
Lessons Learned from a Decade
of Providing Interactive, On-Demand

High Performance Computing to
Scientists and Engineers

Julia Mullen1, Albert Reuther1(B) , William Arcand1, Bill Bergeron1,
David Bestor1, Chansup Byun1, Vijay Gadepally1,2 , Michael Houle1,

Matthew Hubbell1, Michael Jones1, Anna Klein1,
Peter Michaleas1, Lauren Milechin2 , Andrew Prout1 , Antonio Rosa1,

Siddharth Samsi1, Charles Yee1, and Jeremy Kepner1,2

1 MIT Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA
{jsm,reuther,warchand,bbergeron,david.bestor,cbyun,vijayg,michael.houle,

mhubbell,michael.jones,anna.klein,pmichaleas,lauren.milechin,aprout,

antonio.rosa,sid,yee,kepner}@LL.mit.edu
2 Massachusetts Institute of Technology,

77 Massachusetts Avenue, Cambridge, MA 02139, USA
lauren.milechin@mit.edu

Abstract. For decades, the use of HPC systems was limited to those
in the physical sciences who had mastered their domain in conjunction
with a deep understanding of HPC architectures and algorithms. Dur-
ing these same decades, consumer computing device advances produced
tablets and smartphones that allow millions of children to interactively
develop and share code projects across the globe. As the HPC community
faces the challenges associated with guiding researchers from disciplines
using high productivity interactive tools to effective use of HPC systems,
it seems appropriate to revisit the assumptions surrounding the neces-
sary skills required for access to large computational systems. For over
a decade, MIT Lincoln Laboratory has been supporting interactive, on-
demand high performance computing by seamlessly integrating familiar
high productivity tools to provide users with an increased number of
design turns, rapid prototyping capability, and faster time to insight. In
this paper, we discuss the lessons learned while supporting interactive,
on-demand high performance computing from the perspectives of the
users and the team supporting the users and the system. Building on
these lessons, we present an overview of current needs and the technical
solutions we are building to lower the barrier to entry for new users from
the humanities, social, and biological sciences.

This material is based upon work supported by the Assistant Secretary of Defense
for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 and/or
FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of
the Assistant Secretary of Defense for Research and Engineering.

c© Springer Nature Switzerland AG 2018
R. Yokota et al. (Eds.): ISC 2018 Workshops, LNCS 11203, pp. 655–668, 2018.
https://doi.org/10.1007/978-3-030-02465-9_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02465-9_47&domain=pdf
http://orcid.org/0000-0002-3168-3663
http://orcid.org/0000-0002-4598-2808
http://orcid.org/0000-0002-0554-3624
http://orcid.org/0000-0002-5137-0672
http://orcid.org/0000-0001-9668-2613
https://doi.org/10.1007/978-3-030-02465-9_47


656 J. Mullen et al.

Keywords: HPC abstractions · Interactive On-demand HPC

1 Introduction

Traditionally supercomputers and high performance computing (HPC) were the
domain of experts with deep understanding of their scientific discipline, computer
architecture and software. For virtually the entire history of HPC, the standard
path to developing the skills necessary for supercomputer usage included gradu-
ate programs in the physical sciences and engineering. These research programs,
with applications requiring massive computational effort, prepared students who
had the time, inclination and mandate from their advisors to learn how to pro-
gram and exploit the computational power of supercomputers. Many of these
graduates went on to research positions at centers, research laboratories, and
universities where they trained the next generation of HPC researchers thereby
growing the HPC community and reinforcing the notion of a single path to HPC.

This single learning path may have been appropriate when computational
approaches to science, engineering and design were in their infancy, but today
computational approaches to problem solving have become commonplace, used
by researchers from engineering and the physical sciences and more recently by
members of the medical and social sciences and the humanities. While many
engineering and science disciplines have long included computing in their under-
graduate and graduate programs, such academic preparation is minimal to non-
existent for many of the disciplines that have recently adopted computational
solution strategies. For these research communities the single path to HPC is a
significant deterrent. Furthermore, industry relies on the use of HPC systems to
stay globally competitive [26] but the majority of the industrial workforce has
little or no HPC experience. Developing HPC experience among this portion of
the workforce calls for new learning paths designed for mid-career professionals.

This friction between the steep requirements of a single pathway to HPC use
and the need for high productivity HPC systems is not new. As few as 15 years
ago, prior to the development of MathWorks’ Parallel MATLAB R© product and
the parallel versions of standard engineering design tools, e.g., Fluent, Ansys,
NASTRAN, etc., the science and engineering community faced the same divide:
a small number of researchers became expert HPC users while the vast major-
ity of scientists and engineers used interactive, high productivity tools on their
desktop systems, upgrading hardware when greater performance was required
or available. However, as processor clock rates stagnated and hardware improve-
ments because modestly incremental, hardware upgrades no longer delivered
large gains. From this experience of the breaking down of Moore’s Law, many
have begun to realize that HPC is required.

It is easy to understand the limits of this single learning path for the broad
community of scientists and engineers who faced increasingly complicated appli-
cations but no clear path to merging the productivity of interactive tools with
the performance of compute clusters and supercomputers. For these researchers
the traditional path to greater performance required building the software frame-



Lessons Learned Providing Interactive HPC 657

works in a compiled language, learning to create batch scripts, and becoming
accustomed to the software testing and development delays associated with batch
systems. For many, the costs associated with these changes in terms of both time
and distraction were perceived to be greater than the reward. For them, another
approach was necessary.

At MIT Lincoln Laboratory a standard prototyping process for analysts
includes developing, testing and debugging in MATLAB R© to speed up the design
and prototyping phase before passing the engineering code to a team of expert
real time coders. The real time team is responsible for converting the MATLAB R©

to C or C++ code and tuning it for the target architecture [15]. This division
of labor is ideal for certain situations, such as very large, well funded projects,
but is not generally feasible for smaller companies and teams. For smaller, time
critical projects, a merger of high productivity and high performance is essential.

For almost 15 years the Lincoln Laboratory Supercomputing Center (LLSC,
formerly the Lincoln Laboratory Grid (LLGrid) team) at MIT Lincoln Labo-
ratory has provided interactive on-demand cluster computing resources to over
1,000 researchers at the Laboratory [1]. As part of the LLSC mission to deliver
new and innovative technologies and methods, we have developed and built the
MIT SuperCloud [21] to enabling scientists and engineers to quickly ramp up
the pace of their research and rapid prototyping by leveraging big compute and
big data storage assets. The SuperCloud is a fusion of the four large comput-
ing ecosystems: supercomputing, enterprise computing, big data and traditional
databases into a coherent, unified platform. The MIT SuperCloud has spurred
the development of a number of cross-ecosystem innovations in high performance
databases [3,13]; database management [19]; data protection [14]; database fed-
eration [6,11]; data analytics [12]; dynamic virtual machines [8,23] and system
monitoring [7].

In general, interactive, on-demand supercomputing is very useful for a variety
of research, engineering, and prototyping activities including algorithm develop-
ment, data analysis, machine learning training, application steering, and visu-
alization. Over the past 15 years, the common Laboratory use cases encompass
many of these activities and have included algorithm development for sensor sig-
nal processing; development of multiple program, multiple data (MPMD) real
time signal processing systems; high throughput computing for aircraft collision
avoidance system testing; biomedical analytics to develop medical support tech-
niques for personnel in remote areas; and prototyping capabilities for a range of
systems. Unlike traditional HPC applications, most of these capabilities involve
prototyping efforts for multi-year, but not multi-decade, mission-driven programs
making it even more important that researchers are able to use familiar inter-
active tools and achieve a greater number of design cycles per day. To enable
an interactive high performance development environment, our team turned the
traditional HPC paradigm on its head. Rather than providing a batch system,
training in MPI, and assistance porting serial code to a supercomputer, we devel-
oped the tools and training to bring HPC capabilities to the researchers’ desktops
and laptops. As common use cases and staff computational preparation change,



658 J. Mullen et al.

we routinely update our tools so that we can provide relevant interactive research
computing environments. From our initial experience, standing up an interactive
on-demand cluster computing resource through our current support of machine
learning, data analytics and user portals, we have focused on creating multiple
paths to HPC usage. In this paper, we present and discuss the lessons we have
learned and how they apply to the larger HPC ecosystem.

The paper is organized as follows, we present the high-level lessons that we
have learned in Sect. 2. In Sect. 3 we dive deeper into the lessons we have learned
about provisioning an appropriate system, creating a software abstraction layer
and providing the training required to support interactive HPC. Section 4 con-
siders standard HPC metrics and the reframing necessary to create metrics that
capture the value of interactive HPC for smaller centers, universities, and indus-
try. We close with a summary.

2 Lessons Learned

The key elements required to provide interactive on-demand HPC to a user base
spanning neophytes to experts can be summed by four high level ideas. These
four key elements are: broadening the definition of interactive within the HPC
community; expanding the HPC ecosystem; re-architect the HPC system, where
by system we include system architecture, software stack, and user support;
and reframing the success metrics. Two of these key elements, the idea related
to broadening the definition of interactive within the HPC community and the
related idea of expanding the HPC community are philosophical in nature and
are described within this section. The remaining elements are primarily struc-
tural and require a fuller description. These elements, the manner in which we
re-architect the HPC system and reframing the success metric are described in
this section and detailed in Sects. 3 and 4, respectively.

2.1 Broadening the Definition of Interactive HPC

First and foremost, we recognize that there is a large middle ground of users
who want computational environments that balance performance and usability.
In practice this translates to redefining the term “interactive High Performance
Computing”. Virtually every center sets aside a partition of compute cores for
debugging and interactive use during normal working hours. Generally, these
interactive partitions provide access to a command shell where a user can build,
submit and track a compute job without having to interface through a batch
scheduler or specifically request resources. For an expert HPC user familiar with
the Linux command line and batch processing workflows, this partition pro-
vides a reasonable way to debug compiled code and scripts, including submission
scripts, on a small scale prior to launching production level jobs. However, for the
researcher who is familiar with a modern Integrated Development Environment
(IDE), such a workflow is convoluted, confusing and opaque. A first step in sup-
porting the work of a more general researcher base is to recognize the extensive



Lessons Learned Providing Interactive HPC 659

use and value of IDEs and develop ways to bring them into the HPC envi-
ronment. When the LLGrid project started, there were no widespread software
tools that connected the IDE at a desktop to more robust compute resources.
Over the past decade or so, pMatlab [1], StarP [5] and MATLAB R© Distributed
Compute Server (MDCS) have filled this void for researchers using MATLAB R©
while other commercial software products have created versions of their products
that run seamlessly on parallel or high throughput systems but present the user
with a familiar front end (e.g., Julia, Python, Mathematica, Fluent, NASTRAN,
Anysys, and FEKO). For these applications and users, interactive assumes that
there is a desktop or browser user interface, and the user will be able to simply hit
the return key and the job will launch and run immediately. This is interactive
and on-demand, matching the interactive desktop experience but with greater
memory, compute and network resources. Starting from this broader definition
of interactive HPC it is much easier to design the appropriate architecture and
develop the necessary middleware tools to expand the HPC user community.

2.2 Re-architecting for Interactive HPC

At its essence, creating an interactive on-demand HPC environment means bridg-
ing the gap between standard HPC architectures and the user’s desktop experi-
ence. An interactive on-demand system, like any HPC system is built with login
nodes, a scheduler, compute nodes, a shared central file system and a network.
The particular hardware selection and configuration—i.e., the amount of RAM,
number of cores, network technology and topology, etc.—is a tradeoff between
cost and the requirements of a set of common user applications. While the test-
ing confirms that the applications will run, providing a compute system is not
enough to attract users from beyond the expert user base trained through the
graduate student pathway. To increase adoption from a broader segment of the
scientific, engineering, business, social science and humanities domains as well
as the mid-career professionals in industry we need to provide an HPC frame-
work that is approachable and reliable. The components of such a framework
include the compute system mentioned above along with an OS and the nec-
essary systems tools, which we will call the system, and a layer of software, or
middleware, between the system and user applications, which we will call the
software. This middleware layer is where the technical challenges of supporting
broader computing communities arise and where HPC expertise is essential to
creating tools to lower the barrier to entry. Section 3 details the effective solu-
tion we have developed and particular lessons we have learned through their
deployment.

2.3 Reframing the Metrics of Success

Virtually all HPC centers report the percentage of system utilization as their
metric of success. This choice of metrics often leads to queuing systems and user
behavior designed to feed the system with the type of jobs that yield high utiliza-
tion. However, these utilization-based queuing practices are often at odds with



660 J. Mullen et al.

rapid prototyping of algorithms and simulations, exploration of large datasets
and real time steering of complicated multi-physics simulations [22]. Job queu-
ing systems are configured to accumulate and maintain a backlog of large and
small jobs so that as soon as an executing job completes, one or more jobs can
replace it and execute. This encourages user behavior that includes submitting a
multitude of jobs with many different parameters thus accumulating even more
jobs in the queue backlog. Section 4 revisits work for DARPA’s High Produc-
tivity Computing System program where a productivity metric was developed
as part of a larger analysis of HPC Return On Investment for a broad range of
applications and research domains.

2.4 Expanding the HPC Ecosystem

There will always be a place for large, batch processing systems that provide
expert users the resources to attain the best performance for a given applica-
tion or analytic. The case that we make here is not that all systems need to
be interactive, but rather that we need to expand our vision of what an HPC
ecosystem includes and how it supports research, design and prototyping at all
levels. Across a spectrum of applications and centers, the weight given to perfor-
mance versus productivity will and should vary based on the user applications
to incorporate the computing regimes illustrated in Fig. 1. This approach means
that as we reach out to new communities familiar with IDEs and workflows that
incorporate research portals we need to rethink our presumed prerequisites. The
community has put significant effort into teaching new users the basics of Linux
and the command line interface and the gritty details of batch scheduler sys-
tems and MPI [24,27]—effort that reinforces the belief that new user communi-
ties must adopt our workflows and tools. These efforts are attempts at building
shortcuts or mid-career bootcamps toward our single educational path to HPC.
Re-evaluating our assumptions of what an HPC ecosystem includes offers the
opportunity for HPC experts to apply Design Thinking [25] to the design of new
paths to HPC usage for communities who require not just performance but a
balance of productivity and performance. The first step in Design Thinking is to
capture and understand the user perspective, goals and workflow; starting with
this step increases the likelihood that tools and training will lead to additional
pathways to HPC.

3 Architecture Requirements for Interactive HPC

As the community begins capturing the needs of these communities with an eye
toward expanding the number of pathways to HPC resources, it is important to
remember how we addressed a similar challenge: bringing an analyst and research
community to using high productivity languages and interactive tools into the
parallel and distributed computing environment. In the early 2000s, MIT Lin-
coln Laboratory staff were seeing steady increases in the fidelity and capability
of sensors, leading to increasingly sophisticated sensor signal and image process-
ing algorithms [1]. The level of complexity, combined with the sharp increase



Lessons Learned Providing Interactive HPC 661

Fig. 1. A notional view of research computing regimes. The Desktop Computing region
involves jobs that execute in less than five minutes, often for exploration and debugging.
The Classic Supercomputing jobs are those that run for over three hours. Finally, the
Interactive Supercomputing jobs run for between five minutes and three hours and are
usually jobs that involve rapid turnarounds for insight.

in data to be processed and the end of Moore’s Law [4] meant that desktop
workstations were no longer able to provide adequate computational power. To
advance their work, researchers and analysts had access to compute clusters,
but these generally required relinquishing the interactive environment and con-
verting application software written in high productivity languages to compiled
languages. For many, the performance gain associated with compiled parallel
code did not override the ease of use and rapid prototyping capabilities of inter-
active languages, especially for mission driven projects focused on design and
algorithm prototypes.

In 2003, as grid computing was emerging, the question was, can systems care-
fully configured for high productivity and rapid prototyping fill the gap between
slower desktops and big HPC systems and support the growing needs of analysts



662 J. Mullen et al.

and researchers for whom the traditional HPC learning path was a barrier to
entry? To evaluate this question, the Lincoln Laboratory Grid (LLGrid, now
LLSC) was created to explore and develop interactive, on-demand high perfor-
mance computing for the Laboratory.

3.1 System

Bringing a systems engineering approach to the challenge of designing an inter-
active, high productivity, on-demand high performance computing environment,
we began by identifying the three subsystems that form the environment: the
compute cluster; the software stack (particularly the middleware layer); and the
development of user consultation and support unit. In terms of hardware selec-
tion and design, our HPC system was similar to most small to moderately-sized
systems. In 2003–2005, we built our first clusters using commodity-off-the-shelf
(COTS) system components including dual-socket, single-core compute nodes,
gigabit Ethernet interconnects, a shared central RAID file system exported with
the NFS and CIFS protocol standards, and the University of Wisconsin Condor
scheduler. As is always the case, these components were chosen by balancing the
cost against user application requirements. What differentiated our HPC system
from others was not the choice of components, but the configuration of the sched-
uler. To provide on-demand computing services meant rethinking the traditional
partition configurations: each user was limited to running jobs up to a core-count
limit equaling approximately one eighth of the total cores available. They could
request that their core allocation limit be increased for a finite time period via
email to our administration team. This limit usually assured that a subset of the
system’s compute cores were always available. Also the scheduler and central file
system were configured and tuned so that launches of parallel jobs occurred in
less than 20 s on hundreds of cores, thereby providing the interactivity with job
launches that users were used to on their desktop IDEs [22].

In subsequent clusters that we have built, we have used similar components as
technology has progressed eventually including multicore (up to 64 core) com-
pute nodes. Our latest systems have 10-gigabit Ethernet connections with a
1024-port non-blocking central core switch, along with a gigabit out-of-band
management network. And the central file system has thousands of disk drives,
many levels of redundancy, and can read and write tens of gigabytes of data per
second. But hardware has not been the only place for improvements. Over the
years, sensor and processing capabilities continued to increase, driving interest
in using the compute system for data analysis applications. To accommodate
the requirements (memory, storage, tools) of these applications, our traditional
HPC system was extended to include High Performance Databases such as Accu-
mulo and SciDB [3]. The databases are dynamically run on a set of compute
nodes, creating a unified compute platform for the users as depicted in Figure 2.
Researcher access to start, stop and monitor these databases was integrated into
the system via a web-based portal, and software tools were created to easily con-
nect databases and user applications. As the user application space expanded to
include machine learning and medical science applications from users without



Lessons Learned Providing Interactive HPC 663

traditional computing experience, the unified platform was extended to include
portal interfaces [18] to support web applications, particularly ones that inte-
grate into sensor processing and scientific computing workflows. As we extend
the unified platform into these new capabilities, we will further develop and
adapt all of our technical and support efforts to effectively enable users.

Fig. 2. The unified SuperCloud architecture and compute platform.

3.2 Software

Providing hardware is not enough, particularly for researchers whose academic
training did not include HPC topics or exposure. Engaging new HPC users
requires filling the gap between interactive high productivity programming and
the high performance compute hardware. This middleware layer is crucial to
the success of mainstream interactive HPC. In 2003, when roughly 85% of com-
putational engineering and science was accomplished using MATLAB R©, there
was not only no communication library for the language but there was no plan
to create a communication library [16]. If research analysts using MATLAB R©

were going to take advantage of a distributed cluster, they needed middleware to
enable the parallel capability. As a first step, Dr. Jeremy Kepner created Mat-
labMPI, [9] a communication layer that used the file system as a communication
fabric and leveraged the save and load functions in MATLAB R© to execute send
and receive commands. The choice of communication fabric was a design deci-
sion to retain MATLAB R©’s platform agnostic feature and support the range of
desktop systems in use at MIT Lincoln Laboratory and the broader science and
engineering community. While MatlabMPI enabled parallel MATLAB applica-
tions, it had the same drawback as MPI, in that the programmer needed to
spend significant effort to manage the communication. To separate the parallel
programming details from the application programming concerns, Lincoln Labo-
ratory created pMatlab [2,10]. pMatlab implemented Partitioned Global Address
Spaces (PGAS) constructs so that the research programmer could design the
application on the global level but use pMatlab constructs to distribute the data
structures, manage the local-global mapping and communication.



664 J. Mullen et al.

The pMatlab library provided a high productivity ease-of-use approach to
writing distributed computing applications, but it did not address the chal-
lenges of batch schedulers and job submission on shared cluster resources. The
scheduler and job submission challenge was addressed by Dr. Albert Reuther
through gridMatlab [20], a set of tools, written in MATLAB R©, that provides
the glue between the researcher’s desktop and the compute cluster. Researchers
submit their compute jobs using an overloaded version of the MATLAB R© eval
command that accepts three arguments: the name of the script to be run, the
number of cores and the location of the cores, i.e. the local desktop; use of the
local desktop along with the cluster; or as a background job on the cluster. The
default is to assign node 0 to the researcher’s desktop with all other nodes on

Fig. 3. Running a pMatlab job on four processors. The resulting image is gathered to
Node 0, the desktop, for display.



Lessons Learned Providing Interactive HPC 665

the cluster. One benefit of this setting is that results are aggregated to node 0
local desktop and can easily be post-processed on the researcher desktop. This
provides the user with a familiar interface for job launches versus traditional
command line tools. Figure 3 illustrates the launch of a simple example on four
processors. The reserved word ’grid’ indicates that the job will be run with 3
processors on the cluster and one on the local desktop, as seen in the echo of each
launch command. The job is submitted to the scheduler and when complete the
results are written to the local MATLAB R© command window. At no time in the
process does the researcher log into the cluster; all of the development work and
job submission is done from the Integrated Development Environment (IDE) on
the user’s desktop or laptop. When the job completes, or fails, the researcher
has immediate feedback and can quickly modify the application and resubmit,
offering a seamless prototyping environment.

This approach to developing middleware is key to HPC adoption by a broader
range of research disciplines and should be a focus of the HPC experts. The
philosophy behind pMatlab and gridMatlab is that HPC experts can create tools
to abstract the tricky parallel details that can sidetrack beginner or intermediate
HPC programmer progress thus lowering the barrier to entry for new users. In
keeping with this philosophy, new tools for abstraction and ease of use were
created to support new data analysis and machine learning applications.

3.3 Supporting Users

Building an effective tool does not guarantee adoption and what seems easy to
the expert many not be intuitive to a novice or intermediate. To insure adop-
tion, the LLSC team took a novel approach to on-boarding new HPC users by
providing targeted individual tutorials to each new user. The tutorial included a
general introduction to high performance and parallel computing, a careful walk
through the process of building a parallel parameter sweep application from a
serial code and a discussion of parallelization strategies for the user application.
Over the years we have gathered much of this educational content and created a
MOOC course that runs on the HPC system and provides the user with course
examples to run on the HPC system thus building understanding of both general
HPC concepts and the specifics of applications on our system [17].

More recently we have begun developing our examples within Jupyter note-
books because they provide a method to create sections that explain the concepts
and tasks interleaved with sections where students can edit and run code. Consis-
tent with our other tools and services (e.g., pMatlab and databases), the Jupyter
notebook compute engines are run on compute nodes of our HPC system so that
the educational examples are running directly on the system allowing users the
opportunity to test and explore HPC strategies. All the while, the graphical
interface of the Jupyter notebooks are executing in the browser of the user’s
desktop or laptop computer [18].



666 J. Mullen et al.

4 Metrics

After covering all of these system and user support topics, we now return to
discussing metrics. Using the proper metrics is very valuable for determining
whether an organization is getting the most out of their HPC investments. This
leads to better leadership understanding of the value of HPC for the organiza-
tion and encourages each organization to manage towards those goals that most
benefit the organization.

As we briefly discussed in Sect. 2.3, managing toward maximum system uti-
lization is directly at odds with enabling interactive, on-demand HPC. The
DARPA High Productivity Computing Systems (HPCS) program brought this
discrepancy to full light, and it was on through this program that a new method
to measure the return on investment (ROI) was developed [26]. The ROI cal-
culation places the benefit in the numerator and sums all of the costs in the
denominator. Each organization can determine what the benefits for their use
cases are, and they can compile all of the costs for the denominator. Examples
of benefits at various organizations are presented in [26]. At Lincoln Laboratory,
we chose to measure the benefit as the sum of all the time saved by users on a
system by running parallel jobs over running single-process jobs. We enumerated
the cost of enabling HPC at Lincoln to be the sum of the time to parallelize each
code set, the time to train users, the time to launch jobs, the time to adminis-
trate the system, and the system cost. Details of our analysis can be found in [26]
and [22]. We were pleased to find that the time saved often help us achieve orga-
nizational ROI of 2x to 10x (or more) – clearly, a very beneficial values for our
Laboratory. Some of this can be attributed to very efficient system administra-
tion workflows and low launching and development overhead. However, a large
part of the benefit is due the broad utilization across the entire Laboratory and
the value it has brought to each of the users.

5 Summary and Future Work

In summary, the challenges to deploying interactive on-demand HPC environ-
ments are both technical and institutional. The technical challenges involve
developing middleware at the correct level of abstraction to lower the slope
of the learning curve for new users and provide a path to increased productivity.
The human challenges center on the development of a community of practice
that appreciates the importance of balancing performance and productivity, a
re-evaluation of the assumptions surrounding the metrics of success and the cre-
ation of educational materials aimed at building new pathways to HPC expertise.
Together these changes advance a new approach for provisioning HPC environ-
ments. The strategies presented here are general and easily adapted for any cen-
ter where productivity and the rapid prototyping and testing of algorithms and
analytics are key concerns. The challenge going forward is to recognize emerging
needs from both new users and new domains and create the appropriate mid-
dleware and educational materials. While we started by abstracting the parallel



Lessons Learned Providing Interactive HPC 667

and scheduling details of launching parallel MATLAB R© in the early 2000’s, we
have since added HPC databases for analytics and Jupyter notebooks to abstract
the command line concerns and launch details for new languages such as Julia,
Python and R. As the user community and their applications change, we will
continue to evaluate their preferred tools, languages and environments against
the demands of the HPC system to uncover areas where abstractions, system
efficiencies and education can yield both productivity and performance.

References

1. Bliss, N., Bond, R., Kepner, J., Kim, H., Reuther, A.: Interactive grid computing
at Lincoln laboratory. MIT Lincoln Lab. J. 16, 165–216 (2006)

2. Bliss, N.T., Kepner, J., Kim, H., Reuther, A.: pMATLAB: parallel MATLAB
library for signal processing applications. In: 2007 IEEE International Conference
on Acoustics, Speech and Signal Processing - ICASSP 2007, vol. 4, pp. IV-1189–
IV-1192, April 2007. https://doi.org/10.1109/ICASSP.2007.367288

3. Byun, C., et al.: Driving big data with big compute. In: 2012 IEEE Conference on
High Performance Extreme Computing HPEC, pp. 1–6, September 2012. https://
doi.org/10.1109/HPEC.2012.6408678

4. Denning, P.J., Lewis, T.G.: Exponential laws of computing growth. Commun. ACM
60(1), 54–65 (2016). https://doi.org/10.1145/2976758

5. Edelman, A.: The Star-P high performance computing platform. In: 2007 IEEE
International Conference on Acoustics, Speech and Signal Processing - ICASSP
2007, vol. 4, pp. IV-1197-IV-1200, April 2007. https://doi.org/10.1109/ICASSP.
2007.367290

6. Gadepally, V., et al.: D4M: bringing associative arrays to database engines. In:
2015 IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6,
September 2015. https://doi.org/10.1109/HPEC.2015.7322472

7. Hubbell, M., et al.: Big data strategies for data center infrastructure management
using a 3D gaming platform. In: 2015 IEEE High Performance Extreme Comput-
ing Conference (HPEC), pp. 1–6, September 2015. https://doi.org/10.1109/HPEC.
2015.7322471

8. Jones, M., et al.: Scalability of VM provisioning systems. In: 2016 IEEE High
Performance Extreme Computing Conference, HPEC 2016 (2016). https://doi.org/
10.1109/HPEC.2016.7761629

9. Kepner, J.: MatlabMPI. J. Parallel Distrib. Comput. 64(8), 997–1005 (2004).
https://doi.org/10.1016/j.jpdc.2004.03.018

10. Kepner, J.: Parallel MATLAB for Multicore and Multinode Computers. Society for
Industrial and Applied Mathematics, New York (2009). https://doi.org/10.1137/
1.9780898718126

11. Kepner, J., et al.: D4M 2.0 schema: a general purpose high performance schema
for the Accumulo database. In: 2013 IEEE High Performance Extreme Comput-
ing Conference (HPEC), pp. 1–6, September 2013. https://doi.org/10.1109/HPEC.
2013.6670318

12. Kepner, J., et al.: Dynamic distributed dimensional data model (D4M) database
and computation system. In: 2012 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5349–5352, March 2012. https://doi.
org/10.1109/ICASSP.2012.6289129

https://doi.org/10.1109/ICASSP.2007.367288
https://doi.org/10.1109/HPEC.2012.6408678
https://doi.org/10.1109/HPEC.2012.6408678
https://doi.org/10.1145/2976758
https://doi.org/10.1109/ICASSP.2007.367290
https://doi.org/10.1109/ICASSP.2007.367290
https://doi.org/10.1109/HPEC.2015.7322472
https://doi.org/10.1109/HPEC.2015.7322471
https://doi.org/10.1109/HPEC.2015.7322471
https://doi.org/10.1109/HPEC.2016.7761629
https://doi.org/10.1109/HPEC.2016.7761629
https://doi.org/10.1016/j.jpdc.2004.03.018
https://doi.org/10.1137/1.9780898718126
https://doi.org/10.1137/1.9780898718126
https://doi.org/10.1109/HPEC.2013.6670318
https://doi.org/10.1109/HPEC.2013.6670318
https://doi.org/10.1109/ICASSP.2012.6289129
https://doi.org/10.1109/ICASSP.2012.6289129


668 J. Mullen et al.

13. Kepner, J., et al.: Achieving 100,000,000 database inserts per second using Accu-
mulo and D4M. In: 2014 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–6, September 2014. https://doi.org/10.1109/HPEC.2014.7040945

14. Kepner, J., et al.: Computing on masked data: a high performance method for
improving big data veracity. In: 2014 IEEE High Performance Extreme Comput-
ing Conference (HPEC), pp. 1–6, September 2014. https://doi.org/10.1109/HPEC.
2014.7040946

15. Lebak, J., Kepner, J., Hoffmann, H., Rutledge, E.: Parallel VSIPL++: an open
standard software library for high-performance parallel signal processing. Proc.
IEEE 93(2), 313–330 (2005). https://doi.org/10.1109/JPROC.2004.840303

16. Moler, C.: Why there isn’t a parallel MATLAB. MATLAB News and Notes, p. 12
(1995, Spring). https://www.mathworks.com/company/newsletters/articles/why-
there-isnt-a-parallel-matlab.html

17. Mullen, J., Byun, C., Gadepally, V., Samsi, S., Reuther, A., Kepner, J.: Learning
by doing, high performance computing education in the MOOC era. J. Parallel
Distrib. Comput. 105, 105–115 (2017). https://doi.org/10.1016/j.jpdc.2017.01.015

18. Prout, A., et al.: MIT SuperCloud portal workspace: enabling HPC web application
deployment. In: 2017 IEEE High Performance Extreme Computing Conference
(HPEC), pp. 1–6, September 2017. https://doi.org/10.1109/HPEC.2017.8091097

19. Prout, A., et al.: Enabling on-demand database computing with MIT SuperCloud
database management system. In: 2015 IEEE High Performance Extreme Com-
puting Conference (HPEC), pp. 1–6, September 2015. https://doi.org/10.1109/
HPEC.2015.7322482

20. Reuther, A., et al.: Technology requirements for supporting on-demand interactive
grid computing. In: Proceedings of the Department of Defense High Performance
Computing Modernization Office (HPCMO) Users Group Conference (UGC) 2005.
IEEE, Nashville, June 2005. https://doi.org/10.1109/DODUGC.2005.65

21. Reuther, A., et al.: LLSuperCloud: sharing HPC systems for diverse rapid proto-
typing. In: 2013 IEEE High Performance Extreme Computing Conference (HPEC),
pp. 1–6, September 2013. https://doi.org/10.1109/HPEC.2013.6670329

22. Reuther, A., Kepner, J., MCcabe, A., Mullen, J., Bliss, N.T., Kim, H.: Technical
challenges of supporting interactive HPC. In: Department of Defense - Proceedings
of the HPCMP Users Group Conference 2007; High Performance Computing Mod-
ernization Program: A Bridge to Future Defense, DoD HPCMP UGC, pp. 403–409
(2007). https://doi.org/10.1109/HPCMP-UGC.2007.72

23. Reuther, A., Michaleas, P., Prout, A., Kepner, J.: HPC-VMs: virtual machines in
high performance computing systems. In: 2012 IEEE Conference on High Perfor-
mance Extreme Computing, HPEC 2012 (2012). https://doi.org/10.1109/HPEC.
2012.6408668

24. Software carpentry. https://software-carpentry.org/
25. Design thinking bootcamp. https://dschool.stanford.edu/resources/the-

bootcamp-bootleg
26. Tichenor, S., Reuther, A.: Making the business case for high performance comput-

ing: a benefit-cost analysis methodology. CTWatch Q. 2(4A), 2–8 (2006)
27. Wilson, G.: Software carpentry: getting scientists to write better code by making

them more productive. Comput. Sci. Eng. 8(6), 66–69 (2006). https://doi.org/10.
1109/MCSE.2006.122

https://doi.org/10.1109/HPEC.2014.7040945
https://doi.org/10.1109/HPEC.2014.7040946
https://doi.org/10.1109/HPEC.2014.7040946
https://doi.org/10.1109/JPROC.2004.840303
https://www.mathworks.com/company/newsletters/articles/why-there-isnt-a-parallel-matlab.html
https://www.mathworks.com/company/newsletters/articles/why-there-isnt-a-parallel-matlab.html
https://doi.org/10.1016/j.jpdc.2017.01.015
https://doi.org/10.1109/HPEC.2017.8091097
https://doi.org/10.1109/HPEC.2015.7322482
https://doi.org/10.1109/HPEC.2015.7322482
https://doi.org/10.1109/DODUGC.2005.65
https://doi.org/10.1109/HPEC.2013.6670329
https://doi.org/10.1109/HPCMP-UGC.2007.72
https://doi.org/10.1109/HPEC.2012.6408668
https://doi.org/10.1109/HPEC.2012.6408668
https://software-carpentry.org/
https://dschool.stanford.edu/resources/the-bootcamp-bootleg
https://dschool.stanford.edu/resources/the-bootcamp-bootleg
https://doi.org/10.1109/MCSE.2006.122
https://doi.org/10.1109/MCSE.2006.122

	Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers
	1 Introduction
	2 Lessons Learned
	2.1 Broadening the Definition of Interactive HPC
	2.2 Re-architecting for Interactive HPC
	2.3 Reframing the Metrics of Success
	2.4 Expanding the HPC Ecosystem

	3 Architecture Requirements for Interactive HPC
	3.1 System
	3.2 Software
	3.3 Supporting Users

	4 Metrics
	5 Summary and Future Work
	References




