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Abstract. Verifying whether rational participants in a BAR system
(a distributed system including Byzantine, Altruistic and Rational par-
ticipants) would deviate from the specified behaviour is important but
challenging. Existing works consider this as Nash-equilibrium verification
in a multi-player game. If the game is probabilistic and non-terminating,
verifying whether a coalition of rational players would deviate becomes
even more challenging. There is no automatic verification algorithm to
address it. In this article, we propose a formalization to capture that
coalitions of rational players do not deviate, following the concept of
Strong Nash-equilibrium (SNE) in game-theory, and propose a model
checking algorithm to automatically verify SNE of non-terminating prob-
abilistic BAR systems. We implemented a prototype and evaluated the
algorithm in three case studies.

1 Introduction

In general, most real-world systems involve collaboration of many distributed
parties, e.g., Internet routing [20], peer-to-peer file sharing [3], cooperative
backup [14], etc. In these systems, agents are assumed to follow the rules or
specifications in the system designs. These rules/specifications may have to be
followed over infinite times, e.g. in operating systems [17] and medical computing
[7].

In such non-terminating concurrent multi-agent systems a particular agent
may deviate from the system specifications to maximise its self-interest. Follow-
ing the motto “Unity makes strength”, self-interested agents may also deviate
as coalitions to improve their individual rewards simultaneously. For example,
miners in block-chain form coalitions to reduce the cost of breaking block-chain
security (i.e. increase profit) [11]. It is thus natural to consider the system as
a game1 in which self-interested agents are rational players, implying that an
agent cooperates only if it improves her benefit.
1 Here, game refers to the atomic concept of Game Theory, defined as the study of

mathematical models of conflict and cooperation between intelligent and rational
decision-maker agents.
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However, rational behaviours are not the only source of deviation from the
specifications. Some devices may not work properly for other reasons than self-
interest. The interacting components of a large system may be designed by dif-
ferent companies, that increases the probability of incompatibility or misconfig-
uration. Some devices may also have been intentionally designed to be malicious,
in the sense that they aim more at the failures of other agents than the maximi-
sation of their own rewards. Such agents/devices are named as Byzantine players
in the game. Though a system is unlikely to work correctly in the presence of
misconfigured agents, little has been done to verify such “damaged” system.

Byzantine-Altruistic-Rational (BAR)2 models have been introduced in [2] in
order to analyse the systems with selfish and “broken” agents. Later it has been
extended in two directions: (1) Applying to probabilistic systems (PBAR) [9];
(2) Considering coalitions of rational players [16]. In this work we consider the
combination - coalition of rational players in PBAR systems.

Verifying whether rational players deviate from the system specification in a
BAR system is challenging due to the exhaustive strategy space of rational play-
ers. In PBAR, verification becomes even more challenging as the introduction of
probabilities makes the calculations more complex. Moreover, in non-terminating
PBAR, the convergence of rewards is not guaranteed. Especially, we consider the
coalitions of rational players which require to reason about both group interest
and individual interest.

Verification techniques like model checking have been used to guarantee
whether a system satisfies some arbitrary properties derived from the specifi-
cations. For example, in the secret sharing protocol [10], model checking is used
to guarantee that a secret is fairly distributed among entities that cooperate
according to specified rules. Model checking algorithms are proposed to verify
BAR [15], PBAR with stopping games [9] and BAR with a specific coalition [16].
However, there is no algorithm to automatically analyse coalitions in PBAR sys-
tems.

Contributions. We propose a formalization of Strong Nash Equilibrium (SNE)
[19] to capture that any rational player or their coalition would not deviate from
the specified behaviour in non-terminating probabilistic BAR systems (Sect. 5).
We propose an approximation algorithm to automatically verify SNE (Sect. 6).
We implement the algorithm as a prototype and evaluate the algorithm using
case studies (Sect. 7).

2 Related Work

Nash-equilibrium. We observe two directions of research on Nash-equilibrium
(NE): (1) Learning NE-strategy, e.g., in planning [18] and social behaviour analy-
sis [13], where the environment and other players are dynamic; (2) analysing NE,
where the environment and player behaviours are pre-defined, such as a PBAR
2 In BAR model, the agents are divided in three categories, altruistic, rational or

Byzantine. Only altruistic agents follow the system specification.
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system in this work. In analysing NE, we observe 3 sub-directions, namely, com-
puting NE, e.g., PRALINE [4], finding optimal strategy of rational players, e.g.,
PRISM-games [5] and verifying NE, e.g. EAGLE [21]. Verifying NE is further
divided into two categories: applying to games with 0 or 1 rewards e.g., [21], and
applying to games with cumulative reward objectives e.g., [15]. BAR system
verification resides in the later category.

Model Checking for NE. The tool EAGLE [21] and PRALINE [4] only han-
dle non-probabilistic games. The closest to our work is PRISM-games 2.0 [12],
which performs multi-objective optimal strategy synthesis for rational coali-
tions in probabilistic games. However, PRISM-games 2.0 does not handle non-
terminating games with discounted long-run rewards (A detailed comparison is
presented in Sect. 7.1).

Verification of BAR Systems. The approach in [15] is only applicable for non-
probabilistic BAR systems. Later, the work [9] extends it for probabilistic BAR
systems stopping with probability 1; while the work [16] extends it with coalition
but only considering coalitions with an agreed group reward. Our work combines
both extensions in the concept level and further extends them to (1) probabilistic
BAR systems in general (without the constraint to stop with probability (1) and
(2) considering multi-objectives (individual interests in a coalition) rather than
simply considering them as one agent/player.

3 Running Example

We illustrate a PBAR system using a simplified/artificial version of pricing game
that is well-known in economics. Assume that sellers simultaneously set their
prices for one type of product for an year. Buyers buy from the sellers who offer
the cheapest price. The market share is thus divided equally between the sellers
who offer the cheapest price. The profit of a seller in an year is the price times
his market share for the year. The sellers make an agreement to reset the prices
at the beginning of each year according to an agreed probabilistic distribution. A
seller is altruistic if she follows the agreement, Byzantine if she chooses her price
non-deterministically, rational if he chooses the price that maximizes her long-
term profit. This game is played for infinite long time and the profit decreases
each year at a rate β (to simulate the inflation or product depreciation).

For simplicity, we assume there are 3 sellers (d1, d2 and d3) and 3 prices (p,
2p and 3p), where p is a positive number. Initially, the sellers’ prices are empty
denoted as 〈⊥,⊥,⊥〉 respectively. The agreed price distribution is: resetting the
price at p with probability 0.9 and resetting the price at 2p and 3p with prob-
ability 0.05 respectively. We assume d1 and d2 can be altruistic or rational and
d3 is Byzantine.

Reward Calculation Illustration. In the scenario that d1 and d2 are both ratio-
nal, for a given year, assume d1 and d2 decide to set the price at p and d3
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decides to set the price at 2p, then the prices for the first year are 〈p, p, 2p〉.
Since buyers choose to buy at the lowest price, the buyers buy from d1 and d2.
Assuming the total market share is 1, the market share for d1, d2 and d3 is
thus 1/2, 1/2, and 0 respectively. Hence, the profits for the sellers for the first
year is 〈1/2 × p, 1/2 × p, 0 × p〉 = 〈p/2, p/2, 0〉. The profits of other years can be
calculated in the same way. Given a trace specifying the price decisions of the
sellers of each chronological year, we can calculate the profit of a seller, denoted
as profit1 , profit2 , profit3 , · · · . Since in the long-run, the actual profit for each
seller decreases by β, the long-term profit for a seller following the trace is

profit1 + profit2 ∗ β + profit3 ∗ β2 + · · · = Σ∞
t=1profitt ∗ βt.

4 PBAR System Specification

Given n players, we denote the set of Byzantine players as Z and denote the
non-Byzantine set as Z ′. A PBAR-system can be formally represented as follows.

Definition 1. Given a set of n players and a subset Z of Byzantine players, a
PBAR-system is a tuple M = (S, I,A, T, P,H), where

– S is a set of states,
– I is the set of initial states,
– A = Γ1 × Γ2 × · · · × Γn is a set of actions, where Γi is player i’s local action

set.
– T : S × A → S specifies the transition function,
– P : S × A × P(Z ′) → [0, 1] specifies the probability of taking an action at

a state, given a set of altruistic players, which is a subset of non-Byzantine
players. P(Z ′) is the power set of Z ′. A subset of non-Byzantine players is
an element in P(Z ′).

– H : 〈H1(s, a), . . . , Hn(s, a)〉 where, Hi : S × A → R is the reward function of
player i.

Running Example Specification. According to the example specification, we have
n = 3 and Z = {d3}. A state represents the price combination of the sellers.
Therefore there are 28 states in total, including {〈t1, t2, t3〉|t1, t2, t3 ∈ {p, 2p, 3p}}
(27 states) and the initial state 〈⊥,⊥,⊥〉. The actions represent the chosen price
A = {〈γ1, γ2, γ3〉|γ1, γ2, γ3 ∈ {p, 2p, 3p}}. Since from any state it is possible to
choose a price combination to go to any other state, the state transitions are
edges in the complete graph of the 27 states, plus the edges from the initial state
to each other states. The probability function is as follows: Since d3 is Byzantine,
the possible sets of altruistic players are ∅, {d1}, {d2} and {d1, d2}. According to
the probabilistic distribution of altruistic players’ actions (only altruistic players
follow the probabilistic distribution), we have for any s ∈ S and 〈γ1, γ2, γ3〉 ∈ A,
when only d1 is altruistic3,

P (s, 〈γ1, γ2, γ3〉, {d1}) =
{
0.9 if γ1 = p

0.05 if γ1 = 2p or γ1 = 3p.

3 We do not need to consider the case of ∅ as there is no probability in this case.
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By replacing γ1 with γ2, d1 with d2 in the above equation, we obtain
P (s, 〈γ1, γ2, γ3〉, {d2}). When both d1 and d2 are altruistic,

P (s, 〈γ1, γ2, γ3〉, {d1, d2}) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0.81 if γ1 = p ∧ γ2 = p

0.045 if γ1 = p ∧ γ2 = 2p or γ1 = 2p ∧ γ2 = p or

γ1 = p ∧ γ2 = 3p or γ1 = 3p ∧ γ2 = p

0.0025 otherwise (4 cases).

The pay-off function H is defined as 〈H1(s, a),H2(s, a),H3(s, a)〉 where a =
〈γ1, γ2, γ3〉,

Hi(s, 〈γ1, γ2, γ3〉) =

⎧
⎪⎨

⎪⎩

γi ∗ 1
m if γi = min{γ1, γ2, γ3}

m is the number of minimum prices in 〈γ1, γ2, γ3〉
0 otherwise.

5 Formalizing Strong Nash-equilibrium

On top of the specification of a PBAR system, which captures the behaviour
of altruistic, rational and Byzantine players, we now formalise the concept of
Strong Nash-equilibrium (SNE) [19], capturing that coalition of rational players
would not deviate from the specified altruistic behaviour for better pay-off in a
PBAR system.

Intuitively, given a set of Byzantine players Z, for any coalition C (C ⊆ Z ′),
we compare the pay-off gained by the players in the coalition when they behave
altruistically, named as the altruistic game-reward, and the maximum pay-off
gained by the players in the coalition when they deviate, named as the ratio-
nal game-reward. Only if a coalition’s rational game-reward is better than the
altruistic game-reward (i.e. at least one player in the coalition gets better reward
while the other do not lose reward), then the coalition would deviate from the
altruistic behaviours. In the following part, we show how to formalise/calculate
the two types of rewards.

Given a PBAR system M = (S, I,A, T, P,H), a path is an action sequence
π = π0

a, . . . , π
|π|−1
a (|π| can be infinite) where, πl

a ∈ A is the action at step l. π

corresponds to a valid state sequence π0
s , . . . , π

|π|−1
s where validity is captured

by transition function T (T (πl
s, π

l
a) = πl+1

s 0 ≤ l ≤ |π| − 1). We denote the set
of paths starting from a state s with length k as Πk(s).

In non-terminating systems, both altruistic game-reward and rational game-
reward are accumulated in infinite steps starting from the same initial state.
To avoid the reward getting infinite and thus not comparable, we use the dis-
counted pay-off, as shown in calculating the long-term pay-off in the running
example. Thus, the pay-off of player i following path π is Ri(π) = Hi(π0

s , π0
a) +

Hi(π1
s , π1

a)β + . . . + Hi(πk−1
s , πk−1

a )βk−1.
However, Ri(π) cannot be directly used in the formalisation of SNE. First, we

need to consider the Byzantine players in the context of PBAR. Since Byzantine
players behave arbitrarily, for a given sequence of joint actions of players in C (a
strategy of C), there may be various paths due to the Byzantine players’ s choices.
Among these paths, we assume that the coalition always consider its minimum
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pay-off, which captures the guaranteed pay-off of the coalition no matter how
the Byzantine players behave. To calculate the guaranteed pay-off, we define
two basic concepts: (1) a joint action sequence of a set of players Λ following
a path π is Pπ

Λ = p(π0
a, Λ), · · · , p(π|π|−1

a , Λ) with p(〈γ1, . . . , γn〉, {λ1, . . . , λl}) =
〈γλ1 , . . . , γλl

〉, Λ = {λ1 . . . , λl} (λi is the index of the player)4; and (2) a joint
action choice of length k (possibly infinite) for a set of players Λ = {λ1 . . . , λl}
is defined as Σk

Λ = α1, . . . , αk, where αl = 〈γl
λ1

, . . . , γl
λl

〉 is the joint action
choice at step l. Given a starting state s and a joint action choice Σk

Λ, there
may be a set of multiple paths adhering the joint action choice, denoted as
Φ(s,Σk

Λ) = {π|π ∈ Πk(s),Pπ
Λ = Σk

Λ}. Given a starting state s, if we fix a joint
action choice of non-Byzantine players Z ′, the resulting subset of paths will only
contain the paths that vary due to the choices of Byzantine players, denoted
as Φ(s,Σk

Z′) (i.e., Λ = Z ′). In the set Φ(s,Σk
Z′), for a player i ∈ Z ′, we first

calculate its pay-off of each path and then choose the minimum pay-off. The
result is the guaranteed pay-off of i starting from s of length k, given a fixed
non-Byzantine players’ choice Σk

Z′ . Formally,

ui,Z(s, Σk
Z′) = min{Ri(π)|π ∈ Φ(s, Σk

Z′)}.

Second, due to the probabilistic behaviour of altruistic players, the system is
probabilistic with multiple paths, and thus the pay-off of a player is always the
expected pay-off, i.e., the pay-off of a path weighted by the probability of the path
being taken. That is, if we release the constrain of fixing non-Byzantine players’
choice to only fixing the rational/coalition5 players’ choice (Σk

C), for each player

i, we will obtain a set of guaranteed pay-offs {ui,Z(s,Σk
Z′)|PΣk

Z′
C = Σk

C}. Since
the values in the set vary due to the probabilistic choice of altruistic players,
they follow the same probabilistic distribution of altruistic players’ joint choice.
Thus we calculate the expected the pay-off of i by multiplying each value in the
set with its corresponding probability and then adding up the results. Formally,
the expected guaranteed pay-off of player i is

vi,Z(s, Σk
C) = E(ui,Z(s, Σk

Z′)|PΣk
Z′

C = Σk
C).

This prepares us to calculate the altruistic and the rational game-reward for
players in a coalition. We finally release the constraint of a specified joint action
choice of players in the coalition, and there will be the following two cases.

– Altruistic: When the players in C behave altruistically, due to their proba-
bilistic behaviour, when releasing the constraint of a given joint action choice
of C, there is a set of vi,Z(s,Σk

C) values which follow a probabilistic distribu-
tion. We calculate the expected value of them, which captures the player i’s
reward starting from state s with length k, when considering all the possible
behaviours of Byzantine and altruistic players’ behaviours,

Uk
i,Z(s) = E(vi,Z(s, Σk

C)|∀Σk
C).

4 Essentially, Pπ
Λ projects each action to a part of it.

5 Note that the rational players are exactly players in the coalition, capturing that the
rational players assume the unknown players (not in C) are altruistic by default.
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– Rational: When the players in C are rational, they follow a joint action choice
(the best strategy) that leads to the best rewards, denoted as Υ . When the
coalition only contains one player i, Υ can be easily calculated as the max-
imum value in the set O = {vi,Z(s,Σk

C)|∀Σk
C}, capturing that i chooses her

actions that lead to the best rewards. When the coalition contains multiple
players, we will need to find the best pay-off which is non-trivial, since the
best choice for one player may not be the best choice for other players in
the coalition (discussed in the next Section). No matter which case, Υ is one
value in the set O, i.e., Υ = vi,Z(s,Σk

C) for some Σk
C .

To summarise, when s is an initial state and k is infinite, Uk
i,Z(s) is i’s altruistic

game-reward; and the player i’s ration game-reward will be Υ = vi,Z(s,Σk
C) for

some Σk
C .

Note that differing from the coalition in [16], we do not consider the entire
coalition as a single agent/player. That is, if, to achieve the best rational game-
reward, it requires some players to sacrifice their pay-off (i.e., some players lose
pay-off following the coalition while others in the coalition gain), this coalition
will not be valid, since each player in the coalition is rational. In this work, we
say a coalition would deviate if for every player in the coalition, the rational
game-reward is no less than the altruistic game-reward, i.e., all players do not
lose. One last point is that, we introduce a parameter ε to quantify the least
significant reward gain for deviation (i.e., a player in a coalition gains if his
rational game-reward in the coalition is greater than ε plus his altruistic game-
reward). This allows us to capture a variety of SNE parametrised by ε(> 0).
As a side effect, we can achieve better termination of automatic verification by
enlarging ε [15].

Therefore, a system satisfying ε-SNE is formalised as follows, capturing that
there is NOT a joint action (Σ∞

C ) choice such that the coalition would deviate.

Definition 2 (ε-Strong Nash Equilibrium). Let ε > 0. A PBAR system
M = (S, I,A, T, P,H) with Byzantine players Z is ε-SNE if ∀C ⊆ Z ′, �Σ∞

C , s.t.
∀i′ ∈ C, ∀s ∈ I,

U∞
i′,Z(s) + ε < vi′,Z(s,Σ∞

C ).

SNE in the Running Example. We illustrate the above ideas using the
running example, by calculating the reward for the first year and the entire
game-reward for two cases: coalition with size 1 and with size 2.

Calculating First Year Profits. As shown in Sect. 3, in the first year, given a
fixed choice of d1 and d2 (non-Byzantine players), there are three pay-offs of d1
(respectively d2), depending on the choice of d3. We choose the minimum value,
i.e., the guaranteed pay-off of d1 (respectively d2). The guaranteed pay-offs of
d1 and d2 and their corresponding action choices are shown in Table 16.
6 In this example, it happens (uncommonly) that given any fixed choice of d1 and d2,

that d3 chooses the lowest price p leads to the guaranteed pay-off of d1 and d2 in
every case.
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Table 1. Guaranteed profit of d1

Action choice 〈2p, 2p, p〉 〈2p, 3p, p〉 〈2p, p, p〉
Guaranteed pay-offs (〈d1, d2, d3〉) 〈0, 0, p〉 〈0, 0, p〉 〈0, p/2, p/2〉
Action choice 〈3p, 2p, p〉 〈3p, 3p, p〉 〈3p, p, p〉
Guaranteed pay-offs (〈d1, d2, d3〉) 〈0, 0, p〉 〈0, 0, p〉 〈0, p/2, p/2〉
Action choice 〈p, 2p, p〉 〈p, 3p, p〉 〈p, p, p〉
Guaranteed pay-offs(〈d1, d2, d3〉) 〈p/2, 0, p/2〉 〈p/2, 0, p/2〉 〈p/3, p/3, p/3〉

Consider d1, we first calculate her pay-off when she is altruistic. Since altru-
istic sellers’ behaviour is probabilistic, we calculate the expected guaranteed
pay-off of d1, i.e., d1’s pay-off for each action choice (see Table 1) times its prob-
ability, p/2 × 0.9 × 0.05 + p/2 × 0.9 × 0.05 + p/3 × 0.9 × 0.9 = 0.315p. That is,
U1
1,{3}(〈⊥,⊥,⊥〉) = 0.315p.

Second, we calculate the pay-off of d1 when she is rational. In this case, she
plays the action which gives her the maximum profit. For example, since d3’s
action is always p, if d2 also chooses p, there are three choices for d1 (the first
column in Table 1). d1 chooses action p which gives pay-off p/2, since the other
actions provide 0 pay-off. In this example, it happens that the best strategy for
d1 is always playing p, no matter how d2 acts. Since d2 is altruistic, the choice of
d2 is probabilistic. Therefore, the pay-off of d1 is the expected pay-off depending
on the choice of d2, which is p/2 × 0.05 + p/2 × 0.05 + p/3 × 0.9 = 0.35p. That
is for any Σ1

{1}, v1,{3}(〈⊥,⊥,⊥〉, Σ1
{1}) ≤ 0.35p.

Since d1 and d2 are symmetric, the pay-off of d2 is exactly the same as d1.
When d2 is altruistic, her pay-off is U1

2,{3}(〈⊥,⊥,⊥〉) = 0.315p; and when d2 is
rational, ∀Σ1

{2}, v2,{3}(〈⊥,⊥,⊥〉, Σ1
{2}) ≤ 0.35p.

Therefore, when ε ≤ 0.035p, U1
i,{3}(〈p, p, p〉) + ε < vi,{3}(〈p, p, p〉, Σ1

{i}) for
both d1 and d2. That is, d1 and d2 would deviate and thus the game is not a
SNE for coalitions of size 1 with path of length 1.

Coalition of d1 and d2. According to Table 1, both d1 and d2 choosing the action
p in which d1 and d2 gain p/3 individually, which is better than being altruistic
which gains 0.315p. When ε ≤ (p/3 − 0.315p), d1 and d2 both deviate. In this
particular case, the coalition deviation corresponds to their individual deviation.

Calculating Game Profits. Assuming β = 0.5, in this example, since the pay-offs
for each year are the same as in the first year, the long-term game-reward for d1
and d2 when they are altruistic and rational (without coalition) are as follows (i ∈
{1, 2} to indicate d1 and d2 respectively): Ui,{3}(〈⊥,⊥,⊥〉) = 0.315p+0.315pβ+
. . . = 0.315p

1−β , and ∀Σ∞
{i}, vi,{3}(〈⊥,⊥,⊥〉, Σ∞

{i}) ≤ 0.35p + 0.35pβ + . . . = 0.35p
1−β .

Thus SNE with ε ≤ 0.035p
1−β is violated for coalitions size 1. When d1 and d2 form

a coalition, similarly, the best joint action is both d1 and d2 choosing p. Each
seller’s long-term game-reward is vi,{3}(〈⊥,⊥,⊥〉, Σ∞

{1,2}) = p/3
1−β for i ∈ {1, 2}.
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The coalition would deviate when ε ≤ (p/3−0.315p)
1−β , since Ui,{3}(〈⊥,⊥,⊥〉) + ε ≤

vi,{3}(〈⊥,⊥,⊥〉, Σ∞
{1,2}).

Note that in this example, it happens that the actions maximizing the game-
reward coincide with the best actions in each year. However, this is not always
true in general. In many cases, the best strategy leading to the best long-term
game-reward may not be the best action in each step. Automated verification is
particularly useful in such cases.

6 Verification Algorithm

6.1 Reduction

Verifying ε-SNE is equivalent to finding the negation of the ε-SNE conditions
defined in Definition 2, i.e., finding a joint action choice of some coalition so
that the players in the coalition deviate. If such a joint action choice exists,
then ε-SNE is violated. Thus the verification problem can be reduced to a multi-
objective optimization problem of finding the existence of feasible joint action
choices.

The negation of Definition 2 is as follows: For some coalitions C ⊆ Z ′ there
exist Σ∞

C , for all i ∈ C, s ∈ I, vi,Z(s,Σ∞
C ) − Ui,Z(s) > ε. The verification of the

above inequality can be reduced to the following multi-objective optimization
problem:

maximize
Σ∞

C

objective: vi,Z(s, Σ∞
C ) − Ui,Z(s) ∀i ∈ C

subject to constraints: vi,Z(s, Σ∞
C ) − Ui,Z(s) > ε ∀i ∈ C

Given a fixed Σ∞
C and s ∈ I, the objectives of players in C form an objective

vector of n-dimensions (n = |C|) where each dimension represents each player’s
objective. Depending on different Σ∞

C and s ∈ I, there is a set of objective
vectors. In multi-objective optimization, we say that vector x dominates vector
y if the value of each dimension of x is no less than the corresponding value of
y. Thus the constraints can be represented by a vector x dominates the vector
〈ε, . . . , ε〉. The verification of ε-SNE is now reduced to find whether there exists a
vector which dominates 〈ε, . . . ε〉 or not. Non-existence of this vector is equivalent
to SNE. To find the vector satisfying the constraint, it is sufficient to compare
〈ε, . . . , ε〉 with the set of vectors which are not dominated by any other vectors,
which is exactly finding a solution for the optimization problem. Each vector
can be considered as a point in a n-dimensional space. The set of vectors that
are not dominated by any other vectors form a curve, called Pareto-curve in the
n-dimensional space. Verification of ε-SNE can be reduced to checking whether
or not a point in the Pareto-curve dominates 〈ε, . . . , ε〉.
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6.2 Approximation

In order to find a point which dominates 〈ε, . . . , ε〉, one has to enumerate
the points on the Pareto curve w.r.t all the strategy combinations (poten-
tially infinite), which may not be feasible in some cases. For simplicity, we
choose only the coalition strategies corresponding to the optimal value of a
single objective function which can be proven to be Pareto optimal strategies
in multi-objective function [6]. The single objective function is a linear com-
bination of each player’s individual objectives parametrised by α as follows:
α = 〈α1, . . . α|C|〉 such that αi ∈ [0, 1] and Σ

|C|
i=1αi = 1. Thus the linear combi-

nation is Σ
|C|
i=1αi(vi,Z(s,Σ∞

C ) − Ui,Z(s)). The Pareto-curve is approximated by
the optimal objective vectors (corresponding to linear combinations) generated
by various α values.

Since Ui,Z(s) is a constant for a given i, s and Z, we can simplify the previous
linear combination formula into Σ

|C|
i=1αi(vi,Z(s,Σ∞

C )), which is named as the
joint objective function. With a configuration C,Z and s, given an α, there is
an optimal joint action that maximizes the joint objective function which can
be denoted as σm = argmax{Σ

|C|
i=1αi(vi,Z(s,Σ∞

C ))}. With a joint action choice
σm, we can reverse to the original vector representing vi,Z(s,Σ∞

C ) − Ui,Z(s) for
each player i in C. This vector corresponds to a point in the Pareto curve. If the
vector dominates 〈ε, . . . , ε〉, this joint action choice is a strategy for the coalition
to deviate.

α1x + α2y = Rupper
∞α1x + α2y = Rlower

∞

l

t

x = V1 − U1

y
=

V
2
−

U
2

Fig. 1. Uncertain regions

Yet, another issue is that in gen-
eral, the pay-off of each player (one
value in each vector) cannot be cal-
culated as an exact value due to the
infinite length. Therefore, we approxi-
mate the pay-offs in a vector with some
error bound (Ξu,i(t) + Ξv,i(t)) (uncer-
tainty level) which leads to a region
(named as uncertain region) rather
than a point in the Pareto curve. For
example, Fig. 1, given a joint action
choice σm for t steps (dot t), there
is the shaded area between two paral-
lel dotted lines (the gradient is deter-
mined by α) representing the possible
joint action choices that lead to the optimal rewards in infinite steps. Each point
in this area is a vector 〈V ∞

1,Z,C,α(s)-U1,Z(s), . . . , V ∞
i,Z,C,α(s)-Ui,Z(s)〉(i ∈ C). For

each i, we find the points that correspond to the lowest V ∞
i,Z,C,α(s)-Ui,Z(s). For

each such point (l), we calculate the uncertainty region that contains the points
that dominate l (the triangular darker region). This region must contain some
point which is not dominated by any point in the shaded area (For proofs see [8]).
This region decreases when increasing t. We can choose k = min(t) s.t. every
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dimension i of a point in the uncertainty region is bounded by parameter δ. We
provide details about finding k in our proof [8].

6.3 Calculation of Rewards

We calculate the rewards for all players i ∈ C in k steps as follows. Let L = Z ′\C,
we first initialize the reward for 0 steps: V 0

i,Z,C,α(s) = 0, and U0
i,Z(s) = 0. Then

we iteratively calculate the guaranteed state-reward (we refer to the game-reward
starting from a state s as a state reward) for player i for a given non-Byzantine
action combination 〈aC , aL〉7 in t + 1-steps starting from state s for a joint-
objective function parameterized by α, in order to determine the optimal action
combination. The above guaranteed state-reward is denoted by gt

i,Z,α, thus

gt+1
i,Z,α(s, 〈aC , aL〉) = {minaZ∈AZ

(
(Hi(s, a) + βiV

t
i,Z,C,α(s

′))|a = 〈aC , aZ , aL〉, T (s, a) = s′)}.

Expected guaranteed state-reward of player i for joint action aC for the last
action in t+1-step action sequence is vt+1

i,Z,α(s, aC) = EaL∈AL
(gt+1

i,Z,α(s, 〈aC , aL〉)).
We define expected guaranteed state-reward of player i in rational coalition

C for t + 1-step action sequence as,

V t+1
i,Z,C,α(s) = vt+1

i,Z,α(s, am
C ),

where am
C = argmax{{Σ

|C|
i=1αi(vi,Z,α(s, a′

C))} | a′
C is enabled at s}.

We define expected guaranteed state-reward of i when all coalitions C are altru-
istic for t + 1-step action sequence as,

U t+1
i,Z (s) = EaZ′∈AZ′ (g

t+1
i,Z,α(s, aZ′)).

6.4 Algorithm

Given a regret value ε and parameter δ, we propose Algorithm 1 to decide
whether a given model M with Byzantine players Z satisfies SNE. Line 1–6
calculates the state rewards for each player i (not in Z) in k steps from the
initial states (i.e., V k

i,Z,C,α(s0) and Uk
i,Z(s0), s0 ∈ I). Using the results, we

calculate the maximum gain of deviating in k steps (denoted as Δi,α), i.e.,
max(V k

i,Z,C,α(s0) − Uk
i,Z(s0)) (line 7). Then we use Δi,α and the error bound

Ξu,i(k) + Ξv,i(k) to approximate the gain of deviating in infinite steps and
obtain its lower and upper bounds (line 8). The final step is to decide the relation
between the bounds and ε according to Definition 1. Given an α, the bounds of
all players form the uncertainty region like in Fig. 1. If all points in the uncer-
tainty region dominate 〈ε, . . . , ε〉, we have ε1(i, α) > ε,∀i, meaning that there
is a strategy for C to deviate and gain more than ε, then M does not satisfy
ε-SNE (line 9–10). If all the points in the uncertainty region are dominated by
〈ε, . . . , ε〉 (ε2(i, α) ≤ ε,∀i), then there is no joint action choice of C can deviate
and gain, and thus the algorithm returns SNE (line 11–12). Otherwise, we are

7 aC is short for p(a, C), aL is short hand for p(a, L).
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Algorithm 1. isSNE(game M, set Z, double ε, δ)
1: Let s ∈ S, C ∈ Z′ aC ∈ AC ,L = Z′ \ C, i ∈ C
2: Let k, 2(Ξu,i(k) + Ξv,i(k)) ≤ δ, αi ∈ (0, 1)

3: V 0
i,Z,C,α(s) ← 0;U0

i,Z(s) ← 0;

4: for t=1 to k do
5: Update Ut

i,Z(s),V t
i,Z,C,α(s)

6: end for
7: Δi,α ← max{V k

i,Z,C,α(s) − Uk
i,Z(s)|s ∈ I}

8: ε1(i, α) ← Δi,α − Ξu,i(k) − Ξv,i(k); ε2(i, α) ← Δi,α + Ξu,i(k) + Ξv,i(k)
9: if (ε1(i, α) > ε ∀i ∈ C) then
10: return NOT SNE
11: else if (ε2(i, α) ≤ ε,∀i ∈ C) then
12: return ε-SNE
13: else if ((ε1(i, α) ≤ ε ∀i ∈ C),

(∃i ∈ C ε1(i, α) ≤ ε ≤ ε2(i, α))) then
14: return ε + δ-SNE
15: else
16: δ∗ ← max{(ε2(i) − ε)1(ε2(i) > ε)|i ∈ C}
17: return UNDECIDED
18: end if

uncertain about the domination relation, therefore we enlarge the regret value
by δ, which will lead to an easier decision (line 13–14). If by refining regret value,
we still cannot decide, we try a different α value (line 15–18). Given β and δ,
the algorithm has complexity O(|S| ∗ |A|) where |S| and |A| are the sizes of state
space and the action space.

7 Evaluation

In this section we evaluate our model and algorithm in three aspects: efficiency,
scalability and applicability. (1) We illustrate the efficiency of our algorithm
by comparing with existing tools - PRISM-games in particular. We use the job
scheduling as an example as it is representative of many real-world problems
while being easy to illustrate. (2) To show the scalability of our algorithm, we
take the apple-picking game as an illustration. The apple-picking game is a prac-
tical game that has been used to perform analysis in the game theory domain.
Especially, it engages all elements that we would like to illustrate - probabilistic
infinite game with rational players that may potentially form coalitions. (3) We
apply our algorithm to a real-world scenario - analysing a probabilistic secret
sharing scheme. The secret sharing scheme is an important building block in
many security critical systems. Being a multi-party computation scheme, ratio-
nal and Byzantine participants are key concepts. Moreover, it has been proved
that probability is essential in the secret sharing scheme to counter the rational
behaviour of participants [1]. Particularly, the secret sharing scheme we analyse
considers coalitions.

7.1 Comparison with PRISM-games - Job Scheduling Case Study

As mentioned in Sect. 2, the most relevant work to ours is PRISM-games 2.0 [12],
since it also handles NE in probabilistic game with coalitions under adversarial
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behaviour. However, it does not support infinite games. Moreover, it does not
directly support SNE verification. In order to be able to adopt PRISM-games
for PBAR verification, one has to apply some modelling tricks. We make the
following modelling effort in using PRISM-games for verifying PBAR: first, we
limited the game length/steps and encoded the discount factor in each state;
second, we model different player configurations separately and each forms a
model. In each model, we compute the optimal rational/altruistic rewards for
the limited length using PRISM-games. Then we compare the rewards for all
models to see whether SNE is satisfied. We use the following job scheduling
game (adapted from [15] by adding probability) to show the comparison with
our algorithm.

Job Scheduling. Suppose there are m jobs J = {J1, · · · , Jm} each of which con-
sists of a set of tasks; and there are q tasks T = {T0, · · · , Tq}. A system, compris-
ing n workers, specifies a sequence of tasks for each worker. A task sequence for
worker i is denoted as Ti = 〈τ(i, 0), · · · , τ(i, li)〉, where li +1 is the length of the
task sequence. A set of tasks form a job, denoted by the function η : J → P(T ).
Once a job is completed, the rewards are granted to the workers who finished
the tasks that compose the job. When a worker finishes a task, she can choose
to wait for her reward with probability 0.6 and not to wait with probability 0.4.
Once she gets the rewards or decides not to wait, she can start the next task with
probability 0.6, take a rest with probability 0.2 or skip the next task with prob-
ability 0.2. After finishing all tasks in the sequence (i.e., after finishing τ(i, li)),
a worker repeats the sequence of tasks from the beginning (i.e., task τ(i, 0)).
Taking a task consumes the rewards (i.e., getting negative rewards). If more
than one worker finish the same task which finishes some job, all of them will be
rewarded. A worker deviates from the system by not following the probabilistic
distribution.

Experimental Results. Given a set of Byzantine players Z, let ε = 1.1 and δ =
0.1, we verify SNE for different configurations of jobs and players. We run the
verification using our algorithm and PRISM-games using a 64-bit x-86 Intel
machine with 2.40 GHz processor and 8 GB RAM. The experimental results are
shown in Table 2. For the simplicity of representation, we use |Z| to represent
all the possible configurations with the same length of Z in Table 2, since in this
example, the verification results for the same |Z| are the same, due to symmetry
of players’ behaviour. For PRISM-games, we set the game length of each model
as 9. From Table 2, we can see that PRISM-games throws out-of memory error
in the model building phase even with a limited game length of 9 (with the same
corresponding the values of ε and δ in each test configuration). The PRISM-
games model can be found in [8]. As PRISM-games is not designed for PBAR,
auxiliary variables are needed in modelling, which makes the model complicated
and thus causes the out-of memory errors in generating the model.
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Table 2. Experimental results for job assignment

Configuration Coalition

#1-ε

Coalition

#1-ε + δ

Coalition

#2-ε

CPU

(sec)

Our algorithm PRISM-games

Players Jobs |Z| States Transitions States Transitions

3 2 1 FAIL PASS PASS 0.891 36 39 451625 OutofMemory

3 3 1 FAIL PASS PASS 0.971 36 39 554134 OutofMemory

4 2 1 FAIL PASS PASS 40.453 38 312 OutofMemory OutofMemory

4 2 2 FAIL PASS PASS 31.046 38 312 OutofMemory OutofMemory

4 3 1 FAIL PASS PASS 49.53 38 312 OutofMemory OutofMemory

4 3 2 FAIL PASS PASS 37.507 38 312 OutofMemory OutofMemory

7.2 Evaluating Scalability - Apple-Picking Game

The apple-picking game is initially proposed in [13]. This game is easy to under-
stand while has large state space. We use this game to test the scalability of
our algorithm, by setting the parameter values that lead to certain limit of the
algorithm execution.

Apple-Picking Game. Assume there are 3 players, each player has 2 life points.
In each round, there is a set of apples (fixed to 4 for the evaluation) and the
number decreases with a discount in each round. The number needs not to be
an integer (i.e., this is an infinite game). In each round, a player chooses to
shoot others or not. The set of apples are equally shared among the survivors
at the end of each round. If a player is shot once, her life point decreases by 1.
When a player’s life point reaches 0, the player dies, but will reborn in 3 rounds.
Each player i also has a confidence value towards another player j, denoted as
cij . cij reduces by 1 when j shoots i, and increases by 1 every 3 rounds with
the cap 2. This case study is a general abstraction of many real-world systems
in which agents must find compromise between sharing limited resources, e.g.,
price fighting. In this game, an analyst may want to know whether a strategy
is optimal for every player, for example, shooting based on trust - a player i
chooses not to shoot with probability w/q, where w is her maximum confidence
value (Max(cij), i �= j) and q is her total confidence value (Σcij , i �= j), and
chooses to shoot with 1−w/q. Player i chooses to shoot j with probability cij/q.

Experimental Results. We model apple picking game as a PBAR-system (defined
in Sect. 4). The model contains 315 states and 43 transactions. We verified it
using the proposed algorithm with ε = 1.1 and δ = 0.1, and the result is shown
in Table 3.

In the experiment, we considered two scenarios: the presence (|Z| = 1 one
of the players is Byzantine) or absence (|Z| = 0) of a Byzantine player. The
algorithm returns “PASS” for ε-SNE at the presence of Byzantine player and
returns FAIL at the absence of Byzantine player. This result suggests that coali-
tion deviation is only profitable when no player is Byzantine. Moreover, when
there is no Byzantine player, the system satisfies ε + δ-SNE when coalition size
is 1 but fails when coalition size is 2. This suggests that it is profitable to form a
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Table 3. Experimental results for apple game

|Z| Coalition size ε-SNE ε + δ-SNE No. states No. transactions

1 1 PASS PASS 315 43

0 1 FAIL PASS 315 43

1 2 PASS PASS 315 43

0 2 FAIL FAIL 315 43

coalition, when there is no Byzantine players. With the CPU configuration 10-
core Intel Xeon E5-2630 v4 machine with 2.2 GHz processor and 64GB RAM,
the verification time for each of the test cases exceeds 4 h, which indicates the
practical limit of the scalability in terms of states and transitions.

7.3 Applicability - Secret Sharing Protocol ADGH06

A secret sharing protocol is a scheme for distributing a secret among a group
of participants, each of whom has a share of the secret, and only a sufficient
number of shares together can reconstruct the secret. It has been widely used
in security related systems e.g., homomorphic secure computation. The most
well-known secret sharing protocol is Shamir’s secret sharing scheme. However,
it is has been proved to not work when there are rational agents, and thus a
new scheme with probability is introduced to counter the rational-fault [10].
However, this scheme only considers a single agent’s deviation. Hence a new
version of the probabilistic secret sharing protocol (ADGH06) is proposed which
is able to tolerant to k coalitions of rational agents [1].

Description. In the ADGH06 secret sharing protocol, a secret is encoded as g(0)
of an m−1 degree polynomial g (defined by a mediator), and it’s shares are g(i)
which are distributed to each agent i (i �= 0). In order to reconstruct the secret,
agents broadcast their secret shares and use interpolation to recover g(0). In
details, the protocol repeats the following actions in a stage t until all of agents
know the secret.

Each stage consists of 3 phases.
phase 1. A mediator collects ack from each agent for stage t.
phase 2. The mediator calculates a binary random variable bt at stage t (the
probability of bt = 1 is α and the probability of bt = 0 is 1 − α), produces
lt = bt.g + ht (ht is a random polynomial s.t. ht(0) = 0), and sends lt(i) to
agent i.
phase 3. All the agents broadcast their shares to other agents.

Agent i’s altruistic strategy is sending its share to all the other agents and
reconstruct lt(0). If i does not receive sufficient number of shares from other
agents, then cheating is detected and protocol stops. If lt(0) �= 0 then lt(0) is
the secret and i gets the reward. If lt(0) = 0 meaning that this round does
not count for that the mediator chose meaningless shares (the secret cannot be
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initstart s0 s1

s2

s3

s4

s5

s6

s7 win

fno

set secret comm 〈ack1, . . . , ackn〉

bt = 0/1 − α

bt = 1/α

cal lt1, . . . , ltn

cal lt1, . . . , ltn

comm 〈lt1, . . . , ltn〉

comm 〈lt1, . . . , ltn〉
comm 〈lt21 , . . . , lt

1
n 〉 comm 〈ltn1 , . . . , lt

n−1
n 〉

comm 〈lt21 , . . . , lt
1

n 〉 comm 〈ltn1 , . . . , lt
n−1

n 〉

next stage

new input

Fig. 2. All altruistic configuration.

reconstructed even with all the shares), then i proceeds to the next stage (re-
running the above actions). When all the agents follow the protocol, all of them
can reconstruct g(0) with 1

α expected number of stages.
In better evaluate our algorithm, we introduce Byzantine agent and extend

the protocol to a non-terminating one (i.e. secret sharing procedure is repeated).
We also introduce a discount factor to capture that the value of the secret
decreases over time.

Modelling. Due to space limit, it is impossible to show the entire model of
the protocol, which captures all configurations. Here in Fig. 2, we show a pro-
jection/part of the model representing the configuration when all agents are
altruistic. Probabilities α and 1 − α are for mediator producing a meaningful
polynomial or not. Probabilities of the other transitions is 1. Reward is only
given when there is a transition to a win state, where each agent receive all the
shares. The rational and Byzantine agents deviate by not sharing or sharing a
wrong share. In addition, the rational agents deviate by guessing the secret when
not all shares are received and when the mediator chooses meaningless shares,
instead of stopping the protocol or restarting the protocol in the altruistic set-
ting. The probability of an rational agent guess correct is p1, while guessing
wrong is 1 − p1 (due to the design of the polynomial g). Each rational player
has one chance to use the guessed result to obtain the reward. Therefore, the
larger the coalition size is, the bigger the chance of getting reward. The rational
deviation is defined in [1].

Verification Results. Let the discount factor be β = 0.5 and the number of
agents be n = 4, we verified the system using the same configuration as in
Sect. 7.1. We considered two cases, with a Byzantine agent (|Z| = 1) and without
Byzantine agents (|Z| = 0) (The original scheme does not claimed to be resilient
to Byzantine faults). When there is no Byzantine players, the verification result
(Table 4) shows that with higher regret allowance (ε), rational deviations become
less profitable (with the same δ and α). Adding a Byzantine agent does not
change the result in current parameters.
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Table 4. Secret sharing verification results

|Z| ε δ α ε-SNE ε + δ-SNE CPU-time (s) States Transitions

0 0 0.1 0.3 FAIL PASS .658 734 11365

0 0 0.1 0.7 FAIL PASS .620 734 11365

0 1.1 0.1 0.3 PASS PASS .598 734 11365

0 1.1 0.1 0.7 PASS PASS .654 734 11365

1 0 0.1 0.3 FAIL PASS .576 734 11365

1 0 0.1 0.7 FAIL PASS .585 734 11365

1 1.1 0.1 0.3 PASS PASS .665 734 11365

1 1.1 0.1 0.7 PASS PASS .626 734 11365

8 Conclusion

We aim to decide whether a rational agent in a probabilistic system would fol-
low the specified behaviour in the presence of mis-configured agents. We express
this problem as verifying whether the system is a SNE. We proposed a ver-
ification algorithm for non-terminating games and proved its correctness. We
implemented our algorithm and evaluated using three case studies. Having a
running time linear to the size of the state space times the action space, large
number of players may consequently slow down the termination of our algorithm.
We plan to provide in a future work optimisation and alternative methods to
overcome this problem.
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