy ∈ Gy}, Zc = {z ∈ Za| Dzz ∈ Z}.

In Ya , certain linear constraints are given. Since the set Za is bounded, by
Assumption 1 either G : Gy → R is coercive or Gy is bounded. This general
problem (Pmi) covers many real-world applications, including the so-called fixed
cost problem [41]. Let

g = �z(z) = (Dzz) ◦ (Dzz) ∈ Ez = R
n+, (57)
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where x ◦ y = {xiyi}n is the Hadamard product in R
n, the integer constraint in Z

can be relaxed by the canonical function �(g) = {0 if g ≤ e, ∞ otherwise}, where
e = {1}n. Therefore, the canonical form of (Pmi) is

min{�(y, z) = �(�(y, z)) + �(�z(z)) − 〈y, s〉 − 〈z, t〉 | y ∈ Yc}. (58)

Since the canonical function �(g) is convex, semicontinuous, its Fenchel conjugate
is

��(σ ) = sup{〈g; σ 〉 − �(g)|g ∈ R
n} = {〈e; σ 〉 if σ ≥ 0, ∞ otherwise}.

The generalized canonical duality relations (31) are σ ≥ 0 ⇔ g ≤ e ⇔
〈g − e; σ 〉 = 0. The complementarity shows that the canonical integer constraint
g = e can be relaxed by the σ > 0 in continuous space. Thus, if ξ = �(χ) is a
quadratic homogenous operator and the canonical function �(ξ) is convex on Ea ,
the canonical dual to (Pmi) is

(Pg
mi) : max

{

�g(ς , σ ) = −1

2
〈[G(ς, σ )]+f, f〉 − ��(ς) − 〈e; σ 〉| (ς , σ ) ∈ S+

c

}

,

(59)

where G(ς , σ ) depends on the quadratic operators �(χ) and �z(z), S+
c is a convex

open set:

S+
c = {(ς, σ ) ∈ E∗

a × R
n+| G(ς , σ ) � 0, σ > 0}. (60)

The canonical duality-triality theory has be used successfully for solving mixed
integer programming problems [35, 41]. Particularly, for the quadratic integer
programming problem:

(Pqi) : min

{

�(x) = 1

2
xT Qx − xT f| x ∈ {−1, 1}n

}

, (61)

we have S+
c = {σ ∈ R

n+| G(σ ) = Q + 2Diag (σ ) � 0, σ > 0} and

(Pg
qi) : max

{

�g(σ ) = −1

2
fT [G(σ )]+f − eT σ | σ ∈ S+

c

}

(62)

which can be solved easily if intS+
c �= ∅. Otherwise, (Pqi) could be NP-hard since

S+
c is an open set, which is a conjecture proposed in [24]. In this case, (Pqi) is

canonically dual to an unconstrained nonsmooth/nonconvex minimization problem
[25].
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4.5 General Knapsack Problem and Analytical Solution

Knapsack problems appear in real-world decision-making processes in a wide
variety of fields, such as finding the least wasteful way to cut raw materials,
resource allocation where there are financial constraints, selection of investments
and portfolios, selection of assets for asset-backed securitization, and generating
keys for the Merkle-Hellman and other knapsack cryptosystems. Mathematically, a
general quadratic knapsack problem can be formulated as an integer programming
problem:

(Pqk) : min

{

�qk(z) = 1

2
zT Qz − cT z| z ∈ {0, 1}n, vT z ≤ Vc

}

, (63)

where Q ∈ R
n×n is a given symmetrical, usually indefinite, matrix, c, v ∈ R

n are
two given vectors, and Vc > 0 is a design parameter.

The knapsack problem has been studied for more than a century, with early
works dating as far back as 1897. The main difficulty in this problem is the integer
constraint z ∈ {0, 1}n, so that even the most simple linear knapsack problem:

(Plk) : max
{
�lk(z) = −cT z| z ∈ {0, 1}n, vT z ≤ Vc

}
, (64)

is listed as one of Karp’s 21 NP-complete problems [50].
By the fact that α◦z2 = α◦z ∀z ∈ {0, 1}n, ∀α ∈ R

n, for any given symmetrical
Q ∈ R

n×n we can choose an α such that Qα = Q + 2Diag (α) � 0. Thus, by cα =
c + α, the problem (Pq) can be equivalently written in the so-called α-perturbation
form [25]:

(Pα) : min

{

�α(z) = 1

2
zT Qαz − cTα z | vT z ≤ Vc, z ∈ {0, 1}n

}

. (65)

Let rank Qα = r ≤ n, there must exist (see [77]) an L ∈ R
r×n and H ∈ R

r×r

with rank L = rank H = r and H � 0 such that Qα = 4LT HL. Similar to the
α-perturbed canonical dual problem (Pg

ip) given in [25], the canonical dual problem

(Pg
q ) can be reformulated as:

(Pg
α ) : max

ζ∈S+
c

{

�g
α(σ , τ ) = −1

2
Abs[φ(σ , τ )] − 1

2
σ T H−1σ − τVb + d

}

, (66)

where Vb = Vc − 1
2

∑n
i=1 vi, d = 1

8

∑n
i=1(2αi +∑n

j=1 Qij ) − 1
2

∑n
i=1(ci + αi),

S+
c = {ζ = (σ , τ ) ∈ R

m+1| τ ≥ 0}. (67)
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φ(σ , τ ) = c − τv − 2LT σ − 1

2
Qe, (68)

The notation Abs[φ(σ , τ )] denotes Abs[φ(σ , τ )] = ∑n
i=1 |φi(σ , τ )|.

Theorem 6 (Analytical Solution to Quadratic Knapsack Problem) For any
given Vc > 0, v, c ∈ R

n+, α ∈ R
n+ such that Qα = Q + 2Diag (α) = 4LT HL

and H � 0, if ζ̄ = {σ̄ , τ̄ } is a solution to (Pg
α ), then

z̄ = 1

2

{
φi(σ̄ , τ̄ )

|φi(σ̄ , τ̄ )| + 1

}n
(69)

is a global optimal solution to (Pα) and

�α(z̄) = min
z∈Za

�α(z) = max
ζ∈S+

c

�g
α(ζ ) = �g

α(ζ̄ ). (70)

Theorem 7 (Existence and Uniqueness Theorem to Quadratic Knapsack Prob-
lem) For any given Vc > 0, v, c ∈ R

n+, α ∈ R
n+ such that Qα = Q + 2Diag (α) =

4LT HL, H � 0, and ζ̄ = {σ̄ , τ̄ } is a solution to (Pg
α ), if

φi(σ̄ , τ̄ ) �= 0 ∀i = 1, . . . , n (71)

then the canonical dual feasible set S+
c �= ∅ and the knapsack problem (Pα) has

a unique solution. Otherwise, if φi(σ̄ , τ̄ ) = 0 for at least one i ∈ {1, . . . , n}, then
S+
c = ∅ and (Pα) has at least two solutions.

The canonical dual for the linear knapsack problem has a very simple form:

(Pg
lk) : max

τ≥0

{

�
g
lk(τ ) = −1

2

n∑

i=1

(|ci − τvi | − τvi) − τVc

}

. (72)

Corollary 1 (Analytical Solution to Linear Knapsack Problem) For any given
Vc > 0, v, c ∈ R

n+, if τ̄ > 0 is a solution to (Pg
lk), then

z̄ = 1

2

{
ci − τ̄ vi

|ci − τ̄ vi | + 1

}n
(73)

is a global optimal solution to (Pl ) and

�lk(z̄) = �
g
lk(τ̄ ) (74)

Corollary 2 (Existence and Uniqueness Theorem to Linear Knapsack Problem)
For any given v, c ∈ R

n+, if there exists a constant τc > 0 such that

ψi(τc) = τcvi − ci �= 0 ∀i = 1, . . . , n (75)



Canonical Duality-Triality Theory: Unified Understanding for Modeling. . . 29

then the knapsack problem (Plk) has a unique solution. Otherwise, if ψi(τc) = 0
for at least one i ∈ {1, . . . , n}, then (Plk) has at least two solutions.

Detailed proof of these results is given by Gao in [31].
The so-called multi-dimensional knapsack problem (MKP) is a generalization of

the linear knapsack problem, that is:

(Pmk) : max cT z, s.t. Wz ≤ ω, z ∈ {0, 1}n, (76)

where c ∈ R
n+ and ω ∈ R

m+ (m < n) are two given nonnegative vectors,

W ∈ R
m×n+ = {W = {wij } ∈ R

m×n| wij ≥ 0 ∀i = 1, . . . , m, j = 1, . . . , n}

is a given nonnegative matrix such that wij ≤ ωj ,
∑n

j=1 wij ≥ ωi . Clearly, this
problem has multi-knapsacks {ωi}m. Therefore, instead of the multi-dimensional,
the correct name for (Pmk) should be the multi-kanpsacks problem. This problem
has applications in many fields including capital budgeting problems and resource
allocation [66]. The canonical dual problem for (Pmk) is

(Pg
mk) : max

τ∈Rm+

⎧
⎨

⎩
�

g
mk(τ ) = −1

2

n∑

i=1

(|ci −
m∑

j=1

wjiτj | −
m∑

j=1

wjiτj ) − ωT τ

⎫
⎬

⎭
.

(77)

Thus, if τ̄ = {τ̄i} is a global maximizer of (Pg
mk), the analytic solution to (Pmk) is

z = 1

2

(
ci −∑m

j=1 wji τ̄j

|ci −∑m
j=1 wji τ̄j | + 1

)

. (78)

4.6 Bilevel Optimization and Optimal Control

Bilevel optimization appears extensively in optimal design and control of complex
systems. A general formulation of the bilevel optimization problem can be written
as follows:

(Pbo) : min {T (x, y) | x ∈ Xa, y ∈ Ya}, (79)

s.t. y ∈ arg min{�(v, x) | v ∈ Ya}, (80)

where T represents the top-level target (or leader) function, � is the lower-level
target (or follower) function. Similarly, x ∈ Xa represents upper-level decision
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vector and y ∈ Ya represents the lower-level variable. Clearly, this is a coupled
nonlinear optimization problem, which is fundamentally difficult even for convex
systems.

To solve this coupling problem numerically, an alternative iteration method can
be used [30]:

(1) For a given xk−1, solve the lower-level problem first to obtain

yk ∈ arg min{�(y, xk−1)| y ∈ Ya}. (81)

(2) Then for the fixed yk , solve the upper-level problem for

xk = arg min{T (x, yk) | x ∈ Xa}. (82)

These two single-level optimization problems can be solved by the canonical duality
theory, and the sequence {xk, yk} can converge to an optimal solution of (Pbo) under
certain conditions.

As an example, let us consider the following optimal control problem:

(Poc) : min {�(ν,χ) | ν ∈ U , χ ∈ X }, (83)

s.t. χ̇ = a(χ , ν, t) ∀t ∈ I = [to, tb], (84)

where χ(t) is the state, ν(t) is the control; X is a feasible set including the boundary
conditions: χ(to) = χo and ψ(χ(tb), tb) = 0. The upper-level target � is usually a
quadratic continuous-time cost functional:

�(ν,χ) = 1

2

∫

I

[
χT (t)Q(t)χ(t)+νT (t)R(t)ν(t)−2χT (t)P(t)ν(t)

]
dt+�b(χ(tb))

(85)

where Q(t) ∈ R
d×d , R(t) ∈ R

p×p are positive semi-definite and positive definite,
respectively, on the time domain I = [to, tb], �b(χ(tb)) = 1

2χT (tb)Qbχ(tb). New
to this cost function is the coupling term χT (t)P(t)ν(t), where P(t) ∈ R

d×p is
a given matrix function of t , which plays an important role in alternative iteration
methods for solving the general nonlinear optimal control problem (Poc).

For conservative systems, the nonlinear operator a(χ , ν, t) is a potential operator,
i.e., there exists an action (or Lagrangian) �(χ , χ̇ , ν) such that for any given control
ν(t) ∈ U the differential equation (84) can be written in the following least action
form:

χ ∈ arg min{�(χ , χ̇ , ν) | χ ∈ X } (86)

Although such a Lagrangian does not exist for dissipative systems, the least squares
method can always be used so that (84) can also be written in this minimization
form.
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In order to reformulate the challenging control problem (Poc) in function space,
the finite element method can be used such that the time domain I is divided into
n elements {Ie = [tk, tk+1} and in each Ie, the unknown fields can be numerically
discretized as:

ν(t) = Ne
u(t)ue, χ(t) = Ne

x(t)xe ∀t ∈ Ie, e = 1, . . . , n, (87)

where Ne
u(t) is an interpolation matrix for ν(t), ue = (ν(tk), ν(tk+1)) is a nodal

control vector; similarly, Ne
x(t) is an interpolation matrix for χ(t) and xe =

(χ(tk),χ(tk+1)) is a nodal state vector. Let Ua ⊂ R
p×n be an admissible nodal

control space, Xa ⊂ R
d×n be an admissible state space, u = {νk} ∈ Ua , and

x = {χk} ∈ Xa , then both the cost functional � and the action � can be numerically
written as:

�(ν,χ) ≈ �h(u, x) = 1

2
xT Qhx + 1

2
uT Rhu − xT Phu, (88)

�(χ , χ̇ , ν) ≈ �h(x,u) = G(Dx,u) − F(x,u), (89)

where G(Dx,u) and F(x,u) depend on the action �(χ , χ̇ ,u),

Qh =
n∑

e=1

∫

Ie

NT
x (t)Q(t)Nx(t) dt + 1

2
NT
x (tb)QbNx(tb),

Rh =
n∑

e=1

∫

Ie

NT
u (t)R(t)Nu(t) dt,

Ph =
n∑

e=1

∫

Ie

NT
x (t)P(t)Nu(t) dt .

Therefore, the optimal control problem (Poc) can be written in a bilevel optimization
problem:

(Ph
oc) : min {�h(u, x) | u ∈ Ua, x ∈ Xa}, (90)

s.t. x ∈ arg min{�h(y,u) | y ∈ Xa} (91)

The canonical duality theory has been successfully applied for solving nonlinear
dynamical systems [54, 71] and the relation between chaos and NP-hardness was
first discovered by Latorre and Gao [54]. Combined with an alternative iteration
method, the canonical duality theory can be used to efficiently solve the general
bilevel optimization problems.
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4.7 Multi-Level Multi-Targets MINLP and Topology
Optimization

Multi-target optimization is concerned with mathematical optimization problems
involving more than one target function to be optimized simultaneously. Since the
target is a vector-valued function, it is also known as vector optimization, multi-
criteria optimization, or Pareto optimization. By the fact that the objectivity has
been misused in optimization literature, this important research area has been mis-
guidedly called multi-objective optimization. Multi-target optimization problems
appear extensively in multi-scale complex systems where optimal decisions need
to be taken in the presence of trade-offs between two or more conflicting targets.
Therefore, the multi-level optimization and MINLP problems are naturally involved
with the multi-target optimization. In real-world applications, the multi-level multi-
target mixed integer nonlinear programming (MMM) could have many different
formulations. Based on the canonical duality theory, a simple form of MMM
problems can be proposed as the following:

(P3m) : min {T (z, x̄, ȳ) | x̄ ∈ Xa, ȳ ∈ Ya, z ∈ Za}, (92)

s.t. x̄ ∈ arg min{�x(x, y, z) | x ∈ Xa}, (93)

ȳ ∈ arg min{�y(x, y, z) | y ∈ Ya}. (94)

Without loss of generality, we assume that the leader variable z ∈ Za is a discrete
vector, the follower variables x ∈ Xa and y ∈ Ya are continuous vectors; the top-
level (leader) target T : Za × Xa × Ya → R

m is a vector-valued function, which
is not necessary to be objective, while the lower-level (follower) targets �x and �y

are real-valued functions such that the follower problems can be written respectively
in the canonical form (P), where the objectivity and subjectivity are required. If we
let

u = {x, y, · · · } ∈ Ua = Xa × Ya × · · · ,
�(u, z) = {�x(u, z),�y(u, z), · · · } : Ua × Za → R

d , d ≥ 2,

then the MMM problem can be written in a general form:

(P3m) : min {T (z,u) | u ∈ Ua, z ∈ Za}, (95)

s.t. u ∈ arg min{�(v, z) | v ∈ Ua}. (96)

Clearly, the (P3m) should be one of the most challenging problems proposed so far
in global optimization even if both T and � are linear vector-valued functions.

Topology optimization is a mathematical tool that optimizes the best mass
density distribution ρ(x) within a design domain � ⊂ R

d in order to obtain the
best structural performance governed by the minimum total potential principle:



Canonical Duality-Triality Theory: Unified Understanding for Modeling. . . 33

min

{

�(u, ρ) =
∫

�

U(∇u)ρ d� −
∫

	t

uT t d	 | u ∈ U
}

(97)

where u : � → R
d is a displacement vector field, the design variable ρ(x) ∈ {0, 1}

is a discrete scalar field, which takes ρ(x) = 1 at a solid material point x ∈ � and
ρ(x) = 0 at a void point x ∈ �. By using finite element method, the design domain
� is meshed with n disjointed finite elements {�e} and let

u(x) = N(x)ue ρ(x) = ze ∈ {0, 1} ∀x ∈ �e,

the total potential energy can be numerically written as:

�(u, ρ) ≈ �h(u, z) = zT c(u) − uT f

where u = {ue} ∈ Ua ⊂ R
m is a nodal displacement vector, z ∈ Za ⊂ {0, 1}n is a

discretized design vector, and

c(u) =
{∫

�e

U(∇N(x)ue) d�

}

∈ R
n+, f =

{∫

	t e

N(x)T t(x) d	

}

∈ R
m.

Let

Za = {z ∈ {0, 1}n| vT z ≤ ω},

where v = {ve} ∈ R
n+ and ve ≥ 0 is the volume of the e-th element, and ω > 0

is the desired volume of structure. The correct mathematical problem for general
topology optimization has been proposed recently by Gao [30, 31]:

Problem 1 (Topology Optimization for General Materials) For a given external
load f and the desired volume ω > 0, to solve the bilevel MINLP problem:

(Pto) : min {T (z,u) | u ∈ Ua, z ∈ Za}, (98)

s.t. u ∈ arg min{�h(v, z) | v ∈ Ua}. (99)

The top-level target function T depends on each design problem, which could be

T1(z,u) = uT f − zT c(u), (100)

T2(z,u) = 1

2
zT Q(u)z − zT c(u). (101)

where Q(u) is a symmetrical matrix whose diagonal elements {Qii}ni=1 = 0 and
Qij (u) is the negative effect to the structure if the i-th and j -th elements are elected.
Clearly, the top-level is a linear knapsack problem for T = T1, or a quadratic
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knapsack problem if T = T2. If Za = {z ∈ {0, 1}n| Wz ≤ ω}, then the top
level is a multi-knapsack problem.

In topology limit design, the top-level target could be a vector-valued function
depending on certain design parameter α, say:

T3(α, z,u) = {α, Ti(z,u)}, i = 1, 2. (102)

If α is the volume ω, then (Pto) is a topology optimization for lightweight design
problem:

Problem 2 (Topology Lightweight Design) For the given external load and ωb >

ωa > 0, to solve

(Plw) : min {T3(ω, z,u) | vT z ≤ ω, ω ∈ [ωa, ωb], u ∈ Ua, z ∈ {0, 1}n}, (103)

s.t. u ∈ arg min{�h(v, z) | v ∈ Ua}. (104)

This is a bilevel multi-target knapsack problem.
If α = −η and η > 0 is the external loading factor, then by simply choosing

T3(α, z,u) = −zT c(u) we have the following problem.

Problem 3 (Topology Limit Design) For the given external load distribution f and
the plastic yield condition in Ua , to solve

(Pld ) : max {zT c(u) | η > 0, u ∈ Ua, z ∈ Za}, (105)

s.t. u ∈ arg min{zT c(v) − η | vT f = 1, v ∈ Ua}. (106)

If α = {ω,−η}, the combination of (Plw) and (Pld ) forms a new problem:

Problem 4 (Topology Lightweight Limit Design) For the given ωb > ωa > 0,
the external load distribution f and the plastic yield condition in Ua , to solve

(Pll ) : min {ω,−zT c(u)} ∀ ω ∈ [ωa, ωb], η > 0, u ∈ Ua, z ∈ Za, (107)

s.t. u ∈ arg min{zT c(v) − η | vT f = 1, v ∈ Ua}. (108)

Due to a conflict between minω and max{η = zT c(u)}, this MMM problem could
exist a (possibly infinite) number of Pareto optimal solutions.

The canonical duality theory is particularly useful in topology optimization
for full-stress (or plastic limit) design. In this type of problems, it is much more
convenient to use the stress as the unknown in analysis. Therefore, dual to (Pto) the
problem for full-stress design can be proposed as:

(P∗
to) : max {T ∗(z, σ ) | z ∈ Za, σ ∈ S+

a }, (109)

s.t. σ ∈ arg max{�d
h(τ , z) | τ ∈ S+

a }, (110)
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The top-level dual target T d(z, σ ) can be

T d
1 (z, σ ) = zT cd(σ ), (111)

T d
2 (z, σ ) = zT cd(σ ) + 1

2
zT Q∗(σ )z, (112)

where cd(σ ) ∈ R
n+ is a positive vector such that each of its components cde (σ ) is

the pure complementary energy in the e-th element �e. The feasible space S+
a is

a bounded convex set with an inequality constraint ‖σ‖g ≤ σc, where ‖σ‖g is a
generalized norm which depends on the yield condition adopted, say either Trisca
or von Mises criterion [11]. Corresponding to T3, we have

T d
3 (α∗, z, σ ) = {α∗, T d

i (z, σ )}, i = 1, 2, (113)

where α∗ could be −ω, η, or other design parameters.
For linear elastic structures, the total potential energy is a quadratic function of u:

�h(u, z) = 1

2
uT K(z)u − uT f, (114)

where K(z) = {zeKe} ∈ R
n×n is the overall stiffness matrix, obtained by assem-

bling the sub-matrix zeKe for each element �e. Accordingly, c(u) = 1
2

{
uT
e Keue

}

is the strain energy vector. In this case, the global optimal solution for the lower-
level minimization problem (99) is simply governed by a linear equilibrium equation
K(z)u = f. Then for T = T1, the bilevel knapsack problem (Pto) can be written in
the single-level reduction:

(Ple) : min
{

fT u − zT c(u) | K(z)u = f, vT z ≤ Vc, z ∈ {0, 1}n
}
. (115)

This knapsack-type problem makes a perfect sense in topology optimization, i.e.,
among all elements {�e} with the given volume vector v = {ve}, one should keep
only those who stored more strain energy density c(u). Based on the canonical dual
solution to the knapsack problem, a canonical duality algorithm (CDT) is developed
with successful applications.

In term of the stress, the full-stress design problem (P∗
f s) for linear elastic

structures can be simply given as:

(P∗
f s) : max{zT cd(σ ) | z ∈ Za, σ ∈ S+

a }, (116)

where cd(σ ) = { 1
2σ T

e Ceσ e} ∈ R
n+ is the stress energy vector, Ce is the compliance

matrix of the e-th element,

S+
a = {σ ∈ R

p| D∗σ = f, ‖σ‖g ≤ σc}, (117)
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Fig. 2 The design domain for a long cantilever beam with external load

in which σc > 0 is a material constant, and D∗ ∈ R
m×p is a balance operator

depending on the polynomial interpolation in the mixed finite element method [10,
11].

Example Let us consider the 2-D classical long cantilever beam (see Figure 2).
The correct topology optimization model for this benchmark problem should be
(Ple) [31]. We let ω = 0.4 and the pre-given domain ω0 = 1 is discretized by
nex×ney = 180×60 elements. Computational results obtained by the CDT and by
the popular methods SIMP and BESO are summarized in Figure 3, where the C =
zT c(u) is the total strain energy. The parameters used are penal = 3, rmin = 1 for
BESO and penal = 3, rmin = 1.5, f t = 1 for SIMP. Clearly, the precise solid-
void solution produced by the CDT method is much better than the approximate
results produced by other methods. In order to look the strain energy distribution
c = {ce(u)} in the optimal structure, we let nex × ney = 80 × 30. Figure 4 shows
clearly that the CDT can produce mechanically sound structure with homogeneous
distribution of strain energy density. Detailed study on canonical duality theory for
solving topology optimization problems is given recently in [30–32].

5 Symmetry, NP-Hardness, and Perturbation Methods

The concept of symmetry is closely related to the duality and, in certain sense, can be
viewed as a geometric duality. Mathematically, symmetry means invariance under
transformation. By the canonicality, the object G(g) possesses naturally certain
symmetry. If the subject F(χ) = 0, then �(χ) = G(Dχ) = �(�(χ)) and (Pg)

should have either a trivial solution or multiple solutions due to the symmetry.
In this case, �d(ς) = −�∗(ς) is concave and, by the triality theory, its critical
point ς̄ ∈ S−

c is a global maximizer, and χ̄ = [G(ς̄)]+f = 0 is the biggest local
maximizer of �(χ), while the global minimizers must be χ̄(ς̄) for those ς̄ ∈ ∂S+

c

such that
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Fig. 3 Computational results by SIMP (a), BESO (b), and CDT (c) with ω = 0.4.

�g(ς̄) = min{−�∗(ς)| det G(ς) = 0 ∀ς ∈ Sc}. (118)

Clearly, this nonconvex constrained concave minimization problem could be really
NP-hard. Therefore, many well-known NP-hard problems in computer science and
global optimization are not well-posed problems. Such as the max-cut problem,
which is a special case of quadratic integer programming problem (Pqi). Due to
the symmetry Q = QT and f = 0, its canonical dual problem has multiple solutions
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TOP: V=0.4, nex=80, ney=30, C=178.6881

BESO: V=0.4, nex=80, ney=30, C=176.4944

CDT: V=04, nex=80, ney=30, C=170.8685

(a) SIMP: C = 178.688

(b) BESO: C = 176.494

(c) CDT: C =170.869
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Fig. 4 Strain energy distributions by SIMP (a), BESO (b), and CDT (c) with ω = 0.4.

on the boundary of S+
c . The problem is considered as NP-complete even if Qij = 1

for all edges. Strictly speaking, this is not a real-world problem but only a perfect
geometrical model. Without sufficient geometrical constraints in Xa , the graph is
not physically fixed and any rigid motion is possible. However, by adding a linear
perturbation f �= 0, this problem can be solved efficiently by the canonical duality
theory [85]. Also, it was proved by the author [25, 35] that the general quadratic
integer problem (Pqi) has a unique solution as long as the input f �= 0 is big enough.
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Fig. 5 Graphs of �(x) (solid) and �g(ς) (dashed) ( α = 1, λ = 2 )

These results show that the subjective function plays an essential role for symmetry
breaking which leads to a well-posed problem. To explain the theory and understand
the NP-hard problems, let us consider a simple problem.

Example 1 (Nonconvex Minimization in R
n)

min

{

�(x) = 1

2
α(

1

2
‖x‖2 − λ)2 − xT f ∀x ∈ R

n

}

, (119)

where α, λ > 0 are given parameters. Let �(x) = 1
2 ‖x‖2 ∈ R, and the canonical

dual function is �d(ς) = − 1
2ς

−1‖f‖2 − λς − 1
2α

−1ς2, which is defined on Sc =
{ς ∈ R| ς �= −λ, ς = 0 iff f = 0}. The criticality condition ∂�d(ς) = 0 leads to
a canonical dual equation:

(α−1ς + λ)ς2 = 1

2
‖f‖2. (120)

This cubic equation has at most three real solutions satisfying ς1 ≥ 0 ≥ ς2 ≥ ς3,
and, correspondingly, {xi = f/ςi} are three critical points of �(x). By the fact
that ς1 ∈ S+

a = {ς ∈ R | ς ≥ 0}, x1 is a global minimizer of �(x). While for
ς2, ς3 ∈ S−

a = {ς ∈ R | ς < 0}, x2 and x3 are local min (for n = 1) and local max
of �(x), respectively (see Figure 5(a)).

If we let f = 0, the graph of �(x) is symmetric (i.e., the so-called double-
well potential or the Mexican hat for n = 2 [23]) with infinite number of global
minimizers satisfying ‖x‖2 = 2λ. In this case, the canonical dual �g(ς) =
− 1

2α
−1ς2 − λς is strictly concave with only one critical point (local maximizer)

ς3 = −αλ < 0. The corresponding solution x3 = f/ς3 = 0 is a local maximizer.
By the canonical dual equation (120) we have ς1 = ς2 = 0 located on the boundary
of S+

a , which corresponding to the two global minimizers x1,2 = ±√
2λ for n = 1,

see Figure 1(b). If we let f = −2, then the graph of �(x) is quasi-convex with only
one critical point and (120) has only one solution ς1 ∈ S+

c (see Figure 1(c)).

This simple example reveals an important truth, i.e., the symmetry is the key that
leads to multiple solutions. Theoretically speaking, nothing is perfect in this real
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world, a perfect symmetry is not allowed for any real-world problem. Thus, any
real-world problem must be well-posed [29]. In reality, it is impossible to precisely
model any real-world problem; although most of the NP-hard problems are artificial,
they appear extensively not only in global optimization and computer science but
also in chaotic dynamical systems, decision science, and philosophy, say, the well-
known Buridan’s ass paradox in its most simple version.

Example 2 (Paradox of Buridan’s Ass and Perturbation) A donkey facing two
identical hay piles starves to death because reason provides no grounds for choosing
to eat one rather than the other.

The mathematical problem of this paradox was formulated in [31]:

max{c1z1 + c2z2| c1 = c2 = c, z1 + z2 ≤ 1, (z1, z2) ∈ {0, 1}2}. (121)

Clearly, this is a linear knapsack problem in R
2. Due to the symmetries: v1 = v2 = 1

and c1 = c2 = c, the solution to (77) is τc = c. Therefore, ψi(τc) = 0 ∀i = 1, 2
and by Theorem 2 this problem has multiple (two) solutions, which is NP-hard to
this donkey.

In order to solve such NP-hard problems, the key idea is to break the symmetry.
A linear perturbation method has been proposed by the author and his co-workers.
This method is based on a simple truth, i.e., it is impossible to have the two identical
hay piles. Thus, by adding a linear perturbation term ερ1 to the cost function to break
the symmetry, then for c = 2, ε = 0.05, the solution to (77) is τc = 2.0184. So, the
condition (75) holds for i = 1, 2 and by the canonical duality theory, the perturbed
Buridan’s ass problem has a unique solution z = (1, 0).

Perturbation method has been successfully applied for solving many challenging
problems including hard cases of trust region method [7], NP-hard problems in
integer programming [84, 85], and nonconvex constrained optimization in Euclidean
geometry [62]. By the fact that the subjective function F(χ) = 〈χ , f〉 plays a
key role in real-world problems, the following conjecture was proposed recently
[26, 28].

Conjecture 2 For any given properly posed problem (Pg) under the Assumption 1,
there exists a constant fc > 0 such that (Pg) has a unique solution in S+

c as long
as ‖f‖ ≥ fc.

This conjecture shows that any properly posed problems are not NP-hard if the
input ‖f‖ is big enough. Generally speaking, most NP-hard problems have multiple
solutions located either on the boundary or the outside of S+

c . Therefore, a quadratic
perturbation method can be suggested as:

�δk (χ , ς) = �(χ , ς) + 1

2
δk‖χ − χk‖2

= 1

2
〈χ ,Gδk (ς)χ〉 − �∗(ς) − 〈χ , fδk 〉 + 1

2
δk〈χk,χk〉,
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where δk > 0, χk (k = 1, 2, . . . ) are perturbation parameters, Gδk (ς) = G(ς) +
δkI, and fδk = f + δkχk . Thus, the original canonical dual feasible space S+

c can
be enlarged to S+

δk
= {ς ∈ Sc| Gδk (ς) � 0} such that a perturbed canonical dual

problem can be proposed as:

(Pg
k ) : max

{
min{�δk (χ , ς)| χ ∈ Xa}| ς ∈ S+

δk

}
. (122)

Based on this problem, a canonical primal-dual algorithm has been developed with
successful applications for solving sensor network optimization problems [70] and
chaotic dynamics [54].

6 Connections with Popular Methods and Techniques

By the fact that the canonical duality-triality theory is a unified mathematical
methodology with solid foundation in physics, it is naturally connected to many
other powerful methods and techniques in different fields. This paper discusses only
two well-known methods in optimization and a so-called composite minimization
problem. Connections with other theories and methodologies can be found in
[34, 56].

6.1 Relation with SDP Programming

Now, let us show the relation between the canonical duality theory and the popular
semi-definite programming relaxation.

Theorem 8 Suppose that � : Es → R is convex and ς̄ ∈ E∗
a is a solution of the

problem:

(Psd ) : min{g + �∗(ς)} s.t.

(
G(ς) f

fT 2g

)

� 0 ∀ς ∈ E∗
a , g ∈ R, (123)

then χ = [G(ς)]+f is a global minimum solution to the nonconvex problem (P).

Proof The problem (Pd) can be equivalently written in the following problem (see
[86]):

min
{
g + �∗(ς)| g ≥ G�

ap(ς), G(ς) � 0 ∀ς ∈ E∗
a

}
. (124)

Then, by using the Schur complement lemma, this problem is equivalent to (Psd ).
The theorem is proved by the triality theory. �
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It was proved [35] that for the same problem (Pqi), if we use different
geometrical operator:

�(x) = xxT ∈ Ea = {ξ ∈ R
n×n| ξ = ξT , ξ � 0,

rank ξ = 1, ξii = 1 ∀i = 1, . . . , n},

and the associated canonical function �(ξ) = 1
2 〈ξ ; Q〉 + {0 if ξ ∈

Ea,+∞ otherwise}, where 〈ξ ; ς〉 = tr(ξT ς), we should obtain the same canonical
dual problem (Pd

qi). Particularly, if f = 0, then (Pqi) is a typical linear semi-definite
programming:

min
1

2
〈ξ ; Q〉 s.t. ξ ∈ Ea.

Since Ea is not bounded and there is no input, this problem is not properly posed,
which could have either no solution or multiple solutions for a given indefinite
Q = QT .

The SDP programming has been used for solving a canonical dual problem in
post-buckling analysis of a large deformed elastic beam [1].

6.2 Relation to Reformulation-Linearization/Convexification
Technique

The Reformulation-Linearization/Convexification Technique (RLT) proposed by H.
Sherali and C.H. Tuncbilek [75] is one well-known novel approach for efficiently
solving general polynomial programming problems. The key idea of this technique
is also to introduce a geometrically nonlinear operator ξ = �(x) such that the
higher-order polynomial object G(x) can be reduced to a lower-order polynomial
�(ξ). Particularly, for the quadratic minimization problems with linear inequality
constraints in Xa :

(Pq) : min

{

�(x) = 1

2
xT Qx − xT f| x ∈ Xa

}

, (125)

by choosing the quadratic transformation:

ξ = �(x) = x
−→⊗ x ∈ Ea ⊆ R

n×n, i.e., ξ = {ξij } = {xixj }, ∀1 ≤ i ≤ j ≤ n,

(126)

where
−→⊗ represents the Kronecker product (avoiding symmetric terms, i.e., ξij =

ξji), the quadratic object G(g) can be reformulated as the following first-level RLT
linear relaxation:
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G(x) = 1

2
xT Qx = 1

2

n∑

k=1

qkkξkk +
n−1∑

k=1

n∑

l=k+1

qklξkl = �(ξ). (127)

The linear �(ξ) can be considered as a special canonical function since ς = ∂�(ξ)

is a constant and �∗(ς) = 〈ξ ; ς〉 − �(ξ) ≡ 0 is uniquely defined. Thus, using
�(ξ) = 〈ξ ; ς〉 to replace G(x) and considering ξ as an independent variable, the
problem (Pq) can be relaxed by the following RLT linear program:

(PRLT ) : min {�(ξ) − 〈x, f〉| x ∈ Xa, ξ ∈ Ea} . (128)

Based on this RLT linear program, a branch and bound algorithm was designed [76].
It is proved that if (x̄, ξ̄) solves (PRLT ), then its objective value yields a lower bound
of (Pq) and x̄ provides an upper bound for (Pq). Moreover, if ξ̄ = �(x̄) = x̄

−→⊗ x̄,
then x̄ solves (Pq).

This technique has been significantly adapted along with supporting approx-
imation procedures to solve a variety of more general nonconvex constrained
optimization problems having polynomial or more general factorable objective and
constraint functions [74].

By the fact that for any symmetric Q, there exists D ∈ R
n×m such that Q =

DT HD with H = {hkk = ±1, hkl = 0 ∀k �= l} ∈ R
m×m, the canonicality

condition (127) can be simplified as:

G(Dx) = 1

2
(Dx)T H(Dx) = 1

2

m∑

k=1

hkkξkk = �(ξ), (129)

ξ = �(x) = (Dx)
−→⊗ (Dx) ∈ R

m×m. (130)

Clearly, if the scale m � n, the problem (PRLT ) will be much easier than the
problems using the geometrically nonlinear operator ξ = x

−→⊗ x. Moreover, if we are
using the Lagrange multiplier ς ∈ E∗

a = {ς ∈ R
m×m| 〈�(x); ς〉 ≥ 0 ∀x ∈ R

n} to
relax the ignored geometrical condition ξ = �(x) in (PRLT ), the problem (Pq) can
be equivalently relaxed as:

(Pϒ) : min
x∈Xa

min
ξ∈Ea

max
ς∈E∗

a

{ϒ(x, ξ , ς) = �(ξ) + 〈�(x) − ξ ; ς〉 − 〈x, f〉} . (131)

Thus, if (x̄, ξ̄ , ς̄) is a solution to (Pϒ), then x̄ should be a solution to (Pq). By using
the sequential canonical quadratic transformation �(x) = �p(. . . (�1(x) . . . ) (see
Chapter 4, [18]), this technique can be used for solving general global optimization
problems.
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6.3 Relation to Composite Minimization

The so-called composite minimization in optimization literature is given in the
following form [57]:

min
x

h(c(x)), (132)

where c : Rn → R
m is called the inner function, and h : Rm → R ∪ {−∞,+∞}

is called the outer function. Although there are some mathematical assumptions,
such that c(x) is smooth and h(y) may be nonsmooth but is usually convex, this
is another abstractly proposed problem. Therefore, this problem appears mainly
from numerical approximation methods, for example, the least squares method for
solving the fixed point problem (53).

In numerical analysis or matrix completion [5], the variable x is a d × n matrix
X = {xi} = {xαi } (α = 1, . . . , d, i = 1, . . . , n). In sensor network communication
systems, the component xi ∈ R

d is the position of the i-th sensor and the well-
studied sensor localization problem is to find the sensor locations {xi} by solving
the following nonlinear system [70]:

‖xi − xj‖ = dij ∀(i, j) ∈ Ad , ‖xi − ak‖ = eik ∀(i, k) ∈ Ae (133)

where {dij } and {eik} are given distances, ak ∈ R
d (k = 1, · · · ,m) are specified

anchors, and Ad and Ae are two index sets. By the least squares method, this
problem can be formulated as a fourth-order polynomial minimization:

min

⎧
⎨

⎩
�(X) =

∑

(i,j)∈Ad

1

2
wij (‖xi − xj‖2 − dij )

2 +
∑

(i,k)∈Ae

1

2
ωik(‖xi − ak‖2 − eik)

2

⎫
⎬

⎭
,

where wij and ωik are given weights. Clearly, this is a composite minimization if
we let

c(X) = {cij (X), cik(X)}, cij = xi − xj , cik = xi − ak}, (134)

h(c) =
∑

(i,j)∈Ad

1

2
wij (‖cij‖2 − dij )

2 +
∑

(i,k)∈Ae

1

2
ωik(‖cik‖ − eik)

2. (135)

In this case, the matrix-valued function c(X) = g(X) = DX = {xi − xj , xi − ak}
is the finite difference operator in numerical analysis and h(c) = G(g) is a fourth-
order nonconvex polynomial of the linear operator g = DX.

We can also let

c(X) = {cij (X), cik(X)}, cij = ‖xi−xj‖2−dij , cik = ‖xi−ak‖2−eik, (136)
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h(c) =
∑

(i,j)∈Ad

1

2
wij c

2
ij +

∑

(i,k)∈Ae

1

2
ωikc

2
ik. (137)

In this case, �(X) = h(c(X)) is also a composite function but now c(X) = ξ(X) =
�(X) is a nonlinear operator and �(ξ) = h(ξ) is a convex function. Therefore, the
composition:

�(X) = h(c(X)) = G(DX) = �(�(X))

is indeed a canonical transformation. The sensor localization problem is considered
to be NP-hard by traditional theories and methods even if d = 1 [3]. From the
point view of the canonical duality theory, this problem has usually multiple global
minimizers due to the lacking of the subjective function. Therefore, by introducing
a linear perturbation F(X) = 〈X,T〉 = tr(XT T), the perturbed sensor localization
problem min{�(X) = �(�(X)) − F(X)} can be solved deterministically by the
canonical duality theory in polynomial time [55, 68, 70].

Generally speaking, the composite function is a special case of the canonical
transformation G(g) = �◦�(g) if h(y) = �(y) is convex, x = g, and �(x) = c(x)

as the geometrical measure. It is an objective function if c(x) = xT x. In this case,
h(c(x)) is the so-called convex composite function. In real-world applications, g(x)
could be again a composite function. For multi-scale systems, g can be defined by
(see [45]):

g(x) = (D1,D2, . . . ,Dk)x = {gi (x)}, gi (x) = Dix, (138)

each gi is a geometrical measure with dimension different from other gj , j �= i.
Correspondingly:

G(Dx) = �(�(x)), �(x) = �k ◦ �k−1 ◦ · · · ◦ �1(x) (139)

is called the sequential canonical transformation (see Chapter 4, [18]). Particularly,
if every �i(ξ i−1) is a convex polynomial function of ξ i−1 = �i−1 (i =
1, . . . , k, �0 = x), the composition �(�(x)) is the canonical polynomial
function. The sequential canonical transformation for solving high-order polynomial
minimization problems have been studied in [18, 46].

7 Conclusions

Based on the necessary conditions and basic laws in physics, a unified multi-scale
global optimization problem is proposed in the canonical form:

�(χ) = G(Dχ) − F(χ) = �(�(χ)) − 〈χ , f〉. (140)
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The object G depends only on the model and G(g) ≥ 0 ∀g ∈ Ga is necessary;
G should be an objective function for physical systems, but it is not necessary
for artificial systems (such as management/manufacturing processes and numerical
simulations, etc.). The subject F depends on each properly posed problem and must
satisfy F(χ) ≥ 0 together with necessary geometrical constraints for the output χ ∈
Xa and equilibrium conditions for the input f ∈ X ∗

a . The geometrical nonlinearity of
�(χ) is necessary for nonconvexity in global optimization, bifurcation in nonlinear
analysis, chaos in dynamics, and NP-hardness in computer science.

Developed from large deformation nonconvex analysis/mechanics, the canonical
duality-triality is a precise mathematical theory with solid foundation in physics
and natural root in philosophy, so it is naturally related to the traditional theories
and powerful methods in global optimization and nonlinear analysis. By the fact
that the canonical duality is a universal law of nature, this theory can be used not
only to model real-world problems but also for solving a wide class of challenging
problems in multi-scale complex systems. The conjectures proposed in this paper
can be used for understanding and clarifying NP-hard problems.

It is author’s hope that by reading this paper, the readers can have a clear
understanding not only on the canonical duality-triality theory and its potential
applications in multi-disciplinary fields, but also on the generalized duality-triality
principle and its role in modeling/understanding real-world problems.
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Numerical Investigation of Stochastic
Neural Field Equations

Pedro M. Lima

1 Introduction

Neural field equations (NFE) are a powerful tool for analysing the dynamical
behaviour of populations of neurons. The analysis of such dynamical mechanisms is
crucially important for understanding a wide range of neurobiological phenomena
[3]. In this work, we will be concerned with the NFE in the form:

∂

∂t
V (x, t) = I (x, t) − αV (x, t) +

∫

Ω

K(|x − y|)S(V (y, t − τ(x, y)))dy, (1)

t ∈ [0, T ], x ∈ Ω ⊂ R,

where V (x, t) (the unknown function) denotes the membrane potential in point x
at time t ; I (x, t) represents the external sources of excitation; S is the dependence
between the firing rate of the neurons and their membrane potentials (sigmoidal or
Heaviside function); and K(|x − y|) gives the connectivity between neurons at x
and y, α is a constant (related to the decay rate of the potential); τ(x, y) > 0 is a
delay, depending on the spatial variables (it results from the finite propagation speed
of nervous stimulus in the brain).

Equation (1) (without delay) was introduced first by Wilson and Cowan [18], and
then by Amari [1], to describe excitatory and inhibitory interactions in populations
of neurons.
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Intensive studies of Hopf bifurcations occurring in neural fields have been carried
out in the last decade. In [3], the authors investigate the occurrence of spatially
localised oscillations (or breathers) in two-dimensional neural fields with excitatory
and inhibitory interactions; in [16], the authors obtain sufficient conditions for the
stability of stationary solutions of neural field equations; the dependency of the
stationary solutions of NFE with respect to the stiffness of the nonlinearity and the
contrast of external inputs is studied in [17]. The effect of transmission delays on
the stability and the bifurcations was analysed in [7] (in the case of a single delay)
and in [2] (in the case of distributed delays).

Though the above-mentioned results were obtained analytically, numerical sim-
ulations play a fundamental role in studying brain dynamics. Thus, the availability
of efficient numerical methods is an important ingredient for improving the under-
standing of neural processes. Concerning Equation (1), numerical approximations
were obtained in [4]. The computational method applies quadrature rule in space
to reduce the problem to a system of delay differential equations, which is then
solved by a standard algorithm for this kind of equations. A more efficient approach
was recently proposed in [9, 10], where the authors introduce a new approach to deal
with the convolution kernel of the equation and use fast Fourier transforms to reduce
significantly the computational effort required by numerical integration. Recently, a
new numerical method for the approximation of two-dimensional neural fields has
been introduced, based on an implicit second-order scheme for the integration in
time and using Chebyshev interpolation to reduce the dimensions of the matrices
[14]. Some applications of this algorithm to Neuroscience problems have been
discussed in [15].

As in other sciences, in Neurobiology it is well known that better consistency
with some phenomena can be provided if the effects of random processes in the
system are taken into account. The conjugate role of noise and delays on the genesis
of bifurcations and pattern formation was investigated in [8].

In recent work of Kühn and Riedler [12], the authors study the effect of additive
noise in Neural Field Equations. With this purpose, they introduce the stochastic
integro-differential equation:

dUt (x) =
(

I (x, t) − αUt(x) +
∫

Ω

K(|x − y|)S(Ut (y))dy

)

dt + εdWt(x), (2)

where t ∈ [0, T ], x ∈ Ω ⊂ R
n, and Wt is a Q-Wiener process.

The main goal of the present work is to analyse the effect of noise in certain
neural fields, which allow different types of stationary solutions. In this case, we
consider the following modification of equation (2):

dUt (x) =
(

I (x, t) − αUt(x) +
∫

Ω

K(|x − y|)S(Ut−τ (y))dy

)

dt + εdWt(x),

(3)
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where, as in the deterministic case, τ is a delay, depending on the distance |x − y|.
Equation (3) is completed with an initial condition of the form:

Ut(x) = U0(x, t), t ∈ [−τmax, 0], x ∈ Ω, (4)

where U0(x, t) is some given stochastic process, and τmax is the maximum value
of the delay ( τmax = |Ω|/v), where v is the propagation speed of the signals.
We assume that Ut(x) satisfies periodic boundary conditions in space. We will
consider domains of the form Ω = [−l, l], including the limit case when
l → ∞.

2 Numerical Approximation

To construct a numerical approximation of the solution of (2) in the one-dimensional
case, we begin by expanding the solution Ut(x) using the Karhunen-Loeve
formula:

Ut(x) =
∞∑

k=0

ukt vk(x), (5)

where vk are the eigenfunctions of the covariance operator of the noise in (2), which
form an orthogonal system (their explicit form is indicated below). To derive a
formula for the coefficients ukt , we take the inner product of equation (2) with the
basis functions vi :

(dUt , vi) =
[

(I (x, t), vi) − α(Ut , vi) +
(∫

Ω

K(|x − y|)S(Ut−τ (y))dy, vi

)]

dt

+ ε(dWt , vi). (6)

We expand dWt as:

dWt(x) =
∞∑

k=0

vk(x)λkdβ
k
t , (7)

where the functions βk
t form a system of independent white noises in time and λk are

the eigenvalues of the covariance operator of the noise. As an important particular
case, we consider the one described in [12], p.7. In this case, the correlation function
satisfies

EWt(x)Ws(y) = min(t, s)
1

2ξ
exp

(−π

4

|x − y|2
ξ2

)

,
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where ξ is a parameter modeling the spatial correlation length. In this case, if ξ <<

2l, the eigenvalues of the covariance operator satisfy

λ2
k = exp

(

−ξ2k2

4π

)

.

By substituting (5) into (6) and taking into account (7) and the orthogonality of the
system vk , we obtain

duit =
[
(I (x, t), vi) − αuit + (KS)i(ūt−τ )

]
dt + ελidβ

i
t , (8)

where (KS)i(ūt ) denotes the nonlinear term of the system:

(KS)i(ūt ) =
∫

Ω

vi(x)

(∫

Ω

K(|x − y|)S
( ∞∑

k=1

ukt−τ vk(y)

)

dy

)

dx. (9)

When using the Galerkin method, we define an approximate solution by truncat-
ing the series expansion (5):

UN
t (x) =

N−1∑

k=0

u
k,N
t vk(x). (10)

Then, the coefficients uk,Nt satisfy the following nonlinear system of stochastic delay
differential equations:

du
i,N
t =

[
(I (x, t), vi) − αu

i,N
t + (KS)i,N (ūt−τ )

]
dt + ελidβ

i
t , (11)

where (KS)i,N (ūt ) is given by:

(KS)i,N (ūt−τ ) = h2
N∑

l=1

vi(xl)

⎛

⎝
N∑

j=1

K(|xl − xj |)S
(

N∑

k=1

ukt−τ vk(xj )

)⎞

⎠ (12)

i = 0, . . . , N − 1. In this case, we are introducing in [−L,L] a set of N + 1
equidistant grid points xj = −l + j ∗ h, j = 0, . . . , N , where h = 2l/N , and using
the rectangular rule to evaluate the integral in (9).

Since the problem has been reduced to the system (11) (a system of nonlinear
stochastic delay differential equations), we can apply the Euler-Maruyama method
to the solution of this system. For the discretisation in time, we introduce on
the interval [0, T ] a uniform mesh with step size ht , such that tj = jht , j =
0, 1, . . . , n. Then, the solution u

k,N
t of (11) will be approximated by a vector

(u
k,N
1 , u

k,N
2 , . . . , u

k,N
n ), where:
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u
k,N
j ≈ u

k,N
tj

.

In these notations, the Euler-Maruyama method may be written as:

u
i,N
j+1 = u

i,N
j + ht

[
(I (xi, tj ), vi) − αu

i,N
j+1 + (KS)i,N (ūtj−τ )

]
+√htελiwi, (13)

where wi is a random variable with normal distribution (wi = N(0, 1)), j =
0, . . . ., n, i = 0, . . . , N − 1. In the right-hand side of (13), we have written
αu

i,N
j+1, meaning that we are using a semi-implicit version of the Euler-Maruyama

method.
Further, we can rewrite equations (13) in the form:

u
i,N
j+1 = u

i,N
j + ht

[
(I (xi, tj ), vi) + (KS)i,N (ūtj )

]+ √
htελiwi

1 + αht
. (14)

The meaning of the inner product in (14) will be explained below. In order to

compute uktj−τ , we should take into account that τ = |xk1 −xk2 |
v

(the time spent by
the signal to travel between xk1 and xk2 ). In general, τ may not be a multiple of ht .
Let d and δt be the integer and the fractional part of τ

ht
. In this case, we have

tj−d−1 ≤ tj − τ ≤ tj−d

and

htδt = τ − dht .

The needed value of the solution utj−τ in (13) is then approximated by:

utj−τ ≈
{

u(tj−d), if δt < 0.5,
u(tj−d−1), if δt ≥ 0.5.

(15)

Concerning the choice of the basis functions, we consider a set of orthogonal
functions, similar to the one described in [12], page 7. More precisely, we define

vk(x) = exp(ikx), k = 0, 1, .., N. (16)

Note that with this choice of the basis functions the inner product in (14) and
the sums in (12) can be interpreted as the discrete Fourier transform (DFT). In
particular, the set of inner products (I (x, tj ), vi) , i = 1, . . . , N , may be seen as
the DFT of the vector IN , which contains the values of the function I (x, t) at the
grid points xk = −l + kh, k = 1, .., N . In this case, t is fixed (t = tj ). Therefore,
these inner products can be evaluated efficiently by the fast Fourier transform
(FFT).
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3 Numerical Examples

We have applied our algorithm to analyse the effect of noise on the formation of
multi-bump solutions in dynamic neural fields, in the presence of space-dependent
external stimuli. In [13], the authors have investigated the formation of regions of
high activity (bumps) in neural fields, which can be switched ‘on’ and ‘off’ by
transient stimuli. The stability analysis of such patterns in the deterministic case was
carried out in [5] and in [6]. The effects of noise on such stationary pulse solutions
were studied in [11]. In this case, the firing rate function S(x) is the Heaviside
function; the connectivity kernel is given by:

K(x) = 2 exp(−0.08x) (0.08 sin(πx/10) + cos(πx/10)) .

In [6], it was proved that such oscillatory connectivity kernels support the formation
of stationary stable multi-bump solutions, induced by external inputs. In this case,
the external input has the form:

I (x) = −3.39967 + 8 exp

(

−x2

18

)

.

This specific example was considered in [5], p. 37. The parameters of the numerical
approximation are N = 100, h = 1, l = 50; n = 200, ht = 0.02. We start
by considering the deterministic case. Using our code with ε = 0, we are able
to reproduce three kinds of stationary solutions, which are displayed in Figures 1
and 2.
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Fig. 1 Deterministic case: stationary one-bump solution
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Fig. 2 Deterministic case: three-bump (up) and five-bump (down) solutions

As the first experiment with the stochastic case, we have performed a sim-
ulation with 100 paths, with level of noise ε = 0.01 starting with the initial
condition U0(x, t) ≡ 0, over the time interval t ∈ [0, 4]. Our aim was to investigate
the evolution of the paths of the stochastic equation and their relation with the
stationary multi-bump solutions observed in the deterministic case. We remark that
each solution V (x, t) of the deterministic equation (1), as t tends to infinity, tends to
a certain stationary solution u(x), which is characterised by a certain maximal value
umax = maxx∈[−l,l] u(x) (which is usually located at the origin) and a minimal
value umin = minx∈[−l,l] u(x) (which is attained at two symmetric points). Usually,
a solution may have other local minima and maxima, whose absolute values do not
exceed those of umin and umax . The greater is the number of bumps, the higher is the
value of umax and the lower is the value of umin. These properties can be observed
from the data displayed in Table 1.
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Table 1 Properties of
stationary solutions of the
deterministic equation

umin umax

One-bump solution −8.97 16.10

Three-bump solution −15.52 20.88

Five-bump solution −17.16 22.18

Note that umax and umin are, respectively, the limits, as t → ∞, of umax(t) and
umin(t), that is, umax(t) = maxx∈[−l,l] V (x, t) and umin(t) = minx∈[−l,l] V (x, t).
We have used these properties to analyse the paths of the stochastic equation. As we
will see below, in certain cases, when these paths are rated according to the values
of umin and umax , they can be clearly divided into classes, each class having typical
values of these parameters, close to the ones of a certain stationary solution of the
deterministic equation.

Moreover, when analysing the paths of the stochastic equation, we are often
interested in evaluating their average and dispersion, and how these characteristics
change with time. The maxima and minima of the paths give us a convenient way
to analyse this evolution. Let u(s, x, t) denote the approximate value of Ut(x),
given by the s-th path. Assuming that np is the number of paths, use the following
notations:

Umax,max(t) = max
s∈{1,...,np} max

i∈{1,...,N} u(s, xi, t);

Umin,max(t) = min
s∈{1,...,np} max

i∈{1,...,N} u(s, xi, t);

Umax,min(t) = max
s∈{1,...,np} min

i∈{1,...,N} u(s, xi, t);

Umin,min(t) = min
s∈{1,...,np} min

i∈{1,...,N} u(s, xi, t);

We consider the following approximations of mathematical expectations:

E(u(x, t)) ≈ 1

np

np∑

s=1

u(s, x, t);

E( max
x∈[−l,l] u(x, t)) ≈ Emax(t) = 1

np

np∑

s=1

max
i∈{1,...,N} u(s, xi, t);

E( min
x∈[−l,l] u(x, t)) ≈ Emin(t) = 1

np

np∑

s=1

max
i∈{1,...,N} u(s, xi, t);

In Figure 3, we can see the time evolution of the solution maximum (up) and
the time evolution of the solution minimum (down). In the first case, the graphs of
Umax,max(t), Umin,max(t), and Emax(t) are displayed; the second graphic shows
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Fig. 3 Starting from the zero solution. Up: evolution of solution maximum—Umax,max (blue),
Umin,max (yellow), and Emax (green). Down: evolution of solution minimum—Umax,min (blue),
Umin,min (yellow), and Emin (green).

values of Umax,min(t), Umin,min(t), and Emin(t) . These figures show that the
average value of the maximum increases with time, while the average value of the
minimum decreases; as a result, the average amplitude of the oscillations (height of
the bumps) increases with time. Moreover, as it could be expected the dispersion
(maximal difference between values of different paths) also increases with time. As
it happens with umin(t) and umax(t) in the deterministic case, the values Emin(t)

and Emax(t) stabilise as t increases. For j = 200(tj = 4), their values are close to
the ones of umin and umax , in the case of a deterministic one-bump solution.

Figure 4 shows the distribution of umax (up) and umin (down), at t = 4, for the
different paths. We see that the maxima are concentrated on the range [15.8, 16.6],
which corresponds to the stationary one-bump solution, and [20, 21.2], which
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Fig. 4 Histograms of distribution of umax (up) and umin (down), at tj = 4 (j = 200), in the case
U0(x, t) ≡ 0, with ε = 0.01.

corresponds approximately to three-bump and five-bump solutions (see Table 1).
The minima are concentrated on the interval [−8.2,−7.4], which corresponds to
the stationary one-bump solution, and [−14.,−12.5], which corresponds approx-
imately to three-bump solutions of the deterministic equation. This suggests that
under the effect of not very strong noise, the most probable values of the solution of
the stochastic equation are close to the ones of some of the stationary solutions of
the deterministic equation. By other words, if the level noise is not too high, there is
a high probability that with time each path of the stochastic equation will approach
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one of the known stationary solutions of the deterministic equation. Moreover, the
probability that it will approach a one-bump solution is significantly higher than the
probability of tending to a third-bump or five-bump one.

As a second numerical experiment, we have performed a simulation with 100
paths, with level of noise ε = 0.01, over the time interval t ∈ [0, 4], taking as
initial condition U0(x, t) a stationary one-bump solution (of the type represented in
Figure 1).

In Figure 5, we again observe the evolution of Umax,max(t), Umin,max(t), and
Emax(t) (up); the values of Umax,min(t), Umin,min(t), and Emin(t) (down). As in the
previous case (Figure 3), we observe that the average amplitude of the solutions’
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Fig. 5 Starting from a one-bump solution, with ε = 0.01. Up: evolution of solution maximum—
Umax,max (blue), Umin,max (yellow), and Emax (green). Down: evolution of solution minimum—
Umax,min (blue), Umin,min (yellow), and Emin (green).
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Fig. 6 Graph of E(u(x, 4)) (red line), maxs∈{1,...,100} u(s, x, 4) (green line), and
mins∈{1,...,100} u(s, x, 4) (blue line), in the case ε = 0.01.

oscillations increases with time; however for this level of noise (ε = 0.01), the
amplitude of oscillations tends to stabilise and the mean value of the stochastic
solution remains close to the one-bump deterministic solution.

In Figure 6, the graph of the average solution E(u(x, t)) at t = 4 is displayed,
between the graphs containing the minimal and maximal values (of all the paths);
these graphs correspond to the simulation starting with the stationary one-bump
solution and with noise level ε = 0.01.

In Figure 7, we can see the distribution (at t = 4) of the values of umax (up) and
umin (down), for the same initial values and noise level. We see that the maxima are
concentrated on the range [15.8, 16.6] and the minima are concentrated on the range
[−9.4,−8.3]. This means that with level noise ε = 0.01 when the initial value of
the simulation is a deterministic one-bump solution, the most probable values of the
stochastic solution are concentrated near the ones of this stationary solution.

As a third numerical experiment, we have performed a simulation with 100
paths, with noise level ε = 0.05, over the time interval t ∈ [0, 4], taking again as
initial condition U0(x, t) a stationary one-bump solution.

The evolution of the maximum and minimum of the solutions is displayed in
Figure 8; in each case, we can see the graphs of the average value of the 100 paths
(Emax(t) and Emin(t), respectively). In Figure 9, the graph of the average solution
at t = 4 is plotted, between the graphs containing the minimal and maximal values
(of all the paths). As in the previous cases, we observe that the average amplitude
of the solutions’ oscillations increases with time; moreover, for this level of noise
(ε = 0.05), the amplitude of oscillations increases so much that some paths behave
like three-bump solutions or five-bump solutions.
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Fig. 7 Histograms of distribution of umax (up) and umin (down), at t = 4 (for the case where
U0(x, t) is a deterministic one-bump solution, with ε = 0.01).

In Figure 10, the distribution (at t = 4) of the maxima and minima (respectively)
of the different paths is displayed. We see that most of the maxima are on the range
[16, 25] and most of the minima are on the range [−19,−9]. This reflects the fact
that with noise level ε = 0.05 many paths starting from a stationary one-bump
solution can after some time take values that are characteristic of three-bump or
five-bump deterministic solutions. Moreover, the probability that the solution at t =
4 remains as a one-bump solution is much smaller than the probability of being
transformed into a solution with a higher number of bumps.
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Fig. 8 Starting from a one-bump solution, with ε = 0.05. Up: evolution of solution maximum—
Umax,max (blue), Umin,max (yellow), Emax (green). Down: evolution of solution minimum:
Umax,min (blue), Umin,min (yellow), Emin (green).

The numerical algorithm was implemented in Mathematica [19] and the com-
putations were performed in a PC with a 1.7-Ghz processor and 8 Gb of installed
memory (RAM). The computation of the numerical examples presented in this
section (with 100 paths) takes about 1 hour.
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Fig. 9 Graph of E(u(x, 4)) (red line), maxs∈{1,...,100} u(s, x, 4) (green line), and
mins∈{1,...,100} u(s, x, 4) (blue line), in the case ε = 0.05.

4 Conclusions

In this paper, we have introduced a new numerical algorithm for the approximation
of the stochastic neural field equation with delay. This numerical algorithm uses
the Galerkin method and is inspired in the Kühn and Riedler’s approach [12]. The
choice of the basis functions and grid points allows the use of the fast Fourier
transform to perform summations, which improves significantly the efficiency of
the algorithm.

To test the algorithm, we have applied it to the numerical solution of a neural
field, in the presence of external stimuli, where stationary one-bump and multi-
bump solutions are known to exist in the deterministic case. The numerical results
suggest that for a low level of noise the trajectories of the stochastic equation are
concentrated near the stationary solutions of the deterministic one. In particular, if
the initial condition is the null function, in the deterministic case the solution tends
with time to a one-bump stationary solution. But in the presence of not very strong
noise, the trajectories of the stochastic equation split into several classes, each of
them close to a different stationary solution of the deterministic equation.

In conclusion, we can say that our results are consistent with the study of
Kilpatrick and Ermentrout [11], where the authors conclude that upon breaking the
translation symmetry of a neural field, by introducing spatially heterogeneous input
or synapses, bumps in the stochastic neural field can become temporarily fixed to a
finite number of locations.
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Fig. 10 Histograms of distribution of umax (up) and umin (down), at t = 4 (in the case where
U0(x, t) is a deterministic one-bump solution, with ε = 0.05).
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Nonstationary Signal Decomposition
for Dummies

Antonio Cicone

1 Introduction

This work is an introductory survey on nonstationary signals and some of the most
advanced techniques available in the literature for their decomposition. It is intended
for an audience of people working with nonstationary signals who have never tried
anything more sophisticated than Fourier or wavelet transform, and for everyone
who is simply curious about the subject.

The idea is, starting from simple and basic concepts, to draw a brief and self-
contained picture of the subject and then to show how to use two modern algorithms
for signal decomposition.

Nonstationary signals are ubiquitous in real life. We can consider, for instance, a
stock market index, the ECG of a pregnant woman, or the terrestrial magnetic field
measured by a magnetometer. For all these signals there are two kind of problems
we may want to address:

Q1 What are the active frequencies at each instant of time?
Q2 How to decompose such signals into simpler components?

We will see how these two questions, which may sound apparently unrelated, are
indeed two sides of the same medal: understanding the nonstationary behavior of
the signal.
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Before addressing the previous two questions it is important to review what are
the instantaneous frequency and the time–frequency representation of a signal.

The idea of instantaneous frequency is natural. All of us know the basic
sine function y = A sin(2πφt) where A is the amplitude, 1/φ the period, and
φ the frequency. What if these quantities vary over time? We end up having
what is called a amplitude modulated and frequency modulated (AM FM) signal
z = A(t) sin(2π)φ(t)t). The intuition suggests to consider φ(t) as the instanta-
neous frequency of z at the instant of time t . The question now is how to compute
such quantity when a closed form formula of the signal is not known.

Ideally we would like to generalize the definition of stationary frequency as
reciprocal of the period to the nonstationary case. However, it becomes immediately
clear that such generalization is, in most cases, not feasible. In Figure 1 it is shown
an example of a nonstationary AM FM signal with a frequency which increases over
time. How to compute rigorously its instantaneous frequency? We cannot simply
rely on the periods which cannot be computed exactly at each instant of time. One
possible approach, well known and broadly adopted, is based on the evaluation
of the Hilbert transform of the signal [20, equation (3.4)]. Another way, recently
proposed in [6, equation (34)], is based instead on the computation of the signal
derivative. Both approaches have their own advantages as well as limitations. On
the one hand, the one based on the Hilbert transform, since it relies on integration,
is inherently more stable, but at the same time the integration implies that not only
local information are used for the instantaneous frequency computation. On the
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Fig. 1 Example of a nonstationary signal with instantaneous frequency which increases over time
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other hand, the method based on derivation is less stable, but at the same time it
is completely local since only instantaneous information is used in its computation.

Once such information is made available we can represent it in a plot where the
horizontal axis corresponds to the time and the vertical one to the frequencies. This
is what we call a time–frequency representation.

The aforementioned methods allow to compute the instantaneous frequency of a
signal whose instantaneous frequency is unique at each instant of time. What about
signals which contain two or more instantaneous frequencies? In this case these two
methods will not work.

This is where the questions Q1 and Q2 arise. In fact we can address the problem
of studying a nonstationary signal in two ways. On the one hand, we can try to
compute directly its time–frequency representation, addressing Q1. On the other
hand, we can tackle Q2 by first decomposing the signal into simple components
each of which contains, ideally, a unique instantaneous frequency at each instant
of time and then applying the previously mentioned techniques to compute the
instantaneous frequencies component by component.

Historically researchers have first tackled Q1. The first technique used was the
standard Fourier transform [2] which is, however, inherently unable to capture
any nonstationarity in the signal. For this reason the so-called short time Fourier
transform was developed [9]. This last method allowed to produce a meaningful
time–frequency representations of nonstationary signals. The continuous wavelet
transform [10] allowed to improve the accuracy of the time–frequency represen-
tation, in fact, instead of relying on an orthonormal basis of sines and cosines
functions, it uses dilation and translations of a mother wavelet. To further sharpen
the time–frequency representation the so-called synchrosqueezing transform was
proposed in [11, 12], which proved to be a special kind of a broader class of
techniques named reassignment methods [1, 13].

All the aforementioned algorithms are linear: they treat signals as linear com-
binations of elements in a preselected basis, sinusoidal or wavelet. There are also
quadratic methods which are based instead on energy and power distributions, like
the spectrogram, the scalogram, and the Wigner–Ville distribution. We refer the
interested reader to the book [13].

It is important to remind at this point the so-called Heisenberg uncertainty
principle [9]. Based on this principle the accuracy that it can be achieved in
producing a time–frequency representation is limited. In particular the idea is
that either we achieve a good accuracy in assigning the frequency, but then the
corresponding time horizon is not well identified or, vice versa, we have a good
accuracy in identifying the time horizon of a nonstationary event in a signal, but we
lose accuracy in assigning the frequency [14].

In 1998, meanwhile new methods for a more accurate than ever time–frequency
representations were proposed, Huang and his research group at NASA devised
the so-called empirical mode decomposition (EMD) algorithm [20]. This method
is the first technique ever developed able to address Q2 without any kind of a
priori information and without making any a priori selection of a basis to be
used. Furthermore, in some sense, it allows to bypass the Heisenberg uncertainty
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principle. In fact, decomposing directly a signal without any a priori information on
its instantaneous frequencies allows to address Q2 avoiding the limitations induced
by the Heisenberg uncertainty principle.

Few years later it became clear that this method is unstable. In particular its
sensitivity to noise was unraveled. For this reason Huang and his group devised the
so-called ensemble empirical mode decomposition (EEMD) algorithm [26] which
allows to overcome the sensitivity of the original EMD algorithm.

The publication of the EMD first and the EEMD after and their success inspired
many other researchers to work on alternative methods for the decomposition of a
signal into a few simple and meaningful components. All the alternative methods
proposed so far are based on the minimization of some functional, like the sparse
time–frequency representation algorithm [17, 18], and they require to make some
assumption on the signal under study. Only one of them, called iterative filtering
(IF) method [22], and its generalization, the adaptive local iterative filtering (ALIF)
algorithm [6], are based on iterations like EMD and EEMD, and therefore, no
assumptions are required on the kind of signal we want to decompose.

The rest of this paper focuses on decomposition methods based on iterations
for 1D signals. In particular we review the EEMD method, Section 2, and the IF
algorithm, Section 3. The paper ends with concluding remarks and an outlook to the
main open problems in the field.

We point out here that both EEMD and IF have been generalized to 2D. See [27]
and [4, 7] for further details.

2 The Ensemble Empirical Mode Decomposition Algorithm

As we mentioned in the introduction, the goal of the EMD and EEMD methods is the
decomposition of a signal into simple components, called intrinsic mode functions
(IMFs), each of which with a unique instantaneous frequency at every instant of
time.

We start reviewing the EMD algorithm [20], whose pseudocode is given in
Algorithm 1.

Algorithm 1 Empirical Mode Decomposition IMF = EMD(f )

IMF = {}
while the number of extrema of f ≥ 2 do

s1 = s

while the stopping criterion is not satisfied do
compute the moving average M(sm(x))

sm+1(x) = sm(x) − M(sm(x))

m = m + 1
end while
IMF = IMF ∪ {sm}
s = s − sm

end while
IMF = IMF ∪ {s}
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The key idea behind this method is what the authors called the sifting process:
given a signal s we capture its highest frequency oscillations by subtracting its
moving average M(s) from the signal itself. To do so we need to compute somehow
the function M(s). Huang and his research group proposed to compute first the
upper and lower envelopes connecting the maxima and minima of the signal,
respectively, by means of cubic splines. Then the moving average is computed as
mean between these two curves point by point.

Since the derived moving average is only an approximation of the exact one,
the idea is to iterate the aforementioned calculation applying it to the new signal
generated after the subtraction. Assuming s1 = s we compute

sm+1 = sm − M(sm) ∀m ≥ 1 (1)

In the end we expect the method to converge to an IMF or, using a stopping criterion,
we discontinue the calculations at a certain m̃ when we are close in some sense to
an IMF.

Then, using the approach just described, we compute IMF1 = sm̃ and we subtract
it from the signal under study. The remainder r = s − IMF1 can be treated as a
new signal to which we apply again the sifting process. In the end we decompose
the original signal into several IMFs and a remainder that cannot be decomposed
anymore because it does not contain any oscillations.

Everything works fine except that the EMD process just described proved to be
sensitive to small perturbations. In particular if we perturb a given signal with white
noise, even if small amplitude compared with the signal itself, the EMD may end
up providing a completely different decomposition.

To address this issue Huang and his collaborators proposed [26] to add to
the given signal hundreds of different white noise realizations and to decompose
separately each outcome of this addition. The final decomposition is then computed
as the average of all these decompositions.

The EEMD Matlab implementation can be download from http://rcada.ncu.edu.
tw/.

Besides the signal there are other two inputs that we need to pass to the EEMD
Matlab function:

Nstd which represents the ratio between the standard deviation of the added noise
and that of the signal under study.

NE Number of noise realizations in the ensemble, id est (i.e.) the number of
noise realizations to be added to the given signal.

The authors of the EEMD suggest in [26] to set Nstd to 0.2. They also point out
that if the data is dominated by high-frequency signals, the noise amplitude may
be smaller, and when the data is dominated by low-frequency signals, the noise
amplitude may be increased.

Furthermore they suggest to use ensembles of a few hundreds perturbations of a
single signal. Based on our experience setting NE to one hundred is enough in many
cases.

http://rcada.ncu.edu.tw/
http://rcada.ncu.edu.tw/
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2.1 Numerical Examples

Following what has been done in [19] we apply the EEMD algorithm, available at
http://rcada.ncu.edu.tw/, to two well-known geophysical nonstationary signals: the
Vostok temperature derived from ice core signal [23, 25] and the length-of-day data
(LOD) [15].

We start with the Vostok temperature dataset. We focus, for simplicity, on the
last 50 thousand years sample values, left panel of Figure 2. Applying the EEMD
method with Nstd = 0.2 and NE = 100 we obtain the decomposition shown in the
middle and right panels of Figure 2.

For the LOD dataset, instead, we consider the data from the beginning of 1983
to the end of 1986. The signal is shown in the left panel of Figure 3.

If we apply the EEMD method again with Nstd set to 0.2, and NE set to 100, we
obtain the decomposition shown in the middle and right panels of Figure 3.

In the following we describe the alternative method, iterative filtering, and we
apply it to the very same datasets. We provide in there a detailed description of the
derived components physical meaning.

For further details on these two datasets and the meaning of their decompositions
we refer the interested reader to [19].

3 The Iterative Filtering Method

Inspired by the EMD algorithm, Lin et al proposed in 2009 an alternative method
called iterative filtering [22]. The structure is the very same as in EMD with the only
difference that now the moving average M(sm(x)) is computed as a local average of
the values of the signal. This is achieved by integration of the signal itself weighted
using an a priori chosen mask wm with nonzero values concentrated on a finite
interval [−lm, lm]

M(sm(x)) =
∫ lm

−lm

sm(x + t)wm(t)dt (2)

where the subscript m stands for the step number in the iteration.
How to choose the mask function wm? Based on the theoretical results [4–

6, 8, 24], to guarantee the convergence and stability of the algorithm it is sufficient
to consider a mask function which is generated as follows. We convolve with
itself a function fulfilling the following properties: compactly supported (it is zero
outside a closed and finite set), nonnegative valued, with integral equal to 1, and
even (symmetric with respect to the vertical axis). This in turn guarantees also
the physical meaningfulness of the decomposition. In [6] Fokker–Plank filters were
proposed. They depend on two parameters, α and β, which can be tuned to produce
infinitely many filters. They have the extra property of being infinitely smooth on

http://rcada.ncu.edu.tw/
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Fig. 4 The Fokker–Planck filters associated with α = 0.02, β = 0.008 and α = 0.003, β = 0.01,
respectively

the entire real line. In Figure 4 two examples of such filters are shown. The only
drawback of Fokker–Plank filters is that they are not known in an explicit form.
However, it is possible to compute them up to machine precision using numerical
methods. In the following we use the filter associated with α = 0.005 and β = 0.09.
This specific Fokker–Plank filter is available, together with a Matlab version of
iterative filtering, online.1

The pseudocode of the IF algorithm is given in Algorithm 2 where wm(t) is the
chosen mask function whose support is in [−lm, lm], and lm is called mask length
which represents the half support length.

The current Matlab release of IF is IF_v6 and it requires as input the signal
we want to decompose and, optionally, a variable, generated using an extra function
called Settings_IF, which contains all the tuning parameters needed in the main
algorithm. This implementation allows also the user to pass a third input, a vector
containing a priori determined mask length values, forcing the method to skip their
computation.

As outputs the algorithm returns a matrix and a vector. The matrix contains as
rows the IMFs, that we recall are the simple components in which the signal is

1www.cicone.com, GitHub and Mathworks.

www.cicone.com
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Algorithm 2 Iterative Filtering IMF = IF(s)
IMF = {}
while the number of extrema of s ≥ N ≥ 2 do

s1 = s

while the stopping criterion is not satisfied do
compute the filter length lm for sm(x)
sm+1(x) = sm(x) − ∫ lm−lm

sm(x + t)wm(t)dt
m = m + 1

end while
IMF = IMF ∪ {sm}
s = s − sm

end while
IMF = IMF ∪ {s}

decomposed. The vector contains the values of mask length used to decompose
each IMF.

What are the tuning parameters that can be set in IF by means of the Matlab
function Settings_IF? Let us review them one by one.

delta In the IF algorithm we need to use a stopping criterion to
discontinue the calculation for each IMF, as pointed out in line
four of the pseudocode. The one currently implemented, called
delta, corresponds to the ratio between the norm 2 of the moving
average curve and the norm 2 of the signal. Since the moving
average curve converges towards a zero function we discontinue
the calculations when the aforementioned ratio is small enough.
Default value is set to 0.001.

ExtPoints The algorithm iterates until the remainder has at most
ExtPoints number of extrema. This number corresponds to
the value N in line two of the pseudocode. Default value is equal
to 3.

NIMFs Maximal number of IMFs allowed in the decomposition, exclud-
ing the remainder. Default value is set to 1.

extensionType The IF algorithm requires, as any other method in signal process-
ing, to make an assumption on how the signal extends outside
the boundaries. Three options are given: constant, periodical,
and reflection. In the constant case the signal extends outside
the boundaries with the last values achieved at the boundaries.
Whereas periodical implies that the signal is assumed to repeat
infinitely many times outside the boundaries. Finally reflection
means that we extend the signal assuming symmetry with respect
to the vertical lines passing through the boundary points.

MaxInner Maximum number of iterations allowed for the computation of
each IMF. Default value is set to 200.

alpha Parameter used for the mask length computation. In particular the
algorithm measures the distances between subsequent extrema in
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the signal under study. It is up to the user to decide which value
to be used in the decomposition. In fact, if alpha is set to 0, the
mask length is proportional to the minimum distance between two
subsequent extrema. If it is set to 1, then it is proportional to the
maximum distance. If we set it to ave, the mask length equals to,
as suggested in [22], the roundoff value of the ratio 2∗Xi∗L

Ne
, where

L is the length of the signal, Xi is defined in the following, and Ne

represents the number of extrema in the signal. Finally if we set it
to Almost_min, the mask length is selected equal to the roundoff
value of 2 ∗ Xi ∗P30, where P30 represents the 30 percentile of the
vector containing all the distances between subsequent extrema of
the signal. Default value set to ave.
We point out that the smaller is the mask length the higher is the
number of IMFs produced in the decomposition and the finer is
the separation of two frequencies. Based on our experience the
option Almost_min allows to obtain a decomposition with a
high number of components, but with IMFs which have unique
instantaneous frequencies all the time. Higher values in the param-
eter alpha may lead, in some cases, to components which show
an intermittency in the frequency.

Xi This last parameter allows to tune the mask length. Depending on
the chosen filter, in fact, we may need to extend the filter length
more or less due to its shape. In particular if we select a mask
shape with big values in the center, but which goes quickly to zero
we may need to select Xi bigger than 2. Whereas if the mask
shape is almost constant everywhere on its support, then Xi may
be selected closer to 1. Based on the numerical analysis conducted
in [5] we know that enlarging the mask function support implies
squeezing its Fourier transform and in turn it allows to tune the
sampled frequencies that enter in the extracted IMF. Suggested
values range in the interval [1.1, 3]. Default value is equal to 1.6.

3.1 Numerical Examples

We apply the IF_v6 to the Vostok temperature derived from ice core signal [23, 25]
and the length-of-day data (LOD) [15].

Regarding the Vostok temperature we set NIMFs to 100, for alpha we use the
default value ave. If we use the default value Xi= 1.6, the method decomposes the
low-frequency component in several IMFs. Therefore we increase Xi up to 3 using
the script Settings_IF(’IF.NIMFs’,100,’IF.Xi’,3);. We obtain a
decomposition which contains 5 IMFs and a remainder, left panel of Figure 5. The
first three components are related to high-frequency oscillatory patterns, whereas
the fourth, fifth, and last component in the decomposition correspond to three
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Fig. 5 Left panel, Vostok temperature IF decomposition. Right panel, length-of-day IF decompo-
sition

Milankovitch cycles which are related to the Earth’s eccentricity, axial tilt, and
precession [19, figure 11].

For the LOD data we use the Almost_min option for the parameter alpha and
we set NIMFs to 100. Also in this example we have to increase Xi up to 3.

We use the script Settings_IF(’IF.NIMFs’,100,’IF.alpha’,
’Almost_min’,’IF.Xi’,3);. We obtain a decomposition which contains
4 IMFs and a remainder, right panel of Figure 5. The first IMF has quasiregular
extrema with an average period around 14 days which was related to semimonthly
tides [21]. The second IMF has an average period of about 28 days, which was
linked to monthly tides [19]. The third and fourth IMFs are semiannual and annual
components, respectively. The causes of these cycles in the length of day have been
attributed to both the semiannual and annual cycles of the atmospheric circulation
and to other factors, such as tidal strength change related to the revolution of the
Earth around the Sun [16]. All the IMFs produced by the technique have physical
meaning and are all and only the oscillatory patterns we expected to find in the
given signal [19].

4 Conclusions and Outlook

In this paper we provide the reader with a brief overview of methods for the
decomposition of nonstationary signals. We address more in detail the question of
how to decompose such signals into simpler components using iterative methods
which do not require any a priori assumptions.

From a research point of view, while the EEMD is still lacking a rigorous
mathematical analysis, the IF algorithm has been extensively studied and analyzed
in 1D and higher dimensions [3–6, 8]. However, it is important to point out that
the iterative filtering method may fail to meaningfully decompose signals whose
instantaneous frequencies vary consistently over time, for instance, in a chirp. For
this reason the adaptive local iterative filtering (ALIF) method has been proposed in
[6]. It generalizes the IF algorithm allowing for meaningful decompositions of any
kind of nonstationary signals even with wide and quick changes in the instantaneous
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frequencies, like chirps. However, ALIF mathematical understanding is far from
being complete [8]. More research has to be done in this direction.
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Modeling the Socio-Economic Waste
Generation Factors Using Artificial
Neural Network: A Case Study of
Gurugram (Haryana State, India)

Ajay Satija, Dipti Singh, and Vinai K. Singh

1 Introduction

Solid waste management process includes managing the waste generation, collec-
tion with segregation, transportation with proper treatment (compost formation,
recycling, incineration, plasma gasification), and final disposal [8]. Improper solid
waste management causes serious environmental issues [17, 19, 21, 28]. Hence
proper Municipal solid waste management is required. Basically fastest growing
population, changing lifestyle, tourism, geographical conditions, public unaware-
ness, and industrialization are the socio-economic factors responsible for municipal
solid waste generation in developed as well as developing countries [15, 25]. The
major socio-economic factors affecting the waste generation are population growth,
rate of urbanization, literacy rate, and per capita income. The population growth
effects waste generation [9, 12, 18, 31]. Numbers of members in household and
corresponding waste generation are strongly correlated with each other [29]. Indian
population growth rate in census year 2011 was 17.6 [5]. Waste generation rate in
developed countries is higher than India. Rapid growing urbanization also effects
waste generation [2]. Per capita income and amount of waste generation are also
highly correlated. Hence, economic prosperity and population density are highly
correlated to waste generation. In the previous studies the time series models have
illustrated various trends in waste generation in successful manner [10]. Some
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models are based on autoregressive as well as exponential smoothing techniques
[23]. Such models give only seasonal variations of waste but do not tell about the
factors responsible for its generation and how to minimize this [20, 27]. On the
contrary, the ANN models have learning capability to correlate the dependent and
independent variables. In various case studies such models have been applied to
correlate socio-economic factors as independent variables to the municipal solid
waste generation as dependent variable. The ANN models have been extensively
used since last 20 years to solve the various daily life practical problems [14].
Adamovic et al. [1] have developed structural-break general regression neural
network model to observe the effect of economic crisis on waste generation
prediction. Bayer et al. [3] have developed ANN model as well as regression model
to analyze the leaching behavior of solidified waste. Jahandideh et al. [13] have
developed ANN and multiple regression models to predict the medical waste of
50 hospitals of Fars province (Iran). Lomeling and Kenyi have developed ANN
and ARMA (1,1) models to predict the weekly waste generated in Juba Town,
South Sudan [16]. Back propagation learning algorithm has been used in ANN
models to give optimized predicted results [7]. But, there are shortcomings of such
ANN models. In complex ANN model the training process will take more time.
Large numbers of data points have been required for such networks. The multiple
regression models show very clear approach between predictors and response
variable. In regression analysis, the predictor variables which are not very useful
to fit the model have to be eliminated by evaluating the optimum value of adjusted
R2. But in ANN models such type of methodology has not been considered. The
ANN model is just like a black box. It is difficult to interpret the structure of ANN
model. The problem of overfitting and underfitting of the data generally arises in
ANN models. In this study the major socio-economic factors such as population,
urban population, literate population, and per capita income have been analyzed
which are responsible for municipal solid waste (MSW) generation in Gurugram
district (Haryana State, India). There are two main objectives of the present study
(1) to predict the collected MSW of Gurugram district for five years (January 2017-
December 2021) and (2) to observe the socio-economic factors effect individually
and collectively on waste collection of Gurugram district. The present study will be
helpful for the authorities of Municipal Corporation of Gurugram for better future
planning and management.

2 Materials and Methods

2.1 Case Study Area

The study area of present research work is Gurugram. Gurugram is the fastest
growing metropolitan city of National Capital Region (India). The population of
Gurugram is 1,514,432 people [6]. The people of the district are blessed with six
seasons and better groundwater level.
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There are 35 wards in the district. These wards are subdivided into blocks. There
are large numbers of educational institutes in the city. India’s top ranked business
schools, technical institutes, and reputed private universities are situated in the city.

Gurugram become third highest in per capita income in India. There are
headquarters of world famous companies such as Coca-Cola, Pepsi, BMW, and
Maruti in the city. Faridabad district is in east, Rewari district is in west, National
capital Delhi is in north, and Mewat district is in its south direction.

2.2 Material and Methods

The socio-economic data of population growth, urban population %, and literacy
rate have been assembled from the Census of India. Per capita income data has been
assembled from Department of Economic and Statistical Analysis, Haryana (India).
The municipal solid waste data has been collected from landfill site of Bandhwari
village Gurugram (Haryana, India).

2.2.1 Population (POP)

Gurugram is a well-known industrialized city. People are migrating from other
places to the city in search of job opportunities, education as well as to get advanced
medical facilities. The population density is 1204 people per km2. Population wise
Gurugram occupies fourth place in the Haryana state.

The population growth rate data has been obtained from District Census Hand-
book, Gurgaon (formally named) Census of India 2011, Haryana, series-07, part
XII-A. The population data of previous years has been generated from the specified
population growth rate from the Handbook.

Table 1 shows that the population growth rate of the district has been continu-
ously increasing since last three decades. Population, the urban population, and the
literate population of census years 2021 have been predicted by graphical method
of population forecasting [22]. Population of census years 2021 would be 2373670.
Table 1 presents the population growth rate of Gurugram district.

Table 1 Population growth
of Gurugram district

Census Year Population growth % Population

1951 201699

1961 28.7 259587

1971 34.1 348106

1981 35.5 471683

1991 28.6 606585

2001 44.2 874695

2011 73.1 1514432

Source [4, 6]
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Table 2 Urban population of
Gurugram district

Census Year Urban Population% Urban Population

1951 10.62 21420

1961 13.07 33928

1971 13.81 48073

1981 18.61 87780

1991 20.30 123137

2001 35.41 309703

2011 68.82 1042232

Table 3 Literacy rate % of
Gurugram district

Census Year Literacy rate % Literate Population

1971 27.20 94685

1981 34.66 163485

1991 52.61 319124

2001 78.50 343135

2011 84.70 1111116

Source: [4, 6, 30]

2.2.2 Urban Population (URB)

Urbanization drastically effects waste generation. Gurugram is the second highly
urbanized district after Faridabad in Haryana state, India. Gurugram is the IT
(information technology) industries hub. There are plenty of job opportunities in
the city.

The Delhi metro train provides transport facilities to the people. The urban
population % of the district of previous census years has been illustrated in Table 2.
The urban population data has been generated with the help of Table 1.The urban
population in census years 2021 would be approximately 1996409. Source: [4, 6, 26]

2.2.3 Literate Population (LIT)

The literacy rate of Gurugram district is highest among all districts in the Haryana
state. Literacy rate creates public awareness to minimize the waste. Well-equipped,
trained sanitary staff always helps to minimize the waste. The illiterate people
create obstacles in the waste management system. They generate waste, spread
it in anywhere in public area, and create various environmental issues. Waste
management in such areas is quite difficult and expensive. Literate population for
year 2021 would be approximately 1924206 (Table 3).

2.2.4 Per Capita Income (PCI)

It has been observed that Gurugram district generates highest revenue for the
Haryana state. Gurugram is also called millennium city. The city is best place for
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Table 4 Per capita income
of the Gurugram district

Financial Year Per Capita Income (Rs/-)

2004–05 81478

2005–06 165878

2006–07 181730

2007–08 199095

2008–09 206817

2011–12 305233

2012–13 333168

2013–14 355343

2014–15 388278

2015–16 415959

2016–17 443641

2017–2018 471323

Source: [11]

Table 5 MSW collected
(Kg) (April 2010–January
2017)

Year Municipal solid waste (Kg)

2010 84167945

2011 133604460

2012 171003215

2013 144729705

2014 173499200

2015 189410855

2016 221569015

January 2017 20750290

real estate investors in Northern India. Industrial growth and expensive residential
complexes, sky-scraping shopping mall create an eminent picture of the millennium
city.

This is a well-planned city. High class Malls such as Ambience Mall, Sahara
Mall, DLF Mall, and Central Mall make city as shopper’s paradise. Table 4 presents
the per capita income of the district. Per capita income data from the years 2005–
2010 has been obtained from final report (based on Economic profile of NCR
(National Capital Region), 2015) submitted by Apex Cluster Development Services
Pvt. Limited to National Capital Region Planning Board.

PCI data from 2011–2015 has been arranged from Department of Economic and
Statistical Analysis, Haryana. PCI data for year 2016–2018 has been estimated on
average basis from last four financial years

2.2.5 Municipal Solid Waste (MSW) Data

The MSW data records have been collected from April 2010 to January 2017 (82
months). MSW presents fluctuations due to seasonal variations, people migration,
and festivals. Municipal Corporation of Gurugram (MCG) is the main governing
body responsible for waste management in the city. Table 5 presents the MSW
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Fig. 1 Municipal solid waste (Kg) disposed at landfill site

Table 6 Statistical analysis of proposed socio-economic factors and MSW

Number
Variable of Months Mean Std Dev Min Max Skewness

Population 82 1739265 171106 1453165 2032843 0.03

Urban Population 82 1310225 202198 967511 1650409 −0.01

Literate Population 82 1395762 209595 1025893 1727739 −0.11

Per Capita Income 82 376913 55594 278887 471323 0.01

Municipal solid waste 82 13854441 3771103 4164135 21910590 −0.54

collected and disposed in the landfill site of Bandhwari village, Gurugram. Figure 1
presents year-wise MSW collected from April 2010 to January 2017.

2.2.6 Statistical Analysis of Data

Table 6 presents the statistical analysis of socio-economic factors and MSW. The
statistical analysis presents that the socio-economic factors and MSW data are
normalized because the standard deviation in each case is less than half of the mean
and skewness factor in case lies between −1 and 1.

Table 7 presents the coefficient of correlation and p-value of input variables of
ANN model to the output variables.

2.2.7 Proposed Artificial Neural Network (ANN) Model

The ANN models have high learning capability from previous data. Such models
have forecasting as well as extrapolating behavior. In this study MATLAB software
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Table 7 The coefficient of correlation R, coefficient of determination R2 of collected MSW with
other socio-economic factors

Population Urban Population Literacy Rate Per Capita Income
Value and MSW and MSW and MSW and MSW

(R value) 0.747 0.747 0.745 0.750

R2 Value 55.8% 55.8% 55.4% 56.25%

p-value 0 0 0 0

has been used to develop ANN model to predict the MSW. Here neural network
tool (nntool) has been used to create, train, test, validate, and simulate the neural
network model. The ANN architecture has been denoted by I-H-O. Here I, H, and
O presents input layer, hidden layer, and output layer neurons. The brief working of
nntool has been described in the following steps:

Step 1. The variables population, urban population, literate population, and per
capita income of Gurugram district have been used as input layer neurons. MSW
(Monthly) has been used as output layer neuron. Here the data records of 82
months (April 2010–January 2017) of these variables have been compiled. Then the
data of input-output neurons has been normalized between −1 and 1 by using the
formula

Xnor = 2 ∗ (X − Xmin)

Xmax − Xmin
) − 1 (1)

Here Xnor, Xmin, and Xmax present the normalized value, minimum, and
maximum value of each variable say X.

Step 2. First read the normalized input(s) as well as target data points of 82
months through data network manager of nntool.

Step 3. Create ANN network by selecting network type, training function,
number of layers, and number of neurons. The network will undergo in supervised
learning. Levenberg-Marquardt back propagation learning algorithm has been
employed to adjust the weights and biases in the network so that the difference
between observed and predicted MSW can be minimized. Hyperbolic tan sigmoid
transfer function has been used between input and hidden layer neurons. The
pure linear transfer function has been used between hidden and output layer
neurons.

Step 4. Train and retrain the network by setting training parameters. The
input-output data of 82 data samples (100%) has been randomly subdivided
into 58 training data samples (70%), 12 validation data samples (15%), and 12
testing data samples (15%). Then note down the best validation performance and
highest value of the coefficient of correlation between observed and predicted
MSW.

Step 5. The input parameters population, urban population, literate population,
and per capita income have been individually as well as collectively trained with
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output variable MSW to observe their effect on MSW. Now simulate the network
for the next 59 months extrapolated data values (February 2017–December 2021) of
population, urban population, literate population, and per capita income to predict
the MSW for next 5 years.

3 Results

The results of the present study have been compiled in Tables 8 and 9. One of the
main objectives of study is to identify the effect of single, double, and multiple input
variables on the output variable MSW. It is assumed that sanitation worker of MCG
collects 70% of generated waste, respectively [24].

Initially, population variable has been used to predict the MSW. Various network
structures have been tried by changing hidden layer neurons to predict best ANN
model. The ANN model 1-6-1 has been observed as best ANN model. Here 1, 6,
and 1 show input layer neuron population, number of hidden layer neurons, and
MSW as output layer neuron, respectively.

The mean squared error of the model is 0.0474 and the coefficient of correlation
between observed and predicted MSW is 0.8569. The expected collected and gener-
ated MSW due to this variable would be 1313237.06 and 1876052.94 Metric tons,

Table 8 Validation of proposed ANN models by mean squared error and coefficient of corr-
elation R

Best ANN MSE
Model of Total Regression R

Model No. Input Variable(s) Structure Network Training Validation Testing All

1 POP 1-6-1 0.0474 0.8599 0.8047 0.9215 0.8569

2 URB 1-7-1 0.0485 0.8528 0.8750 0.8692 0.8564

3 LIT 1-7-1 0.0440 0.8561 0.9586 0.8986 0.8705

4 PCI 1-7-1 0.0364 0.8945 0.8046 0.9718 0.8924

5 POP, URB 2-7-1 0.0489 0.8230 0.9080 0.9356 0.8525

6 POP, LIT 2-7-1 0.0501 0.8542 0.8860 0.8806 0.8496

7 POP, PCI 2-7-1 0.0512 0.8282 0.9020 0.8940 0.8450

8 URB, LIT 2-8-1 0.0424 0.8480 0.9288 0.9640 0.8743

9 URB, PCI 2-8-1 0.0492 0.8359 0.9142 0.9123 0.8510

10 LIT, PCI 2-9-1 0.0440 0.8650 0.9057 0.8754 0.8709

11 POP, URB, LIT 3-10-1 0.0511 0.8339 0.8954 0.8595 0.8455

12 URB, LIT, PCI 3-9-1 0.0522 0.8168 0.9068 0.9231 0.8422

13 POP, LIT, PCI 3-10-1 0.0410 0.8634 0.9403 0.9077 0.8786

14 POP, URB, LIT, PCI 4-12-1 0.0294 0.9132 0.9065 0.9307 0.9150
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Table 9 Expected collected and generated waste (Metric tons) by proposed ANN models

Variables Used Expected MSW Uncollected Total expected
Input Variable(s) Collected MSW collected MSW within MSW generated

Model and output within Years in Year Years 2017– from year 2017
No. variable MSW 2017–2021 2021 2021 to 2021

1 POP 1313237.06 262919.84 562815.88 1876052.94

2 URB 1311584.53 262926.77 562107.65 1873692.18

3 LIT 1240532.39 248934.17 531656.73 1772189.12

4 PCI 1314109.73 262925.55 563189.88 1877299.61

5 POP, URB 1314059.53 262926.92 563168.37 1877227.90

6 POP, LIT 1306299.24 262924.08 559842.53 1866141.77

7 POP, PCI 1303999.57 262927.07 558856.95 1862856.52

8 URB, LIT 1302134.60 262912.50 558057.68 1860192.28

9 URB, PCI 1291066.93 262431.65 553314.39 1844381.32

10 LIT, PCI 1267575.91 21305.65 543246.81 1810822.72

11 POP, URB, LIT 1298316.00 262517.10 556421.14 1854737.14

12 URB, LIT, PCI 1290055.09 261070.81 552880.75 1842935.84

13 POP, LIT, PCI 1289331.37 262891.82 552570.58 1841901.95

14 POP, URB, LIT, PCI 1247096.43 260572.84 534469.89 1781566.32
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Fig. 2 Comparison between observed and predicted MSW of Gurugram using population as
predictor variable ((1-6-1) model no. 1)

respectively, for the period (January 2017–December 2021). Figure 2 presents the
comparison between observed and predicted MSW of Gurugram using population
as predictor variable.
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It can be determined in Figure 2 that the noise (error) is associated with proposed
network. Hence only population factor is not just sufficient to explain the variability
in response variable MSW. The forecasting behavior shown by this variable is linear
for upcoming 5 years (2017–2021). It predicts the trend.

Figure 2 shows that the curve is not good fitted from 1 December 2010 to
1 November 2011. This error may be occurred due to other unseen factors. The
model number 2 displays the urban population has been used as predictor variable
individually to predict the MSW. By changing hidden layer neurons the ANN model
1-7-1 has been observed as best ANN model. The mean squared error between
observed and predicted MSW of the proposed model is 0.0485 and the coefficient of
correlation between observed and predicted MSW is 0.8564. The expected collected
and generated MSW due to urban population would be 1311584.53 and 1873692.18
Metric tons, respectively, for the period (2017–2021).

Figure 3 presents the comparison between observed and predicted MSW of
Gurugram using urban population as predictor variable. This is observed from
Figure 3 that the noise (error) is also associated with proposed network.

In model number 3 the literate population has been used to predict the MSW
individually. The ANN model 1-7-1 has been examined as best ANN model by
changing hidden layer neurons.

Figure 4 presents the comparison between observed and predicted MSW of
Gurugram using literate population as predictor variable. The MSE and coefficient
of correlation between observed and predicted MSW are 0.0440 and 0.8705,
respectively. The expected waste collected and generated for period January 2017–
December 2021 would be approximately 1240532.39 and 1772189.12 Metric ton,
respectively.
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Fig. 3 Comparison between observed and predicted MSW of Gurugram using urban population
as predictor variable ((1-7-1) model no. 2)
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Fig. 4 Comparison between observed and predicted MSW of Gurugram using literate population
as predictor variable ((1-7-1) model no. 3)
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Fig. 5 Comparison between observed and predicted MSW of Gurugram using per capita income
as predictor variable ((1-7-1) model number 4)

In model number 4 the variable per capita income has been used to predict the
MSW.

The ANN model 1-7-1 has been observed as best ANN model by changing
hidden layer neurons. The MSE and coefficient of correlation between observed
and predicted MSW are 0.0364 and 0.8924, respectively. The expected collected and
generated waste for period January 2017–December 2021 would be approximately
1314109.73 and 1877299.61 Metric ton, respectively.

Figure 5 presents the comparison between observed and predicted MSW of
Gurugram using per capita income as predictor variable. Per capita income has
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Fig. 6 Comparison between observed and predicted MSW of Gurugram using population and
urban population as predictor variable ((2-7-1) model no. 5)

shown highest predictive behavior than the rest three variables individually because
the coefficient of correlation between observed and predicted MSW is high 0.8924.

The model number 5 presents that the variables population and urban population
have been used to predict the MSW. The ANN model 2-7-1 has been found as best
ANN model. In the ANN Model 2-7-1, 2 shows population and urban population
as input layer neurons, 7 shows the hidden layer neurons are 7, and 1 shows MSW
as output layer neuron. The MSE and coefficient of correlation between observed
and predicted MSW are 0.0489 and 0.8525, respectively. The expected collected
and generated waste for period 2017–2021 would be approximately 1314059.53
and 1877227.9 Metric ton, respectively. Figure 6 presents the comparison between
observed and predicted MSW of Gurugram using population and urban population
as predictor variables collectively.

In model number 6 the variables population and literate population collectively
have been used to predict the MSW. Figure 7 presents the comparison between
observed and predicted MSW of Gurugram using population and literate population
as predictor variables

The ANN model 2-7-1 has been observed as best ANN model. The MSE and
coefficient of correlation between observed and predicted MSW are 0.0501 and
0.8496, respectively. The expected waste collected and generated for period January
2017–December 2021 would be approximately 1306299.24 and 1866141.77 Metric
tons, respectively. The model number 7 shows that the variables population and per
capita income have been used to predict the MSW.

The ANN model 2-7-1 has been observed as best ANN model. The MSE and
coefficient of correlation between observed and predicted MSW are 0.0512 and
0.8450, respectively. The expected waste collected and generated for period January
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Fig. 7 Comparison between observed and predicted MSW of Gurugram using population and
literate population as predictor variables ((2-7-1) model no. 6)
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Fig. 8 Comparison between observed and predicted MSW of Gurugram using population and per
capita income as predictor variables ((2-7-1) model no. 7)

2017–December 2021 would be approximately 1303999.57 and 1862856.52 Metric
tons, respectively.

Figure 8 illustrates the comparison between observed and predicted MSW of
Gurugram using population and per capita income as predictor variables collec-
tively.

The variables urban population and literate population collectively have been
used to predict the MSW in model number 8. The ANN model 2-8-1 has been
observed as best ANN model by changing hidden layer neurons. The MSE and
coefficient of correlation between observed and predicted MSW are 0.0424 and
0.8743, respectively.
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Fig. 9 Comparison between observed and predicted MSW of Gurugram using urban population
and literate population as predictor variables ((2-8-1) model no. 8)

0 50 100 150
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

7

Number of Months (April 2010 – December 2021)

M
un

ic
ip

al
 S

ol
id

 W
as

te
 C

ol
le

ct
ed

 (
K

g)

Observed MSW
Predicted MSW

Fig. 10 Comparison between observed and predicted MSW of Gurugram using urban population
and per capita income as predictor variables ((2-8-1) model no. 9)

The expected waste collected and generated for period January 2017–December
2021 would be approximately 1302134.60 and 1860192.28 Metric tons, respec-
tively. Figure 9 presents the comparison between observed and predicted MSW
of Gurugram using urban population and literate population income as predictor
variables.

The model number 9 shows that the variables urban population and per capita
income have been used to predict the MSW.

Figure 10 presents the comparison between observed and predicted MSW of
Gurugram using urban population and per capita income as predictor variables.
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The ANN model 2-8-1 has been observed as best ANN model. The MSE and
coefficient of correlation between observed and predicted MSW are 0.0492 and
0.8510, respectively. The expected waste collected and generated for period January
2017–December 2021 would be approximately 1291066.93 and 1844381.32 Metric
tons, respectively.

The model number 10 shows that the variables literate population and per capita
income have been used to predict the MSW.

The ANN model 2-9-1 has been observed as best ANN model by changing
hidden layer neurons. The MSE and coefficient of correlation between observed and
predicted MSW are 0.0440 and 0.8709, respectively. The expected waste collected
and generated for period January 2017–December 2021 would be approximately
1267575.91 and 1810822.72 Metric tons, respectively.

Figure 11 illustrates the comparison between observed and predicted MSW of
Gurugram using literate population and per capita income as predictor variables.
Hence, model no. 8 and model no. 10 have shown high predictive results.

Model number 11 illustrates that the variables population, urban population, and
literate population have been used to predict the MSW. The ANN model 3-10-1 has
been observed as best ANN model. Here 3 shows the variables population, urban
population, and literate population as input layer neurons, 10, hidden layer neurons,
and 1, MSW as output layer neuron. The MSE and coefficient of correlation between
observed and predicted MSW are 0.0511 and 0.8455, respectively. The expected
waste collected and generated for period January 2017–December 2021 would be
approximately 1298316.00 and 1854737.14 Metric tons, respectively. Figure 12
presents the comparison between observed and predicted MSW of Gurugram using
population, urban population, and literate population as predictor variables.
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Fig. 11 Comparison between observed and predicted MSW of Gurugram using literate population
and per capita income as predictor variables ((2-9-1) model no. 10)
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Fig. 12 Comparison between observed and predicted MSW of Gurugram using population, urban
population, and literate population as predictor variables ((3-10-1) model no. 11)
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Fig. 13 Comparison between observed and predicted MSW of Gurugram using urban population,
literate population, and per capita income as predictor variables ((3-9-1) model no. 12)

The variables urban population, literate population, and per capita income have
been used to predict the MSW in model number 12.

The ANN model 3-9-1 has been observed as best ANN model by changing
hidden layer neurons. The MSE and coefficient of correlation between observed and
predicted MSW are 0.0522 and 0.8422, respectively. The expected waste collected
and generated for period January 2017–December 2021 would be approximately
1290055.09 and 1842935.84 Metric tons, respectively. Figure 13 presents the
comparison between observed and predicted MSW of Gurugram using urban
population, literate population, and per capita income as predictor variables.
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Fig. 14 Comparison between observed and predicted MSW of Gurugram using population,
literate population, and per capita income as predictor variables ((3-10-1) model no. 13)

In model number 13, the variables population, literate population, and per
capita income have been used to predict the MSW. The ANN model 3-10-1
has been observed as best ANN model by changing hidden layer neurons. The
MSE and coefficient of correlation between observed and predicted MSW are
0.0410 and 0.8786, respectively. The expected waste collected and generated for
period January 2017–December 2021 would be approximately 1289331.37 and
1841901.95 Metric tons, respectively. Figure 14 presents the comparison between
observed and predicted MSW of Gurugram using population, literate population,
and per capita income as predictor variables. Model no. 13 has shown high
predictive results than model no. 11 and 12. In model number 14 all the variables
population, urban population, literate population, and per capita income have been
included to predict the MSW. The MSE and coefficient of correlation between
observed and predicted MSW are 0.0294 and 0.9150, respectively. Hence Model
14 is the best predictive model. The expected waste collected and generated for
period January 2017–December 2021 would be approximately 1247096.43 and
1781566.32 Metric tons, respectively. Figure 15 presents the comparison between
observed and predicted MSW of Gurugram using population, urban population,
literate population, and per capita income as predictor variables. It was necessary
to include hidden layer neurons because if no hidden layer gets selected, then
the ANN model will become linear model and the quality of prediction get
reduced.

All above results have been compiled in Tables 8 and 9.
The physical composition of waste samples of Gurugram has been obtained

from the article “Gurugram: A Framework For Sustainable Development (2017)”
published by Centre for Science and Environment [24]. The percentage of physical
composition of waste has been shown in Figure 16.
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Fig. 15 Comparison between observed and predicted MSW of Gurugram using population, urban
population, literate population, and per capita income as predictor variables ((4-12-1) model no. 14)
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Fig. 16 Physical composition of waste samples of Gurugram [24]

The expected physical composition of waste produced (in Metric tons) has been
shown in Figure 17 for period 2017–2021 (by using model no. 14 results).

It is found from the study [24] that about 50–52% of the waste is bio-degradable,
12–15% of the waste is recyclable, and 30–35% of the waste is inert. The
predictive results obtained from model 14 have shown that the amount of bio-
degradable, recyclable, and inert waste generated would lie at most in range
(890783.16, 926414.49), (213787.95, 267234.94), and (534469.89, 623548.21)
Metric tons, respectively. Hence 50–52% waste generated could be used in
aerobic compost formation or in anaerobic biodegradation where biogas can
be recovered and can be used as energy resource. Rest 12–15% waste can be
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Fig. 17 Expected physical composition of waste produced (in Metric tons) (within period 2017–
2021)

reused by recycling. Hence at most 62–67% (1104571–1193649.44 Metric tons)
waste can be minimized in the period 2017–2021. However 30–35% inert waste
can be used to fill up low lying areas or disposed of in well-designed landfill
site.

4 Conclusion

Various ANN models have been developed to observe the effect of socio-economic
factors such as population, urban population, literate population, and per capita
income individually and collectively on collection and generation of municipal
solid waste of Gurugram district, Haryana state, India. The ANN model (4-12-1)
based on all these factors has shown the least mean squared error (0.0294) and
high coefficient of correlation (0.9150) between observed and predicted MSW.
The proposed model (4-12-1) has shown the better predictive results. The model
(4-12-1) outcomes predict that 1247096.43 and 1781566.329 Metric tons waste
would be collected as well as generated in period 2017–2021. It is also observed
that the amount of bio-degradable, recyclable, and inert waste generated would
lie in range (890783.16, 926414.49), (213787.95, 267234.94), and (534469.89,
623548.21) Metric tons, respectively. About 62–67% (1104571–1193649.44 Metric
tons) waste can be minimized in the period 2017–2021 through compost formation
and recycling. It is expected that the proposed research outcomes will be helpful for
the authorities of Municipal Corporation of Gurugram for better planning and future
management.
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Regularization of Highly Ill-Conditioned
RBF Asymmetric Collocation Systems in
Fractional Models

K. S. Prashanthi and G. Chandhini

1 Introduction

The fractional models are an efficient tool to describe any complex phenomenon in
various fields such as the description of material hereditariness [23], mechanical
and population models [6, 25], electrical circuits [13], and visco-elasto-plastic
model [17]. Literature throws light on numerous efforts by mathematicians and
scientists to solve these fractional models which are expressed in terms of fractional
differential equations (FDE). Some of the initial or boundary fractional differential
equations may be solved analytically by Laplace or Fourier transform methods
[24]. Many semi-analytical approaches based on Adomian decomposition [22],
homotopy perturbation [16], q-homotopy analysis, and variational iteration [29]
have also been proposed to solve linear and nonlinear FDEs, and their analytical
solutions are represented in the form of convergent series with easily computable
components. But, if the obtained series is an unknown series, then the evaluation of
solution is computationally complex. Also, the computation of fractional integrals
and fractional derivatives of most of the functions by an analytical or semi-analytical
method is not possible always. Hence we resort to numerical (approximation)
methods and radial basis function method is one of the popular meshless methods
used to solve linear as well as nonlinear FDEs.

Radial basis functions (RBFs) are considered as an effective tool in scattered data
interpolation, solving differential equations, neural network, image processing, etc.
In 1990 Kansa [18] introduced RBF based collocation method for both boundary
and initial boundary value problems. Its simple characteristics like grid-free nature,
higher order of convergence, and ease of extension to higher dimension lead it to
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use in complex phenomena arising in different areas. It has been observed that for
many problems RBF accuracy increases with “flat” limit and flatness of the RBF
depends on the shape parameter of the RBF. But, unfortunately, at the “flat” limit or
as the number of nodes increases [3], the discretization leads to an ill-conditioned
system which results in an unreliable solution. This motivated many efforts in the
direction of reduction or removal of the ill-conditioning of the system.

Fornberg and Wright [11] have developed an algorithm named Contour-Padé to
gain the stability of small shape parameter and therefore refuses the uncertainty
principle described by Schaback [27]. But this algorithm is suitable for the case
of flat RBFs with a small number of nodes. Also, Fornberg and Piret [10]
introduced the RBF-QR algorithm which is computationally stable for flat RBFs
interpolation and is faster and easier to implement rather than Contour-Padé and
also it can be implemented for a large number of nodes. The key idea behind
the RBF-QR method is to replace, in the case of small ε, the extremely ill-
conditioned RBF basis with a well-conditioned one that spans exactly the same
space. Then the coefficient (interpolation) matrix is factorized into a product
as Q × E × R, where Q is unitary, E is diagonal, and R is upper triangular.
Also, this algorithm has been generalized for node distributions in 2-D or 3-D
[9, 19]. In [8], authors proposed a highly accurate least-squares approximation
based on the early truncation of the kernel expansion. This method establishes
the general connection between the RBF-QR algorithm and Mercer or Hilbert-
Schmidt series expansions of a positive definite kernel. In [14], a new approach
was introduced to avoid the inherent ill-condition in the computation of RBF-FD
weights which was based on the semi-analytical computation of the Laurent series
of the inverse RBF interpolation matrix. But the computational cost of the algorithm
to obtain the Laurent series of the inverse grows exponentially with the order of the
singularity.

Some of the works in the literature have shown that the regularization techniques
can be efficient in handling ill-conditioning problems in RBF and Tikhonov
regularization is one of the most popular regularization methods considered for
this purpose. In [20], Lin introduced zeroth order Bessel function as a new RBF
in collocation method. Arghand and Amirfakhrian [1] proposed a numerical scheme
based on the fundamental solution and radial basis functions (RBFs) whereas Zhang
and Li [30] used only RBF method to solve inverse heat equation. In all these
works Tikhonov regularization (TR) along with generalized cross-validation (GCV)
criterion is applied to tackle the ill-conditioning issue.

The main focus of the present work is to extend Tikhonov regularization (TR) for
stabilizing the linear system obtained after discretizing linear fractional differential
models using Kansa’s asymmetric collocation scheme. Then the proposed algorithm
is applied to some important fractional models. To proceed further, consider linear
fractional differential equation of the form

c
0D

pα
x u +

p−1∑

l=0

al(x)
c
0D

lα
x u = f (x), x ∈ [a, b] (1)
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with appropriate initial and boundary conditions. Here, p ∈ N, 0 < α ≤ 1. al, (l =
0, 1, . . . (p − 1)) and f are continuous functions defined on [a, b] and c

aD
α
x is the

Caputo differential operator. In the present work p and α are considered such that
1 < pα ≤ 2.

2 Preliminaries

In this section, we introduce the notations, definitions, and some of the fundamental
assumptions that are considered in the present work [24].

2.1 Fractional Integrals and Derivatives

Definition 1 Let α ∈ R+ and u ∈ L1[a, b]. The operator aI
α
x , defined on L1[a, b]

by

aI
α
x u(x) = 1

	(α)

∫ x

a

(x − s)α−1u(s)ds (2)

for a ≤ x ≤ b is called the Riemann-Liouville (R-L) fractional integral operator of
order α. For α = 0 we set aI 0

x = I, the identity operator.

Definition 2 Let Am[a, b] denote the set of functions which have continuous
derivatives up to order (m − 1) on [a, b] such that u(m−1) is absolutely continuous.
The Caputo fractional derivative of u ∈ Am[a, b] of order α ∈ (m− 1,m] is defined
as

c
aD

α
x u(x) =a Im−α

x

dmu(x)

dxm
= 1

	(m − α)

∫ x

a

(x − s)m−α−1 d
mu(s)

dsm
ds (3)

2.2 RBF Approximation

The radial basis functions are very successful in approximating multidimensional
scattered data [4]. A brief overview of RBF interpolation is given below.

Given a finite set of n distinct points, {xi, i = 1, 2, . . . , n} in R, along with
the corresponding values {u(xi)}, i = 1, 2, . . . , n then the RBF interpolant S(x)
corresponding to u(x) can be expressed as a linear combination of single univariate
function which is called as radial basis function, i.e.,

S(x) =
n∑

j=1

λjφ(|x − xj |), x ∈ [a, b]. (4)
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such that it satisfies the interpolation condition

S(xi) = u(xi), i = 1, 2, . . . , n. (5)

where {φ(|x−xj |)}nj=1 are radial basis function about xj ’s. These n conditions lead
to a linear system that is to be solved for λj ’s.

Some of the well-known radial functions are Gaussian (GA - e−(εr)2
), multi-

quadric (MQ -
√

1 + (εr)2), thin plate splines (TPS - r2logr), and so on, where
r = |x − xj |. It can be seen that GA and MQ depend on a parameter say ε, which
determines the shape of these basis functions. They have significant effect on the
accuracy, however, solutions become unstable as ε → 0. For many problems, these
small values of ‘ε’ provide better accuracy. Hence, it is important to stabilize the
resultant linear system after discretization by RBFs. In the following section, we
discuss the discretization of the problem (1) using Kansa’s RBF collocation method
and regularization of the resulting collocation system.

3 Methodology

3.1 A Fractional RBF Approximation

To derive the scheme consider the governing equation (1) along with the boundary
conditions

u(a) = ua, u(b) = ub. (6)

Extension of the scheme to initial boundary value problems and higher dimensional
problems is straightforward.

Assume that u∗(x) represents the solution which can be expressed in terms of
RBFs as follows:

u∗(x) =
n∑

j=1

λjφ(|x − xj |), x ∈ [a, b]. (7)

where xj , j = 1, 2, . . . n, are collocation points distributed in the given interval
[a, b]. Assuming that φ is sufficiently smooth, (7) is substituted in both governing
equation (1) and its boundary conditions (6) at each node xi, i = 1, 2, . . . , n. These
equations lead to an n × n linear system,

Aλ̄ = F (8)

The components of these matrices are:

Aij =
{
φ|xi − xj |, if xi = a or xi = b

(cD
pα
a φ)(|xi − xj |) +∑p−1

l=0 al(x)(
cDlα

a φ)(|xi − xj |), if xi ∈ (a, b)
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Fi =
⎧
⎨

⎩

ua if xi = a

f (xi), if xi ∈ (a, b)

ub if xi = b

where i, j = 1, 2, . . . , n and λ̄ = [λ1, λ2, . . . , λn]T is unknown vector to be
determined. The fractional derivatives present in equations require the computation
of integrals which are obtained by Gauss-Jacobi quadrature rule. The following sub-
section discusses Tikhonov regularization (TR) method and an effective approach
to implement the algorithm to stabilize RBF system (8).

3.2 Tikhonov Regularization

Regularizations simply means replacing the current system with a nearby system
that is less sensitive to perturbation and Tikhonov regularization (TR) [2] is one
of the efficient regularization methods. In its simplest form, TR replaces the linear
system (8) by a regularized system

(AT A + μ2I )λ̄ = AT F (9)

where μ2 is known as regularization parameter which determines the amount of
regularization. For a fixed μ2 > 0, linear system (9) has a unique solution

λ̄μ = (AT A + μ2I )−1AT F (10)

The solution, λ̄μ, as in (10) satisfies the minimization problem

min{‖Aλ̄ − F‖2 + μ2‖λ̄‖2}, (11)

where ‖.‖ denotes the Euclidean norm. It is important to choose μ carefully to
make Tikhonov regularization effective. There are various algorithms such as L-
curve and generalized cross-validation (GCV) [21] to efficiently find the value
of μ. In the present work, generalized cross-validation method is extended to
determine μ. GCV method estimates the optimal value of μ by minimizing the
function

G(μ) = ‖Aλ̄ − F‖2

(trace(I − AA∗))2 (12)

where A∗ = (AT A + μ2I )−1AT .
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3.3 Variable Shape Parameter

It has been shown by many works that to get stable and accurate results, variable
shape parameters (VSP) can be used instead of constant shape parameter (CSP)
[12, 26]. The VSP assigns different values to shape parameter corresponding to
each collocation points. This results in distinct entries in collocation matrix which
in turn reduces the ill-conditioning of the system and improves accuracy. There are
many ways to generate variable values, either randomly or using exponential, linear,
and trigonometric functions. In the present work we have considered trigonometric
shape parameter, defined by εj = εmin+(εmax−εmin)sin(j), j = 1, 2, . . . .n where
εmin and εmax are, respectively, the minimum and maximum values for ε.

4 Numerical Illustrations

In this section, proposed algorithm is illustrated using Bagley-Torvik equation and

fractional diffusion problems. Multiquadric RBF (MQ -
√

1 + ε2(x − xj )2) is used
in all these examples. Only 8 quadrature points are used in computation of fractional
derivatives. The ill-conditioning issue is tackled by Tikhonov regularization. In
trigonometric variable shape parameter, the values are chosen as εmin = 2E − 06
and εmax − εmin ≤ 1. The algorithm discussed by Hansen [15] for finding μ is
extended appropriately to regularize fractional order RBF systems.

Example 1 Consider the Bagley-Torvik equation

aD2u(x) + b c
0D

3/2
x u(x) + cu(x) = c(1 + x), x ∈ [0, 1] (13)

subject to the initial conditions u(0) = u′(0) = 1. The exact solution is u(x) =
1 + x. Consider p = 4, α = 1

2 and the values of al’s are b/a, 0, 0, c/a for
l = 0, 1, 2, 3 respectively in Eqn. (1).

The results obtained are shown in Tables 1 & 2 and Figure 1. Table 1 provides a
comparison between triangular function (TF) [5] approach with RBFs and proposed
Kansa’s method with regularization (KMR) for a = 1, b = c = 0.5. The solution
obtained using KMR with less number of nodes yields same accuracy as that by
TF method. In another work by Kazemi and Ghoreishi [7], they have obtained MQ-
solutions for ε = 1, but 100-digits precision is used to deal with ill-conditioning.
However, this can slow down the algorithm. The proposed solutions are compared
with [7] in Table 2. We have obtained solutions for much smaller εj ’s, whereas
ε = 1 for the computations in [7]. MQ-solutions in [7] fail to converge when n ≥ 13
even for 30-digits precision and in case of n ≥ 18 even for 40-digits precision.
However, with regularization, present Kansa’s method provides stable results for
large n with default machine precision.
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Table 1 Comparison of L∞ error by TF and KMR for Example 1.

TF [5] KMR
h L∞ error CPU time(s) h L∞ error CPU time(s)

1
100 2.86E-13 1.0920 1

50 1.31E-13 0.5983

Table 2 Comparison of L∞
error by MQ RBF [7] with
100-digits precision and
KMR with default machine
precision for Example 1.

L∞ error
n MQ RBF [7] KMR

6 1.97E-04 1.25E-06

8 1.17E-05 1.73E-09

10 1.60E-06 3.52E-11

12 1.48E-07 3.64E-12

20 1.17E-11 9.21E-13

27 7.59E-15 8.21E-13

34 8.83E-19 1.65E-12
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Fig. 1 The graph of absolute errors for various n for Example 1 with regularization (blue) and
without regularization (red).

Figure 1 illustrates that for small εj ’s, Kansa’s method produces good accuracy
without regularization than the method used along with regularization (i.e., KMR).
But as n increases, accuracy using both the methods coincides. On further increment
of n, KMR yields good accuracy than the Kansa’s method without regularization.
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Table 3 Comparison of L∞
error by KM and KMR at
t = 1 for Example 2.

KM KMR
h = τ L∞ error Error rate L∞ error Error rate

1/10 3.70E-04 1.15E-04

1/15 5.65E-05 4.63 5.06E-05 2.02

1/20 1.52E-05 4.57 2.86E-05 1.99

1/25 1.36E-05 0.51 1.83E-05 2.00

1/30 1.07E-05 1.30 1.27E-05 2.01

1/35 1.63E-02 −47.55 9.33E-06 1.99

Traditional diffusion represents the long-time of a random walk, where finite
variance jumps occur at regularly spaced intervals. But in many real-world appli-
cations, particles follow heavy tails, sharp peaks, etc., which can be expressed as a
fractional diffusion equation. Our proposed KMR method can be used successfully
in obtaining solution for fractional diffusion equations. Two examples are illustrated
below. p = 3, α = 3

5 and al = 0, l = 0, 1, 2 have been substituted in Eqn. (1) to
get the diffusion equations as in Example 2 and 3. For both the examples, time
derivative is approximated by Crank-Nicolson scheme and space derivative is by
Kansa’s method.

Example 2 Consider the space fractional diffusion equation

∂u(x, t)

∂t
= 	(2.2)

6
x2.8 c

0D
1.8
x u(x, t) − (1 + x)x3e(−t), x ∈ (0, 1) and t > 0 (14)

with initial condition u(x, 0) = x3 and boundary conditions u(0, t) = 0 and
u(1, t) = e(−t). The exact solution is u(x, t) = e(−t)x3.

Results are displayed in Table 3 and Figure 2. Table 3 shows that the L∞ error
and rate of convergence by Kansa’s method without regularization(KM) and with
regularization (KMR) at t = 1 for uniform nodal distribution. KMR could produce
the displayed accuracy with 8 quadrature points and very small εj ’s whereas KM
used 10 quadrature points with ε = n0.5/2. It can be observed that the rate of
convergence is decreasing as h (steplength for xi’s) or τ (steplength for ti’s) is
decreasing in KM but it remains same in KMR method, i.e., with regularization,
Kansa’s method becomes more stable and achieves better solution.

Figure 2 illustrates the similar relationship between KMR method and Kansa’s
method without regularization as explained in Example 1.

Example 3 Consider the space fractional diffusion problem

∂u(x, t)

∂t
= 	(1.2)x1.8 c

0D
1.8
x u(x, t)+3x2(2x−1)e(−t), x ∈ (0, 1) and t > 0 (15)

with initial condition u(x, 0) = x2(1 − x), u(0, t) = u(1, t) = e(−t). The exact
solution is u(x, t) = x2(1 − x)e(−t).
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Fig. 2 Absolute error of Example 2 with regularization (blue) and without regularization (red) at
t = 1.

Table 4 Comparison of
absolute error by shifted
Chebyshev polynomials
(SCP) [28] and KMR method
at t = 1 and 2 for Example 3.

t = 1 t = 2
x SCP [28] KMR SCP [28] KMR

0.1 5.46E-06 3.08E-07 3.33E-06 2.88E-07

0.2 8.51E-06 6.44E-07 5.65E-06 4.20E-07

0.3 9.60E-06 8.46E-07 7.05E-06 4.56E-07

0.4 9.18E-06 9.14E-07 7.64E-06 4.36E-07

0.5 7.69E-06 8.79E-07 7.52E-06 3.81E-07

0.6 5.60E-06 7.69E-07 6.80E-06 3.08E-07

0.7 3.33E-06 6.04E-07 5.59E-06 2.26E-07

0.8 1.34E-06 4.08E-07 3.98E-06 1.43E-07

0.9 8.39E-08 2.01E-07 2.08E-06 6.54E-08

Tables 4 and 5 show that the accuracy of the KMR method is better than the
shifted Chebyshev polynomials (SCP) method [28] for different values of t . The
absolute error by KMR method at each point is less than the SCP method. Table 6
displays how error behaves using Kansa’s method with and without regularization
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Table 5 Comparison of
absolute error by shifted
Chebyshev polynomials
(SCP) [28] and KMR at
t = 10 for Example 3.

x SCP [28] KMR

0.2 2.34E-08 2.52E-09

0.4 4.78E-09 1.51E-09

0.6 7.39E-09 6.81E-10

0.8 2.84E-08 1.24E-10

Table 6 Comparison of L∞ error for Kansa’s method: 1) with regularization (KMR) and 2)
without regularization (KM) at t = 1, t = 2, and t = 10 for Example 3.

t = 1 t = 2 t = 10
n KMR KM KMR KM KMR KM

6 2.30E-04 8.93E-05 2.37E-04 1.62E-04 9.61E-04 5.22E-04

9 3.48E-05 3.52E-05 6.71E-05 6.84E-05 1.09E-04 1.07E-04

11 2.27E-05 1.00E-03 4.46E-05 1.04E-04 3.05E-05 2.66E-05

16 1.01E-05 6.41E-04 1.99E-05 3.55E-02 3.62E-06 2.32E+02

21 5.69E-06 3.98E+07 1.13E-05 3.28E+05 7.16E-07 9.67E+24
26 3.65E-06 5.32E+37 7.22E-06 2.06E+11 1.73E-07 1.31E+06

for various values of t . It can be seen that as n is increased, Kansa’s method can be
very unstable and produce unreliable results (see n = 21, 26). The solution becomes
accurate using appropriate regularization.

5 Conclusions

The aim of the present work is to establish the effect of regularization on RBF
collocation system obtained using Kansa’s method. All results show that the
Kansa’s method with regularization (KMR) yields stable and accurate results for
different types of fractional differential equations. Since Kansa’s method produces
ill-conditioned asymmetric collocation matrix, Tikhonov regularization was used
to tackle the ill-conditioned issue in which GCV method is used to obtain the
regularization parameter.
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The Effect of Toxin and Human Impact
on Marine Ecosystem

S. Chakraborty and S. Pal

1 Introduction

Microscopic plankton are a various group of organisms which inhabit the surface
waters of oceans, rivers, lakes, ponds, marsh, etc. Aquatic food chain is based on
the plankton population. One noticeable characteristic of phytoplankton populations
is the rapid rate of increase or bloom in a water system. Usually, nitrogen and
phosphorus are two most important nutrients for which phytoplankton grows [1].
Iron, zinc, and manganese are essential nutrients too. In the absence of any of the
necessary nutrients, the growth rate can be limited or nonexistent for phytoplankton
but the set of favorable conditions can promote the growth rate and reproductive
ability (sexual/asexual) of phytoplankton population. Since zooplankton are largely
depended on phytoplankton population, hence it can set out large rise in the popu-
lation numbers simultaneously as the phytoplankton population [2–5]. All blooms
are not harmful but harmful blooms can be unfavorable for marine organisms.

Many mathematical models of nutrient-phytoplankton-zooplankton(N-P-Z)
interaction with several complexity have been explored and analyzed by researchers
[6, 7, 9–11, 14–16, 19, 21, 25, 28, 29].

The ecological system is often deeply perturbed by the exploiting activities
of humankind. Some phytoplankton such as nori, kelp, and eucheuma and some
zooplankton such as jellyfish, krill, and acetes are harvested for food [20, 22, 26, 27].
Pollution emissions in air and water are produced as a result of human activities
which damage the plankton drifting or floating in the ocean. The problem of our
fossil fuel age is that huge percentage of extra carbon dioxide (CO2) has been
accumulated in the Earth’s atmosphere in the last century. Leakage from storage
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tanks and pipelines and seepage from waste drums, and dumped nonrecyclable trash
and chemicals are causing pollution in sea surface. Turbidity, or the presence of
suspended particles in the water, and the thick duvets of CO2 are nudging the planet
to an ocean warming. Generally, phytoplankton production will increase with the
temperature, up to an optimum temperature range. But due to excessive heat, this
optimum temperature can be exceeded for which growth rate of phytoplankton may
in turn be reduced and phytoplankton may drop in population numbers. Relatively,
the bigger issue than global warming is that CO2 nurtures grasses on land, and
those grasses interfere with the dust in the wind. Grass loses its water through
respiration and breathing. Grasses have to place its wet membranes open to air
in order to take up CO2 and give up oxygen(O2). Due to high concentration of
CO2, grasses do not need frequent breathing to obtain the CO2 they need, hence
their wet membranes evaporate less water and keep them green and growing [17].
Green grass is good ground cover, so less dust blows in the wind. The dust in
the wind from land carries iron and other vital mineral nutrients into the ocean
that result in phytoplankton blooms. Due to low dust deposition flux into the
ocean, the growth of phytoplankton becomes severely affected. An immense effect
of water pollution is organic and inorganic wastes in sewage water which cause
changes in the physicochemical parameters of the water. Fertilizer run-off from
agricultural lands causes the abundance of nitrogen and phosphorous into water
system. The presence of sewage-derived inorganic nutrients works as additional
food for phytoplankton which results in phytoplankton blooms [8, 13, 30]. The
discharge of sewage in the water is detrimental to zooplankton growth. Higher levels
of calcium (Ca), magnesium (Mg), chlorine gas(Cl2) due to the continuous influx
of contaminated domestic sewage have adverse effects on zooplankton population.
The above discussion clearly indicates that exploitation activities and pollution
emissions have a great impact upon nutrient-phytoplankton-zooplankton dynamics
and to be considered in N-P-Z models.

Toxic substances produced by toxin-producing phytoplankton (TPP) play an
important role in plankton dynamics and cannot be underestimated. Some phyto-
plankton species have toxin-producing ability which is unfavorable for the usual
growth of algae and zooplankton [12, 18, 23, 24]. TPP reduces the growth rate and
catalyzes the essential mortality of zooplankton by releasing toxic chemicals. Dif-
ferent experiments, field observations, and mathematical models have established
that optimal requirements of environmental conditions, environmental stress factors,
nutrient-limited conditions, etc. are the main reasons or causes for toxin liberation
and TPP acts as a monitoring performer to accomplish plankton bloom.

2 The Mathematical Model 1

We consider a nutrient-phytoplankton-zooplankton model in which nutrient recy-
cling, harvesting of phytoplankton and zooplankton, and negative effects of toxic
chemicals upon zooplankton population are taken under consideration. We assume
that seven basic processes govern the ecosystem: (1) the nutrient uptake of
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phytoplankton, (2) the zooplankton grazing on phytoplankton, (3) the death of
phytoplankton, (4) the death of zooplankton, (5) harvesting of both plankton,
(6) nutrient recycling, and (7) effect of toxic chemicals on zooplankton. We
have considered that nutrient concentration at time t is s(t) and M is the initial
concentration of nutrient. Phytoplankton and zooplankton concentrations are p(t)

and z(t), respectively, at time t . It is assumed that phytoplankton consume nutrient
and zooplankton prey on phytoplankton. Phytoplankton death rate is considered as
natural death rate but zooplankton death rate includes its natural death rate and death
rate by predation.

We make the following assumptions in formulating the mathematical model:

(i) Nutrient returns to the dissolved nutrient field after decomposition when a
plankton dies. Here, nutrient growth rate is M − αs + ηp(t) + δz(t), when
nutrient consumption does not take place.

(ii) Phytoplankton growth rate is proportional to their population size and to a
Holling-type II function of available nutrient f1(s)=

m1s
a1+s

.
(iii) Zooplankton growth rate is proportional to their population size and to a

Holling-type II function of available phytoplankton f2(p)=
m2p
a2+p

(iv) Harvest rates are proportional to plankton population, defined as: c1h1p and
c2h2z, consecutively for phytoplankton and zooplankton.

(v) Death rates of plankton are proportional to their population sizes.
(vi) The rate of toxin release is proportional to zooplankton population and to a

Holling-type II function of phytoplankton population f3(p) = p
a3+p

.

The formulated model by means of differential equation (Model 1) is

ds

dt
= M − αs + γ1p + γ2z − m1sp

a1 + s
≡ F1(s, p, z)

dp

dt
= m1sp

a1 + s
− m2zp

a2 + p
− β1p − c1h1p ≡ F2(s, p, z)

dz

dt
= m2zp

a2 + p
− β2z − μpz

a3 + p
− c2h2z ≡ F3(s, p, z). (1)

System(1) is to be analyzed with initial conditions s(0) ≥ 0, p(0) = p0 ≥ 0, z(0)
= z0 ≥ 0. We consider that all parameters are nonnegative constant. Parameters are
interpreted as follows:

M—constant input nutrient concentration.
α—rate of nutrient loss.
β1—phytoplankton mortality rate.
β2—zooplankton mortality rate.
γ1—nutrient recycling rate after death of phytoplankton (γ1 ≤ β1).
γ2—nutrient recycling rate after death of zooplankton (γ2 ≤ β2).
m1—maximal nutrient uptake rate for the phytoplankton.
m2—maximal zooplankton ingestion rate.
a1—half-saturation constant or Michaelis-Menten constant for Nutrient.
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a2—half-saturation constant or Michaelis-Menten constant for phytoplankton.
h1—harvest rate of phytoplankton.
h2—harvest rate of zooplankton.
μ—rate of toxin production.
c1—catchability coefficient of phytoplankton.
c2—catchability coefficient of zooplankton.
a3—half-saturation constant or Michaelis-Menten constant for zooplankton.

3 Some Preliminary Results

3.1 Boundedness of the System

Theorem 1 All the solutions of system 1 are ultimately bounded.

Proof We define a function:

w = s + p + z

dw

dt
= ds

dt
+ dp

dt
+ dz

dt

= M − [αs + (β1 − γ1 + c1h1)p + (β2 − γ2 + c2h2)z + μpz
a3+p

]
≤ M − [αs + (β1 − γ1 + c1h1)p + (β2 − γ2 + c2h2)z]
(because μpz

a3+p
is a positive term.)

≤ M − σ(s + p + z)

where σ = min(α, (β1 − γ1 + c1h1), (β2 − γ2 + c2h2))

= M − σw

Hence, dw
dt

+ σw ≤ M

Using the variation of transformation formula, the above inequality is transformed
into:
w(s(t), p(t), z(t)) ≤ M

σ
(1 − e−σ t ) + w(s(0), p(0), z(0))e−σ t

For large values of t , we get that lim supt→∞ [s(t) + p(t) + z(t)] ≤ M
σ

.
Hence, we can conclude that all solutions of the system are bounded.

3.2 Equilibria

The system 1 possesses the following three equilibria:
The plankton-free equilibrium E0 = (M

α
, 0, 0), and the zooplankton-free

equilibrium E1(s1, p1, 0) where s1 = a1(β1+c1h1)
m1−(β1+c1h1)

and p1 = M−αs1
β1−γ1+c1h1

. It is clear
that m1 > β1 + c1h1 and β1 + c1h1 > γ1, otherwise E1 does not exist. If M = αs1,
then E1 switches to E0. There is no steady state of the form E2 = (s2, 0, z2). Hence,
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we investigate the interior steady state E∗ = (s∗, p∗, z∗). From the equilibrium
equation, we can see that p∗ must satisfy
(m2 − β5 − μ)p2 + (m2a3 − a2β5 − β5a3 − a2μ)p − a2c3β5 = 0.
or, (β5 + μ − m2)p

2 + (a2β5 + β5a3 + a2μ − m2a3)p + a2a3β5 = 0.
(where β5 = β2 + c2h2).

This equation has no positive solution if β5 − m2 > 0 and if β5 + μ − m2 < 0,
then we get a unique positive value of p∗. However, if β5 + μ − m2 > 0 and
a2β5 + β5a3 + a2μ−m2a3 < 0, then either the equation has two positive solutions
or no positive solutions.
Here, z can be written in terms of s as:
( m1s
a1+s

− β1 − c1h1)(
a2+p
m2

) = f1(s)

where p is a positive root of the above equation and s component of the interior
steady state, s∗ satisfies

M − αs + γ1p + γ2f1(s) − m1sp
a1+s

= 0.
E∗ does not exist if m1s

a1+s
< β1 + c1h1.

3.3 Eigenvalue Analysis

In this section, local stability analysis of the system around the biological feasible
equilibria is performed. The central aim of the present analysis is to find out suitable
mechanism to explain the planktonic blooms and a possible solution to control it.

Lemma 1 If γ1 − m1s
a1+s

< 0, then the plankton-free steady state E0 of the system 1
is locally asymptotically stable.

Lemma 2 The planar equilibrium E1 of the system 1 is locally asymptotically
stable if m2p

a2+p
− μp

a3+p
− β2 − c2h2 < 0.

Next, we study the equilibrium of the unique positive steady state E∗.

Lemma 3 E∗ is locally asymptotically stable if:

(a) A1 > 0
(b) A3 > 0
(c) A1A2 − A3 > 0.

where

A1 = α + m1a1p
∗

(a1 + s∗)2
+ m2a2z

∗

(a2 + p∗)2
− m2z

∗

a2 + p∗

A2 = m2
2a2p

∗z∗

(a2 + p∗)3
+ m2

1a1s
∗p∗

(a1 + s∗)3
− m2a3μp

∗z∗

(a2 + p∗)(a3 + p∗)2
− m2αp

∗z∗

(a2 + p∗)2

− m1m2a1p
2z∗

(a1 + s∗)2(a2 + p∗)2 − γ1m1a1p
∗

(a1 + s∗)2 ,
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A3 = m2
2αa2p

∗z∗

(a2 + p∗)3 + m1m
2
2a1a2p

2z∗

(a1 + s∗)2(a2 + p∗)3 −

m1m2a1a2γ2p
∗z∗

(a1 + s∗)2(a2 + p∗)2
− m2αμa3p

∗z∗

(a2 + p∗)(a3 + p∗)2
− m1m2a1p

2μa3z
∗

(a1 + s∗)2(a2 + p∗)(a3 + p∗)2
+

γ2m1a1μa3p
∗z∗

(a3 + p∗)2(a1 + s∗)2 .

Proof See Appendix.

3.4 Biological Interpretation

3.4.1 Extinction of Both Plankton

Plankton will be extinct if the maximal growth rate of phytoplankton population
m1s

1

a1+s1 is less than β1 where β1 is the mortality rate of phytoplankton.

3.4.2 Extinction of Zooplankton

It will happen if:

(i) m2p
a2+p

< β2 + c2h2 + μp
a3+p

where m2p
a2+p

is the maximal growth rate of

zooplankton population and β2 + c2h2 + μp
a3+p

is the total mortality rate of
zooplankton.

(ii) The natural mortality rate of phytoplankton population (β1) is less than its
maximal nutrient uptake rate (m1).

(iii) Constant input nutrient concentration must be greater than some threshold
value.

3.4.3 Coexistence of Both Plankton

The coexistence of both of the plankton population in an interior steady state
happens if:

(i) The maximal growth rate of phytoplankton population ( m1s
a1+s

) is greater than
its natural mortality rate and harvest rate (β1 + c1h1).

(ii) The growth rate of zooplankton population due to phytoplankton ingestion
(m2) is greater than total mortality rate of zooplankton (β2 + c2h2 + μ).

(iii) The unique positive interior state E∗ has to be locally asymptotically stable.
The most important thing is that the stability of E0 strictly denies the

existence of E∗.
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4 Numerical Simulations

We have numerically simulated system 1 for a range of parameter values around it to
study the dynamics of the system around the positive interior state. We have used the
following set of parameter values—M = 0.01, a1 = 0.2, a2 = 0.2, a3 = 0.2, α =
0.01, β1 = 0.21, β2 = 0.1, γ1 = 0.1, γ2 = 0.06,m1 = 0.6,m2 = 0.6, μ =
0.03, c1 = 0.01, c2 = 0.01, h1 = 0.01, and h2 = 0.01.

We find the existence of interior steady states of system (1) for a1 = 0.2, a2 =
0.1, a3 = 0.25, and μ = 0.6 where the remaining parameter values are the same as
previous. We find the interior steady state (0.1822, 0.0501, 0.0190). Calculating the
eigen values, we get that it has one real (-0.0147) and a pair of complex conjugate
eigen values (-0.0055 ± 0.0998i) and all eigen values have negative real part which
means that it is a stable focus node.

Toxic chemicals into the water act as a biological control which terminate
planktonic bloom. The study is focused on how planktonic bloom occurs and then
terminates for small changes of values of μ. If toxin production by TPP is very low
(μ = 0.025), periodic solutions exist which depicts annual bloom (Figure 1). As
the rate of toxin production rises, the bloom height gradually decreases but when
the toxin production rate exceeds some critical value (μ = 0.06), the periodic
solution disappears and the solution becomes stable (Figure 2). Major increase in
toxin production rate (μ = 0.25) results in the extinction of zooplankton population
(Figure 3).

Fig. 1 The figures depicts
oscillatory behavior of
nutrients, phytoplankton, and
zooplankton population of
system (1) for
μ = 0.025, α = 0.01.
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Fig. 2 The stable dynamics
of system (1) for
α = 0.01, μ = 0.06 with
other parameters same as
given in Figure 1. 0 200 400 600 800 1000
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Fig. 3 Extinction of zooplankton population at α = 0.01, μ = 0.25 of system 1, other parametric
values remained unchanged

5 Human Impact on Marine Ecosystem

5.1 Mathematical Model 2

Generally, phytoplankton needs both sunlight and nutrients to grow at a high rate.
We considered the growth based on nutrient. Since, light is readily available upon
water surface and accumulated nutrients distribute additional food for which phy-
toplankton grows in an exponential way. Favorable conditions allow zooplankton
to grow faster. True blooms of zooplankton are typically the result of high food
concentration and some other factors. Hence, we modify our model by including
the effect of light and additional food for phytoplankton and zooplankton.
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Light intensity varies with depth. Suppose, Ih is the light intensity at depth h.
Then, Ih = I0e

−κh where:

I0—initial light intensity.
h—depth
κ—attenuation coefficient.
Taking an average, we find:

I = I0κ(1 − e−κh)

κh

I = light intensity.

ds

dt
= M1 − αs + γ1p + γ2z − m1sp

a1 + s
≡ G1(s, p, z)

dp

dt
= r1p + I0κ(1 − e−κh)

κh

m1sp

a1 + s
− m2zp

a2 + p
− β1p − c1h1p ≡ G2(s, p, z)

dz

dt
= r2z + m2zp

a2 + p
− β2z − μpz

a3 + p
− c2h2z ≡ G3(s, p, z). (2)

Where:

r1—intrinsic growth rate of phytoplankton.
r2—intrinsic growth rate of zooplankton.

System 2 has three equilibrium points E(1)
0 , E1

1 , and E∗(1). Where:

E
(1)
0 = (M1/α, 0, 0), E(1)

1 = (
a1(β1 + c1h1 − r1)

φm1 − (β1 + c1h1 − r1)
,

φ(M1 − αs1)

(β1 + c1h1 − r1 − γ1)
, 0).

Here, φm1 > β1 + c1h1 − r1 and β1 + c1h1 − r1 > γ1, otherwise E∗
1 does not exist.

If M1 = αs1, then E∗
1 switches to E∗

0 .

φ = I0κ(1 − e−κh)

κh
.

Investigating the interior steady states E(1)∗ = (s∗(1), p∗(1), z∗(1)), we can say p∗(1)
must satisfy the equation:

(β5+μ−m2−r2)p
2+(a2β5+β5a3+a2μ−m2a3−r2a2−r2a3)p+a2a3(β5−r2) = 0.

(where β5 = β2 + c2h2)
This equation has no positive solution if β5+μ−m2−r2 > 0. If β5+μ−m2−r2 < 0,
then we get a unique positive value of p∗(1). However, if β5 +μ−m2 − r2 > 0 and
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a2β5 + a3β5 + a2μ − m2a3 − r2a2 − r2a3 < 0, then either the equation has two
positive solutions or no positive solutions.
z can be written in terms of s as:

(r1 + φ
m1s

a1 + s
− β1 − c1h1)(

a2 + p

m2
) = f2(s)

where p is a positive root of the above equation and s component of the interior
steady state, s∗(1) satisfies

M1 − αs + γ1p + γ2f2(s) − m1sp
a1+s

= 0.

E∗(1) does not exist if:

φ
m1s

a1 + s
< β1 + c1h1 − r1.

Due to adding new variables, the equations of system (1) are slightly changed.
But, the local stability analysis process of system (2) around the biological feasible
equilibria is quite the same as the system (1).

5.2 Mathematical Model 3

In the introduction section, we discussed how CO2 and other heat-consuming
substances in the atmosphere are affecting the plankton population. The thick
blanket of CO2 can enhance the process of photosynthesis and the living zone
of plankton population but also destroy the plankton population by restricting the
nutrients supply and generating overtemperatures. Higher concentration of harmful
chemicals (calcium, chlorine, and magnesium) from contaminated sewage also
enhances the mortality rate of plankton population.

ds

dt
= M2 − αs + γ1p + γ2z − m1sp

a1 + s
≡ G1(s, p, z)

dp

dt
= r1p + φ

m1sp

a1 + s
− m2zp

a2 + p
− β3p − c1h1p ≡ G2(s, p, z)

dz

dt
= r2z + m2zp

a2 + p
− β4z − μpz

a3 + p
− c2h2z ≡ G3(s, p, z). (3)

where:

M2—initial nutrient concentration.
β3—death rate of phytoplankton (β3 > β1).
β4—death rate of zooplankton (β4 > β2).
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System (3) has three equilibrium points E(2)
0 , E2

1 , E
∗(2). Where:

E
(2)
0 = (M2/α, 0, 0), E(2)

1 = (
a1(β3 + c1h1 − r1)

φm1 − (β3 + c1h1 − r1)
,

φ(M2 − αs1)

(β3 + c1h1 − r1 − γ1)
, 0)

Here, φm1 > β3 + c1h1 − r1 and β3 + c1h1 − r1 > γ1, otherwise E∗
1 does not

exist. If M2 = αs1, then E∗
1 switches to E∗

0 . Investigating the interior steady states
E(2)∗ = (s∗(2), p∗(2), z∗(2)), we can say p∗(2) must satisfy the equation:

(β6+μ−m2−r2)p
2+(a2β6+a3β6+a2μ−m2a3−r2a2−r2a3)p+a2a3(β6−r2) = 0.

(where β6 = β4 + c2h2).
This equation has no positive solution if β6 +μ−m2 − r2 > 0. If β6 +μ−m2 −

r2 < 0, then we get a unique positive value of p∗(1). However, if β6+μ−m2−r2 > 0
and a2β6 + a3β6 + a2μ−m2a3 − r2a2 − r2a3 < 0, then either the equation has two
positive solutions or no positive solutions.
z can be written in terms of s as:

(r1 + φ
m1s

a1 + s
− β3 − c1h1)(

a2 + p

m2
) = f2(s)

Where p is a positive root of the above equation and s component of the interior
steady state, s∗(1) satisfies

M2 − αs + γ1p + γ2f2(s) − m1sp
a1+s

= 0.

E∗(1) does not exist if:

φ
m1s

a1 + s
< β3 + c1h1 − r1.

Due to addition of new variables, the equations of system (1) are changed. But,
the local stability analysis process of system (2) around the biological feasible
equilibria is quite the same as the system (1). Conditions for local stability are
thoroughly discussed in the Appendix section.

We see how the dynamics change due to change of some variables in the
system:

(i) When r1 = 0, r2 = 0, the system is stable at the assumed parametric values
(Figure 2) (see T able 1) but when r1 = 0.1 (Figure 4), we observe massive
increase in bloom heights.

(ii) When r1 = 0, r2 = 0.1, we see blooms for both plankton (Figure 5). System
stability α = 0.01, μ = 0.06 (r1 = 0, r2 = 0) is disturbed. Here, the number
of bloom deceases than before (r1 = 0.1, r2 = 0).
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Table 1 A hypothetical set of parameter values.

Parameter Definition Default value Unit

M Constant input of nutrient 0.01 mgml−1

α Dilution rate of nutrient 0.01 day−1

m1 Nutrient uptake rate for 0.6 mlmg−1day−1

the phytoplankton

m2 Maximal zooplankton ingestion rate 0.6 mlmg−1day−1

for the growth of phytoplankton

β1 Mortality rate of phytoplankton 0.21 day−1

β2 Mortality rate of zooplankton 0.1 day−1

γ1 Nutrient recycle rate due to 0.1 mgday−1

the death of phytoplankton

γ2 Nutrient recycle rate due to 0.07 mgday−1

the death of zooplankton

a1 Half-saturation constant 0.2 mlday−1

for nutrient

a2 Half-saturation constant 0.2 mlday−1

for phytoplankton

a3 Half-saturation constant 0.2 mlday−1

for zooplankton

c1 Carrying capacity 0.1 mlday−1

c2 Carrying capacity 0.1 mlday−1

h1 Harvest rate 0.1 mlday−1

of phytoplankton

h2 Harvest rate 0.1 mlday−1

of zooplankton

μ Rate of toxin production 0.06 mlday−1

by phytoplankton species
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Fig. 4 Stability disturbed, huge blooms for r1 = 0.1; other parametric values are same as Figure 2.
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Fig. 5 Stability disturbed, huge blooms for r2 = 0.1
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Fig. 6 Extinction of zooplankton for M2 = 0.007, μ = 0.07, α = 0.025, r1 = 0, r2 = 0 and
other parametric values are unchanged.

(iii) Now, we observe an interesting thing, when concentration of initial nutrient is
low (M2 = 0.007) and m1 = 0.63, μ = 0.07, zooplankton population goes
to extinction (Figure 6) but the presence of additional food for phytoplankton
(r1 = 0.1, r2 = 0) helps them to survive (Figure 7). Similarly, additional food
for zooplankton (r1 = 0, r2 = 0.1) helps zooplankton population to survive
(Figure 8).
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Fig. 7 Zooplankton survives again from extinction for M2 = 0.007, μ = 0.07, α = 0.025, r1 =
0.1
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Fig. 8 Zooplankton survives again from extinction for M2 = 0.007, μ = 0.07, α = 0.025, r2 =
0.1

6 Discussion

In this paper, we have constructed and analyzed models of nutrient-phytoplankton-
zooplankton populations. In our first model, an N-P-Z model with general nutrient
uptake functions, instantaneous nutrient recycling, and harvesting on plankton
populations is considered. In an addition, we also have discussed the effect of human
impact upon the N-P-Z model. The effect of toxin produced by TPP on zooplankton
population is also taken under our consideration. The main objective of the present
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study is to analyze the dynamics of N-P-Z models and achieve fruitful results in the
presence of natural resources, toxic chemicals, and human impact on marine system.

We notice that three primary parameters, namely toxic substances, positive
atmospheric situations, and human-made pollution, have monitored the system.
We know that TPP is an important key factor to control planktonic bloom by
reducing the grazing pressure of zooplankton. System (1) gets oscillation for low
toxin production rate but finds the stability at a fitting rate of toxin production.
An increase in toxic level may cause the extinction of zooplankton population.
Interesting factors arise when we include accumulated nutrients due to human
impact and natural sources (like sunlight, and inevitable minerals) into the system.
Sunlight and additional food for phytoplankton definitely enhance its growth rate
and also transmitted to zooplankton population. Due to additional food, we see
the rise in bloom heights where nutrient dilution rate (α) and toxin production
rate (μ) remained unchanged. Even, additional nutrient availability favors the
zooplankton population to survive from extinction under high toxin production rate
and low initial nutrient concentration. According to our study, CO2 can enhance
photosynthesis rate but is responsible for nutrient unavailability and higher mortality
rate of plankton population. But, small amount of additional food can change
the entire dynamics. Extinction can be avoided and plankton can retrieve from
extinction.

Appendix

Stability Analysis of the System

We construct the 3 × 3 Jacobian matrix:

⎛

⎜
⎝

−α − m1a1p

(a1+s)2 γ1 − m1s
a1+s

γ2
m1a1p

(a1+s)2
m1s
a1+s

− m2a2z

(a2+p)2 − β1 − h1c1 − m2p
a2+p

0 m2a2z

(a2+p)2 − μa3z

(a3+p)2
m2p
a2+p

− β2 − h2c2 − μp
a3+p

⎞

⎟
⎠

We check the eigen values at every equilibrium point E0, E1, E∗.
The Jacobian at the equilibrium point E0 = (M

α
, 0, 0) has the eigen values −α,

m1s
a1+s

−β1 −c1h1, and −(β2 +c2h2). So, we can say that E0 is locally asymptotically
stable if m1s

a1+s
− β1 − c1h1 < 0.

The variational matrix of the system around the positive equilibrium E∗ =
(s∗, p∗, z∗) is

⎛

⎝
n11 n12 n13

n21 n22 n23

0 n32 0

⎞

⎠
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where n11 = −α − m1a1p
∗

(a1+s∗)2 < 0, n12 = γ1 − m1s
∗

a1+s∗ < 0, n13 = γ2 > 0, n21 =
m1a1p

∗
(a1+s∗)2 > 0, n22 = m1s

∗
a1+s∗ − m2a2z

∗
(a2+p∗)2 − β1 − h1c1 = m2z

a2+p
− m2a2z

∗
(a2+p∗)2 > 0,

n23 = − m2p
∗

a2+p∗ < 0, and n32 = m2a2z
∗

(a2+p∗)2 − μa3z
∗

(a3+p∗)2 > 0

The characteristic equation is of the form λ3 + A1λ
2 + A2λ + A3,

where A1 = −(n11 +n22), A2 = n11n22 −n12n21 −n23n32, and A3 = n11n23n32 −
n13n21n32.

By the Routh-Hurwitz criteria, all roots of above equation have negative real parts
if and only if A1 > 0, A3 > 0, and A1A2 − A3 > 0.
A1 = −(n11 + n22) = −(−α − m1a1p

∗
(a1+s∗)2 + m2z

∗
a2+p∗ − m2a2z

∗
(a2+p∗)2 ) > 0

if α + m1a1p
∗

(a1+s∗)2 + m2a2z
∗

(a2+p∗)2 > m2z
∗

a2+p∗ .
A2 = n11n22 − n12n21 − n23n32 > 0

if n11n22 > n12n21 + n23n32

A3 = n11n23n32 − n13n21n32

=(−α − m1a1p
∗

(a1 + s∗)2 )(−
m2p

∗

a2 + p∗ )(
m2a2z

∗

(a2 + p∗)2 − μa3z
∗

(a3 + p∗)2 )

− γ2
m1a1p

∗

(a1 + s∗)2
(

m2a2z
∗

(a2 + p∗)2
− μa3z

∗

(a3 + p∗)2
)

=[(α + m1a1p
∗

(a1 + s∗)2 )(
m2p

∗

a2 + p∗ ) − γ2
m1a1p

∗

(a1 + s∗)2 ]( m2a2z
∗

(a2 + p∗)2 − μa3z
∗

(a3 + p∗)2 )

=[α( m2p
∗

a2 + p∗ ) + (
m1a1p

∗

(a1 + s∗)2 )(
m2p

∗

a2 + p∗ ) − γ2
m1a1p

∗

(a1 + s∗)2 ]( m2a2z
∗

(a2 + p∗)2

− μa3z
∗

(a3 + p∗)2
) = [α( m2p

∗

a2 + p∗ ) + (
m1a1p

∗

(a1 + s∗)2
)

(
m2p

∗

a2 + p∗ − γ2)]( m2a2z
∗

(a2 + p∗)2 − μa3z
∗

(a3 + p∗)2 ) > 0

Since, m2p
∗

a2+p∗ > γ2 and m2a2z
∗

(a2+p∗)2 >
μa3z

∗
(a3+p∗)2

Finally, A1A2 − A3 = −(n11 + n22)(n11n22 − n12n21 − n23n32) − (n11n22 −
n12n21 − n23n32) > 0 since, −(n11 + n22)(n11n22 − n12n21 − n23n32) > n11n22 −
n12n21 − n23n32.
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A Computational Study of Reduction
Techniques for the Minimum
Connectivity Inference Problem

Muhammad Abid Dar, Andreas Fischer, John Martinovic,
and Guntram Scheithauer

1 Introduction

The minimum connectivity inference (MCI) problem is an NP-hard discrete opti-
mization problem [6, 11] which has been independently discussed in various areas
of research under different names. Most probably, its first appearance dates back
to a Chinese journal [10] from 1976, where this problem was considered for the
design of vacuum systems. A reference to this paper can be found on Ding-Zhu
Du’s homepage [9] and in [8].

Moreover, the problem under consideration was studied in [11] and in [15]
under the term Subset Interconnection Design problem. Besides this, the name
Minimum Topic-Connected Overlay problem (see [4–6, 13]) has been established
in the context of scalable overlay networks. Furthermore, the MCI problem was
investigated for the design of reconfigurable interconnection networks and called
Interconnection Graph Problem [12]. With reference to underlying social networks,
the MCI problem was also dealt with as Network Inference problem [3]. Sometimes,
related problems were studied as well, in particular the case with nonuniform edge
weights is dealt with. This weighted MCI problem is out of the scope of our
contribution.

The name Minimum Connectivity Inference problem itself appeared first in
recent publications dealing with applications in structural biology to discover
connections within macromolecular assemblies [1, 2]. Here, this most current term
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will be used to address the problem under consideration, especially since (among
all the existing names) the latter seems to show best the actual objective behind the
given optimization problem.

An abstract definition of the MCI problem is as follows:

Definition 1 Consider a simple, undirected, and complete graph G = (V ,E),
where V = {1, . . . , m} and E = {e = {i, j} | i, j ∈ V, i �= j} are the sets of
vertices and edges, respectively. Moreover, let a finite collection C = {Vi | Vi ⊆
V, i ∈ I } of subsets of V , called clusters, be given. Then, the MCI problem is
to find an edge set E∗ ⊆ E of minimal cardinality so that the subgraphs G∗[Vi]
induced by Vi in G∗ = (V ,E∗) are connected for all i ∈ I .

Note that for a graph G′ = (V ,E′) with an edge set E′ ⊆ E, the subgraph
G′[Vi] of G′ induced by Vi in G′ is the graph with vertex set Vi and all those edges
of E′ that connect two vertices of Vi . Moreover, recall that an edge {i, j} has no
orientation and is identical to {j, i}. The pair (V ,C ) is termed an instance of the
MCI problem. Moreover, a set E′ ⊆ E is called feasible, if the subgraphs G′[Vi]
are connected for all i ∈ I . This means that any two distinct vertices of Vi are
connected by a path which contains vertices of Vi only. If a feasible edge set E′ also
has minimal cardinality, then it is a solution of the MCI instance (V ,C ). Without
loss of generality, we may assume that |Vi | ≥ 2, and Vi �= Vj hold for all i, j ∈ I

with i �= j .
The MCI problem has been studied with respect to heuristic solution techniques,

complexity issues, reduction methods, and application-based modeling. As far as
we are aware, the only effort to determine an exact solution of general MCI
instances is due to [1] by proposing an MILP model. Based on this MILP
formulation, only MCI instances of small size can be solved in a reasonable
amount of time. Recently, the authors of the current paper presented an improved
MILP formulation [7], which, to some extent, allows to successfully solve larger
instances of the MCI problem. In [7], some new instance reduction techniques were
developed. Further reduction techniques from the literature were discussed as well.
The solution of reduced (in some sense smaller) instances is expected to require
less computation time and, therefore, can be meaningful for tackling even larger
instances.

The reduction techniques presented in [7] are exact, i.e., it can be shown that
a solution of a reduced instance provides a solution of the original MCI instance
by simply adding some of the removed edges. However, for a promising reduction
technique, suggested in [1], it was shown in [4] that the property to be exact is not
fulfilled, in general. This reduction technique will always lead to a feasible edge
set, but not necessarily to an optimal one. Therefore, we call it heuristic reduction
technique.

In this paper, we aim to demonstrate benefits and limits of applying instance
reduction techniques. Therefore, we present the results obtained without any
reduction of instances and compare them with those resulting from the use of several
reduction techniques. Moreover, besides the application of only exact reduction
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techniques we also analyze effects of additionally using the heuristic reduction rule
from [1]. All the computations and comparisons are based on the improved MILP
formulation [7]. Moreover, they are done with respect to different classes of MCI
instances proposed in [7].

The paper is organized as follows. After a short description of the improved
MILP model for the MCI problem in Section 2, we describe several exact instance
reduction techniques as well as the heuristic reduction rule in Section 3. The
computational study is given in Section 4. There, in particular, the test environment
including the choice of test instances, the computational results, and their discussion
with regard to several aspects are given. Finally, some concluding remarks follow in
Section 5.

2 An MILP Model of the MCI Problem

In this section, we briefly describe the improved MILP formulation. The numerical
experiments in [7] showed a significantly better performance for the improved
formulation than for the first MILP formulation from [1]. The description, based
on a given instance (V ,C ) of the MCI problem, requires some notations. Firstly, in
addition to the undirected graph G = (V ,E), we introduce a directed graph (V ,A)

with arc set:

A = {(i, j) | i, j ∈ V, i �= j}.

Moreover, for a subset U ⊂ V of vertices, the corresponding sets of arcs and edges
induced by U are defined as:

A(U) = {(i, j) | i, j ∈ U, i �= j}, E(U) = {{i, j} | i, j ∈ U, i �= j}.

Furthermore, for any cluster i ∈ I and each vertex j ∈ Vi , the sets of incoming and
outgoing arcs are given by:

A+
i (j) = {(k, j) | k ∈ Vi \ {j}} and A−

i (j) = {(j, k) | k ∈ Vi \ {j}}.

Finally, for any i ∈ I , let ri ∈ Vi denote an arbitrary but fixed vertex. Then,
as shown in [7], the MCI problem can be modeled by means of two types of
variables. Decision variables xe ∈ {0, 1}, e ∈ E, are used to indicate whether
an edge e ∈ E belongs to a feasible edge set (xe = 1) or not (xe = 0). By
means of the flow variables f i

a , a ∈ A(Vi), i ∈ I , the connectivity constraint
for each cluster is described. The resulting MILP formulation can be stated as
follows:



138 M. A. Dar et al.

minimize
∑

e∈E
xe (1)

s.t.
∑

e∈E(Vi)

xe ≥ |Vi | − 1, i ∈ I, (2)

∑

a∈A−
i (j)

f i
a −

∑

a∈A+
i (j)

f i
a = −1, j ∈ Vi \ {ri}, i ∈ I, (3)

f i
(j,k) + f i

(k,j) ≤ (|Vi | − 1) · xe, i ∈ I, e = {j, k} ∈ E(Vi), (4)

f i
a ≥ 0, i ∈ I, a ∈ A(Vi), (5)

xe ∈ {0, 1}, e ∈ E. (6)

Note that constraints in (2) are, in fact, not necessary to formulate a correct model of
the MCI problem. However, their presence essentially strengthens the corresponding
LP relaxation and, therefore, they are important for the reduction of the overall effort
to solve an instance, for details see [7]. Moreover, we note that restricting the MILP
model (1)–(6) to the case of a single cluster V1 = V leads to a single commodity
flow model for the minimum spanning tree problem. It is well known that there are
further models for the latter problem [14]. Their possible use for establishing further
MILP models of the MCI problem is a topic of future research, in particular with
respect to the achievement of an even better numerical performance.

3 Instance Reduction Techniques

The first subsection below describes the exact reduction rules we use for our
computational study in Section 4. Moreover, the heuristic reduction rule from [1] is
presented in Subsection 3.2. In what follows, H = (V ,C ) denotes some instance
of the MCI problem that is used as input for a reduction rule. For any vertex
u ∈ V , let C (u) denote the set of all those clusters which contain vertex u, i.e.,
C (u) = {Vi | u ∈ Vi, i ∈ I }. Furthermore, Hu or HU , respectively, denotes an
instance of the MCI problem, where the vertex u or, respectively, all vertices in U

are removed from V and from the clusters in C .
Sometimes, the reduction rules presented in Subsections 3.1 and 3.2 lead to an

instance H̃ = (Ṽ , C̃ ), where C̃ contains a cluster with less than two elements.
Then, according to [1], such clusters are simply removed before any further
reduction or before solving the reduced instance. Further note that some reduction
rules may provide two or more identical clusters. Since the collection C̃ of clusters
is a set, only one of those identical clusters remains.
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3.1 Exact Reduction Rules

Rules 1 and 2 below are taken from [5]. Other rules provided therein are either made
for special cases (very small number of clusters compared to the number of vertices)
or are not applicable since the knowledge of an optimal edge set of the instance is
required. The Rules 3–5 were suggested and analyzed in [7].

Rule 1 Assume that there are q + 1 vertices u, v1, . . . , vq ∈ V with q being a
positive integer such that

• C (u) ⊆ C (vi) holds for i = 1, . . . , q and
• |Vj | ≤ q + 3 is satisfied for all Vj ∈ C (u).

Then, any solution Eu of Hu can be converted into a solution of H by adding a
single edge {u, v} to the edge set Eu, where v is an arbitrarily chosen vertex from
the set {v1, . . . vq}.
Rule 2 Assume that there is a cluster Vi ∈ C with Vi = {u, u1, . . . , ul} such that
C (uj ) ⊆ C (u) holds for j = 1, . . . , l. Then, any solution E{u1,...,ul} of H{u1,...,ul}
can be converted into a solution of H by adding the edges in {{u, uj } | j =
1, . . . , l} to the edge set E{u1,...,ul}.

To describe the reduction rules proposed in [7], we need to introduce some more
notation. First, let the graph G = (I,E ) be assigned to (V ,C ), where the edge set
E is defined as:

E = {{j, k} | Vj ∩ Vk �= ∅, j, k ∈ I, j �= k}.
For any J ⊂ I , let G [J ] = (J,E (J )) with

E (J ) = {{i, j} | Vi ∩ Vj �= ∅, i, j ∈ J, i �= j}
denote the corresponding induced subgraph of G . Moreover, we define the set:

V (J ) =
⋃

j∈J
Vj .

For a particular cluster Vi ∈ C , let Ji = {j ∈ I | Vj ⊂ Vi, j �= i} collect
the clusters completely contained in Vi , and let γi denote the number of connected
components of G [Ji].

If, for a certain cluster Vi ∈ C , the graph G [Ji] has at least two connected
components, i.e., if γi > 1, then we represent each connected component k ∈
{1, . . . , γi} by the set Ji,k ⊂ Ji of those indices of clusters which are involved
in the component. Obviously:

γi⋃

k=1

Ji,k = Ji and Ji,k ∩ Ji,l = ∅ for k, l ∈ {1, . . . , γi} with k �= l

are satisfied.
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Rule 3 Assume that there is a cluster Vi ∈ C with V (Ji) = Vi and γi = 1, then
any solution of H ′ = (V ,C \ {Vi}) is also a solution of the instance H .

Rule 4 Assume that there is a cluster Vi ∈ C with V (Ji) = Vi and γi > 1. If there
is no cluster Vp with p ∈ I \ {i}, Vp ∩ V (Ji,k) �= ∅, and Vp ∩ V (Ji,l) �= ∅ for any
pair (k, l) with k, l ∈ {1, . . . , γi} and k �= l, then any solution E′ of the instance
H ′ = (V ,C \ {Vi}) can be converted into a solution of H by adding γi − 1 edges
{u, vk} to the edge set E′, where u ∈ V (Ji,1) and vk ∈ V (Ji,k) for k = 2, . . . , γi
are arbitrarily chosen vertices.

Rule 5 Assume that Vi ∈ C is a cluster satisfying V (Ji) �= Vi and γi = 1. If it
holds that

Vi ∩ Vk = {v} for all Vk ∈ C (v) \ {Vi} and all v ∈ Vi \ V (Ji),

then any solution E′ of the instance H ′ = (V ,C \ {Vi}) can be converted into
a solution of the instance H by adding the edges in T ∪ {{u, v}} to the edge
set E′, where T is the edge set of an arbitrarily chosen spanning tree for the
vertex set Vi \ V (Ji), and u ∈ V (Ji) and v ∈ Vi \ V (Ji) are arbitrarily chosen
vertices.

3.2 A Heuristic Reduction Rule

For the instance reduction rule proposed in [1], it has to be noticed that, in contrast
to the exact Rules 1–5, the following Rule 6 is only a heuristic one. This was proven
in [5]. Nevertheless, as subsequent computational results will show, this rule works
well in some cases.

Rule 6 Assume that there are vertices u, v ∈ V with u �= v so that C (u) ⊆ C (v).
Then, any solution Eu of Hu can be converted into a feasible solution of H by
adding the edge {u, v} to the edge set Eu.

4 Computational Study

This section is divided into three parts. In Subsection 4.1, we explain the test
environment. In particular, we provide the principles of generating random test
instances for the MCI problem. Several tables with our computational results includ-
ing the description of their entries follow in Subsection 4.2. Finally, observations
and conclusions are given in Subsection 4.3.
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4.1 Test Environment

To generate a certain variety of MCI instances, we follow the lines suggested in [7].
More precisely, for a certain pair (|V |, |C |) of cardinalities, we define four instance
types for the range the cardinalities of the clusters Vi in C must belong to, namely:

Type 1: |Vi | ∈ {2, . . . , |V |},
Type 2: |Vi | ∈ {2, . . . , #|V |/2$},
Type 3: |Vi | ∈ {%|V |/4&, . . . , |V |},
Type 4: |Vi | ∈ {%|V |/4&. . . . , #|V |/2$}.

(7)

Then, for given |V |, |C |, and for a fixed instance type, the following procedure
generates 50 random instances. The cardinality of each of the clusters V1, . . . , V|C |
is drawn randomly from the set of integers in (7) according to the uniform
distribution. Thereafter, the vertex set of each of these clusters is drawn from
{1, . . . , |V |} with uniform distribution. If, during the generation of a cluster, a vertex
is drawn a second time, then it is not used. The same is done if identical clusters
occur. For our computations, |V | is chosen greater than or equal to 10, whereas
|C | ∈ {|V |, . . . , 5|V |} is used, details are shown in the tables in Subsection 4.2.

The solution of any MCI instance is based on the solution of the MILP model in
Section 2 by means of CPLEXő Version 12.6.3 on a PC with Intelő Xeonő processor
X5670 at 2.93 GHz using 96 GB of memory. The preprocessing including the
application of reduction rules and the call of the CPLEXő routine cplexmilp is
done in MATLABő Release R2016a. After 600 seconds, the solution of any instance
is stopped.

4.2 Computational Results

The results are presented in five tables below. Most of their entries were obtained by
averaging the measurements for the 50 random instances obtained for fixed values of
|V |, |C | and of the instance types (7). The structure of Tables 1, 2, 3 is similar. They
provide results for the solution of instances with different numbers |V | of vertices,
where the number |C | of clusters is equal to |V | for Table 1, to 2|V | for Table 2,
and to 3|V | and 5|V | for Table 3, subject to the use of different combinations of
reduction rules. These tables include also the percentage of clusters and vertices
that could be removed. In contrast to this, Tables 4 and 5 present only results on
such percentages of reductions but for significantly higher values of |V | and |C |.

To understand the tables, let us explain the notions used therein:

• The column Type shows the instance type of a row, according to (7).

• In each row, the column |E∗|∅ provides the averaged optimal values of the
instances that were solved within the time limit of 600 seconds (out of 50 random
instances).
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Table 1 Comparison of exact and heuristic reduction rules for instances with |V | clusters

Clusters removed Vertices removed Runtime

(%) (%) (#) (sec)

|V | Type |E∗|∅ R1–R5 +R6 R6 R1–R5 +R6 R6 +R6+ R1–R5 R1–R6 R6 NoR

10 1 10.8 25.0 6.8 24.8 15.6 34.4 48.8 45 0.11 0.06 0.06 0.14

2 13.0 11.6 2.2 7.2 19.2 11.0 28.2 32 0.08 0.06 0.06 0.07

3 10.7 23.6 10.4 27.6 12.2 37.4 49.0 47 0.11 0.06 0.07 0.15

4 12.9 4.6 2.0 4.4 14.0 12.6 26.4 33 0.08 0.06 0.06 0.08

14 1 16.6 14.0 2.9 8.6 2.4 31.3 33.3 49 0.37 0.20 0.21 0.52

2 19.8 1.9 0.7 2.1 5.0 15.9 20.3 48 0.16 0.13 0.13 0.15

3 16.4 13.7 4.6 10.0 1.0 32.6 33.6 50 0.37 0.20 0.25 0.59

4 19.76 0.1 0.1 0.3 1.4 14.4 15.9 46 0.19 0.17 0.18 0.18

18 1 22.8 10.2 0.2 2.4 1.3 20.9 22.1 48 1.91 0.98 1.38 2.37

2 27.5 0.6 0.0 0.6 1.6 12.9 14.4 50 0.36 0.37 0.36 0.33

3 22.1 11.7 1.3 3.9 0.0 21.7 21.7 48 4.27 1.80 2.45 5.44

4 27.0 0.0 0.0 0.0 0.2 6.6 6.8 34 0.89 0.85 0.83 0.90

22 1 29.4 8.5 0.3 1.6 0.2 15.0 15.2 44 10.4 6.12 8.84 17.0

2 35.4 0.1 0.0 0.1 0.9 6.9 7.8 41 1.47 1.35 1.34 1.46

3 28.4 10.8 0.0 0.9 0.0 11.4 11.4 45 18.4 10.4 18.0 26.9

4 35.1 0.0 0.0 0.0 0.2 2.9 3.1 24 4.11 3.84 3.81 4.02

26 1 35.8 6.7 0.0 0.4 0.1 10.5 10.6 46 61.5 32.7 62.5 95.5

[48] [49] [49]

2 44.2 0.1 0.0 0.1 0.2 4.4 4.6 36 3.21 3.08 3.0 3.18

3 34.3 10.1 0.1 0.5 0.0 7.5 7.5 39 143 164 175 202

[37] [38] [34] [31]

4 42.4 0.0 0.0 0.0 0.0 1.9 1.9 20 38.9 37.2 37.2 50.7

[46] [47] [47] [47]

• The multiple columns Clusters removed and Vertices removed show percent-
ages of how many clusters and vertices, respectively, could be removed by means
of reduction rules.

• The columns R1–R5 , R1–R6 , or R6 refer to results obtained when Rules 1–
5, Rules 1–6, or only Rule 6 are/is employed before solving the instances. Note
that Rules 1–5 are exact reduction rules, whereas Rule 6 is a heuristic rule, see
Subsection 3.2.

• The two columns +R6 show the percentage of reduction (of clusters or vertices)
we obtained by applying Rule 6 to instances that were already reduced by
Rules 1–5.

• There is a single column +R6+ that contains the number (#) of the 50 instances
for which the application of Rule 6 (to instances that were already reduced by
Rules 1–5) yields an additional reduction in terms of the number of clusters or
vertices.
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Table 2 Comparison of exact and heuristic reduction rules for instances with 2|V | clusters

Clusters removed Vertices removed Runtime

(%) (%) (#) (sec)

|V | Type |E∗|∅ R1–R5 +R6 R6 R1–R5 +R6 R6 +R6+ R1–R5 R1–R6 R6 NoR

10 1 13.9 23.8 0.8 3.7 0.8 6.0 6.8 18 0.19 0.18 0.23 0.25

2 17.4 6.0 0.1 0.8 1.6 2.0 3.2 9 0.12 0.12 0.11 0.11

3 13.6 26.6 0.5 2.5 0.8 5.2 6.0 18 0.19 0.18 0.25 0.28

4 16.8 2.8 0.1 0.0 0.0 2.2 2.0 10 0.15 0.14 0.14 0.14

14 1 21.3 18.6 0.1 0.4 0.0 2.4 2.4 13 0.91 0.81 1.27 1.23

2 26.8 1.0 0.0 0.0 0.0 1.3 1.3 8 0.29 0.29 0.27 0.27

3 19.9 20.2 0.0 0.3 0.4 1.7 2.1 11 1.50 1.42 2.13 2.19

4 25.3 0.4 0.0 0.0 0.0 0.1 0.1 1 0.67 0.67 0.67 0.67

18 1 29.4 14.5 0.0 0.1 0.0 0.7 0.7 5 5.09 5.00 8.99 9.12

2 36.7 0.3 0.0 0.0 0.0 0.2 0.2 2 1.66 1.65 1.62 1.63

3 26.9 16.7 0.0 0.0 0.0 0.3 0.3 2 15.8 15.8 30.7 30.7

4 34.5 0.0 0.0 0.0 0.0 0.2 0.2 2 5.38 5.35 5.24 5.26

22 1 37.4 12.6 0.0 0.0 0.0 0.0 0.0 0 50.2 50.2 93.7 93.7

[48] [48] [48] [48]

2 47.1 0.1 0.0 0.0 0.0 0.1 0.1 1 6.89 6.98 6.91 6.82

3 34.4 14.9 0.0 0.1 0.0 0.2 0.2 1 189 190 259 269

[42] [42] [32] [32]

4 43.9 0.0 0.0 0.0 0.0 0.1 0.1 1 241 241 241 241

[32] [32] [32] [32]

26 1 46.7 11.3 0.0 0.0 0.0 0.0 0.0 0 154 154 248 248

[32] [32] [22] [22]

2 58.6 0.1 0.0 0.0 0.0 0.0 0.0 0 65.6 65.6 65.6 65.6

[49] [49] [49] [49]

3 — 13.0 0.0 0.0 0.0 0.1 0.1 1 — — — —

4 — 0.0 0.0 0.0 0.0 0.0 0.0 0 — — — —

• The multiple column Runtime shows the averaged runtimes for solving
the 50 instances depending on the reduction rules employed. The column
NoR provides the averaged runtime if no reduction rule is used at all. In

some of the entries of the column Runtime, a bracketed number [x] can be
found below the average runtime. This means that x<50 instances are solved
within the time limit of 600 seconds and the average is taken only over these
instances.

The measurements (average number of edges in |E∗|, average percentages, and
average runtimes) given in the tables are rounded.

In Table 2, for |V | = 26 and Type 3 or 4, the time limit of 600 seconds was
exceeded for all 50 instances. The time for only applying the reduction rules in
Tables 4 and 5 (i.e., without any solution of the MILP formulation) required less
than 0.3 seconds.
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Table 3 Comparison of exact and heuristic reduction rules for instances with 3|V | and 5|V |
clusters

Clusters removed Vertices removed Runtime

(%) (%) (#) (sec)

|V | Type |C | |E∗|∅ R1–R5 +R6 R6 R1–R5 +R6 R6 +R6+ R1–R5 R1–R6 R6 NoR

10 1 30 16.1 30.0 0.1 0.5 0.4 0.6 1.0 3 0.21 0.21 0.35 0.36

50 19.4 42.1 0.0 0.0 0.0 0.0 0.0 0 0.24 0.24 0.60 0.60

2 30 20.4 10.8 0.0 0.0 0.0 0.2 0.2 1 0.16 0.16 0.15 0.15

50 24.8 26.6 0.0 0.0 0.0 0.0 0.0 0 0.24 0.2 0.24 0.24

3 30 15.5 29.6 0.0 0.1 0.0 0.4 0.4 2 0.25 0.25 0.42 0.42

50 18.3 41.2 0.0 0.0 0.0 0.0 0.0 0 0.32 0.32 0.72 0.72

4 30 19.6 6.5 0.0 0.0 0.0 0.0 0.0 0 0.22 0.22 0.22 0.22

50 22.4 15.0 0.0 0.0 0.0 0.0 0.0 0 0.31 0.31 0.34 0.34

14 1 42 24.7 23.9 0.0 0.0 0.0 0.0 0.0 0 1.27 1.27 1.91 1.91

70 30.1 30.8 0.0 0.0 0.0 0.0 0.0 0 1.73 1.73 3.51 3.51

2 42 31.3 3.9 0.0 0.0 0.0 0.0 0.0 0 0.46 0.46 0.50 0.50

70 38.1 10.9 0.0 0.0 0.0 0.0 0.0 0 0.81 0.81 0.98 0.98

3 42 22.7 24.1 0.0 0.0 0.0 0.1 0.1 1 2.69 2.69 4.81 4.82

70 26.5 31.6 0.0 0.0 0.0 0.0 0.0 0 4.72 4.72 11.20 11.20

4 42 29.1 0.7 0.0 0.0 0.0 0.0 0.0 0 1.87 1.87 1.90 1.90

70 33.4 2.5 0.0 0.0 0.0 0.0 0.0 0 4.64 4.64 4.62 4.62

18 1 54 33.8 20.0 0.0 0.0 0.0 0.0 0.0 0 8.82 8.82 15.0 15.0

90 41.0 26.4 0.0 0.0 0.0 0.0 0.0 0 13.4 13.4 40.1 40.1

2 54 42.8 0.9 0.0 0.0 0.0 0.0 0.0 0 2.97 2.97 2.99 2.99

90 52.3 3.8 0.0 0.0 0.0 0.0 0.0 0 4.67 4.67 5.04 5.04

3 54 30.4 21.3 0.0 0.0 0.0 0.0 0.0 0 41.5 41.5 95.0 95.0

[46] [46] [38] [38]

90 35.7 25.3 0.0 0.0 0.0 0.0 0.0 0 135 135 285 285

[41] [41] [28] [28]

4 54 39.1 0.1 0.0 0.0 0.0 0.0 0.0 0 68.4 68.4 71.3 71.3

[49] [49] [49] [49]

90 44.4 0.1 0.0 0.0 0.0 0.0 0.0 0 356 356 289 289

[5] [5] [4] [4]

4.3 Observations and Conclusions

Based on the computational results obtained, we now provide several observations
and derive conclusions.

1. Complexity of Instances. There are several factors that influence the time needed
to solve the MILP formulation of an instance. Clearly, increasing values of |V |
and |C | will, in average, lead to higher runtimes. However, in addition to this, we
see from Tables 1, 2, 3 that instances of Type 2 (compared to instances of Types
1, 3, and 4) need significantly less runtime (and do not exceed our time limit). At
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Table 4 Comparison of exact and heuristic reduction rules for larger numbers of vertices with
|C | = |V |

Clusters removed Vertices removed

(%) (%) (#)

|V | Type R1–R5 +R6 R6 R1–R5 +R6 R6 +R6+

28 1 7.8 0.0 0.2 0.2 7.6 7.9 42

2 0.0 0.0 0.0 0.1 3.9 4.0 33

3 8.8 0.0 0.3 0.0 4.6 4.6 32

4 0.0 0.0 0.0 0.0 0.9 0.9 12

32 1 6.9 0.0 0.1 0.0 4.4 4.4 35

2 0.0 0.0 0.0 0.1 2.3 2.3 25

3 8.4 0.0 0.1 0.0 2.8 2.8 28

4 0.0 0.0 0.0 0.0 0.3 0.3 5

36 1 6.6 0.0 0.2 0.1 2.7 2.8 26

2 0.0 0.0 0.0 0.0 1.5 1.5 21

3 7.8 0.0 0.1 0.0 2.1 2.1 20

4 0.0 0.0 0.0 0.0 0.1 0.1 2

40 1 5.4 0.0 0.1 0.0 1.3 1.3 16

2 0.0 0.0 0.0 0.1 1.0 1.0 15

3 8.6 0.0 0.0 0.0 1.0 1.0 15

4 0.0 0.0 0.0 0.0 0.1 0.1 1

Table 5 Effect of exact
reduction rules (Rules 1–5)
for large numbers |C | of
clusters

Clusters removed (%)

|V | |C | Type 1 Type 3

32 32 6.9 8.4

64 10.2 11.0

96 13.3 13.7

128 15.4 15.4

160 18.1 17.3

36 36 6.6 7.8

72 9.8 10.6

108 12.1 13.0

144 14.3 15.0

180 16.5 14.8

40 40 5.3 8.6

80 9.2 10.4

120 11.8 11.6

160 14.1 13.6

200 15.5 14.5

least for higher numbers of clusters, instances of Type 3 or 4 seem particularly
difficult to solve. In general, if some (noticeable) reduction occurs, then this leads
to a decrease in the computation time.
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2. Removal of Clusters. It can be observed from all tables that the exact reduction
by Rules 1–5 leads to a remarkable decrease in the number of clusters for Types
1 and 3. It is shown by Tables 4 and 5 that this remains true for larger numbers
of vertices and, particularly, quite large number of clusters. In addition to this,
Tables 1 and 2 show that an additional heuristic reduction by Rule 6 is not helpful
for removing clusters when dealing with instances having more than about 20
vertices.

3. Removal of Vertices. Advantages can be observed for problem instances with a
small number of clusters, to see this one may compare Tables 1 with Tables 2
and 3. In addition to this, as Table 4 shows, the reduction percentage decreases
for an increasing number of vertices. This is mainly caused by the exponential
growth of the number of possible clusters for a linearly increasing number of
vertices. The application of the heuristic Rule 6 in addition to the exact rules is
not useful for instances with a high number of clusters (compared to the number
of vertices), see Table 3.

4. Heuristic Reduction Rule. Interestingly, for all the generated instances for
Tables 1, 2, 3, reductions caused by Rule 6 always led to an exact reduction.
Thus, in certain cases, using this rule may be helpful in obtaining at least a
good approximate solution. Moreover, for the case that the number of clusters
is similar to the number of vertices, an additional use of Rule 6 after the exact
Rules 1–5 were applied can lead to further reductions, see Table 1.

5. Reduction versus No Reduction. The results recommend to always use the
reduction rules (at least the exact Rules 1–5) since, on the one hand, the time
needed to apply these rules is negligible (less than 0.3 seconds for all instances
considered in all tables). On the other hand, the reduction may lead (in certain
cases) to significant savings of solution time, for example see Table 2 with
|V | = 18, Type 3, and |C | = 90.

An obvious but important fact we would finally like to underline is that any
reduction of clusters or vertices leads to a smaller number of variables and
constraints in the MILP model.

5 Future Research

In this contribution, we have studied the importance of reduction methods. Although
it depends on the particular type of MCI instances and, naturally, on their size, it
seems useful to apply all reduction rules. If a solution of an MCI instance is needed,
then the exact Rules 1–5 can be used. The development of additional exact reduction
rules is an interesting direction of research to further enlarge the range of exactly
solvable MCI instances. But also a heuristic reduction (as Rule 6) might be valuable.
Then, appropriate sufficient conditions have to be found to verify the optimality
of the obtained feasible edge set. This can also be a part of future research.
Thirdly, since the MCI problem belongs to the class of NP-hard problems, heuristic
approaches are of high interest. As results in [7] show, the heuristic suggested in [1]
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computes approximate solutions whose function value can be too far away from the
optimal number of edges. Therefore, attempts to develop further heuristic methods
might become an important field of research. Finally, to the best of our knowledge,
no work has been done so far to develop ideas which would allow to split the MCI
instance into several smaller problems, to solve them in parallel and, based on this,
to derive a solution or an approximate solution for the original instance. Of course,
parallelization can be used at lower levels, in particular for the solution of the MILP
model.
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Approximate Controllability of Nonlocal
Impulsive Stochastic Differential
Equations with Delay

Surendra Kumar

1 Introduction

The concept of controllability is introduced by Kalman [1]. Controllability is
a qualitative property of a dynamical control system and plays a crucial role
in modern control theory. In infinite-dimensional case, two basic concepts of
controllability can be distinguished, namely, exact and approximate controllability.
Exact controllability means that it is possible to steer the system from an arbitrary
initial state to an arbitrary final state. To show exact controllability of a dynamical
system, the main approach is to convert the controllability issue into a fixed point
problem which requires that the controllability operator must have an induced
inverse [2, 3]. However, Triggiani [4] proved that if the semigroup associated
with the corresponding linear system is compact, then the controllability operator
is also compact and hence the induced inverse does not exist. Therefore, the
concept of exact controllability is too strong and approximate controllability is more
appropriate for infinite-dimensional systems. Approximate controllability means
that the system can be steered to arbitrary small neighborhood of the arbitrary final
state.

It is well known that many real-world problems in science and engineering are
modeled as stochastic differential equations [5]. As a result of its widespread use,
the controllability problems related to stochastic differential equations attract many
researchers. In 2001, Mahmudov [6] discussed the issue of controllability related
to infinite-dimensional linear stochastic system in Hilbert space setting. Then, the
results were extended for semilinear stochastic equations by Mahmudov [7, 8],
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Dauer and Mahmudov [9], Balachandran, Karthikeyan, and Kim [10], Matar [11],
and Karthikeyan, Balachandran, and Sathya [12].

On the other hand, Sakthivel [13] discussed sufficient conditions for the approx-
imate controllability of impulsive stochastic system via contraction mapping prin-
ciple. Using resolvent operators and fixed point theory, Sakthivel et al. [14] studied
the approximate controllability of impulsive deterministic and stochastic nonlinear
systems with unbounded delay. Shen and Sun [15] obtained a set of sufficient
conditions for the relative controllability and relative approximate controllability in
both finite and infinite-dimensional spaces with delay in control. Further, Shen and
Sun [16] produced results related to the approximate controllability of stochastic
impulsive systems with multiple time-varying delays using the Nussbaum fixed
point theorem. The approximate controllability of the stochastic impulsive system
with control acting on the nonlinear terms was examined by Shen and Wu [17].
In 2015, Ning and Qing [18] studied the approximate controllability of stochastic
nonlinear system with infinite delay. Shukla et al. [19] obtained sufficient conditions
for approximate controllability of retarded semilinear stochastic control system with
nonlocal conditions and finite delay. Using the Banach fixed point theorem, Arora
and Sukavanam [20] examined the approximate controllability of impulsive semi-
linear stochastic system with finite delay in state in Hilbert space setting. Recently,
Mokkedem and Fu [21] formulated and proved a set of sufficient conditions for the
approximate controllability of an infinite-dimensional delayed stochastic system in
Banach space. However, to the best of my knowledge, there is no result on the
approximate controllability of impulsive stochastic system with nonlocal conditions
and considered delay in state. Motivated by this fact, in this paper, I will examine the
approximate controllability of impulsive stochastic system with time varying delay
and nonlocal conditions in Hilbert space setting via semigroup theory, stochastic
analysis techniques, and the Banach contraction principle.

The paper is organized as follows: In Section 2, we present some basic definitions
and lemmas as preliminaries. The approximate controllability of the system (1) is
studied in Section 3. In Section 4, an example is given to illustrate the developed
theory.

2 Preliminaries

This section concerns with some basic definitions, lemmas, and notations, which are
used in the article. Throughout this paper, unless otherwise specified, let (�,F ,P)
be a complete probability space furnished with complete family of right continuous
increasing σ -algebras {Ft : t ∈ J = [0, τ ]} satisfying Ft ⊂ F for t ≥ 0. Let H ,
U , and K be real separable Hilbert spaces. For convenience, we denote the inner
products and norms in all spaces by 〈·, ·〉 and ‖ · ‖. Let ω = {ω(t) : t ≥ 0} be a
Q-Wiener process defined on the probability space (�,F ,P) with the covariance
operator Q such that T r(Q) < ∞. Suppose that {en}∞

n=1 be a complete orthonormal
system in K , and {αn}∞

n=1 a sequence of independent Brownian motions such that
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ω(t) =
∞∑

n=1

√
δnenαn(t), t ∈ J,

where {δn}∞
n=1 is a bounded sequence of nonnegative real numbers such that Qen =

δnen, n = 1, 2, · · · .
Let L0

2 = L2(Q
1/2K,H) be the space of all Hilbert-Schmidt operators from

Q1/2K into H with the inner product 〈χ1, χ2〉L0
2

= T r[χ1Qχ∗
2 ]. Let h > 0 and

C([−h, 0],H)) denote the Banach space of all continuous functions from [−h, 0]
into H with the norm ‖ζ‖ = sup−h≤t≤0 ‖ζ(t)‖. The space of all Ft -measurable,
square integrable random variables with values in H , denoted by LF

2 (�,H), is a

Hilbert space. Let LFτ

2 (�,H) be the Hilbert space of all Fτ -measurable, square
integrable random variables with values in H .

Define PC(J1, L
F
2 (�,H)) as the Banach space of all piecewise continuous

functions y(t) from J1 = [−h, τ ] into LF
2 (�,H) with the norm ‖y‖ =

(
supt∈J1

E‖y(t)‖2
)1/2

, where E(·) is the expectation with respect to the measure
P. Let H2 be the closed subspace of PC(J1, L

F
2 (�,H)) consisting of all Ft -

measurable H -valued processes y(·) ∈ PC(J1, L
F
2 (�,H)) endowed with the

norm:

‖y‖H2 =
(

sup
t∈J1

E‖y(t)‖2

)1/2

.

The purpose of this paper is to examine the approximate controllability for a class
of nonlocal impulsive stochastic differential equation with time varying delay given
by:

dy(t) =[Ay(t) + Bu(t) + f (t, y(t − μ(t)))]dt
+ σ(t, y(t − μ(t)))dω(t), t �= tk, t ∈ (0, τ ]

y(t) =ϕ(t) + g(y)(t), t ∈ [−h, 0] (1)

#y|t=tk =Ik(y(tk)), k = 1, 2, . . . , m,

where the state y(t) is H -valued stochastic processes; A is the infinitesimal
generator of a compact C0-semigroup {S(t) : t ≥ 0}; the control function u(·)
takes its values in LF

2 (J, U), the Hilbert space of admissible control functions;
B is a bounded linear operator from U into H ; f : [0, τ ] × H → H and σ :
[0, τ ] × H → L0

2 are the appropriate functions defined later; g : PC((0, τ ],H) →
PC([−h, 0],H) is a continuous nonlinear function; ϕ(·) ∈ CF0([−h, 0],H), the
space of all F0-measurable random variables independent of the Wiener process
ω satisfying sup−h≤t≤0 E‖ϕ(t)‖2 < ∞; Ik : H → H , k = 1, 2, . . . , m,
are continuous functions and μ is a continuous function from R+ to (0, h];
Furthermore, let 0 = t0 < t1 < · · · < tm < tm+1 = τ be prefixed points,
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and #y(tk) = y(t+k ) − y(t−k ) represents the jump of the function y at tk with Ik

determining the size of the jump, where y(t+k ) and y(t−k ) are the right and left limits
of y(t) at t = tk, respectively.

Definition 2.1 A continuous Ft -adapted stochastic process y : [−h, τ ] → H

is called a mild solution of the system (1) if for each u(·) ∈ LF
2 (J, U), y(t)

is measurable with almost surely that
∫ τ

−h
‖y(s)‖2ds < ∞ and the following

stochastic integral equation is satisfied:

y(t) =

⎧
⎪⎪⎨

⎪⎪⎩

S(t)[ϕ(0) + g(y)(0)] + ∫ t0 S(t − s)[Bu(s) + f (s, y(s − μ(s)))]ds
+ ∫ t0 S(t − s)σ (s, y(s − μ(s)))dω(s)

+$0<tk<tS(t − tk)Ik(y(tk)), t ∈ J,

ϕ(t) + g(y)(t), t ∈ [−h, 0].

Let y(t;ϕ, u) denote the state value of the system (1) at time t corresponding to
the control u(·) ∈ LF

2 (J, U) and the initial value ϕ.
Introduce the set:

R(τ ;ϕ, u) = {y(τ ;ϕ, u) : u(·) ∈ LF
2 (J, U)}

which is called the reachable set of the system (1) at terminal time τ . Suppose that
its closure in L

Fτ

2 (�,H) is denoted by R(τ ;ϕ, u).
Definition 2.2 The system (1) is said to be approximately controllable on J if and
only if R(τ ;ϕ, u) = L

Fτ

2 (�,H).

To discuss the approximate controllability of the system (1), define the operator
Lτ : LF

2 (J, U) → L
Fτ

2 (�,H) by:

Lτ u =
∫ τ

0
S(τ − s)Bu(s)ds.

Clearly, the adjoint operator L∗
τ : LFτ

2 (�,H) → LF
2 (J, U) is given by:

L∗
τ z = B∗S∗(τ − s)E{z|Ft }

where B∗ and S∗ denote the adjoint operators of B and S, respectively.
The linear controllability operator �τ

0 : LFτ

2 (�,H) → L
Fτ

2 (�,H) associated
with the linear part corresponding to the system (1) is defined by:

�τ
0{·} = LτL∗

τ {·} =
∫ τ

0
S(τ − t)BB∗S∗(τ − t)E{·|Ft }dt

and controllability operator corresponding to the linear deterministic control system
is given by:
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�τ
t =

∫ τ

t

S(τ − s)BB∗S∗(τ − s)ds.

Lemma 2.3 ([5]) Let � : J × � → L0
2 be a measurable mapping. Then for every

p ≥ 2, there exists cp > 0 such that for every t ≥ 0:

E sup
s∈[0,t]

∥
∥
∥
∥

∫ t

0
�(s)dw(s)

∥
∥
∥
∥

p

≤ cp

[∫ t

0

(

E‖�(s)‖p
L0

2

)2/p

ds

]p/2

where cp = (p(p − 1)/2)p/2. For p = 2, cp = 1 and hence we have

E sup
s∈[0,t]

∥
∥
∥
∥

∫ t

0
�(s)dw(s)

∥
∥
∥
∥

2

≤
∫ t

0
E‖�(s)‖2

L0
2
ds. (2)

We impose the following conditions to the system parameters:

(H1) The operator A is the infinitesimal generator of a compact C0-semigroup
{S(t) : t ≥ 0} in the Hilbert space H . Suppose M ≥ 1 is such that
‖S(t)‖2 ≤ M.

(H2) The nonlinear functions f : J ×H → H and σ : J ×H → L0
2 satisfy linear

growth and Lipschitz conditions. Moreover, there exist positive constants Mf ,
Mσ , Nf , and Nσ such that

‖f (t, x) − f (t, y)‖2 ≤ Mf ‖x − y‖2, ‖f (t, y)‖2 ≤ Nf

(
1 + ‖y‖2

)
,

‖σ(t, x) − σ(t, y)‖2
L0

2
≤ Mσ‖x − y‖2, ‖σ(t, y)‖2

L0
2

≤ Nσ

(
1 + ‖y‖2

)
.

(H3) The function g : PC((0, τ ],H) → PC([−h, 0],H) satisfies linear growth
and Lipschitz conditions. That is, there are positive constants Mg and Ng such
that

‖g(x) − g(y)‖2 ≤ Mg‖x − y‖2
H2

, ‖g(x)‖2 ≤ Ng

(
1 + ‖y‖2

H2

)
.

(H4) The functions Ik : H → H are continuous and there exist positive constants
pk and p̃k such that

‖Ik(x) − Ik(y)‖2 ≤ pk‖x − y‖2, ‖Ik(x)‖2 ≤ p̃k

(
1 + ‖x‖2

)

(H5) For each 0 ≤ t ≤ τ , β(βI +�τ
t )

−1 tends to zero in the strong operator topol-
ogy as β → 0+. Observe that the linear deterministic system corresponding
to the system (1) is approximately controllable on [t, τ ] if and only if the
operator β(βI + �τ

t )
−1 tends to zero strongly as β → 0+ [6, Theorem 4.1].
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Also without any loss of generality, we can assume that ‖(βI + �τ
t )

−1‖ ≤ 1
β

for any t ∈ J .

3 Controllability Results

To define the control function, we need the following lemma. For more details, one
can see [7, Lemma 3].

Lemma 3.1 For any ỹτ ∈ L
Fτ

2 (�,H), there exists a process φ̃ ∈ LF
2 (J, L0

2) such
that

ỹτ = Eỹτ +
∫ τ

0
φ̃(s)dω(s).

Now, for any β > 0 and ỹτ ∈ L
Fτ

2 (�,H), define the control function:

uβ(t, y) =B∗S∗(τ − t)(βI + �τ
0 )

−1
[
Eỹτ − S(τ)[ϕ(0) + g(x)(0)]

+
∫ τ

0
(βI + �τ

s )
−1φ̃(s)dω(s)

]

− B∗S∗(τ − t)

∫ τ

0
(βI + �τ

s )
−1S(τ − s)f (s, y(s − μ(s)))ds

− B∗S∗(τ − t)

∫ τ

0
(βI + �τ

s )
−1S(τ − s)σ (s, y(s − μ(s)))dω(s)

− B∗S∗(τ − t)(βI + �τ
0 )

−1$0<tk<τ S(τ − tk)Ik(y(tk)). (3)

Lemma 3.2 There exists a positive constant M̂ such that for all x, y ∈ H2, we have

E‖uβ(t, x) − uβ(t, y)‖2 ≤ M̂

β2 ‖x − y‖2
H2

,

E‖uβ(t, x)‖2 ≤ M̂

β2

(
1 + ‖x‖2

H2

)
.

Proof Let x, y ∈ H2 be arbitrary. Then, we have

E‖uβ(t, x) − uβ(t, y)‖2

≤4E
∥
∥
∥B∗S∗(τ − t)(βI + �τ

0 )
−1S(τ)[g(x)(0) − g(y)(0)]

∥
∥
∥

2
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+ 4E‖B∗S∗(τ − t)

∫ τ

0
(βI + �τ

s )
−1S(τ − s)[f (s, x(s − μ(s)))

− f (s, y(s − μ(s)))]ds‖2

+ 4E‖B∗S∗(τ − t)

∫ τ

0
(βI + �τ

s )
−1S(τ − s)[σ(s, x(s − μ(s)))

− σ(s, y(s − μ(s)))]dω(s)‖2

+ 4E
∥
∥
∥B∗S∗(τ − t)(βI + �τ

0 )
−1$0<tk<tS(τ − tk)[Ik(x(tk)) − Ik(y(tk))]

∥
∥
∥

2

=4(I1 + I2 + I3 + I4). (4)

Using assumptions (H1) and (H3), we get

I1 ≤ 1

β2 ‖B‖2M2Mg‖x − y‖2
H2

.

The Cauchy-Schwarz inequality and assumptions (H1) and (H2) yield that

I2 ≤‖B‖2Mτ

∫ τ

0
E‖(βI + �τ

s )
−1S(τ − s)[f (s, x(s − μ(s)))

− f (s, y(s − μ(s)))]‖2ds

≤ 1

β2
‖B‖2M2τ

∫ τ

0
MfE‖x(s − μ(s)) − y(s − μ(s))‖2ds

≤ 1

β2 ‖B‖2M2τ

∫ τ

0
Mf sup

s∈J
E‖x(s − μ(s)) − y(s − μ(s))‖2ds

≤ 1

β2 ‖B‖2M2τ 2Mf ‖x − y‖2
H2

.

Now using inequality (2) and assumptions (H1) and (H2), we obtain

I3 ≤‖B‖2ME sup
s∈J

‖
∫ τ

0
(βI + �τ

s )
−1S(τ − s)[σ(s, x(s − μ(s)))

− σ(s, y(s − μ(s)))]dω(s)‖2

≤ 1

β2
‖B‖2M2

∫ τ

0
E‖σ(s, x(s − μ(s))) − σ(s, y(s − μ(s)))‖2

L0
2
ds

≤ 1

β2 ‖B‖2M2τMσ‖x − y‖2
H2

.

The assumptions (H1) and (H4) imply that
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I4 ≤ 1

β2 ‖B‖2M2m
(
$m

k=1pk

) ‖x − y‖2
H2

.

Therefore, (4) becomes

E‖uβ(t, x) − uβ(t, y)‖2

≤ 4

β2
‖B‖2M2

[
Mg + τ 2Mf + τMσ + m

(
$m

k=1pk

) ]‖x − y‖2
H2

≤ M̂

β2
‖x − y‖2

H2
,

where M̂ is a suitable positive constant. The second inequality can be established in
the similar way. This completes the proof. ()

Consider the operator �β : H2 → H2 defined by:

(�βy)(t) =

⎧
⎪⎪⎨

⎪⎪⎩

S(t)[ϕ(0) + g(y)(0)] + ∫ t0 S(t − s)[Buβ(s, y) + f (s, y(s − μ(s)))]ds
+ ∫ t0 S(t − s)σ (s, y(s − μ(s)))dω(s)

+$0<tk<tS(t − tk)Ik(y(tk)), t ∈ J

ϕ(t) + g(y)(t), t ∈ [−h, 0].
(5)

Now, the system (1) has a solution on J1 if for all β > 0 there exists a fixed point
of the operator �β . For this purpose, the Banach contraction mapping principle is
used.

Theorem 3.3 If hypotheses (H1)–(H4) hold, then the system (1) has a unique mild
solution on J1.

Proof For every y ∈ H2, the Cauchy-Schwarz inequality, hypothesis (H2)–(H4),
and inequality (2) imply that

E‖�βy‖2
H2

≤ sup
t∈J1

E‖(�βy)(t)‖2

≤ 6M[E‖ϕ(0)‖2 + Ng(1 + ‖y‖2
H2

)]

+ 6

β2 Mτ 2‖B‖2M̂(1 + ‖y‖2
H2

) + 6M2τ 2Nf (1 + ‖y‖2
H2

)

+6MτNσ (1 + ‖y‖2
H2

) + 6mM2 ($m
k=1p̃k

)
(1 + ‖y‖2

H2
)

≤ λ1 + λ2‖y‖2
H2

,

where λ1 and λ2 are suitable positive constants. Therefore, �β maps H2 into itself.
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We now show that �β is a contraction map on H2. For x, y ∈ H2, hypothesis
(H1)–(H4), inequality (2), and the Cauchy-Schwarz inequality yield that

E‖(�βx)(t)−(�βy)(t)‖2 ≤ 5[E‖S(t)[g(x)(0) − g(y)(0)]‖2

+ E‖
∫ t

0
S(t − s)B[uβ(s, x) − uβ(s, y)]ds‖2

+ E‖
∫ t

0
S(t − s)[f (s, x(s − μ(s))) − f (s, y(s − μ(s)))]ds‖2

+ E‖
∫ t

0
S(t − s)[σ(s, x(s − μ(s))) − σ(s, y(s − μ(s)))]dω(s)‖2

+ E‖$0<tk<tS(t − tk)[Ik(x(tk)) − Ik(y(tk))]‖2

≤γ (β)

∫ t

0
E‖x(s) − y(s)‖2ds,

where γ (β) = 5M
[
Mg + ‖B‖2τ 2M̂

β2 + Mf τ
2 + Mστ + m$m

k=1pk

]
. For any natu-

ral number n, mathematical induction yields that

E‖�n
βx − �n

βy‖2
H2

= sup
t∈J1

E‖(�n
βx)(t) − (�n

βy)(t)‖2

≤ (τγ (β))n

n! ‖x − y‖2
H2

For any β > 0, there exists n such that (τγ (β))n

n! < 1. It follows that �n
β is a

contraction mapping for sufficiently large n. Hence by the contraction mapping
principle, �β has a unique fixed point, say, yβ in H2, which is a solution to the
system (1). ()
Theorem 3.4 Assume that the conditions in Theorem 3.3 and the assumption (H5)
are satisfied. If f and σ are uniformly bounded, then the system (1) is approximately
controllable on J1.

Proof By Theorem 3.3, yβ is the fixed point of the operator �β in H2. By
substituting (3) into (5) and using the stochastic Fubini theorem [5], it can be easily
seen that

yβ(τ ) =yτ − β(βI + �τ
0 )

−1)[Eỹτ − S(τ)(ϕ(0) + g(yβ)(0))

− $0<tk<τ S(τ − tk)Ik(yβ(tk))]

+
∫ τ

0
β(βI + �τ

s )
−1S(τ − s)f (s, yβ(s − μ(s)))ds
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+
∫ τ

0
β(βI + �τ

s )
−1[S(τ − s)σ (s, yβ(s − μ(s))) − φ̃(s)]dω(s). (6)

Since f and σ are uniformly bounded, there is a subsequence still denoted by
{f (s, yβ(s −μ(s))), σ (s, yβ(s −μ(s)))} converging to, say, {f (s), σ (s)} weakly in
H × L0

2. Thus from (6), we obtain

E‖yβ(τ ) − yτ‖2 ≤ 6‖β(βI + �τ
0 )

−1)[Eỹτ − S(τ)(ϕ(0) + g(yβ)(0))

− $0<tk<τ S(τ − tk)Ik(yβ(tk))]‖2

+ 6E

(∫ τ

0

∥
∥
∥β(βI + �τ

s )
−1S(τ − s)[f (s, yβ(s − μ(s))) − f (s)]

∥
∥
∥ ds

)2

+ 6E

(∫ τ

0

∥
∥
∥β(βI + �τ

s )
−1S(τ − s)f (s)

∥
∥
∥ ds

)2

+ 6E

(∫ τ

0

∥
∥
∥β(βI + �τ

s )
−1S(τ − s)[σ(s, yβ(s − μ(s))) − σ(s)]

∥
∥
∥

2

L0
2

ds

)

+ 6E

(∫ τ

0

∥
∥
∥β(βI + �τ

s )
−1S(τ − s)σ (s)

∥
∥
∥

2

L0
2

ds

)

+ 6E

(∫ τ

0

∥
∥
∥β(βI + �τ

s )
−1φ̃(s)

∥
∥
∥

2

L0
2

ds

)

On the other hand, by (H5) for all 0 ≤ s ≤ τ , the operator β(βI + �τ
s )

−1 → 0
strongly as β → 0+, and moreover ‖β(βI +�τ

s )
−1‖ < 1. Thus, by the Lebesgue’s

dominated convergence theorem and the compactness of S(·), it follows that

E‖yβ(τ ) − yτ‖2 → 0 as β → 0+.

Therefore, yβ(τ ) → yτ holds in H and consequently we obtain the approximate
controllability of the system (1). ()

4 Example

In this section, we give an example to show the applications of the obtained results.
Consider the following stochastic control system of the form:

dz(t, y) =
[
∂2

∂y2 z(t, y) + Bϑ(t, y) + z(t − sin t, y)

1 + z(t − sin t, y)

]

dt
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+ z(t − sin t, y)

1 + z(t − sin t, y)
dω(t); tk �= t ∈ (0, τ ], 0 ≤ y ≤ π,

z(t, 0) =z(t, π) = 0, t ∈ J,

z(θ, y) =ϕ(θ, y) +
∫ τ

0
�(s, θ) cos(z(s, y))ds, −h ≤ θ ≤ 0

,z(tk, y) =Ik(z(t
−
k , y)), k = 1, 2, · · · ,m. (7)

Let H = U = K = L2[0, π ] and A : D(A) ⊂ H → H be defined by Aw = w′′
with domain D(A) = {z(·) ∈ H : z, z′ are absolutely continuous, z

′′ ∈ H , z(0) =
z(π) = 0}. Furthermore, A has discrete spectrum, the eigenvalues of A are −n2, n =
1, 2, · · · , with the corresponding normalized eigenvectors en(y) = √

2/π sin(ny).
Then:

Az = −
∞∑

n=1

n2〈z, en〉en, z ∈ D(A).

It is well known that A is the infinitesimal generator of a C0-semigroup {S(t) : t ≥
0} on H and is given by:

S(t)z =
∞∑

n=1

exp(−n2t)〈z, en〉en, z ∈ H.

Now, define a continuous linear map B from

U =
{

u | u =
∞∑

n=2

unen, with
∞∑

n=2

u2
n < ∞

}

.

to H by:

Bu = 2u2e1 +
∞∑

n=2

unen for, u =
∞∑

n=2

unen ∈ U.

Define z(t)(y) = z(t, y), u(t)(y) = ϑ(t, y) where ϑ(t, y) : J × [0, π ] → [0, π ]
is continuous, μ(t) = sin t , f (t, z(t))(y) = z(t,y)

1+z(t,y)
, σ(t, z(t))(y) = z(t,y)

1+z(t,y)
,

g(z)(θ)(y) = ∫ τ
0 �(s, θ) sin(z(s, y))ds, and � ∈ C(J × [−h, 0],R). Thus, the

stochastic control system (7) can be represented in the abstract form (1).
Now if ‖B∗S∗(t)z‖ = 0, t ∈ J , then it follows that

‖2z1e
−t + z2e

−4t‖2 +
∞∑

n=3

‖zne−n2t‖2 = 0
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which yield that zn = 0, n = 1, 2, · · · . Thus, we get z = 0. Therefore, the
deterministic linear control system corresponding to the system (7) is approximately
controllable on J (see [22, Theorem 4.1.7]).

Clearly, f and σ are uniformly bounded and satisfy assumption (H2). Also, the
function g satisfies assumption (H3). If Ik , k = 1, 2, · · · ,m satisfy assumption
(H4), then all the hypotheses of Theorem 3.4 are satisfied. Thus by Theorem 3.4,
the system (7) is approximately controllable on J.
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Convergence of an Operator Splitting
Scheme for Abstract Stochastic Evolution
Equations

Joshua L. Padgett and Qin Sheng

1 Introduction

Geometric integration techniques have received much attention in the study of
differential equations [1, 3, 8, 16]. In particular, operator splitting methods have
been shown to be effective and efficient numerical methods, as they may often be
constructed to preserve stability while being explicit with desirable convergence
rates [9, 10, 19, 20, 23, 24]. While splitting methods have primarily been studied
in the deterministic setting, there have been several recent studies regarding their
efficacy in application to stochastic problems [2, 17, 18, 21]. In particular, it has been
shown that the splitting of deterministic and stochastic counterparts of differential
equations can prove effective by increasing convergence rates without the inclusion
of derivative terms [2, 5, 17]. Moreover, it is known that operator splitting methods
may preserve many desirable geometric properties of the true solution, including
the monotonicity and positivity [9, 12, 21].

Due to its wide range of applications in sciences and engineering, this chapter
considers the following semi-linear stochastic differential equation problem:

du = [Au + f (u)] dt + g(u) dW, 0 ≤ t ≤ T , (1)

u(0) = u0 ∈ H, (2)
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where H is a separable Hilbert space. In the above, A : Dom(A) ⊂ H → H is
a linear operator whose domain is dense in H and compactly embedded into H.

We will further assume that A generates an analytic semigroup etA, t ≥ 0. The
operators f and g are assumed to be Lipschitz continuous and possess continuous,
uniformly bounded Fréchet derivatives up to order two. These assumptions and the
precise analytic framework for (1)–(2) will be further outlined in Section 2. For
technical reasons, we assume u0 ∈ H to be deterministic.

Without loss of generality, we let N ∈ N be fixed, and define h = 1/N. We are
concerned with developing an approximation to the true solution to (1)–(2) at time
tn = nh, denoted un, being given by:

un = Sn(u0), (3)

where S : H → H is the nonlinear operator defined as:

S := ehAehf e#W(h)g. (4)

The nonlinear operator v(t) = ehf (v0) is the solution to the differential equation
dv = f (v) dt at time h with initial condition v(0) = v0, while z(t) = e#W(h)g(z0)

is the solution to the stochastic differential equation dz = g(z) dW at time h with
initial condition z(0) = z0. Such operators are often referred to as the nonlinear
semigroup for each problem [14].

The splitting scheme given by (3) and (4) is classically known as the Lie-Trotter
splitting scheme and has been well studied in numerous settings [9, 12, 13, 25]. Such
methods have been studied in the finite-dimensional stochastic setting for ordinary
differential equations via Lie algebraic techniques [2, 17, 18]. There has also been
a recent study of such problems for linear equations with additive noise in UMD
Banach spaces [5]. In this study, the optimal convergence rate was recovered, while
the effects of nonlinearities were not included. However, the inclusion of nonlinear
multiplicative noise terms complicates the required analysis and becomes one of the
concerns of this current chapter.

This chapter is organized as follows. In Section 2, the abstract setting utilized
throughout the chapter is detailed with several necessary results recalled. Section 3
outlines several basic properties regarding stability issues of the proposed operator
splitting scheme. Section 4 is concerned with a detailed consistency analysis, while
Section 5 demonstrates the desired convergence result.

2 Abstract Stochastic Evolution Problems

Let H be a separable Hilbert space with inner product 〈·, ·〉 and associated norm
‖ · ‖ = 〈·, ·〉1/2. For another Hilbert space U equipped with norm ‖ · ‖U , we denote
by L(U,H) the set of bounded linear operators from U to H. For the simplicity
of notations, we let L(U,U) = L(U). Further, we denote by L1(U,H) the set of
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nuclear operators from U to H and L2(U,H) the set of Hilbert-Schmidt operators
from U to H. Further, if {ei}i∈N forms an arbitrary orthonormal basis of H, then we
have the following norms associated with the aforementioned spaces:

‖Γ ‖L1(U) := Tr
(
Γ ∗Γ

)1/2 =
∞∑

i=1

〈(Γ ∗Γ
)1/2

ei, ei〉, Γ ∈ L1(U),

and

‖Γ ‖2
L2(U) :=

∞∑

i=1

‖Γ ei‖2
U , Γ ∈ L2(U),

where Γ ∗ denotes the adjoint of Γ. We further let E‖·‖L1(H) and E‖·‖L2(H) denote
the corresponding expected values of each norm. Moreover, the trace and Hilbert-
Schmidt norms are independent of the given basis.

Let (Ω,F ,P) be a probability space with normal filtration {F (t)}t≥0, and
let W(t) be a standard Wiener process with covariance operator Q, where Q :
H → H is a positive self-adjoint operator. If qi > 0 are the eigenvalues of Q

corresponding to eigenfunctions ei, i ∈ N, we then have

W(t) :=
∑

i∈N

√
qiβi(t)ei, 0 ≤ t ≤ T ,

where {βi}i∈N are independent, real-valued Brownian motions on the probability
space.

We denote the set of Hilbert-Schmidt operators from Q1/2(H) to H by L0
2(H)

and its norm, for Γ ∈ L0
2(H), is given by:

‖Γ ‖L0
2(H) := ‖Q1/2Γ ‖L2(H) =

( ∞∑

i=1

‖Q1/2(Γ ∗Γ )1/2ei‖2

)1/2

.

Now, let ϕ : [0, T ] × Ω → L0
2(H) be an L0

2(H)-valued predictable stochastic
process with

∫ t

0
E‖Q1/2ϕ‖2

L2(H) ds < ∞, 0 ≤ t ≤ T ,

then Ito’s isometry (see, for instance, [6]) gives

E

∥
∥
∥
∥

∫ t

0
ϕ dW

∥
∥
∥
∥

2

=
∫ t

0
E‖ϕ‖2

L0
2(H)

ds =
∫ t

0
E‖Q1/2ϕ‖2

L2(H) ds, 0 ≤ t ≤ T .

We now recall some basic properties of Hilbert space operators that will be of
interest throughout this work.
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Proposition 1 Let Γ, Γ1, Γ2 be three operators in Hilbert spaces. Then, we have
the following results.

i. If Γ ∈ L1(U), then

|Tr(Γ )| ≤ ‖Γ ‖L1(U).

ii. If Γ1 ∈ L(U) and Γ2 ∈ L1(U), then both Γ1Γ2 and Γ2Γ1 belong to L1(U) with

Tr(Γ1Γ2) = Tr(Γ2Γ1).

iii. If Γ1 ∈ L(U,H) and Γ2 ∈ L(H,U), then Γ1Γ2 ∈ L1(H) with

‖Γ1Γ2‖L1(H) ≤ ‖Γ1‖L2(U,H)‖Γ2‖L2(H,U).

iv. If Γ ∈ L2(U,H), then Γ ∗ ∈ L2(H,U) with

‖Γ ∗‖L2(H,U) = ‖Γ ‖L2(U,H).

v. If Γ ∈ L(U,H) and Γ1, Γ2 ∈ Li(U), i = 1, 2, then Γ Γ1, Γ Γ2 ∈
Li(U,H), i = 1, 2, with

‖Γ Γi‖Lj (U,H) ≤ ‖Γ ‖L(U,H)‖Γi‖Lj (H), i = 1, 2, j = 1, 2.

More details on the proposition and the spaces used can be found in [4, 22].
We now outline several assumptions necessary for the existence, uniqueness, and

well-posedness of the solution to (1)–(2).

Assumption 1 The linear operator A : Dom(A) ⊂ H → H is the generator of a
bounded C0 semigroup etA, t ≥ 0.

Without loss of generality, by Assumption 1, it follows that we may assume that

‖etA‖ ≤ 1, t ≥ 0.

We now outline some basic properties of the semigroup generated by A (see, for
instance, [11]).

Proposition 2 Let α ≥ 0 and 0 ≤ γ ≤ 1. Then, there exists a constant C > 0 such
that:

i. ‖(−A)αetA‖L(H) ≤ Ct−α, for t > 0,
ii. (−A)αetA = etA(−A)α, on Dom((−A)α),

iii. If α ≥ γ, then Dom((−A)α) ⊂ Dom((−A)γ ).

Recall (1). For nonlinear terms f and g, we need following restrictions.
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Assumption 2 For the drift term f : H → H, assume that there exists a positive
constant Lf > 0 such that f satisfies the following Lipschitz condition:

‖f (u) − f (v)‖ ≤ Lf ‖u − v‖, for all u, v ∈ H.

This yields the following growth condition:

‖f (u)‖ ≤ C(1 + ‖u‖), for all u ∈ H.

We further assume that the derivatives Df [u] : H → H and D2f [u] : H ×H →
H are continuous and uniformly bounded for all u ∈ H.

Assumption 3 For the diffusion term g : H → L0
2(H), assume that there exists a

positive constant Lg > 0 such that g satisfies the following Lipschitz condition:

‖g(u) − g(v)‖L0
2(H) ≤ Lg‖u − v‖, for all u, v ∈ H.

Similarly, the above leads to the growth condition:

‖g(u)‖L2(H) ≤ C(1 + ‖u‖), for all u ∈ H.

We further assume that the derivatives Dg[u] : H → L0
2(H) and D2g[u] : H ×

H → L0
2(H) are continuous and uniformly bounded for all u ∈ H.

In order to guarantee the existence of a well-defined mild solution to (1)–(2), we
must also invoke a standard regularity assumption on the covariance operator of the
noise W.

Assumption 4 Assume that there exist β ∈ (0, 1] and C > 0 such that

∥
∥
∥(−A)(β−1)/2Q1/2

∥
∥
∥
L2(H)

=
∥
∥
∥Q1/2(−A)(β−1)/2

∥
∥
∥
L2(H)

≤ C. (5)

In the following analysis, any reference to a parameter β is the same β defined in
(5).

If Assumptions 1–4 are satisfied and u0 ∈ H is F0-measurable, then it follows
that (1)–(2) admit a unique (up to the equivalence of paths) mild solution u :
[0, T ] × Ω → H with continuous sample path given by:

u(t) = etAu0 +
∫ t

0
e(t−s)Af (u(s)) ds+

∫ t

0
e(t−s)Ag(u(s)) dW(s), P−a.s., (6)

with the expectation:

E‖u(t)‖2 < ∞, 0 ≤ t ≤ T , (7)

(see [6]).
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Let the Banach space Dom((−A)α/2), α ≥ 0, be equipped with the standard
norm given by ‖ · ‖α := ‖(−A)α/2 · ‖. Then, we have the following regularity result
for the solution to (1)–(2) [15].

Theorem 1 Assume that Assumptions 1–4 hold. Let u be the mild solution to (1)–
(2) given by (6). If u0 ∈ L2(Ω,Dom((−A)α/2)), α ∈ [0, 1), then for all 0 ≤ t ≤ T ,

u ∈ L2(Ω,Dom((−A)α/2)) and

sup
0≤t≤T

(
E‖u(t)‖2

α

)1/2 ≤ C

(

1 +
(
E‖u0‖2

α

)1/2
)

.

In addition, we employ two more assumptions.

Assumption 5 We have that Dom(A) ⊂ H and Dom(A2) ⊂ H are both invariant
under f and g, with Dom(A) also being invariant under Df and Dg, for all u ∈
Dom(A).

Assumption 6 Let β ∈ (0, 1] be defined as in (5). Then, we assume that there exists
a constant C > 0 such that

‖(−A)(β−1)/2Dg[ξ ](u − v)‖L0
2(H) ≤ C‖u − v‖

and

‖(−A)(β−1)/2D2g[ξ ](u − v)2‖L0
2(H) ≤ C‖u − v‖,

for all ξ, u, v ∈ H.

Assumption 6 initially appears to be restrictive. However, since β ∈ (0, 1],
the assumption actually allows for the derivatives Dg and D2g to be slightly less
regular.

Throughout this chapter, we will denote function and operator composition by
left multiplication. That is, for two operators F1 and F2, we use the standard
notation:

F1F2(u) = F1(F2(u)),

whenever the composition in consideration is well defined. Furthermore, throughout
this chapter, we let C > 0 represent a generic constant independent of n and h. Note
that this constant may assume different values throughout arguments.

In order to avoid repetition, it is henceforth assumed that Assumptions 1–6 hold
throughout the remainder of the chapter. It is worth noting that Assumption 4 is
quite standard and allows for the consideration of both space-time and trace class
white noise. Space-time white noise corresponds to Q = I and it is known that (5)
is satisfied when β < 1/2, in the case of one spatial dimension. When considering
trace class noise, that is when Tr(Q) < ∞, it follows that (5) is satisfied for β = 1
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[7]. By considering trace class noise, we are able to recover the results presented in
[17, 18].

3 Properties of the Splitting Operator

We first define the least upper bound (lub) Lipschitz constant and (lub) logarithmic
Lipschitz constant of a function F : H → H by:

L[F ] := sup
u�=v

‖F(u) − F(v)‖
‖u − v‖

and

M[F ] := lim
h→0+

L[I + hF ] − 1

h
,

respectively. For the following lemmas, we will consider the following problems:

dv = f (v) dt, v(0) = v0, (8)

and

dv = g(v) dW, v(0) = v0. (9)

Lemma 1 Let v(t) = ehf (v0) be the solution to (8). It then follows that

L[ehf ] ≤ ehLf .

Proof Let v and w be two distinct solutions to (8). Let D+
t denote the upper-right

Dini derivative. Then, due to the assumptions on f and its derivatives, we have

D+
t ‖v − w‖ = lim sup

h→0+

‖v(t + h) − w(t + h)‖ − ‖v(t) − w(t)‖
h

≤ lim
h→0+

‖(I + hf )(v(t) − w(t))‖ − ‖v(t) − w(t)‖
h

≤ lim
h→0+

L[I + hf ]‖v(t) − w(t)‖ − ‖v(t) − w(t)‖
h

≤ M[f ]‖v(t) − w(t)‖.

Solving the above inequality yields

‖v(t) − w(t)‖ ≤ ehM[f ]‖v0 − w0‖.
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By the fact that f is Lipschitz continuous in H, we have

M[f ] ≤ Lf .

This yields the desired result.

For the following lemma, we mirror the approach employed in Lemma 1, but we
need to consider slightly modified Lipschitz constants. To that end, we define the
lub stochastic Lipschitz constant and lub logarithmic stochastic Lipschitz constant
of a function G : H → L0

2(H) by

E [L2[G]] := sup
u�=v

E‖G(u) − G(v)‖2
L0

2(H)

‖u − v‖2

and

M2[G] := lim
h→0

L2[I + hG] − 1

h
,

respectively.

Lemma 2 Let v(t) = eΔW(h)g(v0) be the solution (9). It then follows that

E

[
L2[eΔW(h)g]

]
≤ ehL

2
g .

Proof We proceed in a fashion similar to that of the previous proof. Let v and w

be two distinct solutions to (9) and let D+
t denote the upper-right Dini derivative.

Hence, we have

D+
t E‖v − w‖2 = lim sup

h→0+

E
[‖v(t + h) − w(t + h)‖2 − ‖v(t) − w(t)‖2

]

h

≤ lim
h→0+

E

[

‖(I + hg)(v(t) − w(t))‖2
L0

2(H)
− ‖v(t) − w(t)‖2

]

h

≤ M2[g]E‖v(t) − w(t)‖2.

Note that deriving the second inequality follows from the fact that the remainder
terms from the expansion are bounded. The details of this claim can be found in
the proofs of Lemmas 4 and 5. Due to the expectation, the above inequality is
deterministic and its solution is given by:

E‖v(t) − w(t)‖2 ≤ ehM2[g]
E‖v0 − w0‖2.

Once again, since g is Lipschitz in H, we have
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M2[g] = lim
h→0

1

h

⎡

⎣sup
u�=v

E‖(1 + hg)(u − v)‖2
L0

2(H)

‖u − v‖2 − 1

⎤

⎦ ≤ L2
g.

This yields the desired result.

Lemma 3 Consider (3) and (4). Then, we have

E‖Sn(u) − Sn(v)‖2 ≤ CE‖u − v‖2,

and in particular,

E [L2[S]] ≤ ehC.

Proof By Lemmas 1 and 2, we readily have the following estimates:

E‖S(u) − S(v)‖2 ≤ E

[
L[ehf ]2‖e#W(h)g(u − v)‖2

L0
2(H)

]

≤ e2hLf E

[
L2[e#W(h)g]‖(u − v)‖2

]

≤ ehCE‖u − v‖2. (10)

Via iterations, it follows immediately that

E‖Sn(u) − Sn(v)‖2 ≤
n∏

j=0

ehCE‖u − v‖2 ≤ eT CE‖u − v‖2,

which gives the desired result.

4 Approximation Consistency

Similar to discussions in [9] and [13], we define

φ(t) := 1

t

∫ t

0
e(t−s)Af (T (u(s))) ds, ψ(t) := 1

t

∫ t

0
e(t−s)Ag(T (u(s))) dW(s),

where T (u) is the solution operator for (1)–(2), and

T (u) = ehAu +
∫ h

0
e(h−s)Af (u) ds +

∫ h

0
e(h−s)Ag(u) dW(s), P − a.s. (11)

Note that the operators are well defined and map H into itself for u ∈ Dom(A).
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Lemma 4 Assume that u ∈ Dom(A). Then:

E‖(T − S)(u)‖2 ≤ Ch2+β,

where β ∈ (0, 1] is defined in (5).

Proof By appealing to the stochastic version of Taylor’s theorem, we arrive at

S(u) = ehAehf e#W(h)gu

= ehAe#W(h)gu + hehAf e#W(h)gu + R1(u)

= ehAu + hehAf (u+ g(u)#W(h)+R2(u)) + ehAg(u)#W(h)+R1(u)+R2(u)

= ehAu + hehAf (u) + ehAg(u)#W(h) + R1(u) + R2(u) + R3(u), (12)

where

#W(h) :=
∫ h

0
dW(s),

R1(u) := h2
∫ 1

0
(1 − s)Df [eshf e#W(h)gu]f eshf e#W(h)gu ds, (13)

R2(u) :=
∫ h

0

∫ 1

0
(1 − y)ehAD2g[u + y(e#W(s)gu − u)](e#W(s)gu − u)2 dy dW(s)

+
∫ h

0
ehADg[u](e#W(s)gu − u) dW(s), (14)

and

R3(u) := h

∫ 1

0
ehADf [u + y(g(u)#W(h) + R2(u))](g(u)#W(h) + R2(u)) dy.

(15)

Recall (11). We observe that

T (u) = ehAu +
∫ h

0
e(h−s)Af (u) ds +

∫ h

0
e(h−s)Ag(u) dW(s)

= ehAu +
∫ h

0
e(h−s)Af (esAu + sφ(s) + sψ(s)) ds

+
∫ h

0
e(h−s)Ag(esAu + sφ(s) + sψ(s)) dW(s)
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= ehAu +
∫ h

0
e(h−s)Af (esAu) ds +

∫ h

0
e(h−s)Ag(esAu) dW(s) + RT (u), (16)

where

RT (u) :=
∫ h

0

∫ 1

0
e(h−s)ADf [ξ(y; s)](sφ(s) + sψ(s)) dy ds

+
∫ h

0

∫ 1

0
e(h−s)ADg[ξ(y; s)](sφ(s) + sψ(s)) dy dW(s), (17)

where ξ(y; s) := esAu + y(sφ(s) + sψ(s)) ∈ H. Combining the above yields

(T − S)(u) =
∫ h

0
[z1(s) − z1(0)] ds +

∫ h

0
[z2(s) − z2(0)] dW(s) + R(u), (18)

where

z1(s) := e(h−s)Af (esAu), z2(s) := e(h−s)Ag(esAu)

and

R(u) := (RT − R1 − R2 − R3)(u).

Upon further expansion of (18), we obtain

(T − S)(u) = h

∫ h

0
z′

1(ξ1) ds + h

∫ h

0
z′

2(ξ2) dW(s) + R(u), (19)

for some ξ1, ξ2 ∈ [0, h].
Utilizing the above equalities and Ito’s isometry, we acquire that

E‖(T−S)(u)‖2 ≤ 3E

∥
∥
∥
∥h
∫ h

0
z′(ξ1) ds

∥
∥
∥
∥

2

+3E

∥
∥
∥
∥h
∫ h

0
z′(ξ2) dW(s)

∥
∥
∥
∥

2

+3E ‖R(u)‖2

= 3h2
∫ h

0
E‖z′

1(ξ1)‖2 ds

+ 3h2
∫ h

0
E‖Q1/2z′

2(ξ2)‖2
L2(H) ds + 3E‖R(u)‖2. (20)

It now remains to estimate each of the integrals in (20). To this end, we observe that

z′
1(ξ1) = −Ae(h−ξ1)Af (eξ1Au) + e(h−ξ1)ADf [eξ1Au]eξ1AAu.
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When u ∈ Dom(A), it follows immediately that z′
1 ∈ H and thus

E‖z′
1(ξ1)‖2 ≤ C.

By the same token, we have

z′
2(ξ2) = −Ae(h−ξ2)Ag(eξ2Au) + e(h−ξ2)ADg[eξ2Au]eξ2AAu ∈ H.

Thus:

E

∥
∥
∥Q1/2

[
−Ae(h−ξ2)Ag(eξ2Au) + e(h−ξ2)ADg[eξ2Au]eξ2AAu

]∥∥
∥

2

L2(H)

≤ 2E
∥
∥
∥Q1/2(−A)e(h−ξ2)Ag(eξ2Au)

∥
∥
∥

2

L2(H)

+ 2E
∥
∥
∥Q1/2e(h−ξ2)ADg[eξ2Au]eξ2AAu

∥
∥
∥

2

L2(H)
.

Considering the first quantity in the above inequality, we find that

∥
∥
∥Q1/2(−A)e(h−ξ2)Ag(eξ2Au)

∥
∥
∥

2

L2(H)

≤
∥
∥
∥Q1/2(−A)(β−1)/2

∥
∥
∥

2

L2(H)

∥
∥
∥(−A)−β/2e(h−ξ2)A

∥
∥
∥

2

L(H)

∥
∥
∥g(eξ2Au)

∥
∥
∥

2

L2(H)

≤ Chβ(1 + ‖u‖)2,

and thus by Theorem 1 and Lemma 3, we have

E

∥
∥
∥Q1/2(−A)e(h−ξ2)Ag(eξ2Au)

∥
∥
∥

2

L2(H)
≤ Chβ. (21)

Considering the remaining quantity yields

∥
∥
∥Q1/2Ae(h−ξ2)ADg[eξ2Au]eξ2Au

∥
∥
∥

2

L2(H)

≤
∥
∥
∥Q1/2(−A)(β−1)/2

∥
∥
∥

2

L2(H)

∥
∥
∥(−A)−β/2e(h−ξ2)A

∥
∥
∥

2

L(H)

∥
∥
∥Dg[eξ2A]eξ2Au

∥
∥
∥

2

L2(H)

≤ Chβ
∥
∥
∥Dg[eξ2Au]eξ2Au

∥
∥
∥

2

L2(H)
≤ Chβ. (22)
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Combining (21) and (22) with (20) yields

E‖(T − S)(u)‖2 ≤ Ch2+β + E‖R(u)‖2. (23)

The desired result follows by applying the bound in Lemma 5 to (23).

Lemma 5 Assume that u ∈ Dom(A). Then:

E‖R(u)‖2 ≤ Ch2+β,

where β ∈ (0, 1] is defined in (5).

Proof We now demonstrate that all terms in R(u) have the expected error bounds.
Recalling R(u), we have

E‖R(u)‖2 ≤ 4E‖RT (u)‖2 + 4E‖R1(u) + 4E‖R2(u)‖2 + 4E‖R3(u)‖2. (24)

Let us estimate each of the terms in (24) individually. First, we observe that

E‖RT (u)‖2 ≤ E

∥
∥
∥
∥

∫ h

0

∫ 1

0
e(h−s)ADf [ξ(y; s)](sφ(s) + sψ(s)) dy ds

∥
∥
∥
∥

2

+ E

∥
∥
∥
∥

∫ h

0

∫ 1

0
e(h−y)ADg[ξ(y; s](sφ(s) + sψ(s)) dy dW(s)

∥
∥
∥
∥

2

L0
2(H)

≤
∫ h

0

∫ 1

0
E ‖Df [ξ(y; s)](sφ(s) + sψ(s))‖2 dy ds,

+ Chβ−1
∫ h

0

∫ 1

0
E ‖Dg[ξ(y; s)](sφ(s) + sψ(s))‖2

L2(H) dy ds.

and by recalling that Df and Dg are uniformly bounded in H, we obtain

E‖RT (u)‖2 ≤ C

∫ h

0

∫ 1

0
E ‖sφ(s) + sψ(s)‖2 dy ds

+ Chβ−1
∫ h

0

∫ 1

0
E ‖sφ(s) + sψ(s)‖2

L(H) dy ds

≤ Ch2+β. (25)

Recall (13) and (15). Due to the fact that Df is uniformly bounded, it is
straightforward to show that

E‖R1(u)‖2 ≤ Ch4 and E‖R3(u)‖2 ≤ Ch3. (26)
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Finally, according to (14), by invoking Assumption 6 we have

E‖R2(u)‖2

≤ 2
∫ h

0

∫ s

0
E

∥
∥
∥ehAD2g[u + y(e#W(s)gu − u)](e#W(s)gu − u)2

∥
∥
∥

2

L0
2(H)

dy ds

+ 2
∫ h

0
E

∥
∥
∥ehADg[u](e#W(s)gu − u)

∥
∥
∥

2

L0
2(H)

ds.

≤ Chβ−1
∫ h

0

[∫ s

0
E

∥
∥
∥e#W(s)gu − u

∥
∥
∥

2
dy + E

∥
∥
∥e#W(s)gu − u

∥
∥
∥

2
]

ds.

By employing Lemma 6 in the above inequality, we obtain

E‖R2(u)‖2 ≤ Ch2+β. (27)

A combination of (25)–(27) yields our anticipated error bound.

Continuing, we may state the following estimate.

Lemma 6 Let 0 < s < T . Then, for u ∈ H, we have

E

∥
∥
∥eΔW(s)gu − u

∥
∥
∥

2 ≤ Cs.

Proof By recalling (9), we see that

e#W(s)gu = u +
∫ s

0
g(e#W(y)gu) dW(y).

Thus, by Lemma 2, we have

E

∥
∥
∥e#W(s)gu − u

∥
∥
∥

2 = E

∥
∥
∥
∥

∫ s

0
g(e#W(y)gu) dW(y)

∥
∥
∥
∥

2

=
∫ s

0
E

∥
∥
∥g(e#W(y)gu)

∥
∥
∥

2

L0
2(H)

dy ≤ Cs,

which completes our proof.

5 Algorithmic Convergence

We now state our main result.
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Theorem 2 Let un = Sn(u0), as defined in (3), be an approximation to the solution
u(nh) = T n(u0) of (1)–(2). If u0 ∈ Dom(A), then for h sufficiently small we have

E‖(Sn − T n)(u0)‖2 ≤ Chβ,

where β ∈ (0, 1] is given in Assumption 4.

Proof Recall (11). It follows immediately that

T n(u0) = enhAu0 +
∫ nh

0
e(nh−s)Af (u(s)) ds

+
∫ nh

0
e(nh−s)Ag(u(s)) dW(s), P − a.s.

We now have the following representation of the difference:

(Sn − T n)(u0) =
n−1∑

j=0

(
Sn−j T j − Sn−j−1T j+1

)
(u0). (28)

By taking the norm and expectation of (28), we observe that

E‖(Sn − T n)(u0)‖2 = E

∥
∥
∥
∥
∥
∥

n−1∑

j=0

(
Sn−j T j − Sn−j−1T j+1

)
(u0)

∥
∥
∥
∥
∥
∥

2

≤ (n − 1)
n−1∑

j=0

E

[
L[Sn−j−1]

]2
E‖(S − T )(T j (u0))‖2. (29)

If u0 ∈ Dom(A), then it follows that T j (u0) ∈ Dom(A), 0 ≤ j ≤ n − 1, due to
Assumption 5. Therefore, we have

E‖(S − T )(T j (u0))‖2 ≤ Ch2+β, (30)

for 0 ≤ j ≤ n − 1. Recall Lemma 3. We find that

E

[
L[Sn−j−1]

]2 ≤ E [L[S]]2(n−j−1) ≤ e2(n−j−1)hC, (31)

where C is independent of h, n, and j. Combining (30) and (31) gives

E‖(Sn − T n)(u0)‖2 ≤ (n − 1)
n−1∑

j=0

e2(n−j−1)hCCh2+β ≤ Chβ.
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From Theorem 2, we see that the maximal mean square convergence rate is given
by β/2. Since β ∈ (0, 1], it follows that the maximal convergence rate is 1/2. Such
a convergence rate is recovered when (1)–(2) is driven by trace class noise.

References

1. Blanes, S., Casas, F.: A concise introduction to geometrical numerical integration, 1st edn.
CRC Press (2016)

2. Burrage, K., Burrage, P.M.: High strong order methods for non-commutative stochastic
differential equations systems and the Magnus formula. Physica D: Nonlinear Phenomena
133(1), 34–48 (1999)

3. Casas, F., Iserles, A.: Explicit Magnus expansions for nonlinear equations. Journal of Physics
A: Mathematical and General 39(19), 5445 (2006). URL http://stacks.iop.org/0305-4470/39/
i=19/a=S07

4. Chow, P.L.: Stochastic partial differential equations. CRC Press (2014)
5. Cox, S., Van Neerven, J.: Convergence rates of the splitting scheme for parabolic linear

stochastic Cauchy problems. SIAM Journal on Numerical Analysis 48(2), 428–451 (2010)
6. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions, 2 edn. Ency-

clopedia of Mathematics and its Applications. Cambridge University Press (2014).
DOI 10.1017/CBO9781107295513

7. Debussche, A.: Weak approximation of stochastic partial differential equations: the nonlinear
case. Mathematics of Computation 80(273), 89–117 (2011)

8. Hairer, E., Lubich, C., Wanner, G.: Geometric numerical integration: structure-preserving
algorithms for ordinary differential equations, vol. 31. Springer Science & Business Media
(2006)

9. Hansen, E., Kramer, F., Ostermann, A.: A second-order positivity preserving scheme for
semilinear parabolic problems. Applied Numerical Mathematics 62(10), 1428–1435 (2012)

10. Hansen, E., Ostermann, A.: Dimension splitting for evolution equations. Numerische
Mathematik 108(4), 557–570 (2008). DOI 10.1007/s00211-007-0129-3. URL https://doi.org/
10.1007/s00211-007-0129-3

11. Henry, D.: Geometric theory of semilinear parabolic equations, vol. 840. Springer (2006)
12. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations, 2

edn. Cambridge Texts in Applied Mathematics. Cambridge University Press (2008).
DOI 10.1017/CBO9780511995569

13. Jahnke, T., Lubich, C.: Error bounds for exponential operator splittings. BIT Numerical
Mathematics 40(4), 735–744 (2000)

14. Kato, T.: Nonlinear semigroups and evolution equations. Journal of the Mathematical Society
of Japan 19(4), 508–520 (1967)

15. Lord, G.J., Tambue, A.: Stochastic exponential integrators for the finite element discretization
of SPDEs for multiplicative and additive noise. IMA Journal of Numerical Analysis 33(2),
515–543 (2012)

16. Malham, S.J.A., Wiese, A.: Stochastic Lie group integrators. SIAM J. Sci. Comput. 30(2),
597–617 (2008)

17. Misawa, T.: Numerical integration of stochastic differential equations by composition methods.
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Modified Post-Widder Operators
Preserving Exponential Functions

Vijay Gupta and Vinai K. Singh

1 Introduction

Post-Widder operators [10] are defined for f ∈ C[0,∞) as:

Wn(f, x) := 1

n!
(n

x

)n+1
∞∫

0

tn e− nt
x f (t) dt.

Approximation properties of these operators were recently studied in [4]. In
[8], May considered slightly modified form of the Post-Widder operators while
he discussed saturation and inverse results for exponential-type operators. The
following form of Post-Widder operators was studied in [8] as:

Pn(f, x) := 1

(n − 1)!
(n

x

)n
∞∫

0

tn−1 e− nt
x f (t) dt. (1)

These operators preserve constant and linear functions. Rempulska and Skorupka
in [9] considered the modified form of the above Post-Widder operators Pn, which
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preserve the test function e2(x) = x2. It was observed in [9] that the modified form
provides better approximation results over the original operators Pn. Also, some
other approximation properties of Post-Widder operators have been discussed in
the recent book by Gupta and Tachev [5]. The main motivation here is to study the
modified form of the operators (1). For an(x), bn(x) > 0, we start with the following
modified form:

P̃n(f, x) = 1

(n − 1)!
(

n

an(x)

)n
∞∫

0

tn−1 e
− nt

bn(x) f (t)dt.

For f (t) = eθt , θ ∈ R and n > θbn(x), we have

P̃n(e
θt , x) = 1

(n − 1)!
(

n

an(x)

)n
∞∫

0

tn−1 e
−
(

n
bn(x)

−θ
)
t
dt.

Substituting
(

n
bn(x)

− θ
)
t = u, we can write

P̃n(e
θt , x) = 1

(n − 1)!
(

n

an(x)

)n 1
(

n
bn(x)

− θ
)n

∞∫

0

un−1 e−u du

=
(

n

an(x)

)n (
n

bn(x)
− θ

)−n

. (2)

Suppose that the modified Post-Widder operators preserve the test functions eax and
ebx , with the condition that an(x) = bn(x), if a = b, then using (2), we can write

P̃n(e
at , x) = eax =

(
n

an(x)

)n (
n

bn(x)
− a

)−n

,

and

P̃n(e
bt , x) = ebx =

(
n

an(x)

)n (
n

bn(x)
− b

)−n

,

implying

an(x) = n(e(a−b)x/n − 1)

(a − b)eax/n
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and

bn(x) = n(e(a−b)x/n − 1)

(−b + ae(a−b)x/n)
.

Obviously, we have

lim
n→∞ an(x) = x

lim
n→∞ bn(x) = x.

Thus, our modified operators P̃n take the following form:

P̃n(f, x) := 1

(n − 1)!
(a − b)neax

(e(a−b)x/n − 1)n

∞∫

0

tn−1 e
− (−b+ae(a−b)x/n)t

(e(a−b)x/n−1) f (t) dt, (3)

which preserves the test functions eax and ebx and does not preserve constant if both
a and b are nonzero. The preservation of constant function is possible if one of the
values of a or b is zero. From the definition of Pn and P̃n, it is immediate that two
sequences are connected by the identity:

P̃n(f, x) = (a − b)neax

(−b + ae(a−b)x/n)n
Pn

(

f,
n(e(a−b)x/n − 1)

(−b + ae(a−b)x/n)

)

.

The most recent work on linear positive operators, which preserve exponential
functions can be found in [1, 6] and [3]. Here in the present paper, we consider
the modification of Post-Widder operators preserving exponential functions. We
estimate direct results including quantitative asymptotic formula.

2 Auxiliary Results

We first present some lemmas required to prove main results of this section.

Lemma 1 We have for θ > 0 that

P̃n(e
θt , x) = (a − b)neax[(−b + ae(a−b)x/n) − θ(e(a−b)x/n − 1)]−n.

Lemma 2 The r-th order moment μP̃n
r (x) = P̃n(er , x), where er(t) = t r , r ∈

N ∪ {0} are given by:

μP̃n
r (x) = (n)r .(a − b)neax(e(a−b)x/n − 1)r

(−b + ae(a−b)x/n)n+r
,
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where the rising factorial (n)r = n(n + 1)(n + 2) · · · (n + r − 1).
First few moments are given by:

μ
P̃n

0 (x) = (a − b)neax

(−b + ae(a−b)x/n)n

μ
P̃n

1 (x) = n.(a − b)neax(e(a−b)x/n − 1)

(−b + ae(a−b)x/n)n+1

μ
P̃n

2 (x) = n(n + 1).(a − b)neax(e(a−b)x/n − 1)2

(−b + ae(a−b)x/n)n+2

μ
P̃n

3 (x) = n(n + 1)(n + 2).(a − b)neax(e(a−b)x/n − 1)3

(−b + ae(a−b)x/n)n+3

μ
P̃n

4 (x) = n(n + 1)(n + 2)(n + 3).(a − b)neax(e(a−b)x/n − 1)4

(−b + ae(a−b)x/n)n+4
.

Following [9], for (3) , the result follows by simple computation.

Remark 1 An alternate approach to find moments is the moment-generating func-
tion which is P̃n(e

θt , x), and the moments are given by:

μP̃n
r (x) =

[
∂r

∂θr
P̃n(e

θt , x)

]

θ=0

=
[
∂r

∂θr

{
(a − b)neax[(−b + ae(a−b)x/n) − θ(e(a−b)x/n − 1)]−n

}]

θ=0
.

Lemma 3 The central moments T P̃n
r (x) = P̃n((t − x)r , x) are given below:

T
P̃n

0 (x) = (a − b)neax

(−b + ae(a−b)x/n)n
,

T
P̃n

1 (x) = n.(a − b)neax(e(a−b)x/n − 1)

(−b + ae(a−b)x/n)n+1
− x(a − b)neax

(−b + ae(a−b)x/n)n
,

T
P̃n

2 (x) = n(n + 1).(a − b)neax(e(a−b)x/n − 1)2

(−b + ae(a−b)x/n)n+2
+ x2(a − b)neax

(−b + ae(a−b)x/n)n

−2xn.(a − b)neax(e(a−b)x/n − 1)

(−b + ae(a−b)x/n)n+1
,

T
P̃n

4 (x) = n(n + 1)(n + 2)(n + 3).(a − b)neax(e(a−b)x/n − 1)4

(−b + ae(a−b)x/n)n+4

−4x
n(n + 1)(n + 2).(a − b)neax(e(a−b)x/n − 1)3

(−b + ae(a−b)x/n)n+3
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+6x2 n(n + 1).(a − b)neax(e(a−b)x/n − 1)2

(−b + ae(a−b)x/n)n+2

−4x3 n.(a − b)neax(e(a−b)x/n − 1)

(−b + ae(a−b)x/n)n+1
+ x4 (a − b)neax

(−b + ae(a−b)x/n)n
.

Also, the following limits hold true:

lim
n→∞ T

P̃n

0 (x) = x,

lim
n→∞ nT

P̃n

1 (x) = − (a + b)x2

2
,

lim
n→∞ nT

P̃n

2 (x) = x2,

lim
n→∞ n2 T

P̃n

4 (x) = 3x4.

In [2], a Korovkin-type theorem for the function e−kt , k = 0, 1, 2, was considered
for the class C∗[0,∞), which denote the linear space of real-valued continuous
functions on [0,∞) with the property that lim

x→∞ f (x) exists and is finite, equipped

with uniform norm.

Theorem A ([7]) Let f ∈ C∗[0,∞) and Ln : C∗[0,∞) → C∗[0,∞) be a
sequence of linear positive operators and satisfies ||Ln(e

−it , x) − e−ix ||∞ =
ai(n), i = 0, 1, 2, where ai(n), i = 0, 1, 2, tend to zero for n sufficiently large.
Then, we have

||Lnf − f ||∞ ≤ ||f ||∞ a0(n)+(2+a0(n)) . ω
∗ (f, (a0(n) + 2a1(n) + a2(n))

1/2
)
,

where for every δ ≥ 0

ω∗(f, δ) = sup
x,t≥0

|e−x−e−t |≤δ

|f (x) − f (t)|.

3 Direct Results

The first result is the application of Theorem A to our operator (3):

Theorem 1 For the sequence of modified Post-Widder operators P̃n : C∗[0,∞) →
C∗[0,∞), we have:

1. For a = 0 and b = −1:

||P̃nf − f ||[0,∞) ≤ 2ω∗(f,
√
a2(n)), f ∈ C∗[0,∞).
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2. For a = 0 and b = −2:

||P̃nf − f ||[0,∞) ≤ 2ω∗(f,
√

2a1(n)), f ∈ C∗[0,∞).

3. For a = −1 and b = −2, P̃n is not an approximation method in
(C∗[0,∞), ||.||[0,∞)).

Proof

(1) In view of Lemma 1, we have

P̃n

(
eθt ; x) = (

1 − θ(ex/n − 1)
)−n

.

Obviously, if θ = 0,−1, then we have P̃n (1; x) = 1 and P̃n

(
e−t ; x) = e−x .

Therefore by Theorem A, we immediately have a0(n) = a1(n) = 0. Let us
consider θ = −2, thus:

P̃n

(
e−2t ; x

)
= (2ex/n − 1

)−n

fn(x) = (
2ex/n − 1

)−n − e−2x, x ≥ 0

Since fn(0) = fn(∞) = 0, there exists a point ξn ∈ (0,∞) such that

‖fn‖ = fn(ξn).

It follows that f ′
n(ξn) = 0, that is:

e−2ξn = e
ξn
n

(
2e

ξn
n − 1

)−n−1

and

fn(ξn) =
(

2e
ξn
n − 1

)−n − e−2ξn =
(
e
ξn
n − 1

) (
2e

ξn
n − 1

)−1−n

.

Let xn := e
ξn
n − 1 > 0. It follows that

fn(ξn) = xn

(2xn + 1)n+1 ≤ min

{

xn,
1

(2xn + 1)n

}

→ 0 as n → ∞.

This completes the proof of (1).
(2) Applying Lemma 1 for this case, we have

P̃n

(
eθt ; x) = 2n

(
2 − θ(e2x/n − 1)

)−n

.
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Obviously, if θ = 0,−2, then we have P̃n (1; x) = 1 and P̃n

(
e−2t ; x) = e−2x .

Therefore by Theorem A, we immediately have a0(n) = a2(n) = 0. Let us
consider θ = −1, thus:

P̃n

(
e−t ; x) = 2n

(
e2x/n + 1

)−n

gn(x) = 2n
(
e2x/n + 1

)−n − e−x, x ≥ 0

Since gn(0) = gn(∞) = 0, there exists a point ζn ∈ (0,∞) such that

‖gn‖ = gn(ζn).

It follows that g′
n(ζn) = 0, that is:

e−ζn = 2n+1e
2ζn
n

(
e

2ζn
n + 1

)−n−1

and

gn(ζn) = 2n
(
e2ζn/n + 1

)−n − e−ζn = 2n
(
e

2ζn
n + 1

)−n−1 (
1 − e

2ζn
n

)

≤ 2n
(
e

2ζn
n + 1

)n

As ζn > 0. It follows that

gn(ζn) → 0 as n → ∞.

This completes the proof of (2).
(3) Finally for a = −1 and b = −2, the operator P̃n preserves e−x and e−2x and

by Lemma 2, we have

P̃n (1; x) = e−x
(
2 − ex/n

)−n

= 1 + x2 1

n
+
(

x3 + x4

2

)
1

n2 +
(

13x4

12
+ x5 + x6

6

)
1

n3

+ 1

24

(
30x5 + 38x6 + 12x7 + x8

) 1

n4
+ O[n−5].

thus we do not have uniform convergence for e0 ∈ C∗[0,∞).

Next, we prove the quantitative asymptotic formula.
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Theorem 2 Let f, f ′′ ∈ C∗[0,∞), then, for x ∈ [0,∞), the following inequality
holds:

∣
∣
∣
∣n [P̃n(f, x) − xf (x)] + (a + b)x2

2
f ′(x) − x2

2
f ′′(x)

∣
∣
∣
∣

≤ |on(x)| |f (x)| + |pn(x)|
∣
∣f ′(x)

∣
∣+ |qn(x)|

∣
∣f ′′(x)

∣
∣

+1

2

[

2qn(x) + x2 + rn(x)

]

ω∗(f ′′, n−1/2),

where on(x) := T
P̃n

0 (x) − x, pn(x) := n T
P̃n

1 (x) + (a + b)x2

2
, qn(x) :=

1

2

(
n T

P̃n

2 (x) − x2
)

and rn(x) :=
[
n2 P̃n

((
e−x − e−t

)4
, x
)]1/2

.
[
n2 T

P̃n

4 (x)
]1/2

.

Proof By the Taylor’s formula, we have

f (t) = f (x) + (t − x) f ′ (x) + (t − x)2 f
′′
(x)

2
+ h (ξ, x) (t − x)2 ,

where ξ lying between x and t and

h (ξ, x) := f ′′ (ξ) − f ′′ (x)
2

Applying the operator P̃n to above equality and using Lemma 3, we can write that

∣
∣
∣P̃n (f, x) − T

P̃n

0 (x)f (x) − T
P̃n

1 (x) f ′(x) − 1
2 T

P̃n

2 (x)f ′′ (x)
∣
∣
∣

≤ P̃n

(|h (ξ, x) | (t − x)2, x
)
.

Again using Lemma 3, we get

∣
∣
∣
∣n [P̃n(f, x) − xf (x)] + (a + b)x2

2
f ′(x) − x2

2
f ′′(x)

∣
∣
∣
∣

≤
∣
∣
∣ T P̃n

0 (x) − x

∣
∣
∣ |f (x)| +

∣
∣
∣
∣n T

P̃n

1 (x) + (a + b)x2

2

∣
∣
∣
∣
∣
∣f ′(x)

∣
∣

+1

2

∣
∣
∣n T

P̃n

2 (x) − x2
∣
∣
∣
∣
∣f ′′(x)

∣
∣+
∣
∣
∣n P̃n

(
h (ξ, x) (t − x)2, x

)∣∣
∣ .

Let on(x) := T
P̃n

0 (x) − x, pn(x) := n T
P̃n

1 (x) + (a + b)x2

2
and qn(x) :=

1

2

(
n T

P̃n

2 (x) − x2
)
.

Then:
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∣
∣
∣
∣n [P̃n(f, x)−xf (x)]+ (a + b)x2

2
f ′(x)−x2

2
f ′′(x)

∣
∣
∣
∣

≤|on(x)| |f (x)| + |pn(x)|
∣
∣f ′(x)

∣
∣+ |qn(x)|

∣
∣f ′′(x)

∣
∣+
∣
∣
∣n P̃n

(
h (ξ, x) (t−x)2, x

)∣∣
∣ .

Also, from Lemma 3, we have on(x) → 0, pn(x) → 0 and qn(x) → 0
for n sufficiently large. Now, we just have to compute the last estimate:
n P̃n

(
h (ξ, x) (t − x)2, x

)
. Using the property of ω∗(., δ) : |f (t) − f (x)| ≤(

1 + (e−x−e−t )
2

δ2

)

ω∗(f, δ), δ > 0, we get that

|h (ξ, x)| ≤ 1

2

(

1 +
(
e−x − e−t

)2

δ2

)

ω∗(f ′′, δ).

Hence, we get

n P̃n

(
|h (ξ, x) | (t − x)2, x

)
≤ 1

2
n ω∗(f ′′, δ) T P̃n

2 (x)

+ n

2δ2 ω∗(f ′′, δ) P̃n

((
e−x − e−t

)2
(t − x)2, x

)
.

Applying Cauchy-Schwarz inequality, we obtain

n P̃n

(
|h (ξ, x) | (t−x)2, x

)
≤ 1

2
n ω∗(f ′′, δ) T P̃n

2 (x)

+ n

2δ2 ω∗(f ′′, δ)
[
P̃n

((
e−x−e−t

)4
, x
)

· T P̃n

4 (x)
]1/2

.

Considering

rn(x) :=
[
n2 P̃n

((
e−x − e−t

)4
, x
)]1/2

.
[
n2 T

P̃n

4 (x)
]1/2

.

and choosing δ = n−1/2, we finally get the desired result.

Remark 2 The convergence of modified Post-Widder operators P̃n in the above
theorem takes place for n sufficiently large. Using the software Mathematica, we
find that

lim
n→∞ n2 P̃n

((
e−x − e−t

)4
, x
)

= lim
n→∞ n2

(
P̃n(e

−4t , x) − 4e−xP̃n(e
−3t , x) + 6e−2xP̃n(e

−2t , x)

− 4e−3xP̃n(e
−t , x) + e−4x

)
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= lim
n→∞ n2

(

(a − b)neax[(−b + ae(a−b)x/n) + 4(e(a−b)x/n − 1)]−n

−4e−x(a − b)neax[(−b + ae(a−b)x/n) + 3(e(a−b)x/n − 1)]−n

+6e−2x(a − b)neax[(−b + ae(a−b)x/n) + 2(e(a−b)x/n − 1)]−n

−4e−3x(a − b)neax[(−b + ae(a−b)x/n) + (e(a−b)x/n − 1)]−n

+ e−4x (a − b)neax

(−b + ae(a−b)x/n)n

)

= 3e−4xx4.

4 Graphical Representation

This section deals with the graphical representation for some exponential function.
We show through graphs the errors, using the software Mathematica. Let us consider
the function f (x) = e−4x (Table 1).

(i) For n=20, the approximation to the function f (Red color) by Pn (Gray), P̃n [For
a = 0, b = −1](Black), and P̃ [For a = 0, b = −2](Blue) is illustrated in
Figure 1:

(ii) For n=100, the approximation to the function f (Red color) by Pn (Gray), P̃n

[For a = 0, b = −1](Black), and P̃n [For a = 0, b = −2](Blue) is illustrated
in Figure 2 (Table 2):

Conclusion. It is observed from the graphs and tables that if n is large, the error
of approximation is reduced.

Table 1 Error of approximation for Pn(f, x), P̃n[For a = 0, b = −1] and P̃n[For a = 0, b = −2]
for n = 20

|P̃n(f, x) − f (x)| |P̃n(f, x) − f (x)|
x |Pn(f, x) − f (x)| [For a = 0, b = −1] [For a = 0, b = −2]

1.5 0.00278303 0.00193077 0.00118913

1.8 0.00138755 0.000925397 0.000547718

2.0 0.000859734 0.000555895 0.000318939

2.2 0.000529645 0.000330751 0.000183254

2.4 0.000325609 0.000195621 0.000104262

2.6 0.00020031 0.000115328 0.0000588972

3.0 0.0000765738 0.0000400249 0.0000185426
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0.001

2 4 6 8

Fig. 1 The convergence of Pn(f, x), P̃n [For a = 0, b = −1] and P̃n [For a = 0, b = −2] for
n = 20 to f (x)

0.0025

0.0020

0.0015

0.0010

0.0005

2 4 6 8

Fig. 2 The convergence of Pn(f, x), P̃n [For a = 0, b = −1] and P̃n [For a = 0, b = −2] for
n = 100 to f (x)

Table 2 Error of approximation for Pn(f, x), P̃n [For a = 0, b = −1] and P̃n [For a = 0, b = −2]
for n = 100

|P̃n(f, x) − f (x)| |P̃n(f, x) − f (x)|
x |Pn(f, x) − f (x)| [For a = 0, b = −1] [For a = 0, b = −2]

1.5 0.000468474 0.000345398 0.000226351

1.8 0.000209554 0.000153159 0.0000994991

2.0 0.000119132 0.0000864777 0.0000557987

2.2 0.0000665923 0.0000479695 0.0000307167

2.4 0.00003673 0.0000262334 0.0000166568

2.6 0.0000200444 0.0000141821 0.0000089215

3.0 0.00000582864 0.00000403594 0.00000248561
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The Properties of Certain Linear and
Nonlinear Differential Equations

Galina Filipuk and Alexander Chichurin

1 Introduction

The Schwarzian derivative is a differential operator that is invariant under all linear
fractional transformations. It plays a significant role in the theory of modular forms,
hypergeometric functions, univalent functions, and conformal mappings [1, 2]. It is
defined by:

(Sf )(z) =
(
f ′′(z)
f ′(z)

)′
− 1

2

(
f ′′(z)
f ′(z)

)2

= f ′′′(z)
f ′(z)

− 3

2

(
f ′′(z)
f ′(z)

)2

.

The well-known relation between a second-order linear differential equation of the
form:

y′′(z) + Q(z)y(z) = 0

and the Schwarzian derivative of the ratio of two linearly independent solutions y1,
y2 of the linear equation above is as follows:

(Sξ)(z) = 2Q(z),
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where ξ = y1/y2 and z is, in general, a complex variable. See [1, 2] for more details.
If we have a general second-order differential equation:

y′′(z) + p(z)y′(z) + q(z)y(z) = 0, (1)

then substituting y(z) = ξ(z)y1(z) with the condition that y1 is also a solution
of (1), we get an expression for ξ , y1 and their derivatives (up to order 2 and 1,
respectively). Differentiating again and eliminating y1, y

′
1, we get that the function:

w(z) = (Sξ)(z)

satisfies

w(z) = 1

2
(4q(z) − p(z)2 − 2p′(z)). (2)

We call expression (2) the invariant for the second order linear differential equa-
tion (1).

In 1997, N.A. Lukashevich suggested the following method to study linear
differential equations of the third order [3]. For a linear differential equation of the
third order:

y′′′(z) + p(z)y′′(z) + q(z)y′(z) + r(z)y(z) = 0, (3)

where the coefficients p(z), q(z), r(z) are three times continuously differentiable
functions with respect to the variable z, a similar procedure gives a second-order
nonlinear differential equation [3–5] of the form:

(12w + b(z))w′′ = 15w′2 − h0(z)w
′ − 8w3 − h1(z)w

2 − h2(z)w − h3(z). (4)

Indeed, by putting

w(z) = S(ξ)(z),

where ξ = y/y1 is the ratio of two linearly independent solutions of equation (3),
we get equation (4) with

b = 2(p2 − 3q + 3p′), h1 = 4b,

h0 = 8pp′ − 6p′′ − 12q ′ − 18pq + 4p3 + 54r,

h2 = 12q ′′ − 8pp′′ − 36r ′ + 10p′2 − 24p′q + 12pq ′ + 2(p2 − 3q)2, (5)

h3 = (q ′′ − 3r ′ + pr)b − (3q ′ + pq − 9r)(2p′′ − q ′ + pq − 3r)

+2(p′ + p2 − 2q)(pq ′ − p′q + q2 − 3pr).
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In papers [3–5], the results are obtained for the Painlevé XXIII and XXV
equations from the Ince list [6], which are nonlinear differential equations of the
second order.

The generalization of the method for the linear differential equations of the
fourth order is given in [7]. In papers [8–10], special classes of the fourth-order
linear differential equations and the nonlinear fourth-order differential equations
related via the Schwarzian derivative are considered and general solutions of both
differential equations are found.

In paper [11], the generalization of the method for a special type of linear
differential equations of the fifth order is given along with a computer realization
of this method in Mathematica (www.wolfram.com).

Several questions arise. What happens if the second- and the third-order linear
differential equations are related? What happens if we modify the function ξ to
be the ratio of solutions of two different equations? The main objective of this
paper is to answer these questions. We also note that the proofs of statements are
computational; that is, the results can be verified by using any computer algebra
system.

2 Main Results

In this section, we shall present several new results concerning relations between
linear and nonlinear differential equations.

Theorem 1 Let y be a solution of a third-order linear differential equation (3) and
y1 be a solution of a different third-order linear differential equation:

y′′′(z) + p1(z)y
′′(z) + q1(z)y

′(z) + r1(z)y(z) = 0.

If the function w(z) = (Sξ)(z) with ξ = y/y1 solves a nonlinear differential
equation (4), then

p1(z) = p(z), q1(z) = q(z), r1(z) = r(z)

and conditions (5) on b and hi (i = 0, 3) hold.

Proof We substitute w(z) = (Sξ)(z) into equation (4) with unknown coefficients
and then replace ξ by the ratio of y and y1. Replacing the third- and higher-order
derivatives of y and y1 by using the linear equations, we collect the coefficients of y,
y1, and their derivatives up to order 2. In the result, we obtain a system of equations
on the coefficients of linear and nonlinear equations, from which we get the desired
result. ()
Theorem 2 Let y be a solution of equation (3) and y1 be a solution of a second-
order linear differential equation of the form:

www.wolfram.com
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y′′(z) + q1(z)y
′(z) + r1(z)y(z) = 0. (6)

If the function w(z) = (Sξ)(z) with ξ = y/y1 solves the nonlinear differential
equation (4), then we have conditions:

h1 = 4b, b = 2
(

3p′ + p2 − 3q
)
,

h0 = 2
(

−3
(
p′′ + 2q ′)+ p

(
4p′ − 9q

)+ 2p3 + 27r
)
,

h2 = 2
(
p
(
6q ′ − 4p′′)+ 2p2 (p′ − 3q

)− 12qp′ + 5p′2 + p4 + 6q ′′ + 9q2 − 18r ′) ,

h3 = −3
(
3r − q ′) (−2p′′ + q ′ + 3r

)+ p2
(

−2qp′ + 2q ′′ + q2 − 6r ′)

+2
(
q − p′) (q

(
p′ − 2q

)− 3q ′′ + 9r ′)+ 2p
(
q
(−p′′ − 3q ′ + 9r

)+ p′q ′)

+2p3 (q ′ − 2r
)

on b and hi (i = 0, 3) in (4) and two additional conditions on the coefficients of the
linear equation (6):

r1 = q − pq1 + q2
1 − q ′

1, (7)

q ′′
1 = pq − p2q1 − qq1 + 2p q2

1 − q3
1 − r − q1p

′ + q ′ − 2pq1
′ + 3q1q

′
1. (8)

Proof We substitute w(z) = (Sξ)(z) into equation (4) with unknown coefficients
and then replace ξ by the ratio of y and y1. Replacing the third- and higher-order
derivatives of y and the second- and higher-order derivatives of y1 by using the
linear equations, we collect the coefficients of y, y1, and their derivatives up to
order 2 and order 1, respectively. In the result, we obtain a system of equations on
the coefficients of linear and nonlinear equations, from which we get the desired
result. ()
Theorem 3 The third-order linear differential equation (3) has solutions satisfy-
ing (6) when the following conditions hold:

r ′
1 = r − pr1 + q1r1, (9)

q ′
1 = q − pq1 + q2

1 − r1. (10)

Proof The proof is computational.

The next theorem says that if Theorem 3 holds (that is, solutions of the second-
order linear equation are also solutions of the third-order linear equation), then the
conditions of Theorem 2 are satisfied.

Theorem 4 Conditions (7) and (8) are satisfied when conditions (9) and (10) hold.
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Proof We differentiate relation (9) and (10), and then substitute the obtained
functions r ′′

1 and q ′′
1 , also r ′

1 and q ′
1 from equalities (9) and (10) into equations (7)

and (8). After simplifications, we obtain two identities. ()
The symmetric square for the linear equation of second order is the third-order

linear differential equation whose solutions are the products of the solutions of the
second-order equation. More precisely, if y1 and y2 satisfy

y′′(z) + q1(z)y
′(z) + q2(z)y(z) = 0, (11)

then y = y1y2 satisfies

y′′′(z)+3q1(z)y
′′(z)+(q ′

1(z)+4q2(z)+2q2
1 (z))y

′(z)+2(q ′
2(z)+2q1(z)q2(z))y(z) = 0.

(12)

The second-order linear equation has the invariant defined above. The third-order
linear equation is connected to the nonlinear second-order equation. The following
statement holds true.

Theorem 5 The invariant w = 2q2 − q2
1/2 − q ′

1 related to equation (11) solves the
second-order nonlinear equation (4) for the symmetric square equation (12).

Proof The proof is computational.

Theorem 6 Assume that all solutions of the second-order linear equation (11)
also solve the third-order linear equation (3). Then, the invariant for the second-
order linear differential equation solves the second-order nonlinear differential
equation (4) associated with (3).

Proof From Theorem 3, we have

q = pq1 − q2
1 + q2 + q ′

1,

r = pq2 − q1q2 + q ′
2.

Next, we recalculate the nonlinear equation (4) for the third-order equation (3)
with the conditions above and show that the invariant for the second-order equation
solves it.

In particular, if we differentiate the second-order differential equation, we have the
statement above. ()

Let us next replace y with y′ in the second-order linear differential equation (11).
In the result, we have the third-order linear equation of the form:

y′′′(z) + q1(z)y
′′(z) + q2(z)y

′(z) = 0. (13)

Note that the second-order equation (11) does not solve it unless q1 and q2 are
constants.
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Theorem 7 The invariant associated to the second-order equation (11) solves the
second-order nonlinear differential equation (4) associated with (13) when

(6q ′
1 − 18q2 + 4q2

1 )q
′′′
1 − 9q ′′2

1 − 12q2
1q

′′
2 + 54q2q

′′
2

+(4q3
1 − 18q1q2 − 18q1q

′
1 + 54q ′

2)q
′′
1 + (36q2

2 + 78q1q
′
2 − 18q ′′

2 − 8q2
1q2)q

′
1

−(8q2
1 + 48q2)q

′2
1 + 12q ′3

1 + 4q3
1q

′
2 − 18q1q2q

′
2 − 81q ′2

2 = 0.

Proof Consider differential equation (4), (5) associated with (13). Then, the follow-
ing relations on the coefficients hold:

p(z) = q1(z), q(z) = q2(z), r(z) = 0. (14)

Next, we differentiate twice the invariant associated to the second-order equation
(11). In the result, we obtain

w′ = 1

2
(4q2 −q1

2 −2q ′
1), w

′′ = 2q ′
2 −q1q

′
1 −q ′′

1 , w
′′′ = −q1

(3)−q1q
′′
1 −q ′

1
2 +2q ′′

2

and then we substitute these three functions into equations (4) and (5) with
coefficients (14). After simplifications, we obtain an identity. ()

Finally, let us try to find an invariant associated to the first-order nonlinear
differential equation of Riccati type:

y′(z) = a(z)y(z)2 + b(z)y(z). (15)

Let us take the ratio of two solutions of this equation and compute the Schwarzian
derivative. Then, we have

w(z) = (Sξ)(z) = −1

2
b(z)2 − a′(z)

a(z)
b(z) − 3

2

a′2(z)
a2(z)

+ a′′(z)
a(z)

+ b′(z).

where ξ = y/y1 and y, y1 solve (15).
The general Riccati equation:

y′(z) = a(z)y(z)2 + b(z)y(z) + c(z) (16)

is linearizable. Indeed, substituting

y(z) = − 1

a(z)

v′(z)
v(z)

,

we get the following second-order linear differential equation:
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v′′(z) −
(
a′(z)
a(z)

+ b(z)

)

v′(z) + a(z)c(z)v(z) = 0.

Clearly,

v(z) = C exp

(∫
−a(z)y(z)dz

)

, (17)

where C is an arbitrary constant. Since the invariant for the second-order linear
differential equation is known, we can associate the following invariant for the
general Riccati equation (16):

w(z) = −1

2
b(z)2 + 2a(z)c(z) − a′(z)

a(z)
b(z) − 3

2

a′2(z)
a2(z)

+ a′′(z)
a(z)

+ b′(z).

Indeed, substituting w(z) = (Sξ)(z), where ξ = v/v1 is the ratio of two solutions
of the second-order linear equation related to the Riccati equation, and taking into
account (17), we get the desired expression.

We also remark that if y′(z) = y(z)2/2 − f (z) (which is linearizable to the
equation u′′(z) + f (z)/2u(z) = 0 by using y(z) = −2u′(z)/u(z)) and y(z) =
w′′(z)/w′(z), then (Sw)(z) = f (z).

3 Discussion

It is interesting to obtain a discrete/difference analogue of the main results of this
paper. It is an open problem to obtain a difference operator that has similar to
the Schwarzian derivative invariance properties. One more research direction is to
replace linear differential equations with nonlinear equations of second and higher
order and to consider the Schwarzian derivative of the ratio of 2 solutions. This
might give a new insight into the theory of some nonlinear special functions.
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Fixed Points for (φ, ψ)-Contractions in
Menger Probabilistic Metric Spaces

Vandana Tiwari and Tanmoy Som

1 Introduction

The concept of probabilistic metric space was initiated by Menger [13] in 1942.
Menger probabilistic metric space (briefly, Menger PM-space) is a generalization
of metric space in which distance between two points x and y, d(x, y), is assigned
by a distribution function Fx,y. Since then, many researchers extensively developed
and expanded the study of PM-spaces in their pioneering works, e.g., [5, 19–23].

To prove existence and uniqueness of fixed point theorem in Menger PM-spaces,
contraction is one of the basic tools. Sehgal and Bharucha-Reid [21] introduced
probabilistic k-contraction and proved probabilistic version of classical Banach
fixed point principle. Efforts have been made over the years to generalize and
extend the k-contraction, like that the concept of ϕ-contraction, weak contraction,
and generalized weak contraction, etc. in Menger PM-spaces. Some examples from
the large existing results are [7–9, 16]. In other spaces, which are generalizations
of usual metric spaces, such problems are also addressed by several authors, see
[1–4, 6, 10–12, 14, 15, 18, 24]. Motivated by the very recent result [17], here, we
have established the existence of a fixed point of a self-mapping which satisfies the
(φ,ψ)-contraction.

Now, we give some basic definitions and preliminaries which will be needed to
establish our main result. From here onward, let R = (−∞,+∞), R+ = [0,+∞) ,

and N be the set of all natural numbers.
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Definition 1 ([13]) A mapping F : R → [0, 1] is called a distribution function if it
is nondecreasing and left continuous with inft∈R F (t) = 0. If in addition, F (0) =
0, then F is called a distance distribution function.

Definition 2 ([13]) A distance distribution function F, satisfying limt→∞ F (t) =
1, is called a Menger distance distribution function. The set of all Menger distance
distribution functions is denoted by D+. The space D+ is partially ordered by the
usual point-wise ordering of functions, that is, F ≤ G if and only if F (t) ≤ G(t) ,

for all t ∈ [0,∞]. The maximal element for D+ in this order is the distance
distribution function H , given by:

H(t) =
{

0, if t ≤ 0
1, if t > 0.

Definition 3 ([19]) A continuous t-norm T is a binary operation on [0, 1], which
satisfies the following conditions:

(1) T is associative and commutative,
(2) T (a, 1) = a, for all a ∈ [0, 1] ,
(3) T (a, b) ≤ T (c, d), whenever a ≤ c and b ≤ d, for all a, b, c, d ∈ [0, 1] ,
(4) T is continuous.

For example:
(a) The minimum t-norm, TM , defined by TM(a, b) = min {a, b} ; and (b) the
product t-norm, TP , defined by TP (a, b) = a.b, are two basic t-norms.

In 1942, Menger developed the theory of metric spaces and proposed a general-
ization of metric spaces called Menger probabilistic metric spaces (briefly, Menger
PM-space).

Definition 4 ([13, 20]) A Menger PM-space is a triplet (X, F, T ), where X is a
non-empty set, T is a t-norm, and F : X × X → D+ be a mapping satisfying the
following conditions (for x, y ∈ X, we denote F (x, y) by Fx,y):

(1) Fx,y (t) = H (t) , for all x, y ∈ X and t > 0 if and only if x = y;
(2) Fx,y (t) = Fy,x (t) , for all x, y ∈ X and t > 0;
(3) Fx,y(s + t) ≥ T (Fx,z(s), Fz,y(t)), for all x, y, z ∈ X and s, t > 0.

Let (X, F, T ) be a Menger PM-space. Define (ε, λ)-neighborhood of x ∈ X

as Ux (ε, λ) = {
y ∈ X : Fx,y (ε) > 1 − λ

}
, that is, the set of all points y in

X for which the probability of the distance from x to y being less than ε is
greater than 1 − λ. Then, (ε, λ)-topology τ , induced by the family of (ε, λ)-
neighborhoods {Ux (ε, λ) : ε > 0, λ ∈ (0, 1]}, is Hausdorff topology, if t-norm T

satisfies lim sup0<t<1 T (t, t) = 1.

Definition 5 ([13, 20]) Let (X, F, T ) be a Menger PM-space.



Fixed Points for (φ,ψ)-Contractions in Menger Probabilistic Metric Spaces 203

1. A sequence {xn} in (X, F, T ) is said to converge to a point x ∈ X, written as
xn → x, if given ε > 0, λ ∈ (0, 1] we can find Nε,λ ∈ N such that for all
n ≥ Nε,λ, Fxn,x (ε) ≥ 1 − λ holds.

2. A sequence {xn} in (X, F, T ) is said to be a Cauchy sequence if for any given
ε > 0 and λ ∈ (0, 1], there exists Nε,λ ∈ N such that Fxn,xm (ε) ≥ 1 − λ,

whenever m, n ≥ Nε,λ.

3. A Menger PM-space (X, F, T ) is called complete if every Cauchy sequence
{xn} ⊂ X is convergent to some point x ∈ X.

Lemma 1 ([17]) If ∗ is a continuous t-norm, and {αn}, {βn}, and {γn} are
sequences such that αn → α, γn → γ as n → ∞, then lim supk→∞(αk ∗βk ∗γk) =
α ∗ lim supk→∞ βk ∗ γ and lim infk→∞(αk ∗ βk ∗ γk) = α ∗ lim infk→∞ βk ∗ γ.

Lemma 2 ([17]) Let {f (k, .) : (0,∞) → (0, 1], k = 0, 1, 2, . . . . . . ..} be a
sequence of functions such that f (k, .) is continuous and monotone increasing
for each k ≥ 0. Then, lim supk→∞ f (k, t) is a left-continuous function in t and
lim infk→∞ f (k, t) is a right-continuous function in t.

2 Main Results

Theorem 1 Let (X, F, T ) be a complete PM-space such that “T ” is an arbitrary
continuous t-norm and let f : X → X be a self-mapping satisfying the following
condition

ψ(Ffx,fy(t)) ≤ ψ(Fx,y(t)) − φ(Fx,y(t)), (1)

where ψ, φ : (0, 1] → [0,∞) are two functions such that

(i) ψ is monotone decreasing and continuous function with ψ(s) = 0 if and only
if s = 1,

(ii) φ is lower semicontinuous function with φ(s) = 0 if and only if s = 1.

Then, f has a unique fixed point in X.

Proof Let x0 ∈ X. We define a sequence {xn} ⊂ X such that xn+1 = f xn, for each
n ≥ 0. If there exists a positive integer k such that xk = xk+1, then xk is a fixed
point of f. Hence, we shall assume that xn �= xn+1, for all n ≥ 0. Now, from (1)

ψ(Fxn,xn+1(t)) = ψ(Ffxn−1,f xn(t)) ≤ ψ(Fxn−1,xn(t)) − φ(Fxn−1,xn(t)). (2)

Since ψ is monotone decreasing, we have that

Fxn−1,xn(t) ≤ Fxn,xn+1(t).
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Therefore, {Fxn,xn+1(t)} is a monotone increasing sequence of nonnegative real
numbers. Hence, there exists an r > 0 such that

lim
n→∞Fxn,xn+1(t) = r.

Taking the limit as n → ∞ in (2), we obtain

ψ(r) ≤ ψ(r) − φ(r),

which is a contradiction unless r = 1.
Hence

lim
n→∞Fxn,xn+1(t) = 1. (3)

Next, we show that {xn} is Cauchy sequence. If otherwise, there exist λ, ε > 0 with
λ ∈ (0, 1) such that for each integer k, there are two integers l(k) and m(k) such
that:

m(k) > l(k) ≥ k,

Fxl(k),xm(k)
(ε) ≤ 1 − λ and

Fxl(k),xm(k)−1(ε) > 1 − λ.

Now, by triangle inequality, for any s with ε
2 > s > 0 and for all k > 0, we have

1 − λ ≥ Fxl(k),xm(k)
(ε)

≥ T (Fxl(k),xl(k)+1(s), T (Fxl(k)+1,xm(k)+1(ε − 2s), Fxm(k)+1,xm(k)
(s))). (4)

For t > 0, we define the function:

h1(t) = lim sup
k→∞

Fxl(k)+1,xm(k)+1(t).

Taking lim sup on both the sides of (4), using (3) and the continuity of T , by
Lemma 1 we conclude that

1 − λ ≥ T (1, T (lim sup
k→∞

Fxl(k)+1,xm(k)+1(ε − 2s), 1))

= T (1, lim sup
k→∞

Fxl(k)+1,xm(k)+1(ε − 2s))

= lim sup
k→∞

Fxl(k)+1,xm(k)+1(ε − 2s)

= h1(ε − 2s).

By an application of Lemma 2, h1 is left continuous. Letting limit as s → 0 in the
above inequality, we obtain
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h1(ε) = lim sup
k→∞

Fxl(k)+1,xm(k)+1(ε) ≤ 1 − λ. (5)

Next, for all t > 0, we define the function:

h2(t) = lim inf
k→∞ Fxl(k)+1,xm(k)+1(t).

In above similar process, we can prove that

h2(ε) = lim inf
k→∞ Fxl(k)+1,xm(k)+1(ε) ≥ 1 − λ. (6)

Combining (5) and (6), we get

lim sup
k→∞

Fxl(k)+1,xm(k)+1(ε) ≤ 1 − λ ≤ lim inf
k→∞ Fxl(k)+1,xm(k)+1(ε)

This implies that

lim
k→∞Fxl(k)+1,xm(k)+1(t) = 1 − λ. (7)

Again, by (5)

lim sup
k→∞

Fxl(k),xm(k)
(ε) ≤ 1 − λ. (8)

For t > 0, we define the function:

h3(t) = lim inf
k→∞ Fxl(k),xm(k)

(t).

Now for s > 0,
Fxl(k),xm(k)

(ε + 2s) ≥ T (Fxl(k),xl(k)+1(s), T (Fxl(k)+1,xm(k)+1(ε), Fxm(k)+1,xm(k)
(s))).

Taking lim inf both the sides, we have

lim inf
k→∞ Fxl(k),xm(k)

(ε + 2s) ≥ T (1, T (lim inf
k→∞ Fxl(k)+1,xm(k)+1(ε), 1)) = 1 − λ.

Thus, h3(ε + 2s) ≥ 1 − λ.

Taking limit as s → 0, we obtain

h3(ε) = lim inf
k→∞ Fxl(k),xm(k)

(ε) ≥ 1 − λ. (9)

Combining (8) and (9), we obtain

lim
k→∞Fxl(k),xm(k)

(t) = 1 − λ. (10)
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Now

ψ(Fxl(k)+1,xm(k)+1(ε)) ≤ ψ(Fxl(k),xm(k)
(ε)) − φ(Fxl(k),xm(k)

(ε)).

Taking limit as k → ∞ and using (7) and (10), we obtain
ψ(1 − λ) ≤ ψ(1 − λ) − φ(1 − λ), which is a contradiction.
Thus, {xn} is Cauchy sequence. Since X is complete, there exists p ∈ X such

that xn → p as n → ∞. Now:

ψ(Fxn+1,fp(t)) = ψ(Ffxn,fp(t))

≤ ψ(Fxn,p(t)) − φ(Fxn,p(t)).

Taking limit as n → ∞, we get
ψ(Fp,fp(t)) ≤ ψ(Fp,fp(t)) − φ(Fp,fp(t)) = 0,

which implies that φ(Fp,fp(t)) = 1, that is,
Fp,fp(t) = 1 or p = fp.

We next establish that fixed point is unique. Let p and q be two fixed points of f.
Putting x = p and y = q in (1),
ψ(Ffp,f q(t)) ≤ ψ(Fp,q(t)) − φ(Fp,q(t))

or, ψ(Fp,q(t)) ≤ ψ(Fp,q(t) − φ(Fp,q(t)

or, φ(Fp,q(t)) ≤ 0,
or, equivalently, ψ(Fp,q(t)) = 1, that is, p = q.

The following example is in support of Theorem 1.

Example 1 Let X = [0, 1]. Define a function F : X × X → D+ by:

Fx,y(t) =
{

1, if t ≤ 0

e− |x−y|
t , if t > 0.

for all x, y ∈ X. Then, (X, F, T ) is a complete Menger probabilistic metric space,
where “T ” is product t-norm. Let ψ, φ : (0, 1] → [0,∞) be defined by:

ψ(s) = 1

s
− 1, φ(s) = 1

s
− 1√

s
, ∀s ∈ (0, 1]. (11)

Then, ψ and φ satisfy all the conditions of Theorem 1. Let the mapping f : X → X

be defined by f x = x2

4 , for all x ∈ X.

Now, we shall show that f satisfies (1).
With the choices of φ and ψ as in (11), the inequality (1) has the form:

1

Ffx,fy(t)
− 1 ≤ 1

Fx,y(t)
− 1 − 1

Fx,y(t)
+ 1
√
Fx,y(t)

,

that is,
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Ffx,fy(t) ≥
√
Fx,y(t).

Now,

Ffx,fy(t) = e− |f x−fy|
t

= e− |x2−y2|
4t

= e−(
|x−y|

2t )(
|x+y|

2 )

≥ e−(
|x−y|

2t )

=
√
Fx,y(t).

Hence, all the conditions of Theorem (1) are satisfied.
Thus, 0 is the unique fixed point of f.
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A Novel Canonical Duality Theory for
Solving 3-D Topology Optimization
Problems

David Gao and Elaf Jaafar Ali

1 Introduction

Topology optimization is a powerful tool for optimal design in multidisciplinary
fields of optics, electronics, structural, bio-, and nano-mechanics. Mathematically
speaking, this tool is based on finite element method such that the coupled
variational/optimization problems in computational mechanics can be formulated
as certain mixed integer nonlinear programming (MINLP) problems [18]. Due to
the integer constraint, traditional theory and methods in continuous optimization
can’t be applied for solving topology optimization problems. Therefore, most
MINLP problems are considered to be NP-hard (nondeterministic polynomial-
time hard) in global optimization and computer science [23]. During the past
forty years, many approximate methods have been developed for solving topology
optimization problems, these include homogenization method [3, 4], density-based
method [2], solid isotropic material with penalization (SIMP) [41, 42, 53], level set
approximation [38, 43], evolutionary structural optimization (ESO) [50, 51], and
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bidirectional evolutionary structural optimization (BESO) [30, 39, 40]. Currently,
the popular commercial software products used in topology optimization are based
on SIMP and ESO/BESO methods [31, 36, 46, 52]. However, these approximate
methods can’t mathematically guarantee the global convergence. Also, they usually
suffer from having different intrinsic disadvantages, such as slow convergence, the
gray-scale elements, and checkerboards patterns, etc. [6, 44, 45].

Canonical duality theory (CDT) is a methodological theory, which was developed
from Gao and Strang’s original work in 1989 on finite deformation mechanics
[28]. The key feature of this theory is that by using certain canonical strain
measure, general nonconvex/nonsmooth potential variational problems can be
equivalently reformulated as a pure (stress-based only) complementary energy
variational principle [11]. The associated triality theory provides extremality criteria
for both global and local optimal solutions, which can be used to develop powerful
algorithms for solving general nonconvex variational problems [12]. This pure
complementary energy variational principle solved a well-known open problem in
nonlinear elasticity and is known as the Gao principle in literature [35]. Based on
this principle, a canonical dual finite element method was proposed in 1996 for
large deformation nonconvex/nonsmooth mechanics [9]. Applications have been
given to post-buckling problems of large deformed beams [1], nonconvex variational
problems [24], and phase transitions in solids [29]. It was discovered by Gao in
2007 that by simply using a canonical measure ε(x) = x(x − 1) = 0, the 0-1
integer constraint x ∈ {0, 1} in general nonconvex minimization problems can be
equivalently converted to a unified concave maximization problem in continuous
space, which can be solved deterministically to obtain global optimal solution in
polynomial time [14]. Therefore, this pure complementary energy principle plays
a fundamental role not only in computational nonlinear mechanics, but also in
discrete optimization [25]. Most recently, Gao proved that the topology optimization
should be formulated as a bi-level mixed integer nonlinear programming problem
(BL-MINLP) [18, 20]. The upper-level optimization of this BL-MINLP is actually
equivalent to the well-known Knapsack problem, which can be solved analytically
by the CDT [20]. The review articles [15, 27] and the newly published book [23]
provide comprehensive reviews and applications of the canonical duality theory in
multidisciplinary fields of mathematical modeling, engineering mechanics, noncon-
vex analysis, global optimization, and computational science.

The main goal of this paper is to apply the canonical duality theory for solving 3-
dimensional benchmark problems in topology optimization. In the next section, we
first review Gao’s recent work why the topology optimization should be formulated
as a bi-level mixed integer nonlinear programming problem. A basic mathematical
mistake in topology optimization modeling is explicitly addressed. A canonical
penalty-duality method for solving this Knapsack problem is presented in Section 3,
which is actually the so-called β-perturbation method first proposed in global
optimization [25] and recently in topology optimization [18]. Section 4 reveals for
the first time the unified relation between this canonical penalty-duality method in
integer programming and Gao’s pure complementary energy principle in nonlin-
ear elasticity. Section 5 provides 3-D finite element analysis and the associated



A Novel Canonical Duality Theory for Solving 3-D Topology Optimization Problems 211

canonical penalty-duality (CPD) algorithm. The volume evolutionary method and
computational complexity of this CPD algorithm are discussed. Applications to
3-D benchmark problems are provided in Section 6. The paper is ended with
concluding remarks and open problems. Mathematical mistakes in the popular
methods are explicitly addressed. Also, general modeling and conceptual mistakes
in engineering optimization are discussed based on reviewers’ comments.

2 Mathematical Problems for 3-D Topology Optimization

The minimum total potential energy principle provides a theoretical foundation
for all mathematical problems in computational solid mechanics. For general 3-D
nonlinear elasticity, the total potential energy has the following standard form:

�(u, ρ) =
∫

�

(

W(∇u)ρ + u · bρ
)

d� −
∫

	t

u · td	, (1)

where u : � → R
3 is a displacement vector field, b is a given body force vector, t is

a given surface traction on the boundary 	t ⊂ ∂�, and the dot-product u·t = uT t. In
this paper, the stored energy density W(F) is an objective function (see Remark 4)
of the deformation gradient F = ∇u. In topology optimization, the mass density
ρ : � → {0, 1} is the design variable, which takes ρ(x) = 1 at a solid material
point x ∈ �, while ρ(x) = 0 at a void point x ∈ �. Additionally, it must satisfy the
so-called knapsack condition:

∫

�

ρ(x)d� ≤ Vc, (2)

where Vc > 0 is a desired volume bound.
By using finite element method, the whole design domain � is meshed with

n disjointed finite elements {�e}. In each element, the unknown variables can be
numerically written as u(x) = N(x)ue, ρ(x) = ρe ∈ {0, 1} ∀x ∈ �e, where N(x)
is a given interpolation matrix, and ue is a nodal displacement vector. Let Ua ⊂ R

m

be a kinetically admissible space, in which certain deformation conditions are given,
ve represents the volume of the e-th element �e, and v = {ve} ∈ R

n. Then, the
admissible design space can be discretized as a discrete set:

Za =
{

ρ = {ρe} ∈ R
n
∣
∣ ρe ∈ {0, 1} ∀e = 1, . . . , n, ρT v =

n∑

e=1

ρeve ≤ Vc

}

(3)

and on Ua × Za, the total potential energy functional can be numerically reformu-
lated as a real-valued function:

�h(u, ρ) = C(ρ,u) − uT f, (4)
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where

C(ρ,u) = ρT c(u),

in which

c(u) =
{∫

�e

[W(∇N(x)ue) − bT N(x)ue]d�
}

∈ R
n, (5)

and

f =
{∫

	e
t

N(x)T t(x)d	
}

∈ R
m.

By the facts that the topology optimization is a combination of both variational
analysis on a continuous space Ua and optimal design on a discrete space Za , it can’t
be simply formulated in a traditional variational form. Instead, a general problem of
topology optimization should be proposed as a bi-level programming [20]:

(Pbl) : min{�(ρ,u)| ρ ∈ Za, u ∈ Ua}, (6)

s.t. u ∈ arg min
v∈Ua

�h(v, ρ), (7)

where �(ρ,u) represents the upper-level cost function, and ρ ∈ Za is the upper-
level variable. Similarly, �h(u, ρ) represents the lower-level cost function and u ∈
Ua is the lower-level variable. The cost function �(ρ,u) depends on both particular
problems and numerical methods. It can be �(ρp,u) = fT u − c(u)T ρp for any
given parameter p ≥ 1, or simply �(ρ,u) = −ρT c(u).

Since the topology optimization is a design-analysis process, it is reasonable
to use the alternative iteration method [20] for solving the challenging topology
optimization problem (Pbl), that is:

(i) For a given design variable ρk−1 ∈ Za , solving the lower-level optimization (7)
for

uk = arg min{�h(u, ρk−1)| u ∈ Ua} (8)

(ii) For the given cu = c(uk), solve the upper-level optimization problem (6) for

ρk = arg min {�(ρ,uk) | ρ ∈ Za} . (9)

The upper-level problem (9) is actually equivalent to the well-known Knapsack
problem in its most simple (linear) form:

(Pu) : min{Pu(ρ) = −cTu ρ | ρT v ≤ Vc, ρ ∈ {0, 1}n}, (10)
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which makes a perfect sense in topology optimization, i.e., among all elements
{�e}, one should keep those stored more strain energy. Knapsack problems appear
extensively in multidisciplinary fields of operations research, decision science, and
engineering design problems. Due to the integer constraint, even this most simple
linear knapsack problem is listed as one of Karp’s 21 NP-complete problems [33].
However, by using the canonical duality theory, this challenging problem can be
solved easily to obtain global optimal solution.

For linear elastic structures without the body force, the stored energy C is a
quadratic function of u:

C(ρ,u) = 1

2
uT K(ρ)u, (11)

where K(ρ) = {ρeKe} ∈ R
n×n is the overall stiffness matrix, obtained by

assembling the sub-matrix ρeKe for each element �e. For any given ρ ∈ Za , the
displacement variable can be obtained analytically by solving the linear equilibrium
equation K(ρ)u = f. Thus, the topology optimization for linear elastic structures
can be simply formulated as:

(Ple) : min

{

fT u − 1

2
uT K(ρ)u | K(ρ)u = f, u ∈ Ua, ρ ∈ Za

}

. (12)

Remark 1 (On Compliance Minimization Problem) In the literature, topology opti-
mization for linear elastic structures is usually formulated as a compliance mini-
mization problem (see [36] and the problem (P ) in [47]2):

(P ) : min
ρ∈Rn,u∈Ua

1

2
fT u s.t. K(ρ)u = f, ρ ∈ {0, 1}n, ρT v ≤ Vc. (13)

Clearly, if the displacement is replaced by u = [K(ρ)]−1f, this problem can be
written as:

(Pc) : min

{

Pc(ρ) = 1

2
fT [K(ρ)]−1f | K(ρ)isinvertibleforallρ ∈ Za

}

. (14)

which is equivalent to (Ple) under the regularity condition, i.e., [K(ρ)]−1 exists for
all ρ ∈ Za . However, instead of u the given external force in the cost function
of (P ) is replaced by f = Ku such that (P ) is commonly written in the so-called
minimization of strain energy (see [45]):

(Ps) : min

{
1

2
uT K(ρ)u | K(ρ)u = f, ρ ∈ Za, u ∈ Ua

}

, (15)

2The linear inequality constraint Aρ ≤ b in [36] is ignored in this paper.
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One can see immediately that (Ps) contradicts (Ple) in the sense that the alternative
iteration for solving (Pc) leads to an anti-Knapsack problem:

min cTu ρ, s.t. ρ ∈ {0, 1}n, ρT v ≤ Vc. (16)

By the fact that cu = c(uk) ∈ R
n+ := {c ∈ R

n| c ≥ 0} is a nonnegative vector
for any given uk , this problem has only a trivial solution. Therefore, the alternative
iteration is not allowed for solving (Ps). In continuum physics, the linear scalar-
valued function uT f ∈ R is called the external (or input) energy, which is not an
objective function (see Remark 4). Since f is a given force, it can’t be replaced by
K(ρ)u. Although the cost function Pc(ρ) can be called as the mean compliance,
it is not an objective function either. Thus, the problem (Pc) works only for those
problems that u(ρ) can be uniquely determined. Its complementary form:

(P c) : max

{
1

2
uT K(ρ)u | K(ρ)u = f, ρ ∈ Za

}

(17)

can be called a maximum stiffness problem, which is equivalent to (Ple) in the sense
that both problems produce the same results by the alternative iteration method.
Therefore, it is a conceptual mistake to call the strain energy 1

2 uT K(ρ)u as the
mean compliance and (Ps) as the compliance minimization.3 The problem (Ps) has
been used as a mathematical model for many approximation methods, including
the SIMP and BESO. Additionally, some conceptual mistakes in the compliance
minimization and mathematical modeling are also addressed in Remark 4.

3 Canonical Dual Solution to Knapsack Problem

The canonical duality theory for solving general integer programming problems was
first proposed by Gao in 2007 [14]. Applications to topology optimization have been
given recently in [18, 20]. In this paper, we present this theory in a different way,
i.e., instead of the canonical measure in R

n+1, we introduce a canonical measure in
R
n:

ε = �(ρ) = ρ ◦ ρ − ρ ∈ R
n (18)

3Due to this conceptual mistake, the general problem for topology optimization was originally
formulated as a double-min optimization (Pbl) in [18]. Although this model is equivalent to a
knapsack problem for linear elastic structures under the condition f = K(ρ)u, it contradicts the
popular theory in topology optimization.
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and the associated super-potential:

�(ε) =
{

0 if ε ∈ R
n− := {ε ∈ R

n| ε ≤ 0}
+∞ otherwise,

(19)

such that the integer constraint in the Knapsack problem (Pu) can be relaxed by the
following canonical form:

min
{
�u(ρ) = �(�(ρ)) − cTu ρ

∣
∣ ρT v ≤ Vc ρ ∈ R

n
}
. (20)

This is a nonsmooth minimization problem in R
n with only one linear inequality

constraint. The classical Lagrangian for this inequality-constrained problem is

L(ρ, τ ) = �(�(ρ)) − cTu ρ + τ(ρT v − Vc), (21)

and the canonical minimization problem (20) is equivalent to the following min-max
problem:

min
ρ∈Rn

max
τ∈R

L(ρ, τ ) s.t. τ ≥ 0. (22)

According to the Karush-Kuhn-Tucker theory in inequality-constrained optimiza-
tion, the Lagrange multiplier τ should satisfy the following KKT conditions:

τ(ρT v − Vc) = 0, τ ≥ 0, ρT v − Vc ≤ 0. (23)

The first equality τ(ρT v − Vc) = 0 is the so-called complementarity condition. It is
well known that to solve the complementarity problems is not an easy task, even for
linear complementarity problems [32]. Also, the Lagrange multiplier has to satisfy
the constraint qualification τ ≥ 0. Therefore, the classical Lagrange multiplier
theory can be essentially used for linear equality-constrained optimization problems
[34]. This is one of main reasons why the canonical duality theory was developed.

By the fact that the super-potential �(ε) is a convex, lower-semicontinuous
function (l.s.c), its sub-differential is a positive cone R

n+ [12]:

∂�(ε) =
{ {σ } ∈ R

n+ if ε ≤ 0 ∈ R
n−

∅ otherwise.
(24)

Using Fenchel transformation, the conjugate function of �(ε) can be uniquely
defined by (see [12]):

��(σ ) = sup
ε∈Rn

{εT σ − �(ε)} =
{

0 if σ ∈ R
n+,

+∞ otherwise,
(25)
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which can be viewed as a super complementary energy [8]. By the theory of convex
analysis, we have the following canonical duality relations [14]:

�(ε) + ��(σ ) = εT σ ⇔ σ ∈ ∂�(ε) ⇔ ε ∈ ∂��(σ ). (26)

By the Fenchel-Young equality �(ε) = εT σ − ��(σ ), the Lagrangian L(ρ, τ ) can
be written in the following form:

�(ρ, σ , τ ) = Gap(ρ, σ ) − ρT σ − ��(σ ) − ρT cu + τ(ρT v − Vc). (27)

This is the Gao-Strang total complementary function for the Knapsack problem, in
which Gap(ρ, σ ) = σ T (ρ◦ρ) is the so-called complementary gap function. Clearly,
if σ ∈ R

n+, this gap function is convex and Gap(ρ, σ ) ≥ 0 ∀ρ ∈ R
n. Let

S+
a = {ζ = {σ , τ } ∈ R

n+1| σ > 0 ∈ R
n, τ ≥ 0}. (28)

Then on Sa , we have

�(ρ, ζ ) = σ T (ρ ◦ ρ − ρ) − ρT cu + τ(ρT v − Vc) (29)

and for any given ζ ∈ S+
a , the canonical dual function can be obtained by:

Pd
u (ζ ) = min

ρ∈Rn
�(ρ, ζ ) = −1

4
τT
u (ζ )G(σ )−1τu(ζ ) − τVc, (30)

where

G(σ ) = Diag(σ ), τu = σ + cu − τv.

This canonical dual function is the so-called pure complementary energy in nonlin-
ear elasticity, first proposed by Gao in 1999 [11], where τu and σ are corresponding
to the first and second Piola-Kirchhoff stresses, respectively. Thus, the canonical
dual problem of the Knapsack problem can be proposed in the following:

(Pd
u ) : max

{
Pd
u (ζ )| ζ ∈ S+

a

}
. (31)

Theorem 1 (Canonical Dual Solution for Knapsack Problem [18]) For any
given uk ∈ Ua and Vc > 0, if ζ̄ = (σ̄ , τ̄ ) ∈ S+

a is a solution to (Pd
u ), then

ρ̄ = 1

2
G(σ̄ )−1τu(ζ̄ ) (32)

is a global minimum solution to the Knapsack problem (Pu) and

Pu(ρ̄) = min
ρ∈Rn

Pu(ρ) = �(ρ̄, ζ̄ ) = max
ζ∈S+

a

P d
u (ζ ) = Pd

u (ζ̄ ). (33)
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Proof By the convexity of the super-potential �(ε), we have �∗∗(ε) = �(ε). Thus,

L(ρ, τ ) = sup
σ∈Rn

�(ρ, σ , τ ) ∀ρ ∈ R
n, τ ∈ R. (34)

It is easy to show that for any given ρ ∈ R
n, τ ∈ R, the supremum condition is

governed by �(ρ) ∈ ∂�∗(σ ). By the canonical duality relations given in (26), we
have the equivalent relations:

�(ρ)T σ = σ T (ρ◦ρ−ρ) = 0 ⇔ σ ∈ R
n+ ⇔ �(ρ) = (ρ◦ρ−ρ) ∈ R

n−. (35)

This is exactly equivalent to the KKT conditions of the canonical problem for the
inequality condition �(ρ) ∈ R

n−. Thus, if ζ̄ ∈ S+
a is a KKT solution to (Pd

u ),
then σ̄ > 0 and the complementarity condition in (35 ) leads to ρ̄ ◦ ρ̄ − ρ̄ = 0,
i.e., ρ̄ ∈ {0, 1}n. It is easy to prove that for a given ζ̄ , the equality (32) is exactly
the criticality condition ∇ρ�(ρ̄, ζ̄ ) = 0. Therefore, the vector ρ̄ ∈ {0, 1}n defined
by (32) is a solution to the Knapsack problem (Pu). According to Gao and Strang
[28] that the total complementary function �(ρ, ζ ) is a saddle function on R

n×S+
a ,

then

min
ρ∈Rn

Pu(ρ) = min
ρ∈Rn

max
ζ∈S+

a

�(ρ, ζ ) = max
ζ∈S+

a

min
ρ∈Rn

�(ρ, ζ ) = max
ζ∈S+

a

P d
u (ζ ). (36)

The complementary-dual equality (33) can be proved by the canonical duality
relations. ()

This theorem shows that the so-called NP-hard Knapsack problem is canonically
dual to a concave maximization problem (Pd

u ) in continuous space, which is much
easier than the 0-1 programming problem (Pu) in discrete space. Whence the
canonical dual solution ζ̄ is obtained, the solution to the Knapsack problem can
be given analytically by (32).

4 Pure Complementary Energy Principle and Perturbed
Solution

Based on Theorem 1, a perturbed solution for the Knapsack problem has been
proposed recently in [18, 20]. This section demonstrates the relation of this solution
with the pure complementary energy principle in nonlinear elasticity discovered by
Gao in 1997–1999 [10, 11].

In terms of the deformation χ = u + x, the total potential energy variational
principle for general large deformation problems can also be written in the following
form:

(Pχ ) : inf
χ∈Xa

�(χ) =
∫

�

[W(∇χ) − χ · b]ρd� −
∫

	t

χ · td	, (37)
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where Xa is a kinetically admissible deformation space, in which the boundary
condition χ(x) = 0 is given on 	χ . It is well known that the stored energy W(F)
is usually a nonconvex function of the deformation gradient F = ∇χ = ∇u + I
in order to model complicated phenomena, such as phase transitions and post-
buckling. By the fact that W(F) must be an objective function [37], there exists
a real-valued function �(C) such that W(F) = �(FT F) (see [5]). For most
reasonable materials (say the St. Venant-Kirchhoff material [22]), the function
�(C) is a usually convex function of the Cauchy strain measure C = FT F such
that its complementary energy density can be uniquely defined by the Legendre
transformation:

�∗(S) = { tr(C · S) − �(C)| S = ∇�(C)}. (38)

Therefore, a pure complementary energy variational principle was obtained by Gao
in 1999 [11, 12]:

Theorem 2 (Pure Complementary Energy Principle for Nonlinear Elasticity
[11])

For any given external force field b(x) in � and t(x) on 	t , if τ(x) is a statically
admissible stress field, that is:

τ ∈ Ta :=
{
τ (x) : � → R

3×3| − ∇ · τ = b ∀x ∈ �, n · τ = t ∀x ∈ 	t

}
,

(39)
and S̄ is a critical point of the pure complementary energy:

�d(S) = −
∫

�

[
1

4
tr(τ · S−1 · τ ) + �∗(S)

]

ρ d�, (40)

then the deformation field χ̄(x) defined by:

χ̄(x) = 1

2

∫ x

x0

τ · S̄−1dx (41)

along any path from x0 ∈ 	χ to x ∈ � is a critical point of the total potential
energy �(χ) and �(χ̄) = �d(S̄). Moreover, if S̄(x) � 0 ∀x ∈ �, then χ̄ is a
global minimizer of �(χ).

It is easy to prove that the criticality condition δ�d
χ(S) = 0 is governed by the

so-called canonical dual algebraic equation [12]:

4S · [∇�∗(S)] · S = τT · τ . (42)

For certain materials, this algebraic equation can be solved analytically to obtain
all possible solutions [24]. Particularly, for the St Venant-Kirchhoff material, this
tensor equation could have at most 27 solutions at each material point x, but
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only one positive-definite S(x) � 0 ∀x ∈ �, which leads to the global
minimum solution χ̄(x) [22]. The pure complementary energy principle solved a
well-known open problem in large deformation mechanics and is known as the Gao
principle in literature (see [35]). This principle plays an important role not only
in large deformation theory and nonconvex variational analysis but also in global
optimization and computational science. Indeed, Theorem 1 is simply an application
of this principle as if we consider the quadratic operator ε(ρ) as the Cauchy strain
measure C(χ), then the canonical dual σ ∈ ∂�(ε) is corresponding to the second
Piola-Kirchhoff stress S = ∇�(C), while τu is corresponding to the first Piola-
Kirchhoff stress τ . By the fact that ��(σ ) is nonsmooth, the associated canonical
dual algebraic equation (42) should be governed by the KKT conditions (35). In
order to solve this problem, a β-perturbation method was proposed in 2010 for
solving general integer programming problems [25] and recently for solving the
topology optimization problems [18].

According to the canonical duality theory for mathematical modeling [20], the
integer constraint ρ ∈ {0, 1}n in the Knapsack problem (Pu) is a constitutive
condition, while ρ · v ≤ Vc is a geometrical constraint. Thus, by using the so-called
pan-penalty functions:

W(ρ) =
{

0 if ρ ∈ {0, 1}n
+∞ otherwise,

F (ρ) =
{

cu · ρ if ρ · v ≤ Vc

−∞ otherwise,
(43)

the Knapsack problem (Pu) can be equivalently written in Gao-Strang’s uncon-
strained form [28]:

min
{
W(ρ) − F(ρ)| ρ ∈ R

n
}
. (44)

By introducing a penalty parameter β > 0 and a Lagrange multiplier τ ≥ 0, these
two pan-penalty functions can have the following relaxations:

Wβ(ρ) = β‖ρ ◦ ρ − ρ‖2, Fτ (ρ) = cu · ρ − τ(ρ · v − Vc). (45)

It is easy to prove that

W(ρ) = lim
β→∞Wβ(ρ), F (ρ) = min

τ≥0
Fτ (ρ) ∀ρ ∈ R

n. (46)

Thus, the Knapsack problem can be relaxed by the so-called penalty-duality
approach:

min
ρ∈Rn

max
τ≥0

{
Lβ(ρ, τ ) = Wβ(ρ) − cu · ρ + τ(ρ · v − Vc)

}
. (47)

Since the penalty function Wβ(ρ) is nonconvex, by using the canonical trans-
formation Wβ(ρ) = �β(�(ρ)), we have �β(ε) = β‖ε‖2, which is a convex
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quadratic function. Its Legendre conjugate is simply �∗
β(σ ) = 1

4β
−1‖σ‖2. Thus, the

Gao and Strang total complementary optimization problem for the penalty-duality
approach (47) can be given by [18]:

min
ρ∈Rn

max
ζ∈S+

a

{

�β(ρ, ζ ) = (ρ ◦ ρ − ρ) · σ − 1

4
β−1‖σ‖2 − cu · ρ + τ(ρ · v − Vc)

}

.

(48)
For any given β > 0 and ζ = {σ , τ } ∈ S+

a , a canonical penalty-duality (CPD)
function can be obtained as:

Pd
β (ζ ) = min

ρ∈Rn
�β(ρ, ζ ) = Pd

u (σ , τ ) − 1

4
β−1‖σ‖2, (49)

which is exactly the so-called β-perturbed canonical dual function presented in [18,
20]. It was proved by Theorem 7 in [25] that there exists a βc > 0 such that for any
given β ≥ βc, both the CPD problem:

(Pd
β ) : max{Pd

β (ζ )| ζ ∈ S+
a } (50)

and the problem (Pd
u ) have the same solution set. Since �∗

β(σ ) is a quadratic
function, the corresponding canonical dual algebraic equation (42) is a coupled
cubic algebraic system:

2β−1σ 3
e + σ 2

e = (τve − ce)
2, e = 1, . . . , n, (51)

n∑

e=1

1

2

ve

σe
(σe − veτ + ce) − Vc = 0. (52)

It was proved in [12, 14] that for any given β > 0, τ ≥ 0, and cu = {ce(ue)}
such that θe = τve − ce(ue) �= 0, e = 1, . . . , n, the canonical dual algebraic
equation (51) has a unique positive real solution:

σe = 1

12
β[−1 + φe(τ ) + φc

e(τ )] > 0, e = 1, . . . , n (53)

where

φe(ς) = η−1/3
[

2θ2
e − η + 2i

√
θ2
e (η − θ2

e )

]1/3

, η = β2

27
,

and φc
e is the complex conjugate of φe, i.e., φeφ

c
e = 1. Thus, a canonical

penalty-duality algorithm has been proposed recently for solving general topology
optimization problems [18, 20].
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5 CPD Algorithm for 3-D Topology Optimization

For three-dimensional linear elastic structures, we simply use cubic 8-node hexa-
hedral elements {�e}, each element contains 24 degrees of freedom corresponding
to the displacements in x-y-z directions (each node has three degrees of freedom)
as shown in Figure 1. Thus, the displacement interpolation matrix is N =
[N1 N2 . . . N8] and

Ni =
⎡

⎣
Ni 0 0
0 Ni 0
0 0 Ni

⎤

⎦ . (54)

The shape functions Ni = Ni(ξ1, ξ2, ξ3), i = 1, . . . 8 are derived by:

N1 = 1

8
(1 − ξ1)(1 − ξ2)(1 − ξ3), N2 = 1

8
(1 + ξ1)(1 − ξ2)(1 − ξ3),

N3 = 1

8
(1 + ξ1)(1 + ξ2)(1 − ξ3), N4 = 1

8
(1 − ξ1)(1 + ξ2)(1 − ξ3),

N5 = 1

8
(1 − ξ1)(1 − ξ2)(1 + ξ3), N6 = 1

8
(1 + ξ1)(1 − ξ2)(1 + ξ3),

N7 = 1

8
(1 + ξ1)(1 + ξ2)(1 + ξ3), N8 = 1

8
(1 − ξ1)(1 + ξ2)(1 + ξ3),

in which ξ1, ξ2, and ξ3 are the natural coordinates of the ith node. The nodal
displacement vector ue is given by:

uT
e = [ue1 ue2 . . . ue8

]
,

where uei = (xei , y
e
i , z

e
i ) ∈ R

3, i = 1, . . . , 8, are the displacement components at
node i. The components Bi of strain-displacement matrix B = [B1 B2 . . . B8],
which relates the strain ε and the nodal displacement ue (ε = Bue), are
defined as:

Fig. 1 The hexahedron
element—eight nodes
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Bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂Ni

∂x
0 0

0 ∂Ni

∂y
0

0 0 ∂Ni

∂z
∂Ni

∂y
∂Ni

∂x
0

∂Ni

∂z
0 ∂Ni

∂x

0 ∂Ni

∂z
∂Ni

∂y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (55)

Hooke’s law for isotropic materials in constitutive matrix form is given by:

H = E

(1 + ν)(1 − 2ν)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 1−2ν

2 0 0
0 0 0 0 1−2ν

2 0
0 0 0 0 0 1−2ν

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (56)

where E is the Young’s modulus and ν is the Poisson’s ratio of the isotropic material.
The stiffness matrix of the structure in CPD algorithm is given by:

K(ρ) =
n∑

e=1

(Emin + (E − Emin)ρe)Ke, (57)

where Emin must be small enough (usually let Emin = 10−9E) to avoid singularity
in computation and Ke is defined as:

Ke =
∫ 1

−1

∫ 1

−1

∫ 1

−1
BT HB dξ1dξ2dξ3. (58)

Based on the canonical duality theory, an evolutionary canonical penalty-duality
(CPD) algorithm4 for solving the topology optimization problem [18] can be
presented in the following.

Canonical Penalty-Duality Algorithm for Topology Optimization (CPD)

1. Initialization:
Choose a suitable initial volume reduction rate μ < 1.
Let ρ0 = {1} ∈ R

n.
Given an initial value τ 0 > 0, an initial volume Vγ = μV0.
Given a perturbation parameter β > 10, error allowances ω1 and ω2, in which
ω1 is a termination criterion.

4This algorithm was called the CDT algorithm in [18]. Since a new CDT algorithm without β
perturbation has been developed, this algorithm based on the canonical penalty-duality method
should be called CPD algorithm.
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Let γ = 0 and compute

u0 = K−1(ρ0)f(ρ0), c0 = c(u0) = u0T K(ρ0)u0.

2. Let k = 1 .
3. Compute ζ k = {σ k, τ k} by:

σk
e = 1

6
β[−1 + φe(τ

k−1) + φc
e(τ

k−1)], e = 1, . . . , n.

τ k =
∑n

e=1 ve(1 + c
γ
e /σ

k
e ) − 2Vγ∑n

e=1 v
2
e /σ

k
e

.

4. If

# = |Pd
u (σ

k, τ k) − Pd
u (σ

k−1, τ k−1)| > ω1, (59)

then let k = k + 1, go to Step 3; otherwise, continue.
5. Compute ργ+1 = {ργ+1

e } and uγ+1 by:

ρ
γ+1
e = 1

2
[1 − (τ kve − c

γ
e )/σ

k
e ], e = 1, . . . , n.

uγ+1 = K(ργ+1)−1f(ργ+1).

6. If |ργ+1 − ργ | ≤ ω2 and Vγ ≤ Vc , then stop; otherwise, continue.
7. Let Vγ+1 = μVγ , τ 0 = τ k , and γ = γ + 1, go to step 2.

Remark 2 (Volume Evolutionary Method and Computational Complexity) By The-
orem 1, we know that for any given desired volume Vc > 0, the optimal solution
ρ̄ can be analytically obtained by (32) in terms of its canonical dual solution in
continuous space. By the fact that the topology optimization problem (Pbl) is a
coupled nonconvex minimization, numerical optimization depends sensitively on
the the initial volume V0. If μc = Vc/V0 � 1, any given iteration method could
lead to unreasonable numerical solutions. In order to resolve this problem, a volume
decreasing control parameter μ ∈ (μc, 1) was introduced in [18] to produce a
volume sequence Vγ = μVγ−1 (γ = 1, . . . , γc) such that Vγc = Vc and for any
given Vγ ∈ [Vc, V0], the problem (Pbl) is replaced by:

(Pbl)
γ : min

{

fT u − Cp(ρ,u) | ρ ∈ {0, 1}n, vT ρ ≤ Vγ

}

, (60)

s.t. u(ρ) = arg min{�h(v, ρ)| v ∈ Ua}. (61)
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The initial values for solving this γ -th problem are Vγ−1,uγ−1, ργ−1. Theoretically
speaking, for any given sequence {Vγ } we should have

(Pbl) = lim
γ→γc

(Pbl)
γ . (62)

Numerically, different volume sequence {Vγ } may produce totally different struc-
tural topology as long as the alternative iteration is used. This is intrinsic difficulty
for all coupled bi-level optimal design problems.

The original idea of this sequential volume decreasing technique is from an
evolutionary method for solving optimal shape design problems (see Chapter 7,
[12]). It was realized recently that the same idea was used in the ESO and BESO
methods. But, these two methods are not polynomial-time algorithm. By the facts
that there are only two loops in the CPD algorithm, i.e., the γ -loop and the k-
loop, and the canonical dual solution is analytically given in the k-loop, the main
computing is the m × m matrix inversion in the γ -loop. The complexity for the
Gauss-Jordan elimination is O(m3). Therefore, the CPD is a polynomial-time
algorithm.

6 Applications to 3-D Benchmark Problems

In order to demonstrate the novelty of the CPD algorithm for solving 3D topology
optimization problems, our numerical results are compared with the two popular
methods: BESO and SIMP. The algorithm for the soft-kill BESO is from [31].5 A
modified SIMP algorithm without filter is used according to [36]. The parameters
used in BESO and SIMP are: the minimum radius rmin = 1.5, the evolutionary rate
er = 0.05, and the penalization power p = 3. Young’s modulus and Poisson’s ratio
of the material are taken as E = 1 and ν = 0.3, respectively. The initial value for τ
used in CPD is τ 0 = 1. We take the design domain V0 = 1, the initial design variable
ρ0 = {1} for both CPD and BESO algorithms. All computations are performed by a
computer with Processor Intel Core I7-4790, CPU 3.60GHz, and memory 16.0 GB.

6.1 Cantilever Beam Problems

For this benchmark problem, we present results based on three types of mesh
resolutions with two types of loading conditions.

5According to Professor Y.M. Xie at RMIT, this BESO code was poorly implemented and has
never been used for any of their further research simply because it was extremely slow compared
to their other BESO codes. Therefore, the comparison for computing time between CPD and BESO
provided in this section may not show the reality if the other commercial BESO codes are used.
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6.1.1 Uniformly Distributed Load with 60 × 20 × 4 Meshes

First, let us consider the cantilever beam with uniformly distributed load at the right
end as illustrated in Figure 2. The target volume and termination criterion for CPD,
BESO, and SIMP are selected as Vc = 0.3 and ω1 = 10−6, respectively. For
both CPD and BESO methods, we take the volume evolution rate μ = 0.89, the
perturbation parameter for CPD is β = 4000. The results are reported in Table 1.6

Figure 3 shows the convergence of compliances produced by all the three
methods. As we can see that the SIMP provides an upper bound approach since this
method is based on the minimization of the compliance, i.e., the problem (P ). By
Remark 1, we know that this problem violates the minimum total potential energy
principle, the SIMP converges in a strange way, i.e., the structures produced by
the SIMP at the beginning are broken until I t. = 15 (see Figure 3), which is
physically unreasonable. Dually, both the CPD and BESO provide lower bound
approaches. It is reasonable to believe that the main idea of the BESO is similar
to the Knapsack problem, i.e., at each volume iteration, to eliminate elements which
stored less strain energy by simply using comparison method. By the fact that the
same volume evolutionary rate μ is adopted, the results obtained by the CPD and
BESO are very close to each other (see also Figure 4). However, the CPD is almost
100 times faster than the BESO method since the BESO is not a polynomial-time
algorithm.

The optimal structures produced by the CPD with ω1 = 10−16 and with different
values of μ and β are summarized in Table 2. Also, the target compliances during
the iterations for all CPD examples are reported in Figure 5 with different values
of μ and β. The results show that the CPD algorithm sensitively depends on the
volume evolution parameter μ, but not the penalty parameter β. The comparison for
volume evolutions by CPD and BESO is given in Figure 6, which shows as expected
that the BESO method also sensitively depends on the volume evolutionary rate
μ. For a fixed β = 4000, the convergence of the CPD is more stable and faster
than the BESO. The C-Iteration curve for BESO jumps for every given μ, which
could be the so-called “chaotic convergence curves” addressed by G. I. N. Rozvany
in [41].

Fig. 2 Cantilever beam with
uniformly distributed load in
the right end

6The so-called compliance in this section is actually a doubled strain energy, i.e., c = 2C(ρ,u) as
used in [36].
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Table 1 Structures produced by CPD, BESO, and SIMP for cantilever beam (60 × 20 × 4)

Method Details Structure

CPD
C = 1973.028

It. = 23

Time= 27.1204

BESO
C = 1771.3694

It. = 154

Time= 2392.9594

SIMP
C = 2416.6333

It. = 200

Time= 98.7545

6.1.2 Uniformly Distributed Load with 120 × 50 × 8 Mesh Resolution

Now, let us consider the same loaded beam as shown in Figure 2 but with a finer
mesh resolution of 120 × 50 × 8. In this example, the target volume fraction and
termination criterion for all procedures are assumed to be Vc = 0.3 and ω1 = 10−6,
respectively. The initial volume reduction rate for both CPD and BESO is μ =
0.935. The perturbation parameter for CPD is β = 7000. The optimal topologies
produced by CPD, BESO, and SIMP methods are reported in Table 3. As we can
see, the CPD is about five times faster than the SIMP and almost 100 times faster
than the BESO method.
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Fig. 3 Convergence test for CPD, BESO, and SIMP

Fig. 4 Comparison of volume variations for CPD, BESO, and SIMP

If we choose ω1 = 0.001, the computing times (iterations) for CPD, BESO, and
SIMP are 0.97 (24), 24.67 (44), and 4.3 (1000) hours, respectively. Actually, the
SIMP failed to reach the given precision. If we increase ω1 = 0.01, the SIMP takes
3.14 hours with 742 iterations to satisfy the given precision. Our numerical results
show that the CPD method can produce very good results with much less computing
time. For a given very small ω1 = 10−16, Table 4 shows the effects of the parameters
of μ, β, and Vc on the computing time of the CPD method.

6.1.3 Beam with a Central Load and 40 × 20 × 20 Meshes

In this example, the beam is subjected to a central load at its right end (see
Figure 7). We let Vc = 0.095, ω1 = 0.001, β = 7000, and μ = 0.888.



228 D. Gao and E. J. Ali

Ta
bl

e
2

O
pt

im
al

st
ru

ct
ur

es
pr

od
uc

ed
by

C
PD

w
ith

di
ff

er
en

tv
al

ue
s

of
μ

an
d
β

D
et

ai
ls

St
ru

ct
ur

e
D

et
ai

ls
St

ru
ct

ur
e

μ
=

0.
88

μ
=

0.
89

β
=

40
00

β
=

90
00

0

C
=

21
82

.7
8

C
=

19
73

.0
2

It
.=

22
It

.=
23

T
im

e=
29

.4
4

T
im

e=
30

.6
9

μ
=

0.
9

μ
=

0.
92

β
=

40
00

β
=

90
00

0

C
=

19
20

.6
8

C
=

18
32

.5
9

It
.=

23
It

.=
23

T
im

e=
30

.8
7

T
im

e=
33

.7
3



A Novel Canonical Duality Theory for Solving 3-D Topology Optimization Problems 229

Fig. 5 Convergence tests for CPD method at different values of μ and β

Fig. 6 Convergence test for CPD and BESO with different μ.
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Table 3 Topology optimization for cantilever beam (120 × 50 × 8)

Method Details Structure

CPD
C = 1644.0886

It. =24

Time=3611.23

BESO
C = 1605.1102

It. =200

Time=342751.96

SIMP
C = 1835.4106

It. =1000

Time=15041.06

The topology optimized structures produced by CPD, SIMP, and BESO meth-
ods are summarized in Table 5. Compared with the SIMP method, we can
see that by using only 20% of computing time, the CPD can produce global
optimal solution, which is better than that produced by the BESO, but with only
8% of computing time. We should point out that for the given ω1 = 0.001,
the SIMP method failed to converge in 1000 iterations (the so-called “change”
# = 0.0061 > ω1).
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Fig. 7 Design domain for
cantilever beam with a central
load in the right end

6.2 MBB Beam

The second benchmark problem is the 3-D Messerschmitt-B̈olkow-Blohm (MBB)
beam. Two examples with different loading and boundary conditions are illustrated.

6.2.1 Example 1

The MBB beam design for this example is illustrated in Figure 8. In this example,
we use 40×20×20 mesh resolution, Vc = 0.1, and ω1 = 0.001. The initial volume
reduction rate and perturbation parameter are μ = 0.89 and β = 5000, respectively.

Table 6 summarizes the optimal topologies by using CPD, BESO, and SIMP
methods. Compared with the BESO method, we see again that the CPD produces
a mechanically sound structure and takes only 12.6% of computing time. Also, the
SIMP method failed to converge for this example and the result presented in Table 6
is only the output of the 1000th iteration when # = 0.039 > ω1.

6.2.2 Example 2

In this example, the MBB beam is supported horizontally in its four bottom corners
under central load as shown in Figure 9. The mesh resolution is 60 × 10 × 10, the
target volume is Vc = 0.155. The initial volume reduction rate and perturbation
parameter are defined as μ = 0.943 and β = 7250, respectively.

The topology optimized structures produced by CPD, BESO, and SIMP with
ω1 = 10−5 are reported in Table 7. Once again, we can see that without using
any artificial techniques, the CPD produces mechanically sound integer density
distribution but the computing time is only 3.3% of that used by the BESO.

6.3 Cantilever Beam with a Given Hole

In real-world applications, the desired structures are usually subjected to certain
design constraints such that some elements are required to be either solid or void.
Now, let us consider the cantilever beam with a given hole as illustrated in Figure 10.
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Table 5 Topologies of the cantilever beam with a central load in the right end

CPD: C = 20.564, It. =45, Time=959.7215

BESO: C = 20.1533, It. =53, Time=11461.128

SIMP: C = 25.7285, It. =1000, Time=4788.4762

We use mesh resolution 70×30×6 and parameters Vc = 0.5, β = 7000, μ = 0.94,
and ω1 = 0.001.

The optimal topologies produced by CPD, BESO, and SIMP are summarized in
Table 8. The results show clearly that the CPD method is significantly faster than
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Fig. 8 MBB beam with
uniformly distributed central
load

Table 6 Results for 3-D MBB beam with uniformly distributed load

CPD: C = 7662.5989, It. =46, Time=1249.1267

BESO: C = 7745.955, It. =55, Time=9899.0921

SIMP: C = 12434.8629, It. =1000, Time=5801.0065
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Fig. 9 3-D MBB beam with
a central load

both BESO and SIMP. Again, the SIMP failed to converge in 1000 iterations and
the “Change” # = 0.011 > ω1 at the last iteration.

6.4 3D Wheel Problem

The 3D wheel design problem is constrained by planar joint on the corners with
a downward point load in the center of the bottom as shown in Figure 11. The
mesh resolution for this problem is 40 × 20 × 40. The target volume is Vc = 0.2
and the parameters used are β = 150, μ = 0.94, and ω1 = 10−5. The optimal
topologies produced by CPD, BESO, and SIMP are reported in Table 9. We can
see that the CPD takes only about 18% and 32% of computing times by BESO and
SIMP, respectively. Once again, the SIMP failed to converge in 1000 iterations and
the “Change” # = 0.0006 > ω1 at the last iteration.

For a given very small termination criterion ω1 = 10−16 and for mesh resolution
30 × 20 × 30, Table 10 shows effects of the parameters μ and Vc on the topology
optimized results by CPD.

7 Concluding Remarks and Open Problems

We have presented a novel canonical penalty-duality method for solving challenging
topology optimization problems. The relation between the CPD method for solving
0-1 integer programming problems and the pure complementary energy principle
in nonlinear elasticity is revealed for the first time. Applications are demonstrated
by 3-D linear elastic structural topology optimization problems. By the fact that the
integer density distribution is obtained analytically, it should be considered as the
global optimal solution at each volume iteration. Generally speaking, the so-called
compliance produced by the CPD is higher than those by BESO for most of tested
problems except for the MBB beam and the cantilever beam with a given hole.
The possible reason is that certain artificial techniques such as the so-called soft-
kill, filter, and sensitivity are used by the BESO method. The following remarks
are important for understanding these popular methods and conceptual mistakes in
topology optimization.
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Table 7 Structures for 3-D MBB beam with a central load

Method Details Structure

CPD
C = 19.5313

It. = 37

Time=48.2646

BESO
C = 20.1132

It. =57

Time=1458.488

SIMP
C = 41.4099

It. =95

Time=366.4988
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Fig. 10 Design domain for
cantilever beam with a given
hole

Table 8 Topology optimized structures for cantilever beam with a given hole

CPD: C = 910.0918, It. =14, Time=74.61

BESO: C = 916.3248, It. =21, Time=1669.5059

SIMP: C = 997.1556, It. =1000, Time=1932.7697

Remark 3 (On Penalty-Duality, SIMP, and BESO Methods) It is well-known that
the Lagrange multiplier method can be used essentially for solving convex problem
with equality constraints. The Lagrange multiplier must be a solution to the
Lagrangian dual problem (see the Lagrange Multiplier’s Law in [12], page 36). For
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Fig. 11 3D wheel problem

Table 9 Topology optimized results for 3D wheel problem (40 × 20 × 40) by CPD (left), BESO
(middle), and SIMP (right)

C = 3.6164, It. =32 C = 3.6136, It. =52 C = 3.7943, It. =1000

Time=6716.1433 Time=37417.5089 Time=20574.8348

Table 10 Topology optimized results by CPD for 3D wheel problem (30 × 20 × 30) with two
different views

μ = 0.88, Vc = 0.06 μ = 0.88, Vc = 0.1 μ = 0.92, Vc = 0.1

C = 5.7296, It. =55 C = 4.2936, It. =44 C = 4.3048, It. =45

Time=2324.0445 Time=1888.6451 Time=1823.7826
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inequality constraint, the Lagrange multiplier must satisfy the KKT conditions. The
penalty method can be used for solving problems with both equality and inequality
constraints, but the iteration method must be used. By the facts that the penalty
parameter is hard to control during the iterations and in principle, needs to be large
enough for the penalty function to be truly effective, which on the other hand,
may cause numerical instabilities, the penalty method was becoming disreputable
after the augmented Lagrange multiplier method was proposed in 1970s and
1980s. The augmented Lagrange multiplier method is simply the combination of
the Lagrange multiplier method and the penalty method, which has been actively
studied for more than 40 years. But, this method can be used mainly for solving
linearly constrained problems since any simple nonlinear constraint could lead to a
nonconvex minimization problem [34].

For example, let us consider the knapsack problem (Pu). As we know that by
using the canonical measure �(ρ) = ρ ◦ ρ − ρ, the 0-1 integer constraint ρ ∈
{0, 1}n can be equivalently written in equality ρ ◦ ρ − ρ = 0. Even for this most
simple quadratic nonlinear equality constraint, its penalty function Wβ = β‖ρ ◦
ρ − ρ‖2 is a nonconvex function! In order to solve this nonconvex optimization
problem, the canonical duality theory has to be used as discussed in Section 4. The
idea for this penalty-duality method was originally from Gao’s PhD thesis [7]. By
Theorem 1, the canonical dual variable σ is exactly the Lagrange multiplier to the
canonical equality constraint ε = �(ρ) = ρ ◦ρ −ρ = 0, and the penalty parameter
β is theoretically not necessary for the canonical duality approach. But, by this
parameter, the canonical dual solution can be analytically and uniquely obtained.
By Theorem 7 in [25], there exists a βc > 0 such that for any given β ≥ βc, this
analytical solution solves the canonical dual problem (Pd

u ), therefore, the parameter
β is not arbitrary and no iteration is needed for solving the β-perturbed canonical
dual problem (Pd

β ).
The mathematical model for the SIMP is formulated as a box-constrained

minimization problem:

(Psp) : min

{
1

2
uT K(ρp)u | K(ρp)u = f, u ∈ Ua, ρ ∈ Zb

}

, (63)

where p > 0 is a given parameter, and

Zb = {ρ ∈ R
n| ρT v ≤ Vc, ρ ∈ (0, 1]n}.

By the fact that ρp = ρ ∀p ∈ R, ∀ρ ∈ {0, 1}n, the problem (Psp) is obtained
from (Ps) by artificially replacing the integer constraint ρ ∈ {0, 1}n in Za with the
box constraint ρ ∈ (0, 1]n. Therefore, the SIMP is not a mathematically correct
penalty method for solving the integer-constrained problem (Ps) and p is not a
correct penalty parameter. By Remark 1, we know that the alternative iteration can’t
be used for solving (Psp) and the target function must be written in terms of ρ

only, i.e., Pc(ρ
p) = 1

2 fT [K(ρp)]−1f, which is not a coercive function and, for any
given p > 1, its extrema are usually located on the boundary of Zb (see [20]).
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Therefore, unless some artificial techniques are adopted, any mathematically correct
approximations to (Psp) can’t produce reasonable solutions to either (Pc) or (Ps).
Indeed, from all examples presented above, the SIMP produces only gray-scaled
topology, and from Figure 3 we can see clearly that during the first 15 iterations,
the structures produced by SIMP are broken, which are both mathematically and
physically unacceptable. Also, the so-called magic number p = 3 works only
for certain homogeneous material/structures. For general composite structures, the
global min of Pc(ρ

3) can’t be integers [20].
The optimization problem of BESO as formulated in [30] is posed in the form

of minimization of mean compliance, i.e., the problem (P ). Since the alternative
iteration is adopted by BESO, and by Remark 1 this alternative iteration leads
to an anti-Knapsack problem, the BESO should theoretically produce only trivial
solution at each volume evolution. However, instead of solving the anti-Knapsack
problem (16), a comparison method is used to determine whether an element needs
to be added to or removed from the structure, which is actually a direct method
for solving the knapsack problem (Pu). This is the reason why the numerical
results obtained by BESO are similar to that by CPD. But, the direct method is
not a polynomial-time algorithm. Due to the combinatorial complexity, this popular
method is computationally expensive and be used only for small-sized problems.
This is the very reason that the knapsack problem was considered as NP-complete
for all existing direct approaches.

Remark 4 (On Compliance, Objectivity, and Modeling in Engineering Optimiza-
tion) By Wikipedia (see https://en.wikipedia.org/wiki/Stiffness), the concept of
“compliance” in mechanical science is defined as the inverse of stiffness, i.e., if
the stiffness of an elastic bar is k, then the compliance should be c = 1/k, which
is also called the flexibility. In 3-D linear elasticity, the stiffness is the Hooke
tensor K, which is associated with the strain energy W(ε) = 1

2ε : K : ε; while
the compliance is C = K−1, which is associated with the complementary energy
W ∗(σ ) = 1

2σ : K−1 : σ . All these are well written in textbooks. However,
in topology optimization literature, the linear function F(u) = uT f is called the
compliance. Mathematically speaking, the inner product uT f is a scalar, while the
compliance C is a matrix; physically, the scalar-valued function F(u) represents
the external (or input) energy, while the compliance matrix C depends on the
material of structure, which is related to the internal energy W ∗(σ ). Therefore, they
are two totally different concepts, mixed using these terminologies could lead to
serious confusions in multidisciplinary research7. Also, the well-defined stiffness
and compliance are mainly for linear elasticity. For nonlinear elasticity or plasticity,
the strain energy is nonlinear and the complementary energy can’t be explicitly
defined. For nonconvex W(ε), the complementary energy is not unique. In these

7Indeed, since the first author was told that the strain energy is also called the compliance in
topology optimization and (Pc) is a correct model for topology optimization, the general problem
(Pbl) was originally formulated as a minimum total potential energy so that using f = K(ρ)ū,
min{�h(ū, ρ)| ρ ∈ Za} = min{− 1

2 c(u)ρT | ρ ∈ Za} is a knapsack problem [18].

https://en.wikipedia.org/wiki/Stiffness
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cases, even if the stiffness can be defined by the Hessian matrix K(ε) = ∇2W(ε),
the compliance C can’t be well defined since K(ε) could be singular even for the
so-called G-quasiconvex materials [19].

Objectivity is a central concept in our daily life, related to reality and truth.
According to Wikipedia, the objectivity in philosophy means the state or quality
of being true even outside a subject’s individual biases, interpretations, feelings,
and imaginings.8 In science, the objectivity is often attributed to the property of
scientific measurement, as the accuracy of a measurement can be tested independent
from the individual scientist who first reports it.9 In continuum mechanics, it is
well known that a real-valued function W(ε) is called to be objective if and only
if W(ε) = W(Rε) for any given rotation tensor R ∈ SO(3), i.e., W(ε) must be
an invariant under rigid rotation (see [5], and Chapter 6 [12]). The duality relation
ε∗ = ∇W(ε) is called the constitutive law, which is independent of any particularly
given problem. Clearly, any linear function is not objective. The objectivity lays a
foundation for mathematical modeling. In order to emphasize its importance, the
objectivity is also called the principle of frame indifference in continuum physics
[49].

Unfortunately, this fundamentally important concept has been mistakenly used
in optimization literature with other functions, such as the target, cost, energy,
and utility functions, etc.10 As a result, the general optimization problem has been
proposed as:

min f (x), s.t. g(x) ≤ 0, (64)

and the arbitrarily given f (x) is called objective function,11 which is even allowed
to be a linear function. Clearly, this general problem is artificial. Without detailed
information on the functions f (x) and g(x), it is impossible to have powerful
theory and method for solving this artificially given problem. It turns out that many
nonconvex/nonsmooth optimization problems are considered to be NP-hard.

In linguistics, a grammatically correct sentence should be composed by at least
three components: subject, object, and a predicate. Based on this rule and the
canonical duality principle [12], a unified mathematical problem for multi-scale
complex systems was proposed by Gao in [16]:

(Pg) : min{�(u) = W(Du) − F(u)| u ∈ Uc}, (65)

where W(ε) : Ea → R is an objective function such that the internal duality
relation ε∗ = ∇W(ε) is governed by the constitutive law, its domain Ea contains

8https://en.wikipedia.org/wiki/Objectivity_(philosophy).
9https://en.wikipedia.org/wiki/Objectivity_(science).
10http://en.wikipedia.org/wiki/Mathematical_optimization.
11This terminology is used mainly in the English literature. The function f (x) is correctly called
the target function in Chinese and Japanese literature.

https://en.wikipedia.org/wiki/Objectivity_(philosophy)
https://en.wikipedia.org/wiki/Objectivity_(science)
http://en.wikipedia.org/wiki/Mathematical_optimization
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only physical constraints (such as the incompressibility and plastic yield conditions
[8]), which depends on mathematical modeling; F(u) : Ua → R is a subjective
function such that the external duality relation u∗ = ∇F(u) = f is a given input
(or source), its domain Ua contains only geometrical constraints (such as boundary
and initial conditions), which depends on each given problem; D : Ua → Ea is a
linear operator which links the two spaces Ua and Ea with different physical scales;
the feasible space is defined by Uc = {u ∈ Ua| Du ∈ Ea}. The predicate in (Pg)

is the operator “−” and the difference �(u) is called the target function in general
problems. The object and subject are in balance only at the optimal states.

The unified form (Pg) covers general constrained nonconvex/nonsmooth/discrete
variational and optimization problems in multi-scale complex systems [23, 29].
Since the input f does not depend on the output u, the subjective function F(u) must
be linear. Dually, the objective function W(ε) must be nonlinear such that there
exist an objective measure ξ = �(u) and a convex function �(ξ), the canonical
transformation W(Du) = �(�(u)) holds for most real-world systems. This is the
reason why the canonical duality theory was naturally developed and can be used to
solve general challenging problems in multidisciplinary fields. However, since the
objectivity has been misused in optimization community, this theory was mistakenly
challenged by M.D. Voisei and C. Zălinescu (cf. [23]). By oppositely choosing
linear functions for W(ε) and nonlinear functions for F(u), they produced a list
of “counterexamples” and concluded: “a correction of this theory is impossible
without falling into trivial.” The conceptual mistakes in their challenges revealed
at least two important truths: 1) there exists a huge gap between optimization and
mechanics; and 2) incorrectly using the well-defined concepts can lead to ridiculous
arguments. Interested readers are recommended to read recent papers [17] for
further discussion.

For continuous systems, the necessary optimality condition for the general
problem (Pg) leads to an abstract equilibrium equation:

D∗∂εW(Du) = f. (66)

It is linear if the objective function W(ε) is quadratic. This abstract equation
includes almost all well-known equilibrium problems in textbooks from partial
differential equations in mathematical physics to algebraic systems in numerical
analysis and optimization [48]12. In mathematical economics, if the output u ∈
Ua ⊂ R

n represents product of a manufacture company, the input f can be
considered as the market price of u, then the subjective function F(u) = uT f in
this example is the total income of the company. The products are produced by
workers ε = Du and D ∈ R

m×n is a cooperation matrix. The workers are paid by
salary ε∗ = ∇W(ε) and the objective function W(ε) is the total cost. Thus, the

12The celebrated textbook Introduction to Applied Mathematics by Gil Strang is a required course
for all engineering graduate students at MIT. Also, the well-known MIT online teaching program
was started from this course.
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optimization problem (Pg) is to minimize the total loss �(u) under certain given
constraints in Uc. A comprehensive review on modeling, problems, and NP-hardness
in multi-scale optimization is given in [21].

In summary, the theoretical results presented in this paper show that the canonical
duality theory is indeed an important methodological theory not only for solving the
most challenging topology optimization problems but also for correctly understand-
ing and modeling multi-scale problems in complex systems. The numerical results
verified that the CPD method can produce mechanically sound optimal topology,
also it is much more powerful than the popular SIMP and BESO methods. Specific
conclusions are given below:

1. The mathematical model for general topology optimization should be formulated
as a bi-level mixed integer nonlinear programming problem (Pbl). This model
works for both linearly and nonlinearly deformed elastoplastic structures.

2. The alternative iteration is allowed for solving (Pbl), which leads to a knapsack
problem for linear elastic structures. The CPD is a polynomial-time algorithm,
which can solve (Pbl) to obtain global optimal solution at each volume iteration.

3. The pure complementary energy principle is a special application of the canon-
ical duality theory in nonlinear elasticity. This principle plays an important role
not only in nonconvex analysis and computational mechanics but also in topology
optimization, especially for large deformed structures.

4. Unless a magic method is proposed, the volume evolution is necessary for solving
(Pbl) if μc = Vc/V0 � 1. But, the global optimal solution depends sensitively
on the evolutionary rate μ ∈ [μc, 1).

5. The compliance minimization problem (P ) should be written in the form of (Pc)

instead of the minimum strain energy form (Ps). The problem (Pc) is actually
a single-level reduction of (Pbl) for linear elasticity. Alternative iteration for
solving (Ps) leads to an anti-knapsack problem.

6. The SIMP is not a mathematically correct penalty method for solving either (P )

or (Pc). Even if the magic number p = 3 works for certain material/structures,
this method can’t produce correct integer solutions.

7. Although the BESO is posed in the form of minimization of mean compliance,
it is actually a direct method for solving a knapsack problem at each volume
reduction. For small-scale problems, BESO can produce reasonable results much
better than by SIMP. But, it is time consuming for large-scale topology optimiza-
tion problems since the direct method is not a polynomial-time algorithm.

By the fact that the canonical duality is a basic principle in mathematics and
natural sciences, the canonical duality theory plays a versatile role in multidisci-
plinary research. As indicated in the monograph [12] (page 399), applications of
this methodological theory have three aspects:

(1) To check the validity and completeness of the existence theorems;
(2) To develop new (dual) theories and methods based upon the known ones;
(3) To predict the new systems and possible theories by the triality principles and

its sequential extensions.
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This paper is just a simple application of the canonical duality theory for linear
elastic topology optimization. The canonical penalty-duality method for solving
general nonlinear-constrained problems and a 66-line Matlable code for topology
optimization are given in the coming paper [26]. The canonical duality theory
is particularly useful for studying nonconvex, nonsmooth, nonconservative large
deformed dynamical systems [13]. Therefore, the future works include the CPD
method for solving general topology optimization problems of large deformed
elastoplastic structures subjected to dynamical loads. The main open problems
include the optimal parameter μ in order to ensure the fast convergence rate with the
optimal results, and the existence and uniqueness of the global optimization solution
for a given design domain Vc.
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High Performance Computing:
Challenges and Risks for the Future

Michael M. Resch, Thomas Boenisch, Michael Gienger, and Bastian Koller

1 Introduction

High performance computing (HPC) is facing considerable challenges in the coming
years. While for some time processor and system architectures were considered the
most crucial problems [6, 7], today challenges go well beyond the mere discussion
of the hardware. In this paper, we will present and discuss the most recent trends in
hardware development and will explore how these trends will influence HPC, and
what challenges and opportunities come with it.

Even though the question of architecture is perhaps no longer the most pressing
on, the first problem that HPC will have to handle in the future is a hardware
problem: the end of Moore’s law [5]. The prediction of Moore in 1965, that we
would be able to cram ever more transistors on the same surface, with the numbers
doubling every 12 – later Moore shifted this to 18 – months, did hold for about 50
years and predictions were given in 2015 that it might hold for another decade.1

Currently, there is doubt whether it can be extended even in the coming few years.
Traditional assumptions no longer hold and no longer can be considered to be the
main driving factor for hardware improvement. We will explore what impact this
might have on HPC.
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With traditional hardware improvement making it much more difficult to squeeze
more performance from any given HPC architecture, the focus of attention is slowly
shifting towards software and towards mathematical methods for HPC simulation.
Over the last decades, various investigations show that mathematical methods – at
least for the solution of systems of equations – have contributed substantially to the
increase in performance [4]. Algorithms will play a more crucial role and this paper
will explore how this will happen and what the key questions from the point of view
of HPC will be.

Another trend that has a huge impact on HPC is what can best be described as
Big Data. Even though usage of data goes way beyond the original idea of handling
large amount of data, the term Big Data still in a sense is useful as it describes
well how HPC may be overwhelmed by the data problem in the coming years. HPC
may well become a smaller part of a larger digital infrastructure that is focusing
around data rather than around compute power. We will address how this will
impact HPC.

2 The End of Moore’s Law

2.1 Technical Limits

Technically, HPC is facing the end of a development that used to be called Moore’s
law. Processor clock frequencies, which carried the main load of speeding up
hardware cannot be further increased – a fact that can be seen in processor industry
already since about 2004. Clock frequencies in standard processors as used in HPC
systems reached a peak of about four GHz and are currently hovering at about two
to three GHz. An increase in clock frequency would increase leakage and hence,
make cooling of such a processor difficult if not impossible.

The way to get to more performance is parallelism and multicore processors have
hence become a standard. Parallelism was introduced decades ago, but became the
key technology for HPC only in the last two decades. A typical HPC processor
is currently based on 16 to 32 cores – each of which is using internal parallelism
in functional units to boost the theoretical number of operations per clock cycle.
In order to avoid a too-high power consumption of such processors, the clock
frequency is typically lower than it could theoretically be. Power budgets have
become a main issue when it comes to processor design.

The so-called accelerators provide solutions that rely on simplified core archi-
tectures, but allow to push the number of cores on a single chip to extremes.
Thousands of cores on a single accelerator chip allow much higher theoretical
peak performance than standard processors. The classical accelerator approach
aims at high peak performance based on simplified cores running at lower clock
frequencies. As a result, higher peak performance seems to be achievable within
a still reasonable power budget. Unfortunately, such accelerators leave the users
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with the need to adapt their codes to a new architecture and a new programming
model. The costs for such adaptation are high, given that there is still no agreed
open standard for the programming of various accelerators. At the same time,
the parallelism of accelerators typically requires single instruction multiple data
(SIMD) parallelism as described by Flynn [2].

For some time, it was expected that these two developments (parallelism in
processors and in system architectures) would keep pushing HPC to ever higher
levels of performance with the Exaflop being the target for 2020. Ever large systems
based on a mix of standard processors and accelerators were built. A most recent
update of the TOP5002 list shows this trend over the last decade. However, recent
investigations show that the required reduction of feature size on chips – necessary
to further increase the number of cores on a chip – is no longer to be expected over
the next decade [1]. We have to explore what this will mean to HPC and how we
can react to this in terms of architectures.

2.2 What Does It Mean for Architectures?

First of all, we have not yet reached the end of the line. Transistors keep shrinking for
a number of years still – even if it will only be for five to eight years. This will further
push the degree of parallelism we will see in standard processors (moving from tens
of cores to probably even 100 cores) and accelerators (moving from thousands of
cores to potentially ten thousand cores). The basic concept of HPC architectures will
theoretically not have to change during this time frame. Large-scale systems will
potentially host a mix of standard processors and accelerators. Accelerators may be
as different as a graphic card or a vector processor, but they will most certainly be
included in any top 20 systems in the world over the next decade.

Given the further progress to be expected, such architecture will be able to reach a
peak performance of about one Exaflop most likely after 2020 – as hardware vendors
and national large-scale HPC projects keep adapting their roadmaps shifting the first
Exaflop to ever later dates. The exact year is hard to predict as the race for this
prestigious number is not only motivated by technical goals but at least as much
by political considerations. It would lead us too far away from the purpose of this
paper if we discussed the political implications of the end of Moore’s law. However,
it suffices to say that the level of disappointment in the political arena will increase
with ever higher budgets that are necessary to buy faster systems – given that only
an increase in budget allows to further increase peak performance at a certain point
as increase in speed is only possible by increasing the number of compute nodes
available in a single system.

2The Top 500 list: www.top500.org.

www.top500.org
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3 How Do We Move Forward in HPC Architectures?

Assuming that an increased processor speed is no longer possible and hence won’t
provide the necessary increase in peak performance, there are two potential ways
out.

First, we can – and actually already do – further increase the number of
processors in an HPC system. This will give higher peak performance but will
require higher budgets and will make it more difficult to program such systems.
Furthermore, this will increase our need for space, power, and cooling. As a side
effect, the core of costs for HPC is shifting from investment costs to infrastructure
costs and operational costs. As of today, operational and infrastructure costs can
be even higher than investment costs. Consequently, this will become worse in the
coming years.

Second, we can simply give up the notion that higher peak performance is
better. This is not to say that peak performance is at all irrelevant. The Exaflop
will allow to tackle some of the most challenging problems in science and will
help to achieve new breakthroughs. However, it is about time that we admit that
transistor technology has reached a level at which it is simply not viable to go
any further. While costs are exploding, scientists struggle with getting sustained
performance from ever more complex systems. To admit that a technology has
matured and no longer offers huge increases in performance is not an unusual thing
to say when it comes to modern technologies. Automotive industry has long given
up on maximum speed or maximum horse power as the key performance indicator
for cars. Aerospace industry has built the Concorde to push the maximum speed of
a civil aircraft beyond the speed of sound but stopped following that path and finally
even terminated the ill-fated Concorde.

For HPC, this means that we need to define a different metric to measure
the power of an HPC system. New approaches for benchmarking like HPCG3

or HPGMG4 are available, but suffer all from the same weakness: they only
measure performance for one typical method but give no real indication of the
overall level of sustained performance a user may expect from a system. On
the other hand, any comprehensive suite of benchmarks would make it virtually
impossible to run all benchmarks to get to a reasonable evaluation of the system.
Already today, the Linpack benchmark as used in the TOP500 takes way too
long for a public computing center to be considered a reasonable benchmarking
approach. It is mostly only run to make sure that there is an entry to the TOP500
list.

3www.hpcg-benchmark.org.
4https://hpgmg.org.

www.hpcg-benchmark.org
https://hpgmg.org
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4 The Opportunities of Software and Algorithms

With hardware not offering the same potential increase in performance as over the
last decades, the focus of attention starts to shift to other components of an HPC
simulation. Basically, three aspects have to be considered and show some potential
for the user and for computing centers: programming models, power efficiency, and
new algorithms.

4.1 Programming Models

Current programming models were developed when parallel computers were using
hundreds or at most thousands of cores. The standardization, both for message
passing (MPI) and for shared memory parallelism (OpenMP), did make sense at the
time when they were developed and were a great step forward since they provided a
standardized way of writing portable programs for parallel systems. However, today
these approaches are increasingly facing challenges, both for their implementation
and for their users.

Given the hierarchical nature of modern HPC systems with a cascade of logical
units like racks, nodes, and processors, what is required are models that reflect this
hierarchy. One approach could certainly be – and actually it is used already widely
in the community – a combination of MPI and OpenMP often described as hybrid
programming. However, there are two drawbacks for this model. First, it simplifies
the view of the architecture to two levels – inside a shared memory node and across
several such nodes. With architectures that show several levels of parallelism, this is
a mismatch of programming model and hardware architecture. Second, it does not
make the life of programmers much easier given that process management – as is
required by MPI – is still extremely difficult when the number of nodes is in the tens
of thousands.

4.2 Power Efficiency

Over the last years, a lot of effort has been invested in evaluating the potential on
saving power in HPC simulations. Given that the power consumption of a processor
depends on the usage of the processor and hence, on the programming style of
the user, investigations were started to find out about power saving programming
models. The key finding of such investigations can easily be summarized. It turns
out that all kind of communication is causing most power consumption and that
hence a basic rule for power saving is: do not communicate.

Now, this is exactly what we want to do when we optimize our parallel
programs. Both at the node level and in internode communication, we try to
avoid communication as much as possible. Hence, power saving and performance
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increase coincide favorably such that we can focus in our optimization on avoiding
communication and will both increase performance and reduce power consumption.

However, avoiding communication is not always possible. Densely coupled
problems require communication, and a decoupling of computational parts of a
program is not always feasible. Sometimes, it even leads to wrong results as the
software-wise decoupling of a problem that is physically densely coupled leads to
non-convergence or effects like oscillations in the solution caused by the decoupling
method[8].

4.3 New Algorithms

Finally, we need to explore the potential of algorithms to better exploit existing
hardware architectures. As we have seen above, algorithms did contribute substan-
tially to the increase in performance for HPC simulations. The speedup through
algorithms is comparable to the speedup through clock frequency increase over
several decades. Multigrid methods are orders of magnitudes faster than the classical
methods with which we started computations back in the 1950s.

The key factor in designing algorithms will be to consider the rule: do not
communicate. Modern algorithms will hence have to devise ways of providing
locality as much as possible without losing the overall convergence for the solution
of the simulation problem. It does make sense to look for ways that might even
increase the number of floating point operations if such an increase comes with a
substantial decrease in communication.

5 The Impact of Data on HPC

Even though a traditional look at HPC already shows some dramatic changes, there
is something that might be even more important for HPC. Considering the current
trends, we find that HPC is going to be just a small part of something bigger – which
is Data. It is meanwhile well accepted that the value is in the data and not so much
in the simulation itself. This is also true for data not coming from a simulation.

Sources of data are manifold: from the traces each person is generating each day
using systems in the Internet, when shopping, communicating, watching movies,
or visiting other web pages. There are business data operations, which are digitally
available and stored for years. There is an increasing amount of sensors everywhere
especially, powered by the Internet of Things, going from production lines to
personal homes. Smart meters are a good example for that. And last but not
least, there is an increasing amount of data generated by technical and scientific
simulations.

Several companies already own a huge amount of data which they cannot handle
or analyze anymore in a traditional way. Very often such data are only stored for
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later analysis, but get lost when storage technology changes. In many cases, data
are collected but are not available or cannot be analyzed sufficiently when problems
arise. A typical example is the new technology of Industrie 4.0, as it is called in
Germany. With production machinery collecting data and communicating among
each other, the factory of the future turns into a gigantic pool of processing and
communication. The heap of data created requires analysis not only for the sake of
improving production but also to be able to detect errors and identify sources of
problems. As a consequence, we see an increasing number of problems, where an
increased size of data to be analyzed requires increased computational capacity.
On the other hand, HPC creates very large data sets that require data analytics
capabilities that go way beyond traditional visualization.

5.1 What Does this Mean for HPC?

In most cases today, data analytics or big data are widely disconnected from
HPC. Both technologies keep pushing their limits and are developed in different
departments both in research and in industry. However, in many cases there is a
convergence visible or might be beneficial in the near future. Even in cases where
this is not visible today. Fraud detection is a well-known application field of data
analytics meanwhile. Banks for example are using systems to detect the misuse of
credit cards. They have only very little time to decide about a transaction. To meet
those requirements, HPC technology is used to speed up the analytics process.

For many business cases where data analytics is done in large in-memory
databases, nobody is thinking about HPC today. However, the next step after the
analysis of business data could be the question of making the next step in business
logic. In many cases, this could lead to the requirement of large simulations and
parameter studies, which will naturally require HPC systems. This is already visible
in railroad companies, where in case of delays simulations are used to decide
between different opportunities to improve the current traffic situation.

The increasing use and number of linked sensors is another area where data
volumes are exploding. This leads to the idea of in-time analytics to detect events
before they occur for example with machine learning technologies. In several cases,
this leads to new insights and the information about existing dependencies. The
interest of further understanding and analysis is leading to the requirement of
solving inverse problems to get further insight into the system behavior. This will
increase the requirement for HPC in the future.

Another example with even higher impact on HPC is the usage of sensors to
detect major events, which might lead into disasters like earthquakes and tsunamis
[3]. After the detection of an event, an urgent simulation is required to understand
the potential effects of this event. It needs to be decided how critical the event is
and what should be recommended for the public and for officials. Therefore, urgent
computing is required also in the frame of HPC, which changes the operation models
of an HPC center drastically.
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The simulation field itself is causing a data problem, too. With the compute
power available today, the resulting data sets are often huge, and the current
methodology to analyze the results does not work in many cases as it often does not
scale, either due to manual invention or as the used hardware or software provides
limits. One way to reduce the amount of data to be stored is the usage of lossy
data compression. There are efforts going on to learn, for which use cases which
compression method and what factor of information loss is acceptable [9]. In other
fields, like meteorology, measurement data shall be integrated into the simulation.
This leads to questions of data assimilation and how to perform that in an HPC
environment.

In several fields, the question of some automatic data pre-analysis is coming
up. Again in meteorology, it could become interesting to use the current methods
from data analytics to detect events in the large result data sets. This would
significantly reduce the amount of time required for the analysis steps. In CFD
as another example, researchers are developing methods to further analyze and
categorize turbulence. Actual methods require reading the whole time, depending
on simulation data about ten times. Other methods under development will increase
the data volume by a factor of ten and more before reducing the amount data in the
end.

5.2 The Impact on HPC Environments and Architectures

The described development will have a significant impact on architectures and
on HPC environments. In several cases, a direct connection to include up-to-
date input data into the on-going simulations will require a change in the HPC
environment setup and will require solving new security issues. Additionally, there
is the upcoming requirement for urgent computing, which needs to be solved
administratively as well as technically as many HPC systems are not prepared for
such a requirement. However, as most of today’s systems are publicly funded, a
future community requirement cannot be ignored and must be handled.

The requirement of handling large amounts of data in an HPC system requires
some changes in the architecture or system setup. The solution width is quite
high and might go from the integration of a data-intensive computing platform
into the HPC environment up to a fully integrated system, which is able to
handle huge amounts of data with a high speed as well as compute-intensive
jobs. Fortunately, there are some recent and on-going developments in the mem-
ory and storage hardware section, which can help here in future systems. The
integration of burst buffers as a fast intermediate storage to speed up I/O is only
a first step into this direction. The on-going development of low latency, high
bandwidth storage devices of the NVRAM class will provide further support and
has the potential to act as a game changer for the integration of data analytics
and HPC.
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6 Conclusions

Summarizing our findings, we clearly identify three major trends. First, Moore’s law
is coming to an end, which will make it much more difficult to achieve higher peak
performance by hardware improvement. As a result of this, the focus of attention
will dramatically shift from hardware to software and algorithms. This will cover
programming models as well as mathematical methods and potentially even the
types of methods we will employ on modern HPC architectures. As this happens,
mathematicians will gain more relevance in HPC simulation compared to computer
scientists who will help to widen the HPC community. The most important change
over the coming years may, however, be the impact that data will have on HPC. Even
if big data is not going to entirely replace HPC over the coming years, the focus on
data and its exploration and interpretation will start to outgrow the current focus
on simulation and computation. This will open new fields and new communities for
HPC and should be considered a chance for both, HPC and the scientific community
in general.
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Modern Parallel Architectures to Speed
Up Numerical Simulation

Mikhail Lavrentiev, Konstantin Lysakov, Alexey Romanenko,
and Mikhail Shadrin

1 Introduction

Today, such words as high performance computing (HPC) have become quite
common. The lists of top 500 (see http://top500.org) of most productive cluster
systems and the lists of Green-500 (cf. http://green500.org) of most energy-efficient
computer systems are being published on a regular basis. Systems in the top 9 places
in the lists apply as a co-processor, a GPU NVIDIA Tesla P100. The development
of such computing capabilities has now turned into reality the possibility of solving
applied and theoretical problems of such scale and complexity which used to be
unattainable in the not so distant past. All leading universities in the world, medium
to large research centres, and commercial companies invest into the development of
their own HPC systems, or purchase these type of computing powers on the market.

At the same time, very few problems require all the capabilities of supercomput-
ers from the top 500. Most applied and research challenges can be effectively solved
with an application of modern personal computers with the use of proper software
(algorithms) and hardware (architecture). The latter means graphics processing units
(GPUs) and field programmable gate arrays (FPGAs).

The GPU is a processor with the SIMD architecture, which, according to [4], can
be used to perform in parallel same operations with different data sets. Although
it was initially applied in graphics only, with its more expanded use in other
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areas, most challenges of computer modelling with data sets being processed in
parallel can be well supported by this architecture. Compared to processors of
general purpose, the main part of the GPU consists of relatively simple computing
elements [2]. This type of architecture also enables the increase in the conductivity
of memory bus, which is quite important to boost a computing power. To date, the
peak performance of a single modern GPU card can be as high as 15 TFLOPS [21].

One of the key advantages in using hybrid computing systems is its energy
efficiency. Let us compare 2 systems from the top 500: Cray CX50 with Xeon
E5-2690v3 processor and GPU NVIDIA Tesla P100 [20], rated as #3, and Cray
CX40, rated as #10, which only uses central processors [23]. Normalizing peak
performance reveals that a hybrid system consumes 4 times less energy. According
to the conference GTC-2017 [7] discussion, the Volta GPU shows as many as 50
GFLOPS per watt in single precision [19].

A brief description of FPGA is provided below. Gates array programmed by
the user has been applied for multiple purposes since the 1990s. Initially, different
PLD/CPLD with energy independent memory were used the most. PLD was
successfully applied to develop small autonomous devices and controllers.

The introduction of FPGA (field-programmable gate array) has made it possible
to have many more logical elements while, at the same time, to be able to configure
the same microchip unlimited number of times. FPGA enables to code complex
mathematical algorithms for data processing. It also allows to perform prototyping
of computing devices for the further production of serial custom-made ASIC
microcircuits.

However, until recently, the application of FPGA had two main obstacles,
involving the necessity for manual coding of algorithms up to the register transfer
level (RTL). This is time consuming and requires highly qualified developers.

Until recently, typical tools for development automation (e.g. Simulink, MatLab,
SystemVerilog, and SystemC) have provided poor performance and unnecessary use
of hardware resources compared to the RTL model.

The modern high-level synthesis (HLS) technology [9] uses the C-type language
to describe digital schemes. This is the new level in computation devices develop-
ment, presenting the entire cycle from architecture description to results verification
by means of modelling tools. HLS is nothing but an automated design process,
which interprets the algorithmic description of model and allows to create digital
devices, meeting the prescribed conditions. The HLC technology easily allows to
change the pipeline parameters, adopting to timing or utilization requirements. It
also allows to verify the code prior to its transformation to a scheme for a particular
FPGA microchip.

Thus, together the HLS technology and extended resources of modern FPGA
microchips make it possible to utilize FPGA to answer new challenges in various
application areas. Modern devices are able to support hundreds of thousands of
parallel processes; onboard memory is compared to hundreds of MB allowing
to construct wide and deep computation pipelines. Moreover, FPGA is software
reconfigurable, i.e., the connections among computation primitives and onboard
memory are defined by the user. Such system easily adopts the computation
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architecture to a particular algorithm and is able to modify the given algorithm
for a given hardware. One can configure FPGA microchip unlimited number of
times; hence, the same hardware device could be used to solve different problems.
FPGA-based devices could be used as a part of personal computer or as a standalone
hardware. Therefore, autonomous data processing energy efficient devices of small
sizes could be easily developed.

In the present paper we stress the performance gain results from several areas,
achieved by the use of GPU and FPGA architectures.

2 Examples of Using GPU to Improve Code Execution
Performance in Geophysical Problems

Extended computation power of the modern graphic processors draws the attention
of developers worldwide. Today, there are several hundreds of open source packages
and libraries, adopted for GPU use [10]. Depending on the problem type, perfor-
mance gain from tens to hundreds of times is being reported. The authors achieve
valuable code acceleration (up to tens and even hundred times), while using one
GPU compared to one socket of the central processor. All the examples are practical
problems in the area of Earth Sciences, namely seismic data processing and tsunami
wave simulation.

2.1 Decomposition of Seismic Records by Wave Packages

A part of seismic studies on the earth surface is the measurement of elastic waves,
reflected from the geological interfaces, boundaries between the layers in the Earth
interior. The recorded wave field is used to construct the seismic sections of the
Earth crust. The latter is then used for mineral resources exploration. The data,
concerning reflecting waves, are multi-dimensional, very large (up to terabytes),
and irregular. Therefore, an important problem is the efficient data representation.
It is natural to use the data decomposition with respect to a certain basis, which fits
better the sequel data processing. The so-called wave packages may serve as such a
basis, being convenient ‘bricks’ to build the initial seismic waves. Mathematically
proven that such basis is optimal is given in [1]. The method of decomposition with
respect to wave packages is also useful to solve such problems in geophysics as:
data compression, noise depression, interpolation, regularization (data recalculation
from an arbitrary mesh to a regular one), and others (see details in [8, 16, 17], e.g.).

Algorithms for direct and inverse transformation with respect to wave packages
are described in [3]. Without going into details, we stress here that the unequally
spaced fast Fourier transform (USFFT) is used. This is done through data interpola-
tion for a regular mesh and the use of the FFT library function.
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In our case, the data interpolation (from unequally spaced to regular and back) is
the most time consuming. However, interpolation at each point is independent, the
algorithm is the same for all points. Thus, all the power of modern GPU could be
used.

By using the NVIDIA CUDA technology, the GPU-based fast algorithms for
direct and inverse data decomposition with respect to 3D wave packages have
been developed. A number of optimizations were performed, accounting for the
GPU architecture and decomposition algorithms structure. Performance gain was
45 times at a single GPU. Exploiting peculiarities of the seismic data structure, code
was adopted to use multiple GPUs. Practically linear scalability has been achieved,
namely 3.93 times code acceleration at 4 GPUs and 7.70 times acceleration
at 8 GPUs. Thus, performance gain is 350 times at 8 GPUs compared to a
single CPU.

Details for the code translation and optimization are given in [18].

2.2 The Convolution Problems with Green’s Function

As mentioned earlier, seismic uses the reflecting waves to reconstruct, layer by
layer, the Earth interior structure. Many of these reconstruction methods (the so-
called methods for the inverse seismic problems) are based on the Green’s function,
presenting the wave field from the point source.

The recently developed theory of passing–spreading operators provides the exact
analytical description of the Green’s function even for rather complicated media.
The theory is based on the analytical solution to a direct problem for inhomogeneous
media with arbitrary smooth boundaries in a form of superposition of wave signals
of many times reflected and refracted waves. Each separate signal is described as a
composition of propagation operators of a convolution type at smooth boundaries.
In such a way it is possible to reconstruct a structure of the Green’s function, which
is similar to a recorder wave field.

However, this approach has a rather high computational cost and requires
extended memory resources. The propagation and reflection operators have N2

dimension, N being the number of triangles, describing the boundary between
layers. The typical value of parameter N in real problems is compared to 105.
Moreover, theory is constructed in the frequency domain. So, all the vector-matrix
operations should be done for each value of frequency.

The matrix-vector type algorithm was expected to be well parallelizable. Indeed,
the use of Intel MKL library results in linear scalability with respect to a num-
ber of cores in use. As for the GPU, cuBLAS library procedures have been
used. Even for not the newest NVIDIA Tesla C2070, the computation time
was only 10 minutes, or 162 times faster the original code version. Details are
given in [24].
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2.3 Modelling Tsunami Wave Propagation

The Great Tohoku Earthquake of 2011 (Japan) shows that the population and indus-
try of the coastal regions are not protected from disasters of a seismic nature. Fast
and reliable evaluation of tsunami wave parameters is needed prior to the moment
when the wave approaches the shore to reduce dramatic effects of tsunami wave.
In case of Japan it is only about 20 minutes. Worldwide tsunami wave propagation
is approximated according to the shallow-water theory (both lineal and non-lineal).
These models reflect rather accurately the basic wave parameters (propagation time
period from the source to the recording device and wave amplitudes) even for a
fairly rough numerical bathymetry under assumption that the initial displacement
in the source is known. There are several software packages for modelling wave
propagation throughout the ocean and the wave run-up heights. The most well-
known software packages are MOST and TUNAMI.

MOST (method of splitting tsunami), proposed in [22], allows to make a forecast
of the flood region in real-time mode using tsunameters’ data. This package is
mostly used in the USA for charting inundation maps [5]. The online version of
MOST, comMIT, is also available.

The first attempts to speed up the so-called slitting method were performed by
the authors in 2008. We achieved 60x speedup on CELL BE processor compared
to a single core of CPU. Later, in 2009 we moved the algorithm to GPU with 170x
speedup [11, 12]. Testing the algorithm on real data leads us to understanding that
storing data in single precision data types is not suited for transoceanic modelling.
The surface of the ocean became unstable due to insufficient accuracy of float data
type. The ratio of the wave height to the ocean depth is on the edge of the float point
precision. Thus we developed the newer version of the MOST software package
and applied our knowledge and experience to adopt it for the GPU use. We have
achieved a stable ocean surface and our results have become the same as the NOAA
PMEL modelling results. Computation accuracy is less than 10−3 cm.

The achieved integrated performance results are summarized in Table 1.
In terms of wave propagation modelling the achieved performance means that

computational time for the entire Pacific water area (4′ mash computational grid)
decreases from 7 hours for the original program to just 3 minutes for Tesla K40
GPU, see [13].

Table 1 Performance comparison at different platforms. Time required for one iteration.

No Platform Time (before optimization) Time (after optimization)

1 Original code 3000 ms 3000 ms

2 AMD (6 cores) 1800 ms 420 ms

3 Intel (8 cores) 300 ms 180 ms

4 CELL BE (PS3) 5000 ms 60 ms

5 GPU Tesla C1060 530 ms 19 ms

6 GPU Tesla K40 – 19 ms (double precision)
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Table 2 Performance achieved at FPGA platforms

No Characteristic xc6vsx315-1 (SLEDv7) xc7vx690-2 (VC709)

1 Number of Processor Elements 2 8

2 Frequency (MHz) 200 250 ms

3 Time of one iteration 19 ms 3.8 ms

Even better results were achieved at FPGA platform, see [6, 14]. The numbers
are given in Table 2.

Obtained speedup allows us to develop more accurate and complex algorithms,
e.g., we investigate an approach where nested finer grids are used for modelling
closer to shore line and inside bays and gulfs.

3 Examples of Solving Problems Using FPGA-Based
Hardware and Software Systems

FPGA-based solutions are currently used in broadcast automation, HPC, resource-
consuming modelling, neural networks construction, autonomous devices for data
processing in the field conditions, and other. This is due to a high range of FPGA
with respect to logic capacity, price, peripheral devices, and existence of special
series for space and military purposes (extended work limits for temperature,
radiation, etc.).

Modern FPGA provides a good basis to construct wide enough pipelines for data
processing. The so-called register silicon memory is compared to hundreds of MB;
therefore, data could be effectively processed at the mode of acquisition. Below
several examples in the area of image processing are presented.

3.1 Searching for Small Objects on a Series of Images

The task is to detect an object of 10 pixels or less from the sequence of images of
the Earth surface, obtained from the geostationary satellite. First of all, background
compensation algorithms are used to filter false objects, arising either because
of a landscape features or due to a poor weather conditions. Image process-
ing for the problem is divided into two within one frame and one inter-frame
loads.

Data processing includes the following stages: differentiation (in fact, the
difference between two sequential frames), integer snap frames, background com-
pensation, and subpixel snap of image fragments. Block schemes of the proposed
pipelines are given in Figures 1 and 2.
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Fig. 1 Pipeline for the
integer snap frames

Fig. 2 Stage of subpixel
snap of image fragments

Table 3 Performance for the 1536 × 6200 frame processing

Time for one frame Performance (million
No Platform processing, sec. operations per second)

1 ADSP 21060 50,2 120

2 2x NM6403 28,8 210

3 Xilinx VirtexExcv600e 1 6024

Implementing the integer snap algorithms, the 1 pixel horizontal frame moves
were observed. So, it is required to have 32×32 fragment from the current frame and
34×32 fragment from the previous frame. Background compensation algorithm also
requires shifts at all directions. Therefore, the 34 × 34 fragment from the previous
frame is needed. Development of a joint pipeline for two algorithms above makes
it possible to reduce two times the input data flow and, therefore, to achieve better
overall performance.

The software application, which includes but not limited to the pipelines above,
has been tested at the hardware complex ADP6203PCI (“Instrumental Systems”),
based on Xilinx FPGA of Spartan series. The achieved performance, presented in
Table 3, was compared to implementations of the same algorithms at the signal
processor ADSP 21060 and two vector processors NM6403.
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Fig. 3 Searching for X × Y

object at A × B image.

Fig. 4 Searching for X × Y

object at A × Y image

Fig. 5 Pipeline to compute
the mean square deviation

Fig. 6 Pipeline to search of
an object in a row

3.2 Searching Object on the Image

There are (A − X) × (B − Y ) possible positions of the X × Y object within the
A × B image, see Figure 3.

In case the classic square mean difference deviation is used to identify an object,
the total number of arithmetic operations for such search is 2 × A × B × X × Y . In
particular, looking for a 32×32 object at 2000×2000 image requires about 4×109

operations. Modern general purpose processor can handle it approximately in 1 sec.
However, the direct algorithm generates the auxiliary data flow of nearly

3, 8 GB/sec (3, 8 × 106 possible positions). This fact limits performance, which is
about 10 sec when using Core2Duo 2.4 GHz computer with DDR2-800 memory.
The corresponding pipeline was developed for FPGA. Because of high paral-
lelism, performance of search of X × Y mask in A × Y line is at the temp
of data input as it takes one computer clock to compare the entire column, see
Figure 4.

The developed block scheme of a pipeline to compute the mean square deviation
is given in Figure 5.

Scheme of a pipeline, developed for the search of an object in a row, is given in
Figure 6.

Just the columns serve as an input data for this pipeline, and then all are stored
in the microchip inner memory.
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A combination of above algorithms executes the object search with the following
performance: to look for a 32 × 32 object in 2000 × 32 row, it takes just 2000
computer clocks (plus a certain pipeline lag). If we are looking for the same
size object on the entire 2000 × 2000 image, we need to run the pipeline 1968
times. Hence, one needs about 3, 8 × 106 computer clocks to complete that task,
or, in case of 200 MHz processor frequency, it takes 20 msec. In the other
words, it is possible to process the flow of 1, 5 GB/sec, resulting, for example, at
video recording with 2000 × 2000 × 8b resolution at 50 frame rate per second,
see [15].

3.3 Motif Search in DNA Sequence

A lot of information about the DNA sequences is now available. Among the
typical studies is the so-called motif search in these sequences. Mathematically the
problem is nothing but the search of subsequence in the entire sequence (row).
However, genetic code admits different nucleotides at the same position in the
source sequence. So, according to IUPAC, it is necessary to use 15-symbols code
for 4 symbols (A, T, G, C) set of nucleotides, see Figure 7.

FPGA architecture admits the lookup table (LUT) logic function with 6
inputs to compare a symbol in 4-digit alphabet with a symbol (character)
of a 15-digit alphabet. So, within a pipeline, it is possible to compare 8-
character words from the different alphabets above in one computer clock, see
Figure 8.

Using FPGA facilities for parallel processing, it is possible to simultaneously
compare all possible positions of an 8-character word in a 64-character row (57
positions) with the given 8-character motif, see Figure 9. Hence, we determine
the presence of a given motif (8 characters) in a 64-symbol row in one computer
clock.

This approach accelerates the code execution (compared to typical Core2Duo
processor) up to 20000 times with FPGA XC5VLX330T, see Table 4.

Fig. 7 15 symbols UIPAC code and 4 symbols nucleotides sequence
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Fig. 8 Pipeline to compare
words from different
alphabets

Fig. 9 One computer clock
search of an 8-digit motif in a
64-digit row

Table 4 Performance for the motif search problem

1.1.4. Processing speed Processing time of 2, 6 Quantity of com-
No FPGA type (Motifs per 1 clock) ×109 motifs (minutes) parisons / clock

1 XC5VLX50T 8 22 3 650

2 XC5VLX110T 36 5 16 500

3 XC5VLX330T 170 1 77 500

4 Conclusion

As was shown, for a number of practical problems the HPC power is available
by using GPU and FPGA. Many tasks from geophysics and bioinformatics are
very well parallelizable and hence the corresponding software could be perfectly
scalable. The authors achieve 350 times performance gain at 8 GPUs compared
to a single CPU. In case of tsunami wave simulation the required CPU time has
been reduced from hours to minutes or even seconds which will make it possible to
avoid casualties in the future. By using the proper FPGA microchip the motif search
in 65000 DNA sequence takes only 2 minutes. It is 20000 times faster compared
to PC.
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Parallel Algorithms for Low Rank Tensor
Arithmetic

Lars Grasedyck and Christian Löbbert

1 Introduction

A problem is said to be parameter-dependent if there exist problem parameters
p1, . . . , pd , d ∈ N, such that the solution u(p1, . . . , pd) of the problem depends on
the choice of the parameters. With no loss of generality we may assume pμ ∈ Pμ

with Pμ ⊂ N, μ = 1, . . . , d. Furthermore we consider finite parameter domains Pμ

and also the solution itself shall be a finite vector: u(p1, . . . , pd) ∈ R
n. In short, we

can solve the problem for any parameter combination (p1, . . . , pd) ∈ P1 ×· · ·×Pd ,
which results in a solution vector u(p1, . . . , pd) ∈ R

n depending on the parameters
we chose.

All vector entries for each possible parameter combination can be written as

u(p1, . . . , pd, i) ∈ R , pμ ∈ Pμ , i = 1, . . . , n ,

which we regard as a (d + 1)-dimensional tensor u ∈ R
P1×···×Pd×{1,...,n} with d

dimensions for the d parameters plus one spatial dimension.
For ease of presentation, we will for now assume the Pμ to be all of the same

size m, which results in a (d + 1)-dimensional solution tensor u ∈ R
m×···×m×n.

Thinking of sophisticated problems, e.g., discretized PDEs, already the computa-
tion of one solution u(p1, . . . , pd), for one single parameter combination, may pose
a challenging task. Since the number of parameter combinations is md , which grows
exponentially with the number d of parameters, it becomes impractical to compute
the whole solution tensor u in a naive way (by just running through all parameter
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combinations) already for moderate numbers m and d. We therefore assume the
solution tensor u to be of small tensor rank, which basically means that u can be
represented (or approximated) by a sum of separable tensors (tensors of rank 1):

u(p1, . . . , pd, i) =
r∑

k=1

uk,1(p1) · · · uk,d(pd)uk,d+1(i). (1)

A compact form of (1) is u = ∑r
k=1 uk,1 ⊗ · · · ⊗ uk,d ⊗ uk,d+1.

In practice, it turns out that for many parameter-dependent problems the solution
tensor allows for good approximations by low rank tensors.

Considering a parameter-dependent problem which can be expressed by a linear
system

A(p1, . . . , pd) · u(p1, . . . , pd) = b(p1, . . . , pd), (2)

our approach is to represent (or approximate) the matrix A and the right-hand side
b as tensors in the hierarchical Tucker format (short HT format). Then we can
use (parallel) algorithms to perform arithmetic like matrix-vector products, scalar
products, sums, etc. for tensors in the HT format (cf. Section 3). For this we
also refer to [3]. With that it is possible to apply iterative methods like conjugate
gradients or multigrid directly in the HT format which we did in [5].

In this article we present first results on using hybrid parallelization: In addition
to the parallelization between the distributed nodes of the HT tensor, we use shared
memory parallelization to accelerate the computations on each node.

In Section 2 we give an insight into the HT format, which is the low rank tensor
format we are using for all our tensor approximations.

In Section 3 we give an overview of the parallel algorithms we developed in order
to perform arithmetic operations for tensors in the HT format. These operations
include the application of a matrix to a tensor, both stored in the HT format, possibly
distributed over several compute nodes.

In Section 4 we finally present some runtime tests, including first tests for the
hybrid parallelization.

2 The Hierarchical Tucker format

In this section we explain the hierarchical Tucker format (HT format) which we
use to represent tensors of low rank. Notice that we now denote by d the number
of all tensor dimensions, whereas in Section 1 the letter d stands for the number
of parameters of the underlying problem, the solution of which has an additional
(space) dimension, which yields tensor dimension d + 1.

Let I1, . . . , Id ⊂ N be finite index sets, then a vector A ∈ R
I1×···×Id over

the product index set I1 × · · · × Id is called tensor of dimension d.
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For d = 1 these are just vectors in R
I1 . For d = 2 we have matrices in R

I1×I2 .
For d = 3 one may think of matrices stapled on each other along one of the three
dimensions.

In practice one often needs an order on the product index set I1 × · · · × Id ,
which can, e.g., be the lexicographical order.

The rank of a tensor can be defined as the smallest possible number r in (1), i.e.,
the smallest number r such that we find a representation

A(i1, . . . , id ) =
r∑

k=1

A1(i1, k) · · ·Ad(id, k) , for (i1, . . . , id ) ∈ I1 × · · · × Id .

(3)
For matrices M ∈ R

I1×I2 this rank definition coincides with the well-known
matrix rank: If M is of rank r , we find a representation

M(i1, i2) =
r∑

k=1

C(i1, k) · D(i2, k) , i.e. M = C · D-, (4)

with1 C ∈ R
I1×r , D ∈ R

I2×r , and there is no such representation with a smaller
number than r . The factors C and D of (4) can, e.g., be computed by a reduced
singular value decomposition (rSVD) M = U$V -, where reduced means that we
leave out all zero singular values as well as the corresponding columns of U and V ,
i.e., $ = diag(σ1, . . . , σr ), σ1 ≥ . . . ≥ σr > 0 and U ∈ R

I1×r , V ∈ R
I2×r have

orthonormal columns.
From (4) one sees that range(C) = range(M) and range(D) = range(M-),

where range(M) = {Mx : x ∈ R
I2} ⊂ R

I1 . Note that M- is just another
representation (we will call it matricization) of the tensor M ∈ R

I1×I2 : Normally
we choose I1 to act as row index set, whereas in M- we have I2 as row index set.
Further notice that if the rank r is small (r � #I1, #I2), storing the factors C ∈
R

I1×r and D ∈ R
I2×r instead of M ∈ R

I1×I2 yields a massive storage reduction.
In the HT format these observations are used to store a tensor A ∈ R

I1×···×Id of
small rank: We split the set D := {1, . . . , d} of all tensor dimensions in two non-
empty disjoint subsets t ⊂ D and [t] := D \ t with t, [t] �= ∅. The corresponding
product index sets are denoted by It and I[t]:

It := ×
μ∈t

Iμ , I[t] := ×
μ∈[t]

Iμ.

By choosing It as row index set, we can represent the tensor A as a matrix Mt (A),
which we call the matricization of A with respect to the set t :

Mt (A)(it , i[t]) = A(i1, . . . , id ), it ∈ It , i[t] ∈ I[t],

1We abbreviate R
I1×{1,...,r} by R

I1×r .
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Fig. 1 Two different trees
defining different HT format
structures for tensors of
dimension d = 5.

{1,2,3,4,5}

{1,2}
{1} {2}

{3,4,5}
{3} {4,5}

{4} {5}

{1,2,3,4,5}
{1} {2,3,4,5}

{2} {3,4,5}
{3} {4,5}

{4} {5}

where we use the abbreviation it = (iμ)μ∈t for multi-indices in It . By a rSVD
Mt (A) = Ut$V -

t we get Ut ∈ R
It×rt with range(Ut ) = range(Mt (A)), where rt

is the rank of Mt (A).
For the matricization of A with respect to [t] we have M[t](A) = Mt (A)

- (now
I[t] is the row index set) with rSVD M[t](A) = Vt$U-

t , i.e., U[t] := Vt ∈ R
I[t]×rt

with range(U[t]) = range(M[t](A)). By multiplying $ either to Ut or to U[t] = Vt ,
we see that it is sufficient to only store Ut and U[t], which can already save vast
amounts of storage if the rank rt is small (rt � #It , #I[t]).

Nevertheless, the index sets It and I[t] may still be large, possibly even too
large to store Ut and U[t]. The idea of the HT format is to repeat the above splitting
of the tensor dimensions and the according factorization recursively: For each t ⊂
D which we obtain as part of a split set of tensor dimensions and which is not a
singleton we choose s1, s2 �= ∅ such that

t = s1 ∪ s2 , s1 ∩ s2 = ∅, (5)

and construct matrices Us1 ∈ R
Is1 ×rs1 , Us2 ∈ R

Is2 ×rs2 with range(Us1) = range
(Ms1(A)) and range(Us2) = range(Ms2(A)), e.g., by a rSVD. We continue like
this for s1 and s2, which leads to a binary tree T with singletons as leaves and
root(T ) = {1, . . . , d} (cf. Figure 1). We demand that each non-singleton t ∈ T has
exactly two sons s1, s2, in order to be able to use the rSVD or some other suitable
matrix factorization.2

It is not hard to verify that the following nestedness property always holds true:

Ut(−, k) ∈ span
{
Us1(−, k1) ⊗ Us2(−, k2) : 1 ≤ k1 ≤ rs1 , 1 ≤ k2 ≤ rs2

}
, (6)

2A rSVD exists for any matrix which is not the zero matrix. This is, in general, not the case for
tensors of higher dimension d > 2. Nevertheless, if It is large, a rSVD of Mt (A) may be no more
computable. This is, however, not a handicap for us when we have available HT representations of
a matrix A and a right-hand side B and want to solve AX = B by some iterative method inside the
HT format. We can then choose a starting vector X0 in the HT format (e.g., X0 := B) and we will
never have to transfer a tensor into the HT format.

If we need to approximate large tensors in the HT format, we may use other approximation
techniques as, e.g., the cross approximation for HT tensors [2].
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where Ut(−, k) stands for the k-th column of Ut and sons(t) = {s1, s2}. By this
each column of Ut is a linear combination of all Kronecker products of the sons’
columns, which can be written as

Ut(it , k) =
rs1∑

k1=1

rs2∑

k2=1

Bt(k, k1, k2) · Us1(is1 , k1) · Us2(is2, k2) (7)

for all it = (iμ)μ∈t ∈ It and the according subindices is1 ∈ Is1 and is2 ∈ Is2 .
The 3-dimensional coefficients Bt are called transfer tensors: With Bt we can

reconstruct Ut from Us1 and Us2 , where sons(t) = {s1, s2}.
For root(T ) = D the matricization MD(A) means taking ID = I1 × · · · × Id

as row index set, i.e., MD(A) is one column vector containing all entries of A. To
be consistent with (7) we can define UD := MD(A) and get

A(iD) = UD(iD) =
rt∑

k1=1

rt∑

k2=1

BD(k1, k2)Ut (it , k1) · U[t](i[t], k2) (8)

for all iD = (i1, . . . , id ) ∈ I1 × · · · × Id . Note that the root transfer tensor BD is
a matrix, since UD only consists of one column.

From (8) and (7) it can be seen that it is sufficient to store the Ut for
all leaves t = {μ}, μ = 1, . . . , d , of the tree T and to store the transfer
tensors Bt ∈ R

rt×rs1 ×rs2 for each non-leaf node t ∈ T , sons(T ) = {s1, s2}.
Then each tensor entry A(i1, . . . , id ) can be computed recursively by (8)
and (7).

Definition 1 (Hierarchical Tucker Format, Hierarchical Tucker Rank)
Let A ∈ R

I1×···×Id be a tensor of dimension d and T a binary tree with
root(T ) = {1, . . . , d}, such that each t ∈ T which is not a singleton has exactly
two successors s1, s2 �= ∅ fulfilling (5). By L (T ) we denote the set of all leaves
in T .

Then ((Bt )t∈T \L (T ), (Ut )t∈L (T )) fulfilling (8) and (7) is called representation of
A in the hierarchical Tucker format (HT format).

The hierarchical Tucker ranks (HT ranks) of A with respect to the tree
T are the minimal numbers (rt )t∈T such that there exists a representation
((Bt )t∈T \L (T ), (Ut )t∈L (T )) of A in the HT format.

Remark 1 For the root node D = {1, . . . , d} we always have rD = 1.

Remark 2 The HT ranks were defined as the smallest possible numbers (rt )t∈T
in (7) and (8). For any HT representation (not necessarily minimal) we call the
numbers (rt )t∈T the HT representation ranks. The HT representation ranks are
therefore always bounded below by the HT ranks.3

3We define (rt )t∈T ≤ (st )t∈T :⇔ rt ≤ st for all t ∈ T .
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Remark 3 By Definition 1 the columns of Ut , t ∈ T , need to be neither orthogonal
nor normalized nor linear independent.

Remark 4 Instead of U{μ} and r{μ} we use the shorter notations Uμ and rμ for the
leaves {μ} ∈ L (T ).

2.1 Storage Complexity of the HT Format

Let A ∈ R
I1×···×Id be a tensor with HT representation ((Bt )t∈T \L (T ), (Ut )t∈L (T ))

for a suitable tree T . For simplicity let all index sets Iμ, μ = 1, . . . , d, be of the
same size n := #Iμ and let r := max{rt : t ∈ T } be the maximum of the HT
ranks.

Then the tensor A consists of nd entries, whereas in the HT format we would
store not more than

(#L (T )) · n · r + #(inner nodes) · r3 + r2 = dnr + (d − 2)r3 + r2 (9)

entries, which is a number linear in the tensor dimension d.

2.2 The Choice of the Tree

In principle the choice of the underlying tree T is a non-trivial issue [1]: It can be the
case that a tensor has smaller HT ranks with respect to one tree T1 than for another
tree T2. This question is, however, not part of this article.

We always choose a tree which splits each non-singleton t ∈ T into sons s1, s2,
either of the same cardinality (if possible) or with #s2 = #s1 + 1 (cf. left tree in
Figure 1). This tree construction minimizes the number of tree levels, which will be
advantageous for our parallel algorithms (see Section 3) which scale linear with the
number of levels of the underlying tree T .

2.3 Other Tensor Formats

The canonical tensor rank of a tensor A ∈ R
I1×···×Id is defined as the minimal

number r for which we can find a decomposition like (3). It is not difficult to
show that A possessing canonical rank r always yields rt ≤ r , t ∈ T , for the HT
ranks of A with respect to any suitable tree T . Note, however, that we have an r3

dependence in (9) which we do not have for the storage of A1, . . . , Ad from (3). One
huge advantage of the HT format is that for prescribed (rt )t∈T the set of all tensors
with HT ranks bounded by (rt )t∈T is closed. This is not the case for the set of all
tensors with canonical rank bounded by a prescribed number r (for tensor dimen-
sions d > 2).
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There are a number of other tensor formats for which we refer to [6]. For d = 2
all tensor rank models coincide with the matrix rank.

In the literature we found several approaches on the parallelization of algorithms
for different tensor formats, e.g., a parallel ALS algorithm for the HT format in [3],
parallel tensor completion for the CP format in [7], parallel tensor compression for
the Tucker format in [9] and the parallel computation of contractions for distributed
tensor networks in [8].

3 Parallel Arithmetic in the HT Format

For huge tensors it may be unavoidable to have the tensor data stored distributed
over distinct compute nodes. We developed algorithms which perform arithmetic
operations on tensors in the HT format, where the tensors may be stored in a
distributed way. In [3] we encountered similar work for an ALS algorithm in the
HT format. Let us suppose that the tensor data for each t ∈ T of the underlying tree
is stored on its own compute node and, for simplicity, that the tensor dimension is a
power of two: d = 2� with � = 1, 2, 3, . . .. Then our algorithms run in parallel on
all nodes belonging to the same level of the tree, which is why we want to minimize
the number of tree levels by choosing a balanced tree. This means that the sons
s1 and s2 of t ∈ T are of equal or nearly equal size (cf. left tree in Figure 1).
For a balanced tree the number of tree levels equals log2(d) + 1, where d is the
tensor dimension. For fully distributed tensors we can thus expect a parallel runtime
of our algorithms which grows logarithmically with the tensor dimension d (cf.
Section 4).

So far we implemented algorithms which compute sums, inner products, and
Hadamard products4 of HT tensors. Also the matrix-vector multiplication can
directly be carried out in the HT format, where both, the matrix and the vector,
are stored in the HT format. Furthermore we have available a parallel algorithm for
the truncation of an HT tensor down to lower HT ranks (cf. [4]). The truncation
is essential for the computation of sums, Hadamard products and the matrix-vector
multiplication since these operations typically increase the HT ranks. Finally also
the evaluation of single tensor entries has been implemented to run in parallel on all
nodes of the same tree level.

In this section we illustrate the evaluation of tensor entries and the matrix-vector
multiplication in the HT format. For further details on (parallel) HT arithmetic we
refer to [6] or [3, 5].

4The Hadamard product x ◦ y of two vectors x, y ∈ R
I is the vector of the entry-wise products:

(x ◦ y)(i) = x(i) · y(i) for all i ∈ I .
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··· ··· =

···· =Tensor entry:

Send result to father

Send result to father

Multiply:

Select row indices i1, i2, i3 and i4

Fig. 2 Parallel evaluation of an HT tensor A ∈ R
I1×I2×I3I4 at index (i1, i2, i3, i4).

3.1 The Evaluation of Tensor Entries

From (7) and (8) we see how the evaluation of an HT tensor A ∈ R
I1×···×Id at

(i1, . . . , id ) ∈ I1 × · · · × Id works: On each leaf node {μ} we just choose the row
Uμ(iμ,−) corresponding to the index (i1, . . . , id). This can of course be carried out
in parallel for all leaves. Each leaf node then sends the selected row to its father,
where the rows of both sons are multiplied to the transfer tensor Bt , according to (7)
and (8). On the root node we obtain the tensor entry for the requested entry (cf.
Figure 2). Apparently we only need communication between father and son nodes,
i.e., the algorithm can run in parallel on nodes of the same tree level (remember:
d = 2�).

3.2 Matrix-Vector Multiplication in the HT Format

Since a d-dimensional tensor X is defined as a vector over a product index set of
the form I1 × · · · × Id , we can define the matrix-vector multiplication A · X for a
matrix A ∈ R

(J1×···×Jd )×(I1×···×Id ). The resulting vector A·X is then an element
of RJ1×···×Jd . Rearranging the index set of A to (J1 × I1) × · · · × (Jd × Id),
we can regard A itself as a d-dimensional tensor. Suppose that we have an HT
representation of X for some underlying tree T . If we find an HT representation (or
approximation) for the matrix A, based on the same tree T , we can compute the
matrix-vector multiplication A ·X directly in the HT format, which we sketched out
in Figure 3. The computation of A ·X in the HT format can be carried out in parallel
on each node of the underlying tree T . The transfer tensors of the result A·X are just
the Kronecker products of the respective transfer tensors of A and X. For the root
node this is the well-known Kronecker product of matrices and for the inner nodes
this is the obvious generalization to 3-dimensional tensors. Note that the columns in
the leaves of A stand for matrices (stored as columns). Each leaf of A · X consists
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node 0

node 1 node 2

node 3 node 4 node 5 node 6

node 0

node 1 node 2

node 3 node 4 node 5 node 6

A X

·

A ·X

⊗

⊗[ ]
(node 3)

(node 1)

(node 0)

IIIIII

I I I II II I II II

Fig. 3 Matrix-vector product for a matrix A (white) with a tensor X (grey), both stored in the HT
format, based on the same underlying tree T . Below we show the root node, one inner node and
one leaf node of the resulting HT tensor A · X. Here we suppose the compute nodes of A to be
the same as the corresponding compute nodes of X. If this was not the case we would have to
communicate between the respective nodes.

of all columns which can be obtained as matrix-vector products of any column in
the respective leaf of A with any column in the respective leaf of X. Altogether
this results in an HT representation of A · X with HT representation ranks rt =
r
(1)
t · r(2)t , t ∈ T , provided that A and X are represented as HT tensors of ranks r(1)t

and r
(2)
t .

Although the sole computation of A · X may run in parallel on all nodes of the
underlying tree, this operation will typically be followed by a truncation down to
lower HT ranks, which can run in parallel on all nodes of the same tree level. The
parallel runtime of several matrix-vector products will therefore be determined by
the parallel runtime of the truncations.

In many applications we encounter parameter-dependent matrices A(p1, . . . , pd),
which are of affine type, which means

A(p1, . . . , pd) = A0 + ψ1(p1) · A1 + · · · + ψd(pd) · Ad, (10)
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Fig. 4 HT representation of the matrix A(p1, p2, p3) = A0+ψ1(p1)A1+ψ2(p2)A2+ψ3(p3)A3,
i.e., (10) for d = 3: The first three leaves correspond to the three parameter dimensions, the last
leaf corresponds to the matrix dimension (row and column indices are combined to one index). For
the sake of clarity, the layers of the 3-dimensional transfer tensors are displayed next to each other.
Notice that each addend in (10) corresponds to a tensor of rank 1 and can therefore be represented
in the HT format with all HT ranks equal to 1 (cf. paragraph 2.3), i.e., each transfer tensor can
be chosen as the 1 × 1 matrix (1) ∈ R

1×1. In the HT format we can add tensors by collecting
in each leaf the columns of all addends and for the transfer tensors we get block diagonal tensors
with the transfer tensors of all addends as blocks. This results in the left HT representation for
A: black parts stand for ones, white parts stand for zeros. The grey column in each of the first
three leaves equals (ψμ(pμ))pμ∈Pμ , μ = 1, 2, 3. The columns of the last leaf are the matrices
A0, A1, A2, A3, written as columns. The left HT representation can obviously be reduced by
taking the black column (1, . . . , 1)- only once per leaf, which results in the HT representation of
A on the right.

where the ψμ, μ = 1, . . . , d, are arbitrary functions and the matrices Aμ, μ =
0, . . . , d, are parameter-independent. For this affine parameter dependence, the
matrix A can directly be represented as a (d + 1)-dimensional tensor in the HT
format (see Figure 4) with HT ranks

rt =

⎧
⎪⎪⎨

⎪⎪⎩

1 if t = root(T ) = {0, . . . , d},
d + 1 if d ∈ t,

rs1 + rs2 − 1 if d /∈ t, sons(t) = {s1, s2},
2 if t = {μ}, μ �= d,

with t �= root(T ) in the last three cases.

4 Parallel Runtime Tests

We tested the parallel runtime of our algorithms for fully distributed tensors of
dimensions d = 4, 8, 16, 32, 64, i.e., we used 2d − 1 = 7, 15, 31, 63, 127
compute nodes. Our algorithms use MPI for the communication between the nodes.

Figure 5 shows the parallel runtimes for the inner product of two HT tensors and
for the truncation of an HT tensor down to lower rank, which are nearly identical.
The HT tensors were chosen by random with #Iμ = 10 000 for all μ = 1, . . . , d
and with HT ranks rt = 100 for all t ∈ T \ root(T ). One clearly sees the
logarithmical dependence of the parallel runtime on the tensor dimension d.
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Fig. 5 Parallel runtime of the inner product (left) and the truncation (right) for HT tensors of
dimension d = 4, 8, 16, 32, 64 with each tensor dimension of size 10 000 and HT ranks 100.

Fig. 6 Parallel runtime for
the truncation of an HT tensor
of dimension d = 8 with each
tensor dimension of size
100 000 and HT ranks 200
using hybrid parallelization
with MPI and OpenMP.
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OpenMP threads for each node

In addition to the MPI parallelization between the different HT nodes, we started
using OpenMP for shared memory parallelization on each node. First results can
be seen in Figure 6, which shows the parallel runtime for the truncation of an HT
tensor of dimension d = 8 with #Iμ = 100 000 for all μ = 1, . . . , d and HT ranks
rt = 200 for all t ∈ T \ root(T ).

For an example of using our parallel algorithms for iterative methods in order
to solve a linear equation AX = B which stems from a diffusion problem with
parameter-dependent diffusion coefficients, we refer to [5]. For that example the
matrix A is of affine type (10), such that it can directly be represented in the HT
format (cf. Section 3).

5 Conclusions

In [5] we concluded that our parallel algorithms for HT tensor arithmetic seem to be
useful to solve parameter-dependent problems of affine type (10) by means of
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iterative methods. In principle one could apply this approach to parameter-
dependent linear problems with arbitrary matrix A, provided that we can
approximate A in the HT format.

On the other hand, we can use our algorithms to compute statistical quantities
of interest for a solution tensor X, as, e.g., mean values (with respect to any subset
of the tensor dimensions) or the expected value and the variance with respect to
a probability distribution of the parameters, given in the HT format. For these
computations we typically need the inner product and for the variance as well the
Hadamard product.

Furthermore, we may apply our algorithms to compute the relative residual norm
‖AX − B‖2/‖B‖2 for a solution tensor X, which might result from some non-
deterministic sampling algorithm.

For tensors of HT rank r the inner product and the truncation are of complexity
O(r4), which can be rather large already for moderate ranks r . Therefore it would
be desirable to have additional parallelization on each node, which we introduced
in this article: By using OpenMP on each compute node, we reduced the parallel
computing time of the truncation by a factor of ≈ 1/3 for HT ranks of 200.
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gramme 1648 (SPPEXA) under grant GR-3179/4-2.
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The Resiliency of Multilevel Methods on
Next-Generation Computing Platforms:
Probabilistic Model and Its Analysis

Mark Ainsworth and Christian Glusa

1 Introduction

Exascale computing is anticipated to have a huge impact on computational sim-
ulation. However, as the number of components in a system becomes larger, the
likelihood of one or more components failing or function abnormally during an
application run increases. The problem is exacerbated by the decreasing physical
size of basic components such as transistors, and the accompanying increased
possibility of quantum tunneling corrupting logic states [6, 7].
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Current day petascale systems already exhibit a diverse range of faults that
may occur during computation. These faults can arise from failures in the physical
components of the system, or intermittent software faults that appear only in certain
application states. One source of faults is cosmic radiation with charged particles,
which can lead to memory bit-flips or incorrect behavior of logic units. Future
HPC systems are expected to be built from even larger numbers of components
than current systems, and the rate of faults in the system will increase accordingly.
It is generally accepted that future large-scale systems must operate within a 20-
MW power envelope. This will require the usage of lower voltage logic thresholds.
Moreover, cost constraints will result in greater utilization of consumer grade
components, with accompanying reduced reliability [7].

Roughly speaking, faults can be classified as follows [3]: hard or stop-fail
faults are faults which would otherwise lead to an immediate program termination,
unless treated on the system level. Soft faults are those leading to program or data
corruption, and which might only result in an erroneous program termination after
some delay.

Reported fault rates seem to vary significantly from system to system. On current
machines, hard faults have been reported as often as every 4 to 8 hours on the Blue
Waters system [7], and (detected) L1-cache soft errors as often as every 5 hours on
a large BlueGene/L system [8]. The next-generation supercomputers could have a
mean time to failure of about 30 minutes [21].

Many of the existing algorithms in use today were derived and analyzed without
taking account of the effect of these kinds of faults. We believe that the dawning
of the exascale era poses new, and exciting, challenges to the numerical analyst in
understanding and analyzing the behavior of numerical algorithms on a fault-prone
architecture. Our view is that on future exascale systems, the possible impact of
faults on the performance of a numerical algorithm must be taken fully into account
in the analysis of the method.

In order to alleviate the impact of faults and ensure resilience in a fault-
prone environment, several techniques have been proposed and implemented in
various parts of the hardware-software stack. Checkpointing on the system and
the application level as well as replication of critical program sections are widely
used [5, 7, 15]. These techniques can be coupled with statistical analysis, fault
models, and hardware health data [7]. On the application level, algorithm-based
fault tolerance (ABFT) describes techniques that duplicate application data to
create redundancy [16]. ABFT has been explored in the context of sparse linear
algebra [19, 20], and specifically for matrix-vector products in stationary iterative
solvers [8–10, 17, 22]. All methods have in common that a balance needs to be
struck between protecting against corruption of results and keeping the overhead
reasonable.

The multigrid method is the workhorse for distributed solution of linear systems
but little is known about its resiliency properties and convergence behavior in a
fault-prone environment [12, 17]. The current chapter presents a summary of our
recent work addressing this problem [1, 2].

The outline of the remainder of this chapter is as follows: We give a short
introduction to multilevel methods in Section 2. In Section 3, we introduce a model
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for faults and show simulations of the convergence behavior of a fault-prone two-
level method for a finite element method. Finally, in Section 4, we summarize the
analytic bounds on the convergence rate and illustrate their behavior with further
simulations. We refer the interested reader for further details and proof to the articles
[1, 2].

2 Multilevel Methods

Let � ⊂ R
d be a polygonal domain and set V := H 1

0 (�). Starting from
an initial triangulation T0 of � into simplices, we obtain Tl through uniform
refinement of Tl−1. We define the finite element spaces Vl := {v ∈ H 1

0 (�) ∩
C
(
�̄
)

such that v
∣
∣
K

∈ P1 (K) , ∀K ∈ Tl}, and set nl := dimVl . For f ∈ H−1 (�),
consider the well-posed problem:

Find u ∈ V such that a(u, v) = L(v), ∀v ∈ V,

where a(u, v) = ∫
�

∇u · ∇v and L(v) = ∫
�
f v. The discretized problem is

Find u ∈ Vl such that a(u, v) = L(v), ∀v ∈ Vl.

Let φ(i)
l for i = 1, . . . , nl be the global shape function basis of Vl , and φl the vector

of global shape functions. Then, the stiffness matrix and the load vector are defined
as Al := a(φl, φl) and bl := L(φl), so that the problem becomes

Find u = φl · xl ∈ Vl such that Alxl = bl. (1)

Since Vl−1 ⊂ Vl , there exists a restriction matrix rll+1 satisfying φl = rll+1φl+1

along with the corresponding prolongation matrix pl+1
l = (

rll+1

)T
. In particular,

this means that the stiffness matrix on level l can be expressed in terms of the matrix
at level l + 1:

Al = a (φl, φl) = rll+1a (φl+1, φl+1) p
l+1
l = rll+1Al+1p

l+1
l .

We shall omit the sub- and superscripts on r and p whenever it is clear which
operator is meant. We shall consider solving the system (1) using the multigrid
method [4, 13, 14, 18, 23]. The coarse-grid correction is given by xl ← xl +
pA−1

l−1r (bl − Alxl), and has iteration matrix Cl := I − pA−1
l−1rAl , while the

damped Jacobi smoother is given by Sl = I − θD−1
l Al , where Dl is the diagonal

of Al and θ the relaxation parameter. The multilevel method for the solution of
ALxL = bL is given in Algorithm 1. Here, ν1 and ν2 are the number of pre- and post-
smoothing steps, γ is the number of coarse-grid corrections, and θ is the smoothing
parameter.
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Function Ml (right-hand side bl, initial guess xl)
if l = 0 then return A−1

0 x0 (Exact solve on coarsest grid)
else

for i ← 1 to ν1 do
xl ← xl + θD−1

l (bl − Alxl) (Pre-smoothing)
dl−1 ← r (bl − Alxl) (Restriction to coarser grid)

e
(0)
l−1 ← 0

for j ← 1 to γ do

e
(j)

l−1 ← Ml−1

(
dl−1, e

(j−1)
l−1

)
(Solve on coarser grid)

xl ← xl + pe
(γ )

l−1 (Prolongation to finer grid)

for i ← 1 to ν2 do
xl ← xl + θD−1

l (bl − Alxl) (Post-smoothing)
return xl

Algorithm 1: Multilevel method Ml

3 Fault Model

The first issue is to decide on how the effect of a fault should be incorporated into
the analysis of the algorithm. The simplest and most convenient course of action if
a component is subject to corruption, or fails to return a value, is to overwrite the
value by zero. We therefore propose to model the effect of a fault on a vector using
a random diagonal matrix X , of the form:

X =
⎛

⎜
⎝

χ1
. . .

χn

⎞

⎟
⎠ , χi =

{
1 with probability 1 − q,

0 with probability q.
(2)

In particular, if a vector x ∈ R
n is subject to faults, then the corrupted version of x

is given by Xx. If all χi are independent, we will call the random matrix a matrix
of component-wise faults. More generally, we shall make the following assumption
on the set S of all the involved faults matrices X :

(A) There exist constants v, Ce ≥ 0, and for each X ∈ S there exists eX ≥ 0 such
that for all X ∈ S:

a. X is a random diagonal matrix.
b. ||Var [X ]||2 = maxi,j

∣
∣Cov

[
X ii ,X jj

]∣∣ ≤ v.
c. E[X ] = eX I .
d. |eX − 1| ≤ Cev.

We will think of v as being small. This means that each of the fault matrices
X is close to the identity matrix with high probability. Obviously, the model for
component-wise faults introduced above satisfies these assumptions.
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In the remainder of this work, we write random matrices in bold letters. If a
symbol appears twice, the two occurrences represent the same random matrix and
are therefore dependent. If the power of a random matrix appears, we mean the
product of identically distributed independent factors.

In summary, we shall model the application of a fault-prone Jacobi smoother as:

xl ← xl + X (pre/post)
l

θD−1
l (bl − Alxl) ,

which has the same form as a standard Jacobi smoother in which the iteration matrix
has been replaced by a random iteration matrix:

S
(pre/post)
l

= I − X (pre/post)
l

θD−1
l Al.

Here and in what follows, X (·)
l

are generic fault matrices. Suppose that only the
calculation of the update can be faulty, and that the previous iterate is preserved.
This could be achieved by writing the local components of the current iterate to
nonvolatile memory or saving it on an adjacent node. The matrices X (pre/post)

l
and

D−1
l commute, so that without loss of generality, we can assume that there is just

one fault matrix, because any faults in the calculation of the residual can be included
in X (pre/post)

l as well. Moreover, while the application of D−1
l and Al to a vector

is fault-prone, we assume that the entries of D−1
l and Al itself are not subject to

corruption, since permanent changes to them would effectively make it impossible
to converge to the correct solution. The matrix entries are generally computed once
and for all, and can be stored in nonvolatile memory which is protected against
corruption. The low writing speed of NVRAM is not an issue since the matrices are
written at most once.

The fault-prone two-level method has iteration matrix:

ET G,l (ν1, ν2) =
(
S

(post)
l

)ν2
Cl

(
S

(pre)
l

)ν1
,

where

Cl = I − X (p)

l
pA−1

l−1X
(r)

l−1rX
(A)

l
Al.

Similar arguments as for the smoother can be used to justify the model of faults
for the coarse-grid correction. The fault-prone multilevel algorithm is given in
Algorithm 2.

In order to illustrate the effect of the faults on the convergence of the algorithm,
we apply the two-level version of Algorithm 2 with one step of pre- and post-
smoothing using a damped Jacobi smoother with optimal smoothing parameter
θ = 2

3 for a piecewise linear discretization of the Poisson problem on a square
domain.
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Fig. 1 Mesh for the square
domain.

Function Ml(right-hand side bl, initial guess xl)
if l = 0 then return A−1

0 x0 (Exact solve on coarsest grid)
else

for i ← 1 to ν1 do
xl ← xl + X (pre)

l
θD−1

l (bl − Alxl) (Pre-smoothing)

dl−1 ← X (r)

l−1rX
(A)

l
(bl − Alxl) (Restriction to coarser grid)

e
(0)
l−1 ← 0

for j ← 1 to γ do

e
(j)

l−1 ← Ml−1

(
dl−1, e

(j−1)
l−1

)
(Solve on coarser grid)

xl ← xl + X (p)

l
pe

(γ )

l−1 (Prolongation to finer grid)

for i ← 1 to ν2 do
xl ← xl + X (post)

l
θD−1

l (bl − Alxl) (Post-smoothing)
return xl

Algorithm 2: Fault-prone multilevel method Ml

The domain is partitioned by a uniform triangulation (Figure 1), and we inject
component-wise faults as given in Equation (2). We plot the evolution of the residual
norm over 30 iterations for varying number of degrees of freedom nL and different
probabilities of faults q in Figure 2 on page 289. We can see that as q increases,
the curves start to fan out, with a slope depending on the number of degrees of
freedom nL.

4 Summary of Results on Convergence

In [1, 2], a framework for the analysis of fault-prone stationary iterations was
proposed. We summarize the obtained convergence results whose proofs can be
found in [1, 2].

Theorem 1 ([1]) Let Ω ⊂ R
d with ∂Ω ∈ C2 or Ω convex and let Al be the

stiffness matrices associated to the finite element discretization of a second-order
elliptic PDE on a hierarchy of quasi-uniform meshes, and let

ET G,L (ν1, ν2) =
(
S

(post)
L

)ν2
CL

(
S

(pre)
L

)ν1
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Fig. 2 Evolution of the norm of the residual of the two-level method for the 2d Poisson problem
on square domain and component-wise faults in prolongation, restriction, residual, and smoother.

be the iteration matrix of the two-level method with component-wise faults of rate q

in prolongation, restriction, residual, and smoother:

CL = I − X (p)

L
pA−1

L−1X
(r)

L−1rX
(A)

L
AL,

S
(pre/post)
L

= I − X (pre/post)
L

D−1
L AL.
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Assume that the usual conditions for multigrid convergence hold. Then, the rate of
convergence of the fault-prone two-level method is bounded as:

-
(
ET G,L (ν1, ν2)

) ≤ ∣∣∣∣ETG,L (ν1, ν2)
∣
∣
∣
∣
A

+ C

⎧
⎪⎪⎨

⎪⎪⎩

qn
4−d
2d
L d < 4,

q (log nL)
1
2 d = 4,

q d > 4,

where ETG,L, CL, and SL are the unperturbed two-level iteration matrix, coarse-
grid correction, and Jacobi smoother and ||·||A is the energy norm. C is independent
of L and q.

In Figure 3 (top) on page 291, we plot the estimated rate of convergence of
the two-level method for the 2d Poisson problem introduced above. We use 1000
iterations to estimate -

(
ET G,L (1, 1)

)
for component-wise faults with varying

probability q and varying problem size nL. Moreover, we plot the behavior predicted
by Theorem 1 and the level of -

(
ET G,L(1, 1)

) = 1. We can see that their slope
matches.

Experimentally, it can be observed that the result also holds for the case of an
L-shaped domain and for block-wise faults, provided that the size of the blocks is
fixed, even though the conditions of Theorem 1 are not satisfied.

The above results indicate that two-level methods without protection of some
components cannot be used in a fault-prone environment. In order to preserve
convergence independent of the number of degrees of freedom, we will have to
protect one of the fault-prone operations. The cheapest operations are the restriction
and the prolongation. The next result shows that the two-level method converges, if
the prolongation is protected.

Theorem 2 ([1]) Let

ET G,L (ν1, ν2) =
(
S

(post)
L

)ν2
CL

(
S

(pre)
L

)ν1

with smoother and coarse-grid correction given by:

S
(pre/post)
L

= I − X (pre/post)
L

D−1
L AL,

CL = I − pA−1
L−1X

(r)

L−1rX
(A)

L
AL.

Provided that the usual conditions for multigrid convergence and Assumption (A)
with

S =
{
X (r)

L−1,X
(A)

L
,X (pre)

L
,X (post)

L

}

hold for some v ≥ 0, we find for any level L that the fault-prone two-level method
converges with a rate bounded as:
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Fig. 3 Asymptotic convergence rate -
(
ET G,L(1, 1)

)
of the fault-prone two-level method for the

2d Poisson problem on square domain with component-wise faults in prolongation, restriction,
residual, and smoother (top) and protected prolongation (bottom).

-
(
ET G,L (ν1, ν2)

) ≤ ∣∣∣∣ETG,L (ν2, ν1)
∣
∣
∣
∣
2 + Cv.

and C is independent of v and L.

We note that the result holds for more general types of faults including block-
wise faults. In Figure 3 (bottom) on page 291, we plot the rate of convergence of
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Fig. 4 Asymptotic convergence rate - (EL(1, 1, 2)) of the fault-prone multilevel method for the
2d Poisson problem on square domain with component-wise faults in prolongation, restriction,
residual, and smoother (top) and protected prolongation (bottom).

the two-grid method for the already discussed example, this time with protected
prolongation. We can see that the rate is essentially independent of the size of the
problem and even is smaller than one for large values of q. The protection can be
achieved by standard techniques such as replication. In order to retain performance,
the protected prolongation could be overlapped with the application of the post-
smoother.
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The following theorem shows that the result carries over to the multilevel case:

Theorem 3 ([2]) Provided that the usual conditions for multigrid convergence and
Assumption (A) with

S =
L⋃

l=1

{
X (r)

l−1,X
(A)

l
,X (pre)

l
,X (post)

l

}

hold, the number of smoothing steps is sufficient and that v sufficiently small, the
perturbed multilevel method converges with a rate bounded by:

- (EL (ν1, ν2, γ )) ≤
⎧
⎨

⎩

γ
γ−1ξ + Cv, γ ≥ 2,

2
1+√

1−4C∗ξ
ξ + Cv, γ = 2,

where

ξ = max
l≤L

∣
∣
∣
∣ETG,l (ν2, ν1)

∣
∣
∣
∣
2 ,

and C∗ and C depend on ν1, ν2 and the convergence rate of the two-level method,
but are independent of L and v.

We also plot the rate of convergence of fault-prone multilevel algorithms with
one coarse-grid correction for component-wise faults and protected prolongation in
Figure 4 on page 292, and observe the predicted behavior.

In the current work, we proposed a probabilistic model for the effect of faults
involving random diagonal matrices. We gave a summary of the theoretical analysis
of the model for the rate of convergence of fault-prone multigrid methods which
show that the standard multigrid method is not resilient. Finally, we presented a
modification of the standard multigrid algorithm that is fault resilient.
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Visualization of Data: Methods, Software,
and Applications

Gintautas Dzemyda, Olga Kurasova, Viktor Medvedev,
and Giedrė Dzemydaitė

1 Introduction

Data science and data analytics become a key for solving complex problems. They
enable new data-driven scientific discoveries. Data science combines various aspects
of computer science, statistics, applied mathematics, and visualization that allow to
analyze massive amounts of data and to extract knowledge.

Research proves that the human brain processes visualizations better. Graphical
representations of multidimensional data are widely used in research and appli-
cations of many disciplines. Human participation plays an essential role in most
decisions when analyzing data. The huge storage capacity and computational power
of computers cannot replace the human flexibility, perceptual abilities, creativity,
and general knowledge. Real data in technologies and sciences are often high-
dimensional, i.e., data are characterized by many features which can get numerical
values. For human perception, the data must be represented in some structured
form (direct visualization methods [16]) or in a low-dimensional space, usually
2D (projection and dimensionality reduction methods [16]). The goal of projection
methods is to represent the multidimensional data in a low-dimensional space so that
certain properties of the structure of the data were preserved as faithfully as possible.

G. Dzemyda (�) · O. Kurasova · V. Medvedev
Vilnius University, Institute of Data Science and Digital Technologies, Akademijos St. 4, 08663
Vilnius, Lithuania
e-mail: gintautas.dzemyda@mii.vu.lt; olga.kurasova@mii.vu.lt; viktor.medvedev@mii.vu.lt

G. Dzemydaitė
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Here, the starting data may be interpreted as points in the multidimensional space.
After the dimensionality reduction, we get a corresponding set of projected points
on a plane. Such an approach to data visualization is applied in this paper.

In this paper, the visualization methods based both on dimensionality reduction
and on artificial neural networks are applied to the visual efficiency analysis of
regional economic development to evaluate how regional resources are reflected
in the economic results. Both regions and indicators (features) characterizing them
are analyzed visually.

2 Methods of Data Visualization

Data visualization is an extensive and essential area of data science. Recently data
scientists observe large amounts of data, which is hard to process at once. To
analyze data, different data mining algorithms have been developed. In this paper,
we focus on visualization and dimensionality reduction algorithms which reduce
data dimensionality from original high-dimensional space to target dimension (2D
in visualization case). The main idea is to represent a large set of some measured
features with a reduced set of more informative ones and to present data visually.

The data from the real world can usually be described by an array of features
x1, x2, . . . , xn. A combination of values of all features characterizes a particular
data item (object) Xi = (xi1, xi2, . . . , xin), i ∈ {1, . . . , m}, from the whole set
X1, X2, . . . , Xm, where n is the number of features, m is the number of analyzed
objects. If X1, X2, . . . , Xm are described by more than one feature, the data are
called multidimensional data. Xi, i = 1, . . . , m are often interpreted as points in
the multidimensional space.

Several approaches have been proposed for representing multidimensional
data in a lower-dimensional space. Comprehensive reviews of the dimensionality
reduction-based visualization methods are presented in [15, 16]. These reviews
cover most of visualization approaches: direct methods, dimensionality reduction
methods, artificial neural networks-based methods, and manifold learning methods.

Principal component analysis (PCA) [26] is a well-known method for dimension-
ality reduction. It can be used to display the data as a linear projection in a subspace
of the original data space so that it preserves the variance of the data best. However,
the interpretation of principal components can be difficult at times.

An alternative approach to PCA for dimensionality reduction is multidimensional
scaling (MDS) [6]. It is a classical approach that maps the original high-dimensional
space to a lower-dimensional one by using the information on the proximities
between the objects in the original space so that the proximities between the
corresponding data points are preserved. Despite the fact that the MDS problem was
addressed by a few decades ago, this problem remains relevant nowadays [7, 16, 21].
To solve the MDS problems, the methods based on function majorization are
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applied [22]. The MDS problem is formulated as an optimization problem where the
number of variables depends on the number of points analyzed. The so-called stress
function (projection error) is minimized. In the case of a large number of variables,
the optimization problem becomes complex. There are developed approaches to
solve the MDS problem using parallel computing technologies [38]. Usually, the
Euclidean distance is used as the metric proximity of multidimensional points.
Non-metric proximities are used, when, e.g., the proximity is obtained by some
expert opinion. Proximity measure of projected points influences the complexity
of the optimization problem. For example, if city-block distances are used, the
optimization problem becomes even more complicated, because the objective
function is not everywhere differentiable [16]. There exists a multitude of variants
of MDS with different stress functions and their optimization algorithms [6].
Commonly, MDS stress function is minimized using the SMACOF algorithm, based
on the iterative majorization.

Isometric feature mapping (ISOMAP) can also be assigned to the group of
multidimensional scaling. ISOMAP is designed for dimensionality reduction as well
as for visualization of multidimensional data [35]. Using ISOMAP, an assumption
that the points of the initial space are located on a lower-dimensional manifold is
done. Therefore, the geodesic distances are used as a measure of proximity between
the points analyzed. The assumption is applied in locally linear embedding (LLE)
[16] and Laplacian eigenmaps [3], too.

Several artificial neural network-based methods for visualizing the multidimen-
sional data have been proposed, including SAMANN [30, 31] and SOM [27].
The specific back-propagation-like learning rule SAMANN allows a feed-forward
artificial neural network to learn Sammon’s mapping, that is one of MDS algorithms,
in an unsupervised way. After the training, the neural network can project previously
unseen points, using the obtained generalized mapping rule.

Self-organizing map (SOM) is another artificial neural network suitable for data
visualization [27, 36]. A distinctive characteristic of this type of neural networks is
that they can be used for both clustering and visualization of multidimensional data.
SOM is a set of neurons connected to one another via a rectangular or hexagonal
topology. Each neuron is defined by the place on SOM and by the so-called
codebook vector. After the SOM learning, the analyzed data points X1, X2, . . . , Xm

are presented to SOM and winning neurons are found for each data point. In such a
way, the data points are distributed on the SOM table. Using SOM, we can draw
a table with cells corresponding to the neurons. The cells corresponding to the
neurons-winners are filled with the order numbers or names of data points. Some
cells may remain empty. One can make a decision visually on the distribution of the
points in the n-dimensional space in accordance with their distribution among the
cells of the table.

The dimensionality reduction methods can be applied for the additional mapping
of the codebook vectors of the winning neurons on the plane. The ways of
combining SOM and MDS have been proposed and investigated in [14, 28, 29].
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3 Software for Data Visualization

Data visualization is an important part of the processes of knowledge discovery in
medicine, economics, telecommunication, and various scientific fields. For several
decades, the attention was focused not only on new data mining methods, but also
on software implementing these methods [12, 16, 34]. However, most of the widely
used software solutions were designed as standalone desktop applications. They
include methods for data preprocessing, classification, clustering, regression, and
dimensionality reduction [34].

Software systems, in which data visualization methods are implemented, were
developed to facilitate solving the data mining problems. Therefore, they have
become trendy among researchers. Recently, software applications have been
developed under the SOA (service-oriented architecture) paradigm. Thus, some new
data mining systems are based on web services. Attempts are made to develop
scalable, extensible, interoperable, modular, and easy-to-use data mining systems.
Some popular data mining systems have been reoriented to web services. PCA,
MDS, and SOM are implemented only in the open source data mining tools:
WEKA [24], Orange [11], KNIME [5], RapidMiner [25], and R. Commercial
statistics software, such as Statistica (StatSoft), SAS/STAT, IBM SPSS Modeler,
as well as MATLAB include visualization methods, too.

To create an approach for intelligent visualization of multidimensional data with
the intention to avoid drawbacks of the existing data mining tools, a new cloud-based
web application, called DAMIS (DAta MIning System), is under development. The
open source solution DAMIS (http://www.damis.lt) [32] implements data mining
solution as a service for the end user and has a graphical user-friendly interface
that allows researchers to carry out a data analysis, to visualize multidimensional
data, to investigate data projections and data item similarities, as well as to
identify the influence of individual features and their relationships by various data
mining algorithms, taking advantage of cloud computing. The relations between the
implemented data mining algorithms and the graphical user interface are supported
by web services (SOAP—simple object access protocol). The algorithms for
multidimensional data preprocessing, clustering, classification, and dimensionality
reduction-based visualization have been implemented. To analyze the data by
the implemented data mining algorithms, the user initializes and manages an
experiment by constructing scientific workflows, i.e., the order in which the data
mining algorithms are executed. The user can modify the created workflow by
adding or removing nodes and reuse it for other data. The user can select high-
performance computing resource from the proposed alternatives. All the performed
experiments including the workflows and data analysis results are saved in the cloud.
Thus the management of the accomplished experiments can be accessible by the
user on demand.

The following dimensionality reduction-based methods for multidimensional
data visualization are implemented in DAMIS: principal component analysis (PCA),

http://www.damis.lt
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Fig. 1 DAMIS scientific workflow for data visualization

multidimensional scaling (MDS), relative MDS, SAMANN, and combination of
SOM and MDS (SOM-MDS).

The DAMIS user can benefit from:

• Use of the individual online data repository for data storage and easy manage-
ment;

• Selection of high-performance computing resources;
• Use of the latest version of the data mining algorithms;
• Executing scientific workflows of data mining experiments on the selected cloud-

based infrastructure and management of the accomplished experiments.

An example of the scientific workflow for a particular data visualization problem
is given in Figure 1. The workflow consists of the connected nodes. Each node
corresponds to either data preprocessing or visualization algorithm. The nodes for
data file uploading and viewing the results are also used when constructing the
workflow.

4 Visual Analysis of Regional Economic Development

Resources and their availability could be understood as preconditions for value
creation in regions, but the economic results even in regions with a similar level
of resources tend to vary, and this poses some inefficiencies [8, 17]. Intensive
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investment in science and technology does not necessarily bring the high efficiency
of the innovation systems and cannot guarantee success in innovation [23].

This research aims to evaluate economic efficiency by measuring how regional
resources are reflected in the economic results. The analysis focuses on new member
states of European Union that joined the EU in 2004. Regions of the Central and
Eastern European Union and the Baltic States are analyzed. These territories have
a comparatively common experience of market and infrastructure development and
could be evaluated as economically comparable units. As the EU Cohesion policy
funds are distributed according to NUTS2 regional level, this regional level is
selected for the analysis. Selected NUTS2 territorial units are of 800 thousand to
3 million population size. Because of these criteria, more densely populated areas
form separate region, as Prague or Bratislava, that consist of capitals and are more
economically developed than less urban territories. Overall, 40 regions are involved
in the analysis of 8 countries: Estonia (EE), Latvia (LV), Lithuania (LT), Poland
(PL), Czech Republic (CZ), Slovakia (SK), Slovenia (SL), and Hungary (HU).
Data are from the Eurostat database [19]. The EU nomenclature of territorial units
for statistics ensures harmonized standards in the collection and transmission of
regional data, guarantees that published regional statistics are based on comparable
data, and enables the analysis and comparison of the socioeconomic situation of the
regions [19].

The efficiency analysis of regional decision-making units is commonly related
to the regional production function, measuring the level of resources and outputs
achieved [9, 33]. Recent researches of efficiency are based on the Farrell’s idea [20]
that the economic efficiency consists of a technical efficiency and an allocative
efficiency. The technical efficiency is the ability of a decision-making unit to achieve
the maximum output with the available economic resources. The resource allocation
efficiency reveals the ability to choose the best resource ratio according to the market
prices.

Recent studies have focused on measurement of regional efficiency from dif-
ferent perspectives to get insights which regional resources are not insufficiently
used for the creation of economic value. The efficiency of transport infrastructure
and human capital was measured in [18, 33]. The efficiency of regional innovation
systems, evaluating regional resources and their feasible economic output, is
considered in, e.g., [2, 4, 17, 37]. The empirical analysis of efficiency is mainly
carried out by mathematical programming techniques based on a data envelopment
analysis [10].

The regional economic development is affected by various processes that could
be described by multidimensional data. By applying multidimensional data visual-
ization methods, the aim is to acquire information on the processes in the regional
economy, the interaction, and similarity of indicators. Regions X1, X2, . . . , Xm are
characterized by common economic indicators (features) x1, x2, . . . , xn. For the
analysis, a matrix of regional indicators X = {xij , i = 1, . . . , m, j = 1, . . . , n}
is set, where m is the number of regions (m = 40), n is the number of indicators
(n = 11), and xij is the value of the j -th indicator for the i-th region. All the
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Table 1 Regional economic indicators

x1 (GDP) Gross domestic product, PPS (purchasing power standard) per
inhabitant

x2 (HR_SC_TH) Persons employed in science and technology, per cent of total
population

x3 (HR_TER) Persons with tertiary education, per cent of total population

x4 (R&D_EXP) Cumulative intramural research and development expenditure (during
previous 5 years), PPS per inhabitant

x5 (PATENT) Patents (during previous 5 years), per capita

x6 (HTC_EMP) Employment in high-technology manufacturing and
knowledge-intensive high-technology services, per cent of total
employment

x7 (LMTC_EMP) Employment in low and medium technology manufacturing, per cent of
total employment

x8 (AGR_EMP) Employment in agriculture, forestry, and fishing; mining and quarrying,
per cent of total employment

x9 (POP_DENS) Population density, inhabitants per km2

x10 (ROAD_DENS) Railway network density, total railway lines per thousand km2

x11 (TOUR_NGHT) Nights spent at tourist accommodation establishments, per thousand
inhabitants

indicators involved in the analysis are significantly correlated with the GDP per
inhabitant and reveal the level of regional resources or economic outputs (Table 1).

Since we have a data matrix X = {xij , i = 1, . . . , m, j = 1, . . . , n} for the
analysis, we can visualize both the set of regions (depending on indicators) and the
set of indicators (depending on regions). The dimensionality of data on regions is n,
and the dimensionality of data on indicators is m.

Multidimensional scaling (MDS) and principal component analysis (PCA) were
applied to get the visual insight into the similarities of regions. 11-dimensional data
were visualized. Visual distribution of points corresponding to the regions is given
in Figures 2 and 3. The regions of the same country are marked by the same label.
The multidimensional data are normalized by z-score before the visualization is
applied. We do not present legends and units for both axes in the figures, because
we are interested in observing the interlocation of points on a plane only. The matrix
X before and after normalization is available online in MIDAS archive [1].

The values obtained by any indicator xk can depend on the values of other
indicators xj , j = 1, . . . , n, k �= j , i.e., the indicators are correlated. There exist
groups of indicators that characterize different properties of the region. The problem
is to discover knowledge about the similarities not only of separate indicators but
also about their groups. Here, the visual analysis of indicators (features) would be
valuable. The number of regions m is much larger than the number of indicators n
(n � m), so the visualization of indicators becomes complicated by a direct use of
matrix X. The method proposed in [13] gives a theoretically grounded possibility
for a new view to the analysis of correlations, in particular, to the visualization of
data stored in correlation matrices.
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Fig. 2 Visualization of regional economic development data using MDS

The correlation matrix R = {rij , i, j = 1, . . . , n} of indicators x1, x2, . . . , xn
can be calculated by analyzing the regions that compose the set X =
{X1, X2, . . . , Xm}. Here rij is the correlation coefficient of xi and xj .

Let Sn be a subset of an n-dimensional Euclidean space Rn containing such
points V = (v1, v2, . . . , vn), V ∈ Sn, where ‖V ‖ = ∑n

k=1 v
2
k = 1, i.e., Sn

is a unit sphere. The idea of analysis of a correlation is based on determining a
set of points V1, V2, . . . , Vn ∈ Sn, corresponding to indicators x1, x2, . . . , xn so
that cos(Vi, Vj ) = rij , if all rij ≥ 0, and cos(Vi, Vj ) = r2

ij , if the correlation
matrix contains both positive and negative values. It means that Vi and Vj will
be closer, if the absolute value of rij is larger. Basing on the matrix of cosines
K = {cos(Vi, Vj ), i, j = 1, . . . , n}, it is possible to create a set of points Vs =
(vs1, vs2, . . . , vsn) ∈ Sn, s = 1, . . . , n, as follows: vsk = √

λkeks, k = 1, . . . , n,.
Here λk is the kth eigenvalue of matrix K , Ek = (ek1, ek2, . . . , ekn) is a normalized
eigenvector (the length of eigenvector is equal to one) that corresponds to the
eigenvalue λk . In a result, we get a matrix V , whose n rows are n-dimensional points
Vs = (vs1, vs2, . . . , vsn), s = 1, . . . , n. Each row corresponds to the particular
indicator. If a visualization method is applied to such matrix, we see visually the set
of considered indicators.

The matrices R and V are available online in MIDAS archive [1].
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Fig. 3 Visualization of regional economic development data using PCA

The data in matrix V was analyzed using MDS (Figure 4) and SAMANN
(Figure 5). Visualization of indicators using SOM of various grid dimensions (4 × 4
and 5 × 5) is presented in Tables 2 and 3.

5 Discussion and Conclusions

In this paper, the methods and software for visualization of multidimensional data
are reviewed. Web-based DAMIS solution for data analysis is applied to the visual
efficiency analysis of regional economic development to evaluate how regional
resources are reflected in the economic results. The projection methods (PCA,
MDS) and artificial neural networks (SOM, SAMANN) were used. Both regions
and indicators characterizing the regions were analyzed visually.

Analysis of regions allows comparing the regions among themselves. Most
regions of the same country have a tendency to be similar. However, we observe
economical differences between various regions of the same country, too. In
Figures 2 and 3, we see one definite outlier from CZ. It is Prague city. It is not
the only outlier from the main group of regions of the similar economical state.
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Fig. 4 Visualization of indicators using MDS

Outliers from HU, SL, SK, and PL are big cities, too. Note that following MDS and
PCA, the neighboring and historically related small countries LV and LT are very
similar from the economical point of view.

Indicator analysis shows that the core indicator is gross domestic product (GDP).
It is located in the center of visual presentations of the set of indicators by MDS,
SAMANN, and SOM. The second essential indicator is cumulative intramural
research and development expenditure (R&D_EXP). These two indicators are very
related and appear in the same cell of SOM (5 × 5). They are close in SOM
(4 × 4) and in MDS and SAMANN visualizations (see Tables 2, 3 and Figures 4, 5).
Remaining indicators are more independent among themselves. From Figures 4, 5
and Tables 2, 3 we can evaluate visually both the main tendencies in pairwise
similarities of indicators and tendencies in their grouping.

From the analysis, some inefficiencies are seen. Firstly, HR_TER is apart from
GDP and other important indicators, e.g., HTC_EMP, R&D_EXP. This reveals that
higher level of tertiary education does not necessarily reflect in economic results
of regions. Secondly, AGR_EMP and LMTC_EMP are also apart from GDP and
other regional resources. This supposes that less economically developed regions
do not have sufficient resources needed for higher value creation and their path to
higher GDP could be hardly based on high-technology development or knowledge-
intensive activities.



Visualization of Data: Methods, Software, and Applications 305

Fig. 5 Visualization of indicators using SAMANN

Table 2 Visualization of indicators using SOM (grid dimension 4 × 4)

AGR_EMP TOUR_NGHTS POP_DENS, ROAD_DENS

LMTC_EMP GDP R&D_EXP, HTC_EMP

HR_TER HR_SC_TH PATENT

Table 3 Visualization of indicators using SOM (grid dimension 5 × 5)

AGR_EMP ROAD_DENS POP_DENS

LMTC_EMP GDP, R&D_EXP TOUR_NGHTS

HR_TER HR_SC_TH HTC_EMP PATENT

The paper has disclosed a new field for graphical representations of multidi-
mensional data, where the human participation plays an essential role in decisions.
Moreover, the visualization has served here as a mean for the sophisticated analysis
of data. Its application can uncover non-trivial knowledge from the real-world data.
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HPC Technologies from Scientific
Computing to Big Data Applications

L. M. Patnaik and Srinidhi Hiriyannaiah

1 Introduction

Scientific research in disciplines such as astronomy, genomics, neuroscience and
social sciences faces a major bottleneck in the areas of processing and analytical
capabilities due to increase in the size of the data over the years. The basic research
starts with a small amount of data and code running on a single-node workstation,
then extended to a distributed framework for further improvement. Scientific
applications typically involve many small task applications and are connected via
dataflow patterns. Some of the examples of scientific applications are sequence
alignment tool BLAST [1] and high energy physics histogram analysis [2]. The data
workflow systems used for building such scientific applications include HTCondor
[5], MPI [4] and Hadoop [3]. Each of these approaches differs in supporting
scalability, parallelism and job tracking and is limited by lack of fault tolerance,
rigid programming model and flexibility.

The new buzz word both in science and industry is Big Data. Data intensive
science plays a key role in the emerging Big data technologies indicating a new
form of technology for different human activities in the world. Such activities
include social media, digital services, e-commerce, logistics, transportation, etc.
Technologies like cloud computing and ubiquitous network provide necessary
platforms for organizing such processes in data collection, storing, processing and
visualization. There is a need for big data technologies to align with scientific
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discovery methods for model improvement and prediction. The use of advanced
statistical and data mining methods helps in finding patterns and discover the value
in data.

HPC systems are essential for solving scientific problems using thousands of
processors and high throughput networks. The use of HPC systems for solving
big data problems is a recent trend across HPC centres. Big data refers to
complex, diverse and massive data that contain structured, semi-structured and
unstructured data. Such data sets are difficult to store, process and analyse with
traditional database technologies. New technologies and advanced analytics are
needed for data management, distribution and processing. More recent trend is to
extend the HPC systems from computationally intensive scientific domain to data-
driven domain or Big Data. The problems related to Big data are proven to be
solvable by HPC systems because of high processing power, low-latency and non-
blocking communications. Some of the analytical problems related to cyber security,
social networks, medical and health-care typically run on HPC systems. There are
numerous approaches developed to support HPC systems for such data intensive
problems such as MapReduce, MPI, OpenMP and OpenCL.

The significant contribution of HPC is towards solving scientific application and
this now expanding towards big data analytics. There is an increasing demand
for resources required for big data applications with HPC. Hence, the existing
or alternating solutions that extend the capabilities of HPC systems for big data
applications are needed. This paper focuses on the aspects of emergence of certain
technologies in HPC from scientific computing to big data applications.

2 Evolution of Scientific Computing and Big Data

Scientific computing applications involve computational modelling, advanced sci-
ence and engineering techniques where time and cost play key roles. Some of
these computational models in the field of astronomy involve diverse information
such as stellar dynamics, black hole behaviour and dark matter, which bring new
insights and appreciate the use of experimental data. In the field of climate analysis,
computational models that capture the effect of green house gases, deforestation,
illustrate the effects of human behaviour with climate change. Thus, scientific
computing or computational science is a multidisciplinary field involving design,
prototyping, optimizing and reducing time and cost of different mathematical
models for solving complex science and engineering problems. For example, with
the help of advanced simulation techniques Cummins is able to build faster and less
expensive diesel engines [18], Good Year is able to design safe tyres in less time
and Boeing is able to build fuel-efficient aircrafts [22].

In scientific computing, mathematical models and numerical solutions are used
to solve social, scientific and engineering problems. The models often require
computing resources in large amount for performing large-scale experiments to
reduce the time required and computational complexity. These needs are made
available by HPC infrastructure in the form of clusters or grids [6]. With the
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availability of computer grids, network of machines with high power to perform
large experiments are provided for scientific computing applications. Computing
grids offer services such as dynamic discovery of services, network of resources
for meeting the application requirements. Grid computing has been used in many
scientific computing applications [7–9].

The recent trends are Big Data, machine learning and predictive analytics which
are seen as the next shift in the paradigm of computing allowing research in
computational science or scientific computing with instruments. Machine learning
applications are used in the field such as healthcare in identifying the spread
of diseases, high-energy physics and molecular biology [16]. The successive
generations of computing and large-scale scientific instruments bring in advanced
new capabilities of engineering with technical challenges and economical trade-
offs. In a broad sense, data generation is increasing in most of the scientific domains
causing them to be data intensive and requiring more computational abilities. High
performance computing and Big Data are intrinsically tied to each other to meet the
forecasting demands of the scientific computing applications.

The factors that are responsible for increasing data in big data and HPC
applications are as follows:

– HPC systems are able to run data intensive applications that involve considerable
modelling and simulation problems at large scale.

– Rapid increase in larger, scientific instruments and sensor networks leading to
Internet of Things (IoT).

– Evolving multidisciplinary engineering domains and transformation of them into
data-driven science such as biology, archaeology and linguistics.

– Increasing data volume from the results of stochastic models, parametric models
and other iterative problem-solving methods in various fields of engineering.

– Need to perform near real-time analytics in various commercial applications.
– Newer platforms and programming models for analytics such as MapRe-

duce/Hadoop, semantic analysis and graph analytics.

3 Software Stack for HPC and Big Data

The software stacks for Big data and HPC are different due to the class of the
applications that belong to these areas. Software should essentially comprise of
software for power management, operating systems, cluster monitoring, scheduling
and performance monitoring. The difference between the HPC and Big data
software stack is summarized as shown in Figure 1.

– Programming languages: C, C++ are the commonly used languages for the
development of HPC applications. Java, Scala, R, Python are used for Big data
applications.

– File systems: Hadoop is the fundamental file system used in most of the big data
applications. Hadoop supports a variety of formats of data with databases such as
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Fig. 1 HPC and Big Data stack

Hive and HBase. The significance of Hadoop is distributed file system (HDFS).
It splits the file into various blocks and distributes them across the file system to
different network nodes. HPC applications rely on the legacy network file system
(NFS) to store and access the data across different locations in the cluster.

– Operating system: In big data systems, frameworks are built around JVM and
thus support portability across different OS and platforms. In the case of HPC
systems, as they rely on C/C++, recompilation of the applications is needed
initially to run on different operating systems.

– Hardware: The main intention of the design of Hadoop was to use a con-
ventional hardware for scalability with less cost. It uses the conventional
Ethernet sockets for communication and distribution of data among clusters.
HPC software makes efficient use of remote directory memory access (RDMA)
technology such as Infiniband interconnect.

– Debugging: HPC systems support various debugging and profiling tools such as
Scalasca and Tau. In the case of big data and Hadoop, resource managers such
as YARN, Mesos are the only solutions for debugging the jobs in the cluster.

4 Solutions for HPC with Big Data

4.1 Cloud Computing

Grid computing with pre-packaged environment is used for running scientific
applications. The use of grid computing for scientific computing applications is
limited to tools, API, hosting operating systems, services that are required at specific
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times. In practice, options available in grid computing are not elastic to cover the
needs of scientific applications. The applications that run on grids are implemented
as a set of workflows and parallel processes. Scientific applications have to be
reorganized into such workflows for execution in grid environments which is more
expensive. Cloud computing is one of the solutions that address the challenges of
grid computing [12].

Cloud computing is pay-as-you-go service model offering many services from
hardware to the application using virtualization. The main advantage of use of
cloud computing is scalability, computing infrastructure can be scaled up or down
based on the application requirements. A distributed approach in cloud computing
provides ease of access to large infrastructures to carry out various experiments.
Pay-as-you go model of cloud computing allows renting the infrastructure as per the
usage and required resources without any capacity planning initially. The computing
stack varies from the hardware to the application level in cloud computing. At
the hardware level, appliances are provided by means of virtualization. At the
application level, software itself is provided as a service to the users. HPC and
big data applications can explore wide spectrum of options available with cloud
computing and other services [11].

In order to move from the traditional science grids to cloud computing, different
solutions are available in the market through multiple cloud providers. Amazon
web services and VMware solutions provide infrastructure level resources through
virtualization and thus offer resources on demand as a service. Microsoft Azure and
Google App engine provide virtualization at the application level rather than at the
hardware level to support specific requirements of the applications and thus utilize
the large infrastructure of clusters of Google and Microsoft. Aneka [10] is also one
of the cloud solutions offering better quality of service to the end users through
virtualization, support of multiple programming models such as MapReduce [13].
The other services offered by such cloud providers include end-to end platform as a
service as well to the users.

4.2 MPI

MPI [19] is a library for message passing to program distributed and shared memory
systems with bindings to C, C++ with support of both collective and point-to-
point communications. MPI consists of a collection of processes where the starter
process or rank 0 process will be a separate process of the application. MPI_init() is
used to start the MPI process initializing the communication among the distributed
processes using MPI_COMM_WORLD as the initiator. MPI_finalize() is used to
terminate the process. Many standards have been released from MPI 1.0 to MPI 3.0.
Initially in MPI 1.0, the functionality of two-sided and collective communication
was provided and later in MPI 2.0, the one-sided communication was supported.
Random memory access (RMA) specification was later introduced in MPI 3.0
for addressing global address space models. The notion of RMA specification is
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that memory segment can be remotely accessed by other processes using get/put
operations. MPI supported initially a sequential I/O approach where a master
process was responsible for both read and write processes. The master process reads
the data and sends it to other processes for further operations. In case of write, all the
processes send the data to the master for aggregating the data into files. Thus, there
was a bottleneck on I/O limiting the performance and scalability of applications.
In MPI 2.0 sequential I/O was eliminated and parallel processing was enabled to
provide non-contiguous data layout for memory and files.

4.3 CUDA (Compute Unified Device Architecture)

General purpose computing with GPU or graphics processors has been studied for
several years [19]. The different domains that have explored the use of GPUs and
their applications include genomics, climate analysis, molecular engineering and
other scientific domains. The use of GPUs for development of such applications
is limited to the use of graphics processing language and its flexibility for non-
graphic programmers. NVIDIAs CUDA provides ease of access for scalable parallel
programming and scientific computing. CUDA platform provides massive general
purpose multi-threaded architecture with up to 128 processor cores, programmable
in C and capable of executing billions of floating-point operations per second. The
ubiquitous nature of NVIDIA GPUs provides a compelling platform for HPC and
Big Data applications. Many applications related to computation and searching are
being rapidly developed using the CUDA programming model [20].

The three basic features that are offered by CUDA are hierarchy of thread groups,
shared memories and barrier synchronization. In developing a parallel algorithm
for a problem using CUDA, first the portion of the problem that can be solved
independently needs to be identified and further these parts are executed across
independent parallel threads [20]. For example, consider the following snippet for
addition of two matrices a and b. In this example, each element of the resultant
matrix is not dependent on the operations of the other elements. Thus, in this case
the execution can be parallelized across different elements in the resultant matrix.

f o r ( i =0 ; i <m; i + + ) :
f o r ( j =0 ; j <n ; j + + ) :

r e s u l t [ i ] [ j ]= a [ i ] [ j ]+ b [ i ] [ j ] ;
end

end

A basic organization of CUDA with threads, blocks and grids is shown in
Figure 2 [20]. The programmer has to specify the number of threads per block and
the number of blocks in the grid. CUDA supports 512 threads in one thread block.
Each thread is given a unique id threadIdx numbered from 0,1..blockdim-1 within a
thread block. Each block is given a unique id blockIdx in the grid. In order to execute
the kernels on CUDA, the data that resides on the host need to be transferred to the
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Host

Device
Block (0,0) Block (0,1)

Block (1,0) Block (1,1)

Threads Threads

Threads Threads

Fig. 2 CUDA thread organization

device or GPU first, next invoke the kernel with appropriate number of threads and
then finally execute it on the device. To perform these operations, certain keywords
are used that suggest that the kernels are executed on the device and not on the host.
Some of the keywords used are cudaMemcopy(), _global_, <<<>>>.

4.4 OpenMP

OpenMP [21] is a program interface that provides multi-threaded programming
model with shared memory for parallel programming. The interface provides direc-
tives with bindings for C and C++. These directives are used by the programmers to
specify the piece of code that needs to be executed in parallel. The directives are in
the form #pragma omp that specifies the compiler to switch to the openmp clause
and syntax for parallel execution.

The following example demonstrates parallelizing of a loop with OpenMP. The
directive #pragma omp parallel for specifies that the for loop has to be executed
in parallel. The number of threads is divided based on the cores used for program
execution. In case of this example, if for loop is executed on a 2-core processor
with n value as 2, the number of threads will be 2 pertaining to b[0] and b[1] that
represents first and second thread, respectively.

vo id s i m p l e ( i n t n , f l o a t *a , f l o a t *b )
{

i n t i ;
/ / pragma omp p a r a l l e l f o r
f o r ( i =1 ; i <n ; i ++) / * i i s p r i v a t e by d e f a u l t * /
b [ i ] = ( a [ i ] + a [ i −1]) / 2 . 0 ;

}
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Fig. 3 MapReduce programming model

4.5 MapReduce

MapReduce is a programming model for large-scale processing of data stored on
Hadoop-based systems [13, 14]. A MapReduce program consists of map and reduce
tasks for processing. In both map and reduce tasks, key-value pairs are used for input
and output data processing. In map method, the input data is read and transformed
into intermediate key-value pairs. In the reduce method, the intermediate pairs are
aggregated into key-value pairs by summing up the values based on the key. The
main features of MapReduce programming include load balancing, failure tolerant
and recovery from the failed tasks. In Hadoop, each query runs a MapReduce
job by reading the data, running the map task to produce the intermediate key-
value pairs and finally running the reduce task to output the aggregated key-value
pairs.

The map function takes the input and splits into <key, value>pairs. A sort face
exists in between these map and reduce phases that aggregates several input key-
value pairs from the map phase into intermediate <key, value> pairs. The reduce
phase picks up the intermediate key-value pairs and produces the output <key,
value>pairs that can be understood by the user [13]. The basic framework of
MapReduce programming model is shown in Figure 3.

5 Big Data Applications

Big data analytics is one of the advanced analysis methods for massive data. The
data-driven applications and business analytics are becoming popular nowadays
in many areas such as environmental science, genomics, social networks, social
computing and business intelligence, and smart health. In this section, the different
and promising applications from typical big data domains are listed as follows. The
specific areas of big data technology that scientific researchers are deploying in
order to see significant increases in their ability to manage the scientific data deluge
are discussed below.
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– Scientific applications: Sensors deployed in a smart environment such as
smart city, self-driving cars generate lot of data that needs to be analysed. In
the field of physics and astronomical experiments, scientific studies are being
carried out for designing, operating and analysing sensor networks and detectors.
One of the applications includes developing earth observation system (EOS)
for gathering information and approaches to analyse information about earths
physical, chemical and biological properties via remote sensing technologies,
to improve social and economic well-being and its applications for weather
forecasting, monitoring and responding to natural disasters, and climate change
predictions, etc.

– Genomics: An area of scientific research that is benefiting from HPC and big
data merging is genomics. Applications relate to big data analytics of various
genomic data, studying biomedical applications such as evolution of pathogen
affecting humans, cancer biology and chemical–genetic interactions in drug
design [17].

– Environmental Sciences: A large amount of climate and ecosystem data is
now available from satellite and ground-based sensors, while climate model
simulations offer huge potential for understanding the behaviour of the Earth’s
ecosystem and for advancing the science of climate change [15].

– Business analytics: A large number of e-commerce platforms are interested
in knowing the user information such as their likely products of purchase and
offer personalized recommendations. In the field of recommender systems, non-
negative matrix factorization methods are employed for recommendations [23].
Recommender systems play an important role for decision making and analytics.
In [23], more details on the necessity of recommender systems for business
analytics are discussed.

However, with such wide variety of applications and convergence of big data and
scientific computing, certain challenges exist. Some of the challenges are outlined
below.

– Data acquisition and management: In the pursuit of the development of
applications related to Big data, the main challenge is the acquisition of the
data that exists in different formats. Since the data exists in various formats
either in structured, semi-structured or unstructured, it is a challenge to have
a single platform for accessing and managing all the types of data. The
same challenge also applies to scientific applications wherein large amount of
data needs to be managed in an efficient way for further processing. Hadoop
and other distributed systems with SQL support can help in overcoming this
challenge.

– Data access and processing: Once the data is acquired and stored in different
storage systems, then processing of data needs to be addressed carefully with
certain methodologies. These methodologies can be modelling, simulation,
prediction, forecasting and others. Thus, in order to process the data efficient
data mining and machine learning methods can be applied.
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– Data understanding: Another challenge that exists with big data applications is
the understanding of the domain of the data. The data differs from one domain to
another domain in different areas such as chemical, physics, petroleum, energy
and requires specific methodologies to be incorporated for analysis.

6 Conclusions

HPC and Big data analytics are an emerging platform to address the need for large-
scale data processing and decision making. The technologies related to Big data and
HPC such as cloud computing, MPI, OpenMP, CUDA and MapReduce are evolving
and changing the existing traditional databases with effective data organization
and workloads for processing with machine learning techniques. The maturity of
these technologies is accelerating several areas of scientific computing that involve
data intensive applications. This paper has discussed an overview of evolution
of HPC technologies starting from scientific computing to Big data analytics.
The solutions help to construct a programming model that will handle both
computational and data intensive applications while meeting user’s expectations
with regard to programmability, performance portability and fault tolerance, for
developing applications related to HPC and Big data.
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Analysis and Simulation of Time-Domain
Elliptical Cloaks by the Discontinuous
Galerkin Method

Yunqing Huang, Chen Meng, and Jichun Li

1 Introduction

The study of invisibility cloaks with metamaterials was initiated by Leonhardt and
Pendry et al. [14, 26] in 2006, since then there have been growing interests in design
of cloak devices [27], abstract mathematical analysis of cloaking phenomena [1–4,
7, 8, 12, 13, 15, 24], and numerical simulations of cloaking phenomena by the FDTD
method [9, 23], finite element methods [5, 18, 25, 29], and the spectral element
method [31, 32].

Broadband cloaking [8, 15, 24] inspired us to pursue the time-domain cloaking
simulation and analysis. In 2012, we [19] performed some mathematical analysis
for the cylindrical cloak proposed by Pendry et al. [26] and developed a finite
element time-domain (FETD) method to simulate the cylindrical cloak. Later on,
we investigated the analysis and simulation for the elliptical cloak [21], rectangular
cloak [6, 17], arbitrary polygonal cloaks [20, 30], the spherical cloak [16], the 2D
carpet cloak [22], and total reflection and cloaking by zero index metamaterials
[10, 28].

In this paper, we continue our study of the elliptical cloak [21]. More specifically,
in Section 2, we establish a stability for the cloaking model. In Section 3, we develop
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a discontinuous Galerkin method for solving the model. In Section 4, we present
four numerical examples showing that our method works for simulating the elliptical
cloaking phenomena.

2 The Elliptic Cloak Model and its Stability Analysis

Consider an elliptical shell (cf. Figure 1) with semiaxes a and b in the y direction,
and semiaxes ka and kb in the x direction, where k denotes the axis ratio. Note that
k > 1 yields a horizontal elliptical cloak, while k < 1 leads to a vertical elliptical
cloak, and k = 1 reduces to a circular cloak.

In the elliptical cloak region, where r := √
x2 + k2y2 ∈ (ka, kb), the relative

permittivity and permeability can be expressed in the Cartesian coordinate system
as [11]:

ε = μ =
⎛

⎝
εxx εxy 0
εxy εyy 0
0 0 εzz

⎞

⎠ , (1)

where we denote R = √x2 + k4y2,

εxx = r

r − ka
+ k2a2R2 − 2kar3

(r − ka)r5
x2, εxy = k2a2R2 − ka(1 + k2)r3

(r − ka)r5
xy,

εyy = r

r − ka
+ k2a2R2 − 2k3ar3

(r − ka)r5
y2, εzz =

(
b

b − a

)2
r − ka

r
.

Furthermore, we denote

λ1 = m − 1

m + 1
, λ2 = 1

λ1
, λ3 = εzz, m =

√

1 + 4r5(r − ka)

k2a2R2(x2 + y2)
,

Fig. 1 (Left) An elliptical
cloak in the Cartesian
coordinate system; (right) an
exemplary mesh (the most
inner ellipse is not used in
simulation).
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p1 = εxy
√
ε2
xy + (λ2 − εyy)2

, p2 = λ2 − εyy
√
ε2
xy + (λ2 − εyy)2

.

Note that λ1, λ3 < 1 in the cloak region, which means that the medium in that
region is nonphysical and is often mapped by dispersive media such as the lossless
Drude model:

λi = ε∞i − ω2
pi

ω2 , i = 1, 3, (2)

where ω is the angular frequency, ωpi is the plasma frequency, and ε∞i is the
permittivity at infinite frequency. After some lengthy algebra, we derived the
governing equations for simulating time-domain elliptical cloaking phenomena as
follows [21]:

Bt = −∇ × E, (3)

Dt = ∇ × H, (4)

ε0λ2

(
ε∞1Et2 + ω2

p1E
)

= MEDt2 + MFD, (5)

Bt2 = μ0

(
ε∞3Ht2 + ω2

p3H
)
, (6)

where we denote utk for the k-th derivative ∂ku
∂kt

, 2D vectors D = (Dx,Dy)
′ and

E = (Ex,Ey)
′, and matrices ME and MF as follows:

ME =
(

p2
1λ2 + ε∞1p

2
2 p1p2(ε∞1 − λ2)

p1p2(ε∞1 − λ2) p2
2λ2 + ε∞1p

2
1

)

, MF = ω2
p1

(
p2

2 p1p2

p1p2 p2
1

)

.

Here and below, we follow the convention to adopt the 2-D curl operators: For a
scalar function H , we denote ∇ × H = ( ∂H

∂y
,− ∂H

∂x
)′; while for the vector E =

(Ex,Ey)
′, we denote ∇ × E = ∂Ey

∂x
− ∂Ex

∂y
.

To complete our modeling problem, we assume that Equations (3)–(6) are subject
to the perfectly conducting (PEC) boundary condition:

τ̂ · E = 0, on ∂�, (7)

and the following initial condition:

B(x, 0) = B0(x), D(x, 0) = D0(x), H(x, 0) = H0(x), E(x, 0) = E0(x),

where τ̂ denotes the unit tangential vector along ∂�, and B0(x),D0(x),H0(x), and
E0(x) are some given functions. The following lemma is proved in [21].
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Lemma 1 The matrix MF is symmetric and nonnegative definite, and matrix ME

is symmetric and positive definite.

For our cloaking model, we can prove the following stability.

Theorem 1 Denote the energy:

ENG(t) :=
[
(MEDt ,Dt ) + (MFD,D) + ε0μ0ε∞3(λ2ε∞1M

−1
E Et2 ,Et2)

+ε0μ0ε∞3(λ2ω
2
p1M

−1
E Et ,Et ) + ||∇ × Et ||2 + ε0ε∞1(λ2M

−1
E Et ,Et )

+ε0(λ2ω
2
p1M

−1
E E,E) + μ0ε∞3(Ht ,Ht ) + μ0(ω

2
p3H,H)

]
(t).

(8)

Here and below, we denote ||·|| for the L2 norm over domain Ω . Then for any t ≥ 0,
we have

ENG(t) ≤ C · ENG(0).

Proof To make our proof easy to follow, we split the proof into three parts.
(i) Multiplying (5) by Dt and integrating over �, we obtain

1

2

d

dt
[(MEDt ,Dt ) + (MFD,D)] = ε0ε∞1(λ2Et2,Dt ) + ε0(λ2ω

2
p1E,Dt ),

integrating which from t = 0 to t yields

1

2
[(MEDt ,Dt ) + (MFD,D)] (t) = 1

2
[(MEDt ,Dt ) + (MFD,D)] (0)

+
∫ t

0
ε0ε∞1(λ2Et2,Dt )ds +

∫ t

0
ε0(λ2ω

2
p1E,Dt )ds. (9)

(ii) Differentiating (5) with respect to t , left-multiplying M−1
E (the inverse of

matrix ME is guaranteed by Lemma 1), and using (4), we have

ε0λ2M
−1
E (ε∞1Et3 + ω2

p1Et ) = Dt3 + M−1
E MFDt =∇×Ht2 + M−1

E MFDt . (10)

Multiplying (10) by μ0ε∞3 and using (6) and (3), we obtain

ε0μ0ε∞3λ2M
−1
E (ε∞1Et3 + ω2

p1Et ) = ∇ × (Bt2 − μ0ω
2
p3H) + M−1

E MFDt

= −∇ × ∇ × Et − μ0∇ × (ω2
p3H) + M−1

E MFDt . (11)

Multiplying (11) by Et2 , integrating the resultant over �, and using the identity

∇ × (ω2
p3H) = ω2

p3∇ × H + H∇ × (ω2
p3),
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we have

ε0μ0ε∞3

2

d

dt

[
(λ2ε∞1M

−1
E Et2 ,Et2) + (λ2ω

2
p1M

−1
E Et ,Et )

]
+ 1

2

d

dt
||∇ × Et ||2

= −μ0(ω
2
p3∇ × H,Et2) + μ0(H∇ × (ω2

p3),Et2) + (M−1
E MFDt ,Et2). (12)

Integrating (12) from t = 0 to t yields

ε0μ0ε∞3

2

[
(λ2ε∞1M

−1
E Et2 ,Et2 ) + (λ2ω

2
p1M

−1
E Et ,Et )

]
(t) + 1

2
||∇ × Et ||2(t)

= ε0μ0ε∞3

2

[
(λ2ε∞1M

−1
E Et2 ,Et2 ) + (λ2ω

2
p1M

−1
E Et ,Et )

]
(0) + 1

2
||∇ × Et ||2(0)

−
∫ t

0
μ0(ω

2
p3Dt ,Et2 )ds +

∫ t

0
μ0(H∇ × ω2

p3,Et2 )ds +
∫ t

0
(M−1

E MFDt ,Et2 )ds. (13)

(iii) Substituting (3) into (6), we have

μ0ε∞3Ht2 + μ0ω
2
p3H = Bt2 = −∇ × Et . (14)

Multiplying (14) by Ht , then integrating over � and using the PEC boundary
condition (7), we obtain

1

2

d

dt

[
μ0ε∞3(Ht ,Ht ) + μ0(ω

2
p3H,H)

]
= −(∇ × Et , Ht ) = −(Et ,∇ × Ht).(15)

Left-multiplying (5) by M−1
E and using (4), we have

ε0λ2M
−1
E (ε∞1Et2 + ω2

p1E) = Dt2 + M−1
E MFD = ∇ × Ht + M−1

E MFD. (16)

Multiplying (16) by Et and integrating over �, we obtain

1

2

d

dt

[
ε0ε∞1(λ2M

−1
E Et ,Et ) + ε0(λ2ω

2
p1M

−1
E E,E)

]

= (∇ × Ht,Et ) + (M−1
E MFD,Et ). (17)

Adding (15) and (17), and integrating the resultant from 0 to t , we have

1

2

[
ε0ε∞1(λ2M

−1
E Et ,Et ) + ε0(λ2ω

2
p1M

−1
E E,E) + μ0ε∞3(Ht ,Ht ) + μ0(ω

2
p3H,H)

]
(t)

= 1

2

[
ε0ε∞1(λ2M

−1
E Et ,Et ) + ε0(λ2ω

2
p1M

−1
E E,E) + μ0ε∞3(Ht ,Ht ) + μ0(ω

2
p3H,H)

]
(0)

+
∫ t

0
(M−1

E MFD,Et )ds. (18)
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Summing up (9), (13), and (18), we obtain

ENG(t) = ENG(0) +
∫ t

0
ε0ε∞1(λ2Et2 ,Dt )ds +

∫ t

0
ε0(λ2ω

2
p1E,Dt )ds

−
∫ t

0
μ0(ω

2
p3Dt ,Et2)ds +

∫ t

0
μ0(H∇ × ω2

p3,Et2)ds

+
∫ t

0
(M−1

E MFDt ,Et2)ds +
∫ t

0
(M−1

E MFD,Et )ds. (19)

Using the Cauchy-Schwarz inequality to all integral terms of (19), we easily see
that they can be bounded by some corresponding terms in ENG(t). Hence, the
proof is completed by the Gronwall inequality. ()

3 The Discontinuous Galerkin Method

To discretize the cloaking model (3)–(6), we consider a shape-regular mesh Th
that partitions the domain � into disjoint triangular elements {Ti}, such that � =
⋃NT

i=1 Ti. Furthermore, we denote aik = Ti ∩ Tk for an interior edge between two
elements Ti and Tk , and nik for the unit normal vector pointed from Ti to Tk . For
any given element Ti , we denote νi for the set of all neighboring elements of Ti .

In the DG method, the finite element space is given by discontinuous piecewise
polynomials of degree k on each element, that is:

Uh = {uh ∈ L2(�) : uh|Ti ∈ Pk, ∀ Ti ∈ Th}, V h = Uh × Uh.

Moreover, we denote V 0
h for the subspace of V h satisfying the PEC boundary

condition (7). To define a fully discrete scheme, we divide the time interval (0, T )
into N uniform subintervals by points 0 = t0 < t1 < · · · < tN = T , where tk = kτ,

and τ = T/N. For any function uh ∈ Uh, we denote its average on any internal face
aik as {{uh}}ik = 1

2 (uhi + uhk), where uhi and uhk denote the function values of uh
from the current element Ti and the neighboring element Tk , respectively.

Now, we can construct our fully discrete leap-frog type scheme: Given proper

initial approximations of H 0
h , B

0
h,D

− 1
2

h ,D
− 3

2
h ,E

− 1
2

h ,E
− 3

2
h , for any n ≥ 0, find

Hn+1
h , Bn+1

h ∈ Uh,D
n+ 1

2
h ,E

n+ 1
2

h ∈ V 0
h such that

∫

Ti

D
n+ 1

2
h − D

n− 1
2

h

τ
· vh −

∫

Ti

Hn
h · ∇ × vh −

∑

Tk∈νi

∫

aik

vh × nik · {{Hn
h }}ik = 0, (20)

ε0λ2

⎛

⎝ε∞1

∫

Ti

E
n+ 1

2
h − 2E

n− 1
2

h + E
n− 3

2
h

τ 2 · vh +
∫

Ti

ω2
p1E

n+ 1
2

h · vh

⎞

⎠
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=
∫

Ti

ME

D
n+ 1

2
h − 2D

n− 1
2

h + D
n− 3

2
h

τ 2 · vh +
∫

Ti

MFD
n+ 1

2
h · vh, (21)

∫

Ti

Bn+1
h − Bn

h

τ
· ψh +

∫

Ti

E
n+ 1

2
h · ∇ × ψh +

∑

Tk∈νi

∫

aik

ψh · nik × {{En+ 1
2

h }}ik = 0, (22)

∫

Ti

Bn+1
h − 2Bn

h + Bn−1
h

τ 2 ψh

= μ0

(

ε∞3

∫

Ti

Hn+1
h − 2Hn

h + Hn−1
h

τ 2 ψh +
∫

Ti

ω2
p3H

n+1
h ψh

)

, (23)

hold true for any v ∈ V 0
h and ψh ∈ Uh. Note that this scheme can be simply

implemented as follows: At each time step, first solving (20) for D
n+ 1

2
h , then

solving (21) for E
n+ 1

2
h , followed by solving Bn+1 from (22), and finally solving

for Hn+1
h from (23).

To simulate the wave propagation in unbounded domain, we have to truncate the
unbounded domain to a bounded one by using the perfectly matched layer (PML)
introduced by Berenger. Here, we use the unsplit PML:

ε0
∂E

∂t
+ σE = ∇ × Hz,

μ0
∂Hz

∂t
+ σ ∗Hz = −∇ × E,

where the electric field E = (Ex,Ey)
′, and parameters σ and σ ∗ are the electric and

magnetic conductivities, respectively. To avoid reflection from interfaces, we need
the impedance-matching condition: σ

ε0
= σ ∗

μ0
.

To couple the PML model with the cloaking model, we construct a similar DG
scheme for solving the PML model as follows: Given proper approximations of

H 0
h ,E

− 1
2

h , for any n ≥ 0, find E
n+ 1

2
h ∈ V 0

h,H
n+1
h ∈ Uh such that

ε0

∫

Ti

E
n+ 1

2
h − E

n− 1
2

h

τ
· vh −

∫

Ti

Hn
h · ∇ × vh −

∑

Tk∈νi

∫

aik

vh × nik · {{Hn
h

}}
ik

+
∫

Ti

σ · E
n+ 1

2
h + E

n− 1
2

h

2
× vh = 0,

μ0

∫

Ti

Hn+1
h − Hn

h

τ
· uh +

∫

Ti

E
n+ 1

2
h · ∇ × ψh +

∑

Tk∈νi

∫

aik

ψh · nik × {{En+ 1
2

h }}ik

+
∫

Ti

σ ∗ · H
n+1
h + Hn

h

2
· ψh = 0,

hold true for any vh ∈ V 0
h and ψh ∈ Uh.
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4 Numerical Results

To validate our elliptic cloaking model, we implemented the finite element
method (20)–(23) and carried out extensive numerical tests. In all our simulations,
we fixed the physical domain � = [0, 0.8]m × [0, 0.8]m, which is partitioned by
unstructured triangular meshes with mesh size h = 6.25 × 10−3m, and the time
domain [0, 8] ns discretized by a time step size τ = 2 × 10−13 s, i.e., the total
number of time steps is 40000. For our cloaking simulation, the total number of
triangular elements is about 33000.

On both left and right sides of the PML region, the damping function σ ∗ is a
function of x given as follows:

σ ∗(x) =

⎧
⎪⎪⎨

⎪⎪⎩

σmax

(
x−0.8
dd

)6
, if x ≥ 0.8

σmax

(
x
dd

)6
, if x ≤ 0

0, otherwise,

where σmax = −log(err) ∗ (6 + 1) ∗ 0.8 ∗ cv/(2 ∗ dd) with err = 10−7. While
in the y-direction, σ ∗(y) has the same form. In our tests, we used dd = 12h in all
directions.

Example 1 In this example, we choose the cloaking parameters a = 0.075, b =
0.15, k = 2, ε∞1 = 1, and ε∞3 = 2. The incident wave is generated by a
plane wave Hz = 0.1 sin (ωt) imposed at the line segment connected by points
(6.25 × 10−3, 0.01)m and (6.25 × 10−3, 0.79)m, where ω = 2πf with frequency
f = 2 GHz. The computated electric fields Ey obtained at various time steps are
presented in Figure 2, which shows that the plane wave pattern is resumed quite well
after the wave passes the cloaking region, i.e., the invisibility cloaking phenomenon
is achieved very well.

Example 2 This example has the same physical parameters as Example 1,
except that the incident source wave Hz = 0.1 sin (ωt) is imposed at point(
6.25 × 10−3, 0.4

)
m. Snapshots of obtained Ey are presented in Figure 3, which

clearly shows that the invisibility cloaking phenomenon is also achieved very well
in this case.

Example 3 This example has the same parameters as Example 2 except that a =
0.15, b = 0.3, and k = 1/2, i.e., the ellipse has the major axis lying on the y-axis.
We tested both line source wave and point source wave, which show invisibility
cloaking very well. Some snapshots of the electric fields Ey obtained with the point
wave source is given in Figure 4.

Example 4 This example has the same setup as Example 3 except that k = 1, i.e.,
we have a circular cloak with inner radius a = 0.15 and outer radius b = 0.3.
Both line source wave and point source wave are tested and both show invisibility
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Fig. 2 Example 1. Snapshots of electric fields Ey obtained with a plane wave source for the ellipse
with parameters a = 0.075, b = 0.15, k = 2: (top left) 3,000; (top right) 7,000; (middle left)
10,000; (middle right) 20,000; (bottom left) 30,000; (bottom right) 40,000.

cloaking very well. Some snapshots of the electric fields Ey obtained with the point
wave source is presented in Figure 5.

Acknowledgements Work of the authors “Yunqing Huang and Chen Meng” was supported by
the NSFC Key Project 91430213. Work of the author “Jichun Li” was supported by the NSF grant
DMS-1416742 and NSFC project 11671340.
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Fig. 3 Example 2. Snapshots of electric fields Ey obtained with a point wave source for the ellipse
with parameters a = 0.075, b = 0.15, and k = 2: (top left) 3,000; (top right) 7,000; (middle left)
10,000; (middle right) 20,000; (bottom left) 30,000; (bottom right) 40,000.
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Fig. 4 Example 3. Snapshots of fields Ey obtained with a point wave source for the ellipse with
parameters a = 0.15, b = 0.3, and k = 1/2: (top left) 3,000; (top right) 7,000; (middle left)
10,000; (middle right) 20,000; (bottom left) 30,000; (bottom right) 40,000.
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Fig. 5 Example 4. Snapshots of fields Ey obtained with a point wave source for a circle with
a = 0.15 and b = 0.3: (top left) 3,000; (top right) 7,000; (middle left) 10,000; (middle right)
20,000; (bottom left) 30,000; (bottom right) 40,000.
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Dynamic Pore-Network Models
Development

X. Yin, E. T. de Vries, A. Raoof, and S. M. Hassanizadeh

1 Introduction

Along with the development of imaging techniques and micro-fluidics experiments,
pore-network model has evolved over decades to represent more efficient and
complex structures with more pore-scale mechanisms included.

Pore-network can be categorized as quasi-static or dynamic. Quasi-static models
have been successfully applied for the prediction of relative permeabilities, and
capillary pressure-saturation in multiphase system [18–20]. Dynamic pore-network
model applies when capillary-dominance assumption is no longer valid and vis-
cous forces need to be considered together with the capillary forces. Dynamic
pore-network models mainly fall into two groups: single-pressure algorithm and
two-pressure algorithm. We discussed several representative already developed
pore-network models below and comprehensive reviews can be found in [1, 7, 10].

Blunt and King [6] simulated two-phase flow using isotropic pore network to
study invasion fractal dimension and dynamic relative permeability. In their model,
throats were completely filled with only fluid, while pores may contain two fluids
simultaneously. Capillary pressure in pores was neglected.

van der Marck et al. [15] studied drainage by means of experiments and simu-
lation methods. They extended the numerical pore-network model by Lenormand
et al. [14]. They compared pressure buildup at boundary and saturation in the
domain before breakthrough during flow-controlled drainage process. Pressure
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is defined at pores and pores could be occupied by two fluids. Only capillary
pressure at channels was considered and capillary pressure at pores was neglected.
The algorithm mainly involved pressure solving and saturation update.

Aker et al. [2] modeled the dynamics of drainage-dominated flow using a
two-dimensional network. The flow front width from simulation was found to
be consistent with a scaling relation and scaling exponents were compared with
experimental data from the literature. Pressure was defined at nodes and only one
fluid would occupy a node. Main terminal meniscus is modeled, while film flow
and corner flow were not considered. Simultaneous flow of two liquids into one
tube was allowed with maximum two menisci. Solving volume flux conservation at
nodes provided pressure field. Rules were defined to describe how a meniscus will
move into neighboring tubes when it reaches the end of a tube.

Al-Gharbi and Blunt [4] presented a dynamic network model for modeling of
two-phase drainage. Wetting layer flow, meniscus oscillation, and the dynamics of
snap-off are accounted for. In their model, pressure is assigned at pore centers and
throat centers. Volume conservation equations for pores and throats determine the
pressure field. In writing pressure drop between neighboring pore and throat, the
number and orientation of interface are included. After solving pressure, location
of interface can be updated by iteration. Rules regarding invasion of pore center
and fusion of interface are defined to ensure relatively simple track of number and
orientation of interface.

These single-pressure algorithms may be computationally efficient; however,
they could suffer from one of the followings: (1) network with regular geometry/-
topology; (2) failure to include corner flow/film flow; (3) ignorance of capillary
pressure at pores; (4) rule-based description of interface morphology; and (5) rule-
based dynamic algorithm.

Using a two-pressure algorithm, both pore body and pore throat can be filled
with different fluids, each with its own pressure. Interface position or shape is
not explicitly described but included in pore body capillary pressure-saturation
relationship. Pressure, fluxes, and saturations are calculated separately for each
fluid. This algorithm was initially developed by Thompson [24] for study of
imbibition process in fibrous materials. Later, this algorithm was improved and
implemented onto structured network with fixed coordination number of six to study
theories of two-phase flow in porous media [11–13] and wicking behavior [9].

In this work, we present the development of the two-pressure algorithm for
unstructured network allowing for coordination number ranging from 1 to 26
introduced by Raoof and Hassanizadeh [23]. For two-phase flow involving two
fluids with significant different viscosities, such as the water-air system, pressure
drop in less viscous fluid may be negligible, and the above two-pressure algorithm
may be simplified accordingly. Single-pressure algorithms for both drainage and
imbibition are developed in this study.

We give description of our algorithms in Section 2 and simulations are carried
out in Section 3.
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2 Pore-Network Model Description

2.1 Model Features

2.1.1 Structure and Geometry

Pore bodies are cubic and pore throats have square cross sections. With these shapes
of pore bodies and pore throats, we need to have inscribed radii of pore throats,
inscribed radii of pore bodies, length of pore throats, and coordination number. We
can either generate the unstructured network based on some distributions, such as
log-normal distribution, and tune geometrical and topological data to match the
available experimental measurements when necessary or we can model random
geometry and topology directly using information from network extraction methods,
like Avizo (FEI Visualization Sciences Group). Our algorithms can handle these
two kinds of networks. Here, we will generate the unstructured network described
in [23]. Figure 1 provides the distribution of inscribed radii sizes of pore throats,
inscribed radii sizes of pore bodies, length sizes of pore throats, and coordination
number.

Fig. 1 Size distribution of: (a) inscribed radii of pore throats, (b) pore throats length, (c) inscribed
radii of pore bodies, and (d) coordination number
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2.1.2 Assumptions

Assumptions employed in the pore-network algorithm are as follows:

1. The volume of pore throats are assumed to be negligible compared to the volume
of pore bodies. This means that the filling of a pore throat is assumed to occur in
no time.

2. No hydraulic resistance is assigned to pore bodies; their resistance to the flow is
assumed to be negligible compared to that of pore throats.

3. No gravity effects is included.
4. Flow of the wetting phase through corners of pore elements is taken into account.

Therefore, any pore body or pore throat can be simultaneously occupied by both
wetting phase and non-wetting phase.

2.1.3 System Parameters

Table 1 gives the fluid properties used in the simulations. Three values of non-
wetting phase viscosities are adopted to have 3 viscosity ratios of M(= μn

μw ): 10,
1, and 0.1.

2.2 Local Rules

2.2.1 Capillary Pressure for Pore Bodies

Assuming that the wetting phase resides symmetrically in all eight corners of
pore bodies, capillary pressure-saturation relationship for cubic pore bodies can be
defined as [13]:

pc
i (s

w
i ) = pn

i − pw
i = 2σwncosθ

Ri(1 − exp(−6.83swi ))
(1)

where pc
i is capillary pressure, pα

i and sαi denote pressure and saturation of α phase
in pore body i, and Ri is the radius of inscribed sphere of pore body i. Here, we

Table 1 Material properties

Specification Symbol Value Unit

Contact angle θ 0 degree

Interfacial tension σwn 0.072 kgs−2

Wetting fluid viscosity μw 0.001 kgm−1s−1

Non-wetting fluid viscosity μn 0.01 or 0.001 or 0.0001 kgm−1s−1



Dynamic Pore-Network Models Development 341

have not considered the possibility for different interface shapes in a pore body due
to different filling states of its neighbors [14].

2.2.2 Entry Capillary Pressure for Pore Throats

Entry capillary pressure for a square pore throat is defined as [16, 17, 21]:

pen
ij = σwn

rij
(
θ + cos2θ − π/4 − sin θ cos θ

cos θ − √
π/4 − θ + sin θ cos θ

) (2)

where rij is the radius of inscribed circle of pore throat cross section.

2.2.3 Minimum Wetting Phase Saturation in a Pore Body

Due to existence of corners, during drainage wetting phase will not be completely
displaced from pore bodies. The minimum wetting phase saturation of each pore
body is defined according to the global pressure difference, namely:

pc
global = pn

inlet − pw
outlet (3)

swi,min = − 1

6.83
ln(1 − 1

Ri

2σwncosθ

P c
global

) (4)

2.2.4 Invasion Criteria and Trapping

Drainage When non-wetting phase pressure in a pore body exceeds the entry
capillary pressure of its neighboring pore throats, non-wetting phase will invade
the pore throat.

Single-Phase Imbibition From one time step to another, a pore throat will be
assumed to get invaded by the wetting phase only if at least one of its neighboring
pore bodies has reached a wetting phase saturation of 0.477 (corresponding to the
case where the non-wetting phase filling the inscribed sphere of the pore body). At
first, only corners are assumed to become filled. The radius of the meniscus formed
in the corner depends on the wetting phase pressure, and is given by Equation (9)
below.

If the wetting phase pressure in one of the neighboring pore bodies is high
enough, the whole pore cross section will be invaded by the wetting phase. So,
the criteria for the full invasion of a pore throat is pc

ij < pen
ij by wetting phase

in unsaturated neighboring pore body. For wetting phase saturated pore body,
wetting phase will invade the narrower pore throat through main terminal meniscus.
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However, even if one or both invasion criteria, which were just described, are met,
a pore throat will not be invaded if it is considered to be trapped [3]. Details about
different scenarios of invasion and trapping can be found in Appendix A.

In general, when a pore throat is not considered to be trapped, it can always be
invaded by the wetting phase (independent of the applied boundary pressure) since
corner flow can always occur. However, we have imposed the requirement that the
saturation of one of the neighboring pore bodies must exceed 0.477.

2.2.5 Conductivities of Pore Throats

The conductivities of phases through pore throats depend on fluids occupancy in the
pore throat cross section. In general, we may have the following states:

1. Pore throat is fully occupied by wetting phase. Its conductivity is given by Azzam
and Dullien [5].

Kw
ij = π

8μwlij
r
eff
ij

4
(5)

where lij is length of pore throat and

r
eff
ij =

√
π

4
rij (6)

2. Pore throat is occupied by wetting phase in the corner, while non-wetting phase
is in the middle [22].

Kw
ij = 4 − π

βμwlij
rcij

4 (7)

Kn
ij = π

8μnlij
r
eff
ij

4
(8)

where

rcij = σwn

pc
ij

(
θ + cos2θ − π/4 − sin θ cos θ

cos θ − √
π/4 − θ + sin θ cos θ

) (9)

r
eff
ij = 1

2
(

√
r2
ij − (4 − π)rcij

2

π
+rij ) (10)

Dimensionless resistance β is given by Zhou et al. [26]. For single-pressure
algorithm, only wetting phase conductivity will be used.
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2.2.6 Snap-Off

Snap-off may happen in a pore throat when capillary pressure in the pore throat
drops below a threshold value so that stable corner interface is not supported
any more. For square cross sectioned pore throat, ignoring dynamic contact angle
effects, the criterion on snap-off is defined as [25]:

pc
ij ≤ σwn

rij
(cosθ − sinθ) (11)

Once snap-off happens in a pore throat, it will be fully occupied by the wetting
phase and its conductivity will be changed accordingly.

2.3 Governing Equations

2.3.1 Governing Equations for Two-Pressure Drainage

For two-pressure algorithm, fluid volume balance equation in pore bodies can be
written resulting in linear system of equations:

Ni∑

j=1

[(Kw
ij + Kn

ij )p
w
i − (Kw

ij + Kn
ij )p

w
j ] = −

Ni∑

j=1

Kn
ij (p

c
i − pc

j ) (12)

where Ni is coordination number of pore body i.

Saturation Update After solving pressure field, saturation can be updated
explicitly:

Vi

#swi

#t
= −qwi = −

Ni∑

j=1

Kw
ij (p

w
i − pw

j ) (13)

where Vi is volume of pore body i, #t is time step, and qwi is total wetting phase
flux of pore body i.

2.3.2 Governing Equations for Single-Pressure Imbibition

A single-pressure primary imbibition algorithm is developed for the case where a
viscous fluid is the wetting phase and a much less viscous fluid (like air) is the non-
wetting phase. Wetting phase pressure will be calculated, while the non-wetting
phase is assumed to be at a constant and uniform pressure at all times. This is a
valid assumption given the negligible viscosity of the non-wetting phase.
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Local ( i.e., the pore level) capillary pressure for a given pore body i is defined
in Section 2.2. Initially, all pore bodies are assumed to have an initial wetting phase
saturation (we set swinit = 0.5%) except the inlet pore bodies which remain saturated
at all times. Those boundary pore bodies are assumed to be fully saturated. Thus,
initially all internal pore bodies have a large negative wetting phase pressure given
by pc

i (s
w
i ) relationship (we have imposed a maximum of pc

i of 106 Pa ). Saturated
boundary pores are assigned the same pressure as inlet reservoir.

Infiltration starts by the wetting phase flowing from the saturated boundary
pores into the internal pores. Their saturation, and thus their pressure rise and,
subsequently, wetting phase can flow into the neighboring pores. The wetting phase
flow occurs via pore throats and its rate can be calculated using Hagen-Poiseuille
formula:

Qw
ij = Kw

ij (p
w
i − pw

j ) (14)

The saturation update for each pore body is made based on volume balance
equation, the same as in Equation (13). The calculation is done fully explicitly. Note
that the saturation update needs to be done for active unsaturated pore bodies, those
for which at least one pore throat has been invaded by wetting phase. As long as no
internal pore body has become fully saturated with wetting phase, the updating of
pore body saturation and pressure, invasion of new pore throats and the next cycle
of flow calculation, and the updating of saturation and pressure continue. However,
at each step, we check whether a given pore throat can be invaded by the wetting
phase, following the criteria discussed in Section 2.2.

As soon as one or more internal pore bodies become fully saturated with the
wetting phase, then we have to solve for the pressure of those pore bodies based on
the following volume balance equation:

Ni∑

j=1

Kw
ij (p

w
i − pw

j ) = 0 (15)

Here, Kw
ij is calculated explicitly. The domain of saturated pore bodies is surrounded

by unsaturated pore bodies. The pressure of unsaturated pore bodies (known from
the current time step) is used as boundary condition values for the domain of
saturated pore bodies. Once the pressure of all saturated pore bodies are calculated,
steps described above for updating saturation of unsaturated pore bodies will be
repeated.

Figure 2 gives the schematic diagram of the domain with boundary pores and
internal saturated and unsaturated pores, where blue color shows the wetting phase
and red color shows the non-wetting phase. In this figure, pore bodies are denoted
from A to I and pore throats are denoted from 1 to 12. A, B, C are boundary pore
bodies, E is internal saturated pore body, D, F, H are internal unsaturated pore
bodies, and G, I are pore bodies that are not invaded yet. No initial tiny saturation is
shown in the figure and no attempt is made to represent the real interface shape.
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Fig. 2 Schematic diagram of
boundary pores, internal
unsaturated pores, and
saturated pores in
single-pressure imbibition
algorithm

2.3.3 Governing Equations for Single-Pressure Drainage

Single-pressure algorithm is developed for drainage process, where non-wetting
phase (like air) with a much lower viscosity value relative to the wetting fluid is
assumed to be at a constant and uniform pressure distribution.

In this single-pressure algorithm, mass balance equation can be written resulting
in linear system of equations:

Vi

#swi

#t
= −

Ni∑

j=1

Qw
ij (16)

Vi

dswi

dpw
i

#pw
i

#t
= −

Ni∑

j=1

Qw
ij (17)

Vi

dswi

dpw
i

(pw
i )

k+1 − (pw
i )

k

#t
= −

Ni∑

j=1

Kw
ij ((p

w
i )

k+1 − (pw
j )

k+1
) (18)

(
Vi

#t

dswi

dpw
i

+
Ni∑

j=1

Kw
ij )(p

w
i )

k+1 −
Ni∑

j=1

Kw
ij (p

w
j )

k+1 = Vi

#t

dswi

dpw
i

(pw
i )

k (19)

For saturated pores, left-hand side of equations are zero.
Due to constant and uniform non-wetting phase pressure assumption, we have

dswi

dpw
i

= −dswi

dpc
i

(20)

According to capillary pressure-saturation relationship defined in Section 2.2, above
mass balance equations also hold for pore bodies with swi = 1.
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Saturation Update After solving pressure field, wetting phase flux of pore bodies
can be calculated and saturation of pore bodies will be updated the same as in
Equation (13).

2.4 Time Step

2.4.1 Imbibition

During imbibition, time step #t is taken to be equal to the smallest filling time #ti
of all active unsaturated pore bodies, but it is possible to have local drainage in some
pore bodies. Allowing pore bodies to be infiltrated to swi = 1 or drained to swi = 0.
#ti is determined as:

#ti =
⎧
⎨

⎩

Vi

qwi
(swi ) qwi > 0

Vi

qwi
(1 − swi ) qwi < 0

(21)

A global time step is then selected as the minimum time step of all pore bodies:

#t = min{#ti} (22)

A saturation truncation value of 10−3 is adopted to ensure finite time step. When
local saturation in a pore body is close to the target saturation values within
the truncation value, that pore body will not be included in global time step
determination.

2.4.2 Drainage

Time step is determined based on filling or emptying of pore bodies:

#ti =
⎧
⎨

⎩

Vi

qwi
(swi − swi,min) qwi > 0

Vi

qwi
(1 − swi ) qwi < 0

(23)

The global time step is selected as the minimum time step of all pore bodies:

#t = Coe min(#ti) (24)

And, a saturation truncation of 10−3 is adopted to ensure finite time step. When
local saturation in a pore body is close to the limits, that pore body will not involve
in global time step determination. A time step coefficient Coe smaller than 1 is
adopted. Discussion on this coefficient can be found in Section 3.3
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2.5 Computational Procedure

2.5.1 Single-Phase Imbibition

The procedure for dynamic primary imbibition simulation is:

1. Set boundary condition and initial condition for the pore network;
2. Determine conductivity of pore throats based on fluid occupancy as well as

trapping and invasion criteria;
3. Solve wetting phase volume balance equations for the saturated pore bodies and

get pressure field;
4. Calculate flux based on conductivity determined in step 2 and determine time

step;
5. Update saturation and pressure of unsaturated active pore bodies;
6. Go to Step 2 and repeat the process.

2.5.2 Drainage

The procedure for dynamic drainage simulation is:

1. Set boundary condition and initial condition for the pore network;
2. Determine conductivity of pore throats based on invasion criteria;
3. Solve mass balance equations to get the pressure field;
4. Calculate flux, determine time step, and update saturation of pore bodies;
5. Go to step 2 and repeat the process.

3 Simulations and Discussions

3.1 Boundary Conditions

For 3D network, we assume that the network is connected with a wetting reservoir
at one end and with a non-wetting phase reservoir at the other end. During drainage,
the face connected with the non-wetting phase reservoir is considered as inlet and
the other face is considered as the outlet; during imbibition, the place of inlet and
outlet are exchanged.

3.2 Averaging Procedure

Pore-network simulations provide pore-scale information including pressure and
saturation. To upscale these quantities to the macroscopic quantities, we need to
define averaging operators for these variables.
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Sα =

Nb∑

i=1
sαi Vi

Nb∑

i=1
Vi

, α = n,w (25)

Pα =

Nb∑

i=1
pα
i s

α
i Vi

Nb∑

i=1
sαi Vi

, α = n,w (26)

P c =

Nb∑

i=1
pc
i A

wn
i

Nb∑

i=1
Awn
i

(27)

Here, pore-scale pressure is averaged over volume to obtain the macroscopic
pressure, and capillary pressure is averaged over interfacial area to provide the
macroscopic capillary pressure. Interfacial area in cubic pore bodies is given in
Appendix B.

3.3 Two-Pressure Drainage Simulations

3.3.1 REV Size

Figure 3 shows quasi-static drainage simulations for different network sizes with
the same statistical parameters provided in Figure 1. It is clear that a network size
of 25 can be considered as REV (Representative Elementary Volume).

Fig. 3 Quasi-static P c − Sw

curves for different network
sizes
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3.3.2 Time Step Independence

In dynamic pore-network models, time step is usually determined based on fill-
ing/emptying of pore bodies, in a manner that no more than one pore body is filled
or emptied during one time step. A minimum time step value may also be imposed
to save computational time. However, the effect of time step value is discussed. We
check the impact of time step by altering coefficient Coe in Equation (24).

Drainage process for viscosity ratio of 1 is simulated with inlet non-wetting phase
reservoir and outlet wetting phase reservoir pressure drop of 7000 Pa. Figure 4
gives average phase pressure difference Pn − Pw and average capillary pressure
P c during drainage for different values of Coe. Here, average phase pressure is
calculated based on Equation (26), and average capillary pressure is calculated
based on Equation (27). Figure 5 shows saturation change over time for different
values of Coe. As can be seen, although difference exists between different
values of Coe, it may not be significant. Therefore, for simulations with large
network, to improve computational time, a larger value of Coe may be a reasonable
choice.

Fig. 4 Dynamic drainage:
Average phase pressure
difference (P n − Pw) and
average capillary pressure P c

for different values of Coe

Fig. 5 Wetting phase
saturation change with time
during drainage for different
values of Coe
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3.3.3 Nonequilibrium Effects in Average Phase Pressure for Different
Viscosity Ratios

Figure 6 shows the average phase pressure difference Pn − Pw and average
capillary pressure P c during drainage for different values of viscosity ratio. Pressure
difference between inlet non-wetting phase reservoir and outlet wetting phase
reservoir is set to 8000 Pa. As viscosity ratio M decreases, the invasion front
becomes more unstable. For a wetting phase saturation Sw of higher than 0.7, lower
viscosity ratio in general has higher phase pressure difference. Later as invasion
front develops, this is no longer the case. Figure 7 gives total saturation change over
time during drainage for different viscosity ratios. Process involving more viscous
fluid takes longer time.

Fig. 6 Average phase
pressure difference Pn − Pw

and average capillary
pressure P c during drainage
for different viscosity ratios

Fig. 7 Saturation change
over time during drainage for
different viscosity ratios
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Fig. 8 Network used in
simulations of saturation
pattern during imbibition

3.4 Single-Pressure Imbibition: Flow Pattern for Different
Boundary Pressure Drop

To compare different wetting advances during imbibition, we simulate imbibition
into a two-layer network with statistical parameters given in Figure 1. Left side of
network is connected with a wetting phase reservoir and the right side of network
is connected with a non-wetting phase reservoir. Flow direction is from left to right
(see Figure 8). To have different Ca numbers, different boundary pressure drops,
#P = Pw

inlet − Pn
outlet , are used: (1) #P = −1000 Pa; (2) #P = 0 Pa (namely

spontaneous imbibition); and (3) #P = 2000 Pa.
Figure 9 gives saturation pattern change for these three different pressure drops.

As we can see, for negative inlet/outlet pressure drop, invasion is more capillary
dominant. With increase of inlet/outlet pressure drop, wetting front gets sharper,
which is in quantitative agreement with the reported experimental and numerical
results [8, 14].

4 Conclusion

A two-pressure dynamic drainage algorithm is developed for three-dimensional
unstructured network model. Time step dependency is discussed through drainage
simulations. Dynamic effects in average phase pressure for fluid pairs with different
viscosity ratios are studied using the code as an upscaling tool. For cases where
the two fluids have significant viscosity difference, viscous pressure drop in one
fluid may be negligible. This dynamic algorithm could be simplified to a single-
pressure algorithm. Single-pressure algorithm for both drainage and imbibition are
developed. Saturation pattern during imbibition for different boundary pressure
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Fig. 9 Saturation pattern during imbibition for different boundary pressure drops

drops are studied. With the increase of boundary pressure, invasion becomes less
capillary dominant and wetting front becomes sharper.

Our simulations show the efficiency and capacity of the developed models. These
models can be employed in wider applications for study of two-phase flow in porous
media.
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Appendix A: Fluid Distribution Patterns During Primary
Imbibition

In general, there are 18 possible fluid occupancy of pores, as shown in Figure 10,
where blue color shows the wetting phase and red color shows the non-wetting
phase. Here, no attempt is made to represent the real interface shape. However,
because of assumptions in our primary imbibition algorithm, some of these con-
figurations will not emerge and the rest ones are shown in Figure 11. To save
computational time, we only search these liquid filling scenarios. We use A,B,C
to denote three columns and 1–6 to denote the six rows. So, we have 18 possible
distribution patterns A1 to C6 in Figure 10. Below, we explain which distribution
pattern cannot be encountered and will be, therefore, excluded from considerations.

A2: As we do not consider volume of pore throats, so once there is wetting phase in
the pore throat, neighboring pore body cannot be still fully saturated with non-
wetting phase.

A5: See A2.
A6: It is not possible to trap wetting phase during primary imbibition in our

algorithm.
C2: See A2.
C3: See A6.
C4: See A2.

Fig. 10 All possible liquid fillings during imbibition
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Fig. 11 Liquid fillings during primary imbibition

Appendix B: Interfacial Area for A Cubic Pore Body

Information of interfacial areas of corner interfaces and main terminal menisci for
cubic pore bodies can be given as [13]:

Corner Interfaces

For a pore body with inscribed radius Ri filled with wetting and non-wetting
phase, non-wetting phase volume can be bigger or smaller than the inscribed sphere
volume.

Ri,eq =
{
Ri(

6
π
(1 − swi ))

1/3 swi ≥ 0.48

Ri(1 − exp(−6.83swi ))
1/3 swi < 0.48

(28)

Awn
i =

{
4πR2

i,eq swi ≥ 0.48

4πR2
i,eq + 6πRi,eq(Ri − Ri,eq) swi < 0.48

(29)

Main Terminal Menisci

For main terminal meniscus, namely the interface between a pore body and its
neighboring pore throat when non-wetting phase pressure in the pore body is not
high enough to invade the pore throat, we have the area for this meniscus as

8π(σ
wn

pc
i
)2(1 −

√
1 − (

rij p
c
i

2σwn )2).
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Mean Field Magnetohydrodynamic
Dynamo in Partially Ionized Plasma:
Nonlinear, Numerical Results

K. A. P. Singh

1 Introduction

The magnetic field in most low-mass stars, the Sun and other differentially rotating
astrophysical objects such as accretion disks, molecular clouds, galaxies, and the
interstellar matter to be generated by MHD dynamo process needs a seed field
[1, 2]. In a mean field MHD dynamo, the magnetic field is split into small and
large spatial scale components. After taking the average over the small scales, the
magnetic induction equation describes the generation of the large-scale magnetic
field.

The mean field dynamo equation contains the average induction and the turbulent
transport and dissipation coefficients. The existence of the scale separation between
a global scale and a microscopic scale (the scale of the turbulent fluctuations) is an
integral part of the mean field dynamo.

The MHD phenomena in partially ionized plasma is usually different from that
in the fully ionized plasma [3–5]. A major part of the solar photosphere [6, 7], the
protoplanetary disks [8], and the molecular clouds [9] are partially ionized. The
dynamo action in partially ionized plasma would be affected by the multi-fluid
interactions between electrons, ions and neutrals. There is an interesting issue of
the possible disconnect between the subsurface and surface solar magnetic field
as emphasized (see, e.g., [10]), that may have some bearing on the neglect of
the neutral fluid-plasma coupling in the flux generation and transport on the solar
photosphere.

The MHD dynamo process, in principle, can take place through the entire
convection zone and such a distributed dynamo is likely to be shaped largely by
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the near-surface shear layer [11]. The high-resolution observations from the solar
optical telescope (SOT) onboard Hinode satellite have shown mesogranular scale,
internetwork magnetic field dominated by the horizontally inclined magnetic fields
[12, 13]. The value of these horizontal magnetic fields typically is a few hundred
Gauss and the ratio between the horizontal and vertical components of magnetic
fields lies typically between 4 and 7. The ubiquitous existence of the mesogranular
scale, horizontal magnetic fields on the Sun is probably due to the operation of
a dynamo action in the near-surface zone [14]. Simulations including the effects
of strong stratification, compressibility, partial ionization, radiative transfer have
demonstrated an exponential growth of magnetic fields that approach a strength of
about 25 G near the visible solar surface for magnetic Reynolds number of 2600
[14, 15]. The partial ionization in these simulations is treated in the equation of
state, i.e. the mean molecular weight is not constant, and it is a function of both
specific internal energy and density.

It is well known that the strong differential rotation at the base (tachocline) of
the convection zone has a strong influence in the generation of magnetic fields via
dynamo action [16]. The limitations associated with the tachocline dynamos are
pointed out [11]. In the solar photosphere where the plasma is partially ionized,
the presence of large-scale subsurface shear (c.f. [17]) can affect the evolution of
toroidal and poloidal components of the magnetic field. In this paper, we study the
role of shear flows in driving the mean field dynamo including the Hall drift and the
ambipolar diffusion arising in partially ionized plasma. The description of modified
magnetic induction equation in partially ionized plasma is provided in Section 2, the
mean field dynamo equations are presented in Section 3, and finally the results and
discussions are presented in the last section.

2 Mean field Dynamo in Three-Component Magnetofluid

The three-component partially ionized plasma consists of electrons (e), ions (i) of
uniform mass density ρi and neutral particles (n) of uniform mass density ρn (c.f.
[3, 4] for details). Neglecting the electron inertial force from the equation of motion
of electrons, the electric field E is found to be

E = −V e × B

c
− ∇pe

ene
− me

e
νen (V e − V n) − me

e
νei (V e − V i) . (1)

Equation (1) is the modified Ohm’s Law. The modification in Equation (1)
arises due to the electron pressure gradient (∇pe), electron-ion and electron-neutral
collisions. In case of low ionization fraction, the ion dynamics can be ignored from
the ion-momentum equation. The momentum equation for the ions then reduces to
following form:

0 = −∇pi + eni

(

E + V i × B

c

)

− νinρi (V i − V n) − νieρi (V i − V e) . (2)
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The ion-electron collision frequency (νie) and the electron-ion (νei) collision

frequency are related by νei =
(
ρi
ρe

)
νie. Taking J = eni(Vi − Ve) and ni = ne,

the relative velocity between the ions and neutrals is found to be related through

V i − V n = −∇ (pi + pe)

νinρi
+ J × B

cνinρi
(3)

The magnetic induction equation, i.e. Equation (3) is modified as a result of the
collisions in partially ionized plasma. The Faraday’s law of induction can be written
in terms of the magnetic field and electron velocity as

∂B

∂t
= ∇ × (V e × B) + η∇2B

where the pressure term has been neglected for the incompressible case with
constant temperature, η is the magnetic diffusivity that arises due to the electron-
neutral collisions and the electron-ion collisions. In weakly ionized plasma, the
electron-neutral collision dominates over the electron-ion collisions (c.f. [4]).

The contributions to the electron velocity flow (Ve) comes from neutral velocity
flow, the relative drift due to the neutrals and ions and the relative drift between the
ions and the electrons, and it can be understood through the construction

(V e × B) = [V n − (V n − V i) − (V i − V e)] × B.

Substituting the term (Ve × B) in the Faraday’s law, one can arrive at the modified
form of the magnetic induction equation that is shown below:

∂B

∂t
= ∇ ×

(

V n − J

ene
+ J × B

cνinρi

)

× B + η∇2B (4)

Equation (4) contains the Hall term (= J
ene

) and the ambipolar diffusion term (=
J×B
cνinρi

). In the solar atmosphere, it is found that the Hall effect dominates in the solar
photosphere whereas the ambipolar diffusion dominates in the chromosphere (c.f.
[4]).

3 Dynamo Equations for Three-Component Magnetofluid

The magnetic induction equation is subjected to Hall drift and ambipolar diffusion,
in addition to Ohmic diffusion, in partially ionized plasma. Following the procedure
of mean field dynamo (c.f. [18]), the velocity VE and the magnetic field B are split
into their average parts and fluctuating parts. Refer [3] for further details on the
derivations and detailed expressions.
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The average and fluctuating parts in the mean field dynamo correspond to the
large-scale and small-scale behaviours, respectively. So, we write

V E = V E + V E
′ (5)

B = B + B ′ (6)

such that V E
′= 0 and B ′= 0 where the bar on top of the physical quantities denotes

spatial or the time average over small scales. One of the important parts of the
mean field dynamo is to solve the magnetic induction equation for large- and small-
scale fields. Some of the details of basic mean field dynamo equations relevant to
our study are introduced here for the sake of complete understanding (refer [3] for
details).

While deriving an expression for VE
′
, the terms containing the second or higher

order quantities (of small-scale, fluctuating variables) are neglected, and only the

terms containing small-scale variables (e.g., J ′×B
cνinρi

, J×B ′
cνinρi

, etc.) are retained. The
small-scale fluctuation in density is ignored. Substituting Equations (5) and (6) into
the magnetic induction equation, and under the first-order smoothing approximation
(FOSA), the fluctuating velocity is given by

V E
′ = V n

′ − J ′

ene
+ J ′ × B

cνinρi
+ J × B ′

cνinρi
,

and the mean flow is found to be

V E = V n − J

ene
+ J × B

cνinρi
.

An important physical quantity in the mean field dynamo is the electromotive
force (ε) defined as

ε = V E
′ × B ′

and is a function of the mean magnetic induction B, and the mean quantities
formed from the fluctuations. In the standard process of the mean field dynamo,
the electromotive force is expressed as

ε = α B − β ∇ × B,

where the kinetic helicity (α) is given by the mean field dynamo that contains
turbulence, and additional contribution to it comes from the Hall drift and the
ambipolar diffusion. The kinetic helicity is defined as

α = −τcor

3
V E

′•
(∇ × V E

′)
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and one can write α = αv+αH+αAm . While getting an expression of α, the second
and higher order terms of small-scale, fluctuating variables (e.g., J

′
, B

′
, etc.) are

neglected.
The quantity αv is a measure of the average kinetic helicity of the neutral fluid in

the turbulence possessing correlations over timescale of τ cor, and it is given by

αv = −τcor

3
V n

′•�n
′,

The contribution due to the Hall drift appears in the quantity αH given by

αH = 2

3

τcor

ene
J ′•�n

′,

while the contribution due to the ambipolar effect appears in the quantity αAm
given by

αAm = αA•B,

with

αA = 2

3

τcor

cνinρi
J ′ × �n

′

where Ωn
′ = ∇ × Vn

′
is the vorticity of the fluctuating, neutral component

of the turbulent fluid. It may be noted that the Hall-α requires a component of
the fluctuating current density along the fluctuating vorticity of the neutral fluid.
The ambipolar-α results from the component of the fluctuating current density
perpendicular to the fluctuating vorticity. The turbulent dissipation is given by

β = τcor

3
V E

′2 = βv + βH + βAm,

with βv = τcor
3 V n

′2 as a measure of the average turbulent kinetic energy of the
neutral fluid in the turbulent regime possessing correlations over timescale τ cor,
and βH = −2 τcor

3ene
J ′•V n

′ represents the contribution to turbulent dissipation
due to the Hall effect. The coupling of the charged components with the neutral
fluid is clearly manifested through the possible correlations between the current
density fluctuations and the velocity fluctuations of the neutral fluid. The ambipolar
term yields βAm = βA• B and βA = 2τcor

3cνinρi
J ′ × V n

′ with its essential nonlinear
character manifest through its dependence on the average magnetic induction. One
also observes that the Hall-β requires a component of current density fluctuations
along the velocity fluctuations of the neutral fluid, whereas the ambipolar effect
depends upon the component of the current density fluctuations perpendicular to
the velocity fluctuations. The rigid or perfectly conducting boundary conditions
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(all surface contributions vanish) are used while determining the averages of the
quantities [c.f. 3]. Here the mean flow is taken as to be nonzero. The dynamo
equation then reduces to a form

∂B

∂t
= ∇ × (V E × B

)+ ∇ × (αB − β ∇ × B
)+ η∇2B. (7)

Let B and ∂A
∂x

represent the toroidal and the poloidal components of the magnetic
field, respectively. The mean flow (c.f. [19]) is given by

V E = V (z) êy (8)

We drop the bars on top in B and A for brevity. Assuming one-dimensional
dependence, one can express B = (0, B, ∂A

∂x
) in Cartesian coordinates. The

coordinates (x,y,z) here correspond to the polar coordinates (θ , ϕ, r). The boundary
conditions then turn out to be the vanishing of B and A at the endpoints of a
finite x-interval, say x = 0 and x = πR that correspond to the two opposite
poles of the sphere. We introduce a turbulent magnetic diffusivity η1. It is then
convenient to present the magnetic induction equation in a dimensionless form using

a normalizing magnetic field B0, a spatial scale R, a time-scale R2

η1
, and writing

A = Ã R. The rotation � is made dimensionless using η1
R2 . We obtain the following

set of equations:

∂B

∂t
= �

∂Ã

∂x
+ ∂2B

∂x2 − Rα

∂2Ã

∂x2 − RαA

∂

∂x

[(

B + a
∂Ã

∂x

)
∂Ã

∂x

]

+ RβA

∂

∂x

[(

B + b
∂Ã

∂x

)
∂B

∂x

] (9)

and

∂Ã

∂t
= RαB + ∂2Ã

∂x2 + RαA

(

B + a
∂Ã

∂x

)

B + RβA

∂

∂x

[(

B + b
∂Ã

∂x

)
∂2Ã

∂x2

]

(10)

where the coefficients (Rα , RαA, RβA, a, b) appearing in the above equations and η1

can be recovered from [3] and � = ∂V
∂z

. One can assume, as an example, a model of
turbulence composed of Alfvénic waves [3] and then solve Equations (9) and (10)
numerically. The numerical solutions to the coupled, partial differential equations
containing the physics of mean field dynamo in partially ionized astrophysical
plasma are presented and discussed in the next section.
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4 Discussions and Conclusions

The magnetic field is omnipresent in over a wide variety of astrophysical objects
from clusters (∼1020 km) to neutron stars (∼10 km). The magnetic field strength in
the astrophysical systems varies by several orders of magnitude and there exists a
scale hierarchy, from large scale to small scale, in the astrophysical magnetic fields.
The understanding behind the small-scale evolution of magnetic fields on the Sun is
of crucial importance since the fundamental processes and interactions on various
spatiotemporal scales are observationally not so accessible for other astrophysical
objects.

The solar magnetic fields are organized in a hierarchy of structures that extend
from large-scale active regions with a size of about 105 to 102 km [20]. With
high-resolution observations of the fine structure of magnetic fields in the solar
atmosphere becoming available, it became clear that the bulk of the magnetic flux
has a quasi-fractal pattern at the solar surface (see [21] for the small-scale solar
magnetic fields). The magnetic structures in Hinode magnetograms, for example,
appear to scale in a self-similar power-law fashion over observable length scales
[22]. The power-law pattern in the magnetic structure is typical of a multi-fractal
behaviour due to turbulence which shows a self-similar behaviour over many length
scales.

Following [23], a small-scale solar dynamo (or SSD) is considered to be any self-
sustaining dynamo process in the photosphere or deeper in the convection zone that
operates on scales small enough to be unaffected by solar rotation and to produce
a dominance of fields with very small scales. In this sense, SSD is qualitatively
different from the well-known dynamo models of the solar cycle that is believed
to arise from a large-scale dynamo process that is driven by interaction of solar
differential rotation and magnetic field and the large-scale fluid motions in the solar
convection zone. Apart from the SSD, the only other plausible explanation of the
small-scale magnetic fields in the quiet Sun is that they result from the interaction
of turbulent convection with the large-scale fields associated with the global dynamo
[23].

Much of our understanding of dynamo mechanisms has been based on the
theoretical framework of MHD. For a low density and partially ionized plasma
environment that prevails near the solar photosphere and overlying chromosphere,
the role of Hall drift and the ambipolar diffusion on dynamo cannot be ignored. The
role of Hall current in the magnetic field generation through the dynamo processes
in a low density astrophysical system is studied [24]. The Hall currents are found to
have a profound impact on the generation of macroscopic magnetic field. The effect
of the Hall term is twofold: it transfers energy towards larger scales for scales larger
than the Hall length, and it transfers energy towards smaller scales for scales smaller
than the Hall length scale [25].

The evolution of an initially weak and small-scale magnetic field in a system
maintained in a stationary regime of hydrodynamic turbulence is studied [26]. It was
found that depending on the relative values of the length scales of the system, the



364 K. A. P. Singh

Hall current can strongly enhance or suppress the generation of large-scale magnetic
energy. The amplification/generation of fast plasma flows by microscale (turbulent)
magnetic fields via magnetofluid coupling has been investigated [27]. It has been
found that the macroscopic magnetic fields and flows are generated simultaneously
and proportionately from microscopic fields and flows. In this case, a strong macro-
scale will be generated in the presence of a strong microscale driver.

The ambipolar diffusion (AD) was included in the dynamo studies [28, 29]. The
role of ambipolar diffusion and the strong nonlinearity that AD introduces in the
system has been studied in the context of astrophysical dynamos [30]. The fast
dynamos in weakly ionized gases have also been studied in the context of galactic
magnetic fields [31].

In mean field approach, the contribution to α and β-coefficients comes also due
to the Hall effect and ambipolar diffusion (c.f. Section 3). The importance of Hall
drift on α-dynamo action was noted [32], recalling with the inclusion of Hall drift in
MHD, the freezing of the magnetic field is associated with the electron flow rather
than the bulk (or centre-of-mass) velocity field.

The role of Hall effect and ambipolar diffusion on the stability of weakly ionized,
magnetized planar shear flows is studied [33]. The development of instability in the
presence of Hall drift and in large-scale shear flows in low density astrophysical
plasmas is studied to find that a Hall magneto-shear (MSI) develops in the presence
of a non-rotating shear flows [34]. The Hall magneto-rotational instability (MRI)
develops in the presence of differentially rotating flows.

4.1 Numerical Results

In the present work, Equations (9) and (10) are solved numerically along with the
appropriate boundary conditions including the shear flow. The term containing the
shear appears in the y-component of the dynamo equations and the initial conditions
are taken to be Ã (x,0) = 0, B (x,0) = sin x. The vanishing of B and A at the endpoints
of a finite x-interval, say x = 0 and x = πR, correspond to the two opposite poles
of the sphere, has been taken as the boundary conditions. The dispersion relation
shows how the dynamo waves are modified as a result of the surface shear flow and
the Hall effect. The contribution to α due to the Hall drift appears in Rα through
α1. The contribution due to the ambipolar diffusion appears in RαA and RβA. The
ratios a and b provide the information of relative strengths with which RαA and RβA
act on the system (or system of equations). The turbulent diffusivity η1 also has a
contribution from the Hall effect in addition to βv and the Ohmic diffusivity (η).
For the dynamo waves in the absence of ambipolar diffusion (RαA = 0, RβA = 0),
Equations (9) and (10) become linear with a solution of the form exp[i(kx − ωt)]
giving the dispersion relation

(
k2 − iω

)2 − iRα� k − Rα
2k2 = 0 (11)
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Fig. 1 The dispersion (ωR) and growth (ωI) as a function of wavenumber for Rα = 1.6,
RαA = 0, RβA = 0 for three different values of �

Fig. 2 Dependence of B and Ã on t and x in three-dimensional representation for � = 1, Rα =
1.6, RαA = 1.7, RβA = 0.1, a = 1, b = 0.7

In the absence of shear flow ( � = 0), we have ω = − ik (k ∓ Rα) and for k
> 0, one of the two solutions shows that the field grows for k < Rα . Equation (11)
is solved numerically and Figure 1 shows the dispersion and the growth rate as a
function of the wavenumber for Rα = 1.6 for three different values of �. A nonzero
shear affects the dispersion but the growth rate is not so sensitive to the values of �
that we have taken in this work. Overall, the magnetic field evolution is affected by
the shear flow.

In this work, we have studied the mean field dynamo in partially ionized plasma
by including the shear flow. The resulting variations of magnetic field as a function
of t and x are shown in Figures. 2 and 3, using � = 1, Rα = 1.6, RαA = 1.7,
RβA = 0.1, a = 1, b = 0.7. It is found that both the components of magnetic field
(B and A) grow in time, and this clearly shows the formation of sharp features. One
can also see the reversal of the sign of B near x ∼ 0.4.

The effect of ambipolar diffusion along with shear flow and Hall effect is shown
in Figures 4 and 5. The magnetic field as a function of t and x is shown for a
fixed value of shear flow (� = 1) and Rα = 0.2, RαA = 3.5, RβA = 1.5, a = 1,
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Fig. 3 Evolution of profiles of B and Ã as a function of x in two-dimensional representation for
� = 1, Rα = 1.6, RαA = 1.7, RβA = 0.1, a = 1, b = 0.7. Red line represents the initial (t = 0)
profile and blue the final. Green is for the intermediate ones at the time step of 0.042

Fig. 4 B and Ã as a function t and x in three-dimensional representation for � = 1, Rα =
0.2, RαA = 3.5, RβA = 1.5, a = 1, b = 1

Fig. 5 Evolution of profiles of B and Ã as a function of x in two-dimensional representation for
� = 1, Rα = 0.2, RαA = 3.5, RβA = 1.5, a = 1, b = 1. Red line represents the initial (t = 0)
profile and blue the final. Green is for the intermediate ones at the time step of 0.11

b = 1. The inclusion of shear flow along with the Hall effect and ambipolar diffusion
results in an increase of the magnetic field and also production of small-scale spatial
structures. In the absence of the shear flow, there exists a critical wavenumber,
kc = Rα below which the field grows. For � = 3, the magnetic field strength
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Fig. 6 B and Ã as a function t and x in three-dimensional representation for � = 3, Rα =
1.6, RαA = 1.7, RβA = 0.1, a = 1, b = 0.7

increases and it evolves comparatively on a faster timescale (Figure 6). It is clear
that the presence of a finite amount of surface shear flow affects the magnetic field
evolution significantly.

The high-resolution observations of the partially ionized layers of the Sun show
internetwork magnetic field dominated by the horizontally inclined magnetic fields
[12, 13]. It is observed that the ratio of the horizontal and vertical components of
magnetic fields lies typically between 4 to 7. In the present work, the ratio of the
components of magnetic field Bz/By, where By = B and Bz = ∂Ã/∂x, is computed
numerically and then plotted in Figure 7. It is clear that between x = 0.5 and x = 1.5,
the Hall and ambipolar diffusion in the presence of shear flow can explain the
observed ratio of the components of magnetic field in the internetwork region of
the Sun. It is an interesting result because in the classical view the magnetic field
in the solar surface is concentrated into strong (∼kG) vertical flux tubes and we
have shown (through the mean field dynamo approach) how the horizontal magnetic
fields are produced in the partially ionized surface of the Sun. It is important to
mention that the surface dynamo simulations at the highest magnetic Reynolds
number also yield a ratio of the horizontal and vertical flux density consistent
with the observational results, but the overall amplitudes are low [35]. The ratio of
mean horizontal and vertical component in such dynamo generated magnetic fields
reaches values between 2 and 4 in the optical depth interval −2 < log τ < − 1. It has
been shown in the dynamo simulations of the quiet Sun that the ratio of horizontal
to vertical field depends upon the height and it peaks at 450 km above the τ = 1
[36]. Moreover, the ratio is found to decrease with the increasing field strength. This
strong dependence of ratio of horizontal and vertical field on the magnetic field and
height suggests that increasing resolution and reducing numerical diffusivities in the
simulations is not sufficient to reach the observationally inferred field strengths on
the Sun.
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Fig. 7 (i) The ratio of magnetic field components Bz/By as a function of x in two-dimensional
representation. Red line shows the initial and blue line shows the final case. Green line shows the
intermediate ones at the time step of 0.1. The parameters chosen are � = 1, Rα = 1.6, RαA =
1.7, RβA = 0.1, a = 1, b = 0.7.(ii) Same as (i) but for � = 1, Rα = 0.2, RαA = 3.5, RβA =
1.5, a = 1, b = 1. The green line is for the intermediate ones at the time step of 0.5. (iii) Same as
(i) but for � = 3, Rα = 1.6, RαA = 1.7, RβA = 0.1, a = 1, b = 0.7. The green line is for the
intermediate ones at the time step of 0.2

4.2 Conclusions

The small-scale dynamo arising due to the shear flow, Hall drift and the ambipolar
diffusion in the presence of the large-scale density gradient can change the transport
of magnetic fields. It would be very interesting to understand how the small-scale
dynamo operating in partially ionized solar and astrophysical plasma affects the
physical properties and magnetic field evolution at the large spatiotemporal scales.
Even though the dynamics of small-scale structures is often unobservable in the
astrophysical plasmas, the physics of partially ionized plasma can play an important
role through the nonlinear interactions with the large-scale density gradient present
in the system. In conclusion, the present study of mean field dynamo in partially
ionized plasma suggests that the surface shear, Hall drift and ambipolar diffusion
can play an important role in driving a small-scale dynamo near the surface layers
of the cool stars. The Hall and ambipolar terms appearing in the magnetic induction
equation depend strongly upon the magnetic field, ion and neutral density. So,
gravitational stratification can also affect the dynamo process and magnetic field
evolution in the solar photosphere and solar chromosphere.
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1 Introduction

The fluid mechanical study of peristalsis has received considerable attention in
the last two decades mainly because of its potential applications to the biological
systems and peristaltic movement of slurries, harmful fluids of nuclear industry.
It is a mechanism for transport of fluids which is achieved when a progressive
wave of area contraction or expansion propagates along the length of a distensible
tube containing fluid. In the view of its importance, some workers [1–3] have
explored the peristaltic movement of different liquids under various circumstances.
In physiological structures, it is known that all vessels are not straight but have
some inclination with axis. The gravitational strength is accounted due to the
consideration of inclined channel. A few scholars have studied the peristaltic flow of
Newtonian and non-Newtonian fluids in an inclined channel with various conditions
[4–6].

It is seen that couple stress fluid behavior is exceptionally useful in understanding
dissimilar physiological and mechanical procedures. Couple stress fluid is a fluid
consisting of rigid, randomly oriented particles suspended in a viscous medium,
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such as blood, lubricants containing small amount of high polymer additive, electro-
rheological fluids and synthetic fluids. The couple stress model introduced by Stokes
[7] has distinct features. The main feature of couple stresses is to introduce a
size-dependent effect. These fluids are able to describe blood, suspension fluids,
and various types of lubricants. Such studies clarify the behavior of rheological
complex liquids. Some studies on peristaltic transport of couple stress fluid have
been reported in references [8–13]. After this study, few investigators have explored
the wall effects on different fluids with peristalsis [14–17].

Magnetohydrodynamic (MHD) peristaltic flow nature of liquid is especially
imperative in mechanical and physiological procedures. In the existence of magnetic
field, many fluids possess an electrically conducting nature, which is an important
aspect of the physical situation in the flow problems of magnetohydrodynamics.
It is useful for tumor treatment, MRI glancing, blood pumping, reduction of
bleeding during surgeries, targeted transportation of drugs, and so on. Magneto-
therapy is an essential application to human body. This heals the diseases like
ulceration, inflammations, and diseases of uterus. Some researchers [18–22] have
explored the magnetohydrodynamic character of non-Newtonian liquids through
different circumstances. They discussed the effects of magnetic field, permeability,
micropolar, couple stress, and wall parameters.

Dispersion describes the spread of particles through random motion from regions
of higher concentration to regions of lower concentration. The problem of dispersion
in the presence of homogeneous and heterogeneous chemical reactions is of impor-
tance in several contexts, for example, in nuclear physics, gas absorption in agitated
tank, biological systems, and the flow of nuclear fuel where heat is generated in
the bulk. Dispersion plays a crucial task in chyme transport and other applications
like environmental pollutant transportation, chromatographic separation, and the
mixing and transport of drugs or toxic substances in physiological structures [23].
The basic theory on dispersion was first proposed by Taylor [24], who investigated
theoretically and experimentally that the dispersion of a solute is miscible with a
liquid flowing through a channel. Several workers [25–27] have investigated the
dispersion of a solute in viscous fluid, under different limitations. Furthermore,
some investigators [28–36] extended this analysis to non-Newtonian fluids.

Existing information on the topic witnessed that an analytical treatment of
creeping sinusoidal flow and dispersion of an MHD couple stress fluid with
chemical reaction and complaint wall has been never reported. Motivated from the
reported literature, we have explored the impact of chemical and wall features on
the MHD creeping sinusoidal stream and dispersion of couple stress fluid in an
inclined channel. The principle outcomes are presented in the conclusion part. The
present issue might be appropriate for the treatment on intestinal disorder, gallstones
in gallbladder without surgery.
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2 Mathematical Modelling

Consider the MHD couple stress fluid with peristalsis in the 2-dimensional inclined
channel. Figure 1 depicts the wave shape.

The wave shape is given by the subsequent equation:

±
[

a sin
2π

λ
(X − ct) + d

]

= ±h = Y , (1)

where the half width of the channel is d, the wavelength of the peristaltic wave is λ,
the amplitude is a, and the speed is c.

The relating flow conditions of the current issue are

0 = ∂V

∂Y
+ ∂U

∂X
, (2)

− ∂p

∂X
+μ∇2U − η

′∇4U −σB2
0U +ρg sin θ = ρ

[
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

]

U ,

(3)

− ∂p

∂Y
+ μ∇2V − η

′∇4V − ρg cos θ = ρ

[
∂

∂t
+ U

∂

∂X
+ V

∂

∂Y

]

V , (4)

where ∂2

∂X 2 + ∂2

∂Y 2 = ∇2, ∇2∇2 = ∇4, the constant associated with couple
stress fluid is η′, the fluid density is ρ, the viscosity coefficient is μ, the velocity
components in the X , Y direction is U , V , the pressure is p, the inclination of the
channel is θ , and the magnetic field is B0.

Fig. 1 Geometry of the
problem.
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Referring Mittra and Prasad [14], the condition of the flexible wall movement is
specified as:

p − p0 = L (h), (5)

where the movement of the stretched membrane by the damping force is L and is
intended by the subsequent equation:

−T
∂2

∂X 2 + m
∂2

∂t2 + C
∂

∂t
= L . (6)

Here, the coefficient of sticky damping force is C, the mass per/area is m, and the
membrane tension is T .

In the absence of body couples and body forces, and under long wavelength
approximations the conditions (2) to (4) yield as:

0 = ∂V

∂Y
+ ∂U

∂X
, (7)

0 = − ∂p

∂X
+ μ

∂2U

∂Y 2
− η′ ∂4U

∂Y 4
− σB2

0U + ρg sin θ, (8)

0 = − ∂p

∂Y
. (9)

The allied border conditions are

0 = U , 0 = ∂2U

∂Y 2 , at Y = ±h. (10)

It is presumed that p0 = 0 and the channel walls are inextensible; therefore, the
straight displacement of the wall is nil and only lateral movement takes place, and

0 = μ
∂2U

∂Y 2 −η′ ∂4U

∂Y 4 −σB2
0U +ρg sin θ = ∂

∂X
L (h), at Y = ±h, (11)

where

∂p

∂X
= P ′ = −T

∂3h

∂X 3
+ m

∂3h

∂X ∂t2
+ C

∂2h

∂X ∂t
= ∂

∂X
L (h). (12)

Solving the conditions (8) and (9) with (10) and (11), we obtain

− T ′

σB2
0

[
A′

1cosh(m′
1Y ) + A′

2cosh(m′
2Y ) + 1

] = U (Y ), (13)
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where m′
1 =

√√
√
√ μ

2η′

(

1 +
√

1 − 4η′σB2
0

μ2

)

, m′
2 =

√√
√
√ μ

2η′

(

1 −
√

1 − 4η′σB2
0

μ2

)

.

The mean speed is specified as:

1

2h

∫ h

−h

U (Y )dY = Ū . (14)

Conditions (13) and (14) yield as:

− T ′

σB2
0

[
A′

1

m′
1h

sinh(m′
1h) + A′

2

m′
2h

sinh(m′
2h) + 1

]

= Ū . (15)

Utilizing Ravikiran and Radhakrishnamacharya [30], the liquid speed is given by
the condition:

U − Ū = UX . (16)

Conditions (13), (15), and (16) yield as:

− T ′
σB2

0

[

A′
1 cosh(m′

1Y ) + A′
2 cosh(m′

2Y ) − A′
1

m′
1h

sinh(m′
1h) − A′

2
m′

2h
sinh(m′

2h)

]

= UX ,

(17)

where A′
1 = (m′

2)
2

[(m′
1)

2−(m′
2)

2] cosh(m′
1h)

, A′
2 = −(m′

1)
2

[(m′
1)

2−(m′
2)

2] cosh(m′
2h)

,

P ′ = −T ∂3h
∂x3 + m ∂3h

∂x∂t2
+ C ∂2h

∂x∂t
, T ′ = ∂p

∂X − ρg
μ

sin θ .

3 Homogeneous - Heterogeneous Chemical Reactions with
Diffusion

Alluding Taylor [24] and Gupta and Gupta [26], the scattering condition for the
concentration of solution C of the material for the current issue in isothermal
circumstances is

D
∂2C

∂Y 2 − k1C = ∂C

∂t
+ U

∂C

∂X
(18)

Here, the rate constant of first-order chemical response is k1, the molecular diffusion
coefficient is D , and liquid concentration is C .
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The dimensionless quantities are specified as:

η = Y

d
, ξ = (X − Ū t)

λ
,R = ρg

μ
,H = h

d
,P = d2

μcλ
P ′,

θ = t

t̄
, t̄ = λ

Ū
,M =

√
σB2

0d
2

μ
. (19)

For the regular estimations of physiologically essential parameters of this issue, it is
normal that Ū ≈C (Ravikiran and Radhakrishnamacharya [30]).
To proceed further, we use Ū ≈C , in condition (18) and the conditions (12), (17), (18)
are nondimensionalized as:

−ε
[
−E3(2π)

2 sin(2πξ) + (E1 + E2)(2π)
3 cos(2πξ)

]
= P, (20)

− T

σB2
0

[A1 cosh(m1η) + A2 cosh(m2η) + A3] = UX , (21)

d2

λD
UX

∂C

∂ξ
= ∂2C

∂η2 − k1d
2

D
C , (22)

where

m1 =m′
1d=

√√
√
√
√

γ 2

2

⎛

⎝1 +
√

1 − 4M 2

γ 2

⎞

⎠, m2 =m′
2d =

√√
√
√
√

γ 2

2

⎛

⎝1 −
√

1 − 4M 2

γ 2

⎞

⎠,

the amplitude ratio is ε
(= a

d

)
, the rigidity is E1

(

= − T d3

λ3μc

)

, the stiffness is

E2 =
(
mcd3

λ3μ

)

, the viscous damping force in the wall is E3 =
(
cd3

μλ2

)

, the

couple stress constraint is γ

(

= d

√
μ

η′

)

, and the magnetic field constraint

is M
(

= B0d
√

σ
μ

)
, T = P − R sin θ .

The dispersion with first-order irreversible chemical response occurs in the mass
of the liquid and at the channel walls. Referring Chandra and Phlip [28], the wall
conditions are specified as:

0 = ∂C

∂Y
+ FC at Y = h = [a sin

2π

λ
(X − Ū t) + d], (23)

0 = ∂C

∂Y
− FC at Y = −h = −[a sin

2π

λ
(X − Ū t) + d]. (24)
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Condition (19), (23), and (24) yield as:

0 = ∂C

∂η
+ βC at η = H = [ε sin(2πξ) + 1], (25)

0 = ∂C

∂η
− βC at η = −H = −[ε sin(2πξ) + 1], (26)

where the heterogeneous response rate constraint is β = Fd, relating to catalytic
response at the dividers.

Assuming that ∂C
∂ξ

is independent of η at any cross section and utilizing
conditions (25) and (26), the primitive of (22) is obtained as:

− d2

λD

T

σB2
0

∂C

∂ξ

[
A4 cosh(m1η) + A5 cosh(m2η) + A6 cosh(αη) + A7

]
= C (η).

(27)
The volumetric flow rate Q is specified as:

∫ H

−H
C UX dη = Q. (28)

Using conditions (21) and (27) in (28), we obtain

−2
d6

λμ2D

∂C

∂ξ
G (ξ, ε, α, β,E1,E2,E3,M , θ, γ ) = Q, (29)

where

G (ξ, ε, α, β,E1,E2,E3,M , θ, γ )=− T 2

M 4

[A1A4

2
B1+A2A5

2
B2

+ (A1A5+A2A4)B3 + A1A6B4

+A2A6B5 + (A1A7 + A3A4)B6 + (A2A7 + A3A5)B7 + A3A6B8 + A3A7H
]
,

A1 = (m2)
2

[
(m1)

2 − (m2)
2
]

cosh(m1H )
, A2 = −(m1)

2
[
(m1)

2 − (m2)
2
]

cosh(m2H )
,

A3 = −(m2)
2 sinh(m1H )

m1H
[
(m1)

2 − (m2)
2
]

cosh(m1H )
+ (m1)

2 sinh(m2H )

m2H
[
(m1)

2 − (m2)
2
]

cosh(m2H )
,

A4 = (m2)
2

[
(m1)

2 − (α)2
] [
(m1)

2 − (m2)
2
]

cosh(m1H )
, A6 =A3L1−A4L2−A5L3,
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A5 = −(m1)
2

[
(m2)

2 − (α)2
] [
(m1)

2 − (m2)
2
]

cosh(m2H )
, A7 = −A3

α2
,

L1 = β

α2(α sinh(αH ) + β cosh(αH )
, L2 = (m1 sinh(m1H ) + β cosh(m1H ))

(α sinh(αH ) + β cosh(αH ))
,

L3 = (m2 sinh(m2H ) + β cosh(m2H ))

(α sinh(αH ) + β cosh(αH ))
, B1 = 2m1H + sinh(2m1H )

2m1
,

B2 = 2m2H + sinh(2m2H )

2m2
, B6 = sinh(m1H )

m1
, B7 = sinh(m2H )

m2
, B8 = sinh(αH )

α
,

B3 = m1 sinh(m1H ) cosh(m2H ) − m2 cosh(m1H ) sinh(m2H )
[
(m1)

2 − (m2)
2
] ,

B4 = m1 sinh(m1H ) cosh(αH ) − α cosh(m1H ) sinh(αH )
[
(m1)

2 − (α)2
] ,

B5 = m2 sinh(m2H ) cosh(αH ) − α cosh(m2H ) sinh(αH )
[
(m2)

2 − (α)2
] , α =

√
k1

D
d.

Looking at condition (29) with Fick’s law of scattering, the dispersing coefficient D∗
was computed to such an extent that the solute disperses near to the plane moving
with the typical speed of the flow and is specified as:

2
d6

μ2D
G (ξ, ε, α, β,E1,E2,E3,M , θ, γ ) = D∗. (30)

The mean of G is Ḡ and is attained as:

∫ 1

0
G (ξ, ε, α, β,E1,E2,E3,M , θ, γ )dξ = Ḡ . (31)

4 Outcomes and Discussion

The expression for Ḡ (ξ, ε, α, β,E1,E2,E3,M , θ, γ ) as shown in Equation (31) has
been obtained by numerical integration using the software MATHEMATICA and
the domino effects are presented through graphs. It may ensure that E1,E2, and E3
cannot be zero all together.

The effects of the magnetic constraint (M ) and the couple stress constraint (γ )
on the scattering coefficient (Ḡ ) are depicted in Figures 2, 3, 4 and 5. It is observed
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Fig. 2 Illustration of
magnetic constraint (M ) with
scattering coefficient (Ḡ )
when E1 = 0.1, E2 = 4.0,
E3 = 0.06, ε = 0.2, α = 1.0,
γ = 6.0, and θ = π/6.

Fig. 3 Illustration of
magnetic constraint (M ) with
scattering coefficient (Ḡ )
when E1 = 0.1, E2 = 0.0,
E3 = 0.06, ε = 0.2, β = 5.0,
γ = 6.0, and θ = π/6.

Fig. 4 Illustration of couple stress constraint (γ ) with scattering coefficient (Ḡ ) when E1 = 0.1,
E2 = 4.0, E3 = 0.06, ε = 0.2, α = 1.0, M = 5.5, and θ = π/6.
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Fig. 5 Illustration of couple stress constraint (γ ) with scattering coefficient (Ḡ ) when E1 = 0.1,
E2 = 0.0, E3 = 0.06, ε = 0.2, β = 5.0, M = 5.5, and θ = π/6.

that Ḡ descends with rise in magnetic constraint (M ) (Figures 2 and 3). This is
because of that the application of a magnetic field normal to the flow direction has a
tendency to slow down the movements of the fluid in the channel, and it gives rise to
a resistance force called the Lorentz force which acts opposite to the flow direction
and as a result dispersion diminishes. Figures 4 and 5 depict that Ḡ descends with
an increase in couple stress constraint (γ ), as a result dispersion may reduce. This
finding agrees with the conclusions of Alemayehu and Radhakrishnamacharya [29]
and Abbas et al. [34].

Figures 6 and 7 depict that concentration profile (Ḡ ) and inclination of the
channel (θ) behave alike. This result concurs with arguments of Sankad and
Radhakrishnamacharya [20] and Rathod et al. [21]. The impacts of the rigidity
constraint (E1), stiffness constraint (E2), and viscous damping force (E3) of the wall
on the dissipating coefficient (Ḡ ) are illustrated in Figures 8, 9, 10, 11, 12 and 13.
It is experiential that Ḡ ascends monotonically with an expansion in E1,E2, and
E3. This understanding might be true that increment in the flexibility of the channel
walls helps the stream moment which causes to enhance the dispersion. This result
agrees with the outcomes of Ravikiran and Radhakrishnamacharya [30].

It is seen that Ḡ descends with an increase in the homogeneous compound
response rate constraint (α) (Figures 3, 5, 7, 9, 11, and 13). Also, it is noticed from
the Figures 2, 4, 6, 8, 10, and 12 that the scattering diminishes with heterogeneous
substance response rate constraint (β), and the decrease in the effective scattering
coefficient is sharp in a section near to the wall. This agrees with chemical point
of view because the reactions which affect diffusion happen only at the surface
for heterogeneous substance response. This implies that heterogeneous substance
response tends to decrease the scattering of the solute. This outcome is reliable with
the contentions of Padma and Ramana Rao [25] and Hayat et al. [32].
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Fig. 6 Illustration of angle of inclination (θ) with scattering coefficient (Ḡ ) when E1 = 0.1, E2 =
0.0, E3 = 0.00, ε = 0.2, α = 1.0, M = 5.5, and γ = 6.0.

Fig. 7 Illustration of angle of
inclination (θ) with scattering
coefficient (Ḡ ) when
E1 = 0.1, E2 = 0.0,
E3 = 0.06, ε = 0.2, β = 5.0,
M = 5.5, and γ = 6.0.

Fig. 8 Illustration of rigidity
(E1) with scattering
coefficient (Ḡ ) when
E2 = 4.0, E3 = 0.00, ε = 0.2,
α = 1.0, γ = 6.0, M = 5.5,
and θ = π/6.
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Fig. 9 Illustration of rigidity (E1) with scattering coefficient (Ḡ ) when E2 = 4.0, E3 = 0.06,
ε = 0.2, β = 5.0, γ = 6.0, M = 5.5, and θ = π/6.

Fig. 10 Illustration of
stiffness (E2) with scattering
coefficient (Ḡ ) when
E1 = 0.1, E3 = 0.00, ε = 0.2,
α = 1.0, γ = 6.0, M = 5.5,
and θ = π/6.

Fig. 11 Illustration of stiffness (E2) with scattering coefficient (Ḡ ) when E1 = 0.1, E3 = 0.06,
ε = 0.2, β = 5.0, γ = 6.0, M = 5.5, and θ = π/6.
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Fig. 12 Illustration of
damping force of the wall
(E3) with scattering
coefficient (Ḡ ) when
E1 = 0.1, E2 = 0.00, ε = 0.2,
α = 1.0, γ = 6.0, M = 5.5,
and θ = π/6.

Fig. 13 Illustration of damping force of the wall (E3) with scattering coefficient (Ḡ ) when E1 =
0.1, E2 = 0.06, ε = 0.2, β = 5.0, γ = 6.0, M = 5.5, and θ = π/6.

5 Conclusions

The effects of magnetic constraint (M ), couple stress constraint (γ ), angle of
inclination (θ), homogeneous response rate (α), heterogeneous response rate (β),
rigidity (E1), stiffness (E2), and damping characteristic (E3) of the wall on scattering
coefficient (Ḡ ) have been inspected for peristaltic movement of a couple stress fluid.
It is of great importance for the movement of blood in artery, bolus in esophagus,
bile in bile duct, and chyme in small intestine of the digestive system.

• It is seen that the concentration profile (Ḡ ) rises with an increase in inclination
of the channel and wall features.

• It is noticed that concentration profile (Ḡ ) descends with rise in heteroge-
neous response rate, homogeneous response rate, couple stress, and magnetic
constraints.
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• Finally, rigidity (E1), stiffness (E2), damping force (E3) of the wall, and angle of
inclination (θ) favor the dispersion, while couple stress constraint (γ ), magnetic
constraint (M ), homogeneous response rate constraint (α), and heterogeneous
response rate constraint (β) resist the dispersion.
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1 Introduction

Consider the inverse problem of reconstructing the coefficients {α, k, �, p(x)},
appearing in the fractional evolution equation, with 0 < α < 1:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C
0 Dα

t u(x, t) = ∂x (p(x)∂xu(x, t)) for 0 < x < � < ∞, t > 0,

lim
x→0+p(x)∂xu(x, t) = 0, t > 0,

k lim
x→�−p(x)∂xu(x, t) + u(�, t) = 0, t > 0, k > 0,

u(x, 0) = a(x), 0 < x < �,

(1)

from readings of u(0, t) and u(�, t), and where C
0 Dα

t f (t) denotes the Caputo
derivative [12]:

C
0 Dα

t f (t) =
∫ t

0

(t − ξ)−α

	(1 − α)
f ′(ξ) dξ, 0 < α < 1.
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A good survey of anomalous diffusion phenomena in environmental engineering
leading to the fractional evolution equation (1) can be found in [5, 10, 11]. Under
rather restrictive conditions p ∈ C2 (0, �) and p(x) > 0, J. Cheng et al. [5]
proved the uniqueness of a weak solution from its observation u(0, t), 0 < t <

T , generated by a distributional initial condition, namely u(x, 0) = δ(x), by
rewriting the Sturm-Liouville operator in the impedance form into the standard

form d2

dx2 − q(x), and using the Gelfand-Levitan inverse spectral theory. In [13],

the Neumann fractional diffusion equation in the standard form C
0 Dα

t u = uxx −
q(x)u, ux(0, t) = ux(l, t) = 0, has been considered under classical initial
conditions. It was proved that the observations {u(0, t), u(�, t)}0<t<T , under finitely
many specially chosen initial conditions a(x) ∈ L2(0, �), determine q(x) uniquely,
and a constructive reconstruction algorithm was proposed.

In this paper, we offer a different and new treatment to problem (1) where our
emphasis is on the reconstruction of p under minimal restrictions:

1

p
∈ L (0, �) , p(x) ≥ 0, and a ∈ L2 (0, �) . (2)

This would allow engineers and practitioners in the field of applied control theory
to work with classical solutions. We point out that the Dirac delta function δ means
concentrating finite energy at a single point and may not be appropriate to use
in nondestructive testing or noninvasive monitoring. This is the main reason why
engineers would avoid working with distributions and weak solutions. However,
it greatly simplifies the mathematical treatment as we shall explain at the end of
Section 2. Although we make measurements at both end points, we assume that we
do not know the distance � between them.

Note that condition (2) would prevent the use of the Gelfand-Levitan theory as
the Liouville transformation is not applicable. To circumvent this issue, we call on
the M.G. Krein inverse spectral theory of the string, and we refer the reader to [7].
Also since α is unknown, we cannot use the Laplace transform to recast the problem
into a standard heat equation. We are concerned with the following question.

Statement of the Problem
Reconstruct {α, k, �, p(x)} uniquely by a single measurement a → {u(0, t),
u(�, t)}0<t<T .

2 Direct Problem

Equation (1) can be written as a fractional evolution equation:

C
0 Dα

t u = Au,
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where A is the Sturm-Liouville operator in the impedance form:

⎧
⎨

⎩

Ay(x) = − (p(x)y′(x)
)′ for 0 < x < �,

B0(y) := lim
x→0+p(x)y′(x) = 0 and B�(y) := k lim

x→�−p(x)y′(x) + y(�) = 0, k > 0.

(3)

The operator A acts in L2 (0, �) and its domain is simply given by:

Dom (A) =
{
y ∈ L2 (0, �) : y, py′ ∈ AC (0, �) ,

(
py′)′ ∈ L2 (0, �)

and B0 (y) = B� (y) = 0} .

The operator A under the conditions:

p−1 ∈ L (0, �) and p(x) ≥ 0 (4)

is regular at both end points, x = 0, �, and the limits lim
x→0+p(x)y′(x) and

lim
x→�−p(x)y′(x) exist, see [14, section 2.3]. Here, the derivative y′ exists almost

everywhere, however py′(x) is a continuous function which is called a quasi-
derivative. Under the condition k > 0, it has a positive discrete spectrum, and
generates a normalized eigenbasis, {φn}n≥1 say, where:

Aφn (x) = λnφn (x) ,

with ‖φn‖ = 1, and λn ↑ ∞. Since for each t > 0, u (., t) ∈ L2 (0, �) , we then
look for the coefficients cn(t) such that

u (x, t) =
∑

n≥1

cn (t) φn (x) , where cn (t) =
∫ �

0
u(x, t)φn(x)dx. (5)

Clearly, it follows from (5) and (1) that

C
0 Dα

t cn (t) =
∫ �

0

C
0 Dα

t u(x, t)φn(x)dx =
∫ �

0
∂x (p(x)∂xu(x, t)) φn(x)dx

= lim
ε→0+

[
p(x)∂xu(x, t)φn(x) − p(x)u(x, t)φ′

n(x)
] |�−ε

ε

+
∫ �

0
u (x, t)

(
p(x)φ′

n(x)
)′
dx

= −λncn (t) .
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So, we have

C
0 Dα

t cn (t) = −λncn (t) and cn (0) =
∫ �

0
a(x)φn(x)dx. (6)

Equation (6) has the solution [13]:

cn (t) = cn (0) Eα

(−λnt
α
)
,

where Eα(x) is the Mittag-Leffler function [12]:

Eα(x) :=
∞∑

k=0

xk

	 (αk + 1)
.

Therefore, we have the following representation of the classical solution:

u (x, t) =
∑

n≥1

cn (0) Eα

(−λnt
α
)
φn (x) . (7)

From the asymptotics of the Mittag-Leffler function [8]:

Eα

(−λnt
α
) = O

(
1

λntα

)

, t > 0, n → ∞, (8)

and λn ↑ ∞, {cn(0)}n≥1 ∈ �2, we see that for each t > 0, the series (7)
converges in L2(0, �). For the Neumann Sturm-Liouville operator in the standard

form d2

dx2 −q(x), the eigenvalues λn have the asymptotics λn ∼ (π
�
(n − 1)

)2, hence
the uniform convergence of the series (7) on [0, �] is easy to derive. For operators
in the impedance form (3), no asymptotic formula for λn is known, so the uniform
convergence of (7) in x is not obvious. We will prove in the next section that, for
any t > 0, the series (7) converges absolutely and uniformly in x on [0, �], and
therefore, the measurements or readings at x = 0 and x = � can be expressed as:

u (0, t) =
∑

n≥1

cn (0) φn (0) Eα,1
(−λnt

α
)

and

u (�, t) =
∑

n≥1

cn (0) φn (�)Eα,1
(−λnt

α
)
, t > 0. (9)

The task now is to:

1. Prove the uniform convergence of the series (7) in x on [0, �] by finding an
estimate on {φn (x)}n≥1.

2. Extract the complete spectral data from (9) by showing that all cn (0) , φn(0),
φn(�) �= 0 for a(x) = 1.
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Remark We now explain the main advantage of using the Dirac delta function as
an initial condition [5]. Normalize the eigenfunctions by φn(0) = 1. The Fourier
coefficients are

cn(0) = 1

‖φn‖2
2

∫ �

0
δ(x)φn(x)dx = φn(0)

‖φn‖2
2

= 1

‖φn‖2
2

,

and so

u (x, t) =
∑

n≥1

1

‖φn‖2
2

Eα

(−λnt
α
)
φn (x) , (10)

and obviously, the observation at one end point x = 0 only

u (0, t) =
∑

n≥1

1

‖φn‖2
2

Eα

(−λnt
α
)
, 0 < t < T,

already guarantees the presence of all the spectral data {λn, ‖φn‖2}n≥1. Unfortu-
nately, this initial condition a(x) = δ(x) can hardly be used in practice and we
show that we need to observe both end points, when we use classical functions.

3 Convergence

In this section, we collect some identities on eigenfunctions that would help us prove
convergence of the series (7). Successive integration of the eigenfunction equation:

− (p(x)φ′
n(x)

)′ = λnφn(x) with lim
x→0+p(x)φ′

n(x) = 0

yields

− p(x)φ′
n (x)

λn
=
∫ x

0
φn (η) dη =

∫ �

0
χ[0,x](η)φn(η)dη, (11)

φn (0) − φn (x)

λn
=
∫ x

0
φn(η)

∫ x

η

1

p (t)
dt dη =

∫ �

0
K(x, η)χ[0,x](η)φn(η)dη, (12)

where χ[0,x](η) is the characteristic function of the interval [0, x], and

K(x, η) :=
∫ x

η

1

p (t)
dt (13)

is continuous in 0 ≤ η ≤ x ≤ � by (2) and clearly, 0 ≤ K(x, η) ≤ K(�, η).
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Taking the limit when x → �− in (11) and recalling that

φn(l) = −k lim
x→�−p(x)φ′

n(x), (14)

we obtain

φn(�)

kλn
=
∫ �

0
φn(η)dη. (15)

Formula (11) says that −p(x)φ′
n (x)

λn
is the Fourier coefficient of the characteristic

function χ[0,x](η) of the interval [0, x]. Parseval’s formula for the Fourier series of
χ[0,x](η) then yields

p2(x)
∑

n≥1

φ′ 2
n (x)

λ2
n

= x. (16)

Applying Parseval’s formula for the Fourier series of f (x) = 1 and using
formula (15), we arrive at

∑

n≥1

φ2
n(�)

λ2
n

= k2l < ∞. (17)

Consequently,
{
φn(�)
λn

}

n≥1
∈ �2.

Combining (11) and (12), we have

φn(0) − φn(x) − kp(x)φ′
n(x)

λn
=
∫ x

0
[K(x, η) + k]φn(η)dη.

Taking the limit when x → �− and using (14), we arrive at

φn(0)

λn
=
∫ �

0
[K(�, η) + k]φn(η)dη. (18)

Formula (18) says that
φn(0)

λn
is the Fourier coefficient of the function K(�, η)+

k, and Parseval’s formula for the Fourier series of K(�, η) + k then yields

∑

n≥1

φ2
n (0)

λ2
n

=
∫ �

0
(K(�, η) + k)2 dη < ∞. (19)

Hence,
{
φn(0)
λn

}

n≥1
∈ �2.
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Similarly, formula (12) says that
φn(0) − φn(x)

λn
is the Fourier coefficient of

K(x, η)χ[0,x](η), and Parseval’s formula for the Fourier series of K(x, η)χ[0,x](η)
then yields

∑

n≥1

[φn(0) − φn(x)]2

λ2
n

=
∫ x

0
K2(x, η)dη ≤

∫ �

0
K2(�, η)dη. (20)

Combining (19) and (20), we arrive at

∑

n≥1

φ2
n(x)

λ2
n

≤ 2
∑

n≥1

φ2
n(0)

λ2
n

+ 2
∑

n≥1

[φn(0) − φn(x)]2

λ2
n

≤ 2
∫ �

0

[
K2(�, η) + (K(�, η) + k)2

]
dη < ∞, x ∈ [0, �]. (21)

The bound of
∑

n≥1
φ2
n(x)

λ2
n

in (21) is independent of x ∈ [0, �]. Together with (8)

and {cn(0)}n≥1 ∈ �2, it yields the absolute and uniform convergence of the series (7)
in x on [0, �]. Hence, for any fixed x ∈ [0, �], u(x, t) is analytic in t > 0, and the
representations at the boundaries (9) hold.

We show now that

φn(0) �= 0, n ≥ 1. (22)

Otherwise, integrating from x = 0 and using that limx→0+ p(x)φ′
n(x) = 0 we

would get the following Volterra integral equation for φn:

φn(x) = φn(0) + lim
x→0+p(x)φ′

n(x)

∫ x

0

1

p(t)
dt − λn

∫ x

0
φn(η)

∫ x

η

1

p(t)
dtdη

= −λn

∫ x

0
K(x, η) φn(η)dη, x ∈ [0, �]. (23)

The Volterra integral equation (23) with the continuous kernel K(x, η) would have
only the trivial solution φn(x) = 0, that is impossible. Thus, (22) holds.

Similarly, one can show that

φn(�) �= 0, n ≥ 1. (24)

Otherwise, it would imply, by (14), that limx→�− p(x)φ′
n(x) = 0 and integrating

from x = �, we would get the following Volterra integral equation for φn:
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φn(x) = φn(�) + lim
x→�−p(x)φ′

n(x)

∫ x

�

1

p(t)
dt + λn

∫ x

�

φn(η)

∫ η

x

1

p(t)
dtdη

= −λn

∫ �

x

K(η, x) φn(η)dη, x ∈ [0, �]. (25)

The Volterra integral equation (25) with the continuous kernel K(η, x) would have
only the trivial solution φn(x) = 0, that is impossible. Thus, (24) holds, and it
follows from (15) and (24) that

λn

∫ �

0
φn (�) dη = φn(�)

k
�= 0,

which implies that both

λn �= 0 and
∫ �

0
φn (η) dη �= 0 for all n ≥ 1. (26)

Recall that when a(x) = 1

cn(0) = (1, φn) =
∫ �

0
φn (η) dη = φn(l)

kλn
�= 0. (27)

Thus, we have proved.

Proposition 1 We have the following:

a) φn(0), φn(�) �= 0 for any n ≥ 1.
b) For any a(x) ∈ L2(0, �) and for each t > 0 the series (7) converges absolutely

and uniformly in x on [0, �], and for each fixed x ∈ [0, �] the series (7) is an
analytic function in t > 0. In particular, the series (9) converge absolutely and
represent analytic functions in t > 0.

c) If a(x) = 1, then cn(0) �= 0 for any n ≥ 1, and u (0, t) and u(�, t) both contain
all the boundary spectral data {λn, φn(0), φn(�)}n≥1.

4 The Data Processing

Due to Proposition 1c) from now on we take the special initial condition a(x) =
1. Representations (9) are the key to solving our inverse problem. First, since
cn(0), φn(0), φn(�) �= 0 for any n ≥ 1, the series (9) contain all eigenvalues λn,
which are crucial for the completeness of the spectral data. We now explain how to
extract the fractional order α of the equation, the eigenvalues λn, and the boundary
values φn(0), φn(�), from the pair {u(0, t), u(�, t)}0<t<T . The analyticity of u(0, t)
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and u(�, t) means that the observations on (0, T ) can be extended uniquely on
(0,∞), so we will assume that we observe u(0, t) and u(�, t) for any t > 0.

Applying the Laplace transform:

F(s) = L (f ) (s) :=
∫ ∞

0
e−st f (t) dt, (28)

to (9), using [8, formula (3.7.7)]

L
(
Eα(−λtα)

)
(s) = sα−1

sα + λ
,

we obtain

U(0, s) = L (u (0, t)) (s) = sα−1∑
n≥1

cn (0) φn (0)

sα + λn
,

U(�, s) = L (u (�, t)) (s) = sα−1∑
n≥1

cn (0) φn (�)

sα + λn
. (29)

4.1 Finding α

From (29), we have

U(0, s) − U(�, s) = sα−1
∑

n≥1

cn (0)

sα + λn
{φn(0) − φn(�)} .

Consequently:

ln (|U(0, s) − U(�, s)|) = (α − 1) ln(s)+ln

∣
∣
∣
∣
∣
∣

∑

n≥1

cn (0)

sα + λn
{φn(0) − φn(�)}

∣
∣
∣
∣
∣
∣
. (30)

By Parseval’s equality on (6) and (12), we have by (13)

lim
s→0+

∑

n≥1

cn (0)

sα + λn
{φn(0)−φn(�)}

=
∑

n≥1

cn (0)
(φn(0) − φn(�))

λn
=
∫ �

0
K(�, η)dη>0.
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Taking the limits as s → 0+ in (30) yields α

α = 1 + lim
s→0+

ln |U(0, s) − U(�, s)|
ln s

. (31)

4.2 Finding λn and φn(�)
φn(0)

Once α is known, the formulas:

s
1

α−1 U(0, s
1
α ) =

∑

n≥1

cn (0) φn (0)

s + λn
, s

1
α−1 U(�, s

1
α ) =

∑

n≥1

cn (0) φn (�)

s + λn
, (32)

say that −λn are simply the poles of s
1

α−1 U(0, s
1
α ) and s

1
α−1 U(�, s

1
α ) with the

corresponding residues cn (0) φn (0) and cn (0) φn (�). Thus, (32) would reveal all
eigenvalues λn and the values φn(�)

φn(0)
that are necessary in Krein’s string inverse

problem. However, we will employ the method of limits, developed in [3, 4, 13],
to explicitly determine λn and φn(�)

φn(0)
. Denote

p1(t) = L−1
(
s

1
α−1 U(0, s

1
α )
)
(t), p̃1(t) = L−1

(
s

1
α−1 U(�, s

1
α )
)
(t),

then p1(t), p̃1(t) are known from the measurements u(0, t), u(�, t). Clearly:

p1(t) =
∑

n≥1

cn(0)φn(0)e
−λnt , p̃1(t) =

∑

n≥1

cn(0)φn(�)e
−λnt . (33)

Since the eigenvalues are increasing, λ1 < λ2 < . . . < λn < . . . ., then for large k,

we have p1(k) ∼ c1(0)φ1(0)e−λ1k and so the limit:

lim
k→∞

p1(k)

p1(k + 1)
= lim

k→∞
e−λ1k

e−λ1(k+1)
= eλ1 ⇒ λ1 = lim

k→∞ ln

(
p1(k)

p1(k + 1)

)

. (34)

We can also recover c1 (0) φ1 (0) and c1 (0) φ1 (�) by other limits:

lim
k→∞p1(k)e

λ1k = c1 (0) φ1 (0) , lim
k→∞ p̃1(k)e

λ1k = c1 (0) φ1 (�) , (35)

since λ1 −λn < 0 for all n ≥ 2, and φ1(�)
φ1(0)

= c1(0)φ1(�)
c1(0)φ1(0)

. By removing the first terms

c1(0)φ1(0)e−λ1k and c1(0)φ1(�)e
−λ1k from the series defining the originals p1(k)

and p̃1(k), we obtain new functions:

p2(k) = p1(k) − c1(0)φ1(0)e
−λ1k =

∑

n≥2

cn(0)φn(0)e
−λnk,

p̃2(k) = p̃1(k) − c1(0)φ1(�)e
−λ1k =

∑

n≥2

cn(0)φn(�)e
−λnk.
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To recover the next pair
(
λ2,

φ2(�)
φ2(0)

)
, we only need to repeat steps (34) and (35) to

the new functions p2(k) and p̃2(k), and by doing so we can eventually determine all

the sequence
{
λn,

φ1(�)
φ1(0)

}

n≥1
.

We thus have proved.

Proposition 2 Assume that the initial condition is a(x) = 1. Then, we can extract

the complete boundary spectral data

{(

λn,
φn (�)

φn (0)

)}

n≥1
.

To avoid the costly Liouville transformation, which is not applicable under (2),
we shall transmute the operator A into a similar string [2]. We refer to the theory
as outlined in the book by Dym and McKean [7] for its beautiful connection with
the Fourier analysis and de Branges spaces. We mention also the book by Atkinson,
and the works by Coleman, McLaughlin, and Hald, McLaughlin [1, 6, 9].

5 M.G. Krein’s String

We now show that the operator A is similar to a string operator [7]. Denote by:

τ(x) =
∫ x

0

1

p(t)
dt, 0 ≤ x ≤ �, (36)

which is an increasing one-to-one function, [0, �] τ→ [0, b], where b = τ (�) . Next,
define a nonnegative weight function w by:

w (τ(x)) = p(x) ≥ 0, (37)

and a unitary operator T : L2
w (0, b) → L2 (0, �) by a composition operation

T (h) = h ◦ τ ,

‖h‖2
w =

∫ b

0
|h (s)|2 w (s) ds =

∫ �

0
|h (τ(x))|2 p(x)τ ′(x)dx

=
∫ �

0
|h (τ(x))|2 dx = ‖T (h)‖2 .

To proceed, we need the following lemma.

Lemma 3 w ∈ L(0, b).

Proof From (37), we have

∫ b

0
w(τ)dτ =

∫ �

0
w(τ(x))τ ′(x)dx =

∫ �

0
p(x)

1

p(x)
dx = � < ∞.
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Since w ∈ L(0, b), we can define the string operator:

⎧
⎨

⎩
Sψ(τ) = −1

w (τ)

d2

dτ 2ψ(τ), 0 < τ < b,

ψ ′(0) = 0 kψ ′(b) + ψ (b) = 0,
(38)

which models the vibration of a string whose mass between (0, x] is
∫ x

0 w(η)dη,

which is why w is called the density of the string. The operator S acts in

L2
w (0, b) =

{

f measurable :
∫ b

0
|f (x)|2 w(x)dx < ∞

}

,

and its domain is given by:

Dom (S) =
{

ψ ∈ L2
w (0, b) : ψ(τ) = a +

∫ τ

0
(t − τ) g(t)w(t)dt,

whereg ∈ L2
w (0, b) and kψ ′(b) + ψ (b) = 0

}
.

We now prove the following proposition.

Proposition 4 Assume that (2) holds. Then, the operator A in (3) is similar to the
string operator S defined by (38) with a mass density w given by (37), length b =
τ(�), and where τ is defined as in (36).

Proof Define the function ψ by ϕ = Tψ , where ϕ ∈ Dom(A), that is:

ψ(τ(x)) = ϕ(x). (39)

Then, it follows from

dψ

dτ
(τ(x)) = p(x)ϕ′(x) (40)

that

d2ψ

dτ 2
(τ (x)) = p(x)

(
p(x)ϕ′(x)

)′
, with ψ ′(0) = 0, and kψ ′(b) + ψ (b) = 0.

Use (37) to write

−1

w (τ(x))

d2

dτ 2
ψ(τ(x)) = − (p(x)ϕ′(x)

)′ (41)

and so we deduce from (41) and (40) that

TSψ =Aϕ = ATψ for any ψ ∈ Dom (S) . (42)
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It is also easily seen from (40) that ψ ∈ Dom(S) if and only if Tψ ∈ Dom(A)

and (42) establishes that S and A are similar. Thus, they have the identical spectral
data. ()

5.1 Finding k, �, and w

Consider the solution to the initial value problem:

{−ψ ′′(ξ, λ) = λw (ξ)ψ(ξ, λ), 0 < ξ < b,

ψ(0, λ) = 1 and ψ ′(0, λ) = 0.
(43)

The solutions ψ (b, λ) and ψ ′(b, λ) are entire functions of λ of order 1/2, while the
eigenvalues λn of S, (38), are precisely the zeros of

kψ ′ (b, λn) + ψ (b, λn) = 0.

Thus, we can write it as:

kψ ′ (b, λ) + ψ (b, λ) = γ
∏

n≥1

(

1 − λ

λn

)

, (44)

where

γ = kψ ′(b, 0) + ψ (b, 0) = 1, (45)

since ψ (x, 0) = 1, which is easily obtained by setting λ = 0 in (43). Next, we need
the norming constants ‖ψ (., λn)‖ which are obtained from the identity:

wψ2 = (ψ ′∂λψ − ψ∂λψ
′)′ ,

and the fact that ∂λψ ′(0, λn) = ψ ′(0, λn) = 0 and kψ ′(b, λn) + ψ (b, λn) = 0.
Thus, we deduce that

αn :=
∫ b

0
ψ2(η, λn)w(η)dη = ψ ′ (b, λ) ∂λψ (b, λ) − ψ(b, λn)∂λψ

′(b, λn) (46)

=−ψ (b, λn) ∂λ
[
kψ ′(b, λn) + ψ (b, λn)

]=−φn(�)

φn(0)

∂

∂λ

∏

j≥1

(

1 − λ

λj

)
∣
∣
∣
∣
∣
∣
λ=λn

,

where the last equation follows from (44) and the fact that ψ (b, λn) = φn(�)

φn(0)
.

Having the complete spectral data {λn, αn}n≥1 from (46), we can construct a
unique spectral function:
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	 (λ) =
∑

λn≤λ

1

αn
, (47)

which then yields a unique mass m(ξ) = ∫ ξ
0 w(η)dη, by the well-known M.G.

Krein inverse spectral theory [7, section 5.8, page 198] as long as

∑

n≥1

1

(1 + λn) αn
< ∞, (48)

and happens to be a necessary and sufficient condition for the existence of a
string. The mass is obtained as a limit of a sequence of finite strings generated by
continued fractions, each corresponding to a partial sum of the spectral function by
the formula:

∫ λn

0

	(λ)

λ + b
dλ = 1

bm0 + 1

x1 − x0 + 1

bm1 + 1

x2 − x1 + · · · + 1

bmn + 1

kn

, (49)

where mk is the approximate mass at xk , and x0 = 0 [7, page 205]. By letting
λn → ∞, condition (48) ensures the convergence of the sequence of finite strings
defined by (49) to the sought string. Thus, the sought mass m is the limit of the finite
step functions

∑
xj≤x≤xn

mj , where xj , mj are read off (49). Note that since we
started with an absolutely continuous mass, then by the uniqueness of its recovery,
its spectral data should yield back an absolutely continuous mass. Then, w(ξ) =
m′(ξ).

5.2 Finding p

Once the density w is obtained, we can reconstruct p by solving the functional

equation (37), w (τ(x)) = p(x) = 1

τ ′(x)
for 0 ≤ x ≤ �, simply by bringing the

inverse function of τ , which is defined by x(τ(x)) = x, or x′(τ ) = 1

τ ′(x)
. Thus, we

have x′(τ ) = w(τ) with x(0) = 0 or

x (τ) =
∫ τ

0
w (η) dη,

which we can invert back to get τ(x) and then finally:
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p (x) = w (τ(x)) .

5.3 Finding �

The length b of the string in (38) is simply the last point of growth of the mass
m(x) = ∫ x0 w(η)dη, i.e., suppw ⊂ [0, b]. Having b and the map τ , we get

� = x(b) =
∫ b

0
w(η)dη.

5.4 Finding k

Using (17) and (27), we have

k = 1

�

∑

n≥1

φ2
n(�)

kλ2
n

= 1

�

∑

n≥1

cn(0)φn(�)

λn
. (50)

Since �, cn(0)φn(�), and λn have been found, we get k from (50). Thus, we have
proved.

Theorem 5 Assume that 0 ≤ p−1 ∈ L(0, b), 0 < k, 0 < α < 1, and a(x) = 1.
Then:

a) One single measurement {u(0, t), u (�, t)}0<t<T determines {α, �, k, p(x)}
uniquely.

b) The unknowns {α, �, k, p(x)} are reconstructed explicitly and uniquely from
the single measurement of {u(0, t), u (�, t)}t>0.
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Three-Dimensional Biomagnetic Flow
and Heat Transfer over a Stretching
Surface with Variable Fluid Properties

M. G. Murtaza, E. E. Tzirtzilakis, and M. Ferdows

1 Introduction

The flow of biomagnetic fluid dynamics (BFD), a mathematical model, was
first developed by Haik et al. [1]. This model conforms with the principles of
ferrohydrodynamics (FHD) by Rosensweig [2]. This model considered biomagnetic
fluid to be Newtonian, electrically nonconducting magnetic fluid. An extended
mathematical model was developed by Tzirtzilakis [3]. According to this model, the
biofluid flow under the influence of an applied magnetic field is consistent with the
principles of FHD and magnetohydrodynamics (MHD). Tzirtzilakis and Kafoussias
[4] analyzed the mathematical model of the flow of a biomagnetic fluid over a
linearly stretching sheet under the action of a magnetic field, which is generated
by a magnetic dipole. Further, Misra and Shit [5] investigated the biomagnetic
viscoelastic fluid flow over a stretching sheet and indicated that the presence
of an external magnetic field appreciably influences the flow of biomagnetic
fluid.

The magnetization property M is the behavior of a biological fluid when it
is exposed to a magnetic field. Andersson and Valnes [6] used a magnetiza-
tion equation that is linear and temperature dependent, whereas Tzirtzilakis and
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Kafaussias [4] used one that is nonlinear and temperature dependent. Haik et al.
[7] studied the viscosity of human blood in a high static magnetic field. They
used the magnetization equation that is not temperature dependent. In all the afore-
mentioned studies, uniform fluid viscosity and thermal conductivity are considered.
However, it is evident that the physical properties of fluid may change with
temperature, especially fluid viscosity and fluid thermal conductivity. Vajravelu et
al. [8] investigated the effects of variable fluid properties on the thin film flow of
Ostwald-de Waele fluid over a stretching surface. Prasad et al. [9] also analyzed
the effects of variable fluid properties on MHD flow and heat transfer over a
nonlinear stretching sheet. Salawu and Dada [10] studied the radiative heat transfer
of variable viscosity and thermal conductivity effects on an inclined magnetic field
with dissipation in a non-Darcy medium. Makinde et al. [11] investigated the MHD
variable viscosity reacting flow over a convectively heated plane in a porous medium
with thermophoresis and radiative heat transfer. All the afore-mentioned authors
assume that fluid viscosity and thermal conductivity vary as a linear function of
temperature. Kafoussias et al. [12] investigated the free-forced convective boundary-
layer flow of a biomagnetic fluid under the action of a localized magnetic field. They
concluded that when the viscosity parameter increases, the skin friction coefficient
also increases, whereas the Nusselt number decreases.

The aim of this study is to examine the temperature-dependent viscosity and
thermal conductivity of biomagnetic fluid flow over a three-dimensional stretching
sheet with variable surface temperature. Here, we conclude that the effects of
variable viscosity and thermal conductivity and the flow characteristic are signif-
icantly changed compared with constant physical properties. This study will help
the development of medical treatment by controlling blood velocity and blood
temperature.

2 Formulation of the Problem

Let us consider a steady three-dimensional boundary-layer flow and heat transfer of
a viscous incompressible biomagnetic fluid over a stretching surface. Assume that
the flat surface stretches in two lateral directions x and y with the velocities ax

and by, respectively. The stretching sheet is placed in the plane z = 0, whereas the
fluid occupies the upper half of plane z ≥ 0. Here, we consider that the plates are
kept at a constant temperature Tw, whereas the fluid is at temperature Tc, such that
Tw < Tc. Let the surface be maintained at a power law temperature. The viscous
and electrically nonconducting magnetic fluid is subject to the action of a magnetic
field H , which is generated by a magnetic dipole located at a distance d below the
sheet and parallel to the x axis. The geometry and magnetic dipole of the problem
is shown in Figure 1.

The boundary-layer equations of the fluid and energy equation in the presence of
variable fluid properties can be written as
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Fig. 1 Physical configuration
and coordinate system

Continuity equation:

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (1)

Momentum equation:

u
∂u

∂x
+ w

∂u

∂z
= 1

ρ∞
∂

∂z
(μ

∂u

∂z
) (2)

v
∂v

∂y
+ w

∂v

∂z
= 1

ρ∞
∂

∂z
(μ

∂v

∂z
) + 1

ρ∞
μ0M

∂H

∂y
(3)

w
∂w

∂z
= − 1

ρ∞
∂p

∂z
+ 1

ρ∞
∂

∂z
(μ

∂w

∂z
) + 1

ρ∞
μ0M

∂H

∂z
(4)

Energy equation:

ρ∞cp(u
∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
) + μ0T

∂M

∂T
(v

∂H

∂y
+ w

∂H

∂z
) = ∂

∂z
(k

∂T

∂z
) (5)

With boundary conditions are

u = uw = ax, v = vw = by,w = 0, T = Tw = Tc + Axmyn at z = 0
u → 0, v → 0, T → Tc, p + 1

2ρq
2 as z → ∞

}

(6)

Here u, v, and w are the velocity components along the x, y and z axes
respectively. μ is the fluid viscosity, ρ∞ is the fluid density far away from the sheet,
μ0 is the magnetic permeability, H is the magnetic field. The terms μ0M

∂H
∂y

and

μ0M
∂H
∂z

in (3) and (4) respectively represent the components of the magnetic force
per unit volume of the fluid and depend on the existence of the magnetic gradient.
These two terms are well known from FHD, which are the so-called Kelvin forces
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and the term μ0T
∂M
∂T

(
v ∂H

∂y
+w∂H

∂z

)
of the thermal energy equation (5) represents the

thermal power per unit volume due to magnetization that takes place as an adiabatic
process. The power indices m and n indicate the variable surface temperature in the
(x, y) plane.

Assuming that the viscosity and thermal conductivity of fluid is temperature
dependent and is of the form described by Salawu and Dada [10]

1

μ
= 1

μ∞
[1 + γ (T − T∞)] or

1

μ
= s(T − Tr) (7)

where s = γ
μ

and Tr = T∞ − 1
γ

. Here s and Tr are the constants and their
values depend on the reference state and γ is a constant connected with the thermal
property of the fluid. Generally, for the liquids s > 0 and for gases s < 0.

On the other hand, for most liquids, the thermal conductivity k is assumed to vary
as a linear function of temperature in the form described by Salawu and Dada [10]

k = k∞(1 + aθ) (8)

where a = kw−k∞
k∞ is the thermal conductivity parameter.

The biomagnetic fluid flow is affected by the magnetic field generated by the
presence of a magnetic dipole and it is assumed that the magnetic dipole is located
at distance d below the sheet. The magnetic dipole gives rise to a magnetic field that
is sufficiently strong to saturate the fluid and its scalar potential for the magnetic
dipole whose components Hy,Hz of the magnetic field H = (Hy,Hz), due to the
magnetic dipole, are provided by Tzirtzilakis and Kafoussias [13]

H(x, y, z) = I

2π

1
√
y2 + (z + d)2

= I

2π
(

1

(z + d)
− 1

2

y2

(z + d)3
)

A linear equation involving the magnetic intensity H and temperature T is
provided by Tzirtzilakis and Kafaussias [13]

M = KH(Tc − T ), where K is a constant. (9)

3 Transformation of Equations

We are now introducing the nondimensional coordinates according to Tzirtilakis
and Kafoussias [13].

ξ(x) =
√
a

ν
x, ζ(y) =

√
a

ν
y, η(z) =

√
a

ν
z
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The dimensionless velocity, pressure, and temperature of the magnetic fluid are
provided by the following expressions:

u = √
aνf ′(η), v = √

aνf ′(η), w = −√
aν(f (η) + g(η) (10)

P(ξ, ζ, η) = aμ∞P(η), θ(ξ, ζ, η) = Tc − T

Tc − Tw
= θ(η) (11)

The magnitude H of the magnetic field strength is given by the expression

H(ζ, η) = I

2π

√
a

ν
[ 1

η + α
− 1

2

ζ 2

(η + α)3
] (12)

where α is the dimensionless distance of the electric wire from the ξ axis and

α = d
√

a
ν

By substituting Equation (9) and all the above expressions (10) to (12) into the
momentum equation (2) to (4) and energy equation (5), and equating the coefficients
of equal power of ξ, ζ we obtain the following system of ordinary differential
equations.

f ′′′ + θ − θr

θr
[f ′2 − (f + g)f ′′] − θ ′

θ − θr
f ′′ = 0 (13)

g′′′ + θ − θr

θr

[
g′2 − (f + g)g′′]− θ ′

θ − θr
g′′ + θ − θr

θr

βθ

(η + α)4 = 0 (14)

P ′ − θr

θ − θr
(f ′′ + g′′) + θrθ

′

(θ − θr)2
(f ′ + g′) + βθ

(η + α)3
= 0 (15)

(1+aθ)θ ′′ +aθ ′2 −Pr
[
mf ′θ +ng′θ − (f +g)θ ′]− βλ(f + g)(θ − ε)

(η + α)3 = 0 (16)

The boundary conditions are

f ′ = 1, g′ = b

a
= δ, θ = 1, f = g = 0 at η = 0 (17)

f ′ → 0, g′ → 0, P → −P∞, θ → 0 as η → ∞ (18)

The dimensionless parameters appearing in these equations are like the Prandtl

number, Pr = μ∞cp
k∞ , viscous dissipation parameter, λ = aμ2∞

ρ∞k∞(Tc−Tw)
, dimen-

sionless Curie temperature, ε = Tc
(Tc−Tw)

, ferromagnetic interaction parameter,

β = I 2

4π2
Kμ0(Tc−Tw)ρ∞

μ2∞
, dimensionless distance, α = d

√
a
ν

, viscosity parameter,
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θr = Tr−Tc
Tw−Tc

= − 1
γ (TW −TC)

, where θr is negative for liquids and θr is positive for
gases.

The local skin friction coefficient and local Nusselt number are important
physical parameters of this flow and heat transfer, which is defined respectively

Cf = − τw
1
2ρ∞u2

w

and Nu = − xqw

k∞(Tw − Tc)

where τw = −μ
(
∂u
∂z

)
z=0 and qw = −k

(
∂T
∂z

)
z=0.

and the corresponding dimensionless quantities can be written as

Cfx = Cf (Rex)
1/2 = − 2θr

θr − 1
f ′′(0) and Nux = Nu(Rex)

−1/2 = −θ ′(0)

4 Numerical Method

The set of Equations (13), (14), and (16) are highly nonlinear and coupled and
therefore the system cannot be solved analytically. Thus, the Equations (13), (14),
and (16), with boundary conditions (17) and (18), are solved numerically using the
essential features of this technique are based on: (i) the common finite difference
method with central differencing; (ii) a tridiagonal matrix manipulation; and (iii) an
iterative procedure. This numerical method is described in detail in Kaffoussias and
Williams [14] and is used in Murtaza et al. [15].

5 Results

To assess the validity and accuracy of the numerical results, we computed the
numerical values for the wall temperature gradient and compared with those of
Liu and Andersson [16] by setting β = 0, f ′(0) = 1, g′(0) = 0.5, P r = 1. The
comparisons are found to be in good agreement (Table 1).

Table 1 Comparisons with the published literature with regard to wall heat transfer rate coeffi-
cients

Stretching
ratio m = 0, n = 0 m = 2, n = 0 m = 0, n = 2

Liu and Liu and Liu and
δ Present Anderson [16] Present Anderson [16] Present Anderson [16]

δ = 0.25 −0.66721 −0.665933) −1.36331 −1.364890 −0.88301 −0.883125

δ = 0.5 −0.73546 −0.735334 −1.39377 −1.395356 −1.10544 −1.106491

δ = 0.75 −0.79599 −0.796472 −1.42341 −1.425038 −1.29056 −1.292003
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As the fluid is blood, we considered a human body temperature Tw = 37◦C,
whereas the body Curie temperature is Tc = 41◦C according to Loukopoulos and
Tzirtzilakis [18]. For these values of temperature, the dimensionless temperature
number is ε = 78.5. Also, we assume ρ = 1050 kgm−3, μ = 3.2×10−3 kgm−3s−1

according to Tzirtzilakis [17]. Generally, the specific heat under a constant pressure
cp and thermal conductivity k of any fluid are temperature dependent. For the
temperature range, consider this problem, cp = 14.65 Jkg−1K−1and k = 2.2 ×
10−3 Jm−1s−1K−1 respectively according to Tzirtzilakis and Xenos [19] and hence
Pr = 21. We consider the ferromagnetic interaction parameter β = 0 to 10 as in
Tzirtzilakis and Kafoussias [4]. Note that β = 0 corresponds to hydrodynamic flow.
The viscous dissipation parameter is λ = 6.4 × 10−14.

Figures 2, 3, and 4 display the influence of the ferromagnetic parameter,
the viscosity parameter, and the thermal conductivity parameter on velocity and
temperature distributions. It is evident from the figures that with an increase
in the ferromagnetic parameter, the velocity profiles f ′(η) are greater than the
corresponding hydrodynamics case. However, the opposite is true for the velocity
component g′(η) (Figure 3). This fact is due to the influence of Kelvin forces on
the flow field in the y direction. From Figure 4, it is observed that an increase in
the ferromagnetic field parameter increases the temperature profiles. The reason
behind this is that an increase in the magnetic field reduces the boundary-layer
thickness and enhances the thermal conductivity of the fluid. These figures also

Fig. 2 Velocity profile along
x-axis for various values of
β,a,θr

Fig. 3 Velocity profile along
the y-axis for various values
of β,a,θr
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Fig. 4 Temperature profile
for various values of β,a,θr

Fig. 5 Velocity profile along
x-axis for various values of
δ,m

Fig. 6 Velocity profile along
y-axis for various values of
δ,m

indicate that with increases in the values of θr , the velocity decreases and enhances
the temperature profile. This is because the increase θr results in an increase in the
thermal boundary-layer thickness, which results in a decrease in the velocity and an
increase in the temperature.

Figures 5, 6, 7, 8, and 9 exhibit the effect of the wall temperature parameter
on velocity and temperature distribution. From these figures, we observed that
the variation of sheet temperature has a significant effect on the velocity and
temperature profile. From the figures, we conclude that the velocity profile increases
with an increase in the wall temperature parameter, but the opposite behavior is
shown for temperature profile. This is because when m, n > 0 heat flows from
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Fig. 7 Temperature profile
for various values of δ,m

Fig. 8 Velocity profile along
y-axis for various values of
δ,n

Fig. 9 Temperature profile
for various values of δ,n,

the stretching sheet into the fluid and when m, n < 0, the temperature gradient is
positive and heat flows into the stretching sheet from the fluid. When and are both
increased, then the temperature profile is decreased and the velocity is increased,
i.e., the thermal boundary layer becomes thinner and the momentum boundary layer
is thicker.

Figures 10, 11, 12, and 13 depict the skin friction coefficient and rate of wall heat
transfer with regard to the viscosity parameter and thermal conductivity parameter
for various values of ferromagnetic number β. It is observed from these figures
that by increasing the viscosity parameter, the velocity gradient at the wall is
increased and the reverse trend was found for the wall temperature gradient. In
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Fig. 10 Skin friction
coefficient for various values
of β with regard to θr

Fig. 11 Rate of heat transfer
for various values of β with
regard to θr

Fig. 12 Skin friction for
various values of β and θr
with regard to a

Figures 12, and 13, we see that the skin friction f ′′(0) decreases with increases
in the thermal conductivity parameter, whereas g′′(0) is increasing. The rate of wall
heat transfer decreases with increases in the thermal conductivity parameter. We
also observe that the viscosity parameter is less affected by temperature distribution
than skin friction. It is noted that the effect of thermal conductivity is greater
in the temperature gradient than other physical significance. On the other hand,
the viscosity parameter is more affected in skin friction than the temperature
gradient.
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Fig. 13 Skin friction for
various values of β and θr
with regard to a

6 Conclusion

In this chapter, the effect of variable fluid properties on BFD in the presence of
an applied magnetic field is analyzed. The results are presented graphically to
investigate the influence of pertinent parameters on the velocity and temperature
fields. Some of the important results are summarized here.

1) The effect of the variable thermal conductivity parameter is to enhance the
temperature in the flow region and is reversed in the case of the wall temperature
parameter. This parameter effect is negligible for velocity and skin friction.

2) The effect of the increasing value of the viscosity parameter θr is to enhance the
temperature but decrease the velocity. This parameter has a greater effect on the
velocity profile and skin friction, but the effect on the wall temperature gradient
is negligible.

3) For the effect of the ferromagnetic parameter, as the ferromagnetic number
increases, the velocity profile f ′(η) increases, but the velocity profile g′(η)
decreases with increased ferromagnetic number. This occurs because of the
Kelvin forces that act on the y axis.

4) The effect of thermal conductivity is greater in the temperature gradient than
other physical significance. On the other hand, the viscosity parameter is more
affected in skin friction than the temperature gradient.
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Effects of Slip on the Peristaltic Motion
of a Jeffrey Fluid in Porous Medium
with Wall Effects

Gurunath Sankad and Pratima S. Nagathan

1 Introduction

In physiology, the investigation of peristaltic movement has enhanced the interest of
researchers for its wide applications as seen in the transportation of urine produced
by the kidneys along the ureters to the bladder, the movements of the chyme in
gastrointestinal tract, transport of harmful acidic sanitary fluids, and also fluids in
the nuclear industry. Latham [1] did the pioneering work on peristalsis. Weinberg
et al. [2] observed the peristaltic pumping experimentally. The wall effect on
the Poiseuille flow influenced by peristalsis has been undertaken by Mittra and
Prasad [3]. Misra and Pandey [4] analyzed the transportation of blood through
small vessels by mathematically modeling the motion under peristalsis. Study
of fluids behaving non-Newtonianly has recently gained importance as the usual
viscous fluids fail to explain the distinctiveness of numerous physiological fluids.
Literature survey reveals many important analytic studies going on non-Newtonian
fluids with peristalsis flowing inside a porous space influenced by compliant walls:
Raju and Devanathan [5], Srivastava and Srivastava [6], Srinivas and Kothandapani
[7], Sankad and Radhakrishnamacharya [8], Alsaedi et al. [9], and Sankad and
Asha [10].

In the classical problems of fluid flow past bodies, it is usual to apply no-slip on
the surface of the bodies considered. However, with the advent of miniature devices
and investigations with rarified gases, it is watched that fluid slips on the surface of
the bodies in the following situations: when fluid flow occurs over the surface of a
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porous medium (Beavers and Joseph [11]); at the point when the fluid flow happens
in rarified gases at low density and low pressure (Sreekanth. A. K. [12]). Shehawey
et al. [13], Sobh [14], Ellahi [15], Sankad and Pratima [16], and Hina [17] studied
peristaltic transport influenced by slip, in uniform as well as nonuniform channel.

Among numerous non-Newtonian models that define the physiological fluids,
Jeffrey model is most probably considerable since Newtonian fluid model can be
worked out from this by taking λ1 = 0. Most of the researchers hypothesize that
blood shows Newtonian and non-Newtonian behaviors while it circulates in human
body. Also, this model is a simple linear model that makes use of time derivative as
an alternative for convective derivative.

Hayat and Ahamed [18] have considered the consequences of magnetic effect and
endoscope on the peristaltic transport involving Jeffrey fluid. Mahmouda et al. [19]
looked into the motion of a Jeffrey fluid within a permeable space under peristalsis
having magnetic effect. Sudhakar Reddy et al. [20] discussed the flow of a Jeffery
fluid in a uniform tube travelling with the velocity of the peristaltic wave within a
fixed frame of reference, having variable viscosity. Subba Reddy et al. [21] have
examined and analyzed the magnetic field effects on the stream of a Jeffrey fluid
flowing inside a permeable peristaltic channel with asymmetry and slip effects.
Arun Kumar et al. [22] considered the impacts of elastic wall and heat transfer
of a non-Newtonian Jeffrey fluid in a peristaltic conduit. Dheia and Ahmed [23]
studied the impacts of wall and heat on the bolus, believed as Jeffrey fluid, moving
in the esophagus. Also, surface of the esophagus is well thought-out as peristaltic
wave with porosity. Their results depict that velocity enhances with rise in Jeffrey
parameter, Darcy number, thermal conductivity, and Grashoff number. Bhatti and
Ali [24] examined the impacts of slip condition and MHD for the peristaltic flow
of blood considering as a Jeffrey fluid model along the permeable membrane. The
present study aims in discussing the flow of a Jeffrey fluid considering a uniform
conduit influenced by wall effects moving under peristalsis.

2 Mathematical Formulation

Consider an incompressible fluid, namely the Jeffery fluid, moving within a uniform
conduit in between the flexible peristaltic walls as described in Figure 1. Here, the
channel thickness is considered 2d, time t , wave amplitude a, and wave length λ. x
is the direction of wave propagation and y is perpendicular to x axis. The motion is
discussed considering only half the width of channel.

The peristaltic wave is propagating with speed c along the conduit wall. The
infinite wavelength of wall equation is

y = ±η = ±
[

d + a sin
2π

λ
(x − ct)

]

, (1)

The elastic wall is governed by the equation:
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Fig. 1 Physical model

L(η) = p − p0, (2)

The operator L used to represent stretched membrane movement accompanied by
viscosity damping force is given by:

L = −T
∂2

∂x2 + m
∂2

∂t2 + C
∂

∂t
. (3)

Here, T is elastic tension in the membrane, m is mass per unit area, and C is
coefficient of viscous damping force.

The flow is governed by the equations:

∂u

∂x
+ ∂v

∂y
= 0, (4)

ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]

= −∂p

∂x
+ μ

1 + λ1
∇2u − μ

u

K
, (5)

ρ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]

= −∂p

∂y
+ μ

1 + λ1
∇2v − μ

v

K
. (6)

The velocity in the direction of x and y are correspondingly u and v. Due
to symmetrical plane, the normal velocity is zero. Experimentally, it is proved in
several physiological situations that flow is accompanied with very small Reynolds
number. Hence, infinite wavelength is assumed. The ratio of relaxation time to
retardation time is λ1, porous medium permeability is K , fluid density is ρ, fluid

viscosity coefficient is μ and ∇2 = ∂2

∂x2 + ∂2

∂y2 , ∇2∇2 = ∇4, and pressure is P . Due
to the tension in the muscles, pressure is exerted on the outer surface of the wall and
is denoted by P0. Here, we assume P0 = 0.

∂u

∂y
= 0, at y = 0, (theregularitycondition), (7)



418 G. Sankad and P. S. Nagathan

u = −d

√
Da

β

∂u

∂y
at y = ±η(x, t), (theslipcondition). (8)

where Da is Darcy number and β is slip parameter.
With reference to [3], the peripheral conditions are

∂

∂x
L(η) = −ρ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]

+ μ

1 + λ1
∇2u−μ

u

K
, at y = ±η(x, t),

(9)
where

∂

∂x
L(η) = ∂p

∂x
= −T

∂3η

∂x3
+ m

∂3η

∂x∂t2
+ C

∂2η

∂x∂t
. (10)

We introduce the stream function ψ given by:

u = ∂ψ

∂y
, v = −∂ψ

∂x
(11)

Dimensionless variables are

x
′ = x

λ
, y

′ = y

λ
, ψ

′ = ψ

cd
, t

′ = ct

λ
, u

′ = u

c
, v

′ = λv

cd
, P

′ = d2P

μλc
, η

′ = η

d
.

(12)
Introducing nondimensional variables in (4)–(10) and after deletion of primes,

we get

∂u

∂x
+ ∂v

∂y
= 0, (13)

Reδ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

= −∂p

∂x
+ 1

1 + λ1

(

δ2 ∂
2u

∂x2 + ∂2u

∂y2

)

− u

Da

, (14)

Reδ
3
(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

= −∂p

∂y
+ δ2

1 + λ1

(

δ2 ∂
2v

∂x2 + ∂2v

∂y2

)

− δ2 v

Da

, (15)

∂u

∂y
= 0, at y = 0. (16)

u = −
√
Da

β

∂u

∂y
at y = ±η(x, t) = ± (1 + ε sin 2π(x − t)) , (17)

and
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− Reδ

(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

+ 1

1 + λ1

(

δ2 ∂
2u

∂x2
+ ∂2u

∂y2

)

− u

Da

= E1
∂3η

∂x3
+ E2

∂3η

∂x∂t2
+ E3

∂2η

∂x∂t
at y = ±η(x, t). (18)

Here, ε = a
d

the amplitude ratio, δ = d
λ

the wall slope parameter, Re = ρcd
μ

the

Reynolds number, and Da = K
d2 Darcy number. The elastic parameters are defined

as E1 = −T d3

cμλ3 , E2 = mcd3

μλ3 , and E3 = cd3

μλ2 . The parameter E1 represents the rigidity,
E2 the stiffness, and E3 the viscous damping force in the membrane.

3 Solution

Usually, the analytic solution of the governing equations is not possible in general;
hence, we assume long wavelength approximation to solve Equations (13–18).

Equations (13)–(15) yield the compatibility equations as:

∂u

∂x
+ ∂v

∂y
= 0, (19)

0 = −∂p

∂x
+ 1

1 + λ1

∂2u

∂y2 − u

Da

, (20)

0 = −∂p

∂y
. (21)

The boundary conditions (16)–(18) become

∂u

∂y
= 0, at y = 0. (22)

u = −
√
Da

β

∂u

∂y
at y = ±η(x, t) = ± (1 + ε sin 2π(x − t)) , (23)

1

1 + λ1

∂2u

∂y2 − u

Da

= E1
∂3η

∂x3 +E2
∂3η

∂x∂t2 +E3
∂2η

∂x∂t
at y = ±η(x, t). (24)

Solving Equations (19) and (20) with boundary conditions (22)–(24), we get
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u = E

N2

[

−1 − cosh(Ny)

T1

]

, (25)

where

E = −ε
[
(E1 + E2)(2π)

3 cos(2π(x − t)) − E3(2π)
2 sin(2π(x − t))

]
,

T1 = DN sinh(Nη) − sinh(Nη), D = −
√
Da

β
, N =

√
1 + λ1

Da

.

(26)

The mean velocity ū is

ū =
∫ 1

0
udt. (27)

The stream function u = ∂ψ
∂y

can be found by Equation (25) and using the
condition ψ = 0 at y = 0 is

ψ = E

N2

[

−y − sinh(Ny)

NT1

]

. (28)

4 Numerical Results and Discussion

The effect of elastic wall properties is examined and the nonlinear governing
equations are solved using small Reynolds number and large wave length approx-
imation. The consequences of the parameters under consideration on the mean
velocity profile ū(y) are obtained. From Equation (25), graphs are plotted and
depicted in Figures 2, 3, 4, 5 and 6 to observe the consequences of the physical
parameters, say Jaffrey parameter λ1, slip parameter β’s, elastic parameters, and
Darcy number Da on mean velocity ū(y). Graphs are plotted using the values:
ε = 0.2; E1 = 0.1;E2 = 0.2;E3 = 0.4; Da = 0.5; β = 0.1; x = 0.5; and
λ1 = 1.

Figures 2 and 3 show the variation in ū(y) under the effect of viscous damping
force (E3) of the elastic wall in presence (E2 �=0) and absence (E2 = 0) of stiffness
in the wall. It is concluded that the mean velocity reduces with enhancement in
viscous damping force, the elastic parameter. The mean velocity ū(y) reduces by
gain in the slip parameter β and Darcy parameter Da as depicted in Figures 4
and 5. Figure 6 presents the flow structure of mean velocity ū(y) for different Jeffrey
parameter (λ1). This figure indicates that rise in λ1 results gradual increase in the
mean velocity ū(y).
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Families of curves representing the streamlines of the flow are instantaneously
tangential to the velocity vector that explains the path of a fluid particle travelling
at any instance. Trapping is an attractive phenomena in peristalsis. The creation
of the bolus of the fluid circulating internally enclosed by streamline patterns for
various values of Jaffrey parameter λ1, slip parameter β, Darcy number Da , and
elastic parameters are shown in Figures 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16.
Figures 7, 8, 9, and 10 reveal that the trapped bolus enhances in size as there is rise
in viscous damping force in the presence (Figures 7 and 8) and absence (Figures 9
and 10) of stiffness, respectively. It is shown from Figures 11, 12, 13, 14, 15, and 16
that as the slip parameter (Figures 11 and 12) and Jeffrey parameter (Figures 15
and 16) are enhanced, the bolus size reduces. Size of the bolus enhances with rise
in Darcy number as shown in Figures 13 and 14.

Fig. 2 Effect of mean
velocity with y for various
values of E2 �=0 and
E3 = 0.4.
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Fig. 3 Effect of mean
velocity with y for various
values of E2 = 0 and
E3 = 0.7.
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Fig. 4 Effect of mean
velocity with y for various
values of β.
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Fig. 5 Effect of mean
velocity with y for various
values of Da .
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Fig. 7 Streamlines for
E2 �= 0 and E3 = 0.4. 3
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Fig. 8 Stream lines for
E2 �= 0 and E3 = 0.7. 3

2

1

0

–1

–2

–3

0.4 0.6 0.8 1.0 1.2

0

0

0

0

0

0

00

–2.5–5 –10
–7.5 5 2.5

–2.5

–2.5

–2.5 2.5

7.5

–7.5

2.5

2.5 –5

–5

–5 5

5 107.5

–7.5

5



Effects of Slip on the Peristaltic Motion of a Jeffrey Fluid in Porous Medium. . . 423

Fig. 9 Streamlines for
E2 = 0 and E3 = 0.4.
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Fig. 10 Streamlines for
E2 = 0, and E3 = 0.7. 3
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Fig. 11 Streamlines for
β = 0.1. 3
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Fig. 12 Streamlines for
β = 0.2. 3
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Fig. 13 Streamlines for
Da = 0.5. 3
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Fig. 14 Streamlines for
Da = 0.6. 3
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Fig. 15 Streamlines for
λ1 = 1. 3
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Fig. 16 Streamlines for
λ1 = 2. 3

2

1

0

–1

–2

–3

0.4 0.6 0.8 1.0 1.2

60
–6–4–2 0

0

0

–6 6
8–8–4–2

0
4 2 0

2

2

4

4

–4

–4

–2

–2

8
–8

42

5 Conclusion

Here, the results of various parameters of a Jeffrey fluid model in a symmetric
conduit on the velocity profile are observed graphically and the trapping phe-
nomenon is also shown by plotting streamlines for different applicable parameters.
The analytical solutions are obtained for mean velocity and stream function. The
major findings can be reviewed as:

• The mean velocity enhances with gain in Jeffrey parameter. This result is in
agreement with that of Dheia and Ahmed [23].

• The mean velocity reduces as the viscous damping force E3, Darcy number Da,
and slip parameter β increase.

• The size of trapped bolus increases with increase in E3 and Da.
• Bolus decreases with increase in β and λ1.
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Linear and Nonlinear Double Diffusive
Convection in a Couple Stress Fluid
Saturated Anisotropic Porous Layer with
Soret Effect and Internal Heat Source

Kanchan Shakya

1 Introduction

Studies of double diffusive convection in porous media play a significant role in
many areas, such as the petroleum industry, solidification of binary mixtures, and
migration of solutes in water-saturated soils. Other examples include geophysics
systems, crystal growth, electrochemistry, the migration of moisture through air
contained in fibrous insulation, the Earth’s oceans, and magma chambers. The
problem of double diffusive convection in a porous media has been presented by
Ingham and Pop [1], Nield and Bejan [2], Vafai [3, 4], and Vadasz [5]. The study
was continued by Poulikakos [6], Trevison and Bejan [7], and Momou [8] among
others. The first study of double diffusive convection in porous media was mainly
concerned with linear stability analysis and was performed by Nield [9].

The growing importance of non-Newtonian fluids with suspended particles in
modern technology and industries makes the investigation of such fluids desirable.
These fluids are applied in the extrusion of polymer fluids in industry, exotic
suspensions, fluid film lubrication, solidification of liquid crystals, cooling of
metallic plates in baths, and colloidal and suspension solutions. Non-Newtonian
stress fluids have specific features, such as the polar effect. The theory of polar fluids
and related theories are models for fluids whose microstructure is mechanically
significant. The theory for couple stress fluid was proposed by Stokes [10]; it is
a simpler polar fluid theory, that shows all the important features and effects of
such fluids that occur inside a deforming continuum. The stabilizing effect of the
couple stress parameter is reported in the works of Sharma and Thakur [11], who
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investigated thermal instability in an electrically conducting couple stress fluid with
a magnetic field. Sunil et al. [12] studied the effect of suspended particles on double
diffusive convection in a couple stress fluid-saturated porous medium, Sharma and
Sharma [13] investigated the effect of suspended particles on couple stress fluid,
heated from below, in the presence of rotation and a magnetic field. Malashetty
et al. [14] performed an analytical study of linear and nonlinear double diffusive
convection with the Soret effect in couple stress liquids. Gaikwad and Kamble [15]
analyzed the linear stability of double diffusive convection in a horizontal, sparsely
packed, rotating, anisotropic porous layer in the presence of the Soret effect.
Malashetty and Kollur [16] investigated the onset of double diffusive convection
in an anisotropic porous layer saturated with couple stress fluid. Shivakumara et al.
[17] analyzed the linear and nonlinear stability of double diffusive convection in a
couple stress fluid-saturated porous layer.

In the study of double diffusive convection in the Soret effect, in some of the
important areas of application in engineering, including geophysics, oil reservoirs,
and groundwater, researchers have developed a great interest in these type of flows.
In the presence of cross diffusion two transport properties are produced: the Soret
effect and the Dufour effect. The Soret effect describes the tendency of a solute to
diffuse under the influence of a temperature gradient. There are only a few studies
available on double diffusive convection in the presence of the Soret effect. The
diffusion material is heated unevenly. A mixture of gases or a solution is caused
by the presence of temperature gradient in the system. The effect was described by
Swiss scientist J. Soret, who was the first to study thermodiffusion (1879). Hurle
and Jakeman argue that the liquid mixture, the Dufour term, is indeed small, and
thus the Dufour effect will be negligible when compared with the Soret effect.
They conducted an experimental and theoretical study of Soret-driven thermosolutal
convection in a binary fluid mixture [18]. Malashetty et al. [19] performed an
analytical study of linear and nonlinear double diffusive convection with the Soret
effect in couple stress liquids. Rudraiah and Malashetty [20] discussed double
diffusive convection in a porous medium in the presence of the Soret and Dufour
effects. Bahloul et al. [21] studied double diffusive convection and Soret-induced
convection in a shallow horizontal porous layer analytically and numerically.
Malashetty and Biradar [22] carried out an analytical study of linear and nonlinear
double diffusive convection in a fluid-saturated porous layer with Soret and Dufour
effects. Also in another study, Bhadauria and Hashim et al. [23] performed linear
and nonlinear double diffusive convection in a saturated anisotropic porous layer
with couple stress fluid. Hill [25] showed linear and nonlinear double diffusive
convection in a saturated anisotropic porous layer with a Soret effect and an internal
heat source. Bhadauria et al. [26] studied effect of internal heating on double
diffusive convection in a couple stress fluid saturated anisotropic porous medium. A
study concerning an internal heat source in porous media was provided by Tveitereid
[24], who performed thermal convection in a horizontal porous layer with internal
heat sources. Srivastava et al. [27] performed linear and nonlinear analyses of
double diffusive convection in a porous layer with a concentration-based internal
heat source. Bhadauria [28], Horton and Rogers [29], and Lapwood [30] studied
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the effect of internal heating on double diffusive convection in a couple stress
fluid-saturated anisotropic porous medium. Govender [31] showed that the Coriolis
effect on the stability of centrifugally driven convection in a rotating anisotropic
porous layer is subject to gravity. Kapil [32] performed at the onset of convection
in a dusty couple stress fluid with variable gravity through a porous medium in
hydromagnetics.

The aim of this chapter was to study the Soret effect and an internal heat source
with a couple stress fluid. However, in the present study, stability analysis of the
Soret and internal heating effect on double diffusive convection in an anisotropic
porous layer with a couple stress fluid was performed.

1.1 Nomenclature

Table 1

Latin symbols
a wave number

C Couple stress parameter C = μc

μd2

Łe Lewis number Le = κT
κs

d height of porous layer

3g acceleration due to gravity

D Cross diffusion due to T component

Da Darcy number Da = κz
d2

RaT thermal Rayleigh number RaT = βT g#TKzd
νκT z

RaS solutal Rayleigh number RaS = βSg#SKzd
νκT z

K permeability of porous medium Kx(ii + jj) + Kz(kk)

Kx permeability in x-direction

Kz permeability in z-direction

T temperature

#T temperature difference across the porous layer

t time

p reduced pressure

q fluid velocity(u,v,w)

Pr Prandtl number Prd = εγ νd2

κT K

Ri Internal heat source parameter Ri = Qd2

κT

Va Vadasz number Va = ( Pr

Da
)

S solute concentration

Nu Nusselt number

Sh Sherwood number

#S solute difference across the porous layer

(x,y,z) space co-ordinates

(continued)
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Table 1 (continued)

Greek symbols
βT coefficient of thermal expansion

βS coefficient of solute expansion

ξ mechanical anisotropic parameter

η thermal anisotropic parameter

κs effective concentration diffusivity

κT z effective thermal diffusivity

σ dimensionless oscillatory frequency

μ dynamic viscosity of the fluid

μc couple stress viscosity of the fluid

k porosity

γ heat capacity ratio (ρcp)m
(ρcp)f

ν kinematic viscosity (
μ
ρ0
)

ρ fluid density

Other symbols

∇2
1

∂2

∂x2 + ∂2

∂y2

∇2 ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

Subscripts
b basic state

c critical

0 reference value

Superscripts
’ perturbed quantity

* dimensionless quantity

osc oscillatory

st stationary

2 Mathematical Formulation

We consider an infinitely extended horizontal plane at z=0 and z=d a fluid-saturated
porous medium, which is heated from below and cooled from above. The Darcy
model has been employed in the momentum equation. Further, an internal heat
source term has been included in the energy equation. A cartesian frame of reference
is chosen in such a way that the origin lies on the lower plane and the z-axis is
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Fig. 1 Physical configuration of the problem

vertical upward. An adverse temperature gradient is applied across the porous layer
and the lower and upper planes are kept at temperatures T0 + #T and T0, with a
concentration S0 +#S and S0 respectively. The physical configuration of the model
is reported in the Figure 1. The governing equations are given below

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇.3q = 0,

ρ0
ε
(
∂q
∂t
) = −∇p + ρg − 1

K
(μ − μc∇2)3q,

γ ∂T
∂t

+ (3q.∇)T = ∇(κT z.∇T ) + Q(T − T0),

ε ∂S
∂t

+ (3q.∇)S = κs∇2S + D∇2T ,

ρ = ρ0[1 − βT (T − T0) + βS(S − S0)]

(1)

where the physical variables have their usual meanings as given in the nomenclature.
The externally imposed thermal and solutal boundary conditions are given by

{
T = T0 + #T, at z = 0 and T = T0, at z = d,

S = S0 + #S, at z = 0 and S = S0, at z = d,
(2)



434 K. Shakya

3 Basic State

In this state, the velocity, pressure, temperature, and density profiles are given by

3qb = 0, p = pb(z), T = Tb(z), S = Sb(z), ρ = ρb(z). (3)

Substituting Equation (3) in Equation (1), we obtain the following relations:

dpb

dz
= −ρbg, (4)

κT
d2(Tb − T0)

dz2
+ Q(Tb − T0) = 0, (5)

Ks

d2Sb

dz2
+ D

d2Tb

dz2
= 0, (6)

ρb = ρ0[1 − βT (Tb − T0) + βS(Sb − T0)]. (7)

The solution of equation (5), subject to the boundary conditions (2), is given by

Tb = T0 + #T
sin(
(√

Qd2

κT

)
(1 − z

d
))

sin
(√

Qd2

κT

) . (8)

The solution of equation (6), subject to the boundary conditions (2),

Sb = S0 + (#S + D#T

Ks

)(1 − z

d
) − D#T

Ks

sin(
(√

Qd2

κT

)
(1 − z

d
))

sin
(√

Qd2

κT

) (9)

Now, we superimpose finite amplitude perturbations on the basic state in the form:

3q = qb + q ′, T = Tb + T ′, p = pb + p′, S = Sb + S′, ρ = ρb + ρ′, (10)

Infinitesimal perturbation was applied to the basic state of the system and then the
pressure term was eliminated by taking the curl twice of Equation (1). The resulting
equations were nondimensional using the following transformations:

(x, y, z) = (x∗, y∗, z∗)d, t = t∗(γ d
2

κT z
), (11)
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(u, v,w) = (u∗, v∗, w∗)(κT z
d

), T = (#T )T ∗, S = (#S)S∗

Tb, Sb in dimensionless forms are given

Tb = sin
√
Ri(1 − z)

sin
√
Ri

, (12)

Sb = SrLeRaT sin(
√
Ri(1 − z))

RaS sin
√
Ri

− (
SrLeRaT

RaS
+ 1)(1 − z)

to obtain nondimensional equation (on dropping the asterisks for simplicity), and
use the stream function u = ∂ψ

∂z
, w = − ∂ψ

∂x

1

Va

∂

∂t
∇2

1ψ + (
∂2

∂x2 + 1

ξ

∂2

∂z2 )(1 − C∇2
1 )ψ = RaT

∂T

∂x
− RaS

∂S

∂x
= 0 (13)

[ ∂

∂t
− ∂2

∂z2 − η
∂2

∂x2 − Ri

]
T − f (z)

∂ψ

∂x
− ∂(ψ, T )

∂(x, z)
= 0 (14)

[ ∂

∂t
− 1

Le

(
∂2

∂z2
+ ∂2

∂x2
)
]
S − Sr

RaT

RaS
∇2T − b(z)

∂ψ

∂x
− ∂(ψ, S)

∂(x, z)
= 0 (15)

where Va = εPr

Da
is Vadasz number, RaT = βT g#TKzd

νκT z
is the thermal Rayleigh

number, RaS = βSg#SKzd
νκT z

is the solute Rayleigh number, Ri = Qd2

κT z
is the internal

heat source parameter, C = μC

μd2 is the couple stress fluid, Le = κT z
κS

is the Lewis

number, and χ = ε
γ

is normalized porosity. The above system will be solved by
considering stress-free and isothermal boundary conditions as given below:

w = ∂2w

∂z2 = T = S = 0 on z = 0, z = 1. (16)

4 Linear Stability Analysis

To study linear stability analysis according to solving the eigenvalue problem
defined by Equations (13)–(15) subject to the boundary condition by Equations (5),
(6), using time-dependent periodic disturbance in the horizontal plane:

(w, T , S) = (W,0, φ)exp[i(lx + my) + σ t] (17)
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where l, m are horizontal wave number and σ = σr + iσj the growth rate.
Substituting Equation (17) into the linearized equations (13)–(15), we obtain

[ σ

Va

δ2 + δ2
1(1 − Cδ2)

]
W + aRaT 0 − aRaSφ = 0 (18)

[σ + η1 − Ri]0 − 2aFW = 0 (19)

[σ + δ2

Le

]φ − 2aBW + Srδ
2RaT

RaS
0 = 0. (20)

Where D = d/dz and a2 = l2 + m2. The boundary conditions are (17). Now
read
W= D2W = 0 = φ = 0 at z = 0, 1:
We assume that the solutions of equations (13)–(15) satisfying the boundary
conditions (17),
(W(z),0(z), φ(z)) = (W0,00, φ0)sinnπz (n = 1, 2, 3, . . .)
in the form of the thermal Rayleigh number can be obtained as

RaT = Ri − (σ + η1)

2a2F

[ (δ2 + Leσ)(
σ
Va
δ2 + δ2

1(1 − Cδ2)) − 2a2BLeRaS

σ + δ2 + δ2SrLe

]
(21)

where a2 = l2 + m2, δ2 = π2 + a2, δ2
1 = π2

ξ
+ a2, η1 = π2 + ηa2,

F=
∫ 1

0
dTb
dz

sin2(πz)dz, B=
∫ 1

0
dSb
dz

sin2(πz)dz, η is a representative viscosity of
the fluid. The growth rateσ is in general a complex quantity such that σ = σ + iσi .
The system with σr <0 is always stable, whereas for σr >0 it will become unstable.
For the neutral stability state σr = 0.

4.1 Stationary State

The values of the thermal Rayleigh number and the corresponding wave number of
the system for a stationary mode of convection are given below:

RastT = Ri − η1

2a2F

[δ2δ2
1(1 − Cδ2) − 2a2BRaSLe

δ2(1 + LeSr)

]
, (22)

It is important to note the critical wave number a = aStc , which is the result given
by Malashetty et al. [19]. For single component fluid, RaS = 0, i.e., in the absence
of a solute Rayleigh number, Equation (22) gives

RastT = (Ri − η1)δ
2
1(1 − Cδ2)

2a2F(1 + LeSr)
. (23)
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For the system without internal heating, i.e., Ri = 0,F=-1/2, we get

RastT = (η1)δ
2
1(1 − Cδ2)

a2(1 + LeSr)
(24)

which is the one obtained by Shivakumara et al. [17]. When C = 0 (i.e., Newtonian
fluid case), Eq. (3.11) reduces to

RastT = (π2 + η2a2)(a2 + π2

ξ
)

a2(1 + LeSr)
(25)

In the case of no Soret effect

RastT = (π2 + η2a2)(a2 + π2

ξ
)

a2
(26)

Lastly, in the case of isotropic porous medium, put η = ξ = 1

RastT =
(π2 + a2

a

)2
(27)

which has the critical value RaStc = 4π2 for aSc t = π2 and which are the classical
results obtained by Horton and Rogers [29] and Lapwood [30].

4.2 Oscillatory State

For the corresponding wave number of the system for the oscillatory mode of
convection, we now set σ = iσi in Equation (21) and clear the complex quantities
from the denominator, to obtain

RaoscT = #1 + iσi#2.

#1 = 1

2a2F

A1B1 + σ 2A2B2

B2
1 + σ 2B2

2

(28)

#2 = 1

2a2F

A2B1 − A1B2

B2
1 + σ 2B2

2

, (29)

where, A1 = (Ri − η1)(δ
2δ2

1(1 − Cδ2) − σ 2

Va
Leδ

2) + σ 2(Leδ
2
1(1 − Cδ2) + δ4

Va
) −

(Ri − η1)RaS2a2BLe,
A2 = (Ri − η1)(Leδ

2
1(1 − Cδ2) + δ4

Va
) − δ2δ2

1(1 − Cδ2) + σ 2

Va
Leδ

2 + RaS2a2BLe

B1 = δ2(1 + SrLe)

B2 = 1
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For oscillatory onset #2 = 0 and (σi �= 0), where σ is the oscillatory frequency,
which is not given for brevity.

We have the necessary expression for the oscillatory Rayleigh number as:

RaoscT = #1. (30)

5 Nonlinear Stability Analysis

In this section, we study the nonlinear stability analysis using a minimal truncated
Fourier series. For simplicity, we consider only two-dimensional rolls, so that all the
physical quantities are independent of y. Consider the stream function ψ such that
u = ∂ψ

∂z
, w = −∂ψ

∂x
, then taking curl to eliminate the pressure term from Equation (1)

and then the resulting nondimensional equations by using transformation given by
Equation (11) and the following equation

( 1

Va

∂

∂t
∇12ψ + (

∂2

∂x2 + 1

χ

∂2

∂z2 )(1 − C∇12)ψ
)

+ RaT
∂T

∂x
− RaS

∂S

∂x
= 0, (31)

( ∂

∂t
− ∂2

∂z2 − η
∂2

∂x2 − Ri

)
T − f (z)

∂ψ

∂x
− ∂(ψ, T )

∂(x, z)
= 0, (32)

[ ∂

∂t
− 1

Le

(
∂2

∂z2 + ∂2

∂x2 )
]
S − ∂ψ

∂x
b(z) − ∂(ψ, S)

∂(x, z)
− Sr

RaT

RaS
∇2T = 0 (33)

It should be noted that the effect of nonlinearity is to distort the temperature and
concentration fields through the interaction of ψ and T, ψ , and S. As a result,
a component of the form sin(2πz) will be generated, where V is zonal velocity
induced by rotation. A minimal Fourier series that describes the finite amplitude
convection is given by

ψ = A1(t)sin(ax)sin(πz), (34)

T = B1(t)cos(ax)sin(πz) + B2(t)sin(2πz), (35)

S = C1(t)cos(ax)sin(πz) + C2(t)sin(2πz), (36)

where the amplitudes A1(t), B1(t), B2(t), C1(t), C2(t) are functions of time and
are to be determined. Substituting the above expressions in Equations (31)–(33)
and equating the like terms, the following set of nonlinear autonomous differential
equations were obtained
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dA1(t)

dt
= −Va

δ2 (δ12(1 + Cδ2)A1 + aRaT B1 − aRaSC1) (37)

dB1(t)

dt
= 2aFA1 − πaA1B2 + (Ri − η1)B1 (38)

dB2(t)

dt
= πa

2
A1B1 + (Ri − 4π2)B2 (39)

dC1(t)

dt
= 2aBA1 − δ2Sr

RaT

RaS
B1 − δ2 1

Le

C1 − πaA1C2 (40)

dC2(t)

dt
= π

a

2
A1C1 − 4π2Sr

RaT

RaS
B2 − 4π2

Le

C2 (41)

where A = 1 + 4cπ2. The numerical method was used to solve the above nonlinear
differential equation to find the amplitudes.

5.1 Steady Finite Amplitude Convection

For steady-state finite amplitude convection we have to set the left-hand side of the
Equations (37)–(41) to zero.

(δ12(1 + Cδ2)A1 + aRaT B1 − aRaSC1) = 0 (42)

2aFA1 − πaA1B2 + (Ri − η1)B1 = 0 (43)

πa

2
A1B1 + (Ri − 4π2)B2 = 0 (44)

2aBA1 − δ2Sr
RaT

RaS
B1 − δ2 1

Le

C1 − πaA1C2 = 0 (45)

π
a

2
A1C1 − 4π2Sr

RaT

RaS
B2 − 4π2

Le

C2 = 0 (46)

on solving for the amplitudes in terms of A1, we obtain

B1 = 4aF(z)(4π2 − Ri)A1

a2A2
1π

2 − 8π2Ri + 2R2
i + 8π2η1 − 2Riη

,
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B2 = 2a2F(z)πA2
1

a2A2
1π

2 − 8π2Ri + 2R2
i + 8π2η1 − 2Riη

,

C1 =

16
(
8A1BLeπ

2RaSRia + 2A1BLeRaSRi2a + A3
1BLeπ

2RaSa
3

+A3
1FL2

eπ
2RaT sa

3 − 8A1FLeπ
2RaT Sraδ

2 + 2A1FLeRaT RiSraδ
2

+8A1BLeπ
2RaSaη − 2A1BLeRaSRiaη1

)

RaS(A
2
1L

2
ea

2 + 8δ2)(−8π2Ri + 2R2
i + A2

1π
2a2 + 8π2η1 − 2Riη1)

,

C2 =

2
(
8A2

1BL2
eπ

2RaSRia
2 + 2A2

1BL2
eRaSR

2
i a

2 + A4
1BL2

eπ
2RaSa

4

−8A2
1FLeπ

2RaT Sa
2δ2 − 8A2

1FL2
eπ

2RaT Sa
2δ2 + 2A2

1FL2
eRaT RiSa

2δ2

+8A2
1BL2

eπ
2RaSa

2η1 − 2A2
1BL2

eRaSRia
2η1
)

RaSπ(A
2
1L

2
ea

2 + 8δ2)(−8π2Ri + 2R2
i + A2

1π
2a2 + 8π2η1 − 2Riη1)

.

To solve the above equation, a quadratic equation in
A2

1
8 is given by

a0x
2 + a1x + a2 = 0

where x=
A2

1
8 ,

a0 = L2
ea

4π2δ2
1RaS(1 + Cδ2)

a1 = 1
4δ

2
1RaS(1 +Cδ2)(Ri −η1)L

2
ea

2(Ri − 4π2)− 1
2 (Ri − 4π2)FRaT RaSL

2
ea

4 −
2Lea

4π2RaS(B + LeFSr) + a2π2δ2δ2
1RaS(1 + Cδ2)

a2 = (Ri−4π2)
4 (δ2δ2

1RaS(1 + Cδ2)(Ri − η1) − 2Lea
2BRaS(Ri − η1) −

2a2δ2FRaS(LeSr + RaT ))

The required root of the above equation is

x = −a1+
√
a2

1−4aoa2

2a0

5.2 Steady Heat and Mass Transport

In the study of this type of problem, quantification of heat and mass transport is
very important in porous media. Let Nu and Sh be noted as the rate of heat and
mass transport per unit for the fluid phase.
The Nusselt number and Sherwood number are defined by

Nu = 1 +
[ ∫ 2π/a

0
∂T
∂z
dx,

∫ 2π/a
0

∂Tb
∂z

dx,

]

z=0
(47)

Sh = 1 +
[ ∫ 2π/a

0
∂S
∂z
dx,

∫ 2π/a
0

∂Sb
∂z

dx,

]

z=0
(48)
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substituting the value of T, Tb,S, and Sb in Equations (47)–(48),

Nu = 1 − 2πB2√
Ri cot

√
Ri

, (49)

Sh = 1 − 2πC2RaS sin
√
Ri

−SrRaT cos
√
Ri

√
Ri + sin

√
RiRaS + sin

√
RiSrRaT

substituting B2, C2 of Equations (5.1) into (49) gives

Nu, Sh (50)

6 Results and Discussion

This chapter investigates the combined effect of internal heating and the Soret effect
on stationary and oscillatory convection in a anisotropic porous medium with couple
stress fluid. In this section, we discuss the effects of the parameters in the governing
equations on the onset of double diffusive convection numerically and graphically.
The stationary and oscillatory expressions for different values of the parameters
such as the Vadasz number, the couple stress parameter, the solute Rayleigh number,
the mechanical anisotropic parameter, and the thermal anisotropic parameter are
computed, and the results are depicted in the figures. The neutral stability curves in
the (RaT ,a) plane for various parameter values are shown in Figure 2a–e. We fixed
the values for the parameters as Va = 5, C = 2, RaS = 100, Le = 20, ξ = .5,
η = .5, Sr = .05, and Ri = 2, except for the varying parameter. The effect of
the Vadasz number Ta on the neutral curves is shown in Figure 2. We find that for
fixed values of all other parameters, the minimum value of the Rayleigh number
for the oscillatory mode increases as a function of increasing Va, indicating that
the effect of the Vadasz number is to stabilize the system. In addition, the critical
wave number increases with increasing Va. We observed that by increasing the
value of internal heat source Ri , the mechanical anisotropic parameter ξ decreased
the stationary and oscillatory Rayleigh number, which means that the internal heat
source Ri , mechanical anisotropic parameter ξ destabilized. Figure 2 depicts the
effect of the couple stress parameter C on the neutral stability curves. We find
that with an increase in the value of the couple stress parameter, the value of the
Rayleigh number for both stationary and oscillatory mode is enhanced, indicating
that it stabilizes the onset of double diffusive convection and depicts the effect of
the solute Rayleigh number RaS on the stability curve for stationary and oscillatory
convection. We show that the effect of increasing RaS is to decrease the value of the
Rayleigh number for stationary and oscillatory convection and the corresponding
wave number. Thus, the solute Rayleigh number becomes unstable. We also show
that the effect of an increasing Lewis number Le and the thermal anisotropic
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parameter η is to increase the value of the Rayleigh number for stationary convection
and decrease the value of oscillatory convection. With regard to the corresponding
wave number, we found it unstable for the stationary and stable for the oscillatory
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modes. We find that Figures 2 and 3 show that an increase in the value of the Soret
parameter Sr decreases the Rayleigh number, indicating that the Soret parameter
destabilizes the onset of stationary and oscillatory convection.
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We use the parameter in a graph of the Nusselt and Sherwood number C = 2,
RaS = 20, Le = 2, ξ = .5, η = .5, Sr = .05, and Ri = 2, and Figures 4a and
5c show that an increase in the value of the internal Rayleigh number Ri decreases
the rate of heat and increases mass transfer. We note that the effect of increasing the
solute Rayleigh number RaS and the thermal anisotropic parameter η is to increase
the value of the Nusselt number Nu and the Sherwood number Sh, thus reducing the
heat and mass transfer. In Figures 4b and 5a, it can be found that with an increase
in the value of the Soret parameter Sr , the mechanical anisotropic parameter ξ and
then the value of the Nusselt number Nu and the Sherwood number Sh decrease;
thus, the heat and mass transfer across the porous layer also decrease.

7 Conclusions

The Soret effect and the internal heating effect on double diffusive convection in a
anisotropic porous medium saturated with a couple stress fluid that is heated and
salted from below was investigated using linear and nonlinear stability analysis.
The linear analysis is carried out using the normal mode technique. The following
conclusions were drawn:

1) The Vadasz number Va has a stabilizing effect on oscillatory convection.
2) The internal heat parameter Ri , the solute Rayleigh number Ras , the Soret

parameter Sr , and the mechanical anisotropic parameter ξ destabilize the system
in the stationary and oscillatory modes.

3) The couple stress fluid C has a stabilizing effect on both the stationary and the
oscillatory convection.

4) The normalized porosity parameter η and the Lewis number Le have a destabi-
lizing effect in the case of stationary and opposite oscillatory convection.

5) With the increasing value of the mechanical anisotropic parameter ξ , the Soret
parameter Sr then increases the value of the Nusselt number Nu, i.e., increasing
heat transfer, but increasing the value of the internal Rayleigh number Ri , and the
normalized porosity parameter η and the solutal Rayleigh number RaS decrease
the value of the Nusselt number Nu.

6) Mass transfer Sh increases with the increasing value of the internal Rayleigh
number Ri , the mechanical anisotropic parameter ξ , the Soret parameter Sr , and
decreases with the normalized porosity parameter η and the solutal Rayleigh
number RaS .
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1 Introduction

In coastal engineering, major task is to construct a new harbor or redesign an
existing harbor in such a way that to obstruct the incoming sea waves and protect
the offshore structures. In harbor planning, harbor resonance is the biggest problem
induced by long waves that causes losses such as damaging ships, delaying in
loading and unloading of cargo, breaking of harbor boundaries, and many more.
To ensure safe environment for the mooring system, it is required to analyze the
behavior of wave field inside and outside the harbor. In fluid dynamics, the mild-
slope equation describes the combined effect of refraction and diffraction for water
waves propagating over mild slopes of sea bed. The mild-slope equation is treated
as an efficient model to study the refraction and diffraction of the linear and
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nonlinear waves in water of variable depth. The mild-slope equation was initially
derived by Berkhoff [1]. After that, many modified versions of mild-slope equation
were presented by several investigators to study the wave problem [2–4]. In the
past few years, many researchers have investigated the wave behavior in a harbor
using various numerical schemes [5–7, 11] and predicted the wave field under the
resonance conditions. The finite element method (FEM) was used by Demirbilek
[7], Xing [8], Ham [9], Woo [10], and Zelt Raichlen [11] to investigate wave
behavior in irregular-shaped harbor with variable bathymetry. Further, a combined
method termed as HFEM is formulated, which was applied on offshore structures to
study wave scattering problems [12–14]. In 2012, Bellotti [15] presented a finite
element model based on linear shallow water equations and converts the time-
depending problem into an eigenvalue one by applying radiation condition at the
interface boundary instead of imposing zero surface elevation. Another approach
based on FEM was investigated by Jung [16] in which domain is subdivided into
three regions and Galerkin approach is utilized in the varying bathymetry region.
A numerical investigation of transverse oscillations within the harbor with small
bottom slope was examined by Wang et al. [17]. In this paper, the hybrid method
based on mild-slope equation has been utilized in which finite element has been
taken over the bounded region of variable depth and Fourier Bessel solution is taken
for the constant depth unbounded region. Further, hybrid triangular mesh has been
considered for discretization of domain. The numerical scheme is implemented on
rectangular domain with fully reflecting boundaries, to observe the convergence
behavior for different discretization. After that, the amplification factor has been
obtained for a realistic PNH with fully reflecting boundaries under the resonance
conditions. Moreover, the present numerical scheme provides an efficient tool to
investigate the strong and weak wave field regions in an irregular-shaped geometry.

2 Mathematical Formulation

The model geometry of the computational domain is shown in Figure 1. The
geometry is divided into two regions, i.e., bounded and unbounded region. The
bounded region consists of harbor boundary, and interior of the harbor and open sea
region consists of ocean area outside the bounded region. The region �1 denotes the
bounded region with variable depth and �R is the unbounded region with constant
depth.

The mild-slope equation is obtained from energy conservation principle where
c and cg represent the phase and group velocity, ω is angular frequency, and φ

is the unknown potential function. In the unbounded region, MSE reduces to the
Helmholtz equation (#2 + k2)φ = 0, where k is the wave number defined by the
dispersion relation ω2 = gk tanh kh. The potential function in the outer region is
given by the equation φ = φinc + φsct , where φinc denotes the incident velocity
potential and φsct refers to the scattered velocity potential.
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Fig. 1 Model geometry of the harbor problem is shown, the bounded and unbounded region are
denoted by �1 and �R , respectively with pseudo boundary ∂�1. Further, n1, n2, nR represent the
outward normal vector.

The scattered wave satisfies Helmholtz equation in the unbounded region as well
as the radiation condition limr→∞

√
r
(
∂
∂r

− ik
)
φsct = 0. Hence, its solution is

given in series form as:

φsct = $∞
n=0H

1
n (kr)(αn cos nθ + βn sin nθ) (1)

where H 1
n (kr) is the Hankel function of nth order of first kind. The potential

function is obtained using the matching boundary conditions at the boundary ∂�1,
that is:

φ1 = φR,
∂φ1

∂n1
= ∂φR

∂n1
(2)

The variational principle technique of the finite element method is applied in the
bounded domain �1. The functional obtained by applying the energy conservation
approach in bounded as well as unbounded regions is given as follows:

FH (φ) = 1
2

∫ ∫
�1

[
ccg (∇φ1)

2 − cgω
2

c
φ2

1

]
dxdy − ∫

∂�1
ccgφ1

∂φ1
∂n1

ds−
1
2

∫
∂�2

iβωcgφ
2
1ds− 1

2

∫
∂�1

ccgφsct
∂(φRL−φinc)

∂nR
ds− ∫

∂�1
ccgφinc

∂φsct
∂nR

ds=C

(3)
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By taking the basis function as linear triangular element, the potential function for
each element is written as:

φe = $3
j=1Nj(x, y)φj = NT φ, (4)

where the matrices NT = [N1N2N3] and φT = [φ1φ2φ3] denote the basis vector
and unknown potential vector. Therefore, ∇φe = $3

j=1∇Nj(x, y)φj = DT φ and
is the vector of gradient of basic function:

φe
s = $3

j=1Njφsj = NT φs,
∂φs

∂r
= $3

j=1
∂Nj

∂r
φsj = $3

j=1Qsjφsj = QT
s φs. (5)

Using the finite element discretization and taking first variation of the functional to
be zero, the equation reduces to the matrix equation:

[K][ψ] + [U ] = [0] (6)

Here, [ψ] is the unknown matrix and [K] is stiffness matrix defined as:

[K] =
[ [S1] [S2]

[S2]T [S3]
]

, (7)

where the matrix components are described as:

S1 =
∫ ∫

�1

[

ccgDDT − cgω
2

c
NNT

]

dxdy −
∫

∂�2

icgβωNNT ds (8)

S2 =
∫

∂�1

ccgQsN
T
s ds (9)

S3 = −
∫

∂�1

ccgNQT
s ds (10)

And, the matrix [U1] and [U2] is given by following integral:

U1 = −
∫

∂�1

ccgN
∂φinc

∂n1
ds (11)

U2 =
∫

∂�1

ccgQsφincds (12)
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Fig. 2 Amplification factor for P1 = 1625, P2 = 3250, and P3 = 6500 discrete hybrid elements.
The abscissa is considered as nondimensional wave number.

3 Convergence of the Numerical Method

The convergence of the numerical model for the rectangular harbor is estimated.
The model domain is discretized into P1, P2, and P3 number of hybrid
elements. In this case, P1 = 1625, P2 = 3250, and P3 = 6500 discrete
elements with 70, 140, and 210 elements are lying on the pseudo boundary
that separate the computational domain from the open unbounded region.
The amplification factor with respect to nondimensional wave number k

(=KL, where K is wave number and L is characteristic length of the harbor)
is estimated for different number of discretization (see Figure 2) and are
represented by black, red, and green lines, respectively. The numerical scheme
shows high accuracy and the convergence of the solution as the discretization
increases.

4 Numerical Simulation Results

The numerical scheme is applied on realistic PNH which is located in South Korea.
Firstly, the PNH is discretized into a number of discrete triangular elements and
then amplification factor is computed at two key locations WS-01 and WS-02 with
respect to nondimensional wave numbers for the incoming wave coming with an
incident angle α = π/8 and α = π/2.



454 P. Kumar et al.

Fig. 3 Amplification factor graph with respect to nondimensional wave number k shows the
resonance peaks at wave numbers k1 = 1.74, k2 = 2.80, k3 = 3.30, k4 = 3.70, and k5 = 4.40.

The resonance peaks are obtained at the five nondimensional wave numbers
k1 = 1.74, k2 = 2.80, k3 = 3.30, k4 = 3.70, and k5 = 4.40 with frequency
difference of 0.001. The frequency corresponding to these peaks are resonance
frequency, and the incident waves coming with these resonance frequencies could
cause many disasters such as damaging of harbor boundary, damaging coastal
regions, breaking of mooring lines, and many more. Figure 3 represents the changes
in the amplification by taking the incident angle variation and it is observed that the
amplification for the incident angle α = π/8 is high for the second ( k2 = 2.80 )
and fifth (k5 = 4.40 ) resonance modes whereas for the incident angle α = π/2
amplification is maximum at the second resonance mode ( k2 = 2.80 ) in both
record stations. The wave amplification for the incident angle α = π/8 is higher as
compared to the incident wave arriving with angle α = π/2. The second and fifth
resonance peaks show high amplification on the boundary of PNH. The resonance
modes obtained by amplification curve are significant to observe the wave behavior
in the PNH.

Wave field contours are shown in Figure 4 corresponding to the incident angle
α = π/2, which indicates the region of strong and weak wave field. Therefore, the
present numerical scheme can be applied to any irregular-shaped harbor to analyze
the wave behavior.
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Fig. 4 Wave field inside the PNH for incident angle α = π/2 corresponding to wave frequency
k1 = 1.74, k2 = 2.80, k3 = 3.30, and k4 = 3.70.

5 Conclusion

The numerical scheme based on mild-slope equation is obtained by utilizing the
hybrid finite element method. Further, the scheme is applied to analyze the conver-
gence behavior of rectangular harbor by employing different discrete discretization.
Moreover, realistic Pohang New Harbor is modeled to predict the amplification
factor at various key locations for different directional incident waves. It is observed
that the direction of the incident wave drastically affects the wave oscillation in a
harbor. The analysis of wave field is significantly important to determine the safe
location for the mooring vessels, cargo, and many more inside the harbor. So, the
present numerical scheme provides an efficient tool to predict the wave behavior
and it can be applied to any irregular geometry domain.
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Similarity Solution of Hydromagnetic
Flow Near Stagnation Point Over a
Stretching Surface Subjected to
Newtonian Heating and Convective
Condition

KM Kanika, Santosh Chaudhary, and Mohan Kumar Choudhary

1 Introduction

In the presence of magnetic field, introducing current through an electrically
conducting fluid represents the theory of magnetohydrodynamics (MHD). Study
of MHD flow of an electrically conducting fluid has considerable interest in the
applications of modern metallurgical and engineering processes. Particularly, such
applications are involved in cooling of nuclear reactors, purifications of molten
metals, MHD generator, power generators, gas turbines, and crystal growth. MHD
effects of the boundary layer on a semi-infinite plate in the presence of uniform
transverse magnetic field was firstly investigated by Rossow [1]. Furthermore,
Chaudhary and Kumar [2], Singh et al. [3], Daniel and Daniel [4], Kiyasatfar and
Pourmahmoud [5], and Nayak [6] have done an analytical work on the electrically
conducting fluid in the presence of magnetic field.

The stagnation point flow interprets the motion of fluid near the stagna-
tion region, which exists for both cases of a fixed or a moving body towards
fluid. This region conflicts the highest pressure, the highest rate of heat transfer,
and the mass deposition. It is a fundamental topic in fluid dynamics, which
attracted the attention of many researchers. Stagnation point flow has wide appli-
cations in industrial and technical areas, such as solar central receivers exposed
to wind currents, hydrodynamic processes, cooling of electronic devices by fans,
and heat exchangers placed in a low-velocity environment. Some earlier pub-
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lished works of distinguished researchers are mentioned in the studies by Jat and
Chaudhary [7], Mabood and Khan [8], Borrelli et al. [9], and Chaudhary and
Choudhary [10].

Stretching surface has been an immense application in industrial and engineering
processes, including annealing and tinning of copper wire, crystal growing, extrac-
tion of polymer sheet, glass fiber production, drawing of plastic films, manufacture
of food, thermal energy storage, and many of others. Crane [11] was the first to study
the flow of incompressible fluid over a linearly stretching sheet. Some other studies
have been carried out by Mohamed et al. [12], Chaudhary et al. [13], Chaudhary
and Choudhary [14], Daniel [15], and Hsiao [16] with a stretching surface under the
different conditions.

Newtonian heating (NH) is a way of heat exchange between boundary surface
and ambient fluid, where the rate of heat exchange with a finite heat capacity is
proportional to the temperature of local surface. Application of NH can be found in
many engineering devices like cooling mechanism for nuclear reactors, solar power
collectors, and heat exchangers. Many researchers like Merkin [17], Salleh et al.
[18], and Akbar and Khan [19] have introduced the problem of NH in different
ways under the distinct physical effects. Moreover, convective boundary condition
(CBC) plays an important role in diverse technologies and industrial operations such
as material drying, laser pulse heating, transpiration cooling process, and textile
drying. Zhang and Zheng [20], Srinivasacharya and Bindu [21], and Shahzadi and
Nadeem [22] presented an excellent review of boundary layer flow with CBC and
some related applications.

Motivated by the previous mentioned research, main objective of the present
study is to extend the research of Mohamed et al. [12] with the considera-
tion of an electrically conducting fluid in the presence of uniform transverse
magnetic field. Problem is solved numerically with the help of perturbation
technique.

2 Formulation of the Problem

Consider a steady laminar two-dimensional stagnation point flow of an electrically
conducting fluid past a stretching sheet with constant temperature Tw. Rectangular
coordinates (x, y) are surmised in a manner that x-axis is measured along the
stretching wall and y-axis is taken normal to the wall as shown in Figure 1.
Uniform magnetic field with strength B0 is applied normal to the stretching wall
and induced magnetic field comes out to be negligible if the Reynolds number is
very small. Moreover, it is also assumed that the external velocity ue(x) = ax

and the stretching velocity uw(x) = bx, where a and b are positive constants. The
ambient fluid for above the sheet is kept at a constant temperature T∞. Under the
above assumptions and neglecting viscous dissipation, the governing boundary layer
equations are
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Fig. 1 Flow configuration
and geometrical coordinates
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with the related boundary conditions:

y = 0 : u = uw(x), v = 0,
∂T

∂y
= −hwT (NH), −κ

∂T

∂y
= hw(Tw − T ) (CBC)

y → ∞ : u → ue(x), T → T∞
(4)

where u and v are the velocity components along the x- and y-axes, respectively.
ν = μ

ρ
is the kinematic viscosity, μ is the coefficient of viscosity, ρ is the

fluid density, σe is the electrical conductivity, T is temperature of the fluid, α is
the thermal diffusivity, hw is the heat transfer coefficient, and κ is the thermal
conductivity.

Following transformation variables are introduced (Mohamed et al. [12]):

ψ(x, y) = √
νuexf (η) (5)

η =
√

ue

νx
y (6)

θ(η) = T − T∞
T∞

(NH), θ(η) = T − T∞
Tw − T∞

(CBC) (7)
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where ψ(x, y) is the stream function, by the definition of stream function u =
∂ψ
∂y

and v = − ∂ψ
∂x

, which identically satisfies the continuity equation (1), f (η)
is the dimensionless stream function, η is the similarity variable, and θ(η) is the
dimensionless temperature. The momentum and energy equations (2) and (3) with
the boundary conditions (4) are reduced into the following nonlinear differential
equations:

f ′′′ + f f ′′ − f ′2 − M(f ′ − 1) + 1 = 0 (8)

θ ′′ + Prf θ ′ = 0 (9)

subject to the boundary conditions:

η = 0 : f = 0, f ′ = ε, θ ′ = −γ (1 + θ) (NH), θ ′ = −γ (1 − θ) (CBC)

η → ∞ : f ′ → 1, θ → 0
(10)

where primes denote differentiation with respect to η, M = σeB0
2

ρa
is the

magnetic parameter, Pr = ν
α

is the Prandtl number, ε = b
a

is the stretching

parameter, and γ =
√

ν
a
hw (NH) or γ =

√
ν
a
hw
κ

(CBC) is the conjugate parameter.

Physical quantities of interest are the local skin-friction coefficient Cf and the
local Nusselt number Nux , defined as follows:

Cf = τw
ρue2

2

(11)

Nux = xqw

κ(Tw − T∞)
(12)

where τw = μ
(
∂u
∂y

)

y=0
is the surface shear stress and qw = −κ

(
∂T
∂y

)

y=0
is the

surface heat flux.
Therefore, after using the similarity transformations (5) to (7), the equations (11)

and (12) can be defined in the following form:

Cf = 2√
Rex

f ′′(0) (13)

Nux = −
√
Rex

θ(0)
θ ′(0) (NH), Nux = −√Rexθ

′(0) (CBC) (14)

where Rex = uex
ν

is the local Reynolds number.
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3 Computational Technique

Perturbation technique is employed for numerical solution of equations (8) and (9)
along with boundary conditions (10). Applying the power series in a term of small
magnetic parameter M as:

f (η) =
∞∑

i=0

(M)ifi(η) (15)

θ(η) =
∞∑

j=0

(M)j θj (η) (16)

Substituting equations (15) and (16) and its derivative in the equations (8) to (10)
and then equating the coefficients of like power of M:

f ′′′
0 + f0f

′′
0 − f ′2

0 = −1 (17)

θ ′′
0 + Prf0θ

′
0 = 0 (18)

f ′′′
1 + f0f

′′
1 − 2f ′

0f
′
1 + f ′′

0 f1 = f ′
0 − 1 (19)

θ ′′
1 + Prf0θ

′
1 = −Prf1θ

′
0 (20)

f ′′′
2 + f0f

′′
2 − 2f ′

0f
′
2 + f ′′

0 f2 = −f1f
′′
1 + f ′2

1 + f ′
1 (21)

θ ′′
2 + Prf0θ

′
2 = −Pr(f1θ

′
1 + f2θ

′
0) (22)

with the boundary conditions:

η = 0 : fi = 0, f ′
0 = ε, f ′

j = 0, θ ′
0 = −γ (1 + θ0) (NH), θ ′

j = −γ θj (NH)

θ ′
0 = −γ (1 − θ0) (CBC), θ ′

j = γ θj (CBC)

η → ∞ : f ′
0 → 1, f ′

j → 0, θi → 0, i ≥ 0, j > 0
(23)

Equations (17) and (18) for the nonmagnetic case was obtained by Mohamed et
al. [12], and the remaining ordinary differential equations are solved numerically by
using shooting technique with fourth order Runge Kutta method. Step size is taken
0.001, and the above process is repeated until the results correct up to six places of
decimal.
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4 Validation

To validate the numerical method, the results of the local skin friction coefficient
f ′′(0) for different values of the stretching parameter ε are compared with the earlier
results of Mohamed et al. [12] in the absence of magnetic parameter M , which
are presented in Table 1. In this table, it can be claimed that the numerical results
obtained by using the perturbation technique are very close to the previous published
results. Finally, it can also be concluded that the demonstrated results are reliable
and effective.

5 Discussion of the Results

Influence of various physical parameters such as stretching parameter ε, magnetic
parameter M , conjugate parameter γ , and Prandtl number Pr on velocity profile
f ′(η) and temperature profile θ(η) are discussed through graphs in this section.
Furthermore, the computational results of shear stress f ′′(0) and heat transfer θ ′(0)
regarding the above mentioned physical parameters are shown in tabular form.

The effects of the stretching parameter ε and the magnetic parameter M on the
fluid flow f ′(η) are demonstrated in Figures 2 and 3 respectively, keeping other
parameters constant. From these figures, it is analyzed that the velocity increases
with an increment in the stretching parameter ε and the magnetic parameter M .

Figures 4, 5, 6, 7, 8, 9, 10 and 11 illustrate the impact of stretching parameter
ε, magnetic parameter M , conjugate parameter γ , and Prandtl number Pr on
temperature distribution θ(η) for the NH and CBC cases, respectively, while the
other parameters are constant. It is clear from Figures 4 and 5 that the dimensionless
temperature is decreased with the increasing value of stretching parameter ε but the
opposite phenomenon occurs in the NH case for η > 2. For the higher value of
stretching parameter, the retarding force decreases in the motion of flow. So, fluid
velocity increases and temperature decreases due to incitement in the stretching
parameter. Figures 6 and 7 describe that the temperature reduces for NH case by
increasing the magnetic parameter M but opposite is true for η > 1.5. Whereas, for
the case of CBC reverse behavior is observed as compared to NH case. This is due
to the reason that increase in the magnetic parameter tends to the enhancement of
Lorentz force leading to the development of resistance to fluid flow which in turn

Table 1 Comparison of the
results for f ′′(0) with the
earlier published results when
M = 0.0

f ′′(0)
ε Mohamed et al. [12] Present results

0.0 1.2325877 1.232588

0.5 0.7132949 0.713295

1.0 0.0000000 0.000000

2.0 −1.8873066 −1.887304
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generates more heat resulting in increment of fluid temperature. From Figures 8
and 9, it can be seen that the temperature of a flow field is an increasing function
of the conjugate parameter γ . This phenomenon occurs because heat transfer
coefficient is equivalent to the thermal resistance on warm fluid side. So, warm fluid
side convection reduces and surface temperature rises along booming quantity in
conjugate parameter. On the other hand, the temperature decreases with increasing
the Prandtl number Pr and reverse behavior is noted in the NH case for η > 1.5,
and these observations are presented by Figures 10 and 11. As Prandtl number is
inversely proportional to the thermal conductivity, the increasing value of Prandtl

Fig. 2 Effects of ε on
velocity profiles with M=0.1

Fig. 3 Effects of M on
velocity profiles with ε = 0.1



Fig. 4 Effects of ε on
temperature profiles for NH
case with M = 0.1, γ = 1.0,
and Pr = 0.72

Fig. 5 Effects of ε on
temperature profiles for CBC
case with M = 0.1, γ = 1.0,
and Pr = 0.72

Fig. 6 Effects of M on
temperature profiles for NH
case with ε = 0.1, γ = 1.0,
and Pr = 0.72



Fig. 7 Effects of M on
temperature profiles for CBC
case with ε = 0.1, γ = 1.0,
and Pr = 0.72

Fig. 8 Effects of γ on
temperature profiles for NH
case with ε = 0.1, M = 0.1,
and Pr = 0.72

Fig. 9 Effects of γ on
temperature profiles for CBC
case with ε = 0.1, M = 0.1,
and Pr = 0.72
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Fig. 10 Effects of Pr on
temperature profiles for NH
case with ε = 0.1, M = 0.1,
and γ = 1.0

Fig. 11 Effects of Pr on
temperature profiles for CBC
case with ε = 0.1, M = 0.1,
and γ = 1.0

number reduces diffusion of energy and hence temperature of the fluid decreases
strongly.

Finally, the effects of stretching parameter ε, magnetic parameter M , conjugate
parameter γ , and Prandtl number Pr on the wall shear stress f ′′(0) and heat transfer
rate θ ′(0) for all cases are presented in the form of numerical data in Table 2. As
well the local skin friction Cf and the local Nusselt number Nux are proportional to
f ′′(0) and θ ′(0), respectively. From this table, it is observed that the wall shear stress
f ′′(0) decreases with the increasing value of the stretching parameter ε but reverse
is true for the magnetic parameter M . Moreover, the positive values of shear stress
for all values of the physical parameters are denotative of the fact that fluid utilizes
a drag force on the surface and negative shear stress implies that fluid exerts a drag
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Table 2 Values of f ′′(0) and θ ′(0) with different values of physical parameters

ε M γ P r f ′′(0) θ ′(0) for NH −θ ′(0) for CBC

0.5 0.1 1.0 0.72 0.730376 1.517189 0.3753258

1.0 0.000000 2.105341 0.4173960

1.5 −0.887893 3.065240 0.4289890

2.0 −1.913175 4.805400 0.4250723

0.1 0.1 1.181020 1.187295 0.3284310

0.3 1.247159 1.305741 0.3280625

0.5 1.310040 1.332417 0.3252443

0.7 1.370097 1.369421 0.3232542

0.1 1.3 0.925670 0.3767543

1.6 0.872321 0.3802064

2.0 0.770342 0.3948707

1.0 1.00 1.631282 0.3786723

1.50 2.658976 0.3813452

2.00 4.272536 0.3976832

force by the surface. It is also evident that rising values of stretching parameter ε,
magnetic parameter M , and Prandtl number Pr leads to the increment in the heat
transfer rate θ ′(0) for all cases, while opposite phenomenon arises in the CBC case
for stretching parameter ε, when ε < 1.5, and Prandtl number Pr . Further, the local
Nusselt number is reduced with the increment of the values of conjugate parameter
γ for all cases. From the practical point of view, positive sign of the heat transfer
rate implies that there is a heat flow from the wall and vice versa.

6 Conclusions

A numerical model is developed to examine the viscous, incompressible, laminar
stagnation point flow of electrically conducting fluid towards a stretching sheet
with NH and CBC. Similarity transformations are used to convert the system
of partial differential equations into the set of nonlinear ordinary differential
equations with the associated boundary conditions. Transformed equations are
solved numerically by using the perturbation technique. From the results of the
problem, it was concluded that an accretion in the value of stretching parameter
increases the thickness of momentum boundary layer and the heat transfer rate for
all analyzed cases but opposite is true for heat transfer rate in CBC case for ε < 1.5.
Subsequently, thermal boundary layer thickness and shear stress decrease with the
rising values of stretching parameter for all cases, while opposite phenomenon
occurs in thermal boundary layer for the case of NH when η > 2. For all considered
cases, fluid velocity, skin friction, and Nusselt number rise with the increasing
values of magnetic parameter, and consequently, temperature of fluid is reduced
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for NH case but raised for η > 1.5. Moreover, the reverse trend is observed in the
CBC case, as compared to the NH case. An increment in the conjugate parameter
increases the thermal boundary layer thickness and decreases the surface heat flux
for all considered cases. Further, increasing values of the Prandtl number reduces
thermal boundary layer thickness, whereas reverse behavior occurs in the NH case
for η > 1.5. Finally, the surface heat flux is increased in case of NH and decreased
in case of CBC.
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Modelling Corrosion Phenomenon
of Magnesium Alloy AZ91 in Simulated
Body Fluids

Ramalingam Vaira Vignesh and Ramasamy Padmanaban

1 Introduction

Biodegradable bioimplants is a major thrust area in the field of orthopedic implants.
The biodegradable bioimplant materials are characterized based on the elastic mod-
ulus, biocompatibility, and biodegradability of the materials. The elastic modulus
of Magnesium (Mg) and Mg alloys is similar to that of bone, which diminishes the
stress shielding effect. Mg is one of the key elements found in the physiological
fluids and responsible for functions such as osteoconduction, excitability of nerves
and bones, etc., and hence it is biocompatible. Mg and its alloys are highly
susceptible to corrosion in chloride containing physiological environments [1],
which attests the biodegradable nature of these alloys. The biodegradable property is
advantageous as it eliminates a secondary surgery to remove the temporary implants.
The amalgamation of mechanical properties, biocompatibility, and biodegradability
makes Mg and its alloys to be one of the best biodegradable biomaterials for bone
implants.

One of the widely used biodegradable Mg alloy is AZ91. The microstructure of
AZ91 alloy consists of primary phase (α-Mg) and secondary phase (β-Mg17Al12)
in the matrix [2] as shown in Figure 1. The mechanical, tribological, and corrosion
properties of the alloy are dependent on the size, distribution, and dispersion of the
secondary phase in the alloy matrix [3–10]. The high activity of Mg and its alloys
accelerates the corrosion in physiological environments. The potential difference
between the primary and secondary phases induces intergranular and micro galvanic
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Fig. 1 Microstructure of Mg
alloy AZ91

corrosion [11]. Hence the corrosion of the alloy could be controlled by altering the
microstructure, which influences the intergranular and micro galvanic corrosion.

Alloying, compositing, and coating are some of the notable ways to engineer
the corrosion rate of AZ91. Anik et al. [11] found that the eutectic phase of AZ91
acted as anodic barriers in the absence of Cl− ions and pH of 7. Wang et al. [12]
found that passive current density increased and the passive film became unstable in
AZ91 alloy with addition of Ce to the matrix. This was attributed to the formation of
CeO2, which increased the donor concentration in the passive film. Hwang et al. [13]
reported the formation of MgO and Mn2O3 oxide layer during plasma electrolytic
oxidation of AZ91 alloy using KOH + KF + Na2SiO3 solution in the presence of
KMnO4, a strong oxidizing agent. The Mn2O3 and MgO layers acted as potential
diffusion barriers and hence enhanced the corrosion resistance of the alloy. Luo
et al. [14] reported that 0.3 wt.% of Y was the optimum quantity for increasing
the corrosion resistance of AZ91 alloy. The formation of new intermetallic phase
MgAl4Y reduced the amount and continuity of β phase, which reduced the galvanic
contact between β phase and α phase. This leads to an increase in the corrosion
resistance of the alloy.

Zhan et al. [15] found that addition of alloying elements Zn, Sn, and In to twin
rolled continuous cast AZ91 resulted in the formation of Mg-In, Mg-Al, and Mg-
Sn intermetallics. The formation of globular α phase increased the tensile strength,
while intermetallics enhanced micro galvanic corrosion. Ko et al. [16] found that
Zr incorporation along with annealing process enhanced the corrosion resistance of
AZ91 alloy in NaCl solution. Annealing formed MgO on the surface which reduced
the surface activity. Ghayad et al. [17] investigated the corrosion properties of AZ91
and ZM60 with graded composition of Ca, Sr, Misch Metal (MM) and Cu, MM,
respectively, in 3.5 wt.% of NaCl solution. They found that addition of less than
2% Cu to ZM60 alloy enhances corrosion resistance. The addition of 0.6% Ca to
the AZ91 matrix increased the polarization resistance. The formation of Al4MM
and β phase precipitation in AZ91–0.4Ca-0.14Sr-1.2MM improved the corrosion
resistance.

The degradation kinetics of implants during implantation period explicates the
biocompatible nature of the implant material. Witte et al. [18] reported that the
absence of subcutaneous gas formation adjacent to implants during in-vivo studies
on AZ91 attested its biocompatibility and corrosion resistance. Choudhary et al.
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[19] observed transgranular cracks and reported that AZ91D alloy is susceptible to
stress corrosion cracking in simulated body fluid (SBF) solution in the low strain rate
range. Xue et al. [20] found that the in-vivo corrosion rate of AZ91 alloy was lower
than the in-vitro corrosion rate. Walter et al. [21] reported low polarization resistance
and high localized degradation in SBF for AZ91D with rough surface. The severity
of localized degradation of the rough surface specimen was higher than that of the
smooth polished specimen. Tahmasebifar et al. [22] reported that AZ91 alloy plates
with high porosity and rough texture increased the cell adhesion and proliferation.
Wen et al. [23] investigated the biodegradability and surface chemistry of AZ31D
and AZ91. They found that the corrosion rate of AZ91 decreased with increase in
the immersion period.

All the experimental works described so far suggested that the corrosion rate
of AZ91 is controlled by grain size, distribution, and dispersion of β phase in
the matrix. Modelling of corrosion phenomenon could elaborate the influence of
AZ91’s microstructure on corrosion rate. Jia et al. [24] studied the influence of
geometric parameters on the galvanic current distribution in Mg alloy AZ91D
coupled to steel using a boundary element method. Deshpande et al. [25] validated
the numerical model for galvanic corrosion of Mg alloy AE44 coupled with
aluminium alloy AA6061. Grogan et al. [26] developed a numerical model to
predict the effect of corrosion on the mechanical integrity of bioabsorbable metallic
stents. Bakhsheshi-Rad et al. [27] used gene expression program to model corrosion
behavior of biodegradable Mg alloy Mg-Zn-RE-Ca and Mg-Zn-RE and observed
that Mg-Zn-RE-Ca had lower corrosion current density than Mg-Zn-RE alloy. Most
of the works reported in literature are restricted to stationary cathode and anode
surfaces.

In this study, Arbitrary Lagrangian Eulerian (ALE) formulation was used to
effectively trace the interfaces (electrolyte and material surface). The corrosion
behavior of Mg alloy AZ91 with continuous and dispersed secondary phase particles
was modelled using Comsol Multiphysics

®
software. The polarization data required

for building the model was obtained from the literature [1]. The corrosion current
density of the alloy with continuous and dispersed secondary phase particles was
evaluated. The dependence of anodic current density on the structure and dispersion
of secondary phase of the alloy was also investigated.

1.1 Nomenclature

Ni Flux
Di Diffusion coefficient
ci Concentration
zi Charge
F Faraday’s constant
ui Mobility
φ Potential
U Solvent velocity
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fa(φ) Current density of anodic species
fc(φ) Current density of cathodic species
(X,Y) Reference frame co-ordinates
(x,y) Spatial frame co-ordinates
M Atomic mass
Z Electron number
φL Level set function
il Electrolyte current density vector
σ l Electrolyte conductivity
n Normal vector pointing out of the domain
iloc,m Local individual electrode reaction current density
Mi Molar mass of the corroding species
ρi Density of the corroding species
udep,i,m Stoichiometric coefficient
nm Number of electrons participating in the electrode reaction
micro(x, y) Microstructure function

2 Computational Methodology

2.1 Corrosion of Magnesium Alloy AZ91 in SBF

The high activity of magnesium increases its degradation in corrosive environments.
The corrosion rate is influenced by the presence of chloride ions. Owing to the
biocompatible nature of magnesium alloy AZ91, it is used as bioimplants. The
human physiological environment has chloride ions and temperature of 37 ◦C,
which facilitates the corrosion of AZ91 alloy. The anodic and cathodic reaction of
Mg alloy during corrosion is given by Equations (1) and (2), respectively.

Mg → Mg2+ + 2e− (1)

2H2O + 2e− → 2(OH)− + H2 ↑ (2)

Being highly active, magnesium readily loses its electron and becomes positive
ion in the presence of an electrolyte medium (SBF). The cathodic reaction is the
reduction of water molecule forming hydroxyl ions and hydrogen gas. The overall
reaction is given by Equation (3), which indicates the formation of magnesium
hydroxide layer as a corrosion product. In the presence of chloride ions, magnesium
hydroxide will transform to magnesium chloride as given by Equation (4).

Mg + H2O → Mg(OH)2 + H2 ↑ (3)

Mg(OH)2 + Cl− → MgCl2 ↓ +2(OH)− (4)
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Continuous and rapid corrosion of magnesium alloy AZ91 results in the accu-
mulation of H2 gas in the neighboring tissues, which is a lethal phenomenon.
So the corrosion rate of the Mg alloy should be engineered to enable its use
as biodegradable bioimplant. One of the engineering techniques to reduce the
corrosion rate of the alloy is disintegration and dispersion of β phase in the alloy.
This reduces the potential gradient between α phase and β phase of the alloy, which
also reduces the intergranular corrosion.

2.2 Governing Equations

During corrosion process, local ion concentration change affects the mass transport
and distribution of various ion species. Measuring these local changes using conven-
tional methods of measurements is challenging and difficult. Numerical methods
help us to find critical parameters affecting local changes and understanding
corrosion at the local level. One of the widely utilized numerical methods to
investigate the transport phenomenon is finite element method (FEM). FEM is
developed to solve the governing differential equation and predict the concentration,
potential and current distribution, which is used to study the controllable factors of
corrosion phenomenon.

∂ci

∂t
= −∇.Ni + Ri (5)

Ni = −Di∇ci − ziFuici∇φ + ciU (6)

∂ci

∂t
= −∇.Ni = Di∇2ci + ziFui∇. (ci∇φ) − ∇. (ciU) (7)

Nernst-Planck equation is used to describe the movement of the species in an
ionic solution as given by Equation (5). The term on the left-hand side denotes
the accumulation of species i. The first term (−∇. Ni) denotes the transport of
species i due to diffusion, migration, and convection and it is given in Equation (6).
The second term (Ri) denotes a source or sink. The three additive fluxes, namely
diffusion flux, migration flux, and convection flux were associated with the species
flux. The conservation of species flux is given by Equation (7).

The following assumptions were made in the current study.

1. Electrolyte solution is incompressible.
2. Electrolyte solution is well mixed.
3. Absence of concentration gradient in the electrolyte.
4. Primary phase of the alloy acts as anode and secondary phase of the alloy acts as

cathode.
5. Dissolution of primary phase is the anodic reaction and evolution of H2 is the

cathodic reaction.
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Fig. 2 Layout of the
developed model

From the above assumptions, the transport of species associated with diffusion
and convection is neglected. The simplified form of Equation (7) is given by
Equation (8), which takes the form of Laplace equation for the potential and
represents the upper bound for the corrosion rate.

∇2φ = 0 (8)

Figure 2 shows the electrolyte domain over which Equation (3) is solved. As
observed from the figure, β phase is sandwiched between α phases. In α phase,
the coring effect results in variation of Al content from 1% in the center to 9%
in the grain boundary. In this study, α phase is assumed to have a homogeneous
composition of 3% Al and 97% Mg content. The boundary conditions at the surface
of anode and cathode are given by Equations (9) and (10), respectively [28].

∇nφ = −fa (φ)

σ
(9)

∇nφ = −fc (φ)

σ
(10)

fa(φ) and fc(φ) are the linear interpolation functions for the polarization curves
of α phase and β phase, respectively, with SBF solution as electrolyte. The data
for interpolating the polarization curves were obtained from the literature [1]. The
potential gradient was obtained by dividing the current density (corresponding to
the potential at anodic and cathodic surface) by conductivity of the electrolyte
solution. Equation (11) is the insulation boundary condition, which is applied to
the boundaries of electrolyte as shown in Figure 2.

∇nφ = 0 (11)
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2.3 Arbitrary Lagrangian Eulerian Method

ALE is a moving mesh technique, which combines the Lagrangian and Eulerian
frames of reference and capable of capturing large deformations with high accuracy.
ALE method was incorporated using Comsol Multiphysics

®
. Equations (12) and

(13) were used to solve the mesh displacement method, which resulted in smooth
deformation of mesh subjected to the boundary constraints.

∂2

∂X2

(
∂x

∂t

)

+ ∂2

∂Y 2

(
∂y

∂t

)

= 0 (12)

∂2

∂X2

(
∂y

∂t

)

+ ∂2

∂Y 2

(
∂x

∂t

)

= 0 (13)

Faraday’s law was used to calculate the normal velocity of the anode surface
from the current density and the normal velocity was calculated using Equation
(14). The normal velocity at the cathode surface was considered to be zero and all
other boundaries were considered to have zero displacement.

−→
n.v = M

ZFρ
j = M

ZFρ
fa (φ) (14)

2.4 Model Development

The corrosion phenomenon of the alloy was modelled using a two-dimensional
model. Corrosion, Secondary Interface module in Comsol was used to solve for
the electrolytic potential over the electrolyte domain. Equations (15) and (16) were
used to solve for the electrolytic potential.

il = −σl∇φl (15)

∇.il = 0 (16)

External corroding electrode boundary condition was used at the electrode
surface. The boundary condition for the electrolyte potential is given by Equation
(17). The dissolution of the primary phase with a velocity in the normal direction is
given by Equation (18). Rdep,i,m was calculated using Equation (19).

n.il =
∑

m

iloc,m + idl (17)
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n.
∂x

∂t
=
∑

i

Rdep,i,m × Mi

ρi
(18)

Rdep,i,m = −udep,i,m × iloc,m

nm × F
(19)

The electrode reaction in α phase on the surface of the alloy was modelled using
user-defined electrode kinetics. The local current density for α phase and β phase
is given by Equations (20) and (21), respectively. The expression (1 − micro(x, y))
in Equation (20) ensures that the local current density is applied only at α phase in
the surface. Similarly, (micro(x, y)) in Equation (21) ensures that the local current
density is applied only at β phase in the surface.

iα = f
(
φs,ext − φl

)× (1 − micro (x, y)) (20)

iβ = f
(
φs,ext − φl

)× (micro (x, y)) (21)

The experimental data for the polarization curves were obtained from the
literature and a piecewise cubic interpolation function was developed for relating the
corresponding local current density with the electrolyte potential. The electrolyte
was meshed using free triangular mesh with coarse elements. The interface of
electrolyte and the microstructural surface of the specimen were meshed using free
triangular mesh with extremely fine elements.

3 Results and Discussion

In order to investigate the effect of microstructure and β phase distribution on
the corrosion behavior of the alloy, two representative microstructure configura-
tions were considered in the study. The first configuration of microstructure was
represented with a continuous β phase network around α phase and the second
configuration with a dispersed–discrete β phase.

The authentic effect of the phases on the corrosion behavior of the alloy could
be analyzed, if the microstructural morphology along the entire depth of the alloy
is considered. However, in 2D computation, the microstructural phases could be
accounted only on the surface of the alloy. This is because the governing equations
were solved over a computational domain representing the electrolyte solution and
the microstructural phases were represented as the boundary of the computational
domain.
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Fig. 3 Representative image
showing the continuous
network of β phase
surrounding α phase

3.1 Continuous Network of β Phase

Cathodic and anodic surface were represented based on the predefined microstruc-
ture, as described by Deshpande et al. [28].

The level set function (φL) is a function of two variables (x, y). The φL was used
to represent the anodic (if φL > 0) and cathodic surface (if φL ≤ 0). As shown in
Figure 3, a portion of the alloy’s microstructure with dimensions of 200 μm length
and 25 μm breadth was considered. The region above y distance = 0 represents
the electrolyte solution. The maximum depth of α phase in the microstructure was
considered as 10 μm. In the representative microstructure shown in Figure 3, the
blue region indicates α phase and the brown region indicates β phase.

As given in Equation (22), the boundary conditions are applied at the interface
of electrolyte with microstructure, as both α phase and β phase are represented
by a single boundary. Similarly, the normal velocity of the anodic surface in the
ALE formulation is given by Equation (23). The average anodic current density was
calculated using Equation (24), which was performed over the anodic surface.

∇nφ = −fa (φ)

σ
× (φL > 0) − fc (φ)

σ
(φL ≤ 0) (22)

−→
n.v = M

ZFρ
fa (φ) × (φL > 0) (23)

Average anodic current density =
∫ �
φL>0 fa (φ) d�
∫ �
φL>0 d�

(24)

The model predictions (electrolyte potential) at different intervals of time are
shown in Figure 4. It is observed that the electrochemically active α phase is
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Fig. 4 Predicted electrolyte
potential (V) at time (a)
T = 0 s; (b) T = 9553 s; (c)
T = 28,314 s

preferentially dissolved by the electrolyte, while the nobler β phase was intact in
the microstructure. Hence the surface β phase fraction increased with progress of
time. The computations were terminated just before the β phase fraction reached
100%.

As shown in Figure 4a, a high electrolyte potential was observed between the
material and the electrolyte at the instance of immersion (time = 0 s). However the
electrolyte potential decreased with progress of time, as evidenced from Figure 4b.
The reduction in ratio of surface area of α phase to surface area of β phase reduced
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Fig. 5 Average anodic
current density vs Time for
continuous network of β

phase microstructure

the concentration gradient between these two phases. The electrolyte potential after
complete dissolution of α phase in the electrolyte is shown in Figure 4c.

The average anodic current density is plotted against time as shown in Figure 5.
Since α phase has more negative corrosive potential than β phase, the enrichment
of β phase will accelerate the corrosion of the material. Hence the average anodic
current density increased with increase in time and was varying between 5 A m−2

and 9 A m−2. The β phase acted as barrier to corrosion process and therefore
retarded the corrosion rate of the material. The corrosion result was found to be
consistent with the experimental results available in the literature [23].

3.2 Discrete β Phase

The second microstructural configuration considered in the study had discrete and
dispersed β phase in the matrix. Microstructural refinement techniques result in
submicron and nano-sized β phase in the AZ91 alloy matrix [29–33]. In this
study, β phase with irregular geometry and a depth of 2.5 μm was considered.
The microstructure was depicted using the level set function and the representative
microstructural image is shown in Figure 6.

The model predictions of electrolyte potential at different intervals of time are
shown in Figure 7. Figure 7a shows the electrolyte potential at the instance of
immersion of the material in the electrolyte medium. The model predicted that the
electrolyte potential at time t = 0, t = 9614 and t = 50,134 s is 1.424 V, 1.425 V,
1.396 V, respectively. This is shown in Figure 8a–c, respectively.

It is observed that the electrolyte potential is fairly constant for dispersed β

phase network, when compared with the continuous β phase network. Similar to
the above results, electrochemically active α phase is preferentially dissolved by
the electrolyte, while the nobler β phase was intact with the microstructure. This
resulted in an increase in the fraction of β phase on the surface. However, the
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Fig. 6 Representative image
showing the discrete β phase
microstructure

dissolution of α phase spattered off the discrete β phase into the electrolyte solution.
Thereby decreasing the surface β phase fraction.

The average anodic current density is plotted against time as shown in Figure 8.
A significant decrease in average anodic current density was observed with a
variation between 2 A m−2 and 3 A m−2. The average anodic current density of
discrete β phase structure was six magnitudes lesser than the continuous β phase
network. The rise and fall of the average anodic current density was attributed to
the variation in surface β phase fraction. The average time taken by electrolyte to
completely dissolve the material was found to be higher for the discrete β phase
network configuration than the continuous β phase network configuration.

From the graphs Figures 6 and 8, it is observed that the time for dissolution of
10 μm in the continuous β phase structure is 28,314 s and the discrete β phase
network is 50,134 s. Hence a lesser corrosion rate is observed in discrete β phase
network than continuous β phase structure.

4 Conclusion

A numerical model was developed to study the effect of secondary phase distribu-
tion on the corrosion behavior of AZ91 Mg alloy using ALE method in Comsol
Multiphysics

®
. The model efficiently tracks the moving boundary of the corroding

primary phase of the alloy. The results demonstrated the following.

1. The anodic current density increases with increase in surface fraction of sec-
ondary phase.

2. The average anodic current density was found to be higher for AZ91 alloy with
continuous network of β phase surrounding α phase.

3. The presence of discrete and dispersed β phase in the matrix resulted in low
average anodic current.
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Fig. 7 Predicted electrolyte
potential (V) at time (a)
T = 0 s; (b) T = 9641 s; (c)
T = 50,134 s

4. The average time taken by electrolyte to completely dissolve the material was
found to be higher in discrete β phase network configuration than continuous β

phase network configuration.
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Fig. 8 Average anodic
current density vs Time
discrete β phase
microstructure

References

1. Liu, C., Yang, H., Wan, P., Wang, K., Tan, L., Yang, K.: Study on biodegradation of the second
phase Mg17Al12 in Mg–Al–Zn Alloys: In vitro experiment and thermodynamic calculation.
Materials Science and Engineering: C 35, 1-7 (2014)

2. Committee, A.I.H.: ASM Handbook: Metallography and microstructures. ASM International
(2000)

3. Gobara, M., Shamekh, M., Akid, R.: Improving the corrosion resistance of AZ91D magnesium
alloy through reinforcement with titanium carbides and borides. Journal of Magnesium and
Alloys 3, 112-120 (2015)

4. Hamed Rahimi, R.M., Najafabadi, A.H.: Corrosion and Wear Resistance Characterization of
Environmentally Friendly Sol&shy;&mdash;gel Hybrid Nanocomposite Coating on AA5083.
J. Mater. Sci. Technol. 29, 603-608 (2013)

5. Kot, I., Krawiec, H.: The use of a multiscale approach in electrochemistry to study the corrosion
behaviour of as-cast AZ91 magnesium alloy. Journal of Solid State Electrochemistry 19, 2379-
2390 (2015)

6. Luo, T.J., Yang, Y.S.: Corrosion properties and corrosion evolution of as-cast AZ91 alloy with
rare earth yttrium. Materials & Design 32, 5043-5048 (2011)

7. Salman, S., Ichino, R., Okido, M.: A comparative electrochemical study of AZ31 and AZ91
magnesium alloy. International Journal of Corrosion 2010, (2010)

8. Wang, L., Zhang, B.-P., Shinohara, T.: Corrosion behavior of AZ91 magnesium alloy in dilute
NaCl solutions. Materials & Design 31, 857-863 (2010)

9. Ramalingam, V.V., Ramasamy, P.: Modelling Corrosion Behavior of Friction Stir Processed
Aluminium Alloy 5083 Using Polynomial: Radial Basis Function. Trans. Indian Inst. Met. 1
(https://doi.org/10.1007/s12666-12017-11110-12661) (2017)

10. Vignesh, R.V., Padmanaban, R., Arivarasu, M., Thirumalini, S., Gokulachandran, J., Ram,
M.S.S.S.: Numerical modelling of thermal phenomenon in friction stir welding of aluminum
plates. In: IOP Conference Series: Materials Science and Engineering, pp. 012208. IOP
Publishing, (2016)

11. Anik, M., Avci, P., Tanverdi, A., Celikyurek, I., Baksan, B., Gurler, R.: Effect of the eutectic
phase mixture on the anodic behavior of alloy AZ91. Materials & Design 27, 347-355 (2006)

12. Wang, H., Li, Y., Wang, F.: Influence of cerium on passivity behavior of wrought AZ91 alloy.
Electrochimica Acta 54, 706-713 (2008)

http://dx.doi.org/10.1007/s12666-12017-11110-12661


Modelling Corrosion Phenomenon of Magnesium Alloy AZ91 in Simulated. . . 485

13. Hwang, D.Y., Kim, Y.M., Park, D.-Y., Yoo, B., Shin, D.H.: Corrosion resistance of oxide
layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation.
Electrochimica Acta 54, 5479-5485 (2009)

14. Luo, T.J., Yang, Y.S., Li, Y.J., Dong, X.G.: Influence of rare earth Y on the corrosion behavior
of as-cast AZ91 alloy. Electrochimica Acta 54, 6433-6437 (2009)

15. Zhan, Y., Zhao, H.-Y., Hu, X.-D., Ju, D.-Y.: Effect of elements Zn, Sn and In on microstructures
and performances of AZ91 alloy. Transactions of Nonferrous Metals Society of China 20, s318-
s323 (2010)

16. Ko, Y.G., Lee, K.M., Shin, D.H.: Electrochemical corrosion properties of AZ91 Mg alloy via
plasma electrolytic oxidation and subsequent annealing. Materials Transactions 52, 1697-1700
(2011)

17. Ghayad, I., Girgis, N., Azim, A.: Effect of some alloying elements and heat treatment on the
corrosion behavior ofAZ91 and ZM60 magnesium alloys. Int. J. Metall. Mater. Sci. Eng 3,
21-32 (2013)

18. Witte, F., Kaese, V., Haferkamp, H., Switzer, E., Meyer-Lindenberg, A., Wirth, C.J., Wind-
hagen, H.: In vivo corrosion of four magnesium alloys and the associated bone response.
Biomaterials 26, 3557-3563 (2005)

19. Choudhary, L., Szmerling, J., Goldwasser, R., Raman, R.K.S.: Investigations into stress
corrosion cracking behaviour of AZ91D magnesium alloy in physiological environment.
Procedia Engineering 10, 518-523 (2011)

20. Xue, D., Yun, Y., Tan, Z., Dong, Z., Schulz, M.J.: In Vivo and In Vitro Degradation Behavior of
Magnesium Alloys as Biomaterials. Journal of Materials Science & Technology 28, 261-267
(2012)

21. Walter, R., Kannan, M.B., He, Y., Sandham, A.: Effect of surface roughness on the in vitro
degradation behaviour of a biodegradable magnesium-based alloy. Applied Surface Science
279, 343-348 (2013)

22. Tahmasebifar, A., Kayhan, S.M., Evis, Z., Tezcaner, A., Çinici, H., Koç, M.: Mechanical,
electrochemical and biocompatibility evaluation of AZ91D magnesium alloy as a biomaterial.
Journal of Alloys and Compounds 687, 906-919 (2016)

23. Wen, Z., Duan, S., Dai, C., Yang, F., Zhang, F.: Biodegradability and Surface Chemistry of
AZ31D Compared with AZ91 Magnesium Alloy in a Modified Simulated Body Fluid. Int. J.
Electrochem. Sci 9, 7846-7864 (2014)

24. Jia, J.X., Song, G., Atrens, A.: Experimental Measurement and Computer Simulation of
Galvanic Corrosion of Magnesium Coupled to Steel. Advanced Engineering Materials 9, 65-74
(2007)

25. Deshpande, K.B.: Validated numerical modelling of galvanic corrosion for couples: Mag-
nesium alloy (AE44)–mild steel and AE44–aluminium alloy (AA6063) in brine solution.
Corrosion Science 52, 3514-3522 (2010)

26. Grogan, J.A., O’Brien, B.J., Leen, S.B., McHugh, P.E.: A corrosion model for bioabsorbable
metallic stents. Acta Biomaterialia 7, 3523-3533 (2011)

27. Bakhsheshi-Rad, H.R., Abdellahi, M., Hamzah, E., Ismail, A.F., Bahmanpour, M.: Modelling
corrosion rate of biodegradable magnesium-based alloys: The case study of Mg-Zn-RE-xCa
(x = 0, 0.5, 1.5, 3 and 6 wt%) alloys. Journal of Alloys and Compounds 687, 630-642 (2016)

28. Deshpande, K.B.: Numerical modeling of micro-galvanic corrosion. Electrochimica Acta 56,
1737-1745 (2011)

29. Jain, V., Mishra, R.S., Gupta, A.K., Gouthama: Study of β-precipitates and their effect on the
directional yield asymmetry of friction stir processed and aged AZ91C alloy. Materials Science
and Engineering: A 560, 500-509 (2013)

30. Mahmudi, R., Kabirian, F., Nematollahi, Z.: Microstructural stability and high-temperature
mechanical properties of AZ91 and AZ91 + 2RE magnesium alloys. Materials & Design 32,
2583-2589 (2011)



486 R. Vaira Vignesh and R. Padmanaban

31. Rey, P., Gesto, D., del Valle, J., Verdera, D., Ruano, O.A.: Fine And Ultra-Fine Grained AZ61
And AZ91 Magnesium Alloys Obtained By Friction Stir Processing. In: Materials Science
Forum, pp. 1002-1007. Trans Tech Publ, (2012)

32. Shanthi, M., Lim, C.Y.H., Lu, L.: Effects of grain size on the wear of recycled AZ91 Mg.
Tribology International 40, 335-338 (2007)

33. Zhang, D., Wang, S., Qiu, C., Zhang, W.: Superplastic tensile behavior of a fine-grained AZ91
magnesium alloy prepared by friction stir processing. Materials Science and Engineering: A
556, 100-106 (2012)



Approximate and Analytic Solution
of Some Nonlinear Diffusive Equations

Amitha Manmohan Rao and Arundhati Suresh Warke

1 Introduction

In the recent past, analytical and numerical approximation of nonlinear PDEs
describing wave phenomena has been the active area of research in the fields of
mathematics, science and engineering. The study of wave behaviour, propagation
or nature of wave spreading has real life applications in diverse fields from
aerospace engineering to social, biomedical and agricultural sciences as most of
wave phenomena in nature is essentially nonlinear. Computation of the numerical
or analytic solution of nonlinear diffusive PDEs is important, interesting but quite
difficult due to nonlinearity, viscosity effects, discontinuous solutions, conditional
stability and convergence to non-realistic solutions. This paper focuses on solving
analytically, two nonlinear diffusive equations, which are Newell–Whitehead–Segel
(NWS) and Burgers’ equations.

The NWS equation is of the following form:

ut (x, t) = kuxx (x, t) + au (x, t) − bun (x, t) , u = u (x, t) , (1)
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a, b, real constants and k, n, positive integers, appears in modelling various
phenomena arising in fluid mechanics and has wide range of applications in
various problems arising in mathematical sciences, mechanical, chemical and bio-
engineering.

Viscid Burgers’ equation is a nonlinear parabolic PDE of the following form [1]:

ut + f (u)x = νuxx u = u (x, t) , x ∈ R and t > 0, (2)

where f is the flux function associated with u and ν,the viscosity parameter.
Equation (2) is the balance between time evolution, nonlinear wave propagation
and dissipative effect and is used as the simplest model equation for nonlinear
wave propagation and fluid flow. Equation (2) appears in several areas of applied
mathematics and fluid dynamics and is the lowest order approximation of one-
dimensional weak shock waves [2]. When ν = 0, Equation (2) becoming hyperbolic
in nature, may develop some discontinuities at finite time even for smooth initial
data.

Laplace Decomposition Method (LDM), a combination of Adomian Decom-
position Method (ADM) and Laplace transform, is one of the efficient analytical
techniques to solve nonlinear PDEs. The method has been developed with continu-
ous modifications and implemented to solve diverse types of nonlinear PDEs [3–9].
Solving Equation (1) subject to u(x, 0) = λ for arbitrary constant λ for exact solution
has been discussed by various researchers by new iterative method[10], combined
form of Elzaki transform method and Adomian decomposition method [11] and
LDM [12].

Numerical approximation of the PDE given by Equation (2) has been discussed
by many researchers. For example, PDE of the type Equation (2) with u(x, 0) = 0
was solved by LDM [13]. Although the PDEs considered in this paper are reduced
diffusive model equations, it is well known that the wave propagation, wave profile
and the nature of the final solution of dissipative PDE depend upon flux function,
source term, initial condition and dissipative parameters. For example, Equation
(1) has exact solution for u(x, 0) = λ for constant parameter λ and the exact

solution is given by u (x, t) = 2λe2t

2−λ(e2t−1)
. But for u(x, 0) = x Equation (1) has

only approximate solution. Similarly, Equation (2) may have exact solution but a
different source term may result in drastic change in the nature of PDE. Equation
(2) can be solved exactly by using Cole-Hopf transformation but adding a source
term will alter the physical system. Moreover initial condition with nonlinearity
contributes for the nature of the solution.

In view of this, we have considered the numerical approximation of Equation (1)
subject to u(x, 0) = x by LDM and ut+f (u)x+u = νuxx, subject to u (x, 0) = e−x2

and u(x, 0) = e−x and for various dissipative parameters by FDM and LDM.
The focus is to study the impact of initial condition, source term on the wave
propagation and the nature of the final solution as LDM highly depends upon the
initial approximation arising out of initial condition and the source term. The error
estimation was calculated in all the cases and the convergence of the method is
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ensured through plotting of errors for specific values of x and t. The methodology,
results and conclusion of the study are discussed in Sections 2, 3 and 4, respectively.

2 Methodology

2.1 Brief Description of LDM

This section describes the general procedure of LDM to solve NWS equation. The
same procedure can be applied to solve Equation (2). Following nonlinear PDE is
considered.

Du (x, t) + Ru (x, t) + Nu (x, t) = g (x, t) (3)

subject to the initial condition

u (x, 0) = h(x) (4)

where D = ∂
∂t
,R is a linear operator, N is nonlinear differential operator and g(x, t)

is the source term.
The corresponding NWS equation is

ut (x, t) = kuxx (x, t) + au (x, t) − bun (x, t) , u (x, 0) = h(x)

Operating Laplace transform L with respect to t on both sides of Equation (3),
we obtain

L [Du (x, t)] + L [Ru (x, t)] + L [Nu (x, t)] = L [g (x, t)] (5)

By the differential property of Laplace transform and Equations (4) on (5), we
get

sL [u (x, t)] − h(x) + L [Ru (x, t)] + L [Nu (x, t)] = L [g (x, t)] (6)

su (x, s) − u (x, 0) = kL (uxx) + au (x, s) − bL
(
un
)

L [u (x, t)] = h(x)

s
+ 1

s
L [g (x, t)] − 1

s
L [Ru (x, t)] − 1

s
L [Nu (x, t)] (7)

As per the procedure of LDM, the solution u(x, t) is expressed as the infinite
series of the form
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u (x, t) =
∑∞

n=0
un (x, t) (8)

And also the nonlinear term Nu(x, t) of Equation (8) is decomposed as

Nu (x, t) =
∑∞

n=0
An(u) (9)

where the components un(x, t) of Equation (8) will be determined recursively. The
Adomian polynomials An for arbitrary parameter λ of Equation (9) are computed
from the following relation

An(u) = 1

n!
[
dn

dλn
N
(∑∞

i=0
λiui

)]

λ=0
, n = 0, 1, 2, 3 . . . . . . . . . , (10)

By applying inverse Laplace transform to Equations (7), (8), (9) and (10),
Adomian polynomials An(u), the components of un(x, t) and the solution u(x, t) are
obtained. The procedure of computation is explained below.

u (x, t) = L−1
(
h(x)

s

)

+ L−1
(

1

s
L [g (x, t)]

)

− L−1
(

1

s
L [Ru (x, t)]

)

− L−1
(

1

s
L [Nu (x, t)]

)

,

u (x, t) = L−1
(
h(x)

s − a

)

+ L−1

[
k

s − a
L

(
∂2

∂x2

( ∞∑

n=0

un (x, t)

))]

− L−1

[
b

s − a
L

∞∑

n=0

An(u),

]

where
∑∞

n=0An(u) = un and
∑∞

n=0un (x, t) = u (x, t) The recursive relation for
the components of u(x, t) is obtained by

u0 (x, t) = h(x)eat

Here u0(x, t), the initial approximation, represents the term arising out of source
term and given initial condition.

u(n+1) (x, t) = L−1
[

k

s − a
L

(
∂2

∂x2

(∑∞
n=0

un (x, t)
))]

− L−1
[

b

s − a
L
∑∞

n=0
An(u)

]

, n = 0, 1, 2, . . . . . .

(11)

The algorithm presented in [14] has been used to calculate Adomian
polynomials.
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2.2 Finite Difference Method (FDM)

Finite difference method (FDM) is a powerful numerical technique used for finding
approximate solutions for linear and nonlinear PDE. The basic principle of FDM is
the approximation of derivatives in PDE by finite differences. In this paper we have
used first order forward difference operator to t and central difference operator to x
given by the following relations.

Forward difference :
(
∂u

∂t

)

j

∼= ui,j+1−ui,j
#t

,

Central Difference :
(
∂u

∂x

)

i

∼= ui+1,j−ui−1,j

2#x

3 Results and Discussion

3.1 Illustrative Examples of Equation (1) by LDM

For k = 5,a = 2,b = − 1,n = 2,h(x) = x, Equation (1) becomes

ut = 5uxx + 2u + u2, u (x, 0) = x (12)

Various components of the numerical approximation of Equation (12) obtained
by applying LDM are given as below.

u0 (x, t) = xe2t (13)

A0(u) = u0
2 = x2e4t

u1 (x, t) = L−1
[

5

s − 2
L

(
∂2

∂x2 (u0)

)]

+ L−1
[

1

s − 2
L (A0)

]

= x2

2

(
e4t − e2t

)

A1(u) = 2u0u1 = x3
(
e6t − e4t

)

u2 (x, t) = x3e2t

4

(
1 − 2e2t + e4t

)
+ 5e2t

2

(
e2t − 1 − 2t

)

Substituting u0(x, t),u1(x, t),u2(x, t) in
∑∞

n=0un (x, t) = u (x, t) , we get the
series solution. We have calculated first five terms and first ten terms approximations
of u(x, t) of Equation (12) for error estimation and understanding wave propagation.
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Fig. 1 (a) Initial approximation of Equation (11). (b) Five-term. (c) Ten-term approximation

Table 1 Absolute errors of ten-term approximation solution of Equation (12) by LDM
∣
∣
∣
∣

9∑

n=0
un − u0

∣
∣
∣
∣

∣
∣
∣
∣

9∑

n=0
un −

4∑

n=0
un

∣
∣
∣
∣

x\t t = 0.1 t = 0.2 t = 0.3 t = 0.1 t = 0.2 t = 0.3

0.2 0.0758 0.4648 2.4297 9.0000e-04 0.0584 1.1337
0.4 0.0973 0.5874 3.3524 0.0010 0.0749 1.6296
0.6 0.1317 0.7666 4.7043 0.0013 0.1001 2.3874
0.8 0.1798 1.0147 6.6933 0.0017 0.1391 3.5815
1.0 0.2426 1.3475 9.6258 0.0022 0.1989 5.4741

Five-term : u (x, t) ∼= u0 + u1 + u2 + u3 + u4 (14)

Ten-term : u (x, t) ∼= u0 + u1 + u2 + u3 + · · · + u9 (15)

The graphs of Equations (13), (14) and (15) have been depicted as in Figure 1
through which the wave propagation at the initial stage at five-term approximation
and ten-term approximation can be understood. The error estimation for different
values of t and x in (0,1] is presented in Table 1. From Table 1, it is clear that
absolute error is small for values of x nearer to 0 and it increases towards 1. The
error between ten-term approximation and initial approximation is compared with
the error between ten-term approximation and five-term approximation and rapid
convergence of LDM is achieved.

For k = 1,a = 2,b = 3,n = 2,h(x) = x, Equation (1) becomes

ut = uxx + 2u − 3u2, u (x, 0) = x (16)
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u (x, t) = L−1
(

x

s − 2

)

+ L−1

[
1

s − 2

(

L

(
∂2

∂x2

∞∑

n=0

un (x, t)

))]

− L−1

[
3

s − 2
L
( ∞∑

n=0

An(u)

]

u0 (x, t) = xe2t (17)

u1 (x, t) = 3x2

2

(
e2t − e4t

)

Five-term and ten-term series approximations of u(x, t) of Equation (16) are
calculated here.

Five-term : u (x, t) ∼= u0 + u1 + u2 + u3 + u4 (18)

Ten-term : u (x, t) ∼= u0 + u1 + u2 + u3 + · · · + u9 (19)

The graphs of Equations (13), (18) and (19) have been depicted in Figure 2. The
effect of dissipative parameter and nonlinear terms of Equations (12) and (16) can be
seen by comparing (c) of Figures 1 and 2. The graphs in (a) and (b) of Figures 1 and
2 indicate that the wave profiles of both the solutions are almost same in the initial
stages. The effect can be seen for better approximations. The tabulation of absolute
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Fig. 2 (a) Initial profile of Equation (16). (b) Five-term. (c) Ten-term approximation
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Table 2 Absolute errors of ten-term approximation solution of Equation (16) by LDM
∣
∣
∣
∣

9∑

n=0
un − u0

∣
∣
∣
∣

∣
∣
∣
∣

9∑

n=0
un −

4∑

n=0
un

∣
∣
∣
∣

x\t t = 0.01 t = 0.02 t = 0.03 t = 0.01 t = 0.02 t = 0.03

0.2 0.0015 0.0037 0.0067 5.3563e-09 1.7378e-07 1.3379e-06
0.4 0.0052 0.0111 0.0179 1.8268e-09 5.2021e-08 3.4458e-07
0.6 0.0112 0.0233 0.0361 6.5823e-09 2.2807e-07 1.8641e-06
0.8 0.0196 0.0400 0.0611 1.9298e-08 6.4012e-07 5.0340e-06
1.0 0.0303 0.0611 0.0924 3.0189e-08 9.7614e-07 7.4772e-06

errors for different values of t and x in (0,1] is shown in Table 2. A comparison
of the errors between initial and five-term approximation indicates the efficiency of
LDM. From Table 1 and Table 2, it has been observed that, as diffusive parameter
decreases, there is significant decrease in errors.

3.2 Illustrative Examples of Burgers’ Equation by FDM

Consider

ut + f (u)x + u = νuxx, f (u) = 1

2
u2, u (x, 0) = e−x2

ut + uux + u = νuxx, u (x, 0) = e−x2
(20)

Applying FDM to Equation (20), forward and central difference operator to t and

x, respectively,
ui,j+1−ui,j

#t
+ ui,j

(ui+1,j−ui−1,j
2#x

)+ ui,j = ν
(
ui+1,j−2ui,j+ui−1,j

(#x)2

)

Simplification of the above expression gives the expression for ui,j+1as

ui,j+1 = ui,j

[

1 − #t − #t

2(#x)2
− #t

2#x

(
ui+1,j − ui−1,j

)
]

+ ν#t

2(#x)2

(
ui+1,j + ui−1,j

)

By using initial condition, u (x, 0) = e−x2
, we get the successive approxima-

tions. Here we have calculated first seven approximations for Δt = 0.01,Δx = 0.25,
which are depicted in Figure 3 and the comparison of the same with solution by
LDM (15) is shown in Figure 4. The graph of absolute errors of the Equation (20)
by LDM for different dissipative values is depicted in Figure 5. The numerical
results of u(x, t) and the relative errors for various values of x and t are given
in Table 3. The absolute errors of FDM approximations of the equation (20) for
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Fig. 3 Graph of seven-iteration solution of Equation (20) by FDM (a) ν = 0 (b) ν = 10
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Fig. 4 Graph of eight-term approximation of Equation (20) by LDM (a) ν = 0 (b) ν = 10

v = 0,#t = 0.01,#x = 0.5 have been presented in the Table 4. It can be
noted that u(x, t) decreases with increase in both x and t. Figures 3 and 4 present
the distortion of waves due to combined effect of nonlinearity, source term and
dissipative parameter.

Consider the equation

ut + uux + u = νuxx, u (x, 0) = e−x (21)
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Fig. 5 Graph of error function of the Equation (20) by LDM (a) ν = 0 (b) ν = 0.5 (c) ν = 1.0

Table 3 Relative errors of nine-term approximation solution of Equation (20) by LDM for ν = 0

x
8∑

0
un (x, t) Relative errors

n t 0 1 2 3 1 2 3

0 0.001 0.9990 0.9970 0.9970 0.9970 0.0020 7.5173e-06 7.5113e-06
0.002 0.9980 0.9940 0.9940 0.9940 0.0040 3.0139e-05 3.0139e-05

0.5 0.001 0.7780 0.7778 0.7778 0.7778 1.9288e-04 5.9595e-05 5.9595e-05
0.002 0.7772 0.7769 0.7769 0.7769 3.8657e-04 1.9000e-05 1.9000e-05

1.0 0.001 0.3675 0.3685 0.3685 0.3685 0.0028 3.8392e-05 3.8392e-05
0.002 0.3671 0.3692 0.3691 0.3691 0.0056 1.5934e-04 1.5934e-04

Table 4 Absolute errors of
the solution of Equation (20)
by FDM for
ν = 0,Δt = 0.01,Δx = 0.5

x n = 1 n = 2 n = 3 n = 4 n = 5

0 0.0665 0.0625 0.0584 0.0545 0.0499
0.5 0.0459 0.0428 0.0399 0.0371 0.0344
1 0.0299 0.0277 0.0256 0.0236 0.0218

By proceeding as in Section 3.2 (see consider the equation) and by applying FDM
and LDM on Equation (21), we obtain approximate solution and relative errors.
Figures 6, 7 and 8, respectively, depict the solution by FDM, LDM [15] and error
estimation by LDM for different dissipative values. The error estimation for specific
values of x and t by LDM and FDM is presented in Tables 5 and 6. It is observed
that ten-term approximation and uappr are same for n = 1 only, indicating the rapid
convergence of the method. Comparison of Figure 3 with Figure 6 and Figure 4 with
Figure 7 indicates the influence of initial conditions on the final solution obtained
by both FDM and LDM of given nonlinear equation. Figure 9 presents the graph of
absolute errors of Equation (21) calculated by FDM with ν = 0 clearly showing the
convergence of the method.
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Fig. 6 Surface plot of approximation of Equation (21) by FDM (a) ν = 0 (b) ν = 0.5 (c) ν = 1.0
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Fig. 7 Graph of approximation of Equation (21) by LDM (a) ν = 0 (b) ν = 10
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Table 5 Relative errors of ten-term approximation solution of Equation (21) by LDM for ν = 0
where uappr = ∑9

0 un (x, t)

x
n∑

0
un (x, t) Relative errors

n t uappr 0 1 2 3 8 0 1 2 3 8

0 0.001 1.001 0.999 1.001 1.001 1.001 1.001 0.002 0 0 0 0
0.002 1.0020 0.998 1.002 1.002 1.002 1.002 0.004 0 0 0 0

0.5 0.001 0.6069 0.6059 0.6069 0.6069 0.6069 0.6069 0.0016 0 0 0 0
0.002 0.6073 0.6053 0.6073 0.6073 0.6073 0.6073 0.0032 0 0 0 0

1.0 0.001 0.3680 0.3675 0.3680 0.3680 0.3680 0.3680 0.0013 0 0 0 0
0.002 0.3682 0.3671 0.3681 0.3682 0.3682 0.3682 0.0029 0 0 0 0

Table 6 Absolute errors of
the solution of Equation (21)
by FDM for ν = 0

x n = 1 n = 2 n = 3 n = 4 n = 5

0 0.0665 0.06245 0.05849 0.05446 0.04993
0.5 0.04594 0.04283 0.03987 0.03707 0.03439
1 0.02993 0.02768 0.02557 0.0236 0.02177

Fig. 9 Graph of absolute errors of Equation (21) by FDM for ν = 0

4 Conclusion

In this paper, LDM and FDM have been successfully implemented to solve parabolic
nonlinear PDEs, NWS equation, and Burgers’ equation. The impact of initial
condition and dissipative coefficients on the wave propagation of the solution was
studied through MATLAB graphs of numerical approximations. The convergence
of the methods was ensured through error estimation for specific values of x and
t and graphical representation. The wave profiles of solution of Burgers’ equation
for various dissipative coefficients by both FDM and LDM are compared to show
the rapid convergence of LDM. The approach can be extended to obtain physically
relevant solutions to a wide range of nonlinear PDEs of real life phenomena
involving nonlinear and dissipative effects by considering different source terms
and initial conditions.
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