
Analyzing the I/O Scalability of a Parallel
Particle-in-Cell Code

Sandra Mendez(B), Nicolay J. Hammer, and Anupam Karmakar

High Performance Systems Division, Leibniz Supercomputing Centre (LRZ) of the
Bavarian Academy of Sciences and Humanities, 85748 Garching bei München,

Germany
sandra.mendez@lrz.de

Abstract. Understanding the I/O behavior of parallel applications is
fundamental both to optimize and propose tuning strategies for improv-
ing the I/O performance. In this paper we present the outcome of an I/O
optimization project carried out for the parallel astrophysical Plasma
Physics application Acronym, a well-tested particle-in-cell code for
astrophysical simulations. Acronym is used on several different super-
computers in combination with the HDF5 library, providing the output
in form of self-describing files. To address the project, we did a character-
ization of the main parallel I/O sub-system operated at LRZ. Afterwards
we have applied two different strategies that improve the initial perfor-
mance, providing a solution with scalable I/O. The results obtained show
that the total application time is 4.5x faster than the original version for
the best case.

1 Introduction

The Leibniz Supercomputing Centre (LRZ) operates a Top50 HPC system,
SuperMUC [1] accessible for users in Germany and Europe. SuperMUC has a
total peak performance of 6.8 Petaflops, 500 Terabyte main memory, 20 Petabyte
external data storage, and a high speed Infiniband interconnect. LRZ has a
strong focus on user support, in order to enable users to efficiently use all com-
pute resources offered. As the installation of SuperMUC has increased LRZ’s
compute capacities, users require more efforts for the parallel I/O of their appli-
cations. Therefore, we provide support for parallel I/O optimization to enable
high I/O scalability of applications that requires to analyze the application I/O
characteristics and its interaction with the I/O system. In the case of SuperMUC,
an additional complexity arises from the large diversity of scientific applications
which are actively used on the system.

The authors thank the Acronym developer team for their contributions and the good
teamwork. Special thanks goes to Gerald Mathias for reading the manuscript and
providing valuable feedback. Computations for this project were done on SuperMUC
at LRZ, a member of the Gauss Centre for Supercomputing (GCS).

c© Springer Nature Switzerland AG 2018
R. Yokota et al. (Eds.): ISC 2018 Workshops, LNCS 11203, pp. 9–22, 2018.
https://doi.org/10.1007/978-3-030-02465-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02465-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-02465-9_1

10 S. Mendez et al.

Since 2016 LRZ has build up structures to focus on domain specific
community-oriented support and research infrastructure, to strengthen its sup-
port commitment. These so called Application Labs take the lead in supporting
scientific communities in the following research areas: Astrophysics and Plasma
Physics (AstroLab), Biology and Life Sciences (BioLab), Computational Fluid
Dynamics (CFDLab) and Geosciences (GeoLab). Aside from first level support
offered by the LRZ application support for technical problems with I/O imple-
mentations in scientific applications, the Application Labs offer project based
high level support for tuning, optimization and refactoring I/O implementations
for user applications.

In this paper, we present the work done during a project in the 2nd LRZ
AstroLab Support Call. Its objective was to improve the I/O scalability of the
astrophysical particle-in-cell Plasma Physics code Acronym [2], where scaling
problems were observed for a larger number MPI tasks (>104, one SuperMUC’s
Island). It is a typical example for implementation related problems reported by
SuperMUC users and how these problems can be overcome and can be seen as
a blueprint for tackling and improving similar problems for other applications
as well. Similar challenges were tackled in [3] using a different approach for the
parallel Particle-in-Cell application VPIC.

The project consisted of three parts: (1) performance characterization of the
I/O sub-system of SuperMUC with respect to I/O parameters at application
user level; (2) Access pattern analysis of Acronym, to gain understanding of
the application behavior and (3) Refactoring of Acronym’s I/O implementa-
tion to enable data aggregation. First and second parts are the basis to explain
the limitations of Acronym’s I/O capabilities and to develop data aggrega-
tion strategies for performance improvement. We create I/O communicators for
aggregation based on the application access pattern and system characteriza-
tion. An own implementation for aggregation is proposed because the Two-Phase
I/O technique reported poor performance in our GPFS file system and it does
not support all two-phase I/O hints provided by ROMIO [4]. Tessier et al. [5]
describes the limitations of two-phase I/O related with the problem of mapping
aggregators in the topology and the data access pattern of the application.

The paper is organized as follows: in Sect. 2, we present a study of the
I/O capabilities of the two SuperMUC GPFS file systems, Sect. 3 describes
the methodology for analyzing the I/O scalability of parallel applications and
Sect. 4 reviews the experimental evaluation. Finally, we present our conclusions
in Sect. 5.

2 Characterization of the I/O System

In this section, we present the throughput evaluation of the SuperMUC file
systems. Our aim is to evaluate the I/O performance behavior of the two file
system under normal operation. We define two kinds of experiments for:

– Throughput Evaluation as a Function of Request Sizes: we evaluate
request sizes which are aligned/non-aligned with file system block

Analyzing the I/O Scalability of a Parallel Particle-in-Cell Code 11

size (See Fig. 1). This decision is based on the experience that data
sizes per MPI task in scientific applications are in most cases of arbi-
trary size and cannot be expressed as 2n bytes. We use request sizes
of 2n× 32 kiB with n ∈ (1..16) for aligned tests. For non-aligned,
we use these (1.5 GiB, 729 MiB, 243 MiB, 81 MiB, 27 MiB, 9 MiB, 3 MiB,
1.4 MiB, 459kiB, 153kiB, 51kiB, 17kiB) request sizes.

– Throughput Evaluation as a Function of the Number of Nodes: we evaluate
I/O aggregation using 32 to 2048 compute nodes for three request sizes: (a)
6.8 MiB, a request sizes slightly below the file system block size; (b) 13.6 MiB,
a request sizes slightly above the file system block size and (c) 2 GiB, as
maximum request size since the MPI I/O implementation based on 4 byte
integers.

Fig. 1. Representation of request sizes aligned/non-aligned with the file system block
size

Table 1 shows the compute system and I/O system description used for the
experiments. Each measurement was rerun three times. We used an own bench-
mark based on MPI-I/O, in which every MPI task writes/reads its data consec-
utively in one block. The I/O tests was implemented in FORTRAN using MPI
(IBM Parallel Environment 1.4.04). This benchmark has a long usage history
on our system, which makes it easy to analyze the measured results. In several
comparison tests our benchmark delivered consistent results with Livermore’s
IOR (see https://github.com/hpc/ior).

2.1 Throughput Evaluation as a Function of Request Sizes

In Fig. 2 we present the MPI-I/O throughput for the two available parallel filesys-
tems of SuperMUC as a function of the request size. The measurements was done
during user operation of SuperMUC, which may result in a “noisy” measurement
due to I/O of other applications.

As can be observed, a general trend is the strong continuous increase of the
throughput with growing request size. This is expected, since every I/O systems
has a maximum number of IOPS, which naturally leads to smaller throughput
at small request sizes and a higher throughput at larger request sizes.

https://github.com/hpc/ior

12 S. Mendez et al.

Table 1. SuperMUC supercomputer

Compute system Description

Number of nodes 9216

Nodes per Island 512

Sockets per node 2

Cores per node 16

Memory per node (GByte) 32 (Usable 26)

Communication network FDR10 IB

Intra-Island topology Non-blocking tree

Inter-Island topology Pruned tree 4:1

I/O system WORK SCRATCH

Parallel filesystem IBM spectrum scale

Network shared disk (NSD) 80 (DDN based) 16 (GSS based)

Stripe/block size 8 MiB 8 MiB

Filesystem capacity 12 PiB 5.2 PiB

Max. I/O performance

Write(GiB/sec) ≈180 ≈130

Read(GiB/sec) ≈200 ≈150

Compute node ≈4.5 GiB/sec

0.03 0.125 0.5 2 8 32 128 512 2048
Request Size [MiB]

0.01

0.1

1

10

100

Th
ro

ug
hp

ut
 [G

iB
/s

]

GPFS blocksize
write - aligned
read - aligned
write - non-aligned
read - non-aligned

(a) SCRATCH file space

0.03 0.125 0.5 2 8 32 128 512 2048
Request Size [MiB]

0.01

0.1

1

10

100

Th
ro

ug
hp

ut
 [G

iB
/s

]

GPFS blocksize
write - aligned
read - aligned
write - non-aligned
read - non-aligned

(b) WORK file space

Fig. 2. Throughput of our MPI-I/O benchmark as a function of request size. The job
was executed on 512 compute nodes of the SuperMUC sandy bridge system with 1 MPI
task per node. There are two cases shown, one (blue/red) for aligned requests and a
second one (yellow/green) for non-aligned. Each point is the average of 3 independent
measurements (Color figure online).

Discussion. For analyzing results, we sub-divided the graph in three regions,
which mark different characteristics of the I/O sub-systems. We refer to the first
region at the left end with limit in 4 MiB, as region of small scale I/O. Here
the request sizes are smaller than the GPFS blocksize. To the third region at the

Analyzing the I/O Scalability of a Parallel Particle-in-Cell Code 13

right end, we refer as region of large scale I/O with request sizes larger than
512 MiB. To the second region located in between, we refer as intermediate
region.

In the large scale I/O region, the throughput is given by the design speci-
fications of the I/O sub-systems. Compared to that, in small scale I/O region
the throughput is significantly smaller, because the filesystem was tuned for large
throughput using large files and therefore a large blocksize is required and the
IOPS limits of the I/O sub-system. In this region the WORK throughput is clearly
higher than on the SCRATCH. The difference in throughput directly below the
blocksize (8 MiB) is approximately a factor of 5 (WORK compared to SCRATCH).
We associate this behavior with the larger number of NSD servers and the larger
number of controller machines available on the I/O sub-system of WORK, com-
pared to the SCRATCH. We therefore conclude that codes making I/O in that
region, should rather use the WORK filesystem.

In the intermediate region, the throughput is strongly dependent on align-
ment with filesystem blocksize. If the data size can be expressed as an integer
multiple of the blocksize, the throughput is high and, with increasing request
size, it approaches the system maximum quite fast. If not, the throughput is sig-
nificantly lower and straightly connects the small and large scale I/O regions.
Only for request sizes in the order of GiB the throughput is on the same level for
both cases. On both filesystems a dip in the read throughput curve at 16 MiB
request size is visible which is connected to caching effects. However, currently
we do not understand the root cause of this behavior.

2.2 Throughput Evaluation as a Function of the Number of Nodes

Fig. 3 shows the measured throughput as a function of the utilized number of
nodes. The three measurements corresponds to request sizes slightly below and

32 64 128 256 512 1024 2048
Number of Nodes

0.01

0.1

1

10

100

Th
ro

ug
hp

ut
 [G

iB
/s

]

read (6.8MiB)
write (6.8MiB)
write (13.6MiB)
read (13.6MiB)
write (2GiB)
read (2GiB)

(a) SCRATCH file space

32 64 128 256 512 1024 2048
Number of Nodes

0.01

0.1

1

10

100

Th
ro

ug
hp

ut
 [G

iB
/s

]

read (6.8MiB)
write (6.8MiB)
write (13.6MiB)
read (13.6MiB)
write (2GiB)
read (2GiB)

(b) WORK file space

Fig. 3. Throughput of our MPI-I/O benchmark on SuperMUC as a function of the
number of I/O nodes (i.e. number of compute nodes). The benchmark was executed
on SuperMUC Sandybridge system partion with 2 MPI task per node. The plot shows
the write and read performance for a request size of 6.8 MiB (blue/red), 13.6 MiB
(green/yellow) and 2 GiB (purple/brown) per task, respectively. Each point is the
avarage of 3 independent measurements (Color figure online).

14 S. Mendez et al.

above the GPFS block size and a maximum request size. The general trend of
all three measurements is a moderate increase of the throughput with increasing
number of nodes (moderate compared to the increase of throughput with request
size).

Discussion. The system behaviour observed explains quantitatively why aggre-
gation is useful under certain conditions to improve the I/O performance of HPC
applications. As can be seen in Figs. 2 and 3, the throughput improves strongly
increases with request size in the region below and around the block size of
the SuperMUC filesystems. At the same time the throughput does not strongly
decrease with decreasing number of I/O nodes being used. This is true as long
as the used number of nodes is large enough, i.e. greater/equal 256 nodes. An
example to illustrate it is provided by the write values from Figs. 2 and 3(b).
To make a conservative estimation, we take the read/write performance for a
request size not matching a 2n value, because the data size per MPI task in a
lot of applications is defined by a dynamic domain decomposition scheme and it
does not correspond to 2n bytes.

In Fig. 2(b) it can be seen that the throughput increases by roughly a factor
of 20 when scaling from a request size near 2 MiB to near 64 MiB. If the number
of I/O nodes is down-scaled by a factor of 32, e.g. from 1024 nodes to 64 nodes,
the I/O performance drops only by roughly a factor of 2 to 3 as seen in Fig. 3(b),
so we “gain” a factor of 8. This example is not precise in it’s numbers, but rather
demonstrates the basic principles behind I/O aggregation. Moreover, one must
take into account that the aggregation traffic imposes additional overhead to the
communication costs of the application. However, due to the rather large gain
factors (in our example approximately 8×) the I/O aggregation is still beneficial.

3 Analyzing the Application’s I/O Scalability

In Sect. 2, we have presented a system I/O characterization for different I/O
request sizes and compute nodes in a normal operation of the SuperMUC. This
shows to users an initial idea about the I/O performance behavior.

In this section, we describe the proposed methodology to analyze the I/O
scalability of parallel applications that is composed by three steps : (1) I/O Pat-
tern Analysis, (2) Evaluation of the weight of I/O operations; and (3) Evaluation
of I/O Strategies.

3.1 I/O Pattern Analysis

We perform two steps to analyze the I/O pattern with focus on the scalability:

1. Extracting temporal/spatial patterns to identify the dominant I/O phases.
2. Identifying the relation between application parameters and I/O phases.

Analyzing the I/O Scalability of a Parallel Particle-in-Cell Code 15

Acronym made use of parallel HDF5 library to regularly write three-dimen-
sional field datasets using collective operations with all processes participating.
The Acronym users reported slow performance when using more than 10k MPI
processes on SuperMUC. Initial tests revealed runtimes increasing superlinearly
with the number of MPI ranks suggesting a growing communication overhead.
Moreover, the data volume written by each process was small, exacerbating
the problem. To understand the I/O pattern that produce that behavior, we
evaluated the Acronym’s I/O kernel, named IOSTEST, by using different number
of MPI processes to extract the main properties of the I/O operations to analyze
the scalability behavior. Acronym was evaluated by using a global simulation
size (52, 52, 66560) that means 52 cells along the x and y-direction and 66560
cells along the z-direction; 10 simulation steps and 6 fields.

Extracting Temporal/Spatial Patterns to Identify the Dominant I/O
Phases. To extract the I/O pattern we use PIOM-MP (former knows as PAS2P-
IO [6,7]) a tool that isolates the influence of the underlying I/O system allowing
it to obtain the patterns in I/O phases and focus on the I/O routines. PIOM-
MP depicts the global I/O pattern of a parallel application in two dimensions:
the spatial and temporal patterns. The temporal pattern represents the order
which the I/O operations are performed by the MPI processes and the spatial
pattern represents the file logical view for each MPI process. Furthermore, a
third dimension is added to show the weight of the I/O operations.

In Fig. 4 it is depicted the global I/O pattern by using 320 (small case) and
5120 (medium case) MPI processes. We can observe the same pattern in both
cases, where the red point represent the I/O operations with bigger requests. The
3D picture depicts in the x-axis the process rank, in the y-axis the ticks that
corresponds to the communication and I/O events of MPI, and in z-axis the file
offset for each process in each tick. A heat map depicts the request size of each
I/O operation in the 3D picture. Read operations in blue corresponds to small
requests less than 512 Bytes that are independent on the application parameters.
Write operations are in red and their request size is variable depending on the
number of processes. As can be seen in Fig. 4, there are ten phases of writing
operations, in which red points correspond to larger requests.

Additional read and view operations are done at MPI level, because
Acronym uses parallel HDF5 that is built on top of MPI. Count of read opera-
tions is mainly related to the metadata operations of a HDF5 file. Additionally,
the following metadata complements the pattern provided in Fig. 4: (a) Access
type is shared that means that a file is accessed by all writer processes. The
number of writer processes is equal to the number of compute nodes; (b) Access
mode is strided that means each writer process accesses to non-contiguous posi-
tions of the file; (c) Read operations are independent, blocking and use explicit
offset; (d) Write operations with more data to move are collective, blocking and
use explicit offset; (e) Two view operations are called when a field is written to
the file.

16 S. Mendez et al.

Fig. 4. Global I/O pattern of the Acronym’s IOTEST at MPI-IO level using 320 (left)
and 5120 (right) MPI processes. Write and read operations are represented in a 3D
picture. x-axis corresponds to the MPI rank, y-axis represents calls to MPI-IO oper-
ations and z-axis represents the offset in the file for each MPI process. A heat map
depicts the request size of each I/O operation. Read operations are represented in blue
and write in red. Plots obtained with PIOM-MP [6,7] (Color figure online)

Identifying the Relation Between Application Parameters and I/O
Phases. Focusing on a simulation step, we analyze its call tree that is shown in
Table 2. Using the information of the global pattern and call tree we identify and
define relation between the parameters of the application and the I/O pattern
properties.

Table 2. Call tree for a simulation step

Order MPI-I/O operation Data access aspect

1 MPI File open

2 Once only by rank 0

MPI File get size

3 From seven to twelve times

MPI File read at Blocking, noncollective, explicit offset

4 Six times (once for each field)

MPI File set view

MPI File write at all Blocking, collective, explicit offset

MPI File set view

MPI File read at Blocking, noncollective, explicit offset

5 Only for the first seven I/O ranks

MPI File write at Blocking, noncollective, explicit offset

6 MPI File set size

7 MPI File close

Analyzing the I/O Scalability of a Parallel Particle-in-Cell Code 17

The application parameters are shown in Table 3. As can be observed the
request size (rs) depends on local simulation size that is based on the number of
MPI processes (np). File size increases as writer processes (wp), rs, simulation
steps (st) and fields (fi) increase. Each simulation step that corresponds with
an I/O phase moves Dst bytes, which means that if we have a writer process per
compute node, each compute node will write to the file system rs × fi bytes.

Table 3. I/O parameters of Acronym’s I/O kernel.

I/O parameter Values

Global simulation size (x, y, z)

Local simulation size (x loc = x, y loc = y, z loc = z
np

)

Compute nodes cn

Simulation step st

Fields fi

Writer processes wp = cn

Data size (bytes) ds

RequestSize(bytes) rs = x loc × y loc × z loc × ds

FileSize(bytes) fz = cn × rs × st × fi

Data per st (Bytes) Dst = cn × rs × fi

Data per 1 cn per st (Bytes) Dcnxst = rs × fi

In Table 4 we define the number of I/O operations based on the parameters
that is performed to determine the scalability capacity of the I/O kernel. Request
size corresponds to write at all operations, because they compose the I/O
phase with more weight. Count of read operations is dependent upon the st,
wp and fi. Furthermore, the rs of read operations is not dependent upon the
parameters of the simulation and it is less than 512 Bytes.

The parameters and formula defined in Table 3 are applied to experimental
design in Sect. 3.2 to evaluate I/O time impact on SuperMUC.

3.2 Evaluation of the Weight of I/O Operations

A strong scaling test is performed where the global simulation size stays fixed as
the number of compute nodes grows. In this case, the request size is decreased
and the count of I/O operations increases as the number of compute nodes
increases. The used parameters were provided by the Acronym developers: the
global simulation size in cells, with 52 cells along the x- and y-direction and
66560 cells along the z-direction (52, 52, 66560); 10 simulation steps (st) and 6
fields (fi). The size of data (ds) is 128 Bytes. By using these values we determine
the rs and Dcnxst (Data per compute node per simulation step). Table 5 presents
the values for the experiments, which were calculated with the formulae shown
in Table 3.

18 S. Mendez et al.

Table 4. Count of the MPI-IO operations for np processes and cn = np/16 based on
Acronym’s I/O parameters.

I/O operation Count

MPI File open st × cn

MPI File write at all st × fi × cn

MPI File write at (fi + 1) × st

MPI File set view st × fi × cn × 2

MPI File read at 2 × fi × st × cn + 23 × cn

MPI File get size st

MPI File set size st × cn

MPI File close st × cn

Table 5. Acronym IOTEST parameters. Global simulation size is (52,52,66560), File
size = 82 GiB, 16 processes per compute node, 8.05 GiB per simulation step with a
writer process per compute node.

Compute node (cn)
or writer processes

Number of
processes (np)

Local
simulation size

Request size
rs (MiB)

Data per 1 cn per st
Dcnxst (MiB)

1 16 (52,52,4160) 1373.13 8238.75

5 80 (52,52,832) 274.63 1647.75

10 160 (52,52,416) 137.31 823.88

20 320 (52,52,208) 68.66 411.94

40 640 (52,52,104) 34.33 205.97

80 1280 (52,52,52) 17.16 102.98

160 2560 (52,52,26) 8.58 51.49

320 5120 (52,52,13) 4.29 25.75

To evaluate the I/O time for the different I/O operations of the call tree we
use Darshan. Darshan [8] is a profiling tool for characterizing I/O workloads on
the petascale systems.

Figure 5 shows the I/O time and the count of I/O operations per type of
operation at MPI-IO level. In Fig. 5(a), the count of I/O operations is shown
in a stacked histogram. It can be observed as write at all operations (green),
read at operations (cyan) and set view operations (magenta) increase as the
number of compute node grows. The percentage of operations is mainly repre-
sented by write at all with 17%, read at with 40% and set view with 34%.
Although, count of write at all operations is less than read at, the data trans-
ferred in write phases is more than 99% of the data transferred during the exe-
cution of the IOTEST.

The I/O operation time is shown in Fig. 5(b). write at all operations are
representing more than 80% of the run time from 20 compute nodes. Despite
read at is representing 40% of the count of I/O operations in Fig. 5(a), this

Analyzing the I/O Scalability of a Parallel Particle-in-Cell Code 19

has less impact on the execution time, although its influence increases from 80
compute nodes. In the case of set view (time included in the META time), that
represent 34% in Fig. 5(a), it does not significantly increase running time.

(a) Operation Counts (b) Time and Throughput

Fig. 5. Time and count of operations at MPI-IO level for the I/O kernel of the
Acronym application. Mapping corresponds to 16 MPI processes per compute node.
Access mode is a shared file and file size is 82 GiB. META time corresponds to cumula-
tive time spent in open, view and close. WRITE is cumulative time spent in write and
sync. Global simulation size is x = 52, y = 52 and z = 66,560) (Color figure online)

These results show that Acronym is not scaling because the number of
operations grows and the request size decreases, that means more I/O requests
for the file system. Additionally, if the number of writer processes grows then
the degree of I/O concurrency increases by generating more load for the file
system. Experimental results achieve a transfer rate between 500 MiB/sec and
3.8 GiB/sec, the best result is using an I/O rank per 10 compute nodes where
the request size is 137 MiB and the worst corresponds to 360 compute nodes
with a request size of 4 MiB. These results affect the performance and it can be
observed on the execution time. Using the parameters and formula defined in
Table 3 it is possible to select the number of writer processes taking into account
the global simulation size to have an appropriate request size to scale.

3.3 Evaluation of I/O Strategies

The original aggregation strategy implemented by Acronym developers created
a new I/O communicator per compute node based on colors and keys to select
the writer processes. Colors and keys are calculated by using the identifiers of
island, rack and node where each MPI rank is running. This strategy allows to
have an I/O communicator considering closeness of the MPI ranks. We have
to mention that in SuperMUC by default the number of I/O aggregators is 1
per compute node when collective operations are used. Therefore the user could

20 S. Mendez et al.

(a) Disabled Chunking (b) Enabled Chunking

Fig. 6. Time at MPI-IO level for the revised I/O kernel of the Acronym application.
Mapping corresponds to 16 MPI processes per compute node. Access mode is a shared
file and file size is 82 GiB. META time corresponds to cumulative time spent in open,
view and close. WRITE is cumulative time spent in write and sync. 5 writer processes
for 5 compute nodes and 10 writer processes are setup for the rest of the experiments.
Global simulation size is x = 52, y = 52 and z = 66,560) (Color figure online)

have used that strategy and not implement an own solution. However, we have
observed the collective buffering report poor performance in SuperMUC.

Using the pattern analysis done we revised the original aggregation strat-
egy removing unnecessary open calls and two aggregation strategies are imple-
mented: (i) a small number of computational ranks also act as designated writer
processes. These aggregate data from neighboring processes in simulated 3D
space via MPI communication and the data is rearranged in memory; (ii) Enable
HDF5 chunking based on a manual size selection or on an automatic selection
where chunk size is equal to the output block size of writer processes. In both
approaches, the data is subsequently written to disk, fewer processes are par-
ticipating and larger blocks are sent to the filesystem. Moreover, the scheme is
setup such that the number of writer along each dimension is configurable via
simulation parameters.

Results for the first strategy is shown in Fig. 6(a). In this case the number
of writer processes stays fixed to 10, except for 5 compute nodes where the
writer processes are five. We can observe that the I/O time does not increase as
increase the number of compute nodes which reduces the total execution time.
Figure 6(b) shows execution time for the modified version with chunking strategy
enabled and the same number of writers to Fig. 6(a). Chunking produces a fixed
overhead for metadata and the I/O time does not grow as in original version.

By comparing the two strategies, we can observe better results for the first
where the user can select the number of writers. This number of writers was
selected considering the request sizes presented in Table 5 where the request
sizes by using 5 and 10 writers obtain more performance in Fig. 2(b). In this
case, we have selected the option with more writers because this value does not
impact on the total time and provides a higher I/O parallelism degree.

Analyzing the I/O Scalability of a Parallel Particle-in-Cell Code 21

4 Experimental Evaluation

In this section, we present the result of applying the modified I/O strategy
on the Acronym for a weak scaling case. In order to avoid the overhead of
thousands of processes accessing a single file, a small number of designated writer
processes is chosen at the beginning of a simulation run. Through a setting in
the configuration file, the number of MPI ranks taking part in the field output
operation is selected. Communication occurs only between the computational
nodes and their designated writer process as well as among the small number of
writer processes.

Figure 7 shows the results of Acronym, the black continuous line represents
the ideal scaling, the red line represent the time without I/O. The blue line rep-
resent the original strategy. We can clearly see the improvements with stronger
aggregation factors, i.e. larger number of nodes sharing one writer process in
yellow line with inverted-triangle. Results showed total time 4.5x faster than the
original version for the best case.

Fig. 7. Weak scaling of the Acronym PiC-Code with and without I/O by using the
optimized I/O implementation (plot provided by Acronym developer team)

5 Conclusions

We have presented an analysis of the I/O scalability of Acronym parallel code
and have shown promising results by using an I/O aggregation strategy taking
into account the system topology of SuperMUC (i.e. island and node configura-
tion of the system). We have defined the request size considering the simulation
parameters and the I/O pattern that allows us to select an appropriate number
of writer processes in the experimental design time.

We did a characterization of the I/O system and used the results to explain
the behavior of the original I/O implementation of Acronym. Furthermore,
we discussed a suitable range of aggregation factor for the implemented I/O

22 S. Mendez et al.

aggregation scheme based on the characterization results. Moreover, the pre-
sented I/O characterization can provide guidelines for other users of SuperMUC
encountering problems with I/O scalability.

Initial scaling tests of Acronym showed a sub-linear scaling with the num-
ber of MPI ranks suggesting a significantly growing communication overhead.
Moreover, the data volume written by each MPI task was small by increasing
the count of I/O operations, exacerbating the problem. This brought a complete
redesign of the I/O routines into play. In latest code version, a small number
of computational ranks act as designated I/O agents. This newly implemented
method provides much better scaling even for simulations up to 32k cores by
showing a total time 4.5x faster than the original version.

References

1. SuperMUC: Leibniz supercomputing centre (LRZ). Technical report, Bayerischen
Akademie der Wissenschaften (2014)

2. Kilian, P., Burkart, T., Spanier, F.: The influence of the mass ratio on particle
acceleration by the filamentation instability. In: Nagel, W.E., Kröner, D.B., Resch,
M.M. (eds.) High Performance Computing in Science and Engineering 2011, pp.
5–13. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23869-7 1

3. Byna, S., et al.: Parallel I/O, analysis, and visualization of a trillion particle simula-
tion. In: Proceedings of the International Conference on High Performance Comput-
ing, Networking, Storage and Analysis SC 2012, vol. 59, pp. 1–12. IEEE Computer
Society Press, Los Alamitos (2012)

4. Thakur, R., Gropp, W., Lusk, E.: Data sieving and collective I/O in ROMIO. In:
Proceedings of the 7th Symposium on the Frontiers of Massively Parallel Computa-
tion FRONTIERS 1999, pp. 182–189. IEEE Computer Society, Washington (1999)

5. Tessier, F., Malakar, P., Vishwanath, V., Jeannot, E., Isaila, F.: Topology-aware
data aggregation for intensive I/O on large-scale supercomputers. In: Proceedings
of the First Workshop on Optimization of Communication in HPC COM-HPC 2016,
pp. 73–81. IEEE Press, Piscataway (2016)

6. Mendez, S., Rexachs, D., Luque, E.: Modeling parallel scientific applications through
their input/output phases. In: 2012 IEEE International Conference on Cluster Com-
puting Workshops (CLUSTER WORKSHOPS), pp. 7–15, September 2012

7. Mendez, S., Panadero, J., Wong, A., Rexachs, D., Luque, E.: A new approach
for analyzing I/O in parallel scientific applications. In: CACIC 2012, Congreso
Argentino de Ciencias de la Computación, pp. 337–346 (2012)

8. Carns, P., et al.: Understanding and improving computational science storage access
through continuous characterization. Trans. Storage 7(3), 8:1–8:26 (2011)

https://doi.org/10.1007/978-3-642-23869-7_1

	Analyzing the I/O Scalability of a Parallel Particle-in-Cell Code
	1 Introduction
	2 Characterization of the I/O System
	2.1 Throughput Evaluation as a Function of Request Sizes
	2.2 Throughput Evaluation as a Function of the Number of Nodes

	3 Analyzing the Application's I/O Scalability
	3.1 I/O Pattern Analysis
	3.2 Evaluation of the Weight of I/O Operations
	3.3 Evaluation of I/O Strategies

	4 Experimental Evaluation
	5 Conclusions
	References

