
Porting DMRG++ Scientific Application
to OpenPOWER

Arghya Chatterjee1,3(B), Gonzalo Alvarez2, Eduardo D’Azevedo1,
Wael Elwasif1, Oscar Hernandez1, and Vivek Sarkar3

1 Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831, USA

{chatterjeea,dazevedoef,elwasif,oscar}@ornl.gov
2 Computational Chemical and Material Sciences, Oak Ridge National Laboratory,

Oak Ridge, TN 38932, USA
alvarezcampg@ornl.gov

3 School of Computer Science, Georgia Institute of Technology,
Atlanta, GA 30332, USA

{arghya,vsarkar}@gatech.edu

Abstract. With the rapidly changing microprocessor designs and archi-
tectural diversity (multi-cores, many-cores, accelerators) for the next
generation HPC systems, scientific applications must adapt to the hard-
ware, to exploit the different types of parallelism and resources available
in the architecture. To get the benefit of all the in-node hardware threads,
it is important to use a single programming model to map and coordinate
the available work to the different heterogeneous execution units in the
node (e.g., multi-core hardware threads (latency optimized), accelerators
(bandwidth optimized), etc.).

Our goal is to show that we can manage the node complexity of these
systems by using OpenMP for in-node parallelization by exploiting dif-
ferent “programming styles” supported by OpenMP 4.5 to program CPU
cores and accelerators. Finding out the suitable programming-style (e.g.,
SPMD style, multi-level tasks, accelerator programming, nested paral-
lelism, or a combination of these) using the latest features of OpenMP
to maximize performance and achieve performance portability across het-
erogeneous and homogeneous systems is still an open research problem.

We developed a mini-application, Kronecker Product (KP), from the
original DMRG++ application (sparse matrix algebra) computational

G. Alvarez—Author contribution consisted in explaining the DMRG algorithm and its
implementation, and not in the OpenMP use and evaluation.
This manuscript has been co-authored by UT-Battelle, LLC, under contract DE-AC05-
00OR22725 with the US Department of Energy (DOE). The US government retains
and the publisher, by accepting the article for publication, acknowledges that the US
government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish
or reproduce the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of federally spon-
sored research in accordance with the DOE (http://energy.gov/downloads/doe-public-
access-plan).

c© Springer Nature Switzerland AG 2018
R. Yokota et al. (Eds.): ISC 2018 Workshops, LNCS 11203, pp. 418–431, 2018.
https://doi.org/10.1007/978-3-030-02465-9_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02465-9_29&domain=pdf
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://doi.org/10.1007/978-3-030-02465-9_29


Porting DMRG++ Scientific Application to OpenPOWER 419

motif to experiment with different OpenMP programming styles on an
OpenPOWER architecture and present their results in this paper.

Keywords: Power8 · OpenMP · OpenMP 4.5 · Nested parallelism
Task parallelism · Data parallelism

1 Introduction

Our goal is to learn how to experiment with OpenMP for in-node paralleliza-
tion incrementally by exploiting different “programming styles” supported by
OpenMP 4.5 to program CPU cores and accelerators available in the Open-
POWER architecture. The heterogeneous architectures on these systems provide
different types of parallelism, data locality and memory management, which is
an added level of complexity when addressing an efficient use of an architecture.
Mapping work efficiently onto the execution units (e.g. GPU, team of threads)
while hiding data access latencies, data movement, synchronization points (e.g.
across devices, etc.) requires asynchronous programming with multiple levels of
parallelism and different “types” of parallelism. Expressing all of this, with a
single programing model like OpenMP using a single programming style, is a
challenge.

We explore ways to program the OpenPOWER architecture using an incre-
mental approach where we can first express the different types of parallelism and
map them first to the CPU cores and then to the accelerators. How to write per-
formance portable code across multiple architectures (heterogeneous and homo-
geneous), is still an open research problem. A given solution of programming
style may be specific to the application algorithm or computational motif. We
first find ways to express multi-level parallelism using an OpenMP programming
style while minimizing significant changes to the code and incrementally porting
the application on-to accelerators.

To accomplish this, we have developed a mini-application, Kronecker Product
(KP), from the original DMRG++ application (sparse matrix algebra computa-
tional motif, developed at ORNL). This is one of the key computational kernel
in DMRG which computes the lowest eigenvector by evaluating the matrix-
vector product of the Hamiltonian operator, in an iterative method such as the
Lanczos algorithm. The new KP formulation can lead to an order of magnitude
reduction in memory compared to storing the operators as sparse matrices in
compressed sparse row storage. Exploiting the property of Kronecker product
and with adaptive conversion from sparse to dense matrix computations can
lead to significant speedups on large problems. This KP formulation has been
implemented in DMRG++. Numerical experiments using DMRG++ show the
new KP formulation can lead to 15X speedup in some cases.

Our mini-application uses different types of parallelism that can be imple-
mented via different OpenMP 4.5 constructs to express multi-level parallelism
and map it to multi-core threads. This work-in-progress paper primarily focuses
on porting the DMRG++ mini-application to the Power-8 processors, is a first



420 A. Chatterjee et al.

step towards expressing and mapping all the available parallelism, that we can
later map to accelerators.

2 Motivation

The increasing complexity and power in modern day high performance comput-
ing platforms has resulted in an explosive growth in available hardware threads of
execution to be exploited by application codes. It is expected that the upcoming
Exascale platforms will provide O(1 Billion) hardware execution threads [5,8,9].
Efficient exploitation of this massive parallelism presents a major challenge for
programming models and application codes. Historically, the “MPI+X” method-
ology has been adopted as the de-facto standard for large scale distributed appli-
cation. In this model, inter-node message passing based on the MPI [3,11] stan-
dard providing the foundation for Multiple Program Multiple Data (MPMD)
top level programming model, while a separate programming model is used to
exploit on-node hardware parallelism. Recent trends in HPC node design have
resulted in the increased adoption of fat nodes where each node exposes a sig-
nificant number of hardware threads [7,10], organized around complex and deep
memory hierarchies. Efficient execution on such architectures require application
codes to expose a significant level of parallelism, while simultaneously avoid-
ing synchronous programming styles that rely on global on-node barriers which
introduce significant overheads.

Increased node parallelism and the need to support more irregular algorithms
have driven the programming model community to explore options beyond single
level parallel constructs (exemplified by a variant of parallel for loop and/or
SIMD data-parallel vector operations). Hierarchical or nested parallelism has
emerged as a major focus for modern programming model development. Mapping
multi-level parallel algorithm onto hierarchical or nested programming model
constructs enable a more natural representation of the underlying algorithm,
alleviating the requirement to artificially transform the algorithm into another
formulation that better matches single level parallel programming models. This
however requires careful implementation and/or introduction of resource man-
agement and load balancing primitives into the underlying programming model
that increases its complexity. Another challenge involves heterogeneous hierarchy
where different nested levels implement different parallelism constructs (e.g. a
higher level irregular task-parallel invoking lower level data-parallel operations).

In this paper, we outline our experience optimizing the core computational
kernel of the DMRG++ application on Power8 platform using different per-
mutations of hierarchical parallel constructs of the OpenMP 4.5 standard. We
investigate the performance of a mini-application designed to faithfully represent
the multi-level parallelism of the underlying patched matrix vector multiplication
kernel. The work illustrates several challenges in using hierarchical parallelism
in OpenMP under load imbalance conditions and issues with mixing task and
data parallelism (particularly when leveraging external libraries).



Porting DMRG++ Scientific Application to OpenPOWER 421

3 Density Matrix Renormalization Group

3.1 The Application

The density matrix renormalization group (DMRG) is the preferred method to
study low-dimensional strongly correlated electrons. It was developed to over-
come the problems arising in the application of the Numerical Renormalization
Group (NRG) to quantum lattice many-body system. Strongly correlated mate-
rials are a wide class of materials that show unusual - often technologically useful
- electronic and magnetic properties, such as metal- insulator transitions or half-
metalicity. The term “correlated” refers to the way electrons behave in these
materials, which precludes relying on simple one-electron approximations.

We have used DMRG++ (developed at the Oak Ridge National Lab), a fully
developed application that uses a sparse matrix algebra computational motif for
the simulation of Hubbard-like models and spin systems [1]. In this work, we
present insights into the acceleration of the DMRG++ algorithm by making use
of the inherent Kronecker Product (KP) structure of the problem. The compact
storage property of Kronecker Product allows us to write efficient algorithms
to compute matrix-products [12]. For example, if matrices A and B are n × n
matrices, then the Kronecker product C = A⊗B is n2×n2. Moreover, computing
matrix vector product vec(Y ) = C ∗ vec(X) takes O(n4) operations if matrix C
were used explicitly, but can be evaluated as Y = B ∗ X ∗ At that requires only
O(n3) operations.

As we explore the opportunity to port the DMRG++ application to Open-
POWER, a mini-application capturing the core algorithmic and computational
structure of the application (Kronecker Product) will serve as the foundation for
the exascale-ready implementation of DMRG++. One goal of DMRG++ is to
compute the lowest eigenvalue λ (which is related to the “ground-state” energy
of the system) and the eigenvector Ψ of the full Hamiltonian (Hfull) with N sites

HfullΨ = λΨ, or λ = minimizev �=0
v′Hfullv

v′v
(1)

where the unit norm vector attaining the minimum value of Rayleigh quotient λ

is eigenvector Ψ . Because the full Hamiltonian matrix is conceptually a very large
4N × 4N matrix, we can only approximate this within a limited subspace of M
vectors. The DMRG++ algorithm is a systematic process to find this subspace of
vectors that approximates well the lowest eigenvector. The algorithm partitions
the sites on the 1D lattice into the left part (called “system”) and the right part
(called “environment”).

The full Hamiltonian can then be written as Kronecker product of operators
on left and right

Hfull = HL ⊗ IR + IL ⊗ HR +
K∑

k=0

Ck
L ⊗ Ck

R (2)

where HL(HR), IL(IR), CL(CR) are the Hamiltonian, identity, and interaction
operators on the left (right).



422 A. Chatterjee et al.

By bringing DMRG++ to exascale, condensed matter theorists, will be able
to solve problems such as correlated electron models of ladder geometries as
opposed to just chain geometries, and multi-orbital models as opposed to just
one-orbital models.

3.2 Baseline Performance Characteristics of the Application

The DMRG++ application1 spends most of its computational time calculating
the sparse matrix Hamiltonian. We profiled the existing implementation to iden-
tify the performance bottlenecks and use this as a baseline for comparison with
the implementation of our novel algorithm. We modified the original Pthreads
version of DMRG++ to use OpenMP to help us quantify load imbalances.

Fig. 1. Standard deviation of all
execution times per parallel region
instance over time. As the applica-
tion progresses over time these points
become more disperse. Execution uses
8 threads on a single TITAN node (8
blue dots per instance). (Color figure
online)

We used this version to measure the
time spent in the parallel regions and on
each individual task, in-order to quantify
useful work versus time spent on synchro-
nizations as a result of load imbalances,
task creation, or parallel region creation
overheads.

We observed that 80% of the time
was spent on the OpenMP parallel region
responsible for calculating the sparse
matrix Hamiltonian, when using eight
threads on a Bulldozer AMD Opteron
processor (Titan node). As seen in Fig. 1
there is a significant load imbalance across
the different phases, executed by the
threads for the different instances of the
parallel region. The application runs in
phases, and due to the dynamic nature of
the problem as the application progresses
the Hamiltonian matrix grows in size, and
the load imbalance problem gets worse
over time.

These preliminary profiling results suggest that an asynchronous task-based
execution model that leverages multi-level parallelism as exposed by the new
algorithm for Kronecker Product (KP) using the latest OpenMP 4.5 constructs
(see, Algorithm 1) is important to address the load imbalances by breaking down
the computational workload into smaller and more uniform units of work.

1 DMRG++ is used as a convergence algorithm to compute the lowest eigenvector by
evaluating the matrix vector product of the Hamiltonian operator in an iterative
method (Lanczos algorithm).



Porting DMRG++ Scientific Application to OpenPOWER 423

3.3 Hamiltonian Matrix

Fig. 2. Each cell is made up
of smaller matrices with different
sparsity/density. The arrows show
how the sparsity/density, increases/
decreases.

The key computational kernel in DMRG++
for computing the lowest eigenvector is the
evaluation of matrix-vector product of the
Hamiltonian matrix (Hfull) in an iterative
method such as the Lanczos algorithm. The
Kronecker Product formulation expresses
the Hamiltonian matrix as sum of smaller
KP matrices.

The Hfull has a special property that
it “conserves” quantum number such that
Hfull matrix can reordered (or permuted)
to consist of diagonal blocks. Each diag-
onal block is associated with a particular
(M↑,M↓) quantum number.

Due to the special block diagonal struc-
ture of Hfull, the eigen-decomposition of the
full system can be obtained by separately
computing the eigen-decomposition of each
diagonal block. Moreover, the lowest eigen-
pair will be attained at one of the diagonal
blocks. For many systems, the diagonal block associated with (M↑ = N/2,M↓ =
N/2) at “half-filling” is of special interest and commonly contains the lowest
eigen-pair. The use of (M↑ = N/2,M↓ = N/2) will be assumed in the rest of the
paper and the corresponding diagonal block is called Htarget.

The two-dimensional block diagonal Hamiltonian matrix is made up of
smaller operators (matrices) that are of varying weights (density). This matrix
is the primary workload for our Kronecker Product application. The spar-
sity/density of the matrix contributes to our data layout challenges that we
must overcome and the types of parallelism we can use to exploit the underlying
hardware. As shown in Fig. 2, the cells get denser as we traverse towards the
center of the 2-D matrix, and the sparsity of the cell increases as we traverse
away from the primary diagonal.

3.4 Pseudo Code: Apply Hamiltonian Target

In order to motivate this paper and show the need for multi-level parallelism,
data- and task-level parallelism, in this section we summarize the algorithm
(see Algorithm 1) that we use as our research vehicle. Figure 3 shows the structure
of the data-layout and the computation to evaluate the Kronecker Product. We
use this algorithm to show a use-case of a triple-nested loop that can benefit
from using nested-parallelism or task-based parallelism without compromising
the time-complexity due to the added synchronization overheads.



424 A. Chatterjee et al.

∗ =
A[:]

B[:]

C[1,0]

A[:]

B[:]

C[1,1]

A[:]

B[:]

C[0,1]

A[:]

B[:]

C[0,0]
X[:] Y[:]

Fig. 3. Visual representation of the data layout and computation for Algorithm 1

3.5 Types of Available Parallelism in the Kronecker Product
Algorithm

In this section we will discuss the potential of using two different parallelism
techniques to exploit maximum benefits to the Kronecker Product algorithm
(see Algorithm 1). Based on the growth aspect of the Hamiltonian matrix over
time (as discussed in Sect. 3.2), the nature of the workload (as discussed in
Sect. 3.3), and the dependencies between the cells in the Hamiltonian matrix,
we believe, to gain the most out of the underlying hardware, we must use two
different parallelism techniques in conjunction. We briefly discuss how each of
these technique can benefit our algorithm.

– Task Parallelism. There exist no data dependencies between any of the
adjacent cells in the two-dimensional Hamiltonian matrix. Each cell in the
matrix can be viewed as an isolated task which computes the KP for that
cell. As seen in Fig. 1, the work at each instance is sparse, to effectively
use the underlying hardware threads, we must aggregate smaller workloads
together. Since each task can be handled asynchronously, we can reduce the
load-balancing challenges, there by reducing the sparsity of the work, per
instance, of the Kronecker product.

– Data Parallelism. As seen in Fig. 2, the two-dimensional matrix is neither
completely sparse nor dense. Just dividing the computation into a number
tasks and allocating equal resources to each task will not be beneficial. Since
each cell (or task) has a variable workload, we must use data parallelism
with variable thread count (based on the work) in conjunction with task-
parallelism.

The granularity of the amount of tasks to be created, and the variable thread
count (resource allocation) per task, is of the prime importance and the key to
getting maximum benefit of using machines with significant number of hardware
threads on a single node.



Porting DMRG++ Scientific Application to OpenPOWER 425

Algorithm 1. Pseudo code to compute Kronecker multiplication
1: procedure HTarget(C[][], LPatch[], RPatch[], X[])
2: NPatches ← Size(C)
3: V Size ← PatchSize(LPatch, RPatch, NPatches)
4: for i ← 1, C.rows do
5: Y I ← zeros(V Size[i])
6: for j ← 1, C.cols do
7: Y IJ ← zeros(V Size[i])
8: ElemInC ← Size(C[i][j])
9: for k ← 1, ElemInC do

10: [MatA, MatB] ← GetMat(C[i][j], k)
11: Y IJ [i] ← Y IJ [i] + (MatA ⊗ MatB ∗ X[])
12: end for
13: for l ← 1, V Size[i] do
14: Y I[l] ← Y I[l] + Y IJ [l]
15: end for
16: end for
17: for m ← 1, V Size[i] do
18: Y [m] ← Y I[m]
19: end for
20: end for
21: return Y
22: end procedure
23:
24: procedure PatchSize(LPatch[], RPatch[], NPatches)
25: for i ← 1, NPatches do
26: LPatchRows ← LPatch[i]
27: RPatchRows ← RPatch[i]
28: V Size[i] ← LPatchRows ∗ RPatchRows
29: end for
30: return VSize
31: end procedure
32:
33: procedure GetMat(c, k)
34: MatrixA ← c.A[k]
35: MatrixB ← c.B[k]
36: return MatrixA, MatrixB
37: end procedure

4 Problem Statement

OpenMP offers different ways to express multi-level parallelism and how this
parallelism can be mapped to the architectures [2,4,6]. One of the approaches
is to specify nested parallelism, which increases the number of threads available
to the program, to exploit more parallelism, which can be used to break the
amount of work to a hierarchy of teams of threads. The other approach is to
decompose work into units of work that can be schedule to teams of threads.



426 A. Chatterjee et al.

Both approaches have pros and cons. Using OpenMP nested parallelism
increases dynamically the number of threads available to an OpenMP program
which is good for load balancing, but it comes at the cost of thread creation and
data locality. Nested threads may be destroyed and re-created again. This is an
expensive operation if the amount of work in the nested region is small compared
to the thread creation overhead. It also affects data locality as different instances
of the threads touches data, affecting implicit data placement.

Using tasking improves asynchronous execution, can more easily mapped to
accelerators, and improves load balancing on the application. The challenge in
using tasks is that OpenMP 4.5 does not support task reduction (which are being
discussed to be included in OpenMP 5.0) on certain groups of tasks. Another
challenge with the tasking approach is when tasks contain data parallel work (e.g.
matrix multiplications) that maps better to OpenMP work-sharing directives
(e.g. parallel loops). A given task may need different resources and this becomes
a scheduling and nested parallelism challenge. Given these limitations in the
OpenMP programming model, if we want to explore tasks, we have to use both
tasks and nested parallelism to allow the synchronization among threads, to
perform reductions among a group of threads.

5 Implementation and Experimental Evaluations

5.1 Experimental Setup

For our evaluation we used the OLCF’s early access system, SummitDev, with
each node running on a 2 10-core IBM POWER8 CPUs (IBM S822LC) with

Fig. 4. Shows a three-dimensional line plot to show one of the workloads we have used
for our evaluation, per cell in the Hamiltonian matrix (workload). x- and y- axes shows
the matrix cells and the z-axis depicts the amount of work available per cell. One must
note that the structure of the workload corresponds to the structure of the Hamiltonian
matrix as discussed in Sect. 3.3.



Porting DMRG++ Scientific Application to OpenPOWER 427

each core supporting up-to 8 hardware threads with 256 GB DDR4 memory per
node.

We tested our mini-application with different workloads, synthetically gen-
erated datasets that mimic the original structural complexity of the Hamilto-
nian Matrix. Figure 4 shows the distribution of work across the two dimensional
matrix. The workload distribution stays the same for larger Hamiltonian matri-
ces as well. For our evaluation purposes we have used only 20 threads (1 hard-
ware thread per core) so that we don’t oversubscribe. This setup yielded the
best performance. We have used clang/clang++ compilers (version 4.0.0) for all
our evaluations.

5.2 Pseudo Codes for Evaluation

For evaluation purposes we have used different parallelism styles with OpenMP
constructs and IBM ESSL for the DGEMM operations in our Kronecker Product
kernel (Algorithm 1). Some of the techniques used, are as follows:

Algorithm 2. Pseudo code for nested parallel work-sharing loops with OpenMP
1: procedure HTarget(C[][], LPatch[], RPatch[], X[])
2: NPatches ← Size(C)
3: V Size ← PatchSize(LPatch, RPatch, NPatches)
4: #pragma omp parallel num threads(numZero)
5: proc bind(levelZero)
6: #pragma omp for schedule(dynamic,1)
7: for i ← 1, C.rows do
8: #pragma omp parallel num threads(numOne)
9: proc bind(levelOne)

10: reduction(YI)
11: #pragma omp for schedule(dynamic,1)
12: for j ← 1, C.cols do
13: for k ← 1, ElemInC do
14: Y IJ [i] ← Y IJ [i] + (MatA ⊗ MatB ∗ X[])
15: end for
16: for l ← 1, V Size[i] do
17: Y I[l] ← Y I[l] + Y IJ [l]
18: end for
19: end for
20: for m ← 1, V Size[i] do
21: Y [m] ← Y I[m]
22: end for
23: end for
24: return Y
25: end procedure



428 A. Chatterjee et al.

5.2.1 Nested OpenMP Work-Sharing Loops (2 Levels)
Algorithm 2 shows the use of nested OpenMP work-sharing constructs in two lev-
els. For the matrix multiplication we use the IBM ESSL (non-threaded) DGEMM
kernel. For experimental evaluation we used up-to 20 hardware threads on a
single node (using OMP THREAD- LIMIT set to 20) to account for, no over-
subscription of threads, which might account for higher execution time. We have
used OMP PROC BIND at each level of the parallel region to account for thread
bindings. For all experimental results we have used spread for the outer region
and close for the inner region.

5.2.2 Nested OpenMP Work-Sharing with Tasking
Algorithm 3 shows the use of the tasking constructs of OpenMP with the nested
OpenMP parallel regions. Ideally, we would want to use nested tasks or OpenMP
4.5 taskloop construct to exploit the tasking model, but due to no current sup-
port of task-reductions, all reductions are being performed in the OpenMP par-

Algorithm 3. Pseudo code for tasking within OpenMP parallel regions
1: procedure HTarget(C[][], LPatch[], RPatch[], X[])
2: NPatches ← Size(C)
3: V Size ← PatchSize(LPatch, RPatch, NPatches)
4: #pragma omp parallel num threads(numZero)
5: proc bind(levelZero)
6: for i ← 1, C.rows do
7: #pragma omp single
8: #pragma omp task
9: Y I ← zeros(V Size[i])

10: #pragma omp parallel num threads(numOne)
11: proc bind(levelOne)
12: reduction(YI)
13: for j ← 1, C.cols do
14: #pragma omp single
15: #pragma omp task
16: for k ← 1, ElemInC do � Data Parallel Loop
17: Y IJ [i] ← Y IJ [i] + (MatA ⊗ MatB ∗ X[])
18: end for
19: end for
20: for l ← 1, V Size[i] do
21: Y I[l] ← Y I[l] + Y IJ [l]
22: end for
23: // End Parallel Region for j iteration
24: for m ← 1, V Size[i] do
25: Y [m] ← Y I[m]
26: end for
27: end for
28: return Y
29: end procedure



Porting DMRG++ Scientific Application to OpenPOWER 429

allel regions. Due to this restriction, and using OpenMP parallel regions with
OpenMP tasks, we don’t observe the complete benefits of using nested tasking.
Future OpenMP constructs will support task-reductions and we plan to modify
our code accordingly.

5.2.3 Threaded ESSL Without Any OpenMP Constructs
Algorithm 4 shows the use the IBM threaded ESSL version for computing the
DGEMM operations. Since ESSL-smp with nested OpenMP is currently not sup-
ported (or undefined), we wrapped the DGEMM operation in a single OpenMP
parallel region to control the thread count for the threaded ESSL. As seen in
Fig. 4, since the work is not uniformly divided, calling a threaded ESSL for each
cell in the Hamiltonian matrix creates a massive overhead. We do not observe
any performance benefits of using the threaded ESSL version because it currently
has no support for dynamically allocating the threads (number of threads used in
the ESSL-smp must be defined using the OMP NUM THREADS environment
variable during compile time).

5.3 Evaluation

Figure 5 shows the execution time of computing the Kronecker Product over the
total number of OpenMP threads used in the calculation. The bar chart shows
two bars, the blue bar corresponds to the version with nested OpenMP work-
sharing loops (see pseudo code Algorithm 2), and the orange bar corresponds to

Algorithm 4. Pseudo code with BLAS (using multi-threaded IBM ESSL)
1: procedure HTarget(C[][], LPatch[], RPatch[], X[])
2: NPatches ← Size(C)
3: V Size ← PatchSize(LPatch, RPatch, NPatches)
4: #pragma omp parallel num threads(numZero)
5: for i ← 1, C.rows do
6: for j ← 1, C.cols do
7: for k ← 1, ElemInC do � Data Parallel Loop
8: Using threaded ESSL (ESSL-smp)
9: Y IJ [i] ← dgemm(MatA, MatB, ∗X)

10: end for
11: end for
12: for l ← 1, V Size[i] do
13: Custom reduction with accumulators
14: Y I[l] ← Y I[l] + Y IJ [l]
15: end for
16: for m ← 1, V Size[i] do
17: Y [m] ← Y I[m]
18: end for
19: end for
20: return Y
21: end procedure



430 A. Chatterjee et al.

0

20

40

60

80

100

120

140

160

180

200

1x
1

1x
2

2x
1

1x
4

2x
2

4x
1

1x
8

2x
4

4x
2

8x
1

1x
16 2x

8
4x

4
8x

2
16

x1
1x

20
20

x1

Ex
ec

ut
io

n 
Ti

m
e 

(s
ec

s)

Total number of OpenMP threads

Nested Parallel (work sharing) Nested Parallel (tasking)

Fig. 5. Shows the execution time of computing the Kronecker product using two par-
allelism strategies as discussed in Sects. 5.2.1 and 5.2.2. The x-axis shows the total
number of OpenMP threads used. Processor bindings for each execution is, spread for
the outer region and close for the inner parallel region. Total number of threads in
x-axis is shown by outer threads × inner threads. (Color figure online)

the version with nested OpenMP tasks (see pseudo code Algorithm 3). As dis-
cussed in the problem statement, challenges with using nested OpenMP tasks, is
the lack of support of task-reductions across the group of threads. This forces us
to use OpenMP Parallel regions to compute the reductions thereby accounting
for added overhead, due to the creation/deletion of parallel regions. One might
note that for most of the cases, nested parallel version gives us a better exe-
cution time than the tasking, although a pure tasking model (without nesting
OpenMP tasks in parallel regions) with dynamic resource allocation would be
the optimal strategy for applications like DMRG++ (dynamic data-structure
with a high load imbalance across the workload). As discussed in Sect. 5.2.3,
using the threaded version to compute the Kronecker product incurred a higher
overhead than any of the other parallelism strategies, hence we are not providing
any evaluation data-points for the threaded ESSL method.

Acknowledgment. This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Research sponsored by the Laboratory Directed Research and Development Program
of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Depart-
ment of Energy.



Porting DMRG++ Scientific Application to OpenPOWER 431

References

1. Alvarez, G.: The density matrix renormalization group for strongly correlated elec-
tron systems: a generic implementation. Comput. Phys. Commun. 180, 1572–1578
(2009)

2. Ayguade, E., Martorell, X., Labarta, J., Gonzalez, M., Navarro, N.: Exploiting
multiple levels of parallelism in OpenMP: a case study. In: Proceedings of the 1999
International Conference on Parallel Processing, pp. 172–180 (1999)

3. Barker, B.: Message passing interface (MPI). In: Workshop: High Performance
Computing on Stampede, vol. 262 (2015)

4. Broquedis, F., Diakhaté, F., Thibault, S., Aumage, O., Namyst, R., Wacrenier,
P.-A.: Scheduling dynamic OpenMP applications over multicore architectures. In:
Eigenmann, R., de Supinski, B.R. (eds.) IWOMP 2008. LNCS, vol. 5004, pp. 170–
180. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79561-2 15

5. Department of Energy, Office of Science. ECP: Exascale Computing Project,
addressing challenges, March 2017

6. Duran, A., Gonzàlez, M., Corbalán, J.: Automatic thread distribution for nested
parallelism in OpenMP. In: Proceedings of the 19th Annual International Confer-
ence on Supercomputing, ICS 2005, pp. 121–130. ACM, New York (2005)

7. NERSC, Lawrence Berkley National Laboratory. CORI: Cray XC40, November
2017

8. NNSA, US Department of Energy: Office of Science. ECP: Exascale Computing
Project, addressing challenges (2017)

9. Oak Ridge National Lab. Stepping up software for Exascale, May 2017
10. OLCF, Oak Ridge National Laboratory. Summit: Scale new heights. Discover new

solutions, November 2017
11. OpenMPI developers. OpenMPI: Open Source High Performance Computing, May

2017
12. Van Loan, C.F.: The ubiquitous Kronecker product. J. Comput. Appl. Math. 123,

85–100 (2000)

https://doi.org/10.1007/978-3-540-79561-2_15

	Porting DMRG++ Scientific Application to OpenPOWER
	1 Introduction
	2 Motivation
	3 Density Matrix Renormalization Group
	3.1 The Application
	3.2 Baseline Performance Characteristics of the Application
	3.3 Hamiltonian Matrix
	3.4 Pseudo Code: Apply Hamiltonian Target
	3.5 Types of Available Parallelism in the Kronecker Product Algorithm

	4 Problem Statement
	5 Implementation and Experimental Evaluations
	5.1 Experimental Setup
	5.2 Pseudo Codes for Evaluation
	5.3 Evaluation

	References




