)

Check for
updates

I/0O Interference Alleviation on Parallel
File Systems Using Server-Side
QoS-Based Load-Balancing

Yuichi Tsujita!®), Yoshitaka Furutani?, Hajime Hida?, Keiji Yamamoto®,
Atsuya Uno', and Fumichika Sueyasu?

! RIKEN Center for Computational Science, Kobe, Hyogo, Japan
yuichi.tsujita@riken. jp
2 Fujitsu Limited, Minato-ku, Tokyo, Japan
3 Fujitsu Social Science Laboratory Limited, Kawasaki, Kanagawa, Japan

Abstract. Storage performance in supercomputers is variable, depend-
ing not only on an application’s workload but also on the types of
other concurrent I/O activities. In particular, performance degradation
in meta-data accesses leads to poor storage performance across appli-
cations running at the same time. We herein focus on two representa-
tive performance problems, high load and slow response of a meta-data
server, through analysis of meta-data server activities using file system
performance metrics on the K computer. We investigate the root causes
of such performance problems through MDTEST benchmark runs and
confirm the performance improvement by server-side quality-of-service
management in service thread assignment for incoming client requests
on a meta-data server.

Keywords: Lustre - FEFS - MDS - OSS - Data-staging - QoS
K computer

1 Introduction

I/0O performance is one of the most prominent contributors in supercomput-
ing, and many parallel file systems, such as GPFS [15] and Lustre [5], have
been developed. Meta-data servers (MDSs) are among the most significant per-
formance bottlenecks for Lustre and its enhanced file systems. Since a large
number of concurrent file I/O operations at the same storage may lead to high
MDS load, poor file I/O performance may be experienced in not only the root-
cause user application but also other applications that access the same storage
system. In the worst case, unstable file system operation may occur due to such
high MDS load. We can easily detect such high MDS loads and root-cause appli-
cations through monitoring the associated performance metrics of the MDS, and
stable operation can be achieved by terminating such root-cause applications,
for instance.

© Springer Nature Switzerland AG 2018

R. Yokota et al. (Eds.): ISC 2018 Workshops, LNCS 11203, pp. 36-48, 2018.
https://doi.org/10.1007/978-3-030-02465-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02465-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-02465-9_3

I/O Interference Alleviation on Parallel File Systems 37

On the other hand, it is difficult to detect slow MDS response caused by a
large number of file accesses under a large stripe count. Once an I/O request
is processed by an MDS, the MDS sends associated requests to corresponding
object storage servers (OSSes), where the number of requests issued by the MDS
is proportional to the stripe count and the number of accessed files. Consequently,
setting the stripe count to be large and having a huge number of concurrent
file accesses lead to high OSS load, and service threads of the MDS continue
to wait for responses from associated OSSes for a long time. As a result, the
performance of MDS operations for new incoming I/O requests is degraded, and
such a situation leads to poor storage performance.

Knowing the I/O patterns for such slow MDS response is an urgent issue
for better file system operation. In order to examine the root causes of slow
MDS response, we conducted performance evaluations using MDTEST [6] ver-
sion 1.9.3. The results indicate that a similar file I/O performance degradation
occurs due to the problematic file access patterns. File I/O performance degra-
dation was caused by a mismatched stripe count configuration with respect to
the file I/O pattern. Once we introduced quality-of-service-based (QoS-based)
service thread management to an MDS, such degradation was minimized.

The main contributions of this paper are as follows:

— Analysis of meta-data accesses to find the root causes of slow storage perfor-
mance

— Server-side QoS-based management to achieve fair-share service thread allo-
cation on an MDS

Section 2 describes the research background of this research work, including a
brief introduction of the K computer, its asynchronous data-staging scheme, and
the QoS-based service thread management adopted herein. The analysis of the
performance degradation of an MDS is explained in Sect. 3. Section 4 reports the
I/0 performance evaluation associated with root-cause I/O patterns that led to
performance degradation of an MDS and performance improvements using QoS-
based management in file system accesses. Related work is discussed in Sect. 5,
followed by concluding remarks in Sect. 6.

2 Research Background

This section presents research background and a system overview of the K com-
puter. Since our analysis and I/O performance evaluation were performed using
the K computer, we briefly describe the K computer and its file systems before
discussing our analysis and performance evaluation.

2.1 K Computer and Its File Systems

The K computer consists of 82,944 compute nodes, where each system rack con-
sists of 96 compute nodes. Figure 1 shows an overview of the K computer system
including its two-staged parallel file system. The Fujitsu Exabyte File System

38 Y. Tsujita et al.

(FEFS), which is an enhanced Lustre file system created by FUJITSU [14,16],
has been used in parallel file systems. The layered file system consists of a local
file system (LFS) and a global file system (GFS). The LFS, which provides
high performance I/O during computation. is intended for performance-oriented
use, whereas the GFS is intended for capacity-oriented use, e.g., to keep users’
permanent files such as user programs and data files.

=
The K computer /\’\ 3
Compute Nodes W "(
of CPU 82,944 /A
lemory Capacity 1.27PiB Users

6D Mesh/Torus Network
Pre/Post ||| Frontend
1/O Nodes 7% Server || Servers
71 j

Control & Management Network,]
Global I/0 Network
L (—— F——1] Stagg-In Stage-Out
MDS| | Management| Control |
LFS Servers|| |Servers —__
Global File System(GFS)

(>30PB)

Fig. 1. Overview of the K computer

The number of available OSTs at the LFS is uniquely configured based on the
shape of assigned compute nodes according to the I/O zoning scheme [16] of the
LFS, where the I/O zoning scheme mitigates I/O interference on OSTs among
user jobs by isolating the OSTs assigned for each job. Although the default stripe
count of the LFS is 12, users can change the stripe count up to the maximum
number of assigned OSTs for newly created files or directories, or can simply set
the stripe count to —1, which ensures that the maximum number of assigned
OSTs will be used. Moreover, although the default stripe count of the GFS is
four, the stripe count of the GFS can be set to the maximum number of OSTs
for each target GFS volume.

A subset of I/O nodes, called global-I/O (GIO) nodes, accesses an MDS and
the OSSes of each GFS volume via the global I/O network using 4x QDR Infini-
Band links. I/O nodes, including GIO nodes, each consist of a single FUJITSU
SPARC64 VIIIfx and 16 GB memory. GIO nodes are also responsible for asyn-
chronous data-staging [4] between the LFS and the GFS as shown in Fig. 2(a).
This scheme guarantees sufficient I/O performance for programs running on com-
pute nodes and effective job scheduling. An MDS server of the LFS consists of
two Intel Xeon E5-2690 CPUs and 256 GB of memory, whereas a subset of I/O
nodes, called local I/O (LIO) nodes, is dedicated for an OSS of the LFS. The
MDS of the LFS is accessed by GIO nodes and compute nodes in data-staging
and local file I/0, respectively.

In order to achieve higher scalability in LFS accesses, loopback file systems,
called rank-directories, are created for each rank in the stage-in phase, as shown
in Fig. 2(b). Localizing file I/O by rank in each rank-directory can reduce the
MDS load.

I/O Interference Alleviation on Parallel File Systems 39

< Storage space at LFS > wDS

/work Meta-data

\ - Shared directoryshared dir

/3JobName . JobID Rk Opisctata
/. directory [Shared dir)| 0SS

Compute Node mounts 1 Rank dir.

(Job A) (JobB) v

ext: e
| 7~
610, LI Stage-In Stage-In’ |Stage-Out Stage-Out . Rank) (Rank Rank] | Rank
JobA (JobB) | (JobA) (JobB) ocess| w0 | | # # #(n-1)

GFS->LFS GFS->LFS LFS->GFS LFS->GFS

Job Execution Job Execution Loopback| /0 /1] /2| / (/n-l) Meta-data %

+—— Accesses to a shared directory
«—— Accesses to a rank-directory

Time

(a) Asynchronous data-staging scheme (b) Overview of rank-directories

Fig. 2. Data-staging and rank-directories at the K computer

2.2 Performance Problems of File I/O on the K Computer

During the course of our K computer operation, which exceeds file years, we
have faced various types of problems related to file systems, as well as problems
related to both hardware and software components. Although most of these prob-
lems have been addressed, recently we have faced file system problems, including
performance degradation due to user applications. Among the file system prob-
lems encountered, solutions of the problems of slow file I/O due to inefficient
MDS operations is among the highest priorities. In this context, we focus on the
analysis of MDS activities and file I/O operations in order to improve file 1/O
performance.

The numbers of MDS operations per second (OPS) observed for typical high
MDS load and quite low MDS response cases in the K computer operation are
shown in Figs.3(a) and (b), respectively. The scales of both axes are different
between Figs.3(a) and (b) because we need to clearly show the focused MDS
load.

In the high MDS load case in Fig.3(a), the horizontal axis covers approxi-
mately 24 h, which includes the focused MDS activities. A user job with 8,000
processes on 1,000 compute nodes accesses a large number of files on a shared
space of the LFS during a 23h period. (Although 1,008 compute nodes were
assigned for the job due to the topological layout, only 1,000 nodes were used
for the job.) Such a file access pattern led to a high MDS load, and consequently
there was a tremendous negative impact on the I/O operations of other user jobs
due to the high MDS load.

On the other hand, Fig.3(b) shows the low MDS load case for a period
of 14min near the middle of the graph due to a large number of concurrent
file accesses by 12,096 processes on the same number of compute nodes. The
horizontal axis of this figure covers approximately three hours in order to focus
on the low MDS load. Although this job also accessed a shared space of the
LFS, the MDS load was quite low during concurrent file accesses for a larger
number of files, as compared with the previous case. As a result, the file access
performance of every user job that included this job was degraded during this
time.

40 Y. Tsujita et al.

S SHENS getors k(4 High MDS load (~ 23 hours)

T " e
[\[“L”M H ”H‘H“H“" \N\ i I “M‘
‘ il ‘H I (‘M'J»

il ‘M "l (i I

\u Vs Com ATk s

(a) High MDS load due to a large number of file accesses, continuing for approximately
23 hours

ralog:MDS operaions/sec work ()
Wi

12K

: Quite low
MDS load

> : ‘ |

OTiger M

(b) Low MDS response due to congestion between an MDS and the associated OSSes

Fig. 3. MDS activity during slow file I/O at the LFS of the K computer

A high MDS load is easily detected by monitoring MDS activities, and stable
operation can be achieved by terminating root-cause jobs for example. However,
root causes of the slow MDS response cannot be detected only by monitoring
MDS activities. Two problematic MDS activities have led to not only perfor-
mance degradation in file I/O by user jobs but also a large increase in the time
required for rank-directory creation prior to stage-in operation. Note that such
long times for rank-directory creation have led to delays in start-up of stage-in
operation. As a result, slow file I/O or long delays in stage-in operation have
led to ineffective job scheduling, despite asynchronous data-staging. Therefore,
we need to investigate the root causes of the above MDS performance problems,
and finding an effective way to mitigate I/O interference is an urgent problem.

2.3 QoS-Based Management at an MDS

Although the FEFS is based on Lustre version 1.8, the file system has been still
extended to cope with high I/O demands at the K computer. One feature of the
FEFS is QoS-based service thread sharing among client nodes or among user jobs
on each MDS or OSS. The QoS function limits the number of available threads
for multiple pre-defined client groups in one of the two modes, static or dynamic.
The static case involves the use of a single rate relative to the total number of
threads, whereas the dynamic case involves the use of lower and higher rates
to advance the demand-based dynamic assignment scheme. Note that this QoS

I/0O Interference Alleviation on Parallel File Systems 41

scheme prevents the lack of free service threads due to a heavy workload, which
occurs in the two above-mentioned problematic cases.

Figure 4(a) shows the I/O request flow using the QoS function. Assume that
we have two groups, group-A and group-B, for the QoS control, and that client
jobs, Job-1 and Job-2, belong to the former and latter groups, respectively. An
I/0 request is placed in a queue of ptlrpcd, and its associated information is
placed in another queue associated with a client job. In this case, a new request
from Job-1 is placed in a ptlrpcd queue, and its associated information including
a reference index, which indicates the position of a corresponding request in the
ptlrpcd queue, is stored in a queue for Job-1. Therefore, a target request is
referenced in an indirect manner from queues for client jobs to the ptlrpcd
queue. The observer task of the QoS function checks the number of free and
working service threads. According to the QoS ratio between groups, an 1/0
request is dispatched to a service thread.

QoS: Group-A QosS: Group-B
T
(e G
,? Queve of iob2]I ——)
: In-direct reference E ngx (R, /100)
! . H 110 threads
ptlrpcd :
req ':yg requestqueue i g ;
C = :
d\)‘/ L N5y x (R, /100)
i o |=v'\ g: A_ threads
11_mdt_xxxx R, (%) FEFS
% GIOUP-B veuueeneeeesevvaseset ‘' (MDS, 0SS)
(a) I/0 request flow using the QoS func-
tion (b) Usage example of the QoS function

Fig. 4. Schematic diagram of (a) the I/O request flow using QoS function and (b) an
example of its usage

Figure 4(b) shows an example of fair-share management among two groups,
group-A and group-B, in accessing the same target file system by limiting the
maximum number of service threads of an MDS and/or an OSS to each registered
group. Assume that we have ng service threads on each MDS/OSS, the QoS
configuration limits up to R4% of the ng service threads for group-A. Thus,
group-A can use up to ng x (R4/100) service threads. In contrast, up to ng x
(Rp/100) service threads can be used for group-B, where its available rate is
Rp%. On the other hand, the dynamic configuration can give upper and lower
rates in each group.

3 Investigation of Internal File Server Activities

High MDS load has been caused by a large number of concurrent file accesses.
At present, the K computer limits the maximum number of service threads

42 Y. Tsujita et al.

to 24 on the MDS of the LFS without any load-balancing, which leads to a
high MDS load. Moreover, quite a slow MDS response has been caused by high
contention in OSS operations due to a large stripe count in conjunction with
a huge number of concurrent file accesses. Such contention is the result of an
existing Lustre implementation. Once an MDS receives an 1/O request from a
client, associated requests to corresponding OSSes are issued by the MDS. The
number of associated requests on each OSS is absolutely proportional to the
product of the stripe count and the number of concurrent file accesses. Moreover,
user jobs specifying a stripe count of —1 use all available OSTs. Once a large
number of OSTs are assigned based on the shape of the allocated compute nodes,
a large stripe count is provided unexpectedly. Once associated OSSes becomes
very busy in managing incoming requests, service threads on an MDS are blocked
in order to await responses from the OSSes. During the time of the contention,
the MDS has a very difficult time for processing new I/O requests. Therefore,
such contention leads to quite slow MDS operation, as shown in Fig. 3(b).

#req in queue | #req in queue #req by MDS #req by MDS
1.E+05 2,000,000
4 =T O e - oo st b s e o v

A

- 1,500,000
1.E+03
1,000,000
1.E+02

1.E+01 500,000

1.E+00 o

= = = — B o = = = = - =

= o = = < = B = = = = N

= = = 15 S b= o

(a) High MDS load
#req in queue | #req in queue #req by MDS #req by MDS
1.E+05 2,000,000
1504 " 1,500,000
1.E+03
1,000,000

1.E+02
P 74”” |, | s00,000
1.2+00 Janlannl.0ll . . H,.Hun..‘ﬂ n nn(rmnH“,uu Nolanfnniaiaalll o

= = = = = = =

< « & < & « =

(b) Low MDS response

Fig. 5. Numbers of requests in queue and processed by an MDS over time in the two
MDS load cases at the LFS of the K computer

In order to investigate the root causes of the above problem, we have exam-
ined the performance statistics of the MDS in detail. Figure 5 shows the average
number of requests in a queue and the average number of requests processed by
the MDS in one-minute intervals for the two cases shown in Fig.3. Note that
the horizontal axis of Fig. 5(a) covers 24 h, whereas that of Fig.5(b) covers one
hour in order to focus on the target activities. Moreover, the vertical axes on the
left-hand side differ scale in order to more clearly show the two operations. We
selected the statistics of the MDS in each given interval using the procedure of
Lustre 11stat. In the high MDS load case shown in Fig.5(a), a very high num-
ber of requests are continuously processed over 23 h, whereas, in the slow MDS

1/0 Interference Alleviation on Parallel File Systems 43

response case shown in Fig. 5(b), MDS activity is quite low for 14 min starting
from 12:10, when the root-cause job started file 1/0O.

4 Performance Evaluation

In order to examine the file access patterns that led to slow MDS response and
the effectiveness of the QoS function of the FEFS, we conducted a performance
evaluation using MDTEST version 1.9.3 at the K computer. In this section, the
following three evaluations were conducted in order to examine the MDS of the
LFS:

— Stripe count impact on MDS performance using MDTEST

— Impact of QoS management on the MDS for fair-share execution among con-
current MDTEST jobs

— I/0 interference alleviation in data-staging using QoS management at the
MDS

Through the three evaluations, we demonstrate which types of file I/O access
pattern lead to poor MDS response in terms of stripe count configuration and
effectiveness of QoS management with respect to MDS performance problems.

4.1 MDS Response Evaluation Using MDTEST

This section discusses performance impact on MDS response regarding stripe
count. We evaluated MDS response at the LFS using an MDTEST benchmark
code on 192 compute nodes in logical 3D layout of 4 x 6 x 8. We deployed four
or eight processes per compute node, and every process accessed 100 files per
iteration in each individual directory on the LFS. Mean performance results were
obtained from six iterations.

50000 50000
40000 40000 —
30000 30000 I I

2 [

OP,
OoP

20000 20000

-

0 4
File creation File stat File read File removal File creation File stat File read File removal

10000 ~

e

HCs=1 MCs=2 WCs=4 MCs=8 MCs=12 mCs=24 mCs=48 HCs=1 MCs=2 WCs=4 MCs=8 MCs=12 mWCs=24 mCs=48

(a) 768 processes on 192(4 x 6 x 8) nodes (b) 1,536 processes on 192(4 x 6 x 8) nodes

Fig. 6. MDTEST evaluation results for various stripe count values, where Cs represents
the stripe count

44 Y. Tsujita et al.

Figure 6 shows the performance results. We have examined seven sets of stripe
counts, which are described by Cs in the figure, ranging from 1 to 48 with respect
to the target directories on the LFS. The figure shows the mean values of four
file-specific operations with variances shown by error bars. Based on the results,
we can see a performance degradation in each of the three operations, except for
“File read”, as the stripe count increased.

4.2 QoS Impact in Fair-Share Execution Among Concurrent
Running Jobs

Fair-share execution using the QoS function was evaluated using two concur-
rently running MDTEST jobs, JOB-A and JOB-B, on the LFS. JOB-A with
6,144 processes on the same number of compute nodes in a 16 x 12 x 32 lay-
out imitated a root-cause job of slow MDS response under a stripe count of 96.
While JOB-B with 768 processes on 192 compute nodes in an 8 x 12 x 2 layout
imitated an affected job under a stripe count of four. In both cases, 100 files
were created by each process in an individual directory per iteration. We mea-
sured the performance of the JOB-B from three iterations during 200 iterations
of JOB-A.

Table 1. Configuration of two MDTEST jobs for the examination of fair-share job
execution

Notation | Executed jobs | # processes | C's | # threads | User fair-share

Reference | JOB-B 768 4 17 None

Off JOB-A 6,144 96 None
JOB-B 768 4

On JOB-A 6,144 96 JOB-A:JOB-B = 50%:50%
JOB-B 768 4 (up to 90% each if available)

The measurement configuration is summarized in Table1. The first case,
“reference”, is the reference case for JOB-B, where the job could achieve peak
performance by using all 17 service threads on the MDS without JOB-A. The
following two cases, i.e., “on” and “off”, represent concurrent execution of the
two jobs with and without user fair-share management. Figure 7(a) shows the
QoS setup for the MDTEST performance results. In both cases, the number
of available service threads was limited to 71% of the total number of service
threads (17 threads), while the remaining service threads (five threads) were
separated in order to simulate service threads being dedicated to other tasks
by GIO nodes to simulate real QoS use. Competition among the two jobs for
17 service threads led to contention on the MDS in the “off” case, whereas in
the “on” case, each job could use up to 50% of the 17 service threads. If the
counterpart job did not run or did not operate I/O, up to 90% of the 17 threads
was available, i.e., up to 15 threads.

1/0 Interference Alleviation on Parallel File Systems 45

35000

30000 - _
MDS 25000
AN «» 20000
o
29% 71%Xor file I/0 {17 threads) © 15000
for others » . 10000 |
(5 threads) JOB-A '(JOB-B 5000
(np=6,144, | | (np=768
_ | _ o
GIO CS_QG) : \CS;L”/ File creation File stat File read File removal
Fair-share: on(50%:50%)/off reference moff mon

(a) QoS setup in MDTEST eval- (b) Performance results for the JOB-B group with
uation for fair-share manage- and without fair-share management during job ex-
ment ecution of the JOB-A group

Fig. 7. MDTEST evaluation for fair-share management, where (a) shows the QoS setup
and (b) shows the performance results

Figure 7(b) shows the MDTEST performance results of JOB-B for four file-
specific operations at the LFS with and without fair-share management, where
the bar charts show mean values with bars indicating the maximum and min-
imum performance values from three iterations. Performance of the “off” case
was greatly degraded due to I/O interference by JOB-A because MDS accesses
by 6,144 processes under a stripe count of 96 led to slow response of the MDS.
By comparing the “off” case with the “on” case, the performance of every oper-
ation was improved effectively. For instance, the “on” case was around 16 times
faster than the “off” case for “File stat” operation. By comparing the perfor-
mance of the “on” case with that of the “reference” case, JOB-A also degraded
the performance of the “on” case, however the fair-share management mitigated
the performance decrease dramatically.

We also found such performance improvements in the JOB-B case in CPU
utilization at the MDS, as shown in Fig.8. With fair-share management, as
indicated by “Fair-Share ON,” we can see a higher CPU utilization of up to
approximately 70%, whereas a lower CPU utilization of approximately 20% is
observed without the fair-share management, as indicated by “Fair-Share OFF”.
Therefore, the high CPU utilization for the “Fair-Share ON” case was due to
improved MDS activities for JOB-B.

4.3 QoS Impact in Data-Staging

We measured the times for rank-directory creation in the stage-in phase under
high MDS load by an I/O heavy MDTEST job with and without QoS manage-
ment for MDS service threads. We increased the total number of service threads
of the MDS from 24 to 32, two of which were used for file system monitor-
ing. Therefore, the remaining 30 threads were used for data-staging and file I/O.
Here, the lower and higher rates of QoS management were 20% and 94%, respec-
tively, for the data-staging job, and 4% and 69%, respectively, for the I/O heavy
MDTEST job.

46 Y. Tsujita et al.

Fair-Share ON
80 >
e
Leo |
o A n Fair-Share OFF
2
?j 40 IU \
i WWAWA___MM MWWMMA e
0 e T T e T T e e e M S B B e e T
Yo} o o} (=} [0 o 0 o Yo} (=}
N @ @ < < 0 e} s} =] -
[} o o o o o o ‘D_ g 9

Fig. 8. CPU system use of an MDS during MDTEST runs with and without fair-share
management over time

We executed a job for data-staging evaluation by changing the number of
compute nodes during a high MDS load caused by an MDTEST job by running
6,144 processes on the same number of compute nodes under a stripe count of
96. Every process accessed 100 files per iteration in an individual directory. Due
to the limited time for the evaluation setup without any other user jobs, only
one data-staging operation was carried out in each configuration.

50

Reference —=—QoS=on
40

30 —

20

Time for rank-dir. creation (sec)

0 T
8x9x32 16x18x32

Compute nodes

Fig. 9. Times for rank-directory creation in the stage-in phase under QoS control for
service threads on an MDS

Figure9 shows the times for rank-directory creation for two node layouts.
The horizontal axis describes the number of assigned compute nodes in the 3D
layout. “Reference” indicates the times without the high MDS load job, which
were measured as reference values. Note that rank-directory creation in the stage-
in phase under the high MDS load job did not finish within five minutes after
start-up of the rank-directory creation. In the smaller case of 8 x 9 x 32, only
up to four rank-directories were created, none of which was created in the case
of 16 x 18 x 32. On the other hand, rank-directory creation with QoS control
described by “QoS=on" in Fig.9 showed approximately the same performance
as the “Reference” case.

Based on the results, QoS control is considered to be very effective for sta-
ble rank-directory creation in stage-in operation even if high MDS load jobs
processed are at the same time.

I/O Interference Alleviation on Parallel File Systems 47

5 Related Work

Performance optimization in Lustre file systems has been investigated in various
research works [2,3,7,12,13]. These works tuned parameters based on empir-
ical data or operation profiles. In such cases, monitoring tools are important
in order to clarify activities of MDSs, OSSes, and associated components and
future aspects of the target file system [1,17,18]. Uselton et al. [17] demonstrated
server-side monitoring using Lustre Monitoring Tools (LMT) [8]. Although LMT
monitors the storage server status, such as the CPU utilization, memory usage,
and disk I/O bandwidth, the LMT does not provide detailed I/O tracing infor-
mation, which is useful for systematic analysis such as file system statistics.

A number of studies have investigated load-balancing or contention-aware
optimization including QoS management. Zhang et al. [19] introduced machine
learning into a QoS parameter setup scheme and implemented the scheme in
PVFS2. Qian et al. [11] proposed a dynamic I/O congestion control algorithm
for Lustre. They proposed a token bucket filter [10] in the network request sched-
uler (NRS) framework [9]. However, the token bucket filter does not guarantee
free service threads for numerous incoming I/O requests. On the other hand, the
proposed QoS-based approach available on the FEFS provides server-side man-
agement by limiting the number of service threads to each pre-assigned group for
fair-share I/O bandwidth utilization. The QoS function controls RPC request
dispatching to service threads based on the IP addresses of RPC request senders
or a user grouping scheme. Even in the slow response of an MDS, the QoS func-
tion maintains a pre-defined number of free service threads for registered clients,
independent of the I/O load by other clients on an MDS. In this context, the
QoS approach is more realistic manner for stable file system operation.

6 Concluding Remarks

We have investigated the root causes of high MDS load and slow MDS response
through analysis of several performance metrics and benchmark runs on the
K computer. Our analysis of the two problematic MDS activities has revealed
distinct I/O patterns accessing a large number of files on a parallel file system,
i.e., the FEFS, on the K computer. A high MDS load originated from a large
number of concurrent file accesses, whereas a slow MDS response was caused by
a larger stripe count configuration in accessing a large number of files. Such a
stripe count configuration led to congestion in sending requests from an MDS to
associated OSSes and every service thread on the MDS waited for a long time.
Consequently, the MDS could not process new incoming requests. We observed
the same situation in MDTEST benchmark runs.

Even in the case of such a slow MDS response, the QoS function of the
FEF'S mitigated performance degradation in file I/O of the MDTEST benchmark
runs. Interference in rank-directory creation during data-staging operation was
also dramatically alleviated by the QoS function. In the future, we intended to
consider adoption of the QoS function for OSSes of the LFS on the K computer.
Such an approach is expected to mitigate I/O interference on OSSes among file
I/O by user jobs and the data-staging phase.

48

Y. Tsujita et al.

Acknowledgment. The results of this paper were obtained using the K computer.

References

1.

AN

®

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Brim, M.J., Lothian, J.K.: Monitoring extreme-scale Lustre toolkit. In: Proceedings
of the International Workshop on the Lustre Ecosystem: Challenges and Opportu-
nities (2015). http://arxiv.org/html/1506.05323

Crosby, L.D., Mohr, R.: Petascale I/O: challenges, solutions, and recommendations.
In: Proceedings of the Extreme Scaling Workshop, BW-XSEDE 2012, pp. 7:1-7:7.
University of Illinois at Urbana-Champaign (2012)

Ezell, M., Mohr, R., Wynkoop, J., Braby, R.: Lustre at petascale: experiences in
troubleshooting and upgrading. In: 2012 Cray User Group Meeting (2012)

Hirai, K., Iguchi, Y., Uno, A., Kurokawa, M.: Operations management software for
the K computer. Fujitsu Sci. Tech. J. 48(3), 310-316 (2012)

Lustre. http://lustre.org/

MDTEST. https://github.com/hpc/ior

Mohr, R., Brim, M., Oral, S., Dilger, A.: Evaluating progressive file layouts for
Lustre (2016). http://lustre.ornl.gov/ecosystem-2016/

Morrone, C.: LMT Lustre monitoring tools. In: Lustre User Group 2011 (2011)
Qian, Y., Barton, E., Wang, T., Puntambekar, N., Dilger, A.: A novel network
request scheduler for a large scale storage system. Comput. Sci. - Res. Dev. 23(3),
143-148 (2009)

Qian, Y., et al.: A configurable rule based classful token bucket filter network
request scheduler for the Lustre file system. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
SC 2017, pp. 6:1-6:12. ACM (2017)

Qian, Y., Yi, R., Du, Y., Xiao, N., Jin, S.: Dynamic I/O congestion control in
scalable Lustre file system. In: IEEE 29th Symposium on Mass Storage Systems
and Technologies (MSST 2013), pp. 1-5, May 2013

Reed, J., Archuleta, J., Brim, M.J., Lothian, J.: Evaluating dynamic file striping
for Lustre. In: Proceedings of the International Workshop on the Lustre Ecosystem:
Challenges and Opportunities (2015). http://arxiv.org/html/1506.05323

Saini, S., Rappleye, J., Chang, J., Barker, D., Mehrotra, P., Biswas, R.: I/O per-
formance characterization of Lustre and NASA applications on Pleiades. In: 19th
International Conference on High Performance Computing (HiPC), pp. 1-10 (2012)
Sakai, K., Sumimoto, S., Kurokawa, M.: High-performance and highly reliable file
system for the K computer. Fujitsu Sci. Tech. J. 48(3), 302-309 (2012)

Schmuck, F., Haskin, R.: GPFS: a shared-disk file system for large computing
clusters. In: Proceedings of the 1st USENIX Conference on File and Storage Tech-
nologies, FAST 2002, USENIX Association (2002)

Sumimoto, S.: An overview of Fujitsu’s Lustre based file system. In: Lustre User
Group 2011 (2011)

Uselton, A.: Deploying server-side file system monitoring at NERSC. In: 2009 Cray
User Group Meeting (2009)

Uselton, A., Wright, N.: A file system utilization metric for I/O characterization.
In: 2013 Cray User Group Meeting (2013)

Zhang, X., Davis, K., Jiang, S.: QoS support for end users of I1/O-intensive appli-
cations using shared storage systems. In: Proceedings of 2011 International Con-
ference for High Performance Computing, Networking, Storage and Analysis, SC
2011, pp. 18:1-18:12. ACM (2011)

http://arxiv.org/html/1506.05323
http://lustre.org/
https://github.com/hpc/ior
http://lustre.ornl.gov/ecosystem-2016/
http://arxiv.org/html/1506.05323

	I/O Interference Alleviation on Parallel File Systems Using Server-Side QoS-Based Load-Balancing
	1 Introduction
	2 Research Background
	2.1 K Computer and Its File Systems
	2.2 Performance Problems of File I/O on the K Computer
	2.3 QoS-Based Management at an MDS

	3 Investigation of Internal File Server Activities
	4 Performance Evaluation
	4.1 MDS Response Evaluation Using MDTEST
	4.2 QoS Impact in Fair-Share Execution Among Concurrent Running Jobs
	4.3 QoS Impact in Data-Staging

	5 Related Work
	6 Concluding Remarks
	References

