
Evaluating Performance Portability of
Accelerator Programming Models using

SPEC ACCEL 1.2 Benchmarks

Swen Boehm(B), Swaroop Pophale(B), Verónica G. Vergara Larrea,
and Oscar Hernandez

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
{boehms,pophaless,vergaravg,oscar}@ornl.gov

Abstract. As heterogeneous architectures are becoming mainstream
for HPC systems, application programmers are looking for program-
ming model implementations that offer both performance and portability
across platforms. Two directive-based programming models for acceler-
ator programming that aim at doing this are OpenMP 4/4.5 and Ope-
nACC. Many users want to know the difference between these two pro-
gramming models, the state of their implementations, how to use them,
and evaluate how suitable they are for their applications.

The Standard Performance Evaluation Corporation (SPEC) ACCEL
benchmarks, developed by the SPEC High Performance Group (HPG),
recently released SPEC ACCEL 1.2 benchmark suite to help the eval-
uation of OpenCL, OpenMP 4.5 and OpenACC on different platforms.
In this paper we present our preliminary results that evaluates OpenMP
4.5 and OpenACC on a variety of accelerator-based systems: POWER9
with NVIDIA V100 GPUs (Summit), Intel Xeon Phi 7230 (Percival),
and AMD Bulldozer Opteron with NVIDIA K20x (Titan). Comparing
these benchmarks on different systems gives us insight into the support
for OpenMP and OpenACC and their execution times provide insights
about their quality of implementations provided by different vendors.
We also compare best of OpenMP and OpenACC to see if a particular
programming model favors a particular type of benchmark kernel.

1 Introduction

Benchmarks have been the backbone of performance modeling in HPC since
the invention of parallel processing. They highlight key metrics that are impor-
tant to a specific audience. Focusing on best practices, reproducible results and

This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to pub-
lish or reproduce the published form of this manuscript, or allow others to do so, for
US government purposes. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan (http://energy.
gov/downloads/doe-public-access-plan).

c© Springer Nature Switzerland AG 2018
R. Yokota et al. (Eds.): ISC 2018 Workshops, LNCS 11203, pp. 711–723, 2018.
https://doi.org/10.1007/978-3-030-02465-9_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02465-9_51&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-02465-9_51


712 S. Boehm et al.

behavior are the main attributes that help in wide acceptance of a benchmark/
benchmark suite. Though well maintained scientific applications would be excel-
lent candidates, applications are usually not easily available, require a lot of
domain specific information (e.g. input parameters), or are not ported to a vari-
ety of platforms. The SPEC [5] benchmark suites are a widely accepted set of
benchmarks. They are constantly improved and optimized by vendors and the
community. SPEC ACCEL benchmark suite provides a comparative measure of
parallel compute performance between accelerator platforms. The SPEC ACCEL
benchmarks are written using the offloading model in OpenCL, OpenMP and
OpenACC to program accelerators. As per guidelines set by SPEC, the use of
the benchmarks must conform to the set of rules [4] to ensure comparability and
reproducibility of results.

One of the benefit on using benchmarks is that they help us understand how a
programming model can be used and optimized to achieve good performance on a
given code, compiler, and platform combination. The SPEC ACCEL benchmark
has a set of codes that have been ported to OpenCL, OpenMP 4.5 (offload
model) and OpenACC. The members of SPEC/HPG have discussed and agreed
on the best practices to write the SPEC ACCEL benchmarks with performance
portability in mind.

We find SPEC ACCEL useful to provide answers on the quality of imple-
mentations of OpenMP and OpenACC on a variety of platforms available to us.
It can also be used to understand how programming models work and how they
are used, which is important, since there is no single programming model that
is best suited for all application domains.

The benchmarks are helpful to compare the quality of implementations across
compiler implementations on a given system and across systems. Different ven-
dors have support for one or the other programming model. For example, PGI
has OpenACC implementations for different platforms but no OpenMP support.
So we look at the support for an implementation (OpenMP or OpenACC) for
the SPEC ACCEL 1.2 Benchmarks to see which implementations have a more
complete support for the different kernels exercised in the benchmarks. In this
paper, we focus on evaluating the OpenMP 4.5 (offload) implementations on
IBM XL, clang/LLVM, GCC, and Cray CCE, and OpenACC support in PGI
and GCC compilers. We also evaluate production closed source implementations
vs open source compiler implementations, and see how they match up in terms
of benchmark execution times.

Since compiler support for OpenMP 4.5 is work-in-progress, we use SPEC
ACCEL benchmarks (1.2) as a reference to measure where we are in terms
OpenMP and OpenACC functionality and performance support. We use the
SPEC/ACCEL benchmarks to report the execution times. None of these results
are reportable runs because the majority of compilers do not pass all the bench-
marks. SPEC/HPG also documents official results and provides a wide range of
benchmark results for a variety of systems and compilers. Results can be found
at http://www.spec.org/accel.

http://www.spec.org/accel


Evaluating Performance Portability of Accelerator Programming Models 713

2 Motivation

The OpenMP 4.0 specification [10] released in July 2013 introduced the OpenMP
Accelerator Model. In the specification, the OpenMP API was extended to sup-
port accelerator and SIMD programming, allowing the user to specify regions of
code that can be offloaded to one or more target devices. More recently, with the
release of the OpenMP 4.5 specification [11], support for the accelerator model
was further improved. Several major changes in OpenMP 4.5 affect the acceler-
ator model including: new default data-mapping attributes, unstructured data
mapping support and asynchronous execution, as well as runtime routines for
memory management and extended attributes for SIMD loops, among others.

One of the goals of this paper is to evaluate the status of OpenMP 4.5 support
on multiple architecture including NVIDIA GPUs and Intel Xeon Phi. We want
to understand the maturity of OpenMP 4.5 offload support and how it compares
to OpenACC across architectures.

Given the prescriptive nature of OpenMP, the SPEC/HPG organization
designed the SPEC/ACCEL 1.2 OpenMP 4.5 benchmark implementation to
rely on default behaviors to give as much freedom to the compiler and runtimes
to optimize for a given architecture, without making optimization assumptions
that favors one architecture over another.

For example, when a teams construct is executed, a league of threads is
created, where the total number of teams is implementation defined but must
be less than or equal to the number of teams specified by the num teams clause.
If the user does not specify the num teams clause, then the number of teams is
left completely to the implementation.

There are many concepts in the OpenMP and OpenACC specification that
are implementation defined. All the implementation defined behaviors may have
a significant effect on the performance of an implementation. Although deep
analysis of the different OpenMP and OpenACC constructs is outside the scope
of this paper, we provide the foundation by analyzing the execution times of the
SPEC ACCEL 1.2 benchmarks.

3 The SPEC ACCEL Benchmark Suite

SPEC ACCEL 1.2 is a collection of the following benchmarks:

1. Stencil
The stencil code represents an iterative Jacobi solver. The heat equation is
represented by a 3-D structured grid.

2. Lattice Boltzmann Method (LBM)
This program implements the LBM to simulate behavior of incompressible
fluids in 3D. This simulation represents the most critical and computationally
important part of calculations used in material science.

3. MRI-Q
This benchmark attempts to reconstruct a MRI. This is a compute bound
problem where a large set of input is processed. The result is the Q Matrix



714 S. Boehm et al.

where each element of the Q matrix is computed by the summation of con-
tributions from all trajectory sample points.

4. Molecular Dynamics (MD)
This benchmark performs molecular dynamics simulations of stellar objects.
The simulations are applicable to all dense nuclear matter.

5. PALM
The benchmark simulates large-eddy simulation (LES) used for atmospheric
and oceanic flows.

6. Clover Leaf
This benchmark uses domain decomposition to solve the compressible Euler
Equations.

7. Conjugate Gradient (CG)
The CG benchmark performs irregular long distance communication to solve
an unstructured sparse linear system.

8. Seismic Wave Modeling
The benchmark solves two and three dimensional isotropic or anisotropic
elastic, viscoelastic or poroelastic wave equation using a finite-difference
method.

9. Scalar Penta-diagonal solver(SP)
The benchmark solves scalar, pentadiagonal equations to simulate synthetic
CFD problem solver. Both Fortran and C versions of this benchmark are
included in the suite.

10. Mini Ghost
This benchmark supports Bulk Synchronous Parallel (BSP) model for finite
difference stencil computation.

11. ILBDC
The benchmark kernel is a component of a flow solver that simulates the
collision-propagation routine of an advanced 3-D lattice Boltzmann flow
solver.

12. Swim
The benchmark is a weather prediction benchmark that use finite-difference
approximation.

13. Block Tridiagonal (BT) Solver
The benchmark solves a 3D discretization of Naiver-Stokes equation.

It is important to note that we use these benchmarks under the Academic license
and as such the results presented here are for scientific curiosity only and may
not be included as official results for the different architectures we are exploring.

4 SPEC ACCEL 1.2 Results

In this section we present our results. First we describe the systems where we
run, then we report our findings on the different systems from the point of view of
functionality. Then, we present the timings we found for OpenMP 4.5 offload and
OpenACC. At the end we compare production closed-source implementations of
OpenMP 4.5 and OpenACC versus open-source implementations.



Evaluating Performance Portability of Accelerator Programming Models 715

4.1 Experimental Systems

For this study, we present results obtained on the OLCF’s flagship systems:
Summit [6] is the OLCF’s next generation high performance supercomputer.

Summit compute nodes are IBM Power9 AC922 servers with two 22-core 3.45
GHz (turbo) IBM POWER9 processors. Each core supports 4-way SMT. Sum-
mit compute nodes have 512 GB of DDR4 memory and 96 GB of HBM2 memory,
as well as 1.6 TB non-volatile memory that can be used as a burst buffer. Each
compute node has 6 NVIDIA Tesla V100 Volta GPUs connected via NVLINK2
which provides up to 25 GB/s unidirectional and 50 GB/s bidirectional band-
width between GPUs and from the CPU to the GPU. Summit compute nodes are
interconnected via Mellanox EDR InifiniBand in a non-blocking fat-tree topol-
ogy.

Titan [8] is the OLCF’s flagship supercomputer. Titan is a Cray XK7 system
with 18,688 compute nodes each with a 16-core 2.2 GHz AMD Opteron 6274
Interlagos CPU, 32 GB of RAM, and one NVIDIA Kepler K20X GPU. Titan
nodes are connected via Cray’s high speed Gemini interconnect.

Percival [3] is one of the supporting systems available at the OLCF and it was
deployed to assist with performance portability efforts. Percival is a 168-node
Cray XC40 supercomputer. Each Percival node is equipped with one 64-core
1.30GHz Intel Xeon Phi 7230 (KNL) processor and 110 GB of RAM. Percival
nodes are connected via Cray’s Aries proprietary interconnect in a Dragonfly
topology.

We execute reportable runs (three iterations of each benchmark, with the run-
time averaged over those three runs). For more details on running the SpecAC-
CEL benchmarks see [4].

4.2 Performance

In this section we present the timing information of the benchmarks for OpenMP
4.5 and OpenACC using different compilers and platforms.

4.3 Correctness and Functionality

Table 1 shows successes and failures (Verification, Runtime, Compile time errors)
of SPEC ACCEL 1.2 benchmarks on Summit, Titan and Percival. We can see
that in terms of functional implementations the PGI OpenACC supports major-
ity of the benchmarks on all of the systems. Intel compiler on Xeon Phi has the
most support for OpenMP 4.5. On Summit, the XL compiler passes the most
benchmarks and the Clang/LLVM compiler passes the majority of the C bench-
marks. The GCC compiler is still in the early stages of supporting OpenMP 4.5
offload on NVIDIA GPUs, hence it only compiles and (correctly) executes three
of the fifteen benchmarks.

Experiments on Summit are performed using CUDA 9.2.64, PGI 18.3 and
XL V16.1.0 (Beta 4), GCC 7.2 and CLANG (ykt branch) where PGI and GCC
provide support for OpenACC and IBM XL and CLANG provide support for



716 S. Boehm et al.

Table 1. Successes and failures of running the SPEC ACCEL 1.2 benchmarks on
different architectures with OpenMP 4.5 and OpenACC. The compiler versions used
are: On Summit: PGI 18.3, XL V16.1.0, Clang/LLVM (ykt branch), GCC 7.2 (gomp
branch), on Titan Cray CCE 8.7.0, PGI 18.4 and Percival Intel 18.0.0.128 and PGI
18.5

Summit (NV100 GPU) Titan (K20X GPU) Percival (Xeon Phi)

XL PGI GCC Clang PGI CCE PGI Intel

OMP ACC ACC OMP OMP ACC OMP ACC OMP

Stencil ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

LBM ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

MRI-Q ✓ ✓ ✓ ✗RE ✓ ✓ ✓ ✓ ✓

MD ✗VE ✓ ✓ ✗RE ✓ ✗RE ✓ ✗CE

PALM ✗RE ✓ ✓ ✗RE ✗CE ✗CE ✓ ✓

EP ✓ ✓ ✓ ✗VE ✓ ✓ ✓ ✓ ✓

CLVRLEAF ✓ ✓ ✓ ✗RE ✓ ✗VE ✓ ✓

CG ✓ ✓ ✓ ✗VE ✗RE ✓ ✓ ✓ ✓

SEISMIC ✓ ✓ ✓ ✗RE ✓ ✗RE ✓ ✓

SP F ✗RE ✓ ✓ ✗RE ✓ ✗RE ✓ ✓

C ✗VE ✓ ✓ ✗RE ✓ ✓ ✓ ✓ ✓

MiniGhost ✗RE ✓ ✓ ✗RE ✗CE ✗RE ✗CE ✗CE

LBDC ✓ ✓ ✓ ✓ ✓ ✗RE ✓ ✓

Swim ✗NR ✓ ✓ ✗RE ✓ ✗RE ✓ ✓

BT ✗NR ✓ ✓ ✗RE ✓ ✓ ✓ ✓ ✓

Passed 8 15 15* 3 6 13 7 14 13

*GCC/OpenACC only offloads 4 out of the 15 benchmarks, the remaining 11 benchmarks
utilize the CPU.
VE: Verification error
RE: Runtime error
CE: compile error
NR: benchmark excluded from run

OpenMP. Figure 1 compares the timings for SPEC ACCEL 1.2 OpenACC bench-
marks when using the PGI 18.3 and GCC 7.2 (GOMP branch) compilers, both
using CUDA 9.2.64. We can see that of the fifteen benchmarks PGI has bet-
ter execution times for all except two (LBM and LBDC). From the timings we
observe that PGI has a more optimized implementation for OpenACC. Another
reason for the differences in the timing is that GCC only offloads STENCIL,
LBM, MRI-Q, and LBDC to the device as GCC has only functional support for
ACC kernels (without offloading) used in the remaining benchmarks. Both PGI
and GCC execute all the benchmarks successfully showing that their OpenACC
functionality support is complete.

Figure 2 shows the timings for SPEC ACCEL 1.2 OpenMP 4.5 (offload)
benchmarks when using the XL V16.1.0 (Beta 4), the CLANG (ykt branch)
and GCC 7.2 (GOMP branch). The CLANG specific version used is an IBM
version loosely based on the latest CLANG version available in trunk. Clang



Evaluating Performance Portability of Accelerator Programming Models 717

Fig. 1. Execution times of SPEC ACCEL 1.2 OpenACC using the PGI 18.3 and GCC
7.2 (GOMP branch) with CUDA 9.2.64 on Summit

compiles most of the C benchmarks (Stencil, LBM, MRI-Q, EP, CG, SP(C),
BT). It produces a runtime error for CG. CLVRLEAF and Minighost are mixed
C and Fortran codes, and are not supported using CLANG. The XL compiler
always shows better timing results than CLANG on the sub-set of benchmarks
that both implementations compile and execute correctly. However, XL does not
have execution results for BT (excluded from run) and SP-C (verification error).
GCC has minimal support for OpenMP 4.5 offload, as only three of the fifteen
benchmarks compile and execute correctly. However we observe that for LBM it
outperforms the CLANG compiler.

Figure 3 compares the execution times of SPEC ACCEL 1.2 with production
implementations from PGI for OpenACC and XL for OpenMP on Summit. Both
compilers use the CUDA 9.2.64 tool chains. From Fig. 3 we see that OpenACC
(PGI) has better performance for four of the benchmarks (MRI-Q, EP, Clover-
Leaf, CG) when compared to the OpenMP 4.5 (XL). Even when XL compiler
only compiles and executes seven of the fifteen OpenACC benchmarks, three of
the OpenMP 4.5 benchmarks (Stencil, LBM, Seismic) show better performance
than OpenACC. This indicates that OpenMP 4.5, though newer, is promising
and can have better performance compared to OpenACC. Maturity of the com-
piler is a relevant factor, as OpenACC implementations have been available for
a longer time.



718 S. Boehm et al.

Fig. 2. Execution times of SPEC ACCEL 1.2 OpenMP 4.5 (offload) using XL V16.1.0
(Beta 4), Clang (ykt branch) and GCC 7.2 (GOMP branch) with CUDA 9.2.64 on
Summit

Figure 4 shows the SPEC ACCEL 1.2 results on Titan for OpenACC and
OpenMP 4.5 (offload) using the PGI 18.4 and Cray CCE 8.7.0 compilers. Ope-
nACC has better performance on four of the benchmarks (STENCIL, MRI-Q,
SP C and BT) and OpenMP 4.5 offload has better performance on three of
the benchmarks (LBM, EP, and CG). PGI fails to compile two of the bench-
marks and Cray fails to pass (because of compilation, runtime and verification
errors) eight of the benchmarks. This is evidence that, on Titan, the OpenACC
implementation PGI provides is more mature than the OpenMP 4.5 offload
implementation Cray provides when compiling the SPEC 1.2 benchmarks.

Figure 5 shows the SPEC ACCEL 1.2 benchmarks timings on Percival. On
this system, OpenACC has better performance than OpenMP 4.5 offload for four
of the benchmarks (Stencil, LBM, MRI-Q, MD) when using the PGI 18.5 com-
piler for OpenACC and the Intel 18.0.0.128 compiler for OpenMP 4.5 (offload).
OpenMP 4.5 has better performance for nine of the benchmarks (EP, CLVR-
LEAF, CG, Seismic, SP F, SP C, LBDC, Swim, BT). The PGI compiler fails to
produce results for two of the OpenACC benchmarks (PALM and Minighost)
and Intel fails to pass one of the OpenMP benchmarks (Minighost) due to com-
pilation errors.



Evaluating Performance Portability of Accelerator Programming Models 719

Fig. 3. Execution times of the SPEC ACCEL 1.2 OpenACC and OpenMP 4.5 (offload)
benchmarks using PGI 18.3 and XL V16.1.0 (Beta 4) with CUDA 9.2.64 on Summit

Fig. 4. Execution times of the SPEC ACCEL 1.2 OpenACC and OpenMP 4.5 (offload)
benchmarks using the Cray 8.7.0 and PGI 18.4 compilers on Titan



720 S. Boehm et al.

Fig. 5. Execution times of the SPEC ACCEL 1.2 OpenACC and OpenMP 4.5 (offload)
benchmarks using Intel 18.0.0.128 and PGI 18.5 compilers on Percival.

Fig. 6. OpenMP’s Performance Improvement over OpenACC



Evaluating Performance Portability of Accelerator Programming Models 721

4.4 OpenMP and OpenACC Performance Comparison

Since the benchmarks target the accelerator offload aspect for both OpenMP
4.5 and OpenACC, it is fair to compare the execution times as the algorithms
are very similar. The performance improvement or relative speed up, shown in
Fig. 6, is calculated by first choosing, for each platform, the best execution times
for OpenACC and OpenMP and then dividing the OpenACC timing by the
OpenMP for individual benchmarks.

For example, for Summit (Power 9 + NV100) we compare PGI’s OpenACC
with XL’s OpenMP. For Percival we compare PGI’s OpenACC and Intel’s
OpenMP implementations. While for Titan we use PGI’s OpenACC and Cray’s
OpenMP implementations. From Fig. 6 it is clear that on most platforms Ope-
nACC performs better than OpenMP 4.5 (offload). One of the reasons for it is
that the OpenACC specification has been formalized for a longer time (Ope-
nACC 1.0 was ratified in 2011), giving vendors time to optimize their implemen-
tation.

In contrast OpenMP first introduced accelerator support with OpenMP 4.0
[10] in 2013. That said, the figure also shows that for certain benchmarks like
LBM OpenMP does better consistently across most platforms.

5 Related Work

EPCC has developed another suite of microbenchmarks that has both OpenMP
and OpenACC variants. The OpenMP [2] versions focus on measuring the syn-
chronization, loop scheduling and array operations overheads in the OpenMP
runtime library. The benchmarks support OpenMP 3.1 API [12] and have not
been modified to use target devices (introduced in OpenMP 4.0 and extended
in OpenMP 4.5 Specification [11]). The OpenACC EPCC [1] microbenchmarks
mimic kernels commonly seen in scientific codes. They focuses on low-level oper-
ations and are designed to test raw performance of compilers and hardware.

Currently there are no publicly accessible standardized OpenMP 4.5 bench-
marks but an effort to build a Validation and Verification suite is underway
[13] as part of a more elaborate Exascale Computing Project (ECP) - SOL-
LVE. The OpenACC Standard [9] first introduced in 2011, focuses solely on the
Application Program Interface (API) for compiler directives that offload com-
pute kernels from a host CPU to an attached accelerator. Extensive work has
been done in the field of benchmarks and validation and verification suites for
OpenACC [7,14].

6 Conclusion

This paper details our findings when trying to compile and execute SPEC
ACCEL 1.2 benchmarks on our production systems: Titan, Summit, and Perci-
val.



722 S. Boehm et al.

In the findings from these experiments we can see that the OpenACC imple-
mentations are more functionally mature than the OpenMP 4.5 implementations.
However, performance of OpenACC and OpenMP 4.5 (offload) varies depend-
ing on the compiler and platform. This is an indication that OpenMP 4.5 is
becoming more mature and it can be at par with OpenACC implementations.
Since device offloading in OpenMP is a relatively new concept it comes as no
surprise that there are is more support for OpenACC than OpenMP. This is
clear from the results across all systems, particularly Summit where we see fif-
teen OpenACC benchmarks in comparison to eight OpenMP benchmarks that
have compiled and executed correctly.

For Summit we see that open source implementations of both OpenACC and
OpenMP 4.5 (offload) are starting to come closer to production implementa-
tions for the case of GCC/OpenACC and CLANG/OpenMP 4.5. However, the
GCC/OpenMP 4.5 (offload) is still in its early stages of supporting OpenMP 4.5
(offload) functionally and performance on GPUs.

Cray (Titan) also does not support OpenMP offloading as well as it does
OpenACC, with thirteen OpenACC and only seven OpenMP benchmarks that
have compiled and executed correctly.

For Intel we see that the performance gap between OpenMP and OpenACC
narrows a little, with OpenACC still getting better performance for most bench-
marks. But the overall high execution times with Intel and PGI compilers on
Percival, when compared to other architectures, hints at the platform not being
optimized to support accelerator models like OpenMP and OpenACC.

Acknowledgments. This material is based upon work supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Advanced Scientific Computing Research,
under contract number DE-AC05-00OR22725. This research used resources of the Oak
Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy under Contract
No. DE-AC05-00OR22725.

References

1. EPCC OpenACC Microbenchmarks. https://www.epcc.ed.ac.uk/research/comp
uting/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-
suite

2. EPCC OpenMP Microbenchmarks. https://www.epcc.ed.ac.uk/research/compu
ting/performance-characterisation-and-benchmarking/epcc-openmp-micro-bench
mark-suite

3. Percival quickstart guide. https://www.olcf.ornl.gov/percival-quickstart-guide/
4. SPEC ACCEL: Run and Reporting Rules. https://www.spec.org/accel/docs/

runrules.html
5. Standard Performance Evaluation Corporation. https://www.spec.org/
6. Summit: Scale new heights. discover new solutions. https://www.olcf.ornl.gov/

summit/

https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.olcf.ornl.gov/percival-quickstart-guide/
https://www.spec.org/accel/docs/runrules.html
https://www.spec.org/accel/docs/runrules.html
https://www.spec.org/
https://www.olcf.ornl.gov/summit/
https://www.olcf.ornl.gov/summit/


Evaluating Performance Portability of Accelerator Programming Models 723

7. Friedline, K., Chandrasekaran, S., Lopez, M.G., Hernandez, O.: OpenACC 2.5
validation testsuite targeting multiple architectures. In: Kunkel, J.M., Yokota, R.,
Taufer, M., Shalf, J. (eds.) ISC High Performance 2017. LNCS, vol. 10524, pp.
557–575. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67630-2 39

8. Oak Ridge National Lab: Titan supercomputer. https://www.olcf.ornl.gov/titan/
9. OpenACC: OpenACC, Directives for Accelerators. http://www.openacc.org/

10. OpenMP: Openmp 4.0 specification. http://www.openmp.org/wp-content/
uploads/openmp-4.0.pdf

11. OpenMP: Openmp 4.5 specification. http://www.openmp.org/wp-content/
uploads/openmp-4.5.pdf

12. OpenMP Validation and Verification Suite: Openmp 3.1 Specification. https://
github.com/sunitachandra/omp-validation

13. Pophale, S., Diaz, J.M., Hernandez, O., Bernholdt, D., Chandrasekaran, S.:
OpenMP 4.5 Validation and Verification Suite for Device Offload. https://crpl.
cis.udel.edu/ompvvsollve/

14. Wang, C., Xu, R., Chandrasekaran, S., Chapman, B., Hernandez, O.: A validation
testsuite for OpenACC 1.0. In: 2014 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 1407–1416. IEEE (2014)

https://doi.org/10.1007/978-3-319-67630-2_39
https://www.olcf.ornl.gov/titan/
http://www.openacc.org/
http://www.openmp.org/wp-content/uploads/openmp-4.0.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.0.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://github.com/sunitachandra/omp-validation
https://github.com/sunitachandra/omp-validation
https://crpl.cis.udel.edu/ompvvsollve/
https://crpl.cis.udel.edu/ompvvsollve/

	Evaluating Performance Portability of Accelerator Programming Models using SPEC ACCEL 1.2 Benchmarks
	1 Introduction
	2 Motivation
	3 The SPEC ACCEL Benchmark Suite
	4 SPEC ACCEL 1.2 Results
	4.1 Experimental Systems
	4.2 Performance
	4.3 Correctness and Functionality
	4.4 OpenMP and OpenACC Performance Comparison

	5 Related Work
	6 Conclusion
	References




