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Abstract. The trends in high performance computing, where far more
data can be computed that can ever be stored, have made in situ tech-
niques an important area of research and development. Simulation cam-
paigns, where domain scientists work with computer scientists to run a
simulation and perform in situ analysis and visualization are important,
and complex undertakings. In this paper we report our experiences per-
forming in situ analysis and visualization on two campaigns. The two
campaigns were related, but had important differences in terms of the
codes that were used, the types of analysis and visualization required,
and the visualization tools used. Further, we report the lessons learned
from each campaign.
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1 Introduction

The traditional post hoc model for analysis and visualization has been for the
simulation to write data to disk, and for a set of tools to read the data back into
memory at a later time to perform analysis and visualization. Because super-
computers can produce far more data than can be saved, this traditional model
is breaking down. This imbalance in supercomputers has made it very attractive
to perform the analysis and visualization operations in situ, as soon as the data
are produced and resident in memory.

Because the traditional model is breaking down, new models, frameworks,
and tools need to be developed that allow simulations to make use of in situ
visualization. These same models, frameworks and tools, where possible, need to
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be able to work with existing analysis and visualization tools, or provide a foun-
dation for the development of the next generation of libraries and tools. While
in situ visualization is a straightforward concept, the implementation details,
constraints, and requirements for resilience make this much harder to achieve
for production use. Much of the difficulty is a result of the visualization being
much closer to the running simulation. In a post hoc model, where communi-
cation between the simulation and visualization is done through files, there are
far fewer constraints on time and resource utilization, as well as resilience. In
an in situ model, strict constraints are placed on the analysis and visualization
routines. Further, any error in the analysis or visualization that causes the sim-
ulation to crash are unacceptable. Requirements like these, and many others,
make robust deployment of in situ visualization a challenge.

In this paper we describe our experience performing analysis and visual-
ization with two different simulation campaigns. The two campaigns were per-
formed with a plasma physics simulation that each had different analysis and
visualization requirements. In addition, each campaign used performance tools
to monitor the simulation while it was running and report different statistics.
Finally, data compression techniques were used on the simulation outputs. The
performance of these compression techniques was also monitored and reported.
Each campaign used a different set of analysis and visualization tools. We dis-
cuss the workflows that were constructed, the resulting visualizations, and the
lessons learned from each. Also, each the visualization of each campaign was
focused on different aspects of the simulation. We discuss these requirements,
and the lessons learned.

We begin with a brief review of related work in Sect. 2. In Sect. 3 we provide
some motivation and background on the structure of each campaign. In Sect. 4
we describe how the simulation, analysis and visualization components of each
campaign were configured. In Sect. 5 we show the analysis and visualization
results that were produced for each campaign. Finally, in Sects. 6 and 7 we
discuss the lessons learned throughout both simulation campaigns, and make
some concluding remarks, and thoughts for future work.

2 Related Work

Current and future trends in high performance computing continue to point to
systems where the ability to produce data far exceeds the ability to save that
data. This system imbalance has made in situ methods an important topic for
simulation science. Bauer et al. [6] provides a detailed survey of the broad and
long history of in situ visualization.

A number of frameworks for in situ visualization have been developed and
used over the years. These include SCIRun [19], a problem solving environment
that supports in situ visualization and computational steering. LibSim [23] is
a library that allows simulations to connect to the VisIt [9] visualization tool.
Catalyst [5] allows a simulation to connect to ParaView [1] for visualization.

ADIOS [17] is an I/O middleware library that exposes in situ processing to
a simulation through a POSIX-like API. ADIOS supports memory-to-memory
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coupling through a number of different transports methods, including DataS-
paces [12], DIMES [24], and FlexPath [10].

Several studies have been done to explore using these frameworks with simu-
lations. Bennett et al. [7] do in situ visualization and analysis using the ADIOS.
Ayachit et al. [4] use the SENSEI framework to study in situ visualization using
ADIOS, LibSim and Catalyst.

3 Motivation

The two simulation campaigns in this paper were motivated by trying to under-
stand new approaches for simulation science on HPC systems. These efforts
were focused in several directions. First, as mentioned previously, the growing
compute and I/O imbalance, and a need to monitor running simulations is neces-
sitating the use of in situ methods for analysis and visualization. Second, there
is a need to monitor and understand the different performance aspects of the
simulation, including FLOPS, memory usage, network bandwidth, compression
ratios, and I/O throughput. Third, the physics teams are focusing on using code
coupling to solve the multi-scale, multi-physics aspects of the simulations. Code
coupling is a powerful technique for using multiple simulation codes to work
together on difference pieces of the problem, and then coordinate their results
for whole-physics solution. In this context, the simulation team was interested
in analysis and visualization, performance, and compression for the individual
codes, as well as the coupled solutions.

The code coupling was performed in an environment enabled by in-memory
communication. The analysis and visualization also made use of this in-memory
environment for access to simulation data. This environment enabled the launch-
ing of executables to perform the various operations (simulation, performance
monitoring, analysis and visualization). A workflow system was used that
launched the various executables. These executables include the two simulations,
the performance monitoring executables, and the analysis and visualization exe-
cutables. The workflow also specified the connectivity between these executables.
This environment allows flexibility in what operations are executed, where they
are executed, and what types of pipelines are constructed.

4 Setup

This section describes the components, and their configurations for each of the
two simulation campaigns. In each of the simulation campaigns, two physics
codes were used to simulate plasma physics in a tokamak device. One code
was responsible for the core region of the tokamak, while the other code was
responsible for the edge region of the tokamak. The particular codes used in
each campaign are discussed in Sects. 4.1 and 4.2.

Each campaign was initiated using the Savanna [15] workflow system.
Savanna is a python-based workflow composition and dispatch engine that to
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composes and orchestrates complex workflows that consist of multiple applica-
tions. Savanna specifies the parameters for each component in the workflow,
as well as how the components are configured and connected to one another.
These components all make use of the ADIOS middleware layer for memory-to-
memory data transfer, and I/O operations. Two different memory-to-memory
data transport methods were used. FlexPath [10], a peer-to-peer data staging
service, and DIMES [24], a client-server based model data transfer service. These
transport methods in ADIOS enabled the coupling of the physics codes, as well
as the transport of simulation output to other data consumers in the workflow.
The TAU [20] performance tool was used to monitor the running simulations,
and used ADIOS for memory-to-memory data transfer to visualization resources.
The in situ analysis and visualization operations use ADIOS to obtain the data
from both simulations, as well as the performance tools. The data compression
capability in ADIOS was also used to reduce the amount of data transfered in
situ, as well as written to disk. Two different lossy compression methods were
used in the two campaigns; MGARD [2,3], and SZ [11]. To assess the quality of
the compression, Z-checker [21] was also used.

For analysis and visualization, two different tools were used: VisIt [9], and
VTK-m [18]. VisIt is a fully featured parallel production tool for scientific analy-
sis and visualization. VTK-m is a scientific visualization toolkit that is enabled to
take advantage of the multi/many-core nodes in HPC systems. Small, lightweight
analysis and visualization services were built using VTK-m to perform specific
tasks. These services used the ADIOS in situ environment, and the ADIOS visu-
alization schema [22] to ingest simulation data, and to output data extracts for
subsequent processing. The visualization schema is a convenience layer in ADIOS
that allows an application to add additional markup to data as it is being writ-
ten. This additional markup then allows the reader application to know exactly
how to ingest the data. For example, it could specify that it was writing a rec-
tilinear mesh, and that mesh had two fields, one called “energy” which is cell
centered, and one called “velocity” which is point centered (Fig. 1).
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Fig. 1. Simulation 1 code coupled fusion simulation diagram.
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4.1 Campaign 1

In the first campaign, two instances of the same code were coupled together. This
choice permitted to focus on the code coupling model when avoiding the extra-
complications related to the use of different codes. Two instances of a single code,
XGC1 [8] were used, each configured for a specific region of the computational
domain, see reference [13] for a description of the coupling scheme. TAU was used
performance monitoring, and both VisIt and VTK-m were used for analysis and
visualization.

Computation Code. The XGC1 computation code is a highly scalable physics
code used to study plasmas in fusion tokamak devices. XGC1 is a particle-in-cell
code. The simulation will solve for the motion of very large number of charged
particles inside the plasma, and then statistically deposit the particles onto the
mesh. Scientists are interested in both the field variables on the mesh, and the
particles.

In this example, two instances of XGC1 were run. One instance was config-
ured for the core region of the plasma, and another instance was configured for
the edge region of the plasma. There was a coupling region of the mesh where the
core and edge codes would communicate the state of the physics. The ADIOS
memory-to-memory data transport is used for the simulations to communicate
this coupling data.

Visualization. In this demo, VisIt was used as the dashboard to display the
progress of the running simulation through different visualizations. First, the
simulation and the visualization services were launched. Subsequently, the VisIt
GUI interface would be launched and it would connect to the running simulation,
and display the simulation progress in real time.

VisIt was configured using a Python script which setup the different win-
dows and positions of each of the visualizations within the dashboard, as well
as handling the updating of plots as new data became available. Due to time
constraints, we were unable to run VisIt using the ADIOS memory-to-memory
data transport, and we used ADIOS files output by the analysis services, and
the simulation. Each analysis service would update a “.visit” file as soon as it
had new data ready to be visualized. The Python script would then check for a
“.visit” file to be updated, indicating that new data was ready to be visualized,
and as soon as each analysis application had new data available, VisIt was able
to perform an update (Fig. 2).

4.2 Campaign 2

In the second campaign, two different codes were used coupling. GENE [16] was
used for the core region, and XGC1 was used for the edge region. The same
coupling model that was used for coupling two instance of XGC and described
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Fig. 2. Simulation 2 code coupled fusion simulation diagram.

in Ref. [13] has been used. Additional difficulties, including the extra compli-
cations of having different grids in GENE and XGC, will be described in an
upcoming publication [14]. As in campaign 1, TAU was used performance mon-
itoring. MGARD, and SZ were used for compression of simulation data, and
Z-checker used to monitor the compression quality. Lightweight in situ analysis
and visualization services were used for all of the visualizations.

Computation Code. GENE is an Eulerian gyrokinetic code that is used to
simulate the core region of the tokamak. The same code in Campaign 1, XGC1
is used to simulate the edge region of the tokamak. As before, a coupling region
is used between the core and edge for both codes to communicate the state
of the physics. The ADIOS memory-to-memory data transport is used for the
simulations to communicate this coupling data.

Visualization. The analysis and visualizations for Campaign 2 were generated
using a collection of lightweight services. Each service used the ADIOS environ-
ment, ADIOS visualization schema, and memory-to-memory data transport for
the communication of data. At each timestep of the simulation, data would flow
through the ADIOS environment to each services where analysis and visualiza-
tions were performed. The terminal rendering services would produce output
images that are saved to disk.

5 Results

5.1 Campaign 1

The code coupled fusion simulation was run on OLCF Titan, with XGC1 utiliz-
ing 2048 MPI processors and GENE using: 2048 MPI processors. Each visual-
ization and analysis process is assigned an MPI processor as well.
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Fig. 3. Dashboard for Campaign 1.

Visualization. The fusion scientists were interested in visualizations of several
physics quantities, and performance metrics. First, they were interested in the
energy concentrations that form within the plasma. This quantity, called the
scalar potential, is derived from the particles, and is a field variable on the core
and edge meshes (Fig. 3(a–b), respectively). Second, they are interested in the
behavior of the particle data in the simulation. This was visualized using a
reduction technique where the bulk particle velocity field was computed from
the motion of the particles. The bulk velocity field was then visualized using
streamlines. Third, in order to understand the convergence, they wanted to see a
time varying 1D plot of the heat flux. Finally, to monitor the system performance,
a visualization of the total FLOPS and memory usage for each node was done.

Streamline Visualization. Particles from XGC1 are the largest data produced
by the simulation. There are too many particles to save to disk every timestep,
so they are only saved during simulation checkpointing. This means that per-
forming any analysis or visualization on the particles is essentially impossible,
since once a new checkpoint is saved, the old one is deleted to clear space. To
overcome this limitation, we processed the particles coming from the simulation
every simulation cycle in situ. This processing consisted of a spatial reduction
of the particles by binning. All particles from the simulation were binned into
a decimated version of the simulation mesh. Due to the large number of parti-
cles, 3 billion++, this operation was performed in parallel across several nodes.
This process allowed every particle from the simulation to contribute to the final
binned values. Following binning the binned representation of the particles was
saved to disk for visualization and analysis. Using this approach we gained a high
temporal frequency view of the particles as they progressed during the simula-
tion. After the data was saved to disk it was loaded into VisIt were a streamline
operation was performed, with the final rendered image (Fig. 3(f)) showing up
on the simulation dashboard.
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5.2 Campaign 2

The code coupled fusion simulation was run on OLCF Titan, with XGC1 utiliz-
ing 3072 MPI processors and GENE using: 1024 MPI processors. Each visual-
ization and analysis process is assigned an MPI processor as well.

Fig. 4. The dashboard visualizations for Campaign 2.

Visualization. Similar to the visualization performed for Simulation 1 in
Sect. 5.1, scientists needed to visualize the potential energy of the simulation.
The potential energy is visualized for the core, edge, and coupling (Fig. 4(a–c))
of the fusion simulation.

Further, the scientists were looking for a specific energy interaction between
the streamers in the coupling region of the simulation. The two circular black
lines denote the coupling region of the simulation where XGC1 and Gene inter-
act. The two lines emanating from the center of the tokomak plane, resembling
clock hands, change dynamically as the simulation progresses, and denote the
region where the highest 70% of streamer energy lies. In the beginning of the
simulation this region is large, and as the simulation progresses the region shrinks
(Fig. 5), and the area denoted by the hands is essentially the strong side of the
plasma. This visualization helps researchers to confirm that the simulation is
progressing normally and that things have converged.

Analytics. The analytic services in this demo were broken into four light-weight
visualization services. First was the SZ visualization service. SZ was used to per-
form compression on data coming from XGC. The visualization service connected
to staging and read ten individual scalar values each cycle from the simulation.
These scalars values were then plotted as line graphs using the VTK-m software
rasterizer, and an image was stored to disk at each time step. Second, MGARD
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(a) Cycle 1 (b) Cycle 1980

Fig. 5. (a) and (b) denote the regions of highest energies at step 1 and 1980, respec-
tively.

Fig. 6. The dashboard graphs for Campaign 2.

was used to perform compression on data coming from GENE. The visualiza-
tion service connected to staging and read five individual scalar values each cycle
from the simulation. These scalar values were then plotted as line graphs using
the VTK-m software rasterizer, and an image was stored to disk at each time
step. Third was the TAU visualization service. Finally, Z-checker provided fur-
ther analytics for the compression, the ratio and the entropy (Fig. 6(b) and (d),
respectively). TAU was used to gather simulation performance data from XGC1
and GENE. The visualization service connected to staging and read eight scalar
arrays from staging each simulation cycle. The length of these arrays were 4096,
and gave performance data for each simulation process in XGC1 and GENE.
The data was then plotted as a line graph (Fig. 6(a)), and an image was stored
to disk for each time step.

The TAU visualization service allowed us to see when failures were occurring
during our testing runs. Specifically, the ability to monitor the memory usage per
process in the simulation aided in finding a bug in a different visualization service.
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During a test run, there were several nodes that consumed all the memory as the
simulation ran, until it eventually crashed the simulation itself. This can be seen
in the spike in the graph in Fig. 6(c). As it turns out, this memory increase was
due to a leak in the Z-checker compression service in ADIOS. The memory usage
visualization was useful in this case because we could see that the simulation
crash was only due to a small number of nodes running out of memory, which
narrowed down where the issue could be coming from.

The fourth and final analysis service was a feature detection service for
extracting streamers in the plasma. The streamers, shown in Fig. 4(d) are areas
of high energy density, and are a key driver in the evolution of the plasma.

6 Discussion

In this section we discuss the lessons learned from the two campaigns. The back-
bone of both campaigns was the ADIOS environment. It provide the memory-to-
memory data transport, as well as the I/O for all the components in both cam-
paigns. Using a single environment made it much easier to setup the workflows,
and provide the connections between individual components. This was especially
important in Campaign 2 where the analysis and visualization requirements were
changing, and the plug-and-play nature of the system made it easy to develop a
service that would easily work.

A significant advantage of the ADIOS environment is that it is easily config-
urable to use either files, or memory-to-memory data transfer. Because of this,
services could be developed and tested using files, and then deployed in situ by
setting a flag. This was invaluable in the development, testing, and debugging of
services. This also enabled the development of services to be performed indepen-
dent of the simulation, and the supercomputer. It also made it easier to groups
of developers to build services independently, and the coordinate at the end.
Once the services run independently in a development environment using files,
a parameter is modified, and the services will run on the HPC system.

The ADIOS environment also made it trivial to chain multiple services
together for more complex operations. Because we were using the ADIOS visu-
alization schema to annotate the semantics of the data being transported, the
services could easily communicate to each other. The ability also made it triv-
ial to chain multiple services together, as was done with the streamer detection
algorithm in Campaign 2.

Another advantage of the ADIOS environment is the runtime resilience pro-
vided. ADIOS is designed to allow the dynamic connection and disconnection
of services from the ADIOS stream. That is, the simulation that is writing data
via ADIOS will not crash if the process consuming that data crashes. A process
can then reconnect to the ADIOS data stream after it has recovered from the
failure. It is important to note that the analysis process itself is responsible for
being resilient enough to be restarted and reconnected to the ADIOS stream,
ADIOS will not maintain any state for a crashed analysis process.

An example of the resilience in ADIOS comes from Campaign 2. In Campaign
2, there was a memory leak in the base layer used by VTK-m services. Each
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time a service read in a timestep, tens of megabytes of memory would leak.
After enough timesteps, the node would run out of memory and crash. However,
since the simulation and visualization are not directly connected, the simulation
continued to run.

Because of time constraints, and technicalities associated with Campaign 1,
we were not able to connect VisIt to the ADIOS environment using the memory-
to-memory data transfer. As a workaround, VisIt read ADIOS files from disk.
There were three different files ready by VisIt that were generated by the simu-
lation, and analysis services: simulation output, TAU performance data, vector
field data produced by the in situ particle reduction services. The ability to avoid
disk altogether would have provided flexibility for the visualization, and made
it more efficient.

For visualization, each campaign used different modes. In Campaign 1, VisIt,
a fully featured visualization tool was used. In Campaign 2, a set of lightweight
visualization services were used. At a high level, VisIt is designed for interac-
tive visualization while a lightweight visualization service is not. This can affect
how scientists interface with a simulation as it runs. With the service oriented
strategy, the output is either a data extract, or an image. This means that sci-
entists are limited with exploring the dataset beyond the visualizations they
have invoked through the framework. Understanding these limitations, and the
requirements by the scientists can inform which choice is most appropriate.

Further, VisIt is a mature, full featured tool, while the lightweight visualiza-
tion service is based on VTK-m, which is a relatively young, and growing library.
Because of this, some more advanced visualizations are possible using VisIt, as
shown in Fig. 3(c), (d). However, the flexibility provided by lightweight service
model makes it much easier to provide custom visualizations, like the ballooning
angle visualization in Fig. 5.

Most of the visualizations done in each of the two campaigns were not per-
formance intensive. They ran one a single node, and were easily able to keep up
with the output frequency of the simulations. The particle visualization was the
most time and resource intensive analysis that was run. It was launched with
multiple nodes and multiple processes per node in order to keep up with the sim-
ulation output. However, there were times when it did not maintain pace with
the simulation. When the particle visualization was unable to keep up, some
simulation steps were dropped, but it would continue by reading the next avail-
able one once it had caught up. Again, the simulation continued regardless of
the whether the particle visualization kept up. This demonstrated the important
resilience of ADIOS and the visualization services.

Finally, one problem encountered was rendering on the HPC resource using
lightweight services. This is because of the challenges having system adminis-
trators install and maintain OpenGL and EGL drivers on the compute nodes.
To get around this problem, we used a software based rasterizer in VTK-m to
visualize the graphs, and a software based ray casting algorithm to render the
visualizations.
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7 Conclusion and Future Works

The growing complexity in high performance computing has led to new frame-
works, models, and tools for simulation codes. These tools need to be able to
work with existing visualization tools, or provide a way forward to enable new
models and frameworks to be implemented. One attractive approach to allow
this is to perform visualization in situ, where the data resides in memory.

In this paper, we discussed various aspects of performing in situ visualiza-
tion for two plasma physics simulation campaigns. Each campaign had varying
visualization and analysis requirements and used different visualization and anal-
ysis algorithms. We discussed two different workflows, one that is interactive and
another that is service oriented. Finally, we discussed the resulting visualizations
and the lessons learned.

In the future, we would like to further explore this interactive versus service
oriented paradigms. In particular, when one strategy is beneficial over the other,
and vice versa. Finally, we would like to explore a mix of interactive and service
oriented visualization, as well. Ultimately, we believe that a combination of both
interactive, and a service oriented visualization provides the most flexibility to
scientists.
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